

Lecture Notes in Computer Science 6852
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Emmanuel Jeannot Raymond Namyst
Jean Roman (Eds.)

Euro-Par 2011
Parallel Processing

17th International Conference, Euro-Par 2011
Bordeaux, France,August 29–September 2, 2011
Proceedings, Part I

13

Volume Editors

Emmanuel Jeannot
INRIA
351, Cours de la Libération
33405 Talence Cedex, France
E-mail: emmanuel.jeannot@inria.fr

Raymond Namyst
Université de Bordeaux, INRIA
351, Cours de la Libération
33405 Talence Cedex, France
E-mail: raymond.namyst@labri.fr

Jean Roman
Université de Bordeaux, INRIA
351, Cours de la Libération
33405 Talence Cedex, France
E-mail: jean.roman@inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23399-9 e-ISBN 978-3-642-23400-2
DOI 10.1007/978-3-642-23400-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934379

CR Subject Classification (1998): F.1.2, C.3, C.2.4, D.1, D.4, I.6, G.1, G.2, F.2, D.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.

Euro-Par covers a wide spectrum of topics from algorithms and theory to
software technology and hardware-related issues, with application areas ranging
from scientific to mobile and cloud computing.

Euro-Par provides a forum for the introduction, presentation and discussion
of the latest scientific and technical advances, extending the frontier of both the
state of the art and the state of the practice.

The main audience of Euro-Par are researchers in academic institutions, gov-
ernment laboratories and industrial organizations. Euro-Par’s objective is to be
the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications which demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of ac-
companying, technical workshops. Thus, smaller and emerging communities can
meet and develop more focussed topics or as-yet less established topics.

Euro-Par 2011 was the 17th conference in the Euro-Par series, and was or-
ganized by the INRIA (The French National Institute for Research in Com-
puter Science and Control) Bordeaux Sud-Ouest center and LaBRI (Computer
Science Laboratory of Bordeaux). Previous Euro-Par conferences took place in
Stockholm, Lyon, Passau, Southampton, Toulouse, Munich, Manchester, Pad-
derborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft and
Ischia. Next year the conference will take place in Rhodes, Greece. More in-
formation on the Euro-Par conference series and organization is available on the
wesite http://www.europar.org.

The conference was organized in 16 topics. This year we introduced one new
topic (16: GPU and Accelerators Computing) and re-introduced the application
topic (15: High-Performance and Scientific Applications). The paper review pro-
cess for each topic was managed and supervised by a committee of at least four
persons: a Global Chair, a Local Chair, and two Members. Some specific topics
with a high number of submissions were managed by a larger committee with
more members. The final decisions on the acceptance or rejection of the sub-
mitted papers were made in a meeting of the Conference Co-chairs and Local
Chairs of the topics.

The call for papers attracted a total of 271 submissions, representing 41 coun-
tries (based on the corresponding authors’ countries). A total number of 1, 065
review reports were collected, which makes an average of 3.93 review reports
per paper. In total 81 papers were selected as regular papers to be presented at

VI Preface

the conference and included in the conference proceedings, representing 27 coun-
tries from all continents, an yielding an acceptance rate of 29.9%. Three papers
were selected as distinguished papers. These papers, which were presented in a
separate session, are:

1. Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,
Rob Ross and Nagiza F. Samatova “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-Temporal Data”

2. Aurelien Bouteiller, Thomas Herault, George Bosilca and Jack J. Dongarra
“Correlated Set Coordination in Fault-Tolerant Message Logging Protocols”

3. Edgar Solomonik and James Demmel “Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms”.

Euro-Par 2011 was very happy to present three invited speakers of high inter-
national reputation, who discussed important developments in very interesting
areas of parallel and distributed computing:

1. Pete Beckman (Argonne National Laboratory and the University of Chicago),
“Facts and Speculations on Exascale: Revolution or Evolution?”

2. Toni Cortes Computer Architecture Department (DAC) in the Universitat
Politècnica de Catalunya, Spain), “Why Trouble Humans? They Do Not
Care”

3. Alessandro Curioni (IBM, Zurich Research Laboratory, Switzerland), “New
Scalability Frontiers in Ab-Initio Molecular Dynamics”

In this edition, 12 workshops were held in conjunction with the main track
of the conference. These workshops were:

1. CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing (CGWS
2011)

2. Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar 2011)

3. High-Performance Bioinformatics and Biomedicine (HiBB)
4. System-Level Virtualization for High Performance Computing (HPCVirt

2011)
5. Algorithms and Programming Tools for Next-Generation High-Performance

Scientific Software (HPSS 2011)
6. Managing and Delivering Grid Services (MDGS)
7. UnConventional High-Performance Computing 2011 (UCHPC 2011)
8. Cloud Computing Projects and Initiatives (CCPI)
9. Highly Parallel Processing on a Chip (HPPC 2011)

10. Productivity and Performance (PROPER 2011)
11. Resiliency in High-Performance Computing (Resilience) in Clusters, Clouds,

and Grids
12. Virtualization in High-Performance Cloud Computing (VHPC 2011)

The 17th Euro-Par conference in Bordeaux was made possible thanks to the
support of many individuals and organizations. Special thanks are due to the au-
thors of all the submitted papers, the members of the topic committees, and all

Preface VII

the reviewers in all topics, for their contributions to the success of the conference.
We also thank the members of the Organizing Committee and people of the Sud
Congrès Conseil. We are grateful to the members of the Euro-Par Steering Com-
mittee for their support. We acknowledge the help we had from Dick Epema of
the organization of Euro-Par 2009 and Pasqua D’Ambra and Domenico Talia of
the organization of Euro-Par 2010. A number of institutional and industrial spon-
sors contributed toward the organization of the conference. Their names and lo-
gos appear on the Euro-Par 2011 website http://europar2011.bordeaux.inria.fr/

It was our pleasure and honor to organize and host Euro-Par 2011 in Bor-
deaux. We hope all the participants enjoyed the technical program and the social
events organized during the conference.

August 2011 Emmanuel Jeannot
Raymond Namyst

Jean Roman

Organization

Euro-Par Steering Committee

Chair

Chris Lengauer University of Passau, Germany

Vice-Chair

Luc Bougé ENS Cachan, France

European Respresentatives

José Cunha New University of Lisbon, Portugal
Marco Danelutto University of Pisa, Italy
Emmanuel Jeannot INRIA, France
Paul Kelly Imperial College, UK
Harald Kosch University of Passau, Germany
Thomas Ludwig University of Heidelberg, Germany
Emilio Luque Autonomous University of Barcelona, Spain
Tomàs Margalef Autonomous University of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Henk Sips Delft University of Technology,

The Netherlands
Domenico Talia University of Calabria, Italy

Honorary Members

Ron Perrott Queen’s University Belfast, UK
Karl Dieter Reinartz University of Erlangen-Nuremberg, Germany

Observers

Christos Kaklamanis Computer Technology Institute, Greece

X Organization

Euro-Par 2011 Organization

Conference Co-chairs

Emmanuel Jeannot INRIA, France
Raymond Namyst University of Bordeaux, France
Jean Roman INRIA, University of Bordeaux, France

Local Organizing Committee

Olivier Aumage INRIA, France
Emmanuel Agullo INRIA, France
Alexandre Denis INRIA, France
Nathalie Furmento CNRS, France
Laetitia Grimaldi INRIA, France
Nicole Lun LaBRI, France
Guillaume Mercier University of Bordeaux, France
Elia Meyre LaBRI France

Euro-Par 2011 Program Committee

Topic 1: Support Tools and Environments

Global Chair
Rosa M. Badia Barcelona Supercomputing Center and CSIC,

Spain

Local Chair

Fabrice Huet University of Nice Sophia Antipolis, France

Members
Rob van Nieuwpoort VU University Amsterdam, The Netherlands
Rainer Keller High-Performance Computing Center

Stuttgart, Germany

Topic 2: Performance Prediction and Evaluation

Global Chair

Shirley Moore University of Tennessee, USA

Local Chair

Derrick Kondo INRIA, France

Organization XI

Members
Giuliano Casale Imperial College London, UK
Brian Wylie Jülich Supercomputing Centre, Germany

Topic 3: Scheduling and Load-Balancing

Global Chair
Leonel Sousa INESC-ID/Technical University of Lisbon,

Portugal

Local Chair

Frédéric Suter IN2P3 Computing Center, CNRS, France

Members
Rizos Sakellariou University of Manchester, UK
Oliver Sinnen University of Auckland, New Zealand
Alfredo Goldman University of São Paulo, Brazil

Topic 4: High Performance Architectures and Compilers

Global Chair

Mitsuhisa Sato University of Tsukuba, Japan

Local Chair

Denis Barthou University of Bordeaux, France

Members
Pedro Diniz INESC-ID, Portugal
P. Saddayapan Ohio State University, USA

Topic 5: Parallel and Distributed Data Management

Global Chair

Salvatore Orlando Università Ca’ Foscari Venezia, Italy

Local Chair

Gabriel Antoniu INRIA, France

Members
Amol Ghoting IBM T. J. Watson Research Center, USA
Maria S. Perez Universidad Politecnica de Madrid, Spain

XII Organization

Topic 6: Grid, Cluster and Cloud Computing

Global Chair

Ramin Yahyapour TU Dortmund University, Germany

Local Chair

Christian Pérez INRIA, France

Members
Erik Elmroth Ume̊a University, Sweden
Ignacio M. Llorente Complutense University of Madrid, Spain
Francesc Guim Intel, Portland, USA
Karsten Oberle Alcatel-Lucent, Bell Labs, Germany

Topic 7: Peer to Peer Computing

Global Chair

Pascal Felber University of Neuchâtel, Switzerland

Local Chair

Olivier Beaumont INRIA, France

Members
Alberto Montresor University of Trento, Italy
Amitabha Bagchi Indian Institute of Technology Delhi, India

Topic 8: Distributed Systems and Algorithms

Global Chair

Dariusz Kowalski University of Liverpool, UK

Local Chair

Pierre Sens University Paris 6, France

Members
Antonio Fernandez Anta IMDEA Networks, Spain
Guillaume Pierre VU University Amsterdam, The Netherlands

Topic 9: Parallel and Distributed Programming

Global Chair

Pierre Manneback University of Mons, Belgium

Organization XIII

Local Chair

Thierry Gautier INRIA, France

Members
Gudula Rünger Technical University of Chemnitz, Germany
Manuel Prieto Matias Universidad Complutense de Madrid, Spain

Topic 10: Parallel Numerical Algorithms

Global Chair
Daniela di Serafino Second University of Naples and ICAR-CNR,

Italy

Local Chair

Luc Giraud INRIA, France

Members
Martin Berzins University of Utah, USA
Martin Gander University of Geneva, Switzerland

Topic 11: Multicore and Manycore Programming

Global Chair

Sabri Pllana University of Vienna, Austria

Local Chair

Jean-François Méhaut University of Grenoble, France

Members
Eduard Ayguade Technical University of Catalunya and

Barcelona Supercomputing Center, Spain
Herbert Cornelius Intel, Germany
Jacob Barhen Oak Ridge National Laboratory, USA

Topic 12: Theory and Algorithms for Parallel Computation

Global Chair

Arnold Rosenberg Colorado State University, USA

Local Chair

Frédéric Vivien INRIA, France

XIV Organization

Members
Kunal Agrawal Washington University in St Louis, USA
Panagiota Fatourou University of Crete, Greece

Topic 13: High Performance Network and Communication

Global Chair

Jesper Träff University of Vienna, Austria

Local Chair

Brice Goglin INRIA, France

Members
Ulrich Bruening University of Heidelberg, Germany
Fabrizio Petrini IBM, USA

Topic 14: Mobile and Ubiquitous Computing

Global Chair

Pedro Marron Universität Duisburg-Essen, Germany

Local Chair

Eric Fleury INRIA, France

Members
Torben Weis University of Duisburg-Essen, Germany
Qi Han Colorado School of Mines, USA

Topic 15: High Performance and Scientific Applications

Global Chair

Esmond G. Ng Lawrence Berkeley National Laboratory, USA

Local Chair

Olivier Coulaud INRIA, France

Members
Kengo Nakajima University of Tokyo, Japan
Mariano Vazquez Barcelona Supercomputing Center, Spain

Organization XV

Topic 16: GPU and Accelerators Computing

Global Chair

Wolfgang Karl University of Karlsruhe, Germany

Local Chair

Samuel Thibault University of Bordeaux, France

Members
Stan Tomov University of Tennessee, USA
Taisuke Boku University of Tsukuba, Japan

Euro-Par 2011 Referees

Muresan Adrian
Kunal Agrawal
Emmanuel Agullo
Toufik Ahmed
Taner Akgun
Hasan Metin Aktulga
Sadaf Alam
George Almasi
Francisco Almeida
Jose Alvarez Bermejo
Brian Amedro
Nazareno Andrade
Artur Andrzejak
Luciana Arantes
Mario Arioli
Ernest Artiaga
Rafael Asenjo
Romain Aubry
Cédric Augonnet
Olivier Aumage
Eduard Ayguade
Rosa M. Badia
Amitabha Bagchi
Michel Bagein
Enes Bajrovic
Allison Baker
Pavan Balaji
Sorav Bansal
Jorge Barbosa

Jacob Barhen
Denis Barthou
Rajeev Barua
Francoise Baude
Markus Bauer
Ewnetu Bayuh Lakew
Olivier Beaumont
Vicenç Beltran
Joanna Berlinska
Martin Berzins
Xavier Besseron
Vartika Bhandari
Marina Biberstein
Paolo Bientinesi
Aart Bik
David Boehme
Maria Cristina Boeres
Taisuke Boku
Matthias Bollhoefer
Erik Boman
Michael Bond
Francesco Bongiovanni
Rajesh Bordawekar
George Bosilca
François-Xavier Bouchez
Marin Bougeret
Aurelien Bouteiller
Hinde Bouziane
Fabienne Boyer

XVI Organization

Ivona Brandic
Francisco Brasileiro
David Breitgand
Andre Brinkman
François Broquedis
Ulrich Bruening
Rainer Buchty
j. Mark Bull
Aydin Buluc
Alfredo Buttari
Edson Caceres
Agustin Caminero
Yves Caniou
Louis-Claude Canon
Gabriele Capannini
Pablo Carazo
Alexandre Carissimi
Giuliano Casale
Henri Casanova
Simon Caton
José Maŕıa Cela
Christophe Cerin
Ravikesh Chandra
Andres Charif-Rubial
Fabio Checconi
Yawen Chen
Gregory Chockler
Vincent Cholvi
Peter Chronz
IHsin Chung
Marcelo Cintra
Vladimir Ciric
Pierre-Nicolas Clauss
Sylvain Collange
Denis Conan
Arlindo Conceicao
Massimo Coppola
Julita Corbalan
Herbert Cornelius
Toni Cortes
Olivier Coulaud
Ludovic Courtès
Raphael Couturier
Tommaso Cucinotta
Angel Cuevas

Pasqua D’Ambra
Anthony Danalis
Vincent Danjean
Eric Darve
Sudipto Das
Ajoy Datta
Patrizio Dazzi
Pablo de Oliveira Castro
César De Rose
Ewa Deelman
Olivier Delgrange
Alexandre Denis
Yves Denneulin
Frederic Desprez
Gérard Dethier
Daniela di Serafino
François Diakhaté
James Dinan
Nicholas Dingle
Pedro Diniz
Alastair Donaldson
Antonio Dopico
Matthieu Dorier
Niels Drost
Maciej Drozdowski
Lúcia Drummond
Peng Du
Cedric du Mouza
Vitor Duarte
Philippe Duchon
Jörg Dümmler
Alejandro Duran
Pierre-François Dutot
Partha Dutta
Eiman Ebrahimi
Rudolf Eigenmann
Jorge Ejarque Artigas
Vincent Englebert
Dominic Eschweiler
Yoav Etsion
Lionel Eyraud-Dubois
Flavio Fabbri
Fabrizio Falchi
Catherine Faron Zucker
Montse Farreras

Organization XVII

Panagiota Fatourou
Hugues Fauconnier
Mathieu Faverge
Gilles Fedak
Dror G. Feitelson
Pascal Felber
Florian Feldhaus
Marvin Ferber
Juan Fernández
Antonio Fernández Anta
Ilario Filippini
Salvatore Filippone
Eric Fleury
Aislan Foina
Pierre Fortin
Markos Fountoulakis
Rob Fowler
Vivi Fragopoulou
Felipe França
Emı́lio Francesquini
Sébastien Frémal
Davide Frey
Wolfgang Frings
Karl Fuerlinger
Akihiro Fujii
Nathalie Furmento
Edgar Gabriel
Martin Gaedke
Georgina Gallizo
Efstratios Gallopoulos
Ixent Galpin
Marta Garcia
Thierry Gautier
Stéphane Genaud
Chryssis Georgiou
Abdou Germouche
Michael Gerndt
Claudio Geyer
Amol Ghoting
Nasser Giacaman
Mathieu Giraud
Daniel Gmach
Brice Goglin
Spyridon Gogouvitis
Alfredo Goldman

Maria Gomes
Jose Gómez
Jose Gonzalez
José Luis González Garćıa
Rafael Gonzalez-Cabero
David Goudin
Madhusudhan Govindaraju
Maria Gradinariu
Vincent Gramoli
Fab́ıola Greve
Laura Grigori
Olivier Gruber
Serge Guelton
Gael Guennebaud
Stefan Guettel
Francesc Guim
Ronan Guivarch
Jens Gustedt
Antonio Guzman Sacristan
Daniel Hackenberg
Azzam Haidar
Mary Hall
Greg Hamerly
Qi Han
Toshihiro Hanawa
Mauricio Hanzich
Paul Hargrove
Masae Hayashi
Jiahua He
Eric Heien
Daniel Henriksson
Ludovic Henrio
Sylvain Henry
Francisco Hernandez
Enric Herrero
Pieter Hijma
Shoichi Hirasawa
Torsten Hoefler
Jeffrey Hollingsworth
Sebastian Holzapfel
Mitch Horton
Guillaume Houzeaux
Jonathan Hu
Ye Huang
Guillaume Huard

XVIII Organization

Fabrice Huet
Kévin Huguenin
Sascha Hunold
Costin Iancu
Aleksandar Ilic
Alexandru Iosup
Umer Iqbal
Kamil Iskra
Takeshi Iwashita
Julien Jaeger
Emmanuel Jeannot
Ali Jehangiri
Hideyuki Jitsumoto
Josep Jorba
Prabhanjan Kambadur
Yoshikazu Kamoshida
Mahmut Kandemir
Tejas Karkhanis
Wolfgang Karl
Takahiro Katagiri
Gregory Katsaros
Joerg Keller
Rainer Keller
Paul Kelly
Roelof Kemp
Michel Kern
Ronan Keryell
Christoph Kessler
Slava Kitaeff
Cristian Klein
Yannis Klonatos
Michael Knobloch
William Knottenbelt
Kleopatra Konstanteli
Miroslaw Korzeniowski
Dariusz Kowalski
Stephan Kraft
Sriram Krishnamoorthy
Diwakar Krishnamurthy
Rajasekar Krishnamurthy
Vinod Kulathumani
Raphael Kunis
Tilman Küstner
Felix Kwok
Dimosthenis Kyriazis

Renaud Lachaize
Ghislain Landry Tsafack
Julien Langou
Stefan Lankes
Lars Larsson
Alexey Lastovetsky
Guillaume Latu
Stevens Le Blond
Bertrand Le Cun
Erwan Le Merrer
Adrien Lèbre
Rich Lee
Erik Lefebvre
Arnaud Legrand
Christian Lengauer
Daniele Lezzi
Wubin Li
Charles Lively
Welf Loewe
Sebastien Loisel
João Lourenço
Kuan Lu
Jose Luis Lucas Simarro
Mikel Lujan
Ewing Lusk
Piotr Luszczek
Ignacio M. Llorente
Jason Maassen
Edmundo Madeira
Anirban Mahanti
Scott Mahlke
Sidi Mahmoudi
Nicolas Maillard
Constantinos Makassikis
Pierre Manneback
Loris Marchal
Ismael Maŕın
Mauricio Marin
Osni Marques
Erich Marth
Jonathan Mart́ı
Xavier Martorell
Naoya Maruyama
Fabien Mathieu
Rafael Mayo

Organization XIX

Abdelhafid Mazouz
Jean-François Méhaut
Wagner Meira
Alba Cristina Melo
Massimiliano Meneghin
Claudio Meneses
Andreas Menychtas
Jose Miguel-Alonso
Milan Mihajlovic
Alessia Milani
Cyriel Minkenberg
Neeraj Mittal
Flávio Miyazawa
Hashim Mohamed
Sébastien Monnet
Jesus Montes
Alberto Montresor
Shirley Moore
Matteo Mordacchini
Jose Moreira
Achour Mostefaoui
Miguel Mosteiro
Gregory Mounié
Xenia Mountrouidou
Hubert Naacke
Priya Nagpurkar
Kengo Nakajima
Jeff Napper
Akira Naruse
Bassem Nasser
Rajib Nath
Angeles Navarro
Philippe O. A. Navaux
Marco Netto
Marcelo Neves
Esmond Ng
Yanik Ngoko
Jean-Marc Nicod
Bogdan Nicolae
Dimitrios Nikolopoulos
Sébastien Noël
Ramon Nou
Alberto Nuñez
John O’Donnell
Satoshi Ohshima

Ariel Oleksiak
Stephen Olivier
Ana-Maria Oprescu
Anne-Cecile Orgerie
Salvatore Orlando
Per-Olov Ostberg
Herbert Owen
Sergio Pacheco Sanchez
Gianluca Palermo
George Pallis
Nicholas Palmer
Jairo Panetta
Alexander Papaspyrou
Michael Parkin
Davide Pasetto
George Pau
Christian Perez
Maria Perez-Hernandez
Francesca Perla
Jean-Jacques Pesqué
Franck Petit
Fabrizio Petrini
Frédéric Pétrot
Guillaume Pierre
Jean-Francois Pineau
Luis Piñuel
Jelena Pjesivac-Grbovic
Kassian Plankensteiner
Oscar Plata
Sabri Pllana
Leo Porter
Carlos Prada-Rojas
Manuel Prieto Matias
Radu Prodan
Christophe Prud’homme
Vivien Quema
Enrique Quintana-Ort́ı
Rajmohan Rajaraman
Lavanya Ramakrishnan
Pierre Ramet
Praveen Rao
Vinod Rebello
Pablo Reble
Sasank Reddy
Veronika Rehn-Sonigo

XX Organization

Giuseppe Reina
Olivier Richard
Etienne Riviere
Victor Robles
Thomas Röblitz
Jean-Louis Roch
David Rodenas
Ivan Rodero
Mathilde Romberg
Arnold Rosenberg
Diego Rossinelli
Philip Roth
Atanas Rountev
Francois-Xavier Roux
Jan Sacha
Ponnuswamy Sadayappan
Rizos Sakellariou
Tetsuya Sakurai
Alberto Sanchez
Jesus Sanchez
Frode Sandnes
Idafen Santana
Mitsuhisa Sato
Erik Saule
Robert Sauter
Bruno Schulze
Michael Schwind
Mina Sedaghat
Frank Seinstra
Pierre Sens
Damian Serrano
Patricia Serrano-Alvarado
Javier Setoain
Muhammad Shafique
Abhishek Sharma
Rémi Sharrock
Hemant Shukla
Christian Siebert
Juergen Sienel
Frederique Silber-Chaussumier
Claudio Silvestri
Luca Silvestri
Oliver Sinnen
Raül Sirvent
João Sobral

Fengguang Song
Siang Song
Borja Sotomayor
Leonel Sousa
Daniel Spooner
Anton Stefanek
Manuel Stein
Mark Stillwell
Corina Stratan
Frederic Suter
Petter Svärd
Guillermo Taboada
Daisuke Takahashi
Domenico Talia
Jie Tao
Issam Tarrass
Osamu Tatebe
Shirish Tatikonda
Andrei Tchernykh
Marc Tchiboukdjian
Cedric Tedeschi
Enric Tejedor Saavedra
Christian Tenllado
Radu Teodorescu
Alexandre Termier
Dan Terpstra
Samuel Thibault
Jeyarajan Thiyagalingam
Gaël Thomas
Rollin Thomas
Christopher Thraves
Yuanyuan Tian
Mustafa Tikir
Sebastien Tixeuil
Stanimire Tomov
Nicola Tonellotto
Johan Tordsson
Juan Touriño
Jesper Traff
Damien Tromeur-Dervout
Paolo Trunfio
Hong-Linh Truong
Bora Ucar
Osman Unsal
Timo van Kessel

Organization XXI

Rob van Nieuwpoort
Hans Vandierendonck
Ana Lucia Varbanescu
Sebastien Varrette
Mariano Vazquez
Tino Vázquez
Jose Luis Vazquez-Poletti
Lúıs Veiga
Rossano Venturini
Javier Verdu
Jerome Vienne
Frederic Vivien
Pierre-André Wacrenier
Frédéric Wagner
Stephan Wagner
Oliver Wäldrich
Matthäus Wander
Takumi Washio
Vince Weaver
Jan-Philipp Weiß
Torben Weis
Philipp Wieder

Jeremiah Willcock
Samuel Williams
Martin Wimmer
Xingfu Wu
Brian Wylie
Changyou Xing
Lei Xu
Yingxiang Xu
Ramin Yahyapour
Edwin Yaqub
Asim YarKhan
Srikant YN
Elad Yom-Tov
Kazuki Yoshizoe
Haihang You
Fa Zhang
Hui Zhang
Li Zhao
Wolfgang Ziegler
Wolf Zimmermann
Jaroslaw Zola
Marco Zuniga

Table of Contents – Part I

Topic 1: Support Tools and Environments

Introduction . 1
Rosa M. Badia, Fabrice Huet, Rob van Nieuwpoort, and
Rainer Keller

Run-Time Automatic Performance Tuning for Multicore
Applications . 3

Thomas Karcher and Victor Pankratius

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 15
Jochen Schimmel and Victor Pankratius

Accelerating Data Race Detection with Minimal Hardware Support 27
Rodrigo Gonzalez-Alberquilla, Karin Strauss, Luis Ceze, and
Luis Piñuel

Quantifying the Potential Task-Based Dataflow Parallelism in MPI
Applications . 39

Vladimir Subotic, Roger Ferrer, Jose Carlos Sancho,
Jesús Labarta, and Mateo Valero

Event Log Mining Tool for Large Scale HPC Systems 52
Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and
Bill Kramer

Reducing the Overhead of Direct Application Instrumentation Using
Prior Static Analysis . 65

Jan Mußler, Daniel Lorenz, and Felix Wolf

Topic 2: Performance Prediction and Evaluation

Introduction . 77
Shirley Moore, Derrick Kondo, Brian Wylie, and Giuliano Casale

Reducing Energy Usage with Memory and Computation-Aware
Dynamic Frequency Scaling . 79

Michael A. Laurenzano, Mitesh Meswani, Laura Carrington,
Allan Snavely, Mustafa M. Tikir, and Stephen Poole

A Contention-Aware Performance Model for HPC-Based Networks:
A Case Study of the InfiniBand Network . 91

Maxime Martinasso and Jean-François Méhaut

XXIV Table of Contents – Part I

Using the Last-Mile Model as a Distributed Scheme for Available
Bandwidth Prediction . 103

Olivier Beaumont, Lionel Eyraud-Dubois, and Young J. Won

Self-stabilization versus Robust Self-stabilization for Clustering in
Ad-Hoc Network . 117

Colette Johnen and Fouzi Mekhaldi

Multilayer Cache Partitioning for Multiprogram Workloads 130
Mahmut Kandemir, Ramya Prabhakar, Mustafa Karakoy, and
Yuanrui Zhang

Backfilling with Guarantees Granted upon Job Submission 142
Alexander M. Lindsay, Maxwell Galloway-Carson,
Christopher R. Johnson, David P. Bunde, and
Vitus J. Leung

Topic 3: Scheduling and Load Balancing

Introduction . 154
Leonel Sousa, Frédéric Suter, Alfredo Goldman,
Rizos Sakellariou, and Oliver Sinnen

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous
Clusters . 155

Arnold L. Rosenberg

Scheduling JavaSymphony Applications on Many-Core Parallel
Computers . 167

Muhammad Aleem, Radu Prodan, and Thomas Fahringer

Assessing the Computational Benefits of AREA-Oriented
DAG-Scheduling . 180

Gennaro Cordasco, Rosario De Chiara, and Arnold L. Rosenberg

Analysis and Modeling of Social Influence in High Performance
Computing Workloads . 193

Shuai Zheng, Zon-Yin Shae, Xiangliang Zhang, Hani Jamjoom, and
Liana Fong

Work Stealing for Multi-core HPC Clusters . 205
Kaushik Ravichandran, Sangho Lee, and Santosh Pande

A Dynamic Power-Aware Partitioner with Task Migration for Multicore
Embedded Systems . 218

José Luis March, Julio Sahuquillo, Salvador Petit,
Houcine Hassan, and José Duato

Table of Contents – Part I XXV

Exploiting Thread-Data Affinity in OpenMP with Data Access
Patterns . 230

Andrea Di Biagio, Ettore Speziale, and Giovanni Agosta

Workload Balancing and Throughput Optimization for Heterogeneous
Systems Subject to Failures . 242

Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, and
Laurent Philippe

On the Utility of DVFS for Power-Aware Job Placement in Clusters 255
Jean-Marc Pierson and Henri Casanova

Topic 4: High-Performance Architecture and
Compilers

Introduction . 267
Mitsuhisa Sato, Denis Barthou, Pedro C. Diniz, and P. Saddayapan

Filtering Directory Lookups in CMPs with Write-Through Caches 269
Ana Bosque, Victor Viñals, Pablo Ibañez, and Jose Maria Llaberia

FELI: HW/SW Support for On-Chip Distributed Shared Memory in
Multicores . 282

Carlos Villavieja, Yoav Etsion, Alex Ramirez, and Nacho Navarro

Token3D: Reducing Temperature in 3D Die-Stacked CMPs through
Cycle-Level Power Control Mechanisms . 295

Juan M. Cebrián, Juan L. Aragón, and Stefanos Kaxiras

Bandwidth Constrained Coordinated HW/SW Prefetching for
Multicores . 310

Sai Prashanth Muralidhara, Mahmut Kandemir, and Yuanrui Zhang

Unified Locality-Sensitive Signatures for Transactional Memory 326
Ricardo Quislant, Eladio D. Gutierrez, Oscar Plata, and
Emilio L. Zapata

Using Runtime Activity to Dynamically Filter Out Inefficient Data
Prefetches . 338

Oussama Gamoudi, Nathalie Drach, and Karine Heydemann

Topic 5: Parallel and Distributed Data Management

Introduction . 351
Salvatore Orlando, Gabriel Antoniu, Amol Ghoting, and
Maria S. Perez

Distributed Scalable Collaborative Filtering Algorithm 353
Ankur Narang, Abhinav Srivastava, and Naga Praveen Kumar Katta

XXVI Table of Contents – Part I

Compressing the Incompressible with ISABELA: In-situ Reduction of
Spatio-temporal Data . 366

Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier,
Scott Klasky, Rob Latham, Rob Ross, and Nagiza F. Samatova

kNN Query Processing in Metric Spaces Using GPUs 380
Ricardo J. Barrientos, José I. Gómez, Christian Tenllado,
Manuel Prieto Matias, and Mauricio Marin

An Evaluation of Fault-Tolerant Query Processing for Web Search
Engines . 393

Carlos Gomez-Pantoja, Mauricio Marin, Veronica Gil-Costa, and
Carolina Bonacic

Topic 6: Grid Cluster and Cloud Computing

Introduction . 405
Ramin Yahyapour, Christian Pérez, Erik Elmroth,
Ignacio M. Llorente, Francesc Guim, and Karsten Oberle

Self-economy in Cloud Data Centers: Statistical Assignment and
Migration of Virtual Machines . 407

Carlo Mastroianni, Michela Meo, and Giuseppe Papuzzo

An Adaptive Load Balancing Algorithm with Use of Cellular Automata
for Computational Grid Systems . 419

Laleh Rostami Hosoori and Amir Masoud Rahmani

Shrinker: Improving Live Migration of Virtual Clusters over WANs
with Distributed Data Deduplication and Content-Based Addressing . . . 431

Pierre Riteau, Christine Morin, and Thierry Priol

Maximum Migration Time Guarantees in Dynamic Server Consolidation
for Virtualized Data Centers . 443

Tiago Ferreto, César De Rose, and Hans-Ulrich Heiss

Enacting SLAs in Clouds Using Rules . 455
Michael Maurer, Ivona Brandic, and Rizos Sakellariou

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 467
David Villegas and Seyed Masoud Sadjadi

Benchmarking Grid Information Systems . 479
Laurence Field and Rizos Sakellariou

Green Cloud Framework for Improving Carbon Efficiency of Clouds 491
Saurabh Kumar Garg, Chee Shin Yeo, and Rajkumar Buyya

Table of Contents – Part I XXVII

Optimizing Multi-deployment on Clouds by Means of Self-adaptive
Prefetching . 503

Bogdan Nicolae, Franck Cappello, and Gabriel Antoniu

Topic 7: Peer to Peer Computing

Introduction . 514
Amitabha Bagchi, Olivier Beaumont, Pascal Felber, and
Alberto Montresor

Combining Mobile and Cloud Storage for Providing Ubiquitous Data
Access . 516

João Soares and Nuno Preguiça

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient
Descent . 528

Róbert Ormándi, István Hegedűs, and Márk Jelasity

Evaluation of P2P Systems under Different Churn Models: Why We
Should Bother . 541

Marc Sànchez-Artigas and Enrique Férnandez-Casado

Topic 8: Distributed Systems and Algorithms

Introduction . 554
Dariusz Kowalski, Pierre Sens, Antonio Fernandez Anta, and
Guillaume Pierre

Productive Cluster Programming with OmpSs . 555
Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras,
Xavier Martorell, Rosa M. Badia, Eduard Ayguade, and
Jesús Labarta

On the Use of Cluster-Based Partial Message Logging to Improve Fault
Tolerance for MPI HPC Applications . 567

Thomas Ropars, Amina Guermouche, Bora Uçar, Esteban Meneses,
Laxmikant V. Kalé, and Franck Cappello

Object Placement for Cooperative Caches with Bandwidth
Constraints . 579

UmaMaheswari C. Devi, Malolan Chetlur, and
Shivkumar Kalyanaraman

Author Index . 595

Table of Contents – Part II

Topic 9: Parallel and Distributed Programming

Introduction . 1
Pierre Manneback, Thierry Gautier, Gudula Rnger, and
Manuel Prieto Matias

Parallel Scanning with Bitstream Addition: An XML Case Study 2
Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin,
Thomas C. Shermer, and Fred P. Popowich

HOMPI: A Hybrid Programming Framework for Expressing and
Deploying Task-Based Parallelism . 14

Vassilios V. Dimakopoulos and Panagiotis E. Hadjidoukas

A Failure Detector for Wireless Networks with Unknown
Membership . 27

Fab́ıola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon

Towards Systematic Parallel Programming over MapReduce 39
Yu Liu, Zhenjiang Hu, and Kiminori Matsuzaki

Correlated Set Coordination in Fault Tolerant Message Logging
Protocols . 51

Aurelien Bouteiller, Thomas Herault, George Bosilca, and
Jack J. Dongarra

Topic 10: Parallel Numerical Algorithms

Introduction . 65
Martin Berzins, Daniela di Serafino, Martin Gander, and Luc Giraud

A Bit-Compatible Parallelization for ILU(k) Preconditioning 66
Xin Dong and Gene Cooperman

Parallel Inexact Constraint Preconditioners for Saddle Point
Problems . 78

Luca Bergamaschi and Angeles Martinez

Communication-Optimal Parallel 2.5D Matrix Multiplication and LU
Factorization Algorithms . 90

Edgar Solomonik and James Demmel

XXX Table of Contents – Part II

Topic 11: Multicore and Manycore Programming

Introduction . 110
Sabri Pllana, Jean-François Méhaut, Eduard Ayguade,
Herbert Cornelius, and Jacob Barhen

Hardware and Software Tradeoffs for Task Synchronization on
Manycore Architectures . 112

Yonghong Yan, Sanjay Chatterjee, Daniel A. Orozco, Elkin Garcia,
Zoran Budimlić, Jun Shirako, Robert S. Pavel, Guang R. Gao, and
Vivek Sarkar

OpenMPspy: Leveraging Quality Assurance for Parallel Software 124
Victor Pankratius, Fabian Knittel, Leonard Masing, and
Martin Walser

A Generic Parallel Collection Framework . 136
Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and
Martin Odersky

Progress Guarantees When Composing Lock-Free Objects 148
Nhan Nguyen Dang and Philippas Tsigas

Engineering a Multi-core Radix Sort . 160
Jan Wassenberg and Peter Sanders

Accelerating Code on Multi-cores with FastFlow . 170
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick,
Massimiliano Meneghin, and Massimo Torquati

A Novel Shared-Memory Thread-Pool Implementation for Hybrid
Parallel CFD Solvers . 182

Jens Jägersküpper and Christian Simmendinger

A Fully Empirical Autotuned Dense QR Factorization for Multicore
Architectures . 194

Emmanuel Agullo, Jack J. Dongarra, Rajib Nath, and
Stanimire Tomov

Parallelizing a Real-Time Physics Engine Using Transactional
Memory . 206

Jaswanth Sreeram and Santosh Pande

Topic 12: Theory and Algorithms for Parallel
Computation

Introduction . 224
Kunal Agarwal, Panagiota Fatourou, Arnold L. Rosenberg, and
Frédéric Vivien

Table of Contents – Part II XXXI

Petri-nets as an Intermediate Representation for Heterogeneous
Architectures . 226

Peter Calvert and Alan Mycroft

A Bi-Objective Scheduling Algorithm for Desktop Grids with Uncertain
Resource Availabilities . 238

Louis-Claude Canon, Adel Essafi, Grégory Mounié, and
Denis Trystram

New Multithreaded Ordering and Coloring Algorithms for Multicore
Architectures . 250

Md. Mostofa Ali Patwary, Assefaw H. Gebremedhin, and Alex Pothen

Topic 13: High Performance Networks and
Communication

Introduction . 263
Jesper Larsson Träff, Brice Goglin, Ulrich Bruening, and
Fabrizio Petrini

Kernel-Based Offload of Collective Operations – Implementation,
Evaluation and Lessons Learned . 264

Timo Schneider, Sven Eckelmann, Torsten Hoefler, and
Wolfgang Rehm

A High Performance Superpipeline Protocol for InfiniBand 276
Alexandre Denis

Topic 14: Mobile and Ubiquitous Computing

Introduction . 288
Eric Fleury, Qi Han, Pedro Marron, and Torben Weis

ChurnDetect: A Gossip-Based Churn Estimator for Large-Scale
Dynamic Networks . 289

Andrei Pruteanu, Venkat Iyer, and Stefan Dulman

Topic 15: High-Performance and Scientific
Applications

Introduction . 302
Olivier Coulaud, Kengo Nakajima, Esmond G. Ng, and
Mariano Vazquez

Real Time Contingency Analysis for Power Grids . 303
Anshul Mittal, Jagabondhu Hazra, Nikhil Jain, Vivek Goyal,
Deva P. Seetharam, and Yogish Sabharwal

XXXII Table of Contents – Part II

CRSD: Application Specific Auto-tuning of SpMV for Diagonal Sparse
Matrices . 316

Xiangzheng Sun, Yunquan Zhang, Ting Wang, Guoping Long,
Xianyi Zhang, and Yan Li

The LOFAR Beam Former: Implementation and Performance
Analysis . 328

Jan David Mol and John W. Romein

Application-Specific Fault Tolerance via Data Access
Characterization . 340

Nawab Ali, Sriram Krishnamoorthy, Niranjan Govind,
Karol Kowalski, and Ponnuswamy Sadayappan

High-Performance Numerical Optimization on Multicore Clusters 353
Panagiotis E. Hadjidoukas, Constantinos Voglis,
Vassilios V. Dimakopoulos, Isaac E. Lagaris, and
Dimitris G. Papageorgiou

Parallel Monte-Carlo Tree Search for HPC Systems 365
Tobias Graf, Ulf Lorenz, Marco Platzner, and Lars Schaefers

Petascale Block-Structured AMR Applications without Distributed
Meta-data . 377

Brian Van Straalen, Phil Colella, Daniel T. Graves, and Noel Keen

Accelerating Anisotropic Mesh Adaptivity on nVIDIA’s CUDA Using
Texture Interpolation . 387

Georgios Rokos, Gerard Gorman, and Paul H.J. Kelly

Topic 16: GPU and Accelerators Computing

Introduction . 399
Wolfgang Karl, Samuel Thibault, Stanimire Tomov, and
Taisuke Boku

Model-Driven Tile Size Selection for DOACROSS Loops on GPUs 401
Peng Di and Jingling Xue

Iterative Sparse Matrix-Vector Multiplication for Integer Factorization
on GPUs . 413

Bertil Schmidt, Hans Aribowo, and Hoang-Vu Dang

Table of Contents – Part II XXXIII

Lessons Learned from Exploring the Backtracking Paradigm on the
GPU . 425

John Jenkins, Isha Arkatkar, John D. Owens, Alok Choudhary, and
Nagiza F. Samatova

Automatic OpenCL Device Characterization: Guiding Optimized
Kernel Design . 438

Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and
Thomas Fahringer

Author Index . 453

Introduction

Rosa M. Badia, Fabrice Huet, Rob van Nieuwpoort, and Rainer Keller

Topic chairs

The increasing trend to distribute computing over large-scale parallel and dis-
tributed platforms, such as clouds, grids and large clusters, often combined
with the use of multicore processors and hardware accelerators, overlaps with
an increasing pressure to make computing more dependable. Indeed, parallel
programming for these type of platforms remains a complex task due to the
numerous components (hardware and software) that can both affect correctness
and performance. Therefore, the parallel and distributed computing community
continuously requires better tools and environments to design, program, debug,
test, tune, and monitor parallel programs. This topic aims to bring together tool
designers, developers, and users to share their concerns, ideas, solutions, and
products covering a wide range of platforms, including homogeneous and het-
erogeneous multicore architectures. The chairs of this topic sought contributions
with solid theoretical foundations and experimental validations on production-
level parallel and distributed systems. Submissions proposing new program de-
velopment tools and environments that help copying with the expected high
complexity of forthcoming exascale parallel systems were encouraged. The ac-
cepted papers cover several of these topics with outstanding contributions:

– The paper ”Run-Time Automatic Performance Tuning for Multicore Ap-
plications” addresses the challenge that the programmers face when several
applications run in parallel and influence each other indirectly. Their solu-
tion is based on Perpetuum, a novel operating-system-based auto-tuner that
is capable of tuning parallel applications while they are running. The ap-
proach is a fully functional auto-tuner that extends the Linux kernel, and the
application tuning process does not require any user involvement. General
multicore applications are automatically re-tuned on new platforms while
they are executing, which makes portability easy.

– There are two papers that deal with data races in cache memories. The
paper ”Exploiting Cache Traffic Monitoring for Run-Time Race Detection”
tackles the problem of finding and fixing data races in an automatic fashion.
The approach monitors the cache coherency bus traffic for parallel accesses
to unprotected shared resources. This technique has low overhead and re-
quires just minor extensions to standard multicore hardware and software
to make measurements more accurate. The paper ”Accelerating Data Race
Detection with Minimal Hardware Support” proposes a high performance
hybrid hardware/software solution to race detection that uses minimal hard-
ware support. This hardware extension consists of a single extra instruction,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 R.M. Badia et al.

StateChk, that simply returns the coherence state of a cache block without
requiring any complex traps to handlers. To leverage this support, a new
algorithm for race detection is proposed and a new scheduling manipulation
heuristic to achieve high coverage rapidly.

– The paper ”Quantifying the potential task-based dataflow parallelism in MPI
applications” proposes an approach to automatically estimate how much of
an application can benefit from dataflow parallelism and how to find the best
strategy to expose dataflow parallelism of the application. The framework
presented in the paper automatically detects data dependencies among tasks
in order to estimate the potential parallelism in the application. Further-
more, based on the framework, an interactive approach to find the optimal
partitioning of code is developed.

– The paper ”Event log mining tool for large scale HPC systems” proposes
an approach to analyse the log files automatically generated by systems like
supercomputers. These log files are so large and complex that human analysis
is difficult and error prone. The paper presents a novel methodology for
creating event clusters and extracting cluster templates from large datasets
presenting an intuitive output to system administrators. The algorithm is
able to keep up with the rapidly changing environments by adapting the
clusters to the incoming stream of events.

– The paper ”Reducing the overhead of direct application instrumentation
using prior static analysis” presents an approach to reduce the instrumen-
tation overhead of parallel programs. When using direct instrumentation,
the measurement overhead increases with the rate at which these functions
are visited. If applied indiscriminately, the measurement dilation can even
be prohibitive. The paper shows how static code analysis in combination
with binary rewriting can help eliminate unnecessary instrumentation points
based on configurable filter rules that can be applied and modified without
re-compilation.

Run-Time Automatic Performance Tuning

for Multicore Applications

Thomas Karcher and Victor Pankratius

Karlsruhe Institute of Technology, IPD
76128 Karlsruhe, Germany

{thomas.karcher,victor.pankratius}@kit.edu

Abstract. Multicore hardware and system software have become com-
plex and differ from platform to platform. Parallel application perfor-
mance optimization and portability are now a real challenge. In practice,
the effects of tuning parameters are hard to predict. Programmers face
even more difficulties when several applications run in parallel and in-
fluence each other indirectly. We tackle these problems with Perpetuum,
a novel operating-system-based auto-tuner that is capable of tuning ap-
plications while they are running. We go beyond tuning one application
in isolation and are the first to employ OS-based auto-tuning to improve
system-wide application performance. Our fully functional auto-tuner
extends the Linux kernel, and the application tuning process does not
require any user involvement. General multicore applications are auto-
matically re-tuned on new platforms while they are executing, which
makes portability easy. Extensive case studies with real applications
demonstrate the feasibility and efficiency of our approach. Perpetuum
realizes a first milestone in our vision to make every performance-critical
multicore application auto-tuned by default.

1 Introduction

Software developers need to create parallel applications to exploit the multicore
hardware potential. Intuitive performance tuning, however, has become difficult
for several reasons: (1) Different multicore platform characteristics may cause
application optimizations to work on one platform, but not on others. (2) The
behavior of complex parallel applications is hard to predict. (3) Applications may
have several tuning parameters that impact performance. Potential parameter
interdependencies can be difficult to understand. (4) The typical search space
spanned by tuning parameters is large. (5) Good performance configurations that
work for each application in isolation might not work when several applications
run simultaneously on the same system.

In practice, programmers resort to manual and often unsystematic experi-
ments to find program parameter configurations that lead to good performance.
Auto-tuning has shown great potential to automate this process and make the
search more intelligent using a feedback loop. Offline tuning approaches execute
an application until it terminates, gather run-time feedback, and calculate new

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 3–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 T. Karcher and V. Pankratius

tuning parameter values that are likely to improve performance in the next run.
Most of the existing solutions, however, have drawbacks. For example, [7,18,24]
target domain-specific numerical programs (e.g. matrix multiply or Fourier trans-
form). They generate on every platform a new set of executable programs and
pick the best-performing one. Unfortunately, this principle does not work for
general parallel programs that do not perform any of these numerical analy-
ses. Another issue is that isolated application tuning is inappropriate in today’s
scenarios. A typical multicore system environment changes all the time due to
dynamic resource allocation and applications that run in parallel. This requires
long-running applications to be tuned at run-time.

Our paper makes several novel contributions to tackle the aforementioned
problems. We introduce Perpetuum, the first auto-tuner for shared-memory
multicore applications that integrates into the Linux operating system. Per-
petuum’s design offers unique opportunities to tune several applications simulta-
neously and hide the complexity of the tuning process from users and developers.
Perpetuum optimizes the performance of applications while they are running,
assuming that applications expose their performance-relevant tuning parame-
ters and the associated value ranges to the operating system. Perpetuum’s OS-
integration reduces tuning overhead and eases portability; an application ported
to a new computer that runs Perpetuum will be automatically re-tuned. More-
over, our approach is applicable beyond numerical scientific programs. Two ex-
tensive case studies demonstrate feasibility. We achieve respectable performance
improvements for compression and multimedia applications in single-process and
multi-process scenarios.

The paper is organized as follows. Section 2 introduces the Perpetuum
auto-tuner. Section 3 discusses how to prepare applications for online tuning.
Section 4 presents case studies with a reengineered parallel compression applica-
tion. Several scenarios demonstrate Perpetuum’s effectiveness in single-process
and multi-process contexts. Section 5 presents evaluation studies for an on-line
tunable parallel video-processing application written from scratch. Section 6 dis-
cusses related work. Section 7 provides a conclusion.

2 The Perpetuum Run-Time Application Tuner

Figure 1 shows the overall system architecture of Perpetuum and how it is inte-
grated into Linux. All tunable applications run in user space. An exclusive part
of each tunable application’s address space is reserved for a dedicated tuning
parameter address space; this space is used by Perpetuum to store, read, and
modify the values of all tuning parameters associated with an application.

The auto-tuner is an independent component within the Linux kernel. A tun-
able application communicates with the auto-tuner using the system call inter-
face. There are three new system calls: (1) The sys optAddParam() call registers
a new tunable parameter; (2) sys optStartMeasure() starts a wall clock time
counter to measure execution time; (3) sys optStopMeasure() stops the clock
counter. Values in the tuning parameter address space can only be changed

Run-Time Automatic Performance Tuning for Multicore Applications 5

Add process
tuning parameter

User Space

Kernel Space

Application Address Space

Tuning Parameter
Address Space

System Call Interface

include/linux/syscalls.h
system call stubs

Auto-Tuner Syscalls

Auto-Tuner

Start Measurement
Stop Measurement
get_NewParamValues()

apply_NewParamValues()

Pluggable Tuning Algorithms
calculate NewParamValues()

OS Kernel Module

sys_optAddParam()sys_optStartMeasure() sys_optStopMeasure()

Linux Process
Management

kernel /exit.c
Exit Handler

Tidy up auto-tuner data
Scheduler

sys_exit()

include/asm/unistd_{32|64}.h
system call handler

Fig. 1. Overview of Perpetuum’s system architecture

during the sys optStopMeasure() call, which blocks the calling thread until all
parameters are updated.

Perpetuum uses one system-wide, application-independent tuning algorithm.
However, this algorithm can be easily exchanged by system administrators (e.g.,
a simplex-based algorithm [16] can be replaced by another optimization algo-
rithm). The algorithm is implemented in a plugin style as a Linux kernel module.
In contrast to other auto-tuners (see Section 6), our architecture allows plugins
to access operating system data, e.g., on workloads and system state. The tuning
algorithm is called in a loop by every executing program. The tuning param-
eters of each application are updated (in its tuning parameter address space)
with values that the tuner considers promising for the next iteration.

Perpetuum’s current tuning algorithm is based on an adapted version of [16]
that works on a discrete integer space and in a scenario with multiple applica-
tions that are tuned simultaneously. The number n of application parameters to
optimize spans our n-dimensional search space. We generate a simplex with n+1
points. Our simplex consists of a starting configuration point and n more points
that are obtained by adding a constant displacement in each dimension. When
searching for better configurations, we move simplex points based on application
execution time feedback and the rules defined in [16].

Perpetuum does not make any modifications to the Linux scheduler, which
is part of the Linux process management module. This design decision is based
on the fact that Perpetuum influences application tuning knobs that are on
a higher abstraction level [19]. By contrast, the scheduler influences low-level
resource management decisions, e.g., on which core to execute a certain thread.
Perpetuum influences, however, the scheduler in an indirect way: Applications

6 T. Karcher and V. Pankratius

reacting to a change caused by Perpetuum may increase or reduce the number
of threads that the scheduler controls.

We remark that even though Perpetuum has been developed for shared-
memory multicore machines, it could also be run on every node of a cluster to
automatically improve single-node multithreaded performance of work assigned
to the node. Fine-granular performance tuning in clusters thus becomes easier
as well.

3 Preparing Applications for Online Tuning

We assume that every application to be tuned at run-time has one compute-
intensive “hot-spot”, i.e., a modular part of code that is executed in a repetitive
manner. Applications should have a longer run-time so that the auto-tuner gets
a chance to execute several iterations, adapt parameter values, and observe the
effects. The programmer is responsible for developing an application with such
a hot-spot or identify one in existing code. To establish an auto-tuning feedback
loop, the programmer inserts measurement probes that determine the execution
time of the parameterized hot-spot, as shown in the C code example below:

int threadCount = 1;
addParam(&threadCount, 1, 16); //tunable degree of parallelism
while (calculationRunning) {
startMeasurement(); //tuning feedback probe
doCalculation(threadCount); //hot-spot
stopMeasurement(); //tuning feedback probe

}

The auto-tuner will automatically set threadCount’s values to a number be-
tween 1 and 16. It is the responsibility of the programmer that such changes
produce consistent results. Our case studies further illustrate in more complex
examples that the adaptation of applications for online tuning is not difficult to
do.

After each iteration of the application’s tuning hot-spot, the auto-tuner col-
lects feedback information. Based on the elapsed execution time, it calculates
new values for all tuning parameters before the next iteration begins. The opti-
mization cycle repeats until the application terminates.

Note that the auto-tuner algorithm can adjust the tuning parameters accord-
ing to the overall system workload that indirectly influences the run-time of the
hot-spot. When two applications compete for example for cache or memory I/O,
the auto-tuner aims for a cross-process optimum, which is obtained based on
the objective function of the tuning algorithm. If an application terminates and
releases its resources, another application can be assigned the newly available
resources. We now show in two case studies how Perpetuum adapts application
parameters in an automated fashion.

Run-Time Automatic Performance Tuning for Multicore Applications 7

4 Perpetuum in Action: Automated Online-Tuning in
Parallel Compression

This case study exemplifies how to reengineer an existing parallel application
and make it tunable at run-time. We illustrate Perpetuum’s online tuning in
three scenarios.

4.1 Environment

The sequential Bzip2 file compressor divides a file stream into independent blocks
and passes them through a pipeline of algorithms [20]. At the end of the pipeline,
compressed blocks are concatenated in their original order and stored in an
output file.

We employ the parallel Bzip2 version of [17] that has two command line
parameters: the number of compression threads t and the block size b in hundred
kilobytes. In our scenarios, we use t ∈ {3, 4, . . . , 64} and b ∈ {1, 2, . . . , 9}. The
tuning hot-spot is the compression code that is applied to each file, located in
Bzip’s handle compress() function. We reengineered the application and added
two system calls to measure the wall-clock time of the hot-spot. In addition, we
added two system calls to make t and b tunable. When a directory of files is
compressed, the hot-spot is executed in a repetitive fashion. Our implementation
can update t and b with new values after finishing the compression of the current
file.

We conducted the experiments in a controlled environment on the following
machine: Intel Core 2 Quad Q6600 machine, 2.40GHz, running Linux 2.6.34 with
Perpetuum. We deactivated the graphical user interface and all other interfering
applications. All scenarios use the same collection of 50 files (each with a size
of 2 MB), so the compression hot-spot executes 50 times. The fact that all files
have the same size is not a constraint of the auto-tuner; this setup was chosen
to make results comparable and identify sources of bias more easily.

4.2 Scenario 1: Tuning a Single Process

This scenario shows that Perpetuum successfully tunes one application while
that application is running. Perpetuum controls the t and b parameters and
aims to reduce the run-time of the hot-spot.

To evaluate tuning effectiveness, we exhaustively benchmarked all parameter
configurations for a single Bzip2 process without auto-tuning, for the total of
9 × 61 = 558 configurations. The execution time for each configuration was
measured 3 times to avoid bias. These results allow us to compare Perpetuum’s
results with the real optimum.

The exhaustive measurements show that if b ∈ {1, 2} and t ≥ 5, the execution
time is within the best 20%. We thus expect Perpetuum to reduce the block size
(ideally to b = 1) and increase thread count to t ≥ 5. With the best configuration,
the entire program executes in 6.5 seconds, whereas the worst configuration takes
22.9 seconds. This is the range in which Perpetuum can be expected to optimize
the application’s run time.

8 T. Karcher and V. Pankratius

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40 45

m
ill

is
ec

on
ds

iterations

Execution Time
MAvg

5
10

15
20

25

th

re
ad

s
(t

)

iterations

2

4

6

8

5 10 15 20 25 30 35 40 45

bl
oc

k
si

ze
 (b

)

Fig. 2. Online tuning of parallel Bzip2. Left graph: hot-spot execution times after each
iteration. Right graphs: values of the tunable parameters.

Figure 2 shows the execution time of the hot-spot (which accounts for almost
the entire program execution time) for the block size and thread count chosen
by Perpetuum in each iteration. We also plot an exponential moving average
(MAvg) of execution times using a0 = x0 and ai = 0.75ai−1+(1−0.75)xi, where
ai is the moving average value and xi the execution time measured at the end of
iteration i. Optimization starts at the worst-case configuration b = 7 and t = 3
where compression needs 458ms. Without tuning, the entire application would
have taken 458ms× 50 = 22.9 seconds to finish. Perpetuum reduces the average
execution time to a total of 8 seconds, which is 2.9x faster. Note that this is not
the classical speedup measure in comparison to the sequential program, but a
performance boost in comparison to the parallel program. Speedup compared to
the sequential time of 24.5 seconds is even higher, namely 3.1, which is not bad
considering the quadcore machine and almost no programming effort. The final
tuning result is just 23% worse than the best attainable execution time.

The graphs for thread count t and block size b illustrate how Perpetuum
works. Both values increase at first. The auto-tuner then realizes that increasing
thread count alone is not too effective and that a smaller block size reduces exe-
cution times more significantly. The block size quickly converges to 1, while other
thread counts are tried out. The step for t is doubled until iteration #8, and
t finally converges to 9 threads after some oscillation. Our exhaustive measure-
ments exploring the search space show that the finally obtained configuration of
b = 1 and t = 9 is within the best 1% of all performance configurations.

We remark that a starting configuration can be randomly generated. If opti-
mization had started, for example, with another configuration (e.g., b = 5, t =
20), finishing all iterations without tuning would have taken 8.6 seconds, and
with tuning 7.2 seconds (which is still 1.2x faster). In general, if a starting con-
figuration already has good values, Perpetuum tries to tune the application but
will not be able to significantly improve performance, so it will stop tuning after
some time.

Run-Time Automatic Performance Tuning for Multicore Applications 9

4.3 Scenario 2: Simultaneously Auto-tuning Two Processes

This scenario evaluates how Perpetuum simultaneously tunes two processes that
are started at the same time (see Figure 3 (a)). We execute two instances of the
parallel Bzip2 application that work on individual copies of the file benchmark
from in scenario 1. Each instance starts with the same configuration b = 5 and
t = 3 which is within the worst 10% of execution times. The execution time
variance with two processes is higher than in a single-process scenario, due to
increased CPU, RAM, and hard disk activity.

Without auto-tuning, starting both instances at the same time and waiting
for the last one to finish takes 26.5 seconds. With auto-tuning, it takes just
13.5 seconds. This boosts performance of the parallel application by a factor
of 1.96. Fig. 3 shows how Perpetuum adapted block size and thread count for
each process. First, the auto-tuner reduces the block size for both processes.
Process 2 reaches b = 1, which was the optimum in scenario 1. Process 1 is
also assigned b = 1 for a few iterations, but the auto-tuner finds out that it can
reduce execution time by increasing block size to 3, which differs from the single-
process scenario. The sum of moving averages (MAvg Sum) of the two processes
decreases, which shows that Perpetuum globally improves performance.

Perpetuum automatically finds the critical point around t = 5 after 10 itera-
tions, which we manually identified ourselves in the exhaustive exploration of the
search space in the single-process scenario (the single process was significantly
slower when t ≤ 4). As a result, Perpetuum increases the thread counts for both
processes. Process 1 converges to t = 5 and process 2 to t = 24.

200
400
600

bl
oc

k
si

ze

4
8
12

th

re
ad

s

10 20 30 40 50 60
files (= iterations)

200

400

600
m

il
li

se
co

nd
s

200

400

600

800

m
il

li
se

co
nd

s

MAvg P 1
MAvg P 2

MAvg Sum

200
400
600

10
20
30
40

0 10 20 30 40 50 60 70 80
files (= iterations)

bl
oc

k
si

ze

th
re

ad
s

thr P 1
thr P 2

Fig. 3. Online tuning of parallel Bzip2. Graphs in first row show hot-spot moving
average execution times; graphs in other rows show tuning parameter values. Scenario
2 (left): two instances are started at the same time and tuned simultaneously. Scenario
3 (right): two instances are started with a time lag.

10 T. Karcher and V. Pankratius

4.4 Scenario 3: Simultaneously Auto-tuning Two Processes Starting
with a Time Lag

This scenario is similar to scenario 2, except that the second process is started
4 seconds after the first one. Figure 3 (b) shows the timeline: The first process
starts off solo, as in scenario 1. The block size converges again to b = 1 while
the thread count roughly converges to t = 7. Then, the second process starts.
While the tuning parameters of process 2 are modified as expected, the execution
time of process 1 increases due to interference with process 2. The auto-tuner
does not change the block size in both processes, but assigns process 2 more
threads, which likely has the effect of hiding latency. This strategy improves
overall performance, as demonstrated by the decreasing moving average sum of
execution times.

4.5 Summary

The auto-tuner significantly improves performance in all of our scenarios. Per-
petuum adjusts parameters that have more impact on performance variance (e.g.,
block size) earlier than others. Another insight is that the common programmer
intuition to set the number of threads to the number of cores would fail here:
Configurations with 4 threads and an arbitrary block size had a performance
within the worst 10% of all configurations. Perpetuum could not be fooled into
this false assumption and quickly converged to better values within the first 10
iterations.

5 Automated Online-Tuning in Parallel Video Processing

This Section presents a study with an online-tunable multimedia application
written from scratch [1]. The application performs parallel edge detection on a
video stream. The output video stream consists of images that show the edges
of objects. In computer vision, edge detection is an important basis for other
algorithms, e.g., to track or identify objects in robotics, security applications, or
human-computer interaction.

The application has five multithreaded filters organized in a pipeline. Each
filter works in parallel within a pipeline stage on one frame of the video stream.
Stage S1 (Gauss) performs a Gaussian blur by applying a convolution mask.
Stage S2 (Gradient) applies a Sobel mask to compute the gradient strength
and direction for each pixel. Stage S3 (Trace) traces the edges based on the
gradients computed in the previous stage. Stage S4 (Suppress) suppresses
pixels that are not on an edge. Stage S5 (Non-Max) performs some clean-ups
in the picture by eliminating weaker edges that are parallel to stronger ones.

Parallelism is introduced using Intel’s Threading Building Blocks [10] and
assigning a tunable number of threads to each pipeline stage. For each stage,
thread count can be set from 1 to 64. The tunable hot-spot measures the exe-
cution time of every 10 frames passing the entire pipeline. The experiments are
conducted on the same machine as in the Bzip2 case study. As an input data

Run-Time Automatic Performance Tuning for Multicore Applications 11

1
2
3
4

S
 1

3
4
5
6
7
8
9

se
co

nd
s

MAvg P 1

MAvg P 2
MAvg Sum

12

16

S
 2

1

2

3

S
 3

1

2

3

S
 4

iterations

1

2

3

10 20 30 40 50 60 70 80
S

 5

thr P 1
thr P 2

3
4
5
6
7
8
9

10 20 30 40 50 60

se
co

nd
s

iterations

MAvg P 1

1

2

3

S
 1

14

16

18

S
 2

1

2

3

S
 3

1

2

3

S
 4

1

2

3

S
 5

thr

(a) (b)

Fig. 4. Online tuning of a video processing application. The graphs in the first row
illustrate hot-spot execution times, the others the tunable parameter values. (a): single-
process scenario 1; (b): two-process scenario 2.

set, we use the first 720 frames of an open source movie [8]. Our input file has
an AVI format with MPEG-4 compression, 854x480 pixels resolution, 24 frames
per second, and a total size of roughly 12 MB.

5.1 Scenario 1: Tuning a Single Process

The total search space with our five parameters consists of 645 = 1, 073, 741, 824
configurations, which can hardly be benchmarked exhaustively, so we did explo-
rative studies. The first two stages have more impact on the overall application
run-time than the last three stages. We thus focused on exploring the first two
stages with thread counts between 1 and 16 for each stage. All measurements are
repeated 3 times. The best-performing configuration has 11 threads for Gauss

12 T. Karcher and V. Pankratius

(S1) and 5 threads for Gradient (S2), with a total run-time of 116.3 seconds.
Intuitive configurations assigning 1 thread per stage end up within the worst
10% performance. Configurations with one thread for S1 are in the worst 5%
of all configurations. The worst configuration has threads assigned to stages as
follows: 1-16-1-1-1. The average run-time without auto-tuner is 384.4 seconds.
S1’s thread count parameter has high sensitivity; increasing it from 1 to 2 causes
performance to surge, but performance improvements diminish if more than 2
threads are assigned to this stage.

Figure 4 (a) exemplifies how Perpetuum performs in the worst case with start
configuration 1-16-1-1-1. In the first iteration, hot-spot execution time is about
5.2 seconds, but the auto-tuner is able to finally reduce it to 2.7 seconds, which
is a 1.9x improvement. It is also remarkable that the auto-tuner tries tuning the
thread count of the last stages but quickly realizes that they don’t have much
effect, so the values remain constant. By contrast, the thread counts in the first
stages are tuned more often, and the tuner automatically detects that increasing
thread count for S1 above 1 significantly improves performance.

Perpetuum finally converges to the non-intuitive configuration of 2-15-1-1-1,
showing that this application needs a total of 20 threads on our 4-core machine.
This empirical result proves programmers wrong who assume that the number
of threads must equal the number of cores.

5.2 Scenario 2: Simultaneously Tuning Two Processes
Starting with a Time Lag

Similarly to the Bzip2 online tuning case study, we start two processes of the
video processing application, both with the configuration 1-16-1-1-1. Figure 4
(b) shows that this tuning scenario is more difficult. The first process is tuned
similarly to scenario 1; if S1 receives more than one thread, performance im-
proves significantly. At iteration 25, the second process starts interfering. The
performance of process two finally improves after the auto-tuner finds that in-
creasing S1’s thread count is good. Note that even though process one’s run-time
increases until it terminates in iteration 88, the overall system performance rep-
resented by the moving average sum still improves. Finally, each application’s
hot-spot execution time is lower than before tuning.

