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Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.

Euro-Par covers a wide spectrum of topics from algorithms and theory to
software technology and hardware-related issues, with application areas ranging
from scientific to mobile and cloud computing.

Euro-Par provides a forum for the introduction, presentation and discussion
of the latest scientific and technical advances, extending the frontier of both the
state of the art and the state of the practice.

The main audience of Euro-Par are researchers in academic institutions, gov-
ernment laboratories and industrial organizations. Euro-Par’s objective is to be
the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications which demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of ac-
companying, technical workshops. Thus, smaller and emerging communities can
meet and develop more focussed topics or as-yet less established topics.

Euro-Par 2011 was the 17th conference in the Euro-Par series, and was or-
ganized by the INRIA (The French National Institute for Research in Com-
puter Science and Control) Bordeaux Sud-Ouest center and LaBRI (Computer
Science Laboratory of Bordeaux). Previous Euro-Par conferences took place in
Stockholm, Lyon, Passau, Southampton, Toulouse, Munich, Manchester, Pad-
derborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft and
Ischia. Next year the conference will take place in Rhodes, Greece. More in-
formation on the Euro-Par conference series and organization is available on the
wesite http://www.europar.org.

The conference was organized in 16 topics. This year we introduced one new
topic (16: GPU and Accelerators Computing) and re-introduced the application
topic (15: High-Performance and Scientific Applications). The paper review pro-
cess for each topic was managed and supervised by a committee of at least four
persons: a Global Chair, a Local Chair, and two Members. Some specific topics
with a high number of submissions were managed by a larger committee with
more members. The final decisions on the acceptance or rejection of the sub-
mitted papers were made in a meeting of the Conference Co-chairs and Local
Chairs of the topics.

The call for papers attracted a total of 271 submissions, representing 41 coun-
tries (based on the corresponding authors’ countries). A total number of 1,065
review reports were collected, which makes an average of 3.93 review reports
per paper. In total 81 papers were selected as regular papers to be presented at
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the conference and included in the conference proceedings, representing 27 coun-
tries from all continents, an yielding an acceptance rate of 29.9%. Three papers
were selected as distinguished papers. These papers, which were presented in a
separate session, are:

1.

Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,

Rob Ross and Nagiza F. Samatova “Compressing the Incompressible with

ISABELA: In-situ Reduction of Spatio-Temporal Data”

Aurelien Bouteiller, Thomas Herault, George Bosilca and Jack J. Dongarra
“Correlated Set Coordination in Fault-Tolerant Message Logging Protocols”

Edgar Solomonik and James Demmel “Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms”.

Euro-Par 2011 was very happy to present three invited speakers of high inter-

national reputation, who discussed important developments in very interesting
areas of parallel and distributed computing;:

1.

2.

Pete Beckman (Argonne National Laboratory and the University of Chicago),
“Facts and Speculations on Exascale: Revolution or Evolution?”

Toni Cortes Computer Architecture Department (DAC) in the Universitat
Politecnica de Catalunya, Spain), “Why Trouble Humans? They Do Not
Care”

Alessandro Curioni (IBM, Zurich Research Laboratory, Switzerland), “New
Scalability Frontiers in Ab-Initio Molecular Dynamics”

In this edition, 12 workshops were held in conjunction with the main track

of the conference. These workshops were:

1.

@

CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing (CGWS
2011)

Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar 2011)

High-Performance Bioinformatics and Biomedicine (HiBB)

System-Level Virtualization for High Performance Computing (HPCVirt
2011)

Algorithms and Programming Tools for Next-Generation High-Performance
Scientific Software (HPSS 2011)

Managing and Delivering Grid Services (MDGS)

UnConventional High-Performance Computing 2011 (UCHPC 2011)

Cloud Computing Projects and Initiatives (CCPI)

Highly Parallel Processing on a Chip (HPPC 2011)

Productivity and Performance (PROPER 2011)

Resiliency in High-Performance Computing (Resilience) in Clusters, Clouds,
and Grids

Virtualization in High-Performance Cloud Computing (VHPC 2011)

The 17th Euro-Par conference in Bordeaux was made possible thanks to the

support of many individuals and organizations. Special thanks are due to the au-
thors of all the submitted papers, the members of the topic committees, and all
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the reviewers in all topics, for their contributions to the success of the conference.
We also thank the members of the Organizing Committee and people of the Sud
Congres Conseil. We are grateful to the members of the Euro-Par Steering Com-
mittee for their support. We acknowledge the help we had from Dick Epema of
the organization of Euro-Par 2009 and Pasqua D’Ambra and Domenico Talia of
the organization of Euro-Par 2010. A number of institutional and industrial spon-
sors contributed toward the organization of the conference. Their names and lo-
gos appear on the Euro-Par 2011 website http://europar2011.bordeaux.inria.fr/

It was our pleasure and honor to organize and host Euro-Par 2011 in Bor-
deaux. We hope all the participants enjoyed the technical program and the social
events organized during the conference.

August 2011 Emmanuel Jeannot
Raymond Namyst
Jean Roman
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Introduction

Rosa M. Badia, Fabrice Huet, Rob van Nieuwpoort, and Rainer Keller

Topic chairs

The increasing trend to distribute computing over large-scale parallel and dis-
tributed platforms, such as clouds, grids and large clusters, often combined
with the use of multicore processors and hardware accelerators, overlaps with
an increasing pressure to make computing more dependable. Indeed, parallel
programming for these type of platforms remains a complex task due to the
numerous components (hardware and software) that can both affect correctness
and performance. Therefore, the parallel and distributed computing community
continuously requires better tools and environments to design, program, debug,
test, tune, and monitor parallel programs. This topic aims to bring together tool
designers, developers, and users to share their concerns, ideas, solutions, and
products covering a wide range of platforms, including homogeneous and het-
erogeneous multicore architectures. The chairs of this topic sought contributions
with solid theoretical foundations and experimental validations on production-
level parallel and distributed systems. Submissions proposing new program de-
velopment tools and environments that help copying with the expected high
complexity of forthcoming exascale parallel systems were encouraged. The ac-
cepted papers cover several of these topics with outstanding contributions:

— The paper "Run-Time Automatic Performance Tuning for Multicore Ap-
plications” addresses the challenge that the programmers face when several
applications run in parallel and influence each other indirectly. Their solu-
tion is based on Perpetuum, a novel operating-system-based auto-tuner that
is capable of tuning parallel applications while they are running. The ap-
proach is a fully functional auto-tuner that extends the Linux kernel, and the
application tuning process does not require any user involvement. General
multicore applications are automatically re-tuned on new platforms while
they are executing, which makes portability easy.

— There are two papers that deal with data races in cache memories. The
paper ”Exploiting Cache Traffic Monitoring for Run-Time Race Detection”
tackles the problem of finding and fixing data races in an automatic fashion.
The approach monitors the cache coherency bus traffic for parallel accesses
to unprotected shared resources. This technique has low overhead and re-
quires just minor extensions to standard multicore hardware and software
to make measurements more accurate. The paper ” Accelerating Data Race
Detection with Minimal Hardware Support” proposes a high performance
hybrid hardware/software solution to race detection that uses minimal hard-
ware support. This hardware extension consists of a single extra instruction,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 1-2] 2011.
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StateChk, that simply returns the coherence state of a cache block without
requiring any complex traps to handlers. To leverage this support, a new
algorithm for race detection is proposed and a new scheduling manipulation
heuristic to achieve high coverage rapidly.

The paper ” Quantifying the potential task-based dataflow parallelism in MPI
applications” proposes an approach to automatically estimate how much of
an application can benefit from dataflow parallelism and how to find the best
strategy to expose dataflow parallelism of the application. The framework
presented in the paper automatically detects data dependencies among tasks
in order to estimate the potential parallelism in the application. Further-
more, based on the framework, an interactive approach to find the optimal
partitioning of code is developed.

The paper ”Event log mining tool for large scale HPC systems” proposes
an approach to analyse the log files automatically generated by systems like
supercomputers. These log files are so large and complex that human analysis
is difficult and error prone. The paper presents a novel methodology for
creating event clusters and extracting cluster templates from large datasets
presenting an intuitive output to system administrators. The algorithm is
able to keep up with the rapidly changing environments by adapting the
clusters to the incoming stream of events.

The paper "Reducing the overhead of direct application instrumentation
using prior static analysis” presents an approach to reduce the instrumen-
tation overhead of parallel programs. When using direct instrumentation,
the measurement overhead increases with the rate at which these functions
are visited. If applied indiscriminately, the measurement dilation can even
be prohibitive. The paper shows how static code analysis in combination
with binary rewriting can help eliminate unnecessary instrumentation points
based on configurable filter rules that can be applied and modified without
re-compilation.



Run-Time Automatic Performance Tuning
for Multicore Applications

Thomas Karcher and Victor Pankratius

Karlsruhe Institute of Technology, IPD
76128 Karlsruhe, Germany
{thomas.karcher,victor.pankratius}@kit.edu

Abstract. Multicore hardware and system software have become com-
plex and differ from platform to platform. Parallel application perfor-
mance optimization and portability are now a real challenge. In practice,
the effects of tuning parameters are hard to predict. Programmers face
even more difficulties when several applications run in parallel and in-
fluence each other indirectly. We tackle these problems with Perpetuum,
a novel operating-system-based auto-tuner that is capable of tuning ap-
plications while they are running. We go beyond tuning one application
in isolation and are the first to employ OS-based auto-tuning to improve
system-wide application performance. Our fully functional auto-tuner
extends the Linux kernel, and the application tuning process does not
require any user involvement. General multicore applications are auto-
matically re-tuned on new platforms while they are executing, which
makes portability easy. Extensive case studies with real applications
demonstrate the feasibility and efficiency of our approach. Perpetuum
realizes a first milestone in our vision to make every performance-critical
multicore application auto-tuned by default.

1 Introduction

Software developers need to create parallel applications to exploit the multicore
hardware potential. Intuitive performance tuning, however, has become difficult
for several reasons: (1) Different multicore platform characteristics may cause
application optimizations to work on one platform, but not on others. (2) The
behavior of complex parallel applications is hard to predict. (3) Applications may
have several tuning parameters that impact performance. Potential parameter
interdependencies can be difficult to understand. (4) The typical search space
spanned by tuning parameters is large. (5) Good performance configurations that
work for each application in isolation might not work when several applications
run simultaneously on the same system.

In practice, programmers resort to manual and often unsystematic experi-
ments to find program parameter configurations that lead to good performance.
Auto-tuning has shown great potential to automate this process and make the
search more intelligent using a feedback loop. Offline tuning approaches execute
an application until it terminates, gather run-time feedback, and calculate new
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tuning parameter values that are likely to improve performance in the next run.
Most of the existing solutions, however, have drawbacks. For example, [7J18/24]
target domain-specific numerical programs (e.g. matrix multiply or Fourier trans-
form). They generate on every platform a new set of executable programs and
pick the best-performing one. Unfortunately, this principle does not work for
general parallel programs that do not perform any of these numerical analy-
ses. Another issue is that isolated application tuning is inappropriate in today’s
scenarios. A typical multicore system environment changes all the time due to
dynamic resource allocation and applications that run in parallel. This requires
long-running applications to be tuned at run-time.

Our paper makes several novel contributions to tackle the aforementioned
problems. We introduce Perpetuum, the first auto-tuner for shared-memory
multicore applications that integrates into the Linux operating system. Per-
petuum’s design offers unique opportunities to tune several applications simulta-
neously and hide the complexity of the tuning process from users and developers.
Perpetuum optimizes the performance of applications while they are running,
assuming that applications expose their performance-relevant tuning parame-
ters and the associated value ranges to the operating system. Perpetuum’s OS-
integration reduces tuning overhead and eases portability; an application ported
to a new computer that runs Perpetuum will be automatically re-tuned. More-
over, our approach is applicable beyond numerical scientific programs. Two ex-
tensive case studies demonstrate feasibility. We achieve respectable performance
improvements for compression and multimedia applications in single-process and
multi-process scenarios.

The paper is organized as follows. Section [P introduces the Perpetuum
auto-tuner. Section [3] discusses how to prepare applications for online tuning.
Section Ml presents case studies with a reengineered parallel compression applica-
tion. Several scenarios demonstrate Perpetuum’s effectiveness in single-process
and multi-process contexts. Section [ presents evaluation studies for an on-line
tunable parallel video-processing application written from scratch. Section [6] dis-
cusses related work. Section [ provides a conclusion.

2 The Perpetuum Run-Time Application Tuner

Figure [l shows the overall system architecture of Perpetuum and how it is inte-
grated into Linux. All tunable applications run in user space. An exclusive part
of each tunable application’s address space is reserved for a dedicated tuning
parameter address space; this space is used by Perpetuum to store, read, and
modify the values of all tuning parameters associated with an application.

The auto-tuner is an independent component within the Linux kernel. A tun-
able application communicates with the auto-tuner using the system call inter-
face. There are three new system calls: (1) The sys optAddParam() call registers
a new tunable parameter; (2) sys optStartMeasure() starts a wall clock time
counter to measure execution time; (3) sys optStopMeasure () stops the clock
counter. Values in the tuning parameter address space can only be changed
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Fig. 1. Overview of Perpetuum’s system architecture

during the sys optStopMeasure () call, which blocks the calling thread until all
parameters are updated.

Perpetuum uses one system-wide, application-independent tuning algorithm.
However, this algorithm can be easily exchanged by system administrators (e.g.,
a simplex-based algorithm [16] can be replaced by another optimization algo-
rithm). The algorithm is implemented in a plugin style as a Linux kernel module.
In contrast to other auto-tuners (see Section [A]), our architecture allows plugins
to access operating system data, e.g., on workloads and system state. The tuning
algorithm is called in a loop by every executing program. The tuning param-
eters of each application are updated (in its tuning parameter address space)
with values that the tuner considers promising for the next iteration.

Perpetuum’s current tuning algorithm is based on an adapted version of [16]
that works on a discrete integer space and in a scenario with multiple applica-
tions that are tuned simultaneously. The number n of application parameters to
optimize spans our n-dimensional search space. We generate a simplex with n+1
points. Our simplex consists of a starting configuration point and n more points
that are obtained by adding a constant displacement in each dimension. When
searching for better configurations, we move simplex points based on application
execution time feedback and the rules defined in [16].

Perpetuum does not make any modifications to the Linux scheduler, which
is part of the Linux process management module. This design decision is based
on the fact that Perpetuum influences application tuning knobs that are on
a higher abstraction level [19]. By contrast, the scheduler influences low-level
resource management decisions, e.g., on which core to execute a certain thread.
Perpetuum influences, however, the scheduler in an indirect way: Applications
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reacting to a change caused by Perpetuum may increase or reduce the number
of threads that the scheduler controls.

We remark that even though Perpetuum has been developed for shared-
memory multicore machines, it could also be run on every node of a cluster to
automatically improve single-node multithreaded performance of work assigned
to the node. Fine-granular performance tuning in clusters thus becomes easier
as well.

3 Preparing Applications for Online Tuning

We assume that every application to be tuned at run-time has one compute-
intensive “hot-spot”, i.e., a modular part of code that is executed in a repetitive
manner. Applications should have a longer run-time so that the auto-tuner gets
a chance to execute several iterations, adapt parameter values, and observe the
effects. The programmer is responsible for developing an application with such
a hot-spot or identify one in existing code. To establish an auto-tuning feedback
loop, the programmer inserts measurement probes that determine the execution
time of the parameterized hot-spot, as shown in the C code example below:

int threadCount = 1;
addParam(&threadCount, 1, 16); //tunable degree of parallelism
while (calculationRunning) {

startMeasurement () ; //tuning feedback probe
doCalculation(threadCount); //hot-spot
stopMeasurement () ; //tuning feedback probe

}

The auto-tuner will automatically set threadCount’s values to a number be-
tween 1 and 16. It is the responsibility of the programmer that such changes
produce consistent results. Our case studies further illustrate in more complex
examples that the adaptation of applications for online tuning is not difficult to
do.

After each iteration of the application’s tuning hot-spot, the auto-tuner col-
lects feedback information. Based on the elapsed execution time, it calculates
new values for all tuning parameters before the next iteration begins. The opti-
mization cycle repeats until the application terminates.

Note that the auto-tuner algorithm can adjust the tuning parameters accord-
ing to the overall system workload that indirectly influences the run-time of the
hot-spot. When two applications compete for example for cache or memory 1/0,
the auto-tuner aims for a cross-process optimum, which is obtained based on
the objective function of the tuning algorithm. If an application terminates and
releases its resources, another application can be assigned the newly available
resources. We now show in two case studies how Perpetuum adapts application
parameters in an automated fashion.
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4 Perpetuum in Action: Automated Online-Tuning in
Parallel Compression

This case study exemplifies how to reengineer an existing parallel application
and make it tunable at run-time. We illustrate Perpetuum’s online tuning in
three scenarios.

4.1 Environment

The sequential Bzip2 file compressor divides a file stream into independent blocks
and passes them through a pipeline of algorithms [20]. At the end of the pipeline,
compressed blocks are concatenated in their original order and stored in an
output file.

We employ the parallel Bzip2 version of [I7] that has two command line
parameters: the number of compression threads ¢ and the block size b in hundred
kilobytes. In our scenarios, we use ¢t € {3,4,...,64} and b € {1,2,...,9}. The
tuning hot-spot is the compression code that is applied to each file, located in
Bzip’s handle compress () function. We reengineered the application and added
two system calls to measure the wall-clock time of the hot-spot. In addition, we
added two system calls to make ¢ and b tunable. When a directory of files is
compressed, the hot-spot is executed in a repetitive fashion. Our implementation
can update t and b with new values after finishing the compression of the current
file.

We conducted the experiments in a controlled environment on the following
machine: Intel Core 2 Quad Q6600 machine, 2.40GHz, running Linux 2.6.34 with
Perpetuum. We deactivated the graphical user interface and all other interfering
applications. All scenarios use the same collection of 50 files (each with a size
of 2 MB), so the compression hot-spot executes 50 times. The fact that all files
have the same size is not a constraint of the auto-tuner; this setup was chosen
to make results comparable and identify sources of bias more easily.

4.2 Scenario 1: Tuning a Single Process

This scenario shows that Perpetuum successfully tunes one application while
that application is running. Perpetuum controls the ¢ and b parameters and
aims to reduce the run-time of the hot-spot.

To evaluate tuning effectiveness, we exhaustively benchmarked all parameter
configurations for a single Bzip2 process without auto-tuning, for the total of
9 x 61 = 558 configurations. The execution time for each configuration was
measured 3 times to avoid bias. These results allow us to compare Perpetuum’s
results with the real optimum.

The exhaustive measurements show that if b € {1,2} and ¢ > 5, the execution
time is within the best 20%. We thus expect Perpetuum to reduce the block size
(ideally to b = 1) and increase thread count to ¢ > 5. With the best configuration,
the entire program executes in 6.5 seconds, whereas the worst configuration takes
22.9 seconds. This is the range in which Perpetuum can be expected to optimize
the application’s run time.
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Fig. 2. Online tuning of parallel Bzip2. Left graph: hot-spot execution times after each
iteration. Right graphs: values of the tunable parameters.

Figure 2 shows the execution time of the hot-spot (which accounts for almost
the entire program execution time) for the block size and thread count chosen
by Perpetuum in each iteration. We also plot an exponential moving average
(MAvg) of execution times using ag = x¢ and a; = 0.75a;_1+ (1 —0.75)x;, where
a; is the moving average value and x; the execution time measured at the end of
iteration ¢. Optimization starts at the worst-case configuration b =7 and ¢t = 3
where compression needs 458ms. Without tuning, the entire application would
have taken 458ms x 50 = 22.9 seconds to finish. Perpetuum reduces the average
execution time to a total of 8 seconds, which is 2.9x faster. Note that this is not
the classical speedup measure in comparison to the sequential program, but a
performance boost in comparison to the parallel program. Speedup compared to
the sequential time of 24.5 seconds is even higher, namely 3.1, which is not bad
considering the quadcore machine and almost no programming effort. The final
tuning result is just 23% worse than the best attainable execution time.

The graphs for thread count ¢ and block size b illustrate how Perpetuum
works. Both values increase at first. The auto-tuner then realizes that increasing
thread count alone is not too effective and that a smaller block size reduces exe-
cution times more significantly. The block size quickly converges to 1, while other
thread counts are tried out. The step for ¢ is doubled until iteration #8, and
t finally converges to 9 threads after some oscillation. Our exhaustive measure-
ments exploring the search space show that the finally obtained configuration of
b=1 and t =9 is within the best 1% of all performance configurations.

We remark that a starting configuration can be randomly generated. If opti-
mization had started, for example, with another configuration (e.g., b = 5,¢t =
20), finishing all iterations without tuning would have taken 8.6 seconds, and
with tuning 7.2 seconds (which is still 1.2x faster). In general, if a starting con-
figuration already has good values, Perpetuum tries to tune the application but
will not be able to significantly improve performance, so it will stop tuning after
some time.
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4.3 Scenario 2: Simultaneously Auto-tuning Two Processes

This scenario evaluates how Perpetuum simultaneously tunes two processes that
are started at the same time (see Figure[Bl (a)). We execute two instances of the
parallel Bzip2 application that work on individual copies of the file benchmark
from in scenario 1. Each instance starts with the same configuration b = 5 and
t = 3 which is within the worst 10% of execution times. The execution time
variance with two processes is higher than in a single-process scenario, due to
increased CPU, RAM, and hard disk activity.

Without auto-tuning, starting both instances at the same time and waiting
for the last one to finish takes 26.5 seconds. With auto-tuning, it takes just
13.5 seconds. This boosts performance of the parallel application by a factor
of 1.96. Fig. Bl shows how Perpetuum adapted block size and thread count for
each process. First, the auto-tuner reduces the block size for both processes.
Process 2 reaches b = 1, which was the optimum in scenario 1. Process 1 is
also assigned b = 1 for a few iterations, but the auto-tuner finds out that it can
reduce execution time by increasing block size to 3, which differs from the single-
process scenario. The sum of moving averages (MAvg Sum) of the two processes
decreases, which shows that Perpetuum globally improves performance.

Perpetuum automatically finds the critical point around ¢t = 5 after 10 itera-
tions, which we manually identified ourselves in the exhaustive exploration of the
search space in the single-process scenario (the single process was significantly
slower when ¢ < 4). As a result, Perpetuum increases the thread counts for both
processes. Process 1 converges to t = 5 and process 2 to t = 24.
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Fig. 3. Online tuning of parallel Bzip2. Graphs in first row show hot-spot moving
average execution times; graphs in other rows show tuning parameter values. Scenario
2 (left): two instances are started at the same time and tuned simultaneously. Scenario
3 (right): two instances are started with a time lag.
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4.4 Scenario 3: Simultaneously Auto-tuning Two Processes Starting
with a Time Lag

This scenario is similar to scenario 2, except that the second process is started
4 seconds after the first one. Figure [ (b) shows the timeline: The first process
starts off solo, as in scenario 1. The block size converges again to b = 1 while
the thread count roughly converges to ¢t = 7. Then, the second process starts.
While the tuning parameters of process 2 are modified as expected, the execution
time of process 1 increases due to interference with process 2. The auto-tuner
does not change the block size in both processes, but assigns process 2 more
threads, which likely has the effect of hiding latency. This strategy improves
overall performance, as demonstrated by the decreasing moving average sum of
execution times.

4.5 Summary

The auto-tuner significantly improves performance in all of our scenarios. Per-
petuum adjusts parameters that have more impact on performance variance (e.g.,
block size) earlier than others. Another insight is that the common programmer
intuition to set the number of threads to the number of cores would fail here:
Configurations with 4 threads and an arbitrary block size had a performance
within the worst 10% of all configurations. Perpetuum could not be fooled into
this false assumption and quickly converged to better values within the first 10
iterations.

5 Automated Online-Tuning in Parallel Video Processing

This Section presents a study with an online-tunable multimedia application
written from scratch [I]. The application performs parallel edge detection on a
video stream. The output video stream consists of images that show the edges
of objects. In computer vision, edge detection is an important basis for other
algorithms, e.g., to track or identify objects in robotics, security applications, or
human-computer interaction.

The application has five multithreaded filters organized in a pipeline. Each
filter works in parallel within a pipeline stage on one frame of the video stream.
Stage S1 (Gauss) performs a Gaussian blur by applying a convolution mask.
Stage S2 (Gradient) applies a Sobel mask to compute the gradient strength
and direction for each pixel. Stage S3 (Trace) traces the edges based on the
gradients computed in the previous stage. Stage S4 (Suppress) suppresses
pixels that are not on an edge. Stage S5 (Non-Max) performs some clean-ups
in the picture by eliminating weaker edges that are parallel to stronger ones.

Parallelism is introduced using Intel’s Threading Building Blocks [10] and
assigning a tunable number of threads to each pipeline stage. For each stage,
thread count can be set from 1 to 64. The tunable hot-spot measures the exe-
cution time of every 10 frames passing the entire pipeline. The experiments are
conducted on the same machine as in the Bzip2 case study. As an input data
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Fig. 4. Online tuning of a video processing application. The graphs in the first row
illustrate hot-spot execution times, the others the tunable parameter values. (a): single-
process scenario 1; (b): two-process scenario 2.

set, we use the first 720 frames of an open source movie [§]. Our input file has
an AVI format with MPEG-4 compression, 854x480 pixels resolution, 24 frames
per second, and a total size of roughly 12 MB.

5.1 Scenario 1: Tuning a Single Process

The total search space with our five parameters consists of 64° = 1,073,741, 824
configurations, which can hardly be benchmarked exhaustively, so we did explo-
rative studies. The first two stages have more impact on the overall application
run-time than the last three stages. We thus focused on exploring the first two
stages with thread counts between 1 and 16 for each stage. All measurements are
repeated 3 times. The best-performing configuration has 11 threads for Gauss
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(S1) and 5 threads for Gradient (S2), with a total run-time of 116.3 seconds.
Intuitive configurations assigning 1 thread per stage end up within the worst
10% performance. Configurations with one thread for S1 are in the worst 5%
of all configurations. The worst configuration has threads assigned to stages as
follows: 1-16-1-1-1. The average run-time without auto-tuner is 384.4 seconds.
S1’s thread count parameter has high sensitivity; increasing it from 1 to 2 causes
performance to surge, but performance improvements diminish if more than 2
threads are assigned to this stage.

Figure[ (a) exemplifies how Perpetuum performs in the worst case with start
configuration 1-16-1-1-1. In the first iteration, hot-spot execution time is about
5.2 seconds, but the auto-tuner is able to finally reduce it to 2.7 seconds, which
is a 1.9x improvement. It is also remarkable that the auto-tuner tries tuning the
thread count of the last stages but quickly realizes that they don’t have much
effect, so the values remain constant. By contrast, the thread counts in the first
stages are tuned more often, and the tuner automatically detects that increasing
thread count for S1 above 1 significantly improves performance.

Perpetuum finally converges to the non-intuitive configuration of 2-15-1-1-1,
showing that this application needs a total of 20 threads on our 4-core machine.
This empirical result proves programmers wrong who assume that the number
of threads must equal the number of cores.

5.2 Scenario 2: Simultaneously Tuning Two Processes
Starting with a Time Lag

Similarly to the Bzip2 online tuning case study, we start two processes of the
video processing application, both with the configuration 1-16-1-1-1. Figure @
(b) shows that this tuning scenario is more difficult. The first process is tuned
similarly to scenario 1; if S1 receives more than one thread, performance im-
proves significantly. At iteration 25, the second process starts interfering. The
performance of process two finally improves after the auto-tuner finds that in-
creasing S1’s thread count is good. Note that even though process one’s run-time
increases until it terminates in iteration 88, the overall system performance rep-
resented by the moving average sum still improves. Finally, each application’s
hot-spot execution time is lower than before tuning.

6 Related Work

The advantages of integrating auto-tuners into operating systems haven been
acknowledged by the operating systems community [I1]. Other details on ex-
periments with Perpetuum are summarized in a technical report [12]. Most of
the related work covers online tuning with a different focus and with other tech-
niques. Orio [9] focuses mostly low-level operation performance optimizations on
a particular code fragment annotated with specific structured comments. MATE
[15] provides dynamic tuning for MPI applications and is designed for distributed
architectures. An adaptive task scheduler for multi-tasked data-parallel jobs is
introduced in [3], however, assuming job granularity and a distributed system
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environment. The work of [4] uses hardware performance counters and aims to
minimize cache contention by clustering threads and assign dedicated cache re-
gions to threads. The CAER environment [14] provides a run-time solution that
targets a reduction of cross-core interference due to contention. Active Harmony
[621122/23] tunes one parallel program at a time in a heterogeneous, distributed
environment. Each application has to obey a dedicated API to send performance
feedback to a dedicated optimization server and receive new configurations via
message passing. By contrast, Perpetuum is targeted at interactive use on shared-
memory multicore desktops and server machines, so we have other assumptions
about application characteristics and the acceptable computation and commu-
nication overhead. For example, Perpetuum is 15 seconds (30%) faster than
our adapted version of Active Harmony running compression scenario one on
our hardware. Several other approaches work on a lower abstraction levels than
Perpetuum. The work of [I3] combines static and dynamic binary compiler op-
timizations to select the best-performing variant of a program function out of
multiple versions. A compiler framework that detects at run-time which code
optimizations to apply is shown in [5]. Machine learning is applied in [2] to
iteratively learn about program features and adapt compiler optimizations.

7 Conclusion

Perpetuum’s infrastructure presented in this paper is the first OS-based ap-
proach to allow automatic performance tuning at runtime for simultaneously
executing multicore applications. Our approach works well beyond scientific nu-
merical programs and can be used in standard desktop PCs and servers. We are
also the first to integrate such an auto-tuner into the Linux operating system,
which has several advantages: (1) The performance optimization algorithm can
access system information to compute the global performance optimum for all
active applications in a cooperative way; (2) OS integration allows fast response
times for online tuning; (3) Auto-tuning as a standard service in the OS allows
programmers to outsource tuning logic from their code and make their code
base easier to maintain; (4) Tedious and intuitive manual tuning (which might
not even find optimum performance) becomes obsolete; (5) Parallel application
portability is improved, as applications are automatically re-tuned on each plat-
form. Overall, Perpetuum paves the way towards making auto-tuning a standard
approach in multicore application development.

Acknowledgements. We thank the Excellence Inititative and the Landess-
tiftung Baden-Wiirttemberg for their support.
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Abstract. Finding and fixing data races is a difficult parallel program-
ming problem, even for experienced programmers. Despite the usage of
race detectors at application development time, programmers might not
be able to detect all races. Severe damage can be caused after applica-
tion deployment at clients due to crashes and corrupted data. Run-time
race detectors can tackle this problem, but current approaches either
slow down application execution by orders of magnitude or require com-
plex hardware. In this paper, we present a new approach to detect and
repair races at application run-time. Our approach monitors cache co-
herency bus traffic for parallel accesses to unprotected shared resources.
The technique has low overhead and requires just minor extensions to
standard multicore hardware and software to make measurements more
accurate. In particular, we exploit synergy effects between data needed
for debugging and data made available by standard performance analysis
hardware. We demonstrate feasibility and effectiveness using a controlled
environment with a fully implemented software-based detector that exe-
cutes real C/C++ applications. Our evaluations include the Helgrind and
SPLASH2 benchmarks, as well as 29 representative parallel bug patterns
derived from real-world programs. Experiments show that our technique
successfully detects and automatically heals common race patterns, while
the cache message overhead increases on average by just 0.2%.

1 Introduction

Race conditions are frequent parallel programming errors that are difficult to
detect even for experts. Unfortunately, a solution to the problem of finding all
races in arbitrary parallel programs is equivalent to the halting problem [5].
Race detection tools thus have no other choice than use heuristics and accept
trade-offs, e.g., in accuracy, false alarm reports, or analysis speed.

A large body of work presents race detectors that are employed during pro-
gram development [7I826], which introduce significant analysis overhead. Appli-
cation bug reports, however, show very often that racy code might still be present
after deployment at clients, which can cause severe damage when crashes corrupt
data. This paper tackles this problem and introduces an approach for run-time
race detection and automated race healing for production environments. Our
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detection heuristics focus on speed and on detecting the most common racy
patterns due to wrong locking.

Current proposals for run-time race detection [AITT2ITER20/2TI28] typically
require specialized hardware. Most standard hardware, however, does not have
such costly extensions. The novel extensions proposed in this paper aim to lower
the entry barrier and make run-time race detection available in many systems.
Our key idea exploits synergy effects between hardware used for performance
monitoring and hardware needed for run-time race detection. Moreover, our
extensions can be used for more accurate performance monitoring if run-time
race detection is not required.

We introduce TachoRace, a novel light-weight race detector that leverages
data from hardware performance counters in multicore processors for data race
detection. We track down events in the first-level cache of each core and automat-
ically heal races with a new cache protocol extension. We validate the proposed
hardware extensions in a controlled environment based on a simulator using PIN
[13]. TachoRace executes real binary programs, simulates caches, cache protocols,
and performance counters. This infrastructure allows us to precisely quantify
TachoRace’s effectiveness for race detection as well as performance overhead.

The paper is organized as follows. Section Pl introduces our assumptions and
requirements. Section[3 presents the principles of cache traffic monitoring for race
detection and healing. Section Bl shows detailed evaluations. Section [0] discusses
related work. Section [ provides a conclusion.

2 Assumptions and Requirements

2.1 Software

A data race occurs when two threads simultaneously access the same memory
location without synchronization, and at least one of them performs a write op-
eration. This work focuses on locks as a means for synchronization and on errors
resulting from incorrect lock usage. As a race detection in general is equivalent to
solving the halting problem [5], our approach specializes on finding races caused
by wrong locking, i.e., patterns (b) and (c) in Figure [l and a generalization
of these patterns (e.g., with more than two threads or several locks). Previous
work [22] shows that these error patterns are representative for frequent errors
in practice.

Run-time race detection can be made more accurate by annotating which
variable a lock should protect. Our approach introduces the lock_annotate
language extension to let programmers specify the relationship between a lock
and a locked element. The lock_annotate construct registers the address of
the lock, the address of the locked element and the locked element’s size. The
locked element can be composed of other elements that are contiguously stored
in memory. Here is an example in C:

int account = 0; Lock acc_lock; /*acc_lock protects account*/
lock_annotate(&acc_lock, &account, sizeof (account));



Exploiting Cache Traffic Monitoring for Run-Time Race Detection 17

int x = 0; int x = 0; int x = 0; int x = 0;
Lock lock_x; int y = 0; Lock lock_x;
Lock lock_x;
Lock lock_y;
void Threadl_inc() { void Threadl_inc() { void Threadl_inc() { void Threadl_inc() {
x++; lock (lock_x) ; lock (lock_x) ; locka(lock_x) ;
} x++; x++; x++;
unlock (lock_x) ; unlock (lock_x) ; unlock (lock_x) ;
} } }
void Thread2 inc() { void Thread2_inc() { void Thread2_ inc() { void Thread2_inc()
x++; x++; lock(lock_y) ; {
} } x++; lock (lock_x) ;
unlock (lock_y) ; X++;
} unlock (lock_x) ;
}
(a) No Locking (b) Inconsistent (c) Wrong Locking (d) Correct Locking
Locking

Fig. 1. Examples for lock usage patterns; (a)—(c) are incorrect programs

Earlier studies [18/19] have shown that parallel programs typically have only a
few lines of code containing synchronization constructs, so the expected number
of annotations is small. We remark that even languages like Java with block-
oriented synchronization keywords provide explicit locks for performance reasons
[10], so the aforementioned locking error patterns can also occur in Java.

2.2 Hardware

We detect data races by observing cache bus traffic while applications are run-
ning. This can already be done on existing processors, but unfortunately the
lack of measurement precision requires hardware extensions. Our specific inten-
tion was to envisage extensions that don’t require a radically different hardware
infrastructure, so they can eventually be available in standard processors. We
thus build on cache coherency protocol information that we gather from state-
of-the-art hardware performance counters. Our extensions can be used for more
accurate performance monitoring if race detection is not needed.

Reading cache coherency protocol data through performance counters incurs
almost no run-time overhead compared to the overhead introduced by other race
detectors [826]. Among others, we employ the CMP_SNOOP performance counter
[6] to monitor Modified/Exclusive/Shared/Invalid (MESI) messages and count
the number of cache lines requested by processor cores.

Current processor performance counters don’t provide yet all necessary func-
tionality for race detection. For example, counters on Intel processors don’t pro-
vide the memory addresses of accesses causing cache events, or filters for events
on a range of memory addresses. We thus implemented a software simulator
using PIN [I3] to validate our technique. Our approach introduces additional
debug registers attached to each core, which each consist of one memory address
field and one size field (in bytes) for a shared data element. The registers are
used to configure a performance counter to only count events with accesses to
a specified memory location; the data size — if greater than zero — expands a
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filter to a contiguous memory region. For now, we assume that threads are not
migrated among cores. As a proof of concept, we evaluate a hardware config-
uration in which each core has one additional debug register, and assume that
the number of registers suffices to supervise programs with a reasonable number
of locks. The debug register’s address field contains the starting address of a
lock-protected data element; the size field can be used to monitor accesses to
contiguous data structures such as objects or arrays. Debug registers can be ini-
tialized in a transparent way by extending lock and unlock constructs in libraries
such as Pthreads.

TachoRace effectively identifies and corrects races occurring due to wrong
locking. It is not designed for situations in which locking is incorrectly not done
at all; it also does not correct code with races that actually never occur.

3 Monitoring Cache Traffic to Detect and Heal Races

3.1 Race Detection

TachoRace’s principle for run-time race detection is based on inference from
observed cache traffic. As an example of how it works, let’s assume a dual core
machine on which thread T1 executes on core C1 and thread T2 on core C2.
Suppose that a programmer forgot to acquire a lock and protect variable x, as
in thread 2 in Figure[l (b). T1 enters the critical section to increment x. At this
point, the address of x is stored in the debug register of C1 and a corresponding
performance counter is initialized on C1 to count all MESI events accessing this
address. T1 loads z from main memory into its local cache, and increments it.
Now if T2 attempts to increment = simultaneously, it has to fetch z in a similar
way and issue MESI messages on the bus. These messages are registered at C1,
which increments the performance counter for access to x address. The new
counter value greater than one indicates an incorrect usage of locks, because no
other thread should have been allowed to access x.

TachoRace detects and heals data races only when they occur. Our conflict
detection scheme targets inconsistent lock usage as in patterns like Figure [I]
(b) and (c). However, we also handle situations in which multiple read accesses
to a locked element occur inconsistently; for example, one thread acquires a
lock before accessing variable x (for read access only), while another thread
simultaneously reads x without acquiring the lock. Technically, this is not a
race, but points to a potential error, and TachoRace reports a warning.

3.2 Race Healing

TachoRace heals races by modifying conflicting thread access schedules in real-
time. Messages that delay the execution of other cores that cause a conflict are
then issued on the bus. We extend the MESI protocol by five Inter-Processor In-
terrupt (IPI) messages: “RaceWait”, “RaceContinue”, “DeadlockCheck”,
“NoDeadlock”, and “DeadlockFound”.
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Fig. 2. Illustration of the race prevention strategy issuing RaceWait and RaceContinue
messages

Figure [ illustrates our race healing protocol. In step (1), core one acquired
a lock on z and manipulated z’s value, so x is available in core one’s cache.
TachoRace stores the address of the locked data element in core one’s debug
register. When core two attempts to read x from main memory, the new requests
are visible on the bus. In step (2), core one detects the potentially conflicting
request by listening to bus traffic and issues a “RaceWait” message. In step
(3), core two receives “RaceWait” and blocks the execution of its thread until
it receives “RaceContinue” in step (4). The “RaceContinue” message is issued
when core one’s thread executes its unlock operation. Finally, core two’s thread
resumes execution in step (5) and re-issues the reading operation on x.

Due to space limitations, we have to omit details on correctness checking of
the protocol and describe how TachoRace handles some special cases. A special
case is trapped when automatic race repair avoids a race, but leads to a deadlock.
This can happen when two data races overlap; for example, one thread acquires
lock A, securing access to variable X, while thread two acquires lock B, securing
access to variable Y. If both threads concurrently write on the variable that is
locked by the other thread, TachoRace would send a “RaceWait” message to each
thread, but no one will issue a “RaceContinue” message. The inherent problem
is that TachoRace does not know the programmer’s intention in a program that
is simply wrong. We thus check for deadlocks whenever a core waiting for a
“RaceContinue” message emits a “RaceWait” message.

In brief, such rare deadlock situations are handled as follows. If a thread issues
“RaceWait” and pauses, it broadcasts on the bus a “DeadlockCheck” message
identifying the thread that has sent the initial “RaceWait” message. Snooping
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the bus, each active thread checks if the message matches itself. In a match, the
respective thread broadcasts a “DeadlockCheck” message if it has been paused
by “RaceWait”, again identifying the thread that sent “RaceWait”. A thread
will eventually either send a “NoDeadlock” message or the “RaceWait” chain
exploration will reach the first thread, the one that initiated deadlock checking.
This thread issues a “DeadlockFound” message, so TachoRace can report the
incident. We remark that additional messages to handle deadlocks hardly influ-
ence average application performance. The reason is that the described chain of
events rarely occurs.

4 The Detector

Current multicore processors do not have a debug register like the one proposed
in this paper, but it is required to implement our run-time race detection. To
validate TachoRace, we thus developed a hardware and cache simulator based on
PIN [13], which is capable of executing real, multithreaded binary applications.
TachoRace runs on Windows and Linux. TachoRace can be configured to use
a wide range of cache architectures that may have a different number of cores
and different cache levels. Every cache level can be individually configured to be
shared among certain cores. For example, it is easy to model Intel’s Core 2 Quad
Q6600 processor, where each pair of cores share a common L2 cache, whereas
every single core has a private L1 cache. TachoRace can even use a different
cache coherence protocol on each cache level. We implemented the widely-used
MESI protocol [6], but our simulator can be easily extended to use MSI or
MOEST [I]. We also support the Least-Recently-Used replacement strategy and
an adjustable cache line size. Each cache level can be configured to be fully
associative, set associative, or n-way associative. TachoRace does not consider
prefetching. All caches contain data only, as in most architectures instruction
data is read-only; instruction caches are not modeled.

As a proof of concept, the implementation is based on the following model:
The processor contains n > 1 processing cores, each of which has its own level
one cache. Higher cache levels and main memory are shared among x cores
(e.g., with = 2 for Intel’s Q6600). A program has a maximum of n threads,
each of which is attached to one distinct core, and threads are not migrated
from one core to another core. If there are more cores available than threads,
the redundant cores remain idle. Only one parallel program is running at a
time. Another program only starts when the previous program has finished,
excluding scheduling overlaps. Threads can be deliberately paused and resumed
to achieve different thread interleavings. We don’t simulate the operating system,
interrupts, or traps, so we can ensure that the currently executing program is
the only one to cause caching activity.

