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Abstract

Bayesian inference has been at the center of the development of spatial statistics

in recent years. In particular, Bayesian hierarchical models including several

fixed and random effects have become very popular in many different fields.

Given that inference on these models is seldom available in closed form,

model fitting is usually based on simulation methods such as Markov chain

Monte Carlo.

However, these methods are often very computationally expensive and

a number of approximations have been developed. The integrated nested

Laplace approximation (INLA) provides a general approach to computing the

posterior marginals of the parameters in the model. INLA focuses on latent

Gaussian models, but this is a class of methods wide enough to tackle a large

number of problems in spatial statistics.

In this chapter, we describe the main advantages of the integrated nested

Laplace approximation. Applications to many different problems in spatial

statistics will be discussed as well.

71.1 Introduction

Spatial models provide a suitable way of analyzing data when observations are

thought to be correlated because of their locations in space. Bayesian inference has

proven useful when dealing with spatial models and modeling local dependence.

In Bayesian analysis (see, e.g., Gelman et al. 2003), inference about the vector of

model parameters x is based on computing their joint posterior distribution given

the vector of observed data y. This is done by means of Bayes’ rule:

pðxjyÞ / pðyjxÞpðxÞ

Here pðyjxÞ represents the likelihood of the model given its parameters and pðxÞ
is the prior distribution of the parameters of the model. Hence, the posterior

distribution depends on the mechanism which generates the data (i.e., the

likelihood) and the previous information about the model parameters (i.e., the prior

distribution). Note that pðxÞ is often supposed to depend on some hyperparameters

which in turn have their own prior distributions.

pðxjyÞ is a multivariate distribution of the ensemble of model parameters which

is often hard to obtain. In many applications it is sufficient with obtaining a separate

posterior distribution for some of the parameters in the model because no joint

inference is needed (e.g., the estimates of the relative risk in different areas). These

distributions are called posterior marginals and can be denoted pðxijyÞ.
As these are univariate distributions, they are often easier to compute or

approximate than the joint posterior distribution.

Given that in most cases there is no closed form for the posterior

distributions of most parameters in the model, Markov chain Monte Carlo
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(MCMC, see Gelman et al. 2003) techniques have been employed to estimate the

joint posterior. Furthermore, a number of sound techniques for model criticism,

comparison, and selection make Bayesian inference appealing.

For models with complex spatial dependence or large datasets, MCMC may not

be a convenient solution due to computational time. For this reason, Rue et al.

(2009) propose the use of approximate inference based on what they have called

the integrated nested Laplace approximation (INLA). This approximation will

focus on the posterior marginals which are easier to compute than obtaining an

approximation to the joint posterior distribution. Also, INLA will only consider

approximations for hierarchical models whose latent effects can be expressed as

a Gaussian Markov random field (GMRF).

Successful applications of INLA include disease mapping (Schroedle et al. 2011),

geostatistics (Eidsvik et al. 2009), point patterns (Illian et al. 2012), and others

(Martino and Rue 2010).

71.2 Integrated Nested Laplace Approximation

The integrated nested Laplace approximation (INLA) focuses on providing a good

approximation to the posterior marginal distributions of the parameters in the

model. In particular, this approximation has been developed for latent Gaussian

models. These cover a general class of models which appear in many areas of

interest. Spatial statistics is one of them, as spatial correlation can be introduced by

means of correlated random effects.

First of all, let us assume that we have n observed variables yi; i ¼ 1; . . . ; n with

a distribution (usually from the exponential family) with a mean mi which is related
to a linear predictor �i through a convenient link function. In turn, �i is modeled

additively on different effects:

�i ¼ aþ
Xnf
j¼1

f ðjÞðujiÞ þ
Xnb
k¼1

bkzki þ ei

Here, f ðjÞ represents some nonlinear function or random effects (of which

there are nf ) on a set of covariates u, bk are coefficients for linear effects on

a vector of covariates z, and ei are unstructured terms. The latent effects

x ¼ f�ig; a; fbkg; . . .f g are assumed to be Gaussian with zero mean and precision

matrix Qðy1Þ, where y1 is a vector of hyperparameters. Hence, the observations

will have a likelihood which will depend on the latent effects x and a set of

parameters y2. Furthermore, the observations yi are supposed to be independent

given x and y2.
In the particular case of spatial statistics, the terms f ðjÞðujiÞ can be taken as f