6 Related Work

The advantages of integrating auto-tuners into operating systems haven been
acknowledged by the operating systems community [11]. Other details on ex-
periments with Perpetuum are summarized in a technical report [12]. Most of
the related work covers online tuning with a different focus and with other tech-
niques. Orio [9] focuses mostly low-level operation performance optimizations on
a particular code fragment annotated with specific structured comments. MATE
[15] provides dynamic tuning for MPI applications and is designed for distributed
architectures. An adaptive task scheduler for multi-tasked data-parallel jobs is
introduced in [3], however, assuming job granularity and a distributed system

Run-Time Automatic Performance Tuning for Multicore Applications 13

environment. The work of [4] uses hardware performance counters and aims to
minimize cache contention by clustering threads and assign dedicated cache re-
gions to threads. The CAER environment [14] provides a run-time solution that
targets a reduction of cross-core interference due to contention. Active Harmony
[6,21,22,23] tunes one parallel program at a time in a heterogeneous, distributed
environment. Each application has to obey a dedicated API to send performance
feedback to a dedicated optimization server and receive new configurations via
message passing. By contrast, Perpetuum is targeted at interactive use on shared-
memory multicore desktops and server machines, so we have other assumptions
about application characteristics and the acceptable computation and commu-
nication overhead. For example, Perpetuum is 15 seconds (30%) faster than
our adapted version of Active Harmony running compression scenario one on
our hardware. Several other approaches work on a lower abstraction levels than
Perpetuum. The work of [13] combines static and dynamic binary compiler op-
timizations to select the best-performing variant of a program function out of
multiple versions. A compiler framework that detects at run-time which code
optimizations to apply is shown in [5]. Machine learning is applied in [2] to
iteratively learn about program features and adapt compiler optimizations.

7 Conclusion

Perpetuum’s infrastructure presented in this paper is the first OS-based ap-
proach to allow automatic performance tuning at runtime for simultaneously
executing multicore applications. Our approach works well beyond scientific nu-
merical programs and can be used in standard desktop PCs and servers. We are
also the first to integrate such an auto-tuner into the Linux operating system,
which has several advantages: (1) The performance optimization algorithm can
access system information to compute the global performance optimum for all
active applications in a cooperative way; (2) OS integration allows fast response
times for online tuning; (3) Auto-tuning as a standard service in the OS allows
programmers to outsource tuning logic from their code and make their code
base easier to maintain; (4) Tedious and intuitive manual tuning (which might
not even find optimum performance) becomes obsolete; (5) Parallel application
portability is improved, as applications are automatically re-tuned on each plat-
form. Overall, Perpetuum paves the way towards making auto-tuning a standard
approach in multicore application development.

Acknowledgements. We thank the Excellence Inititative and the Landess-
tiftung Baden-Württemberg for their support.

References

1. Abudiab, I.: Online-tunable parallel edge detection in video streams. Student
project thesis. Karlsruhe Institute of Technology (2010)

2. Agakov, F., et al.: Using machine learning to focus iterative optimization. In: CGO
2006, p. 11 (2006)

14 T. Karcher and V. Pankratius

3. Agrawal, K., et al.: Adaptive scheduling with parallelism feedback. In: PPoPP
2006, p. 1 (2006)

4. Azimi, R., et al.: Enhancing operating system support for multicore processors
by using hardware performance monitoring. SIGOPS Oper. Syst. Rev. 43(2), 56
(2009)

5. Cavazos, J., Moss, J.E.B., O’Boyle, M.: Hybrid optimizations: Which optimization
algorithm to use? In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp.
124–138. Springer, Heidelberg (2006)

6. Ţăpuş, C., et al.: Active harmony: towards automated performance tuning. In: SC
2002, p. 44 (2002)

7. Frigo, M., Johnson, S.: FFTW: an adaptive software architecture for the FFT. In:
Proc. IEEE ICASSP 1998, vol. 3, p. 1381 (1998)

8. Goedegebure, S., et al.: Big buck bunny. An open source movie (April 2008),
http://www.bigbuckbunny.org (last accessed May 2011)

9. Hartono, A., Ponnuswamy, S.: Annotation-based empirical performance tuning us-
ing Orio. In: IPDPS 2009, p. 1 (2009)

10. Intel: Threading building blocks (August 2006),
http://www.threadingbuildingblocks.org

11. Karcher, T., et al.: Auto-tuning support for manycore applications: perspectives
for operating systems and compilers. SIGOPS Oper. Syst. Rev. 43(2), 96 (2009);
Special Iss. on the Interaction among the OS, Compilers, and Multicore Processors

12. Karcher, T., Pankratius, V.: Auto-Tuning Multicore Applications at Run-Time
with a Cooperative Tuner. Karlsruhe Reports in Informatics 2011-4 (February
2011)

13. Mars, J., Hundt, R.: Scenario based optimization: A framework for statically en-
abling online optimizations. In: Proc. CGO 2009, p. 169 (2009)

14. Mars, J., et al.: Contention aware execution: online contention detection and re-
sponse. In: Proc. CGO 2010, p. 257 (2010)

15. Morajko, A., et al.: Mate: Monitoring, analysis and tuning environment for par-
allel & distributed applications: Research articles. Concurr. Comput.: Pract. Ex-
per. 19(11), 1517 (2007)

16. Nelder, J.A., Mead, R.: A simplex method for function minimization. The Com-
puter Journal 7(4), 308 (1965)

17. Pankratius, V., et al.: Parallelizing bzip2: A case study in multicore software engi-
neering. IEEE Software 26(6), 70 (2009)

18. Puschel, M., et al.: Spiral: code generation for dsp transforms. Proceedings of the
IEEE 93(2), 232 (2005)

19. Schwedes, S.: Operating system integration of an automatic performance optimizer
for parallel applications. Master’s thesis, Karlsruhe Institute of Technology (2009)

20. Seward, J.: Bzip2 (2011), http://www.bzip.org
21. Tabatabaee, V., Hollingsworth, J.K.: Automatic software interference detection in

parallel applications. In: SC 2007, vol. 1, p. 14 (2007)
22. Tabatabaee, V., et al.: Parallel parameter tuning for applications with performance

variability. In: SC 2005, p. 57 (2005)
23. Tiwari, A., et al.: Tuning parallel applications in parallel. Parallel Comput. 35(8-9),

475 (2009)
24. Whaley, C.R., et al.: Automated empirical optimizations of software and the atlas

project. Parallel Computing 27(1-2), 3 (2001)

http://www.bigbuckbunny.org
http://www.threadingbuildingblocks.org
http://www.bzip.org

Exploiting Cache Traffic Monitoring for

Run-Time Race Detection

Jochen Schimmel and Victor Pankratius

Karlsruhe Institute of Technology, IPD
76128 Karlsruhe, Germany

{schimmel,pankratius}@kit.edu

Abstract. Finding and fixing data races is a difficult parallel program-
ming problem, even for experienced programmers. Despite the usage of
race detectors at application development time, programmers might not
be able to detect all races. Severe damage can be caused after applica-
tion deployment at clients due to crashes and corrupted data. Run-time
race detectors can tackle this problem, but current approaches either
slow down application execution by orders of magnitude or require com-
plex hardware. In this paper, we present a new approach to detect and
repair races at application run-time. Our approach monitors cache co-
herency bus traffic for parallel accesses to unprotected shared resources.
The technique has low overhead and requires just minor extensions to
standard multicore hardware and software to make measurements more
accurate. In particular, we exploit synergy effects between data needed
for debugging and data made available by standard performance analysis
hardware. We demonstrate feasibility and effectiveness using a controlled
environment with a fully implemented software-based detector that exe-
cutes real C/C++ applications. Our evaluations include the Helgrind and
SPLASH2 benchmarks, as well as 29 representative parallel bug patterns
derived from real-world programs. Experiments show that our technique
successfully detects and automatically heals common race patterns, while
the cache message overhead increases on average by just 0.2%.

1 Introduction

Race conditions are frequent parallel programming errors that are difficult to
detect even for experts. Unfortunately, a solution to the problem of finding all
races in arbitrary parallel programs is equivalent to the halting problem [5].
Race detection tools thus have no other choice than use heuristics and accept
trade-offs, e.g., in accuracy, false alarm reports, or analysis speed.

A large body of work presents race detectors that are employed during pro-
gram development [7,8,26], which introduce significant analysis overhead. Appli-
cation bug reports, however, show very often that racy code might still be present
after deployment at clients, which can cause severe damage when crashes corrupt
data. This paper tackles this problem and introduces an approach for run-time
race detection and automated race healing for production environments. Our

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 15–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 J. Schimmel and V. Pankratius

detection heuristics focus on speed and on detecting the most common racy
patterns due to wrong locking.

Current proposals for run-time race detection [4,11,12,16,20,21,28] typically
require specialized hardware. Most standard hardware, however, does not have
such costly extensions. The novel extensions proposed in this paper aim to lower
the entry barrier and make run-time race detection available in many systems.
Our key idea exploits synergy effects between hardware used for performance
monitoring and hardware needed for run-time race detection. Moreover, our
extensions can be used for more accurate performance monitoring if run-time
race detection is not required.

We introduce TachoRace, a novel light-weight race detector that leverages
data from hardware performance counters in multicore processors for data race
detection. We track down events in the first-level cache of each core and automat-
ically heal races with a new cache protocol extension. We validate the proposed
hardware extensions in a controlled environment based on a simulator using PIN
[13]. TachoRace executes real binary programs, simulates caches, cache protocols,
and performance counters. This infrastructure allows us to precisely quantify
TachoRace’s effectiveness for race detection as well as performance overhead.

The paper is organized as follows. Section 2 introduces our assumptions and
requirements. Section 3 presents the principles of cache traffic monitoring for race
detection and healing. Section 5 shows detailed evaluations. Section 6 discusses
related work. Section 7 provides a conclusion.

2 Assumptions and Requirements

2.1 Software

A data race occurs when two threads simultaneously access the same memory
location without synchronization, and at least one of them performs a write op-
eration. This work focuses on locks as a means for synchronization and on errors
resulting from incorrect lock usage. As a race detection in general is equivalent to
solving the halting problem [5], our approach specializes on finding races caused
by wrong locking, i.e., patterns (b) and (c) in Figure 1, and a generalization
of these patterns (e.g., with more than two threads or several locks). Previous
work [22] shows that these error patterns are representative for frequent errors
in practice.

Run-time race detection can be made more accurate by annotating which
variable a lock should protect. Our approach introduces the lock_annotate
language extension to let programmers specify the relationship between a lock
and a locked element. The lock_annotate construct registers the address of
the lock, the address of the locked element and the locked element’s size. The
locked element can be composed of other elements that are contiguously stored
in memory. Here is an example in C:

int account = 0; Lock acc_lock; /*acc_lock protects account*/
lock_annotate(&acc_lock, &account, sizeof(account));

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 17

int x = 0;

Lock lock_x;

void Thread1_inc(){

locka(lock_x);

x++;

unlock(lock_x);

}

void Thread2_inc()

{

lock(lock_x);

x++;

unlock(lock_x);

}

int x = 0;

int y = 0;

Lock lock_x;

Lock lock_y;

void Thread1_inc(){

lock(lock_x);

x++;

unlock(lock_x);

}

void Thread2_inc() {

lock(lock_y);

x++;

unlock(lock_y);

}

int x = 0;

Lock lock_x;

void Thread1_inc(){

lock(lock_x);

x++;

unlock(lock_x);

}

void Thread2_inc(){

x++;

}

int x = 0;

void Thread1_inc(){

x++;

}

void Thread2_inc(){

x++;

}

(a) No Locking (b) Inconsistent

Locking

(c) Wrong Locking (d) Correct Locking

Fig. 1. Examples for lock usage patterns; (a)–(c) are incorrect programs

Earlier studies [18,19] have shown that parallel programs typically have only a
few lines of code containing synchronization constructs, so the expected number
of annotations is small. We remark that even languages like Java with block-
oriented synchronization keywords provide explicit locks for performance reasons
[10], so the aforementioned locking error patterns can also occur in Java.

2.2 Hardware

We detect data races by observing cache bus traffic while applications are run-
ning. This can already be done on existing processors, but unfortunately the
lack of measurement precision requires hardware extensions. Our specific inten-
tion was to envisage extensions that don’t require a radically different hardware
infrastructure, so they can eventually be available in standard processors. We
thus build on cache coherency protocol information that we gather from state-
of-the-art hardware performance counters. Our extensions can be used for more
accurate performance monitoring if race detection is not needed.

Reading cache coherency protocol data through performance counters incurs
almost no run-time overhead compared to the overhead introduced by other race
detectors [8,26]. Among others, we employ the CMP_SNOOP performance counter
[6] to monitor Modified/Exclusive/Shared/Invalid (MESI) messages and count
the number of cache lines requested by processor cores.

Current processor performance counters don’t provide yet all necessary func-
tionality for race detection. For example, counters on Intel processors don’t pro-
vide the memory addresses of accesses causing cache events, or filters for events
on a range of memory addresses. We thus implemented a software simulator
using PIN [13] to validate our technique. Our approach introduces additional
debug registers attached to each core, which each consist of one memory address
field and one size field (in bytes) for a shared data element. The registers are
used to configure a performance counter to only count events with accesses to
a specified memory location; the data size – if greater than zero – expands a

18 J. Schimmel and V. Pankratius

filter to a contiguous memory region. For now, we assume that threads are not
migrated among cores. As a proof of concept, we evaluate a hardware config-
uration in which each core has one additional debug register, and assume that
the number of registers suffices to supervise programs with a reasonable number
of locks. The debug register’s address field contains the starting address of a
lock-protected data element; the size field can be used to monitor accesses to
contiguous data structures such as objects or arrays. Debug registers can be ini-
tialized in a transparent way by extending lock and unlock constructs in libraries
such as Pthreads.

TachoRace effectively identifies and corrects races occurring due to wrong
locking. It is not designed for situations in which locking is incorrectly not done
at all; it also does not correct code with races that actually never occur.

3 Monitoring Cache Traffic to Detect and Heal Races

3.1 Race Detection

TachoRace’s principle for run-time race detection is based on inference from
observed cache traffic. As an example of how it works, let’s assume a dual core
machine on which thread T1 executes on core C1 and thread T2 on core C2.
Suppose that a programmer forgot to acquire a lock and protect variable x, as
in thread 2 in Figure 1 (b). T1 enters the critical section to increment x. At this
point, the address of x is stored in the debug register of C1 and a corresponding
performance counter is initialized on C1 to count all MESI events accessing this
address. T1 loads x from main memory into its local cache, and increments it.
Now if T2 attempts to increment x simultaneously, it has to fetch x in a similar
way and issue MESI messages on the bus. These messages are registered at C1,
which increments the performance counter for access to x address. The new
counter value greater than one indicates an incorrect usage of locks, because no
other thread should have been allowed to access x.

TachoRace detects and heals data races only when they occur. Our conflict
detection scheme targets inconsistent lock usage as in patterns like Figure 1
(b) and (c). However, we also handle situations in which multiple read accesses
to a locked element occur inconsistently; for example, one thread acquires a
lock before accessing variable x (for read access only), while another thread
simultaneously reads x without acquiring the lock. Technically, this is not a
race, but points to a potential error, and TachoRace reports a warning.

3.2 Race Healing

TachoRace heals races by modifying conflicting thread access schedules in real-
time. Messages that delay the execution of other cores that cause a conflict are
then issued on the bus. We extend the MESI protocol by five Inter-Processor In-
terrupt (IPI) messages: “RaceWait”, “RaceContinue”, “DeadlockCheck”,
“NoDeadlock”, and “DeadlockFound”.

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 19

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

Read X

RAM

Debug Register

&X

Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

RaceWait

RAM

Debug Register Debug Register

Core 1

L1 Cache

X

Core 2

L1 Cache

Release Lock &

Write X

RAM

Debug Register Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

Read X

RAM

Debug Register Debug Register

Core 1

L1 Cache

Core 2

L1 Cache

RaceContinue

(1)

(4) (5)

(2) (3)

Fig. 2. Illustration of the race prevention strategy issuing RaceWait and RaceContinue
messages

Figure 2 illustrates our race healing protocol. In step (1), core one acquired
a lock on x and manipulated x’s value, so x is available in core one’s cache.
TachoRace stores the address of the locked data element in core one’s debug
register. When core two attempts to read x from main memory, the new requests
are visible on the bus. In step (2), core one detects the potentially conflicting
request by listening to bus traffic and issues a “RaceWait” message. In step
(3), core two receives “RaceWait” and blocks the execution of its thread until
it receives “RaceContinue” in step (4). The “RaceContinue” message is issued
when core one’s thread executes its unlock operation. Finally, core two’s thread
resumes execution in step (5) and re-issues the reading operation on x.

Due to space limitations, we have to omit details on correctness checking of
the protocol and describe how TachoRace handles some special cases. A special
case is trapped when automatic race repair avoids a race, but leads to a deadlock.
This can happen when two data races overlap; for example, one thread acquires
lock A, securing access to variable X, while thread two acquires lock B, securing
access to variable Y. If both threads concurrently write on the variable that is
locked by the other thread, TachoRace would send a “RaceWait” message to each
thread, but no one will issue a “RaceContinue” message. The inherent problem
is that TachoRace does not know the programmer’s intention in a program that
is simply wrong. We thus check for deadlocks whenever a core waiting for a
“RaceContinue” message emits a “RaceWait” message.

In brief, such rare deadlock situations are handled as follows. If a thread issues
“RaceWait” and pauses, it broadcasts on the bus a “DeadlockCheck” message
identifying the thread that has sent the initial “RaceWait” message. Snooping

20 J. Schimmel and V. Pankratius

the bus, each active thread checks if the message matches itself. In a match, the
respective thread broadcasts a “DeadlockCheck” message if it has been paused
by “RaceWait”, again identifying the thread that sent “RaceWait”. A thread
will eventually either send a “NoDeadlock” message or the “RaceWait” chain
exploration will reach the first thread, the one that initiated deadlock checking.
This thread issues a “DeadlockFound” message, so TachoRace can report the
incident. We remark that additional messages to handle deadlocks hardly influ-
ence average application performance. The reason is that the described chain of
events rarely occurs.

4 The Detector

Current multicore processors do not have a debug register like the one proposed
in this paper, but it is required to implement our run-time race detection. To
validate TachoRace, we thus developed a hardware and cache simulator based on
PIN [13], which is capable of executing real, multithreaded binary applications.
TachoRace runs on Windows and Linux. TachoRace can be configured to use
a wide range of cache architectures that may have a different number of cores
and different cache levels. Every cache level can be individually configured to be
shared among certain cores. For example, it is easy to model Intel’s Core 2 Quad
Q6600 processor, where each pair of cores share a common L2 cache, whereas
every single core has a private L1 cache. TachoRace can even use a different
cache coherence protocol on each cache level. We implemented the widely-used
MESI protocol [6], but our simulator can be easily extended to use MSI or
MOESI [1]. We also support the Least-Recently-Used replacement strategy and
an adjustable cache line size. Each cache level can be configured to be fully
associative, set associative, or n-way associative. TachoRace does not consider
prefetching. All caches contain data only, as in most architectures instruction
data is read-only; instruction caches are not modeled.

As a proof of concept, the implementation is based on the following model:
The processor contains n ≥ 1 processing cores, each of which has its own level
one cache. Higher cache levels and main memory are shared among x cores
(e.g., with x = 2 for Intel’s Q6600). A program has a maximum of n threads,
each of which is attached to one distinct core, and threads are not migrated
from one core to another core. If there are more cores available than threads,
the redundant cores remain idle. Only one parallel program is running at a
time. Another program only starts when the previous program has finished,
excluding scheduling overlaps. Threads can be deliberately paused and resumed
to achieve different thread interleavings. We don’t simulate the operating system,
interrupts, or traps, so we can ensure that the currently executing program is
the only one to cause caching activity.

We remark that the restrictions in the simulation environment were chosen
to create a controlled environment that cleanly demonstrates that the results
are due to the race detection approach, and not due to other factors or noise.
As TachoRace uses concrete hardware memory addresses, it also works when
threads from different processes incorrectly access a shared resource.

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 21

5 Evaluation

5.1 Setup

We evaluate the effectiveness of TachoRace’s on-the-fly race detection at run-
time. As it is the first detector of its kind, we compare its results with Helgrind
[26] (an open-source detector) and Intel’s commercial Thread Checker [7]. We
use two well-known benchmarks: The Helgrind race detection unit tests [25] and
SPLASH2 [27].

The Helgrind unit tests consist of more than 50 parallel programs. We select
the tests designed for race detection, i.e., a subset of 29 executable programs.
All lock declarations are annotated as described earlier. Each test creates several
threads and executes a small piece of code that either has a data race or imple-
ments correct code that might look like a race. Table 1 shows an overview: out
of 29 cases, 4 have a racy pattern with no locking at all (which TachoRace can-
not detect by design), 10 are synchronized correctly, and the other 15 use locks
incorrectly. In addition, we include the following applications from SPLASH2:
“cholesky” (a numerical application), “water-nsquared” (a physical simulation),
and “raytrace” (a parallel raytracer). We seeded 13 data races into these ap-
plications (see Table 2), using the patterns shown in Figure 1 (b) and (c) by
randomly deleting pairs of lock acquisitions and releases. Some of the races in-
fluenced the progress of the applications and even crashed them when the race
occurred. TachoRace proved to heal the races and prevent the crashes in all of
these cases.

5.2 Results

Table 1 shows effectiveness results. TachoRace finds all races in all fourteen test
cases that use locks. It is successful on all of the test cases where it should find a
race. TachoRace did not report false positives and resolved all detected conflicts
at run-time by delaying the execution of the malicious threads, so the programs
were able to produce correct outputs. Races in the five remaining racy programs
are not detected, as TachoRace was not designed to find races in programs
that do not use any locks at all. In an additional stress-test, we inserted sleep
statements at key positions in the parallel program’s code to cause different
thread schedule interleavings, and TachoRace’s was able to detect the same
races. We encountered no situation where TachoRace’s race healing produced a
deadlock.

By contrast, Helgrind incorrectly reported 5 race-free test cases to contain
races. Intel’s Thread Checker reported just one false positive, but its overhead
lead to application execution time slowdowns of up to 3324x (!). Such huge
slowdowns are not unusual for dynamic detectors that check for races at each
memory access.

Table 3 shows efficiency results. The message overhead introduced by Race-
Wait/ RaceContinue messages and by counter accesses is low, compared to reg-
ular MESI messages that would have been on the bus without TachoRace. On

22 J. Schimmel and V. Pankratius

average, TachoRace introduces just 0.2% more messages. The introduced slow-
downs for application execution are minor; the exact slowdown depends on the
specific hardware, however, assuming 10ns for message handling (see [24] for
clock cycle estimations) and counter access, yields for all 29 test cases a median
application slowdown of 50ns. Even the maximum slowdown of 10ms (e.g., for
test case 20) corresponds to an application run-time slowdown of 0.002%. By
contrast, measured overhead with Intel’s Thread Checker is significantly higher
for all test cases. On an Intel Quadcore machine running Ubuntu Linux 9.1, we
obtained a median slowdown of 77 times the application execution time, and a
maximum slowdown 3324 times (e.g., for test case 20).

Table 1. Detection results for general bug patterns for Helgrind, Intel Thread Checker,
and TachoRace

1

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 23

Table 2. Errors seeded in the SPLASH2 benchmark

Table 3. The message traffic overhead introduced by TachoRace is low, compared to
the regular MESI traffic

6 Related Work

We refer to [23] for details on our alternative approach that does not require
lock annotations, but which is less accurate.

On-the-fly race detection schemes typically require specialized hardware [29].
TachoRace is the first approach alleviate this problem by exploiting synergies

24 J. Schimmel and V. Pankratius

between hardware required for debugging and hardware required for performance
monitoring.

Some Transactional Memory approaches have been extended to detect races.
For example [4] require additional registers at the granularity level of cache lines;
by contrast, TachoRace works at the granularity level of memory addresses and
avoids false sharing problems. ToleRace [22] detects patterns as shown in Figure
1, but operates on copies of shared variables and introduces additional overhead.

BugNet [15] works as an application-level debugging aid and introduces hard-
ware extensions for event capturing. The FastTrack [3] dynamic detector has
lightweight vector clocks but still incurs average program execution slowdown of
8.5x, which is inappropriate for online race detection detection. [21] works at the
granularity of memory pages and requires lock annotations. Differing from our
approach [21] require page copies containing the locked data elements as soon as
a critical section is entered, which leads to high overhead and more memory con-
sumption. Light64 [16] introduces one additional register per core and requires
each program to be executed several times, so the tool can compare data changes
to detect races; such repetitions are not required for TachoRace. The detector of
[20] has a lazy release consistency memory model and a theoretically exponential
overhead. Programs are slowed down by a factor of 200%, and the approach has
been demonstrated to work just on two out of four tested programs. Isolator [21]
dynamically ensures isolation for programs in which some parts correctly obey
a locking discipline, while others don’t. In contrast to TachoRace, Isolator has
a different goal and ensures that incorrectly synchronized threads do not inter-
fere in correctly synchronized parts of the program. Isolator does not provide a
detailed solution for cases in which Isolator’s repair attempts would introduce
deadlocks.

Contest [9] introduces sleep statements into multithreaded programs to alter
buggy schedules. Healing has been demonstrated just for one bug pattern (load-
store bugs), and slowdowns can be up to 3.75x. AVIO [11] proposes cache coher-
ence hardware extensions to detect atomicity violations, but requires multiple
program runs (some of which need to be correct) so the tool can infer invariants.
Colorama [2] proposes hardware extensions to automatically infer critical sec-
tions, but creates additional memory overhead and even introduces races if the
inference mechanism does not make correct predictions; this cannot happen with
TachoRace. Atom-Aid [12] dynamically reduces the probability that atomicity
violations can manifest; by contrast, TachoRace repairs races when they occur.
Autolocker [14] employs program analysis to find a locking policy that does not
lead to race conditions and uses lock annotations similar to TachoRace. However,
resource-intensive pointer analysis would have been necessary to detect all ac-
cesses to a particular variable. In contrast to TachoRace, Autolocker may refuse
to execute certain programs.

Hard [28] introduces a hardware implementation of the lock-set algorithm,
but in contrast to TachoRace, it does not heal races. The hybrid dynamic race
detection approach in [17] combines lock-set and happens-before-based detection
to improve accuracy, but has slowdowns by orders of magnitude.

Exploiting Cache Traffic Monitoring for Run-Time Race Detection 25

7 Conclusion

Online race detectors serve as the last safety net to prevent parallel program-
ming bugs in applications deployed at clients from causing greater damage. The
required hardware, however, is typically specialized and expensive, which makes
it unlikely that it will become available in everyone’s multicore system. The
tradeoff approach proposed in this paper alleviates this problem by exploiting
synergy effects between hardware needed for performance monitoring and hard-
ware needed for online race detection. TachoRace not only detects common race
patterns, but also automatically fixes races while programs execute. In the long
run, the ideas presented in this paper can bring us closer to making on-the-fly
race detection available on every multicore desktop.

Acknowledgements. We thank the Excellence Inititative and the Landess-
tiftung Baden-Württemberg for their support. Many thanks also to Sebastian
Crüger for his support during implementation.

References

1. AMD. Amd64 architecture programmer’s manual (September 2007),
http://www.amd.com

2. Ceze, L., et al.: Colorama: Architectural support for data-centric synchronization.
In: Proc. IEEE HPCA 2007, pp. 133–144 (2007)

3. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proc. PLDI 2009, pp. 121–133. ACM, New York (2009)

4. Gupta, S., et al.: Using hardware transactional memory for data race detection.
In: Proc. IEEE IPDPS 2009, pp. 1–11 (2009)

5. Helmbold, D.P., McDowell, C.E.: A taxonomy of race detection algorithms. Techni-
cal report, University of California at Santa Cruz, UCSC-CRL-94-35, Santa Cruz,
CA, USA, September 28 (1994)

6. Intel. Intel 64 and IA-32 architectures software developer’s manual (December
2009), www.intel.com

7. Intel. Intel thread checker v.3.1 (2011), http://software.intel.com
8. Jannesari, A., et al.: Helgrind+: An efficient dynamic race detector. In: Proc. IEEE

IPDPS 2009 (2009)

9. Krena, B., et al.: Healing data races on-the-fly. In: Proc. ACM PADTAD 2007, pp.
54–64 (2007)

10. Lea, D.: The java.util. concurrent synchronizer framework. Sci. Comp. Prog 58(3)
(2005)

11. Lu, S., et al.: Avio: detecting atomicity violations via access interleaving invariants.
In: Proc. ASPLOS-XII, pp. 37–48. ACM, New York (2006)

12. Lucia, B., et al.: Atom-aid: Detecting and surviving atomicity violations. In: Proc.
ISCA 2008, pp. 277–288. ACM, New York (2008)

13. Luk, C.-K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proc. PLDI 2005, pp. 190–200. ACM, New York (2005)

14. McCloskey, B., et al.: Autolocker: synchronization inference for atomic sections.
In: Proc. POPL 2006. ACM, New York (2006)

http://www.amd.com
www.intel.com
http://software.intel.com

26 J. Schimmel and V. Pankratius

15. Narayanasamy, S., et al.: Bugnet: Continuously recording program execution for
deterministic replay debugging. In: Proc. ISCA 2005, pp. 284–295. ACM, New York
(2005)

16. Nistor, A., et al.: Light64: Lightweight hardware support for data race detection
during systematic testing of parallel programs. In: Proc. IEEE MICRO 2009 (2009)

17. O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. In: Proc. PPoPP
2003. ACM, New York (2003)

18. Pankratius, V., Jannesari, A., Tichy, W.: Parallelizing bzip2: A case study in mul-
ticore software engineering. IEEE Software 26(6), 70–77 (2009)

19. Pankratius, V., Adl-Tabatabai, A.-R.: A Study of Transactional Memory vs. Locks
in Practice. In: Proc. SPAA 2011. ACM, New York (2011)

20. Perkovic, D., Keleher, P.J.: Online data-race detection via coherency guarantees.
In: Proc. OSDI 1996. USENIX (1996)

21. Rajamani, S., et al.: Isolator: dynamically ensuring isolation in concurrent pro-
grams. In: Proc. ASPLOS 2009. ACM, New York (2009)

22. Ratanaworabhan, P., et al.: Detecting and tolerating asymmetric races. In: Proc.
PPoPP 2009. ACM, New York (2009)

23. Schimmel, J., Pankratius, V.: TachoRace: Exploiting Performance Counters for
Run-Time Race Detection. Technical Report 2010-01, Karlsruhe Institute of Tech-
nology, Germany (April 2010)

24. Slater, R., Tibrewala, N.: Optimizing the mesi cache coherence protocol for multi-
threaded applications on small symmetric multiprocessor systems (1998),
http://tibrewala.net/papers/mesi98

25. Valgrind-project. Data-race-test:test suite for helgrind, a data race detector (2008)
26. Valgrind-project. Helgrind: a data-race detector (2011), http://valgrind.org
27. Woo, S., et al.: The SPLASH-2 programs: characterization and methodological

considerations. In: Proc. ISCA 1995. ACM, New York (1995)
28. Zhou, P., et al.: Hard: Hardware-assisted lockset-based race detection. In: Proc.

IEEE HPCA 2007, pp. 121–132 (2007)
29. Zhou, Y., Torrellas, J.: Deploying architectural support for software defect de-

tection in future processors. In: Workshop on the Evaluation of Software Defect
Detection Tools (2005)

http://tibrewala.net/papers/mesi98
http://valgrind.org

Accelerating Data Race Detection
with Minimal Hardware Support

Rodrigo Gonzalez-Alberquilla1, Karin Strauss2,3, Luis Ceze3, and Luis Piñuel1

1 Univ. Complutense de Madrid, Madrid, Spain
{rogonzal,lpinuel}@pdi.ucm.es
2 Microsoft Research, Redmond WA, USA

kstrauss@microsoft.com
3 University of Washington, Seattle WA, USA

luisceze@cs.washington.edu

Abstract. We propose a high performance hybrid hardware/software solution to
race detection that uses minimal hardware support. This hardware extension con-
sists of a single extra instruction, StateChk, that simply returns the coherence
state of a cache block without requiring any complex traps to handlers. To lever-
age this support, we propose a new algorithm for race detection. This detection
algorithm uses StateChk to eliminate many expensive operations. We also pro-
pose a new execution schedule manipulation heuristic to achieve high coverage
rapidly. This approach is capable of detecting virtually all data races detected by
a traditional happened-before data race detection approach, but at significantly
lower space and performance overhead.

1 Introduction

Writing much-needed multithreaded programs often requires dealing with concurrency
bugs that result from subtle interaction between threads. Among these bugs, data races
are the most common. Unsynchronized accesses to shared data could lead to crashes
or silent data corruption, so current languages including Java [6] and the new C++
standard [11] disallow or discourage data races.

Researchers have proposed a variety of mechanisms to detect and avoid data races,
including many hardware-only [8,9,12,13,18] and software-only [14,15,17] solutions.
Hardware-only solutions are typically complex. They require extensive hardware sup-
port, like changes to the cache hierarchy, extending cache coherence messages with
additional information, and modifying the cache coherence protocol state machine to
check for events of interest. The storage requirements, many times close to key pro-
cessor structures, are also quite prohibitive. Software-only solutions, on the other hand,
require no modification to the architecture, but are typically too slow to be an always-on
feature. The analysis operations performed in software are slower, and these algorithms
require a significant amount of metadata and frequent inter-thread communication.

We propose a hybrid solution: hardware support is boiled down to the bare mini-
mum, reducing complexity, and making detection of inter-thread communication much
faster than prior approaches. We augment the ISA with one simple instruction that takes
an address as input and returns the coherence state of the cache block containing that

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 27–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 R. Gonzalez-Alberquilla et al.

address. We also propose a new algorithm that uses this support to effectively detect
data races. Our solution leverages two key insights: (1) the dynamic information we
need can be extracted from coherence state already tracked by the hardware; (2) there is
a well-defined category of dynamic data races that are much cheaper to detect and yet
can be proven to include all static data races given sufficient executions. We also show
how to perturb execution schedules to speed up the exposure of data races to the de-
tection mechanism, achieving high accuracy compared to traditional happened-before
data race detection, but at significantly lower space and time overheads.

Sections 2, 3 and 4 explain the proposed hybrid system, Sections 5, 6 and 7 evaluate
it and compare it to previous work, and Section 8 concludes.

2 Background

Terminology. A data race exists if there is no synchronization order between any two
accesses to the same address by different threads, at least one of them being a write ac-
cess. A static race is a pair of static instructions that, when executed, may be involved
in a data race, and a dynamic race is one manifestation of a data race at execution time.
An epoch is the set of dynamic instructions in a thread executed between two consec-
utive synchronization operations. To simplify our discussion, we assume a static direct
mapping of threads to cores. We discuss how to relax this assumption in Sections 4.1
and 4.4.

Data race detection. The basic approaches to data race detection are happened-before-
based [13,14] and lockset-based algorithms [15,18]. We focus on the former, which
leverage Lamport’s happened-before relation [2] (to partially order memory accesses
based on observed synchronization operations) and program order to determine if con-
flicting accesses are logically concurrent. Due to space constraints, we omit an explana-
tion of happens-before race detection (HapB) and FastTrack (FastT), a state-of-the-art
software implementation of HapB for Java, but we expect the reader to be familiar with
them [1,2,14].

Cache coherence. Without loss of generality, we assume an invalidate-based MESI
protocol. The coherence state of a cache line implicitly carries valuable information
about recent accesses, e.g., if the block is in M state in a cache, the line was last written
by the local processor; the E state indicates the cache has read that block before; the S
state indicates the cache has read or written that block before, and then another cache
may have requested that block; the I state indicates that a remote write happened. We
leverage this implicit information for lightweight memory access monitoring.

3 Minimal Hardware Support for Data Race Detection

Our proposed minimal hardware support for data race detection consists of simply ex-
posing the coherence state of a cache block to software via one additional instruction.
A software layer then records and uses the state information to detect data races. To
leverage this support, we propose a new race detection algorithm, “AccessedBefore”,
or simply AccB. Its key idea is to use a software-managed address-indexed table to

Accelerating Data Race Detection with Minimal Hardware Support 29

Fig. 1. Race detection with coherence state

Table 1. Types of downgrades and races

Transition at Access at Access at
Race type

local thread local thread remote thread
M → S write read W→R
M → I write write W→W
M → I

read write R→WE → I
S → I

track the last observed state of cache blocks and detect if they have been downgraded
within the boundaries of an epoch. A downgraded block within an epoch indicates a
potential data race: a remote cache has issued an upgrade request to the block. Note that
all state necessary to the analysis is local to a thread, so no inter-thread communication
is required; HapB, in contrast, requires substantial inter-thread communication.

3.1 AccessedBefore (AccB) Algorithm

Figure 1 illustrates how AccB works. Thread 0 performs a synchronization operation
and starts an epoch (1). When thread 0 performs a write to variable v (2), the corre-
sponding cache block transitions to M state and the software layer records the pair of
address and state < v, M > in its local table. When thread 1 subsequently reads vari-
able v (3), the block cached by thread 0 is downgraded to S state. At this point, the
software layer is unaware of the downgrade. Finally, when thread 0 is about to write
v again (4), the software layer reexamines the current state of v’s block (S) and the
state recorded in its local table (M), observes a downgrade has happened and detects
the race. If this last write never happens, the downgrade check is performed when the
epoch ends (5).

Table 1 shows the different types of downgrade and the races they indicate. For exam-
ple, the first row corresponds to the example in Figure 1. Table 2 summarizes AccB’s
operation by showing the actions taken by the software layer on each relevant event.
Again, note that all analysis actions are local to a thread: the only communication be-
tween threads happens through the cache coherence protocol (which would be present
even in the absence of AccB). Also, the information collected into the local table only
pertains to a single epoch, as we are not interested in downgrades across synchroniza-
tion operations. In addition, AccB epochs can be redefined to the instructions executed
between two source synchronization operations because AccB does not require any
notion of ordering with previous epochs from other threads, while HapB does. These
are three important advantages of our approach when compared to HapB, which has
additional storage and communication requirements.

In essence, AccB looks for access conflicts between concurrently running epochs,
which must be the result of a race (or false sharing as described below). Thus, a race
will be detected if the epochs with racy accesses overlap in time.

Interestingly, for every race in a program there must exist an execution in which the
epochs of the racy instructions overlap in time (we formally proved this statement but
leave it out due to space constraints). We propose an optimization to quickly expose

30 R. Gonzalez-Alberquilla et al.

Table 2. Events of interest and related algorithm actions

Event of interest Algorithm action

Beginning of epoch Clear local table.

Before memory access
Check the current state of the corresponding cache block against the entry
in its local table (if any) to detect downgrades.

After memory access Record the state of the corresponding cache block in its local table.

End of epoch
Check every entry in its local table and their corresponding state in the cache to
detect remaining downgrades.

races to AccB: carefully perturbing the execution schedule to increase the probability
of overlapping racy epochs.

3.2 Sources of Inaccuracy

We now discuss the two sources of inaccuracy in AccB: (1) false sharing, and (2) block
evictions. The next section discusses optimizations to mitigate them.

False sharing. To keep the hardware support required by our proposal to a minimum,
we do not extend the memory access information to granularity finer than what is al-
ready provided by coherence protocols: a cache block. False sharing of the block may
result in false positives. Other race detection approaches at the same granularity would
have the same limitation (e.g., HapB). Moreover, our approach can be easily extended
to finer granularity if necessary (at extra cost) and is orthogonal to software techniques
to mitigate false positives.

Cache block eviction. On eviction, a block loses its state thus the cache loses its ability
to detect downgrades, so races may be missed (false negatives).

4 Implementation

4.1 Hardware Support

We extend the ISA of an off-the-shelf multiprocessor with a StateChk
(StChk off(base),reg) instruction, which returns the state of off(base)’s
cache block in register reg. If the block is not present in the cache, StateChk re-
turns a special NotPresent (NP) state to distinguish from a block in Invalid state. The
last valid state is returned if the cache block is in a transient state.

Implementing the StateChk instruction requires minor changes to (1) cache data
paths, and (2) cache controllers. A new multiplexer creates a path for coherence state
into the processor via the existing cache data path. Cache controllers suffer one modi-
fication: if the requested block is not currently cached, the cache controller returns the
NP state without triggering a miss request.

We assume L1 caches to be the point of coherence, but other configurations are
possible. They belong to one of two categories: (1) coherence is maintained among
caches private to a hardware thread (e.g., private non-inclusive L1 and L2 caches), and
(2) coherence is maintained in caches shared by more than one hardware thread (e.g.,
SMT processor with a single L1 data cache). In the first case, the proposed mechanism

Accelerating Data Race Detection with Minimal Hardware Support 31

works seamlessly: the state is obtained from the private cache where a hit happens
(NP in case of a miss in all private caches). In the second case, accesses and resulting
changes of state by different threads need to be distinguished by replicating the state for
each thread.

4.2 Software Layer

Data structures. A thread-local hash table records information about accesses per-
formed during an epoch. This table is indexed by data address and stored in main
memory. Each entry contains the expected state (based on the type of the last access
to the cache block) for the corresponding block and the address of the instruction that
performed the last local access to the address.

Instrumentation points. We use dynamic binary rewriting to instrument every source
synchronization operation (thread creation, mutex and conditional variable creation,
lock release, and waiting) and every memory operation not involved in a synchroniza-
tion operation. The epoch ending instrumentation is inserted right before source syn-
chronization operations. It searches the local table for any downgraded variables in the
ending epoch and subsequently clears the table in preparation for the next epoch.

The memory access instrumentation checks the state of the corresponding address
in the cache via a StateChk instruction, and compares it with the state recorded in
the table. If it detects a downgrade, it reports the race with the corresponding address
and the instruction address of the previous access. It then updates the state in the ta-
ble with the maximum (following the order M > E = S > I) of the recorded state
and the current state. Using the maximum is safer than executing StateChk again
after the instrumented access executes because downgrades could be missed in the win-
dow between the instrumented access executes and the second StateChk instruction
executes.

4.3 Optimizations

These optimizations improve accuracy and reduce instrumentation overhead.

Coverage improvement with schedule perturbation. AccB only detects races be-
tween epochs that overlap in time. We perturb executions to encourage an increased
variety of overlapping epoch sets. When an epoch starts, the thread randomly chooses
an action: (1) to continue executing normally, or (2) to join its thread to a reschedul-
ing barrier. The thread waits at this barrier until a bounded random timeout occurs. At
this point, all threads that joined this first barrier start executing their epochs. Once a
thread finishes its epoch, it joins a checking barrier. When all threads that joined the first
barrier join this second barrier, or it times out, epoch checks are done and all threads
continue.

Further reducing overheads with extra hardware support (AccB++). We can further
accelerate AccB with very simple modifications: we add a small number of metadata
bits to caches and use them to reduce the number of accesses to the local table. The
coherence state of each cache block is augmented with two extra bits, namely, locally
read bit (lrd) and locally written bit (lwr), and caches are augmented with a single

32 R. Gonzalez-Alberquilla et al.

downgraded bit (dgd). These bits record the nature of the local accesses within the last
epoch (lrd or lwr) to a particular cache block, and downgrades (dgd) to any cache
block touched by the local thread within that epoch. An additional instruction gang-
clears these bits in the local cache and is used by the software layer in the beginning
of every epoch. The cache controller is modified to set lrd or lwr on a local read or
local write access, respectively, and to set dgd on downgrades due to remote requests
(but only if either lrd or lwr for that block is set). Finally, the StateChk instruction
returns these three bits together with the regular coherence state.

The software layer uses these additional bits to detect accesses followed by down-
grades within an epoch. A StateChk instruction is inserted immediately before each
memory access and the dgd bit is checked. If the dgd bit is set, a data race is detected.
These bits optimize how the local table is used: the lrd and lwr bits reduce the number
of accesses to the table, since only information about the first read and write accesses
to a variable in each epoch need to be recorded (this is sufficient to report one data race
– others may be detected once the first is eliminated). On every memory access, instead
of checking if the address is present in the table, the lrd and lwr bits are checked. If
none are set, this is the first access to this variable within the current epoch, so the ad-
dress and the corresponding instruction address are added to the table. If only the lrd
bit is set and the access being instrumented is a write, this is the first write access to the
variable, so the instruction address of the table entry is updated. If the lwr bit is already
set, no new updates are needed. Note this does not completely eliminate the use of the
local table because it is still necessary for end-of-epoch checks and for recording the
instruction address of accesses.

A small victim cache next to the data cache reduces the impact of cache block evic-
tions. Whenever a block that has its lrd and/or lwr bit set is evicted from the data cache,
it is cached in the victim cache. This allows reporting a race even if the block involved
in the race has been evicted from the data cache.

4.4 System Issues

Thread migration. Thread migration can lead to changes to the coherence states ob-
served by AccB, affecting its accuracy. To mitigate this potential problem, the software
layer may check via an instruction like x86’s CPUID in which core the thread is run-
ning at every epoch end and compare it with the core identification number recorded
in the previous epoch. If they are different, a migration has taken place and the in-
strumentation ignores any races detected for that epoch. Note that to preserve locality,
the OS typically keeps the mapping between threads and cores as stable as possible.
Finally, epochs typically run much faster than context switch time scales. Therefore,
thread migration is unlikely to lead to major accuracy degradation in AccB.

Speculation. Speculative execution can cause additional false positives in a few sce-
narios: (1) StateChk is executed speculatively in the local core, (2) load is executed
speculatively in a remote core, and (3) prefetch request is issued in a remote core. The
simplest solution is to allow false positives, which are likely to be low. Other solutions to
the first problem are to either reuse mechanisms traditionally used for load speculation
(e.g., replay or snoop) or to only set the access bit when the load retires. Solutions to (2)
consist of limiting speculation to when it is safe. For example, allowing a speculative

Accelerating Data Race Detection with Minimal Hardware Support 33

load to proceed only when it reaches the point-of-no-return in designs like CHERRY [7]
or if the cache block is in the local cache in a valid state. (3) can be easily mitigated
by turning prefetching off during debugging runs; an alternative is marking prefetches
until later access confirmation, at the cost of extra complexity.

5 Experimental Setup

We evaluate AccB using the PIN [5] dynamic binary instrumentation framework with a
tool that includes the software layer from Section 4 and a detailed memory hierarchy: 8
32KB 8-way set associative LRU DL1s with 64-byte blocks and MESI coherence. The
latency of StateChk is the same as a cache hit.

We compare AccB with an implementation of HapB and FastT using the same in-
strumentation framework. All algorithms are exposed to the same memory interleavings
for accuracy comparisons. HapB is complete, so we verified that every race found by
AccB has also been found by its HapB counterpart.

HapB Implementation. We have carefully optimized HapB by using hash-sets for
read- and write-sets and Bloom-filters to speed up intersections of hash-sets. Same-
thread epochs are stored in an ordered linked list and pruned as soon as an old epoch
is ordered before all current epochs (space-optimal implementation). Vector clocks are
implemented as regular arrays.

FastT Implementation. We implemented FastT for C++. Unlike the original imple-
mentation for Java, which embeds metadata in the object, the implementation for C++
stores metadata in a global table because C++ is not type safe.

Benchmarks. We use the SPLASH-2 benchmarks [16] and commercial workloads
(Apache httpd server, MySQL database, AGet, PBZip) compiled with gcc’s standard
-O2 optimization flag and run with 8 threads. We do not report performance for AGet
and PBZip because they are non-deterministic. We verify that AccB detects races re-
ported in the literature for Apache and MySQL [3].

6 Evaluation

6.1 AccB versus HapB

Table 3 compares AccB and HapB in terms of performance, space overhead and ac-
curacy. The first group of rows in Table 3 show the speedup of an application instru-
mented with AccB, and with extra hardware support (AccB++), compared to HapB.
For example, barnes instrumented with AccB runs 11% faster than when instrumented
with HapB. The speedup grows to almost 2× with AccB++. Overall, AccB++ achieves
speedups of up to almost 6×. A few benchmarks (lu, radix, and water spatial) experi-
ence modest slowdowns with AccB, caused by the type of synchronization used in these
benchmarks: most synchronization is based on barriers, which allow HapB to clean up
all information about old epochs and significantly reduce its checking overheads. AccB

34 R. Gonzalez-Alberquilla et al.

Table 3. Performance, space overhead and accuracy comparison of AccB and HapB

brns chlsk fft fmm lu ocean radx rayt vrnd water aget pbzip
cnt ncnt cnt ncnt nsqr spt

Speedup (× — HapB/AccB)
AccB 1.11 1.03 1.02 1.16 0.98 0.95 1.19 1.21 0.98 1.08 5.71 1.23 0.99 – –
AccB++ 1.99 1.31 1.27 1.55 1.54 1.23 1.19 1.21 1.04 1.23 5.90 1.71 1.30 – –
FastT † 0.03 0.01 0.07 0.01 0.08 0.08 0.33 0.33 0.18 0.21 0.29 0.08 0.06 – –

Space overhead (%)
AccB avg 0.8 9.4 31.8 3.3 19.9 20.2 25.6 26.1 32.9 41.0 0.2 15.8 30.6 0.1 5.6
AccB max 77.1 13.0 87.5 29.6 33.3 33.2 110.6 113.3 116.5 40.4 0.4 25.7 80.1 0.1 32.1

Accuracy (%)
AccB 97.8 – – 95.4 – – 100.0 100.0 – 100.0 100.0 – – 100.0 100.0

incurs extra overheads because it performs table checks on every memory access in
addition to end-of-epoch checks. Note that AccB++ always shows speedups1.

The second group shows average and maximum space overheads for AccB over
HapB. For example, AccB uses on average 0.8% and at most 77% of the storage used by
HapB for barnes. For most benchmarks, AccB uses significantly less space than HapB.
In some cases (ocean, radix), AccB incurs a higher maximum space overhead compared
to HapB (but the average is still lower). This is due to uncommon program behavior:
frequent barriers and large accessed sets.

The last row shows accuracy, i.e., how many races AccB detects compared to HapB
for 500 runs. AccB detects all races for most benchmarks. Section 6.3 provides more
insight into those very few races not detected by AccB.

6.2 Overheads Characterization

Performance. Table 4 characterizes the performance overheads of AccB and AccB++
compared to HapB, aggregated for all benchmarks. This study is data structure inde-
pendent: it counts high level operations to each algorithm’s data structures, i.e., lookups
and updates. The numbers show the relative frequency of events for AccB and AccB++,
normalized to HapB. Lookups (row 2) and updates (row 3) are direct accesses to AccB’s
local table and to HapB’s sets. Branches (row 4) refer to branches taken while manipu-
lating these data structures. AccB incurs many more lookups than HapB because AccB
performs lookups at every memory access, while HapB performs them only at epoch
ends. Even though AccB’s lookups are more frequent, AccB is still faster than HapB
because there is high locality in AccB’s table accesses and most are cache hits (besides
being thread-local). Also, HapB is very control flow intensive, as demonstrated by the
large number of branches. HapB’s data structures are larger (due to multiple epochs, not
just the current), which results in worse cache behavior. Finally, HapB requires trans-
ferring vector clocks and epoch information, which implies additional communication
among threads, i.e., costly misses.

1 † The results show that FastT is much slower than HapB. The reason is twofold: first, FastT ex-
periences additional overheads compared to its original Java implementation due to the global
table required by C++; second, HapB performs intersections at the end of each epoch, FastT
performs checks at every access.

Accelerating Data Race Detection with Minimal Hardware Support 35

Table 4. Number of operations executed by
AccB and AccB++ compared to HapB

AccB AccB++

Lookups 3326.7% 15.6%
Updates 100.0% 29.8%
Branches 4.2% 5.1%

Table 5. Overheads, storage requirements of
HapB and AccB

HapB AccB

Avg. entries per epoch 360.3 623.2
Avg. epochs in history 16.5 0
Avg. simultaneous entries 71.6k 9.1k
Size (MB) 2.15 0.28

Table 6. Relative percentage of false positives in AccB compared to HapB

brns chlsk fft fmm lu ocean radx rayt vrnd water aget pbzip
cnt ncnt cnt ncnt nsqr spt

99.1 98.3 100.0 81.3 100.0 100.0 100.0 98.6 100.0 100.0 100.0 100.0 100.0 51.8 75.0

With simple additional support, AccB++ has lower overheads than AccB. AccB++
reduces lookups by two orders of magnitude and updates by more than 60%. AccB++
has higher number of branches, but still much lower than HapB.

Space. Table 5 shows the space overhead of HapB and AccB averaged across all bench-
marks. It reports the number of entries per epoch (row 2), overall number of epochs kept
in history (row 3), total number of entries used by all epochs in all threads simultane-
ously (row 4) and overall storage requirements (row 5).

AccB records more entries per epoch than HapB (row 2). This is due to AccB only
ending epochs at synchronization sources, which makes AccB epochs longer. AccB
keeps no history while HapB keeps history on 16.5 epochs on average (row 3). AccB
requires a much lower total number of entries (over 7× fewer). Overall, AccB reduces
space overhead by more than 7×. Storage requirements for AccB++ are similar to
AccB. In addition to being larger, the storage HapB requires is shared and accessed
by all threads when their epochs end. Conversely, the storage AccB requires is much
smaller and purely local.

6.3 Accuracy Characterization

False positives. Table 6 shows the false positives detected by AccB relative to HapB
at the same tracking granularity. AccB never has more false positives than HapB. False
positives are inherent to the tracking granularity (cache blocks) for both AccB and HapB
and can be reduced with additional software support (e.g., by changing the data layout
to avoid false sharing), but this is beyond the scope of this paper.

False negatives. As explained in Section 3.2, AccB has two sources of false negatives
(i.e., missed races). The first is due to limited cache capacity, which causes cache blocks
to be evicted and the access information to be lost (CBE – cache block evictions). The
second is due to epochs with races not overlapping on AccB executions. We separate
the two effects by modifying our simulator with unbounded space to store evicted cache
blocks, such that the CBE problem is completely eliminated. No new races were found,
so all races missed by AccB for these benchmarks are due to non-overlapping epochs,
a problem that can be addressed with scheduling perturbations and/or multiple runs.

36 R. Gonzalez-Alberquilla et al.

 0

 40

 80

 120

 160

 200

 0 20 40 60 80 100

AccB Base
AccB Mix

(a) Aggregate number of static races found as
the number of executions increases for AccB and
AccB with scheduling perturbations (AccB Mix).

 0

 40

 80

120

160

200

240

 0 100 200 300 400 500

HapB
AccB Mix

(b) Aggregate number of static races
found as the number of executions in-
creases for AccB Mix, compared to
HapB.

Fig. 2. Sensitivity to scheduling perturbations and number of runs

Other benchmarks with larger epochs could cause the CBE problem. However, archi-
tectures with private L2 caches are common today, so there is much more space than
the DL1s used in this evaluation. Alternatively, a victim cache that only stores evicted
downgraded lines may be sufficient to mitigate the problem.

Sensitivity to scheduling perturbations and number of runs. Figure 2(a) shows how
the aggregate number of static races detected by AccB, with and without scheduling
perturbations (AccB Mix and AccB Base), grows with the number of executions for
fmm. After about 25 runs, AccB Mix clearly shows new races while AccB Base does
not. This happens when the scheduling perturbations start exposing more diverse epoch
overlaps. These results also show that scheduling perturbations indeed help AccB find
races faster.

Figure 2(b) shows how fast AccB Mix approximates the number of static races de-
tected by HapB over 500 runs. AccB detects most races in the first few executions (about
2/3 are detected within the first 10 runs). The number of races AccB Mix detects con-
tinues growing after that, although increasingly more slowly. We manually inspected a
few of the races that AccB had not detected after 500 runs and found that for each un-
detected race there was another race that originated at the same programming mistake
(e.g., missing critical section) and that was successfully detected by AccB.

7 Related Work

Conflict exceptions [4] (CE) relates to our work in the type of bugs it detects. CE
detects when a synchronization-free region (epoch) conflicts with another concurrent
synchronization-free region. Such conflicts can only happen when a data race exists.
This is in essence the same type of event AccB detects. However, CE detects these
events in a fully precise way, in order to throw an exception. This requires significantly
more hardware (50% cache overhead for access bits). We sacrifice some precision in
order to keep hardware at a minimum. AVIO [3] is an atomicity violation detector that
also augments and leverages coherence state. However, atomicity violations do not nec-
essarily imply data races.

Accelerating Data Race Detection with Minimal Hardware Support 37

The works most related to ours are by Min and Choi [8], and Nagarajan and Gupta
[10]. Both propose using traps to expose certain cache coherence events to enable analy-
sis of parallel program behavior. Nagarajan and Gupta [10] showcased their mechanism
with deterministic replay and barrier speculation. Min and Choi [8] developed a limited
form of happened-before detection for a subclass of programs (structured parallelism
only). In contrast, our hardware proposal does not rely on software traps; it is essentially
a load operation that returns coherence state. Software traps are arguably more flex-
ible, but are also much more costly to implement. Importantly, these proposals focus
on other applications of tracking coherence events. We propose a new race detection
algorithm that uses our novel hardware support to reduce performance overheads, and
also significantly reduce space overhead compared to happened-before.

8 Conclusions

In this paper, we propose a data race detection solution that requires minimal hard-
ware support. This solution captures many of the same races a more traditional mech-
anism based on happened-before captures, but at much lower overheads. We expect
the overhead reductions and the hardware simplicity to make this solution sufficiently
compelling for multicore designers to include support in their designs.

Acknowledgements. This work was supported in part by the National Science Founda-
tion under grant CCF-1016495, the Spanish government under CICYT-TIN 2008/00508
and an FPU grant, a Microsoft Faculty Fellowship, and gifts from Intel.

References

1. Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise Dynamic Race Detection. In:
Conference on Programming Language Design and Implementation (2009)

2. Lamport, L.: Time, Clocks and the Ordering of Events in a Distributed System. Communi-
cations of the ACM (1978)

3. Lu, S., et al.: AVIO: Detecting Atomicity Violations via Access-Interleaving Invariants. In:
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (2006)

4. Lucia, B., et al.: Conflict Exceptions: Providing Simple Concurrent Language Semantics
with Precise Hardware Exceptions. In: International Symposium on Computer Architecture
(2010)

5. Luk, C.-K., et al.: Pin: Building Customized Program Analysis Tools with Dynamic Instru-
mentation. In: Conference on Programming Language Design and Implementation (2005)

6. Manson, J., Pugh, W., Adve, S.: The Java Memory Model. In: Symposium on Principles of
Programming Languages (2005)

7. Martinez, J., et al.: Cherry: Checkpointed Early Resource Recycling in Out-of-order Micro-
processors. In: International Symposium on Microarchitecture (2002)

8. Min, S.L., Choi, J.-D.: An Efficient Cache-based Access Anomaly Detection Scheme. In: In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems (1991)

9. Muzahid, A., et al.: SigRace: Signature-Based Data Race Detection. In: International Sym-
posium on Computer Architecture (2009)

38 R. Gonzalez-Alberquilla et al.

10. Nagarajan, V., Gupta, R.: ECMon: Exposing Cache Events for Monitoring. In: International
Symposium on Computer Architecture (2009)

11. Nelson, C., Boehm, H.-J.: Concurrency Memory Model. C++ standards committee paper
(October 2007)

12. Prvulovic, M.: CORD: Cost-effective (and Nearly Overhead-free) Order-recording and Data
Race Detection. In: International Symposium on High Performance Computer Architecture
(2006)

13. Prvulovic, M., Torrellas, J.: ReEnact: Using Thread-Level Speculation Mechanisms to Debug
Data Races in Multithreaded Codes. In: International Symposium on Computer Architecture
(2003)

14. Ronsse, M., De Bosschere, K.: RecPlay: a fully integrated practical record/replay system.
ACM Transactions on Computer Systems 17, 2 (1999)

15. Savage, S., et al.: Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM
Transactions on Computer Systems 15, 4 (1997)

16. Woo, S., et al.: The SPLASH-2 Programs: Characterization and Methodological Considera-
tions. In: International Symposium on Computer Architecture (1995)

17. Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient Detection of Data Race Conditions
via Adaptive Tracking. In: Symposium on Operating Systems Principles (2005)

18. Zhou, P., et al.: HARD: Hardware-Assisted Lockset-based Race Detection. In: International
Symposium on High Performance Computer Architecture (2007)

Quantifying the Potential Task-Based Dataflow

Parallelism in MPI Applications

Vladimir Subotic, Roger Ferrer, Jose Carlos Sancho,
Jesús Labarta, and Mateo Valero

Barcelona Supercomputing Center
Universitat Politecnica de Catalunya

{vladimir.subotic,roger.ferrer,jsancho,jesus.labarta,mateo.valero}@bsc.es

Abstract. Task-based parallel programming languages require the pro-
grammer to partition the traditional sequential code into smaller tasks in
order to take advantage of the existing dataflow parallelism inherent in
the applications. However, obtaining the partitioning that achieves opti-
mal parallelism is not trivial because it depends on many parameters such
as the underlying data dependencies and global problem partitioning. In
order to help the process of finding a partitioning that achieves high
parallelism, this paper introduces a framework that a programmer can
use to: 1) estimate how much his application could benefit from dataflow
parallelism; and 2) find the best strategy to expose dataflow parallelism
in his application. Our framework automatically detects data dependen-
cies among tasks in order to estimate the potential parallelism in the
application. Furthermore, based on the framework, we develop an inter-
active approach to find the optimal partitioning of code. To illustrate this
approach, we present a case study of porting High Performance Linpack
from MPI to MPI/SMPSs. The presented approach requires only super-
ficial knowledge of the studied code and iteratively leads to the optimal
partitioning strategy. Finally, the environment provides visualization of
the simulated MPI/SMPSs execution, thus allowing the developer to
qualitatively inspect potential parallelization bottlenecks.

1 Introduction

New proposals for large-scale programming models are persistently spawned, but
most of these initiatives fail because they attract little interest of the community.
It takes a giant leap of faith for a programmer to take his already working par-
allel application and to port it to a novel programming model. This is especially
problematic because the programmer cannot anticipate how would his applica-
tion perform if it was ported to the new programming model, so he may doubt
whether the porting is worth the effort. Moreover, the programmer usually lacks
developing tools that would make the process of porting easier.

MPI/SMPSs is a new hybrid dataflow programming model that showed to
be efficient for numerous applications. In a manner similar to MPI/OpenMP,
MPI/SMPSs parallelizes computation of the distributed-memory nodes using

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 39–51, 2011.
� Springer-Verlag Berlin Heidelberg 2011

40 V. Subotic et al.

MPI [13], while it parallelizes computation of the shared-memory cores using
SMPSs [10], a task-based dataflow programming model. This integration of
message-passing paradigm and dataflow execution potentially extracts distant
parallelism (parallelism of code sections that are mutually “far” from each other).
Finally, MPI/SMPSs outperforms MPI in numerous codes [8], among which is
the High Performance Linpack (HPL), the application that is used to rank the
parallel machines on the top 500 supercomputers lists [1].

To continue its progress, MPI/SMPSs must get wider community involved by
encouraging MPI programmers to port their applications to MPI/SMPSs. This
encouragement is strictly related to assuring the programmer that he can benefit
from this porting and that the porting would be easy. Therefore, our goal in this
study is to develop a framework that provides support to:

– help an MPI programmer estimate how much parallelism MPI/SMPSs can
achieve in his MPI application, so he can decide whether the porting is worth
the effort.

– help an MPI programmer find the optimal strategy to port his MPI appli-
cation to MPI/SMPSs.

2 SMPSs Programming Model

SMPSs [10] is a new shared-memory task-based parallel programming model
that uses dataflow to exploit parallelism. SMPSs slightly extends C, C++ and
Fortran, offering semantics to declare some part of a code as a task, and to
specify memory regions on which that task operates. In porting a sequential
code to SMPSs, the programmer has to specify the following: taskification – to
mark with pragma statements the functions that should be executed as tasks;
and directionality of parameters – to mark inside pragmas how are the passed
arguments used within these function. The specified directionality can be: input,
output and inout. Figure 1 illustrates the annotations needed to port a sequential
C code to SMPSs.

Given the annotations, the runtime is free to schedule all tasks out-of-order,
as long as the data dependencies are satisfied. The main thread starts and when
it reaches a taskified function, it instantiates it as a task and proceeds with the
execution. Based on the parameters’ directionality, the runtime places the task

#pragma css task input(A[SizeA]) output (B[SizeB])
void compute(float *A, float *B) {

…

}

int main () {

…

compute(a,b);

…

}
Note: The code in black presents the unchanged code of the legacy C application. Conversely, the
code in dark gray presents the annotations needed to mark the taskification choice, while the code
in light gray presents the annotations needed to declare the directionality of parameters.

Fig. 1. Annotations needed to port a code from sequential C to SMPSs

Quantifying the Potential Task-Based Dataflow Parallelism 41

instance in the dependency graph of all tasks. Then, considering the dependency
graph, the runtime is free to dynamically schedule the execution of tasks to
achieve high parallelism. To further increase dataflow parallelism, the runtime
automatically renames data objects to avoid all false dependencies (dependencies
caused by buffer reuse).

Integrated with MPI, SMPSs allows to taskify functions with MPI transfers
and thus potentially extract very distant parallelism. The idea is to encapsulate
functions with MPI transfers inside tasks, and thus relate the messaging events
to dataflow dependencies. For example, a task with MPI Send of some buffer
locally reads (input directionality) that buffer from the memory and passes it
to the network, while a task with MPI Recv of some buffer gets that buffer
from the network and locally stores (output directionality) it to the memory.
Taskification of transfers overcomes strong synchronization points of pure MPI
execution and potentially exploits distant parallelisms, providing much better
messaging behavior than fork-join based MPI/OpenMP. Marjanovic at. el. [8]
showed that apart from better peak GFlops/s performance, compared to MPI,
MPI/SMPSs delivers better tolerance to bandwidth reduction and external per-
turbations (such as OS noise).

3 Motivation

Finding the best taskification strategy is far from trivial. Figure 2 shows a simple
sequential application composed of four computational parts (A, B, C and D),
the data dependencies among those parts, and some of the possible taskification
strategies. Although the application is very simple, it allows many possible taski-
fications that expose different amount of parallelism. T 0 puts all code in one task
and, in fact, presents non-SMPSs code. T 1 and T 2 both break the application
into two tasks but fail to expose any parallelism. On the other hand, T 3 and T 4
both break the application into 3 tasks, but while T 3 achieves no parallelism,
T 4 exposes parallelism between C and D. Finally, T 5 breaks the application
into 4 tasks but achieves the same amount of parallelism as T 4. Considering
that increasing the number of tasks increases the runtime overhead of instan-
tiating and scheduling tasks, one can conclude that the optimal taskification is
T 4, because it gives the highest speedup with the lowest cost of the increased
number of tasks. On the other hand, for a complex MPI application, the number
of possible taskifications could be huge, so finding the optimal taskification can

Fig. 2. Execution of different possible taskifications for a code composed of four parts

42 V. Subotic et al.

be both hard and time consuming. As a result, most likely, a programmer ends
up with a sub-optimal taskification of his code.