We remark that the restrictions in the simulation environment were chosen
to create a controlled environment that cleanly demonstrates that the results
are due to the race detection approach, and not due to other factors or noise.
As TachoRace uses concrete hardware memory addresses, it also works when
threads from different processes incorrectly access a shared resource.
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5 Evaluation

5.1 Setup

We evaluate the effectiveness of TachoRace’s on-the-fly race detection at run-
time. As it is the first detector of its kind, we compare its results with Helgrind
[26] (an open-source detector) and Intel’s commercial Thread Checker [7]. We
use two well-known benchmarks: The Helgrind race detection unit tests [25] and
SPLASH2 [27].

The Helgrind unit tests consist of more than 50 parallel programs. We select
the tests designed for race detection, i.e., a subset of 29 executable programs.
All lock declarations are annotated as described earlier. Each test creates several
threads and executes a small piece of code that either has a data race or imple-
ments correct code that might look like a race. Table 1 shows an overview: out
of 29 cases, 4 have a racy pattern with no locking at all (which TachoRace can-
not detect by design), 10 are synchronized correctly, and the other 15 use locks
incorrectly. In addition, we include the following applications from SPLASH2:
“cholesky” (a numerical application), “water-nsquared” (a physical simulation),
and “raytrace” (a parallel raytracer). We seeded 13 data races into these ap-
plications (see Table 2), using the patterns shown in Figure [ (b) and (c¢) by
randomly deleting pairs of lock acquisitions and releases. Some of the races in-
fluenced the progress of the applications and even crashed them when the race
occurred. TachoRace proved to heal the races and prevent the crashes in all of
these cases.

5.2 Results

Table 1 shows effectiveness results. TachoRace finds all races in all fourteen test
cases that use locks. It is successful on all of the test cases where it should find a
race. TachoRace did not report false positives and resolved all detected conflicts
at run-time by delaying the execution of the malicious threads, so the programs
were able to produce correct outputs. Races in the five remaining racy programs
are not detected, as TachoRace was not designed to find races in programs
that do not use any locks at all. In an additional stress-test, we inserted sleep
statements at key positions in the parallel program’s code to cause different
thread schedule interleavings, and TachoRace’s was able to detect the same
races. We encountered no situation where TachoRace’s race healing produced a
deadlock.

By contrast, Helgrind incorrectly reported 5 race-free test cases to contain
races. Intel’s Thread Checker reported just one false positive, but its overhead
lead to application execution time slowdowns of up to 3324x (!). Such huge
slowdowns are not unusual for dynamic detectors that check for races at each
mMemory access.

Table 3 shows efficiency results. The message overhead introduced by Race-
Wait/ RaceContinue messages and by counter accesses is low, compared to reg-
ular MESI messages that would have been on the bus without TachoRace. On
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average, TachoRace introduces just 0.2% more messages. The introduced slow-
downs for application execution are minor; the exact slowdown depends on the
specific hardware, however, assuming 10ns for message handling (see [24] for
clock cycle estimations) and counter access, yields for all 29 test cases a median
application slowdown of 50ns. Even the maximum slowdown of 10ms (e.g., for
test case 20) corresponds to an application run-time slowdown of 0.002%. By
contrast, measured overhead with Intel’s Thread Checker is significantly higher
for all test cases. On an Intel Quadcore machine running Ubuntu Linux 9.1, we
obtained a median slowdown of 77 times the application execution time, and a
maximum slowdown 3324 times (e.g., for test case 20).

Table 1. Detection results for general bug patterns for Helgrind, Intel Thread Checker,

and TachoRace

g
Hel- | Error g g é
= =
Test| grind| Class o N i N é‘s &3
case| test |acc. Description = ° g o k=
o. | case | Fig. Has z = : Z g
no- | case | Race?| & E | & E | &
. Tacho-|
Helgrind | Intel TC Race
1 1 a write vs. write, no locking 1 1 0 1 0 0
2 3 d correct synchronization with locks and signals 0 0 0 0 0 0
3 4 d correct sync., producer/consumer-pattern 0 0 0 0 0 0
4 6 d correct sync. with locks and signals 0 0 0 0 0 0
5 8 d correct sync. with thread-joining 0 0 0 0 0 0
6 9 a read vs. write without locking 1 1 0 1 0 0
7 11 d two worker threads, sync. with locks and signals 0 1 1 0 0 0
8 12 d producer/consumer-pattern with mutexes 0 1 1 0 0 0
9 13 d mutex-synchronization 0 1 1 0 0 0
10 15 d mutex-synchronization, three threads 0 0 0 0 0 0
11 20 a wrong sync. using timeouts 1 1 0 1 0 0
12 32 d sync. with thread-joining and mutex 0 1 1 0 0 0
13 47 b read vs. write with incorrectly used mutex 1 1 0 1 0 1
14 50 b read vs. write with incorrectly used mutex 1 1 0 1 0 1
15 52 b wrong signal-based synchronization 1 1 0 1 0 1
16 55 d correct synchronization with locks 0 1 1 1 1 0
17 56 a four threads, no sync. on global variable 1 1 0 1 0 0
18 64 a producer/consumer-pattern with unsync. thread 1 1 0 0 0 0
19 65 c producer/consumer-pattern with wrong locking 1 1 0 1 0 1
20 68 b correct write, unlocked read on glob. var. 1 1 0 1 0 1
21 69 [¢ 1 reader, 3 writer, incorrect mutex usage 1 1 0 1 0 1
22 | 128 c incrementing using wrong mutex 1 1 0 1 0 1
23 | 146 ¢ 3 workers, 4 global variables, wrong mutex 1 1 0 1 0 1
24 | 301 c 2 mutexes used incorrectly 1 1 0 1 0 1
25 | 302 c 2 workers, using wrong mutex 1 1 0 1 0 1
26 | 305 b 4 workers, inconsistent locking 1 1 0 1 0 1
27 | 306 b 3 workers, third without sync. 1 1 0 1 0 1
28 | 310 ¢ 3 workers, one uses wrong mutex 1 1 0 1 0 1
29 | 311 c 4 threads, thread 4 uses wrong mutex 1 1 0 1 0 1
Number of races detected 19 24 19 14
‘ ‘ Total number of false positive alarms 5 1 ‘ 0 ‘
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Table 2. Errors seeded in the SPLASH2 benchmark

‘ Test ‘ SPLASH2 App ‘ File ‘ Code Lines ‘ Effect ‘ Testtype ‘ TachoRace ‘
1 cholesky malloc.C | 141 - 145 | program crashes | true-positive | detected
2 cholesky malloc.C | 150 - 188 not visible true-positive | detected
3 cholesky malloc.C | 198 - 204 not visible true-positive | detected
4 cholesky malloc.C | 277 - 279 not visible true-positive | detected
5 cholesky mf.C 109 - 126 not visible true-positive | detected
6 cholesky mf.C 148 - 162 not visible true-positive | detected
7 cholesky solve.C 329 - 332 wrong PIDs true-positive | detected
8 cholesky solve.C 349 - 360 not visible true-positive | detected
9 cholesky solve.C 372 - 382 not visible true-positive | detected
10 | water-nsquared | interf.C 145 - 151 not visible true-positive | detected
11 | water-nsquared | intraf.C 133 - 137 not visible true-positive | detected
12 raytrace shade.C 200 - 205 not visible true-positive | detected
13 raytrace shade.C 279 - 283 not visible true-positive | detected

Table 3. The message traffic overhead introduced by TachoRace is low, compared to
the regular MESI traffic

TachoRace Overhead Regular Messages

Test Counter
Case | RaceContinue | RaceWait Ac- MESI_Invalidate | MESI_Shared MESI_Retry Total Messages
No- #msgs % | #msgs % cosses #msgs % | #msgs % | #msgs % | #msgs %
1 0 0 0 0 0 5070 90.01 529 9.39 34 0.60 5633 100
2 0 0 0 0 0 4078 92.45 275 6.23 58 1.31 4411 100
3 0 0 0 0 0 4356 91.76 339 7.14 52 1.10 4747 100
4 0 0 0 0 0 6326 95.19 264 3.97 56 0.84 6646 100
5 0 0 0 0 0 5243 95.34 232 4.22 24 0.44 5499 100
6 0 0 0 0 0 24096 98.29 364 1.48 54 0.22 24514 100
7 0 0 0 0 0 4679 92.14 331 6.52 68 1.34 5078 100
8 0 0 0 0 0 7041 94.08 383 5.12 60 0.80 7484 100
9 0 0 0 0 0 5206 92.29 378 6.70 57 1.01 5641 100
10 0 0 0 0 0 8337 92.94 552 6.15 81 0.90 8970 100
11 1 0.01 1 0.01 5 6580 91.22 577 8.00 54 0.75 7213 100
12 0 0 0 0 0 5722 91.14 497 7.92 59 0.94 6278 100
13 1 0.02 1 0.02 4 4660 88.29 568  10.76 48 0.91 5278 100
14 1 0.02 1 0.02 81 6117 94.72 288 4.46 51 0.79 6458 100
15 1 0.01 1 001 83 9067 95.73 346 3.65 56 0.59 9471 100
16 0 0 0 0 0 6529 94.00 361 5.20 56 0.81 6946 100
17 0 0 0 0 0 22226 95.19 1054 4.51 69 0.30 23349 100
18 0 0 0 0 0 5760 89.16 611 9.46 89 1.38 6460 100
19 2 0.04 2 0.04 131 4172 84.27 699 14.12 76 1.54 4951 100
20 300  4.02 300 4.02 464 5045 67.57 777 10.41 1044  13.98 7466 100
21 9 013 9 0.13 195 5998 86.25 771 11.09 167 2.40 6954 100
22 1 0.02 1 0.02 65 5298 95.00 230 4.12 47 0.84 5577 100
23 1 0.02 1 0.02 322 4971 84.80 799  13.63 90 1.54 5862 100
24 1 0.02 1 0.02 3 4058 88.41 487  10.61 43 0.94 4590 100
25 20 0.20 20 0.20 327 8644 85.61 525 5.20 888 8.79 10097 100
26 1 0.02 1 0.02 201 5086 91.85 364 6.57 85 1.54 5537 100
27 1 0.02 1 0.02 118 4517 92.77 284 5.83 66 1.36 4869 100
28 1 0.02 1 0.02 129 4493 87.38 576 11.20 71 1.38 5142 100
29 2 0.02 2 0.02 112 8179 92.00 627 7.05 80 0.90 8890 100

6 Related Work

We refer to [23] for details on our alternative approach that does not require
lock annotations, but which is less accurate.

On-the-fly race detection schemes typically require specialized hardware [29].
TachoRace is the first approach alleviate this problem by exploiting synergies
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between hardware required for debugging and hardware required for performance
monitoring.

Some Transactional Memory approaches have been extended to detect races.
For example [4] require additional registers at the granularity level of cache lines;
by contrast, TachoRace works at the granularity level of memory addresses and
avoids false sharing problems. ToleRace [22] detects patterns as shown in Figure
[0, but operates on copies of shared variables and introduces additional overhead.

BugNet [15] works as an application-level debugging aid and introduces hard-
ware extensions for event capturing. The FastTrack [3] dynamic detector has
lightweight vector clocks but still incurs average program execution slowdown of
8.5x, which is inappropriate for online race detection detection. [21] works at the
granularity of memory pages and requires lock annotations. Differing from our
approach [21] require page copies containing the locked data elements as soon as
a critical section is entered, which leads to high overhead and more memory con-
sumption. Light64 [16] introduces one additional register per core and requires
each program to be executed several times, so the tool can compare data changes
to detect races; such repetitions are not required for TachoRace. The detector of
[20] has a lazy release consistency memory model and a theoretically exponential
overhead. Programs are slowed down by a factor of 200%, and the approach has
been demonstrated to work just on two out of four tested programs. Isolator [21]
dynamically ensures isolation for programs in which some parts correctly obey
a locking discipline, while others don’t. In contrast to TachoRace, Isolator has
a different goal and ensures that incorrectly synchronized threads do not inter-
fere in correctly synchronized parts of the program. Isolator does not provide a
detailed solution for cases in which Isolator’s repair attempts would introduce
deadlocks.

Contest [9] introduces sleep statements into multithreaded programs to alter
buggy schedules. Healing has been demonstrated just for one bug pattern (load-
store bugs), and slowdowns can be up to 3.75x. AVIO [11] proposes cache coher-
ence hardware extensions to detect atomicity violations, but requires multiple
program runs (some of which need to be correct) so the tool can infer invariants.
Colorama [2] proposes hardware extensions to automatically infer critical sec-
tions, but creates additional memory overhead and even introduces races if the
inference mechanism does not make correct predictions; this cannot happen with
TachoRace. Atom-Aid [12] dynamically reduces the probability that atomicity
violations can manifest; by contrast, TachoRace repairs races when they occur.
Autolocker [14] employs program analysis to find a locking policy that does not
lead to race conditions and uses lock annotations similar to TachoRace. However,
resource-intensive pointer analysis would have been necessary to detect all ac-
cesses to a particular variable. In contrast to TachoRace, Autolocker may refuse
to execute certain programs.

Hard 28] introduces a hardware implementation of the lock-set algorithm,
but in contrast to TachoRace, it does not heal races. The hybrid dynamic race
detection approach in [I7] combines lock-set and happens-before-based detection
to improve accuracy, but has slowdowns by orders of magnitude.
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7 Conclusion

Online race detectors serve as the last safety net to prevent parallel program-
ming bugs in applications deployed at clients from causing greater damage. The
required hardware, however, is typically specialized and expensive, which makes
it unlikely that it will become available in everyone’s multicore system. The
tradeoff approach proposed in this paper alleviates this problem by exploiting
synergy effects between hardware needed for performance monitoring and hard-
ware needed for online race detection. TachoRace not only detects common race
patterns, but also automatically fixes races while programs execute. In the long
run, the ideas presented in this paper can bring us closer to making on-the-fly
race detection available on every multicore desktop.
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Abstract. We propose a high performance hybrid hardware/software solution to
race detection that uses minimal hardware support. This hardware extension con-
sists of a single extra instruction, StateChk, that simply returns the coherence
state of a cache block without requiring any complex traps to handlers. To lever-
age this support, we propose a new algorithm for race detection. This detection
algorithm uses StateChk to eliminate many expensive operations. We also pro-
pose a new execution schedule manipulation heuristic to achieve high coverage
rapidly. This approach is capable of detecting virtually all data races detected by
a traditional happened-before data race detection approach, but at significantly
lower space and performance overhead.

1 Introduction

Writing much-needed multithreaded programs often requires dealing with concurrency
bugs that result from subtle interaction between threads. Among these bugs, data races
are the most common. Unsynchronized accesses to shared data could lead to crashes
or silent data corruption, so current languages including Java [6] and the new C++
standard [[1 1] disallow or discourage data races.

Researchers have proposed a variety of mechanisms to detect and avoid data races,
including many hardware-only [8I9U12/13I18]] and software-only [14115/17]] solutions.
Hardware-only solutions are typically complex. They require extensive hardware sup-
port, like changes to the cache hierarchy, extending cache coherence messages with
additional information, and modifying the cache coherence protocol state machine to
check for events of interest. The storage requirements, many times close to key pro-
cessor structures, are also quite prohibitive. Software-only solutions, on the other hand,
require no modification to the architecture, but are typically too slow to be an always-on
feature. The analysis operations performed in software are slower, and these algorithms
require a significant amount of metadata and frequent inter-thread communication.

We propose a hybrid solution: hardware support is boiled down to the bare mini-
mum, reducing complexity, and making detection of inter-thread communication much
faster than prior approaches. We augment the ISA with one simple instruction that takes
an address as input and returns the coherence state of the cache block containing that
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(© Springer-Verlag Berlin Heidelberg 2011
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address. We also propose a new algorithm that uses this support to effectively detect
data races. Our solution leverages two key insights: (1) the dynamic information we
need can be extracted from coherence state already tracked by the hardware; (2) there is
a well-defined category of dynamic data races that are much cheaper to detect and yet
can be proven to include all static data races given sufficient executions. We also show
how to perturb execution schedules to speed up the exposure of data races to the de-
tection mechanism, achieving high accuracy compared to traditional happened-before
data race detection, but at significantly lower space and time overheads.

Sections 2] [3]and 4 explain the proposed hybrid system, Sections and [/ evaluate
it and compare it to previous work, and Section [§ concludes.

2 Background

Terminology. A data race exists if there is no synchronization order between any two
accesses to the same address by different threads, at least one of them being a write ac-
cess. A static race is a pair of static instructions that, when executed, may be involved
in a data race, and a dynamic race is one manifestation of a data race at execution time.
An epoch is the set of dynamic instructions in a thread executed between two consec-
utive synchronization operations. To simplify our discussion, we assume a static direct
mapping of threads to cores. We discuss how to relax this assumption in Sections [£.1]

and[4.4]

Data race detection. The basic approaches to data race detection are happened-before-
based [[13l14] and lockset-based algorithms [15/18]. We focus on the former, which
leverage Lamport’s happened-before relation [2] (to partially order memory accesses
based on observed synchronization operations) and program order to determine if con-
flicting accesses are logically concurrent. Due to space constraints, we omit an explana-
tion of happens-before race detection (HapB) and FastTrack (FastT), a state-of-the-art
software implementation of HapB for Java, but we expect the reader to be familiar with
them [1.2)14].

Cache coherence. Without loss of generality, we assume an invalidate-based MESI
protocol. The coherence state of a cache line implicitly carries valuable information
about recent accesses, e.g., if the block is in M state in a cache, the line was last written
by the local processor; the E state indicates the cache has read that block before; the .S
state indicates the cache has read or written that block before, and then another cache
may have requested that block; the I state indicates that a remote write happened. We
leverage this implicit information for lightweight memory access monitoring.

3 Minimal Hardware Support for Data Race Detection

Our proposed minimal hardware support for data race detection consists of simply ex-
posing the coherence state of a cache block to software via one additional instruction.
A software layer then records and uses the state information to detect data races. To
leverage this support, we propose a new race detection algorithm, “AccessedBefore”,
or simply AccB. Its key idea is to use a software-managed address-indexed table to
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track the last observed state of cache blocks and detect if they have been downgraded
within the boundaries of an epoch. A downgraded block within an epoch indicates a
potential data race: a remote cache has issued an upgrade request to the block. Note that
all state necessary to the analysis is local to a thread, so no inter-thread communication
is required; HapB, in contrast, requires substantial inter-thread communication.

3.1 AccessedBefore (AccB) Algorithm

Figure [I illustrates how AccB works. Thread 0 performs a synchronization operation
and starts an epoch (1). When thread O performs a write to variable v (2), the corre-
sponding cache block transitions to M state and the software layer records the pair of
address and state < v, M > in its local table. When thread 1 subsequently reads vari-
able v (3), the block cached by thread 0 is downgraded to S state. At this point, the
software layer is unaware of the downgrade. Finally, when thread 0 is about to write
v again (4), the software layer reexamines the current state of v’s block (S) and the
state recorded in its local table (M), observes a downgrade has happened and detects
the race. If this last write never happens, the downgrade check is performed when the
epoch ends (5).

Table[Ilshows the different types of downgrade and the races they indicate. For exam-
ple, the first row corresponds to the example in Figure [Il Table P summarizes AccB’s
operation by showing the actions taken by the software layer on each relevant event.
Again, note that all analysis actions are local to a thread: the only communication be-
tween threads happens through the cache coherence protocol (which would be present
even in the absence of AccB). Also, the information collected into the local table only
pertains to a single epoch, as we are not interested in downgrades across synchroniza-
tion operations. In addition, AccB epochs can be redefined to the instructions executed
between two source synchronization operations because AccB does not require any
notion of ordering with previous epochs from other threads, while HapB does. These
are three important advantages of our approach when compared to HapB, which has
additional storage and communication requirements.

In essence, AccB looks for access conflicts between concurrently running epochs,
which must be the result of a race (or false sharing as described below). Thus, a race
will be detected if the epochs with racy accesses overlap in time.

Interestingly, for every race in a program there must exist an execution in which the
epochs of the racy instructions overlap in time (we formally proved this statement but
leave it out due to space constraints). We propose an optimization to quickly expose
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Table 2. Events of interest and related algorithm actions

Event of interest Algorithm action

Beginning of epoch Clear local table.

Check the current state of the corresponding cache block against the entry

in its local table (if any) to detect downgrades.

After memory access  Record the state of the corresponding cache block in its local table.

Check every entry in its local table and their corresponding state in the cache to
detect remaining downgrades.

Before memory access

End of epoch

races to AccB: carefully perturbing the execution schedule to increase the probability
of overlapping racy epochs.

3.2 Sources of Inaccuracy

We now discuss the two sources of inaccuracy in AccB: (1) false sharing, and (2) block
evictions. The next section discusses optimizations to mitigate them.

False sharing. To keep the hardware support required by our proposal to a minimum,
we do not extend the memory access information to granularity finer than what is al-
ready provided by coherence protocols: a cache block. False sharing of the block may
result in false positives. Other race detection approaches at the same granularity would
have the same limitation (e.g., HapB). Moreover, our approach can be easily extended
to finer granularity if necessary (at extra cost) and is orthogonal to software techniques
to mitigate false positives.

Cache block eviction. On eviction, a block loses its state thus the cache loses its ability
to detect downgrades, so races may be missed (false negatives).

4 Implementation

4.1 Hardware Support

We extend the ISA of an off-the-shelf multiprocessor with a StateChk
(StChk off (base), reg) instruction, which returns the state of off (base)’s
cache block in register reg. If the block is not present in the cache, StateChk re-
turns a special NotPresent (NP) state to distinguish from a block in Invalid state. The
last valid state is returned if the cache block is in a transient state.

Implementing the StateChk instruction requires minor changes to (1) cache data
paths, and (2) cache controllers. A new multiplexer creates a path for coherence state
into the processor via the existing cache data path. Cache controllers suffer one modi-
fication: if the requested block is not currently cached, the cache controller returns the
NP state without triggering a miss request.

We assume L1 caches to be the point of coherence, but other configurations are
possible. They belong to one of two categories: (1) coherence is maintained among
caches private to a hardware thread (e.g., private non-inclusive L1 and L2 caches), and
(2) coherence is maintained in caches shared by more than one hardware thread (e.g.,
SMT processor with a single L1 data cache). In the first case, the proposed mechanism
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works seamlessly: the state is obtained from the private cache where a hit happens
(NP in case of a miss in all private caches). In the second case, accesses and resulting
changes of state by different threads need to be distinguished by replicating the state for
each thread.

4.2 Software Layer

Data structures. A thread-local hash table records information about accesses per-
formed during an epoch. This table is indexed by data address and stored in main
memory. Each entry contains the expected state (based on the type of the last access
to the cache block) for the corresponding block and the address of the instruction that
performed the last local access to the address.

Instrumentation points. We use dynamic binary rewriting to instrument every source
synchronization operation (thread creation, mutex and conditional variable creation,
lock release, and waiting) and every memory operation not involved in a synchroniza-
tion operation. The epoch ending instrumentation is inserted right before source syn-
chronization operations. It searches the local table for any downgraded variables in the
ending epoch and subsequently clears the table in preparation for the next epoch.

The memory access instrumentation checks the state of the corresponding address
in the cache via a StateChk instruction, and compares it with the state recorded in
the table. If it detects a downgrade, it reports the race with the corresponding address
and the instruction address of the previous access. It then updates the state in the ta-
ble with the maximum (following the order M > E = S > I) of the recorded state
and the current state. Using the maximum is safer than executing StateChk again
after the instrumented access executes because downgrades could be missed in the win-
dow between the instrumented access executes and the second StateChk instruction
executes.

4.3 Optimizations
These optimizations improve accuracy and reduce instrumentation overhead.

Coverage improvement with schedule perturbation. AccB only detects races be-
tween epochs that overlap in time. We perturb executions to encourage an increased
variety of overlapping epoch sets. When an epoch starts, the thread randomly chooses
an action: (1) to continue executing normally, or (2) to join its thread to a reschedul-
ing barrier. The thread waits at this barrier until a bounded random timeout occurs. At
this point, all threads that joined this first barrier start executing their epochs. Once a
thread finishes its epoch, it joins a checking barrier. When all threads that joined the first
barrier join this second barrier, or it times out, epoch checks are done and all threads
continue.

Further reducing overheads with extra hardware support (AccB++). We can further
accelerate AccB with very simple modifications: we add a small number of metadata
bits to caches and use them to reduce the number of accesses to the local table. The
coherence state of each cache block is augmented with two extra bits, namely, locally
read bit (Ird) and locally written bit (lwr), and caches are augmented with a single
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downgraded bit (dgd). These bits record the nature of the local accesses within the last
epoch (Ird or lwr) to a particular cache block, and downgrades (dgd) to any cache
block touched by the local thread within that epoch. An additional instruction gang-
clears these bits in the local cache and is used by the software layer in the beginning
of every epoch. The cache controller is modified to set Ird or lwr on a local read or
local write access, respectively, and to set dgd on downgrades due to remote requests
(but only if either Ird or lwr for that block is set). Finally, the StateChk instruction
returns these three bits together with the regular coherence state.

The software layer uses these additional bits to detect accesses followed by down-
grades within an epoch. A StateChk instruction is inserted immediately before each
memory access and the dgd bit is checked. If the dgd bit is set, a data race is detected.
These bits optimize how the local table is used: the [rd and [wr bits reduce the number
of accesses to the table, since only information about the first read and write accesses
to a variable in each epoch need to be recorded (this is sufficient to report one data race
— others may be detected once the first is eliminated). On every memory access, instead
of checking if the address is present in the table, the [rd and [wr bits are checked. If
none are set, this is the first access to this variable within the current epoch, so the ad-
dress and the corresponding instruction address are added to the table. If only the [rd
bit is set and the access being instrumented is a write, this is the first write access to the
variable, so the instruction address of the table entry is updated. If the [wr bit is already
set, no new updates are needed. Note this does not completely eliminate the use of the
local table because it is still necessary for end-of-epoch checks and for recording the
instruction address of accesses.

A small victim cache next to the data cache reduces the impact of cache block evic-
tions. Whenever a block that has its [rd and/or [wr bit set is evicted from the data cache,
it is cached in the victim cache. This allows reporting a race even if the block involved
in the race has been evicted from the data cache.

4.4 System Issues

Thread migration. Thread migration can lead to changes to the coherence states ob-
served by AccB, affecting its accuracy. To mitigate this potential problem, the software
layer may check via an instruction like x86’s CPUID in which core the thread is run-
ning at every epoch end and compare it with the core identification number recorded
in the previous epoch. If they are different, a migration has taken place and the in-
strumentation ignores any races detected for that epoch. Note that to preserve locality,
the OS typically keeps the mapping between threads and cores as stable as possible.
Finally, epochs typically run much faster than context switch time scales. Therefore,
thread migration is unlikely to lead to major accuracy degradation in AccB.

Speculation. Speculative execution can cause additional false positives in a few sce-
narios: (1) StateChk is executed speculatively in the local core, (2) load is executed
speculatively in a remote core, and (3) prefetch request is issued in a remote core. The
simplest solution is to allow false positives, which are likely to be low. Other solutions to
the first problem are to either reuse mechanisms traditionally used for load speculation
(e.g., replay or snoop) or to only set the access bit when the load retires. Solutions to (2)
consist of limiting speculation to when it is safe. For example, allowing a speculative
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load to proceed only when it reaches the point-of-no-returnin designs like CHERRY [7]
or if the cache block is in the local cache in a valid state. (3) can be easily mitigated
by turning prefetching off during debugging runs; an alternative is marking prefetches
until later access confirmation, at the cost of extra complexity.

S Experimental Setup

We evaluate AccB using the PIN [5] dynamic binary instrumentation framework with a
tool that includes the software layer from Section[land a detailed memory hierarchy: 8
32KB 8-way set associative LRU DL1s with 64-byte blocks and MESI coherence. The
latency of StateChk is the same as a cache hit.

We compare AccB with an implementation of HapB and FastT using the same in-
strumentation framework. All algorithms are exposed to the same memory interleavings
for accuracy comparisons. HapB is complete, so we verified that every race found by
AccB has also been found by its HapB counterpart.

HapB Implementation. We have carefully optimized HapB by using hash-sets for
read- and write-sets and Bloom-filters to speed up intersections of hash-sets. Same-
thread epochs are stored in an ordered linked list and pruned as soon as an old epoch
is ordered before all current epochs (space-optimal implementation). Vector clocks are
implemented as regular arrays.

FastT Implementation. We implemented FastT for C++. Unlike the original imple-
mentation for Java, which embeds metadata in the object, the implementation for C++
stores metadata in a global table because C++ is not type safe.

Benchmarks. We use the SPLASH-2 benchmarks [16] and commercial workloads
(Apache httpd server, MySQL database, AGet, PBZip) compiled with gcc’s standard
-02 optimization flag and run with 8 threads. We do not report performance for AGet
and PBZip because they are non-deterministic. We verify that AccB detects races re-
ported in the literature for Apache and MySQL [3].

6 Evaluation

6.1 AccB versus HapB

Table 3] compares AccB and HapB in terms of performance, space overhead and ac-
curacy. The first group of rows in Table [3] show the speedup of an application instru-
mented with AccB, and with extra hardware support (AccB++), compared to HapB.
For example, barnes instrumented with AccB runs 11% faster than when instrumented
with HapB. The speedup grows to almost 2 x with AccB++. Overall, AccB++ achieves
speedups of up to almost 6 x. A few benchmarks (lu, radix, and water spatial) experi-
ence modest slowdowns with AccB, caused by the type of synchronization used in these
benchmarks: most synchronization is based on barriers, which allow HapB to clean up
all information about old epochs and significantly reduce its checking overheads. AccB
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Table 3. Performance, space overhead and accuracy comparison of AccB and HapB

brns chlsk fft fmm lu ocean radzx rayt vrnd water aget pbzip
cnt nent cnt nent nsqr spt
Speedup (X — HapB/AccB)
AccB .11 1.03 1.02 1.16 098 095 1.19 121 098 1.08 571 123 099 - -

AccB++ 1.99 131 127 155 1.54 123 1.19 1.21 1.04 123 590 171 130 - -
FastT 0.03 0.01 0.07 0.01 0.08 0.08 033 0.33 0.18 0.21 0.29 0.08 0.06 - -
Space overhead (%)

AccBavg 08 94 318 33 199 202 256 26.1 329 41.0 02 158 306 0.1 5.6
AccBmax 77.1 13.0 87.5 29.6 33.3 33.2 110.6 113.3 116.5 404 04 257 80.1 0.1 32.1
Accuracy (%)

AccB 97.8 - - 954 - - 100.0 100.0 - 100.0 100.0 - - 100.0 100.0

incurs extra overheads because it performs table checks on every memory access in
addition to end-of-epoch checks. Note that AccB++ always shows speedupﬁ

The second group shows average and maximum space overheads for AccB over
HapB. For example, AccB uses on average 0.8% and at most 77% of the storage used by
HapB for barnes. For most benchmarks, AccB uses significantly less space than HapB.
In some cases (ocean, radix), AccB incurs a higher maximum space overhead compared
to HapB (but the average is still lower). This is due to uncommon program behavior:
frequent barriers and large accessed sets.

The last row shows accuracy, i.e., how many races AccB detects compared to HapB
for 500 runs. AccB detects all races for most benchmarks. Section [6.3] provides more
insight into those very few races not detected by AccB.

6.2 Overheads Characterization

Performance. Table [l characterizes the performance overheads of AccB and AccB++
compared to HapB, aggregated for all benchmarks. This study is data structure inde-
pendent: it counts high level operations to each algorithm’s data structures, i.e., lookups
and updates. The numbers show the relative frequency of events for AccB and AccB++,
normalized to HapB. Lookups (row 2) and updates (row 3) are direct accesses to AccB’s
local table and to HapB’s sets. Branches (row 4) refer to branches taken while manipu-
lating these data structures. AccB incurs many more lookups than HapB because AccB
performs lookups at every memory access, while HapB performs them only at epoch
ends. Even though AccB’s lookups are more frequent, AccB is still faster than HapB
because there is high locality in AccB’s table accesses and most are cache hits (besides
being thread-local). Also, HapB is very control flow intensive, as demonstrated by the
large number of branches. HapB’s data structures are larger (due to multiple epochs, not
just the current), which results in worse cache behavior. Finally, HapB requires trans-
ferring vector clocks and epoch information, which implies additional communication
among threads, i.e., costly misses.

T The results show that FastT is much slower than HapB. The reason is twofold: first, FastT ex-
periences additional overheads compared to its original Java implementation due to the global
table required by C++; second, HapB performs intersections at the end of each epoch, FastT
performs checks at every access.
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Table 4. Number of operations executed by Table 5. Overheads, storage requirements of
AccB and AccB++ compared to HapB HapB and AccB
AccB  AccB++ HapB AccB
Lookups  3326.7% 15.6% Avg. entries per epoch 360.3 623.2
Updates  100.0% 29.8% Avg. epochs in history 165 0
Branches  4.2% 5.1% Avg. simultaneous entries  71.6k 9.1k
Size (MB) 2.15 028

Table 6. Relative percentage of false positives in AccB compared to HapB

brns chlsk fft fmm lu ocean  radr rayt vrnd water aget pbzip
cnt ncnt cnt ncent nsqr spt

99.1 98.3 100.0 81.3 100.0 100.0 100.0 98.6 100.0 100.0 100.0 100.0 100.0 51.8 75.0

With simple additional support, AccB++ has lower overheads than AccB. AccB++
reduces lookups by two orders of magnitude and updates by more than 60%. AccB++
has higher number of branches, but still much lower than HapB.

Space. Table[3]shows the space overhead of HapB and AccB averaged across all bench-
marks. It reports the number of entries per epoch (row 2), overall number of epochs kept
in history (row 3), total number of entries used by all epochs in all threads simultane-
ously (row 4) and overall storage requirements (row 5).

AccB records more entries per epoch than HapB (row 2). This is due to AccB only
ending epochs at synchronization sources, which makes AccB epochs longer. AccB
keeps no history while HapB keeps history on 16.5 epochs on average (row 3). AccB
requires a much lower total number of entries (over 7x fewer). Overall, AccB reduces
space overhead by more than 7x. Storage requirements for AccB++ are similar to
AccB. In addition to being larger, the storage HapB requires is shared and accessed
by all threads when their epochs end. Conversely, the storage AccB requires is much
smaller and purely local.

6.3 Accuracy Characterization

False positives. Table |6 shows the false positives detected by AccB relative to HapB
at the same tracking granularity. AccB never has more false positives than HapB. False
positives are inherent to the tracking granularity (cache blocks) for both AccB and HapB
and can be reduced with additional software support (e.g., by changing the data layout
to avoid false sharing), but this is beyond the scope of this paper.

False negatives. As explained in Section[3.2] AccB has two sources of false negatives
(i.e., missed races). The first is due to limited cache capacity, which causes cache blocks
to be evicted and the access information to be lost (CBE — cache block evictions). The
second is due to epochs with races not overlapping on AccB executions. We separate
the two effects by modifying our simulator with unbounded space to store evicted cache
blocks, such that the CBE problem is completely eliminated. No new races were found,
so all races missed by AccB for these benchmarks are due to non-overlapping epochs,
a problem that can be addressed with scheduling perturbations and/or multiple runs.



36 R. Gonzalez-Alberquilla et al.

200 240 T T T T
160 200 f’_’ ---------------------------------------------- g
160 | ¢ A
120 B
120 4
80
; 80 | ]
40 f AccB Base i 40 HapB —— 1
AccB Mix ---==--- AccB Mix =-------
0 1 1 1 1 O 1 1 1 1
0 20 40 60 80 100 0 100 200 300 400 500

(a) Aggregate number of static races found as (b) Aggregate number of static races

the number of executions increases for AccB and found as the number of executions in-

AccB with scheduling perturbations (AccB Mix). creases for AccB Mix, compared to
HapB.

Fig. 2. Sensitivity to scheduling perturbations and number of runs

Other benchmarks with larger epochs could cause the CBE problem. However, archi-
tectures with private L2 caches are common today, so there is much more space than
the DL1s used in this evaluation. Alternatively, a victim cache that only stores evicted
downgraded lines may be sufficient to mitigate the problem.

Sensitivity to scheduling perturbations and number of runs. Figure[2(a)]shows how
the aggregate number of static races detected by AccB, with and without scheduling
perturbations (AccB Mix and AccB Base), grows with the number of executions for
fmm. After about 25 runs, AccB Mix clearly shows new races while AccB Base does
not. This happens when the scheduling perturbations start exposing more diverse epoch
overlaps. These results also show that scheduling perturbations indeed help AccB find
races faster.

Figure shows how fast AccB Mix approximates the number of static races de-
tected by HapB over 500 runs. AccB detects most races in the first few executions (about
2/3 are detected within the first 10 runs). The number of races AccB Mix detects con-
tinues growing after that, although increasingly more slowly. We manually inspected a
few of the races that AccB had not detected after 500 runs and found that for each un-
detected race there was another race that originated at the same programming mistake
(e.g., missing critical section) and that was successfully detected by AccB.

7 Related Work

Conflict exceptions [4] (CE) relates to our work in the type of bugs it detects. CE
detects when a synchronization-free region (epoch) conflicts with another concurrent
synchronization-free region. Such conflicts can only happen when a data race exists.
This is in essence the same type of event AccB detects. However, CE detects these
events in a fully precise way, in order to throw an exception. This requires significantly
more hardware (50% cache overhead for access bits). We sacrifice some precision in
order to keep hardware at a minimum. AVIO [3] is an atomicity violation detector that
also augments and leverages coherence state. However, atomicity violations do not nec-
essarily imply data races.
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The works most related to ours are by Min and Choi [8]], and Nagarajan and Gupta
[LO]]. Both propose using traps to expose certain cache coherence events to enable analy-
sis of parallel program behavior. Nagarajan and Gupta [[10] showcased their mechanism
with deterministic replay and barrier speculation. Min and Choi [8]] developed a limited
form of happened-before detection for a subclass of programs (structured parallelism
only). In contrast, our hardware proposal does not rely on software traps; it is essentially
a load operation that returns coherence state. Software traps are arguably more flex-
ible, but are also much more costly to implement. Importantly, these proposals focus
on other applications of tracking coherence events. We propose a new race detection
algorithm that uses our novel hardware support to reduce performance overheads, and
also significantly reduce space overhead compared to happened-before.

8 Conclusions

In this paper, we propose a data race detection solution that requires minimal hard-
ware support. This solution captures many of the same races a more traditional mech-
anism based on happened-before captures, but at much lower overheads. We expect
the overhead reductions and the hardware simplicity to make this solution sufficiently
compelling for multicore designers to include support in their designs.
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tion under grant CCF-1016495, the Spanish government under CICYT-TIN 2008/00508
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Abstract. Task-based parallel programming languages require the pro-
grammer to partition the traditional sequential code into smaller tasks in
order to take advantage of the existing dataflow parallelism inherent in
the applications. However, obtaining the partitioning that achieves opti-
mal parallelism is not trivial because it depends on many parameters such
as the underlying data dependencies and global problem partitioning. In
order to help the process of finding a partitioning that achieves high
parallelism, this paper introduces a framework that a programmer can
use to: 1) estimate how much his application could benefit from dataflow
parallelism; and 2) find the best strategy to expose dataflow parallelism
in his application. Our framework automatically detects data dependen-
cies among tasks in order to estimate the potential parallelism in the
application. Furthermore, based on the framework, we develop an inter-
active approach to find the optimal partitioning of code. To illustrate this
approach, we present a case study of porting High Performance Linpack
from MPI to MPI/SMPSs. The presented approach requires only super-
ficial knowledge of the studied code and iteratively leads to the optimal
partitioning strategy. Finally, the environment provides visualization of
the simulated MPI/SMPSs execution, thus allowing the developer to
qualitatively inspect potential parallelization bottlenecks.

1 Introduction

New proposals for large-scale programming models are persistently spawned, but
most of these initiatives fail because they attract little interest of the community.
It takes a giant leap of faith for a programmer to take his already working par-
allel application and to port it to a novel programming model. This is especially
problematic because the programmer cannot anticipate how would his applica-
tion perform if it was ported to the new programming model, so he may doubt
whether the porting is worth the effort. Moreover, the programmer usually lacks
developing tools that would make the process of porting easier.

MPI/SMPSs is a new hybrid dataflow programming model that showed to
be efficient for numerous applications. In a manner similar to MPI/OpenMP,
MPI/SMPSs parallelizes computation of the distributed-memory nodes using
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MPT [I3], while it parallelizes computation of the shared-memory cores using
SMPSs [10], a task-based dataflow programming model. This integration of
message-passing paradigm and dataflow execution potentially extracts distant
parallelism (parallelism of code sections that are mutually “far” from each other).
Finally, MPI/SMPSs outperforms MPI in numerous codes [§], among which is
the High Performance Linpack (HPL), the application that is used to rank the
parallel machines on the top 500 supercomputers lists [I].

To continue its progress, MPI/SMPSs must get wider community involved by
encouraging MPI programmers to port their applications to MPI/SMPSs. This
encouragement is strictly related to assuring the programmer that he can benefit
from this porting and that the porting would be easy. Therefore, our goal in this
study is to develop a framework that provides support to:

— help an MPI programmer estimate how much parallelism MPI/SMPSs can
achieve in his MPI application, so he can decide whether the porting is worth
the effort.

— help an MPI programmer find the optimal strategy to port his MPI appli-
cation to MPI/SMPSs.

2 SMPSs Programming Model

SMPSs [10] is a new shared-memory task-based parallel programming model
that uses dataflow to exploit parallelism. SMPSs slightly extends C, C++ and
Fortran, offering semantics to declare some part of a code as a task, and to
specify memory regions on which that task operates. In porting a sequential
code to SMPSs, the programmer has to specify the following: taskification — to
mark with pragma statements the functions that should be executed as tasks;
and directionality of parameters — to mark inside pragmas how are the passed
arguments used within these function. The specified directionality can be: input,
output and inout. Figure[llillustrates the annotations needed to port a sequential
C code to SMPSs.

Given the annotations, the runtime is free to schedule all tasks out-of-order,
as long as the data dependencies are satisfied. The main thread starts and when
it reaches a taskified function, it instantiates it as a task and proceeds with the
execution. Based on the parameters’ directionality, the runtime places the task

#pragma css task int main () {
void compute(float *A, float *B) { ‘

compute(a,b);
}

Note: The code in black presents the unchanged code of the legacy C application. Conversely, the
code in dark gray presents the annotations needed to mark the taskification choice, while the code
in light gray presents the annotations needed to declare the directionality of parameters.