ðjÞ
i

(or ui abusing of notation) to represent a random effect at a spatial location i.
Hence, covariate uji acts as the spatial index i of area i for the set of random

effects j. For example, taking nf ¼ 2 we can define ui ¼ f 1ðu1iÞ and vi ¼ f 2ðu2iÞ,
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where u ¼ fu1; . . . ; ung is a vector of independent random effects and

v ¼ fv1; . . . ; vng is a vector of spatially correlated random effects.

Rue et al. (2009) focus on the posterior distribution of x and the vector of

hyperparameters y ¼ ðy1; y2Þ:

pðx; yjyÞ / pðyÞpðxjyÞ
Y
i2I

pðyijxi; yÞ /

pðyÞjQðyÞjn=2 exp � 1

2
xTQðyÞxþ

X
i2I

logðpðyijxi; yÞ
( )

Here I is the subset of indices (from 1 to length of x, the number of latent

effects) that are observed with observations y and their respective linear predictors

f�ig. Note that �i is the only observed latent effect (through yi) and that all the other
latent effects are not observed directly and need to be estimated. In addition, the

latent effects may be subject to some linear constraints of the form Ax ¼ e. Finally,
the latent field is supposed to have conditional independence properties, so that x
becomes a Gaussian Markov random field (GMRF). As we will show later, these

Markov properties play an important role when modeling spatial data.

The likelihood of the data pðyjx; yÞ is not constrained to be Gaussian. At the

moment, INLA can deal with several likelihoods from the exponential family as

well as with mixtures, such as zero-inflated distributions. Furthermore, INLA is

flexible enough to allow different observations to have different likelihoods. Hence,

INLA can deal with a myriad of models.

Instead of aiming at the full posterior distribution of the model parameters x and
y, Rue et al. (2009) focus on obtaining an approximation to the posterior marginal

distributions pðxijyÞ and pðyjjyÞ. These marginals can be written down as

pðxijyÞ /
Z

pðxijy; yÞpðyjyÞdy

and

pðyjjyÞ /
Z

pðyjyÞdy�j

Here y�j denotes y minus component yj.
The approximations will be for the conditional distributions in the right-hand

sides of the previous expressions. Note that an approximation to pðyjyÞ is also

required and that numerical integrations will be feasible only if the dimension of y
is small (as it often happens in practice).

A first approximation to pðyjyÞ using Gaussian distributions can be constructed

as follows:

~pðyjyÞ / pðx; y; yÞ
~pG ðxjy; yÞ jx¼x�ðyÞ
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~pG ðxjy; yÞ is the Gaussian approximation to the full conditional of x and x�ðyÞ is
the mode of the full conditional for a given value of y.

Hence, the marginals of interest can be computed using numerical integration

over a multidimensional grid of values of y. For example,

~pðxijyÞ ¼
X
k

~pðxijyk; yÞ � pðykjyÞ � Dk

where Dk represents the weights for each vector of values yk in the grid.

Rue and Martino (2007) and Rue et al. (2009) stress the importance of having

a good approximation to pðxijy; yÞ. A Gaussian approximation ~pG ðxijy; yÞ is based
on using a normal distribution with mean miðyÞ and marginal variance s2i ðyÞ.
The approximation provided by INLA (and in particular the Gaussian approxima-

tion for pðxjy; y)) is exact for Gaussian data and the approximation is only due to

integration (with respect to y) error. This may be a good starting point, but it may

not suffice because of possible inaccuracy if it is not centered at the correct point

and because of its lack of skewness.

