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Abstract

Activity-based analysis (ABA) is an approach to understanding transportation,

communication, urban, and related social and physical systems using individual

actions in space and time as the basis. Although the conceptual foundations,

theory, and methodology have a long tradition, until recently an aggregate trip-

based approach dominated transportation science and planning. Changes in the

business and policy environment for transportation and the increasingly avail-

ability of disaggregate mobility data have led to ABA emerging as the dominant

approach. This chapter reviews the ABA conceptual foundations and method-

ologies. ABA techniques include data-driven methods that analyze mobility data

directly as well as develop inputs for ABA modeling. ABA models include

econometric models, rule-based models and microsimulation/agent-based

models. This chapter concludes by identifying major research frontiers in ABA.
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37.1 Introduction

Activity-based analysis (ABA) refers to treating individual actions in space and

time as a basis for understanding human mobility and communication behavior and

related systems such as cities, economies, and the physical environment. ABA is

replacing aggregate trip-based approaches as the basis for forecasting and knowl-

edge construction in transportation science and urban planning. ABA has long

recognized advantages over trip-based approaches, not the least being theoretical

validity. In addition, ABA can capture complex constraints and linkages that

determine mobility better than aggregate, trip-based approaches. ABA also admits

a wider range of policy variables, including non-transportation solutions to mobility

problems.

Until recently, the data and computers did not exist to apply ABA to realistic

scenarios. These limits have been shattered by increasingly powerful computers but

especially by individual-level data available through wireless location-aware tech-

nologies embedded in infrastructure, attached to vehicles, and carried by people.

These data are enhancing activity data analysis and modeling techniques. They are

also leading to a new, data-driven approach to ABA based on exploratory analysis

and visualization methods.

The next section of this chapter discusses the conceptual and practical founda-

tions of ABA. It first reviews the traditional, trip-based approach and identifies key

weaknesses. The activity-based approach resolves some of these weaknesses by

treating mobility and communication not as disembodied flow but as humans

conducting the activities that comprise their lives. The Section 37.3 reviews policy

and technological changes that are leading to advances and wider application of the

ABA approach. Section 37.4 reviews data collection and data analysis methods for

ABA. The Section 37.5 discusses activity-based models of travel patterns and urban

dynamics using econometric, rule-based, and simulation methods. Section 37.6

identifies ABA research frontiers.

37.2 Conceptual Foundations of Activity-Based Analysis

The past century of transportation science was dominated by a trip-based approach

to understanding and predicting human mobility. This approach focuses on isolated

acts of mobility as the primary object of study. A trip is a movement of a person,

goods, and/or vehicle from an origin to a destination (possibly the same location)

motivated by positive factors at the locations (push factors at the origin, pull factors

at the destination) and attenuated by negative factors related to the cost of mobility

between the directed pair. Each trip occurs independently of other activities and

trips that occur during individuals’ lives. People, events, and activities are atempo-

ral; time is simply a component of mobility cost. Finally, the trip-based approach

treats mobile entities not as unique objects but as undifferentiated flows between

areas such as traffic analysis zones, postal units, or census geography (although it
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can consist of subflows representing different cohorts) (Pinjari and Bhat 2011).

Weaknesses of the trip-based approach include (McNally and Rindt 2007):

• No recognition that mobility derives from activity participation

• The treatment of mobility events as resulting from independent and generally

unencumbered choice processes, simplifying the complex spatial and temporal

constraints that delimit (and sometimes determine) choice

• A focus on utility maximization, neglecting alternate heuristics related to factors

such as decision complexity and habits

• A neglect of the roles played by interpersonal relationships and information in

influencing activity, mobility, and communication behavior, including informa-
tion and communications technologies (ICTs)
The activity-based approach focuses on the individual and her or his need to

participate in activities that have limited availability in time and space. Mobility is

not fundamental but an epiphenomenon: it derives from the need to be physically

present for many activities and the “inevitability of distance” between activity

locations (Ellegård and Svedin 2012). Telepresence via ICTs can substitute for

physical presence but can also complement physical mobility by providing more

information about events and opportunities as well as capabilities for interpersonal

interaction and coordination. Individual and joint allocation of scarce time is the

meaningful starting point to understand activity, travel, and communication at all

scales: from the tasks required to fulfill daily projects to the annual and decadal

dynamics that affect cities, regions, and the planet (Pred 1977). Strengths of the

activity-based approach are (McNally and Rindt 2007):

• Recognition that mobility derives from activity participation

• Explicit treatment of the complex temporal and spatial constraints on activity

participation and mobility

• Flexibility to accommodate a wide range of decision processes and heuristics

• Explicit treatment of social organization, social networks, and ICTs that influ-

ence activity and mobility behavior

Table 37.1 summarizes major components of activity theory. As Table 37.1

illustrates, mobility – trips or tours – is only a component of a more expansive view

of human behavior that includes activity patterns and scheduling as well as the

social context that influence these activities.

The view that human activities in space and time are the meaningful starting

point to understand and manage transportation, cities, and regions dates back to the

time-use studies of Chapin (1974) and an influential paper by Jones (1979) that

articulated the ABA framework in its contemporary form. But much of the con-

ceptual foundation for ABA was developed by Torsten H€agerstrand in his time

geographic framework (Pinjari and Bhat 2011; McNally and Rindt 2007).