Fig. 1. Annotations needed to port a code from sequential C to SMPSs
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instance in the dependency graph of all tasks. Then, considering the dependency
graph, the runtime is free to dynamically schedule the execution of tasks to
achieve high parallelism. To further increase dataflow parallelism, the runtime
automatically renames data objects to avoid all false dependencies (dependencies
caused by buffer reuse).

Integrated with MPI, SMPSs allows to taskify functions with MPI transfers
and thus potentially extract very distant parallelism. The idea is to encapsulate
functions with MPI transfers inside tasks, and thus relate the messaging events
to dataflow dependencies. For example, a task with MPI Send of some buffer
locally reads (input directionality) that buffer from the memory and passes it
to the network, while a task with MPI Recv of some buffer gets that buffer
from the network and locally stores (output directionality) it to the memory.
Taskification of transfers overcomes strong synchronization points of pure MPI
execution and potentially exploits distant parallelisms, providing much better
messaging behavior than fork-join based MPI/OpenMP. Marjanovic at. el. [§]
showed that apart from better peak GFlops/s performance, compared to MPI,
MPI/SMPSs delivers better tolerance to bandwidth reduction and external per-
turbations (such as OS noise).

3 Motivation

Finding the best taskification strategy is far from trivial. Figure[2lshows a simple
sequential application composed of four computational parts (A, B, C' and D),
the data dependencies among those parts, and some of the possible taskification
strategies. Although the application is very simple, it allows many possible taski-
fications that expose different amount of parallelism. T0 puts all code in one task
and, in fact, presents non-SMPSs code. T'1 and T2 both break the application
into two tasks but fail to expose any parallelism. On the other hand, T3 and T4
both break the application into 3 tasks, but while T'3 achieves no parallelism,
T4 exposes parallelism between C and D. Finally, T'5 breaks the application
into 4 tasks but achieves the same amount of parallelism as 74. Considering
that increasing the number of tasks increases the runtime overhead of instan-
tiating and scheduling tasks, one can conclude that the optimal taskification is
T4, because it gives the highest speedup with the lowest cost of the increased
number of tasks. On the other hand, for a complex MPI application, the number
of possible taskifications could be huge, so finding the optimal taskification can
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Fig. 2. Execution of different possible taskifications for a code composed of four parts
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be both hard and time consuming. As a result, most likely, a programmer ends
up with a sub-optimal taskification of his code.

We believe that it would be very useful to have an environment that quickly
anticipates the potential parallelism of a particular taskification. We design such
environment and we show how it should be used to find the optimal taskifica-
tion. In this paper, as a case study we present a black-box approach to port the
High Performance Linpack (HPL) from MPI to MPI/SMPSs. First, the environ-
ment instruments the studied application and generates quantitative profile of
the execution. Then, considering the obtained profile the interactive trial-and-
error process can start following this method: 1) the programmer proposes a
coarse-grained taskification for the code; 2) given the taskification, the environ-
ment estimates potential parallelism and offers the visualization of the resulting
MPI/SMPSs execution. 3) based on the output, the programmer proposes a
finer-grained taskification and returns to step 2. This interactive algorithm con-
verges into the optimal taskification.

4 Framework

The idea of the framework is to: 1) run an MPI/SMPSs code by executing tasks in
the order of their instantiation; 2) dynamically detect memory usage of all tasks;
3) identify dependencies among all task instances; and 4) simulate the execution
of the tasks in parallel. First, the framework forces sequential execution of all
tasks, in other words it executes tasks in the order of their instantiation. That
way, the instrumentation can keep the shadow data of all memory references
and thus identify data dependencies among tasks. Considering the detected de-
pendencies, the framework creates the dependency graph of all task, and finally,
simulates the MPI/SMPSs execution. Moreover, the framework can visualize the
simulated time-behavior and offer deeper insight into the MPI/SMPSs execution.

The framework (Figure B]) takes the input code and passes it through the
tool chain that consists of Mercurium based code translator, Valgrind based

MPI execution

Original
(MP1)

Input
code

Potential
(MPI+SMPSs)
execution

B,/ Valgrind
' tracer
algrind

i tracer

Fig.3. The framework integrates Mercurium code translator, Valgrind tracer,
Dimemas simulator and Paraver visualization tool
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tracer, Dimemas replay simulator and Paraver visualization tool. Input
code is a complete MPI/SMPSs code or an MPI code with only light annota-
tions specifying the proposed taskification. A Mercurium based tool translates
the input code in the pure MPI code with inserted functions annotating entries
and exits from tasks. Then the obtained code is compiled and executed in pure
MPI fashion. Each MPI process runs on top of one instance of Valgrind virtual
machine that implements a designed tracer. The tracer makes the trace of the
(actually executed) MPI execution, while at the same time, it reconstructs what
would be the traces of the (potential) MPI/SMPSs execution. Dimemas simula-
tor merges the obtained traces and reconstructs time-behavior of these traces on
a parallel platform. Finally, Paraver can visualize the simulated time-behaviors
and allow to profoundly study the differences between the (instrumented) MPI
and the (corresponding simulated) MPI/SMPSs execution. In our prior work
[14], we used a similar idea to estimate the potential benefits of overlapping
communication and computation in pure MPI applications.

4.1 Input Code

The input code can be MPT/SMPSs code or an MPI code with light annotations.
The input code has to specify which functions (parts of code) should be executed
as tasks, but not the directionality of the function parameters. Thus, the input
code can be an MPI code, only with annotations specifying which functions
should be executed as tasks. Figure [ on the left shows an example of an MPI
code with annotated taskification choice.

4.2 Code Translator

Our Mercurium based tool translates the input code into the code with forced
serialization of tasks. The obtained code is a pure MPI code with empty functions
(hooks) annotating when the execution enters and exits from a task (Figure H).
The translated code is then compiled with mpice, and the binary of the MPI
execution is passed for further instrumentation. It is important to note that the

Input code Translated code

#pragma css task

void compute(float *A, float *B) { void compute(float *A, float *B) {
} }

int main () { int main () {
a :ﬂizln‘lilaskivalgrind("Compule"):
compute(a,b); compute(a,b);
end_task_valgrind(“‘compute™);
L .
Note: The input code does not have to be a complete MPI/SMPSs code, because the instrumented

code only needs to mark all entries/exits from each task. Thus, as shown, the input code can be an
MPI application only with a specified proposed taskification.

Fig. 4. Translation of the input code required by the framework
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hooks can be inserted directly in the input code, allowing to declare as task any
part of the application’s code. This way, the framework overcomes the limitation
of SMPSs runtime that only complete functions may be treated as tasks, and
further eases the process of proposing taskifications.

4.3 Tracer

Valgrind [9] is a virtual machine that uses just-in-time (JIT) compilation tech-
niques. The original code of an application never runs directly on the host pro-
cessor. Instead, the code is first translated into a temporary, simpler, processor-
neutral form called Intermediate Representation (IR). Then, the developer is
free to do any translation of the IR, before Valgrind translates the IR back into
machine code and lets the host processor run it.

Leveraging Valgrind functionalities, the tracer instruments the execution and
makes two Dimemas traces: one describing the instrumented MPI execution;
and the other describing the potential MPI/SMPSs execution. The tracer uses
the following Valgrind functionalities: 1) intercepting the inserted hooks in or-
der to track which task is currently being executed; 2) intercepting all memory
allocations in order to maintain the pool of data objects in the memory; 3) in-
tercepting memory accesses in order to identify data dependencies among tasks;
and 4) intercepting all MPI calls in order to track MPI activity of the execution.
Using the obtained information, the tracer generates the trace of the original
(actually executed) MPI execution, while at the same time, it reconstructs what
would be the trace of the potential (not executed) MPI/SMPSs execution.

The tool instruments accesses to all memory objects and derives data depen-
dencies among tasks. By intercepting all dynamic allocations and releases of the
memory (allocs and frees), the tool maintains the pool of all dynamic mem-
ory objects. Similarly, by intercepting all static allocations and releases of the

execution identified Collected MPI simulation Collected MPI/SMPSs simulation
dependencies MPI MPI/SMPSs (2 cpus per node)
trace trace
cpul cpul cpu2
Task_1
CPU_burst CPU_burst
CPU_burst
[__CPU_burst |
Task_2 ERUNETES
° CPU_burst
.
L]
Task_3
task 4:
dep<-2
Task_4 N dep<3
3 CPU_burst
. .
L]
L]

Note: The tracer describes the MPI traces by emitting two types of records: 1) computation record
defining the length of computation burst; and 2) communication record specifying the parameters of
MPI transfers. Conversely, it describes the MPI/SMPSs trace by breaking the original computation
bursts into tasks and synchronizing the created tasks according to the identified data dependencies.

Fig. 5. Collecting trace of the original MPI and the potential MPI/SMPSs execution
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memory (mmaps and munmaps), and reading the debugging information of the
executable, the tool maintains the pool of all the static memory objects. The
tracer tracks all memory objects, intercepting and recoding accesses to them
at the granularity of one byte. Based on these records, and knowing in which
task the execution is at every moment, the tracer detects all read-after-write
dependencies and interpret them as dependencies among tasks.

The tool creates the trace of the executed MPI run, and at the same time,
considering identified task dependencies, it creates what would be the trace of
the potential MPI/SMPSs run (Figure [Bl). When generating the original trace,
the tool describes the actually executed run by putting in the trace two types of
records: 1) computation record stating the length of computation burst in terms
of the number of instructions 2) communication record specifying the parameters
of the executed MPI transfer. Additionally, when reconstructing the trace of the
potential MPI/SMPSs run, the tracer breaks the original computation bursts
into tasks, and then synchronizes the created tasks according to the identified
data dependencies.

4.4 Replay Simulator

Dimemas is an open-source tracefile-based simulator for analysis of message-
passing applications on a configurable parallel platform. The communication
model, validated in [4], consists of a linear model and nonlinear effects, such
as network congestion. The interconnect is parametrized by bandwidth, latency,
and the number of global buses (denoting how many messages can concurrently
travel throughout the network). Also, each processor is characterized by the
number of input/output ports that determine its injection rate to the network.
Finally, the simulated output of Dimemas can be visualized in Paraver.

We extended Dimemas to support synchronization of tasks in a way that
allows Paraver to visualize all data dependencies. We implemented a task syn-
chronization using an intra-node instantaneous MPI transfer that specifies the
source and the destination tasks. This way, Paraver can visualize the simulated
time-behavior showing both MPI communications among processes and data
dependencies among tasks. Using this feature, the developer can visually detect
each execution bottleneck and further inspect its causes.

5 Experiments

Our experiments explore MPI/SMPSs execution of HP Linpack on a cluster of
many-core nodes. We used HPL with the problem size of 8192 and with 2x2
(PxQ) data decomposition. Also, we test various granularities of execution by
running HPL with block sizes (BS) of 32, 64, 128, and 256. Our target machine
consists of four many-core nodes, with one MPI process running on each node.
We are primarily interested in the MPI/SMPSs potential parallelism inherent
in the code, so we make most of the measurements for unlimited resources on
the target machine — infinite number of cores per node and ideal interconnect
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between the nodes. These results represent the upper bound of achievable paral-
lelism. Finally, we show how this potential parallelism inherent in the application
results in speedup when the application executes on a realistic target machine.

The major part of our experiment consist of exploring the potential MPI/
SMPSs taskifications of HPL. In a case study with HPL, we present a top-
to-bottom approach that uses a trial-and-error method, requires no knowledge
of the studied code, and finally leads to exposing dataflow parallelism in the
code. The approach uses the following method: 1) we propose a coarse-grained
taskification for the code; 2) given the taskification, the environment estimates
potential speedup and offers visualization of the resulting MPI/SMPSs execu-
tion. 3) based on the output, we choose a finer-grained taskification and return
to step 2. We start from the most coarse-grain taskification (7°0) that puts whole
MPI process into one task and actually presents the traditional MPI execution
(Figure . Then using T0 as the baseline, we determine the potential paral-
lelism of Ti(1 < i < 9) normalized to TO as the speedup of T over T0 when
both these taskifications execute on a machine with unlimited number of cores
per node and unlimited network performance (Figure .

5.1 Results

First, the framework instruments the application to obtain the profile that guides
the taskification process. Table shows the accumulated time spent in each

. ‘ granularity
BS-32 | BS-64 | BS-128 | BS256
(rome[s|va|s [T [T7[T8[To] panel_init 00003 | 0.0002 | 0.0001 | 0.0000
void update( . { outer | fact 0.7525 | 12071 | 18795 | 3.2077
HPL dtrsm.(”... ) = ™ init_for_pivoting | 0.0246 | 0.0487 | 0.0925 | 0.1795
HPL_dgemm(...); ) 2 o HPL_dlaswpOIN | 02583 | 0.2917 | 0.2906 | 0.2815
} £ HPL_spreadN 01598 | 0.0800 | 0.0378 | 0.0181
2| iner | HPL diaswpOsN | 01222 | 01359 | 0.1367 | 01274
, ~
main() { £ HPL_rollN 03267 | 0.1619 | 0.0762 | 0.0363
- HPL_dlacpy 00857 | 0.0932 | 00929 | 0.0912
mfor( 0] <N j+2B8) = HPL_dlaswpOON | 03706 | 0.4485 | 0.4736 | 0.4837
1=01<Rit= sote | LTS 0.8269 | 1.6674 | 2.8347 | 5.0772
panel_init(.); m & HPORE Mipt_dgemm 97.0683 | 95.8614 | 94.0813 | 90.4935
if (cond0) . . . .
facl(.. ) o oo (b) Distribution of total execution
init_for_pivoting( ... ); @ o D 3 g
ook 1< P b= B8) time spent in tasks (%).
if(cond1) M granularity
HPL_dlaswpO1N(... ); M - oo BS32 | BS-64 | BS-128 | BS256
HPL’SpreadN( = )’ - = = = panel_init 0.0003 | 0.0003 | 0.0003 0.0003
if{cond2) - outer | fact 13468 | 37670 | 113572 | 37.8463
" HPIJEdIasprGN(...)‘ E@ea init_for_pivoting | 00221 | 00761 | 02797 | 1059
I(CF?EL Llac () ° HPLdlaswpOIN | 00073 | 00289 | 01130 | 04392
HPL rfﬁIN( py) g E 8 g E ‘Eﬂ HPL_spreadN 0.0022 | 0.0040 | 0.0073 | 0.0141
= v ; < HPL_dlaswpO6N | 0.0034 | 00135 | 00532 | 0.1987
HPL_dlaswp0ON( ... ); oJ
update( Jp = a = E e E s ™ [Heroin 00046 | 00080 | 00148 | 0.0283
} ) * HPL_dlacpy 0.0024 | 00092 | 00361 | 0.1423
) HPL_dlaswpOON 0.0052 | 0.0222 | 0.0921 03773
= HPL_dtrsm 00117 | 00826 | 05514 | 39605
update ! 1
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(a) HPL and the evaluated taskifications. (c) Average function duration (ms).

Note: In Tables [6(b)| and apart from statistic for each function of the code, we present the
statistics for two logical sections: outer — consisting of panel init, fact and init for pivoting; and
inner consisting of HPL dlaswp01N, HPL spreadN, HPL dlaswp06N, HPL rollN, HPL dlacpy and
HPL dlaswpOON.

Fig. 6. Taskifications evaluated for HPL and duration and time spent in each function
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function of the application. This information identifies instances of which func-
tions need to execute concurrently in order to achieve significant parallelism. In
this example, those are instances of functions wupdate, because the application
spends in that function from 95.57% (for BS = 256) to 97.83% (for BS = 32).
On the other hand, Figureshows the average duration of each function. This
information identifies which function is a good candidate to be broken down into
smaller tasks. In this example, function panel init is very short so breaking it
into smaller tasks makes little sense. Also, it is important to note that decreasing
BS reduces execution time of most of the functions, so this could also be a way
to make finer-grained execution.

Considering the data showed on previous tables, we start the process of ex-
posing parallelism by: 1) proposing a taskification (T'1 - T'9 in Figure ; 2)
testing how many tasks we created (Figure ; and 3) testing the potential
speedup of the taskification (Figure . T0 is the baseline taskification that
makes only one task per MPI process. T'1 puts each iteration of the outer loop
in one task, but this strategy gives no additional parallelism compared to 7°0.
Furthermore, T2 breaks down the code into section outer and separate iterations
of the inner loop, still giving no improvement in speedup. 7’3 additionally breaks

parallelism normalized to TO

granularity 2 ]
BS-32 BS-64 BS-128 | BS-256 2 jm==
e 4 w—
1 1024 516 260 132 23 =
8 6 =
2 66.314 16778 4.208 1130 & =
=8 i
3 69.898 18.570 5194 1.578 5% 9=
s 25 2
2 T4 131600 | 33.040 8336 2128 -
& s
2 T5 135.184 | 34.832 9.232 2576 32
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= 7 425382 | 106216 | 26502 6.614 )
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(a) Total number of tasks created. (b) Speedup normalized to T0.

Note: In Figure all taskifications (7'0-T'9) execute in MPI/SMPSs fashion on an ideal target
machine. Then, the speedup of taskification T% over taskification T'0 represents the parallelism of
taskification T'% normalized to taskification T'0.

Fig. 7. Number of task instances and the potential parallelism of each taskification

Fig. 8. Paraver visualization of the first 63 tasks and the dependencies among them
(taskification T4, BS=256)



48 V. Subotic et al.

down section outer, but with no increases in speedup. This can be explained by
Paraver visualization (results not presented in the paper) that shows that in 72
and T'3, each iteration of the inner loop depends on the previous iteration, and
thus impedes parallelism. Finally, T4 compared to T2 separates section inner
from function update and releases the significant amount of parallelism. Namely,
it achieves the speedup of 6.76, 12.28, 21.48 and 32.02 for block sizes of 256,
128, 64 and 32, respectively (Figure . Also, T4 significantly increases the
number of tasks in the application to 2.128, 8.336, 33.040 and 131.600 for block
sizes of 256, 128, 64 and 32, respectively (Figure . Now, Paraver visual-
ization reveals that in T'4: 1) each section inner depends on the section inner
in the previous iteration of the inner loop; and 2) each update depends on the
section innerin the same iteration of the inner loop. Thus, because section inner
is much shorter than update, all dependent sections inner can execute quickly,
and then independent instances of update can execute concurrently (Figure [§).

Further breaking down of outer, inner and update contributes little to the
potential speedup (Figure . Breaking of outer, for block sizes of 256, 128
and 64, causes slightly higher parallelism of 7’5, T8 and T'9, compared to 74,
T6 and T7. On the other hand, breaking of inner, for block size of 32, causes
significantly higher parallelism of 76, T'7, T8 and T9, compared to T4, T'5. This
effect happens because for very high concurrency of update (speedup is higher
than 30), the critical path of the execution moves and starts passing through sec-
tion inner. In these circumstances breaking of inner significantly increases par-
allelism by allowing concurrency of functions HPL dlaswp00N, HPL dlaswp01N
and HPL dlaswp06N. Finally, breaking of update, for block size 32, causes slightly
higher parallelism of T'9 compared to T'8.

Figure [ shows the speedup and parallel efficiency of T'9 for different number
of cores per node. The results show that high parallelism in the application is
useful not to achieve high speedup on a small parallel machine, but rather to
deploy efficiently a large parallel machine. Figure shows that for a machine
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(a) Speedup. (b) Parallel efficiency.

Note: Parallel efficiency denotes the ratio between the application’s speedup achieved on some
parallel machine and the number of cores of that parallel machine. Infact, the metric presents the
overall average core utilization in the whole machine.

Fig. 9. Speedup and parallel efficiency for T9 for various number of cores
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with 4 cores per node, T'9 with all block sizes achieve a speedup of around 4,
with difference between the highest and the lowest of less than 2%. However, for
a machine with 32 cores per node, T'9 with block sizes of 256, 128, 64 and 32,
achieves the speedup of 6.80, 12.34, 21.57 and 29.47, respectively. Furthermore,
Figure shows parallel efficiency (core utilization) — the ratio between the
application’s speedup achieved on some parallel machine and the number of cores
in that machine. Adopting that an application efficiently utilizes a machine if
the parallel efficiency is higher than 75%, the results show that T'9 with block
sizes of 256, 128, 64 and 32, can efficiently utilize the machine of 8, 15, 26 and 47
cores per node, respectively. Therefore, to efficiently employ many-core machine
with hundreds of cores per node, HPL has to expose even more parallelism, for
instance, by making finer-grain taskification with further reduction of block size.

6 Related Work

Back in 1991 the community started claiming that instruction-level parallelism
is dead [15], and consequently in the following 20 years appeared many pro-
gramming models that exploit task-level parallelism. OpenMP [I1] is the most
popular programming model for shared memory that was founded with the idea
of parallelizing loops, but from version 3.0 provides support for task parallelism.
Cilk [2] implements a model of spawning various tasks and specifying a syn-
chronization point where these tasks are waited for. MPI tasklets [5] parallelize
SMP tasks by incorporating dynamic scheduling strategy into current MPI im-
plementations. There are also proposals that originated from the industry, such
as: TBB [12] from Intel and TPL [6] from Microsoft. Still, all these proposals
suffer from the limitations of fork-join based programming models. On the other
hand, SMPSs [I0] is a programming model in which the programmer specifies
dependencies among tasks, rather than specifying synchronization points. Then,
based on the specified dependencies, the runtime schedules tasks in dataflow
manner, potentially extracting very distant parallelism. Furthermore, SMPSs
can be integrated with MPI, allowing better messaging behavior. Marjanovic
at. el. [8] demonstrate that compared to MPI, MPI/SMPSs provides superior
performance as well as higher tolerance to network reduction and external noise.

However, there is little development support for these programming mod-
els. Alchemist tool [16] identifies parts of code that are suitable for thread-level
speculation. Embla [7] estimates the potential speed-up of fork-join based paral-
lelization. Starsscheck [3] checks correctness of pragma annotations for STARSs
family of programming models. Our work adds up to these efforts by designing a
framework that estimates the potential parallelism of MPI/SMPSs. Furthermore,
our work goes beyond the state-of-the-art tools because: 1) it deals with complex
execution model that integrates MPI with task-based dataflow execution; 2) it
allows to study MPI/SMPSs execution before the original MPI application is
ported to MPI/SMPSs; 3) it provides an estimation of the parallelism on the
configurable target platform; and 4) it provides visualization of the simulated
execution.
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7 Conclusion

Tasks-based parallel programming languages are promising in exploiting addi-
tional parallelism inherent in MPI parallel programs. However, the complexity of
this type of execution impedes an MPI programmer from anticipating how much
dataflow parallelism he can obtain in his application. Moreover, it is nontrivial
to determine which parts of code should be encapsulated into tasks in order to
expose the parallelism and still avoid creating unnecessary tasks that increase
runtime overhead. To address this issue, we have developed a framework that
automatically estimates the potential dataflow parallelization in applications.
We show how, using the framework, one can find optimal taskification choice
for any application through a trial-and-error iterative approach that requires no
knowledge of the studied code. We prove the effectiveness of this approach on
a case study in which we explore the taskification of High Performance Linpack
(HPL). The results show that HPL expresses substantial amount of potential
dataflow parallelism that allows the application to efficiently utilize cluster of
nodes with up to 47 cores per node. Moreover, we show that the global parti-
tioning significantly impacts parallel efficiency, and thus, in order to efficiently
utilize higher number of cores, finer-granularity of execution should be used.
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Abstract. Event log files are the most common source of information for the
characterization of events in large scale systems. However the large size of these
files makes the task of manual analysing log messages to be difficult and er-
ror prone. This is the reason why recent research has been focusing on creating
algorithms for automatically analysing these log files. In this paper we present
a novel methodology for extracting templates that describe event formats from
large datasets presenting an intuitive and user-friendly output to system adminis-
trators. Our algorithm is able to keep up with the rapidly changing environments
by adapting the clusters to the incoming stream of events. For testing our tool,
we have chosen 5 log files that have different formats and that challenge different
aspects in the clustering task. The experiments show that our tool outperforms all
other algorithms in all tested scenarios achieving an average precision and recall
of 0.9, increasing the correct number of groups by a factor of 1.5 and decreasing
the number of false positives and negatives by an average factor of 4.

1 Introduction

Event logs are a rich source of information for analysing the cause of failures in cluster
systems. However the size of these files has continued to increase with the ever growing
size of supercomputers, making the task of analysing log files a hard and error prone
process when handled manually. The current way used by system administrators for
searching through the log data is pattern matching, by comparing numerical thresholds
or doing regular expression matching on vast numbers of log entries looking for each
pattern of interest. However by using this method, only those faults that are already
previously known to the domain expert can be detected. As a consequence, data mining
algorithms have recently been explored for extracting interesting information from log
data without the control of a human supervisor [15} 21} 14]. However the algorithms
must be adapted since it has been found that traditional clustering methods are not
working well when they are applied to high dimensional data [11].

As mentioned in [2]], log files will change during the course of a system’s lifetime
due to many reasons, from software upgrades to minor configuration changes and so
it is normal to encounter novel events as time passes by. This makes it difficult for the
algorithms to learn patterns or models. The learned patterns may not be applicable for
a long time so all analyzing techniques must be able to detect phase shifts in behavior.
Current data mining algorithms [17, 19} 10} 4} [15,14] have difficulties in dynamically
updating the groups to cope with an incoming stream of novel events.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 52 2011.
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In this paper we present HELO (Hierarchical Event Log Organizer) a novel unsu-
pervised clustering engine that aims to accurately mine event type patterns from log
files generated by large supercomputers. Our algorithm adapts data mining techniques
to cope with the structure format of log files making the process computational efficient
and accurate. Existing event pattern mining tools are not taking advantage of the charac-
teristics that log files share or are unable to classify messages in an online manner. Our
algorithm requires no prior knowledge or expectations as events are defined by their ex-
istence. This is critical when dealing with leading edge systems or with environments
that change from system to system.

We have made experiments in order to compare our tool with two Apriori tools
(Loghound [17], SLCT [19]), two other pattern extractors (IPLOM [10], MTE [4]),
and an affinity propagation technique (StrAp [23]]). HELO outperforms all other algo-
rithms providing a better precision without an overhead in the computational cost. We
will show that our tool increases the corrected classified messages by a factor of 1.5 and
decreases the number of false positives and false negatives by an average factor of 4.

The rest of the paper is organized as follows: Section 2 provides related work and
describes other mining algorithms that will be used as a comparison for the results
obtained by HELO. In section 3 we present our classifier tool, highlighting its properties
and characteristics. Section 4 presents the log files used for the experiment scenarios
and section 5 shows several performance results being obtained in order to validate the
proposed mining tool. Finally, in section 6 we provide conclusions and present future
work.

2 Related Work

Indexing the information found in log files is an important task since analysing groups
of related messages can find problems better than by looking at individual events
[L5} 21]). For example there are many anomalies that are indicated by incomplete mes-
sage sequences. In general a change in the normal behaviour of the system is usually
an indicator of a problem. Extracting templates and shaping this behaviour can greatly
help systems in detecting or even predicting faults [[16]].

There is a considerable amount of papers that deal with message clustering: some
use supervised learning and some unsupervised data mining techniques. All the super-
vised methods need a training phase that is quite expensive since it requires manually
annotated events [7, 20]. Unsupervised techniques require only a few input parame-
ters, the rest being done automatically by the algorithm. The most used unsupervised
methods for extracting information from log files are the Apriori algorithm for frequent
itemsets [[17,[19}[18]], Latent Semantic Indexing [9]], event pattern [10,4] and k-nearest
neighbours [23]]. Also, there are some studies that use the source code to extract error
description format [6]. However there are systems that don’t give access to the code
that generates log files so these algorithms can not be used regardless of the system.

HELO differs from the other event pattern mining tools for several reasons. First,
there are very few methods that classify events in an online matter and most of them
have a major limitation: they are unable to dynamically update the clusters for novel
events. StrAp [23] is able to create new groups for the outliers. However the tool was
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design to cope with numerical data, having limitations in clustering log files. HELO
was implemented so that it is able to adapt the initial templates in order to cope with
any changes in the incoming stream of events. Also HELO uses an efficient splitting
process that considers different priorities for different words according to their semantic
meaning. All other tools partition the dataset only according to the syntactic form of
message description. This a limitation when dealing with log files since symbols used
in the message description indicate different types of components or registers.

In the next paragraphs we present 5 different algorithms that mine log files and clus-
ter events based on the similarity between their descriptions. We discuss their method-
ology and limitations. For computing the accuracy of all algorithms the log files were
manually labelled and classified after discussions with our faculty’s tech support group.

Loghound [17] and SLCT [19] are Apriori-based tools designed for automatically
discovering event cluster formats from log files by considering log messages as data
points and then clustering them according to different density values. The size of log
files generated by todays supercomputers has continue to grow, so since the set man-
agement part in the Apriori algorithm is costly for even a smaller number of patterns
[8l], analysing these logs is becoming a problem to these methods.

Iterative Partitioning Log Mining (IPLoM) [10] is an algorithm for mining clusters
from event logs. The authors use 2 splitting steps by token count and token position
and one step where the algorithm searches for bijections between tokens from different
messages and splits the data accordingly. One limitation of this algorithm is the fact
that all messages in one cluster must have the same length. Also another limitation in
IPLoMs analysis is the syntactic depth of the mining process.

Streaming Affinity Propagation (StrAp) [23] is a clustering algorithm that extends
Affinity Propagation to data streaming. In the first step, the tool finds the number of
clusters that can be formed with the offline training set and then divides it by retain-
ing the best items that represent each cluster. In the second step the rest of the input
messages are treated as stream of data and the tool achieves online clustering by mak-
ing new groups for the outliers and occasionally updating the exemplars from existing
groups. The algorithm was implemented to cope with numerical input data, for example
the duration of execution for each job. We implemented in StrAp, a Hamming distance
metric for log messages [3] that is able to work with non-numeric values.

Message Template Extractor (MTE) is a component contained by the FDiag tool [4]]
that adds structure to the logs by extracting the messages template. The main idea used
by the authors is that tokens in the English dictionary show the same patterns in different
messages from the same type and that alpha-numerical values do not have the same
property. The MTE extracts two template sets, one for constants and one for variables.
The tool considers variables to be alpha-numerical tokens, i.e. words that contain letters,
numbers in decimal or hex and symbols. However there are some cases when variables
are also English normal words. For example, this is the case of filenames.

3 Methodology

Table 1 presents different event examples that illustrate the usual form of a log mes-
sage. The first part of the description is defined by header information and the rest is
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Table 1. Log message examples

Header Message
[02:32:47][c1-0c1s5n0] Added 8 subnets and 4 addresses to DB
[02:32:51][c3-0c0s2n2] address parity check..0
[02:32:52][c3-0c0s2n2] address parity check..1
[02:32:57][c1-0c1s5n0] Added 10 subnets and 8 addresses to DB
[02:34:21][c2-0c1s4n1] data TLB error interrupt

represented by the error message. In this study we only use the message description for
classifying events for all the tools. However HELO can group messages after different
criteria according to how much out of the header is included in the algorithm’s input.

A message description can be seen as constructed by variables and constants. Con-
stant are words that keep their value in a group template and are represented by strings
like address” or ”’subnets” from our examples. These words carry crucial information
since they describe the message type. Message variables like 8 from our message iden-
tify manipulated objects or states for the program. HELO is a hierarchical process that
finds representations for all message types that exist in a log file by extracting constants
and variables from message descriptions. The tool uses in the splitting process the fact
that words formed by letters and not numbers or punctuation marks, have more chances
of being constants in the final templates.

The methodology used by the tool has two different steps: an offline classification
part where events found in log files are used to create the first template set by dividing
them according to their description patterns and an online clustering part that classifies
each new event and dynamically reshapes the previous found groups according to them.

3.1 Offline Clustering

The offline component of HELO deals with mining group patterns from log file mes-
sages. Basically the algorithm groups events considering their description in a 2 step
hierarchical process. In the first step the algorithm searches for the best split column
for each cluster and in the second step the clusters are divided correspondingly. A split
column represents a word position in the message description that is used to divide the
cluster into different groups. The methodology is described in Figure 1(a).

HELO starts with the whole unclustered log file as the first group and recursively
partitions it until all groups have the cluster goodness over a specified threshold. The
cluster goodness characterizes how similar all messages in one group are and is define
as the percentage of common words in all events description over the average message
length. This threshold can be provided by the user but is not mandatory for the execution
of the tool. For all our experiments, we use the default value without trying to gain
performance by tuning this parameter. This value has been set to 40% and was chosen
after observing empirically that, for most of the log files, this value gives the best results.

The cluster goodness threshold is used to establish the generality of the final groups.
If the threshold is low then there will be more words considered variables so the group
generality increases. For example, with a lower threshold the tool generates a group



56 A. Gainaru et al.

Algorithm 1 Find Split Position

Input: Partition M[] of messages
Output: Word position that can be used for the split

Events

from one log file for every message Maux in M do

13
2 for every word_position in Maux do
%) if Maux[word_position] is a hybrid word then
— ) Wessage Groups fa] Al messages 4 Wrd = extract_hybrid(Maux[word _position])
as the first 5 else if Maux[word_position] is a number then
il 6 Wrd = number_value()
7 else
: e 8 Wrd = Maux [word_position]
different types of 9 end if
tokens 10: if Wrd is unique for this word_position then
11: appearance for this word = 1
12: else
_ 13: increase appearance for this word with one
14: end if
i 15:  end for
16: end for

Search for groups that still

needto be separate 17: get word_position where mean(words appearance) is
max

18: return word_position

(a) Diagram (b) Splitting process pseudocode
Fig. 1. Offline clustering methodology

with messages describing L2 cache errors, and with a higher threshold there will be two
groups, one for L2 read errors and one for write.

We could not compare the real execution times obtained for all algorithms since they
are implemented in different languages. We analysed only the theoretical complexity
time between HELO and the other tool that obtained a good accuracy and precision
for both online and offline test cases, StrAp. For the offline classification, StrAp mea-
sures the distance between any two messages; this means a time complexity of O(N?).
HELO is an iterative process so uses different number of cycles for different log files.
From all experiments, the clustering process is finished after 5 steps, but the worst case
theoretical scenario takes NlogN steps (if each message represents a unique template
but their similarity is just under the threshold).

3.2 Splitting Process

In the first step of the process, the algorithm searches for the best split column for
all clusters. Traditional data mining algorithms compute the information gain for each
variable that could be used for the split and choose the one with the highest gain in
accuracy. However, in our case, the best splitting position is the one that contains the
maximum number of constant words. We consider that words with a high number of
appearances on one position has more chances of being a constant, so HELO searches
for the column where most unique words have a high appearance rate. This position
corresponds to the column where the mean number of appearances for every unique
word is maximum while still having enough words in order to be relevant to the analysed
event dataset.
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Table 2. Log template example

machine check interrupt (bit=0x1d): L2 dcache unit write read parity error
machine check interrupt (bit=0x10): L2 DCU read error

machine check interrupt (bit=d+): L2 * * * n+

For a better understanding we will consider the events presented in Table 1. From the
fifth column the values are no longer relevant since the total number of messages that
have words on that position is too small. The reason that this position is not considered
is that the splitting process tries to obtain balanced groups in each step.

HELO considers that different type of words have different priorities dependent on
their semantics. There are three types of considered words: English words, numeric
values and hybrid tokens (words that are composed of letters, numbers and symbols of
any kind). The lowest priority is for all-numeric values since the algorithm considers
that these words have the most chances of becoming variables in the clusters. In the
example from above, 8 and 10 from column 2 are decreasing the appearance mean for all
unique words, so the split will not be done here. Hybrid values are represented by tokens
like check..0 from our example. The algorithm extracts and considers only the English
words incorporated in the hybrid token. For our example both check..0 and check..1 are
considered as word check. If we reanalyze the example presented above, the first and
the third columns could be chosen by the algorithm for the splitting position.

The creation of new groups has the exact semantic rules as the previous step. Since
the numeric values have the least priority, all messages that contain any numeric value
on the splitting position will be gathered in the same group. For our example, no matter
which of the first three columns is chosen for the split, three groups will be generated,
one with the first and the fourth message, one with the second and the third and one
with the last message. For each created group, HELO computes the cluster goodness. If
the value is under the chosen threshold, the group is sent to be divided again.

There are some cases where the partition step splits the groups by a column that is a
good choice for the majority of the future groups but that divides some messages that
should be together. After the splitting process is over and the final templates are created,
HELO reanalyzes the clusters and merges group templates that are very similar. The
default value for the threshold has been set to 80% since the group templates should be
very similar in order to be considered one. In this last step templates are compared to
one another so the time complexity is O(G?). However, this is not a problem since the
total number of templates is very small comparing to the whole dimension of the logs.

3.3 Output

When all clusters are stable, the algorithm identifies cluster description for each par-
tition. A group template represents a line of text where variables are represented by
different wildcards. HELO uses three types of wildcards: d+ represents numeric values,
* represents any other single words, and n+ represents all columns of words that have
a value for some of the messages and do not exist for others. In the example in Table 2
all three types of wildcards are illustrated.
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The group templates describe all type of events that the system generates, in an
intuitive way. The user-friendly group description generated by the tool could ease the
work of system administrators to follow and understand errors from log files.

3.4 Online Clustering

The online clustering process deals with grouping messages as they are being gener-
ated by the system. Clustering tools must be able to change the group templates in
order to manage novel messages that could appear. The input is given by the groups
obtained with the offline process on the initial dataset. In HELO, each cluster needs to
be represented by a description in the format described in the previous section and some
statistics about the group.

Classify the
( message )
if similarity 100% Group statlstlcs
_else
Log messags ERACtiE st Set oflemnlates ~fCompute cluster
: similar templates and similarities goodness
5 el if one cluster goodness>
roup templates threshold

- Madify template

Classify message

Choose the best it

else,| New cluster

For each new message, the online component checks the description of the messages
and retrieves the most appropriate group templates. If a message fits the exact descrip-
tion of a group (this means the group template does not need to be modified) then the
search is over and we stamp the message with the template’s group id. If the message
does not have an exact match with any of the groups then we compute the cluster good-
ness for all the clusters retrieved before, after including the new message in each of
them. For computing the goodness of the group if the message is inserted, we retrieve
the average length of all messages in this cluster from the group statistics file. This in-
formation decides if including the new message decreases the cluster goodness under
the threshold or not. If no cluster has the goodness over a specific threshold then a new
group is formed. Else the group with the best cluster goodness will be chosen and the
group template will be modified to accommodate the new message. The methodology
for the online component of HELO is presented in figure 2.

Fig. 2. Online clustering diagram

4 Log Files

The logs we use for validating our tool are generated by five different supercomputers.
Table 3 gives statistic information about the traces. All files except Mercury are down-
loaded from two websites: [5,[1]]. Mercury logs are owned by the NCSA [13] and are
not available to the public for privacy issues.
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Table 3. Log data statistics Table 4. Parameter values
System  Messages  Time Log type Tool Parameter Value
event logs, IPLoM  File Support 0-0.5
BlueGene/L. 4,747,963 6 months login logs Loghound  Support Th 0.01-0.1
Mercury  >10 million 3 months event logs SLCT Support Th 0.01-0.1
PNNL 4,750 4 years  event logs StrAp  Offline support N/ 10%-N / 10®

event, syslog,

console

LANL 433490 9 years cluster node
outages

Cray XT4 3,170,514 3 months

We chose these 5 datasets because their diversity makes the analysis process more
reliable: LANL [2] has a friendly format for all the tools under study; Cray XT4 has a
very large amount of event patterns making the online classification less precise; Mer-
cury has a very large amount of total messages, a few hundred thousand events per day,
making it a good scalability testing scenario ; PNNL [22] has a large number of groups
but most of them include a small amount of messages making it difficult for algorithms
that take the frequencies of events into consideration to classify them; also BlueGene/L,
Cray and Mercury put a lot of semantic problems.

We identified groups from each log file manually after discussions with people from
the tech support group, and used this information to compute the performance of all the
tools under study as an information retrieval task.

5 Results

We have made experiments in order to compare our tool with the other 5 algorithms
using the traces presented in the previous section. The measures used are the classic
evaluation units from information retrieval field: precision, recall and f-measure [12].
We define the main parameters used: A true positive is represented by a group template
that is found by one tool and that it’s also one of the annotated clusters; False negatives
represent group templates that are not found by the tool when they should be and false
positives are the templates that are found by the tool but are not part of the annotated
clusters. Precision can be seen as a measure of exactness or fidelity and it represents the
proportion of correct found templates to all the generated templates. Recall is computed
as the proportion of true positives to all the messages from the manually annotated
clusters and it represents a measure of completeness. F-measure is another information
retrieval measuring unit that evenly weights precision and recall into a single value.

The output format is different for different tools. Even though Loghound, SLCT and
IPLoM all compute the same type of groups with the one used by HELO but by only
considering one type of wildcard, the rest of the tools have their own private cluster
description. StrAp groups messages based on the computational distance between event
description so the output is represented by an array of the same dimension as the log file
with each line represented by a group id. In order to have a fair comparison between the
output of all tools, we use the output format from IPLoM, but also compute the array of
classification ids, like the one generated by Strap, for all other tools.
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Each tool (except MTE) has different parameters that guide the output result. Param-
eters chosen to run each tool are the ones that give the best result and are shown in Table
4. HELO’s parameters were left at their default values.

Due to the diversity of output formats we performed two types of offline compar-
isons. For the first sets of experiments, we computed precision and recall for the groups
of messages found by all tools except StrAp. Since MTE eliminates all variables from
the clusters description without placing some wildcard symbols in their place, we use
for MTEs analysis a special manually computed group file that eliminates all variables
from the group description. For the second sets of experiments we compute the percent-
age of corrected classified messages from the log file. These two scenarios shows how
well the tools classify historic log files in an offline manner.

In the last set of experiments we determine the percentage of correctly classified
events in an online manner. Experiments are done only for HELO and StrAp since
those are the only tools that can cluster messages in a data streaming scenario. The
analysis will show how well the algorithms adapt to the overall changes in the system.

5.1 Offline

Figure 3 is showing the performance results obtained with all 5 tools for the input
datasets. LosAlamos traces have the most user friendly format. Most of the generated
messages are composed of English words, without having any messages represented
by lists of registers. All tools obtained their best result for this dataset. Mercury and
Cray generate many messages that represents the continuation of a previous message
event (lists of memory locations or registers for example). This type of messages that
have nothing to do with other event description, drastically decreases the performance
of the mining tools. PNNL traces have the most consistency and syntactic problems
for the event messages, so we can see the highest difference in performance (in both
precision and recall) between our tool and the rest of the algorithm. One example of
line descriptions that contain the same message but are written in different forms:
Corrective Measures SDE / DS2100 (upper) need to be replaced

Corrective Measures Upper DS2100 in need of Replacement

In general a decrease in the precision value indicates a high number of false positives.
This usually means that the tool is generating more group templates than necessary,
group templates that are not in the manual annotated file. One case, for example, is
when the manual templates contain a lot of groups with messages of different length.
For all log files, HELO keeps its precision value constant (HELO at around 0.92-0.93
with the next higher tool at around 0.67). The messages generated by all algorithms
except HELO contain groups for each possible ending of the manual template. This
results in an increase of the generated groups that are not manual templates.