For this reason, they also propose other alternatives such as the Laplace

approximation and the integrated nested Laplace approximation (INLA). Firstly,
an improved approximation may be obtained by using a Laplace approximation:

~pLA ðxijy; yÞ / pðx; y; yÞ
~pGG ðx�ijxi; y; yÞ jx�i¼x��iðxi;yÞ

Here ~pGG ðx�ijxi; y; yÞ is a Gaussian approximation to x�ijxi; y; y which is

centered around the mode x��iðxi; yÞ. As this approximation must be computed for

every xi, some numerical techniques are required to speed up computation.

Finally, Rue et al. (2009) derive a simplified Laplace approximation to improve the

approximation given by ~pLA ðxijy; yÞ by means of a series expansion of the Laplace

approximation around xi ¼ miðyÞ. This provides a better approximation and it corrects

for location and skewness. As ~pLA ðxijy; yÞ is very expensive to compute, the simpli-

fied Laplace approximation seems the best trade-off between speed and accuracy.

It should be noted that while these approximations will center on the posterior

marginal of a single latent effect xi or hyperparameter yi, the methodology behind

them could be applied to obtain an approximation of the joint posterior of any

subset S of latent effects xS (see Sect. 6.1, Rue et al. 2009). However, in that case,

the approximations become more complex and the numerical integration needed is

more demanding.

71.2.1 Gaussian Markov Random Fields

Approximate inference using INLA is based on the assumption that the latent field

x is Gaussian and fulfills some conditional independence properties. In particular,
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any two latent effects xi and xj in x should be independent given the remaining

latent effects x�ij. Furthermore, the number of hyperparameters appearing in the

distribution of x is assumed to be small.

Rue and Held (2005) provide a description of methods for efficient computation

of Gaussian Markov random fields (GMRF) which can be used to speed up

computations and provide fast approximations. GMRF are the key to providing

good Gaussian approximations for the posterior marginals. INLA is based on

providing Gaussian approximations to densities like

pðxjy; yÞ / exp � 1

2
xTQxþ

X
i2I

logðyijxi; yÞ
( )

where Q is the precision matrix of the GMRF. Note that if Q is a known matrix, its

determinant (sometimes termed Jacobian) can be ignored at this stage as the

posterior distribution can be rescaled later. This distribution may be subject to

a set of linear constraints Ax ¼ e. In any case, the approximation will result in

a Gaussian distribution with mean x� and precision matrix Q� ¼ Qþ diagðc�Þ (see
Rue et al. 2009, Sect. 2 for details). If linear constraints are present, the mean and

precision matrices of the Gaussian approximation are conveniently corrected.

These constrained models are useful for fitting geostatistical models and adjacency-

based spatial correlation effects for areal data (e.g., using an intrinsic conditional

autoregressive model). Other spatial and temporal random effects can be modeled by

using intrinsic GMRFs with linear constraints (see Rue and Held 2005, Chap. 3).

Linear constraints are often employed to impose a sum-to-zero constraint on intrinsic

GMRFs in order to make these effects identifiable. This is particularly important when

dealing with complex spatiotemporal effects (Knorr-Held 2000).

71.2.2 Priors

So far, we have dealt with how the likelihood and the latent Gaussian Markov

random fields are defined. As in all Bayesian approaches, a set of priors needs to be

assigned to the parameters.

First of all, covariate coefficients in the linear predictor will be assigned a normal

distribution with zero mean and precision t. A similar distribution will be used for

the random errors ei.
In principle, the latent random effects will be all Gaussian with zero mean. Hence,

only the parameters in the precision matrix will need a prior. For the case in which the

precisionmatrix is of the form tQ, whereQ is a knownmatrix, t can be assigned either
a gamma, truncated normal, or improper flat (in the log-scale) prior. If the whole

precision matrix is to be assigned a prior, then a Wishart distribution is available for

correlated random effects of small dimension (up to 5). Finally, the INLA software

provides other prior distributions. For example, correlation parameters, such as the

ones used to model spatial autocorrelation, can be assigned a beta prior.
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Note that, for simple models, these choices are equivalent to setting a conjugate

prior distribution and that in all cases the prior parameters are supposed to be known

(i.e., these cannot be assigned a prior in turn). It should be mentioned that these

priors are the ones implemented in the INLA software (available from http://www.

r-inla.org), but user-defined priors can be used as well by providing the mathemat-

ical expression for them.