Time geography underlies many of the core ideas in ABA, including an ecolog-

ical perspective on human and physical phenomena, the need to build macro-level

explanations from the micro-level and situating travel within a larger context,

facilitating the recognition of non-transportation solutions to transportation prob-

lems. Basic time geographic concepts such as the individual trading time for
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space in movement among activity locations distributed in time and space

may seem trivial since they are so close to everyday life experiences. But this is

precisely the point H€agerstrand is making: we neglect seemingly inconsequential

but critical factors in our scientific explanations of human behavior; the trip-based

approach is an exemplar. Time geography provides a conceptual framework that

obligates recognition of basic constraints underlying human existence, as well as an

effective notation system for keeping track of these existential facts (Ellegård and

Svedin 2012).

37.3 Policy and Technology Context for Activity-Based Analysis

Transportation scientists, engineers, and planners have long recognized the

weaknesses of a trip-based approach with respect to validity and accuracy,

and the potential of an individual-level, activity-based approach for better

understanding and more accurate predictions of transportation and related

Table 37.1 Elements of activity theory

Element Description

Activity The main purpose underlying behavior conducted at a specific location and

time interval; often classified as fixed versus flexible activities based on the

relative ease of rescheduling and relocation

Activity

frequency

The number of times an activity occurs during a given time period

Activity location Geographic or semantic location where an activity occurs

Activity pattern Set of activities to be conducted during a specific time interval

Activity

schedule

Planned sequence and timing of activities to be conducted during a specific

time interval

Time budget Available time for mobility, communication, and activity participation during

a given time interval; often expressed relative to flexible activities and

constrained by fixed activities

Trip Physical movement between activity locations

Interaction Communication between individuals or locations

Tour A multi-stop and often multipurpose trip involving several activity locations

Mode Technique or service used to generate mobility and/or communication behavior

Activity space Geographic region within which a set of activities occur; can be the composite

of discrete activity locations or the smallest spatial region or subnetwork that

encompasses the activity locations

Activity

environment

Spatiotemporal configuration of activity locations within a given geographic

environment

Household Basic unit of domestic maintenance; influences activity participation through

task organization, coordination, and sharing

Social network Interpersonal relationships, both formal and informal, that influence activity

participation

Lifestyle Socioeconomic and demographic factors that influence activity, mobility, and

communication behavior
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human–physical systems. However, until recently there has been little incentive for

ABA in policy and planning. There was also little capability with respect to data

and computing power.

The last century has witnessed an unprecedented explosion in human mobility

due to the development of technologies and services such as steamships, railroads,

private automobiles, and commercial aviation. In today’s world, people travel to

a degree that would have seemed magical to our ancestors. While there are obvious

benefits from mobility, there is also increasing recognition of its market failures

such as congestion, poor air quality, accidents, sprawled cities, obesity, social

exclusion, and global warming. High mobility levels are also increasingly under

threat from aging infrastructure that is not being sufficiently renewed, increasing

urbanization (especially in the Global South), and increasing motorization as newly

emergent economies generate rising levels of wealth.

It is also increasingly difficult to separate mobility and communication behav-

iors. The telegraph, telephone, and the Internet have revolutionized communica-

tion, but these technologies were tightly coupled with location. The rise of mobile

telephony and pervasive computing has liberated telecommunication from specific

places, allowing it to be more integrated with people and their activities. This is

creating tighter, more complex linkages between mobility and communication.

Evidence indicates that the “Death of Distance” argument that geographic location

would become irrelevant is naı̈ve: communication complements as well as sub-

stitutes for mobility, leading to higher mobility demands at all geographic and

temporal scales as well as greater complexity of mobility and activity patterns.

Increasing recognition of transportation market failures, threats to mobility, and

the tighter integration of mobility and communication behavior have lead to new

scientific, policy, and planning initiatives in Europe, North America, and increas-

ingly elsewhere. The business and policy environment for transportation policy and

planning is evolving beyond simple measures and prescriptions that focus primarily

on measuring throughput relative to cost. There is wider consensus that mobility

should be managed, not simply maximized. There is also recognition that evaluat-

ing transportation performance requires a fuller range of measures including indi-

cators of effectiveness, equity, community livability, and sustainability. Planners

have also realized that solving transportation problems requires thinking outside the

system to the broader activity and communication patterns that drive complex

mobility behavior. This may include non-transportation remedies for transportation

problems (e.g., work flextime, different trading and service hours).

Approaching policy questions from the ABA perspective starts with underlying

activity patterns, their interdependencies, and the potential rebound effects that

occur from policy changes. Figures 37.1a, b provide a simple example (after

Ben-Akiva and Bowman 1998). Figure 37.1a illustrates a daily activity pattern

that includes being at home, working, stopping at a day-care center to and from

work, and shopping for groceries. Implementing this activity pattern is a single tour

from home to the day-care center and work in the morning, shopping in the late

afternoon, stopping again at the day-care center and back home in the evening,

mostly alone in a private vehicle.
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Figure 37.1b illustrates the outcome of a policy intervention: an employer-

sponsored public transit incentive combined with higher parking costs. Implemen-

tation of the activity pattern now requires three home-based tours: trips to/from

childcare center by car in the morning, commuting by bus to and from work during

peak times, and shopping by private vehicle in the late afternoon with a stop at the

childcare center on the way home. Is this new policy a success? A trip-based

approach would likely reach this conclusion since it would focus on the commuting

behavior and find a reduction in travel demand by private vehicle. However, an

activity-based approach would be more likely to conclude that the new policy was

a mixed success due to the shifting of travel and activity patterns and the increase in

home-based trips by car. An activity-based approach would capture the linkages

between these events and suggest that the transportation policy change should be

accompanied by supportive, non-transportation policies such as incentives for

day-care centers at work places and/or residential areas.