We believe that it would be very useful to have an environment that quickly
anticipates the potential parallelism of a particular taskification. We design such
environment and we show how it should be used to find the optimal taskifica-
tion. In this paper, as a case study we present a black-box approach to port the
High Performance Linpack (HPL) from MPI to MPI/SMPSs. First, the environ-
ment instruments the studied application and generates quantitative profile of
the execution. Then, considering the obtained profile the interactive trial-and-
error process can start following this method: 1) the programmer proposes a
coarse-grained taskification for the code; 2) given the taskification, the environ-
ment estimates potential parallelism and offers the visualization of the resulting
MPI/SMPSs execution. 3) based on the output, the programmer proposes a
finer-grained taskification and returns to step 2. This interactive algorithm con-
verges into the optimal taskification.

4 Framework

The idea of the framework is to: 1) run an MPI/SMPSs code by executing tasks in
the order of their instantiation; 2) dynamically detect memory usage of all tasks;
3) identify dependencies among all task instances; and 4) simulate the execution
of the tasks in parallel. First, the framework forces sequential execution of all
tasks, in other words it executes tasks in the order of their instantiation. That
way, the instrumentation can keep the shadow data of all memory references
and thus identify data dependencies among tasks. Considering the detected de-
pendencies, the framework creates the dependency graph of all task, and finally,
simulates the MPI/SMPSs execution. Moreover, the framework can visualize the
simulated time-behavior and offer deeper insight into the MPI/SMPSs execution.

The framework (Figure 3) takes the input code and passes it through the
tool chain that consists of Mercurium based code translator, Valgrind based

code
translation

Fig. 3. The framework integrates Mercurium code translator, Valgrind tracer,
Dimemas simulator and Paraver visualization tool

Quantifying the Potential Task-Based Dataflow Parallelism 43

tracer, Dimemas replay simulator and Paraver visualization tool. Input
code is a complete MPI/SMPSs code or an MPI code with only light annota-
tions specifying the proposed taskification. A Mercurium based tool translates
the input code in the pure MPI code with inserted functions annotating entries
and exits from tasks. Then the obtained code is compiled and executed in pure
MPI fashion. Each MPI process runs on top of one instance of Valgrind virtual
machine that implements a designed tracer. The tracer makes the trace of the
(actually executed) MPI execution, while at the same time, it reconstructs what
would be the traces of the (potential) MPI/SMPSs execution. Dimemas simula-
tor merges the obtained traces and reconstructs time-behavior of these traces on
a parallel platform. Finally, Paraver can visualize the simulated time-behaviors
and allow to profoundly study the differences between the (instrumented) MPI
and the (corresponding simulated) MPI/SMPSs execution. In our prior work
[14], we used a similar idea to estimate the potential benefits of overlapping
communication and computation in pure MPI applications.

4.1 Input Code

The input code can be MPI/SMPSs code or an MPI code with light annotations.
The input code has to specify which functions (parts of code) should be executed
as tasks, but not the directionality of the function parameters. Thus, the input
code can be an MPI code, only with annotations specifying which functions
should be executed as tasks. Figure 4 on the left shows an example of an MPI
code with annotated taskification choice.

4.2 Code Translator

Our Mercurium based tool translates the input code into the code with forced
serialization of tasks. The obtained code is a pure MPI code with empty functions
(hooks) annotating when the execution enters and exits from a task (Figure 4).
The translated code is then compiled with mpicc, and the binary of the MPI
execution is passed for further instrumentation. It is important to note that the

#pragma css task
void compute(float *A, float *B) {
…
}

int main () {
…

compute(a,b);

…
}

void compute(float *A, float *B) {
…
}

int main () {
…
start_task_valgrind(“compute”);
compute(a,b);
end_task_valgrind(“compute”);
…

}

Input code Translated code

Note: The input code does not have to be a complete MPI/SMPSs code, because the instrumented
code only needs to mark all entries/exits from each task. Thus, as shown, the input code can be an
MPI application only with a specified proposed taskification.

Fig. 4. Translation of the input code required by the framework

44 V. Subotic et al.

hooks can be inserted directly in the input code, allowing to declare as task any
part of the application’s code. This way, the framework overcomes the limitation
of SMPSs runtime that only complete functions may be treated as tasks, and
further eases the process of proposing taskifications.

4.3 Tracer

Valgrind [9] is a virtual machine that uses just-in-time (JIT) compilation tech-
niques. The original code of an application never runs directly on the host pro-
cessor. Instead, the code is first translated into a temporary, simpler, processor-
neutral form called Intermediate Representation (IR). Then, the developer is
free to do any translation of the IR, before Valgrind translates the IR back into
machine code and lets the host processor run it.

Leveraging Valgrind functionalities, the tracer instruments the execution and
makes two Dimemas traces: one describing the instrumented MPI execution;
and the other describing the potential MPI/SMPSs execution. The tracer uses
the following Valgrind functionalities: 1) intercepting the inserted hooks in or-
der to track which task is currently being executed; 2) intercepting all memory
allocations in order to maintain the pool of data objects in the memory; 3) in-
tercepting memory accesses in order to identify data dependencies among tasks;
and 4) intercepting all MPI calls in order to track MPI activity of the execution.
Using the obtained information, the tracer generates the trace of the original
(actually executed) MPI execution, while at the same time, it reconstructs what
would be the trace of the potential (not executed) MPI/SMPSs execution.

The tool instruments accesses to all memory objects and derives data depen-
dencies among tasks. By intercepting all dynamic allocations and releases of the
memory (allocs and frees), the tool maintains the pool of all dynamic mem-
ory objects. Similarly, by intercepting all static allocations and releases of the

Note: The tracer describes the MPI traces by emitting two types of records: 1) computation record
defining the length of computation burst; and 2) communication record specifying the parameters of
MPI transfers. Conversely, it describes the MPI/SMPSs trace by breaking the original computation
bursts into tasks and synchronizing the created tasks according to the identified data dependencies.

Fig. 5. Collecting trace of the original MPI and the potential MPI/SMPSs execution

Quantifying the Potential Task-Based Dataflow Parallelism 45

memory (mmaps and munmaps), and reading the debugging information of the
executable, the tool maintains the pool of all the static memory objects. The
tracer tracks all memory objects, intercepting and recoding accesses to them
at the granularity of one byte. Based on these records, and knowing in which
task the execution is at every moment, the tracer detects all read-after-write
dependencies and interpret them as dependencies among tasks.

The tool creates the trace of the executed MPI run, and at the same time,
considering identified task dependencies, it creates what would be the trace of
the potential MPI/SMPSs run (Figure 5). When generating the original trace,
the tool describes the actually executed run by putting in the trace two types of
records: 1) computation record stating the length of computation burst in terms
of the number of instructions 2) communication record specifying the parameters
of the executed MPI transfer. Additionally, when reconstructing the trace of the
potential MPI/SMPSs run, the tracer breaks the original computation bursts
into tasks, and then synchronizes the created tasks according to the identified
data dependencies.

4.4 Replay Simulator

Dimemas is an open-source tracefile-based simulator for analysis of message-
passing applications on a configurable parallel platform. The communication
model, validated in [4], consists of a linear model and nonlinear effects, such
as network congestion. The interconnect is parametrized by bandwidth, latency,
and the number of global buses (denoting how many messages can concurrently
travel throughout the network). Also, each processor is characterized by the
number of input/output ports that determine its injection rate to the network.
Finally, the simulated output of Dimemas can be visualized in Paraver.

We extended Dimemas to support synchronization of tasks in a way that
allows Paraver to visualize all data dependencies. We implemented a task syn-
chronization using an intra-node instantaneous MPI transfer that specifies the
source and the destination tasks. This way, Paraver can visualize the simulated
time-behavior showing both MPI communications among processes and data
dependencies among tasks. Using this feature, the developer can visually detect
each execution bottleneck and further inspect its causes.

5 Experiments

Our experiments explore MPI/SMPSs execution of HP Linpack on a cluster of
many-core nodes. We used HPL with the problem size of 8192 and with 2x2
(PxQ) data decomposition. Also, we test various granularities of execution by
running HPL with block sizes (BS) of 32, 64, 128, and 256. Our target machine
consists of four many-core nodes, with one MPI process running on each node.
We are primarily interested in the MPI/SMPSs potential parallelism inherent
in the code, so we make most of the measurements for unlimited resources on
the target machine – infinite number of cores per node and ideal interconnect

46 V. Subotic et al.

between the nodes. These results represent the upper bound of achievable paral-
lelism. Finally, we show how this potential parallelism inherent in the application
results in speedup when the application executes on a realistic target machine.

The major part of our experiment consist of exploring the potential MPI/
SMPSs taskifications of HPL. In a case study with HPL, we present a top-
to-bottom approach that uses a trial-and-error method, requires no knowledge
of the studied code, and finally leads to exposing dataflow parallelism in the
code. The approach uses the following method: 1) we propose a coarse-grained
taskification for the code; 2) given the taskification, the environment estimates
potential speedup and offers visualization of the resulting MPI/SMPSs execu-
tion. 3) based on the output, we choose a finer-grained taskification and return
to step 2. We start from the most coarse-grain taskification (T 0) that puts whole
MPI process into one task and actually presents the traditional MPI execution
(Figure 6(a)). Then using T 0 as the baseline, we determine the potential paral-
lelism of T i(1 ≤ i ≤ 9) normalized to T 0 as the speedup of T i over T 0 when
both these taskifications execute on a machine with unlimited number of cores
per node and unlimited network performance (Figure 7(b)).

5.1 Results

First, the framework instruments the application to obtain the profile that guides
the taskification process. Table 6(b) shows the accumulated time spent in each

void update(...) {
HPL_dtrsm(...);
HPL_dgemm(...);

}

main() {

...
for(j = 0; j < N; j += BS)
{

panel_init(...);
if (cond0)

fact(...);
init for pivoting();

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
taskification

init_for_pivoting(...);
for(i = k; i < P; i+= BS) {

if(cond1)
HPL_dlaswp01N(...);

HPL_spreadN(...);
if(cond2)

HPL_dlaswp06N(...);
if(cond3)

HPL_dlacpy(...);
HPL_rollN(...);
HPL_dlaswp00N(...);
update(...);

}
}

...
}

(a) HPL and the evaluated taskifications.

(b) Distribution of total execution
time spent in tasks (%).

(c) Average function duration (ms).

Note: In Tables 6(b) and 6(c), apart from statistic for each function of the code, we present the
statistics for two logical sections: outer – consisting of panel init, fact and init for pivoting; and
inner consisting of HPL dlaswp01N, HPL spreadN, HPL dlaswp06N, HPL rollN, HPL dlacpy and
HPL dlaswp00N.

Fig. 6. Taskifications evaluated for HPL and duration and time spent in each function

Quantifying the Potential Task-Based Dataflow Parallelism 47

function of the application. This information identifies instances of which func-
tions need to execute concurrently in order to achieve significant parallelism. In
this example, those are instances of functions update, because the application
spends in that function from 95.57% (for BS = 256) to 97.83% (for BS = 32).
On the other hand, Figure 6(c) shows the average duration of each function. This
information identifies which function is a good candidate to be broken down into
smaller tasks. In this example, function panel init is very short so breaking it
into smaller tasks makes little sense. Also, it is important to note that decreasing
BS reduces execution time of most of the functions, so this could also be a way
to make finer-grained execution.

Considering the data showed on previous tables, we start the process of ex-
posing parallelism by: 1) proposing a taskification (T 1 - T 9 in Figure 6(a)); 2)
testing how many tasks we created (Figure 7(a)); and 3) testing the potential
speedup of the taskification (Figure 7(b)). T 0 is the baseline taskification that
makes only one task per MPI process. T 1 puts each iteration of the outer loop
in one task, but this strategy gives no additional parallelism compared to T 0.
Furthermore, T 2 breaks down the code into section outer and separate iterations
of the inner loop, still giving no improvement in speedup. T 3 additionally breaks

(a) Total number of tasks created.

 1

 7

 13

 22

 32

 38

BS-32 BS-64 BS-128 BS-256

sp
ee

du
p

ov
er

 T
0

us
in

g
un

lim
ite

d
nu

m
be

r
of

 c
or

es
 p

er
 N

od
e

parallelism normalized to T0

T1
T2
T3
T4
T5
T6
T7
T8
T9

(b) Speedup normalized to T0.

Note: In Figure 7(b), all taskifications (T0-T9) execute in MPI/SMPSs fashion on an ideal target
machine. Then, the speedup of taskification Ti over taskification T0 represents the parallelism of
taskification Ti normalized to taskification T0.

Fig. 7. Number of task instances and the potential parallelism of each taskification

Fig. 8. Paraver visualization of the first 63 tasks and the dependencies among them
(taskification T4, BS=256)

48 V. Subotic et al.

down section outer, but with no increases in speedup. This can be explained by
Paraver visualization (results not presented in the paper) that shows that in T 2
and T 3, each iteration of the inner loop depends on the previous iteration, and
thus impedes parallelism. Finally, T 4 compared to T 2 separates section inner
from function update and releases the significant amount of parallelism. Namely,
it achieves the speedup of 6.76, 12.28, 21.48 and 32.02 for block sizes of 256,
128, 64 and 32, respectively (Figure 7(b)). Also, T 4 significantly increases the
number of tasks in the application to 2.128, 8.336, 33.040 and 131.600 for block
sizes of 256, 128, 64 and 32, respectively (Figure 7(a)). Now, Paraver visual-
ization reveals that in T 4: 1) each section inner depends on the section inner
in the previous iteration of the inner loop; and 2) each update depends on the
section inner in the same iteration of the inner loop. Thus, because section inner
is much shorter than update, all dependent sections inner can execute quickly,
and then independent instances of update can execute concurrently (Figure 8).

Further breaking down of outer, inner and update contributes little to the
potential speedup (Figure 7(b)). Breaking of outer, for block sizes of 256, 128
and 64, causes slightly higher parallelism of T 5, T 8 and T 9, compared to T 4,
T 6 and T 7. On the other hand, breaking of inner, for block size of 32, causes
significantly higher parallelism of T 6, T 7, T 8 and T 9, compared to T 4, T 5. This
effect happens because for very high concurrency of update (speedup is higher
than 30), the critical path of the execution moves and starts passing through sec-
tion inner. In these circumstances breaking of inner significantly increases par-
allelism by allowing concurrency of functions HPL dlaswp00N, HPL dlaswp01N
and HPL dlaswp06N. Finally, breaking of update, for block size 32, causes slightly
higher parallelism of T 9 compared to T 8.

Figure 9 shows the speedup and parallel efficiency of T 9 for different number
of cores per node. The results show that high parallelism in the application is
useful not to achieve high speedup on a small parallel machine, but rather to
deploy efficiently a large parallel machine. Figure 9(a) shows that for a machine

 1

 4

 8

 16

 32

 38

 1 2 4 8 16 32 64 128 256 512

sp
ee

du
p

ov
er

 T
0

Number of cores per node

Speedup of T9 over T0 for limited resources

BS=32
BS=64

BS=128
BS=256

(a) Speedup.

 0.25

 0.5

 0.75

 1

 1 2 4 8 16 32 64 128 256 512

pa
ra

lle
l e

ff
ic

ie
nc

y

Number of cores per node

parallel efficiency of T9

BS=32
BS=64

BS=128
BS=256

(b) Parallel efficiency.

Note: Parallel efficiency denotes the ratio between the application’s speedup achieved on some
parallel machine and the number of cores of that parallel machine. Infact, the metric presents the
overall average core utilization in the whole machine.

Fig. 9. Speedup and parallel efficiency for T9 for various number of cores

Quantifying the Potential Task-Based Dataflow Parallelism 49

with 4 cores per node, T 9 with all block sizes achieve a speedup of around 4,
with difference between the highest and the lowest of less than 2%. However, for
a machine with 32 cores per node, T 9 with block sizes of 256, 128, 64 and 32,
achieves the speedup of 6.80, 12.34, 21.57 and 29.47, respectively. Furthermore,
Figure 9(b) shows parallel efficiency (core utilization) – the ratio between the
application’s speedup achieved on some parallel machine and the number of cores
in that machine. Adopting that an application efficiently utilizes a machine if
the parallel efficiency is higher than 75%, the results show that T 9 with block
sizes of 256, 128, 64 and 32, can efficiently utilize the machine of 8, 15, 26 and 47
cores per node, respectively. Therefore, to efficiently employ many-core machine
with hundreds of cores per node, HPL has to expose even more parallelism, for
instance, by making finer-grain taskification with further reduction of block size.

6 Related Work

Back in 1991 the community started claiming that instruction-level parallelism
is dead [15], and consequently in the following 20 years appeared many pro-
gramming models that exploit task-level parallelism. OpenMP [11] is the most
popular programming model for shared memory that was founded with the idea
of parallelizing loops, but from version 3.0 provides support for task parallelism.
Cilk [2] implements a model of spawning various tasks and specifying a syn-
chronization point where these tasks are waited for. MPI tasklets [5] parallelize
SMP tasks by incorporating dynamic scheduling strategy into current MPI im-
plementations. There are also proposals that originated from the industry, such
as: TBB [12] from Intel and TPL [6] from Microsoft. Still, all these proposals
suffer from the limitations of fork-join based programming models. On the other
hand, SMPSs [10] is a programming model in which the programmer specifies
dependencies among tasks, rather than specifying synchronization points. Then,
based on the specified dependencies, the runtime schedules tasks in dataflow
manner, potentially extracting very distant parallelism. Furthermore, SMPSs
can be integrated with MPI, allowing better messaging behavior. Marjanovic
at. el. [8] demonstrate that compared to MPI, MPI/SMPSs provides superior
performance as well as higher tolerance to network reduction and external noise.

However, there is little development support for these programming mod-
els. Alchemist tool [16] identifies parts of code that are suitable for thread-level
speculation. Embla [7] estimates the potential speed-up of fork-join based paral-
lelization. Starsscheck [3] checks correctness of pragma annotations for STARSs
family of programming models. Our work adds up to these efforts by designing a
framework that estimates the potential parallelism of MPI/SMPSs. Furthermore,
our work goes beyond the state-of-the-art tools because: 1) it deals with complex
execution model that integrates MPI with task-based dataflow execution; 2) it
allows to study MPI/SMPSs execution before the original MPI application is
ported to MPI/SMPSs; 3) it provides an estimation of the parallelism on the
configurable target platform; and 4) it provides visualization of the simulated
execution.

50 V. Subotic et al.

7 Conclusion

Tasks-based parallel programming languages are promising in exploiting addi-
tional parallelism inherent in MPI parallel programs. However, the complexity of
this type of execution impedes an MPI programmer from anticipating how much
dataflow parallelism he can obtain in his application. Moreover, it is nontrivial
to determine which parts of code should be encapsulated into tasks in order to
expose the parallelism and still avoid creating unnecessary tasks that increase
runtime overhead. To address this issue, we have developed a framework that
automatically estimates the potential dataflow parallelization in applications.
We show how, using the framework, one can find optimal taskification choice
for any application through a trial-and-error iterative approach that requires no
knowledge of the studied code. We prove the effectiveness of this approach on
a case study in which we explore the taskification of High Performance Linpack
(HPL). The results show that HPL expresses substantial amount of potential
dataflow parallelism that allows the application to efficiently utilize cluster of
nodes with up to 47 cores per node. Moreover, we show that the global parti-
tioning significantly impacts parallel efficiency, and thus, in order to efficiently
utilize higher number of cores, finer-granularity of execution should be used.

Acknowledgements. We thankfully acknowledge the support of the European
Commission through the HiPEAC-2 Network of Excellence (FP7/ICT 217068),
the TEXT project (IST-2007-261580), and the support of the Spanish Min-
istry of Education (TIN2007-60625, and CSD2007-00050), and the Generalitat
de Catalunya (2009-SGR-980).

References

1. Top500 List: List of top 500 supercomputers, http://www.top500.org/
2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,

Y.: Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib. Com-
put. 37, 55–69 (1996)

3. Carpenter, P.M., Ramirez, A., Ayguade, E.: Starsscheck: A tool to find errors in
task-based parallel programs. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010. LNCS, vol. 6271, pp. 2–13. Springer, Heidelberg (2010)

4. Girona, S., Labarta, J., Badia, R.M.: Validation of dimemas communication model
for mpi collective operations. In: PVM/MPI, pp. 39–46 (2000)

5. Kale, V., Gropp, W.: Load Balancing for Regular Meshes on SMPs with MPI.
In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS,
vol. 6305, pp. 229–238. Springer, Heidelberg (2010)

6. Leijen, D., Hall, J.: Parallel performance: Optimize managed code for multi-core
machines. MSDN Magazine (2007)

7. Mak, J., Faxén, K.-F., Janson, S., Mycroft, A.: Estimating and Exploiting Potential
Parallelism by Source-Level Dependence Profiling. In: D’Ambra, P., Guarracino,
M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 26–37. Springer, Heidel-
berg (2010)

http://www.top500.org/

Quantifying the Potential Task-Based Dataflow Parallelism 51

8. Marjanovic, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication
and computation by using a hybrid MPI/SMPSs approach. In: ICS, pp. 5–16 (2010)

9. Nethercote, N., Seward, J.: Valgrind, http://valgrind.org/
10. Pérez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-

ming environment for multi-core architectures. In: CLUSTER, pp. 142–151 (2008)
11. Proposed Industry Standard. Openmp: A proposed industry standard api for

shared memory programming
12. Reinders, J.: Intel threading building blocks: outfitting C++ for multi-core pro-

cessor parallelism. O’Reilly Media, Inc., Sebastopol (2007)
13. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-

plete Reference. The MIT Press, Cambridge (1998)
14. Subotic, V., Sancho, J.C., Labarta, J., Valero, M.: A Simulation Framework to Au-

tomatically Analyze the Communication-Computation Overlap in Scientific Appli-
cations. In: CLUSTER 2010 (2010)

15. Wall, D.W.: Limits of Instruction-Level Parallelism. In: ASPLOS (1991)
16. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: A transparent dependence

distance profiling infrastructure. In: CGO 2009 (2009)

http://valgrind.org/

Event Log Mining Tool for Large Scale HPC Systems

Ana Gainaru1,3, Franck Cappello1,2, Stefan Trausan-Matu3, and Bill Kramer1

1 University of Illinois at Urbana-Champaign, IL USA
2 INRIA, France

3 University Politehnica of Bucharest, Romania

Abstract. Event log files are the most common source of information for the
characterization of events in large scale systems. However the large size of these
files makes the task of manual analysing log messages to be difficult and er-
ror prone. This is the reason why recent research has been focusing on creating
algorithms for automatically analysing these log files. In this paper we present
a novel methodology for extracting templates that describe event formats from
large datasets presenting an intuitive and user-friendly output to system adminis-
trators. Our algorithm is able to keep up with the rapidly changing environments
by adapting the clusters to the incoming stream of events. For testing our tool,
we have chosen 5 log files that have different formats and that challenge different
aspects in the clustering task. The experiments show that our tool outperforms all
other algorithms in all tested scenarios achieving an average precision and recall
of 0.9, increasing the correct number of groups by a factor of 1.5 and decreasing
the number of false positives and negatives by an average factor of 4.

1 Introduction

Event logs are a rich source of information for analysing the cause of failures in cluster
systems. However the size of these files has continued to increase with the ever growing
size of supercomputers, making the task of analysing log files a hard and error prone
process when handled manually. The current way used by system administrators for
searching through the log data is pattern matching, by comparing numerical thresholds
or doing regular expression matching on vast numbers of log entries looking for each
pattern of interest. However by using this method, only those faults that are already
previously known to the domain expert can be detected. As a consequence, data mining
algorithms have recently been explored for extracting interesting information from log
data without the control of a human supervisor [15, 21, 14]. However the algorithms
must be adapted since it has been found that traditional clustering methods are not
working well when they are applied to high dimensional data [11].

As mentioned in [2], log files will change during the course of a system’s lifetime
due to many reasons, from software upgrades to minor configuration changes and so
it is normal to encounter novel events as time passes by. This makes it difficult for the
algorithms to learn patterns or models. The learned patterns may not be applicable for
a long time so all analyzing techniques must be able to detect phase shifts in behavior.
Current data mining algorithms [17, 19, 10, 4, 15, 14] have difficulties in dynamically
updating the groups to cope with an incoming stream of novel events.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 52–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Event Log Mining Tool for Large Scale HPC Systems 53

In this paper we present HELO (Hierarchical Event Log Organizer) a novel unsu-
pervised clustering engine that aims to accurately mine event type patterns from log
files generated by large supercomputers. Our algorithm adapts data mining techniques
to cope with the structure format of log files making the process computational efficient
and accurate. Existing event pattern mining tools are not taking advantage of the charac-
teristics that log files share or are unable to classify messages in an online manner. Our
algorithm requires no prior knowledge or expectations as events are defined by their ex-
istence. This is critical when dealing with leading edge systems or with environments
that change from system to system.

We have made experiments in order to compare our tool with two Apriori tools
(Loghound [17], SLCT [19]), two other pattern extractors (IPLOM [10], MTE [4]),
and an affinity propagation technique (StrAp [23]). HELO outperforms all other algo-
rithms providing a better precision without an overhead in the computational cost. We
will show that our tool increases the corrected classified messages by a factor of 1.5 and
decreases the number of false positives and false negatives by an average factor of 4.

The rest of the paper is organized as follows: Section 2 provides related work and
describes other mining algorithms that will be used as a comparison for the results
obtained by HELO. In section 3 we present our classifier tool, highlighting its properties
and characteristics. Section 4 presents the log files used for the experiment scenarios
and section 5 shows several performance results being obtained in order to validate the
proposed mining tool. Finally, in section 6 we provide conclusions and present future
work.

2 Related Work

Indexing the information found in log files is an important task since analysing groups
of related messages can find problems better than by looking at individual events
[15, 21]. For example there are many anomalies that are indicated by incomplete mes-
sage sequences. In general a change in the normal behaviour of the system is usually
an indicator of a problem. Extracting templates and shaping this behaviour can greatly
help systems in detecting or even predicting faults [16].

There is a considerable amount of papers that deal with message clustering: some
use supervised learning and some unsupervised data mining techniques. All the super-
vised methods need a training phase that is quite expensive since it requires manually
annotated events [7, 20]. Unsupervised techniques require only a few input parame-
ters, the rest being done automatically by the algorithm. The most used unsupervised
methods for extracting information from log files are the Apriori algorithm for frequent
itemsets [17, 19, 18], Latent Semantic Indexing [9], event pattern [10, 4] and k-nearest
neighbours [23]. Also, there are some studies that use the source code to extract error
description format [6]. However there are systems that don’t give access to the code
that generates log files so these algorithms can not be used regardless of the system.

HELO differs from the other event pattern mining tools for several reasons. First,
there are very few methods that classify events in an online matter and most of them
have a major limitation: they are unable to dynamically update the clusters for novel
events. StrAp [23] is able to create new groups for the outliers. However the tool was

54 A. Gainaru et al.

design to cope with numerical data, having limitations in clustering log files. HELO
was implemented so that it is able to adapt the initial templates in order to cope with
any changes in the incoming stream of events. Also HELO uses an efficient splitting
process that considers different priorities for different words according to their semantic
meaning. All other tools partition the dataset only according to the syntactic form of
message description. This a limitation when dealing with log files since symbols used
in the message description indicate different types of components or registers.

In the next paragraphs we present 5 different algorithms that mine log files and clus-
ter events based on the similarity between their descriptions. We discuss their method-
ology and limitations. For computing the accuracy of all algorithms the log files were
manually labelled and classified after discussions with our faculty’s tech support group.

Loghound [17] and SLCT [19] are Apriori-based tools designed for automatically
discovering event cluster formats from log files by considering log messages as data
points and then clustering them according to different density values. The size of log
files generated by todays supercomputers has continue to grow, so since the set man-
agement part in the Apriori algorithm is costly for even a smaller number of patterns
[8], analysing these logs is becoming a problem to these methods.

Iterative Partitioning Log Mining (IPLoM) [10] is an algorithm for mining clusters
from event logs. The authors use 2 splitting steps by token count and token position
and one step where the algorithm searches for bijections between tokens from different
messages and splits the data accordingly. One limitation of this algorithm is the fact
that all messages in one cluster must have the same length. Also another limitation in
IPLoMs analysis is the syntactic depth of the mining process.

Streaming Affinity Propagation (StrAp) [23] is a clustering algorithm that extends
Affinity Propagation to data streaming. In the first step, the tool finds the number of
clusters that can be formed with the offline training set and then divides it by retain-
ing the best items that represent each cluster. In the second step the rest of the input
messages are treated as stream of data and the tool achieves online clustering by mak-
ing new groups for the outliers and occasionally updating the exemplars from existing
groups. The algorithm was implemented to cope with numerical input data, for example
the duration of execution for each job. We implemented in StrAp, a Hamming distance
metric for log messages [3] that is able to work with non-numeric values.

Message Template Extractor (MTE) is a component contained by the FDiag tool [4]
that adds structure to the logs by extracting the messages template. The main idea used
by the authors is that tokens in the English dictionary show the same patterns in different
messages from the same type and that alpha-numerical values do not have the same
property. The MTE extracts two template sets, one for constants and one for variables.
The tool considers variables to be alpha-numerical tokens, i.e. words that contain letters,
numbers in decimal or hex and symbols. However there are some cases when variables
are also English normal words. For example, this is the case of filenames.

3 Methodology

Table 1 presents different event examples that illustrate the usual form of a log mes-
sage. The first part of the description is defined by header information and the rest is

Event Log Mining Tool for Large Scale HPC Systems 55

Table 1. Log message examples

Header Message

[02:32:47][c1-0c1s5n0] Added 8 subnets and 4 addresses to DB
[02:32:51][c3-0c0s2n2] address parity check..0
[02:32:52][c3-0c0s2n2] address parity check..1
[02:32:57][c1-0c1s5n0] Added 10 subnets and 8 addresses to DB
[02:34:21][c2-0c1s4n1] data TLB error interrupt

represented by the error message. In this study we only use the message description for
classifying events for all the tools. However HELO can group messages after different
criteria according to how much out of the header is included in the algorithm’s input.

A message description can be seen as constructed by variables and constants. Con-
stant are words that keep their value in a group template and are represented by strings
like ”address” or ”subnets” from our examples. These words carry crucial information
since they describe the message type. Message variables like 8 from our message iden-
tify manipulated objects or states for the program. HELO is a hierarchical process that
finds representations for all message types that exist in a log file by extracting constants
and variables from message descriptions. The tool uses in the splitting process the fact
that words formed by letters and not numbers or punctuation marks, have more chances
of being constants in the final templates.

The methodology used by the tool has two different steps: an offline classification
part where events found in log files are used to create the first template set by dividing
them according to their description patterns and an online clustering part that classifies
each new event and dynamically reshapes the previous found groups according to them.

3.1 Offline Clustering

The offline component of HELO deals with mining group patterns from log file mes-
sages. Basically the algorithm groups events considering their description in a 2 step
hierarchical process. In the first step the algorithm searches for the best split column
for each cluster and in the second step the clusters are divided correspondingly. A split
column represents a word position in the message description that is used to divide the
cluster into different groups. The methodology is described in Figure 1(a).

HELO starts with the whole unclustered log file as the first group and recursively
partitions it until all groups have the cluster goodness over a specified threshold. The
cluster goodness characterizes how similar all messages in one group are and is define
as the percentage of common words in all events description over the average message
length. This threshold can be provided by the user but is not mandatory for the execution
of the tool. For all our experiments, we use the default value without trying to gain
performance by tuning this parameter. This value has been set to 40% and was chosen
after observing empirically that, for most of the log files, this value gives the best results.

The cluster goodness threshold is used to establish the generality of the final groups.
If the threshold is low then there will be more words considered variables so the group
generality increases. For example, with a lower threshold the tool generates a group

56 A. Gainaru et al.

(a) Diagram (b) Splitting process pseudocode

Fig. 1. Offline clustering methodology

with messages describing L2 cache errors, and with a higher threshold there will be two
groups, one for L2 read errors and one for write.

We could not compare the real execution times obtained for all algorithms since they
are implemented in different languages. We analysed only the theoretical complexity
time between HELO and the other tool that obtained a good accuracy and precision
for both online and offline test cases, StrAp. For the offline classification, StrAp mea-
sures the distance between any two messages; this means a time complexity of O(N2).
HELO is an iterative process so uses different number of cycles for different log files.
From all experiments, the clustering process is finished after 5 steps, but the worst case
theoretical scenario takes NlogN steps (if each message represents a unique template
but their similarity is just under the threshold).

3.2 Splitting Process

In the first step of the process, the algorithm searches for the best split column for
all clusters. Traditional data mining algorithms compute the information gain for each
variable that could be used for the split and choose the one with the highest gain in
accuracy. However, in our case, the best splitting position is the one that contains the
maximum number of constant words. We consider that words with a high number of
appearances on one position has more chances of being a constant, so HELO searches
for the column where most unique words have a high appearance rate. This position
corresponds to the column where the mean number of appearances for every unique
word is maximum while still having enough words in order to be relevant to the analysed
event dataset.

Event Log Mining Tool for Large Scale HPC Systems 57

Table 2. Log template example

machine check interrupt (bit=0x1d): L2 dcache unit write read parity error
machine check interrupt (bit=0x10): L2 DCU read error

machine check interrupt (bit=d+): L2 * * * n+

For a better understanding we will consider the events presented in Table 1. From the
fifth column the values are no longer relevant since the total number of messages that
have words on that position is too small. The reason that this position is not considered
is that the splitting process tries to obtain balanced groups in each step.

HELO considers that different type of words have different priorities dependent on
their semantics. There are three types of considered words: English words, numeric
values and hybrid tokens (words that are composed of letters, numbers and symbols of
any kind). The lowest priority is for all-numeric values since the algorithm considers
that these words have the most chances of becoming variables in the clusters. In the
example from above, 8 and 10 from column 2 are decreasing the appearance mean for all
unique words, so the split will not be done here. Hybrid values are represented by tokens
like check..0 from our example. The algorithm extracts and considers only the English
words incorporated in the hybrid token. For our example both check..0 and check..1 are
considered as word check. If we reanalyze the example presented above, the first and
the third columns could be chosen by the algorithm for the splitting position.

The creation of new groups has the exact semantic rules as the previous step. Since
the numeric values have the least priority, all messages that contain any numeric value
on the splitting position will be gathered in the same group. For our example, no matter
which of the first three columns is chosen for the split, three groups will be generated,
one with the first and the fourth message, one with the second and the third and one
with the last message. For each created group, HELO computes the cluster goodness. If
the value is under the chosen threshold, the group is sent to be divided again.

There are some cases where the partition step splits the groups by a column that is a
good choice for the majority of the future groups but that divides some messages that
should be together. After the splitting process is over and the final templates are created,
HELO reanalyzes the clusters and merges group templates that are very similar. The
default value for the threshold has been set to 80% since the group templates should be
very similar in order to be considered one. In this last step templates are compared to
one another so the time complexity is O(G2). However, this is not a problem since the
total number of templates is very small comparing to the whole dimension of the logs.

3.3 Output

When all clusters are stable, the algorithm identifies cluster description for each par-
tition. A group template represents a line of text where variables are represented by
different wildcards. HELO uses three types of wildcards: d+ represents numeric values,
* represents any other single words, and n+ represents all columns of words that have
a value for some of the messages and do not exist for others. In the example in Table 2
all three types of wildcards are illustrated.

58 A. Gainaru et al.

The group templates describe all type of events that the system generates, in an
intuitive way. The user-friendly group description generated by the tool could ease the
work of system administrators to follow and understand errors from log files.

3.4 Online Clustering

The online clustering process deals with grouping messages as they are being gener-
ated by the system. Clustering tools must be able to change the group templates in
order to manage novel messages that could appear. The input is given by the groups
obtained with the offline process on the initial dataset. In HELO, each cluster needs to
be represented by a description in the format described in the previous section and some
statistics about the group.

Fig. 2. Online clustering diagram

For each new message, the online component checks the description of the messages
and retrieves the most appropriate group templates. If a message fits the exact descrip-
tion of a group (this means the group template does not need to be modified) then the
search is over and we stamp the message with the template’s group id. If the message
does not have an exact match with any of the groups then we compute the cluster good-
ness for all the clusters retrieved before, after including the new message in each of
them. For computing the goodness of the group if the message is inserted, we retrieve
the average length of all messages in this cluster from the group statistics file. This in-
formation decides if including the new message decreases the cluster goodness under
the threshold or not. If no cluster has the goodness over a specific threshold then a new
group is formed. Else the group with the best cluster goodness will be chosen and the
group template will be modified to accommodate the new message. The methodology
for the online component of HELO is presented in figure 2.

4 Log Files

The logs we use for validating our tool are generated by five different supercomputers.
Table 3 gives statistic information about the traces. All files except Mercury are down-
loaded from two websites: [5, 1]. Mercury logs are owned by the NCSA [13] and are
not available to the public for privacy issues.

Event Log Mining Tool for Large Scale HPC Systems 59

Table 3. Log data statistics

System Messages Time Log type

BlueGene/L 4,747,963 6 months
event logs,
login logs

Mercury >10 million 3 months event logs
PNNL 4,750 4 years event logs

Cray XT4 3,170,514 3 months event, syslog,
console

LANL 433,490 9 years
cluster node
outages

Table 4. Parameter values

Tool Parameter Value

IPLoM File Support 0-0.5
Loghound Support Th 0.01-0.1

SLCT Support Th 0.01-0.1
StrAp Offline support N/102-N/103

We chose these 5 datasets because their diversity makes the analysis process more
reliable: LANL [2] has a friendly format for all the tools under study; Cray XT4 has a
very large amount of event patterns making the online classification less precise; Mer-
cury has a very large amount of total messages, a few hundred thousand events per day,
making it a good scalability testing scenario ; PNNL [22] has a large number of groups
but most of them include a small amount of messages making it difficult for algorithms
that take the frequencies of events into consideration to classify them; also BlueGene/L,
Cray and Mercury put a lot of semantic problems.

We identified groups from each log file manually after discussions with people from
the tech support group, and used this information to compute the performance of all the
tools under study as an information retrieval task.

5 Results

We have made experiments in order to compare our tool with the other 5 algorithms
using the traces presented in the previous section. The measures used are the classic
evaluation units from information retrieval field: precision, recall and f-measure [12].
We define the main parameters used: A true positive is represented by a group template
that is found by one tool and that it’s also one of the annotated clusters; False negatives
represent group templates that are not found by the tool when they should be and false
positives are the templates that are found by the tool but are not part of the annotated
clusters. Precision can be seen as a measure of exactness or fidelity and it represents the
proportion of correct found templates to all the generated templates. Recall is computed
as the proportion of true positives to all the messages from the manually annotated
clusters and it represents a measure of completeness. F-measure is another information
retrieval measuring unit that evenly weights precision and recall into a single value.

The output format is different for different tools. Even though Loghound, SLCT and
IPLoM all compute the same type of groups with the one used by HELO but by only
considering one type of wildcard, the rest of the tools have their own private cluster
description. StrAp groups messages based on the computational distance between event
description so the output is represented by an array of the same dimension as the log file
with each line represented by a group id. In order to have a fair comparison between the
output of all tools, we use the output format from IPLoM, but also compute the array of
classification ids, like the one generated by Strap, for all other tools.

60 A. Gainaru et al.

Each tool (except MTE) has different parameters that guide the output result. Param-
eters chosen to run each tool are the ones that give the best result and are shown in Table
4. HELO’s parameters were left at their default values.

Due to the diversity of output formats we performed two types of offline compar-
isons. For the first sets of experiments, we computed precision and recall for the groups
of messages found by all tools except StrAp. Since MTE eliminates all variables from
the clusters description without placing some wildcard symbols in their place, we use
for MTEs analysis a special manually computed group file that eliminates all variables
from the group description. For the second sets of experiments we compute the percent-
age of corrected classified messages from the log file. These two scenarios shows how
well the tools classify historic log files in an offline manner.

In the last set of experiments we determine the percentage of correctly classified
events in an online manner. Experiments are done only for HELO and StrAp since
those are the only tools that can cluster messages in a data streaming scenario. The
analysis will show how well the algorithms adapt to the overall changes in the system.

5.1 Offline

Figure 3 is showing the performance results obtained with all 5 tools for the input
datasets. LosAlamos traces have the most user friendly format. Most of the generated
messages are composed of English words, without having any messages represented
by lists of registers. All tools obtained their best result for this dataset. Mercury and
Cray generate many messages that represents the continuation of a previous message
event (lists of memory locations or registers for example). This type of messages that
have nothing to do with other event description, drastically decreases the performance
of the mining tools. PNNL traces have the most consistency and syntactic problems
for the event messages, so we can see the highest difference in performance (in both
precision and recall) between our tool and the rest of the algorithm. One example of
line descriptions that contain the same message but are written in different forms:
Corrective Measures SDE / DS2100 (upper) need to be replaced
Corrective Measures Upper DS2100 in need of Replacement

In general a decrease in the precision value indicates a high number of false positives.
This usually means that the tool is generating more group templates than necessary,
group templates that are not in the manual annotated file. One case, for example, is
when the manual templates contain a lot of groups with messages of different length.
For all log files, HELO keeps its precision value constant (HELO at around 0.92-0.93
with the next higher tool at around 0.67). The messages generated by all algorithms
except HELO contain groups for each possible ending of the manual template. This
results in an increase of the generated groups that are not manual templates.

A decrease in the recall value is influenced by a high number of false negatives. This
means that there are many groups in the manual template file that are not generated by
the tool. For all tools precision is mostly affected for PNNL and Mercury. The num-
ber of correct generated templates is decreasing for this log files basically because the
systems produce more words with semantic problems than the rest.

The second sets of experiments computes the percentage of corrected classified mes-
sages from the log file. Figure 4 shows all results for all the analysed tools and for

Event Log Mining Tool for Large Scale HPC Systems 61

(a) Los Alamos (b) Mercury (c) Cray

(d) PNNL (e) Blue Gene/L

Fig. 3. Comparing performance of HELO with the other 5 tools

Fig. 4. Corrected classified messages a) HELO b) StrAp c) IPLoM d) Loghound e) SLCT f) MTE

all log files. The differences in results are due to the fact that log messages are not
distributed uniformly over the group of messages. As expected LosAlamosl classifies
messages with a higher confidence. On the other hand, the worst classification is ob-
tained for Cray. The results for Cray can also be explained by the unfriendly form of
messages generated by this supercomputer. The following message shows an exam-
ple of an event description from which is hard to extract the relevant English word:
< ffffffff834c270 > : ptlrpc : lustre conn cnt + 80

5.2 Online

In the last set of experiments, we compare the results of HELOs online component
with the ones obtained by StrAp. For this set of experiments we use the 10-fold cross
validation. We divide each log into 10 equal sets and then use one part for a training
process of offline classification and the rest of 9 sets for online clustering using the
groups found as input. We use the same method 10 times switching each time the set
for the training phase. The same manually annotated files as for the offline process are
used and we compute for both algorithms the number of corrected classified messages.
Figure 5 shows results for both tools for all ten training sets and for each log files. In
most of the cases, the two graphs follow the same curves. The different values for the

62 A. Gainaru et al.

percentage of correct classified messages by one tool are given by the characteristics
of events from each training set. If the training set has many new and different events
from the ones found in the training set, it is likely that the value will decrease and if the
training set contains all events that are in other sets than the tool will obtain the best
classification, very close to the clustering obtained by the offline component.

In general, the performance follows the shape of the offline one. The shifts in the two
graphs can be explained by the different methodology used by the tools. If the training
set has a lot of semantic problems the distance between the two graphs will be higher.
On the other hand, StrAp regroups the clusters when the number of messages that do
not belong to existing clusters exceeds a threshold so StrAps performance will increase
in the case of many clustered messages with different lengths.

The overall values are lower than for the offline components because usually the
online classification algorithms focus on finding the best local solution for each message
and not the overall best clustering result. However the results are still very good.

(a) Los Alamos (b) Mercury (c) Cray XT4

(d) PNNL (e) Blue Gene/L

Fig. 5. Comparing performance of the online component of HELO with StrAp

6 Conclusion and Future Work

In this paper we introduced HELO, a message pattern mining tool for log files generated
by large scale supercomputers. We developed two components: 1) an offline clustering
process that finds group templates with a high precision for events gathered in log files
for long periods of time and 2) an online classification algorithm that groups new events
adapting the templates to the changes in the underlying distribution. Current approaches
like pattern matching are no longer efficient due to the shear mass of data to go into
further analysis such as correlative analysis and forecasting.

Event Log Mining Tool for Large Scale HPC Systems 63

We tested HELO against the performance of other tools used for the same task, that
are using different methods. In our experiments, we used five different logs generated
by different systems that have been prior manually annotated. Results clearly show that
HELO outperforms other algorithms for all offline and online tasks having a precision
and recall average of over 0.9 without having an overhead in the execution time.

The extracted group templates are used to describe events generated by the super-
computers and to future characterize the overall behaviour of fault and failures in the
system. It is important to have a high precision for this mining step since in the fu-
ture we intend to use the groups to analyse temporal and spatial characteristics as well
as correlations between events. HELO not only has a high accuracy but also presents
to system administrators the description of each group making it easier for a human
interaction in the process of cluster reorganization before the analyser step.

References

[1] Archive, F.T., http://fta.inria.fr (accessed on 2010)
[2] Schroeder, G.G.B.: A large-scale study of failures in high-performance computing systems.

In: IEEE DSN 2006, pp. 249–258 (June 2006)
[3] Bookstein, A., all: Generalized hamming distance. Information Retrieval Journal 5(4), 353–

375 (2002)
[4] Chuah, E., et al.: Diagnosing the root-cause of failures from cluster log files (2010)
[5] T. computer failure data repository, http://cfdr.usenix.org (accessed on 2010)
[6] Fu, Q.: all. Execution anomaly detection in distributed systems through unstructured log

analysis. In: ICDM, pp. 149–158 (December 2009)
[7] Fu, S., Xu, C.-Z.: Exploring event correlation for failure prediction in coalitions of clusters.

In: Proceedings of the ACM/IEEE Conference on Supercomputing (November 2007)
[8] Han, J., et al.: Mining frequent patterns without candidate generation. In: ACM SIGMOD,

pp. 1–12 (May 2000)
[9] Lan, Z., all: Toward automated anomaly identification in large-scale systems. IEEE Trans.

on Parallel and Distributed Systems 21(2), 174–187 (2010)
[10] Makanju, A., et al: Clustering event logs using iterative partitioning. In: 15th ACM

SIGKDD, pp. 1255–1264 (2009)
[11] McCallum, A., all: Efficient clustering of high-dimensional data sets with application to

reference matching. In: ACM SIGKDD, pp. 169–178 (August 2000)
[12] Mitra, M., Chaudhuri, B.: Information retrieval from documents: A survey. Information

Retrieval Journal 2(2-3), 141–163 (2000)
[13] NCSA, http://www.ncsa.illinois.edu (accessed on 2010)
[14] Pang, W., et al.: Mining logs files for data-driven system management. ACM SIGKDD 7,

44–51 (2005)
[15] Park, Geist, A.: System log pre-processing to improve failure prediction. In: DSN 2009, pp.

572–577 (2009)
[16] Salfner, F., et al.: A survey of online failure prediction methods. ACM Computing Sur-

veys 42(3) (March 2010)
[17] Stearley, J.: Towards informatic analysis of syslogs. In: IEEE Conference on Cluster Com-

puting (September 2004)
[18] Stearley, J.: Towards informatic analysis of syslogs. In: IEEE International Conference on

Cluster Computing, vol. 5, pp. 309–318 (2004)
[19] Vaarandi, R.: Mining event logs with slct and loghound. In: IEEE NOMS 2008, pp. 1071–

1074 (April 2008)

http://fta.inria.fr
http://cfdr.usenix.org
http://www.ncsa.illinois.edu

64 A. Gainaru et al.

[20] Wei Peng, S.M., Li, T.: Mining logs files for data driven system management. ACM
SIGKDD 7, 44–51 (2005)

[21] Xue, Z., et al.: A survey on failure prediction of large-scale server clusters. In: ACIS SNPD
2007, pp. 733–738 (June 2007)

[22] Zarza, G., et al.: Fault-tolerant routing for multiple permanent and non-permanent faults in
hpc systems. In: PDPTA 2010 (July 2010)

[23] Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daele-
mans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 628–643. Springer, Heidelberg (2008)

Reducing the Overhead of Direct Application

Instrumentation Using Prior Static Analysis�

Jan Mußler1, Daniel Lorenz1, and Felix Wolf1,2,3

1 Jülich Supercomputing Centre, 52425 Jülich, Germany
2 German Research School for Simulation Sciences, 52062 Aachen, Germany

3 RWTH Aachen University, 52056 Aachen, Germany

Abstract. Preparing performance measurements of HPC applications
is usually a tradeoff between accuracy and granularity of the measured
data. When using direct instrumentation, that is, the insertion of extra
code around performance-relevant functions, the measurement overhead
increases with the rate at which these functions are visited. If applied in-
discriminately, the measurement dilation can even be prohibitive. In this
paper, we show how static code analysis in combination with binary re-
writing can help eliminate unnecessary instrumentation points based on
configurable filter rules. In contrast to earlier approaches, our technique
does not rely on dynamic information, making extra runs prior to the
actual measurement dispensable. Moreover, the rules can be applied and
modified without re-compilation. We evaluate filter rules designed for the
analysis of computation and communication performance and show that
in most cases the measurement dilation can be reduced to a few percent
while still retaining significant detail.

1 Introduction

The complexity of high-performance computing applications is rising to new
levels. In the wake of this trend, not only the extent of their code base but
also their demand for computing power is rapidly expanding. System manu-
facturers are creating more powerful systems to deliver the necessary compute
performance. Software tools are being developed to assist application scientists
in harnessing these resources efficiently and to cope with program complexity. To
optimize an application for a given architecture, different performance-analysis
tools are available, utilizing a wide range of performance-measurement method-
ologies [17,13,21,18,7]. Many performance tools used in practice today rely on
direct instrumentation to record relevant events, from which performance-data
structures such as profiles or traces are generated. In contrast to statistical sam-
pling, direct instrumentation installs calls to measurement routines, so-called
hooks, at function entry and exit points or around call sites. This can be done
on multiple levels ranging from the source code to the binary file or even the

� This material is based upon work supported by the US Department of Energy under
Award Number DE-SC0001621.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 65–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

66 J. Mußler, D. Lorenz, and F. Wolf

memory image [20]. Often the compiler can inject these hooks automatically
using a profiling interface specifically designed for this purpose.

Of course, instrumentation causes measurement intrusion – not only dilating
the overall runtime and prolonging resource usage but also obscuring measure-
ment results – especially, if the measurement overhead is substantial. If applied
indiscriminately, the measurement dilation can render the results even useless.
This happens in particular in the presence of short but frequently-called func-
tions prevalent in C++ codes. In general, the measurement overhead increases
with the rate at which instrumentation points are visited. However, depending
on the analysis objective, not all functions are of equal interest and some may
even be excluded from measurement without loosing relevant detail. For exam-
ple, since the analysis of message volumes primarily focuses on MPI routines
and their callers, purely local computations may be dispensable. Unfortunately,
manually identifying and instrumenting only relevant functions is no satisfactory
option for large programs. Although some automatic instrumentation tools [6,21]
offer the option of explicitly excluding or including certain functions to narrow
the measurement focus, the specification of black and white lists usually comes
at the expense of extra measurements to determine suitable candidates.

To facilitate low-overhead measurements of relevant functions without the
need for additional measurement runs, we employ static analysis to automati-
cally identify suitable instrumentation candidates based on structural properties
of the program. The identification process, which is accomplished via binary in-
spection using the the Dyninst library [3], follows filter rules that can be config-
ured by refining and combining several base criteria suited for complementary
analysis objectives. The resulting instrumentation specification is then immedi-
ately applied to the executable via binary re-writing [22], eliminating the need
for re-compilation. Our methodology is available in the form of a flexible stand-
alone instrumentation tool that can be configured to meet the needs of various
applications and performance analyzers. Our approach significantly reduces the
time-consuming work of filter creation and improves the measurement accuracy
by lowering intrusion to a minimum. An evaluation of different filter criteria
shows that in most cases the overhead can be reduced to only a few percent.

Our paper is structured as follows: After reviewing related work in Section 2,
we present the design of the configurable instrumentation tool in Section 3.
Then, in Section 4, we discuss the base filter criteria and the heuristics involved in
their implementation. A comprehensive experimental evaluation of these criteria
in terms the number of instrumented functions and the resulting measurement
dilation is given in Section 5. Finally, we draw conclusions and outline future
work in Section 6.

2 Related Work

To generally avoid the overhead of direct instrumentation, some tools such as
HPCToolkit [13] resort to sampling. Although researchers recently also started
combining sampling with direct instrumentation [19], the choice between the two

Reducing the Overhead of Direct Application Instrumentation 67

options is usually a trade-off between the desired expressiveness of the perfor-
mance data and unwanted measurement dilation. Whereas sampling allows the
latter to be controlled with ease, just by adjusting the sampling frequency, it de-
livers only an incomplete picture, potentially missing critical events or providing
inaccurate estimates. Moreover, accessing details of the program state during the
timer interrupt, such as arguments of the currently executed function, is techni-
cally challenging. Both disadvantages together make direct instrumentation the
favorite method for capturing certain communication metrics such as the size
of message payloads. This insight is also reflected in the current design of the
MPI profiling interface [14], whose interposition-wrapper concept leverages di-
rect instrumentation. However, to avoid excessive runtime overhead, the number
of direct instrumentation points need to be selected with care, a task for which
our approach now offers a convenient solution. If only the frequency of call-path
visits is of interest, also optimizations such as those used by Ball and Larus for
path profiling can be chosen [2].

Among the tools that rely on direct instrumentation, the provision of black
lists to exclude functions from instrumentation (or white lists to include only a
specific subset) is the standard practice of overhead minimization. In Scalasca [7]
and TAU [21], the specification of such lists is supported through utilities that
examine performance data from previous runs taken under full instrumentation.
Selection criteria include the ratio between a function’s execution time and its
number of invocations or whether the function calls MPI – directly or indirectly.
Yet, in malign cases where the overhead of full instrumentation is excessive, the
required extra run may be hard or even impossible to complete in the first place.
The selection lists are applied either statically or dynamically. The latter is the
preferred method in combination with compiler instrumentation, which can be
configured only at the granularity of entire files. In addition to user-supplied
filter lists, TAU provides a runtime mechanism called throttling to automatically
disable the instrumentation of short but frequently executed functions. A gen-
eral disadvantage of runtime selection, whether via filter lists or automatically,
however, is the residual overhead caused by the dynamic inspection of function
identifiers upon each function call. Our solution, in contrast, neither requires
any extra runs nor performs any dynamic checks.

Another generic instrumenter was designed by Geimer et al. [6]. Like ours, it
can be configured to support arbitrary measurement APIs. Whereas we analyze
and modify the binary, their instrumenter identifies potential instrumentation
points in the source code. While allowing the restriction of target locations ac-
cording to file and function names, the lack of static source-code analysis func-
tionality prevents it from providing suggestions as to which functions should be
instrumented. Moreover, changing the instrumentation always entails an expen-
sive re-compilation.

An early automatic filter mechanism was developed as an extension of the
OpenUH compiler’s profiling interface [8]. Here, the compiler scores functions
according to their estimated number of executions and their estimated dura-
tion, which are derived from the location of their call sites and their number

68 J. Mußler, D. Lorenz, and F. Wolf

Fig. 1. The basic instrumentation workflow

of instructions, respectively. Based on this assessment, the compiler skips the
instrumentation of those functions that are either short or called within nested
loops. However, generally not instrumenting small functions was criticized by
Adhianto et al.[1]. They argue that small functions often play a significant role,
for example, if they include synchronization calls important to parallel perfor-
mance. In our approach, providing rules that explicitly define exceptions, for
example, by forcing the instrumenter to include all functions that call a cer-
tain synchronization primitive, can avoid or mitigate the risk of missing critical
events.

If measurement overhead cannot be avoided without sacrificing analysis objec-
tives, overhead compensation offers an instrument to retroactively improve the
accuracy of the measured data. Initially developed for serial applications [10],
it was later extended to account for overhead propagation in parallel applica-
tions [11]. The approach is based on the idea that every call to the measurement
system incurs a roughly constant and measurable overhead with a deterministic
and reversible effect on the performance data. However, variations in memory
or cache utilization may invalidate this assumption to some degree.

3 A Configurable Instrumenter

Figure 1 illustrates the different steps involved in instrumenting an applica-
tion and highlights the functional components of our instrumenter. As input
serves a potentially optimized application executable, which is transformed into
a ready-to-run instrumented executable, following the instructions embodied by
user filters and adapter specifications. The instrumentation process starts with
the extraction of structural information from the binary program, a feature sup-
ported by the Dyninst API. Although the inclusion of debug information into the
executable during compilation is not mandatory, it tends to enrich the available
structural information and can help formulate more sophisticated filter rules. As
a next step, the instrumenter parses the provided filter specifications and deter-
mines the functions to be instrumented. Optionally, the instrumenter can print
the names of instrumentable functions to simplify the creation of filter lists. The
instrumentation itself is applied using Dyninst’s binary rewriting capabilities.

Reducing the Overhead of Direct Application Instrumentation 69

The raw instrumenter can be configured in two different ways: First, devel-
opers of performance tools can provide an adapter specification (top right in
Figure 1) to customize the instrumenter to their tool’s needs. This customiza-
tion includes the specification of code snippets such as calls to a proprietary
measurement API to be inserted at instrumentation points. In addition, the
adapter may include a predefined filter that reflects the tool’s specific focus.
Second, application developers can augment this predefined filter by specifying
a user filter (top center in Figure 1) to satisfy application- or analysis-specific
requirements. Below, we explain these two configuration options in detail.

3.1 Adapter Specification

The adapter specification is intended to be shipped together with a performance
tool. It consists of a single XML document, which is both human readable (and
editable) and at the same time accessible to automatic processing through our
instrumenter. The format provides four different element types:

– The description of additional dependencies, for example, to measurement
libraries that must be linked to the binary.

– The definition of optional adapter filter rules. These adhere to the same
syntax as the user filter rules, which are introduced further below. The filter
rules allow the exclusion of certain functions such as those belonging to the
measurement library itself or those known to result in erroneous behavior.
For example, when using Scalasca, which requires the measurement library
to be statically linked to the application, the adapter filter would prevent
the library itself from being instrumented.

– The definition of global variables.
– The definition of a set of code snippets to be inserted at instrumentation

points.

The instrumenter supports instrumentation on three different levels: (i) func-
tion, (ii) loop, and (iii) call site. There are up to four instrumentation points
associated with each level, plus two for initialization and finalization:

– before: Immediately before a call site (i.e., function call) or loop.
– enter : At function entry or at the start of a loop iteration.
– exit : At function exit or at the end of a loop iteration.
– after : Immediately after a call site (i.e., function call) or loop.
– initialize: Initialization code which is executed once for each instrumented

function, call site, or loop.
– finalize: Finalization code which is executed once for each instrumented func-

tion, call site and loop.

The initialization and finalization code is needed, for example, to register a
function with the measurement library or to release any associated resources
once they are no longer in service.

To access an instrumentation point’s context from within the inserted code,
such as the name of the enclosing function or the name of the function’s source

70 J. Mußler, D. Lorenz, and F. Wolf

<adapter>
<functions>

<variables><var name="i" size="4" /></variables>
<init>i = 0;</init>
<enter>i = i + 1;

printf("entering %s for the %d time\n",@ROUTINE@,i);
</enter>

</functions>
</adapter>

Fig. 2. Example adapter specification that counts the number of visits to an instru-
mented function and during each invocation prints a message which contains the func-
tion name and the accumulated number of visits

file, the instrumenter features a set of variables in analogy to [6]. These variables
are enclosed by @ and include, among others, the following items: ROUTINE, FILE,
and LINE. To concatenate strings, we further added the . operator. At instrumen-
tation time, a single const char* string will be generated from the combined
string. In addition to specifying default code snippets to be inserted at the six
locations listed above, an adapter specification may define uniquely named al-
ternatives, which can be referenced in filter rules to tailor the instrumentation
to the needs of specific groups of functions. An example adapter specification is
shown in Figure 2. So far, we created adapter specifications for Scalasca, TAU
and the Score-P measurement API [15]. The latter is a new measurement infras-
tructure intended to replace the proprietary infrastructures of several production
performance tools.

3.2 Filter Specification

While the adapter customizes the instrumenter for a specific tool, the user filter
allows the instrumenter to be configured for a specific application and/or analysis
objective such as communication or computation. It does so by restricting the
set of active instrumentation points of the target application.

The filter is composed of include and exclude elements, which are evaluated in
the specified order. The exclude elements remove functions from the set, whereas
include elements add functions to the set. A filter element consist of a partic-
ular set of properties a function must satisfy. The properties can be combined
through the use of the logical operators and, or, and not. The properties are
instances of base filter criteria, which are described in Section 4. For each in-
strumentable function, every rule is evaluated to decide whether the function
matches the rule or not. An example for a filter definition is given in Figure 3.
In addition to defining whether a function is instrumented or not, the user can
also change the default code to be inserted by selecting alternative code snippets
from the adapter specification, referencing them by the unique name that has
been assigned there. Separate snippets can be chosen depending on whether the
instrumentation occurs around functions, call sites, or loops.

Reducing the Overhead of Direct Application Instrumentation 71

<filter name="mpicallpath" instrument="functions=function" start="none">
<include>

<property name="path">
<functionnames match="prefix">MPI mpi</functionnames>

</property>
</include>
</filter>

Fig. 3. Example for a filter definition that instruments all functions that appear on a
call path leading to an MPI function

4 Filter Criteria

The purpose of our filter mechanism is to exclude functions that either lie out-
side our analysis objectives or whose excessive overhead would obscure measure-
ment results. To avoid instrumenting any undesired functions, the instrumenter
supports selection criteria (i) based on string matching and/or (ii) based on the
program structure. String matching criteria demand that a string (e.g., the func-
tion name) has a certain prefix or suffix, contains a certain substring, or matches
another string completely. String matching can be applied to function names,
class names, namespaces, or file names. It is a convenient method, for example,
to prevent the instrumentation of certain library routines that all start with the
same prefix. In contrast, structural criteria take structural properties of a given
function into account.

The first group of structural properties considers a function’s position in the
call tree, that is, its external relationships to other functions. This is useful to
identify functions that belong to the context of functions in the center of our
interest. For example, if the focus of the analysis are MPI messaging statistics,
the user might want to know from where messaging routines are called but at
the same time may afford to skip purely local computations in the interest of
improved measurement accuracy.

Call path: Checks whether a function may appear on the call path to a specified
set of functions, for example, whether the function issues MPI calls – either
directly or indirectly. Unfortunately, since the decision is based on prior static
analysis of the code, virtual functions or function pointers are ignored.

Depth: Checks whether a function can be called within a certain call-chain
depth from a given set of functions. Relying on static call-graph analysis,
as well, this property suffers from the same restrictions as the call-path
property.

The second group of structural properties considers indicators of a func-
tion’s internal complexity. This is motivated by short but frequently called
functions that often contribute little to the overall execution time but cause
over-proportional overhead.

Lines of code: Checks whether the number of source lines of a function falls
within a given range. Using available debug information, the instrumenter

72 J. Mußler, D. Lorenz, and F. Wolf

computes the number of source lines between the first entry point and the
last exit point of a function. Note that the number of source lines may depend
on the length of comments or the coding style. Moreover, inlining of macros
or compiler optimizations may enlarge the binary function compared to its
source representation.

Cyclomatic complexity: Checks whether the cyclomatic complexity [12] of a
function falls within a given range. The cyclomatic complexity is the number
of linearly independent paths through the function. We chose the variant
that takes also the number of exit points into account. It is defined as E −
N + P , with N representing the number of nodes in the control flow graph
(i.e., the number of basic blocks), E the number of edges between these
blocks, and P the number of connected components in the graph, which is 1
for a function. Again, inlining and compiler optimizations may increase the
cyclomatic complexity in comparison to what a programmer would expect.

Number of instructions: Checks whether the number of instructions falls
within a given range. Since the number of instructions is highly architecture
and compiler dependent, it is challenging to formulate reasonable expecta-
tions.

Number of call sites: Checks whether the function contains at least a given
number of function calls. Note that the mere occurrence of a call site does
neither imply that the function is actually called nor does it tell how often
it is called.

Has loops: Checks whether a function contains loops. Here, similar restrictions
apply as with the number of call sites.

Of course, it is also possible to combine these criteria, for example, to instru-
ment functions that either exceed a certain cyclomatic complexity threshold or
appear on a call path to an MPI function.

5 Evaluation

In this section we evaluate the effectiveness of selected filter rules in terms of the
overhead reduction achieved and the loss of information suffered (i.e., the number
of functions not instrumented). The latter, however, has to be interpreted with
care, as not all functions may equally contribute to the analysis goals. Since
all of our filter criteria are parameterized, the space of filter rules that could
be evaluated is infinitely large. Due to space and time constraints, we therefore
concentrated on those instances that according to our experiences are the most
useful ones. They are are listed below. Criteria not considered here will be the
subject of future studies.
– MPI Path: Instrument only functions that appear on a call path to an MPI

function. This filter allows the costs of MPI communication to be broken
down by call path, often a prerequisite for effective communication tuning.

– CC 2+: Instrument all functions that have at least a cyclomatic complexity
of two. This filter removes all functions that have only one possible path of
execution.