Other priors can be built on upon simpler prior specifications. For example,

spatially varying coefficients on a covariate can be implemented by using a prior

which is the sum of independent and spatially correlated random effects. More

information about how priors can be specified are available at http://www.r-inla.

org/models/priors.

71.2.3 Model Criticism and Selection

INLA provides a number of ways of comparing and assessing models. First of all,

an approximation to the marginal likelihood pðyÞ is provided. This approximation

is based on

~pðyÞ ¼
Z

pðx; y; yÞ
pGðxjy; yÞ jx¼x�ðyÞdy

where pðx; y; yÞ ¼ pðyÞpðxjyÞpðyjx; yÞ. Models with a larger value of the marginal

likelihood will be preferred. Also, marginal likelihood can be used to compute

Bayes factors in order to compare models.

Predictive measures can also be computed very easily. In particular, INLA

can compute the predictive distribution of yi given all the other observations, that

is, pðyijy�iÞ. Following Pettit (1990), INLA reports the probability integral

transform (PIT):

PITi ¼ Probðynewi � yijy�iÞ

This criterion has been used to assess the validity of spatial models in disease

mapping and it avoids the use of other sampling-based methods which may be less

accurate (Marshall and Spiegelhalter 2003).

Roos and Held (2011) discuss sensitivity to priors for binary data using the

conditional predictive ordinate (CPO, Geisser 1993), which is defined as pðyijy�iÞ.
They use the mean logarithmic CPO to build the following statistic as a measure of

the predictive quality of the model:

CPO ¼ � 1

n

Xn
i

logðpðyijy�iÞÞ

Lower values of CPO indicate a better model. As the authors state, this criterion

can easily be extended to other hierarchical models. Held et al. (2010) compare the
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CPO and PIT between “exact” Bayesian inference (using MCMC) and approximate

inference (with INLA) showing that the approximated values are very close in

general to the exact ones.

Finally, INLA can also compute the deviance information criterion

(DIC, Spiegelhalter et al. 2002) which is a popular way of comparing Bayesian

hierarchical models. The DIC also computes a measure of the effective number of

parameters which is a measure of the complexity of the model.

71.2.4 Implementation

Besides the original paper, the authors have released a software (called INLA)

which implements all the techniques mentioned here. In addition, an interface

for the R programming language (R Development Core Team 2011) can be

downloaded (from http://www.r-inla.org) which makes the use of the software

easier and is able to produce summary statistics and plots of the results.

71.2.5 Other Features

In addition to an easy to use interface, the INLA software provides some other

features. The joint posterior distribution of the hyperparameters can be computed.

In addition, it is possible to define several linear combinations of the latent effects

so that their posterior marginals are computed. Furthermore, if several of these

linear combinations are computed, the joint correlation matrix can be computed as

well, and this can be used to approximate the joint posterior distribution.

71.3 Spatial Models

Spatial dependence can be modeled in different ways in Bayesian hierarchical

models (Banerjee et al. 2004). Given that INLA focuses on latent Gaussian

models and given that the latent effects are Gaussian, spatial correlation can be

embedded in the precision matrix. Furthermore, because of the Markov properties

of the latent field, these variance-covariance matrices are often very sparse.

How these methods can be applied to the different areas of spatial statistics is

discussed below.

71.3.1 Geoadditive Mixed-Effects Models

Geoadditive models appear when regression models on a set of covariates are

combined with other types of random effects (Kammann and Wand 2003).

A geoadditive model will be based on modeling the mean mi at each location i on
the sum of a set of fixed and random effects:

1408 V. Gómez-Rubio et al.
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mi ¼ mþ zibþ ui þ vi

where zi is a vector of covariates and b the associated coefficients. u is a vector of

spatially correlated random effects, while v is a vector of independent random

effects.

Note that this modeling can be done regardless of the likelihood employed for

the data. In the case of a generalized linear model, a convenient link function will be

used to transform the linear predictor accordingly.