ABA is more challenging than a trip-based approach: the number of sequencing,

timing, location, mode, and route choice possibilities for only a daily activity

pattern is combinatorial. There are also a large number of household, social

network, and informational linkages that determine daily, weekly, monthly, annual,

decadal, and lifetime activity patterns. Activity-based comprehensive urban models

also consider the reactions and dynamics of broader infrastructure, economic,

sociodemographic, and political systems. Determining a meaningful boundary

around the system being analyzed and the level of resolution for representing

different components is critical. This requires judgment that considers the scientific

Grocerya

b

Office Child care center

Home

Grocery

Office Child care center

Home

17:00, car, alone

17:30, car, alone
18:00, car, alone

7:30, car, alone

16.45, bus

7.45, bus

17:45, car, alone

8.15, car, alone

8.00, car, child as passenger

18.00, car, child as passenger

7.15, car, child as passenger

18.15, car, child as passenger

Fig. 37.1 (a) Activity-based
approach to policy analysis:

before policy intervention.

(b) Activity-based approach

to policy analysis: after policy

intervention
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and policy questions being asked, as well as theoretical correctness and consistency

(Ben-Akiva and Bowman 1998).

With respect to capabilities for ABA, digital data collection, storage, and

processing costs have collapsed to an astonishing degree. Location-aware technol-
ogies (LATs), digital devices that can report their geographic location densely with
respect to time, have become inexpensive and effective. They are increasingly

embedded in vehicles and infrastructure and carried by people in consumer prod-

ucts such as smartphones. LATs are generating massive amounts of fine-grained

data about mobility and communication dynamics as well as the dynamics of the

broader social and environmental systems within which they are embedded. Com-

puters are also much better at handling these data. In addition to dramatic increases

in computing power, geographic information systems (GIS) and spatial database
management systems (SDBMS) have evolved well beyond their origins in com-

puter-based paper maps to include a wide range of tools managing, querying,

analyzing, and visualizing dynamic and moving objects data. Social media avail-

able through mobile communication devices allow users to obtain better informa-

tion transportation systems, share user-generated content, and even participate in

management and governance.

New interdisciplinary fields such as computational transportation science (see

http://ctscience.org/) are emerging to exploit data collection, processing, and com-

munication capabilities to solve vexing and increasingly critical transportation

challenges. Private sector companies such as IBM envision smarter transportation,

smarter cities, and a smarter and more sustainable planet by collecting fine-grained

sensor data, processing these data into meaningful metrics, and sharing this infor-

mation widely to support more collaborative decision-making (see www.ibm.com/

smarterplanet). There are critical privacy questions that must be resolved (discussed

below), but these data and tools have the potential to revolutionize transportation

science and planning from the “bottom up”: a new science and practice built from

individual activities in space and time as the core concept.

37.4 Activity Data Collection and Analysis

ABA includes a rich suite of tools for empirical measurement and analysis of

mobility and communication behavior. The conceptual origins for this approach

are based in time geography, but this approach has been revolutionized by the rise

of LATs and the availability individual-level mobility and communication data.

These data can be analyzed directly for empirical patterns. They can also be used as

inputs to ABA models, as well as in model calibration and validation. Data-driven

methods are also used in mobility mining: open-ended exploration of moving

objects data to search for novel hypotheses.

Space–Time Paths. The basic conceptual entity in ABA is the fundamental time

geographic entity, the space–time path, and its extension, the space–time prism.

The space–time path represents actual mobility (recorded or simulated) of an entity

moving in geospace with respect to time. (A geospace is a low-dimensionality
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space – usually three dimensions or fewer – where distances between location pairs

represent shortest path relations in some real-world geography). Figure 37.2 illus-

trates a space–time path between four activity locations in geographic space (the

latter conceptualized as tubes with locations in space and extents in time reflecting

their availability).

Semantically, the path is a continuous mapping from time to geospace. In

practice, data are typically a sequence of sampled locations strictly ordered by

time. Traditionally, these data were collected using recall methods such as travel–

activity diaries, prospective methods such as experiments where study participants

solve contrived activity and travel scheduling problems. These traditional data

collection methods are fraught with problems, including nonparticipation biases,

recall biases, and accidental or willful inaccuracies (in the case of travel diaries) as

well as difficulties in creating meaningful scenarios (in the case of prospective

methods). LATs such as assisted GPS technologies in smartphones allow more

accurate and higher volume data collection to support space–time path reconstruc-

tion. However, this often comes at the expense of path semantics such as the context

for the mobility episode including the planned and executed activities. Semantics

can be recovered by overlaying paths with high-resolution georeferenced land-use

and infrastructure data. This method can produce errors related to data inaccuracies

and activity ambiguities (e.g., what is a person doing while in a coffee house –

dining, working, socializing, or some combination of the above?).

The sequence of sample locations can be generated in several ways depending

on the data collection method (Andrienko et al. 2008; Ratti et al. 2006):

• Event-based recording: Time and location are recorded when a specified event

occurs; this is typical of traditional diary methods but also characterizes data

Time

Grocery

Work
Day care
center

Home

Geospace

Fig. 37.2 A space–time path

among activity locations
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from cell phones, for example, a person calling from a mobile phone generating

a location sample.

• Time-based recording: Mobile object positions are recorded at regular time

intervals; this is typical of GPS and related technologies.