A decrease in the recall value is influenced by a high number of false negatives. This
means that there are many groups in the manual template file that are not generated by
the tool. For all tools precision is mostly affected for PNNL and Mercury. The num-
ber of correct generated templates is decreasing for this log files basically because the
systems produce more words with semantic problems than the rest.

The second sets of experiments computes the percentage of corrected classified mes-
sages from the log file. Figure 4 shows all results for all the analysed tools and for
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all log files. The differences in results are due to the fact that log messages are not
distributed uniformly over the group of messages. As expected LosAlamosl classifies
messages with a higher confidence. On the other hand, the worst classification is ob-
tained for Cray. The results for Cray can also be explained by the unfriendly form of
messages generated by this supercomputer. The following message shows an exam-
ple of an event description from which is hard to extract the relevant English word:
< fffTfff834c270 > : ptlrpc : lustre conn cnt + 80

5.2 Online

In the last set of experiments, we compare the results of HELOs online component
with the ones obtained by StrAp. For this set of experiments we use the 10-fold cross
validation. We divide each log into 10 equal sets and then use one part for a training
process of offline classification and the rest of 9 sets for online clustering using the
groups found as input. We use the same method 10 times switching each time the set
for the training phase. The same manually annotated files as for the offline process are
used and we compute for both algorithms the number of corrected classified messages.
Figure 5 shows results for both tools for all ten training sets and for each log files. In
most of the cases, the two graphs follow the same curves. The different values for the
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percentage of correct classified messages by one tool are given by the characteristics
of events from each training set. If the training set has many new and different events
from the ones found in the training set, it is likely that the value will decrease and if the
training set contains all events that are in other sets than the tool will obtain the best
classification, very close to the clustering obtained by the offline component.

In general, the performance follows the shape of the offline one. The shifts in the two
graphs can be explained by the different methodology used by the tools. If the training
set has a lot of semantic problems the distance between the two graphs will be higher.
On the other hand, StrAp regroups the clusters when the number of messages that do
not belong to existing clusters exceeds a threshold so StrAps performance will increase
in the case of many clustered messages with different lengths.

The overall values are lower than for the offline components because usually the
online classification algorithms focus on finding the best local solution for each message
and not the overall best clustering result. However the results are still very good.

Cray traces
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Fig. 5. Comparing performance of the online component of HELO with StrAp

6 Conclusion and Future Work

In this paper we introduced HELO, a message pattern mining tool for log files generated
by large scale supercomputers. We developed two components: 1) an offline clustering
process that finds group templates with a high precision for events gathered in log files
for long periods of time and 2) an online classification algorithm that groups new events
adapting the templates to the changes in the underlying distribution. Current approaches
like pattern matching are no longer efficient due to the shear mass of data to go into
further analysis such as correlative analysis and forecasting.
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We tested HELO against the performance of other tools used for the same task, that
are using different methods. In our experiments, we used five different logs generated
by different systems that have been prior manually annotated. Results clearly show that
HELO outperforms other algorithms for all offline and online tasks having a precision
and recall average of over 0.9 without having an overhead in the execution time.

The extracted group templates are used to describe events generated by the super-
computers and to future characterize the overall behaviour of fault and failures in the
system. It is important to have a high precision for this mining step since in the fu-
ture we intend to use the groups to analyse temporal and spatial characteristics as well
as correlations between events. HELO not only has a high accuracy but also presents
to system administrators the description of each group making it easier for a human
interaction in the process of cluster reorganization before the analyser step.
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Abstract. Preparing performance measurements of HPC applications
is usually a tradeoff between accuracy and granularity of the measured
data. When using direct instrumentation, that is, the insertion of extra
code around performance-relevant functions, the measurement overhead
increases with the rate at which these functions are visited. If applied in-
discriminately, the measurement dilation can even be prohibitive. In this
paper, we show how static code analysis in combination with binary re-
writing can help eliminate unnecessary instrumentation points based on
configurable filter rules. In contrast to earlier approaches, our technique
does not rely on dynamic information, making extra runs prior to the
actual measurement dispensable. Moreover, the rules can be applied and
modified without re-compilation. We evaluate filter rules designed for the
analysis of computation and communication performance and show that
in most cases the measurement dilation can be reduced to a few percent
while still retaining significant detail.

1 Introduction

The complexity of high-performance computing applications is rising to new
levels. In the wake of this trend, not only the extent of their code base but
also their demand for computing power is rapidly expanding. System manu-
facturers are creating more powerful systems to deliver the necessary compute
performance. Software tools are being developed to assist application scientists
in harnessing these resources efficiently and to cope with program complexity. To
optimize an application for a given architecture, different performance-analysis
tools are available, utilizing a wide range of performance-measurement method-
ologies [TTIT3I2TITRI7]. Many performance tools used in practice today rely on
direct instrumentation to record relevant events, from which performance-data
structures such as profiles or traces are generated. In contrast to statistical sam-
pling, direct instrumentation installs calls to measurement routines, so-called
hooks, at function entry and exit points or around call sites. This can be done
on multiple levels ranging from the source code to the binary file or even the
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memory image [20]. Often the compiler can inject these hooks automatically
using a profiling interface specifically designed for this purpose.

Of course, instrumentation causes measurement intrusion — not only dilating
the overall runtime and prolonging resource usage but also obscuring measure-
ment results — especially, if the measurement overhead is substantial. If applied
indiscriminately, the measurement dilation can render the results even useless.
This happens in particular in the presence of short but frequently-called func-
tions prevalent in C++ codes. In general, the measurement overhead increases
with the rate at which instrumentation points are visited. However, depending
on the analysis objective, not all functions are of equal interest and some may
even be excluded from measurement without loosing relevant detail. For exam-
ple, since the analysis of message volumes primarily focuses on MPI routines
and their callers, purely local computations may be dispensable. Unfortunately,
manually identifying and instrumenting only relevant functions is no satisfactory
option for large programs. Although some automatic instrumentation tools [6J21]
offer the option of explicitly excluding or including certain functions to narrow
the measurement focus, the specification of black and white lists usually comes
at the expense of extra measurements to determine suitable candidates.

To facilitate low-overhead measurements of relevant functions without the
need for additional measurement runs, we employ static analysis to automati-
cally identify suitable instrumentation candidates based on structural properties
of the program. The identification process, which is accomplished via binary in-
spection using the the Dyninst library [3], follows filter rules that can be config-
ured by refining and combining several base criteria suited for complementary
analysis objectives. The resulting instrumentation specification is then immedi-
ately applied to the executable via binary re-writing [22], eliminating the need
for re-compilation. Our methodology is available in the form of a flexible stand-
alone instrumentation tool that can be configured to meet the needs of various
applications and performance analyzers. Our approach significantly reduces the
time-consuming work of filter creation and improves the measurement accuracy
by lowering intrusion to a minimum. An evaluation of different filter criteria
shows that in most cases the overhead can be reduced to only a few percent.

Our paper is structured as follows: After reviewing related work in Section [2]
we present the design of the configurable instrumentation tool in Section [Bl
Then, in Section[] we discuss the base filter criteria and the heuristics involved in
their implementation. A comprehensive experimental evaluation of these criteria
in terms the number of instrumented functions and the resulting measurement
dilation is given in Section Bl Finally, we draw conclusions and outline future
work in Section

2 Related Work

To generally avoid the overhead of direct instrumentation, some tools such as
HPCToolkit [I3] resort to sampling. Although researchers recently also started
combining sampling with direct instrumentation [19], the choice between the two
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options is usually a trade-off between the desired expressiveness of the perfor-
mance data and unwanted measurement dilation. Whereas sampling allows the
latter to be controlled with ease, just by adjusting the sampling frequency, it de-
livers only an incomplete picture, potentially missing critical events or providing
inaccurate estimates. Moreover, accessing details of the program state during the
timer interrupt, such as arguments of the currently executed function, is techni-
cally challenging. Both disadvantages together make direct instrumentation the
favorite method for capturing certain communication metrics such as the size
of message payloads. This insight is also reflected in the current design of the
MPT profiling interface [I4], whose interposition-wrapper concept leverages di-
rect instrumentation. However, to avoid excessive runtime overhead, the number
of direct instrumentation points need to be selected with care, a task for which
our approach now offers a convenient solution. If only the frequency of call-path
visits is of interest, also optimizations such as those used by Ball and Larus for
path profiling can be chosen [2].

Among the tools that rely on direct instrumentation, the provision of black
lists to exclude functions from instrumentation (or white lists to include only a
specific subset) is the standard practice of overhead minimization. In Scalasca [7]
and TAU [21], the specification of such lists is supported through utilities that
examine performance data from previous runs taken under full instrumentation.
Selection criteria include the ratio between a function’s execution time and its
number of invocations or whether the function calls MPI — directly or indirectly.
Yet, in malign cases where the overhead of full instrumentation is excessive, the
required extra run may be hard or even impossible to complete in the first place.
The selection lists are applied either statically or dynamically. The latter is the
preferred method in combination with compiler instrumentation, which can be
configured only at the granularity of entire files. In addition to user-supplied
filter lists, TAU provides a runtime mechanism called throttling to automatically
disable the instrumentation of short but frequently executed functions. A gen-
eral disadvantage of runtime selection, whether via filter lists or automatically,
however, is the residual overhead caused by the dynamic inspection of function
identifiers upon each function call. Our solution, in contrast, neither requires
any extra runs nor performs any dynamic checks.

Another generic instrumenter was designed by Geimer et al. [6]. Like ours, it
can be configured to support arbitrary measurement APIs. Whereas we analyze
and modify the binary, their instrumenter identifies potential instrumentation
points in the source code. While allowing the restriction of target locations ac-
cording to file and function names, the lack of static source-code analysis func-
tionality prevents it from providing suggestions as to which functions should be
instrumented. Moreover, changing the instrumentation always entails an expen-
sive re-compilation.

An early automatic filter mechanism was developed as an extension of the
OpenUH compiler’s profiling interface [§]. Here, the compiler scores functions
according to their estimated number of executions and their estimated dura-
tion, which are derived from the location of their call sites and their number
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Fig. 1. The basic instrumentation workflow

of instructions, respectively. Based on this assessment, the compiler skips the
instrumentation of those functions that are either short or called within nested
loops. However, generally not instrumenting small functions was criticized by
Adhianto et al.[I]. They argue that small functions often play a significant role,
for example, if they include synchronization calls important to parallel perfor-
mance. In our approach, providing rules that explicitly define exceptions, for
example, by forcing the instrumenter to include all functions that call a cer-
tain synchronization primitive, can avoid or mitigate the risk of missing critical
events.

If measurement overhead cannot be avoided without sacrificing analysis objec-
tives, overhead compensation offers an instrument to retroactively improve the
accuracy of the measured data. Initially developed for serial applications [10],
it was later extended to account for overhead propagation in parallel applica-
tions [11]. The approach is based on the idea that every call to the measurement
system incurs a roughly constant and measurable overhead with a deterministic
and reversible effect on the performance data. However, variations in memory
or cache utilization may invalidate this assumption to some degree.

3 A Configurable Instrumenter

Figure [I] illustrates the different steps involved in instrumenting an applica-
tion and highlights the functional components of our instrumenter. As input
serves a potentially optimized application executable, which is transformed into
a ready-to-run instrumented executable, following the instructions embodied by
user filters and adapter specifications. The instrumentation process starts with
the extraction of structural information from the binary program, a feature sup-
ported by the Dyninst API. Although the inclusion of debug information into the
executable during compilation is not mandatory, it tends to enrich the available
structural information and can help formulate more sophisticated filter rules. As
a next step, the instrumenter parses the provided filter specifications and deter-
mines the functions to be instrumented. Optionally, the instrumenter can print
the names of instrumentable functions to simplify the creation of filter lists. The
instrumentation itself is applied using Dyninst’s binary rewriting capabilities.
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The raw instrumenter can be configured in two different ways: First, devel-
opers of performance tools can provide an adapter specification (top right in
Figure [I)) to customize the instrumenter to their tool’s needs. This customiza-
tion includes the specification of code snippets such as calls to a proprietary
measurement API to be inserted at instrumentation points. In addition, the
adapter may include a predefined filter that reflects the tool’s specific focus.
Second, application developers can augment this predefined filter by specifying
a user filter (top center in Figure [) to satisfy application- or analysis-specific
requirements. Below, we explain these two configuration options in detail.

3.1 Adapter Specification

The adapter specification is intended to be shipped together with a performance
tool. It consists of a single XML document, which is both human readable (and
editable) and at the same time accessible to automatic processing through our
instrumenter. The format provides four different element types:

— The description of additional dependencies, for example, to measurement
libraries that must be linked to the binary.

— The definition of optional adapter filter rules. These adhere to the same
syntax as the user filter rules, which are introduced further below. The filter
rules allow the exclusion of certain functions such as those belonging to the
measurement library itself or those known to result in erroneous behavior.
For example, when using Scalasca, which requires the measurement library
to be statically linked to the application, the adapter filter would prevent
the library itself from being instrumented.

— The definition of global variables.

— The definition of a set of code snippets to be inserted at instrumentation
points.

The instrumenter supports instrumentation on three different levels: (i) func-
tion, (ii) loop, and (iii) call site. There are up to four instrumentation points
associated with each level, plus two for initialization and finalization:

— before: Immediately before a call site (i.e., function call) or loop.

— enter: At function entry or at the start of a loop iteration.

— exit: At function exit or at the end of a loop iteration.

— after: Immediately after a call site (i.e., function call) or loop.

— initialize: Initialization code which is executed once for each instrumented
function, call site, or loop.

— finalize: Finalization code which is executed once for each instrumented func-
tion, call site and loop.

The initialization and finalization code is needed, for example, to register a
function with the measurement library or to release any associated resources
once they are no longer in service.

To access an instrumentation point’s context from within the inserted code,
such as the name of the enclosing function or the name of the function’s source
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<adapter>
<functions>
<variables><var name="i" size="4" /></variables>
<init>i = 0;</init>
<enter>i =i + 1;
printf ("entering %s for the %d time\n",@ROUTINEQ,i);
</enter>
</functions>
</adapter>

Fig. 2. Example adapter specification that counts the number of visits to an instru-
mented function and during each invocation prints a message which contains the func-
tion name and the accumulated number of visits

file, the instrumenter features a set of variables in analogy to [6]. These variables
are enclosed by @ and include, among others, the following items: ROUTINE, FILE,
and LINE. To concatenate strings, we further added the . operator. At instrumen-
tation time, a single const char* string will be generated from the combined
string. In addition to specifying default code snippets to be inserted at the six
locations listed above, an adapter specification may define uniquely named al-
ternatives, which can be referenced in filter rules to tailor the instrumentation
to the needs of specific groups of functions. An example adapter specification is
shown in Figure 2l So far, we created adapter specifications for Scalasca, TAU
and the Score-P measurement APT [I5]. The latter is a new measurement infras-
tructure intended to replace the proprietary infrastructures of several production
performance tools.

3.2 Filter Specification

While the adapter customizes the instrumenter for a specific tool, the user filter
allows the instrumenter to be configured for a specific application and/or analysis
objective such as communication or computation. It does so by restricting the
set of active instrumentation points of the target application.

The filter is composed of include and exclude elements, which are evaluated in
the specified order. The ezclude elements remove functions from the set, whereas
include elements add functions to the set. A filter element consist of a partic-
ular set of properties a function must satisfy. The properties can be combined
through the use of the logical operators and, or, and not. The properties are
instances of base filter criteria, which are described in Section @l For each in-
strumentable function, every rule is evaluated to decide whether the function
matches the rule or not. An example for a filter definition is given in Figure Bl
In addition to defining whether a function is instrumented or not, the user can
also change the default code to be inserted by selecting alternative code snippets
from the adapter specification, referencing them by the unique name that has
been assigned there. Separate snippets can be chosen depending on whether the
instrumentation occurs around functions, call sites, or loops.
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<filter name="mpicallpath" instrument="functions=function" start="none">
<include>
<property name="path">
<functionnames match="prefix">MPI mpi</functionnames>
</property>
</include>
</filter>

Fig. 3. Example for a filter definition that instruments all functions that appear on a
call path leading to an MPI function

4 Filter Criteria

The purpose of our filter mechanism is to exclude functions that either lie out-
side our analysis objectives or whose excessive overhead would obscure measure-
ment results. To avoid instrumenting any undesired functions, the instrumenter
supports selection criteria (i) based on string matching and/or (ii) based on the
program structure. String matching criteria demand that a string (e.g., the func-
tion name) has a certain prefix or suffix, contains a certain substring, or matches
another string completely. String matching can be applied to function names,
class names, namespaces, or file names. It is a convenient method, for example,
to prevent the instrumentation of certain library routines that all start with the
same prefix. In contrast, structural criteria take structural properties of a given
function into account.

The first group of structural properties considers a function’s position in the
call tree, that is, its external relationships to other functions. This is useful to
identify functions that belong to the context of functions in the center of our
interest. For example, if the focus of the analysis are MPI messaging statistics,
the user might want to know from where messaging routines are called but at
the same time may afford to skip purely local computations in the interest of
improved measurement accuracy.

Call path: Checks whether a function may appear on the call path to a specified
set of functions, for example, whether the function issues MPI calls — either
directly or indirectly. Unfortunately, since the decision is based on prior static
analysis of the code, virtual functions or function pointers are ignored.

Depth: Checks whether a function can be called within a certain call-chain
depth from a given set of functions. Relying on static call-graph analysis,
as well, this property suffers from the same restrictions as the call-path

property.

The second group of structural properties considers indicators of a func-
tion’s internal complexity. This is motivated by short but frequently called
functions that often contribute little to the overall execution time but cause
over-proportional overhead.

Lines of code: Checks whether the number of source lines of a function falls
within a given range. Using available debug information, the instrumenter
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computes the number of source lines between the first entry point and the
last exit point of a function. Note that the number of source lines may depend
on the length of comments or the coding style. Moreover, inlining of macros
or compiler optimizations may enlarge the binary function compared to its
source representation.

Cyclomatic complexity: Checks whether the cyclomatic complexity [12] of a
function falls within a given range. The cyclomatic complexity is the number
of linearly independent paths through the function. We chose the variant
that takes also the number of exit points into account. It is defined as E —
N + P, with N representing the number of nodes in the control flow graph
(i.e., the number of basic blocks), E the number of edges between these
blocks, and P the number of connected components in the graph, which is 1
for a function. Again, inlining and compiler optimizations may increase the
cyclomatic complexity in comparison to what a programmer would expect.

Number of instructions: Checks whether the number of instructions falls
within a given range. Since the number of instructions is highly architecture
and compiler dependent, it is challenging to formulate reasonable expecta-
tions.

Number of call sites: Checks whether the function contains at least a given
number of function calls. Note that the mere occurrence of a call site does
neither imply that the function is actually called nor does it tell how often
it is called.

Has loops: Checks whether a function contains loops. Here, similar restrictions
apply as with the number of call sites.

Of course, it is also possible to combine these criteria, for example, to instru-
ment functions that either exceed a certain cyclomatic complexity threshold or
appear on a call path to an MPI function.

5 Evaluation

In this section we evaluate the effectiveness of selected filter rules in terms of the
overhead reduction achieved and the loss of information suffered (i.e., the number
of functions not instrumented). The latter, however, has to be interpreted with
care, as not all functions may equally contribute to the analysis goals. Since
all of our filter criteria are parameterized, the space of filter rules that could
be evaluated is infinitely large. Due to space and time constraints, we therefore
concentrated on those instances that according to our experiences are the most
useful ones. They are are listed below. Criteria not considered here will be the
subject of future studies.

— MPI Path: Instrument only functions that appear on a call path to an MPI
function. This filter allows the costs of MPI communication to be broken
down by call path, often a prerequisite for effective communication tuning.

— CC 2+: Instrument all functions that have at least a cyclomatic complexity
of two. This filter removes all functions that have only one possible path of
execution.
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Table 1. Number of functions instrumented under full instrumentation and percentage
of functions instrumented after applying different filter rules

Application Language Full CC2+ CC3+ LoC5+ MPI Path
104.milc C 261 51% 38% 1% 43%
107.leslie3d Fortran 32 78% 66% 5% 28%
113.GemsFDTD  Fortran 197 62% 58% 81% 12%
115.fds4 C/Fortran 238 80% 4% 88% 0.4%
121.pop2 C/Fortran 982 65% 53% 7% 16%
122.tachyon C 342 35% 27% 61% 5%
125.RAzML C 313 7% 65% 85% 25%
126.lammps C++ 1378 56% 43% 64% 39%
128.GAPgeomfem  C/Fortran 36 61% 53% 72% 31%
180.socorro C/Fortran 1331 50% 411% 74% 24%
132.zeusmp2 C/Fortran 155 84% 80% 89% 46%
137.lu Fortran 35 66% 60% 7% 43%
Cactus Carpet CH++ 3539 35% 29% 50% 6%
Gadget C 402 62% 52% 26% 21%

— CC 3+: Instruments all functions that have a cyclomatic complexity of three
or higher. Compared to the CC 2+ filter, functions need an additional loop
or branch not to be removed.

— LoC 5+: Instrument all functions with five or more lines of code. This filter
is expected to remove wrapper functions as well as getters, setters, or other
one liners.

As test cases, we selected the SPEC MPI2007 benchmark suite [I6], a collec-
tion of twelve MPI applications from various fields with very different characteris-
tics; Gadget [5], a simulation that computes the collision of two star clusters; and
Cactus Carpet [4], an adaptive mesh refinement and multi-patch driver for the
Cactus framework. A full list of all applications can be found in Table [l together
with information on their programming language. We built all applications using
the GNU compiler with optimization level 02 enabled. All measurements were
performed on Juropa [9], an Intel cluster at the Jiilich Supercomputing Centre.
Our instrumenter was linked to version 6.1 of Dyninst. To improve interoper-
ability with the GNU compiler, we added GCC exception handling functions
to the list of non-returning functions in Dyninst. We ran our test cases using
the Scalasca measurement library in profiling mode, which instruments all MPI
function by default through interposition wrappers.

Table [llists the number of instrumented functions when applying different fil-
ter rules including full instrumentation. The numbers do not include MPI func-
tions, which are always instrumented. Also, the instrumenter was configured not
to instrument the Scalasca measurement system itself. Otherwise, all functions
Dyninst identified in the binary, which do not include dynamically linked libraries,
were potential instrumentation candidates. The number of functions varies greatly
among the fourteen applications, with 107.leslie3d having only 32 compared to
the two C++ codes with 1378 and 3539 functions, respectively. Judging by the
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Fig. 4. Runtime overhead of the fully instrumented binary and after applying different
filters. The values are given in percent compared to an uninstrumented run. Values
exceeding 26% are clipped. Missing bars imply zero overhead. In general, measure-
ment inaccuracies prevented a precise representation of values around zero, sometimes
resulting in negative overhead figures.

fraction of eliminated functions, the MPI Path filter seems to be the most aggres-
sive one, in one instance (115.fds4) leaving only the main function instrumented.
The LoC 5+ filter, by contrast, leads only to relatively mild eliminations, with
most codes loosing less then 40%. Finally, the difference between the two cyclo-
matic filters, which together occupy a solid middle ground in terms of their ag-
gressiveness, is significant but not too pronounced.

The measurement overheads observed for the individual combinations of ap-
plications and filters are presented in Figure[dl Seven of the fourteen applications
show less than 8% overhead even under full instrumentation, indicating that full
instrumentation is not generally impracticable. Among the remaining applica-
tions, three including the C++ code Cactus Carpet exhibit extreme overheads
above 50% without filters. The worst case is clearly 122.tachyon with more than
1,000% overhead, which, however, contains functions with only two binary in-
structions. In almost all cases, with the exception of 121.pop2, at least one filter
exists that was able to reduce the overhead to 2% or less — within the limits of
our measurement accuracy. For 121.pop2, we achieved only a moderate reduc-
tion, although with 13% the lowest overhead of 121.pop2 was not alarming. As
a general trend, the MPI Path filter resulted in the lowest overhead. Again, the
only exception is 121.pop2, where many functions contain error handling code
that may call MPI functions such as MPI Finalize and MPI Barrier. Thus, many
functions were instrumented that actually do not call MPI during a normal run.
Whereas the LoC 5+ filter did often enough fail to yield the desired overhead
decrease, CC 3+ can be seen as a good compromise, often with higher although
still acceptable overhead below 10% — but on the other hand with less functions
removed from instrumentation and, thus, with less loss of information.

Finally, the ratio between the fraction of filtered functions and the overhead
reduction can serve as an indicator of how effective a filter is in selecting functions
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that introduce large overhead. Ignoring the codes with initial overheads below
5%, for which this measure might turn out to be unreliable, LoC 5+ shows vary-
ing behavior: In the cases of 104.milc, 115.fds4, 130.socorro, and Cactus Carpet
very few functions are removed compared to the achieved overhead reduction.
For the other applications, the filter is largely ineffective. The cyclomatic filters,
by contrast, yield high returns on their removal candidates in the majority of
cases. Exceptions are 121.pop2, 122.tachyon, and 125.RAxzML. Finally, the ef-
fectiveness of MPI Path roughly correlates with the number of functions still
instrumented. However, although it removes many functions, it still retains crit-
ical information. For example, the detection of MPI call paths that incur waiting
time is not affected because all functions on such paths remain instrumented.

6 Conclusion and Future Work

In this paper, we presented an effective approach to reducing the overhead of di-
rect instrumentation for the purpose of parallel performance analysis. Based on
structural properties of the program, including both a function’s internal structure
and/or its external calling relationships, we are able to identify the most significant
sources of overhead and remove them from instrumentation. Our solution, which
was implemented as a generic and configurable binary instrumenter, requires nei-
ther any expensive extra runs nor re-compilation of the target code. We demon-
strated that, depending on the analysis objective, in almost all of our test cases
the overhead could be reduced to only a few percent. Overall, the MPI Path filter
was most effective, allowing low-overhead measurements of the communication be-
havior across a wide range of applications — except for one malign case with MPI
calls in rarely executed error handlers. Moreover, if the focus lies on computation,
CC 3+ offers a good balance between the number of excluded functions and the
overhead reduction achieved. Finally, the union of MPI Path and CC 3+ seems also
promising and should be tried if investigating correlations between the computa-
tional load and the communication time is an analysis goal. Whereas this study
only considered parallelism via MPI, future work will concentrate on filter rules
also suitable for OpenMP applications. A particular challenge to be addressed will
be the non-portable representation of OpenMP constructs in the binary.

Acknowledgment. We would like to thank the developer team of the Dyninst
library, especially Madhavi Krishnan and Andrew Bernat, for their continuous
support.
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Introduction

Shirley Moore, Derrick Kondo, Brian Wylie, and Giuliano Casale

Topic chairs

Research on performance evaluation over the past several years has resulted in
a range of techniques and tools for modeling, analyzing, and optimizing per-
formance of applications on parallel and distributed computing systems. With
the emergence of extreme-scale computing architectures, the need for tools and
methodologies to predict and improve application performance and to adapt to
evolving architectures will become even greater, due to increased complexity and
heterogeneity of the systems. Furthermore, the scope of the term performance
has expanded to include reliability, energy efficiency, scalability, and system-
level context. This years conference topic Performance Prediction and Evalua-
tion aims to bring together researchers involved with the various aspects of this
broader scope of application and system performance modeling and evaluation
on large-scale parallel and distributed systems.

The six papers accepted for this topic reflect a growing interest in end-to-
end performance issues related to network performance, multicore architectures,
resource allocation, scheduling, and energy usage. The first three papers focus
on different aspects of communication modeling and performance. The fourth
and fifth papers address cache partitioning and job scheduling, respectively. The
sixth paper focuses on an application-level methodology for minimizing system
energy consumption.

— The paper A contention-aware performance model for HPC-based networks:
A case study of the Infiniband network presents a methodology for dynami-
cally predicting communication times in congested networks and applies the
methodology to an Infiniband network. The paper Using the last-mile model
as a distributed scheme for available bandwidth prediction proposes decen-
tralized heuristics for estimating the available bandwidth between nodes in
a large-scale distributed system. The heuristics are based on the last-mile
model, which characterizes each node by its incoming and outgoing capacity
and uses this last-mile (end-host) bandwidth to predict overall performance
of the end-to-end paths. The last paper in the network performance area,
Self-stabilization versus robust self-stabilization for clustering in ad-hoc net-
work, is an experimental comparison of the performance of four clustering
protocols for maintaining a scalable hierarchical network routing scheme in
the presence of topological changes due to failures and node motion in a
mobile ad-hoc network. Two of the protocols are self-stabilizing, meaning
that they converge in finite time to a state that provided optimum service,
and two are robust self-stabilizing, meaning that they not only converge to

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 77«@ 2011.
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optimum service but also maintain minimal useful service during the stabi-
lization period.

— The paper Multilayer cache partitioning for multiprogram workloads presents
a coordinated cache partitioning scheme for multiprogram workloads on mul-
ticore systems that considers multiple levels of the cache hierarchy simulta-
neously. The scheme attempts to satisfy specified quality of service (QoS)
values for all applications by partitioning the shared cache hierarchy across
them and then distributes the remaining excess cache capacity (if any) across
applications such that a global performance metric is maximized. In Back-
filling with guarantees granted upon job submission, the authors present
two scheduling algorithms based on conservative backfilling by adding prior-
itized compression and delayed prioritized compression. They use traces of
actual workload data from the Parallel Workloads Archive to show that their
algorithms generally perform better than normal conservative backfilling.

— The final paper addresses the growing challenge of reducing the energy con-
sumption of high performance computing systems. Entitled Reducing energy
usage with memory and computation-aware dynamic frequency scaling, it in-
troduces a methodology that chooses fine-grained dynamic voltage frequency
scaling (DVFS) settings, with potentially different setting for different parts
of applications, with the goal of minimizing system-wide energy usage. The
authors provide a set of automated tools that capture relevant application
characteristics at the loop level, match these features using a database of
benchmark results to determine the DVFS strategy, and insert the DVFS
commands into the application using binary instrumentation.

We would like to take this opportunity to thank all authors who submitted
a paper to this topic area, thank the reviewers for their careful evaluations,
and finally thank the Euro-Par Organizing Committee for their outstanding
management of this years conference.
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Abstract. Over the life of a modern supercomputer, the energy cost
of running the system can exceed the cost of the original hardware pur-
chase. This has driven the community to attempt to understand and min-
imize energy costs wherever possible. Towards these ends, we present an
automated, fine-grained approach to selecting per-loop processor clock
frequencies. The clock frequency selection criteria is established through
a combination of lightweight static analysis and runtime tracing that
automatically acquires application signatures - characterizations of the
patterns of execution of each loop in an application. This application
characterization is matched with one of a series of benchmark loops,
which have been run on the target system and probe it in various ways.
These benchmarks form a covering set, a machine characterization of
the expected power consumption and performance traits of the machine
over the space of execution patterns and clock frequencies. The frequency
that confers the optimal behavior in terms of power-delay product for
the benchmark that most closely resembles each application loop is the
one chosen for that loop. The set of tools that implement this scheme
is fully automated, built on top of freely available open source software,
and uses an inexpensive power measurement apparatus. We use these
tools to show a measured, system-wide energy savings of up to 7.6% on
an 8-core Intel Xeon E5530 and 10.6% on a 32-core AMD Opteron 8380
(a Sun X4600 Node) across a range of workloads.

Keywords: High Performance Computing, Dynamic Voltage Frequency
Scaling, Benchmarking, Memory Latency, Energy Optimization.

1 Introduction

Energy costs have become a significant portion of the costs involved in the op-
erational lifetime of largescale systems. These costs have impacts that manifest

* This work was done as an active employee of the San Diego Supercomputer Center.
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themselves in economic, social and environmental terms. It is therefore pru-
dent to understand and minimize these costs where possible. With that goal in
mind, in this work we introduce a methodology that facilitates dynamic volt-
age frequency scaling (DVFS) based on the expected impact that operating at
some frequency will have on HPC application performance and power consump-
tion. This methodology is then leveraged in order to choose fine-grained clock
frequency settings, potentially a different frequency for each loop, for the appli-
cation that minimizes system-wide energy use. Along with this methodology, we
present a set of open source tools that automates the entire process.

Certain classes of scientific problems and subproblems exhibit memory bound
behavior, i.e., the time to solution for the problem is decided primarily by the
proximity, size and speed of available memory. Historically, the amount of mem-
ory available to computer hardware has increased at an exponential rate[l].
Nevertheless, many applications can, and will continue to, use all of the memory
available to them. This means that it is important to consider the impact of
physically distant data on performance and power consumption. To facilitate
processor frequency scaling as a means to reducing power consumption, many
modern processors have been designed to operate at a different clock frequency
than certain parts of the memory subsystem[2]. This observation, along with the
notion that some applications spend much of their time waiting on data that
is physically distant, implies that the execution of such applications may suffer
only small or acceptable performance losses when operating at lower clock fre-
quencies, which in turn yields lower power consumption rates. Clock frequency
management policies that are in use today, however, generally do not take full ad-
vantage of this opportunity. They tend to rely on very broad and coarse-grained
measures to determine when it is prudent to lower clock frequency based on
perceived inactivity[3][4][5]. Our methodology seeks a more refined clock man-
agement policy that can exploit the opportunity to down-clock the processor in
cases where overall system activity is high, but where the processor is stalled on
high-latency memory events.

The opportunity to decrease power consumption by down-clocking the pro-
cessor as it waits for physically distant data is demonstrated in Figure [I which
shows the performance (Figure @, power consumption (Figure , and
power-delay product (Figure[L(c)) for a series of Stream-derived[6] stride 8 mem-
ory load tests being run at different working set sizes and clock frequencies on
an 8-core Intel Xeon E5530. The results in Figure which shows the mea-
sured memory bandwidth for this series of tests, suggest that performance is
independent of processor clock frequency when the working set size is larger
than 512KB. This size coincides with the size of the L2 cache, or equivalently,
when the working set size is large enough that the data resides in a memory
level farther than L2 cache. Figure shows the average power consumption
levels during these same memory load tests. It is important to note that power
consumption is dependent on clock frequency even for working set sizes where
performance is not. Taken together, we can view the results of Figure[Il as an op-
portunity to reduce power consumption while minimally impacting performance
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Fig. 1. Performance, power, and power-delay product of a series of Stream-derived
stride 8 load tests for several clock frequencies on an Intel Xeon E5530

for certain working set sizes. The power-delay product for the Stream tests is
given in Figure which shows that power-delay product can be significantly
reduced for certain working set sizes by lowering the processor clock frequency.
Power-delay product is a metric that combines power usage and performance,
and is simply the product of delay and normalized power usage of an applica-
tion run with some clock frequency management policy when compared to the
baseline clock frequency management policy. Note that power-delay product is
equivalent to energy usage normalized to the baseline clock frequency mode, so
these terms can be used interchangeably.
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Though useful as a proof of concept, it is rarely the case that application be-
havior is as simple as the tests shown in Figure[Il Unlike with the simple Stream
benchmark, the processing unit usually has some amount of computation that
can be performed while it is stalled on memory accesses, leading to varying de-
grees of performance degradation when the processor is down-clocked. As such,
it is necessary to understand the complex effects that memory, computational
behavior and clock frequency have on performance, power and their interesting
combinations (such as energy). Our approach to advancing this understanding
uses a benchmark to cover the space of some possible behavioral parameters
(memory size, memory access pattern, computation amount, computation type,
ILP, clock frequency) to measure the effect that these factors have on perfor-
mance, power and energy. For applications, we can then measure the parameters
over which we have limited control (memory and computation related parame-
ters) in order to make informed decisions about the parameter we can control
(clock frequency) in order to control the power, performance, and energy char-
acteristics of the application. When applied to selecting for energy-optimal clock
frequency, our experiments show that this approach yielded measured, system-
wide energy reductions of up to 10.6%.

2 Methodology

To measure the power consumption of a system we employ a WattsUp? power
meter[7] to act as an intermediary between the power source and the system
power supply. In order to automate the insertion of power measurement inter-
face and clock frequency management calls, we implemented a binary instru-
mentation tool and library based on the PEBIL instrumentation toolkit[§]. The
clock frequency management mechanism is built on top of the cpufreq-utils
packagdl[3] that is available with many Linux distributions. This instrumenta-
tion tool and library provide a powerful and low-overhead way of automatically
providing a frequency management strategy to the application without requir-
ing any build-time steps or system support. The power measurement apparatus,
at the time of this writing, costs less than $150. Since a data center the size
of SDSCJ9] has a 2 million dollar annual electricity bill, using this kind of tool
within a large data center could save a lot of money without a lot of effort.

2.1 Benchmarking for Power and Performance

In an effort to better understand how a system behaves in the presence of certain
types of computational and memory demands, we have developed a benchmark-
ing framework called pcubed (PMaC’s Performance and Power benchmark) that
allows us to generate a series of loops while retaining control over the working set
size and memory address stream behavior, floating point (FP) operation counts,
and data dependence features of each. The first two parameters relate to the

! The cpufreq-utils frequency switching mechanism currently requires superuser
privileges, but we plan to implement a userspace tool that supports our methodology.
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behavior of the memory subsystem, while the latter two are related to how effec-
tively the processor can hide memory access latency by performing other useful
operations. pcubed generates a series of loops, each composed of a series of
strided memory references and double-precision FP operations performed on an
array. The individual test permutations vary on working set size (arrsize), stride
length (stride), number of memory operations (memops), number of FP opera-
tions (fltops), and number of independent FP operation sequences (parops).

Running a set of tests encompassing wide ranges and combinations of these
parameters at all available clock frequencies for a target system yields a set
of results that describes how that system behaves with respect to performance
and power consumption in the presence of a wide range of demands for its
computational and memory resources at every clock frequency. The results can
then be used as the foundation for forming hypotheses about how an application
with a certain set of features in common with the benchmark instances will
operate in terms of both performance and power usage at every clock frequency
on the target system.

2.2 Application Characterization

In order to determine how an application’s characteristics relate to the sets of
pcubed test characteristics, it is necessary to recognize those features in the ap-
plication. These collected features are a set of observable characteristics that are
related to the input parameters that can be supplied to pcubed. These observ-
ables are the level 1, 2 and 3 cache hit rates (derived from arrsize and stride),
the ratio of the number of FP operations to the number of memory operations
(derived from fltops and memops) and the lookahead distances for FP and
integer computation respectively (derived from parops and the loop structure
derived from static analysis on the binary), expressed as the average lookahead
distance divided by the number of instructions in the loop.

Feature characterization is done at the loop level since loops are the vehicle
through which most computation is performed in HPC applications, though it
would also be possible to do this at the function level. Every loop and inner loop
is examined in order to quantify certain features about its memory behavior, FP
intensity and data dependency information. This step consists of a static analysis
pass and a runtime trace of memory and control flow behavior that is performed
by a binary instrumentation tool implemented with the PEBIL toolkit.

In order to make determinations about the expected behavior of an application
loop, we first map it to one of the pcubed test loops that is collected as part of
the system characterization. For this, we use the geometrically nearest loop in
the 6-dimensional space whose members are the set of observable characteristics
derived from the pcubed input parameters: level 1, 2 and 3 cache hit rates, the
ratio of FP operations to memory operations and the average lookahead distance
for FP and integer computation. As we will show later, the use of geometric
distance between loop feature sets as a basis for comparison seems to work well
in practice, but understanding whether geometric distance is the best measure
of similarity for two loops is an open research problem.
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3 Experimental Results

The technique we have proposed in this work can be used to evaluate an appli-
cation and its matching pcubed loops on any metric involving performance and
power. Here we evaluate only power-delay product (energy = E), though metrics
such as energy-delay product (F * D) or metrics that further emphasize perfor-
mance such as F * D? could be evaluated. In order to develop a DVFS strategy
for an application whose purpose is to minimize energy usage, we use the set
of results gathered from the pcubed loop that is geometrically closest to each
of the application’s loops. We choose the clock frequency for each pcubed loop
which minimized energy to be the frequency at which we will run the matching
application loop. We used two systems and a series of benchmark applications
to evaluate this frequency selection scheme.

The first of these systems is an Intel Xeon E5530[10] workstation. The E5530
has 2 quad-core processors. Each core has its own 32KB L1 cache and 256KB
L2 cache. Each of the quad-core processors has a shared 8MB L3 cache (for a
total of 16MB of L3 for the 8 cores). Each of the 8 cores can be independently
clocked at 1.60GHz, 1.73GHz, 1.86GHz, 2.00GHz, 2.13GHz, 2.26GHz, 2.39GHz
or 2.40GHz. The second system is a Sun X4600[11] node that is a part of the
Triton Resource[l2] at the San Diego Supercomputer Center. This Sun X4600
node contains 8 quad-core AMD Opteron 8380[13] processors. Each core has its
own 64KB L1 cache and 512KB L2 cache, and each processor shares 6MB of L3
cache (for a total of 48MB of L3 for the 32 cores). Each of the 32 cores can be
independently clocked at 800MHz, 1.30GHz, 1.80GHz or 2.5GHz.

Both of these systems were probed for every available clock frequency by
running pcubed on a set of 2320 benchmark instances? covering a wide range of
loop characteristics for every clock frequency exposed by each system, which is
8 frequencies for the Intel Xeon E5530 and 4 frequencies for the AMD Opteron
8380. The runtime of pcubed is roughly 6 hours per clock frequency, though this
depends on the actual set of tests being run and the clock frequencies involved.

3.1 Drawing Conclusions about System Behavior

Running pcubed on a target system can allow us to draw some conclusions about
that system. For instance, if it were found that the energy-optimal frequency for
a large number of tests was at the lower end of the available frequencies, it
would be possible to argue that lowering the range of available clock frequencies
could result in a more energy-efficient system. As a slight variation on this, if a
system were being planned that had a very narrow workload which demonstrated
similarities to a class of pcubed loops that was most energy efficient at lower
frequencies, this would suggest that a similar, cheaper architecture that offered
a lower maximum frequency would be sufficient for that workload. Similarly

2 The number of combinations and the exact parameters required depends on the
features of the underlying architecture such as number of cache levels, cache line
sizes, number of computational units, and number of registers.
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if most tests were found to be energy-optimal at the higher clock frequencies,
this could indicate that raising the range of available frequencies might have an
impact on a system’s energy efficiency. Neither of these phenomena were found
for either the Intel Xeon E5530 or the AMD Opteron 8380, but it remains to be
seen whether such systems exist. By examining the pcubed results alone, we can
also get an understanding of what feature thresholds delineate energy-optimal
frequency domains for the target system. For example, Figures and
show maps of which clock frequency is the most energy efficient for pcubed tests
as a function of memory behavior and computational behavior respectively. The
data in these maps meets our expectations in that the energy-optimal clock
frequency generally declines as the amount of time spent stalled on memory
increases or as the availability of computation to the processor decreases.
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(a) Energy-optimal clock frequency as a function of memory behavior.
These tests have fixed memops = 1, fltops = 2 and parops=1.
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(b) Energy-optimal clock frequency as a function of the availability of com-
putation. These tests have fixed arrsize = 16MB and stride = 1.