Other nonparametric approaches can be implemented taking advantage of this

approach. Kammann and Wand (2003) and Ruppert et al. (2003) show how

penalized splines (P-splines) can be expressed as a mixed-effects model. Lee and

Durbán (2009) describe how P-splines and a CAR model can be used to model

spatial data. They develop an expression of these models as mixed-effects models.

Although this is not a fully Bayesian approach, these models could be fitted with

INLA using the following representation:

m ¼ Xbþ Zu

Here X and Z represent design matrices for the fixed and random effects which

have a particular structure derived from the fact that this mixed model represents

a P-spline (see Sect. 4.9 in Ruppert et al. 2003, for details). A fully Bayesian approach

to P-splines can be found in Lang and Brezger (2004), and it is based on imposing

a prior on the coefficients g of a design matrix B (based on the basis functions):

m ¼ Bg

Different priors on g lead to different types of splines (Fahrmeir and Kneib

2011). For producing smoothed values of an observed covariate using P-splines, the

prior should be a random walk. To achieve spatial smoothing, the prior on g should
be a GMRF with spatial structure. See Lang and Brezger (2004) for details on how

to define B and the prior of g for spatial smoothing.

71.3.2 Disease Mapping

The analysis of public health data has played an important role in the development

of spatial statistics in the last two decades. Besag et al. (1991) provided a suitable

model in which spatial correlation and unstructured variation are combined in

a geoadditive way which is also computationally appealing. Other authors have

extended this model later, some of them for spatiotemporal disease mapping.

It should not be forgotten that disease mapping is a particular example of the

analysis of lattice data. In this case, observations are aggregated over some region

(counties, states, health districts, etc.) and spatial models assume that neighboring

areas will have similar behavior. Here, dependence is between neighbors and

a popular criterion is that two areas are neighbors if they share a common boundary.
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Besag et al. (1991) proposed the use of two latent random effects: a spatially

correlated one u and an independent one v. The first will account for any spatial

correlation and the second will account for any other unstructured difference

between the regions. While the nonstructured random effects are Gaussian with

zero mean and precision tIn (where In is the identity matrix of size n� n), the
spatially correlated random effects are defined using conditional distributions given

the values at the neighbors. This is equivalent to using an intrinsic GMRF (Rue and

Held 2005, Chap. 3), which is known as intrinsic conditionally autoregressive

(CAR) model.

In order to encode this spatial information into a GMRF with zero mean and

precision Q, we will make use of the Markov property to note that if areas i and j are
independent given the remaining areas, then Qij ¼ Qji ¼ 0. Hence, the precision

matrix Q will be very sparse, and the algorithms described in Rue and Held (2005)

can be used for fast sampling from this GMRF.

In particular, the intrinsic CAR precision matrix is defined as

Qij ¼ k
ni i ¼ j
�1 i � j
0 otherwise

8<
:

Here i � jmeans that areas i and j are neighbors, k is a conditional precision, and

ni is the number of neighbors of area i. This makes the conditional distribution of

uiju�i; k Gaussian with mean 1
ni

P
j�i uj and variance 1

kni
.

Note that the intrinsic CAR is an improper GMRF of rank n� 1. For this reason the

constraint
P

i ui ¼ 0 is added so that these effects can be identified. This is a common

assumption for random effects based on intrinsic GMRF (Martino and Rue 2010).

A proper version of the intrinsic CAR model is available and it has a precision

matrix similar to the previous one but adding a term d > 0 to the diagonal elements,

so that they becomeQii ¼ ni þ d. logðdÞ is assigned a log-gamma prior distribution

by default. Note that the main point of this model is to make the precision matrix

strictly diagonally dominant so that it becomes invertible and the prior distribution

is a proper one.