• Change-based recording: A record is made when the position of the object is

sufficiently different from the previous location; this includes dead-reckoning

methods as well as mobile objects database technologies that avoid recording

some locations to manage data volume.

• Location-based recording: Records are made when the object comes close to

specific locations where sensors are located; examples include radiofrequency

identification and Bluetooth sensors.

The path must be reconstructed from the temporally ordered sequence of sample

locations. The standard method is linear interpolation between temporally adjacent

sample points. This requires the least amount of additional assumptions but admits

physically unrealistic motions such as infinite acceleration and deceleration at sharp

corners. Interpolation via Bezier curves generates a smoother, more physically

realistic space–time path (Macedo et al. 2008; Miller 2005a).

Three types of error occur in space–time paths.Measurement error refers to error
in the recorded location or timestamps. This is equivalent to the well-studied problem

of measurement error in polylines in geographic information science. Sampling error
refers to capturing a continuously moving object using discrete sampling. One way to

deal with this is to treat the unobserved segments between sampled locations as an

uncertainty region delimiting possible locations for the object between observations

(Macedo et al. 2008). This is equivalent to another fundamental time geographic

concept, the space–time prism, to be discussed below. Combined measurement and
sampling error comprises the third type of space–time path error; this is equivalent to

measurement error in a space–time prism since under these conditions the space–time

prism is a sequence of linked, imperfectly measured space–time prisms.

Space–time paths contain many properties that are useful for understanding

human mobility behavior. Analytical methods for paths include (Andrienko et al.

2008; Long and Nelson 2012):

• Path descriptors include both moment-based descriptors (such as the time, loca-

tion, direction, and speed at any moment) and interval-based descriptors (such as
the minimum, maximum, and mean speed; the distribution and sequence of speeds

and directions; and the geometric shape of the path over some time interval).

• Path comparison methods allow quantitative comparisons among space–time

paths, particularly with respect to geometric similarity in space–time and with

respect to semantics (such as the sequence of locations visited). Methods include

path distance measures such as the Fréchet distance and sequence measures such

as least common subsequences.

• Pattern and cluster methods for identifying synoptic spatial–temporal patterns

from large collections of mobile objects.

• Individual-group dynamic methods for characterizing collective movement

behavior such as flocking, for example, methods that examine the relative

motions among mobile objects.
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• Spatial field methods for translating movement patterns of objects into fields or

surfaces that summarize mobility and activity frequency by geographic location.

• Spatial range methods for identifying and characterizing the geographic area

that contains the observed mobility of one or more mobile objects.

Long and Nelson (2012) provide a succinct but comprehensive review of these

methods.

Space–Time Prisms. The space–time prism represents potential mobility: it

delimits possible locations for a space–time path during some unobserved time

interval. Figure 37.3 illustrates a planar space–time prism.

A prism can have two interpretations. As noted above, the prism can be an

uncertainty region for an under-sampled space–time path. In contrast, H€agerstrand
(1970) conceptualized the prism as a measure of space–time accessibility. The

prism encompasses all locations that can be reached during the unobserved time

interval given constraints on the object’s speed. Activities, conceptualized as tubes

at specific locations with limited extent in time (see Fig. 37.2), must intersect the

prism to a sufficient degree (at least as long as the minimal activity time) for

the activity to be feasible for that person at that time and location.

The prism is difficult to state analytically over the entire interval of its existence.

However, it is tractable to define the prism’s spatial extent at a moment in time as

the intersection of only two of three simple spatial regions (Miller 2005a). It is also

possible to define space–time prisms within transportation networks (Kuijpers and

Othman 2009). Figure 37.4 illustrates a network time prism: the figure illustrates

the accessibility locations within the planar network and the corresponding

Time
T

im
e 

bu
dg

et

First anchor

Potential path area

Second anchor

Geospace

Minimum stationary activity
time

f(max travel velocity)

Fig. 37.3 A planar space–time prism
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spatiotemporal region comprising the complete network time prism. In addition to

being the envelope for possible space–time paths, these paths also give the prism an

internal structure, including unequal visit probabilities within the interior (Winter

and Yin 2011).

Prisms contain error propagated from the measured space–time anchors and

object speed limits. Error distributions can be numerically generated through Monte

Carlo simulation: generate many realizations of the prism and analyze the resulting

data. This is a tractable approach for theoretical investigation but is not scalable to

practical applications. Alternatively, it is possible to derive analytical characteriza-

tions of prisms and prism–prism intersection error in planar space using spatial

error propagation theory and implicit function techniques applied to the intersection

of circles and ellipses. However, some intersection cases are still open, and it is not

scalable beyond pairs of prisms. Required is further investigation into tractable

error approximations based on spatial error propagation methods (Kobayashi et al.

2011). More tractable are uncertain network time prisms based on spatiotemporal

probability regions (not necessarily connected) for anchor locations and times

within the network (Kuijpers et al. 2010).

Prisms can be used as inputs to activity models, in particular choice set or

feasible activity set delimitation. Prism-based measures provide vividly different

portrayals of accessibility across social, gender, and cultural dimensions relative to

traditional place-based measures that tend to mask these differences (Kwan 1998).

Prisms can capture activity time constraints within accessibility measures that are

consistent with spatial choice, spatial interaction, and consumer surplus theory

(Miller 1999).

Path–prism and prism–prism intersections represent potential interaction

between two mobile objects. Both can be solved in planar space for a moment in

time (Miller 2005a). Scalable techniques also exist for network prism intersections

(Kuijpers and Othman 2009). Prism–prism intersections are also useful for captur-

ing the possibility of joint activity behavior in activity-based measures and models

(Neutens et al. 2007).