Reducing the Overhead of Direct Application Instrumentation 73

Table 1. Number of functions instrumented under full instrumentation and percentage
of functions instrumented after applying different filter rules

Application Language Full CC 2+ CC 3+ LoC 5+ MPI Path

104.milc C 261 51% 38% 71% 43%
107.leslie3d Fortran 32 78% 66% 75% 28%
113.GemsFDTD Fortran 197 62% 58% 81% 12%
115.fds4 C/Fortran 238 80% 74% 88% 0.4%
121.pop2 C/Fortran 982 65% 53% 77% 16%
122.tachyon C 342 35% 27% 61% 5%
125.RAxML C 313 77% 65% 85% 25%
126.lammps C++ 1378 56% 43% 64% 39%
128.GAPgeomfem C/Fortran 36 61% 53% 72% 31%
130.socorro C/Fortran 1331 50% 41% 74% 24%
132.zeusmp2 C/Fortran 155 84% 80% 89% 46%
137.lu Fortran 35 66% 60% 77% 43%
Cactus Carpet C++ 3539 35% 29% 50% 6%
Gadget C 402 62% 52% 26% 21%

– CC 3+: Instruments all functions that have a cyclomatic complexity of three
or higher. Compared to the CC 2+ filter, functions need an additional loop
or branch not to be removed.

– LoC 5+: Instrument all functions with five or more lines of code. This filter
is expected to remove wrapper functions as well as getters, setters, or other
one liners.

As test cases, we selected the SPEC MPI2007 benchmark suite [16], a collec-
tion of twelve MPI applications from various fields with very different characteris-
tics; Gadget [5], a simulation that computes the collision of two star clusters; and
Cactus Carpet [4], an adaptive mesh refinement and multi-patch driver for the
Cactus framework. A full list of all applications can be found in Table 1 together
with information on their programming language. We built all applications using
the GNU compiler with optimization level O2 enabled. All measurements were
performed on Juropa [9], an Intel cluster at the Jülich Supercomputing Centre.
Our instrumenter was linked to version 6.1 of Dyninst. To improve interoper-
ability with the GNU compiler, we added GCC exception handling functions
to the list of non-returning functions in Dyninst. We ran our test cases using
the Scalasca measurement library in profiling mode, which instruments all MPI
function by default through interposition wrappers.

Table 1 lists the number of instrumented functions when applying different fil-
ter rules including full instrumentation. The numbers do not include MPI func-
tions, which are always instrumented. Also, the instrumenter was configured not
to instrument the Scalasca measurement system itself. Otherwise, all functions
Dyninst identified in the binary, which do not include dynamically linked libraries,
were potential instrumentation candidates. The number of functions varies greatly
among the fourteen applications, with 107.leslie3d having only 32 compared to
the two C++ codes with 1378 and 3539 functions, respectively. Judging by the

74 J. Mußler, D. Lorenz, and F. Wolf

Fig. 4. Runtime overhead of the fully instrumented binary and after applying different
filters. The values are given in percent compared to an uninstrumented run. Values
exceeding 26% are clipped. Missing bars imply zero overhead. In general, measure-
ment inaccuracies prevented a precise representation of values around zero, sometimes
resulting in negative overhead figures.

fraction of eliminated functions, the MPI Path filter seems to be the most aggres-
sive one, in one instance (115.fds4) leaving only the main function instrumented.
The LoC 5+ filter, by contrast, leads only to relatively mild eliminations, with
most codes loosing less then 40%. Finally, the difference between the two cyclo-
matic filters, which together occupy a solid middle ground in terms of their ag-
gressiveness, is significant but not too pronounced.

The measurement overheads observed for the individual combinations of ap-
plications and filters are presented in Figure 4. Seven of the fourteen applications
show less than 8% overhead even under full instrumentation, indicating that full
instrumentation is not generally impracticable. Among the remaining applica-
tions, three including the C++ code Cactus Carpet exhibit extreme overheads
above 50% without filters. The worst case is clearly 122.tachyon with more than
1,000% overhead, which, however, contains functions with only two binary in-
structions. In almost all cases, with the exception of 121.pop2, at least one filter
exists that was able to reduce the overhead to 2% or less – within the limits of
our measurement accuracy. For 121.pop2, we achieved only a moderate reduc-
tion, although with 13% the lowest overhead of 121.pop2 was not alarming. As
a general trend, the MPI Path filter resulted in the lowest overhead. Again, the
only exception is 121.pop2, where many functions contain error handling code
that may call MPI functions such as MPI Finalize and MPI Barrier. Thus, many
functions were instrumented that actually do not call MPI during a normal run.
Whereas the LoC 5+ filter did often enough fail to yield the desired overhead
decrease, CC 3+ can be seen as a good compromise, often with higher although
still acceptable overhead below 10% – but on the other hand with less functions
removed from instrumentation and, thus, with less loss of information.

Finally, the ratio between the fraction of filtered functions and the overhead
reduction can serve as an indicator of how effective a filter is in selecting functions

Reducing the Overhead of Direct Application Instrumentation 75

that introduce large overhead. Ignoring the codes with initial overheads below
5%, for which this measure might turn out to be unreliable, LoC 5+ shows vary-
ing behavior: In the cases of 104.milc, 115.fds4, 130.socorro, and Cactus Carpet
very few functions are removed compared to the achieved overhead reduction.
For the other applications, the filter is largely ineffective. The cyclomatic filters,
by contrast, yield high returns on their removal candidates in the majority of
cases. Exceptions are 121.pop2, 122.tachyon, and 125.RAxML. Finally, the ef-
fectiveness of MPI Path roughly correlates with the number of functions still
instrumented. However, although it removes many functions, it still retains crit-
ical information. For example, the detection of MPI call paths that incur waiting
time is not affected because all functions on such paths remain instrumented.

6 Conclusion and Future Work

In this paper, we presented an effective approach to reducing the overhead of di-
rect instrumentation for the purpose of parallel performance analysis. Based on
structural properties of the program, including both a function’s internal structure
and/or its external calling relationships, we are able to identify the most significant
sources of overhead and remove them from instrumentation. Our solution, which
was implemented as a generic and configurable binary instrumenter, requires nei-
ther any expensive extra runs nor re-compilation of the target code. We demon-
strated that, depending on the analysis objective, in almost all of our test cases
the overhead could be reduced to only a few percent. Overall, the MPI Path filter
was most effective, allowing low-overheadmeasurements of the communication be-
havior across a wide range of applications – except for one malign case with MPI
calls in rarely executed error handlers. Moreover, if the focus lies on computation,
CC 3+ offers a good balance between the number of excluded functions and the
overhead reduction achieved. Finally, the union ofMPI Path and CC 3+ seems also
promising and should be tried if investigating correlations between the computa-
tional load and the communication time is an analysis goal. Whereas this study
only considered parallelism via MPI, future work will concentrate on filter rules
also suitable for OpenMP applications. A particular challenge to be addressed will
be the non-portable representation of OpenMP constructs in the binary.

Acknowledgment. We would like to thank the developer team of the Dyninst
library, especially Madhavi Krishnan and Andrew Bernat, for their continuous
support.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2009)

2. Ball, T., Larus, J.R.: Efficient path profiling. In: Proc. of the 29th ACM/IEEE In-
ternational Symposium on Microarchitecture, pp. 46–57. IEEE Computer Society,
Washington, DC, USA (1996)

76 J. Mußler, D. Lorenz, and F. Wolf

3. Buck, B., Hollingsworth, J.: An API for runtime code patching. Journal of High
Performance Computing Applications 14(4), 317–329 (2000)

4. Cactus code (2010), http://www.cactuscode.org
5. Gadget 2 (2010), http://www.mpa-garching.mpg.de/gadget
6. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A generic and configurable

source-code instrumentation component. In: Allen, G., Nabrzyski, J., Seidel, E.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545,
pp. 696–705. Springer, Heidelberg (2009)

7. Geimer, M., Wolf, F., Wylie, B., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Ex-
perience 22(6), 702–719 (2010)

8. Hernandez, O., Jin, H., Chapman, B.: Compiler support for efficient instrumen-
tation. In: Proc. of the ParCo 2007 Conference. Advances in Parallel Computing,
vol. 15, pp. 661–668 (2008)

9. JuRoPA (2010), http://www.fz-juelich.de/jsc/juropa
10. Malony, A.D., Shende, S.S.: Overhead compensation in performance profiling.

In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS,
vol. 3149, pp. 119–132. Springer, Heidelberg (2004)

11. Malony, A.D., Shende, S.S., Morris, A., Wolf, F.: Compensation of measurement
overhead in parallel performance profiling. International Journal of High Perfor-
mance Computing Applications 21(2), 174–194 (2007)

12. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering 2,
308–320 (1976)

13. Mellor-Crummey, J., Fowler, R., Marin, G., Tallent, N.: HPCView: A tool for top-
down analysis of node performance. The Journal of Supercomputing 23(1), 81–104
(2002)

14. Message Passing Interface Forum: MPI: A message-passing interface standard, ver-
sion 2.2 (September 2009), ch. 14: Profiling Interface

15. an Mey, D., et al.: Score-P – A unified performance measurement system for petas-
cale applications. In: Proc. of Competence in High Performance Computing, Schloss
Schwetzingen, Germany (2010), (to appear)

16. Müller, M., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kumaran,
K., Baron, J., Brantley, W., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC
MPI2007 – An application benchmark suite for parallel systems using MPI. Con-
currency and Computation: Practice and Experience 22(2), 191 (2010)

17. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K.: VAMPIR:
Visualization and analysis of MPI resources. Supercomputer 12(1), 69–80 (1996)

18. Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.:
Open|SpeedShop: An open source infrastructure for parallel performance analysis.
Scientific Programming 16(2-3), 105–121 (2008)

19. Servat, H., Llort, G., Giménez, J., Labarta, J.: Detailed performance analysis using
coarse grain sampling. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A.,
Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 185–
198. Springer, Heidelberg (2010)

20. Shende, S.S.: The role of instrumentation and mapping in performance measure-
ment. Ph.D. thesis, University of Oregon (August 2001)

21. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

22. Williams, C.C., Hollingsworth, J.K.: Interactive binary instrumentation. IEEE
Seminar Digests 915, 25–28 (2004)

http://www.cactuscode.org
http://www.mpa-garching.mpg.de/gadget
http://www.fz-juelich.de/jsc/juropa

Introduction

Shirley Moore, Derrick Kondo, Brian Wylie, and Giuliano Casale

Topic chairs

Research on performance evaluation over the past several years has resulted in
a range of techniques and tools for modeling, analyzing, and optimizing per-
formance of applications on parallel and distributed computing systems. With
the emergence of extreme-scale computing architectures, the need for tools and
methodologies to predict and improve application performance and to adapt to
evolving architectures will become even greater, due to increased complexity and
heterogeneity of the systems. Furthermore, the scope of the term performance
has expanded to include reliability, energy efficiency, scalability, and system-
level context. This years conference topic Performance Prediction and Evalua-
tion aims to bring together researchers involved with the various aspects of this
broader scope of application and system performance modeling and evaluation
on large-scale parallel and distributed systems.

The six papers accepted for this topic reflect a growing interest in end-to-
end performance issues related to network performance, multicore architectures,
resource allocation, scheduling, and energy usage. The first three papers focus
on different aspects of communication modeling and performance. The fourth
and fifth papers address cache partitioning and job scheduling, respectively. The
sixth paper focuses on an application-level methodology for minimizing system
energy consumption.

– The paper A contention-aware performance model for HPC-based networks:
A case study of the Infiniband network presents a methodology for dynami-
cally predicting communication times in congested networks and applies the
methodology to an Infiniband network. The paper Using the last-mile model
as a distributed scheme for available bandwidth prediction proposes decen-
tralized heuristics for estimating the available bandwidth between nodes in
a large-scale distributed system. The heuristics are based on the last-mile
model, which characterizes each node by its incoming and outgoing capacity
and uses this last-mile (end-host) bandwidth to predict overall performance
of the end-to-end paths. The last paper in the network performance area,
Self-stabilization versus robust self-stabilization for clustering in ad-hoc net-
work, is an experimental comparison of the performance of four clustering
protocols for maintaining a scalable hierarchical network routing scheme in
the presence of topological changes due to failures and node motion in a
mobile ad-hoc network. Two of the protocols are self-stabilizing, meaning
that they converge in finite time to a state that provided optimum service,
and two are robust self-stabilizing, meaning that they not only converge to

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 77–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 S. Moore et al.

optimum service but also maintain minimal useful service during the stabi-
lization period.

– The paper Multilayer cache partitioning for multiprogram workloads presents
a coordinated cache partitioning scheme for multiprogram workloads on mul-
ticore systems that considers multiple levels of the cache hierarchy simulta-
neously. The scheme attempts to satisfy specified quality of service (QoS)
values for all applications by partitioning the shared cache hierarchy across
them and then distributes the remaining excess cache capacity (if any) across
applications such that a global performance metric is maximized. In Back-
filling with guarantees granted upon job submission, the authors present
two scheduling algorithms based on conservative backfilling by adding prior-
itized compression and delayed prioritized compression. They use traces of
actual workload data from the Parallel Workloads Archive to show that their
algorithms generally perform better than normal conservative backfilling.

– The final paper addresses the growing challenge of reducing the energy con-
sumption of high performance computing systems. Entitled Reducing energy
usage with memory and computation-aware dynamic frequency scaling, it in-
troduces a methodology that chooses fine-grained dynamic voltage frequency
scaling (DVFS) settings, with potentially different setting for different parts
of applications, with the goal of minimizing system-wide energy usage. The
authors provide a set of automated tools that capture relevant application
characteristics at the loop level, match these features using a database of
benchmark results to determine the DVFS strategy, and insert the DVFS
commands into the application using binary instrumentation.

We would like to take this opportunity to thank all authors who submitted
a paper to this topic area, thank the reviewers for their careful evaluations,
and finally thank the Euro-Par Organizing Committee for their outstanding
management of this years conference.

Reducing Energy Usage with Memory and

Computation-Aware Dynamic Frequency Scaling

Michael A. Laurenzano1, Mitesh Meswani1, Laura Carrington1,
Allan Snavely1, Mustafa M. Tikir2,�, and Stephen Poole3

1 San Diego Supercomputer Center, La Jolla, CA, United States of America
{michaell,mitesh,lcarring,allans}@sdsc.edu

2 Google, Inc, Mountain View, CA, United States of America
mustafa.m.tikir@gmail.com

3 Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
spoole@ornl.gov

Abstract. Over the life of a modern supercomputer, the energy cost
of running the system can exceed the cost of the original hardware pur-
chase. This has driven the community to attempt to understand and min-
imize energy costs wherever possible. Towards these ends, we present an
automated, fine-grained approach to selecting per-loop processor clock
frequencies. The clock frequency selection criteria is established through
a combination of lightweight static analysis and runtime tracing that
automatically acquires application signatures - characterizations of the
patterns of execution of each loop in an application. This application
characterization is matched with one of a series of benchmark loops,
which have been run on the target system and probe it in various ways.
These benchmarks form a covering set, a machine characterization of
the expected power consumption and performance traits of the machine
over the space of execution patterns and clock frequencies. The frequency
that confers the optimal behavior in terms of power-delay product for
the benchmark that most closely resembles each application loop is the
one chosen for that loop. The set of tools that implement this scheme
is fully automated, built on top of freely available open source software,
and uses an inexpensive power measurement apparatus. We use these
tools to show a measured, system-wide energy savings of up to 7.6% on
an 8-core Intel Xeon E5530 and 10.6% on a 32-core AMD Opteron 8380
(a Sun X4600 Node) across a range of workloads.

Keywords: High Performance Computing, Dynamic Voltage Frequency
Scaling, Benchmarking, Memory Latency, Energy Optimization.

1 Introduction

Energy costs have become a significant portion of the costs involved in the op-
erational lifetime of largescale systems. These costs have impacts that manifest

� This work was done as an active employee of the San Diego Supercomputer Center.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 79–90, 2011.
� Springer-Verlag Berlin Heidelberg 2011

80 M.A. Laurenzano et al.

themselves in economic, social and environmental terms. It is therefore pru-
dent to understand and minimize these costs where possible. With that goal in
mind, in this work we introduce a methodology that facilitates dynamic volt-
age frequency scaling (DVFS) based on the expected impact that operating at
some frequency will have on HPC application performance and power consump-
tion. This methodology is then leveraged in order to choose fine-grained clock
frequency settings, potentially a different frequency for each loop, for the appli-
cation that minimizes system-wide energy use. Along with this methodology, we
present a set of open source tools that automates the entire process.

Certain classes of scientific problems and subproblems exhibit memory bound
behavior, i.e., the time to solution for the problem is decided primarily by the
proximity, size and speed of available memory. Historically, the amount of mem-
ory available to computer hardware has increased at an exponential rate[1].
Nevertheless, many applications can, and will continue to, use all of the memory
available to them. This means that it is important to consider the impact of
physically distant data on performance and power consumption. To facilitate
processor frequency scaling as a means to reducing power consumption, many
modern processors have been designed to operate at a different clock frequency
than certain parts of the memory subsystem[2]. This observation, along with the
notion that some applications spend much of their time waiting on data that
is physically distant, implies that the execution of such applications may suffer
only small or acceptable performance losses when operating at lower clock fre-
quencies, which in turn yields lower power consumption rates. Clock frequency
management policies that are in use today, however, generally do not take full ad-
vantage of this opportunity. They tend to rely on very broad and coarse-grained
measures to determine when it is prudent to lower clock frequency based on
perceived inactivity[3][4][5]. Our methodology seeks a more refined clock man-
agement policy that can exploit the opportunity to down-clock the processor in
cases where overall system activity is high, but where the processor is stalled on
high-latency memory events.

The opportunity to decrease power consumption by down-clocking the pro-
cessor as it waits for physically distant data is demonstrated in Figure 1, which
shows the performance (Figure 1(a)), power consumption (Figure 1(b)), and
power-delay product (Figure 1(c)) for a series of Stream-derived[6] stride 8 mem-
ory load tests being run at different working set sizes and clock frequencies on
an 8-core Intel Xeon E5530. The results in Figure 1(a), which shows the mea-
sured memory bandwidth for this series of tests, suggest that performance is
independent of processor clock frequency when the working set size is larger
than 512KB. This size coincides with the size of the L2 cache, or equivalently,
when the working set size is large enough that the data resides in a memory
level farther than L2 cache. Figure 1(b) shows the average power consumption
levels during these same memory load tests. It is important to note that power
consumption is dependent on clock frequency even for working set sizes where
performance is not. Taken together, we can view the results of Figure 1 as an op-
portunity to reduce power consumption while minimally impacting performance

Reducing Energy Usage with Memory 81

14 16 18 20 22 24 26 28
0

5,000

10,000

15,000

20,000

log2(working set size)

b
a
n
d
w
id
th

(M
B
/
s)

(a) Performance, expressed as memory bandwidth (MB/s).

14 16 18 20 22 24 26 28

180

200

220

240

260

log2(working set size)

p
o
w
e
r
(W

a
tt
s)

(b) Power consumption (Watts) of the entire system (y-axis minimum is 170 Watts).

14 16 18 20 22 24 26 28

0.8

1

1.2

log2(working set size)

p
o
w
e
r
∗
d
e
la
y

(c) Power-delay product compared against the maximum frequency, 2.4GHz.

L1-L2 cache 1.60GHz 2.00GHz 2.40GHz

Fig. 1. Performance, power, and power-delay product of a series of Stream-derived
stride 8 load tests for several clock frequencies on an Intel Xeon E5530

for certain working set sizes. The power-delay product for the Stream tests is
given in Figure 1(c), which shows that power-delay product can be significantly
reduced for certain working set sizes by lowering the processor clock frequency.
Power-delay product is a metric that combines power usage and performance,
and is simply the product of delay and normalized power usage of an applica-
tion run with some clock frequency management policy when compared to the
baseline clock frequency management policy. Note that power-delay product is
equivalent to energy usage normalized to the baseline clock frequency mode, so
these terms can be used interchangeably.

82 M.A. Laurenzano et al.

Though useful as a proof of concept, it is rarely the case that application be-
havior is as simple as the tests shown in Figure 1. Unlike with the simple Stream
benchmark, the processing unit usually has some amount of computation that
can be performed while it is stalled on memory accesses, leading to varying de-
grees of performance degradation when the processor is down-clocked. As such,
it is necessary to understand the complex effects that memory, computational
behavior and clock frequency have on performance, power and their interesting
combinations (such as energy). Our approach to advancing this understanding
uses a benchmark to cover the space of some possible behavioral parameters
(memory size, memory access pattern, computation amount, computation type,
ILP, clock frequency) to measure the effect that these factors have on perfor-
mance, power and energy. For applications, we can then measure the parameters
over which we have limited control (memory and computation related parame-
ters) in order to make informed decisions about the parameter we can control
(clock frequency) in order to control the power, performance, and energy char-
acteristics of the application. When applied to selecting for energy-optimal clock
frequency, our experiments show that this approach yielded measured, system-
wide energy reductions of up to 10.6%.

2 Methodology

To measure the power consumption of a system we employ a WattsUp? power
meter[7] to act as an intermediary between the power source and the system
power supply. In order to automate the insertion of power measurement inter-
face and clock frequency management calls, we implemented a binary instru-
mentation tool and library based on the PEBIL instrumentation toolkit[8]. The
clock frequency management mechanism is built on top of the cpufreq-utils
package1[3] that is available with many Linux distributions. This instrumenta-
tion tool and library provide a powerful and low-overhead way of automatically
providing a frequency management strategy to the application without requir-
ing any build-time steps or system support. The power measurement apparatus,
at the time of this writing, costs less than �150. Since a data center the size
of SDSC[9] has a 2 million dollar annual electricity bill, using this kind of tool
within a large data center could save a lot of money without a lot of effort.

2.1 Benchmarking for Power and Performance

In an effort to better understand how a system behaves in the presence of certain
types of computational and memory demands, we have developed a benchmark-
ing framework called pcubed (PMaC’s Performance and Power benchmark) that
allows us to generate a series of loops while retaining control over the working set
size and memory address stream behavior, floating point (FP) operation counts,
and data dependence features of each. The first two parameters relate to the
1 The cpufreq-utils frequency switching mechanism currently requires superuser

privileges, but we plan to implement a userspace tool that supports our methodology.

Reducing Energy Usage with Memory 83

behavior of the memory subsystem, while the latter two are related to how effec-
tively the processor can hide memory access latency by performing other useful
operations. pcubed generates a series of loops, each composed of a series of
strided memory references and double-precision FP operations performed on an
array. The individual test permutations vary on working set size (arrsize), stride
length (stride), number of memory operations (memops), number of FP opera-
tions (fltops), and number of independent FP operation sequences (parops).

Running a set of tests encompassing wide ranges and combinations of these
parameters at all available clock frequencies for a target system yields a set
of results that describes how that system behaves with respect to performance
and power consumption in the presence of a wide range of demands for its
computational and memory resources at every clock frequency. The results can
then be used as the foundation for forming hypotheses about how an application
with a certain set of features in common with the benchmark instances will
operate in terms of both performance and power usage at every clock frequency
on the target system.

2.2 Application Characterization

In order to determine how an application’s characteristics relate to the sets of
pcubed test characteristics, it is necessary to recognize those features in the ap-
plication. These collected features are a set of observable characteristics that are
related to the input parameters that can be supplied to pcubed. These observ-
ables are the level 1, 2 and 3 cache hit rates (derived from arrsize and stride),
the ratio of the number of FP operations to the number of memory operations
(derived from fltops and memops) and the lookahead distances for FP and
integer computation respectively (derived from parops and the loop structure
derived from static analysis on the binary), expressed as the average lookahead
distance divided by the number of instructions in the loop.

Feature characterization is done at the loop level since loops are the vehicle
through which most computation is performed in HPC applications, though it
would also be possible to do this at the function level. Every loop and inner loop
is examined in order to quantify certain features about its memory behavior, FP
intensity and data dependency information. This step consists of a static analysis
pass and a runtime trace of memory and control flow behavior that is performed
by a binary instrumentation tool implemented with the PEBIL toolkit.

In order to make determinations about the expected behavior of an application
loop, we first map it to one of the pcubed test loops that is collected as part of
the system characterization. For this, we use the geometrically nearest loop in
the 6-dimensional space whose members are the set of observable characteristics
derived from the pcubed input parameters: level 1, 2 and 3 cache hit rates, the
ratio of FP operations to memory operations and the average lookahead distance
for FP and integer computation. As we will show later, the use of geometric
distance between loop feature sets as a basis for comparison seems to work well
in practice, but understanding whether geometric distance is the best measure
of similarity for two loops is an open research problem.

84 M.A. Laurenzano et al.

3 Experimental Results

The technique we have proposed in this work can be used to evaluate an appli-
cation and its matching pcubed loops on any metric involving performance and
power. Here we evaluate only power-delay product (energy = E), though metrics
such as energy-delay product (E ∗ D) or metrics that further emphasize perfor-
mance such as E ∗ D2 could be evaluated. In order to develop a DVFS strategy
for an application whose purpose is to minimize energy usage, we use the set
of results gathered from the pcubed loop that is geometrically closest to each
of the application’s loops. We choose the clock frequency for each pcubed loop
which minimized energy to be the frequency at which we will run the matching
application loop. We used two systems and a series of benchmark applications
to evaluate this frequency selection scheme.

The first of these systems is an Intel Xeon E5530[10] workstation. The E5530
has 2 quad-core processors. Each core has its own 32KB L1 cache and 256KB
L2 cache. Each of the quad-core processors has a shared 8MB L3 cache (for a
total of 16MB of L3 for the 8 cores). Each of the 8 cores can be independently
clocked at 1.60GHz, 1.73GHz, 1.86GHz, 2.00GHz, 2.13GHz, 2.26GHz, 2.39GHz
or 2.40GHz. The second system is a Sun X4600[11] node that is a part of the
Triton Resource[12] at the San Diego Supercomputer Center. This Sun X4600
node contains 8 quad-core AMD Opteron 8380[13] processors. Each core has its
own 64KB L1 cache and 512KB L2 cache, and each processor shares 6MB of L3
cache (for a total of 48MB of L3 for the 32 cores). Each of the 32 cores can be
independently clocked at 800MHz, 1.30GHz, 1.80GHz or 2.5GHz.

Both of these systems were probed for every available clock frequency by
running pcubed on a set of 2320 benchmark instances2 covering a wide range of
loop characteristics for every clock frequency exposed by each system, which is
8 frequencies for the Intel Xeon E5530 and 4 frequencies for the AMD Opteron
8380. The runtime of pcubed is roughly 6 hours per clock frequency, though this
depends on the actual set of tests being run and the clock frequencies involved.

3.1 Drawing Conclusions about System Behavior

Running pcubed on a target system can allow us to draw some conclusions about
that system. For instance, if it were found that the energy-optimal frequency for
a large number of tests was at the lower end of the available frequencies, it
would be possible to argue that lowering the range of available clock frequencies
could result in a more energy-efficient system. As a slight variation on this, if a
system were being planned that had a very narrow workload which demonstrated
similarities to a class of pcubed loops that was most energy efficient at lower
frequencies, this would suggest that a similar, cheaper architecture that offered
a lower maximum frequency would be sufficient for that workload. Similarly

2 The number of combinations and the exact parameters required depends on the
features of the underlying architecture such as number of cache levels, cache line
sizes, number of computational units, and number of registers.

Reducing Energy Usage with Memory 85

if most tests were found to be energy-optimal at the higher clock frequencies,
this could indicate that raising the range of available frequencies might have an
impact on a system’s energy efficiency. Neither of these phenomena were found
for either the Intel Xeon E5530 or the AMD Opteron 8380, but it remains to be
seen whether such systems exist. By examining the pcubed results alone, we can
also get an understanding of what feature thresholds delineate energy-optimal
frequency domains for the target system. For example, Figures 2(a) and 2(b)
show maps of which clock frequency is the most energy efficient for pcubed tests
as a function of memory behavior and computational behavior respectively. The
data in these maps meets our expectations in that the energy-optimal clock
frequency generally declines as the amount of time spent stalled on memory
increases or as the availability of computation to the processor decreases.

0

2
14 16 18 20 22 24

2

log2(stride)
log2(arrsize)

C
lo

ck
F
re

q
.
(G

H
z
)

1.6

1.8

2

2.2

2.4

(a) Energy-optimal clock frequency as a function of memory behavior.
These tests have fixed memops = 1, fltops = 2 and parops=1.

−4−2024

0

2

4

2

log2(fltops/memops)
log2(parops)

C
lo

ck
F
re

q
.
(G

H
z
)

1.6

1.8

2

2.2

2.4

(b) Energy-optimal clock frequency as a function of the availability of com-
putation. These tests have fixed arrsize = 16MB and stride = 1.

Fig. 2. pcubed-measured energy-optimal clock frequencies on an Intel Xeon E5530

3.2 Energy-Optimal Clock Frequency Selection

For each application benchmark, we make an instrumentation pass over the
executable, run the instrumented executable, then run a post-processing step
on the results in order to extract the features described in Section 2.2. The
overhead of the runtime application analysis depends on the application and its
behavior, but for all of the benchmarks studied the maximum overhead was a

86 M.A. Laurenzano et al.

13x slowdown (average of 4.0x slowdown) on application runtime, but this step
only needs to be run once per application. This post-processing step combines the
static and dynamic application analysis, locates the geometrically closely pcubed
benchmark loop, uses the results from that pcubed loop to make a determination
about which clock frequency will result in energy-minimal execution for the
application’s loop, then makes a second instrumentation pass on the executable
in order to embed the DVFS strategy into the application.

The set of applications used for the Intel Xeon E5530 is the NAS Paral-
lel benchmarks[14], compiled with both the pgi and gnu compiler, as well as
GUPS[15], SSCA#2[16], S3D[17] and HYCOM[18] compiled with the pgi com-
piler. BT and SP of the NAS Parallel Benchmarks were run on all 4 cores of
a single socket. All other benchmarks were run on all of the 8 available cores.
The power-delay product (or energy) for each of these benchmarks run with our
DVFS scheme is computed against a benchmark run without our scheme, which
is to say that it is computed against the default or peak clock rate of the system.
Figure 3 shows these power-delay products. The average amount of energy saved
for this set of benchmarks is 2.6%, but is as high as 7.6% for CG compiled with
the gnu compiler. The set of applications used on the AMD Opteron 8380 is the
NAS Parallel benchmarks, GUPS, SSCA#2 and HYCOM, all compiled with the
pgi compiler. BT and SP of the NAS Parallel Benchmarks were run on 16 cores
on 4 of the 8 sockets available. All other benchmarks were run on all of the 32
available cores. Shown in Figure 3, the average energy saved on the Opteron is
2.1% with a maximum savings of 10.6% on CG.

Fig. 3. Application energy usage (Power∗Delay) and slowdown (Delay) when run with
a DVFS management scheme, normalized to the default frequency management scheme

In addition to power-delay product, Figure 3 also shows the raw delay to give
an account of the slowdown incurred by the tests shown there. The delay is non-
trivial and averages 3.8% for both the Intel Xeon E5530 and the AMD Opteron
8380. This highlights the idea that if performance is of enough importance, it is
unwise to optimize purely in terms of energy. Rather, in that case it would be
prudent to use a higher order function such as energy-delay product that further
emphasizes performance. With modifications to the few (less than 10) lines of

Reducing Energy Usage with Memory 87

source code that currently perform the evaluation of the pcubed tests based on
energy, one could easily perform evaluations based on energy-delay or any other
function of performance and power.

3.3 Technique Validation

It would be time consuming to run every loop of an application at every clock fre-
quency to determine which of those clock frequencies resulted in energy-optimal
execution. A simple approach that used this strategy would require a number
of runs that is on the order of the product of the number of loops and the
number of available clock frequencies. Alternatively, our approach uses a set of
benchmark runs (that only have to be run once in the lifetime of a system) in
addition to a single instrumented application run in order to gather a heuristic
to this effect. But how good is this heuristic? In order to begin to answer this we
exhaustively verified that the selected clock frequency on the Intel Xeon E5530
were energy-optimal for a pair of benchmarks codes that have the property that
their runtime is dominated by a single loop and therefore an exhaustive search
on this loop requires relatively little effort.

For CG, the loop that is responsible for 95% of the dynamic instruction count
was found to be geometrically closest, using the metrics described in Section
2.2, to the pcubed loop that has arrsize = 1MB, stride = 1, fltops = 8,
memops = 16 and parops = 1 (meaning that every FP operation is dependent
on the result of its predecessor), which was found by our technique to be energy-
optimal when run at 2.13GHz. By subjecting the dominant loop in CG to every
available clock frequency and measuring the energy required to complete each
run we found that 2.13GHz is the actual energy-optimal operating frequency for
this loop, confirming that our selection is correct. A similar methodology was
applied to the dominant loop in GUPS, which was found by our technique to
be energy optimal at 1.60GHz. The pcubed instance found to be geometrically
closest to the dominant GUPS loop has arrsize = 16MB, stride = 8, fltops = 4,
memops = 64 and parops = 4 (meaning that the FP operations carry only an
inter-iteration dependence onto themselves). This loop was also found to run
energy-optimally at 1.60GHz. This does not serve as conclusive proof that the
frequencies selected by our methodology are energy-optimal in all cases nor does
it indicate that every interesting aspect of program behavior is encapsulated by
the space of possible loops that can be generated by pcubed. It does, however,
serve to provide some validation for a scenario where exhaustively validating the
frequency quality selection would be extremely time consuming.

4 Related Work

Dynamic voltage frequency scaling is a well known technique that has been used
to reduce power and energy usage in the context of various application domains
[19][20][21][22][23]. The DVFS research in HPC tends to follow one of two
approaches. The first approach is to identify and exploit MPI inter-task load im-
balance. The work done in [24] and [25] focuses on locating these imbalances and

88 M.A. Laurenzano et al.

applying reduced frequencies to computation regions that are not on the appli-
cation’s critical path. By reducing the energy used on a non-critical path, overall
energy can be reduced since power consumption is decreased with negligible perfor-
mance loss. Since these approaches seek to exploit inter-task imbalance for energy
gains instead of intra-task imbalance, they are complementary to ours.

The second approach, which our work falls into, seeks to find a way to exploit
performance-clock independence that occurs within a task as a result of memory
access stalls. Ge et. al. show in [26] that it is possible to reduce energy or energy-
delay by running some memory bound applications either at a fixed frequency
for the entire run or by hand-selecting the dynamic frequency settings for the
application. Our technique goes further and demonstrates how to automatically
select and use a set of such frequency settings.

In [27], the application is run to collect profiling information, then is divided
by hand into phases that consist of regions that are either of similar memory
behavior or are split by MPI calls. The application is then augmented to give it
the capability to perform frequency scaling at its phase boundaries, and then sets
of phase/frequency combinations are run in order to determine how particular
frequency selections affect power and performance. This work differs from ours
in two major ways. First, their methodology differs from ours in terms of the how
the application is broken down for analysis. Our methodology currently looks
at loop boundaries as the only possible scaling locations; theirs incorporates
other possible frequency scaling points. The other major difference between their
methodology and ours is that they search for the best frequency for the phases in
the application by running it with different frequency scaling strategies, while our
approach attempts to probe for the capabilities of the system then determines
the frequency for the application’s loops analytically.

5 Future Work

Going forward, we plan to develop the frequency selection tools as a user-level
package so that it does not require root privileges. We also intend to further
develop the tools and ideas in order to determine whether they extend to more
architectures and compilers to determine the applicability of our methodology
to other architectures. Instead of limiting the application analysis to loops only,
we also would like to expand the scope of the analysis to include functions.

The extent to which pcubed and the parameters used to motivate its de-
velopment (cache hit/miss behavior, amount of computational work available,
and ILP) cover a sufficiently large portion of HPC workloads is unclear. It is
likely that more thorough treatment of certain aspects of program behavior is
needed. Cache coherence behavior, memory access pattern type, type and width
of FP operations, and high latency off-chip events such as I/O or MPI Com-
munications events are obvious candidates for further exploration along these
lines. Another way of approaching the same problem would be to leverage some
of the existing body of work relating hardware counter-supplied information to
processor clock frequency selection. This will facilitate a better understanding of

Reducing Energy Usage with Memory 89

how application-level performance relevant features such as memory access pat-
tern translate to the underlying conditions, observed from hardware counters,
that have an effect on clock frequency selection. Doing this effectively should
minimize the set of benchmarks needed to form a covering set of the behaviors
that can be expected for HPC applications, which may widen the applicability
of the techniques proposed in this work. It could change or narrow the scope of
the information that must be gathered from the application in order to perform
a mapping of application regions to benchmark instances.

6 Conclusions

This work has shown a benchmark-based approach to selecting processor clock
frequency in a way that takes advantage of unnecessarily high clock rates that
are maintained during memory bound computations. This methodology is imple-
mented on top of open source software and uses a system-specific performance
and power characterization that is automatically derived from the results of a set
of benchmark loops, generated by the pcubed benchmarking framework, that are
run at each clock frequency on the system. A set of tools that capture static and
runtime information for an application executable is then used to analyze the
application’s loops in order to find the benchmark loops whose features match
them most closely. From this matching, we are able to select a DVFS strategy
for the application that is expected to result in minimizing energy usage during
execution. pcubed was run, and DVFS strategies were employed on a series of
benchmarks on both an Intel Xeon E5530 and an AMD Opteron 8380, where we
realized energy savings of up to 7.6% and 10.6% respectively.

Acknowledgements. This work was funded in part by the Department of De-
fense and used elements at the Extreme Scale Systems Center, located at Oak
Ridge National Laboratory and funded by the Department of Defense. This work
also used resources from Dash and from the Triton Resource at the San Diego
Supercomputer Center. Special thanks to Phil Papadopoulos, Jim Hayes and
Jeffrey Filliez at SDSC for their help related to gathering measurements on the
Triton Resource.

References

1. Moore, G.E.: Cramming More Components onto Integrated Circuits. Electronics
Magazine (1965)

2. Pallipadi, V.: Enhanced Intel SpeedStep Technology and Demand-Based
Switching on Linux, http://software.intel.com/en-us/articles/enhanced-
intel-speedstepr-technology-and-demand-based-switching-on-linux/

3. CPU Frequency Scaling, https://wiki.archlinux.org/index.php/Cpufrequtils
4. CPUSpeed, http://www.carlthompson.net/Software/CPUSpeed
5. AMD PowerNow! Technology,

http://support.amd.com/us/Embedded_TechDocs/24404a.pdf

http://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/
http://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/
https://wiki.archlinux.org/index.php/Cpufrequtils
http://www.carlthompson.net/Software/CPUSpeed
http://support.amd.com/us/Embedded_TechDocs/24404a.pdf

90 M.A. Laurenzano et al.

6. McCalpin, J.D.: STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Technical Report, University of Virginia (2000)

7. WattsUp? Meters, https://www.wattsupmeters.com/secure/products.php?pn=0
8. Laurenzano, M.A., et al.: PEBIL: Efficient Static Binary Instrumentation for Linux.

In: International Symposium on Performance Analysis of Systems and Software
(2010)

9. SDSC San Diego Supercomputer Center, http://www.sdsc.edu/
10. Intel Xeon Processor E5530, http://ark.intel.com/Product.aspx?id=37103&

processor=E5530&spec-codes=SLBF7
11. Sun Fire X4600 M2 Server Architecture,

http://www.sun.com/servers/x64/x4600/arch-wp.pdf
12. Triton Resource, http://tritonresource.sdsc.edu/pdaf.php
13. Keltcher, C.N., et al.: The AMD Opteron Processor for Multiprocessor Servers. In:

International Symposium on Microarchitecture (2003)
14. Bailey, D.H., et al.: The NAS Parallel Benchmarks. International Journal of High

Performance Computing Applications (1991)
15. Luszczek, P., et al.: Introduction to the HPC Challenge Benchmark Suite. In:

International Conference on Supercomputing (2005)
16. Bader, D.A., et al.: Designing Scalable Synthetic Compact Applications for Bench-

marking High Productivity Computing Systems. Cyberinfrastructure Technology
Watch (2006)

17. Hawkes, E.R., et al.: Direct Numerical Simulation of Turbulent Combustion: Fun-
damental Insights Towards Predictive Models. Journal of Physics: Conference Se-
ries (2005)

18. Halliwell, G.R.: Evaluation of Vertical Coordinate and Vertical Mixing Algorithms
in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling (2004)

19. Poellabauer, C., et al. Feedback-based Dynamic Voltage and Frequency Scaling for
Memory-bound Real-time Applications. In: Real Time and Embedded Technology
and Applications Symposium (2005)

20. Choi, K., et al.: Dynamic Voltage and Frequency Scaling Based on Workload De-
composition. In: International Symposium on Low Power Electronics and Design
(2004)

21. Rajamani, K., et al.: Application-aware Power Management. In: Symposium on
Workload Characterization (2007)

22. Isci, C., et al.: An Analysis of Efficient Multi-core Global Power Management
Policies: Maximizing Performance for a Given Power Budget. In: International
Symposium on Microarchitecture (2006)

23. Lorch, J.R., Smith, A.J.: Operating System Modifications for Task-Based Speed
and Voltage. In: International Conference on Mobile Systems, Applications and
Services (2003)

24. Freeh, V.W., et al.: Just-in-time Dynamic Voltage Scaling: Exploiting Inter-node
Slack to Save Energy in MPI Programs. Journal of Parallel and Distributed Com-
puting (2008)

25. Kimura, H., et al.: Emprical Study on Reducing Energy of Parallel Programs using
Slack Reclamation by DVFS in a Power-scalable High Performance Cluster. In:
International Conference on Cluster Computing (2007)

26. Ge, R., et al.: Improvement of Power-performance Efficiency for High-end Com-
puting. In: Parallel and Distributed Processing Symposium (2005)

27. Freeh, V.W., Lowenthal, D.K.: Using Multiple Energy Gears in MPI programs on
a Power-scalable Cluster. In: Symposium on Principles and Practice of Parallel
Programming (2005)

https://www.wattsupmeters.com/secure/products.php?pn=0
http://www.sdsc.edu/
http://ark.intel.com/Product.aspx?id=37103&processor=E5530&spec-codes=SLBF7
http://ark.intel.com/Product.aspx?id=37103&processor=E5530&spec-codes=SLBF7
http://www.sun.com/servers/x64/x4600/arch-wp.pdf
http://tritonresource.sdsc.edu/pdaf.php

A Contention-Aware Performance Model for

HPC-Based Networks: A Case Study of the
InfiniBand Network

Maxime Martinasso and Jean-François Méhaut

University of Grenoble, Computer Science Laboratory LIG, Grenoble, France
{maxime.martinasso,jean-francois.mehaut}@imag.fr

Abstract. Multi-core clusters are cost-effective clusters largely used in
high-performance computing. Parallel applications using message passing
as a communication mechanism may introduce complex communication
behaviours on such clusters. By sending and receiving data simultane-
ously from and to several nodes, parallel applications create concurrent
accesses to the resources of the network. In this paper, we present a
general model that expresses network resource sharing characterised by
a dynamic contention graph. The model is based on a linear system
weighted by bandwidth distribution factors called penalty coefficients
that are specific to a network technology. We propose a method to solve
the linear system and present an analysis to determine penalty coeffi-
cients on InfiniBand technology. We use complex network conflicts to
assess the ability of the model to predict with low errors.

Keywords: Contention model, performance prediction, InfiniBand.

1 Introduction

High-Performance platforms are dedicated to execute complex scientific appli-
cations with the focus on the highest possible performance achievable. In High-
PerfomanceComputing (HPC) industrial sector software performance has become
a keyword for developing such platforms. Reaching optimum performance for end-
user applications on clusters is a difficult task that requires the use of a wide range
of techniques from specialised algorithms to tuned runtime libraries. This task can
be helped by several tools [8][6] that trace application events that access hardware
or software resources of the platform. Nevertheless, strong expertise is required to
understand and to analyse the relationship between these events and application
performance. The analysis of performance-loss may be simplified if techniques ex-
ist to predict application performance and the gain obtained by using such hard-
ware or software. Performance prediction is not only a topic of high interest for
the HPC community but is also very challenging.

Clusters of multi-core computers can be seen as platforms providing resources
to an application such as computation power, memory, storage and network.
The network resource is an important element in performance analysis as it is a

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 91–102, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

92 M. Martinasso and J.-F. Méhaut

slow component of the platform. High performance networks or system-area net-
works, such as InfiniBand, have been developed to reduce this gap. They are an
important architectural element during the design of a cluster. Even for highly
specialised network hardware operated by multi-core computers, concurrent ac-
cesses are inevitable and degrade network performance. Modelling concurrent
accesses and their performance degradations is a step forward to enhance per-
formance improvements of scientific applications.

Each HPC-based network executes its own flow control mechanism when con-
current accesses occur. For instance, InfiniBand provides a credit-based flow-
control mechanism on the buffer availabilities to ensure the integrity of the
connection. The diversity of flow control mechanisms increases the complex-
ity in identifying models that predict communication times. Models are either
too simplistic or too tailored for a particular technology.

In this article we present a method to predict elapsed times of communica-
tions that take place concurrently on high performance networks. Our approach
generalises the concept of concurrent accesses by introducing the notion of dy-
namic contention graphs. By creating artificial contention graphs on a network
we demonstrate the feasibility of solving a linear system which calculates the
elapsed times of every communication. Moreover, our method can be applied on
different networks resulting in accurate models. We apply it to a widely popular
HPC network: InfiniBand.

The remainder of this paper is organised as follows: in Section 2, we present the
background of our study. In Section 3, we introduce our methodology based on
dynamic contention graph and a sequence of linear equations. Section 4 presents
a model dedicated to InfiniBand network. In Section 5, we validate its accuracy.
In Section 6, we conclude and present our future directions.

2 Background

Performance prediction of communication over networks is an extensively re-
searched topic. Contention-free models are generally based on a linear equation
[10]. Such models predict the communication delay by multiplying the inverse of
the bandwidth with the message size to transfer and by adding a constant value
(the network latency). More refined models [3][1] decompose a similar linear
equation into more parameters that express the characteristics of a communi-
cation. Such parameters can be measured and their values can depend on the
message size [14]. These models do not consider contention and resource sharing.

In the aforementioned models, parameter values used to solve a linear equa-
tion are taken independently of the resource availability. In [2] previous models
are enhanced by introducing a queueing system to represent contention effects.
A vast collection of new parameters were introduced for this model. These pa-
rameters are difficult to evaluate and limit the applicability of such models.

In [11] contention effects are modelled by a coefficient that divides the band-
width availability by the number of communications sharing the same link. The
presented experiments are limited to mono-processor computers. Therefore, on

A Contention-Aware Performance Model for HPC-Based Networks 93

a node, concurrent requests of network resources originating from different cores
are not considered. The model avoids de facto a large set of contention cases on
multi-core technology.

2.1 Elements Influencing Network Contention

Our objective is to propose a methodology to identify models that can accurately
predict communication times in a congested network. Many elements should be
considered to achieve this goal:

– The first element that we consider is the dynamic of contention behaviours
over the network. Contention behaviours are directly linked to the appli-
cation that is executed on the cluster. The application is responsible for
triggering communications that may interfere with each other to access the
network resources leading to time delays.

– The second element is the network technology. Each network has its own flow
control that regulates the concurrent accesses to its resource. They directly
affect and characterise delays caused by contention behaviours.

– The third element is the topology of the network. Many cluster topologies
exist, for instance, nodes may be linked to a single switch that may be
linked to other switches. Depending on how many network components a
communication passes through, its delay depends on the availability of each
of the network components.

In our methodology we will focus on the first two elements. The third element,
i.e. the topology of the network, will be restricted to one switch connecting
several nodes. In [9] we were focused on HPC clusters with dual-core computers
and contention graphs based on a mesh of communications. In this paper, we
generalise this work to any contention graph and any network technology.

3 Methodology

To address the dynamic of the contention behaviour we introduce the notion of
a contention graph that characterises the dynamic usage of network resources
by an application. In addition, we add weights named penalty coefficients to a
contention graph. The penalty coefficients are factors mirroring the effects on
performance of network control flow mechanisms that distribute network band-
width. We present a technique to determine penalty coefficients by only referring
to contention graphs. Finally, our model solves a sequence of linear equations
for each communication. Each linear equation represents the communication as
part of the dynamic of a contention graph. Linear equations are weighted with
penalty coefficients.

3.1 Dynamic Contention Graph

Network contention is characterised by the quantity of data to transfer. Com-
munication delays may change due to other communications present on the net-
work. This variation depends on the sources and destinations, as well as the

94 M. Martinasso and J.-F. Méhaut

Fig. 1. Examples of an MPI application with 16 ranks spawn on 4 nodes with 4 cores
each. During the run of the application, communications start and end creating several
contention graphs that are modelled over a dynamic directed graph K.

message size of the communications. For instance, two communications sending
data from the same node or to an identical node may create different contention
effects on the network by an overlapping demand of network resources. Since the
contention effects are related to the communications that are being processed,
we introduce the notion of a dynamic contention graph.

A dynamic contention graph is a dynamic directed graph, denoted K, on which
the nodes are the cluster nodes and the edges are the communications between
the nodes. A contention graph may have parallel edges, however, as our analysis
does not consider internal communications, a contention graph does not have
any self-loop edges. A communication can start or end at any time modifying
the current contention graph. In the same manner, K is modified when an edge
is added or removed. In order to reflect the fact that K evolves in the course
of different steps, we will denote a contention graph at step s as Ks. Therefore,
a step of a contention graph is a static directed graph. Examples of contention
graphs and their representation with K are presented in Figure 1.

On multi-core computers and also often on HPC platforms, one MPI task
is spawned on one core. Therefore, we bind the maximum degree of K, i.e.
the maximum number of simultaneous outgoing and ingoing communications
from/into a compute node, to the maximum number of cores per node.

3.2 Sequence of Linear Models

During the execution of an application, communications are creating contention
graphs, which may be divided into several steps. While transferring data, one
communication can be part of several contention graph steps. We modelled the
elapsed time of a specific communication during a specific contention graph step
by a single linear equation. In the event that this communication is part of
more than one step, its total elapsed time will be equal to the sum of all linear
equations modelled in each step. The elapsed time Ti of a communication i of
K sending mi bytes can be approximated by the following formula:

A Contention-Aware Performance Model for HPC-Based Networks 95

Ti =
∑

j∈Ks

ti,j = α
∑

j∈Ks

ρi,j ∗ mi,j (1)

∑

j∈Ks

mi,j = mi (2)

with Ks is a contention graph at step s, ti,j the time spent by the communication
i in Ks with ti,j = α ∗ ρi,j ∗ mi,j , α is the inverse of the network bandwidth,
mi,j the amount of bytes transferred during ti,j and ρi,j (ρi,j ≥ 1) a coefficient
called penalty, which acts as the delay caused by other communications in Ks.
To reflect the progress of communications over steps of K, we introduce the
following relation between ti,j :

t1,1 = T1 and for ∀j such that i ≥ j > 1, ti,j = Ti − Ti−1 (3)

The problem of the evaluation of Ti resides in the number of unknown variables
present in the model. If a communication is part of s contention graph steps, the
model has 2 ∗ s unknowns to be determined: s penalty coefficients and s sizes
of the data transferred during each step. However, if the penalty coefficients are
known for every Ks and only the initial message size mi of each communication i
is known, then it is possible to calculate Ti for all i. By solving Ti in an increasing
order of i, one knows from (3) the value of ti,j with j < i and thus the value of
mi,j . From (2) one can deduce the size mi,i and then ti,i leading to the result
Ti by (1). In the next subsection we introduce a method to approximate the
penalty coefficients.

3.3 Approximation of Penalty Coefficients

Penalty coefficients are factors which divide bandwidth and thus increase com-
munication delays. Their values depend on the underlying flow control that man-
ages the over-subscription of a resource. Therefore, an identical contention graph
step generates different penalty values depending on the network technology.

Penalty coefficients are directly related to the shape of a contention graph.
In our model we consider that one contention graph step creates a unique set
of penalties. Since dedicated HPC networks are highly deterministic, this con-
sideration does not appear to be a strong restriction. However, if we consider a
network topology with several switches, this condition should be revised.

To determine penalty coefficients of a contention graph we use real experi-
ences on a cluster. We have developed a simple MPI benchmark that creates
contention graphs. This benchmark spawns as much MPI processes as available
cores. An MPI process is either only sending data or receiving data. By selecting
a subset of processes that send or receive data and by binding them to an MPI
communicator we can create a contention graph. We configure our benchmark
to create a specific kind of contention graph that we call static-synchronous con-
tention graph. In a static-synchronous contention graph communications start
at the same time and have a same amount of data to transfer. This benchmark
gathers statistical data over elapsed times of every communication.

96 M. Martinasso and J.-F. Méhaut

To approximate penalty coefficients, we use the reverse approach as presented
in the previous subsection 3.2 to solve Ti. By knowing an approximation of
every Ti of K and the initial size mi = m of every communication we are able
to approximate ρi,j for any static-synchronous contention graph. The maximum
number of steps of such graph is equal to the number of its communications.

A static-synchronous contention graph of s steps has a number of communi-
cations that decreases while the number of steps increases. Static-synchronous
graphs with only one communication have a penalty coefficient equal to 1. A
static-synchronous graph of two communications implies a linear system which
is directly solvable. Therefore, it is possible to calculate penalty coefficients of any
static-synchronous graphs with two communications. Static-synchronous graphs
of three communications have, in the general case, three steps. We are interested
in calculating penalty coefficients of the first step: ρ1,1, ρ2,1, ρ3,1. To compute
these penalty coefficients we need to know the penalty coefficients of its two other
steps: ρ2,2, ρ2,3 and ρ3,3. The last step has only one communication remaining,
therefore ρ3,3 = 1. For the values of ρ2,2 and ρ2,3, we can use the penalty coeffi-
cients of a static-synchronous graph of two communications that represents the
graph at this step. Therefore, it becomes possible to compute ρ1,1, ρ2,1, ρ3,1 at
the first step by solving the system below:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ1,1 = T1/(α ∗ m)

ρ2,1 = T1/(α ∗ m2,1) with
{

m2,1 = m − m2,2

m2,2 = (T3 − T2)/(α ∗ ρ2,2)

ρ3,1 = T1/(α ∗ m3,1) with

⎧
⎨

⎩

m3,1 = m − m3,2 − m3,3

m3,2 = (T3 − T2)/(α ∗ ρ3,2)
m3,3 = (T2 − T1)/(α ∗ ρ3,3)

By generalising this method, we can recursively determine penalties for a
n-communication static-synchronous graph. For its (n − 1) last steps we can
apply the penalty coefficients of (n − 1) static-synchronous graphs having re-
spectively (n − 1) to 1 communications. The shape of each of these static-
synchronous graphs should correspond to the shapes of the respective steps in
the n-communication graph to which their penalties are applied to.

In our model we assume that a step of a contention graph is comparable to a
static-synchronous graph, in other words, that the transition between steps, i.e.
the network reconfiguration of its contention behaviour, is immediate. Within
this assumption, when a new contention graph step starts, every communica-
tion enters the new step at the same time (synchronous) and their contention
behaviour (i.e. penalty coefficients) will not change (static) until the step ends
and a following step starts. Therefore, we are able to approximate every penalty
coefficient of each step of a contention graph.

By analysing a set of hundreds of contention graphs and their penalty coeffi-
cients, we present a model that approximates penalties based on the shape of a
contention graph. This model is applicable for InfiniBand network.

A Contention-Aware Performance Model for HPC-Based Networks 97

4 Modelling Penalty Coefficients over InfiniBand

In the top 500 list, about 35% of the clusters were using InfiniBand[5] in 2009,
which has increased to about 42% in 2010. Research on InfiniBand is mainly
covering routing strategies in order to increase application performance.

In [13] the impact of static routing in multistage InfiniBand networks is pre-
sented. The study focuses on evaluating the available bisection-bandwidth be-
tween nodes obtained through different switches. Similarly to [11], it considers
concurrent communications between different pairs of nodes and not concurrent
communications that are going to or are initiated from different cores of one
node. In our study, however, we demonstrate that such concurrent communica-
tions create significant contention delays even with a single switch.

An analysis based on a LogP model for small message size communication
performance over InfiniBand was also discussed in [12].

4.1 InfiniBand Network Testbed

Our experiments were carried out on a cluster based on 34 nodes with 8 cores per
node. Each node is connected with a InfiniBand Mellanox Technologies MT26418
card to 3 Voltaire Grid Director 9024 switches. Our MPI implementation is
OpenMPI 1.2.7 using the OpenFabrics low-level library.

Routing paths in InfiniBand network are statically fixed. Taking into account
the routing strategy leads to complex modelling. Our intention is to explore the
possibilities in approximating penalty coefficients. In order to limit the influence
of static routing strategy in our analysis we select a set of nine nodes that are
connected to a unique switch. Each switch has an internal fat-tree topology that
guarantees an efficient distribution of the bandwidth between the links. Thus
the variance of experimented results remains low, as well as the distortion in the
approximation of the penalty coefficients.

InfiniBand flow control uses a credit-based mechanism. A network card that
receives data sends messages called link credit to inform the sender about the
available buffer size remaining. If a receiver buffer is full then the destination
network card stops sending link credit messages and the source network card
will hold in a back pressure state delaying the entire set of its outgoing commu-
nications. The communication is resumed when sufficient buffer size is available.

4.2 Penalty Coefficients and Model for InfiniBand

Upon analysing the penalty coefficients of several hundreds of static-synchronous
contention graphs we propose the model below. A contention graph step is rep-
resented by a connected directed graph K(V, E) where V is the set of nodes, i.e.
the cluster compute nodes, and E is the set of edges, i.e. the communications
involved in the contention graph step. As usual, we use δ+(v) to denote the
outdegree of a vertex v of K and, respectively, δ−(v) to denote the indegree of
a vertex v of K. We use V +(v) ⊂ V as the out-neighbourhood of vertex v (set
of vertices being a destination vertex of an edge outgoing from v). We extend
the notion of V +(v) to a set of out-neighbourhood edges of an edge e = (s, d)

98 M. Martinasso and J.-F. Méhaut

as E+(e) = {(s, d′) : d′ ∈ V +(s)} ⊂ E. We also consider a specific set of edges
being the edges ingoing to the destination vertex d of an edge (s, d). This subset
is defined as follow: E��(e) = {(s′, d) : s′ �= s} ⊂ E. The penalty coefficient ρ(e)
of an edge e = (s, d) ∈ E, being oriented from s to d, is calculated as follows:

ρ(e) = max
E+(e)

{δ+(s) + k(e)} (4)

with k(e) defined as follow:

(a) k(e) = 0 if (δ−(d) ≤ δ+(s) and δ+(s) = δ+(s′)) or δ−(d′) = 0 such that
e′ = (s′, d) ∈ E��(e) and e′′ = (s, d′) ∈ E+(e) respectively;

(b) k(e) = 1
max(ρ(e′)−1) if δ+(s) = 1 with e′ = (s′, d) ∈ E��(e);

(c) k(e) =
∑

∀e′=(s,d′)∈E+(e)∧∀e′′=(s′′,d′)∈E��(e′)

1
δ+(s′′)

otherwise.

item (a) item (a) item (c) item (b) & (c)

Fig. 2. Penalty coefficients of four contention graphs

In Figure 2 we apply the model above on four contention graphs. In the
first graph, the outgoing degree of node [a] is 3, δ+(a) = 3. Nodes [b], [c]
and [d] have an ingoing degree of 1, δ−(b) = δ−(c) = δ−(d) = 1 therefore
from item (a) k is nullified for all edges. From (4) each edge has a penalty
of 3. In the second graph k is also nullified, because for both edges (b, a) and
(c, a): δ−(a) = δ+(b) = δ+(c). For the third graph neither item (a) or item
(b) is applicable. The penalty coefficients of edges (a, b) (a, c) (a, d) are then
max(δ+(a) + 2

δ+(d) , δ
+(a) + 2

δ+(d) , δ
+(a)) = 4. Similarly, edges (d, b) and (d, c)

have each a penalty coefficient equal to max(δ+(d)+ 2
δ+(a) , δ

+(d)+ 2
δ+(a)) = 2.66.

Finally, the last example combines the item (b) and item (c). Edges (a, b)
and (a, c) have a penalty of 4 from item (c). Item (b) is applicable for edges
(d, b) and (e, c) as δ+(d) = δ+(e) = 1. Their penalty coefficients are equal to
1 + 1

max(ρ((a,b)),ρ((a,c))−1 = 1.33.

Discussion: In our model, the contention factor depends mainly on the number
of outgoing communications from a node. Inside a node, the network card is the
first network component that is shared. The network card allocates a first distri-
bution of bandwidth capacity. We model this distribution as a fair distribution
among the communications (4). In addition, bandwidth may also be reduced

A Contention-Aware Performance Model for HPC-Based Networks 99

when communications share the same destination node. On a receiving card of a
node, the buffer allocation depends on the bandwidth requested by each ingoing
communication to the node. Therefore, in our model we characterise this value
by the function k that adds a factor proportional to the bandwidth requests
made by others communications having the same destination node (item (c)).
However, k can be nullified if n communications that are sending data to the
same destination also share their source node with n outgoing communications.
Alternatively, k can also be nullified if a communication does not suffer con-
tention on the receive node (item (a)). Finally, if a network card is in a back
pressure mode (the receiver blocks the sender) then its outgoing communica-
tions are delayed. This effect is modelled by choosing the maximum delay over
all communications outgoing from the same node. Furthermore, if a communi-
cation with a full bandwidth allocation reaches a node, we model its allocated
bandwidth on the receive node as the maximum bandwidth available (item (b)).

dynamic graph steps com penalty data remaining [o] time spent [s]

a 3.5 11983700 0.0160590
b 3.5 11983700 0.0160590
c 3.5 11983700 0.0160590
d 3.33 11534300 0.0160590
e 3.33 11534300 0.0160590
f 1.5 0 0.0160590

a 3.5 4294170 0.0297984
b 3.5 4294170 0.0297984
c 3.5 4294170 0.0297984
d 2.33 0 0.0297984
e 2.33 0 0.0297984
f - 0 0.0160590

a 3.0 0 0.0363749
b 3.0 0 0.0363749
c 3.0 0 0.0363749
d - 0 0.0297984
e - 0 0.0297984
f - 0 0.0160590

Fig. 3. Example to determine communication times of a dynamic contention graph.
All communications have an identical size of 20MB and start at the same time.

5 Examples and Validation

Before evaluating the accuracy of our model, we will introduce one example to
calculate the elapsed time of one arbitrary chosen contention graph. We consider
the dynamic contention graph presented in Figure 3. This dynamic contention
graph has six communications and for simplicity all communications start at the
same time and have a data transfer size of 20MB. By executing our benchmark

100 M. Martinasso and J.-F. Méhaut

(presented in 3.3), we measure an effective bandwidth of 1.82 GB/s on our
testbed evaluating α = 5.105 × 10−10. A single communication of 20MB under
no contention lasts for 0.010706 seconds.

By solving the linear system step by step we deduce the time of each com-
munication. The first communication to end is communication f after a time
of 0.016059 seconds. During that time the communications a, b and c have sent
8987820 bytes. Then the contention graph goes to a new step (without f), in
which the remaining data size per communication is deducted and new penalty
coefficients are applied. The second step ends when communications d and e
terminate at time 0.0297984. The final step has only three communications each
of them having 4294170 bytes remaining. At this step the penalty coefficient per
communication is 3, i.e. each communication accesses one third of the available
bandwidth. The last step ends at time 0.0363749. By executing our benchmark
and creating this arbitrary contention graph, we measure the time of each com-
munication on our testbed. We compare the measured times to the predicted
times leading to an absolute error of 3% for communications a, b and c, an
absolute error of 1% for d, e and 2% for f .

Graph A ρ(e) Tp Tm err.

a 5, 4, 2 0.036132 0.036328 0%
b 5, 4, 2 0.036132 0.036326 0%
c 2.5, 2.5 0.026765 0.027653 -3%
d 2.5, 2.5 0.026765 0.027651 -3%
e 1.5 0.013382 0.013413 0%

Graph B ρ(e) Tp Tm err.

a 5, 2 0.043894 0.045236 -2%
b 5, 2 0.043894 0.045228 -2%
c 3.5 0.037471 0.040073 -6%
d 3.5 0.037471 0.040072 -6%
e 3.5 0.037471 0.040071 -6%

Fig. 4. Examples of model validation: ρ(e) is the list of penalty coefficients, Tp is the
predicted time, Tm is the measured time and err. is the relative error.

In Figure 4, we present the measured times and predicted times of two other
dynamic contention graphs with identical communication properties as in afore-
mentioned example. Graph A shows communications a and b starting from the
same node having different conflicts on their receive nodes. Communications of
graph B are mainly congested in an ingoing conflict of four communications. For
these two graphs, our model accurately predicts elapsed times.

The previous examples display a set of heterogeneous communication elapsed
times. These times are not simple to determine and their variation shows the
complexity in accurately predicting them. In a last validation analysis of our
model, we investigate the model prediction for a set of dynamic contention graphs
that are derived from random directed graphs. These dynamic contention graphs
are categorised in groups following their number of edges. Figure 5 displays, per
group, the measured times of their communications. For instance, we measured
60 contention graphs of 5 edges leading to evaluating 300 communication times.
Figure 5 also displays, per group, the maximum value of the absolute average
error per graph and the maximum value of the absolute error over all commu-
nications. The absolute average error for a graph is the average of the absolute

A Contention-Aware Performance Model for HPC-Based Networks 101

edges (# communications)
0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
[s

]

1xTref

2xTref

3xTref

4xTref

5xTref

6xTref

7xTref

8xTref

(1)

(6)

(45)

(132)

(300) (138)

(168)
(80)

(63)

(60)

edges
0 1 2 3 4 5 6 7 8 9 10 11A

bs
ol

ut
e

er
ro

r
[%

]

0
5

10
15
20

maximum per graph maximum per comm.

Fig. 5. Validation on several contention graphs. Tref = 0.010706 is the reference time
of a contention-free communication. For graphs with 1, 2 and 3 edges, times are rational
factor of Tref . However, for a higher number of edges, communication times are more
largely spread. Our predictions are within an acceptable range of errors.

error among its communications. The figure shows that we accurately predicted
communication times with an acceptable error below 15% over a total of nearly
1000 measured communications.

6 Conclusion and Future Work

In this paper we introduce a new methodology for assessing contention over HPC-
based networks. This method models congestion over a network by a contention
graph and a linear system weighted by delay factors called penalty coefficients.
We propose a technique that determines penalty coefficients from experimented
contention graphs. We applied this technique on an InfiniBand network. By
analysing the penalty coefficients of contention graphs we approximate their
values only by referring to the contention graph. Finally, we accurately predict
the communication times of nearly a thousand communications requiring only
one parameter: the effective bandwidth of the network.