A more general approach is obtained when the precision matrix is defined as

Q ¼ ðI � r
lmax

CÞ

This can be used to define a general CAR spatial effect by takingC as a matrix of

spatial weights (see Chap. 9 in Bivand et al. 2008, to see how different spatial

weights can be defined). r represents the spatial correlation (and it can be assigned

a prior) and takes values between 0 and 1 because the weight matrix is C divided by

lmax, its maximum eigenvalue, and by default a Gaussian prior is on logitðrÞ. Note
that this will produce a proper distribution for the spatially correlated random

effects. Negative spatial autocorrelation is often ignored in disease mapping.
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In this general case, the conditional distribution of ui is

uiju�i; k � N r

P
j 6¼i wijui

wiþ
;

1

kwiþ

� �

where wij ¼ cij=lmax and wiþ ¼ Pn
j¼1 wij. Note that if C is row standardized, then

lmax ¼ 1 and wiþ ¼ 1 and the marginal distribution has a simpler form.

71.3.3 Geostatistical Models

In addition to fitting a model to the data, geostatistics focuses on predicting

a continuous surface (often approximated by a discrete grid of points) so these

models are often computationally very expensive. Spatially correlated random

effects are built for the set of sampling locations, which may lead to trouble if

the number of locations is large. Geostatistical models are not restricted to

Gaussian likelihoods, as described in Banerjee et al. (2004) and Diggle and

Ribeiro (2007), and they can be used to model other types of data using

a geostatistical latent effect.

Spatial correlation in geostatistical models is built upon the distances between the

sampling points, usually using a decaying function on the distance. For example,

a simple covariance function is defined such as Sij ¼ s2 expð�dij=’Þ. Here dij is
the distance between points i and j, and ’ is a parameter to control for the spatial

scale. Once the model is fitted, prediction relies on the posterior distributions of the

parameters and the covariances for the points in the grid.

A more general class of spatial covariance is provided by the Matérn correlation

function, of which the exponential decaying function is a particular example. The

Matérn covariance is defined as

Sij ¼ s2
tkKðt; kÞ
2k�1GðkÞ ; t ¼ akdij=’

Kð�; kÞ is the modified Bessel function of order k and Gð�Þ the gamma function.

ak and ’ can be used to control the scale of the spatial variation. Setting k to 0:5
leads to an exponential covariance. Other values of k will lead to other known

spatial covariance functions (Eidsvik et al. 2009).

When it comes to provide a prediction on the grid, INLA treats the observation at

each point on the grid as a missing value. This makes INLA compute the marginal

posterior distribution at that point so that summary statistics can be obtained later.

In this approach, modeling and prediction occur on a regular grid, and observa-

tions need to match to some location in the grid. Lindgren et al. (2011) aim

at modeling the geostatistical model by using a mesh based on a triangulation of

the sampling points (instead of a regular grid) and stochastic partial differential

equations (SPDE). In this approach, the spatially distributed effect u is
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uðsÞ ¼
Xn
k¼1

ckðsÞwk; s 2 2

where fckg are some basis functions, fwkg are Gaussian distributed weights, and n
is the number of points in the triangulation used to split the study area. As this is

a more complex approach, the reader is referred to the original paper (Lindgren

et al. 2011) and the gentle introduction by Cameletti et al. (2011) for details on how

the basis functions and weights are taken.

Finally, INLA can be used for geostatistical design. Methods and results

discussed in Diggle et al. (2010) for preferential sampling can be reproduced with

INLA (see the Case Studies section in http://www.r-inla.org). Anisotropic models

could also be employed, as discussed in Fuglstad (2011), and use of these models is

being integrated into the software package.

71.3.4 Point Process Models

Rue et al. (2009) show an example of the analysis of a point pattern with INLA

using a Poisson process. Rather than modeling the continuous intensity of the point

process, they divide the study area in N disjoint cells (not necessarily of equal

size) and model the data as coming from a counting process. Hence, the

response variable yi represents the number of occurrences of the process in square

wi; i ¼ 1; . . . ;N. For simplicity a square lattice may be employed. In a square

lattice all the squares have the same area, and spatially correlated random effects

can be defined similarly as in lattice data (i.e., two squares are neighbors if they

have a common boundary).