Fig. 37.4 A network time

prism
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The space–time prism focuses on physical accessibility in geographic space or

transportation networks. Path and prism concepts have been extended to encompass

interactions within cyberspace (the virtual space implied by networked ICTs).

Interaction and accessibility in cyberspace can be treated as direct relationships

among space–time paths and prisms (Yu and Shaw 2008) or as indirect relation-

ships mitigated by access to communication technologies (Miller 2005b). It is

also possible to treat the STP as existing in a hybrid geo/information space

(Couclelis 2009).

Mobility Mining. Increasing capabilities for collecting and processing mobile

objects data is leading to the emergence of mobility mining as a new area of

research. Mobility mining leverages mobile objects databases with advances in

data mining techniques to create a knowledge discovery process centered on the

analysis of mobility with explicit reference to geographic context. Mobility mining

involves three major phases (Giannotti and Pedreschi 2008):

• Trajectory reconstruction from raw mobile objects data. The basic problem was

discussed above; the specific problem in this context is to reconstruct trajectories

from massive mobile objects data, especially when the data are collected using

different methods and sampling methods/rates. This may involve preprocessing

steps such as data selection, cleaning, and integrating with other geographic and

sociodemographic data.

• Pattern extraction involves using spatiotemporal data mining methods to dis-

cover interesting (novel, valid, understandable, and useful) patterns in the

reconstructed trajectories. Types of patterns include clusters, frequencies, clas-

sifications, summary rules, and predictive models.

• Knowledge delivery involves verifying and interpreting the discovered patterns,

integrating these patterns with background knowledge and communicating this

information to support scientific and applied decision-making.

Mobility mining and knowledge discovery from mobile objects databases are

hypothesis-generation processes that should lead to more focused and conclusive

investigation. These techniques and processes play roles in the scientific process

similar to instrumentation such as a telescope, microscope, or supercollider: it

allows analysts to see empirical phenomena that would otherwise be obscured or

difficult to detect. Empirical patterns discovered during the data mining process are

tentative until they have been verified using confirmatory statistics and interpreted

in light of background knowledge and theory.

37.5 Activity-Based Modeling

Although theoretically and evidentially suspect, the trip-based approach offers

a significant strength, namely, it is relatively straightforward to build scalable

comprehensive models of transportation and urban systems that are easily cali-

brated, verified, summarized, and mapped. It is more challenging to build, verify,

and digest comprehensive models built from the micro-level. LAT-based data,

geometric growth in computing power, and the hard work of some very smart
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people are making activity-based models more realistic, powerful, and understand-

able. Consequently, ABA is being increasingly applied in policy and planning

analysis in Europe, the United States, and other locations.

Depending on the system being modeled, activity-based models can encompass

a large number of decision variables over a wide range of temporal and spatial

granularities and time frames. In addition, activity-based models are often compo-

nents in broader comprehensive urban models and linked human–physical process

models. Possible components of activity-based models include (Ben-Akiva and

Bowman 1998):

• Activity implementation involving the execution and possible rescheduling of

activity, travel, and communication plans based on empirical conditions in real

time. This includes decisions such as mode and route choice, but also fine-

grained context-specific behaviors such as speed, acceleration, merging and car-

following behavior in automobiles, bicycling behaviors such as obeying stop

signs, and pedestrian behavior within crowded environments.

• Activity scheduling includes activity selection, activity assignment within house-

hold and other social networks, activity scheduling, selection of activity loca-

tions, and methods and times for mobility. These events occur frequently and

regularly at time scales ranging from real time to hourly, daily, weekly, monthly,

seasonally, and annually.

• Sociodemographic systems include work, residence, ownership, and other life-

altering personal, social, and economic decisions and events such as having

children or buying a bicycle. These occur infrequently at the scales from annual

to decadal.

• Urban, social, and economic systems include the infrastructure, services, insti-

tutions, and social and built environments that influence implementation, activ-

ity, and lifestyle decisions. These systems operate from real time (e.g., traffic

conditions) through annual (e.g., housing dynamics) to decadal and beyond

(e.g., compact versus sprawled cities).

• Physical systems include material, energy, hydrologic, biological, atmospheric,

and other environmental systems that affect and are affected by the other activity

domains. These operate in real time (e.g., air quality) to geologic (e.g., climate

change).

Activity-based models slice, dice, and combine these components in different

ways depending on the modeling domain and scope, as well as the strengths and

weaknesses of the particular technique. Major types of activity-based modeling

techniques are (i) econometric models, (ii) optimization methods, (iii) computa-
tional process models, and (iv) microsimulation and agent-based models. Some of

these approaches can also be used in combination, for example, econometric

models as a component of a larger microsimulation model or a computational

process model used to derive agent behavior in an agent-based model.

Econometric Models. Econometric models are among the oldest activity-based

modeling strategy, resulting from extending trip-based econometric models to

encompass activity choice and trip-chaining behavior. These models have their

foundation in the microeconomic theory of consumer choice. They require
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specifying relationships between individual attributes, environment factors, and

activity–travel decisions in the form of a utility function whose parameters are

estimated from empirical data, assuming utility-maximizing choices. Econometric

models of activity–travel behavior are often in the form of discrete choice models

such as multinomial and nested logit models. Figure 37.5 provides an example of

a nested logit representation of activity–travel behavior (after Ben-Akiva and

Bowman 1998). Other nesting structures are possible depending on what activity

facets are being analyzed. More elaborate econometric structures are also used,

such as structural equations, hazard-based duration models, and ordered response

models (Ben-Akiva and Bowman 1998; Pinjari and Bhat 2011)

Advantages of econometric models are a rigorous theoretical foundation and

mature methodologies for model specification, calibration, and validation. Weak-

nesses include the empirically suspect assumption that individuals are perfectly

rational utility maximizers and the lack of an explicit process theory to describe the

activity–travel decision-making (Timmermans et al. 2002).