We applied our methodology on a network topology restricted to one switch.
Our future work will focus on extending our model to consider network topology
and to identify models for large-scale applications running on hundreds of cores.
In addition, we will incorporate our model into an existing simulator [4], which
replays events of an application and determines dynamic contention graphs.
Besides, all-to-all collective operations generate congested communications [7].
It will be interesting to model their performance following our methodology.

We consider applying this methodology on other network technologies. By
modelling several networks, it will be possible to compare application perfor-
mance on those networks.

102 M. Martinasso and J.-F. Méhaut

Acknowledgement. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr).

References

1. Alexandrov, A., Ionescu, M., Schauser, K., Scheiman, C.: LogGP: Incorporating
Long Messages into the LogP model for Parallel Computation. Journal of Parallel
and Distributed Computing 44(1), 71–79 (1997)

2. Moritz, C.A., Frank, M.I.: LoGPC: Modeling Network Contention in Message-
Passing Programs. IEEE Transactions on Parallel and Distributed Systems 12(4),
404–415 (2001)

3. Culler, D., Karp, R., Patterson, D., Sahay, A., Santos, E., Schauser, K., Subramo-
nian, R., von Eicken, T.: LogP: a practical model of parallel computation. Commun.
ACM 39(11), 78–85 (1996)

4. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a Generic Framework for Large-
Scale Distributed Experiments. In: 10th IEEE International Conference on Com-
puter Modeling and Simulation (2008)

5. InfiniBand Trade Association: InfiniBand Architecture Specification, Release 1.2.1
6. Intel Corporation: Intel Trace Analyzer and Collector 8.0 Reference Guide
7. Steffenel, L.A., Martinasso, M., Trystram, D.: Assessing Contention Effects on

MPI Alltoall Communications. In: Cérin, C., Li, K.-C. (eds.) GPC 2007. LNCS,
vol. 4459, pp. 424–435. Springer, Heidelberg (2007)

8. Geimer, M., Felix, W., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Practice
and Experience 22(6), 702–719 (2010)

9. Martinasso, M., Méhaut, J.-F.: Model of concurrent MPI communications over
SMP clusters. Tech. Rep. 00071352, HAL-INRIA (2006)

10. Hockney, R.W.: The Communication Challenge for MPP: Intel Paragon and Meiko
CS-2. In: Parallel Computing, vol. 20, pp. 389–398. North-Holland, Amsterdam
(1994)

11. Kim, S.C., Lee, S.: Measurement and Prediction of Communication Delays in
Myrinet Networks. Journal of Parallel and Distributed Computing 61(11), 1692–
1704 (2001)

12. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: LogfP - A Model for small Mes-
sages in InfiniBand. In: Proceedings of the 20th IEEE International Parallel &
Distributed Processing Symposium, IPDPS (2006)

13. Hoefler, T., Schneider, T., Lumsdaine, A.: Multistage Switches are not Crossbars:
Effects of Static Routing in High-Performance Networks. In: Proceedings of the
2008 IEEE International Conference on Cluster Computing, pp. 116–125 (2008)

14. Kielmann, T., Bal, H.E., Verstoep, K.: Fast Measurement of LogP Parameters for
Message Passing Platforms. In: IPDPS 2000: Proceedings of the 15 IPDPS 2000
Workshops on Parallel and Distributed Processing, pp. 1176–1183 (2000)

https://www.grid5000.fr

Using the Last-Mile Model as a Distributed

Scheme for Available Bandwidth Prediction

Olivier Beaumont1, Lionel Eyraud-Dubois1, and Young J. Won1,2

1 INRIA Bordeaux Sud-Ouest
LaBRI, University of Bordeaux 1, Talence, France

{Olivier.Beaumont,Lionel.Eyraud-Dubois}@labri.fr
2 IIJ Research Lab., Tokyo, Japan

young@iijlab.net

Abstract. Several Network Coordinate Systems have been proposed to
predict unknown network distances between a large number of Internet
nodes by using only a small number of measurements. These systems
focus on predicting latency, and they are not adapted to the predic-
tion of available bandwidth. But end-to-end path available bandwidth
is an important metric for the performance optimisation in many high
throughput distributed applications, such as video streaming and file
sharing networks. In this paper, we propose to perform available band-
width prediction with the last-mile model, in which each node is char-
acterised by its incoming and outgoing capacities. This model has been
used in several theoretical works for distributed applications. We design
decentralised heuristics to compute the capacities of each node so as to
minimise the prediction error. We show that our algorithms can achieve
a competitive accuracy even with asymmetric and erroneous end-to-end
measurement datasets. A comparison with existing models (Vivaldi, Se-
quoia, PathGuru, DMF) is provided. Simulation results also show that
our heuristics can provide good quality predictions even when using a
very small number of measurements.

Keywords: Network Coordinate System, Last-Mile, Network Measure-
ment, Available Bandwidth Prediction, Labeling Scheme.

1 Introduction

Predicting network performance (latency or available bandwidth) is important
for many Internet applications. For video on demand [18] and peer-assisted
streaming [14] for example, estimations of available bandwidth allow the con-
struction of an efficient overlay topology.

A number of measurement tools have been developed [9] which measure the
available bandwidth on the path between two given Internet nodes. However, in
a large scale system, performing measurements between all pairs of nodes would
incur too large of an overhead. Thus, there is a need for the possibility to infer

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 103–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

104 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

(in this paper we also use the term predict1) the unmeasured bandwidth values
from a limited number of actual available measurements.

For latency estimation, several solutions have been successfully proposed, un-
der the global terminology of Network Coordinate Systems. Most of these so-
lutions embed network nodes into a metric space (not necessarily Euclidean)
and approximate the latency between nodes by the distance between their em-
beddings, which can easily be computed from their coordinates. GNP [16] is an
example of such a system, in which each node is positioned in an Euclidean space
with respect to a number of landmarks whose positions are already established.
Vivaldi [6] is a decentralised extension of GNP, which avoids the need for land-
mark nodes. However, the efficient counterparts of these coordinate systems for
available bandwidth prediction are still to be proposed.

Recent literature about overlay design for peer-to-peer data dissemination [3]
has generalised the use of a “last-mile” approximation, in which the rates of
simultaneous communications are only limited by the upload and download ca-
pacities of each node. This simplifying assumption is quite natural in the context
of the Internet, and allows to derive provably efficient overlay designs. In this
paper, we analyse the validity of this approximation, and how it can be used to
develop a technique for predicting available bandwidth from a limited number
of measurements.

More precisely, we propose a decentralised heuristic to compute the capacities
of each node from a relatively small number of measurements. We analyse this
heuristic by using a dataset of available bandwidth measurements performed on
PlanetLab [5]. The accuracy of the predicted values with our solution compares
favourably with existing solutions, while requiring significantly fewer measure-
ments.

The organisation of the paper is as follows. We first describe the related works
in Section 2. Section 3 presents the rationale behind the last-mile model and our
proposed heuristic to compute the capacities of the nodes. In Section 4, we
present the evaluation of our solution and compare it to other existing solutions.
Concluding remarks and future works are given in Section 5.

2 Related Works

2.1 Latency Estimation

In the context of latency estimation, a number of network coordinate systems
have been proposed, based on the following idea: embedding the nodes of the
network into a multi-dimensional space and using the distance between two

1 The design of techniques for efficient and reliable available bandwidth measurements
is an interesting research question, but it is not in the scope of this paper. Instead,
we assume in this work that a (limited) number of measurements are available, and
our goal is to use these measurements to provide estimations for the unmeasured
bandwidth values.

Last-Mile Model for Available Bandwidth Prediction 105

points in this space as an estimation of the latency between the correspond-
ing nodes. We can make a distinction [11] between landmark-based and decen-
tralised approaches. In the landmark-based approach (e.g. GNP [16], PIC, etc.),
a fixed number of landmark nodes are selected and positioned in the space.
Non-landmark nodes measure their latency to these landmark nodes and com-
pute their coordinates so as to minimise the resulting prediction error. On the
other hand, in the decentralised approach (e.g. Vivaldi [6], Big Bang Simula-
tion, etc.), all participating nodes have the same role, and the coordinates of
the nodes are computed in a decentralised way by direct measurements between
participating hosts.

Vivaldi [6] is one of the most well-known decentralised coordinate system. It
relies on the simulation of a system of springs, in which the interaction between
two nodes is modeled by a spring whose force represents the estimation error.
This simulation procedure allows to adapt the computed coordinates to changing
network conditions.

Recent works have also studied embedding into a hyperbolic structure [7]. An
example of such a system is the Sequoia algorithm [17], which embeds the nodes
as the leaves of a weighted tree, and approximates the distance between two
nodes by the length of the path between their respective positions in the tree.
The Sequoia algorithm comes with a theoretically proven performance guarantee,
and can be applied to both latency and bandwidth estimation. However, the
algorithm is quite sensitive to violations of the triangular inequalities, and there
is for the moment no decentralised version of Sequoia: computing the embedding
requires the measurements between all pairs of nodes.

An important problem with metric-based embeddings comes from the viola-
tions of triangle inequalities, which are often observed in Internet measurements.
Several studies have thus considered non-metric embeddings. IDES [15] is based
on matrix factorisation, which consists of approximating a large matrix by the
product of two smaller matrices. Each node is thus assigned two vectors (an in-
coming and outgoing vector), which correspond respectively to one row and one
column of the two smaller matrices. The distance between two nodes A and B
is computed as the scalar product of the outgoing vector of A and the incoming
vector of B. The IDES system is based on a set of landmark nodes, and recently
a decentralised version has been proposed, called DMF [13] for decentralised
matrix factorisation. DMF is an iterative procedure in which each node locally
minimizes the prediction error by solving a least square problem.

2.2 Bandwidth Estimation

There is a relatively small number of studies focusing on bandwidth estimation.
The authors of Sequoia [17] studied the applicability of their algorithm to avail-
able bandwidth, and the works based on matrix factorisation [13] can be applied
to bandwidth estimation as well. PathGuru [19] is a landmark-based system
specifically designed for available bandwidth estimation, which relies on the ob-
servation that, in certain circumstances, Internet available bandwidth forms an
ultra metric space. In PathGuru, each node measures the available bandwidth to

106 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

and from every landmark, and the estimation of bandwidth between two given
nodes A and B is performed using the pair of landmarks which most closely
forms an ultra metric space with A and B.

BRoute [10] is another system for available bandwidth estimation, which is
based on the observations that most bottleneck links are on the path edges,
and that relatively few routes exist near the source and destination. Unlike the
previous solutions which only require end-to-end measurements, BRoute uses
landmarks and network management tools (such as traceroute and BGP routing
information) to identify the bottleneck links near each source and destination,
and to infer which links are used by packets between A and B.

A number of works in the literature of communication optimization in large
scale systems assume that each participating node is characterised by its upload
and/or download bandwidth. This applies to a variety of topics, such as video-
on-demand [18,4], peer-assisted streaming [14,3,2] or multi-port divisible load
scheduling [1]. Thanks to its simplicity, this rather natural assumption allows to
derive provably efficient algorithms. In this paper, we analyse how well this model
can approximate the actual available bandwidth in a large scale distributed
platform.

3 Last-Mile Bandwidth Prediction Model

3.1 Last-Mile Model

Throughout the paper, we denote by MA,B the measured available bandwidth
from node A to node B, and by PA,B the corresponding predicted value.

The previous research on the properties of the Internet indicate that the band-
width at the edge of the network, the so called last-mile (end-host) bandwidth,
reflects the overall performance of the complete end-to-end path. Hu et al. [12]
show that 60% of wide-area Internet paths between end-hosts have their bot-
tleneck in the first or second hop. A recent study also shows a similar property
in broadband access networks [8]. As an insight, we have observed the dataset
obtained from measurements on the PlanetLab platform [5] which is described
more precisely in Section 4 where it is used to evaluate our heuristics.

As a representative example, Figure 1 is the plot of the outgoing bandwidth
measurements from hosts planetlab3.hiit.fi and planet-lab7.millenium.
berkeley.edu, which will be denoted hiit and berkeley in what follows, to all
the other hosts in the platform. The bandwidth values are sorted for increased
readability. The plot for berkeley (Figure 1(b)) shows what can be expected for
a host with a low outgoing capacity: the bandwidth to the first 50 hosts is limited
by their respective ingoing capacity, and then the bandwidth to the rest of the
nodes is limited by the outgoing capacity of berkeley, and thus the plot remains
quite flat. On the other hand, the plot for hiit (Figure 1(a)) shows the result for
a host with a large outgoing capacity: the bandwidth increases quite smoothly.
In both cases however, a small number of larger bandwidth measurements can
be noticed by a sharp increase around node 300, which can be interpreted as
bogus measurements and will be discussed later.

Last-Mile Model for Available Bandwidth Prediction 107

0 50 100 150 200 250 300 350
0

2

4

6

8
x 10

5

peer−host ID

b
a

n
d

w
id

th
 (

k
b

p
s
)

(a)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5
x 10

4

peer−host ID

b
a

n
d

w
id

th
 (

k
b

p
s
)

(b)

Fig. 1. Outgoing bandwidth distributions for two PlanetLab hosts; the values are
sorted in increasing order: (a) planetlab3.hiit.fi; (b) planetlab7.millennium.berkeley.edu

This observation has led to propose a last-mile modelisation of available band-
width [14]. In this model, each participating node x is represented by two dif-
ferent bandwidth capacities, one for upload (βout

x), and one for download (βin
x).

Based on these values, and assuming that they are the only limiting factors for
the end-to-end performance, the predicted bandwidth PLM

x,y between two nodes
x and y is given by min(βout

x , βin
y).

In this paper, in order to analyse the validity of this model, we propose heuris-
tics to compute values for βout

x and βin
x so as to minimise the prediction error. We

first propose a simple way to compute reasonable initial values, and then describe
an iteration procedure following the one used in the context of DMF [13].

3.2 Initial Values

The initial observation may identify that the upload capacity of a node βout
x has

to be at least as large as the measured value between node x and any other
node y (otherwise it would have been impossible to measure such a high value
for this particular node y). However, setting βout

x = maxy Mx,y is potentially
dangerous: only one bogus measurement is enough to obtain wrong predictions
for x. Furthermore, the last-mile assumption is not always satisfied in practice,
and it may happen that some nodes share a bottleneck link. A typical example
is the case of two nodes A and B on a common local area network, which is
connected to the Internet through a DSL connection. The bandwidth from A to
any other node X on the Internet is then limited by this DSL connection, while
the bandwidth from A to B is not. Hence, setting βout

A = maxy MA,y = MA,B

would result in largely over-estimated predictions for bandwidth from A to any
X on the Internet, since it would ignore the limiting DSL connection.

This situation can be observed on our dataset. For instance, on Figure 1(a),
most values lie below 2.105 kbps, except for a couple of outliers with very high
measured bandwidth, which can be either erroneous measurements or hosts with
a local, direct high-capacity connection to hiit.

This observation motivates the removal of a few outliers hosts before comput-
ing βin and βout values. The solution we propose in this paper is to define βout

A

as a given percentile 1 − α of all measured values MA,y. It is a generalisation of
the previous straightforward answer of taking the maximum value, which corre-
sponds to α = 0; larger choices of α ignore more and more measurement values.

108 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

This solution yields a very simple way of computing βout and βin values, and is
very resilient to missing and erroneous measurements and “too high” bandwidths
due to nodes in the same local network, since corresponding measurements are
ignored.

Algorithm 1. Computing initial values for the last-mile
Input: M,: measurement matrix

k: number of neighbours for each node
α: percentile parameter

Output: βout and βin

for all node A do
select a random set S of k neighbours
sort up = (MA,y)y∈S and down = (My,A)y∈S

βout
A = (1 − α) − percentile of up

βin
A = (1 − α) − percentile of down

end for

With this procedure, each host can compute its own βout and βin values in-
dependently, assuming that it has access to the measurements of all pairs it is
involved in. Furthermore, a standard technique to reduce the measurement over-
head (at the cost of accuracy) is the random sampling of the hosts, in which each
host selects a random subset of neighbours and performs available bandwidth
measurements to and from this subset. By computing the (1−α)-th percentile of
these measurements to use as βout and βin, the result is expected to be a reason-
able approximation of the real βout and βin values obtained if all measurements
were available. This results in Algorithm 1.

In practice, many overlay networks provide the ability of choosing a random
node, either by construction (e.g. Distributed Hash Tables) or using gossiping
algorithms, so that random sampling can easily be implemented in a distributed
way.

3.3 Iterative Procedure

In order to improve on this initial calculation, following Vivaldi [6] and DMF [13],
we propose a procedure in which nodes iteratively update their βin and βout

values. To update its βout value, each node A obtains the values of βin from its
neighbours, and sets βout

A to the value x that minimises the prediction error:

E(x) =
∑

y∈S

(
MA,y − min(x, βin

y)
)2

(1)

The value of βout
A which minimises this quantity can be easily computed, since

each y such that βin
y ≤ βout

A contributes a constant factor to the error. Hence for
x between two consecutive values βin

y1
and βin

y2
, the error can be rewritten as:

∑

βin
y ≤βin

y1

(
MA,y − βin

y

)2
+
∑

βin
y >βin

y1

(MA,y − x)2 (2)

Last-Mile Model for Available Bandwidth Prediction 109

And this expression is minimised for x equal to the average of the MA,y values
for βin

y > βin
y1

. Of course, if this value is above or below the prescribed interval,
x is set to the corresponding bound of the interval. By sorting the βin

y values
and testing all the k possible intervals, it is possible to compute the value of
x that minimises equation (1). The resulting iterative procedure is described in
algorithm 2.

Algorithm 2. Iterative procedure.
Input: M,: measurement matrix

k: number of neighbours for each node
α: percentile parameter
i: number of iterations

Output: βout and βin

Initialise βout and βin with Algorithm 1
for i iterations do

for all node A do
Sort (βin

y)y∈SA

for all interval l (βin
yl

≤ βin
yl+1) do

Compute xl which minimises eq (2)
end for
Select l so that E(xl) is smallest (eq (1))
Update βout

A = xl

Update βin
A similarly

end for
end for

4 Evaluation

4.1 Methodology

The experimental results described in this paper are based on a dataset from the
S-cube project [20]. This project aims at monitoring the large scale distributed
platform PlanetLab [5]. Available bandwidth is measured between almost all
pairs of nodes of PlanetLab, and results are made available as regular snapshots
of the platform. For space reasons, we only present here results obtained from
the snapshot of April 20th, 2010; however other snapshots yield the same con-
clusions. This snapshot contains 426 hosts, with some missing measurements,
and we extracted a set of 308 hosts for which the complete measurement matrix
is available2.

The quality of the prediction algorithms is given by the precision of the predic-
tions compared to the original values. In this paper, we use the modified relative
error as defined by the authors of IDES [15]:

ex,y =
|Mx,y − Px,y|

min(Mx,y, Px,y)
2 The code and dataset used to obtain the results of this section will be made publicly

available upon acceptance of the paper.

110 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5

S
tr

e
s
s

Alpha

Initial Last-mile (k=0)
Initial Last-mile (k=16)

Iter Last-mile (k=16, i=20)

(a)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

S
tr

e
s
s

Iteration

Iter Last-mile (alpha=0.10, k=8)
Iter Last-mile (alpha=0.10, k=16)
Iter Last-mile (alpha=0.10, k=32)
Iter Last-mile (alpha=0.10, k=64)

(b)

Fig. 2. (a) Stress of the last mile embeddings for different values of α; (b) Stress of the
last mile embeddings after each iteration

where the min-operation serves to increase the penalty for underestimated values.
Most plots in this paper depict the cumulative distribution function (CDF) of the
modified relative error for all pairs of hosts. Therefore, if algorithm A provides
better estimations than algorithm B, then the plot corresponding to A will be
above the plot corresponding to B in the graph.

Sometimes it is more convenient to represent the fitness of the embedding
with a single value. In that case we will consider the 80-th percentile of the
modified error ratios, i.e. the error e such that 80% of the node pairs have their
available bandwidth estimated with error at most e. We also measure the stress,
to represent the global error of the prediction, defined by:

stress =

√∑
x,y(Mx,y − Px,y)2∑

x,y M2
x,y

4.2 Parameter Tuning

We first analyse the effect of the parameter α on the accuracy of the predictions,
both for the initial values obtained with algorithm 1 and for the result of the
iterative procedure after 20 iterations (our observations show 20 iterations are
enough to reach convergence, see figure 2(b)). The number of neighbours k is
fixed to k = 16, and we also compare to the special case in which there is no
random neighbour selection (all measurements are used), which we denote as
k = 0. The resulting stress values are depicted in Figure 2(a). For the cases
which involve random selection, we report average, minimum and maximum
values over 10 runs.

The first observation is that using a non zero value of α is very important when
considering all measurements, which is expected as discussed in section 3: a small
number of invalid measurements have a very bad impact on the accuracy of the
predictions. With random selection (k = 16), the effect of the parameter α is not

Last-Mile Model for Available Bandwidth Prediction 111

as big, and it is even lower for the iterative procedure, which effectively improves
the fitness of the embedding and gives a result which does not depend on this
parameter. This hints that the result of the iterative procedure is independent
of the initial values. In the rest of the evaluation, we will use the value α = 0.1.

The effect of the parameter k (number of neighbours for each node) is studied
in details in the next section, together with the comparison with other prediction
heuristics.

We also study the convergence of the iterative procedure by measuring the
stress of the fitness obtained after each iteration. The result is shown on Fig-
ure 2(b) and shows that the total stress remains stable across the iterations, and
that the convergence is fast. We can also see that the initial values computed by
algorithm 1 are actually quite precise.

4.3 Comparison Methods

We compare our results with several other solutions from the literature:

– The Vivaldi [6] algorithm provides a basis for comparison even though it was
originally designed for latency estimation.

– The Sequoia [17] algorithm, based on tree embeddings, is advertised as being
usable for both latency and bandwidth estimation.

– PathGuru [19] is a landmark-based solution explicitly designed for band-
width estimation.

– DMF [13] is an algorithm which was proposed in the context of latency
estimation, but it can be used for bandwidth estimation as well since it does
not make any assumption on the structure of the input measurement matrix.

Public implementations of Vivaldi3 and DMF4 are available and have been
used for this evaluation. However, no implementation seems to be available for
PathGuru and Sequoia, so we implemented them based on their description in
the corresponding paper.

This dataset is used as input to different prediction algorithms. However, Se-
quoia and Vivaldi are originally designed for latency prediction, for which smaller
values mean that nodes are closer. Hence, these algorithms are fed with the in-
verse of the available bandwidth measurements5, and their resulting distance
predictions are inversed as well before comparing to the original measurements.

For all algorithms, we used the default values of the parameters as they are
described in the corresponding paper (15 prediction trees for Sequoia and l = 10
dimensions for DMF). However, we changed the number of neighbours in DMF
and landmarks in PathGuru to explore the compromise between accuracy and
number of measurements used.
3 http://www.eecs.harvard.edu/∼syrah/nc/
4 http://www.run.montefiore.ulg.ac.be/∼liao/DMF
5 This choice is different from the one made in the evaluation of Sequoia [17], in which

the authors subtract the bandwidth values from a large constant. Using the inverse
as we are doing actually yields better results for Sequoia.

http://www.eecs.harvard.edu/~syrah/nc/
http://www.run.montefiore.ulg.ac.be/~liao/DMF

112 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

4.4 Evaluation Results

We first analyse the variability of the results with respects to the random choices
involved: choice of the levers for Sequoia, of the landmarks for PathGuru, and
of the neighbours of each node for DMF and last-mile. We provide in Table 4.4
the average and standard deviation of the stress and of the 80-th percentile of
the modified error ratio for 30 runs for each heuristic. For visual comparison,
the CDFs of modified relative error for a selection of parameters are given on
Figure 3. For a given heuristic and parameter value, the CDFs corresponding to
the 30 runs are depicted together on the plot to visualise the variability.

In addition, Figure 4 provides a direct comparison of the most relevant heuris-
tics. On this figure the CDFs of one run for each heuristic are plotted together.
The low variability exhibited by table 4.4 ensures that these particular plots are
relevant enough.

Table 1. Average and standard deviation of stress and 80-th percentile error

Algorithm 80-th perc. error stress
avg std avg std

Vivaldi (k = 32) 3.93 0.98 9800 7.6x107

Vivaldi (k = 128) 4.68 2.6 7400 1.3x108

Sequoia 1.5 0.097 0.73 0.0012

PathGuru (k = 32) 2.00 0.55 0.77 0.0013
PathGuru (k = 64) 2.58 0.33 0.78 0.00069
PathGuru (k = 128) 2.54 0.099 0.79 0.00081

LM (k = 8) 0.76 0.0027 0.64 0.00012
LM (k = 16) 0.64 0.0012 0.56 0.00024
LM (k = 32) 0.64 0.00083 0.51 0.00017
LM (k = 64) 0.65 0.0007 0.47 0.00016
LM (k = 128) 0.65 0.00019 0.42 0.000043

DMF (k = 8) 2.12 0.0079 3.16 2.5
DMF (k = 16) 1.33 0.0019 1.14 0.024
DMF (k = 32) 0.64 0.00025 0.51 0.00055
DMF (k = 64) 0.47 0.000073 0.35 0.00011
DMF (k = 128) 0.39 0.000043 0.26 0.000074

The results for Vivaldi show as expected that this algorithm is not appropriate
for bandwidth estimation. We can also see that the prediction of last-mile and
DMF (for large enough values of k) are much more accurate and stable than the
predictions of PathGuru and Sequoia. PathGuru in particular is very sensitive
to the choice of the landmarks, and its performance does not really increase
with the number of landmarks (however it gets more stable). The predictions of
Sequoia are better than those of PathGuru, but remember that Sequoia needs
to access the measurements between all pairs of nodes. Sequoia is also (together
with Vivaldi) the only heuristic which produces symmetric estimations, and this
is a big disadvantage because available bandwidth between two nodes is often
asymmetric.

Last-Mile Model for Available Bandwidth Prediction 113

Fig. 3. CDFs of modified relative error: 30 runs of Sequoia and PathGuru; last-mile
for different values of k; DMF for different values of k

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F

Error

Iter Last-mile (alpha=0.10, k=32, i=20)
Sequoia-15 (delta=0.00)
DMF (dimen=10, k=32)

(a) Sequoia, DMF and LM for k = 32

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F

Error

Iter Last-mile (alpha=0.10, k=8, i=20)
Iter Last-mile (alpha=0.10, k=32, i=20)

DMF (dimen=10, k=8)
DMF (dimen=10, k=32)

(b) DMF and LM for k = 16 and 64

Fig. 4. Direct comparison of modified relative error

114 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

We can also see that while DMF is able to make a better use of a larger
number of measurements, last-mile achieves a reasonably good accuracy even for
low values of k. Actually, increasing k does not increase much the accuracy of the
predictions of last-mile, but it makes them more stable. In particular, last-mile
with 16 neighbours per node is about as accurate as DMF with 32 neighbours per
node, which is the default value proposed by the authors of DMF [13] for latency
estimation. It is worth pointing out that measuring available bandwidth incurs
a larger overhead than measuring latency; hence, being able to use a smaller
number of measurements is an attractive feature.

These results show that the last-mile model is able to explain a large part of
the structure of the available bandwidth on the Internet, with a very low number
of parameters (each node is characterised by only 2 values, to be compared with
20 for DMF with 10 dimensions) and accessing a small number of measurements.
The last-mile model is thus a promising approach for the prediction of available
bandwidth on the Internet.

5 Concluding Remarks

Estimating the available bandwidth between nodes in a large scale distributed
platform is a crucial issue in many distributed applications. On the other hand,
it is impossible to rely on complete measurement sets, because of the intrinsic
cost of these measurements, and because many measures may be inaccurate
due to varying external conditions. Therefore, as it has been done successfully
for latency estimations, several labeling schemes have been proposed, such as
Sequoia and PathGuru, that enable to predict at low cost the bandwidth between
any pair of hosts.

In this paper, we propose simple decentralised heuristics to use the last-mile
model as a prediction mechanism for available bandwidth, by characterising each
node by an incoming and an outgoing capacity. Based on real-world PlanetLab
bandwidth measurements, we show that this model, although simple, achieves
better prediction accuracy than the current available solutions, in particular
when the number of available measurements is low. The prediction results of
PathGuru depend heavily on the choice of landmarks, and Sequoia suffers from
its inability to provide asymmetric predictions. When more measurements are
available, decentralised matrix factorisation provides more precise predictions
than our last-mile heuristic, probably because each node is described with a
larger number of parameters.

In the future work, we are planning to investigate the possibility to increase
the number of parameters in the last-mile model for a better accuracy, and also
to make a combined use of latency and available bandwidth measurements in
order to improve the predictions of the model.

Last-Mile Model for Available Bandwidth Prediction 115

References

1. Beaumont, O., Bonichon, N., Eyraud-Dubois, L.: Scheduling divisibleworkloads on
heterogeneous platforms under bounded multi-port model. In: IEEE IPDPS 2008,
pp. 1–7 (April 2008)

2. Beaumont, O., Eyraud-Dubois, L., Agrawal, S.K.: Broadcasting on large scale het-
erogeneous platforms under the bounded multi-port model. In: IEEE IPDPS 2010,
pp. 1–10 (April 2010)

3. Bonald, T., Massoulié, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic live stream-
ing: optimal performance trade-offs. ACM SIGMETRICS Perform. Eval. Rev. 36,
325–336 (2008)

4. Boufkhad, Y., Mathieu, F., de Montgolfier, F., Perino, D., Viennot, L.: An upload
bandwidth threshold for peer-to-peer video-on-demand scalability. In: IEEE IPDPS
2009, pp. 1–10 (May 2009)

5. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. ACM SIG-
COMM Comput. Commun. Rev. 33, 3–12 (2003)

6. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. In: ACM SIGCOMM 2004, Portland, OR, USA, pp. 15–26
(September 2004)

7. Dinitz, M.: Online, dynamic, and distributed embeddings of approximate ultramet-
rics. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 152–166. Springer,
Heidelberg (2008)

8. Dischinger, M., Haeberlen, A., Gummadi, K.P., Saroiu, S.: Characterizing residen-
tial broadband networks. In: IMC 2007, San Diego, CA, USA, pp. 43–56 (October
2007)

9. Goldoni, E., Schivi, M.: End-to-end available bandwidth estimation tools, an ex-
perimental comparison. In: Ricciato, F., Mellia, M., Biersack, E. (eds.) TMA 2010.
LNCS, vol. 6003, pp. 171–182. Springer, Heidelberg (2010)

10. Hu, N., Steenkiste, P.: Exploiting internet route sharing for large scale available
bandwidth estimation. In: IMC 2005, pp. 16–16 (October 2005)

11. Ledlie, J., Gardner, P., Seltzer, M.: Network coordinates in the wild. In: USENIX
NSDI 2007, pp. 299–311 (April 2007)

12. Li, N.H., Li, L.E., Mao, Z.M., Steenkiste, P., Wang, J.: A measurement study of
internet bottlenecks. In: IEEE INFOCOM 2005 (March 2005)

13. Liao, Y., Geurts, P., Leduc, G.: Network distance prediction based on decentralized
matrix factorization. In: IFIP NETWORKING 2010, pp. 15–26 (May 2010)

14. Liu, S., Zhang-Shen, R., Jiang, W., Rexford, J., Chiang, M.: Performance bounds
for peer-assisted live streaming. ACM SIGMETRICS Perform. Eval. Rev. 36, 313–
324 (2008)

15. Mao, L.K.Y., Saul, Smith, J.M.: Ides: An internet distance estimation service for
large networks. IEEE JSAC 24(12), 2273 (2006)

16. E., T.S., Ng, H.Z.: Predicting internet network distance with coordinates-based
approaches. In: IEEE INFOCOM 2002, pp. 170–179 (June 2002)

17. Ramasubramanian, V., Malkhi, D., Kuhn, F., Balakrishnan, M., Gupta, A., Akella,
A.: On the treeness of internet latency and bandwidth. In: ACM SIGMETRICS
2009, Seattle, WA, USA, pp. 61–72 (June 2009)

116 O. Beaumont, L. Eyraud-Dubois, and Y.J. Won

18. Suh, K., Diot, C., Kurose, J., Massoulie, L., Neumann, C., Towsley, D.,
Varvello, M.: Push-to-peer video-on-demand system: Design and evaluation. IEEE
JSAC 25(9), 1706–1716 (2007)

19. Xing, C., Chen, M., Yan, L.: Predicting available bandwidth of internet path
with ultra metric space-based approaches. In: IEEE GLOBECOM 2009 (Decem-
ber2009)

20. Yalagandula, P., Sharma, P., Banerjee, S., Basu, S., Lee, S.-J.: S3: a scalable sensing
service for monitoring large networked systems. In: ACM SIGCOMM Workshop
on Internet Network Management, Pisa, Italy, pp. 71–76 (September 2006)

Self-stabilization versus Robust Self-stabilization

for Clustering in Ad-Hoc Network

Colette Johnen1 and Fouzi Mekhaldi2

1 LaBRI, Univ. Bordeaux, CNRS. F-33405 Talence Cedex, France
2 LRI, Univ. Paris-Sud XI, CNRS. F-91405 Orsay Cedex, France

Abstract. In this paper, we compare the two fault tolerant approaches:
self-stabilization and robust self-stabilization, and we investigate their
performances in dynamic networks. We study the behavior of four clus-
tering protocols; two self-stabilizing GDMAC and BSC, and their robust
self-stabilizing version R-GDMAC and R-BSC. The performances of proto-
cols are compared in terms of their cluster-heads number, availability of
both minimal and optimum services and the stabilization time.

Keywords: Ad-hoc networks, clustering, self-Stabilization, Robust self-
stabilization.

1 Introduction

A mobile ad-hoc network is a multi-hop wireless communication network, sup-
porting mobile users, realised without any existing infrastructure. In a flat archi-
tecture of ad-hoc network, all nodes are considered equal and they take the same
part in the network management, like routing and forwarding tasks. To achieve
the routing in flat architecture, each node maintains a routing table with entries
for all nodes in the network. Moreover, owing to the lack of infrastructure, each
node must relay data packets of all its neighbors. Hence, flat routing protocols in
ad-hoc networks are not scalable, due to the communication cost, size of routing
tables and, energy consumption. Therefore, clustering was introduced in ad-hoc
networks to improve the scalability by allowing hierarchical routing.

Clustering is a hierarchical network organization which consists in partitioning
the network into clusters, such that nodes within a closed proximity form a
cluster. Each cluster is composed of a single cluster-head and some ordinary
nodes. As nodes are mobile, the clustering protocol must maintain the clustering
structure in spite of topological changes like nodes arrival/departure and links
creation/failure.
Self-stabilization and Robust self-stabilization. One of the most wanted
properties of distributed systems is the fault tolerance and adaptivity to topo-
logical changes, which consist of the system’s ability to react to faults and per-
turbations in a well-defined manner. Self-stabilization is an approach to design
fault-tolerant and adaptive to topological changes distributed systems.

A self-stabilizing protocol, regardless of its initial state, converges in finite time
(called stabilization period) to a legitimate state where the intended behavior

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 117–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 C. Johnen and F. Mekhaldi

is exhibited, without any external intervention. Thus, self-stabilizing protocols
are attractive because they do not require any correct initialization (as any
state can be the initial one), they can recover from any transient failure, and
they are adaptive to dynamic topology reconfigurations. Whatever is the current
configuration, the system converges to a legitimate configuration according to
the current network topology.

Despite such advantages, self-stabilizationhas amajor drawback.During all sta-
bilizationperiods,a self-stabilizingprotocoldoesnotguaranteeanyproperty.Thus,
self-stabilization is suited for distributed systems with intermittent disruptions,
where the delay between two successive disruptions is so large that the system can
reach a legitimate state and provide the full (optimum) service for some time.
Whereas in large scalemobile ad-hocnetworkswhere thenetwork topology changes
very often, the paradigm of self-stabilization is no more satisfying. Indeed, as the
delay between two successive disruptions is very small, the system is continuously
disruptedand itmayneverprovide itsoptimumservice.As a consequence, theavail-
ability and reliability of self-stabilizing systems is compromised. To overcomethese
drawbacks, the robust self-stabilization approach has been developed [1,2].

A protocol is robust self-stabilizing if (1) it is self-stabilizing; (2) it quickly
reaches a safe configuration where a minimal useful service is provided; (3) the
minimal useful service holds during progress of the protocol toward the opti-
mum service (i.e., during convergence to a legitimate configuration); (4) and
it is also maintained despite multiple occurrences of some specific disruptions,
called highly tolerated disruptions. Whatever the occurrence of highly tolerated
disruptions, the useful minimal service still provided. Whereas the occurrence of
other disruptions is handled by the self-stabilization mechanism, i.e., after their
occurrence, the system may behave arbitrarily, but it will quickly provide the
minimal useful service. Therefore, the robustness as defined in [1,2] may be seen
as a service guarantee, which is provided by both: the fast recovering to a desired
system characteristic (minimal useful service), and its preservation in spite of
highly tolerated disruptions.
Contribution. Self-stabilizing protocols are almost evaluated only in terms of
worst-case time and space complexities. In this context, theoretical studies of the
robust self-stabilization approach has been done in [1,2]. However, clustering pro-
tocols presented in these two papers are written in the shared memory state model
(a non realistic model). Furthermore, no experimental study has been made to
compare the two approaches (i.e., self-stabilization and robust self-stabilization),
and to investigate their performances in dynamic networks. In this paper, we com-
pare the two approaches, through an experimental study. We study the behavior
of four clustering protocols; two self-stabilizing protocols GDMAC [3] (Generalized
Distributed Mobility-Adaptive Clustering) and BSC [4] (Bounded Size Cluster-
ing), and their robust self-stabilizing version R-GDMAC [1] and R-BSC [2]. The per-
formances of protocols are compared in terms of their number of cluster-heads,
availability of minimal and optimum services, and the stabilization time.

Self-stabilization versus Robust Self-stabilization 119

For our study, we use the standard simulation environment in the research
community: Network Simulator 2 (NS2) [5]. Obviously to achieve this study,
protocols were adapted to the message passing model.
Related Works. The problem of clustering is well studied in the literature, and
several clustering protocols have been proposed in the context of multi-hop wire-
less networks. A large number of them are self-stabilizing [6,7,8,9,10,11,12,13].
However, only [1,2] are robust self-stabilizing. A survey on clustering protocols
can be found in [14].

GDMAC protocol is evaluated in [15] with respect to its convergence time and
message complexity. Whereas, according to our knowledge, the three other pro-
tocols (R-GDMAC, BSC and R-BSC) have never been evaluated.

The remainder of the paper is organized as follows. In Section 2, an overview
of the studied clustering protocols is given. In Section 3, the simulation model
and some important remarks are discussed. The observed metrics are described
in section 4, and the performance evaluation results with the analysis remarks
are detailed in Section 5. Finally, we conclude our study in Section 6.

2 Overview of the Studied Clustering Protocols

A clustering protocol consists of partitioning the network into non-overlapping
groups of nodes called clusters. Each cluster has a single head (called cluster-
head), and eventually a set of ordinary nodes. Each cluster-head acts as local
coordinator of its cluster, and may participate to the management of the global
network. So, cluster-heads have more tasks to perform than ordinary nodes. As
consequence, cluster-heads must be more suitable than ordinary nodes.

Protocols GDMAC, R-GDMAC, BSC and R-BSC consider weight-based networks,
i.e., a weight Wv is assigned to each node v of the network. In ad-hoc or sensor
networks, amount of bandwidth, memory space, processing capacity or battery
power of a node could be used to determine weight values. The choice of cluster-
heads is based on the weight associated to each node: the higher the weight of a
node is, the better this node is appropriate for the role of cluster-head.

The studied protocols build 1-hop clusters, where the ordinary nodes are
neighbor of their cluster-head, i.e., they can directly communicate with it. Note
that both GDMAC and R-GDMAC (resp. BSC and R-BSC) provide the same final
clustering structure.
• GDMAC [3] is a self-stabilizing protocol building clusters having the following
ad-hoc clustering properties:

- The cluster-head has the highest weight in its cluster.
- A cluster-head cannot have more than k neighbor cluster-heads.
- For every ordinary node v, there is no a v’s neighbor cluster-head Y such

that WY > WX + h where X is the current cluster-head of v. Otherwise, v
changes the affiliation and it chooses Y as new cluster-head.

k and h are protocol parameters, and their value may be different from a node
to another one. The parameter k allows to bound the number of cluster-heads

120 C. Johnen and F. Mekhaldi

that can be neighbors. Whereas h is used to reduce the switching overhead of
an ordinary node (i.e., the number of moves from its current cluster to a new
neighbor one due to cluster-head’s weight change).

• R-GDMAC [1] is a robust self-stabilizing version of the GDMAC protocol.

• BSC [4] is a self-stabilizing protocol building bounded size clusters. The built
clusters respect the following well balanced clustering properties :

- The cluster-head has the highest weight in its cluster.
- The leader of a cluster is not overburden by the management workload of

its cluster. Thus, a cluster can have at most SizeBound ordinary nodes
(SizeBound is a parameter of the protocol).

- A node stays cluster-head only if it cannot join a neighbor cluster: all neigh-
bor clusters are full. This property limits the number of cluster-heads locally.
Therefore, if a leader v has a neighbor leader u such that Wv > Wu, then
the cluster of v is full, i.e., it contains exactly SizeBound members.

• R-BSC [2] is a robust self-stabilizing version of BSC protocol.
The main idea of GDMAC and R-GDMAC protocols is that an ordinary node v

becomes cluster-head if in its neighborhood there is not a cluster-head having a
weight greater than v’s weight.

Each cluster-head should have less than k neighbor cluster-heads. Hence, if
several (more than k) cluster-heads become neighbor, at least a cluster-head has
to resign its status. To implement this property, each cluster-head v checks the
number of its neighbors that are cluster-heads. If they exceed k, then it deter-
mines the (k+1)th highest weight among neighbor cluster-heads. All v’s neighbor
cluster-heads having a weight less than this value have to become ordinary.

Similarly, in BSC and R-BSC protocols, a node v becomes cluster-head if there
is not cluster-head in v’s neighborhood. Furthermore, a cluster-head v stays in
this status only when it cannot join one of its neighbor clusters without violating
the well-balanced clustering properties.

BSC and R-BSC build bounded size clusters. So, in order to prevent the vi-
olation of the size condition, a node u cannot freely join a cluster: u needs
the permission of its potential new cluster-head. Therefore, each cluster-head v
maintains a list of nodes who are authorized to join its cluster.

Robustness property. The robustness in R-GDMAC and R-BSC ensures that a
minimal useful service is quickly provided. Once the minimal service is available,
each node belongs to a cluster, and each cluster has a cluster-head. Furthermore,
for R-BSC protocol, no cluster should have more than SizeBound ordinary nodes.
Preserving the minimal useful service ensures that the hierarchical structure is
continuously provided throughout the network even during the its reorganiza-
tion. In order to maintain the hierarchical structure over the network during
reconstruction of clusters, R-GDMAC and R-BSC protocols use the following resig-
nation process.

Resignation process. A cluster-head v that wants to become ordinary, does
not take the ordinary status: v becomes a nearly ordinary node (i.e., it takes the

Self-stabilization versus Robust Self-stabilization 121

nearly ordinary status). In this state, v performs correctly its task of cluster-
head, but no node can join v’s cluster. The members of v’s cluster has to quit
their cluster. Moreover, v can become ordinary only once its cluster is empty.
These conditions guarantee that during construction/maintenance of clusters,
no cluster-head abandons its leadership.

The robustness property in clustering protocols is very useful. It ensure a high
availability of hierarchical organization; and it allows the continuity functioning
of upper-layer hierarchical protocols, as hierarchical routing protocols.
The set of highly tolerated disruptions handled by robust protocols are:

• the change of node’s weight,
• the crash of ordinary nodes,
• the creation of new communication links without the emergence of new

nodes,
• the failure of communication links between (1) two ordinary nodes, (2) two

nodes behaving as cluster-heads (i.e., cluster-head or nearly ordinary node)
• the emergence of networks correctly partitionned (i.e., where the minimal

service is already provided).

3 Model and Simulation Remarks

The simulation experiments are carried out thanks to the NS2.34 simulator [5].
Our network is composed of mobile nodes with a propagation radio range of
250m randomly placed within a 1200m*1200m area. The density of a node (i.e.,
the number of neighbors per node) is at most 15. The parameters value used
during simulation are presented in Figure 1.
Mobility model. Each node moves Parameter Value

Simulation time 100s
Number of nodes 70

Transmission range 250m
Network area 1200m*1200m

Density 15
Speed 0m/s - 12m/s

Pause time 0.5s
Wmin 50
Wmax 80

Δ 2
SizeBound 10

k 2
h 3

freq 2

Fig. 1. Parameters value

randomly according to the Random
Waypoint model [16]. Initially, net-
work nodes are randomly placed in
the network area. At the beginning
of the simulation, each node selects
a random destination and moves to-
ward it with a randomly chosen speed
(uniformly distributed between 0 and
Speed m/s). Upon reaching this des-
tination, another random speed and
destination are targeted after a pause
time. The process is repeated until
the simulation ends.
Weight variation model. The four
studied protocols assume that each
node has a weight, that can change
during time.

122 C. Johnen and F. Mekhaldi

Initialy, each node randomly chooses its weight w between two values Wmin
and Wmax. The weight of a node changes according to a frequency freq, which
is the number of changes per second. For example, if freq = 0.2c/s, then the
node’s weight changes once every 5 seconds. According to the frequency value,
the time when a node undergoes the weight change is chosen randomly. The new
weight of a node is chosen randomly between W − Δ and W + Δ.
In order to study the influence of network size, mobility of nodes, and node’s
weight variation, 3 different types of simulations have been conducted:

1. Network size variation: nodes are not mobile, and their number varies be-
tween 10 and 70. The frequency of weight variation is set to 2c/s.

2. Weight variation: in order to see how protocols behave when reconstruction
of clusters is high, we increase the frequency of the weight variation in a
static network of 70 nodes. The values of frequency considered are: 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4 and 5.

3. Mobility variation: the speed of nodes is varied between 0m/s and 12m/s to
see how protocols behave in presence of mobile nodes. The network contains
70 nodes and the weight changes twice per second.

For all protocols, identical mobility and weight variation scenarios are used in
order to gather fair results. Furthermore, to get accurate results, each simulation
is driven with ten different runs. The presented metrics are then averaged on
these different runs. Furthermore, in order to show how these average values are
confident, a confidence interval is computed using the confidence level 95%.

4 Observed Metrics

To analyze the performance of clustering protocols and to compare robust self-
stabilization with self-stabilization, the following metrics are studied:
• The average number of cluster-heads: as small as it is the number of cluster-
heads, the protocol is far from being trivial; because in a trivial solution, all
nodes are cluster-head. Thus, one goal of clustering protocols is to provide a
hierarchical structure with a small number of cluster-heads.
• The availability of minimum service: it represents the percentage of time where
the minimum service is available. A configuration where the minimum service
is available is a configuration where the hierarchical structure is provided. More
specifically, it is a configuration where:

– Each ordinary node belongs to a cluster.
– Each ordinary node is a neighbor of its leader (within its transmission range).
– Moreover, for protocols BSC and R-BSC, each cluster must have at most

SizeBound members.

• The availability of optimum service: it represents the percentage of time where
the optimum service is available. The optimum service is available in a configu-
ration (called legitimate) if the built clusters verify the ad-hoc or well balanced
clustering properties defined in Section 2.

Self-stabilization versus Robust Self-stabilization 123

As these metrics vary over time according to weight change and nodes mobil-
ity, measurements are collected every 0.02 seconds to obtain the average values.

5 Simulation Results and Performances Analysis

5.1 Average Number of Cluster-Heads

The variation of cluster-heads number in function of the network size, weight
variation frequency and nodes speed are presented respectively in Figures 2(a),
2(b) and 2(c).

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70

N
u
m

b
e
r

o
f
c
lu

s
te

r-
h
e
a
d
s

Network size

BSC
R-BSC
GDMAC
R-GDMAC

(a) varying the network size

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u
m

b
e
r

o
f
c
lu

s
te

r-
h
e
a
d
s

Weight variation frequency

BSC
R-BSC

GDMAC
R-GDMAC

(b) varying the frequency of weight
changes

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 2 4 6 8 10 12

N
u
m

b
e
r

o
f
c
lu

s
te

r-
h
e
a
d
s

Speed motion

BSC
R-BSC

GDMAC
R-DGMAC

(c) varying the speed of nodes

Fig. 2. Average number of cluster-heads

Protocols GDMAC and R-GDMAC (resp. BSC and R-BSC) have the same behavior,
because they use the same cluster-heads selection policy: weight based criteria.
For clustering protocols based on dominating sets, the number of cluster-heads is
intrinsically related to the variant of dominating set computed. In fact, we distin-
guish a classification in two groups. Protocols BSC and R-BSC generate a smaller
number of cluster-heads than protocols GDMAC and R-GDMAC. The structure used
by BSC and R-BSC is the capacited dominating sets, where a cluster-head can
have a neighbor cluster-head only if its cluster is full. So, two cluster-heads are

124 C. Johnen and F. Mekhaldi

rarely neighbor. While, the structure used by GDMAC and R-GDMAC is a k-fold
dominating set where at most k + 1 cluster-heads can be neighbor. If due to the
mobility or weight change, k + 1 cluster-heads become neighbor, no one needs
resign its status. This feature leads to a higher total number of cluster-heads.

In a large scale network, a robust self-stabilizing clustering protocol generates
a slightly higher number of cluster-heads than its self-stabilizing version (see BSC
and R-BSC). Recall that during resignation process, robust self-stabilizing pro-
tocols use an intermediate hierarchical status, called nearly ordinary. A cluster-
head wanting to resign, it takes the nearly ordinary status. A nearly ordinary
node may become ordinary only once its cluster is empty; and during all this
period it behaves and it is considered as a cluster-head. This is why the average
number of cluster-heads is higher in a robust self-stabilizing protocol compared
to its self-stabilizing version. However, the difference in cluster-heads number de-
pends on the resignation overhead: how many cluster-heads resign their status
to be ordinary?

In BSC and R-BSC protocols, as soon as two cluster-heads become neighbors,
one of them must resign expect if one of clusters is full. Whereas in GDMAC
and R-GDMAC protocols, if the number of neighbor cluster-heads does not exceed
k + 1, no resignation is required. As the resignation process is more frequent
in protocols BSC and R-BSC than GDMAC and R-GDMAC. Thus, the difference in
cluster-heads number between R-BSC and BSC is significant, but not between
GDMAC and R-GDMAC.

5.2 Availability of Minimum Service

The availability of minimal service in a static network according to the network
size and the frequency of weight variation are illustrated respectively in Figures
3(a) and 3(b).

Robust self-stabilizing protocols R-GDMAC and R-BSC scale well to large net-
works, and they are more resistant to weight change. In fact, R-GDMAC and R-BSC
maintain the minimal service, once provided, during almost all their execution
time whatever the network size and the weight variation frequency.

This is not the case for self-stabilizing protocols. In GDMAC protocol, the min-
imum service is broken by increasing the network size and the weight variation
frequency. Nevertheless, the rupture rate of the minimal service stays very small.
Indeed, in a network of 70 nodes where the weight changes twice per second, the
rupture rate is at most 3% (thus, 97% of time, the minimal service is available).

Whereas, BSC protocol has less guarantee of service than other protocols in
a large scale network. Indeed, in a network of 70 nodes, the minimal service
is unavailable during 12% of time. BSC is also the protocol which really suffers
the most from unavailability of minimal service when the frequency of weight
variation increases. Indeed, by changing the weight five time per second, the
minimal service is unavailable almost 20% of time.

Self-stabilization versus Robust Self-stabilization 125

 88

 90

 92

 94

 96

 98

 100

 10 20 30 40 50 60 70

A
v
a
ila

b
ili

ty
 o

f
m

in
im

a
l
s
e
rv

ic
e

Network size

BSC
R-BSC
GDMAC
R-GDMAC

(a) varying the network size

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
a
ila

b
ili

ty
 o

f
m

in
im

a
l
s
e
rv

ic
e

Weight variation frequency

BSC
R-BSC
GDMAC
R-GDMAC

(b) varying the frequency of weight
changes

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12

A
v
a
ila

b
ili

ty
 o

f
m

in
im

a
l
s
e
rv

ic
e

Speed motion

BSC
R-BSC

GDMAC
R-DGMAC

(c) varying the speed of nodes

Fig. 3. Availability of minimal service

The poor performance of BSC protocol reflects the interest of the robustness
property in large scale networks, because R-BSC protocol maintains the minimal
service without any rupture whatever the network size and the weight variation
frequency.

Robust self-stabilizing protocols prevent the violation of the minimal service,
by using the resignation process discussed in Section 2. This mechanism guaran-
tees that during construction/maintenance of clusters, no clusterhead abandons
its leadership, so the minimal service is continuously provided.

The rupture of minimal service in self-stabilizing protocols happens during re-
construction of clusters due to weight change. Nevertheless, it is more frequent
in BSC than in GDMAC. In BSC, when two cluster-heads become neighbors, in most
cases one of them must defer to the other. This feature can trigger cluster-head
election/resignation that may propagate throughout the network, and generates
a continuous disruption of minimal service. Such an effect is called chain reaction.
In GDMAC, this chain reaction effect is minimized, and the minimal service is not

126 C. Johnen and F. Mekhaldi

dramatically damaged. Furthermore, using the robust self-stabilization property
improves the availability of minimal service even in the presence of chain reaction
(R-BSC).

Robust protocols (R-GDMAC and R-BSC) are expected (theoretically proved in
the sharded memory model) to guarantee the minimum service whatever the
network size and frequency of weight change. The rupture observed (less than
0.3%) in large scale network or when the frequency is very high, is due to the
following. In these protocols, when a node undergoes a change weight, it broad-
casts a message to its neighbors indicating its new state (so, its new weight).
When the weight variation is very high, the number of exchanged messages is
important. So, the message loss and the unordered message reception happen
more frequently. Owing to these disruptions, an ordinary node can affiliate with
another node (by considering it as cluster-head), but which is not a cluster-head
anymore (it already resigned).

Increasing the speed of nodes has a negative impact on the availability of
minimal service (see Figure 3(c)). In a dynamic network, due to nodes motion,
an ordinary node and its cluster-head may be outside the transmission range of
each other, i.e., they are no longer neighbors. This situation breaks the minimal
service. However, even in a dynamic network, the minimal service is preserved
by robust self-stabilizing protocols better than self-stabilizing ones.

5.3 Availability of Optimum Service

The availability of optimum service as a function of the network size, weight
change frequency and nodes speed are presented in Figures 4(a), 4(b) and 4(c).

By increasing the network size, the weight variation frequency or the speed
of nodes, the optimum service is less available in BSC and R-BSC protocols than
GDMAC and R-GDMAC protocols.

In BSC and R-BSC protocols, due to weight changes or nodes mobility, the
hierarchical structure is continuously reconstructed in order to achieve the well-
balanced clustering properties. As a result, the optimum service is often broken,
so not highly available.

On the other hand, in GDMAC and R-GDMAC protocols, once the hierarchical
structure respecting the ad-hoc clustering properties is built, it will rarely be
modified due to the weight change. Furthermore, the mobility of nodes (especially
of cluster-heads) rarely generates selection or resignation of cluster-heads. So,
the optimum service is not affected.

The optimum service is slightly less available in the case of robust self-
stabilizing protocols compared to their self-stabilizing versions. This is caused by
the convergence (i.e., stabilization) time towards the optimum service. In fact,
Figure 5 shows that the time required by a robust self-stabilizing protocol to
reach the optimum service is larger than the one required by its self-stabilizing
version.

Self-stabilization versus Robust Self-stabilization 127

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 10 20 30 40 50 60 70

A
v
a
ila

b
ili

ty
 o

f
o
p
ti
m

a
l
s
e
rv

ic
e

Network size

BSC
R-BSC
GDMAC
R-GDMAC

(a) varying the network size

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
v
a
ila

b
ili

ty
 o

f
o
p
ti
m

a
l
s
e
rv

ic
e

Weight variation frequency

BSC
R-BSC
GDMAC
R-GDMAC

(b) varying the frequency of weight
changes

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

A
v
a
ila

b
ili

ty
 o

f
o
p
ti
m

a
l
s
e
rv

ic
e

Speed motion

BSC
R-BSC
GDMAC
R-GDMAC

(c) varying the speed of nodes

Fig. 4. Availability of optimum service

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70

S
ta

b
ili

z
a
ti
o
n
 t
im

e

Network size

BSC
R-BSC
GDMAC
R-GDMAC

Fig. 5. Stabilization time in function of the network size

128 C. Johnen and F. Mekhaldi

6 Concluding Remarks

This article presents the first experimental study results comparing robust self-
stabilization approach with self-stabilization for the clustering problem. Thanks
to this study, we extract the following remarks.

The property of robustness within clustering protocols induces an increase in
the average number of cluster-heads, however really negligible.

Since the robustness property consists to slow-down the convergence process,
in order to maintain the minimum service. This property leads to a slight increase
in the stabilization time. However, this growth in the stabilization time depends
on the size of the network, but not on the nodes speed nor the frequency of
weight change.

The availability of optimum service is lower in a robust self-stabilizing proto-
col than its self-stabilizing version. Nevertheless, the minimum service is highly
available in robust self-stabilizing protocols than self-stabilizing ones. As con-
sequence, thanks to the robustness, when the optimum service is not provided,
the minimum service is available and it will be preserved. Once the minimum
service is provided, the network is completely partitionned, and each cluster has
an effectual leader.

The minimum service is sufficient for the continuity of operation of upper-layer
hierarchical protocols, as hierarchical routing protocols, since the hierarchical or-
ganization is available throughout the network. Therefore, robust self-stabilizing
protocols are desirable, because they avoid disrupting upper-layer hierarchical
protocols by maintaining the minimal service.

References

1. Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algo-
rithm. Theoretical Computer Science 410(6-7), 581–594 (2009)

2. Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of bounded size
weight-based clusters. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010. LNCS, vol. 6271, pp. 535–546. Springer, Heidelberg (2010)

3. Basagni, S.: Distributed and mobility-adaptive clustering for multimedia support
in multi-hop wireless networks. In: VTC 1999, pp. 889–893 (1999)

4. Johnen, C., Nguyen, L.H.: Self-stabilizing construction of bounded size clusters.
In: ISPA 2008, pp. 43–50 (2008)

5. The Network Simulator NS-2, http://www.isi.edu/nsnam/ns/
6. Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster

algorithm in mobile ad hoc networks. In: ISPAN 2005, pp. 436–441 (2005)

7. Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE Jour-
nal on Selected Areas in Communications 15, 1265–1275 (1997)

8. Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing 5(2), 193–204 (2002)

9. Demirbas, M., Arora, A., Mittal, V., Kulathumani, V.: A fault-local self-stabilizing
clustering service for wireless ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems 17, 912–922 (2006)

http://www.isi.edu/nsnam/ns/

Self-stabilization versus Robust Self-stabilization 129

10. Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected over-
lays. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 425–439.
Springer, Heidelberg (2006)

11. Datta, A., Devismes, S., Larmore, L.: A self-stabilizing o(n)-round k-clustering
algorithm. In: SRDS 2009 (2009)

12. Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing dis-
tributed algorithm. Theoretical Computer Science 410, 514–532 (2009)

13. Mitton, N., Fleury, E., Guérin-Lassous, I., Tixeuil, S.: Self-stabilization in self-
organized multihop wireless networks. In: WWAN 2005, pp. 909–915 (2005)

14. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor
networks. Computer Communications 30, 2826–2841 (2007)

15. Bettstetter, C., Friedrich, B.: Time and message complexities of the generalized
distributed mobility-adaptive clustering (GDMAC) algorithm in wireless multihop
networks. In: VTC 2003-Spring, pp. 176–180. IEEE, Los Alamitos (2003)

16. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless communications & Mobile computing (WCMC): Special issue
on mobile ad hoc networking: Research, trends and applications 2, 483–502 (2002)

Multilayer Cache Partitioning for Multiprogram

Workloads�

Mahmut Kandemir1, Ramya Prabhakar1, Mustafa Karakoy2,
and Yuanrui Zhang1

1 Pennsylvania State University, USA
2 Imperial College, UK

Abstract. We present a fully-automated, model based, multilayer cache
partitioning scheme for multiprogram workloads running on multicore
machines. As opposed to prior efforts, this scheme partitions shared
caches at multiple layers simultaneously in a coordinated fashion. This
scheme tries to achieve two objectives. First, it tries to satisfy the spec-
ified quality of service (QoS) values for all applications by partitioning
the shared cache hierarchy across them, and second, it distributes the
remaining excess cache capacity (if any) across applications such that
a global performance metric is maximized. Our experimental analysis
shows that the proposed multilayer partitioning scheme generates, on
average, 33.1% improvement (on the weighted speedup metric) over the
next best-performing scheme and is very successful in satisfying the QoS
requirements of applications. Also, we show that partitioning each layer
in isolation cannot generate the benefits obtained through our coordi-
nated partitioning scheme. In addition, we observed that the difference
between our scheme and an optimal scheme (that derives best dynamic
partitions) was less than 15% for all the workloads tested and 6.6% on
average.

1 Introduction

To enable efficient and productive use of emerging multicore systems, there is an
urgent need to design and implement robust on-chip memory systems. Current
commercial multicore architectures employ multilayer on-chip cache hierarchies.
As an example, Figure 1(a) shows a two-socket Intel Dunnington multicore ar-
chitecture [1], which has three layers of on-chip caches. In each socket, while L1
caches are private and L3 is shared by all cores (in the socket), each L2 cache
is shared by two cores. It is expected that in future on-chip cache hierarchies
will be deeper [12] (see Figure 1(b) for a four-layer on-chip cache hierarchy) and
probably contain a higher number of partially-shared caches (like L2 caches in
Figure 1(a)).

While performance optimization is certainly important, another pressing issue
for multicores is quality of service (QoS). In particular, when multiple applica-
tions use the same multicore architecture at the same time and share the same
� This research is supported in part by NSF grants 1017882, 0963839, CNS 0720645,

CCF 0811687, CCF 0702519 and a grant from Microsoft Corporation.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 130–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multilayer Cache Partitioning for Multiprogram Workloads 131

set of on-chip resources, providing QoS to these applications (in addition to high
performance) is becoming an increasingly important problem [6], [10], [11]. To
guarantee QoS for applications, efficient and effective management of shared re-
sources is critical. In the context of shared on-chip caches, capacity allocation
and control has been a promising strategy for shared space management. This
work makes three key contributions:

• We illustrate that coordinated multilayer cache partitioning is critical for ex-
tracting the maximum performance from on-chip caches of emerging multicores.
Specifically, partitioning L2 alone or L3 alone may not be sufficient to satisfy
specified QoS requirements for many workloads.
• Our multilayer cache partitioning scheme targets multiprogrammed workloads
and tries to achieve two main objectives: (i) Satisfy specified QoS values for
all applications, and ii) Distribute the remaining excess cache capacity (if any)
across applications such that a global performance metric (weighted speedup [2]
in most of our experiments) is maximized.
• We analyze the behavior of the proposed partitioning scheme using a large set of
workloads and different multicore architectures. In our experimental evaluation,
we also compare our approach against several alternate schemes as well as an
optimal scheme which is not implementable in practice but guarantees the best
workload performance.

(a)
�� �� �� ��

��

��

�� ��

�� ��

� � � � � �

�� �� �� ��

��

��

�� ��

�� ��

	
 � � �� ��

16KB,

4-way

512KB,

16-way

6MB,

64-way

�� �� �� ��

��

��

�� ��

� � � � � �

�� �� �� ��

��

�� ��

	
 � � �� ��

�� �� ��

��

(b)

16KB,

4-way

512KB,

16-way

4MB,

64-way

12MB,

64-way

Fig. 1. Two different architectures
with multilayer cache hierarchies

Several previous studies have investigated
guaranteeing a certain level of performance
in multicores by employing Quality-of-Service
[11], [6], [2], [7], [17]. Iyer et al [11] proposed
a memory hierarchy that allocates more cache
and memory resources to higher priority jobs.
Herdrich et al [4] proposed a rate-based tech-
nique to manage global power and also perfor-
mance (or QoS) at the same time. Ko et al [5]
proposed a scheme to allocate excess resources
fairly by employing feedback controllers per-
class. Qureshi and Patt [14] employed a utility
model with cost-effective hardware support in

partitioning of a shared cache. Guo et al [6] showed that providing strict QoS of-
ten causes resource fragmentation that reduces throughput significantly. Shekhar
et al [17] employed formal control theory for dynamically partitioning the shared
last level cache in multicores while providing QoS. These prior multicore works
considered partitioning of single layer (usually the last layer of caches shared by
all cores). This paper, in contrast, considers partitioning multiple layers of an
on-chip cache hierarchy in a coordinated fashion across competing applications
using a dynamic performance model.

Our experimental analysis shows that the proposed multi-level partitioning
scheme outperforms all alternate schemes tested (except for the optimal scheme)
for all workloads we have. Specifically, it generates, on average, 33.1% improve-
ment (on the weighted speedup metric) over the next best-performing scheme

132 M. Kandemir et al.

and is very successful in satisfying the QoS requirements of applications. In
addition, we observed that the difference between our scheme and the optimal
scheme is less than 15% for all workloads tested and 6.6% on average.

2 Motivational Example for Multilayer Partitioning

In this section, we present an example that motivates for multilayer cache par-
titioning. The multicore architecture considered in this example is illustrated
in Figure 1(a), which is the same as Intel Dunnington (except for cache sizes).
We use only a single socket of this architecture and run a workload consisting
of six (single threaded) applications. There is a one-to-one mapping between
applications and cores, i.e., each application is mapped to a core and executed
there until it finishes. The QoS values (average data access latency values in this
experiment) for all applications are set to 7 cycles. Our focus is on L2 and L3
caches as these are the ones shared by multiple cores. We perform experiments
with six different schemes: Default, Equal, L2 Only and L3 Only are described in
Section 5.1. The scheme referred to as Ideal, uses the best (possibly nonuniform)
partitioning for each cache component, selected from a large set of possible par-
titioning through exhaustive search. The last scheme, called Isolated, runs each
application stand-alone in the multicore architecture. Therefore, an application
does not experience any contention under this scheme.

��
� ���	

� � � ��� ��
�� �� �� �� �� � �� � �� �

� � � � �� � � �
"

�#
$%&	

'� �(� � � � � �� � � �

*
+

& %� %� � � ,%&%
- ��
	

./ 02 	3
%4� & 5 64 % 7 ,	

%
$8 9

'� �
$:9

'� �
7
;�
%&	
,2 %

�
�� �

���
��

�
� � �

�� �� �
�!�
�

$
$� �% �

(+ *

Fig. 2. Motivation (a) Data access latencies
of the applications in a workload under dif-
ferent cache partitioning schemes. (b) Re-
sulting weighted speedup values. Details of
our experimental setup will be given later.