In their example, Rue et al. (2009) use a hierarchical Poisson process to model

the number of trees in each square using a log-Gaussian Cox process (LGP). In this

case, the intensity function is lðsÞ ¼ expfZðsÞg; s 2 2, where ZðsÞ is a Gaussian

field at s 2 2.

Hence, yi is the observed number of occurrences in cell wi. If �i is the realization
of ZðsiÞ, then pðyj�Þ ¼

Q
i pðyij�iÞ, where pðyij�iÞ represents a Poisson distribution

with mean jwij expð�iÞ. jwij is the area of cell wi.

In turn, �i is modeled according to a number of covariates plus some random

effects:

�i ¼ Xibþ ui þ vi

u and v are modeled in a similar way as with the lattice data case. vi are independent
Gaussian with zero mean and variance s2v so that they represent independent variation
between the squares. On the other hand, ui are modeled using a second-order

polynomial intrinsic GMRF. In this way, first-, second-, and third-order neighbors
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are taken into account, each one with a different weight, to mimic thin plate splines.

See Rue and Held (2005) for details.

Simpson et al. (2011) extend the ideas in Lindgren et al. (2011) to model the

latent LGP in a continuous way using a mesh on the study area. They show that this

is a better approach that reduces the computational burden as a mesh is used instead

of a regular grid and there is no need to aggregate cases into small cells.

More complex models cannot be fully addressed using INLA, in particular, those

for which a closed likelihood does not exist as, for example, Gibbs processes. In

a Gibbs process, future observations depend on present observations and, hence,

producing a likelihood in closed form is not feasible.

71.4 Examples

As it happens, INLA is one of many alternatives for fitting Bayesian hierarchical

models. In this section we provide a comparison to other software available for the

R programming language, including computing times. Our aim here is not to

provide a full comparison of computation times but to indicate how different

approaches compare in terms of time and accuracy of results when used to fit

a similar model to the same data set.

71.4.1 Geostatistics

For geostatistical models, we will use the Rongelap data set analyzed in several

works on model-based geostatistics (Diggle and Ribeiro 2007). This data set

records radionuclide concentration at 157 different locations, and the interest is

on providing an estimate of the concentration over the whole Rongelap island.

As INLA makes computation on a regular grid, we have considered a 5 � 5

regular grid on one of the clusters in the northeast part of the island to make a fair

comparison between computing times. We have used the INLA software (using the

Laplace approximation) and the R package geoRglm, which provides model fitting

using MCMC. The different computation times are shown in Table 71.1, while

a map comparing the different estimates is shown in Fig. 71.1.

71.4.2 Lattice Data

For the case of lattice data, we have used the number of total malignant neoplasms

mortalities in Georgia in 1999. We have fitted the model proposed in Besag et al.

(1991) with population density as a covariate. In this case, we have used the INLA

software as well as WinBUGS. Times are available in Table 71.1 and a graphical

comparison of the estimates is available in Fig. 71.2.
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71.4.3 Point Patterns

Finally, a point pattern has been included; we have performed an analysis of the

Japanese pines data set available in R package Spatstat. This data set provides the

location of Japanese pine saplings in a square region in a natural forest. Again,

model fitting with INLA requires the use of a regular square grid so that the data are

the number of saplings in each grid square. A 10 � 10 square grid has been used in

this case, and the model to account for spatial dependence is the same as in the

Table 71.1 Summary of computation times for different problems, softwares, and fitting

methods

Geostatistics Lattice data Point patterns

Software Method # Iter. Time (s) # Iter. Time (s) # Iter. Time (s)

R-INLA INLA – 0.251 – 0.422 – 0.758

geoRglm MCMC 22,000 0.409 – – – –

WinBUGS MCMC – – 22,000 11.420 22,000 35.336

DATA INLA (LA) geoRglm (MCMC)

0
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4

6

8

10

12

Fig. 71.1 Estimates of the radionuclide concentration using different methods: Integrated nested

Laplace approximation (INLA) and MCMC (using geoRglm)

Std. Mortality Ratio INLA (LA) WinBUGS (MCMC)

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 71.2 Estimates of the relative risk using different methods: Standardized mortality ratio

(SMR), integrated nested Laplace approximation (INLA), and MCMC (using WinBUGS)
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previous example (Besag et al. 1991). This will also give us an idea of how INLA

behaves as the grid size increases.