Optimization Methods. Finding an ideal activity pattern based on criteria such as
time, cost, and utility is similar to the problem of finding optimal tours through

a transportation network with scheduled pickups and deliveries (Recker 1995).

There is a large literature in operations research and management science on

problems such as assignment, scheduling, and routing subject to time windows.

Secondary tour: Timing,
destination and modes

destination and modes
Primary tour: Timing,

Daily activity pattern

...

...

... T�mT�2T�1

TlT2T1

PkP2P1

Fig. 37.5 Nested logit representation of activity–travel behavior
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These are complex combinatorial problems, but computational search methods

have become very sophisticated and powerful. This is a normative approach: the

idea is not to replicate real-world behavior but rather generate ideal patterns that

can be used as benchmarks for evaluating real-world behavior with respect to

efficiency. These comparisons can help identify empirical factors and heuristics

that cause people to deviate from ideal patterns.

Rule-Based Models. Computational process models (CPMs) are a system

of action–condition pairs (semantically expressed as “if–then” rules) that describe

the activity–travel decision process in some empirical domain. Decision rules are

often organized according to different subcomponents of the activity system.

However, most CPMs focus on activity scheduling and implementation

(e.g., Recker et al. 1986). Rules can be derived informally from intuition and

knowledge based on previous research. Rules can also be inferred from empirical

data using data mining techniques such as decision tree induction and association

rules (Arentze et al. 2000).

CPMs are highly flexible, allowing a wide range of heuristics that better repre-

sent decision-making in the real world. However, a weakness is the difficulty in

enumerating the large number of rules required for even for a modest activity

scheduling and implementation problem. CPMs also do not have a mature theory

and techniques for testing variables and distinguishing between good and bad

models (Buliung and Kanaroglou 2007; McNally and Rindt 2007).

Microsimulation and Agent-Based Models. Microsimulation and agent-based

models are computer-based methods for predicting the evolution of a complex

system. Microsimulation refers to the computer-based modeling phenomena at

the disaggregate level to better understand complex dynamics at the aggregate

level. Microsimulation has a long tradition in social science, dating back to attempts

to modeling the US economy in the 1950s with household and firm behavior as the

fundamental units. Microsimulation models tend to fall into two categories. Static
models typically rely on cross-sectional data and result in no change to the structure
of the cross section (e.g., internal composition, sample size) as the model executes

over time. Dynamic models rely on cross-sectional or longitudinal data and produce
changes to the total number of micro-units. Dynamic models are used to forecast

and track modifications of entities over longer time periods than static models

(Buliung and Kanaroglou 2007).

Agent-based modeling (ABM) is closely related to microsimulation but has

a stronger conceptual foundation. ABM views systems as collections of autono-

mous, adaptive, and interacting agents. An agent is an independent unit that tries to

fulfill a set of goals in a dynamic environment. An agent is autonomous if its actions

are independent (i.e., makes decisions without an external controlling mechanism)

and adaptive if its behavior can improve over time through a learning process.

Agents interact by exchanging physical resources and information and/or by

reacting to presence or proximity. ABM describes a system from the perspective

of its constituent units’ activities; this is appropriate when individual behavior

cannot be described adequately through aggregate rules and activities are a more

natural way of describing the system than processes (Bonabeau 2002).
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The distinction between microsimulation, ABM, and rule-based techniques

discussed previously can be vague, particularly in practice. Rule-based methods

can be used to drive agent behaviors and microsimulations, and agents can be

a central component of broader microsimulation models (e.g., Arentze et al. 2000).

It is also possible to link these models with dynamic microscale traffic models to

simulate the interrelationships among transportation demand, transportation system

performance, and activity scheduling/implementation (see Bekhor et al. 2011).

Advantages of microsimulation and ABM include the explicit representation of

micro-level behaviors and processes, the ability to develop and test behavioral

theory, better understanding of macro-level processes produced by individual-

level behaviors, maintaining the heterogeneity of information (such as individual

identity) during simulation, minimization of model bias, better policy sensitivity,

integration of processes operating at different temporal scales, and improved model

transferability (Buliung and Kanaroglou 2007). Disadvantages include a lack of

mature methodologies for calibration and validation, although these models lend

themselves to expert engagement and judgment better than traditional, analytical

models (Bonabeau 2002). It can also be difficult to make sense of microsimulation

models and ABMs: these methods essentially generate a large dataset that must be

explored and analyzed. This can be challenging since good scientific practice

requires a careful experimental design for parameters that are not empirically

derived. The design should vary parameters systematically while holding others

fixed to assess the simulation outcomes, often with multiple simulation runs for

each parameter combination to eliminate artifacts from random number generators.

This can generate a huge amount of simulated results, particularly if there is a large

number of parameters and parameter levels to explore.

37.6 Frontiers in Activity-Based Analysis

Much progress has been accomplished in ABA; this progress is likely to continue as

favorable policy, computational, and data environments help scientists and practi-

tioners propel it forward intellectually. This section briefly discusses major research

frontiers in ABA.