The results of our experiments with
these six schemes are presented in Fig-
ure 2. The y-axis in (a) represents the
average data access latency for indi-
vidual applications in our workload,
whereas that in (b) captures the value
of the weighted speedup metric, our
global (workload-wide) optimization
metric which will be defined later in
the paper. This metric is a measure
of the overall workload performance.
Our first observation from these re-

sults is that Ideal performs much better than Default, Equal, L2 Only and L3
Only, indicating that partitioning both L2 and L3 spaces can be critical for
achieving high performance (see Figure 2(b)). More importantly, under Ideal,
the QoS specifications are satisfied for all applications in the workload (see Fig-
ure 2(a)). In contrast, under L2 Only and L3 Only, only 2 and 3 applications,
respectively, have their QoS requirements satisfied. In addition, as compared
to Isolated, Ideal performs only 10.3% worse. Therefore, we can conclude that
careful partitioning of on-chip caches can be very effective in practice.

3 Dynamic Performance Model

Since the workload mix can change during the course of execution (as appli-
cations terminate and start) and even the same workload (i.e., applications in

Multilayer Cache Partitioning for Multiprogram Workloads 133

it) can exhibit different data access patterns and cache behavior (space require-
ments), a static partitioning strategy is probably not the best method. In order
to perform runtime cache partitioning however, we need to be able to predict the
impact of increasing and decreasing the cache space (number of ways) available
to an application on its performance (data access latency). To achieve this, we
propose a performance model which is parameterized using cache space alloca-
tions at different layers in the on-chip cache hierarchy. Specifically, our runtime
model can be expressed using a three-dimensional plot where x and y axes de-
note, respectively, cache space allocations from L2 and L3 layers (note that a
core has access to only one component from each layer). We build a separate
model (three-dimensional plot) for each application in the workload. In the plot
of application a, point da(sL2, sL3) indicates the observed average data access
latency value for application a when allocated sL2 ways from L2 and sL3 ways
from L3. When application a executes with allocation (sL2, sL3) for one epoch
(enforcement interval), we record the observed da value in our three-dimensional
plot. As a result, as an application is allocated different (sL2, sL3) values during
the course of its execution, we can build a dynamic model for that application.

The most important use of this model (see Figure 3 for models of two ap-
plications) in our framework is to predict the performance of an application
if allocated a certain number of L2 and L3 ways. That is, using the observed
(sL2, sL3) values, we can fit a surface that represent the da values under vari-
ous cache (way) allocations and use this surface to predict the performance of
the application if allocated (sL2, sL3), i.e., sL2 L2 ways and sL3 L3 ways. This
surface is dynamically updated, with newly-observed (sL2, sL3) values and the
corresponding da values, to adapt to the dynamic modulations in application
behavior. Consequently, if an application is allocated the same (sL2, sL3) ways
at two different points during its execution, we update the surface with the most
recently-observed da value (for that allocation pair). It is to be noted that, while
this model captures the behavior of a single application under different cache
allocations it experiences during execution, one needs a higher level approach to
decide cache space allocations across concurrently-executing applications. This
approach needs to consider the dynamic models built for all applications and
make globally-optimal cache allocations. The next section gives the details of
such an approach.

4 Proposed Partitioning Algorithm

We can divide the operation of our multilayer cache partitioning strategy into
two main parts: static part and dynamic part. The static part includes profiling
an application for enabling the dynamic part to start making predictions. The
dynamic part on the other hand represents the steady-state execution of our
approach. Figure 4 presents a high level view of our proposed approach. It is
important to note that applications can enter and exit independently and our
experimental evaluation considers different scenarios to test the robustness of
our partitioning scheme.

134 M. Kandemir et al.

� � �
� ��

�

� � �
� � �

� � �

� ��	

� �
� �� �

�
� �

�
� �

� � �

� � �

��
��

��
 ��

�
�

�

���

�� � � � � � � � � � � 	�

��

�� � � ��� � ! �" #$ �%& '
() *

� � �
�� �
� �

	 � �
	 � �

� � �

� ���
��
�� �

��
�

�
�

� �
�

� �

	 � � ���
���

� �
� ���

��
��
��
��

�� � � � 	 � 	 � 	 � �'
�

�� � � ��� � � �! "# �$% &

(+ *

Fig. 3. Dynamic performance models for two different applications (a) milc and (b)
gromacs

Fig. 4. High-level view of the proposed
approach

Profiling: In the static part of
our multilayer cache partitioning
scheme, each application is profiled
to obtain a certain number of per-
formance values corresponding to
pairs of (L2,L3) capacities (ways).
While it is possible to perform this
profiling step on-line, we use static
profiling in our current implemen-
tation. However, it is important to
note that we do not need to profile
the entire application; instead, we
observe that profiling just a cou-
ple of initial epochs is sufficient to

start the dynamic model construction. We start building the 3D model dynam-
ically after gathering few such data points in the profiling stage.

Dynamic Partitioning: The main task of the dynamic part of our approach is
to decide the partitioning of the L2 and L3 cache spaces among simultaneously-
executing applications in a workload at run-time. Therefore, we divide the ex-
ecution of a workload into several epochs which are also called enforcement in-
tervals in this paper. The data points observed at the end of the current epoch
are recorded and used to update our 3D performance model, and the partition-
ing of the L2 and L3 cache spaces for the next epoch is decided based on this
model. Therefore, our goal is to satisfy the QoS values at each enforcement in-
terval. The accuracy of the model increases with the increase in the number of
observed data points. The algorithm iteratively updates each application’s la-
tency model at every epoch to increase the accuracy of prediction. The dynamic
partitioning portion of our scheme has the following major steps that repeat at
each epoch (enforcement interval) boundary:

Multilayer Cache Partitioning for Multiprogram Workloads 135

• Collecting performance statistics. For each application, the average data access
latency observed in the current epoch is collected. This is done by (i) counting the
number of data references made by the application (denoted K), (ii) measuring
the time (in cycles) spent by the application in data accesses (denoted T), and
(iii) calculating T/K. The details of our implementation to collect these statistics
will be given later in Section 5.1. Assuming that, in this epoch, application a
was run under allocations sL2 and sL3, the calculated latency value (da = T/K)
is used to update our performance model.
• Surface fitting. As stated above, for each application in the workload, we
update its dynamic performance model using the values collected during the
last epoch. We then fit a surface using statistical regression [3] that represents
the performance model. Specifically, we use the method of least squares to de-
termine the regression curve as it minimizes the sum of the squared errors in
prediction. An important property of regression is that the best fit can be com-
puted incrementally from a set of measured values. The more values we have
(i.e., collected during the course of execution where application goes through
several allocations), the more accurate is the prediction. However, we can start
predicting with as few values as necessary. The learning module builds the per-
application I/O latency model using the least squares method using a certain
number of sampling points. Figure 3 illustrates the 3D performance models for
two Spec2006 applications (milc on the left and gromacs on the right) in our
experimental suite.
• Identification of application-specific feasible sets. Our goal in this step is to
determine, for each application a in the workload, the set of (sL2, sL3) allocations
whose corresponding latency values (da) are lower than the specified QoS value
for that application (we use qosa to denote the QoS value for application a). We
want to emphasize that, in general, we can have multiple allocations that satisfy
the specified QoS value. We use Ea to denote the set of feasible allocations for
application a.
• Determining the workload-specific feasible sets. While the previous step de-
termines, for each application, the set of cache allocations that satisfy its QoS
metric, we need to select a unique cache allocation for each application such
that the total allocation from any given cache component does not exceed
the capacity (the number of ways) of that cache component. In mathemati-
cal terms, let us focus on a particular L2 component shared by n applications
(a1, a2, · · · an), another L2 component shared by a different set of n applications
(an+1, an+2, · · · a2n), and an L3 component shared by all these 2n applications
(a1, a2, · · · a2n). That is, a set of n applications share an L2, a different set of n
applications share another L2, and all these applications together share an L3.
Let us assume that Eai is the application-specific feasible set for ai, as deter-
mined by the previous step. To construct the workload-specific feasible set, we
select for each application ai an allocation (Si

L2, S
i
L3) from its Eai such that all

of the following constraints are satisfied:

S1
L2 + S2

L2 + S3
L2 + · · · + Sn

L2 ≤ xL2

Sn+1
L2 + Sn+2

L2 + Sn+3
L2 + · · · + S2n

L2 ≤ xL2

136 M. Kandemir et al.

S1
L3 + S2

L3 + S3
L3 + · · · + S2n

L3 ≤ xL3,

where xL2 and xL3 denote the total number of ways for L2 and L3 caches,
respectively. As can be seen, the goal here is to select an allocation for each
application such that the total capacity of L2 or L3 is not exceeded. We use f
to denote the set that contains these feasible (Si

L2, S
i
L3) allocations. Note that f

is a set of pairs and in general we have more than one f sets. In the rest of our
discussion, we use F the set of workload-specific feasible partitions. Note that
each element of F is an f set. It needs to be pointed out that the F may or may
not be empty. The next two steps handle these two cases.
• Determining the best-effort solution. This step is executed only if F is empty.
In this case, one can adopt several strategies, which include the following:

• Minimum Loss. In this strategy, we try to minimize the number of applica-
tions whose QoS could not be satisfied. This option can be used when we want
to minimize the number of applications to be punished.

• Weighted Loss. In this strategy, applications are punished based on some
weights assigned to them. When all weights are the same, applications are pun-
ished equally, resulting in some sort of fair punishment.
• Determining the performance-optimal allocation set. This step is executed
only if F is not empty. If F contains only a single f , it is returned1; otherwise,
this step proceeds as follows. Although in theory any f from the workload-
specific feasibility set (F) can be used for determining cache allocations in L2
and L3 components, the specific f chosen can make a significant difference in
overall performance of the workload. This is because once an f is selected and
the cache (way) allocations it indicates are made, there can be an excess cache
space (number of ways) in both L2 and L3 layers. And, this residual cache space
can be distributed across competing applications so that it optimizes the overall
system performance. We now define two metrics that can be used to measure
the overall system performance. We can use either of them to choose an f from
the workload-specific feasibility set (F). We choose f that utilizes the residual
cache space to the maximum and that in turn maximizes our overall performance
metric.

We use a metric, called Weighted Speedup metric (WS) [16], which is the sum
of per application speedups (reduction in average data access latency) achieved
using our partitioning scheme with respect to a baseline scheme. The baseline
scheme can be either Equal where resources are equally shared among all the
applications in the workload or Default which corresponds to full sharing of L2
and L3 caches by all cores that access them. That is, we have:

WS(our scheme) =
n∑

i=1

wi ∗
Latencyai(baseline scheme)

Latencyai(our scheme)
, (1)

where n is the number of applications in the workload and wi is the weight
assigned to application ai. In all our experiments, the baseline scheme for our
1 However, note that even in this case we may have residual cache space, which needs

to be distributed to maximize a global metric.

Multilayer Cache Partitioning for Multiprogram Workloads 137

weighted speedup metric is the performance of individual applications with equal
partition. In practice, the weights assigned to the applications determine the
proportion of residual cache space the applications are allocated. In most of the
experimental results reported in this paper, we use the weighted speedup metric
with equal weights assigned to all the applications in a workload.

5 Experimental Evaluation

5.1 Implementation and Setup

The default multicore configuration used has six cores; each core has a 16KB
private cache; each pair of cores share an L2 component of 512KB; and all six
cores share an L3 of 6MB. Our major simulation parameters and their default
values are given in Table 1. Later in our experiments we change the values of
some of these parameters and conduct a sensitivity study.

Table 1. Default multicore configuration

Parameter Value

Number of Cores 6
ROB/Core 128 entry

Bandwidth/Core 4-fetch, 4-issue, 4-commit
Branch Predictor/Core hybrid 8192-entry gshare / 2048-entry

bimod / 8192-entry meta table
L1 Cache 6 × (16KB; 4ways; 32 byte line size;

2 cycles latency)
L2 Cache 3 × (512KB; 16 ways; 128 byte line size;

8 cycle latency)
L3 Cache 1 × (6MB; 64 ways; 256 byte line size;

20 cycle latency)
Off-Chip Access Latency 200 cycles

On-Chip Interconnect point-to-point, 3 cycles per hop latency
Coherence Protocol MOSI-based directory

QoS Specification 7 cycles for all applications
Epoch Length 100 million cycles

We implemented our
partitioning scheme as
a separate module with
in Virtutech Simics [9].
In our implementation,
a separate thread
(implemented as a load-
able module in So-
laris 10) carries out the
steps of the dynamic
portion of our par-
titioning scheme. We
used Simics under
Solaris 10 to quantify
performance of this im-
plementation as well as

the alternate partitioning schemes against which we compare our scheme. To
have accurate timings, we also employed the GEMS module from University of
Wisconsin [8]. Since Simics provides full-system simulation, the results presented
below includes all the overheads incurred by our partitioning thread.

In this paper, we use the applications in the SPEC2006 benchmark suite [13],
with the reference input sets. All benchmarks are fast forwarded by one billion
instructions to bypass initialization steps, and then simulated for two billion
cycles. Table 2 lists the ten workloads (w1 through w10) that we formed for
this study using these applications. The last two columns of Table 2 gives the
cumulative L2 and L3 cache misses for each workload when executed under the
equal partitioning scheme (Equal). For each workload in our experimental suite,
we performed experiments with eight different cache partitioning schemes:
• Equal. Under this scheme, each cache component in the multicore system is
divided (way-wise) as evenly as possible among all applications that share it.

138 M. Kandemir et al.

• Default. This scheme corresponds to unrestricted sharing, i.e., no cache compo-
nent is partitioned and, as a result, applications that access a cache component
can displace each other’s data.
• Coordinated. This is our proposed coordinated inter-layer cache partitioning
scheme described in detail in Section 4.
• L2 Only. In this scheme, we partition only L2 components, and L3 space is
shared by all cores that access it. For partitioning L2, we use a dynamic perfor-
mance model similar to the one used for Coordinated. Our initial experiments
showed that this scheme generates competitive results to prior schemes such as
[2], [14], and [15].

Table 2. Workloads used in the experimental analysis

Applications L2 Miss Rate L3 Miss Rate

w1 bzip2 gcc mcf gobmk hmmer sjeng 27.4% 33.8%
w2 sjeng libquantum h264ref omnetpp astar xalancbmk 21.7% 10.4%
w3 astar perlbench h264ref hmmer bzip2 libquantum 12.6% 18.2%
w4 milc bwaves zeusmp gamess namd soplex 7.7% 19.3%
w5 dealll povray calculix tonto lbm sphinx3 29.0% 13.4%
w6 wrf tonto GemsFDTD cactusADM gromacs milc 18.6% 11.4%
w7 gobmk hmmer sjeng leslie3d calculix tonto 24.2% 16.1%
w8 perlbench h264ref xalancbmk GemsFTDT soplex dealll 16.7% 14.9%
w9 sjeng libquantum bzip2 gcc gamess sphinx3 15.8% 9.8%

w10 gobmk astar zeusmp gamess tonto wrf 26.2% 17.9%

• L3 Only. In this scheme, we partition only L3 components, and each L2
component is shared by all cores that access it. For partitioning L3, we use a
dynamic performance model similar to the one used for Coordinated.
• L2+L3. In this scheme, we partition L2 and L3 in an uncoordinated fashion
using a separate performance model for each one of them. More specifically,
under this scheme, performance models for L2 layer and L3 layer observe the
data access latency in respective layers and adapt partitioning based on these
dynamically updated performance models independently.
• Static Best. In this scheme, we select a static partitioning (for each cache
component) that generates the best result (when the entire on-chip cache hi-
erarchy considered) through exhaustive search of all possible static partitions.
Consequently, this scheme represents the best partitioning of shared cache that
can be achieved by any static scheme. Also note that in general the selected
partitioning for a cache component will be nonuniform.
•Dynamic Best. This scheme represents the best dynamic strategy for parti-
tioning the shared on-chip cache space. The workload execution in divided into
epochs and, for each epoch, we run Static Best to determine the best partition
of cache components for that epoch. Note that both Dynamic Best and Static
Best return a result (partitioning) as output only if this partitioning satisfies all
the specified QoS values.

5.2 Results

Unless stated otherwise, we use weighted speedup (with all weights being the
same) as our global metric in distributing the residual cache space (if any) across

Multilayer Cache Partitioning for Multiprogram Workloads 139

� �

�� �� � �	
� � � � � � 	 � �� � � ��
� � � � �� �� � � � �	 � 	 �� �� �	

�� � � ��� �� �	

�
�� �

�
�� �

 !
!"#

� �
%

%� �
�

& !' () *
!"

+

�
� � �

, % , � , � , $, � , - , � , . , / , % �
01 2

�� �
� � �

�

�	 	
 � � � � � � � � ��

"� �
! � �
�� �

#
$%&

'()
) *�

+ � �
� � �

� � �

,-
./
0(%
1
%#

� �

2 + 2 � 2 � 2 " 2 ! 2 � 2 � 2 3 2 4 2 + �
58 7

Fig. 5. (a) Weighted speedups with our default configuration. (b) Percentage of ex-
periments where our approach and an alternate scheme could not satisfy the specified
QoS, that was satisfied by Dynamic Best.

applications. Also, if not all the QoS specifications could be satisfied, we employ
the minimum loss strategy for determining the application(s) to be punished.

Weighted Speedups. The bar-chart in Figure 5(a) gives the weighted speedup
values for our ten workloads described above. The QoS value used for each
application is 7 cycles in this experiment. One can make several observations from
these results. First, excluding the ideal partitioning scheme (Dynamic Best), our
proposed partitioning scheme (Coordinated) generates the best speedup values
for all the workloads tested. Second, our scheme comes very close to the ideal
partitioning, the average weighted speedup values being 2.40 and 2.57. Third, in
w4, our scheme and L2 Only generate very similar results. This is because, in this
workload, there are relatively small number of L2 misses (L3 accesses) and the
main benefit comes from careful partitioning of the available L2 space. What is
more interesting however is that our scheme generates much better results than
L2+L3 (which generates an average weighted speedup value of 1.80). The main
reason for this is the lack of coordination (under this scheme) between L2 and
L3 cache partitioning.

To show how successful our scheme is in satisfying QoS values, we present in
Figure 5(b) the percentage of experiments where our approach could not satisfy
the specified QoS but Dynamic Best was able to satisfy the same QoS (using
exhaustive search). This data is collected over 400 experiments with QoS values
randomly distributed between 3 cycles and 10 cycles, and spans all workloads we
have. We see from the first bars in this plot that, on average, only in about 8.6%
of our experiments, our approach could not satisfy a specified QoS that were
satisfied by Dynamic Best. In comparison, the second bar, for each workload,
gives similar results with the second-best scheme (L2+L3 in most cases). We see
that the average value for this scheme is around 43.8%.

QoS Values. We now focus on two workloads (w2 and w10) and present the
data access latency values for these workloads (recall that the QoS values for all
applications are set to 7 cycles in this experiment). The bar-chart in Figure 6(a)
presents the results for w2 and that in Figure 6(b) for w6. Our first observation

140 M. Kandemir et al.

Fig. 6. Data access latency values for (a) workload w2 under default QoS specification
and (b) workload w6 under default QoS specification. (c) workload w2 under different
QoS specifications.

from these plots is that our scheme satisfies the specified QoS for all applications.
In comparison, in w2, L2 Only, L3 Only and L2+L3 could not satisfy QoS for 3,
3, and 2 applications, respectively. Equal and Default perform even worse, each
not being able to satisfy QoS for 4 out of 6 applications in w2.

Sensitivity Study. The results presented above are for a fixed QoS value for all
applications. To study sensitivity of our approach to QoS values, we now present
results with workload w2 when executed with different QoS values. Each point on
the x-axis in Figure 6(c) corresponds to a set of QoS values for the applications
in this workload (i.e., ith entry in the vector corresponds to the QoS (in cycles)
for the ith application in the workload), and the y-axis represents data access
latencies achieved by our approach (Coordinated), when targeting the specified
QoS values. One can observe that, in the first five scenarios, our scheme is able
to satisfy all QoS values. In the last scenario, on the other hand, our scheme
could not satisfy all QoS values. Clearly, by requiring very low access latencies
(as QoS specifications), one can surely fail any partitioning scheme. However,
what is important here is that our scheme successfully adapts to the specified
QoS values, which is observed from the first five scenarios.

6 Concluding Remarks

We demonstrate that coordinated multilayer cache partitioning is critical for
extracting maximum performance from on-chip caches of emerging multicore
architectures. We also present a fully-automated, model based, multilayer cache
partitioning scheme. This scheme tries to achieve two objectives. First, it tries
to satisfy specified QoS values for all applications, and second, it distributes
the remaining excess cache capacity (if any) across applications such that a
global performance metric (weighted speedup) is maximized. In our experimental
evaluation, we compare our approach against several alternate schemes as well
as an optimal scheme which is not implementable in practice but guarantees the
best workload performance. Our experience with this scheme shows that it is
very successful in practice and the results obtained using it cannot be achieved
by applying cache partitioning to each layer independently.

Multilayer Cache Partitioning for Multiprogram Workloads 141

References

1. Alfs, G., Knupferr, N.: Intel’s Multicore Architecture Briefing (2008),
http://www.intel.com/pressroom/archive/releases/20080317fact.htm

2. Chang, J., Sohi, G.: Cooperative Cache Partitioning for Chip Multiprocessors. In:
ICS (2007)

3. Duchesne, P., Remillard, B.: Statistical Modeling and Analysis for Complex Data
Problems. Springer, Heidelberg (2005)

4. Herdrich, A., et al.: Rate-based QoS Techniques for Cache/Memory in CMP Plat-
forms. In: ICS (2009)

5. Ko, B., et al.: Scalable Service Differentiation in a Shared Storage Cache. In: ICDCS
(2003)

6. Guo, F., et al.: A Framework for Providing Quality of Service in Chip Multi-
Processors. In: MICRO (2007)

7. Nesbit, K., et al.: Fair Queuing Memory Systems. In: MICRO (2006)
8. Martin, M., et al.: Multifacet’s General Execution-Driven Multiprocessor Simulator

(GEMS) Toolset. In: SIGARCH Comput. Archit. News (2005)
9. Magnusson, P.S., et al.: Simics: A Full System Simulation Platform. IEEE Trans-

actions on Computer (2002)
10. Iyer, R., et al.: CQoS: A Framework for Enabling QoS in Shared Caches of CMP

Platforms. In: ICS (2004)
11. Iyer, R., et al.: QoS Policies and Architecture for Cache/Memory in CMP Plat-

forms. In: SIGMETRICS (2007)
12. Borkar, S.Y., et al.: Intel Processor and Platform Evolution for the Next Decade.

Technical Report, Intel (2005)
13. Henning, J.L., et al.: SPEC CPU2006 Benchmark Descriptions. SIGARCH Com-

put. Archit. News (2006)
14. Qureshi, M.K., et al.: Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches. In: MICRO (2006)
15. Rafique, N., et al.: Architectural Support for Operating System-Driven CMP Cache

Management. In: PACT (2006)
16. Smith, J.E.: Characterizing Computer Performance with a Single Number. ACM

Communications Journal (1988)
17. Srikantaiah, S., et al.: SHARP Control: Controlled Shared Cache Management in

Chip Multiprocessors. In: MICRO (2009)

http://www.intel.com/pressroom/archive/releases/20080317fact.htm

Backfilling with Guarantees Granted upon Job

Submission

Alexander M. Lindsay1,�, Maxwell Galloway-Carson2,
Christopher R. Johnson2, David P. Bunde2, and Vitus J. Leung3

1 iBASEt
aml.lindsay@gmail.com

2 Knox College
{mgallowa,crjohnso,dbunde}@knox.edu

3 Sandia National Laboratories
vjleung@sandia.gov

Abstract. In this paper, we present scheduling algorithms that simul-
taneously support guaranteed starting times and favor jobs with system-
desired traits. To achieve the first of these goals, our algorithms keep a
profile with potential starting times for every unfinished job and never
move these starting times later, just as in Conservative Backfilling. To
achieve the second, they exploit previously unrecognized flexibility in the
handling of holes opened in this profile when jobs finish early. We find
that, with one choice of job selection function, our algorithms can consis-
tently yield a lower average waiting time than Conservative Backfilling
while still providing a guaranteed start time to each job as it arrives. In
fact, in most cases, the algorithms give a lower average waiting time than
the more aggressive EASY backfilling algorithm, which does not provide
guaranteed start times. Alternately, with a different choice of job selec-
tion function, our algorithms can focus the benefit on the widest sub-
mitted jobs, the reason for the existence of parallel systems. In this case,
these jobs experience significantly lower waiting time than Conservative
Backfilling with minimal impact on other jobs.

1 Introduction

Backfilling has been a standard feature of multiprocessor scheduling algorithms
since it was introduced by Lifka [7] in the Extensible Argonne Scheduling sYstem
(EASY). In a survey of parallel job scheduling, Feitelson et al [4] characterize
backfilling with three parameters, the number of reservations or jobs with guar-
anteed start times, the order of queue jobs, and the amount of lookahead into
the queue. In this paper, we describe variations of backfilling where all jobs
are given a guarantee upon their arrival, Conservative Backfilling [8]. However,
unlike Conservative Backfilling, we are interested in supporting job priorities
other than First-Come-First-Serve (FCFS) [10]. Also, while we do not use any
lookahead into the queue, one of our algorithms does delay making decisions
� Work done while Alex was a student at Knox College.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 142–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Backfilling with Guarantees Granted upon Job Submission 143

until more data is available. Thus, our algorithms add a fourth parameter, when
decisions are made, to the three parameters mentioned above.

A key benefit of Conservative Backfilling is that each job is granted a guar-
anteed starting time when it is submitted. (It may start earlier, but will not
be delayed later than this time.) These guarantees lead Conservative Backfilling
to benefit wide jobs, jobs requiring many processors, relative to other backfill-
ing strategies (e.g. [13]). From a fairness standpoint, this guarantee ensures that
wide or long jobs, which are less likely to benefit from backfilling, are not harmed
by jobs that backfill more easily. These guarantees also make the scheduler more
predictable since each user has a bound on when their jobs will run.

Conservative backfilling maintains a profile containing a tentative schedule for
all jobs. When a job arrives, it is placed in the earliest possible spot within the
profile, i.e. it is scheduled to start at the earliest time that does not disturb any
previously-placed job. The only other profile changes occur when a job finishes
early, creating a “hole” that potentially allows other jobs to move earlier. In this
case, Conservative initiates compression, the reexamination of each job in the
order of its current starting time in the profile. Each job is removed from the
schedule and then reinserted at the earliest possible time. Compression never
delays a job since the job can always fit back into the profile at the same spot,
but some jobs move earlier, into a hole or spaces vacated by jobs that have
themselves moved. Since no job’s planned start time is ever delayed, each job’s
initial reservation is an upper bound on its actual starting time.

Because Conservative compression reschedules jobs based on the profile’s or-
der, intuition suggests that it tends to preserve job order, closing holes by sliding
the end of the profile earlier. (Of course, job order does change when a job fits
into a hole that earlier jobs could not use.) Since the profile is built as jobs
arrive, this gives Conservative a FCFS tendency. This is desirable from a fair-
ness perspective, but may not support a specific system’s goals. For example,
some systems may wish to favor short jobs to improve average response time
and systems oriented toward capability computing may wish to favor wide jobs.

Backfilling algorithms have been designed to support these goals
(e.g. [14,5,1,11]), but they do so by reordering the profile, which sacrifices the
key benefit of Conservative scheduling: its ability to give jobs guaranteed start-
ing times when they are submitted. In this paper, we present scheduling algo-
rithms that simultaneously support guaranteed starting times and favor jobs
with system-desired traits. To achieve the first of these goals, our algorithms
keep a profile with potential starting times for every unfinished job and never
delay these starting times, just as in Conservative. To achieve the second, they
exploit previously unrecognized flexibility in the handling of holes that appear
in the profile. Specifically, we present two algorithms using the following kinds
of flexibility:

– job selection: Although Conservative always tries to move the next job in
the profile into a hole, any job that fits can be moved into a hole. (This idea
is also used in [9].)

144 A.M. Lindsay et al.

– timing: Although Conservative closes holes as soon as they form, the sched-
uler is only required to identify jobs that it wants to start immediately. Thus,
some decisions can be deferred until more information (e.g. more job arrivals
or early completions) is available.

We analyze our algorithms using an event-based simulator run with traces
from the Parallel Workloads Archive [3]. From the traces, our simulator takes an
arrival time, a required number of processors, a running time, and an estimated
running time for each job. The estimated running time gives the scheduler an
upper bound on the job’s running time, but most jobs “end early”, with actual
running time less than their estimate. Throughout, we assume that jobs need
exactly the requested number of processors (rigid jobs), that each processor can
run at most one job at a time (pure space-sharing) and that each job finishes in
exactly its given running time (no interference between jobs).

We find that, with one choice of job selection function, our algorithms consis-
tently yield a lower average waiting time than Conservative while still providing
each job a guaranteed start time when it arrives. In fact, in most cases, our
algorithms give better waiting times than the more aggressive EASY algorithm
[7], which does not provide guaranteed start times. Alternately, with another
job selection function, our algorithms significantly lower waiting times for the
widest jobs with minimal impact on other jobs.

The rest of the paper is organized as follows. We describe our algorithms in
Section 2 and relevant related work in Section 3. Then we give our experimental
results in Section 4 and conclude in Section 5.

2 Algorithms

Now we present our algorithms to exploit the flexibility discussed above.

2.1 Prioritized Compression

Our first algorithm is conservative with Prioritized Compression (PC). This al-
gorithm maintains two data structures, a profile with the tentative schedule and
a compression queue of jobs ordered by a system-specific priority function.

When a job arrives into the system, it is placed into the profile exactly as
in Conservative and also added to the compression queue. When a job finishes
early and creates a hole, PC compresses the schedule by trying to reschedule
each job in the order given by the compression queue; it tries to reschedule the
first job in the compression queue, then the second, and so on. This differs from
Conservative, which considers jobs in the order they occur in the profile, but PC
preserves the key feature that no job moves later in the profile; a job accepts
rescheduling only when it benefits and a job is only permitted to make moves
that do not interfere with any other job.

By using a customized order for compression, PC allows high-priority jobs
to benefit from the hole even if they begin much later in the profile. Doing so
adds another wrinkle to the compression operation, however. Consider the profile

Backfilling with Guarantees Granted upon Job Submission 145

shown in Figure 1(a); time is on the x-axis, with the current time at the far left.
Suppose job A finishes early and is removed. If the resulting profile is compressed
with the order E, C, D (Longest Job First), only jobs C and D are rescheduled.
This yields the profile shown in Figure 1(b), with job E delayed even though it
could also be started. To avoid unnecessary idle time like this, the compression
algorithm for PC returns to the front of the compression queue each time a job
is rescheduled. (Conservative does not need to do so since rescheduling one job
cannot benefit a previously-considered job when the profile order is used.)

time

B

A

D

C
E

(a) (b)

compression queue: E C D

E

B

C D

time

Fig. 1. Profile showing need to return to beginning of the compression queue after each
successful rescheduling. (a) Initial profile before job A terminates early. (b) Profile after
rescheduling jobs E, C, and D once each in that order.

The downside of returning to the beginning of the compression queue after
each successful rescheduling operation is that jobs can be moved more than once.
For example, consider the profile depicted in Figure 2(a) and suppose again that
job A finishes early. If the profile is compressed with the order D, C (Widest Job
First), the first rescheduling operation improves the planned start time of job D,
producing the profile shown in Figure 2(b). Once job C is rescheduled, however,
job D can be moved again, resulting in the profile shown in Figure 2(c).

time time time

A

B
C

D

(a) (b) (c)

compression queue: D C

B

D
DB

C

C

Fig. 2. Example where PC compression moves the same job twice. (a) Initial profile
before job A terminates early. (b) Profile after first compression of job D. (c) Profile
after compressing job C and then job D again.

Since jobs can move more than once, a natural question is how long compres-
sion will take. We return to this question in Section 4.3.

146 A.M. Lindsay et al.

2.2 Delayed Compression

Our second algorithm is conservative with Delayed prioritized Compression (DC).
It keeps a prioritized compression queue just like PC, but also exploits flexibility
in the timing of compression by deferring some rescheduling operations. Specif-
ically, when a job finishes early, DC’s compression operation only reschedules
jobs that can begin immediately, deliberately leaving holes in the profile. For
example, consider the profile depicted in Figure 3(a) and suppose job A finishes
early. If DC compresses with order D, E, F (Longest Job First), it would leave
the profile as depicted in Figure 3(b), with a hole after job C even though the
planned starting time of job F could be improved. By deferring this improve-
ment, algorithm DC leaves itself flexibility in case a high-priority job arrives or
another job finishes early. Note that once the running system reaches the hole,
the scheduler must fill the hole; this requires an additional check when a job
finishes and the profile indicates idle time for some of its processors.

compression queue: D F C E

B

C

B

CD

D F

E E

F

(a) (b)
time time

A

Fig. 3. Example where the DC algorithm deliberately leaves a hole in the profile. (a)
Initial profile before job A terminates early. (b) Profile after compression.

One issue with deliberately leaving holes in the profile is that newly-arrived
jobs can backfill into them. For example, suppose a short job arrived after the
compression operation shown in Figure 3. If this job fits into the hole left when
job D was moved, it can backfill there and bypass job F as well as any later
jobs. While this backfill operation may be fine if the scheduler wishes to favor
short jobs, it can completely undermine the scheduler’s priority mechanism if
a different priority function is being used. To avoid this, DC also handles job
arrivals differently than Conservative. Rather than immediately adding a new job
to the profile, DC instead adds it to the compression queue. The algorithm then
reschedules any job before the new job in the compression queue whose new start
time would be before the estimated completion of the new job, i.e. those higher-
priority jobs that could be delayed by the new job. Once the new job is reached
in the compression queue, it is scheduled and compression ends. This modified
treatment of job arrivals closes holes when necessary to protect rescheduling
opportunities for high-priority jobs. In the example shown in Figure 3, DC would
reschedule F if a lower-priority job arrives and could be scheduled to finish after
the end of C (the earliest possible start time of F). Alternately, the hole could
be occupied by a new job with higher priority.

Backfilling with Guarantees Granted upon Job Submission 147

3 Related Work

Backfilling was introduced by Lifka [7] in the Extensible Argonne Scheduling
sYstem (EASY). In a survey of parallel job scheduling, Feitelson et al [4] charac-
terize variations in backfilling with three parameters, the number of reservations,
the order of queue jobs, and the amount of lookahead into the queue. We add a
fourth parameter, when the profile can be reordered.

Reservations have been used since the early days of parallel batch schedulers
[2]. EASY [7] uses one reservation. At the other extreme, Conservative Backfilling
[8] gives all jobs a reservation. Talby and Feitelson [14] and Srinivasan et al
[13] suggest an adaptive number of reservations. The Maui Scheduler [5] has a
parameterized number of reservations. Chiang et al [1] suggest that four is a
good number of reservations.

EASY and Conservative Backfilling use First-Come-First-Serve (FCFS) or-
der. The FCFS Scheduling Algorithm has been analyzed by Schwiegelshohn and
Yahyapur [10]. Perkovic and Keleher [9] study Conservative Backfilling with
random queue ordering both with and without sorting by length and random re-
ordering as well. Reordering the backfill queue for EASY is proposed by Tsafrir
et al [15].

Talby and Feitelson [14] combine three types of priorities in the order of queue
jobs. The Maui Scheduler has even more components in its order of queue jobs.
Chiang et al [1] propose generalizations of the Shortest Job First (SJF) schedul-
ing algorithm to order queue jobs. They also use fixed and dynamic reservations.
With dynamic reservations, job reservations and the ordering of job reservations
can change with each new job arrival or if the priorities of waiting jobs change.
With fixed reservations, job reservations can only move earlier in order, even if a
job has no reservation or a job that has a later reservation attains a higher prior-
ity. Leung et al [6] study fixed and dynamic variations of Conservative Backfilling
in the context of fairness.

All the above algorithms use no lookahead. Shmueli and Feitelson [11] use
one reservation, various queue orderings, and lookahead into the queue. All of
these algorithms reorder the profile when a job arrives or terminates early. All
of our algorithms give every job a reservation, use various queue orderings based
on the length or width of the jobs, and use no lookahead into the queue, a
combination that is not used by any of the algorithms above. Additionally, some
of our algorithms delay to varying degrees when the profile is reordered. Our PC
algorithm reorders the profile when a job arrives or terminates early like all of
the algorithms above. Our DC algorithm reorders the profile only when a job
arrives or can run immediately.

4 Experimental Results

As described in the introduction, we evaluate our algorithms with an event-
based simulator running traces from the Parallel Workloads Archive [3]. Figure 4
lists the traces used. These are all traces with estimated running times except

148 A.M. Lindsay et al.

for LLNL-uBGL, which is omitted because its waiting time shows almost no
variation for any of the algorithms we examined. Jobs in these traces without user
estimates are given accurate estimates. (Simulations by Smith et al. [12] suggest
that better estimates reduce average waiting time for Conservative scheduling.
The effect of inaccurate estimates on EASY is the subject of many papers; Tsafrir
and Feitelson [16] summarize and attempt to settle the issue.)

Name Full file name # jobs % w/ estimates

CTC-SP2 CTC-SP2-1996-2.1-cln.swf 77,222 99.99
DAS2-fs0 DAS2-fs0-2003-1.swf 219,571 100
DAS2-fs1 DAS2-fs1-2003-1.swf 39,348 100
DAS2-fs2 DAS2-fs2-2003-1.swf 65,380 100
DAS2-fs3 DAS2-fs3-2003-1.swf 66,099 100
DAS2-fs4 DAS2-fs4-2003-1.swf 32,952 100
HPC2N HPC2N-2002-1.1-cln.swf 202,876 100
KTH-SP2 KTH-SP2-1996-2.swf 28,489 100
LANL-CM5 LANL-CM5-1994-3.1-cln.swf 122,057 90.75
LLNL-Atlas LLNL-Atlas-2006-1.1-cln.swf 38,143 84.85
LLNL-Thunder LLNL-Thunder-2007-1.1-cln.swf 118,754 32.47
LPC-EGEE LPC-EGEE-2004-1.2-cln.swf 220,679 100
SDSC-BLUE SDSC-BLUE-2000-3.1-cln.swf 223,669 100
SDSC-DS SDSC-DS-2004-1.swf 85,006 100
SDSC-SP2 SDSC-SP2-1998-3.1-cln.swf 54,041 99.94

Fig. 4. Traces used in simulations

The trace job counts given in Figure 4 differ from the values given in the Par-
allel Workloads Archive [3] because we ignored jobs that were partial executions
(they were checkpointed and swapped out; status 2, 3, or 4) and jobs that were
cancelled before starting (status 5 and running time ≤ 0). We also ignored 8
jobs in the SDSC-DS trace with running time -1 (unknown).

4.1 Increasing Responsiveness

Since user-perceived performance is the typical goal of scheduling, we first con-
sider how our algorithms can improve average waiting time. For this metric, it is
beneficial to run short jobs before long ones so we use Shortest Job First as our
priority function. Figure 5 presents the results as a percent improvement over
the average waiting time achieved by Conservative. We also include EASY for
comparison since it backfills aggressively, benefiting short jobs since they back-
fill more easily. The exact results vary by traces, but our algorithms outperform
Conservative on all traces except DAS2-fs3. In fact, they outperform EASY in
the majority of cases. The most notable exception is the LLNL-Thunder trace,
which has the lowest percent of jobs with user estimates (only 32%; see Fig-
ure 4). This may explain the relatively poor performance of our algorithms on
that trace since jobs without estimates do not finish early, reducing the number
of holes our algorithms can exploit. Of our algorithms, DC generally beats PC.

Backfilling with Guarantees Granted upon Job Submission 149

D
A

S2
−

fs
3

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��
��

��
��
��
��
��

�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

���
���
���
���

�
�
�

�
�
�
����

%
 im

p.
 in

 a
ve

. w
ai

tin
g

tim
e

ov
er

 C
on

se
rv

at
iv

e

L
PC

−
E

G
E

E

L
L

N
L

−
A

tla
s

C
T

C
−

SP
2

D
A

S2
−

fs
0

D
A

S2
−

fs
2

K
T

H
−

SP
2

D
A

S2
−

fs
4

L
A

N
L

−
C

M
5

H
PC

2N

EASY
PC (shortest)
DC (shortest)

L
L

N
L

−
T

hu
nd

er

SD
SC

−
B

L
U

E

SD
SC

−
D

S

SD
SC

−
SP

2

−0.1 −0.05

D
A

S2
−

fs
1

�
�
�
�

−10

 70

 60

 50

 40

 30

 20

 10

 0

 80

Fig. 5. Average waiting time relative to Conservative

Furthermore, our algorithms achieve these benefits without greatly delaying
other jobs. To see this we looked at the average waiting time for the 5% of jobs
with the greatest waiting time. See Figure 6 for the results, again presented as a
percent improvement over Conservative’s performance on the same measure. As
in the overall average waiting time, our algorithms generally outperform Con-
servative, though there are more exceptions (DAS2-fs3, LANL-CM5, and SDSC-
SP2). Comparing to EASY yields a similar picture as well, again with LLNL-
Thunder as the outlier. The pattern remains when looking at the 1% of jobs with
the greatest waiting time (see Figure 7); our algorithms give significantly better
performance for the DAS2-fs2, DAS2-fs4, LLNL-Atlas, and LPC-EGEE traces,
significantly worse performance for the LANL-CM5 and SDSC-SP2 traces, and
comparable (within 10%) or mixed performance for the others.

We have shown that our algorithms significantly improve the average waiting
time when using the shortest job first priority function. It is worth noting that
they mostly outperform Conservative under this measure with other natural
priority functions as well. Specifically, we considered the priority functions FIFO,
Widest (most requested processors) Job First, Longest (in estimated time) Job
First, Shortest Job First, and Narrowest (fewest requested processors) Job First
for both of our algorithms. Out of 150 combinations of trace, algorithm, and
priority function, only 49 (33%) of them were worse than Conservative. Most of
the differences were small (generally < 10%, many < 2%), with a majority of
the big improvements appearing in Figure 5 and the significantly negative values
generally associated with the Longest Job First or Widest Job First priority
functions. (The worst single value is -38% for DC with Longest Job First.)

Overall, DC with Shortest Job First seems to be a very good choice for in-
creasing responsiveness. It gave better average waiting time than Conservative
and EASY in eleven out of fifteen traces. It only had worst average waiting time
than both Conservative and EASY in one trace and just EASY in three others.

150 A.M. Lindsay et al.

4.2 Favoring Wide Jobs

To demonstrate the flexibility of our algorithms, we also look at a different
scheduling goal: improving the performance of wide jobs. These are jobs that,
because of a large computational or memory requirement, must run on many
processors. From a capability perspective, wide jobs are the reason to build
large systems since they cannot run otherwise.

To benefit these jobs, we run our algorithms with the Widest Job First prior-
ity function. We measure schedule quality with the average waiting time of the

EASY

��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

����
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

���
���
���
���

%
im

p.
 in

 a
ve

. o
f

to
p

5%
 o

f
w

ai
tin

g
tim

es

C
T

C
−S

P2

D
A

S2
−f

s0

D
A

S2
−f

s1

D
A

S2
−f

s2

D
A

S2
−f

s3

D
A

S2
−f

s4

H
PC

2N

K
T

H
−S

P2

L
A

N
L

−C
M

5

L
L

N
L

−A
tla

s

L
L

N
L

_T
hu

nd
er

L
PC

−E
G

E
E

SD
SC

−B
L

U
E

SD
SC

−D
S

SD
SC

−S
P2

−0.3 −0.1 −0.2 −0.05

0.30.7

PC (shortest)
DC (shortest)

 80

−10

 0

 10

 20

 30

 40

 50

 60

 70

−20

Fig. 6. Average of top 5% of waiting times relative to Conservative

DC (shortest)���
���
���
���

�
�
�
�
��
��
��
�� ��

��
��
��
��

��
��
��
��

�
�
�
���
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
���
��
��

��
��
��

����
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

%
im

p.
 in

 a
ve

. o
f

to
p

1%
 o

f
w

ai
tin

g
tim

es

EASY

−0.1 −0.4 −0.7 −0.06

D
A

S2
−f

s1

D
A

S2
−f

s0

C
T

C
−S

P2

D
A

S2
−f

s2

D
A

S2
−f

s3

D
A

S2
−f

s4

K
T

H
−S

P2

H
PC

2N

L
A

N
L

−C
M

5

L
L

N
L

−T
hu

nd
er

L
L

N
L

−A
tla

s

L
PC

−E
G

E
E

SD
SC

−B
L

U
E

SD
SC

−D
S

SD
SC

−S
P2

PC (shortest)

 20

−20

 0

−40

 40

 60

 80

Fig. 7. Average of top 1% of waiting times relative to Conservative

Backfilling with Guarantees Granted upon Job Submission 151

%
im

p.
 in

 a
ve

. w
ai

tin
g

tim
e

of
 w

id
es

t 1
0%

 o
f

jo
bs

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

����
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�

EASY
PC (widest)
DC (widest)

C
T

C
−

SP
2

D
A

S2
−

fs
1

D
A

S2
−

fs
2

K
T

H
−

SP
2

L
A

N
L

−
C

M
5

L
L

N
L

−
A

tla
s

SD
SC

−
B

L
U

E

L
L

N
L

−
T

hu
nd

er

SD
SC

−
D

S

SD
SC

−
SP

2

H
PC

2N

D
A

S2
−

fs
3

D
A

S2
−

fs
0

D
A

S2
−

fs
4

0.
3

−0
.3

0.
01

0.
00

09

 20

 30

 40

−10

 0

 10

Fig. 8. Average waiting time of widest 10% of the jobs relative to Conservative

widest 10% of the jobs in each trace. Figure 8 shows the results as a percent im-
provement over Conservative. The LGC-EGEE trace is not included since each
of its jobs requests a single processor. On the other traces, our algorithms outper-
form Conservative on all traces except LLNL-Thunder, the trace with relatively
few user estimates. (The improvement on the DAS2-fs3 trace is admittedly neg-
ligible.) It is unclear which of them is preferable. Our algorithms also outperform
EASY, which is not surprising since wide jobs have difficulty backfilling and thus
benefit from the guaranteed start times given by our algorithms.

As when we tried to improve overall system responsiveness, we investigate the
performance of non-favored jobs. Figure 9 plots average waiting time of all jobs,
again relative to Conservative. The results are mixed, but not consistently bad
and the negative values are of fairly small magnitude. Thus, it seems that our
algorithms benefit wide jobs without greatly impairing overall performance.

4.3 Scheduler Running Time

As mentioned in Section 2.1, there is a question as to how long compression will
take with our algorithms, particularly PC. We instrumented our simulations of
Conservative and PC to measure the work required for compression. Specifically,
we counted how many times the algorithms looked at an event (a job’s planned
start or end time) in the profile. In the worst case (Longest Job First priority
on DAS2-fs0), PC examined nearly 580 times as many events as Conservative.
This case is an extreme outlier; in only two other traces (HPC2N and DAS2-fs3)
did PC examine more than 43 times as many events as Conservative (127 and
72 times, respectively). Even in the outlier case, however, the scheduler running

152 A.M. Lindsay et al.

K
T

H
−

SP
2

��
��
��
��

�
�
�
���
��
��
��

�
�
�
���
��
��

��
��
��

��
�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

�
�
�
�
���� �

�
�
�
����

%
im

p.
 in

 a
ve

. w
ai

tin
g

tim
e

ov
er

 C
on

se
rv

at
iv

e

SD
SC

−
SP

2

SD
SC

−
D

S

SD
SC

−
B

L
U

E

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

L
L

N
L

−
A

tla
s

D
A

S2
−

fs
1

D
A

S2
−

fs
2

L
A

N
L

−
C

M
5

DC (widest)
PC (widest)

EASY

−0
.1

−0
.0

5
−0

.0
5

0.
4

0.
3

C
T

C
−

SP
2

D
A

S2
−

fs
0

D
A

S2
−

fs
3

D
A

S2
−

fs
4

H
PC

2N

��

−20

 60

 50

 40

 30

 20

 10

 0

−10

 70

Fig. 9. Average waiting time relative to Conservative

time was not excessive; the total simulation time for that trace was less than 24
hours on a laptop, meaning the scheduler spent less than 0.4 seconds scheduling
and rescheduling each job on average.

5 Discussion

We have presented a couple of algorithms that exploit flexibility in Conservative
backfilling to improve various measures of performance while still retaining its
ability to give jobs a guaranteed starting time as they arrive. We are impressed
by the potential of these algorithms, but there is ample room for future research.
More work is needed to understand why the algorithms perform better on some
traces than others and to distinguish between the algorithms. It would also
be interesting to consider other priority functions, including user-assigned job
priorities, to further explore the flexibility in job selection. For the flexibility in
timing, one of our algorithms closes holes as soon as possible and the other closes
holes only when more jobs arrive or a job can run. We can further explore the
flexibility in timing by closing holes only when a job can run.

Acknowledgments. A.M. Lindsay, M. Galloway-Carson, C.R. Johnson, and
D.P. Bunde were partially supported by contracts 763836 and 899808 from San-
dia National Laboratories. Sandia is a multipurpose laboratory operated by
Sandia Corporation, a Lockheed-Martin Company, for the United States De-
partment of Energy under Contract No. DE-AC04-94AL85000. We also thank
all those who contributed traces to the Parallel Workloads Archive.

Backfilling with Guarantees Granted upon Job Submission 153

References

1. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002)

2. Das Sharma, D., Pradhan, D.K.: Job scheduing in mesh multicomputers. In: Proc.
Intern. Conf. on Parallel Processing Workshops, pp. 251–258 (1994)

3. Feitelson, D.: The parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload/index.html

4. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — A
status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

5. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001)

6. Leung, V., Sabin, G., Sadayappan, P.: Parallel job scheduling policies to improve
fairness - a case study. In: Proc. 6th Intern. Workshop on Scheduling and Resource
Management for Parallel and Distributed Syst. (2010)

7. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L.
(eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer,
Heidelberg (1995)

8. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. on
Parallel and Distributed Syst. 12(6), 529–543 (2001)

9. Perković, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch
schedulers. In: Proc. 2000 ACM/IEEE Conf. on Supercomputing (2000)

10. Schwiegelshohn, U., Yahyapour, R.: Analysis of first-come-first-serve parallel job
scheduling. In: Proc. 9th ACM/SIAM Symp. on Discrete Algorithms, pp. 629–638
(1998)

11. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the perfor-
mance of parallel job scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 228–251. Springer, Heidelberg (2003)

12. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait
times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 202–219.
Springer, Heidelberg (1999)

13. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Selective reser-
vation strategies for backfill job scheduling. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 55–71. Springer, Hei-
delberg (2002)

14. Talby, D., Feitelson, D.G.: Supporting priorities and improving utilization of the
IBM SP scheduler using slack-based backfilling. In: Proc. 13th Intern. Parallel
Processing Symp., pp. 513–517 (1999)

15. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predic-
tions rather than user runtime estimates. IEEE Trans. on Parallel and Distributed
Systems 18(6), 789–803 (2007)

16. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: Solving the mystery of
why increased inaccuracy may help. In: Proc. IEEE Intern. Symp. on Workload
Characterization, pp. 131–141 (2006)

http://www.cs.huji.ac.il/labs/parallel/workload/index.html

Introduction

Leonel Sousa, Frédéric Suter, Alfredo Goldman,
Rizos Sakellariou, and Oliver Sinnen

Topic chairs

Scheduling and load balancing are fundamental issues for deploying applications
on parallel and distributed systems. Static and dynamic techniques, determinis-
tic and stochastic methods have been researched to tackle the hard problem of
achieving the minimum span and the optimal load balancing, making the best
use of parallel and distributed systems by maintaining the resources busy and
minimizing energy consumption. Although research has been done for years and
years, namely for static scheduling and dynamic load balancing, these are old
but very timely topics of research in the era of multicore computers and cloud
computing. New challenges arise with the increased interest in applications with
real-time constraints, the continuous growth of algorithms complexity and so-
phistication of applications, and the heterogeneity of systems and the diversity
of their conditions of operation. This year, the contributions in the scheduling
and load-balancing topic of Euro-Par provide a very good coverage of different
perspectives and aspects, with a focus on both theoretical aspects and practical
questions. Some of these papers are focused on heterogeneous systems, in par-
ticular on more hierarchical systems, some also considering failures, there are a
few that address theoretical aspects and one mainly presents experimental work.
The papers continue to cover the two ends of the hardware spectrum, tightly-
coupled multicore systems and clusters of workstations. Energy awareness has
become important for all types of computing and it is addressed in the accepted
papers for the small scale, in embedded systems, as well as for larger computing
facilities, such as clusters. Modern scheduling and load balancing is dominated
by the inclusion of more aspects into the scheduling decisions, be it communi-
cation and memory location aspects or even the social influence. The task of
selecting the papers to be presented at the conference was hard, because the
number of submissions was high and the quality excellent. Only 9 papers were
accepted for publication, which led to quite a low acceptance rate in this topic.
All papers were reviewed by at least four independent reviewers. We would like
to thank all the reviewers for their time and effort. The quality of the reviews
simplified the selection process. At the same time, we would like to thank all
authors, in particular the ones that did not have their manuscripts accepted.
Their contributions allow Euro-Par to maintain its position as one of the pre-
mier scientific conferences where innovative scheduling research for parallel and
distributed systems is presented year after year.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, p. 154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Greedy “Exploitation” Is Close to Optimal on
Node-Heterogeneous Clusters�

Arnold L. Rosenberg

Colorado State University, Fort Collins, CO 80523, USA
Northeastern University, Boston, MA 02115, USA

rsnbrg@cs.umass.edu

Abstract. The Cluster-Exploitation Problem (CEP) challenges a master com-
puter to schedule a “borrowed” node-heterogeneous cluster C of worker com-
puters in a way that maximizes the amount of work that C’s computers complete
within a fixed time period. This challenge is heightened by the fact that “complet-
ing” work requires C’s computers to return results from their work to the master.
It has been known for some time that the greedy LIFO protocol, which orches-
trates C’s computers to finish working in the opposite of their starting order, does
not solve the CEP optimally; in fact, the FIFO protocol, which has C’s comput-
ers finish working in the same order as they start, does solve the CEP optimally
(over sufficiently long time periods). That said, the LIFO protocol has features
(aside from its intuitive appeal) that would make it attractive to implement when
solving the CEP—as long as its solution to the problem was not too far from
optimal. This paper shows this to be the case. Specifically:

1. The LIFO protocol provides approximately optimal solutions to the CEP, in
the following sense. For every cluster C, there is a fixed fraction ϕC > 0
that does not depend on how heterogeneous cluster C is (as measured by the
relative speeds of its fastest and slowest computers) such that C completes
at least the fraction ϕC as much work under the LIFO protocol as under the
optimal FIFO protocol.

Our analysis of the CEP uncovers an unexpected property of the LIFO protocol:
2. In common with the FIFO protocol, the LIFO protocol’s work production is

independent of the order in which the master supplies work to the workers—
no matter what the relative speeds of the workers are.

Within the literature of divisible load scheduling, the CEP follows the master-
worker paradigm under the “single-port with no overlap” model.

Keywords: Scheduling divisible workload; Worksharing; Heterogeneous
cluster.

1 Introduction

A master computer C0 has a large uniform computational workload of independent
tasks. It has temporary access to a cluster1 C comprising n worker computers,

� Research supported in part by US NSF Grant CNS-0905399.
1 We call C a “cluster” for convenience: the Ci may be geographically dispersed and more

diverse in power than that term usually connotes.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 155–166, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 A.L. Rosenberg

C1, . . . , Cn, that may differ in computing power: each Ci can execute a unit of work
in ρi time units—and these n computing rates can be very different. All n + 1 com-
puters intercommunicate across a single network that they access with uniform cost.
(Our model is, thus, node-heterogeneous and link-homogeneous.) The elements of C0’s
workload are divisible, in the sense that each can be subdivided at will to accommodate
the differing computing rates of C’s computers. The Cluster-Exploitation Problem (CEP,
for short) is a simple scheduling problem under which C0 has access to C’s computers
for some predetermined “lifespan” of L time units, during which:

1. For each i ∈ {1, . . . , n}, in some order, C0 sends some “personalized” number, wi,
units of work to each worker computer Ci, in a single message;

2. Each worker computer executes the work it receives and returns its results to C0, in
a single message.

The challenge is to orchestrate the preceding process so that C’s computers collectively
complete as much work as possible during the L time units—while ensuring that at
most one intercomputer message is in transit in the network at any step. A unit of
work is completed once C0 has sent it to some Ci, and Ci has executed the unit and
returned results to C0. Within the literature of divisible load scheduling, the CEP fol-
lows the master-worker paradigm under the “single-port with no overlap” model. We
call a schedule for solving the CEP a worksharing protocol. The significance of the
CEP stems from the demonstration in [2] that the optimal work-production of a clus-
ter C depends only on C’s vector of computing rates, 〈ρ1, . . . , ρn〉, which we call C’s
heterogeneity profile.

What is the optimal schedule for solving the CEP on an n-computer cluster C? We
cite a hyperbolic instance of the CEP to garner some intuition. For convenience, let us
index C’s computers in nonincreasing order of speed, so that ρ1 ≤ · · · ≤ ρn. (Recall
that each ρi is the time to complete one unit of work, so a smaller ρ-value means a
faster computer.) Now (here’s the hyperbole) say that C’s computers are very different in
speed: each Ci is 1010 times faster than Ci−1: formally, ρi+1 = 1010ρi. It is “intuitively
obvious” that the optimal solution to this instance of the CEP is for the master C0 to
proceed as follows:

1. Saturate C1 (C’s fastest computer) with work that takes it L time units to complete.
2. Recursively solve the CEP for C2, . . . , Cn, for the lifespan determined by the por-

tion of the L time units when neither Cn’s work nor its results are in transit.

This “obviously optimal” greedy solution embodies the LIFO protocol (with workers
served in order of speed): C’s computers are orchestrated to finish working (and return
results to C0) in the opposite of the order in which they are served. The first surprise
concerning the CEP appeared in [10], where it was shown that the LIFO protocol does
not solve the CEP optimally. The second surprise was the demonstration in [2] that, over
sufficiently long lifespans, the FIFO protocol, which has C’s computers finish working
(and return results to C0) in the same order as they start, does solve the CEP optimally.2

(The non-idle intervals in Fig. 1 suggest the origin of the names “LIFO,” “FIFO.”)
The results in [2,10] apparently lessen the importance of the LIFO protocol—but this

view may be shortsighted. This paper revisits the LIFO protocol and shows it to have

2 Simulations in [1] suggest that “sufficiently long” lifespans have quite modest lengths.

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters 157

advantages that may make it an attractive protocol for the CEP—even though it is not
optimal. We show that, in addition to having a simple recursive structure, which makes
the protocol easy to specify, implement, and analyze:

The LIFO protocol is approximately as powerful as the FIFO protocol in solv-
ing the CEP (Theorem 4).
Specifically, for every cluster C, there is a fixed fraction ϕC > 0 that does not
depend on how heterogeneous cluster C is (as measured by the relative speeds
of its fastest and slowest computers) such that C completes at least the fraction
ϕC as much work under the LIFO protocol as under the optimal FIFO protocol.

On the road to this result, we uncover a rather surprising property of the LIFO protocol.

The LIFO protocol’s work production is independent of the order in which the
master C0 supplies work to the workers in cluster C (Theorem 3).
Even in our extreme example, C’s computers complete the same amount of
work when the slowest worker (Cn) is allocated the longest time slot as when
the fastest one (C1) is. (This independence can be derived from results in [4],
but the proof we present is quite elegant and may have further application.)

Related work. Employing a model that is very similar to ours, [3] derives efficient
optimal or near-optimal schedules for the four variants of the CEP for clusters C that
correspond to the four paired answers to the questions: “Do tasks produce nontrivial-
size results?” “Is C’s network pipelined?” For those variants that are NP-Hard, near-
optimality is the most that one can expect to achieve efficiently—and this is what [3]
achieves. More details on this and related work are available in the survey [11]. One
finds in [12] a study of heterogeneity in computing that is based on the fact (from [2])
that optimal solutions to the CEP for a cluster C depend only on C’s heterogeneity pro-
file; this study explores features of C’s profile that determine its work-completion rate
and that give one cluster a higher rate than another. A variant of the CEP in which clus-
ters are node-homogeneous but link-heterogeneous is studied in [5]; in that setting, the
FIFO protocol loses its advantage over the LIFO protocol: neither protocol dominates
the other. Less directly related to our study is the large body of work that studies the
scheduling of “divisible workloads.” While parts of sources such as [6,7,9] and their
kin share our interest in the CEP, their focus on tasks that do not produce measurable
output that must be returned to the master allows much simpler algorithmics; e.g., the
FIFO and LIFO protocols coincide in their model.

2 Formal Details

We adapt the model of [8], which is the basis of [2,5,10,12].

The computing environment. The master computer C0’s workload is composed of
work units that are identical in size and complexity.3 The tasks’ (common) complexity
can be an arbitrary function of their (common) size. Our model posits that the cost of
transmitting work grows linearly with the total amount of work performed. This allows
us to measure both time and message-length in the same units as work.

3 “Size” refers to specification length, “complexity” to computation time.

158 A.L. Rosenberg

This linear communication model ignores fixed transmission costs—the end-to-
end latency of a message’s first packet and the per-message set-up overhead—
because their impacts fade over long lifespans. Thus, we replace the affine com-
munication model of [2,8] with a linear model. We justify this simplification
via two facts that hold asymptotically, i.e., over “sufficiently long life-spans.”
(a) For the CEP, the linear and affine models coincide asymptotically. (b) The
optimality result from [2] that motivates the current study (cited as our Theo-
rem 1) holds only asymptotically.

For i ∈ {1, . . . , n}, a worker computer Ci that belongs to the cluster C of interest
can execute one unit of work in ρi time units; this ρ-value is Ci’s computing rate. For
convenience, we normalize the computing rates of C’s computers, so that if C’s (hetero-
geneity) profile is 〈ρ1, . . . , ρn〉, then for each i ∈ {1, . . . , n}, 0 < ρi ≤ 1. (Recall: A
smaller rate means a faster computer.) We posit a uniform communication fabric for all
computers: The time to send a single packet either from the master C0 to some worker
Ci or from Ci to C0 is τ time units.4 Within the context of the CEP, every intercom-
puter message is either a work-allocation that C0 sends to some Ci ∈ C or the results of
executed work that Ci sends to C0. We posit that each unit of work produces 0 < δ < 1
units of results. The entire L-time-unit “exploitation” episode must be orchestrated so
that at most one intercomputer message is in transit in the network at a time. Before
any Ci sends a message of length � to another Cj , Ci packages the message, at a cost of
πi� time-units; symmetrically, when Cj receives the message, it unpackages it, at a cost
of πi� time-units. (Packaging a message could be as computationally “lightweight” as
packetizing and compressing it or as “heavyweight” as encoding it.)

Worksharing protocols. When there is only one Ci ∈ C, C0 shares w units of work
with Ci via the process summarized in the following schematic time-line of workshar-
ing with one worker computer (not to scale).

C0 packages work is Ci unpackages Ci computes Ci packages results are C0 unpackages
work for Ci in transit the work the work its results in transit the results

π0w τw πiw ρiw πiδw τδw π0δw

When there are many (i.e., more than one) Ci ∈ C, we use two ordinal-indexing
schemes for C’s computers to help orchestrate communications while solving the CEP.
The startup order specifies the order in which C0 transmits work within C; it labels the
workers Cs1 , . . . , Csn , to indicate that Csi receives work—hence, begins working—
before Csi+1 . Dually, the finishing order labels the workers Cf1 , . . . , Cfn , to specify
the order in which they return their results to C0. Protocols proceed as follows.

1. Transmit work. C0 prepares and transmits ws1 units of work for Cs1 . It immediately
prepares and sends ws2 units of work to Cs2 via the same process. Continuing thus,
C0 supplies the Csi with wsi units of work seriatim—with no intervening gaps.

2. Compute. Upon receiving work from C0, Ci unpackages and performs the work.
3. Transmit results. As soon as Ci completes its work, it packages its results and

transmits them to C0.

4 We find the transit rate τ a more convenient cost measure than its reciprocal, bandwidth.

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters 159

We choose the work-allocations {wi}n
i=1 so that, with no gaps, C’s computers:

– receive work and compute in the startup order Σ = 〈s1, . . . , sn〉;
– complete work and transmit results in the finishing order Φ = 〈f1, . . . , fn〉;
– complete all work and communications by time L.

Our goal is to maximize C’s aggregate completed work, W(C; L) def= w1 + · · · + wn.

In depicting and analyzing multiworker protocols, we have all computing by the
master C0—i.e., its packaging work-allocations for C’s workers and unpackaging their
results—take place offline, so that we focus solely on a worksharing episode as it ap-
pears to the workers. Although this choice differs from that in [2], one verifies easily
that all qualitative conclusions in [2]—notably the optimality of FIFO protocols (cited
as our Theorem 1)—are independent of this choice.

The timelines for two instantiations of the generic multiworker worksharing protocol
appear in Fig. 1. (To save space while preserving legibility we have each si ≡ i.) In the
top protocol, Σ and Φ coincide: (∀i)[fi = si], which specifies the (optimal) FIFO
protocol. In the bottom one, Σ and Φ are reversed: (∀i)[fi = sn−i+1], which specifies
the LIFO protocol. Neither relationship is true of general protocols; cf. [2].

The following abbreviations enhance the legibility of complicated expressions.
– For 1 ≤ i ≤ n, Ri

def= πi + ρi + δπi

is the effective computing rate of computer Ci per work unit, i.e., the “round-trip”
time-cost for [work-unpackaging + work-performing + result-packaging]

– τ̃
def= (1 + δ)τ

is the (common) per-unit “round-trip” communication rate for each computer.
Henceforth, we focus on a cluster C with effective (heterogeneity) profile 〈R1, . . . , Rn〉.