Figure 71.3 summarizes the fitted number of saplings and computing times are

available in Table 71.1. It is worth noting how the differences between INLA and

WinBUGS have increased now.

71.5 Conclusions

The integrated nested Laplace approximation developed in Rue et al. (2009)

provides a series of approximations for the posterior marginals of the parameters

of a Bayesian hierarchical model in which the latent effects are a Gaussian Markov

random field. This family of models covers a good number of Bayesian hierarchical

models, including several of those most used in spatial statistics. In addition,

Markov properties are very convenient in dealing with spatial data and they can

be used to model local dependence. Besides an approximation to the posterior

marginals of the parameters in the model, INLA can compute several criteria for

model criticism and selection, such as PIT and the DIC.

Regarding spatial models, INLA has been used to tackle problems in the analysis

of lattice data, geostatistics, and point processes. In all cases, spatial dependence is

modeled via the precision matrix of Gaussian random effects. The recent develop-

ments by Lindgren et al. (2011) allow for continuous modeling of latent spatial

effects, which avoids the use of a grid and provides a good computational approach

as well.

The availability of associated software that implements all these methods

provides a suitable framework for their wider use. Other external software may

be required to display the results in maps or create adjacency matrices for the

analysis of lattice data. For this reason, the authors of the INLA software have

provided an interface to the R programming language. The R-INLAweb site (http://

www.r-inla.org) provides the latest version of the software and its documentation as

well as an updated list of published and working papers.

DATA INLA (LA) WinBUGS (MCMC)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 71.3 Estimates of the number of saplings per square using two different methods: Integrated

nested Laplace approximation (INLA) and MCMC (using WinBUGS)
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1416 V. Gómez-Rubio et al.

http://dx.doi.org/10.1007/s10182-012-0196-3
http://dx.doi.org/10.1007/s10182-012-0196-3
http://www.methodsinecologyandevolution.org/view/0/accepted.html
http://www.R-project.org/


Roos M, Held L (2011) Sensitivity analysis in Bayesian generalized linear mixed models for

binary data. Bayesian Anal 6(2):259–278

Rue H, Held L (2005) Gaussian Markov random fields. Theory and applications. Chapman & Hall,

New York

Rue H, Martino S (2007) Approximate Bayesian inference for hierarchical Gaussian Markov

random field models. J Stat Plan Inference 137(10, SI):3177–3192

Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models

by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol

71(Pt 2):319–392

Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press,

New York

Schroedle B, Held L, Riebler A, Danuser J (2011) Using integrated nested Laplace approximations

for the evaluation of veterinary surveillance data from Switzerland: a case-study. J R Stat Soc

Ser C Appl Stat 60(Pt 2):261–279

Simpson D, Illian J, Lindgren F, Sørbye SH, Rue H (2011) Going off grid: computationally

efficient inference for log-Gaussian Cox processes. Preprint Statistics 10/2011. Norwegian

University of Science and Technology, Trondheim

Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model

complexity and fit (with discussion). J R Stat Soc Ser B 64(4):583–616

71 Spatial Models Using Laplace Approximation Methods 1417


	71 Spatial Models Using Laplace Approximation Methods
	71.1 Introduction
	71.2 Integrated Nested Laplace Approximation
	71.2.1 Gaussian Markov Random Fields
	71.2.2 Priors
	71.2.3 Model Criticism and Selection
	71.2.4 Implementation
	71.2.5 Other Features

	71.3 Spatial Models
	71.3.1 Geoadditive Mixed-Effects Models
	71.3.2 Disease Mapping
	71.3.3 Geostatistical Models
	71.3.4 Point Process Models

	71.4 Examples
	71.4.1 Geostatistics
	71.4.2 Lattice Data
	71.4.3 Point Patterns

	71.5 Conclusions
	Acknowledgments
	References