Social Networks. Social networks are at the heart of time geography and ABA:

space–time paths bundle to conduct shared activities, prisms intersect to allow this

possibility, households are a fundamental unit for activity organization and sharing,

and activity coordination and adjustments cascade through broader activity

and social systems. Time geography and ABA are an ecological approach to

transportation, cities, and societies with a complex web of interconnections

(Pred 1977; Ellegård and Svedin 2012). Capturing the social network influences

on activity, mobility, and communication behavior is a very active frontier in ABA

(Neutens et al. 2008).

A major challenge in capturing social networks in ABA concerns basic defini-

tion, measurement, and data collection. Social networks can range from a few

intimate individuals to hundreds of Facebook friends. The problem is that all of
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these networks are relevant to activity behavior depending on the context. Measur-

ing social networks is also difficult, particularly more genuine and enduring net-

works. Social influence within these networks can also vary depending on formal

and informal relations. Finally, social networks have complex topologies such as

Small World configurations that can generate complex dynamics.

LATs and social media can inform social networks in ABA. As mentioned

above, path–path, path–prism, and prism–prism relationships indicate the possibil-

ity of social interaction, and methods for collective mobile objects data analysis are

improving. Problems include dealing with coincidental proximity (e.g., friends

versus strangers in a coffeehouse) and activity ambiguity (e.g., a coffeehouse

again). Location data error is also a challenge: this can be substantial for some

LATs in some environments (e.g., GPS receivers in city centers, cellular network

location in rural areas).

Social media are convincing millions of people to share details of their lives

online. The implications of these data for understanding and predicting activity,

travel, and communication behavior should be obvious, including that people use

these media to plan and coordinate activities. Challenges include nonrepresentation

biases and unstructured data. Social media participants are not scientifically sampled,

nor do people share everything about their lives (with some notable exceptions).

Nevertheless, the massive size of these databases makes them valuable. Social media

data are also unstructured: nonquantitative data such as text and imagery. Intrigu-

ingly, these data are increasing georeferenced due to social media applications in

smartphones. One way to treat these data is from a mobility mining perspective: use

social media data to generate hypotheses that can be tested with more focused,

confirmatory techniques and scientifically sampled or experimental data.

Unfortunately, access to LAT and social data can be circumscribed due to

proprietary and competitive reasons. This has the danger of leading to a computa-

tional approach that will revolutionize the social sciences but only as practiced in

private sector companies and secret government agencies (Lazer et al. 2009).

Big Data and Knowledge Delivery. Big Data refers to data that has high volume
(massive databases with millions of records), high variety (structured and unstruc-

tured data), and high velocity (often in real time). The Big Data mantra is to keep all

of these data since they may be useful; the astonishing collapse in data storage costs

over the past two decades makes this possible. In many locations in the world, we

are moving toward sensed transportation systems with sensors embedded in infra-

structure and vehicles, as well as high-resolution but remotely positioned sensors

such as LiDAR. These data combined with consumer LAT data and social media

will generate orders of magnitude more data about transportation and cities than

currently exist.

A previous section of this chapter discussed the role of mobility mining in ABA.

Research frontiers include not only dealing with massive transportation, mobility,

and communication data but delivering actionable knowledge to decision-makers

sufficiently fast, so they can act before the knowledge is irrelevant. This is

a challenging frontier that involves elements of exploratory and confirmatory

analysis as well as decision support.
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Big Data also has the potential to create more collaborative transportation and

social systems. This is a major motivation behind IBM’s Smarter Planet initiatives.

Collaborative transportation systems can range from ride/vehicle sharing to long-

term strategic decision-making about transportation and urban futures. The chal-

lenge is to create not only the knowledge delivery techniques discussed in the

previous paragraph but also the tools and environments for sharing, collaboration,

and collective governance.

Locational Privacy. The benefits of an ABA reinvigorated through more data

and computational power may not be realized if there is a public backlash due to

abuses of these data. Locational privacy is the concept that the space–time signature

that comprises activity patterns can reveal much about a person and her/his activ-

ities. This is a fundamental change: as the United States Supreme Court commented

during a recent decision, LATs provide not isolated facets but a person’s entire life.

Locational privacy protection strategies include regulation, privacy policies,
anonymity, and obfuscation. Regulation and privacy policies define unacceptable

uses of location data. Anonymity detaches locational data from an individual’s

identity. Obfuscation techniques degrade locational data through deliberate

undersampling, aggregation, introducing measurement error, or some combination

of the above. Scientific challenges include new research ethical protocols for dealing

with location data, especially user-generated content and remote but high-resolution

sensors that can reveal things and activities that were previously considered private.

Another scientific challenge is dealing with deliberately degraded locational data;

spatial and spatiotemporal error methods for mobile objects data are still lacking to

a large degree. More generally, societies need to have conversations about the

acceptable and unacceptable uses of these data if their role in building better

transportation systems and communities is to continue its remarkable progress.

37.7 Conclusion

Activity-based analysis (ABA) is emerging as the dominant approach in transpor-

tation science and planning (Timmermans et al. 2002). It is a theoretically

sound approach to transportation, cities, societies, and human–physical systems

that focuses on a person’s activities in time and space as the foundation. Changes

in policy are encouraging a wider view of transportation, and the increasing

availability of individual mobility data and scientific advances inspired by this

favorable environment are making ABA methods scalable to realistic scenarios and

problems.