Fig. 2. pcubed-measured energy-optimal clock frequencies on an Intel Xeon E5530

3.2 Energy-Optimal Clock Frequency Selection

For each application benchmark, we make an instrumentation pass over the
executable, run the instrumented executable, then run a post-processing step
on the results in order to extract the features described in Section The
overhead of the runtime application analysis depends on the application and its
behavior, but for all of the benchmarks studied the maximum overhead was a
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13x slowdown (average of 4.0x slowdown) on application runtime, but this step
only needs to be run once per application. This post-processing step combines the
static and dynamic application analysis, locates the geometrically closely pcubed
benchmark loop, uses the results from that pcubed loop to make a determination
about which clock frequency will result in energy-minimal execution for the
application’s loop, then makes a second instrumentation pass on the executable
in order to embed the DVFS strategy into the application.

The set of applications used for the Intel Xeon E5530 is the NAS Paral-
lel benchmarks[I4], compiled with both the pgi and gnu compiler, as well as
GUPS[I5], SSCA#2[16], S3D[I7] and HYCOM[IS] compiled with the pgi com-
piler. BT and SP of the NAS Parallel Benchmarks were run on all 4 cores of
a single socket. All other benchmarks were run on all of the 8 available cores.
The power-delay product (or energy) for each of these benchmarks run with our
DVFS scheme is computed against a benchmark run without our scheme, which
is to say that it is computed against the default or peak clock rate of the system.
Figure[3 shows these power-delay products. The average amount of energy saved
for this set of benchmarks is 2.6%, but is as high as 7.6% for CG compiled with
the gnu compiler. The set of applications used on the AMD Opteron 8380 is the
NAS Parallel benchmarks, GUPS, SSCA#2 and HYCOM, all compiled with the
pgi compiler. BT and SP of the NAS Parallel Benchmarks were run on 16 cores
on 4 of the 8 sockets available. All other benchmarks were run on all of the 32
available cores. Shown in Figure 3] the average energy saved on the Opteron is
2.1% with a maximum savings of 10.6% on CG.
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Fig. 3. Application energy usage (PowerxDelay) and slowdown (Delay) when run with
a DVFS management scheme, normalized to the default frequency management scheme

In addition to power-delay product, Figure Bl also shows the raw delay to give
an account of the slowdown incurred by the tests shown there. The delay is non-
trivial and averages 3.8% for both the Intel Xeon E5530 and the AMD Opteron
8380. This highlights the idea that if performance is of enough importance, it is
unwise to optimize purely in terms of energy. Rather, in that case it would be
prudent to use a higher order function such as energy-delay product that further
emphasizes performance. With modifications to the few (less than 10) lines of
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source code that currently perform the evaluation of the pcubed tests based on
energy, one could easily perform evaluations based on energy-delay or any other
function of performance and power.

3.3 Technique Validation

It would be time consuming to run every loop of an application at every clock fre-
quency to determine which of those clock frequencies resulted in energy-optimal
execution. A simple approach that used this strategy would require a number
of runs that is on the order of the product of the number of loops and the
number of available clock frequencies. Alternatively, our approach uses a set of
benchmark runs (that only have to be run once in the lifetime of a system) in
addition to a single instrumented application run in order to gather a heuristic
to this effect. But how good is this heuristic? In order to begin to answer this we
exhaustively verified that the selected clock frequency on the Intel Xeon E5530
were energy-optimal for a pair of benchmarks codes that have the property that
their runtime is dominated by a single loop and therefore an exhaustive search
on this loop requires relatively little effort.

For CG, the loop that is responsible for 95% of the dynamic instruction count
was found to be geometrically closest, using the metrics described in Section
22 to the pcubed loop that has arrsize = 1MB, stride = 1, fltops = 8,
memops = 16 and parops = 1 (meaning that every FP operation is dependent
on the result of its predecessor), which was found by our technique to be energy-
optimal when run at 2.13GHz. By subjecting the dominant loop in CG to every
available clock frequency and measuring the energy required to complete each
run we found that 2.13GHz is the actual energy-optimal operating frequency for
this loop, confirming that our selection is correct. A similar methodology was
applied to the dominant loop in GUPS, which was found by our technique to
be energy optimal at 1.60GHz. The pcubed instance found to be geometrically
closest to the dominant GUPS loop has arrsize = 16MB, stride = 8, fltops = 4,
memops = 64 and parops = 4 (meaning that the FP operations carry only an
inter-iteration dependence onto themselves). This loop was also found to run
energy-optimally at 1.60GHz. This does not serve as conclusive proof that the
frequencies selected by our methodology are energy-optimal in all cases nor does
it indicate that every interesting aspect of program behavior is encapsulated by
the space of possible loops that can be generated by pcubed. It does, however,
serve to provide some validation for a scenario where exhaustively validating the
frequency quality selection would be extremely time consuming.

4 Related Work

Dynamic voltage frequency scaling is a well known technique that has been used
to reduce power and energy usage in the context of various application domains
[19][20][21][22][23]. The DVFS research in HPC tends to follow one of two
approaches. The first approach is to identify and exploit MPI inter-task load im-
balance. The work done in [24] and [25] focuses on locating these imbalances and
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applying reduced frequencies to computation regions that are not on the appli-
cation’s critical path. By reducing the energy used on a non-critical path, overall
energy can be reduced since power consumption is decreased with negligible perfor-
mance loss. Since these approaches seek to exploit inter-task imbalance for energy
gains instead of intra-task imbalance, they are complementary to ours.

The second approach, which our work falls into, seeks to find a way to exploit
performance-clock independence that occurs within a task as a result of memory
access stalls. Ge et. al. show in [26] that it is possible to reduce energy or energy-
delay by running some memory bound applications either at a fixed frequency
for the entire run or by hand-selecting the dynamic frequency settings for the
application. Our technique goes further and demonstrates how to automatically
select and use a set of such frequency settings.

In [27], the application is run to collect profiling information, then is divided
by hand into phases that consist of regions that are either of similar memory
behavior or are split by MPI calls. The application is then augmented to give it
the capability to perform frequency scaling at its phase boundaries, and then sets
of phase/frequency combinations are run in order to determine how particular
frequency selections affect power and performance. This work differs from ours
in two major ways. First, their methodology differs from ours in terms of the how
the application is broken down for analysis. Our methodology currently looks
at loop boundaries as the only possible scaling locations; theirs incorporates
other possible frequency scaling points. The other major difference between their
methodology and ours is that they search for the best frequency for the phases in
the application by running it with different frequency scaling strategies, while our
approach attempts to probe for the capabilities of the system then determines
the frequency for the application’s loops analytically.

5 Future Work

Going forward, we plan to develop the frequency selection tools as a user-level
package so that it does not require root privileges. We also intend to further
develop the tools and ideas in order to determine whether they extend to more
architectures and compilers to determine the applicability of our methodology
to other architectures. Instead of limiting the application analysis to loops only,
we also would like to expand the scope of the analysis to include functions.
The extent to which pcubed and the parameters used to motivate its de-
velopment (cache hit/miss behavior, amount of computational work available,
and ILP) cover a sufficiently large portion of HPC workloads is unclear. It is
likely that more thorough treatment of certain aspects of program behavior is
needed. Cache coherence behavior, memory access pattern type, type and width
of FP operations, and high latency off-chip events such as I/O or MPI Com-
munications events are obvious candidates for further exploration along these
lines. Another way of approaching the same problem would be to leverage some
of the existing body of work relating hardware counter-supplied information to
processor clock frequency selection. This will facilitate a better understanding of
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how application-level performance relevant features such as memory access pat-
tern translate to the underlying conditions, observed from hardware counters,
that have an effect on clock frequency selection. Doing this effectively should
minimize the set of benchmarks needed to form a covering set of the behaviors
that can be expected for HPC applications, which may widen the applicability
of the techniques proposed in this work. It could change or narrow the scope of
the information that must be gathered from the application in order to perform
a mapping of application regions to benchmark instances.

6 Conclusions

This work has shown a benchmark-based approach to selecting processor clock
frequency in a way that takes advantage of unnecessarily high clock rates that
are maintained during memory bound computations. This methodology is imple-
mented on top of open source software and uses a system-specific performance
and power characterization that is automatically derived from the results of a set
of benchmark loops, generated by the pcubed benchmarking framework, that are
run at each clock frequency on the system. A set of tools that capture static and
runtime information for an application executable is then used to analyze the
application’s loops in order to find the benchmark loops whose features match
them most closely. From this matching, we are able to select a DVFES strategy
for the application that is expected to result in minimizing energy usage during
execution. pcubed was run, and DVFS strategies were employed on a series of
benchmarks on both an Intel Xeon E5530 and an AMD Opteron 8380, where we
realized energy savings of up to 7.6% and 10.6% respectively.
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Abstract. Multi-core clusters are cost-effective clusters largely used in
high-performance computing. Parallel applications using message passing
as a communication mechanism may introduce complex communication
behaviours on such clusters. By sending and receiving data simultane-
ously from and to several nodes, parallel applications create concurrent
accesses to the resources of the network. In this paper, we present a
general model that expresses network resource sharing characterised by
a dynamic contention graph. The model is based on a linear system
weighted by bandwidth distribution factors called penalty coefficients
that are specific to a network technology. We propose a method to solve
the linear system and present an analysis to determine penalty coeffi-
cients on InfiniBand technology. We use complex network conflicts to
assess the ability of the model to predict with low errors.

Keywords: Contention model, performance prediction, InfiniBand.

1 Introduction

High-Performance platforms are dedicated to execute complex scientific appli-
cations with the focus on the highest possible performance achievable. In High-
Perfomance Computing (HPC) industrial sector software performance has become
a keyword for developing such platforms. Reaching optimum performance for end-
user applications on clusters is a difficult task that requires the use of a wide range
of techniques from specialised algorithms to tuned runtime libraries. This task can
be helped by several tools [§][6] that trace application events that access hardware
or software resources of the platform. Nevertheless, strong expertise is required to
understand and to analyse the relationship between these events and application
performance. The analysis of performance-loss may be simplified if techniques ex-
ist to predict application performance and the gain obtained by using such hard-
ware or software. Performance prediction is not only a topic of high interest for
the HPC community but is also very challenging.

Clusters of multi-core computers can be seen as platforms providing resources
to an application such as computation power, memory, storage and network.
The network resource is an important element in performance analysis as it is a
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slow component of the platform. High performance networks or system-area net-
works, such as InfiniBand, have been developed to reduce this gap. They are an
important architectural element during the design of a cluster. Even for highly
specialised network hardware operated by multi-core computers, concurrent ac-
cesses are inevitable and degrade network performance. Modelling concurrent
accesses and their performance degradations is a step forward to enhance per-
formance improvements of scientific applications.

Each HPC-based network executes its own flow control mechanism when con-
current accesses occur. For instance, InfiniBand provides a credit-based flow-
control mechanism on the buffer availabilities to ensure the integrity of the
connection. The diversity of flow control mechanisms increases the complex-
ity in identifying models that predict communication times. Models are either
too simplistic or too tailored for a particular technology.

In this article we present a method to predict elapsed times of communica-
tions that take place concurrently on high performance networks. Our approach
generalises the concept of concurrent accesses by introducing the notion of dy-
namic contention graphs. By creating artificial contention graphs on a network
we demonstrate the feasibility of solving a linear system which calculates the
elapsed times of every communication. Moreover, our method can be applied on
different networks resulting in accurate models. We apply it to a widely popular
HPC network: InfiniBand.

The remainder of this paper is organised as follows: in Section 2, we present the
background of our study. In Section 3, we introduce our methodology based on
dynamic contention graph and a sequence of linear equations. Section 4 presents
a model dedicated to InfiniBand network. In Section 5, we validate its accuracy.
In Section 6, we conclude and present our future directions.

2 Background

Performance prediction of communication over networks is an extensively re-
searched topic. Contention-free models are generally based on a linear equation
[10]. Such models predict the communication delay by multiplying the inverse of
the bandwidth with the message size to transfer and by adding a constant value
(the network latency). More refined models [3][I] decompose a similar linear
equation into more parameters that express the characteristics of a communi-
cation. Such parameters can be measured and their values can depend on the
message size [I4]. These models do not consider contention and resource sharing.

In the aforementioned models, parameter values used to solve a linear equa-
tion are taken independently of the resource availability. In [2] previous models
are enhanced by introducing a queueing system to represent contention effects.
A vast collection of new parameters were introduced for this model. These pa-
rameters are difficult to evaluate and limit the applicability of such models.

In [TI] contention effects are modelled by a coefficient that divides the band-
width availability by the number of communications sharing the same link. The
presented experiments are limited to mono-processor computers. Therefore, on
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a node, concurrent requests of network resources originating from different cores
are not considered. The model avoids de facto a large set of contention cases on
multi-core technology.

2.1 Elements Influencing Network Contention

Our objective is to propose a methodology to identify models that can accurately
predict communication times in a congested network. Many elements should be
considered to achieve this goal:

— The first element that we consider is the dynamic of contention behaviours
over the network. Contention behaviours are directly linked to the appli-
cation that is executed on the cluster. The application is responsible for
triggering communications that may interfere with each other to access the
network resources leading to time delays.

— The second element is the network technology. Each network has its own flow
control that regulates the concurrent accesses to its resource. They directly
affect and characterise delays caused by contention behaviours.

— The third element is the topology of the network. Many cluster topologies
exist, for instance, nodes may be linked to a single switch that may be
linked to other switches. Depending on how many network components a
communication passes through, its delay depends on the availability of each
of the network components.

In our methodology we will focus on the first two elements. The third element,
i.e. the topology of the network, will be restricted to one switch connecting
several nodes. In [9] we were focused on HPC clusters with dual-core computers
and contention graphs based on a mesh of communications. In this paper, we
generalise this work to any contention graph and any network technology.

3 Methodology

To address the dynamic of the contention behaviour we introduce the notion of
a contention graph that characterises the dynamic usage of network resources
by an application. In addition, we add weights named penalty coefficients to a
contention graph. The penalty coefficients are factors mirroring the effects on
performance of network control flow mechanisms that distribute network band-
width. We present a technique to determine penalty coefficients by only referring
to contention graphs. Finally, our model solves a sequence of linear equations
for each communication. Each linear equation represents the communication as
part of the dynamic of a contention graph. Linear equations are weighted with
penalty coefficients.

3.1 Dynamic Contention Graph

Network contention is characterised by the quantity of data to transfer. Com-
munication delays may change due to other communications present on the net-
work. This variation depends on the sources and destinations, as well as the
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Fig. 1. Examples of an MPI application with 16 ranks spawn on 4 nodes with 4 cores
each. During the run of the application, communications start and end creating several
contention graphs that are modelled over a dynamic directed graph K.

message size of the communications. For instance, two communications sending
data from the same node or to an identical node may create different contention
effects on the network by an overlapping demand of network resources. Since the
contention effects are related to the communications that are being processed,
we introduce the notion of a dynamic contention graph.

A dynamic contention graph is a dynamic directed graph, denoted K, on which
the nodes are the cluster nodes and the edges are the communications between
the nodes. A contention graph may have parallel edges, however, as our analysis
does not consider internal communications, a contention graph does not have
any self-loop edges. A communication can start or end at any time modifying
the current contention graph. In the same manner, K is modified when an edge
is added or removed. In order to reflect the fact that K evolves in the course
of different steps, we will denote a contention graph at step s as K. Therefore,
a step of a contention graph is a static directed graph. Examples of contention
graphs and their representation with K are presented in Figure [l

On multi-core computers and also often on HPC platforms, one MPI task
is spawned on one core. Therefore, we bind the maximum degree of K, i.e.
the maximum number of simultaneous outgoing and ingoing communications
from/ into a compute node, to the maximum number of cores per node.

3.2 Sequence of Linear Models

During the execution of an application, communications are creating contention
graphs, which may be divided into several steps. While transferring data, one
communication can be part of several contention graph steps. We modelled the
elapsed time of a specific communication during a specific contention graph step
by a single linear equation. In the event that this communication is part of
more than one step, its total elapsed time will be equal to the sum of all linear
equations modelled in each step. The elapsed time T; of a communication 7 of
K sending m; bytes can be approximated by the following formula:
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T, = Z ti; =« Z Pij * M, j (1)

jEK, jeK.
> omig=m (2)
jeK,

with K is a contention graph at step s, t; ; the time spent by the communication
i in K with t;; = a * p; ; * m; 4, o is the inverse of the network bandwidth,
m;,; the amount of bytes transferred during ¢; ; and p; ; (p;; > 1) a coefficient
called penalty, which acts as the delay caused by other communications in K.
To reflect the progress of communications over steps of K, we introduce the
following relation between t; ;:

t1,1 =T and for Vj such that ¢ > j > 1, ¢, =T, — T;_1 (3)

The problem of the evaluation of T; resides in the number of unknown variables
present in the model. If a communication is part of s contention graph steps, the
model has 2 % s unknowns to be determined: s penalty coefficients and s sizes
of the data transferred during each step. However, if the penalty coefficients are
known for every K, and only the initial message size m; of each communication ¢
is known, then it is possible to calculate T; for all 7. By solving T} in an increasing
order of 7, one knows from (@B]) the value of ¢; ; with j < ¢ and thus the value of
m; ;. From (2) one can deduce the size m;; and then t;; leading to the result
T; by (). In the next subsection we introduce a method to approximate the
penalty coefficients.

3.3 Approximation of Penalty Coefficients

Penalty coefficients are factors which divide bandwidth and thus increase com-
munication delays. Their values depend on the underlying flow control that man-
ages the over-subscription of a resource. Therefore, an identical contention graph
step generates different penalty values depending on the network technology.

Penalty coefficients are directly related to the shape of a contention graph.
In our model we consider that one contention graph step creates a unique set
of penalties. Since dedicated HPC networks are highly deterministic, this con-
sideration does not appear to be a strong restriction. However, if we consider a
network topology with several switches, this condition should be revised.

To determine penalty coefficients of a contention graph we use real experi-
ences on a cluster. We have developed a simple MPI benchmark that creates
contention graphs. This benchmark spawns as much MPI processes as available
cores. An MPI process is either only sending data or receiving data. By selecting
a subset of processes that send or receive data and by binding them to an MPI
communicator we can create a contention graph. We configure our benchmark
to create a specific kind of contention graph that we call static-synchronous con-
tention graph. In a static-synchronous contention graph communications start
at the same time and have a same amount of data to transfer. This benchmark
gathers statistical data over elapsed times of every communication.
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To approximate penalty coefficients, we use the reverse approach as presented
in the previous subsection to solve T;. By knowing an approximation of
every T; of K and the initial size m; = m of every communication we are able
to approximate p; ; for any static-synchronous contention graph. The maximum
number of steps of such graph is equal to the number of its communications.

A static-synchronous contention graph of s steps has a number of communi-
cations that decreases while the number of steps increases. Static-synchronous
graphs with only one communication have a penalty coefficient equal to 1. A
static-synchronous graph of two communications implies a linear system which
is directly solvable. Therefore, it is possible to calculate penalty coefficients of any
static-synchronous graphs with two communications. Static-synchronous graphs
of three communications have, in the general case, three steps. We are interested
in calculating penalty coeflicients of the first step: p1,1, p2,1, p3,1. To compute
these penalty coefficients we need to know the penalty coefficients of its two other
steps: p2.2, p2,3 and p3 3. The last step has only one communication remaining,
therefore p3 3 = 1. For the values of ps 2 and p2 3, we can use the penalty coeffi-
cients of a static-synchronous graph of two communications that represents the
graph at this step. Therefore, it becomes possible to compute p1,1, p2,1, p3,1 at
the first step by solving the system below:

,01’1 = Tl/(O[ * m)
. Mo 1 =M —M22
=T th ’ ’
p2,1 1/ (axma ) wi {m272 Ty = To)/(a % paa)
m31 =M —m32 — 133
P31 = Tl/(a * m371) with m3o = (T3 — TQ)/(Q * p3’2)
ma3 = (To = T1)/( x p33)

By generalising this method, we can recursively determine penalties for a
n-communication static-synchronous graph. For its (n — 1) last steps we can
apply the penalty coefficients of (n — 1) static-synchronous graphs having re-
spectively (n — 1) to 1 communications. The shape of each of these static-
synchronous graphs should correspond to the shapes of the respective steps in
the n-communication graph to which their penalties are applied to.

In our model we assume that a step of a contention graph is comparable to a
static-synchronous graph, in other words, that the transition between steps, i.e.
the network reconfiguration of its contention behaviour, is immediate. Within
this assumption, when a new contention graph step starts, every communica-
tion enters the new step at the same time (synchronous) and their contention
behaviour (i.e. penalty coefficients) will not change (static) until the step ends
and a following step starts. Therefore, we are able to approximate every penalty
coefficient of each step of a contention graph.

By analysing a set of hundreds of contention graphs and their penalty coeffi-
cients, we present a model that approximates penalties based on the shape of a
contention graph. This model is applicable for InfiniBand network.
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4 Modelling Penalty Coefficients over InfiniBand

In the top 500 list, about 35% of the clusters were using InfiniBand[5] in 2009,
which has increased to about 42% in 2010. Research on InfiniBand is mainly
covering routing strategies in order to increase application performance.

In [I3] the impact of static routing in multistage InfiniBand networks is pre-
sented. The study focuses on evaluating the available bisection-bandwidth be-
tween nodes obtained through different switches. Similarly to [I1], it considers
concurrent communications between different pairs of nodes and not concurrent
communications that are going to or are initiated from different cores of one
node. In our study, however, we demonstrate that such concurrent communica-
tions create significant contention delays even with a single switch.

An analysis based on a LogP model for small message size communication
performance over InfiniBand was also discussed in [12].

4.1 InfiniBand Network Testbed

Our experiments were carried out on a cluster based on 34 nodes with 8 cores per
node. Each node is connected with a InfiniBand Mellanox Technologies MT26418
card to 3 Voltaire Grid Director 9024 switches. Our MPI implementation is
OpenMPI 1.2.7 using the OpenFabrics low-level library.

Routing paths in InfiniBand network are statically fixed. Taking into account
the routing strategy leads to complex modelling. Our intention is to explore the
possibilities in approximating penalty coeflicients. In order to limit the influence
of static routing strategy in our analysis we select a set of nine nodes that are
connected to a unique switch. Each switch has an internal fat-tree topology that
guarantees an efficient distribution of the bandwidth between the links. Thus
the variance of experimented results remains low, as well as the distortion in the
approximation of the penalty coefficients.

InfiniBand flow control uses a credit-based mechanism. A network card that
receives data sends messages called link credit to inform the sender about the
available buffer size remaining. If a receiver buffer is full then the destination
network card stops sending link credit messages and the source network card
will hold in a back pressure state delaying the entire set of its outgoing commu-
nications. The communication is resumed when sufficient buffer size is available.

4.2 Penalty Coefficients and Model for InfiniBand

Upon analysing the penalty coefficients of several hundreds of static-synchronous
contention graphs we propose the model below. A contention graph step is rep-
resented by a connected directed graph K (V, E') where V is the set of nodes, i.e.
the cluster compute nodes, and FE is the set of edges, i.e. the communications
involved in the contention graph step. As usual, we use 67 (v) to denote the
outdegree of a vertex v of K and, respectively, 6~ (v) to denote the indegree of
a vertex v of K. We use VT (v) C V as the out-neighbourhood of vertex v (set
of vertices being a destination vertex of an edge outgoing from v). We extend
the notion of V*(v) to a set of out-neighbourhood edges of an edge e = (s,d)
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as Et(e) = {(s,d') : d € V*(s)} C E. We also consider a specific set of edges
being the edges ingoing to the destination vertex d of an edge (s, d). This subset
is defined as follow: E™(e) = {(s',d) : ' # s} C E. The penalty coeflicient p(e)
of an edge e = (s,d) € E, being oriented from s to d, is calculated as follows:

ple) = Egg){@*(S) +k(e)} (4)

with k(e) defined as follow:

(a) k(e) =0 if (67(d) < éT(s) and 61 (s) = 67 (s')) or 6 (d') = 0 such that
¢/ = (s',d) € E™(e) and ¢” = (s,d') € E™(e) respectively;

(b) k(€)= prau(prerr_1y i 87(s) = 1 with ¢ = (s',d) € E=(e);

(c) k(e) = Z 1 otherwise.

6+(s//)
Ve'=(s,d")eEET(e)AVe =(s",d") e E™(e’)

[d]

Old ?{d] [E]? /?\ ?{d] [e]?
T (2.66) (1.33) (1.33)

(2.66)
(3.00) (2.00) (2.00) 6/ (4.00)
04—(3.00)—$—(3.00)—>O J)—(Z.OO)—>O<—(2.00)—$ <—(4.00)—J>—(4.00) <—(4.00)—0—(4.00)
[b] [c] [a] 1 [al [c] [b] [a]

[a] [b] [c [b] [c]

item (a) item (a) item (c) item (b) & (c)

Fig. 2. Penalty coefficients of four contention graphs

In Figure 2 we apply the model above on four contention graphs. In the
first graph, the outgoing degree of node [a] is 3, §7(a) = 3. Nodes [b], [c]
and [d] have an ingoing degree of 1, 6~ (b) = 6 (¢) = 6 (d) = 1 therefore
from item (a) k is nullified for all edges. From (@) each edge has a penalty
of 3. In the second graph k is also nullified, because for both edges (b, a) and
(c,a): 67(a) = 6T (b) = 6T (c). For the third graph neither item (a) or item
(b) is applicable. The penalty coefficients of edges (a,b) (a,c) (a,d) are then
maz (6T (a) + 6+2(d),6+(a) + 6+2(d),6+(a)) = 4. Similarly, edges (d,b) and (d,c)
have each a penalty coefficient equal to maz (6T (d)+ §+2(a) Lot (d)+ ﬁg(a)) = 2.66.
Finally, the last example combines the item (b) and item (c). Edges (a,b)
and (a,c) have a penalty of 4 from item (c). Item (b) is applicable for edges
(d,b) and (e,c) as 67 (d) = 6" (e) = 1. Their penalty coefficients are equal to

1

Lt aa(o((ab) o((ac)-1 = 1-33-

Discussion: In our model, the contention factor depends mainly on the number
of outgoing communications from a node. Inside a node, the network card is the
first network component that is shared. The network card allocates a first distri-
bution of bandwidth capacity. We model this distribution as a fair distribution
among the communications (). In addition, bandwidth may also be reduced
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when communications share the same destination node. On a receiving card of a
node, the buffer allocation depends on the bandwidth requested by each ingoing
communication to the node. Therefore, in our model we characterise this value
by the function k that adds a factor proportional to the bandwidth requests
made by others communications having the same destination node (item (c)).
However, k can be nullified if n communications that are sending data to the
same destination also share their source node with n outgoing communications.
Alternatively, k can also be nullified if a communication does not suffer con-
tention on the receive node (item (a)). Finally, if a network card is in a back
pressure mode (the receiver blocks the sender) then its outgoing communica-
tions are delayed. This effect is modelled by choosing the maximum delay over
all communications outgoing from the same node. Furthermore, if a communi-
cation with a full bandwidth allocation reaches a node, we model its allocated
bandwidth on the receive node as the maximum bandwidth available (item (b)).

dynamic graph steps com penalty data remaining [o] time spent [s]
a 3.5 11983700 0.0160590
b 3.5 11983700 0.0160590
© & c 3.5 11983700 0.0160590
é(d)\\ d 3.33 11534300 0.0160590
O« (, O—©0>0 e 3.33 11534300 0.0160590
f 15 0 0.0160590
a 3.5 4294170 0.0297984
/7? b 3.5 4294170 0.0297984
© c 3.5 4294170 0.0297984
- 3\ d 2.33 0 0.0297984
O« , 0—©0>0 e 2.33 0 0.0297984
f - 0 0.0160590
a 3.0 0 0.0363749
o b 3.0 0 0.0363749
& c 3.0 0 0.0363749
d - 0 0.0297984
O« ,_9—w©0>0 e - 0 0.0297984
f - 0 0.0160590

Fig. 3. Example to determine communication times of a dynamic contention graph.
All communications have an identical size of 20MB and start at the same time.

5 Examples and Validation

Before evaluating the accuracy of our model, we will introduce one example to
calculate the elapsed time of one arbitrary chosen contention graph. We consider
the dynamic contention graph presented in Figure Bl This dynamic contention
graph has six communications and for simplicity all communications start at the
same time and have a data transfer size of 20MB. By executing our benchmark
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(presented in B3), we measure an effective bandwidth of 1.82 GB/s on our
testbed evaluating o = 5.105 x 10719, A single communication of 20MB under
no contention lasts for 0.010706 seconds.

By solving the linear system step by step we deduce the time of each com-
munication. The first communication to end is communication f after a time
of 0.016059 seconds. During that time the communications a, b and ¢ have sent
8987820 bytes. Then the contention graph goes to a new step (without f), in
which the remaining data size per communication is deducted and new penalty
coefficients are applied. The second step ends when communications d and e
terminate at time 0.0297984. The final step has only three communications each
of them having 4294170 bytes remaining. At this step the penalty coefficient per
communication is 3, i.e. each communication accesses one third of the available
bandwidth. The last step ends at time 0.0363749. By executing our benchmark
and creating this arbitrary contention graph, we measure the time of each com-
munication on our testbed. We compare the measured times to the predicted
times leading to an absolute error of 3% for communications a, b and ¢, an
absolute error of 1% for d, e and 2% for f.

Graph A p(e) Tp T err. Graph B p(e) T, T err.
5, 4,2 0.036132 0.036328 0% @ © a 5,2 0.043894 0.045236 -2%
® ® b o5 4,2 0.036132 0.036326 0% (f @b 5,2 0.043894 0.045228 -2%
2.5, 2.5 0.026765 0.027653 -3% Q<0 c 3.5 0.037471 0.040073 -6%
d
(S}

2.5, 2.5 0.026765 0.027651 -3% } d 35 0037471 0.040072 -6%
15 0013382 0.013413 0% & & e 3.5 0.037471 0.040071 -6%

o A0 T

Fig. 4. Examples of model validation: p(e) is the list of penalty coefficients, T}, is the
predicted time, T}, is the measured time and err. is the relative error.

In Figure[d we present the measured times and predicted times of two other
dynamic contention graphs with identical communication properties as in afore-
mentioned example. Graph A shows communications a and b starting from the
same node having different conflicts on their receive nodes. Communications of
graph B are mainly congested in an ingoing conflict of four communications. For
these two graphs, our model accurately predicts elapsed times.

The previous examples display a set of heterogeneous communication elapsed
times. These times are not simple to determine and their variation shows the
complexity in accurately predicting them. In a last validation analysis of our
model, we investigate the model prediction for a set of dynamic contention graphs
that are derived from random directed graphs. These dynamic contention graphs
are categorised in groups following their number of edges. Figure [l displays, per
group, the measured times of their communications. For instance, we measured
60 contention graphs of 5 edges leading to evaluating 300 communication times.
Figure [ also displays, per group, the maximum value of the absolute average
error per graph and the maximum value of the absolute error over all commu-
nications. The absolute average error for a graph is the average of the absolute
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Fig. 5. Validation on several contention graphs. T,y = 0.010706 is the reference time
of a contention-free communication. For graphs with 1, 2 and 3 edges, times are rational
factor of T,.y. However, for a higher number of edges, communication times are more
largely spread. Our predictions are within an acceptable range of errors.

error among its communications. The figure shows that we accurately predicted
communication times with an acceptable error below 15% over a total of nearly
1000 measured communications.

6 Conclusion and Future Work

In this paper we introduce a new methodology for assessing contention over HPC-
based networks. This method models congestion over a network by a contention
graph and a linear system weighted by delay factors called penalty coefficients.
We propose a technique that determines penalty coefficients from experimented
contention graphs. We applied this technique on an InfiniBand network. By
analysing the penalty coefficients of contention graphs we approximate their
values only by referring to the contention graph. Finally, we accurately predict
the communication times of nearly a thousand communications requiring only
one parameter: the effective bandwidth of the network.

We applied our methodology on a network topology restricted to one switch.
Our future work will focus on extending our model to consider network topology
and to identify models for large-scale applications running on hundreds of cores.
In addition, we will incorporate our model into an existing simulator [4], which
replays events of an application and determines dynamic contention graphs.
Besides, all-to-all collective operations generate congested communications [7].
It will be interesting to model their performance following our methodology.

We consider applying this methodology on other network technologies. By
modelling several networks, it will be possible to compare application perfor-
mance on those networks.
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Abstract. Several Network Coordinate Systems have been proposed to
predict unknown network distances between a large number of Internet
nodes by using only a small number of measurements. These systems
focus on predicting latency, and they are not adapted to the predic-
tion of available bandwidth. But end-to-end path available bandwidth
is an important metric for the performance optimisation in many high
throughput distributed applications, such as video streaming and file
sharing networks. In this paper, we propose to perform available band-
width prediction with the last-mile model, in which each node is char-
acterised by its incoming and outgoing capacities. This model has been
used in several theoretical works for distributed applications. We design
decentralised heuristics to compute the capacities of each node so as to
minimise the prediction error. We show that our algorithms can achieve
a competitive accuracy even with asymmetric and erroneous end-to-end
measurement datasets. A comparison with existing models (Vivaldi, Se-
quoia, PathGuru, DMF) is provided. Simulation results also show that
our heuristics can provide good quality predictions even when using a
very small number of measurements.

Keywords: Network Coordinate System, Last-Mile, Network Measure-
ment, Available Bandwidth Prediction, Labeling Scheme.

1 Introduction

Predicting network performance (latency or available bandwidth) is important
for many Internet applications. For video on demand [I8] and peer-assisted
streaming [I4] for example, estimations of available bandwidth allow the con-
struction of an efficient overlay topology.

A number of measurement tools have been developed [9] which measure the
available bandwidth on the path between two given Internet nodes. However, in
a large scale system, performing measurements between all pairs of nodes would
incur too large of an overhead. Thus, there is a need for the possibility to infer
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(in this paper we also use the term predic) the unmeasured bandwidth values
from a limited number of actual available measurements.

For latency estimation, several solutions have been successfully proposed, un-
der the global terminology of Network Coordinate Systems. Most of these so-
lutions embed network nodes into a metric space (not necessarily Euclidean)
and approximate the latency between nodes by the distance between their em-
beddings, which can easily be computed from their coordinates. GNP [I6] is an
example of such a system, in which each node is positioned in an Euclidean space
with respect to a number of landmarks whose positions are already established.
Vivaldi [6] is a decentralised extension of GNP, which avoids the need for land-
mark nodes. However, the efficient counterparts of these coordinate systems for
available bandwidth prediction are still to be proposed.

Recent literature about overlay design for peer-to-peer data dissemination [3]
has generalised the use of a “last-mile” approximation, in which the rates of
simultaneous communications are only limited by the upload and download ca-
pacities of each node. This simplifying assumption is quite natural in the context
of the Internet, and allows to derive provably efficient overlay designs. In this
paper, we analyse the validity of this approximation, and how it can be used to
develop a technique for predicting available bandwidth from a limited number
of measurements.

More precisely, we propose a decentralised heuristic to compute the capacities
of each node from a relatively small number of measurements. We analyse this
heuristic by using a dataset of available bandwidth measurements performed on
PlanetLab [5]. The accuracy of the predicted values with our solution compares
favourably with existing solutions, while requiring significantly fewer measure-
ments.

The organisation of the paper is as follows. We first describe the related works
in Section 2l Section [ presents the rationale behind the last-mile model and our
proposed heuristic to compute the capacities of the nodes. In Section H we
present the evaluation of our solution and compare it to other existing solutions.
Concluding remarks and future works are given in Section

2 Related Works

2.1 Latency Estimation

In the context of latency estimation, a number of network coordinate systems
have been proposed, based on the following idea: embedding the nodes of the
network into a multi-dimensional space and using the distance between two

! The design of techniques for efficient and reliable available bandwidth measurements
is an interesting research question, but it is not in the scope of this paper. Instead,
we assume in this work that a (limited) number of measurements are available, and
our goal is to use these measurements to provide estimations for the unmeasured
bandwidth values.
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points in this space as an estimation of the latency between the correspond-
ing nodes. We can make a distinction [II] between landmark-based and decen-
tralised approaches. In the landmark-based approach (e.g. GNP [16], PIC, etc.),
a fixed number of landmark nodes are selected and positioned in the space.
Non-landmark nodes measure their latency to these landmark nodes and com-
pute their coordinates so as to minimise the resulting prediction error. On the
other hand, in the decentralised approach (e.g. Vivaldi [6], Big Bang Simula-
tion, etc.), all participating nodes have the same role, and the coordinates of
the nodes are computed in a decentralised way by direct measurements between
participating hosts.

Vivaldi [6] is one of the most well-known decentralised coordinate system. It
relies on the simulation of a system of springs, in which the interaction between
two nodes is modeled by a spring whose force represents the estimation error.
This simulation procedure allows to adapt the computed coordinates to changing
network conditions.

Recent works have also studied embedding into a hyperbolic structure [7]. An
example of such a system is the Sequoia algorithm [I7], which embeds the nodes
as the leaves of a weighted tree, and approximates the distance between two
nodes by the length of the path between their respective positions in the tree.
The Sequoia algorithm comes with a theoretically proven performance guarantee,
and can be applied to both latency and bandwidth estimation. However, the
algorithm is quite sensitive to violations of the triangular inequalities, and there
is for the moment no decentralised version of Sequoia: computing the embedding
requires the measurements between all pairs of nodes.

An important problem with metric-based embeddings comes from the viola-
tions of triangle inequalities, which are often observed in Internet measurements.
Several studies have thus considered non-metric embeddings. IDES [15] is based
on matrix factorisation, which consists of approximating a large matrix by the
product of two smaller matrices. Each node is thus assigned two vectors (an in-
coming and outgoing vector), which correspond respectively to one row and one
column of the two smaller matrices. The distance between two nodes A and B
is computed as the scalar product of the outgoing vector of A and the incoming
vector of B. The IDES system is based on a set of landmark nodes, and recently
a decentralised version has been proposed, called DMF [I3] for decentralised
matrix factorisation. DMF is an iterative procedure in which each node locally
minimizes the prediction error by solving a least square problem.

2.2 Bandwidth Estimation

There is a relatively small number of studies focusing on bandwidth estimation.
The authors of Sequoia [I7] studied the applicability of their algorithm to avail-
able bandwidth, and the works based on matrix factorisation [13] can be applied
to bandwidth estimation as well. PathGuru [19] is a landmark-based system
specifically designed for available bandwidth estimation, which relies on the ob-
servation that, in certain circumstances, Internet available bandwidth forms an
ultra metric space. In PathGuru, each node measures the available bandwidth to



106 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

and from every landmark, and the estimation of bandwidth between two given
nodes A and B is performed using the pair of landmarks which most closely
forms an ultra metric space with A and B.

BRoute [I0] is another system for available bandwidth estimation, which is
based on the observations that most bottleneck links are on the path edges,
and that relatively few routes exist near the source and destination. Unlike the
previous solutions which only require end-to-end measurements, BRoute uses
landmarks and network management tools (such as traceroute and BGP routing
information) to identify the bottleneck links near each source and destination,
and to infer which links are used by packets between A and B.

A number of works in the literature of communication optimization in large
scale systems assume that each participating node is characterised by its upload
and/or download bandwidth. This applies to a variety of topics, such as video-
on-demand [I8/4], peer-assisted streaming [T4I32] or multi-port divisible load
scheduling [I]. Thanks to its simplicity, this rather natural assumption allows to
derive provably efficient algorithms. In this paper, we analyse how well this model
can approximate the actual available bandwidth in a large scale distributed
platform.

3 Last-Mile Bandwidth Prediction Model

3.1 Last-Mile Model

Throughout the paper, we denote by M 4 p the measured available bandwidth
from node A to node B, and by P4, p the corresponding predicted value.

The previous research on the properties of the Internet indicate that the band-
width at the edge of the network, the so called last-mile (end-host) bandwidth,
reflects the overall performance of the complete end-to-end path. Hu et al. [12]
show that 60% of wide-area Internet paths between end-hosts have their bot-
tleneck in the first or second hop. A recent study also shows a similar property
in broadband access networks [8]. As an insight, we have observed the dataset
obtained from measurements on the PlanetLab platform [5] which is described
more precisely in Section ] where it is used to evaluate our heuristics.

As a representative example, Figure [[lis the plot of the outgoing bandwidth
measurements from hosts planetlab3.hiit.fi and planet-lab7.millenium.
berkeley.edu, which will be denoted hiit and berkeley in what follows, to all
the other hosts in the platform. The bandwidth values are sorted for increased
readability. The plot for berkeley (Figure shows what can be expected for
a host with a low outgoing capacity: the bandwidth to the first 50 hosts is limited
by their respective ingoing capacity, and then the bandwidth to the rest of the
nodes is limited by the outgoing capacity of berkeley, and thus the plot remains
quite flat. On the other hand, the plot for hiit (Figure shows the result for
a host with a large outgoing capacity: the bandwidth increases quite smoothly.
In both cases however, a small number of larger bandwidth measurements can
be noticed by a sharp increase around node 300, which can be interpreted as
bogus measurements and will be discussed later.
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Fig. 1. Outgoing bandwidth distributions for two PlanetLab hosts; the values are
sorted in increasing order: (a) planetlab3.hiit.fi; (b) planetlab7.millennium.berkeley.edu

This observation has led to propose a last-mile modelisation of available band-
width [I4]. In this model, each participating node z is represented by two dif-
ferent bandwidth capacities, one for upload (8"), and one for download (3i").
Based on these values, and assuming that they are the only limiting factors for
the end-to-end performance, the predicted bandwidth Pgr;l?\f between two nodes
z and y is given by min(3", Bi").

In this paper, in order to analyse the validity of this model, we propose heuris-
tics to compute values for 32 and i so as to minimise the prediction error. We
first propose a simple way to compute reasonable initial values, and then describe
an iteration procedure following the one used in the context of DMF [13].

3.2 Initial Values

The initial observation may identify that the upload capacity of a node 35" has
to be at least as large as the measured value between node =z and any other
node y (otherwise it would have been impossible to measure such a high value
for this particular node y). However, setting "' = max, M, , is potentially
dangerous: only one bogus measurement is enough to obtain wrong predictions
for x. Furthermore, the last-mile assumption is not always satisfied in practice,
and it may happen that some nodes share a bottleneck link. A typical example
is the case of two nodes A and B on a common local area network, which is
connected to the Internet through a DSL connection. The bandwidth from A to
any other node X on the Internet is then limited by this DSL connection, while
the bandwidth from A to B is not. Hence, setting S3"* = max, M4, = My p
would result in largely over-estimated predictions for bandwidth from A to any
X on the Internet, since it would ignore the limiting DSL connection.