C0 sends :
work → C1 work → C2 work → C3
τw1 τw2 τw3

C1 : waits processes work results → C0

IDLE
unpackage work compute package results

π1w1 ρ1w1 π1δw1

send
τδw1

IDLE IDLE

C2 : waits waits processes work results → C0

IDLE IDLE
unpackage work compute package results

π2w2 ρ2w2 π2δw2

send
τδw2

IDLE

C3 : waits waits waits processes work results → C0

IDLE IDLE IDLE
unpackage work compute package results

π3w3 ρ3w3 π3δw3

send
τδw3

C0 sends :
work → C1 work → C2 work → C3
τw1 τw2 τw3

C1 : waits processes work results → C0

IDLE
unpackage work compute package results

π1w1 ρ1w1 π1δw1

send
δτw1

C2 : waits waits processes work results → C0

IDLE IDLE
unpackage work compute package results

π2w2 ρ2w2 π2δw2

send
τδw2

IDLE

C3 : waits waits waits processes work results → C0

IDLE IDLE IDLE
unpackage compute package

π3w3 ρ3w3 π3δw3

send
τδw3

IDLE IDLE

Fig. 1. Time-lines of 3-worker FIFO (top) and LIFO (bottom) protocols (not to scale)

160 A.L. Rosenberg

3 Work Production under the LIFO and FIFO Protocols

We invoke the observation from [2] that the work production of any n-computer clus-
ter C under any worksharing protocol can be calculated by solving a system of n linear
equations in n unknowns (the wi). Assuming that C’s computers are served in the startup
order s1, . . . , sn, the asymptotic5 work-allocations to its computers under a given work-
sharing protocol P, denoted w

(P)
s1 , . . . , w

(P)
sn , are specified by the following system.

C(P) ·

⎛

⎜⎜⎜⎜⎝

w
(P)
s1

w
(P)
s2

...

w
(P)
sn

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

L
L
...
L

⎞

⎟⎟⎟⎠ ; (1)

C(P) is the coefficient matrix that specifies the details of protocol P. One can “read off”
the coefficient matrices for the LIFO protocol L and the FIFO protocol F from Fig. 1:

C(L) =

⎛

⎜⎜⎝

Rs1 + τ̃ 0 · · · 0
τ̃ Rs2 + τ̃ · · · 0
...

...
. . .

...
τ̃ τ̃ · · · Rsn + τ̃

⎞

⎟⎟⎠; C(F) =

⎛

⎜⎜⎝

Rs1 + τ̃ δτ · · · δτ
τ Rs2 + τ̃ · · · δτ
...

...
. . .

...
τ τ · · · Rsn + τ̃

⎞

⎟⎟⎠

(2)
One can solve system (1) instantiated with the coefficients from (2) to determine

the work-allocations {w
(L)
si }n

i=1 and {w
(F)
si }n

i=1, hence also the resulting amounts of

aggregate completed work, W(L)(C; L) =
∑

i w
(L)
si and W(F)(C; L) =

∑
i w

(F)
si .

Theorem 1 ([2]). (a) For any cluster C and lifespan L,

W(F)(C; L) =
X

1 + δτX
· L where X =

n∑

k=1

1
Rsk

+ τ
·

k−1∏

i=1

Rsi + δτ

Rsi + τ
. (3)

(b) No worksharing protocol has greater work production than the FIFO protocol.

Theorem 2. For any cluster C and lifespan L,

W(L)(C; L) = L ·
n∑

k=1

1
Rsk

+ τ̃
·

k−1∏

i=1

Rsi

Rsi + τ̃
. (4)

Proof (Sketch). By considering the equation for w
(L)
s1 , plus all pairs of adjacent equa-

tions (i.e., equations whose indices have the forms si and si+1), we find that

[
w(L)

s1
=

1
Rs1 + τ̃

· L
]

and

[
w(L)

sk
=

Rsk−1

Rsk
+ τ̃

· w(L)
sk−1

for k ∈ {2, . . . , n}
]

(5)

5 Throughout, asymptotic means “as L grows without bound.”

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters 161

By unfolding the recurrent portion of (5), we find explicit expressions for each w
(L)
sk :

w(L)
sk

=
1

Rsk
+ τ̃

·
k−1∏

i=1

Rsi

Rsi + τ̃
· L. �

Theorems 1(a) and 2 specify the work productions of (respectively) the FIFO and LIFO
protocols for a given, but unspecified, startup order s1, . . . , sn. The fact that the nota-
tions W(L)(C; L) and W(F)(C; L) do not specify this order presages the fact that these
quantities are, in fact independent of startup order.

Theorem 3 ([2,4]). When cluster C is scheduled according to either the LIFO protocol
or the FIFO protocol, its aggregate completed work is independent of the order in which
C’s computers are served. That is, for all startup orders Σ1 and Σ2:
[
W(L)(C; L; Σ1) = W(L)(C; L; Σ2)

]
and

[
W(F)(C; L; Σ1) = W(F)(C; L; Σ2)

]
.

This result appears in [2] for the FIFO protocol and can be derived from results in
[4] for the LIFO protocol. We present an alternative proof for the LIFO protocol by
emulating the elegant proof strategy used in [12] for the FIFO protocol.

A function F (x1, . . . , xn) is symmetric if its value is unchanged by every reordering
of values for its variables. When n = 3, for instance, we must have

F (a, b, c) = F (a, c, b) = F (b, a, c) = F (b, c, a) = F (c, a, b) = F (c, b, a)
for all values a, b, c for the variables x1, x2, x3. For integers n > 1 and k ∈ {1, . . . n},

F
(n)
k denotes the multilinear symmetric function6 that has n variables grouped as prod-

ucts of k variables. The four functions F
(4)
k of R-values appear in the following table.

F
(4)
1 (R1, R2, R3, R4) = R1 + R2 + R3 + R4

F
(4)
2 (R1, R2, R3, R4) = R1R2 + R1R3 + R1R4 + R2R3 + R2R4 + R3R4

F
(4)
3 (R1, R2, R3, R4) = R1R2R3 + R1R2R4 + R1R3R4 + R2R3R4

F
(4)
4 (R1, R2, R3, R4) = R1R2R3R4

Two notational simplifications will enhance legibility. (1) We allow k to assume the
value 0 and set F

(n)
0 ≡ 1. (2) Because our arguments to the functions F

(n)
i are always

R1, . . . , Rn, we abbreviate “F (n)
i (R1, . . . , Rn)” by “F (n)

i .”

Theorem 3 is immediate from the following lemma.

Lemma 1. For all lifespans L:

W(L)(C; L) = L ·
F

(n)
n−1 + F

(n)
n−2τ̃ + · · · + F

(n)
1 τ̃n−2 + F

(n)
0 τ̃n−1

(R1 + τ̃) × (R2 + τ̃) × · · · × (Rn−1 + τ̃) × (Rn + τ̃).
(6)

Thus, W(L)(C; L) is symmetric in the effective computing rates, R1, . . . , Rn.

Proof. We proceed by induction on the sizes (i.e., numbers of computers) of clusters. To
aid legibility, we embellish the “name” of each cluster C with a subscript that specifies

6 The qualifier “multilinear” tells us that no variable occurs to a power > 1; this excludes sym-
metric functions such as F (a, b) = a2b + ab2.

162 A.L. Rosenberg

its size. The notational convention is that the n-computer cluster Cn has effective profile
〈R1, . . . , Rn〉. As the base of our induction, we note from equation (4) that

W(L)(C1; L) =
1

(R1 + τ̃)
=

F
(1)
0

(R1 + τ̃)
;

W(L)(C2; L) =
1

(R1 + τ̃)
+

1
(R2 + τ̃)

· R1

(R1 + τ̃)
=

F
(2)
1 + F

(2)
0 τ̃

(R1 + τ̃) × (R2 + τ̃)
.

Now assume, for induction, that (6) holds for all cluster sizes up through n. Combin-
ing our two specifications of W(L)(C; L), viz., equations (6) and (4), we then have

W(L)(Cn+1; L) = W(L)(Cn; L) +
1

Rn+1 + τ̃
·

n∏

i=1

Ri

Ri + τ̃

=

(
F

(n)
n−1 + F

(n)
n−2τ̃ + · · · + F

(n)
0 τ̃n−1

)
(Rn+1 + τ̃) +

∏n
i=1 Ri

(R1 + τ̃) × (R2 + τ̃) × · · · × (Rn + τ̃) × (Rn+1 + τ̃)
.

The proof is now completed by invoking the following easily verified identities:
For all i ∈ {1, . . . , n}, Rn+1F

(n)
n−i + F

(n)
n−i+1 = F

(n+1)
n−i+1.

In verifying these identities, recall that
∏n

i=1 Ri = F
(n)
n . In applying these identities,

note the role of the τ̃ in the induction-extending factor (Rn+1 + τ̃). �

A conjecture. Olivier Beaumont has reported, in personal communication, that
informal simulations have failed to turn up any other worksharing protocol that
shares the LIFO and FIFO protocols’ independence from the order in which
cluster C’s computers are supplied with work. It is intriguing to conjecture
that these two protocols are, in fact, unique in this independence. A plausible
place to start trying to prove this is to exploit the fact that the LIFO and FIFO
protocols are the only ones whose coefficient matrices—cf. (2)—have upper
triangles and lower triangles that are all constant. (This fact about the matrices
can be verified from the development in [2].)

Theorem 3 combines with equations (3) and (4) to reveal the following simple but
consequential facts. The first fact is that LIFO and FIFO protocols complete more work
on faster clusters.

Proposition 1. Let clusters C and C′ have respective profiles 〈R1, . . . , Ri, . . . , Rn〉 and
〈R1, . . . , R′

i, . . . , Rn〉. If R′
i < Ri,7 then for all L:

[
W(L)(C′; L) > W(L)(C; L)

]
and

[
W(F)(C′; L) > W(F)(C; L)

]
.

Proof. The proof for the FIFO protocol appears in [12], so we focus on the LIFO pro-
tocol. We refine equation (4) to specifies the startup order Σ. (We actually already
do this in the righthand expression in (4).) We choose any startup order Σ for C, for
which sn = i; i.e., Σ has the form Σ = 〈s1, . . . , sn−1, i〉. We then form the versions of

7 Recall: the indicated inequality means that C′’s ith computer is faster than cluster C’s.

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters 163

equation (4) that use startup order Σ with both of the indicated profiles. To enhance per-
spicuity, we write these versions in a way that emphasizes the fact that W(L)(C; L; Σ)
and W(L)(C′; L; Σ) differ only in their first terms.

W(L)(C; L; Σ) =

(
1

Rsn + τ̃
·

n−1∏

i=1

Rsi

Rsi + τ̃
+

n−1∑

k=1

1

Rsk + τ̃
·

k−1∏

i=1

Rsi

Rsi + τ̃

)
· L

W(L)(C′; L; Σ) =

(
1

R′
sn

+ τ̃
·

n−1∏

i=1

Rsi

Rsi + τ̃
+

n−1∑

k=1

1

Rsk + τ̃
·

k−1∏

i=1

Rsi

Rsi + τ̃

)
· L

Because R′
sn

< Rsn , we thereby find that

W(L)(C′; L; Σ) − W(L)(C; L; Σ) = L ·
(

1

R′
sn

+ τ̃
− 1

Rsn + τ̃

)
·

n−1∏

i=1

Rsi

Rsi + τ̃
> 0,

so that W(L)(C′; L; Σ) > W(L)(C; L; Σ). �
The second fact is that adding an additional computer to cluster C increases C’s aggre-
gate completed work under the LIFO protocol. (It is shown in [4], by example, that this
need not be the case with the FIFO protocol.)

Proposition 2. Let cluster C′ be obtained by adding a (n + 1)th computer to cluster C.
Then W(L)(C′; L) > W(L)(C; L).

Proof. Let the new computer, C, have effective computing rate R. Let each of C’s com-
puters retain its starting index within C′, and let us assign C startup index sn+1, so that
R = Rsn+1 . (This is just for convenience: Theorem 3 tells us that we could assign C
any starting order without changing the result.) Invoking equation (4), we find that

W(L)(C′; L) − W(L)(C; L) =
1

Rsn+1 + τ̃
·

n∏

i=1

Rsi

Rsi + τ̃
.

This difference is positive because each factor in the product is. �

4 The LIFO Protocol Is Approximately Optimal

This section is devoted to proving that every cluster completes a fixed fraction as much
work under the LIFO protocol as under the optimal FIFO protocol.

Theorem 4. The LIFO protocol is “approximately” optimal, in the following sense.
For every cluster C, there exists a fixed constant ϕC > 0 that does not depend on how
heterogeneous cluster C is (as measured by the relative speeds of its fastest and slowest
computers) such that W(L)(C; L) > ϕC · W(F)(C; L).8

We prove Theorem 4 by computing a lower bound on W(L)(C; L) and an upper bound
on W(F)(C; L) and comparing the results. We focus on an n-computer cluster C whose
effective heterogeneity profile is 〈R1, . . . , Rn〉, where

– R(slow) def= max{R1, . . . , Rn} is the effective rate of C’s slowest computer;
– R(fast) def= min{R1, . . . , Rn} is the effective rate of C’s fastest computer.

8 Recall that W(F)(C; L) is the most work that cluster C can complete in time L under any
worksharing protocol (Theorem 1).

164 A.L. Rosenberg

4.1 A Lower Bound on the LIFO Work Production W(L)(C; L)

Lemma 2. For every cluster C and lifespan L, W(L)(C; L) >
1

R(slow) + τ̃
· L.

Proof. By combining equation (4) for W(L)(C; L) with the “order-independent” Theo-
rem 3 and the “faster-clusters-are-better” Proposition 1, we find that

W(L)(C; L) ≥ 1

R(slow) + τ̃

n−1∑

k=0

(
R(slow)

R(slow) + τ̃

)k

· L =
1

τ̃
·
(

1 −
(

R(slow)

R(slow) + τ̃

)n)
· L

(7)
We next invoke the “bigger-clusters-are-more-powerful” Proposition 2 to remark that

W(L)(C; L) ≥ W(L)(C′; L), (8)

where C′ is the two-computer subcluster of C whose profile is 〈R1, R2〉, and R(slow) ∈
{R1, R2}. We then combine inequalities (7) and (8) to see that

W(L)(C; L) ≥ W(L)(C′; L) ≥ 1
τ̃

·

⎛

⎝1 −
(

R(slow)

R(slow) + τ̃

)2
⎞

⎠ · L

=
1
τ̃

·
(

1 − R(slow)

R(slow) + τ̃

)
·
(

1 +
R(slow)

R(slow) + τ̃

)
· L

>
1
τ̃

·
(

1 − R(slow)

R(slow) + τ̃

)
· L

=
1

R(slow) + τ̃
· L.

The lemma follows. �

4.2 An Upper Bound on the FIFO Work Production W(F)(C; L)

Lemma 3. For every cluster C and lifespan L, W(F)(C; L) <
1
τ

· L.

Proof. We simplify the development by replacing cluster C’s characterizing parameters
by a composite parameter that bounds its computation-to-communication complexity:
the ratio κC

def= R(fast)/τ . By combining equation (3) for W(F)(C; L) with the “faster-
clusters-are-better” Proposition 1, we then find that

W(F)(C; L) ≤ 1
τ

·
(

1 − (1 − δ)(R(fast) + δτ)n

(R(fast) + τ)n − δ · (R(fast) + δτ)n

)
· L

=
1
τ

·
(

1 − (1 − δ)(κC + δ)n

(κC + 1)n − δ · (κC + δ)n

)
· L

=
1
τ

·

⎛

⎜⎝1 − 1 − δ
(
(κC + 1)/(κC + δ)

)κC+(n−κC)

− δ

⎞

⎟⎠ · L.

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters 165

We now invoke the classical inequality
(
1 +

x

m

)m

≤ ex,

which holds for all real positive x and m, to observe that
(

κC + 1
κC + δ

)κC

=
(

1 +
1 − δ

κC + δ

)κC

≤
(

1 +
1 − δ

κC + δ

)κC+δ

≤ e1−δ

This inequality combines with our assumption that δ < 1 to allow us to extend the
preceding chain of inequalities on W(F)(C; L). We find that

W(F)(C; L) ≤ 1
τ

·
(

1 − 1 − δ

e(1−δ)(n−κC) − δ

)
· L <

1
τ

· L.

The lemma follows. �

4.3 The LIFO-FIFO Bounding Ratio

Finally, we combine the bounds of Lemmas 2 and 3 to conclude that for all clusters C
and lifespans L,

W(L)(C; L) >
τ

R(slow) + τ̃
· W(F)(C; L).

The fraction ϕC =
τ

R(slow) + τ̃
thus satisfies Theorem 4. �

Clearly, the fraction ϕC does not depend on how heterogeneous cluster C is as mea-
sured by the relative speeds of its fastest and slowest computers—as exposed, say, by
the size of the ratio R(slow)/R(fast).

5 Conclusions

We have exposed unexpected properties of the LIFO worksharing protocol, the struc-
turally attractive and intuitively compelling greedy solution to the Cluster Exploitation
Problem (CEP). These properties involve both the structure of the LIFO protocol and
its behavior, measured via its work-production in the CEP.

In terms of the LIFO protocol’s behavior, our main result shows that the protocol’s
work-production when solving the CEP is at least a fixed constant fraction of optimal
(Theorem 4). In view of the ease of specifying and analyzing the LIFO protocol, this
result may promote interest in the protocol—and in pursuing analogous performance
bounds for other as-yet unanalyzed scheduling heuristics.

In terms of the LIFO protocol’s structure, we have shown that a cluster’s work-
production under the LIFO protocol is independent of the order in which the cluster’s
computers are supplied with work (Theorem 3). This independence is shared by the op-
timal FIFO worksharing protocol; we conjecture that it is shared by no protocols other
than FIFO and LIFO. This unexpected result joins companions in [2,10,12] in remind-
ing us of the subtlety of the phenomenon of heterogeneity in computing—even with
respect to as simple a scheduling problem as the CEP.

Future work will attempt to settle the order-independence conjecture and will explore
the CEP when work complexity is not linear in work size.

166 A.L. Rosenberg

Acknowledgments. It is a pleasure to thank the anonymous referees for their careful
reviews, and Olivier Beaumont and Sanjay Rajopadhye for stimulating conversations.

References

1. Adler, M., Gong, Y., Rosenberg, A.L.: Asymptotically Optimal Worksharing in HNOWs:
How Long Is ‘Sufficiently Long’? In: 36th Annual Simulation Symposium, pp. 39–46 (2003)

2. Adler, M., Gong, Y., Rosenberg, A.L.: On “Exploiting” Node-Heterogeneous Clusters Opti-
mally. Theory of Computing Systems 42, 465–487 (2008)

3. Beaumont, O., Legrand, A., Robert, Y.: The Master-Slave Paradigm with Heterogeneous
Computers. IEEE Transactions on Parallel and Distributed Systems 14, 897–908 (2003)

4. Beaumont, O., Marchal, L., Robert, Y.: Scheduling Divisible Loads with Return Messages
on Heterogeneous Master-Worker Platforms. In: Bader, D.A., Parashar, M., Sridhar, V.,
Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 498–507. Springer, Heidelberg
(2005)

5. Beaumont, O., Rosenberg, A.L.: Link-Heterogeneity vs. Node-Heterogeneity in Clusters. In:
17th International High-Performance Computing Conference (2010)

6. Bharadwaj, V., Ghose, D., Mani, V.: Optimal Sequencing and Arrangement in Distributed
Single-Level Tree Networks. IEEE Transactions on Parallel and Distributed Systems 5, 968–
976 (1994)

7. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel
and Distributed Systems. J. Wiley & Sons, New York (1996)

8. Cappello, F., Fraigniaud, P., Mans, B., Rosenberg, A.L.: An Algorithmic Model for Heteroge-
neous Clusters: Rationale and Experience. International Journal of Foundations of Computer
Science 16, 195–216 (2005)

9. Dutot, P.-F.: Complexity of Master-Slave Tasking on Heterogeneous Trees. European Journal
of Operational Research 164, 690–695 (2005)

10. Rosenberg, A.L.: On Sharing Bags of Tasks in Heterogeneous Networks of Workstations:
Greedier Is Not Better. In: 3rd IEEE International Conference on Cluster Computing, pp.
124–131 (2001)

11. Rosenberg, A.L.: Changing Challenges for Collaborative Algorithmics. In: Zomaya, A. (ed.)
Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with
Emerging Technologies, pp. 1–44. Springer, New York (2006)

12. Rosenberg, A.L., Chiang, R.C.: Toward Understanding Heterogeneity in Computing. In: 24th
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2010 (2010)

Scheduling JavaSymphony Applications on

Many-Core Parallel Computers�

Muhammad Aleem, Radu Prodan, and Thomas Fahringer

Institute of Computer Science, University of Innsbruck,
Technikerstraße 21a, A-6020 Innsbruck, Austria

{aleem,radu,tf}@dps.uibk.ac.at

Abstract. JavaSymphony is a Java-based programming and execution
environment for programming and scheduling the performance oriented
applications on multi-core parallel computers. In this paper, we present
a multi-core aware scheduling extension to JavaSymphony capable of
mapping parallel applications on large multi-core machines and hetero-
geneous clusters. JavaSymphony scheduler considers several multi-core
specific performance parameters and application types, and uses these
parameters to optimise the mapping of JavaSymphony objects and tasks.
We evaluate the performance of JavaSymphony scheduler using several
real scientific applications and benchmarks on a multi-core shared mem-
ory machine and a heterogeneous cluster.

1 Introduction

Multi-core processors [2] add an additional level of parallelism to the existing par-
allel computers and scheduling parallel applications becomes even more challeng-
ing. To speedup applications, a scheduler is required to consider the application
properties (e.g., communication and computation needs) and architectural char-
acteristics (e.g., network and memory latencies, heterogeneity of machines, mem-
ory hierarchies, machine load). Today, there are many research efforts [3,4,6,8,9],
which target application scheduling on multi-core parallel computers. Some of
them [3,6,8], however, either consider at most one architectural characteristic
or they [9] are limited to a specific parallel computing architecture (e.g., shared
or distributed memory computers). We extend our Java-based parallel program-
ming paradigm with a scheduler capable of scheduling jobs on multi-core parallel
computers. To the best of our knowledge, we are the one who provides a scheduler
for Java applications which considers the low level multi-core specific character-
istics (e.g., network and memory latencies, bandwidth, processor speed, shared
cache, machine load).

In previous work [1], we developed JavaSymphony (JS) as a Java-based pro-
gramming paradigm for parallel and distributed infrastructures such as shared

� This research is partially funded by the “Tiroler Zukunftsstiftung”, Project name:
“Parallel Computing with Java for Manycore Computers”.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 167–179, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

168 M. Aleem, R. Prodan, and T. Fahringer

memory multi-cores and heterogeneous clusters. JS’s design is based on the con-
cept of dynamic virtual architecture, which allows the programmer to fully define
a hierarchical structure of the underlying computing resources (e.g., cores, pro-
cessors, machines, and clusters) and to control load balancing and locality.

A main drawback of the JS’s design is the fact that the mapping of objects
and tasks to computing cores has to be performed manually by the programmer.

To fill this gap, we extend JS with a scheduler based on a non-preemptive
static scheduling algorithm capable of mapping the JS parallel applications (e.g.,
shared, distributed, and hybrid memory applications with high degree of regular-
ity). Many architecture specific factors (e.g., processor speed, memory and net-
work latencies, resource sharing, and machine load) influence the performance of
a parallel application. Considering alone the target architecture is not sufficient
to determine the sensitivity of a performance factor. The application class (e.g.,
communication and computation needs) and the architectural features collec-
tively determine the performance sensitivity of a factor. Therefore, we propose a
method based on training experiments that determines the sensitivities of per-
formance factors with respect to the application classes (e.g., communication
and computation-intensive) and multi-core architectures (e.g., shared memory
machines, heterogeneous clusters). The training data consists of sorted lists of
Performance Factor (PF), which is used by the JS scheduler as guidelines.

The paper is organised as follows. Next section discusses the related work.
Section 3 presents the JS overview. Section 4 presents the JS scheduler, including
its architecture, methodlogy, and algorithm. Section 5 presents experimental
results and section 6 concludes the paper.

2 Related Work

Jcluster [8] is a Java-based message passing parallel environment. It provides a
load balancing task scheduler based on transitive random stealing algorithm. The
scheduler allows the idle nodes to steal tasks from the busy nodes. In contrast
to the JS, they consider only the load balancing factor on clusters.

Proactive [3] is a Java-based parallel environment providing high-level pro-
gramming abstractions based on the concept of active objects. Alongside pro-
gramming, Proactive provides deployment-level abstractions for applications on
multi-core machines, clusters, and Grids. In contrast to the JS, Proactive does
not provide functionality to map an active object to a specific core or processor.

Parallel Java [6] is a Java-based programming environment. It provides pro-
gramming constructs similar to the OpenMP and MPI. Parallel Java’s scheduler
keeps track of the busy and idle nodes in a cluster, and schedules the jobs by
selecting one of the idle nodes. In contrast to the JS, they only consider the
availability of nodes (free machines) as the main scheduling criteria.

In [9] the authors studied the impact of the shared resource contention on the
application performance. To avoid the shared resource contention, they proposed
a scheduling algorithm which allocates jobs in order to balance the cores’ cache
miss rates. In contrast to our approach, their scheduler only considers shared
memory multi-cores and does not schedule applications on clusters.

JavaSymphony Many-Core Scheduler 169

In [4], the authors presented an energy-aware scheduling algorithm for het-
erogeneous multi-core machines. They use profiling to collect the different char-
acteristics of a parallel program and then fuzzy logic is applied to estimate the
suitability among program characteristics and cores. In contrast to our approach,
they do not consider several important performance-sensitive factors such as pro-
cessor computing power, co-scheduling of threads, and latencies.

Most of the related work, either considers few multi-core characteristics or
they are limited to the specific target architectures. To the best of our knowl-
edge, no Java-based scheduler considers the low-level multi-core and application
related characteristics.

3 JavaSymphony

Distributed memory

Grid

3

Shared memory
(NUMA, UMA) Multi-core

processor

(Cluster)Level i VAi

Core

1

2

0 0

0 0

0 0

0 0

1

0 0

1

0 0

1

0 0

2

1

Fig. 1. Four-level VA

JavaSymphony is a Java-based programming
paradigm for developing parallel and distributed
applications. JS’s high-level constructs abstract
low-level infrastructure details and simplify the
tasks of controlling parallelism and locality. It of-
fers a unified solution for user-controlled locality-
aware mapping of objects and tasks on shared
and distributed memory architectures. Here, we
provide an overview of some of the JS features,
while complete details can be found in [1].

JS’s design is based on the concept of the dy-
namic Virtual Architecture (VA) [1]. A VA allows the programmer to define the
structure of heterogeneous computing resources and to control mapping, load
balancing and migration of objects. Most existing work [3,6] assumes a flat hi-
erarchy of computing resources. In contrast, JS allows the programmer to fully
specify the multi-core architectures [1] by defining as a tree structure, where
each VA element has a certain level representing a specific resource granularity.
Figure 1 depicts a four-level VA representing a heterogeneous cluster.

Writing a parallel JS application requires encapsulating Java objects into so
called JS objects, which are distributed and mapped onto the hierarchical VA
nodes (levels 0 to n). The object agent system [1], a part of JS runtime environ-
ment, processes remote as well as local shared memory jobs. It is responsible for
creating jobs, mapping objects to VAs, migrating, and releasing objects.

Previously, the JS programmer was responsible to create the required VAs
and to manually map the objects and tasks onto the VA nodes which we plan
to automatise by developing a scheduler that automatically creates the required
VAs and manages the mappings of the JS objects and tasks.

4 JavaSymphony Scheduler

JavaSymphony scheduler is a multi-core aware scheduler that operates in a two
stages. In stage-1, training experiments are conducted offline to study the perfor-
mance impacts of the different factors (e.g., processor speed, memory/network

170 M. Aleem, R. Prodan, and T. Fahringer

latencies, bandwidth, co-scheduling) with respect to the two architectures and
application classes (for simplicity). In stage-2, the JS scheduler uses the collected
training data as guidelines to optimise the selection of the target computing
resources (e.g., machines, processors, and cores). For the training and the vali-
dation experiments, we use several applications which we classify in two classes
(e.g., compute-intensive and the communication-intensive). The classification of
the applications is performed by measuring the computational needs of the ap-
plications, Section 5.1 describes in detail the classification experiment and the
related results.

4.1 System Architecture

Launch JS
Application

Object Agent
System

Network
Agent System

Multi-core
Cluster

Multi-core machine-1
processor-n

core-1

core-n

processor-1
core-1

core-n

GPGPU-1 GPGPU-n

Multi-core machine-n
processor-n

core-1

core-n

processor-1
core-1

core-n

GPGPU-1 GPGPU-n

Node-1

JVM

AppOA &
Scheduler

JavaSymphony
Application

Node-n

JVM

AppOA &
Scheduler

JavaSymphony
Application

JVM

Network Agent

PubOA &
Resource Manager

JVM

Network Agent

PubOA &
Resource Manager

Fig. 2. The JS System Architecture

Figure 2 shows the JS system architec-
ture. The JS runtime [1] is an agent-
based system and has two main compo-
nents: object and network agent system.
The object agent system has two compo-
nents: the Public Object Agent (PubOA,
one for each machine), and the Applica-
tion Object Agent (AppOA, one for each
JS application). The network agent sys-
tem monitors and interacts with the cor-
responding multi-core machine.

The JS scheduler has two modules: re-
source manager and scheduler. The re-
source manager is part of the PubOA
and interacts with the multi-core ma-
chine with the help of the network agent.
The resource manager acquires and keeps
track of the physical computing resources (e.g., cores, processors, and multi-core
machine) and collects the machine related information: network and memory la-
tencies, memory hierarchies and bandwidth and processor details (e.g., topology,
speed). The scheduler is part of the AppOA and runs along with the executing
JS application. The scheduler uses the information provided by the resource
manager and the programmer (in form of PF lists) to sub-optimally schedule
the JS objects and tasks on the multi-core resources.

4.2 Scheduling Methodology

The JS scheduler considers following performance factors together with two ap-
plication classes (e.g., compute and communication intensive) to determine the
performance sensitivities for the factors.

1. Network latency : The amount of time required by a message to travel from
one machine to another in a cluster.

2. Memory latency : The time delay which occurs for a message to travel from
a main memory module to a processor (e.g., NUMA latencies).

JavaSymphony Many-Core Scheduler 171

3. Bandwidth : The amount of data transferred (in a second), from one machine
to another in a cluster (network bandwidth) or from a memory module to a
processor (memory bandwidth, such as in NUMA-based machines).

4. Co-scheduling : Co-scheduling of the parallel threads is achieved by map-
ping n threads on a multi-core processor (having n cores and shared last level
cache). The not-co-scheduled execution is obtained by mapping threads on
different processors (avoiding the sharing of the last level cache). The co-
scheduling ratio (cos) shows the performance improvements or degradations
and is calculated as follows: cos = T (p)not−co−scheduled

T (p)co−scheduled
, where T (p) is the par-

allel execution time of the application. The cos value greater than 1 shows
improved, less than 1 shows degraded, and the cos value 1 shows no change
in the performance of the application.

5. Machine load : The number of parallel tasks mapped on a multi-core ma-
chine. In this work, we only consider the load during the computational stage
(excluding the external load). It plays significant role in the performance of
the hybrid memory applications. If a machine’s load is not balanced, then
the over-loaded machines will face more contention on the shared resources.

6. Processor speed : The processor speed represents the computing power
(clock frequency) of a processor.

In stage-1, the training experiments are conducted to determine the signifi-
cance of the above mentioned factors for the available multi-core architectures
and application classes (e.g., communication and computation intensive). We
manually search a sub-optimal VA node (e.g., core, processor, or machine) by
considering a performance factor and map the JS tasks onto the selected VA
node. For example, to search a sub-optimal VA node with respect to the proces-
sor speed factor, we select the fastest available resources (e.g., cores, processors,
and machines) and manually map the JS tasks onto the selected VA nodes. Us-
ing this methodology, we collect the performance impact data for all the factors
with respect to the two parallel architectures and the application classes.

In stage-2, the JS scheduler utilises the collected training data (in the form
of PF lists) and makes the scheduling decisions using that. To schedule a JS ap-
plication on a parallel architecture, the scheduler requires the training data for
the similar application class on the target parallel architecture. The JS scheduler
uses a repetitive optimisation method (to find a sub-optimal VA node) by con-
sidering all the performance factors in the PF list. After optimising with respect
to all the factors, the scheduler selects one of the VA node (e.g., core, processor,
or machine) and maps the task onto the selected resource.

4.3 Algorithm

A JS application consists of two schedule entities: the coarse-grained JS objects
and the fine-grained JS tasks. Therefore, we designed the scheduling algorithm
to operate in two phases: in phase-1 the JS objects are scheduled and in phase-2
the JS tasks.

172 M. Aleem, R. Prodan, and T. Fahringer

Algorithm 1. JavaSymphony Scheduler (main part)
Input: AppPrgMdl,AppClass,Arch,JSObjectQ,JSTaskQ,Rlist
Output: JS scheduled application

1 begin
2 while true do
3 phase ←− 1; /* phase-1 (object) scheduling */
4 while JSObjectQ �= ∅ do
5 Object obj ←− pop(JSObjectQ); /* get next JS object */
6 V A v ←− GetOptNode(phase, AppClass, Arch, AppPrgMdl);
7 Schedule(obj, v); /* map JS object obj to VA node v */
8 UpdateResources(Rlist, obj, v);

9 end
10 phase ←− 2; /* phase-2 (task) scheduling */
11 while JSTaskQ �= ∅ do
12 Task tsk ←− pop(JSTaskQ); /* get next JS task */
13 V A v ←− GetOptNode(phase, AppClass, Arch, AppPrgMdl);
14 Schedule(tsk, v); /* map JS task tsk to VA node v */
15 UpdateResources(Rlist, tsk, v);

16 end

17 end

18 end

Algorithm 1 shows the main scheduling algorithm. First, the input data items
are declared: AppPrgMdl (JS application’s programming model e.g., shared, dis-
tributed, or hybrid), AppClass (compute-/communication-intensive), Arch (tar-
get architecture e.g., shared or distributed memory computer), JSObjectQ (JS
object queue), JSTaskQ (JS task queue), and Rlist (resource status). In line 2,
main scheduling loop starts. First, the scheduling phase is updated (line 3) and
phase-1 scheduling starts (line 4). In line 5, the object obj is extracted from the
object queue. Then, GetOptNode method (Algorithm 2) is invoked (line 6) which
returns a sub-optimal VA node v, by considering the scheduling phase (phase),
the application class (AppClass), the architecture (Arch), and the programming
model (AppPrgMdl). Then, the obj object is mapped to the VA node v (line
7). Afterwards, the mapping details are passed to the resource manager (line 8).
In the phase-2, the JS tasks are scheduled (lines 10 − 16). First, the scheduling
phase is updated (line 10) and the phase-2 scheduling starts at line 11. A task
tsk is extracted from the task queue (line 12). Then, the GetOptNode method
is invoked (line 13) that returns a sub-optimal VA node v, by considering the
scheduling phase, application class, architecture, and programming model. Then,
the task tsk is mapped to the VA node v (line 14) and the mapping details are
passed to the resource manager (line 15).

Algorithm 2 shows the GetOptNode method. First, a VA node v is created
(line 2). The existing VA nodes (e.g., cores, processors, machines, and cluster)
are acquired in vaNodes (line 3). The performance factors list (PFlist) is read
(line 4). For the object scheduling, the getAppVaNode method is invoked with
parameters: the programming model, the application class, the architecture, all
VA nodes, and the PFlist (lines 5 − 6). The getAppVaNode method returns a
sub-optimal VA node by considering the application programming model (e.g.,
shared, distributed, or hybrid memory). For example, if a hybrid memory JS
application is scheduled, then it returns a VA node representing a multi-core

JavaSymphony Many-Core Scheduler 173

Algorithm 2. JavaSymphony Scheduler - GetOptNode method
Input: AppPrgMdl,AppClass,Arch,phase
Output: VA v

1 begin
2 V A v ←− ∅;
3 V A[] vaNodes ←− ReadSystemV aNodes(); /* read all VA nodes */
4 V ector PFlist ←− ReadSystemPFList(Arch, AppClass);
5 if phase=1 then /* phase-1, object scheduling */
6 v ←− getAppV aNode(AppPrgMdl, AppClass, Arch, vaNodes, PF list)
7 else if phase=2 then /* phase-2, task scheduling */
8 V A[] optNodes ←− vaNodes;
9 while PFlist.hasNext() do /* find a sub-optimal VA node */

10 Object pfct ←− PFlist.getNext();
11 optNodes ←− getBestF itNodes(pfct, optNodes);

12 end
13 v ←− optNodes[0];

14 end
15 return v ;

16 end

machine in a cluster (optimising only the network performance factors). In phase-
2 (line 8), first all VA nodes are assigned to optNodes. After the start of the loop
in line 9, a performance factor pfct is obtained (line 10). In line 11, getBestFitN-
odes method is invoked, this method returns a subset of VA nodes by considering
optimisation with respect to a factor (pfct). For example, when the method is
called using the performance factor processor speed, then it returns a subset of
the sub-optimal VA nodes which represents the fastest available machines, pro-
cessors, and cores. After optimising all the factors in PFlist, a sub-optimal VA
node is assigned to v (line 13). In line 15, the VA node v is returned.

5 Experiments

We developed several JS-based real applications and benchmarks and experi-
mented using two types multi-core parallel computers: shared memory machines
(m01 − 02) and a heterogeneous cluster (HC, an aggregation of m01 − 02 and
k01 − 03 machines). Table 1 outlines the details of the experimental setup.

5.1 Experimental Methodology

We perform two types of experiments for training and validation of the JS sched-
uler. Before the experiments, we classify all the applications in two classes: the
communication-intensive and the computation-intensive.

Table 1. The Experimental Setup

Nodes Node Shared Processor Processor cores Network
architecture caches per node

m01 − 02 NUMA L3 Quad-core Opteron 8356 32 (8 × 4) Gigabit Ethernet
k01 − 03 UMA - Dual-core Opteron 885 8 (4 × 2) Gigabit Ethernet

174 M. Aleem, R. Prodan, and T. Fahringer

0 10 20 30 40 50 60 70 80 90 100

NAS EP

3DRT

NAS CG

SpMMM

SpMVM

VCMatrix

MatrixFPO

Execution time %

Ap
pl

ic
at

io
ns

Computation time

Fig. 3. Application classifica-
tion

To classify an application, we measured the ap-
plication execution time performing pure com-
putational tasks (e.g., add, multiply, divide).
For that, we measure the performance coun-
ters RETIRED X87 FLOATING POINT OPERATIONS
and CPU CLOCK UNHALTED and calculate the time
(in seconds) consumed by each of the com-
pute operations using the formula: T ime(op) =
Count(op)×CyclesPer(op)

CpuFrequency , where op denotes addi-
tion, multiplication or division. Then, we sum
the time consumed by the compute-operations
and calculate the percentage of computation time from the overall execution.
The results (shown in Figure 3) are then used to classify all the applica-
tions in compute-intensive (more than 50% time in computations) and the
communication-intensive (less than 50% time in computations) classes. Within
each class, we use some of the applications for the training phase and the rest
for the validation experiments.

In the training experiments, we manually map JS tasks to VA nodes by search-
ing for a sub-optimal node (considering a performance factor e.g., processor
speed, latency, co-scheduling). For example, to search a sub-optimal node with
respect to the latency factor results in the subset of the VA nodes which mini-
mize the latency (both network and memory) of the mapped JS tasks. Similarly,
we collect the performance gains achieved by each factor (whichever applicable,
e.g., bandwidth on m01-02 machines is modeled by the latency, therefore it is not
listed) with respect to the two parallel architectures and the application classes.
Table 2 shows the results (along the performance gains achieved as compared to
the default executions) as a sorted list of the performance factors (PF). The PF
lists highlight the significance of the different performance factors with respect
to the target architectures and the application classes.

In the validation experiments, the JS applications are scheduled by the sched-
uler based on the application programming model (shared, distributed, or hy-
brid), architecture type (shared or distributed memory computer), and applica-
tion class (compute or communication intensive). The PF lists are also supplied
to the scheduler (Algorithm 1), which uses them as guidelines for optimising the
search and the selection of the target VA nodes. The JS scheduler creates the
required VAs and sub-optimally maps the JS entities (objects and tasks) onto
the VA nodes. The experiments conducted on the m01/02 machines contain up to
three executions: an optimised (using the PF lists) execution by the scheduler, a

Table 2. Performance factors lists - average speedup gains

Compute-intensive application class Communication-intensive application class
m01 − 02 latency (13.28%), co-scheduling (5.19%) latency (16.69%), co-scheduling (9.05%)

HC cluster processor speed (30.15%) processor speed (25.5%)
machine load (24.7%) machine load (24.35%)
co-scheduling (15.16%) latency (6.35%)
latency (10.99%) co-scheduling (2.68%)

JavaSymphony Many-Core Scheduler 175

default Linux-scheduled execution (denoted as LSO), and a scheduler-based ex-
ecution with optimisations applied using the shuffled factors (the co-scheduling
factor is used before the latency) of the PF lists (PRM). The experiments con-
ducted on the HC cluster contain up to four executions: a JS scheduler-based
optimised execution (using PF lists), a Linux scheduled un-optimised execution
(LSO) with the machine access order: m01-02 and k01-k03, the LSOR (Linux
scheduled) with reverse machine access order: k01 − 03 and m01 − 02, and the
JS scheduled execution with shuffled factors (for compute-intensive applications
the latency factor is swapped with the co-scheduling and for communication-
intensive applications the machine load factor is swapped with the processor
speed) in the PF list (PRM).

5.2 Communication-Intensive Applications

We used four communication-intensive applications for the training and the val-
idation experiments: the Sparse Matrix-Vector Multiplication (SpMVM), the
NAS parallel benchmarks CG kernel, the Variance Co-Variance Matrix compu-
tation (VCMatrix), and the Sparse Matrix-Matrix Multiplication (SpMMM).

Training Experiments. The SpMVM kernel computes y = A · x where A is
a sparse matrix, and x, y are the dense vectors. The y is computed as follows:
yi =

∑n
j=1 aij · xj . We use 15000 × 15000 matrix, with 4000 non-zeros/row.

Figure 4(a) shows the experiment results on the m01. The results show that,
the memory latency based mappings of the JS tasks result in 15.41% improved
speedup (on average) as compared to the LSO. The mappings of the parallel tasks
based on co-scheduling factor achieves 2.69% better speedups as compared to
the LSO. Figure 4(b) shows the SpMVM experimental results on the HC cluster.
The results show that, the mapping of the tasks based on the processor speed
factor achieves 25.5% speedup (on average) as compared to the LSO (using the
HC machines in a random order). The other mappings (considering other factors)
achieve: machine load (24.35%), latency (memory and network, 6.35%), and co-
scheduling (2.68%), better speedups as compared to the LSO.

The CG kernel uses the power and conjugate gradient method to compute an
approximation to the smallest eigenvalues. We used the Java-based implemen-
tion [5] of the kernel to develop the JS CG version. Figure 4(c) shows the exper-
iment (size: C) results of the JS CG on m01. The memory latency factor based
mapping of the application achieves on average 17.97% and the co-scheduling
based mappings achieves 8.72% better speedups as compared to the LSO.

Validation Experiments. The VCMatrix computes the co-variances and vari-
ances of a matrix. The diagonal values of the resultant matrix represent variances
and the off-diagonal represent co-variances. Figure 4(d) shows the experiment
(matrix size: 2200× 2200) results on the HC cluster. The JS scheduled execution
outperformed the other three executions (PRM, LSO, and LSOR) for most of
the machine sizes and achieves better speedup up-to 24.18% as compared to the
LSO and LSOR, and up-to 39.96% as compared to the PRM. The JS sched-
uler optimises the performance of the application on the HC cluster by utilising

176 M. Aleem, R. Prodan, and T. Fahringer

1
2
3
4
5
6
7
8
9

10

2 4 8 16 24 28 32

Sp
ee

du
p

Number of cores

Memory latency
Co-scheduling
LSO

(a) SpMVM - m01.

1
2
3
4
5
6
7
8
9

10

Sp
ee

du
p

Number of cores

Processor speed
Machine load
Latency
Co-scheduling
LSO

(b) SpMVM - HC.

2
2.5

3
3.5

4
4.5

5
5.5

2 4 8 16 24 28 32

Sp
ee

du
p

Number of cores

Memory latency
Co-scheduling
LSO

(c) NAS CG - m01.

2
5
8

11
14
17
20
23
26
29
32
35

Sp
ee

du
p

Number of cores

JS Scheduler
LSO
LSOR
PRM

(d) VCMatrix - HC.

2
4
6
8

10
12
14
16
18
20

4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of cores

JS Scheduler
LSO

(e) SpMMM - m01.

2
5
8

11
14
17
20
23
26
29
32
35
38

Sp
ee

du
p

Number of cores

JS Scheduler
LSO
LSOR

(f) SpMMM - HC.

2
5
8

11
14
17
20
23
26
29
32
35

Sp
ee

du
p

Number of cores

OPT-1
OPT-2
OPT-3
OPT-4
LSO

(g) VCMatrix - Stepwise
optimisation.

0
2
4
6
8

10
12
14
16
18

2 4 8 16 28 32

Sp
ee

du
p

Number of cores

Memory latency
Co-scheduling
LSO

(h) 3DRT - m01.

0
4
8

12
16
20
24
28
32
36
40

Sp
ee

du
p

Number of cores

Latency
Co-scheduling
Machine load
Processor speed
LSO

(i) 3DRT - HC.

0
2
4
6
8

10
12
14
16
18
20

2 4 8 16 24 28 32

Sp
ee

du
p

Number of cores

JS Scheduler
LSO

(j) MatrixFPO - m01.

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
p

Number of cores

JS Scheduler
LSO
LSOR
PRM

(k) MatrixFPO - HC.

2
5
8

11
14
17
20
23
26

4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of cores

JS Scheduler
Proactive
LSO
PRM

(l) NAS EP - m01.

Fig. 4. JS scheduler experimental results - training and validation

the fastest available resources (e.g., cores, processors, and machines), reducing
the data contention on m01 − 02 (by balancing the machine load), and reducing
memory latencies (in the m01 − 02 NUMA machines).

The SpMMM multiplies two sparse matrices to computes the resultant sparse
matrix. Figure 4(e) shows the experiment (matrix size: 10000 × 10000, 1000
non-zeros/row) results on the m01 machine. The JS scheduled execution achieves
better performances, and gains up-to 15.92% more speedups as compared to

JavaSymphony Many-Core Scheduler 177

the LSO. Figure 4(f) shows the experiment results on the HC cluster. The JS
scheduler-based execution achieves better results and achieves up-to 15.13% (as
compared to LSO) and 21.17% (as compared to LSOR) more speedups.

To investigate the optimisation effects for the different factors, we experi-
mented with VCMatrix application on the HC cluster and step-wise optimised
the LSO execution. First, we use the PF list with only one factor (most signif-
icant) and scheduled the application. We then add other factors stepwise and
schedule the application. The results (shown in Figure 4(g)) show that, the
OPT-1 (using the top most factor) achieves up-to 19.47% speedup as compared
to the LSO. The OPT-2 (using the top two factors) achieves up-to 10.18% more
speedups as compared to the OPT-1. The OPT-3 and the OPT-4 (using the
top three and four factors) achieves further speedups up-to 3.04% and 2.75%.
The results show that, the most of the performance (here, up-to 83.66%) can be
achieved by optimising the two most significant factors.

5.3 Computation-Intensive Applications

We use three compute-intensive applications for the training and validation ex-
periments. These are: the 3D Ray Tracing (3DRT), the NAS benchmarks EP ker-
nel, and the Matrix Transposition with Floating Point Operations (MatrixFPO).

Training Experiments. We developed the JS-based versions of the 3DRT ap-
plication using the Java-based version from Java Grande benchmarks [7]. It is a
large-scale application that creates several ray tracers, initialises them with scene
data (64 spheres), and renders at N×N resolution. Figure 4(h) shows the exper-
iment (image size: 4000 × 4000) results on the m01. The results show that, the
memory latency factor based mapping of the 3DRT achieves on average 13.28%
improved speedup as compared to the LSO. The mappings of the application
based on the co-scheduling factor achieves on average 5.19% better speedups as
compared to the LSO. Figure 4(i) shows the experiment results on the HC clus-
ter. The processor speed based mapped application achieves best speedup (on
average 30.15% more) as compared to the LSO. The speedups achieved by map-
pings (considering the other factors) are: machine load (24.7%), co-scheduling
(15.16%), and latency (memory and network, 10.99%), better speedups as com-
pared to the LSO.

Validation Experiments. The MatrixFPO transposes a matrix, and performs
several floating point operations (e.g., addition, multiplication, and division) at
each transpose step. Figure 4(j) shows the experiment (matrix size: 10000 ×
10000) results on the m01. The JS scheduled execution of the application achieves
up-to 31.09% better speedups as compared to the LSO. Figure 4(k) shows the
experiment results on the HC cluster. The JS scheduler based execution achieves
better speedups for most of the machine sizes and achieves up-to 48.75% (as
compared to the LSO), 35.47% (as compared to the LSOR), and 44.05% more
speedups (as compared to the PRM execution). The JS scheduled execution

178 M. Aleem, R. Prodan, and T. Fahringer

achieves better performance results as compared to other executions because
of the optimisations (using the PF list for the target application class and the
architecture) applied by the JS scheduler.

The NAS EP kernel is used to measure the computational performance of par-
allel computers. Figure 4(l) shows the experiment (data size: 16777216 × 100)
results on the m01. We experimented and compared the JS scheduled, LSO,
PRM, and the Proactive [3] based executions. The results show that, the JS
scheduled execution achieves better speedups as compared to all the other ex-
ecutions and achieves up-to 16.82% (as compared to the LSO), up-to 12.13%
(as compared to the Proactive), and up-to 30.32% (as compared to the PRM)
more speedups. Proactive exhibits the low performance since it has no capability
to map the active objects on specific cores. Although the EP kernel has small
memory footprints still the remotely scheduled Proactive objects cause some
performance degradations as compared to the JS scheduled execution.

6 Conclusions

In this paper, we presented a multi-core aware scheduling extension to JavaSym-
phony. JS scheduler provides the locality controlled mapping of JS tasks and
objects. JS scheduler makes scheduling decisions by considering both the ap-
plication class and the multi-core specific performace factors. We presented JS
scheduler’s architecture, methodlogy, and algorithm. We developed several real
applications and benchmarks, and experimented using two real multi-core par-
allel computers. The experimental results show that, the JS scheduled parallel
applications outperform other scheduling heuristics and technologies such as
Proactive and operating system relying application scheduling.

References

1. Aleem, M., Prodan, R., Fahringer, T.: JavaSymphony: A programming and execu-
tion environment for parallel and distributed many-core architectures. In: D’Ambra,
P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 139–150.
Springer, Heidelberg (2010)

2. Barroso, L.A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano,
B., Smith, S., Stets, R., Verghese, B.: Piranha: a scalable architecture based on
single-chip multiprocessing. In: In the 27th ISCA 2000, p. 282. ACM, New York
(2000)

3. Caromel, D., Leyton, M.: Proactive parallel suite: From active objects-skeletons-
components to environment and deployment. In: Euro-Par Workshops, pp. 423–437.
Springer, Heidelberg (2008)

4. Chen, J., John, L.K.: Energy aware program scheduling in a heterogeneous multi-
core system. In: Proceedings of the IEEE International Symposium on Workload
Characterization, 2008, pp. 1–9. IEEE Computer Society, Los Alamitos (2008)

5. Frumkin, M.A., Schultz, M., Jin, H., Yan, J.: Performance and scalability of the
NAS parallel benchmarks in Java. In: IPDPS, p. 139a. IEEE Computer Society, Los
Alamitos (2003)

JavaSymphony Many-Core Scheduler 179

6. Kaminsky, A.: Parallel Java: A unified API for shared memory and cluster parallel
programming in 100% Java. In: 21st IPDPS. IEEE Computer Society, Los Alamitos
(2007)

7. Smith, L.A., Bull, J.M.: A multithreaded Java grande benchmark suite. In: Third
Workshop on Java for High Performance Computing (2001)

8. Zhang, B.-Y., Yang, G.-W., Zheng, W.-M.: Jcluster: an efficient Java parallel envi-
ronment on a large-scale heterogeneous cluster: Research articles. Concurr. Comput.:
Pract. Exper. 18(12), 1541–1557 (2006)

9. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: ASPLOS 2010, pp. 129–142. ACM, New
York (2010)

Assessing the Computational Benefits of
AREA-Oriented DAG-Scheduling

Gennaro Cordasco1, Rosario De Chiara2, and Arnold L. Rosenberg3

1 Seconda Università di Napoli, Italy
gennaro.cordasco@unina2.it

2 Università di Salerno, Italy
dechiara@dia.unisa.it

3 Colorado State Univ. and Northeastern Univ., USA
rsnbrg@cs.umass.edu

Abstract. Many modern computing platforms, including “aggressive” multicore
architectures, proposed exascale architectures, and many modalities of Internet-
based computing are “task hungry”—their performance is enhanced by always
having as many tasks eligible for allocation to processors as possible. The AREA-
Oriented scheduling (AO-scheduling) paradigm for computations with intertask
dependencies—modeled as DAGs—was developed to address the “hunger” of such
platforms, by executing an input DAG so as to render tasks eligible for execution
quickly. AO-scheduling is a weaker, but more robust, successor to IC-scheduling.
The latter renders tasks eligible for execution maximally fast—a goal that is not
achievable for many DAGs. AO-scheduling coincides with IC-scheduling on DAGs
that admit optimal IC-schedules—and optimal AO-scheduling is possible for all
DAGs. The computational complexity of optimal AO-scheduling is not yet known;
therefore, this goal is replaced here by a multi-phase heuristic that produces op-
timal AO-schedules for series-parallel DAGs but possibly suboptimal schedules
for general DAGs. This paper employs simulation experiments to assess the com-
putational benefits of AO-scheduling in a variety of scenarios and on a range of
DAGs whose structure is reminiscent of ones encountered in scientific computing.
The experiments pit AO-scheduling against a range of heuristics, from lightweight
ones such as FIFO scheduling to computationally more intensive ones that mimic
IC-scheduling’s local decisions. The observed results indicate that AO-scheduling
does enhance the efficiency of task-hungry platforms, by amounts that vary ac-
cording to the availability patterns of processors and the structure of the DAG being
executed.

Keywords: Area-oriented DAG-scheduling; Scheduling for task-hungry platforms.

1 Introduction

Many modern computing platforms, including “aggressive” multicore architectures [24],
proposed exascale architectures [9], and many modalities of Internet-based comput-
ing [11,14,15,22], are “task hungry”—their performance is enhanced by always hav-
ing as many tasks eligible for allocation to processors as possible. In earlier work,
we developed the master-worker IC-scheduling paradigm for computations with in-
tertask dependencies—modeled as DAGs—to address the “hunger” of such platforms

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 180–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 181

[3,5,18,19,22,23]. IC-schedules attempt to execute an input DAG so as to render tasks
eligible for execution as fast as possible, with a dual goal: (1) Prevent a computation’s
stalling pending the return of already allocated tasks. (2) Increase “parallelism” by en-
hancing the effective utilization of workers. Because many DAGs do not admit optimal
IC-schedules [19], we have developed a new paradigm—AREA-Oriented scheduling
(AO-scheduling)—to address this deficiency. Optimal AO-schedules—or, AREA-max
schedules—coincide with optimal IC-schedules on DAGs that admit such schedules;
and, AREA-max schedules exist for every DAG. AO-scheduling achieves its univer-
sal optimizability by weakening IC-scheduling’s often-unachievable demand of max-
imizing the number of eligible tasks at every step of a DAG-execution to the always-
achievable demand that this number be maximized on average. The foundations of
AO-scheduling are developed for general DAGs in [6] and for series-parallel DAGs (SP-
DAGs, see [10,13,20]) in [7]. Because optimal AO-scheduling may be computationally
intractable, we develop in Sec. 3 a multiphase heuristic, AO, that produces AREA-max
schedules for SP-DAGs but possibly suboptimal AO-schedules for general DAGs.

As with IC-scheduling, it is not clear a priori that AO-scheduling enhances the effi-
ciency of executing a DAG. The enhancement of efficiency via IC-scheduling is verified
experimentally in [4,12,17] for many families of DAGs that admit optimal IC-schedules.
But, as noted earlier, many DAGs do not admit such schedules—which fact motivates
AO-scheduling and the current study. The current paper adapts the methodology of [12]
to assess the potential computational benefits of AO-scheduling. We model a “task-
hungry” computing platform as a stream of task-seeking workers that arrive according
to a random process. We focus on two populations of DAGs:

1. We study AREA-max schedules for randomly constructed SP-DAGs.
2. We study the AO-schedules produced by our multiphase heuristic AO for DAGs

that are random compositions of small “building-block” DAGs [19]. The DAGs we
schedule model computations each of whose subcomputations has the structure of
an expansion (as in a search tree), a reduction (as in an accumulation), a parallel-
prefix (a/k/a scan), an all-to-all communication (as in a “gossip”). Such composi-
tions have structures reminiscent of ones that arise in scientific computing.

Thus, all of the AO-schedules that we study can be constructed efficiently from the DAGs
being scheduled. We simulate executing each generated DAG on our platform model: (a)
using the schedule produced by AO and (b) using schedules produced by several popular
heuristics, ranging from lightweight ones such as a version of CONDOR’s FIFO schedul-
ing [1] to computationally intensive ones that mimic IC-scheduling’s local decisions.
The results we observe indicate that, statistically, AO-scheduling does significantly en-
hance the efficiency of task-hungry platforms, by amounts that vary according to the
availability patterns of processors and the structure of the DAG being executed.

2 Background

A. Basics. We study computations that are described by DAGs. Each DAG G is specified
by two sets: its nodes VG , each denoting a task,1 and its (directed) arcs AG . Each arc

1 We henceforth refer to DAG tasks, rather than nodes, to emphasize our computational focus.

182 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

(u → v) denotes a dependency between parent-task u and child-task v. When one
executes G, task v ∈ VG becomes eligible (for execution) only after all of its parents
have been executed; hence, all sources (= parentless tasks) are eligible at the beginning
of an execution. The goal is to render all sinks (= childless tasks) eligible. Informally,
a schedule Σ for G is a rule for selecting which eligible task to execute at each step of
an execution; formally, Σ is a topological sort of G (see [8]).

B. Quality metrics. We measure the quality of a schedule Σ for an n-task DAG G via
the rate at which Σ renders tasks of G eligible: the faster, the better. To this end, we
define EΣ(t), the quality of Σ at step t, as the number of tasks that are eligible after
Σ has executed t tasks2 (t ∈ [1, n]). IC-scheduling strives to execute G’s tasks in an
order that maximizes EΣ(t) at every step t ∈ [1, n] of the execution; formally: (∀t ∈
[1, n]) EΣ∗(t) = maxΣ a schedule for G{EΣ(t)}. AO-scheduling strives to find a schedule
Σ for G of maximum AREA, where AREA(Σ) def= EΣ(0) + EΣ(1) + · · · + EΣ(n).
(Note the analogy with Riemann sums.) For such an AREA-max schedule Σ�,

AREA(Σ�) = max
Σ a schedule for G

AREA(Σ).

Many simple DAGs, even tree-DAGs3 and SP-DAGs, do not admit optimal IC-schedules
[19]. Thus, even well-structured DAGs benefit from the universality of optimal AO-
scheduling.

3 Finding Good AO-Schedules Efficiently
A. The complexity of AREA-maximization. Every DAG admits an AREA-max sched-
ule. If a DAG admits an optimal IC-schedule, then every such schedule is AREA-max,
and vice-versa. This good news from [6] is tempered by the fact that we do not yet know
how to find AREA-max schedules for arbitrary DAGs efficiently. Indeed, a result in [6]
makes it plausible that one cannot always produce AREA-max schedules efficiently.
Fortunately, efficient AO-scheduling algorithms exist for several significant families of
DAGs [6,7]. Most significantly (for our study): One can find an AREA-max schedule
for any n-task SP-DAG G in time O(n2). The validating algorithm in [7] exploits G’s
structure by (a) decomposing G to produce a tree T G that exposes G’s series-parallel
structure, (b) recursively unrolling T G to craft an AREA-max schedule for G.

B. Toward efficient AO-scheduling. We develop a four-phase heuristic AOH that AO-
schedules any n-task DAG efficiently—specifically, in time O(n2). Given a DAG G:
Phase 1: Find G’s transitive skeleton G′. Removing all shortcut arcs from G reduces the
overall complexity of finding an AO-schedule. Formally, G′ is a smallest sub-DAG of G
that shares G’s task-set and transitive closure. Easily, G and G′ share all of their AREA-
max schedules, because removing shortcuts does not impact tasks’ dependencies.
Phase 2: Convert G′ to an SP-DAG σ(G′). Invoke an SP-ization algorithm to convert
G′ to σ(G′). Choose an algorithm that: (a) maintains in σ(G′) all of the intertask de-
pendencies from G′; (b) (approximately) retains the degree of parallelism inherent in
G′ (which precludes, e.g., having σ(G′) simply linearize G′); (c) operates within time
O(n2). σ(G′) will generally contain extra tasks that are not tasks of G′; see Fig. 1.
SP-ization algorithms that fit our requirements appear in, e.g., [10,13,20].

2 [a, b] denotes the set of integers {a, a + 1, . . . , b}.
3 A tree-DAG is a DAG that remains acyclic even ignoring arc orientations.

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 183

Fig. 1. A sample SP-ization of the LU-decomposition DAG. The task-numbering describes an
AREA-max schedule

Phase 3: Find an AREA-max schedule Σ′ for σ(G′), using, e.g., the algorithm of [7].
Phase 4: “Filter” the AREA-max schedule Σ′ for σ(G′) to obtain the AO-schedule Σ
for G. “Filtering” Σ′ removes the extra tasks added by the SP-ization algorithm. For
each extra task u, we assign a priority to u’s parents in G, that equals the priority of u
in Σ′. Σ then schedules equal-priority tasks of G greedily, by their yield—the number
of eligible tasks their execution produces.

We illustrate this heuristic on the LU-decomposition DAG G of Fig. 1(a). G contains
no shortcut arcs, so G′ = G. One possible SP-ization σ(G′) of G′ appears in Fig. 1(b);
note the two extra tasks o and p. The SP-DAG scheduling algorithm of [7] produces
the Area-max schedule Σ′ = (a, b, f, c, d, e, o, i, j, g, h, p, l, k, m, n) for σ(G′); note
the task-numbering in Fig. 1(b). Finally, we obtain an AO-schedule Σ for G by simply
removing tasks o and p from Σ′.

4 Experiments to Assess the Quality of AOH

4.1 Experimental Design

A. Overview. We randomly generate DAGs that share structural characteristics with
a variety of “real” computation-DAGs, especially ones encountered in scientific com-
puting. We craft five schedules for each generated DAG, one using an AO-scheduling
heuristic based on AOH and four using heuristics that represent a range of sophistication
and computational intensiveness. We compare the five schedules using two metrics:

1. Batched makespan. We overlay our DAG-scheduling with a probabilistic model that
specifies the arrival patterns of “hungry” workers and the execution time of each
allocated task;

2. AREA. We seek to verify or refute the positive correlation between larger AREA
and smaller makespan observed on small examples.

B. The DAGs that we execute. We generate DAGs randomly from two populations:

1. Random n-task SP-DAGs. We generate a random binary tree T and randomly (50%
uniform choice) designate each internal node of T either a series- or a parallel-
composition node. We then view T as the composition tree T G of a SP-DAG G.

184 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

Fig. 2. (Top) A sequence of eight BBBs (All arcs point upward). (Bottom) Composing six BBBs
into a LEGO R©-DAG.

2. Random n-task LEGO R©-DAGs (named for the toy). We select a sequence of Bipar-
tite Building Blocks (BBBs) (see Fig. 2 (top)), randomized according to both size
and structure. We compose the BBBs in the manner described in [19] and depicted
schematically in Fig. 2 (bottom).

C. The AO heuristic. We compare all schedulers to the AO-scheduler AO, which pro-
duce an AO-schedule for an n-task DAG G in time O(n2), in one of two ways:

1. If G is an SP-DAG, then AO uses the algorithm of [7] to craft an AREA-max sched-
ule for G.

2. If G is not an SP-DAG, then AO uses the multi-phase heuristic AOH of Sec. 3 to craft
an AO-schedule for G.

D. The competing schedulers. The heuristics that compete against AO differ in the data
structure used to store G’s currently eligible tasks. (See [8] for specifications of the data
structures.) All load newly eligible tasks in random order.

1. The FIFO (first-in, first-out) scheduler organizes G’s eligible tasks in a FIFO queue.
FIFO is, essentially, the scheduler used by systems such as Condor [1].

2. The LIFO (last-in, first-out) scheduler organizes G’s current eligible tasks in a stack.
3. The STATIC-GREEDY scheduler organizes tasks that are newly rendered eligible in

a MAX-priority queue whose entries are (partially) ordered by outdegree.
4. The DYNAMIC-GREEDY scheduler organizes tasks that are newly rendered eligible

in a structure that is (partially) ordered by tasks’ yields. The yield of an eligible task
v at time t is the number of non-eligible tasks that would be rendered eligible if v
were executed at this step. DYNAMIC-GREEDY thus makes the same local decisions
as does an optimal IC-scheduler (when one exists)—but it lacks the latter’s tie-
breaking foresight. Complexity: The following all take time O(n): (a) initializing
the list, (b) serving a “hungry” worker (using EXTRACT-MAX), (c) adding the new
eligible tasks after an outdegree-d task v has completed. Thus, DYNAMIC-GREEDY

and AO have proportional worst-case computational complexities.

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 185

E. The computing platform. Our batched-makespan experiment demands a model
of the computing platform in which DAGs are executed. We employ a master-centric
model similar to that in [12], the IC-scheduling precursor to this paper. We model the
simulated execution of a DAG G by scheduling heuristic4 HEUR via a discrete time-
ordered queue of “events.” Each “event” is represented by the not-yet-executed residue
of G, together with the current set of eligible tasks, organized as mandated by HEUR.
The initial residue of G is G itself; the initial set of eligible tasks comprises G’s sources.
The transition from one “event” to its successor proceeds as follows:

1. The master polls the available “hungry” workers and allocates (using HEUR’s pri-
ority measure) one eligible task of G each to some of these workers. (Only some
“hungry” workers get served when there are not enough eligible tasks to serve them
all.) Once allocated, a task is no longer eligible.