Data-driven methods allow high-resolution measurement of fundamental ABA

entities such as the space–time path (representing actual mobility) and the space–

time prism (representing potential mobility, interpreted as path sampling error or

space–time accessibility). There is a wide range of methods for measuring, com-

paring, and summarizing collections of space–time paths, but fewer methods for the

space–time prism. These data can be used for empirical investigation, mobility data

mining, and as inputs to ABA modeling.
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ABA models attempt to solve or simulate activity behavior. Most models focus

on the activity scheduling and implementation problems. These ABA core models

can be linked with transportation system performance models to capture the

dynamics of mobility demand and system response. These core models can also

be embedded in broader models of cities, sociodemographics, and physical systems

such as airsheds. Major modeling approaches include econometric models, optimi-

zation methods, computational process models, and microsimulation/agent-based

models.

There are several ABA research frontiers; these include social networks, deliv-

ering knowledge in the face of Big Data, and location privacy. Progress along these

frontiers will support the continuing rise of ABA in understanding and planning

transportation and related systems.
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Ellegård K, Svedin U (2012) Torsten H€agerstrand’s time-geography as the cradle of the activity

approach in transport geography. J Transp Geogr 23:17–25

Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: a vision of convergence. In:

Giannotti F, Pedreschi D (eds) Mobility, data mining and privacy. Springer, Heidelberg,

pp 1–11

H€agerstrand T (1970) “What about people in Regional Science?” Papers of the Regional Science

Association 24(1):6–21

Jones PM (1979) New approaches to understanding travel behaviour: the human activity approach.

In: Hensher DA, Stopher PR (eds) Behavioral travel modeling. Croom-Helm, London,

pp 55–80

37 Activity-Based Analysis 723

http://othmanw.submanifold.be/


Kobayashi T, Miller HJ, Othman W (2011) Analytical methods for error propagation in planar

space-time prisms. J Geogr Syst 13(4):327–354

Kuijpers B, Othman W (2009) Modeling uncertainty of moving objects on road networks via

space-time prisms. Int J Geogr Inform Sci 23(9):1095–1117

Kuijpers B, Miller HJ, Neutens T, OthmanW (2010) Anchor uncertainty and space-time prisms on

road networks. Int J Geogr Inform Sci 24(10):1223–1248

Kwan M-P (1998) Space–time and integral measures of individual accessibility: a comparative

analysis using a point-based framework. Geogr Anal 30(3):191–216

Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L, Brewer D, Christakis N, Contractor N,

Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M (2009) Life in the

network: the coming age of computational social science. Science 323(5915):721–723

Long JA, Nelson TA (2012) A review of quantitative methods for movement data. Int J Geogr

Inform Sci (in press)

Macedo J, Vangenot C, Othman W, Pelekis N, Frentzos E, Kuijpers B, Ntoutsi I, Spaccapietra S,

Theodoridis Y (2008) Trajectory data models. In: Giannotti F, Pedreschi D (eds) Mobility, data

mining and privacy. Springer, Heidelberg, pp 123–150

McNally MG, Rindt CR (2007) “The activity-based approach”, working paper UCI-ITS-AS-WP-

07-1, Institute of Transportation Studies, University of California-Irvine

Miller HJ (1999) Measuring space-time accessibility benefits within transportation networks: basic

theory and computational methods. Geogr Anal 31(2):187–212

Miller HJ (2005a) A measurement theory for time geography. Geogr Anal 37(1):17–45

Miller HJ (2005b) Necessary space-time conditions for human interaction. Environ Plan B Plan

Design 32:381–401

Neutens T, Witlox F, van de Weghe N, DeMaeyer P (2007) Space-time opportunities for multiple

agents: a constraint-based approach. International Journal of Geographic Information Science

21(10):1061–1076

Neutens T, Schwanen T, Witlox F, De Maeyer P (2008) “My space or your space? Towards

a measure of joint accessibility”, computers. Environ Urban Syst 32(5):331–342

Pinjari AR, Bhat CR (2011) Activity-based travel demand analysis. In: de Palma A, Lindsey R,

Quinet E, Vickerman R (eds) Handbook in transport economics. Edward Elgar, Cheltenham,

pp 213–248

Pred A (1977) The choreography of existence: comments on H€agerstrand’s time-geography and its

usefulness. Econ Geogr 53(2):207–221

Ratti C, Pulselli RM, Williams S, Frenchman D (2006) Mobile landscapes: using location data

from cell phones for urban analysis. Environment and Planning B 33(5):727–748

Recker WW (1995) The household activity pattern problem: general formulation and solution.

Transp Res B 29(1):61–77

Recker WW, McNally MG, Root GS (1986) A model of complex travel behavior: part i.

Theoretical development. Transp Res Part A 20(4):307–318

Timmermans HJP, Arenze T, Joh C-H (2002) Analyzing space-time behavior: new approaches to

old problems. Prog Hum Geogr 26(2):175–190

Winter S, Yin Z-C (2011) The elements of probabilistic time geography. Geoinformatica

15(3):417–434

Yu H, Shaw S-L (2008) Exploring potential human activities in physical and virtual spaces:

a spatio-temporal GIS approach. Int J Geogr Inform Sci 22(4):409–430

724 H.J. Miller


	37 Activity-Based Analysis
	37.1 Introduction
	37.2 Conceptual Foundations of Activity-Based Analysis
	37.3 Policy and Technology Context for Activity-Based Analysis
	37.4 Activity Data Collection and Analysis
	37.5 Activity-Based Modeling
	37.6 Frontiers in Activity-Based Analysis
	37.7 Conclusion
	Acknowledgments
	References