This situation can be observed on our dataset. For instance, on Figure
most values lie below 2.10° kbps, except for a couple of outliers with very high
measured bandwidth, which can be either erroneous measurements or hosts with
a local, direct high-capacity connection to hiit.

This observation motivates the removal of a few outliers hosts before comput-
ing A and 3°"* values. The solution we propose in this paper is to define SG*
as a given percentile 1 — « of all measured values M 4 ,,. It is a generalisation of
the previous straightforward answer of taking the maximum value, which corre-
sponds to a = 0; larger choices of a ignore more and more measurement values.
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This solution yields a very simple way of computing 4°"* and /™" values, and is
very resilient to missing and erroneous measurements and “too high” bandwidths
due to nodes in the same local network, since corresponding measurements are
ignored.

Algorithm 1. Computing initial values for the last-mile
Input: M : measurement matrix
k: number of neighbours for each node
«a: percentile parameter
Output: °"* and g™
for all node A do
select a random set S of k neighbours
sort up = (Ma,y)yes and down = (My, a)yes
BA = (1 — ) — percentile of up
i = (1 — a) — percentile of down
end for

With this procedure, each host can compute its own $°"* and /™ values in-
dependently, assuming that it has access to the measurements of all pairs it is
involved in. Furthermore, a standard technique to reduce the measurement over-
head (at the cost of accuracy) is the random sampling of the hosts, in which each
host selects a random subset of neighbours and performs available bandwidth
measurements to and from this subset. By computing the (1 —«)-th percentile of
these measurements to use as 5°"* and 8, the result is expected to be a reason-
able approximation of the real 5" and B'™ values obtained if all measurements
were available. This results in Algorithm [l

In practice, many overlay networks provide the ability of choosing a random
node, either by construction (e.g. Distributed Hash Tables) or using gossiping
algorithms, so that random sampling can easily be implemented in a distributed
way.

3.3 Iterative Procedure

In order to improve on this initial calculation, following Vivaldi [6] and DMF [13],
we propose a procedure in which nodes iteratively update their 8™ and gout
values. To update its °" value, each node A obtains the values of A from its
neighbours, and sets 3" to the value x that minimises the prediction error:

E(z) =Y (May — min(z, 6i))” (1)

yeS

The value of 39"* which minimises this quantity can be easily computed, since
each y such that 3" < B9 contributes a constant factor to the error. Hence for

x between two consecutive values 8, and [, the error can be rewritten as:

Y May -8+ Y (May, —2)? 2)

g <ei; Bi>B3;
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And this expression is minimised for = equal to the average of the M 4 , values
for ﬂ;“ > B;f; Of course, if this value is above or below the prescribed interval,
x is set to the corresponding bound of the interval. By sorting the ﬂ;n values
and testing all the k& possible intervals, it is possible to compute the value of
z that minimises equation (J). The resulting iterative procedure is described in
algorithm

Algorithm 2. Iterative procedure.
Input: M : measurement matrix
k: number of neighbours for each node
a: percentile parameter
i: number of iterations
Output: 5°%* and g™
Initialise 3°“* and /™ with Algorithm [II
for i iterations do
for all node A do

Sort (8y")yesa ) )
for all interval [ (3,, < B, ,) do
Compute z; which minimises eq (2)
end for
Select I so that FE(z;) is smallest (eq ()
Update S = z;
Update 8% similarly
end for
end for

4 Evaluation

4.1 Methodology

The experimental results described in this paper are based on a dataset from the
S-cube project [20]. This project aims at monitoring the large scale distributed
platform PlanetLab [5]. Available bandwidth is measured between almost all
pairs of nodes of PlanetLab, and results are made available as regular snapshots
of the platform. For space reasons, we only present here results obtained from
the snapshot of April 20th, 2010; however other snapshots yield the same con-
clusions. This snapshot contains 426 hosts, with some missing measurements,
and we extracted a set of 308 hosts for which the complete measurement matrix
is availablda.

The quality of the prediction algorithms is given by the precision of the predic-
tions compared to the original values. In this paper, we use the modified relative
error as defined by the authors of IDES [15]:

(May = Pay

Cry= .
oy mm(M:r,w P:r,y)

2 The code and dataset used to obtain the results of this section will be made publicly
available upon acceptance of the paper.
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Fig. 2. (a) Stress of the last mile embeddings for different values of a; (b) Stress of the
last mile embeddings after each iteration

where the min-operation serves to increase the penalty for underestimated values.
Most plots in this paper depict the cumulative distribution function (CDF) of the
modified relative error for all pairs of hosts. Therefore, if algorithm A provides
better estimations than algorithm B, then the plot corresponding to A will be
above the plot corresponding to B in the graph.

Sometimes it is more convenient to represent the fitness of the embedding
with a single value. In that case we will consider the 80-th percentile of the
modified error ratios, i.e. the error e such that 80% of the node pairs have their
available bandwidth estimated with error at most e. We also measure the stress,
to represent the global error of the prediction, defined by:

stress = Z Pa y)2
Z ayM27y

4.2 Parameter Tuning

We first analyse the effect of the parameter o on the accuracy of the predictions,
both for the initial values obtained with algorithm [I] and for the result of the
iterative procedure after 20 iterations (our observations show 20 iterations are
enough to reach convergence, see figure . The number of neighbours & is
fixed to kK = 16, and we also compare to the special case in which there is no
random neighbour selection (all measurements are used), which we denote as
k = 0. The resulting stress values are depicted in Figure For the cases
which involve random selection, we report average, minimum and maximum
values over 10 runs.

The first observation is that using a non zero value of « is very important when
considering all measurements, which is expected as discussed in section[3} a small
number of invalid measurements have a very bad impact on the accuracy of the
predictions. With random selection (k = 16), the effect of the parameter « is not
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as big, and it is even lower for the iterative procedure, which effectively improves
the fitness of the embedding and gives a result which does not depend on this
parameter. This hints that the result of the iterative procedure is independent
of the initial values. In the rest of the evaluation, we will use the value o = 0.1.

The effect of the parameter & (number of neighbours for each node) is studied
in details in the next section, together with the comparison with other prediction
heuristics.

We also study the convergence of the iterative procedure by measuring the
stress of the fitness obtained after each iteration. The result is shown on Fig-
ure|2(b)|and shows that the total stress remains stable across the iterations, and
that the convergence is fast. We can also see that the initial values computed by
algorithm [[] are actually quite precise.

4.3 Comparison Methods
We compare our results with several other solutions from the literature:

— The Vivaldi [6] algorithm provides a basis for comparison even though it was
originally designed for latency estimation.

— The Sequoia [I7] algorithm, based on tree embeddings, is advertised as being
usable for both latency and bandwidth estimation.

— PathGuru [19] is a landmark-based solution explicitly designed for band-
width estimation.

— DMF [13] is an algorithm which was proposed in the context of latency
estimation, but it can be used for bandwidth estimation as well since it does
not make any assumption on the structure of the input measurement matrix.

Public implementations of Vivaldf] and DMHY are available and have been
used for this evaluation. However, no implementation seems to be available for
PathGuru and Sequoia, so we implemented them based on their description in
the corresponding paper.

This dataset is used as input to different prediction algorithms. However, Se-
quoia and Vivaldi are originally designed for latency prediction, for which smaller
values mean that nodes are closer. Hence, these algorithms are fed with the in-
verse of the available bandwidth measurementsﬁ7 and their resulting distance
predictions are inversed as well before comparing to the original measurements.

For all algorithms, we used the default values of the parameters as they are
described in the corresponding paper (15 prediction trees for Sequoia and [ = 10
dimensions for DMF). However, we changed the number of neighbours in DMF
and landmarks in PathGuru to explore the compromise between accuracy and
number of measurements used.

3 http://www.eecs.harvard.edu/~syrah/nc/

4http://www.run.montefiore.ulg.ac.be/~1iao/DMF

® This choice is different from the one made in the evaluation of Sequoia [I7], in which
the authors subtract the bandwidth values from a large constant. Using the inverse
as we are doing actually yields better results for Sequoia.


http://www.eecs.harvard.edu/~syrah/nc/
http://www.run.montefiore.ulg.ac.be/~liao/DMF

112 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

4.4 Evaluation Results

We first analyse the variability of the results with respects to the random choices
involved: choice of the levers for Sequoia, of the landmarks for PathGuru, and
of the neighbours of each node for DMF and last-mile. We provide in Table [£4]
the average and standard deviation of the stress and of the 80-th percentile of
the modified error ratio for 30 runs for each heuristic. For visual comparison,
the CDF's of modified relative error for a selection of parameters are given on
Figure[3l For a given heuristic and parameter value, the CDFs corresponding to
the 30 runs are depicted together on the plot to visualise the variability.

In addition, Figured provides a direct comparison of the most relevant heuris-
tics. On this figure the CDFs of one run for each heuristic are plotted together.
The low variability exhibited by table [£4] ensures that these particular plots are
relevant enough.

Table 1. Average and standard deviation of stress and 80-th percentile error

Algorithm 80-th perc. error stress
avg std avg std
Vivaldi (k = 32) 3.93 0.98 9800 7.6x107
Vivaldi (k = 128)  4.68 2.6 7400 1.3x10%
Sequoia 1.5 0.097 0.73  0.0012
PathGuru (k = 32) 2.00 0.55 0.77  0.0013
PathGuru (k = 64) 2.58 0.33 0.78 0.00069
PathGur (k=128) 2.54 0.099 0.79 0.00081
(k=28) 0.76 0.0027 0.64 0.00012
(k = 16) 0.64 0.0012 0.56 0.00024
M (k=32) 0.64 0.00083 0.51 0.00017
M (k= 64) 0.65 0.0007 0.47 0.00016
M (k = 128) 0.65 0.00019 0.42 0.000043
DMF (k = 8) 2.12 0.0079 3.16 2.5
DMF (k = 16) 1.33 0.0019 1.14 0.024
DMF (k = 32) 0.64 0.00025 0.51 0.00055
DMF (k = 64) 0.47  0.000073 0.35 0.00011
DMF (k = 128) 0.39  0.000043 0.26 0.000074

The results for Vivaldi show as expected that this algorithm is not appropriate
for bandwidth estimation. We can also see that the prediction of last-mile and
DMEF (for large enough values of k) are much more accurate and stable than the
predictions of PathGuru and Sequoia. PathGuru in particular is very sensitive
to the choice of the landmarks, and its performance does not really increase
with the number of landmarks (however it gets more stable). The predictions of
Sequoia are better than those of PathGuru, but remember that Sequoia needs
to access the measurements between all pairs of nodes. Sequoia is also (together
with Vivaldi) the only heuristic which produces symmetric estimations, and this
is a big disadvantage because available bandwidth between two nodes is often
asymmetric.
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We can also see that while DMF is able to make a better use of a larger
number of measurements, last-mile achieves a reasonably good accuracy even for
low values of k. Actually, increasing k& does not increase much the accuracy of the
predictions of last-mile, but it makes them more stable. In particular, last-mile
with 16 neighbours per node is about as accurate as DMF with 32 neighbours per
node, which is the default value proposed by the authors of DMF [13] for latency
estimation. It is worth pointing out that measuring available bandwidth incurs
a larger overhead than measuring latency; hence, being able to use a smaller
number of measurements is an attractive feature.

These results show that the last-mile model is able to explain a large part of
the structure of the available bandwidth on the Internet, with a very low number
of parameters (each node is characterised by only 2 values, to be compared with
20 for DMF with 10 dimensions) and accessing a small number of measurements.
The last-mile model is thus a promising approach for the prediction of available
bandwidth on the Internet.

5 Concluding Remarks

Estimating the available bandwidth between nodes in a large scale distributed
platform is a crucial issue in many distributed applications. On the other hand,
it is impossible to rely on complete measurement sets, because of the intrinsic
cost of these measurements, and because many measures may be inaccurate
due to varying external conditions. Therefore, as it has been done successfully
for latency estimations, several labeling schemes have been proposed, such as
Sequoia and PathGuru, that enable to predict at low cost the bandwidth between
any pair of hosts.

In this paper, we propose simple decentralised heuristics to use the last-mile
model as a prediction mechanism for available bandwidth, by characterising each
node by an incoming and an outgoing capacity. Based on real-world PlanetLab
bandwidth measurements, we show that this model, although simple, achieves
better prediction accuracy than the current available solutions, in particular
when the number of available measurements is low. The prediction results of
PathGuru depend heavily on the choice of landmarks, and Sequoia suffers from
its inability to provide asymmetric predictions. When more measurements are
available, decentralised matrix factorisation provides more precise predictions
than our last-mile heuristic, probably because each node is described with a
larger number of parameters.

In the future work, we are planning to investigate the possibility to increase
the number of parameters in the last-mile model for a better accuracy, and also
to make a combined use of latency and available bandwidth measurements in
order to improve the predictions of the model.
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Abstract. In this paper, we compare the two fault tolerant approaches:
self-stabilization and robust self-stabilization, and we investigate their
performances in dynamic networks. We study the behavior of four clus-
tering protocols; two self-stabilizing GDMAC and BSC, and their robust
self-stabilizing version R-GDMAC and R-BSC. The performances of proto-
cols are compared in terms of their cluster-heads number, availability of
both minimal and optimum services and the stabilization time.

Keywords: Ad-hoc networks, clustering, self-Stabilization, Robust self-
stabilization.

1 Introduction

A mobile ad-hoc network is a multi-hop wireless communication network, sup-
porting mobile users, realised without any existing infrastructure. In a flat archi-
tecture of ad-hoc network, all nodes are considered equal and they take the same
part in the network management, like routing and forwarding tasks. To achieve
the routing in flat architecture, each node maintains a routing table with entries
for all nodes in the network. Moreover, owing to the lack of infrastructure, each
node must relay data packets of all its neighbors. Hence, flat routing protocols in
ad-hoc networks are not scalable, due to the communication cost, size of routing
tables and, energy consumption. Therefore, clustering was introduced in ad-hoc
networks to improve the scalability by allowing hierarchical routing.

Clustering is a hierarchical network organization which consists in partitioning
the network into clusters, such that nodes within a closed proximity form a
cluster. Each cluster is composed of a single cluster-head and some ordinary
nodes. As nodes are mobile, the clustering protocol must maintain the clustering
structure in spite of topological changes like nodes arrival/departure and links
creation/failure.

Self-stabilization and Robust self-stabilization. One of the most wanted
properties of distributed systems is the fault tolerance and adaptivity to topo-
logical changes, which consist of the system’s ability to react to faults and per-
turbations in a well-defined manner. Self-stabilization is an approach to design
fault-tolerant and adaptive to topological changes distributed systems.

A self-stabilizing protocol, regardless of its initial state, converges in finite time
(called stabilization period) to a legitimate state where the intended behavior

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 117 2011.
© Springer-Verlag Berlin Heidelberg 2011
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is exhibited, without any external intervention. Thus, self-stabilizing protocols
are attractive because they do not require any correct initialization (as any
state can be the initial one), they can recover from any transient failure, and
they are adaptive to dynamic topology reconfigurations. Whatever is the current
configuration, the system converges to a legitimate configuration according to
the current network topology.

Despite such advantages, self-stabilization has a major drawback. During all sta-
bilization periods, a self-stabilizing protocol does not guarantee any property. Thus,
self-stabilization is suited for distributed systems with intermittent disruptions,
where the delay between two successive disruptions is so large that the system can
reach a legitimate state and provide the full (optimum) service for some time.
Whereas in large scale mobile ad-hoc networks where the network topology changes
very often, the paradigm of self-stabilization is no more satisfying. Indeed, as the
delay between two successive disruptions is very small, the system is continuously
disrupted and it may never provide its optimum service. As a consequence, the avail-
ability and reliability of self-stabilizing systems is compromised. To overcome these
drawbacks, the robust self-stabilization approach has been developed [112].

A protocol is robust self-stabilizing if (1) it is self-stabilizing; (2) it quickly
reaches a safe configuration where a minimal useful service is provided; (3) the
minimal useful service holds during progress of the protocol toward the opti-
mum service (i.e., during convergence to a legitimate configuration); (4) and
it is also maintained despite multiple occurrences of some specific disruptions,
called highly tolerated disruptions. Whatever the occurrence of highly tolerated
disruptions, the useful minimal service still provided. Whereas the occurrence of
other disruptions is handled by the self-stabilization mechanism, i.e., after their
occurrence, the system may behave arbitrarily, but it will quickly provide the
minimal useful service. Therefore, the robustness as defined in [1l2] may be seen
as a service guarantee, which is provided by both: the fast recovering to a desired
system characteristic (minimal useful service), and its preservation in spite of
highly tolerated disruptions.

Contribution. Self-stabilizing protocols are almost evaluated only in terms of
worst-case time and space complexities. In this context, theoretical studies of the
robust self-stabilization approach has been done in [12]. However, clustering pro-
tocols presented in these two papers are written in the shared memory state model
(a non realistic model). Furthermore, no experimental study has been made to
compare the two approaches (i.e., self-stabilization and robust self-stabilization),
and to investigate their performances in dynamic networks. In this paper, we com-
pare the two approaches, through an experimental study. We study the behavior
of four clustering protocols; two self-stabilizing protocols GDMAC [3] (Generalized
Distributed Mobility-Adaptive Clustering) and BSC [4] (Bounded Size Cluster-
ing), and their robust self-stabilizing version R-GDMAC [I] and R-BSC [2]. The per-
formances of protocols are compared in terms of their number of cluster-heads,
availability of minimal and optimum services, and the stabilization time.
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For our study, we use the standard simulation environment in the research
community: Network Simulator 2 (NS2) [5]. Obviously to achieve this study,
protocols were adapted to the message passing model.

Related Works. The problem of clustering is well studied in the literature, and
several clustering protocols have been proposed in the context of multi-hop wire-
less networks. A large number of them are self-stabilizing [GI7USIOITOTTIT2ITS].
However, only [12] are robust self-stabilizing. A survey on clustering protocols
can be found in [I4].

GDMAC protocol is evaluated in [I5] with respect to its convergence time and
message complexity. Whereas, according to our knowledge, the three other pro-
tocols (R-GDMAC, BSC and R-BSC) have never been evaluated.

The remainder of the paper is organized as follows. In Section 2] an overview
of the studied clustering protocols is given. In Section B the simulation model
and some important remarks are discussed. The observed metrics are described
in section Ml and the performance evaluation results with the analysis remarks
are detailed in Section Bl Finally, we conclude our study in Section

2 Overview of the Studied Clustering Protocols

A clustering protocol consists of partitioning the network into non-overlapping
groups of nodes called clusters. Each cluster has a single head (called cluster-
head), and eventually a set of ordinary nodes. Each cluster-head acts as local
coordinator of its cluster, and may participate to the management of the global
network. So, cluster-heads have more tasks to perform than ordinary nodes. As
consequence, cluster-heads must be more suitable than ordinary nodes.

Protocols GDMAC, R-GDMAC, BSC and R-BSC consider weight-based networks,
i.e., a weight W, is assigned to each node v of the network. In ad-hoc or sensor
networks, amount of bandwidth, memory space, processing capacity or battery
power of a node could be used to determine weight values. The choice of cluster-
heads is based on the weight associated to each node: the higher the weight of a
node is, the better this node is appropriate for the role of cluster-head.

The studied protocols build 1-hop clusters, where the ordinary nodes are
neighbor of their cluster-head, i.e., they can directly communicate with it. Note
that both GDMAC and R-GDMAC (resp. BSC and R-BSC) provide the same final
clustering structure.

e GDMAC [3] is a self-stabilizing protocol building clusters having the following
ad-hoc clustering properties:
- The cluster-head has the highest weight in its cluster.
- A cluster-head cannot have more than k neighbor cluster-heads.
- For every ordinary node v, there is no a v’s neighbor cluster-head Y such
that Wy > Wx + h where X is the current cluster-head of v. Otherwise, v
changes the affiliation and it chooses Y as new cluster-head.

k and h are protocol parameters, and their value may be different from a node
to another one. The parameter k allows to bound the number of cluster-heads
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that can be neighbors. Whereas h is used to reduce the switching overhead of
an ordinary node (i.e., the number of moves from its current cluster to a new
neighbor one due to cluster-head’s weight change).

e R-GDMAC [I] is a robust self-stabilizing version of the GDMAC protocol.

e BSC [4] is a self-stabilizing protocol building bounded size clusters. The built
clusters respect the following well balanced clustering properties:

- The cluster-head has the highest weight in its cluster.

- The leader of a cluster is not overburden by the management workload of
its cluster. Thus, a cluster can have at most SizeBound ordinary nodes
(SizeBound is a parameter of the protocol).

- A node stays cluster-head only if it cannot join a neighbor cluster: all neigh-
bor clusters are full. This property limits the number of cluster-heads locally.
Therefore, if a leader v has a neighbor leader u such that W,, > W,,, then
the cluster of v is full, i.e., it contains exactly Size Bound members.

e R-BSC [2] is a robust self-stabilizing version of BSC protocol.

The main idea of GDMAC and R-GDMAC protocols is that an ordinary node v
becomes cluster-head if in its neighborhood there is not a cluster-head having a
weight greater than v’s weight.

Each cluster-head should have less than k£ neighbor cluster-heads. Hence, if
several (more than k) cluster-heads become neighbor, at least a cluster-head has
to resign its status. To implement this property, each cluster-head v checks the
number of its neighbors that are cluster-heads. If they exceed k, then it deter-
mines the (k+1)"" highest weight among neighbor cluster-heads. All v’s neighbor
cluster-heads having a weight less than this value have to become ordinary.

Similarly, in BSC and R-BSC protocols, a node v becomes cluster-head if there
is not cluster-head in v’s neighborhood. Furthermore, a cluster-head v stays in
this status only when it cannot join one of its neighbor clusters without violating
the well-balanced clustering properties.

BSC and R-BSC build bounded size clusters. So, in order to prevent the vi-
olation of the size condition, a node u cannot freely join a cluster: u needs
the permission of its potential new cluster-head. Therefore, each cluster-head v
maintains a list of nodes who are authorized to join its cluster.

Robustness property. The robustness in R-GDMAC and R-BSC ensures that a
minimal useful service is quickly provided. Once the minimal service is available,
each node belongs to a cluster, and each cluster has a cluster-head. Furthermore,
for R-BSC protocol, no cluster should have more than Size Bound ordinary nodes.
Preserving the minimal useful service ensures that the hierarchical structure is
continuously provided throughout the network even during the its reorganiza-
tion. In order to maintain the hierarchical structure over the network during
reconstruction of clusters, R~GDMAC and R-BSC protocols use the following resig-
nation process.

Resignation process. A cluster-head v that wants to become ordinary, does
not take the ordinary status: v becomes a nearly ordinary node (i.e., it takes the
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nearly ordinary status). In this state, v performs correctly its task of cluster-
head, but no node can join v’s cluster. The members of v’s cluster has to quit
their cluster. Moreover, v can become ordinary only once its cluster is empty.
These conditions guarantee that during construction/maintenance of clusters,
no cluster-head abandons its leadership.

The robustness property in clustering protocols is very useful. It ensure a high
availability of hierarchical organization; and it allows the continuity functioning
of upper-layer hierarchical protocols, as hierarchical routing protocols.

The set of highly tolerated disruptions handled by robust protocols are:

e the change of node’s weight,

e the crash of ordinary nodes,

e the creation of new communication links without the emergence of new
nodes,

e the failure of communication links between (1) two ordinary nodes, (2) two
nodes behaving as cluster-heads (i.e., cluster-head or nearly ordinary node)

e the emergence of networks correctly partitionned (i.e., where the minimal
service is already provided).

3 Model and Simulation Remarks

The simulation experiments are carried out thanks to the NS2.34 simulator [5].
Our network is composed of mobile nodes with a propagation radio range of
250m randomly placed within a 1200m*1200m area. The density of a node (i.e.,
the number of neighbors per node) is at most 15. The parameters value used
during simulation are presented in Figure 1.

Mobility model. Each node moves

. Parameter Value
randomly according to the Random Simulation time 100s
Waypoint model [16]. Initially, net-

. Number of nodes 70
work nodes are randomly placed in ..
. Transmission range 250m
the network area. At the beginning %
. . Network area  1200m™*1200m
of the simulation, each node selects .
. Density 15
a random destination and moves to- Speed 0 19
ward it with a randomly chosen speed p peec m/s - 12m/s
(uniformly distributed between 0 and ause ‘.clme 0.5s
Speed m/s). Upon reaching this des- Wmin 50
tination, another random speed and Wmax 80
destination are targeted after a pause ) A 2
time. The process is repeated until SizeBound 10
the simulation ends. k 2
Weight variation model. The four h 3
freq 2

studied protocols assume that each
node has a weight, that can change

3 " Fig. 1. Parameters value
during time.
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Initialy, each node randomly chooses its weight w between two values Wmin
and Wmazx. The weight of a node changes according to a frequency freq, which
is the number of changes per second. For example, if freq = 0.2¢/s, then the
node’s weight changes once every 5 seconds. According to the frequency value,
the time when a node undergoes the weight change is chosen randomly. The new
weight of a node is chosen randomly between W — A and W + A.

In order to study the influence of network size, mobility of nodes, and node’s
weight variation, 3 different types of simulations have been conducted:

1. Network size variation: nodes are not mobile, and their number varies be-
tween 10 and 70. The frequency of weight variation is set to 2¢/s.

2. Weight variation: in order to see how protocols behave when reconstruction
of clusters is high, we increase the frequency of the weight variation in a
static network of 70 nodes. The values of frequency considered are: 0.05, 0.1,
0.2,0.3,0.4,0.5,1, 2, 3,4 and 5.

3. Mobility variation: the speed of nodes is varied between 0m/s and 12m/s to
see how protocols behave in presence of mobile nodes. The network contains
70 nodes and the weight changes twice per second.

For all protocols, identical mobility and weight variation scenarios are used in
order to gather fair results. Furthermore, to get accurate results, each simulation
is driven with ten different runs. The presented metrics are then averaged on
these different runs. Furthermore, in order to show how these average values are
confident, a confidence interval is computed using the confidence level 95%.

4 Observed Metrics

To analyze the performance of clustering protocols and to compare robust self-
stabilization with self-stabilization, the following metrics are studied:

e The average number of cluster-heads: as small as it is the number of cluster-
heads, the protocol is far from being trivial; because in a trivial solution, all
nodes are cluster-head. Thus, one goal of clustering protocols is to provide a
hierarchical structure with a small number of cluster-heads.

e The availability of minimum service: it represents the percentage of time where
the minimum service is available. A configuration where the minimum service
is available is a configuration where the hierarchical structure is provided. More
specifically, it is a configuration where:

— Each ordinary node belongs to a cluster.

— Each ordinary node is a neighbor of its leader (within its transmission range).

— Moreover, for protocols BSC and R-BSC, each cluster must have at most
SizeBound members.

e The availability of optimum service: it represents the percentage of time where
the optimum service is available. The optimum service is available in a configu-
ration (called legitimate) if the built clusters verify the ad-hoc or well balanced
clustering properties defined in Section
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As these metrics vary over time according to weight change and nodes mobil-
ity, measurements are collected every 0.02 seconds to obtain the average values.

5 Simulation Results and Performances Analysis

5.1 Average Number of Cluster-Heads

The variation of cluster-heads number in function of the network size, weight
variation frequency and nodes speed are presented respectively in Figures

R(®) and 2(c}}
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Fig. 2. Average number of cluster-heads

Protocols GDMAC and R-GDMAC (resp. BSC and R-BSC) have the same behavior,
because they use the same cluster-heads selection policy: weight based criteria.

For clustering protocols based on dominating sets, the number of cluster-heads is
intrinsically related to the variant of dominating set computed. In fact, we distin-
guish a classification in two groups. Protocols BSC and R-BSC generate a smaller
number of cluster-heads than protocols GDMAC and R-GDMAC. The structure used
by BSC and R-BSC is the capacited dominating sets, where a cluster-head can
have a neighbor cluster-head only if its cluster is full. So, two cluster-heads are
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rarely neighbor. While, the structure used by GDMAC and R-GDMAC is a k-fold
dominating set where at most k + 1 cluster-heads can be neighbor. If due to the
mobility or weight change, k 4+ 1 cluster-heads become neighbor, no one needs
resign its status. This feature leads to a higher total number of cluster-heads.

In a large scale network, a robust self-stabilizing clustering protocol generates
a slightly higher number of cluster-heads than its self-stabilizing version (see BSC
and R-BSC). Recall that during resignation process, robust self-stabilizing pro-
tocols use an intermediate hierarchical status, called nearly ordinary. A cluster-
head wanting to resign, it takes the nearly ordinary status. A nearly ordinary
node may become ordinary only once its cluster is empty; and during all this
period it behaves and it is considered as a cluster-head. This is why the average
number of cluster-heads is higher in a robust self-stabilizing protocol compared
to its self-stabilizing version. However, the difference in cluster-heads number de-
pends on the resignation overhead: how many cluster-heads resign their status
to be ordinary?

In BSC and R-BSC protocols, as soon as two cluster-heads become neighbors,
one of them must resign expect if one of clusters is full. Whereas in GDMAC
and R-GDMAC protocols, if the number of neighbor cluster-heads does not exceed
k 4+ 1, no resignation is required. As the resignation process is more frequent
in protocols BSC and R-BSC than GDMAC and R-GDMAC. Thus, the difference in
cluster-heads number between R-BSC and BSC is significant, but not between
GDMAC and R-GDMAC.

5.2 Availability of Minimum Service

The availability of minimal service in a static network according to the network
size and the frequency of weight variation are illustrated respectively in Figures
and

Robust self-stabilizing protocols R-GDMAC and R-BSC scale well to large net-
works, and they are more resistant to weight change. In fact, R~GDMAC and R-BSC
maintain the minimal service, once provided, during almost all their execution
time whatever the network size and the weight variation frequency.

This is not the case for self-stabilizing protocols. In GDMAC protocol, the min-
imum service is broken by increasing the network size and the weight variation
frequency. Nevertheless, the rupture rate of the minimal service stays very small.
Indeed, in a network of 70 nodes where the weight changes twice per second, the
rupture rate is at most 3% (thus, 97% of time, the minimal service is available).

Whereas, BSC protocol has less guarantee of service than other protocols in
a large scale network. Indeed, in a network of 70 nodes, the minimal service
is unavailable during 12% of time. BSC is also the protocol which really suffers
the most from unavailability of minimal service when the frequency of weight
variation increases. Indeed, by changing the weight five time per second, the
minimal service is unavailable almost 20% of time.
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Fig. 3. Availability of minimal service

The poor performance of BSC protocol reflects the interest of the robustness
property in large scale networks, because R-BSC protocol maintains the minimal
service without any rupture whatever the network size and the weight variation
frequency.

Robust self-stabilizing protocols prevent the violation of the minimal service,
by using the resignation process discussed in Section 2l This mechanism guaran-
tees that during construction/maintenance of clusters, no clusterhead abandons
its leadership, so the minimal service is continuously provided.

The rupture of minimal service in self-stabilizing protocols happens during re-
construction of clusters due to weight change. Nevertheless, it is more frequent
in BSC than in GDMAC. In BSC, when two cluster-heads become neighbors, in most
cases one of them must defer to the other. This feature can trigger cluster-head
election/resignation that may propagate throughout the network, and generates
a continuous disruption of minimal service. Such an effect is called chain reaction.
In GDMAC, this chain reaction effect is minimized, and the minimal service is not
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dramatically damaged. Furthermore, using the robust self-stabilization property
improves the availability of minimal service even in the presence of chain reaction
(R-BSC).

Robust protocols (R-GDMAC and R-BSC) are expected (theoretically proved in
the sharded memory model) to guarantee the minimum service whatever the
network size and frequency of weight change. The rupture observed (less than
0.3%) in large scale network or when the frequency is very high, is due to the
following. In these protocols, when a node undergoes a change weight, it broad-
casts a message to its neighbors indicating its new state (so, its new weight).
When the weight variation is very high, the number of exchanged messages is
important. So, the message loss and the unordered message reception happen
more frequently. Owing to these disruptions, an ordinary node can affiliate with
another node (by considering it as cluster-head), but which is not a cluster-head
anymore (it already resigned).

Increasing the speed of nodes has a negative impact on the availability of
minimal service (see Figure . In a dynamic network, due to nodes motion,
an ordinary node and its cluster-head may be outside the transmission range of
each other, i.e., they are no longer neighbors. This situation breaks the minimal
service. However, even in a dynamic network, the minimal service is preserved
by robust self-stabilizing protocols better than self-stabilizing ones.

5.3 Availability of Optimum Service

The availability of optimum service as a function of the network size, weight
change frequency and nodes speed are presented in Figures |4(a)} 4(b)|and 4(c)

By increasing the network size, the weight variation frequency or the speed
of nodes, the optimum service is less available in BSC and R-BSC protocols than
GDMAC and R-GDMAC protocols.

In BSC and R-BSC protocols, due to weight changes or nodes mobility, the
hierarchical structure is continuously reconstructed in order to achieve the well-
balanced clustering properties. As a result, the optimum service is often broken,
so not highly available.

On the other hand, in GDMAC and R-GDMAC protocols, once the hierarchical
structure respecting the ad-hoc clustering properties is built, it will rarely be
modified due to the weight change. Furthermore, the mobility of nodes (especially
of cluster-heads) rarely generates selection or resignation of cluster-heads. So,
the optimum service is not affected.

The optimum service is slightly less available in the case of robust self-
stabilizing protocols compared to their self-stabilizing versions. This is caused by
the convergence (i.e., stabilization) time towards the optimum service. In fact,
Figure [l shows that the time required by a robust self-stabilizing protocol to
reach the optimum service is larger than the one required by its self-stabilizing
version.
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6 Concluding Remarks

This article presents the first experimental study results comparing robust self-
stabilization approach with self-stabilization for the clustering problem. Thanks
to this study, we extract the following remarks.

The property of robustness within clustering protocols induces an increase in
the average number of cluster-heads, however really negligible.

Since the robustness property consists to slow-down the convergence process,
in order to maintain the minimum service. This property leads to a slight increase
in the stabilization time. However, this growth in the stabilization time depends
on the size of the network, but not on the nodes speed nor the frequency of
weight change.

The availability of optimum service is lower in a robust self-stabilizing proto-
col than its self-stabilizing version. Nevertheless, the minimum service is highly
available in robust self-stabilizing protocols than self-stabilizing ones. As con-
sequence, thanks to the robustness, when the optimum service is not provided,
the minimum service is available and it will be preserved. Once the minimum
service is provided, the network is completely partitionned, and each cluster has
an effectual leader.

The minimum service is sufficient for the continuity of operation of upper-layer
hierarchical protocols, as hierarchical routing protocols, since the hierarchical or-
ganization is available throughout the network. Therefore, robust self-stabilizing
protocols are desirable, because they avoid disrupting upper-layer hierarchical
protocols by maintaining the minimal service.
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Abstract. We present a fully-automated, model based, multilayer cache
partitioning scheme for multiprogram workloads running on multicore
machines. As opposed to prior efforts, this scheme partitions shared
caches at multiple layers simultaneously in a coordinated fashion. This
scheme tries to achieve two objectives. First, it tries to satisfy the spec-
ified quality of service (QoS) values for all applications by partitioning
the shared cache hierarchy across them, and second, it distributes the
remaining excess cache capacity (if any) across applications such that
a global performance metric is maximized. Our experimental analysis
shows that the proposed multilayer partitioning scheme generates, on
average, 33.1% improvement (on the weighted speedup metric) over the
next best-performing scheme and is very successful in satisfying the QoS
requirements of applications. Also, we show that partitioning each layer
in isolation cannot generate the benefits obtained through our coordi-
nated partitioning scheme. In addition, we observed that the difference
between our scheme and an optimal scheme (that derives best dynamic
partitions) was less than 15% for all the workloads tested and 6.6% on
average.

1 Introduction

To enable efficient and productive use of emerging multicore systems, there is an
urgent need to design and implement robust on-chip memory systems. Current
commercial multicore architectures employ multilayer on-chip cache hierarchies.
As an example, Figure [[a) shows a two-socket Intel Dunnington multicore ar-
chitecture [1], which has three layers of on-chip caches. In each socket, while L1
caches are private and L3 is shared by all cores (in the socket), each L2 cache
is shared by two cores. It is expected that in future on-chip cache hierarchies
will be deeper [12] (see Figure[I(b) for a four-layer on-chip cache hierarchy) and
probably contain a higher number of partially-shared caches (like L2 caches in
Figure [Ii(a)).

While performance optimization is certainly important, another pressing issue
for multicores is quality of service (QoS). In particular, when multiple applica-
tions use the same multicore architecture at the same time and share the same

* This research is supported in part by NSF grants 1017882, 0963839, CNS 0720645,
CCF 0811687, CCF 0702519 and a grant from Microsoft Corporation.
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set of on-chip resources, providing QoS to these applications (in addition to high
performance) is becoming an increasingly important problem [6], [I0], [I1]. To
guarantee QoS for applications, efficient and effective management of shared re-
sources is critical. In the context of shared on-chip caches, capacity allocation
and control has been a promising strategy for shared space management. This
work makes three key contributions:

e We illustrate that coordinated multilayer cache partitioning is critical for ex-
tracting the maximum performance from on-chip caches of emerging multicores.
Specifically, partitioning L2 alone or L3 alone may not be sufficient to satisfy
specified QoS requirements for many workloads.
e Our multilayer cache partitioning scheme targets multiprogrammed workloads
and tries to achieve two main objectives: (i) Satisfy specified QoS values for
all applications, and ii) Distribute the remaining excess cache capacity (if any)
across applications such that a global performance metric (weighted speedup [2]
in most of our experiments) is maximized.
e We analyze the behavior of the proposed partitioning scheme using a large set of
workloads and different multicore architectures. In our experimental evaluation,
we also compare our approach against several alternate schemes as well as an
optimal scheme which is not implementable in practice but guarantees the best
workload performance.

Several previous studies have investigated

TSP O T T T O R O e e e teei tain level of perf
BN A A A A ¥ guaranteeing a certain level of performance
gae [0 L0 T 1L L L @ in multicores by employing Quality-of-Service
| | | | | | 3
e B 3 110, [©], [2, [, 7). Iyer et al [I1] proposed
a memory hierarchy that allocates more cache
DDDDDDO DD D D @ and memory resources to higher priority jobs.
| [ .
R N A L Herdrich et al [4] proposed a rate-based tech-
2KB, .
By |12 L2 5 L2 ® nique to manage global power and also perfor-
4mB, .
oievay ? = mance (or QoS) at the same time. Ko et al [5]
12MB,
sawey = proposed a scheme to allocate excess resources

Fig. 1. Two different architectures fairly by employing feedback controllers per-
with multilayer cache hierarchies  class. Qureshi and Patt [I4] employed a utility

model with cost-effective hardware support in
partitioning of a shared cache. Guo et al [6] showed that providing strict QoS of-
ten causes resource fragmentation that reduces throughput significantly. Shekhar
et al [17] employed formal control theory for dynamically partitioning the shared
last level cache in multicores while providing QoS. These prior multicore works
considered partitioning of single layer (usually the last layer of caches shared by
all cores). This paper, in contrast, considers partitioning multiple layers of an
on-chip cache hierarchy in a coordinated fashion across competing applications
using a dynamic performance model.

Our experimental analysis shows that the proposed multi-level partitioning
scheme outperforms all alternate schemes tested (except for the optimal scheme)
for all workloads we have. Specifically, it generates, on average, 33.1% improve-
ment (on the weighted speedup metric) over the next best-performing scheme
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and is very successful in satisfying the QoS requirements of applications. In
addition, we observed that the difference between our scheme and the optimal
scheme is less than 15% for all workloads tested and 6.6% on average.

2 DMotivational Example for Multilayer Partitioning

In this section, we present an example that motivates for multilayer cache par-
titioning. The multicore architecture considered in this example is illustrated
in Figure [[l(a), which is the same as Intel Dunnington (except for cache sizes).
We use only a single socket of this architecture and run a workload consisting
of six (single threaded) applications. There is a one-to-one mapping between
applications and cores, i.e., each application is mapped to a core and executed
there until it finishes. The QoS values (average data access latency values in this
experiment) for all applications are set to 7 cycles. Our focus is on L2 and L3
caches as these are the ones shared by multiple cores. We perform experiments
with six different schemes: Default, Equal, L2 Only and L3 Only are described in
Section [B.J] The scheme referred to as Ideal, uses the best (possibly nonuniform)
partitioning for each cache component, selected from a large set of possible par-
titioning through ezhaustive search. The last scheme, called Isolated, runs each
application stand-alone in the multicore architecture. Therefore, an application
does not experience any contention under this scheme.

The results of our experiments with
these six schemes are presented in Fig-
ure[2l The y-axis in (a) represents the

. I I I average data access latency for indi-
o vidual applications in our workload,
&S whereas that in (b) captures the value
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Fig. 2. Motivation (a) Data access latencies global (workload-wide) optimization

of the applications in a workload under dif- . . . .
ferent cache partitioning schemes. (b) Re- metric which will be defined later in

sulting weighted speedup values. Details of the paper. This metric is a measure
our experimental setup will be given later. of the overall workload performance.

Our first observation from these re-
sults is that Ideal performs much better than Default, Equal, L2 Only and L3
Only, indicating that partitioning both L2 and L3 spaces can be critical for
achieving high performance (see Figure 2(b)). More importantly, under Ideal,
the QoS specifications are satisfied for all applications in the workload (see Fig-
ure [Z(a)). In contrast, under L2 Only and L3 Only, only 2 and 3 applications,
respectively, have their QoS requirements satisfied. In addition, as compared
to Isolated, Ideal performs only 10.3% worse. Therefore, we can conclude that
careful partitioning of on-chip caches can be very effective in practice.

3 Dynamic Performance Model

Since the workload mix can change during the course of execution (as appli-
cations terminate and start) and even the same workload (i.e., applications in
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it) can exhibit different data access patterns and cache behavior (space require-
ments), a static partitioning strategy is probably not the best method. In order
to perform runtime cache partitioning however, we need to be able to predict the
impact of increasing and decreasing the cache space (number of ways) available
to an application on its performance (data access latency). To achieve this, we
propose a performance model which is parameterized using cache space alloca-
tions at different layers in the on-chip cache hierarchy. Specifically, our runtime
model can be expressed using a three-dimensional plot where x and y axes de-
note, respectively, cache space allocations from L2 and L3 layers (note that a
core has access to only one component from each layer). We build a separate
model (three-dimensional plot) for each application in the workload. In the plot
of application a, point d,(sr2,sr3) indicates the observed average data access
latency value for application a when allocated sy, ways from L2 and sp3 ways
from L3. When application a executes with allocation (sp2,sr3) for one epoch
(enforcement interval), we record the observed d, value in our three-dimensional
plot. As a result, as an application is allocated different (sp2, sr3) values during
the course of its execution, we can build a dynamic model for that application.

The most important use of this model (see Figure Bl for models of two ap-
plications) in our framework is to predict the performance of an application
if allocated a certain number of L2 and L3 ways. That is, using the observed
(sL2,sL3) values, we can fit a surface that represent the d, values under vari-
ous cache (way) allocations and use this surface to predict the performance of
the application if allocated (sr2,sr3), i-e., sp2 L2 ways and sp3 L3 ways. This
surface is dynamically updated, with newly-observed (sr2, sr3) values and the
corresponding d, values, to adapt to the dynamic modulations in application
behavior. Consequently, if an application is allocated the same (sg2,s53) ways
at two different points during its execution, we update the surface with the most
recently-observed d, value (for that allocation pair). It is to be noted that, while
this model captures the behavior of a single application under different cache
allocations it experiences during execution, one needs a higher level approach to
decide cache space allocations across concurrently-executing applications. This
approach needs to consider the dynamic models built for all applications and
make globally-optimal cache allocations. The next section gives the details of
such an approach.

4 Proposed Partitioning Algorithm

We can divide the operation of our multilayer cache partitioning strategy into
two main parts: static part and dynamic part. The static part includes profiling
an application for enabling the dynamic part to start making predictions. The
dynamic part on the other hand represents the steady-state execution of our
approach. Figure [ presents a high level view of our proposed approach. It is
important to note that applications can enter and exit independently and our
experimental evaluation considers different scenarios to test the robustness of
our partitioning scheme.
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Dynamic Partitioning: The main task of the dynamic part of our approach is
to decide the partitioning of the L2 and L3 cache spaces among simultaneously-
executing applications in a workload at run-time. Therefore, we divide the ex-
ecution of a workload into several epochs which are also called enforcement in-
tervals in this paper. The data points observed at the end of the current epoch
are recorded and used to update our 3D performance model, and the partition-
ing of the L2 and L3 cache spaces for the next epoch is decided based on this
model. Therefore, our goal is to satisfy the QoS values at each enforcement in-
terval. The accuracy of the model increases with the increase in the number of
observed data points. The algorithm iteratively updates each application’s la-
tency model at every epoch to increase the accuracy of prediction. The dynamic
partitioning portion of our scheme has the following major steps that repeat at
each epoch (enforcement interval) boundary:
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e Collecting performance statistics. For each application, the average data access
latency observed in the current epoch is collected. This is done by (i) counting the
number of data references made by the application (denoted K), (ii) measuring
the time (in cycles) spent by the application in data accesses (denoted T'), and
(iii) calculating T'/ K. The details of our implementation to collect these statistics
will be given later in Section [(B.Il Assuming that, in this epoch, application a
was run under allocations sy and sr3, the calculated latency value (d, = T/K)
is used to update our performance model.

e Surface fitting. As stated above, for each application in the workload, we
update its dynamic performance model using the values collected during the
last epoch. We then fit a surface using statistical regression [3] that represents
the performance model. Specifically, we use the method of least squares to de-
termine the regression curve as it minimizes the sum of the squared errors in
prediction. An important property of regression is that the best fit can be com-
puted incrementally from a set of measured values. The more values we have
(i.e., collected during the course of execution where application goes through
several allocations), the more accurate is the prediction. However, we can start
predicting with as few values as necessary. The learning module builds the per-
application 1/0 latency model using the least squares method using a certain
number of sampling points. Figure [ illustrates the 3D performance models for
two Spec2006 applications (milc on the left and gromacs on the right) in our
experimental suite.

e Identification of application-specific feasible sets. Our goal in this step is to
determine, for each application a in the workload, the set of (sz2, s13) allocations
whose corresponding latency values (d,) are lower than the specified QoS value
for that application (we use qos, to denote the QoS value for application a). We
want to emphasize that, in general, we can have multiple allocations that satisfy
the specified QoS value. We use &, to denote the set of feasible allocations for
application a.

e Determining the workload-specific feasible sets. While the previous step de-
termines, for each application, the set of cache allocations that satisfy its QoS
metric, we need to select a unique cache allocation for each application such
that the total allocation from any given cache component does not exceed
the capacity (the number of ways) of that cache component. In mathemati-
cal terms, let us focus on a particular L2 component shared by n applications
(a1,az2,- - ay), another L2 component shared by a different set of n applications
(an41,@ny2, -+ a2n), and an L3 component shared by all these 2n applications
(a1,az2,---asy,). That is, a set of n applications share an L2, a different set of n
applications share another L2, and all these applications together share an L3.
Let us assume that &,, is the application-specific feasible set for a;, as deter-
mined by the previous step. To construct the workload-specific feasible set, we
select for each application a; an allocation (S%,,S%,) from its &,, such that all
of the following constraints are satisfied:

Sty 4+ 8%, + 83, 4+ 8T, <o
e R A
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Sis+ Sis+Sis+ -+ 575 < wis,

where xy2 and xp3 denote the total number of ways for L2 and L3 caches,
respectively. As can be seen, the goal here is to select an allocation for each
application such that the total capacity of L2 or L3 is not exceeded. We use f
to denote the set that contains these feasible (S%,,5%,) allocations. Note that f
is a set of pairs and in general we have more than one f sets. In the rest of our
discussion, we use F the set of workload-specific feasible partitions. Note that
each element of F is an f set. It needs to be pointed out that the F may or may
not be empty. The next two steps handle these two cases.

e Determining the best-effort solution. This step is executed only if F is empty.
In this case, one can adopt several strategies, which include the following;:

e Minimum Loss. In this strategy, we try to minimize the number of applica-
tions whose QoS could not be satisfied. This option can be used when we want
to minimize the number of applications to be punished.

e Weighted Loss. In this strategy, applications are punished based on some

weights assigned to them. When all weights are the same, applications are pun-
ished equally, resulting in some sort of fair punishment.
e Determining the performance-optimal allocation set. This step is executed
only if F is not empty. If F contains only a single f, it is returne(ﬂ; otherwise,
this step proceeds as follows. Although in theory any f from the workload-
specific feasibility set (F) can be used for determining cache allocations in L2
and L3 components, the specific f chosen can make a significant difference in
overall performance of the workload. This is because once an f is selected and
the cache (way) allocations it indicates are made, there can be an excess cache
space (number of ways) in both L2 and L3 layers. And, this residual cache space
can be distributed across competing applications so that it optimizes the overall
system performance. We now define two metrics that can be used to measure
the overall system performance. We can use either of them to choose an f from
the workload-specific feasibility set (F). We choose f that utilizes the residual
cache space to the maximum and that in turn maximizes our overall performance
metric.

We use a metric, called Weighted Speedup metric (WS) [16], which is the sum
of per application speedups (reduction in average data access latency) achieved
using our partitioning scheme with respect to a baseline scheme. The baseline
scheme can be either Fqual where resources are equally shared among all the
applications in the workload or Default which corresponds to full sharing of L2
and L3 caches by all cores that access them. That is, we have:

Latencyai (baseline scheme)

Latencyai(our scheme)

WS (our scheme) = Z w; * , (1)
i=1

where n is the number of applications in the workload and w; is the weight
assigned to application a;. In all our experiments, the baseline scheme for our

! However, note that even in this case we may have residual cache space, which needs
to be distributed to maximize a global metric.
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weighted speedup metric is the performance of individual applications with equal
partition. In practice, the weights assigned to the applications determine the
proportion of residual cache space the applications are allocated. In most of the
experimental results reported in this paper, we use the weighted speedup metric
with equal weights assigned to all the applications in a workload.

5 Experimental Evaluation

5.1 Implementation and Setup

The default multicore configuration used has six cores; each core has a 16KB
private cache; each pair of cores share an L2 component of 512KB; and all six
cores share an L3 of 6MB. Our major simulation parameters and their default
values are given in Table [Il Later in our experiments we change the values of
some of these parameters and conduct a sensitivity study.

We implemented our

Table 1. Default multicore configuration partitioning scheme as

Parameter Value a separate module with

Number of Cores 6 in Virtutech Simics [9]
ROB/Core 128 entry . :

Bandwidth/Core 4-fetch, 4-issue, 4-commit In our lmplementatlon’

Branch Predictor/Core hybrid 8192-entry gshare / 2048-entry a separate thread

bimod / 8192-entry meta table ( 1 ted load

L1 Cache 6 x (16KB; 4ways; 32 byte line size; lmplemented as a load-

2 cycles latency) able module in So-

L2 Cache 3 x (512KB; 16 ways; 128 byte line size; . .
8 cyclo latency) laris 10) carries out the

L3 Cache 1 x (6MB; 64 ways; 256 byte line size; steps of the dynamic
20 cycle latency) . f
Off-Chip Access Latency 200 cycles portion of our par-
On-Chip Interconnect point-to-point, 3 cycles per hop latency titioning scheme. We
Coherence Protocol MOSI-based directory d Simi d
QoS Specification 7 cycles for all applications use 1TICS under
Epoch Length 100 million cycles Solaris 10 to quantify

performance of this im-

plementation as well as
the alternate partitioning schemes against which we compare our scheme. To
have accurate timings, we also employed the GEMS module from University of
Wisconsin [§]. Since Simics provides full-system simulation, the results presented
below includes all the overheads incurred by our partitioning thread.

In this paper, we use the applications in the SPEC2006 benchmark suite [I3],
with the reference input sets. All benchmarks are fast forwarded by one billion
instructions to bypass initialization steps, and then simulated for two billion
cycles. Table [ lists the ten workloads (w1l through w10) that we formed for
this study using these applications. The last two columns of Table 2] gives the
cumulative L2 and L3 cache misses for each workload when executed under the
equal partitioning scheme (Equal). For each workload in our experimental suite,
we performed experiments with eight different cache partitioning schemes:

e Fqual Under this scheme, each cache component in the multicore system is
divided (way-wise) as evenly as possible among all applications that share it.
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e Default. This scheme corresponds to unrestricted sharing, i.e., no cache compo-
nent is partitioned and, as a result, applications that access a cache component
can displace each other’s data.

e Coordinated. This is our proposed coordinated inter-layer cache partitioning
scheme described in detail in Section F

e L2 Only. In this scheme, we partition only L2 components, and L3 space is
shared by all cores that access it. For partitioning L2, we use a dynamic perfor-
mance model similar to the one used for Coordinated. Our initial experiments
showed that this scheme generates competitive results to prior schemes such as
[2], [14], and [15].

Table 2. Workloads used in the experimental analysis

Applications L2 Miss Rate L3 Miss Rate
wl  bzip2 gce mcf gobmk hmmer sjeng 27.4% 33.8%
w2 sjeng libquantum  h264ref omnetpp astar xalancbmk 21.7% 10.4%
w3  astar perlbench h264ref hmmer bzip2 libquantum 12.6% 18.2%
w4 milc bwaves zeusmp gamess namd soplex 7.7% 19.3%
wb  dealll povray calculix tonto Ibm sphinx3 29.0% 13.4%
w6 wrf tonto GemsFDTD cactusADM gromacs milc 18.6% 11.4%
w7 gobmk hmmer sjeng leslie3d  calculix tonto 24.2% 16.1%
w8 perlbench  h264ref  xalancbmk GemsFTDT soplex dealll 16.7% 14.9%
w9 sjeng libquantum bzip2 gee gamess  sphinx3 15.8% 9.8%
wl0 gobmk astar zeusmp gamess tonto wrf 26.2% 17.9%

e L3 Only. In this scheme, we partition only L3 components, and each L2
component is shared by all cores that access it. For partitioning L3, we use a
dynamic performance model similar to the one used for Coordinated.

e L2+L3. In this scheme, we partition L2 and L3 in an uncoordinated fashion
using a separate performance model for each one of them. More specifically,
under this scheme, performance models for L2 layer and L3 layer observe the
data access latency in respective layers and adapt partitioning based on these
dynamically updated performance models independently.

e Static Best. In this scheme, we select a static partitioning (for each cache
component) that generates the best result (when the entire on-chip cache hi-
erarchy considered) through exhaustive search of all possible static partitions.
Consequently, this scheme represents the best partitioning of shared cache that
can be achieved by any static scheme. Also note that in general the selected
partitioning for a cache component will be nonuniform.

e Dynamic Best. This scheme represents the best dynamic strategy for parti-
tioning the shared on-chip cache space. The workload execution in divided into
epochs and, for each epoch, we run Static Best to determine the best partition
of cache components for that epoch. Note that both Dynamic Best and Static
Best return a result (partitioning) as output only if this partitioning satisfies all
the specified QoS values.

5.2 Results

Unless stated otherwise, we use weighted speedup (with all weights being the
same) as our global metric in distributing the residual cache space (if any) across
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Fig.5. (a) Weighted speedups with our default configuration. (b) Percentage of ex-
periments where our approach and an alternate scheme could not satisfy the specified
QoS, that was satisfied by Dynamic Best.

applications. Also, if not all the QoS specifications could be satisfied, we employ
the minimum loss strategy for determining the application(s) to be punished.

Weighted Speedups. The bar-chart in Figure[Bl(a) gives the weighted speedup
values for our ten workloads described above. The QoS value used for each
application is 7 cycles in this experiment. One can make several observations from
these results. First, excluding the ideal partitioning scheme (Dynamic Best), our
proposed partitioning scheme (Coordinated) generates the best speedup values
for all the workloads tested. Second, our scheme comes very close to the ideal
partitioning, the average weighted speedup values being 2.40 and 2.57. Third, in
w4, our scheme and L2 Only generate very similar results. This is because, in this
workload, there are relatively small number of L2 misses (L3 accesses) and the
main benefit comes from careful partitioning of the available L2 space. What is
more interesting however is that our scheme generates much better results than
L2+L3 (which generates an average weighted speedup value of 1.80). The main
reason for this is the lack of coordination (under this scheme) between L2 and
L3 cache partitioning.

To show how successful our scheme is in satisfying QoS values, we present in
Figure Bl(b) the percentage of experiments where our approach could not satisfy
the specified QoS but Dynamic Best was able to satisfy the same QoS (using
exhaustive search). This data is collected over 400 experiments with QoS values
randomly distributed between 3 cycles and 10 cycles, and spans all workloads we
have. We see from the first bars in this plot that, on average, only in about 8.6%
of our experiments, our approach could not satisfy a specified QoS that were
satisfied by Dynamic Best. In comparison, the second bar, for each workload,
gives similar results with the second-best scheme (L2+L3 in most cases). We see
that the average value for this scheme is around 43.8%.

QoS Values. We now focus on two workloads (w2 and w10) and present the
data access latency values for these workloads (recall that the QoS values for all
applications are set to 7 cycles in this experiment). The bar-chart in Figure [f}a)
presents the results for w2 and that in Figure[B(b) for w6. Our first observation



140 M. Kandemir et al.

Mg Witquistim WhIGSe Bemeetos e 0 ualeschek Bijeng Bibgniun SA2Gkel Bomaetp Bute B lsschimk

B
'

3’

24

§s

T

R

Dt Access Lanency (eycles

59

3,

[ERERS
[BAGLE
5,
AT
[EXEEEEN
RATATT

]
i ]

159,
[ek)

Fig. 6. Data access latency values for (a) workload w2 under default QoS specification
and (b) workload w6 under default QoS specification. (¢) workload w2 under different
QoS specifications.

from these plots is that our scheme satisfies the specified QoS for all applications.
In comparison, in w2, L2 Only, L3 Only and L2+L3 could not satisfy QoS for 3,
3, and 2 applications, respectively. Fqual and Default perform even worse, each
not being able to satisfy QoS for 4 out of 6 applications in w2.

Sensitivity Study. The results presented above are for a fixed QoS value for all
applications. To study sensitivity of our approach to QoS values, we now present
results with workload w2 when executed with different QoS values. Each point on
the x-axis in Figure [Blc) corresponds to a set of QoS values for the applications
in this workload (i.e., ith entry in the vector corresponds to the QoS (in cycles)
for the ith application in the workload), and the y-axis represents data access
latencies achieved by our approach (Coordinated), when targeting the specified
QoS values. One can observe that, in the first five scenarios, our scheme is able
to satisfy all QoS values. In the last scenario, on the other hand, our scheme
could not satisfy all QoS values. Clearly, by requiring very low access latencies
(as QoS specifications), one can surely fail any partitioning scheme. However,
what is important here is that our scheme successfully adapts to the specified
QoS values, which is observed from the first five scenarios.

6 Concluding Remarks

We demonstrate that coordinated multilayer cache partitioning is critical for
extracting maximum performance from on-chip caches of emerging multicore
architectures. We also present a fully-automated, model based, multilayer cache
partitioning scheme. This scheme tries to achieve two objectives. First, it tries
to satisfy specified QoS values for all applications, and second, it distributes
the remaining excess cache capacity (if any) across applications such that a
global performance metric (weighted speedup) is maximized. In our experimental
evaluation, we compare our approach against several alternate schemes as well
as an optimal scheme which is not implementable in practice but guarantees the
best workload performance. Our experience with this scheme shows that it is
very successful in practice and the results obtained using it cannot be achieved
by applying cache partitioning to each layer independently.
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Abstract. In this paper, we present scheduling algorithms that simul-
taneously support guaranteed starting times and favor jobs with system-
desired traits. To achieve the first of these goals, our algorithms keep a
profile with potential starting times for every unfinished job and never
move these starting times later, just as in Conservative Backfilling. To
achieve the second, they exploit previously unrecognized flexibility in the
handling of holes opened in this profile when jobs finish early. We find
that, with one choice of job selection function, our algorithms can consis-
tently yield a lower average waiting time than Conservative Backfilling
while still providing a guaranteed start time to each job as it arrives. In
fact, in most cases, the algorithms give a lower average waiting time than
the more aggressive EASY backfilling algorithm, which does not provide
guaranteed start times. Alternately, with a different choice of job selec-
tion function, our algorithms can focus the benefit on the widest sub-
mitted jobs, the reason for the existence of parallel systems. In this case,
these jobs experience significantly lower waiting time than Conservative
Backfilling with minimal impact on other jobs.

1 Introduction

Backfilling has been a standard feature of multiprocessor scheduling algorithms
since it was introduced by Lifka [7] in the Extensible Argonne Scheduling sYstem
(EASY). In a survey of parallel job scheduling, Feitelson et al [4] characterize
backfilling with three parameters, the number of reservations or jobs with guar-
anteed start times, the order of queue jobs, and the amount of lookahead into
the queue. In this paper, we describe variations of backfilling where all jobs
are given a guarantee upon their arrival, Conservative Backfilling [§]. However,
unlike Conservative Backfilling, we are interested in supporting job priorities
other than First-Come-First-Serve (FCFS) [10]. Also, while we do not use any
lookahead into the queue, one of our algorithms does delay making decisions

* Work done while Alex was a student at Knox College.
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until more data is available. Thus, our algorithms add a fourth parameter, when
decisions are made, to the three parameters mentioned above.

A key benefit of Conservative Backfilling is that each job is granted a guar-
anteed starting time when it is submitted. (It may start earlier, but will not
be delayed later than this time.) These guarantees lead Conservative Backfilling
to benefit wide jobs, jobs requiring many processors, relative to other backfill-
ing strategies (e.g. [13]). From a fairness standpoint, this guarantee ensures that
wide or long jobs, which are less likely to benefit from backfilling, are not harmed
by jobs that backfill more easily. These guarantees also make the scheduler more
predictable since each user has a bound on when their jobs will run.

Conservative backfilling maintains a profile containing a tentative schedule for
all jobs. When a job arrives, it is placed in the earliest possible spot within the
profile, i.e. it is scheduled to start at the earliest time that does not disturb any
previously-placed job. The only other profile changes occur when a job finishes
early, creating a “hole” that potentially allows other jobs to move earlier. In this
case, Conservative initiates compression, the reexamination of each job in the
order of its current starting time in the profile. Each job is removed from the
schedule and then reinserted at the earliest possible time. Compression never
delays a job since the job can always fit back into the profile at the same spot,
but some jobs move earlier, into a hole or spaces vacated by jobs that have
themselves moved. Since no job’s planned start time is ever delayed, each job’s
initial reservation is an upper bound on its actual starting time.

Because Conservative compression reschedules jobs based on the profile’s or-
der, intuition suggests that it tends to preserve job order, closing holes by sliding
the end of the profile earlier. (Of course, job order does change when a job fits
into a hole that earlier jobs could not use.) Since the profile is built as jobs
arrive, this gives Conservative a FCFS tendency. This is desirable from a fair-
ness perspective, but may not support a specific system’s goals. For example,
some systems may wish to favor short jobs to improve average response time
and systems oriented toward capability computing may wish to favor wide jobs.

Backfilling algorithms have been designed to support these goals
(e.g. [T4U5ITITT]), but they do so by reordering the profile, which sacrifices the
key benefit of Conservative scheduling: its ability to give jobs guaranteed start-
ing times when they are submitted. In this paper, we present scheduling algo-
rithms that simultaneously support guaranteed starting times and favor jobs
with system-desired traits. To achieve the first of these goals, our algorithms
keep a profile with potential starting times for every unfinished job and never
delay these starting times, just as in Conservative. To achieve the second, they
exploit previously unrecognized flexibility in the handling of holes that appear
in the profile. Specifically, we present two algorithms using the following kinds
of flexibility:

— job selection: Although Conservative always tries to move the next job in
the profile into a hole, any job that fits can be moved into a hole. (This idea
is also used in [9].)
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— timing: Although Conservative closes holes as soon as they form, the sched-
uler is only required to identify jobs that it wants to start immediately. Thus,
some decisions can be deferred until more information (e.g. more job arrivals
or early completions) is available.

We analyze our algorithms using an event-based simulator run with traces
from the Parallel Workloads Archive [3]. From the traces, our simulator takes an
arrival time, a required number of processors, a running time, and an estimated
running time for each job. The estimated running time gives the scheduler an
upper bound on the job’s running time, but most jobs “end early”, with actual
running time less than their estimate. Throughout, we assume that jobs need
exactly the requested number of processors (rigid jobs), that each processor can
run at most one job at a time (pure space-sharing) and that each job finishes in
exactly its given running time (no interference between jobs).

We find that, with one choice of job selection function, our algorithms consis-
tently yield a lower average waiting time than Conservative while still providing
each job a guaranteed start time when it arrives. In fact, in most cases, our
algorithms give better waiting times than the more aggressive EASY algorithm
[7], which does not provide guaranteed start times. Alternately, with another
job selection function, our algorithms significantly lower waiting times for the
widest jobs with minimal impact on other jobs.

The rest of the paper is organized as follows. We describe our algorithms in
Section 2 and relevant related work in Section Bl Then we give our experimental
results in Section @ and conclude in Section

2 Algorithms
Now we present our algorithms to exploit the flexibility discussed above.

2.1 Prioritized Compression

Our first algorithm is conservative with Prioritized Compression (PC). This al-
gorithm maintains two data structures, a profile with the tentative schedule and
a compression queue of jobs ordered by a system-specific priority function.

When a job arrives into the system, it is placed into the profile exactly as
in Conservative and also added to the compression queue. When a job finishes
early and creates a hole, PC compresses the schedule by trying to reschedule
each job in the order given by the compression queue; it tries to reschedule the
first job in the compression queue, then the second, and so on. This differs from
Conservative, which considers jobs in the order they occur in the profile, but PC
preserves the key feature that no job moves later in the profile; a job accepts
rescheduling only when it benefits and a job is only permitted to make moves
that do not interfere with any other job.

By using a customized order for compression, PC allows high-priority jobs
to benefit from the hole even if they begin much later in the profile. Doing so
adds another wrinkle to the compression operation, however. Consider the profile
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shown in Figure[Il(a); time is on the z-axis, with the current time at the far left.
Suppose job A finishes early and is removed. If the resulting profile is compressed
with the order E, C, D (Longest Job First), only jobs C and D are rescheduled.
This yields the profile shown in Figure [I[(b), with job E delayed even though it
could also be started. To avoid unnecessary idle time like this, the compression
algorithm for PC returns to the front of the compression queue each time a job
is rescheduled. (Conservative does not need to do so since rescheduling one job
cannot benefit a previously-considered job when the profile order is used.)

e e |

B B ‘

time —m— time ——

(@ (b)
compression queue: E C D
Fig. 1. Profile showing need to return to beginning of the compression queue after each

successful rescheduling. (a) Initial profile before job A terminates early. (b) Profile after
rescheduling jobs E, C, and D once each in that order.

The downside of returning to the beginning of the compression queue after
each successful rescheduling operation is that jobs can be moved more than once.
For example, consider the profile depicted in Figure[2la) and suppose again that
job A finishes early. If the profile is compressed with the order D, C' (Widest Job
First), the first rescheduling operation improves the planned start time of job D,
producing the profile shown in Figure [2(b). Once job C is rescheduled, however,
job D can be moved again, resulting in the profile shown in Figure 2{(c).

C C

time —— time— time —

(€)) (b) (c)
compression queue: D C
Fig. 2. Example where PC compression moves the same job twice. (a) Initial profile
before job A terminates early. (b) Profile after first compression of job D. (c) Profile
after compressing job C' and then job D again.

Since jobs can move more than once, a natural question is how long compres-
sion will take. We return to this question in Section
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2.2 Delayed Compression

Our second algorithm is conservative with Delayed prioritized Compression (DC).
It keeps a prioritized compression queue just like PC, but also exploits flexibility
in the timing of compression by deferring some rescheduling operations. Specif-
ically, when a job finishes early, DC’s compression operation only reschedules
jobs that can begin immediately, deliberately leaving holes in the profile. For
example, consider the profile depicted in Figure[Bl(a) and suppose job A finishes
early. If DC compresses with order D, E, F' (Longest Job First), it would leave
the profile as depicted in Figure Bi(b), with a hole after job C even though the
planned starting time of job F' could be improved. By deferring this improve-
ment, algorithm DC leaves itself flexibility in case a high-priority job arrives or
another job finishes early. Note that once the running system reaches the hole,
the scheduler must fill the hole; this requires an additional check when a job
finishes and the profile indicates idle time for some of its processors.

A E
C D C

D| F F

time—p time—

(a) (b)

compression queue: DFCE

Fig. 3. Example where the DC algorithm deliberately leaves a hole in the profile. (a)
Initial profile before job A terminates early. (b) Profile after compression.

One issue with deliberately leaving holes in the profile is that newly-arrived
jobs can backfill into them. For example, suppose a short job arrived after the
compression operation shown in Figure Bl If this job fits into the hole left when
job D was moved, it can backfill there and bypass job F as well as any later
jobs. While this backfill operation may be fine if the scheduler wishes to favor
short jobs, it can completely undermine the scheduler’s priority mechanism if
a different priority function is being used. To avoid this, DC also handles job
arrivals differently than Conservative. Rather than immediately adding a new job
to the profile, DC instead adds it to the compression queue. The algorithm then
reschedules any job before the new job in the compression queue whose new start
time would be before the estimated completion of the new job, i.e. those higher-
priority jobs that could be delayed by the new job. Once the new job is reached
in the compression queue, it is scheduled and compression ends. This modified
treatment of job arrivals closes holes when necessary to protect rescheduling
opportunities for high-priority jobs. In the example shown in Figure[3] DC would
reschedule F' if a lower-priority job arrives and could be scheduled to finish after
the end of C' (the earliest possible start time of F'). Alternately, the hole could
be occupied by a new job with higher priority.
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3 Related Work

Backfilling was introduced by Lifka [7] in the Extensible Argonne Scheduling
sYstem (EASY). In a survey of parallel job scheduling, Feitelson et al [4] charac-
terize variations in backfilling with three parameters, the number of reservations,
the order of queue jobs, and the amount of lookahead into the queue. We add a
fourth parameter, when the profile can be reordered.

Reservations have been used since the early days of parallel batch schedulers
[2]. EASY [7] uses one reservation. At the other extreme, Conservative Backfilling
[8] gives all jobs a reservation. Talby and Feitelson [I4] and Srinivasan et al
[13] suggest an adaptive number of reservations. The Maui Scheduler [5] has a
parameterized number of reservations. Chiang et al [I] suggest that four is a
good number of reservations.

EASY and Conservative Backfilling use First-Come-First-Serve (FCFS) or-
der. The FCFS Scheduling Algorithm has been analyzed by Schwiegelshohn and
Yahyapur [I0]. Perkovic and Keleher [9] study Conservative Backfilling with
random queue ordering both with and without sorting by length and random re-
ordering as well. Reordering the backfill queue for EASY is proposed by Tsafrir
et al [15].

Talby and Feitelson [14] combine three types of priorities in the order of queue
jobs. The Maui Scheduler has even more components in its order of queue jobs.
Chiang et al [I] propose generalizations of the Shortest Job First (SJF) schedul-
ing algorithm to order queue jobs. They also use fized and dynamic reservations.
With dynamic reservations, job reservations and the ordering of job reservations
can change with each new job arrival or if the priorities of waiting jobs change.
With fixed reservations, job reservations can only move earlier in order, even if a
job has no reservation or a job that has a later reservation attains a higher prior-
ity. Leung et al [6] study fixed and dynamic variations of Conservative Backfilling
in the context of fairness.

All the above algorithms use no lookahead. Shmueli and Feitelson [I1] use
one reservation, various queue orderings, and lookahead into the queue. All of
these algorithms reorder the profile when a job arrives or terminates early. All
of our algorithms give every job a reservation, use various queue orderings based
on the length or width of the jobs, and use no lookahead into the queue, a
combination that is not used by any of the algorithms above. Additionally, some
of our algorithms delay to varying degrees when the profile is reordered. Our PC
algorithm reorders the profile when a job arrives or terminates early like all of
the algorithms above. Our DC algorithm reorders the profile only when a job
arrives or can run immediately.

4 Experimental Results

As described in the introduction, we evaluate our algorithms with an event-
based simulator running traces from the Parallel Workloads Archive [3]. Figure[d
lists the traces used. These are all traces with estimated running times except
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for LLNL-uBGL, which is omitted because its waiting time shows almost no
variation for any of the algorithms we examined. Jobs in these traces without user
estimates are given accurate estimates. (Simulations by Smith et al. [12] suggest
that better estimates reduce average waiting time for Conservative scheduling.
The effect of inaccurate estimates on EASY is the subject of many papers; Tsafrir
and Feitelson [16] summarize and attempt to settle the issue.)

Name Full file name # jobs % w/ estimates
CTC-SP2 CTC-SP2-1996-2.1-cln.swf 77,222 99.99
DAS2-fs0 DAS2-fs0-2003-1.swf 219,571 100
DAS2-fs1 DAS2-fs1-2003-1.swf 39,348 100
DAS2-fs2 DAS2-s2-2003-1.swf 65,380 100
DAS2-fs3 DAS2-£s3-2003-1.swf 66,099 100
DAS2-fs4 DAS2-fs4-2003-1.swf 32,952 100
HPC2N HPC2N-2002-1.1-cln.swf 202,876 100
KTH-SP2 KTH-SP2-1996-2.swf 28,489 100
LANL-CM5 LANL-CM5-1994-3.1-cln.swf 122,057 90.75
LLNL-Atlas LLNL-Atlas-2006-1.1-cln.swf 38,143 84.85
LLNL-Thunder = LLNL-Thunder-2007-1.1-cln.swf 118,754 32.47
LPC-EGEE LPC-EGEE-2004-1.2-cln.swf 220,679 100
SDSC-BLUE SDSC-BLUE-2000-3.1-cln.swf 223,669 100
SDSC-DS SDSC-DS-2004-1.swf 85,006 100
SDSC-SP2 SDSC-SP2-1998-3.1-cln.swf 54,041 99.94

Fig. 4. Traces used in simulations

The trace job counts given in Figure @ differ from the values given in the Par-
allel Workloads Archive [3] because we ignored jobs that were partial executions
(they were checkpointed and swapped out; status 2, 3, or 4) and jobs that were
cancelled before starting (status 5 and running time < 0). We also ignored 8
jobs in the SDSC-DS trace with running time -1 (unknown).

4.1 Increasing Responsiveness

Since user-perceived performance is the typical goal of scheduling, we first con-
sider how our algorithms can improve average waiting time. For this metric, it is
beneficial to run short jobs before long ones so we use Shortest Job First as our
priority function. Figure Bl presents the results as a percent improvement over
the average waiting time achieved by Conservative. We also include EASY for
comparison since it backfills aggressively, benefiting short jobs since they back-
fill more easily. The exact results vary by traces, but our algorithms outperform
Conservative on all traces except DAS2-fs3. In fact, they outperform EASY in
the majority of cases. The most notable exception is the LLNL-Thunder trace,
which has the lowest percent of jobs with user estimates (only 32%; see Fig-
ure ). This may explain the relatively poor performance of our algorithms on
that trace since jobs without estimates do not finish early, reducing the number
of holes our algorithms can exploit. Of our algorithms, DC generally beats PC.
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Fig. 5. Average waiting time relative to Conservative

Furthermore, our algorithms achieve these benefits without greatly delaying
other jobs. To see this we looked at the average waiting time for the 5% of jobs
with the greatest waiting time. See Figure [@ for the results, again presented as a
percent improvement over Conservative’s performance on the same measure. As
in the overall average waiting time, our algorithms generally outperform Con-
servative, though there are more exceptions (DAS2-fs3, LANL-CMS5, and SDSC-
SP2). Comparing to EASY yields a similar picture as well, again with LLNL-
Thunder as the outlier. The pattern remains when looking at the 1% of jobs with
the greatest waiting time (see Figure[l); our algorithms give significantly better
performance for the DAS2-fs2, DAS2-fs4, LLNL-Atlas, and LPC-EGEE traces,
significantly worse performance for the LANL-CM5 and SDSC-SP2 traces, and
comparable (within 10%) or mixed performance for the others.

We have shown that our algorithms significantly improve the average waiting
time when using the shortest job first priority function. It is worth noting that
they mostly outperform Conservative under this measure with other natural
priority functions as well. Specifically, we considered the priority functions FIFO,
Widest (most requested processors) Job First, Longest (in estimated time) Job
First, Shortest Job First, and Narrowest (fewest requested processors) Job First
for both of our algorithms. Out of 150 combinations of trace, algorithm, and
priority function, only 49 (33%) of them were worse than Conservative. Most of
the differences were small (generally < 10%, many < 2%), with a majority of
the big improvements appearing in Figure[§l and the significantly negative values
generally associated with the Longest Job First or Widest Job First priority
functions. (The worst single value is -38% for DC with Longest Job First.)

Overall, DC with Shortest Job First seems to be a very good choice for in-
creasing responsiveness. It gave better average waiting time than Conservative
and EASY in eleven out of fifteen traces. It only had worst average waiting time
than both Conservative and EASY in one trace and just EASY in three others.
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4.2 Favoring Wide Jobs

To demonstrate the flexibility of our algorithms, we also look at a different
scheduling goal: improving the performance of wide jobs. These are jobs that,
because of a large computational or memory requirement, must run on many
processors. From a capability perspective, wide jobs are the reason to build
large systems since they cannot run otherwise.

To benefit these jobs, we run our algorithms with the Widest Job First prior-
ity function. We measure schedule quality with the average waiting time of the
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widest 10% of the jobs in each trace. Figure [§ shows the results as a percent im-
provement over Conservative. The LGC-EGEE trace is not included since each
of its jobs requests a single processor. On the other traces, our algorithms outper-
form Conservative on all traces except LLNL-Thunder, the trace with relatively
few user estimates. (The improvement on the DAS2-fs3 trace is admittedly neg-
ligible.) Tt is unclear which of them is preferable. Our algorithms also outperform
EASY, which is not surprising since wide jobs have difficulty backfilling and thus
benefit from the guaranteed start times given by our algorithms.

As when we tried to improve overall system responsiveness, we investigate the
performance of non-favored jobs. Figure [@ plots average waiting time of all jobs,
again relative to Conservative. The results are mixed, but not consistently bad
and the negative values are of fairly small magnitude. Thus, it seems that our
algorithms benefit wide jobs without greatly impairing overall performance.

4.3 Scheduler Running Time

As mentioned in Section BTl there is a question as to how long compression will
take with our algorithms, particularly PC. We instrumented our simulations of
Conservative and PC to measure the work required for compression. Specifically,
we counted how many times the algorithms looked at an event (a job’s planned
start or end time) in the profile. In the worst case (Longest Job First priority
on DAS2-fs0), PC examined nearly 580 times as many events as Conservative.
This case is an extreme outlier; in only two other traces (HPC2N and DAS2-fs3)
did PC examine more than 43 times as many events as Conservative (127 and
72 times, respectively). Even in the outlier case, however, the scheduler running
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time was not excessive; the total simulation time for that trace was less than 24
hours on a laptop, meaning the scheduler spent less than 0.4 seconds scheduling
and rescheduling each job on average.

5 Discussion

We have presented a couple of algorithms that exploit flexibility in Conservative
backfilling to improve various measures of performance while still retaining its
ability to give jobs a guaranteed starting time as they arrive. We are impressed
by the potential of these algorithms, but there is ample room for future research.
More work is needed to understand why the algorithms perform better on some
traces than others and to distinguish between the algorithms. It would also
be interesting to consider other priority functions, including user-assigned job
priorities, to further explore the flexibility in job selection. For the flexibility in
timing, one of our algorithms closes holes as soon as possible and the other closes
holes only when more jobs arrive or a job can run. We can further explore the
flexibility in timing by closing holes only when a job can run.
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Introduction

Leonel Sousa, Frédéric Suter, Alfredo Goldman,
Rizos Sakellariou, and Oliver Sinnen

Topic chairs

Scheduling and load balancing are fundamental issues for deploying applications
on parallel and distributed systems. Static and dynamic techniques, determinis-
tic and stochastic methods have been researched to tackle the hard problem of
achieving the minimum span and the optimal load balancing, making the best
use of parallel and distributed systems by maintaining the resources busy and
minimizing energy consumption. Although research has been done for years and
years, namely for static scheduling and dynamic load balancing, these are old
but very timely topics of research in the era of multicore computers and cloud
computing. New challenges arise with the increased interest in applications with
real-time constraints, the continuous growth of algorithms complexity and so-
phistication of applications, and the heterogeneity of systems and the diversity
of their conditions of operation. This year, the contributions in the scheduling
and load-balancing topic of Euro-Par provide a very good coverage of different
perspectives and aspects, with a focus on both theoretical aspects and practical
questions. Some of these papers are focused on heterogeneous systems, in par-
ticular on more hierarchical systems, some also considering failures, there are a
few that address theoretical aspects and one mainly presents experimental work.
The papers continue to cover the two ends of the hardware spectrum, tightly-
coupled multicore systems and clusters of workstations. Energy awareness has
become important for all types of computing and it is addressed in the accepted
papers for the small scale, in embedded systems, as well as for larger computing
facilities, such as clusters. Modern scheduling and load balancing is dominated
by the inclusion of more aspects into the scheduling decisions, be it communi-
cation and memory location aspects or even the social influence. The task of
selecting the papers to be presented at the conference was hard, because the
number of submissions was high and the quality excellent. Only 9 papers were
accepted for publication, which led to quite a low acceptance rate in this topic.
All papers were reviewed by at least four independent reviewers. We would like
to thank all the reviewers for their time and effort. The quality of the reviews
simplified the selection process. At the same time, we would like to thank all
authors, in particular the ones that did not have their manuscripts accepted.
Their contributions allow Euro-Par to maintain its position as one of the pre-
mier scientific conferences where innovative scheduling research for parallel and
distributed systems is presented year after year.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, p. 154, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Greedy “Exploitation” Is Close to Optimal on
Node-Heterogeneous Clusters*
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Abstract. The Cluster-Exploitation Problem (CEP) challenges a master com-
puter to schedule a “borrowed” node-heterogeneous cluster C of worker com-
puters in a way that maximizes the amount of work that C’s computers complete
within a fixed time period. This challenge is heightened by the fact that “complet-
ing” work requires C’s computers to return results from their work to the master.
It has been known for some time that the greedy LIFO protocol, which orches-
trates C’s computers to finish working in the opposite of their starting order, does
not solve the CEP optimally; in fact, the FIFO protocol, which has C’s comput-
ers finish working in the same order as they start, does solve the CEP optimally
(over sufficiently long time periods). That said, the LIFO protocol has features
(aside from its intuitive appeal) that would make it attractive to implement when
solving the CEP—as long as its solution to the problem was not too far from
optimal. This paper shows this to be the case. Specifically:

1. The LIFO protocol provides approximately optimal solutions to the CEP, in
the following sense. For every cluster C, there is a fixed fraction ¢oc > 0
that does not depend on how heterogeneous cluster C is (as measured by the
relative speeds of its fastest and slowest computers) such that C completes
at least the fraction ¢ as much work under the LIFO protocol as under the
optimal FIFO protocol.

Our analysis of the CEP uncovers an unexpected property of the LIFO protocol:

2. In common with the FIFO protocol, the LIFO protocol’s work production is
independent of the order in which the master supplies work to the workers—
no matter what the relative speeds of the workers are.

Within the literature of divisible load scheduling, the CEP follows the master-
worker paradigm under the “single-port with no overlap” model.

Keywords: Scheduling divisible workload; Worksharing; Heterogeneous
cluster.

1 Introduction

A master computer Cy has a large uniform computational workload of independent
tasks. It has temporary access to a cluste] € comprising n worker computers,

* Research supported in part by US NSF Grant CNS-0905399.
"'We call C a “cluster” for convenience: the C; may be geographically dispersed and more
diverse in power than that term usually connotes.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 155 2011.
(© Springer-Verlag Berlin Heidelberg 2011
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C4, ..., C,, that may differ in computing power: each C; can execute a unit of work
in p; time units—and these n computing rates can be very different. All n + 1 com-
puters intercommunicate across a single network that they access with uniform cost.
(Our model is, thus, node-heterogeneous and link-homogeneous.) The elements of Cjy’s
workload are divisible, in the sense that each can be subdivided at will to accommodate
the differing computing rates of C’s computers. The Cluster-Exploitation Problem (CEP,
for short) is a simple scheduling problem under which C has access to C’s computers
for some predetermined “lifespan” of L time units, during which:

1. Foreachi € {1,...,n}, in some order, Cy sends some “personalized” number, w;,
units of work to each worker computer C;, in a single message;

2. Each worker computer executes the work it receives and returns its results to Cj, in
a single message.

The challenge is to orchestrate the preceding process so that C’s computers collectively
complete as much work as possible during the L time units—while ensuring that at
most one intercomputer message is in transit in the network at any step. A unit of
work is completed once Cjy has sent it to some C;, and C; has executed the unit and
returned results to Cy. Within the literature of divisible load scheduling, the CEP fol-
lows the master-worker paradigm under the “single-port with no overlap” model. We
call a schedule for solving the CEP a worksharing protocol. The significance of the
CEP stems from the demonstration in [2] that the optimal work-production of a clus-
ter C depends only on C’s vector of computing rates, {(p1, ..., pn), which we call C’s
heterogeneity profile.

What is the optimal schedule for solving the CEP on an n-computer cluster C? We
cite a hyperbolic instance of the CEP to garner some intuition. For convenience, let us
index C’s computers in nonincreasing order of speed, so that p; < -+ < p,,. (Recall
that each p; is the time to complete one unit of work, so a smaller p-value means a
faster computer.) Now (here’s the hyperbole) say that C’s computers are very different in
speed: each C; is 101 times faster than C;_1: formally, p; 11 = 10'%p;. Itis “intuitively
obvious” that the optimal solution to this instance of the CEP is for the master C to
proceed as follows:

1. Saturate C'; (C’s fastest computer) with work that takes it L time units to complete.
2. Recursively solve the CEP for Cy, ..., C,, for the lifespan determined by the por-
tion of the L time units when neither C,,’s work nor its results are in transit.

This “obviously optimal” greedy solution embodies the LIFO protocol (with workers
served in order of speed): C’s computers are orchestrated to finish working (and return
results to Cp) in the opposite of the order in which they are served. The first surprise
concerning the CEP appeared in [[10], where it was shown that the LIFO protocol does
not solve the CEP optimally. The second surprise was the demonstration in [2] that, over
sufficiently long lifespans, the FIFO protocol, which has C’s computers finish workin
(and return results to C) in the same order as they start, does solve the CEP optimallyé
(The non-idle intervals in Fig. [[lsuggest the origin of the names “LIFO,” “FIFO.”)

The results in [2/10] apparently lessen the importance of the LIFO protocol—but this
view may be shortsighted. This paper revisits the LIFO protocol and shows it to have

2 Simulations in [[I]] suggest that “sufficiently long” lifespans have quite modest lengths.
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advantages that may make it an attractive protocol for the CEP—even though it is not
optimal. We show that, in addition to having a simple recursive structure, which makes
the protocol easy to specify, implement, and analyze:

The LIFO protocol is approximately as powerful as the FIFO protocol in solv-
ing the CEP (Theorem [4).

Specifically, for every cluster C, there is a fixed fraction ¢¢ > 0 that does not
depend on how heterogeneous cluster C is (as measured by the relative speeds
of its fastest and slowest computers) such that C completes at least the fraction
¢ as much work under the LIFO protocol as under the optimal FIFO protocol.

On the road to this result, we uncover a rather surprising property of the LIFO protocol.

The LIFO protocol’s work production is independent of the order in which the
master Cy supplies work to the workers in cluster C (Theorem[3)).

Even in our extreme example, C’s computers complete the same amount of
work when the slowest worker (C,,) is allocated the longest time slot as when
the fastest one (C1) is. (This independence can be derived from results in [4],
but the proof we present is quite elegant and may have further application.)

Related work. Employing a model that is very similar to ours, [3] derives efficient
optimal or near-optimal schedules for the four variants of the CEP for clusters C that
correspond to the four paired answers to the questions: “Do tasks produce nontrivial-
size results?” “Is C’s network pipelined?”” For those variants that are NP-Hard, near-
optimality is the most that one can expect to achieve efficiently—and this is what [3]]
achieves. More details on this and related work are available in the survey [[11]. One
finds in [12] a study of heterogeneity in computing that is based on the fact (from [2])
that optimal solutions to the CEP for a cluster C depend only on C’s heterogeneity pro-
file; this study explores features of C’s profile that determine its work-completion rate
and that give one cluster a higher rate than another. A variant of the CEP in which clus-
ters are node-homogeneous but link-heterogeneous is studied in [3]]; in that setting, the
FIFO protocol loses its advantage over the LIFO protocol: neither protocol dominates
the other. Less directly related to our study is the large body of work that studies the
scheduling of “divisible workloads.” While parts of sources such as [6/709] and their
kin share our interest in the CEP, their focus on tasks that do not produce measurable
output that must be returned to the master allows much simpler algorithmics; e.g., the
FIFO and LIFO protocols coincide in their model.

2 Formal Details

We adapt the model of [[§]], which is the basis of [2J5/10112].

The computing environment. The master computer Cy’s workload is composed of
work units that are identical in size and complexityE The tasks’ (common) complexity
can be an arbitrary function of their (common) size. Our model posits that the cost of
transmitting work grows linearly with the total amount of work performed. This allows
us to measure both time and message-length in the same units as work.

3 «“Size” refers to specification length, “complexity” to computation time.
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This linear communication model ignores fixed transmission costs—the end-to-
end latency of a message’s first packet and the per-message set-up overhead—
because their impacts fade over long lifespans. Thus, we replace the affine com-
munication model of [2/8]] with a linear model. We justify this simplification
via two facts that hold asymptotically, i.e., over “sufficiently long life-spans.”
(a) For the CEP, the linear and affine models coincide asymptotically. (b) The
optimality result from [2] that motivates the current study (cited as our Theo-
rem/[T) holds only asymptotically.

For i € {1,...,n}, a worker computer C; that belongs to the cluster C of interest
can execute one unit of work in p; time units; this p-value is C;’s computing rate. For
convenience, we normalize the computing rates of C’s computers, so that if C’s (hetero-
geneity) profile is (p1,...,pn), then foreachi € {1,...,n},0 < p; < 1. (Recall: A
smaller rate means a faster computer.) We posit a uniform communication fabric for all
computers: The time to send a single packet either from the master Cj to some worker
C; or from C; to Cy is 7 time units Within the context of the CEP, every intercom-
puter message is either a work-allocation that Cj sends to some C; € C or the results of
executed work that C; sends to Cy. We posit that each unit of work produces 0 < § < 1
units of results. The entire L-time-unit “exploitation” episode must be orchestrated so
that at most one intercomputer message is in transit in the network at a time. Before
any C; sends a message of length £ to another C}, C; packages the message, at a cost of
;¢ time-units; symmetrically, when C; receives the message, it unpackages it, at a cost
of ;¢ time-units. (Packaging a message could be as computationally “lightweight” as
packetizing and compressing it or as “heavyweight” as encoding it.)

Worksharing protocols. When there is only one C; € C, Cy shares w units of work
with C; via the process summarized in the following schematic time-line of workshar-
ing with one worker computer (not to scale).

Co packages work is C; unpackages C; computes C; packages results are C unpackages
work for C; intransit  the work the work  itsresults in transit the results
Tow TW W piw 0w ToWw Toow

When there are many (i.e., more than one) C; € C, we use two ordinal-indexing
schemes for C’s computers to help orchestrate communications while solving the CEP.
The startup order specifies the order in which Cj transmits work within C; it labels the
workers Cs,, ..., Cs,, to indicate that C, receives work—hence, begins working—
before C, . Dually, the finishing order labels the workers Cy,,...,CYy, , to specify
the order in which they return their results to Cy. Protocols proceed as follows.

1. Transmit work. Cy prepares and transmits w;, units of work for Cs, . It immediately
prepares and sends ws, units of work to Cs, via the same process. Continuing thus,
Cy supplies the Cs; with w,, units of work seriatim—with no intervening gaps.

2. Compute. Upon receiving work from Cy, C; unpackages and performs the work.

3. Transmit results. As soon as C; completes its work, it packages its results and
transmits them to Cj.

* We find the transit rate 7 a more convenient cost measure than its reciprocal, bandwidth.
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We choose the work-allocations {w; }* ; so that, with no gaps, C’s computers:
— receive work and compute in the startup order X' = (s1, ..., s,);
— complete work and transmit results in the finishing order @ = (f1,..., fu);
— complete all work and communications by time L.

Our goal is to maximize C’s aggregate completed work, W(C; L) = wy + - - - + w,.

In depicting and analyzing multiworker protocols, we have all computing by the
master Cp—i.e., its packaging work-allocations for C’s workers and unpackaging their
results—take place offline, so that we focus solely on a worksharing episode as it ap-
pears to the workers. Although this choice differs from that in [2], one verifies easily
that all qualitative conclusions in [2l]—notably the optimality of FIFO protocols (cited
as our Theorem [I)—are independent of this choice.

The timelines for two instantiations of the generic multiworker worksharing protocol
appear in Fig.[1l (To save space while preserving legibility we have each s; = i.) In the
top protocol, X and @ coincide: (Vi)[f; = s;], which specifies the (optimal) FIFO
protocol. In the bottom one, X and ¢ are reversed: (Vi)[f; = Sn—i+1], Which specifies
the LIFO protocol. Neither relationship is true of general protocols; cf. [2].

The following abbreviations enhance the legibility of complicated expressions.

—For1<i<n,R; =& 1+ pi+0m
is the effective computing rate of computer C; per work unit, i.e., the “round-trip”
time-cost for [work-unpackaging + work-performing + result-packaging]

~ def

-7 =147
is the (common) per-unit “round-trip” communication rate for each computer.
Henceforth, we focus on a cluster C with effective (heterogeneity) profile (Ry, ..., Ry,).

Cl sends :

work — C7 work — Cs work — Cg

TWw, Tws TWs

C1 @ waits processes work results — Cl

IDLE unpackage work compute package results send IDLE IDLE

MW prw1 T10w1 Tow

C2 : waits waits processes work results — Co

IDLE IDLE unpackage work compute package results send IDLE
ToWws pawa Todwo Tows

C3 : waits waits waits processes work results — Co

unpackage work compute package results send

IDLE IDLE IDLE T3t paws Ts0ws rows

Cl sends :

work — C7 work — Co work — C'3

TW1 TW2 TW3

C1 : waits processes work results — Co

IDLE unpackage work compute package results send
TiW p1wWL T1owy oTwy

Cg : waits waits processes work results — Cl

IDLE IDLE unpackage work compute package results send IDLE
T W2 pw2 71'25’(112 T§ul2

C3 : waits waits waits processes work results — Cy

IDLE IDLE IDLE unpackage compute package send IDLE IDLE

T3Wws psws mT3ows Tows

Fig. 1. Time-lines of 3-worker FIFO (top) and LIFO (bottom) protocols (not to scale)



160 A.L. Rosenberg
3 Work Production under the LIFO and FIFO Protocols

We invoke the observation from [2] that the work production of any n-computer clus-
ter C under any worksharing protocol can be calculated by solving a system of n linear
equations in n unknowns (the w; ). Assuming that C’s computers are served in the startup

order 81, ..., Sp, the asymptoticﬁ work-allocations to its computers under a given work-
sharing protocol P, denoted wgﬁ), ce wgs), are specified by the following system.
wly) L
(P) L
ce | = (1)
)\

C(P) is the coefficient matrix that specifies the details of protocol P. One can “read off”
the coefficient matrices for the LIFO protocol L and the FIFO protocol F from Fig. [k

Ra+7 0 -+ 0 Re, +7 o7 -+ o1
cL _ T Ry+7--0 0 P 7 Ry +7--- 0T
— . . . . 9 — . .

T T R, +7 T T  -Rs, +7T

2
One can solve system (1)) instantiated with the coefficients from (@) to determine
the work-allocations {wg;)}?zl and {wgf)}?zl, hence also the resulting amounts of

aggregate completed work, W) (C; L) = Do wgli') and WP (C; L) = > wgf).

Theorem 1 ([2]). (a) For any cluster C and lifespan L,

n k—1
X 1 Rs, + 01

®we;n) = L where X = : . .3
WH(C; L) 14 67X where ’;RskJrT g 47 3)

(b) No worksharing protocol has greater work production than the FIFO protocol.

Theorem 2. For any cluster C and lifespan L,
n k—1
1 Rs,

w®e; L :L-E - s 4
( ) Pt Rs, +7 e Rs, +7 4)

Proof (Sketch). By considering the equation for wgli), plus all pairs of adjacent equa-

tions (i.e., equations whose indices have the forms s; and s;1), we find that

1 R
L L d [w® = 1w fork e {2,... 5
wy; R +7 ] an {wSk R, +7 wg  fork €{2,...,n}| (5)

5 Throughout, asymptotic means “as L grows without bound.”
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By unfolding the recurrent portion of (@), we find explicit expressions for each wgt):

k—1
b — 1 R
Sk Rsk + T e} R61 + T

Theorems[I(a) and 2l specify the work productions of (respectively) the FIFO and LIFO
protocols for a given, but unspecified, startup order s1, ..., s,. The fact that the nota-
tions W (C; L) and WP (C; L) do not specify this order presages the fact that these
quantities are, in fact independent of startup order.

Theorem 3 ([2i4]). When cluster C is scheduled according to either the LIFO protocol
orthe FIFO protocol, its aggregate completed work is independent of the order in which
C’s computers are served. That is, for all startup orders X1 and X5:

W, L; £1) = W(C; L; 2)] and (WP (C; Ly 21) = WP(C; L; 5)].

This result appears in [2] for the FIFO protocol and can be derived from results in
[4] for the LIFO protocol. We present an alternative proof for the LIFO protocol by
emulating the elegant proof strategy used in [12] for the FIFO protocol.

A function F(z1, ..., 2,) is symmetric if its value is unchanged by every reordering
of values for its variables. When n = 3, for instance, we must have

F(a,b,c) = F(a,c,b) = F(b,a,c) = F(b,c,a) = F(c,a,b) = F(c,b,a)
for all values a, b, ¢ for the variables x1, 22, x3. For integers n > 1 and k € {1,...n},
F, k(,n) denotes the multilinear symmetric functiond that has n variables grouped as prod-

ucts of k variables. The four functions F,E4) of R-values appear in the following table.

F¥(Ri1,R2,R3,Rs) = Ri + Ra +Rs + Ry

F2(4)(R1, R2,Rs3,R4) = RiR2 + RiRs + R1R4 + R2R3 + R2R4 + R3R4
F{*(R1, Rz, R3,Rs) = RiR2Rs 4+ RiR2Rs + R1RsR4 + RaR3Ry

F™ (R, Rz, Rs,Rs) = RiR2RsRy

Two notational simplifications will enhance legibility. (1) We allow k to assume the
value 0 and set FO(") = 1. (2) Because our arguments to the functions F,i(") are always
Ri,...,R,, we abbreviate “Fi(") (Ri1,...,R,)" by “Fi(").”

Theorem[3]is immediate from the following lemma.

Lemma 1. For all lifespans L:
W(L)(C. L) - I nyg/i)l + Féi)2F+ ce Fl(")%'n72 + Fo(n);n71

(Ri+7) x (Ret7) X% (Rucs +7) x R +7). @

Thus, W(L)(C ; L) is symmetric in the effective computing rates, Ry, ..., R,,.

Proof. We proceed by induction on the sizes (i.e., numbers of computers) of clusters. To
aid legibility, we embellish the “name” of each cluster C with a subscript that specifies

® The qualifier “multilinear” tells us that no variable occurs to a power > 1; this excludes sym-
metric functions such as F'(a,b) = a®b + ab®.
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its size. The notational convention is that the n-computer cluster C,, has effective profile

(Ry,...,Ry). As the base of our induction, we note from equation (@) that
(1)
1 F,
whcy: L) = = °
L= R+ = R+
(2) (2)~
W(L)(CQ,L) _ 1 + 1 ) Rl _ F1 + E) T

(Ri+7) (Re+7) (Ri+7) (Ri+7)x (Ry+7)
Now assume, for induction, that (&) holds for all cluster sizes up through n. Combin-

ing our two specifications of w® (C; L), viz., equations (@) and (), we then have

1 R

(L ‘L) = (L L . . @
W (Cn+17 ) W (Cnv )+ Rn+1+? b Rz‘i‘?

<F7<lri)1 + Fyg@ﬁ +---+ Fén)?n71> (Rn+1 + %:) * H;l:l Ri
(R +7) % (Re +7) x -+ x (Ru +7) % (Ruys +7)

The proof is now completed by invoking the following easily verified identities:

Forall i € {1,...,n}, Rnq1 T(L?i)i + Fr(Lri)i-&-l = F,(Liti)l
In verifying these identities, recall that [, R; = F™ In applying these identities,
note the role of the 7 in the induction-extending factor (R,,+1 + 7). O

A conjecture. Olivier Beaumont has reported, in personal communication, that
informal simulations have failed to turn up any other worksharing protocol that
shares the LIFO and FIFO protocols’ independence from the order in which
cluster C’s computers are supplied with work. It is intriguing to conjecture
that these two protocols are, in fact, unique in this independence. A plausible
place to start trying to prove this is to exploit the fact that the LIFO and FIFO
protocols are the only ones whose coefficient matrices—cf. @)—have upper
triangles and lower triangles that are all constant. (This fact about the matrices
can be verified from the development in [2]].)

Theorem 3 combines with equations (@) and (@) to reveal the following simple but
consequential facts. The first fact is that LIFO and FIFO protocols complete more work
on faster clusters.

Proposition 1. Let clusters C and C' have respective profiles (R1, ..., R;,...,Ry) and
(Ry,...,R., ..., Ru). IfR, <R[l then for all L:

WLy >wh ;L)) and WH (L) > WO (c; L)].
Proof. The proof for the FIFO protocol appears in [12], so we focus on the LIFO pro-
tocol. We refine equation ) to specifies the startup order 5. (We actually already

do this in the righthand expression in @).) We choose any startup order X for C, for
which s,, = ¢;i.e., X has the form X' = (s1, ..., s,_1, ). We then form the versions of

7 Recall: the indicated inequality means that C"’s ith computer is faster than cluster C’s.
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equation () that use startup order X' with both of the indicated profiles. To enhance per-
spicuity, we write these versions in a way that emphasizes the fact that wt) (C; L; X)
and W (C’; L; X0) differ only in their first terms.

n—1 n—1 k—1
(L LX) = 1 . Rsz 1 R51 L
WG ) <Rsn+% I I e ! L
1 n—1 k—1

ES
Il
-

Because R, < R,,, we thereby find that

n—1
1 1 R.,
O L 5) - WO L 5) = L. _ SN
WHELZ) = WHG L) = L (R’ +7 RS,L+?) g 720

Sn

so that WV (¢ L; ) > wlY(c; L; 2). |

The second fact is that adding an additional computer to cluster C increases C’s aggre-
gate completed work under the LIFO protocol. (It is shown in [4], by example, that this
need not be the case with the FIFO protocol.)

Proposition 2. Let cluster C' be obtained by adding a (n + 1)th computer to cluster C.
Then W (C'; L) > WD (C; L).

Proof. Let the new computer, C, have effective computing rate R. Let each of C’s com-
puters retain its starting index within C’, and let us assign C' startup index s,,; 1, so that
R = R,.,,. (This is just for convenience: Theorem [3] tells us that we could assign C
any starting order without changing the result.) Invoking equgtion @), we find that

1 .
wbe L)y - whe L) = - .
;1) A | P
This difference is positive because each factor in the product is. g

4 The LIFO Protocol Is Approximately Optimal

This section is devoted to proving that every cluster completes a fixed fraction as much
work under the LIFO protocol as under the optimal FIFO protocol.

Theorem 4. The LIFO protocol is “approximately” optimal, in the following sense.
For every cluster C, there exists a fixed constant pc > 0 that does not depend on how
heterogeneous cluster C is (as measured by the relative speeds of its fastest and slowest

computers) such that W (C; L) > e - WP (c; L)B

We prove Theorem 4] by computing a lower bound on w®) (C; L) and an upper bound
on W (C; L) and comparing the results. We focus on an n-computer cluster C whose

effective heterogeneity profile is (Ry, ..., R;), where
- RE) 0 ax{Ry,..., Ry} is the effective rate of C’s slowest computer;
- R®Y 0 in{Ry, ..., Ry} is the effective rate of C’s fastest computer.

8 Recall that W) (C; L) is the most work that cluster C can complete in time L under any
worksharing protocol (Theorem[T).
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4.1 A Lower Bound on the LIFO Work Production W) (C; L)

1
Lemma 2. For every cluster C and lifespan L, W") (C;L) > , - L.
R(slow) +7F

Proof. By combining equation () for wb (C; L) with the “order-independent” Theo-
rem[3land the “faster-clusters-are-better” Proposition[I} we find that

nl R(SIOW) k R(slow) n
wh L) > Z L=1(1- L
— R(slow)+ R(slow) 47 T R(slow) 47
(N

We next invoke the “bigger-clusters-are-more-powerful” Proposition 2 to remark that
wihc;L) = whe L), ®)

where C' is the two-computer subcluster of C whose profile is (R1, Rz2), and R(slow) ¢
{R1, R2}. We then combine inequalities (7) and (8} to see that

(slow) 2
W) = woein s Lo (- B L
T R(SOW)—&—?

1 R(slow) R(slow)

= -1 — (1 ) 1 + (sl B E L
T slow Jr S OW 7_
1 R(blOW)

> _-[1 - . -L
T R(b ow) +7F

1

- L.

R(slow) +7F
The lemma follows. a

4.2 An Upper Bound on the FIFO Work Production w® (C; L)

1
Lemma 3. For every cluster C and lifespan L, WP (C; L) < ~ - L.
T

Proof. We simplify the development by replacing cluster C’s characterizing parameters
by a composite parameter that bounds its computation-to-communication complexity:
the ratio ke & RV /7. By combining equation (3) for WP (C; L) with the “faster-
clusters-are-better” Proposition[I] we then find that

< L (1 5)(R<fa5” +07)"
w® (C;L) < - (1 - (R R(fast) +7)" — 5 (R R(fast) +o7T)" ) *
1 - (1 =98)(ke + )™ .
T < (ke +1)" — 6+ (ke + 6)n> -
1 1-6
- _— 1 - ke+(n—rc) L
((mc +1)/ (ke + 5)) N
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We now invoke the classical inequality

m
(1 + x) < e,
m

which holds for all real positive x and m, to observe that

1\ 1—6\" 1—6\"*
ey (1 < (14 < el
Ke+ 6 Kc+ 6 Kec+ 0
This inequality combines with our assumption that 6 < 1 to allow us to extend the

preceding chain of inequalities on WP (C; L). We find that

1 1-9 1
") (c. (1 _ _
wher) < (1 6(16)@%)5) L< _-L

The lemma follows. O

4.3 The LIFO-FIFO Bounding Ratio

Finally, we combine the bounds of LemmasPland Bl to conclude that for all clusters C
and lifespans L,

W¢c. T F(c-
WW(C, L) > R | 7 -WW(C; L).
The fraction ¢ = RElow) | = thus satisfies Theorem [l O
T

Clearly, the fraction ¢¢ does not depend on how heterogeneous cluster C is as mea-
sured by the relative speeds of its fastest and slowest computers—as exposed, say, by
the size of the ratio R*'o") /R(fast)

5 Conclusions

We have exposed unexpected properties of the LIFO worksharing protocol, the struc-
turally attractive and intuitively compelling greedy solution to the Cluster Exploitation
Problem (CEP). These properties involve both the structure of the LIFO protocol and
its behavior, measured via its work-production in the CEP.

In terms of the LIFO protocol’s behavior, our main result shows that the protocol’s
work-production when solving the CEP is at least a fixed constant fraction of optimal
(Theorem[). In view of the ease of specifying and analyzing the LIFO protocol, this
result may promote interest in the protocol—and in pursuing analogous performance
bounds for other as-yet unanalyzed scheduling heuristics.

In terms of the LIFO protocol’s structure, we have shown that a cluster’s work-
production under the LIFO protocol is independent of the order in which the cluster’s
computers are supplied with work (Theorem[3). This independence is shared by the op-
timal FIFO worksharing protocol; we conjecture that it is shared by no protocols other
than FIFO and LIFO. This unexpected result joins companions in [2/10J12] in remind-
ing us of the subtlety of the phenomenon of heterogeneity in computing—even with
respect to as simple a scheduling problem as the CEP.

Future work will attempt to settle the order-independence conjecture and will explore
the CEP when work complexity is not linear in work size.
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Abstract. JavaSymphony is a Java-based programming and execution
environment for programming and scheduling the performance oriented
applications on multi-core parallel computers. In this paper, we present
a multi-core aware scheduling extension to JavaSymphony capable of
mapping parallel applications on large multi-core machines and hetero-
geneous clusters. JavaSymphony scheduler considers several multi-core
specific performance parameters and application types, and uses these
parameters to optimise the mapping of JavaSymphony objects and tasks.
We evaluate the performance of JavaSymphony scheduler using several
real scientific applications and benchmarks on a multi-core shared mem-
ory machine and a heterogeneous cluster.

1 Introduction

Multi-core processors [2] add an additional level of parallelism to the existing par-
allel computers and scheduling parallel applications becomes even more challeng-
ing. To speedup applications, a scheduler is required to consider the application
properties (e.g., communication and computation needs) and architectural char-
acteristics (e.g., network and memory latencies, heterogeneity of machines, mem-
ory hierarchies, machine load). Today, there are many research efforts [34IGIS9],
which target application scheduling on multi-core parallel computers. Some of
them [3U6)8], however, either consider at most one architectural characteristic
or they [9] are limited to a specific parallel computing architecture (e.g., shared
or distributed memory computers). We extend our Java-based parallel program-
ming paradigm with a scheduler capable of scheduling jobs on multi-core parallel
computers. To the best of our knowledge, we are the one who provides a scheduler
for Java applications which considers the low level multi-core specific character-
istics (e.g., network and memory latencies, bandwidth, processor speed, shared
cache, machine load).

In previous work [I], we developed JavaSymphony (JS) as a Java-based pro-
gramming paradigm for parallel and distributed infrastructures such as shared
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“Parallel Computing with Java for Manycore Computers”.
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memory multi-cores and heterogeneous clusters. JS’s design is based on the con-
cept of dynamic virtual architecture, which allows the programmer to fully define
a hierarchical structure of the underlying computing resources (e.g., cores, pro-
cessors, machines, and clusters) and to control load balancing and locality.

A main drawback of the JS’s design is the fact that the mapping of objects
and tasks to computing cores has to be performed manually by the programmer.

To fill this gap, we extend JS with a scheduler based on a non-preemptive
static scheduling algorithm capable of mapping the JS parallel applications (e.g.,
shared, distributed, and hybrid memory applications with high degree of regular-
ity). Many architecture specific factors (e.g., processor speed, memory and net-
work latencies, resource sharing, and machine load) influence the performance of
a parallel application. Considering alone the target architecture is not sufficient
to determine the sensitivity of a performance factor. The application class (e.g.,
communication and computation needs) and the architectural features collec-
tively determine the performance sensitivity of a factor. Therefore, we propose a
method based on training experiments that determines the sensitivities of per-
formance factors with respect to the application classes (e.g., communication
and computation-intensive) and multi-core architectures (e.g., shared memory
machines, heterogeneous clusters). The training data consists of sorted lists of
Performance Factor (PF), which is used by the JS scheduler as guidelines.

The paper is organised as follows. Next section discusses the related work.
Section 3] presents the JS overview. Section @] presents the JS scheduler, including
its architecture, methodlogy, and algorithm. Section [B presents experimental
results and section [6] concludes the paper.

2 Related Work

Jcluster [8] is a Java-based message passing parallel environment. It provides a
load balancing task scheduler based on transitive random stealing algorithm. The
scheduler allows the idle nodes to steal tasks from the busy nodes. In contrast
to the JS, they consider only the load balancing factor on clusters.

Proactive [3] is a Java-based parallel environment providing high-level pro-
gramming abstractions based on the concept of active objects. Alongside pro-
gramming, Proactive provides deployment-level abstractions for applications on
multi-core machines, clusters, and Grids. In contrast to the JS, Proactive does
not provide functionality to map an active object to a specific core or processor.

Parallel Java [0] is a Java-based programming environment. It provides pro-
gramming constructs similar to the OpenMP and MPI. Parallel Java’s scheduler
keeps track of the busy and idle nodes in a cluster, and schedules the jobs by
selecting one of the idle nodes. In contrast to the JS, they only consider the
availability of nodes (free machines) as the main scheduling criteria.

In [9] the authors studied the impact of the shared resource contention on the
application performance. To avoid the shared resource contention, they proposed
a scheduling algorithm which allocates jobs in order to balance the cores’ cache
miss rates. In contrast to our approach, their scheduler only considers shared
memory multi-cores and does not schedule applications on clusters.
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In [4], the authors presented an energy-aware scheduling algorithm for het-
erogeneous multi-core machines. They use profiling to collect the different char-
acteristics of a parallel program and then fuzzy logic is applied to estimate the
suitability among program characteristics and cores. In contrast to our approach,
they do not consider several important performance-sensitive factors such as pro-
cessor computing power, co-scheduling of threads, and latencies.

Most of the related work, either considers few multi-core characteristics or
they are limited to the specific target architectures. To the best of our knowl-
edge, no Java-based scheduler considers the low-level multi-core and application
related characteristics.

3 JavaSymphony

JavaSymphony is a Java-based programming
paradigm for developing parallel and distributed
applications. JS’s high-level constructs abstract
low-level infrastructure details and simplify the [Hieviva
tasks of controlling parallelism and locality. It of-
fers a unified solution for user-controlled locality- pgeesso
aware mapping of objects and tasks on shared L
and distributed memory architectures. Here, we
provide an overview of some of the JS features,
while complete details can be found in [I].

JS’s design is based on the concept of the dy-
namic Virtual Architecture (VA) [I]. A VA allows the programmer to define the
structure of heterogeneous computing resources and to control mapping, load
balancing and migration of objects. Most existing work [3J6] assumes a flat hi-
erarchy of computing resources. In contrast, JS allows the programmer to fully
specify the multi-core architectures [I] by defining as a tree structure, where
each VA element has a certain level representing a specific resource granularity.
Figure [l depicts a four-level VA representing a heterogeneous cluster.

Writing a parallel JS application requires encapsulating Java objects into so
called JS objects, which are distributed and mapped onto the hierarchical VA
nodes (levels 0 to n). The object agent system [I], a part of JS runtime environ-
ment, processes remote as well as local shared memory jobs. It is responsible for
creating jobs, mapping objects to VAs, migrating, and releasing objects.

Previously, the JS programmer was responsible to create the required VAs
and to manually map the objects and tasks onto the VA nodes which we plan
to automatise by developing a scheduler that automatically creates the required
VAs and manages the mappings of the JS objects and tasks.

__---Grid

Distributed memory
(Cluster)

<—Shared memory
(NUMA, UMA)

Fig. 1. Four-level VA

4 JavaSymphony Scheduler

JavaSymphony scheduler is a multi-core aware scheduler that operates in a two
stages. In stage-1, training experiments are conducted offline to study the perfor-
mance impacts of the different factors (e.g., processor speed, memory /network
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latencies, bandwidth, co-scheduling) with respect to the two architectures and
application classes (for simplicity). In stage-2, the JS scheduler uses the collected
training data as guidelines to optimise the selection of the target computing
resources (e.g., machines, processors, and cores). For the training and the vali-
dation experiments, we use several applications which we classify in two classes
(e.g., compute-intensive and the communication-intensive). The classification of
the applications is performed by measuring the computational needs of the ap-
plications, Section [5.1] describes in detail the classification experiment and the
related results.

4.1 System Architecture

Figure 2 shows the JS system architec-
ture. The JS runtime [I] is an agent-

based system and has two main compo- o [Noder Node-n
nents: object and network agent system. A R —— M asymaony
The object agent system has two compo- Aoestion fenlgaton Anelgeion
nents: the Public Object Agent (PubOA, H G H ” e H
one for each machine), and the Applica- ... II><I
tion Object Agent (AppOA, one for each ™" ) -

1 1 _ PubOA & PubOA &
fs apphc.?tlon). (’iI‘het net‘:}]orktahgiﬁt Sys Resou:ce Manager H H Resoul:ce Manager

em monitors and interacts wi e cor-

. . . Network Network Agent Network Agent

responding multi-core machine. Aﬂe"'SYS“"{
The JS SCheduler has tWO moduleS: re- Multi-core‘ machine-1 Multi-cor? machine-n

source manager and scheduler. The re-  "Guser _m._m. _m._m.
source manager is part of the PubOA GPGPU-1 |ua[ GPGPU-n | | GPGPU-7 Jas| GPGPU-n

and interacts with the multi-core ma-

chine with the help of the network agent.  pig 2. The JS System Architecture
The resource manager acquires and keeps

track of the physical computing resources (e.g., cores, processors, and multi-core
machine) and collects the machine related information: network and memory la-
tencies, memory hierarchies and bandwidth and processor details (e.g., topology,
speed). The scheduler is part of the AppOA and runs along with the executing
JS application. The scheduler uses the information provided by the resource
manager and the programmer (in form of PF lists) to sub-optimally schedule
the JS objects and tasks on the multi-core resources.

4.2 Scheduling Methodology

The JS scheduler considers following performance factors together with two ap-
plication classes (e.g., compute and communication intensive) to determine the
performance sensitivities for the factors.

1. Network latency: The amount of time required by a message to travel from
one machine to another in a cluster.

2. Memory latency: The time delay which occurs for a message to travel from
a main memory module to a processor (e.g., NUMA latencies).
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3. Bandwidth: The amount of data transferred (in a second), from one machine
to another in a cluster (network bandwidth) or from a memory module to a
processor (memory bandwidth, such as in NUMA-based machines).

4. Co-scheduling: Co-scheduling of the parallel threads is achieved by map-
ping n threads on a multi-core processor (having n cores and shared last level
cache). The not-co-scheduled execution is obtained by mapping threads on
different processors (avoiding the sharing of the last level cache). The co-

scheduling ratio (cos) shows the performance improvements or degradations

(P)not—co—scheduled
T(P)co—scheduled
allel execution time of the application. The cos value greater than 1 shows

improved, less than 1 shows degraded, and the cos value 1 shows no change
in the performance of the application.

5. Machine load: The number of parallel tasks mapped on a multi-core ma-
chine. In this work, we only consider the load during the computational stage
(excluding the external load). It plays significant role in the performance of
the hybrid memory applications. If a machine’s load is not balanced, then
the over-loaded machines will face more contention on the shared resources.

6. Processor speed: The processor speed represents the computing power
(clock frequency) of a processor.

and is calculated as follows: cos = © , where T'(p) is the par-

In stage-1, the training experiments are conducted to determine the signifi-
cance of the above mentioned factors for the available multi-core architectures
and application classes (e.g., communication and computation intensive). We
manually search a sub-optimal VA node (e.g., core, processor, or machine) by
considering a performance factor and map the JS tasks onto the selected VA
node. For example, to search a sub-optimal VA node with respect to the proces-
sor speed factor, we select the fastest available resources (e.g., cores, processors,
and machines) and manually map the JS tasks onto the selected VA nodes. Us-
ing this methodology, we collect the performance impact data for all the factors
with respect to the two parallel architectures and the application classes.

In stage-2, the JS scheduler utilises the collected training data (in the form
of PF lists) and makes the scheduling decisions using that. To schedule a JS ap-
plication on a parallel architecture, the scheduler requires the training data for
the similar application class on the target parallel architecture. The JS scheduler
uses a repetitive optimisation method (to find a sub-optimal VA node) by con-
sidering all the performance factors in the PF list. After optimising with respect
to all the factors, the scheduler selects one of the VA node (e.g., core, processor,
or machine) and maps the task onto the selected resource.

4.3 Algorithm

A JS application consists of two schedule entities: the coarse-grained JS objects
and the fine-grained JS tasks. Therefore, we designed the scheduling algorithm
to operate in two phases: in phase-1 the JS objects are scheduled and in phase-2
the JS tasks.
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Algorithm 1. JavaSymphony Scheduler (main part)

Input: AppPrgMdl,AppClass,Arch,JSObjectQ,JSTaskQ,Rlist
Output: JS scheduled application

1 begin

2 while true do

3 phase «— 1; /* phase-1 (object) scheduling */
a while JSObjectQ # 0 do

5 Object obj «—— pop(JSObjectQ); /* get next JS object */
6 VA v «— GetOptNode(phase, AppClass, Arch, AppPrgMadl);

7 Schedule(obj, v); /* map JS object obj to VA node v */
8 UpdateResources(Rlist, obj, v);

9 end

10 phase «—— 2; /* phase-2 (task) scheduling */
11 while JSTaskQ # 0 do

12 Task tsk «— pop(JSTaskQ); /* get next JS task */
13 VA v «— GetOptNode(phase, AppClass, Arch, AppPrgMadl);

14 Schedule(tsk, v); /* map JS task tsk to VA node v */
15 UpdateResources(Rlist, tsk,v);

16 end

17 end

18 end

Algorithm [J]shows the main scheduling algorithm. First, the input data items
are declared: AppPrgMdl (JS application’s programming model e.g., shared, dis-
tributed, or hybrid), AppClass (compute-/communication-intensive), Arch (tar-
get architecture e.g., shared or distributed memory computer), JSObject@ (JS
object queue), JSTask@ (JS task queue), and Rlist (resource status). In line 2,
main scheduling loop starts. First, the scheduling phase is updated (line 3) and
phase-1 scheduling starts (line 4). In line 5, the object obj is extracted from the
object queue. Then, GetOptNode method (Algorithm P) is invoked (line 6) which
returns a sub-optimal VA node v, by considering the scheduling phase (phase),
the application class (AppClass), the architecture (Arch), and the programming
model (AppPrgMdl). Then, the obj object is mapped to the VA node v (line
7). Afterwards, the mapping details are passed to the resource manager (line 8).
In the phase-2, the JS tasks are scheduled (lines 10 — 16). First, the scheduling
phase is updated (line 10) and the phase-2 scheduling starts at line 11. A task
tsk is extracted from the task queue (line 12). Then, the GetOptNode method
is invoked (line 13) that returns a sub-optimal VA node v, by considering the
scheduling phase, application class, architecture, and programming model. Then,
the task tsk is mapped to the VA node v (line 14) and the mapping details are
passed to the resource manager (line 15).

Algorithm [ shows the GetOptNode method. First, a VA node v is created
(line 2). The existing VA nodes (e.g., cores, processors, machines, and cluster)
are acquired in vaNodes (line 3). The performance factors list (PFlist) is read
(line 4). For the object scheduling, the getAppVaNode method is invoked with
parameters: the programming model, the application class, the architecture, all
VA nodes, and the PFlist (lines 5 — 6). The getAppVaNode method returns a
sub-optimal VA node by considering the application programming model (e.g.,
shared, distributed, or hybrid memory). For example, if a hybrid memory JS
application is scheduled, then it returns a VA node representing a multi-core
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Algorithm 2. JavaSymphony Scheduler - GetOptNode method

Input: AppPrgMdl,AppClass,Arch,phase
Output: VA v

1 begin

2 VAv— 0

3 V A[ ] vaNodes «—— ReadSystemV aNodes(); /* read all VA nodes */
4 Vector PFlist «— ReadSystemPF List(Arch, AppClass);

5 if phase=1 then /* phase-1, object scheduling */
6 v «— getAppV aNode(AppPrgMdl, AppClass, Arch,vaNodes, PFlist)

7 else if phase=2 then /* phase-2, task scheduling */
8 V A[ ] optNodes «—— vaNodes;

9 while PFlist.hasNext() do /* find a sub-optimal VA node */
10 Object pfct «—— PFlist.getNext();

11 optNodes «— getBestFitNodes(pfct, optNodes);

12 end

13 v «—— optNodes[0];

14 end

15 return v;

16 end

machine in a cluster (optimising only the network performance factors). In phase-
2 (line 8), first all VA nodes are assigned to optNodes. After the start of the loop
in line 9, a performance factor pfct is obtained (line 10). In line 11, getBestFitN-
odes method is invoked, this method returns a subset of VA nodes by considering
optimisation with respect to a factor (pfct). For example, when the method is
called using the performance factor processor speed, then it returns a subset of
the sub-optimal VA nodes which represents the fastest available machines, pro-
cessors, and cores. After optimising all the factors in PFlist, a sub-optimal VA
node is assigned to v (line 13). In line 15, the VA node v is returned.

5 Experiments

We developed several JS-based real applications and benchmarks and experi-
mented using two types multi-core parallel computers: shared memory machines
(m01 — 02) and a heterogeneous cluster (HC, an aggregation of m01 — 02 and
k01 — 03 machines). Table [Tl outlines the details of the experimental setup.

5.1 Experimental Methodology
We perform two types of experiments for training and validation of the JS sched-

uler. Before the experiments, we classify all the applications in two classes: the
communication-intensive and the computation-intensive.

Table 1. The Experimental Setup

Nodes Node Shared Processor Processor cores Network
architecture caches per node
m0l — 02 NUMA L3 Quad-core Opteron 8356 32 (8 x 4) Gigabit Ethernet

k01 — 03 UMA - Dual-core Opteron 885 8 (4 x 2) Gigabit Ethernet
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To classify an application, we measured the ap-  yayixero
plication execution time performing pure com-  vcmatrix

putational tasks (e.g., add, multiply, divide). § spmvm
For that, we measure the performance coun- § ::Z"‘:"G" ]
ters RETIRED X87 FLOATING POINT OPERATIONS 5 " kil

and CPU CLOCK UNHALTED and calculate the time NAS EP

(in seconds) consumed by each of the com- 5 10 20 30 40 50 60 70 80 50100
pute operations using the formula: Time(op) = Execution time %
Count(op)x CyclesPer(op)

CpuFrequency , where op denotes addi-
tion, multiplication or division. Then, we sum
the time consumed by the compute-operations
and calculate the percentage of computation time from the overall execution.
The results (shown in Figure B]) are then used to classify all the applica-
tions in compute-intensive (more than 50% time in computations) and the
communication-intensive (less than 50% time in computations) classes. Within
each class, we use some of the applications for the training phase and the rest
for the validation experiments.

In the training experiments, we manually map JS tasks to VA nodes by search-
ing for a sub-optimal node (considering a performance factor e.g., processor
speed, latency, co-scheduling). For example, to search a sub-optimal node with
respect to the latency factor results in the subset of the VA nodes which mini-
mize the latency (both network and memory) of the mapped JS tasks. Similarly,
we collect the performance gains achieved by each factor (whichever applicable,
e.g., bandwidth on m01-02 machines is modeled by the latency, therefore it is not
listed) with respect to the two parallel architectures and the application classes.
Table 21 shows the results (along the performance gains achieved as compared to
the default executions) as a sorted list of the performance factors (PF). The PF
lists highlight the significance of the different performance factors with respect
to the target architectures and the application classes.

In the validation experiments, the JS applications are scheduled by the sched-
uler based on the application programming model (shared, distributed, or hy-
brid), architecture type (shared or distributed memory computer), and applica-
tion class (compute or communication intensive). The PF lists are also supplied
to the scheduler (Algorithm [Il), which uses them as guidelines for optimising the
search and the selection of the target VA nodes. The JS scheduler creates the
required VAs and sub-optimally maps the JS entities (objects and tasks) onto
the VA nodes. The experim