2. Independently, and asynchronously, served workers execute their tasks.
3. When a worker completes its allocated task, call it v, the master removes v from

the current residue of G and adds the tasks that v’s completion renders eligible to
the set of current eligible tasks, in the manner mandated by HEUR.

Our model for the computing platform is completed by specifying two probability dis-
tributions, one specifying the arrival pattern of “hungry” workers and one specifying
tasks’ completion times.

• Worker arrivals. At each step t of a simulated DAG-execution, we generate a number
ct of “hungry” workers that are seeking tasks, from an exponential distribution with rate
parameters λ ∈ {1, 1/2, 1/4, 1/8, 1/16, 1/32}, so there are μ = 1/λ workers per
step on average.
• Task execution times. The master does not know which workers are more powerful
than others, so it treats all workers equally. Possible differences in worker power are
modeled via the distribution of task execution times. The execution time, t, of an allo-
cated task v is chosen randomly from the “positive half” of a normal distribution with
mean 1. We have studied two distributions, one with standard deviation 0.1 and one
with standard deviation 0.5. The latter parameter, in particular, allows us to observe the
performance of our heuristics on platforms having a rather high level of heterogeneity.

4.2 Experimental Methodology

A. DAG sizes. Our experiments simulate the execution of DAGs that range in size from
200 tasks to 4000 tasks. We thereby observe the performance of our heuristics on DAGs
that model subcomputations to those that model full computations.

B. BBB structures and sizes. We generate three families of LEGO R©-DAGs by com-
posing BBBs whose structures are chosen uniformly among the six structures depicted
in Fig. 2 (top) and whose sizes are selected randomly from three distributions: (a) a uni-
form distribution from the set [2, 20]; (b) an exponential distribution and (c) a harmonic
distribution; both of the latter generate BBBs having 10 tasks on average.

4 HEUR ∈ {AO, FIFO, LIFO, STATIC-GREEDY, DYNAMIC-GREEDY}.

186 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

C. Experimental procedures. Both our makespan-comparison and AREA-comparison
experiments involved executing four sets of 45 DAGs each: 5 DAGs of each size n ≈
200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000. Each trial executed each DAG 100
times. The results on like-sized DAGs were averaged; we used the means and variances
of the schedulers’ makespans or AREAs for our comparisons and analyses.

4.3 Experimental Results and Discussion

A. Makespan-comparison. This experiment evaluates AO-scheduling in a simulated
“real” computational setting. We considered 120 different test settings, each identified
by a triple (D, H, μ). D specifies the class of DAGs:

D ∈ {SP-DAGs, (Uniform or Exponential or Harmonic) LEGO R©-DAGs};
H specifies the scheduling heuristic:

H ∈ {AO, FIFO, LIFO, STATIC-GREEDY, DYNAMIC-GREEDY};
μ specifies the mean number of “hungry” workers per step: μ ∈ {1, 2, 4, 8, 16, 32}.
For this experiment, the standard deviation of task-execution time is fixed at 0.1.

We compared the performance of heuristic AO against its competitors via the timing-
ratios T (H) ÷ T (AO), where T (H) denotes the simulated makespan observed using
heuristic H ∈ {FIFO, LIFO, STATIC-GREEDY, DYNAMIC-GREEDY}. Note that larger
values of the ratio favor heuristic AO. We present both means and 95% confidence
intervals of the results in Fig. 3. To enhance legibility, we present a separate plot for
each value of D and μ; to conserve space, we present results for random SP-DAGs
and only uniformly distributed LEGO R©-DAGs. (The three families of LEGO R©-DAGs
exhibit very similar behaviors; see [2].) In each plot, the X-axis indicate the size of
DAG instances, while the Y -axis indicates the timing-ratios for AO’s four competitors.

Our first observation is that AO-scheduling decreases makespans only for “interme-
diate” arrival rates μ of “hungry” workers. This is not surprising. When workers arrive
very infrequently, i.e., μ ≈ 1, any heuristic will require roughly n steps to execute an
n-task DAG; one observes this in the top plots of Fig. 3. At the other extreme, when
workers “flood” the system, there is so much “parallelism” that the only hard limitation
for any heuristic is the length of a DAG’s inherently sequential “critical path.” In neither
extreme does makespan depend on the scheduling heuristic. Between these extremes,
though, there is a range of values of μ where the scheduling heuristic strongly influ-
ences makespan: In our trials, when 1 < μ ≤ 32, AO always completed executing the
DAG in less (simulated) time than its competitors. Importantly, we observed that:

Within a broad range of worker arrivals, the makespan of a heuristic, as ex-
posed in Fig. 3, has a strong positive correlation with the AREAs of heuristics’
schedules, as exposed in Fig. 5. In other words, schedules with higher AREAs
executed DAGs with smaller makespans.

The amount of observed advantage in makespan depended on three factors: the value
of μ, the size of the DAG being executed, and the family of DAGs. Several cases (e.g.,
μ = 8, 16) show an improvement in the range of 7–12% for LEGO R©-DAGs and 10–
14% for SP-DAGs. Recall that AO always provides an AREA-max schedule for each
SP-DAG but not necessarily for each LEGO R©-DAG.

Comparing the performance of AO’s competitors, we observe first that DYNAMIC-
GREEDY always outperforms the other competitors by a considerable margin. This is

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 187

Fig. 3. Timing-ratios for (left) random SP-DAGs and (right) Uniform LEGO R©-DAGs when the
average number of “hungry” workers is μ = 1, 2, 4, 8, 16, 32 (top to bottom).

not surprising because DYNAMIC-GREEDY makes the same local decision as an optimal
IC-schedule. DYNAMIC-GREEDY “pays for” its superiority among the competitors by
its much greater computational expense. Among the other three competitors: LIFO is
always the worst heuristic; STATIC-GREEDY and FIFO perform roughly equivalently
much of the time, but STATIC-GREEDY sometimes significantly outperforms FIFO; cf.,
(LEGO R©-DAGs, STATIC-GREEDY, 16) vs. (LEGO R©-DAGs, FIFO, 16). For SP-DAGs,
the three static heuristics: STATIC-GREEDY, FIFO, and LIFO, do not differ substantially.

188 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

Fig. 4. Timing-ratios for random (top) SP-DAGs, (bottom) Uniform LEGO R©-DAGs of different
sizes. Left-to-right: 1000 tasks, 2000 tasks, 3000 tasks, 4000 tasks. The X-axes indicate the
average number of “hungry” workers at each poll.

The impact of worker-arrival rates. We have just noted that average worker-arrival
rate μ influences the performance of AO relative to its competitors. In order to refine
this observation, with an eye toward better understanding how μ influences the relative
qualities of schedules, we provide, in Fig. 4, plots that show the performance advantage
of AO (in terms of timing-ratios) as a function of μ; the values of μ appear logarithmi-
cally along the X-axes of the plots. The most notable similarity in the plots is that all
are unimodal: as μ increases, AO’s relative performance improves up to a unique peak
and thereafter degrades. Moreover, AO’s peak advantage is comparable for all DAGs of
similar sizes, both LEGO R©-DAGs and SP-DAGs. However, there are also notable dif-
ferences in the plots, particularly between LEGO R©-DAGs as a class and SP-DAGs as a
class. Specifically, we observe the advantage of AO peaking at a higher value of μ for
LEGO R©-DAGs than for SP-DAGs. Moreover, while the value of μ that maximizes AO’s
advantage for SP-DAGs grows roughly linearly with DAG-size (the maximizing values
range from 2 for 1000-task DAGs to 8 for 4000-task DAGs), this does not appear to
happen with LEGO R©-DAGs (for which the maximizing values start at 8, for 1000-task
DAGs, then jump to 16 for the other three DAG-sizes).

In an attempt to understand why our two DAG families’ makespans react differently
to the average worker-arrival rate, we analyzed certain characteristics of DAGs from
these families. Based on the data in the following table, we conjecture that the maximiz-
ing value of μ depends on the inherent degree of parallelism in the DAG being executed.

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 189

We observe that LEGO R©-DAGs have smaller critical-path lengths and higher nor-
malized AREAs than do SP-DAGs. (The observed difference would be even larger if we
used AREA-max schedules for LEGO R©-DAGs rather than the often-suboptimal sched-
ules provided by heuristic AO.) Thus, the values of normalized AREA and critical-path
length suggest that LEGO R©-DAGs are more “parallelizable” than SP-DAGs.

Modeling heterogeneity via large variance in task execution-times. A major motiva-
tion for the development of IC-scheduling (see [22])—hence also of AO-scheduling—
was the observed temporal unpredictability of many modern computing platforms,
which precludes the reliable use of classical, critical-path based, DAG-scheduling strate-
gies as in, e.g., [16]. As noted in sources such as [14,22], we seldom know literally
nothing quantitative about the computing platform; it is more that our knowledge is
very indefinite. A basic tenet of both IC-scheduling and AO-scheduling is that one
does not have to deal explicitly with the temporal unpredictability of task execution-
times when scheduling a DAG—as long as one enhances the rate of rendering tasks
eligible for execution. We test this tenet experimentally by allowing greater variability
in task execution-times, expressed via a larger standard deviation in these times. Our
primary model allows 10% standard deviation in task execution-times: a mean time
of 1 time-unit/task and a standard deviation of 0.1 time-units. How would our results
change if we allowed 50% deviation, by raising the allowed standard deviation to 0.5
time-units? We repeated the experiments presented in earlier sections with this larger
standard deviation—with rather surprising results. Increasing the allowable standard
deviation from 0.1 to 0.5—a truly significant change!—produces a negligible change in
the observed advantage of heuristic AO! The observed differences in the average timing-
ratios obtained with the two standard deviations in task execution-times, 0.1 and 0.5,
do not exceed 0.05%. This suggests that the quality of AO-schedules—as generated by
heuristic AO—relative to the four competing heuristics is virtually unaffected by both
heterogeneity and temporal unpredictability in “task-hungry” platforms.

Fig. 5. AREA comparison. Clockwise from the top-left: Random SP-DAGs, Uniform LEGO R©-
DAGs, Exponential LEGO R©-DAGs, Harmonic LEGO R©-DAGs.

190 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

B. AREA-comparison. Our makespan-oriented experiment suggest that AO-scheduling,
as implemented by heuristic AO, has a benign impact on computational performance.
This inference has led us to wonder: (a) How do the AREAs of the schedules produced
by heuristic AO compare to those of the schedules produced by its four heuristic com-
petitors? (b) How well do the observed differences in makespan of the four competitors
track the differences in the AREAs of schedules produced by these heuristics?

We have studied these questions via an experiment that compared the AREAs of
AO’s schedules to those of schedules for the same DAGs that are produced by the four
competing heuristics. We considered 20 test settings, each characterized by the class
of DAGs considered and the scheduling heuristic analyzed. For each setting, we exe-
cuted each DAG 100 times. Fig. 5 presents the mean observed AREA values, as well
as their ranges [min, max]. There is one plot for different-size DAGs from each family
indicated in the caption; the sizes of DAG-instances appear along the X-axes. Notable
among the observed results: As expected, the schedules provided by heuristic AO for
SP-DAGs, being AREA-max, always have the largest AREAs. But, not obviously, the
AREA-superiority of AO’s schedules persist for general DAGs—which suggests that
AO produces high-AREA schedules. This suggestion is reinforced by the fact that dif-
ference between the AREAs of AO’s schedules and those produced by the competitor
heuristics grows more than linearly with the size of the DAG being scheduled.

C. Summing up the experiments. When we consider the results of both the makespan-
comparison experiment and the AREA-comparson experiments, as exposed in Figs. 3,
4, and 5, we observe three factors that support our hypothesis that there is a strong
positive correlation between the AREA of a schedule and its makespan.

– The schedules provided by all five heuristics—AO and its four competitors—have
the same relative ordering in the makespan-comparison experiment as in the AREA-
comparison experiment.

– When the three lightweight competitor heuristics, FIFO, LIFO, and STATIC-GREEDY,
produce schedules for SP-DAGs, these schedules have roughly the same AREAs and
roughly the same makespans.

– The ratio of the AREAs of AO’s schedules to those produced by the four competitor
heuristics is roughly 4 for SP-DAGs and only roughly 2 for LEGO R©-DAGs. This
correlates positively with the relative improvements in makespan for the same fam-
ilies of DAGs.

In the interest of full disclosure, we do not yet know if the observed differences
between results for SP-DAGs and for LEGO R©-DAGs are inherent, due to the different
characteristics of such DAGs (such as degree of inherent parallelism), or algorithmic,
due to a possible loss of quality introduced by the heuristics of Sec. 3.

5 Conclusion

Our contributions. Building on the novel AREA-oriented (AO) scheduling paradigm
of [6], we have assessed the quality of AO-schedules for a variety of artificially gen-
erated DAGs whose structures are reminiscent of those encountered in real scientific
computations. AO-schedules strive to maximize the rate at which DAG-tasks are ren-
dered eligible for allocation to workers with the hope that this will make such schedules

Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling 191

computationally advantageous for modern “task-hungry” computing platforms, such as
Internet-based, aggressively multi-core, and exascale platforms. Our assessment pitted
our new efficient AO-scheduling heuristic AO against four common scheduling heuris-
tics that represent different points in the sophistication-complexity space of schedulers.
We have shown via simulation experiments that:

– The schedules produced by AO have AREAs that are closer to optimality than are
the schedules produced by the four competing heuristics.

– The schedules produced by AO have lower makespans than do the four competing
heuristics, based on a probabilistic model of the computing platform and the DAG-
executing process.

Importantly, our experiments suggest a strong positive relationship between the AREA
of a DAG-schedule and the schedule’s performance, as measured by its makespan.

We view the new scheduling heuristic, AO, which operates within time quadratic in
the size of the DAG being scheduled, as an important advance because AO represents
the first efficient scheduling mechanism that provably enhances the rate of producing
allocation-eligible tasks for every computation-DAG [6].

Finally our experiments have a high degree of robustness. The demonstrated compu-
tational benefits of AO-scheduling persist even when the “task-hungry” platforms have
a high degree of heterogeneity and/or a high degree of temporal unpredictability.

Where we are going. Our demonstration of the computational benefits of AO-scheduling
reinforces the importance of two algorithmic questions.

– Does there exist an algorithm for crafting AREA-max schedules for SP-DAGs that
is more efficient than the quadratic-time algorithm of [7]?

– Does there exist an algorithm for SP-izing arbitrary DAGs whose use would improve
the AREAs and makespans of schedules provided by heuristic AO?

Additionally, the “success” of our experiments suggests the desirability of assessing the
value of AO-scheduling via experiments with real computations rather than simulated
artificial ones. We hope to follow this path in the not-distant future, beginning with
experiments using actual traces.

Acknowledgement. The research of A. Rosenberg was supported in part by NSF Grant
CNS-0905399. The authors thank A. Gonzáles-Escribano and his team for providing
access to their DAG-SP-ization code.

References

1. The Condor Project, Univ. of Wisconsin condor, http://www.cs.wisc.edu/
2. Cordasco, G., De Chiara, R., Rosenberg, A.L.: Assessing the computational benefits of

AREA-oriented DAG-scheduling. Tech. Rpt., U. Salerno (2011),
http://www.isislab.it/papers/TR0711.pdf

3. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Advances in IC-scheduling theory: schedul-
ing expansive and reductive dags and scheduling dags via duality. IEEE Trans. Parallel and
Distributed Systems 18, 1607–1617 (2007)

4. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Applying IC-scheduling theory to some fa-
miliar computations. Wkshp. on Large-Scale, Volatile Desktop Grids (PCGrid 2007) (2007)

http://www.cs.wisc.edu/
http://www.isislab.it/papers/TR0711.pdf

192 G. Cordasco, R.D. Chiara, and A.L. Rosenberg

5. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Extending IC-scheduling via the Sweep algo-
rithm. J. Parallel and Distributed Computing 70, 201–211 (2010)

6. Cordasco, G., Rosenberg, A.L.:: On scheduling dags to maximize area. In: 23rd IEEE Int’l
Par. and Distr. Processing Symp. IPDPS 2009 (2009)

7. Cordasco, G., Rosenberg, A.L.: Area-maximizing schedules for series-parallel dAGs. In:
D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 380–
392. Springer, Heidelberg (2010)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (1999)

9. Dongarra, J., et al.: International Exascale Software Project Roadmap. Tech. Rpt. UT-CS-10-
652, Univ. Tennessee (2010)

10. González-Escribano, A., van Gemund, A., Cardeñoso-Payo, V.: Mapping unstructured appli-
cations into nested parallelism. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández,
V. (eds.) VECPAR 2002. LNCS, vol. 2565. Springer, Heidelberg (2003)

11. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure,
2nd edn. Morgan Kaufmann, San Francisco (2004)

12. Hall, R., Rosenberg, A.L., Venkataramani, A.: A comparison of dag-scheduling strategies
for Internet-based computing. In: 21st IEEE Int’l Par. and Distr. Proc. Symp. (IPDPS 2007)
(2007)

13. Jayasena, S., Ganesh, S.: Conversion of NSP DAGs to SP DAGs. MIT Course Notes 6.895
(2003)

14. Kondo, D., Casanova, H., Wing, E., Berman, F.: Models and scheduling mechanisms for
global computing applications. Int’l Par. and Distr. Processing Symp., IPDPS 2002 (2002)

15. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home: massively
distributed computing for SETI. In: Dubois, P.F. (ed.) Computing in Science and Engineer-
ing, IEEE Computer Soc. Press, Los Alamitos (2000)

16. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31, 406–471 (1999)

17. Malewicz, G., Foster, I., Rosenberg, A.L., Wilde, M.: A tool for prioritizing DAGMan jobs
and its evaluation. J. Grid Computing 5, 197–212 (2007)

18. Malewicz, G., Rosenberg, A.L.: On batch-scheduling dags for Internet-based computing. In:
11th Int’l Conf. on Parallel Computing, Euro-Par 2005 (2005)

19. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: Toward a theory for scheduling dags in
Internet-based computing. IEEE Trans. Comput. 55, 757–768 (2006)

20. Mitchell, M.: Creating minimal vertex series parallel graphs from directed acyclic graphs.
In: 2004 Australasian Symp. on Information Visualisation, vol. 35, pp. 133–139 (2004)

21. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes.
J. Computer and System Scis. 43, 425–440 (1991)

22. Rosenberg, A.L.: On scheduling mesh-structured computations for Internet-based comput-
ing. IEEE Trans. Comput. 53, 1176–1186 (2004)

23. Rosenberg, A.L., Yurkewych, M.: Guidelines for scheduling some common computation-
dags for Internet-based computing. IEEE Trans. Comput. 54, 428–438 (2005)

24. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU accel-
erated manycore systems. Parallel Computing 36(5-6), 232–240 (2010)

Analysis and Modeling of Social Influence in

High Performance Computing Workloads

Shuai Zheng2, Zon-Yin Shae1, Xiangliang Zhang2,
Hani Jamjoom1, and Liana Fong1

1 IBM T. J. Watson Research Center, Hawthorne, NY
2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract. Social influence among users (e.g., collaboration on a project)
creates bursty behavior in the underlying high performance computing
(HPC) workloads. Using representative HPC and cluster workload logs,
this paper identifies, analyzes, and quantifies the level of social influ-
ence across HPC users. We show the existence of a social graph that is
characterized by a pattern of dominant users and followers. This pat-
tern also follows a power-law distribution, which is consistent with those
observed in mainstream social networks. Given its potential impact on
HPC workloads prediction and scheduling, we propose a fast-converging,
computationally-efficient online learning algorithm for identifying social
groups. Extensive evaluation shows that our online algorithm can (1)
quickly identify the social relationships by using a small portion of in-
coming jobs and (2) can efficiently track group evolution over time.

1 Introduction

Wide-use and expansion of collaboration technologies (e.g., social networking)
are influencing user behavior across all daily activities. Almost completely over-
looked, this paper analyzes the effects of social influence on high performance
computing (HPC) workloads. The intuition is that user collaboration affects the
underlying job submission characteristics. For example, students in a class will
likely exhibit correlated workload characteristics, especially considering project
deadlines, homework, etc.

Discovering the underlying social patterns and dependencies within groups
of correlated users—or communities, for short—will help improve workload pre-
diction and job scheduling. Our work is akin to those in community centric
web search, and more recently to Lin et al. [7], which discovers the communities
based on mutual awareness from observable blogger actions. Unlike existing stud-
ies, this paper—to the best of our knowledge—is the first attempt to propose
a social-influence-aware method for discovering correlated users and modeling
their corresponding workloads in HPC environments.

In an HPC environment, community discovery has several challenges. First,
not all the users are regular users of HPC/clusters. Ephemeral users need to be
identified and discarded. Second, computing similarities between users is difficult.
Since each user submits a different number of jobs to HPC/clusters, measuring

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 193–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 S. Zheng et al.

the pair wise similarity of users based on their submitted jobs is both com-
plex and unreliable, especially when jobs are described by a complex structured
language, e.g., Job Description Language (JDL) [10]. Finally, the community
discovery process must be computationally efficient—especially for large-scale
workloads—so that it can be used to improve the underlying job scheduling. The
challenges outlined above limit the applicability of standard clustering techniques
(e.g., double-clustering approach in [12]). In this paper, an efficient method is
proposed to identify the correlated users in HPC/Cluster workloads.

Following similar analysis of social networks [4], we show that our discovered
communities exhibit power-law characteristics. Also, depending on a user’s ac-
tivity, we show that he/she can be categorized as either a dominant user or a
follower to a dominant user. This has profound implications on the importance
of dominant users in job scheduling. Basically, identifying dominant users and
their followers allows job schedulers to better predict change in future resource
demands. To enable effective usage of this new insight, we propose an online
learning algorithm that dynamically learns the social characteristics of a given
workload. Experimental results show that our online algorithm can efficiently
identify stable social groups by observing only a small portion of workload ar-
rivals and can track the group evolution over time.

The remainder of this paper is organized as follows. Section 2 introduces the
data sources that we used. We describe our proposed method in Section 3. We
then characterize various aspects of the discovered communities in Section 4.
Section 5 describes the online learning mechanism. We discuss the related work
in Section 6 and conclude the paper in Section 7.

2 Data Sources

The first dataset we used is the Grid 5000 traces [2]—a popular HPC workload
testbed. Grid 5000 is an experimental grid platform consisting of nine geographi-
cally distributed sites across France. Each site comprises of one or more clusters,
for a total of 15 clusters. We use the traces recorded by the individual Grid 5000
clusters from the beginning of the Grid 5000 project (during the first half of
2005) to November 10th, 2006. While there are many useful parameters for each
job record in the trace, we extract only UserID, GroupID, and SubmittedTime.
In the Grid 5000 trace, there are a total of 10 groups, more than 600 users, and
more than 100,000 jobs.

The second dataset that we used is the job trace (i.e., the Logging and Book-
keeping (L&B) files) from the Enabling Grid for ESciencE1 (EGEE) grid. EGEE
currently supports up to 300,000 jobs per day on a 24 × 7 basis. Similar to Grid
5000, we extract the submission timestamp and userID as job parameters. We
use two sets of EGEE L&B files: one contains 229,340 jobs submitted by 53 users
in 2005; the other contains 347,775 jobs submitted by 74 users in 2007.

1 http:// www.eu-egee.org/

Analysis and Modeling of Social Influence 195

Fig. 1. An example of socially-connected jobs. User B has 3/4 (75%) of jobs within a
Cjob before or after a job by User A.

3 Social Influence Model

In this section, we define social influence matrix (SIM) between users. We focus
on studying social relationships based on the submission time of jobs. As an
example, consider two users working on a project, which consists of many of
jobs. If the two users are working closely on the project (e.g., paper deadline),
their job submission times will be close. We refer to the two users and their
jobs as being socially influenced. In this paper, we use two key features, UserID
and SubmittedTime, to analyze the social influence between users. We do not
consider the duration time of jobs.

Take Group 1 in the Grid 5000 dataset as an example. In total, we have
38 different users, each submitting hundreds of jobs. Furthermore, consider two
users: User A (submitting 1000 jobs) and User B (submitting 800 jobs). Social
influence between these two users is captured by two factors:

– Socially-connected jobs: for a job of User B, if the minimum time between
the submission time of this job and at least one of the 1000 jobs of User A is
small enough (e.g., less than half hour before/after submission time), then
we say this job is socially connected to User A. We refer to this minimum
time threshold between jobs as Cjob.

– Socially-connected users: for the entire 800 jobs of User B, if more than
x% (e.g., x% = 50% or 80%) of the jobs are socially-connected jobs to User
A, then we say User B is socially connected to User A. We refer to the x%
threshold as Cuser . Furthermore, we define User A as a dominant user, and
User B as a follower of User A.

It should be noted that the social connections are directed relationships. The
fact that User A is socially connected to User B does not mean that User B is
also socially connected to User A.

Social influence between User A and User B is depicted in Figure 1. In this
example, three out of User B’s four jobs have at least one submission from User
A within the time interval Cjob. We can say that User B has 75% of his/her
jobs socially connected with User A, and that he/she is a follower to User A if
Cuser ≤ 75%.

196 S. Zheng et al.

Next, we turn our attention to building the SIM. For ease of processing, we
sort the 38 users in Group 1 of the Grid 5000 according to their UserID. The
SIM is a 38 by 38 matrix, noted as M . The element M(i, j) of i-th row and
j-th column denotes the corresponding percentage of the jobs of user i that are
socially connected to user j. We propose Algorithm 1 to calculate the SIM2.

Algorithm 1. Algorithm of Calculating the Social Influence Matrix (SIM)
Input: Data set of jobs D = {UserIDi, JobT imei},

the UserIDi submitted a job at time JobT imei

U={Uj}, j = 1...|U|, Distinct UserIDs
Criterion Cjob = 0.5 hour, 1 hour, 6 hours
Criterion Cuser = 50%, 80%

Result: Social Influence Matrix (SIM) M
for Uj ∈ U do

Y = {JobT imeq|∀q, UserIDq = Uj}
(JobT ime of all jobs submitted by Uj)

for Ui ∈ U do
X = {JobT imeq|∀q, UserIDq = Ui}

(JobT ime of all jobs submitted by Ui)
for k = 1 to |X | do

d(k) = min(|X(k) − Y (q)|), q = 1, ..., |Y|
M(i, j) =

∑|X|
k=1 (d(k) < Cjob) /|X |

if M(i, j) > Cuser then
user Ui is socially connected to user Uj , and
user Ui is a follower to the dominant user Uj

Table 1 shows the SIM of Group 1 when Cjob is one hour. We give SIM of
the first five users. In the first column, the first element is 1, which means that
100% of User 1’s jobs are socially connected to himself/herself. Obviously, all
diagonal values of the matrix are 1. The second element in the first column is 0,
which means that none of the jobs of second user are socially connected to the
first user.

As described earlier, social connections between users are influenced by the
threshold value Cuser—the minimum percentage of socially-connected jobs. If
we set the criterion Cuser to 80%, the followers to User i are the ones who have
values larger than 0.8 in i-th column. We show the number of followers in Table
2 for Cuser=80% and Cuser=50%. As expected, when Cuser is decreased, we
have an increase in the number of followers. For example, User 2 has 5 followers
when Cuser is reduced to 50% from 80%. In the following section, we will plot the

2 For a large set of users, we have two solutions to handle them in practice. First, we
can parallelize Algorithm 1 to efficiently calculate SIM M , because the calculations
of elements Mij are independent. Second, we can use the later proposed Algorithm
2 to incrementally update M online.

Analysis and Modeling of Social Influence 197

Table 1. One-Hour Social Influence Matrix (SIM)

User 1 User 2 User 3 User 4 User 5 ...

User 1 1 0 0 0 0 ...
User 2 0 1 0 0.029 0.084 ...
User 3 0 0 1 0 0 ...
User 4 0 0.131 0 1 0.239 ...
User 5 0 0.048 0 0.056 1 ...
...

Table 2. Number of Followers. A value of 1 means that there is only one follower to
the corresponding user, or this user is only socially connected to himself/herself.

Cjob Cuser User 1 User 2 User 3 User 4 User 5 ...

1 hr 80% 1 3 1 2 1 ...
1 hr 50% 1 5 1 2 2 ...

results like Table 2 for the two Grid 5000 datasets and the two EGEE datasets
to explore their number of followers distribution.

4 Analysis of Social Influence

In this section, we analyze Grid 5000 and EGEE datasets to discover socially-
connected users. As expected, the values for Cjob and Cuser will impact the
resulting analysis. We present our results for a number of value combinations for
both parameters. One challenge was choosing a reasonable parameter range for
Cjob. In particular, Cjob should be set as small as possible to capture true de-
pendencies. To reason about value for Cjob, we plot the Cumulative Distribution
Function (CDF) of the jobs’ interarrival time for the four datasets in Figure 2.
As the figure shows, the interarrival times vary significantly over multiple orders
of magnitude. Picking a small value of Cjob will unnecessarily filter out longer-
range (i.e., minutes rather than seconds) dependencies, which are common in
human interactions. Figure 2 indicates that—on average—the probability that
at least one job will be submitted within 30 minutes for all the groups under
study is larger than 95%. Thus, we decide to use Cjob values in the range from
30 minutes to 6 hours in our investigation.

4.1 Community Extraction from HPC Workloads

Figure 3 (a) shows the number of followers for each user identified from Group
1 of Grid 5000 trace with criterion Cuser=50%. When Cuser=50% and Cjob=6
hours, User 1, 2, and 3 have 13, 11, and 10 followers, respectively. When Cuser

=50% and Cjob=1 or 0.5 hours, the number of followers for every user decreases
as expected. Figure 3 (b) shows the number of followers for each user in Group 1
with criterion Cuser=80%. From Figure 3 (a) and (b), we can see that all users

198 S. Zheng et al.

0.0001 0.5 1 100 10000

0.95
0.9

0.8

0.7

1

Interarrival Time (Hour)

F
(x

)

Group 1
Group 6
EGEE 2005
EGEE 2007

Fig. 2. CDF of jobs’ interarrival time for Group 1, Group 6, EGEE 2005 and EGEE
2007

0 50 100 150
0

20

40

60

141 users

N
um

be
r

of
 fo

llo
w

er
s

(c) Group 6 (C
user

=50%)

0 50 100 150
0

20

40

60

141 users

N
um

be
r

of
 fo

llo
w

er
s

(d) Group 6 (C
user

=80%)

0 10 20 30 40
0

5

10

15

38 users

N
um

be
r

of
 fo

llo
w

er
s

(a) Group 1 (C
user

=50%)

6 hours
1 hour
0.5 hour

6 hours
1 hour
0.5 hour

6 hours
1 hour
0.5 hour

0 10 20 30 40
0

5

10

15

38 users

N
um

be
r

of
 fo

llo
w

er
s

(b) Group 1 (C
user

=80%)

6 hours
1 hour
0.5 hour

Fig. 3. Social groups discovered in Group 1 and Group 6 of Grid 5000 traces showing
the number of followers to each dominant user with different criteria of Cuser = 50%,
80% and Cjob = 6 hours, 1 hour, 0.5 hour

in Group 1 consistently have followers. Similarly, Figure 3 (c) and (d) show that
nearly 60% of all users in Group 6 consistently have followers. Figure 4 shows
that around 45% of all users in EGEE 2005 consistently have followers, and
around 55% of all users in EGEE 2007 consistently have followers.

4.2 Power-Law Distribution of Discovered Communities

A common property of many large networks is that the vertex connectivities
follow a scale-free power-law distribution [4]. We would like to investigate if

Analysis and Modeling of Social Influence 199

0 20 40 60
0

5

10

15

20

25

53 users

N
um

be
r

of
 fo

llo
w

er
s

(a) EGEE 2005 (C
user

=50%)

0 20 40 60 80
0

20

40

60

80

74 users

N
um

be
r

of
 fo

llo
w

er
s

(c) EGEE 2007 (C
user

=50%)

0 20 40 60 80
0

20

40

60

80

74 users
N

um
be

r
of

 fo
llo

w
er

s

(d) EGEE 2007 (C
user

=80%)

6 hours
1 hour
0.5 hour

6 hours
1 hour
0.5 hour

6 hours
1 hour
0.5 hour

0 20 40 60
0

5

10

15

20

25

53 users

N
um

be
r

of
 fo

llo
w

er
s

(b) EGEE 2005 (C
user

=80%)

6 hours
1 hour
0.5 hour

Fig. 4. Social groups discovered in EGEE 2005 and EGEE 2007 traces showing the
number of followers to each dominant user with different criteria of Cuser = 50%, 80%
and Cjob = 6 hours, 1 hour and 0.5 hour

such a power-law property exists among HPC users. In our study, each vertex
is a person. The connectivity among vertices captures the interactions among
users.

Let P (k) denote the probability that a user has a number of followers k, where
k is a positive integer number. To study if our discovered social groups have the
same property as the common networks, we investigate whether the number of
followers k of each dominant user has the power-law distribution: P (k)=a × kb.
Figure 5 shows the power-law distribution of the number of followers identified
from Group 1 and 6 of Grid 5000, as well as from EGEE 2005 and EGEE 2007.
The power-law distributions of other groups exhibit similar characteristics (un-
less the group size is very small); they are not shown for space consideration. All
social followers are discovered with socially-connected criterion Cjob = 0.5 hour
and Cuser = 50%. From Figure 5, we can see that the number of followers fits
very well the power-law distribution with different parameters a and b.

5 Design of Online Learning Mechanism

Our earlier analysis used an offline mechanism to identify social influence in
HPC workloads. For our analysis to be consumable by HPC job schedulers and
resource managers, a real-time (online) mechanism is needed. Algorithm 2 shows
the proposed mechanism for computing the social influence matrix (SIM) on the
fly while jobs are arriving. Suppose that at time step, t, a user submits a job.
We have (UserIDt, JobT imet) as a sample in our streaming workload, where

200 S. Zheng et al.

10
0

10
1

10
2

10
−4

10
−2

10
0

(a) Group 1 (a=0.6328, b=−1.64)

K

P
(K

)

10
0

10
1

10
2

10
−4

10
−2

10
0

(c) EGEE 2005 (a=0.8299, b=−2.838)

K

P
(K

)

10
0

10
1

10
2

10
−4

10
−2

10
0

(d) EGEE 2007 (a=0.6216, b=−1.903)

K

P
(K

)

10
0

10
1

10
2

10
−4

10
−2

10
0

K

P
(K

)

(b) Group 6 (a=0.6804, b=−2.268)

Fig. 5. The power-law distribution of the number of users k following each dominant
user identified in Group 1 and Group 6 of Grid 5000, EGEE 2005 and EGEE 2007

time step t ≥ 1 is an integer3. Given the threshold Cjob of socially-connected
jobs, we maintain a Unt × Unt matrix M t, where Unt is the number of unique
users until t. Each element of M t is a 2-tuple object M t

ij = {Rt
ij , C

t
i}, where Ct

i

is the number of jobs submitted by user UserID = Ui until time t, and Rt
ij is

the number of jobs of UserID = Ui that are socially connected to UserID = Uj

until t. The threshold Cjob and Cuser are set to half hour and 50% respectively by
taking experience from the offline mechanism for enabling further comparison.

We use MATLAB to implement and simulate Algorithm 2. Unlike Algorithm
1, we use a sliding time window along the workload flow. This window only
includes past job submissions within the interval of Cjob. Note, this is different to
the method described in Algorithm 1 for checking the socially-connected jobs. In
Algorithm 1, we consider the absolute value of the time difference, which includes
both sides of the current time point on the time axis (as shown in Figure 1).

We use cosine similarity [13] to measure the difference between the distri-
bution of followers as obtained by Algorithms 1 and 2. We set Cjob=0.5 hour
and Cuser=50%. Figure 6 shows the cosine similarity between online results as
compared to its offline counterpart as a function of the percentage of observed
jobs (in chronological order). The cosine similarity increases towards the value 1
as additional jobs are observed. When all jobs have been observed (at the 100%
value on the x-axis), the online and offline algorithm produce the same results
(cosine similarity = 1).

A very promising characteristic of the online algorithm is its ability to track
group evolution over time. For example, Figure 6 shows how Group 6 and EGEE
3 Time step t is used to order the streaming jobs by arrival time. If t1 < t2, UserIDt1

submitted a job earlier than UserIDt2, i.e., JobT imet1 < JobT imet2.

Analysis and Modeling of Social Influence 201

Algorithm 2. Online Algorithm of Calculating Socially Influence Matrix
(SIM)

Input: Streaming jobs S = {UserIDt, JobT imet},
the UserIDt submitted a job at time JobT imet

Criterion Cjob = 0.5 hour
Criterion Cuser = 50%

Result: Socially Influence Matrix M t, M t
ij = {Rt

ij , C
t
i }

where Rt
ij is the number of Ui’s jobs socially connected to Uj until t, and Ct

i is
the number of jobs submitted by user Ui until t
Initialization:

Distinct users set U = {}, and the number of distinct users Unt = 0,
M t

ij = {Rt
ij = 0, Ct

i = 0}
Maintain M t

for t = 1 to ... do
if UserIDt /∈ U then

U = U ∪ UserIDt

Unt = Unt−1 + 1

i ← UserIDt = Ui

Ct
i = Ct−1

i + 1
X = {UserIDq |∀q, JobT imeq >= JobT imet − Cjob}

a set of UserID whose jobs arrived within a time-window Cjob

for Uj ∈ X do
Rt

ij = Rt−1
ij + 1

Rt
ji = Rt−1

ji + |Xj,t′ |
where |Xj,t′ | is the number of Uj in time window of

[max{t − Cjob, t
′ + Cjob}, t] and t′ is the last time when Ui appeared

Socially-connected users
for j = 1 to Unt do

if Rt
ij/Ct

i > Cuser in M t
ij then

user Ui is socially connected to user Uj , and
user Ui is a follower to the dominant user Uj

2005 have sudden increase in the number of discovered social groups after pro-
cessing 50% and 80% of all job flows, respectively. In contrast, Group 1 and
EGEE 2007 have stable social groups after processing 5% of all jobs, with little
change beyond that point.

The discovered changes in social groups reflect variations in HPC system
usage. In order to verify the changes in social relationships, we investigate the
number of distinct users as a function of job arrivals (Figure 7). Comparing
Figures 7 and 6, we find that the curves move in tandem (as a function of
job arrival). For example, Group 6 and EGEE 2005 have more new users after
observing 50% and 80% of all job flows. The number of users in Group 1 and
EGEE 2007 grow slowly after 5% of all jobs.

202 S. Zheng et al.

0.2% 1% 10% 100%
0

0.2

0.4

0.6

0.8

1

Percentage of Jobs

C
os

in
e

S
im

ila
rit

y

Group 1

Group 6

EGEE 2005

EGEE 2007

Fig. 6. Online Learning Convergence for Group 1, Group 6, EGEE 2005 and 2007

0.2% 1% 10% 100%
0

50

100

150

Percentage of Jobs

N
um

be
r

of
 U

se
rs

 S
in

ce
 S

ta
rt

Group 1
Group 6
EGEE 2005
EGEE 2007

Fig. 7. Online Users Count for Group 1, Group 6, EGEE 2005 and EGEE 2007

We are still interested in how fast the similarity can reach a stable state.
Figure 6 shows that our online algorithm can converge and reach a stable state
quickly in real time. For example in Group 1, we see that the user population
(number of distinct users as shown in Figure 7) is stable within 1% of job flows,
while the cosine similarity (in Figure 6) reaches the stable state within about
0.4% of all jobs. When the user population of Group 1 changes dramatically
from 1% to 7%, Figure 6 shows that the cosine similarity follows the changes
quickly and reaches a stable state closing to 1.

6 Related Work

Many generally available workload traces [3,2,1] have been used to study design
alternatives for resource scheduling algorithms, resource capacity planning in
both grid cluster and cloud environments, building performance modeling, etc.
Most of these studies use—as input—the arrival pattern of individual jobs and
their resource requirements [8]. Only recently, Iosup et al. [5] presented their first
investigation of the grouping of jobs by looking at their submission patterns and
their impact on computing resource consumption. More recently, Ostermann et
al. [9] studied job flows focusing on how sub-jobs are submitted in parallel or

Analysis and Modeling of Social Influence 203

in sequence [9]. Unlike existing work, we investigate job submission patterns
from the perspective of social connections (e.g., group association, virtual or-
ganization, etc.). Especially in cloud environments, the ability to predict future
demands is critical to managing the underlying computing resources.

Community extraction has been commonly studied as a graph problem. A
graph is constructed by taking users/persons as nodes and connecting two nodes
if they are correlated in some activities. A community discovered in a graph is
a subgraph including a group of nodes and their edges, where the nodes have
high similarity with each other. Two approaches have been used to identify
the subgraphs. One is based on a clustering method, weighted kernel k-means,
which groups together the nodes that are similar to each other by measuring a
type of random walk distance [14]. The other approach uses graph partitioning
algorithm (or called spectral clustering) to cut the graph into a set of subgraphs
by optimizing the cost of cutting edges under the normalized cut criterion [11].

The most relevant work to our paper is the Mixed User Group Model (MUGM)
proposed by Song et al. [12]. MUGM forms the groups of users through charac-
terizing each user by job clusters, which were obtained by using CLARA (also
known as k-medoids) clustering method [6] on the whole jobs. There are two
difficulties in applying MUGM on analyzing HPC workloads. First, using clus-
tering method to group jobs requires the computation of job similarities, which
is difficult for jobs described by mixture of features. Second, representing users
based on job clusters cannot be easily adapted as an online technique, because
job clusters need to be computed on the whole data before analyzing the user
groups. Our approach identifies social groups by measuring their tasks’ submis-
sion behavior. Furthermore, our approach does not need the computation of job
similarities and can be efficiently used in an online fashion.

7 Conclusions and Future Work

This paper identified and validated the existence of social influence on HPC
workloads. We suspect that this influence stems from how HPC applications are
developed and run. Given its potential importance on job scheduling and resource
management, we proposed a method to discover socially-connected users based
on measuring the proportion of socially-connected jobs they have. We showed
the existence of a social graph characterized by a pattern of dominant users
and followers. We applied this proposed method to traces of Grid 5000 and
EGEE. Both in the Grid 5000 and the EGEE workloads, we consistently found
that around half of the users had followers irrespective of how the thresholds
Cjob and Cuser were set. Additionally, the corresponding social graph followed a
power-law distribution, which is consistent with mainstream social networks. We
developed both an offline and a fast-converging online algorithm to implement
our proposed method. The online version was shown to require a small number
of arrived jobs to discover the social groups and be able to track the group
evolution over time.

204 S. Zheng et al.

Identifying dominant users and their followers may have profound implication
on the prediction of workload and, consequently, on resource demand patterns.
Thus, our future work will focus on quantifying social characteristics of the dis-
covered user connections and using this quantitative information to improve the
prediction of workload arrival patterns and resource demands. The prediction
will enable the development of new algorithms in job scheduling, resource uti-
lization, and resource capacity planning.

References

1. Google Cluster Data, http://code.google.com/p/googleclusterdata/
2. Grid Workloads Archive, http://gwa.ewi.tudelft.nl/pmwiki/
3. Parallel Workloads Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-

ence 286(5439), 509 (1999)
5. Iosup, A., Jan, M., Sonmez, O.O., Epema, D.H.J.: The characteristics and perfor-

mance of groups of jobs in grids. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 382–393. Springer, Heidelberg (2007)

6. Kaufman, L., Rousseeuw, P., Corporation, E.: Finding groups in data: an intro-
duction to cluster analysis, vol. 39. Wiley Online Library, Chichester (1990)

7. Lin, Y., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.: Blog community discov-
ery and evolution based on mutual awareness expansion. In: Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, pp. 48–56. IEEE
Computer Society, Los Alamitos (2007)

8. Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud
backend workloads: insights from google compute clusters. ACM SIGMETRICS
Performance Evaluation Review 37(4), 34–41 (2010)

9. Ostermann, S., Prodan, R., Fahringer, T., Iosup, R., Epema, D.: On the charac-
teristics of grid workflows. In: CoreGrid Technical Report TR-0132 (2008)

10. Pacini, F.: Job description language howto (2003)
11. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
12. Song, B., Ernemann, C., Yahyapour, R.: User group-based workload analysis and

modelling. In: IEEE International Symposium on Cluster Computing and the Grid,
CCGrid 2005, vol. 2, pp. 953–961. IEEE, Los Alamitos (2005)

13. Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson Addison
Wesley, Boston (2006)

14. Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., Saerens, M.: Clus-
tering using a random walk based distance measure. In: Proceedings of the 13th
Symposium on Artificial Neural Networks (ESANN 2005), pp. 317–324. Citeseer
(2005)

http://code.google.com/p/googleclusterdata/
http://gwa.ewi.tudelft.nl/pmwiki/
http://www.cs.huji.ac.il/labs/parallel/workload/

Work Stealing for Multi-core HPC Clusters

Kaushik Ravichandran, Sangho Lee, and Santosh Pande

College of Computing, Georgia Institute of Technology, USA
kaushikr@gatech.edu, slee431@gatech.edu, santosh@cc.gatech.edu

Abstract. Today a significant fraction of HPC clusters are built from
multi-core machines connected via a high speed interconnect, hence, they
have a mix of shared memory and distributed memory. Work stealing al-
gorithms are currently designed for either a shared memory architecture
or for a distributed memory architecture and are extended to work on
these multi-core clusters by assuming a single underlying architecture.
However, as the number of cores in each node increase, the differences
between a shared memory architecture and a distributed memory archi-
tecture become more acute. Current work stealing approaches are not
suitable for multi-core clusters due to the dichotomy of the underlying
architecture. We combine the best aspects of both the current approaches
in to a new algorithm. Our algorithm allows for more efficient execution
of large-scale HPC applications, such as UTS, on clusters which have
large multi-cores. As the number of cores per node increase, which is
inevitable given today’s processor trends, such an approach is crucial.

Keywords: dynamic load balancing, unbalanced tree search, multi-core.

1 Introduction

Today, a large portion of HPC systems are built from multi-core machines con-
nected through high speed interconnects such as InfiniBand. This kind of archi-
tecture is seen in systems in the Top 500 list such as Jaguar (Oak Ridge National
Laboratory), Hopper (NERSC) and Kraken (National Institute of Computa-
tional Sciences). These systems have two distinct kinds of parallelism: intra-node
and inter-node. Intra-node parallelism (through shared memory) is due to the
existence of multiple cores in a single node, while inter-node parallelism (through
distributed memory) is due to the presence of a large number of such nodes. The
number of cores per node, and hence intra-node parallelism, is increasing as
larger and larger multi-cores become commonplace.

Work stealing algorithms are currently designed for either a shared mem-
ory architecture or for a distributed memory architecture and are extended to
work on these multi-core clusters in a straight forward manner. The distributed
memory implementations extend naturally into a multi-core cluster environment
by running separate tasks on different cores. Shared memory implementations
are typically extended by using PGAS (Partitioned Global Address Space) lan-
guages such as UPC (Berkley Unified Parallel C). PGAS languages present a

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 205–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 K. Ravichandran, S. Lee, and S. Pande

unified address space over the underlying distributed memory allowing the algo-
rithm to scale across the cluster. Termination detection algorithms are similarly
extended.

However, as the number of cores in each node increase (due to larger multi-
cores), the differences between a shared memory architecture and a distributed
memory architecture become more acute. Current approaches which extend a
completely shared memory paradigm or a distributed memory paradigm to a
cluster can be improved. Combining the best aspects of both approaches results
in a new algorithm which allows for a more efficient execution of large-scale
HPC applications, like UTS, which need efficient dynamic load balancing. As the
number of cores per node increase, which is inevitable given today’s processor
trends, such an approach is crucial.

The UTS (Unbalanced Tree Benchmark) [14] is representative of the class
of applications which process highly unbalanced workloads. We demonstrate
the effectiveness of our approach on the UTS benchmark and report significant
speedups on large multi-core clusters over current shared memory implementa-
tions and distributed memory implementations.

2 Work Stealing

A fundamental problem in achieving maximum performance from HPC applica-
tions is that of dynamic load balancing. Many applications exhibit a large vari-
ability in the amount of work they dynamically generate. This variability gives
rise to an imbalance in the parallel execution of these applications. Variability
could be caused by many reasons. For example, the random nature of input data
could cause imbalance between the workloads of different parallel processing el-
ements. The UTS (Unbalanced Tree Search) benchmark [14], is representative
of the class of parallel applications which require dynamic load balancing. The
benchmark has been carefully designed to be the optimal adversary to load bal-
ancing strategies. In this paper we shall focus on the UTS benchmark to test
our algorithm, both because of its popularity and because of its ability to stress
dynamic load balancing algorithms effectively.

Load balancing can be broadly divided into two categories: static and dy-
namic. Static approaches have been well studied [16,12]. These approaches, how-
ever, are not suitable for the kind of applications we are concerned about due
to the unpredictability of the problem space and dependence on the input pa-
rameters and dataset. Dynamic load balancing algorithms have been proposed
to address the types of applications we are looking at.

Many dynamic load balancing algorithms have been proposed. Two popular
algorithms used on both architectures (shared as well as distributed memory)
are work sharing and work stealing. Work sharing involves balancing of the
workload using a globally shared task queue. Work stealing on the other hand
follows a completely distributed approach where idle processing elements take
on the onus of finding work by looking around the system and has been found
to be more efficient [6]. Its effectiveness lies in the fact that it puts a majority
of the overhead on idle processors, minimizing the load on busy processors and

Work Stealing for Multi-core HPC Clusters 207

minimizing the need for global information. Work stealing has been proven to
be optimal for a large class of problems and has tight space bounds [2], thus,
making it the method of choice for large scale distributed clusters.

Termination detection is a critical postlude to work stealing algorithms. This
step allows programs to recognize when there is no more work in the system. As
we have described before, in the work stealing method, once a processing element
becomes idle, it looks around for work that it can steal from other processing
elements. Indeed, it is possible that all processing elements have completed their
work and are simply looking around for more work endlessly. The process of
detecting such a system state and ending the execution is termination detection.
Termination detection algorithms, akin to work stealing algorithms have different
implementations on shared memory architectures and on distributed memory
architectures.

Shared memory architecture. On shared memory architectures, work steal-
ing has been used to effectively parallelize unbalanced workloads. Implementa-
tions such as Cilk [9], have popularized work stealing by implementing it in the
runtime system. Typically, each processing element maintains a double ended
queue in shared memory. When it needs to process a task, it takes a task off
the front of its queue and processes it. Any new tasks are added to the front
of the queue. When a processing element completes all the tasks in its queue,
it becomes idle and begins work stealing. It looks for other processing elements
which have excess tasks in their task queues. Once it locates such a queue, it
takes tasks from the back of that queue and pushes it onto its own. Of course,
the implementation needs to be highly tuned to reduce excess locking overhead.
Methods like ”THE” [9] eliminate a majority of the situations in which locks are
needed. Such methods split the queues into private and public sections, elimi-
nating the need for locking in the private sections while still requiring locking in
the public section.

Termination detection in shared memory architectures can be achieved us-
ing special kinds of barriers, called cancellable barriers which allow threads to
”check-in” and ”check out”. These barriers are especially suited for shared mem-
ory work stealing algorithms.

Attempts have been made to extend such work stealing algorithms to HPC
clusters which contain both shared memory and distributed memory [6]. To
extend these algorithms to a cluster, an abstraction is needed to apply a shared
memory paradigm over the entire cluster. Partitioned Global Address Space
(PGAS) languages allow precisely this. These languages allow programmers to
write code, assuming a shared memory architecture and the PGAS programming
model takes care of the rest. It implicitly converts any cross machine memory
accesses into messages using interfaces such as MPI.

While this approach leads to a correct implementation, it is not necessarily
efficient, for several reasons. The cross machine memory accesses that are con-
verted into messages cause increased contention, runtime overhead and latency.
These overheads can be minimized to some extent by careful tuning of the mes-
sages that are sent by using one sided reads and writes and RDMA (Remote

208 K. Ravichandran, S. Lee, and S. Pande

Direct Memory Access). However, using one sided reads and writes is a much
more complicated affair and involves a lot more effort. A more serious disadvan-
tage of using RDMA is that often, the underlying system needs to dedicate one
core from each SMP to address these accesses transparently and efficiently [6].

Distributed memory architecture. Work stealing algorithms for distributed
memory architectures differ from shared memory architectures for several rea-
sons. For one, on shared memory architectures, synchronization primitives,
caching and coherence protocols are often taken for granted as the underly-
ing hardware takes care of these issues. Implementing these global operations
in a distributed memory architecture often results in high runtime overheads
and latencies. Another reason is that some algorithms simply do not scale. For
example, it is no longer feasible to allow different tasks to spin on a common
memory location, due to the absence of shared memory. Attempting to do so,
would introduce a terrible amount of contention at certain nodes due to mes-
saging. Clearly, different algorithms are needed which are suited for distributed
memory architectures.

Solutions which use direct management of communication operations using
explicit message passing have been shown to be viable [1]. Different algorithms
such as Dijikstra’s Termination Detection algorithm [4] are more suitable than
cancellable barriers for termination detection in a distributed setting.

Practical solutions are typically designed assuming a completely distributed
memory, using MPI or a similar message passing interface. A typical multi-core
HPC cluster, however, has both shared and distributed memory. It is extremely
straight forward to extend the implementation to an entire multi-core cluster
by simply running different tasks on different cores, irrespective of whether or
not they share any common memory. This is not an optimal solution, since
communicating via MPI is certainly slower than through shared memory when
it exists. However, this solution is still correct and allows for the execution of
these work stealing algorithms across an entire cluster.

Our approach. Though extending the shared memory paradigm or the dis-
tributed memory paradigm to an entire multi-core cluster maybe correct, it is
not necessarily efficient. As multi-core machines become more and more preva-
lent it is crucial to recognize the differences between shared memory architec-
tures and distributed memory architectures. Our approach uses aspects from
both methodologies to come up with a new more efficient algorithm.

Our approach uses two different load balancing strategies. One inside a multi-
core node and one across multi-core nodes. For intra-node load balancing we
use a popular algorithm which uses lockless task queues in shared memory and
cancellable barriers for termination detection, while for inter-node load balanc-
ing we switch over to a pure MPI implementation and a termination detection
algorithm similar to Dijikstra’s. We show that such an approach is more efficient
than previous approaches when there are a larger number of cores per node.

The ideas behind our approach can also be used to improve previous imple-
mentations. We would like to stress, that our ideas are orthogonal to previous
approaches and they too can benefit from our techniques.

Work Stealing for Multi-core HPC Clusters 209

3 Design for Our Approach

3.1 Shared Memory Design

Our approach uses a popular algorithm for work stealing in shared memory
multi-cores [6]. Split queues are used to alleviate locking overhead and a can-
cellable barrier is used to detect termination. Each core runs a single thread
which is responsible for executing tasks.

The task queues are accessed very frequently and hence operations on them
must provide efficient access. Each thread has one local task queue that it uses
to maintain its list of tasks. When a thread generates more tasks and needs to
add it to its local task queue, it enqueues the tasks at the front of the queue.
When a thread needs to remove tasks from the queue, it dequeues them, again,
from the front of the queue. When threads become idle, they search other task
queues for work. If they find work in some other task queue, they will steal it
by dequeue-ing it from the back of the queue.

First and foremost, this task queue should provide efficient access to the local
thread, since it is on the critical path of execution. Any delays on task queue op-
erations will directly be reflected in the execution time of the application. Other
threads also need access to the task queue to enable work stealing. Concurrent
access can be achieved by using a simple locking mechanism on the task queue.
This would however add locking overhead for the local thread as well with every
enqueue and dequeue operation. To alleviate the locking overhead we can use a
single queue, but divide it into two distinct regions: a local region and a global
region. The local region would remain lock free for access by the local thread
and the global region would be synchronized through a lock. This is called a
split queue (Figure 1).

Fig. 1. Split queues alleviate lock-
ing overhead

Split queues need additional operations on
top of the regular enqueue and dequeue oper-
ations to function properly. A thread contin-
uously inserts tasks into the local portion of
the task queue. If there is a sufficient amount
of work in the local region it can choose to ex-
pose the excess work into the global region of
the task queue. This operation involves invok-
ing the lock of the global region of the queue.
This operation of moving work into the global
region of the queue is called the release operation. The release operations must
be performed periodically ensuring enough work for other threads to steal. Corre-
spondingly, when work in the local region of the split queue has been completed,
it is then necessary to get some of the work from the global region of the queue
(if it exists) back into the local part of the queue. This can be accomplished by
simply moving the boundary between the local and global regions of the queue,
further towards the global region. This operation must also be locked and is
known as the reacquire operation. The reacquire operation is only performed
when the work in the local portion is exhausted. Using the release and reacquire
operations, locking is minimized to the global portions of the queue and the

210 K. Ravichandran, S. Lee, and S. Pande

accesses to the local region are lock free, except for the release and reacquire
operations. This contributes minimally to the critical path overhead.

This kind of work stealing follows the depth-first work and breadth-first steal
technique [2] that is used by many implementations including Cilk [9]. Our shared
memory design is implemented in OpenMP.

Termination detection. Termination detection is achieved using a cancellable
barrier. Cancellable barriers allow threads to check-in and also check-out when
more work has been released into the system. Once a thread finds that the global
regions are empty, it checks into the cancellable barrier. Indeed, this does not
mean that there is no work in the system, it simply means that there is no
work in the global region of any of the task queues. Other threads could be
processing tasks and they could have tasks in their local regions which have not
yet been released into the global region. Barriers can be canceled by another
thread when it releases work into the system by performing a release operation.
This kind of cancellable barrier does not scale across nodes in a cluster because
of its centralized nature.

3.2 Distributed Memory Design

So far we have described the design of a shared memory implementation of
work stealing. To expand this across the cluster we need a way to steal across
nodes. We could have used a programming model like PGAS to convert any
shared memory steals across nodes into messages sent through the underlying
interconnect. However, due to remote locking latencies and overheads of the
PGAS language and runtime, we found that co-ordinating cross node steals
through MPI was much more efficient.

Hence, MPI is used to achieve load balancing across nodes. MPI provides for
efficient message passing which is under our control rather than a PGAS language
[14,7]. One important consideration which guided our design was that stealing
from a thread in the same node is many times faster than stealing from another
node in the cluster (in our experiments, about 50 times faster). Hence, we always
perform work stealing inside a node before we cross the node boundary. This
important guiding principle can be applied to any work stealing algorithm for
improved performance.

One approach to enable work stealing across nodes would be to allow individ-
ual threads to send MPI steal requests to different nodes when they detect that
there is no more work in the local node. This design requires a multi-threaded
implementation of MPI and introduces locking overheads in the MPI runtime.
To avoid any locking overhead and to maximize portability of our implementa-
tion we needed to use a single threaded implementation. This led us to choose a
design in which we designate one thread per node to be in charge of cross node
MPI steal requests. This designated thread will send cross node steal requests
only when all the work on the local node has completed since stealing intra-node
is much more quick than stealing across nodes. The designated thread (hereafter
referred to as thread0) is also in charge of responding to steal requests from other
nodes as well as termination detection.

Work Stealing for Multi-core HPC Clusters 211

thread0 will begin sending out cross node steals when it has exhausted all
the tasks on its task queue and when all the other threads have checked into
the cancellable barrier. We provide a special check-in mechanism for thread0 so
that it can ”peek” into the current state of the barrier and wait till all the other
threads have arrived at the barrier. By using this ”peek” check-in,thread0, can
determine when all the other threads have finished. If some thread generates
work or if thread0 finds work, the barrier gets canceled and all the other threads
resume work stealing.

thread0 of a given node will choose a victim and send out a steal request to
that victim. The thread0 of every node processes tasks from its task queue just
like every other thread, but in addition, it also periodically checks for any new
steal messages it might need to service. If it has work in its local task queue, it will
dequeue several nodes (controlled by parameter chunksize) it and send it out the
thief. If it has no work, it will respond with the fact that it has no work. If thread0
of a node, sends out a steal request and it gets back work, it will enqueue it onto its
local task queue and cancel the barrier to wake all other thread up. If on the other
hand, it gets a message saying that there is no work at the victim node, it will
choose another victim and proceed. Using this approach, the maximum number
of outstanding messages in the system will be bounded by the number of nodes
since each node sends out steal requests one at a time. Different methodologies
can be adopted for choosing the order in which victims are selected, however, we
employ random work stealing which has been proven to be optimal [2].

If we had used a shared memory paradigm (a PGAS language like UPC) the
steal operations will disturb the working threads in other nodes because these
threads will be forced to wait for the global regions of these task queues to
be unlocked to perform any release or reacquire operations. The cost of these
interfering remote locking operations is typically an order of magnitude greater
than the cost of a shared variable reference [15]. However, our implementation
using MPI similar to [7], enables the thread to perform operations on their local
task queues without waiting for locks from threads external to the node (which
have the highest latency). They simply service steal requests at regular intervals
removing the necessity of locks from external threads. Our distributed memory
design is implemented in MPI.

Termination detection. The described techniques enable efficient work steal-
ing across nodes in a HPC cluster, but this is not enough. We also need to detect
termination across all the nodes in the cluster. If after attempting to steal from
other nodes, thread0 does not find any work in other nodes it will begin the
global (across cluster nodes) termination detection process.

For termination detection in a single node we employed a cancellable barrier.
This approach is simply not scalable to an entire cluster for reasons explained
previously. We need a different algorithm to detect termination across the cluster.
Many algorithms have been proposed in literature. We chose to use a modified
version of the well known Dijikstra’s termination detection algorithm [5] similar
to [7] which is a token based termination detection algorithm. We refrain from
describing the algorithm here due to a lack of space. Details can be found in [5].

212 K. Ravichandran, S. Lee, and S. Pande

Recall, that for thread0 to have participated in the global termination detec-
tion process, it must have finished sending out all its cross node steal requests.
And to have sent out cross node steal requests, it must have been the case
that the other threads in the node are still waiting on the cancellable barrier.
Once, thread0 determines that global termination has been reached, it performs
a complete check-in to the cancellable barrier on the node (as against a ”peek”
check-in that it normally performs). Once, thread0 checks in, threads waiting at
the cancellable barrier are notified that global termination has been reached and
all threads terminate execution.

3.3 Combined Approach

The combination of the above schemes provides for a very efficient work steal-
ing approach for HPC clusters. To summarize, we prioritize intra-node steals
over inter-node steals and use a different algorithm for intra-node steals (asyn-
chronous steals and cancellable barriers) and for inter-node steals (polling for
steal requests and Dijikstra’s termination detection). Note that while better vic-
tim selection in the previous approaches would improve their performance it is
insufficient and the use of two different algorithms is vital. Figure 2 depicts all
the interactions in the form of a state diagram.

Fig. 2. Interactions of the algorithm

4 Evaluation

4.1 UTS

The Unbalanced Tree Search benchmark has been designed to be representative
of a class of HPC applications which require substantial dynamic load balance
[14]. Applications that fit this category include many search and optimization
problems that must enumerate a large state space of unknown or unpredictable
structure. UTS has become the benchmark with which load balancing algorithms
are benchmarked. The benchmark is itself based on a simple problem - the
parallel exploration of an unbalanced tree. The problem is to count the total
number of nodes that this tree generates. The tree is generated through an
implicit construction that is parametrized in shape, depth, size and imbalance.
The tree is generated by traversing down the tree from the root node. When we
process the root, its children (nodes) are generated. Now, each of these nodes

Work Stealing for Multi-core HPC Clusters 213

are recursively processed to generate the entire tree. While the processing time
of each node is fairly constant, there is a high amount of variance in the sizes of
each of the sub-trees leading to imbalance in workloads. [14] can be referred for a
more detailed explanation. Figure 3 depicts an unbalanced tree showing a weblog
file [10]. There are two types of trees that are used as part of the benchmark:
Geometric Trees and Binomial Trees. Details can be found in [14].

4.2 Results

Fig. 3. Unbalanced tree showing a weblog

In this section we compare our imple-
mentation with two highly tuned state
of the art implementations: one which
extends a shared memory paradigm
to a multi-core cluster using UPC
[15] and another which extends a dis-
tributed memory paradigm to a multi-
core cluster using purely MPI [7].

The UPC implementation extends
a shared memory paradigm to the en-
tire multi-core cluster. Accesses to re-
mote memory are converted under the hood into cross node MPI messages. It
has been found that simply using UPC and extended a shared memory algo-
rithm is simply not scalable [15,14,7] and the authors of this implementation
had to use several techniques such as polling instead of asynchronous stealing to
improve performance to an acceptable level. In our experiments we have found
this tuned UPC implementation to be faster than the MPI version, consistent
with previous findings [15]. Our approach is significantly faster than the current
implementations at higher thread/node counts. In this section we will refer to
the three implementations as: the Combined approach (our method), the UPC
approach and the MPI approach.

For our experimentswe used a 15-node, 120-core IBMBladeCenterHLinux clus-
ter with 2 socket x Core2 quad processors. Each node supported the parallel exe-
cution of up to 8 threads. This allowed us to observe the behavior of the three im-
plementations as we increased the number of threads on each core from 1 to 8. The
nodes in the cluster were connected using Ethernet and we used MPI for message
passing across nodes. The UPC implementation was compiled with Pthreads sup-
portwhich enabled intra-node communication to happen through sharedmemory.

Tests were performed using 3 trees generated by the UTS benchmark. We
used two geometric trees (GEO1 and GEO2) and one binomial tree (BIN1)1.
We increased the number of threads running per core from 1 to 8 hence scaling

1 For reproducibility we provide the exact parameters used to generate the tree.
GEO1 (1635119272 nodes): Geometric (Fixed), d = 15, b0 = 4, rootseed = 29.
GEO2 (4230646601 nodes): Geometric (Fixed), d = 15, b0 = 4, rootseed = 19.
BIN1 (1060980001 nodes): Binomial, b0 = 2000, q = 0.024999999975, m = 40,

rootseed = 316.

214 K. Ravichandran, S. Lee, and S. Pande

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(a) Execution time for GEO1

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(b) Execution time for GEO2

 5

 10

 15

 20

 25

 30

 35

 40

 15 30 45 60 75 90 105 120

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of threads

Combined
UPC
MPI

(c) Execution time for BIN1

Fig. 4. Execution Time

Table 1 Inter-node Intra-node

Combined 5233 132919

UPC 13128 1501

MPI 800501 N/A

Table 2 Inter-node Intra-node

No. steals 5233 132919

Total time 0.25923 0.13852

Time/steal (s) 0.000049539 0.000001042

(a) Table 1: Number of steals for different approaches. Table 2: Time taken for each
steal in the Combined Approach in sec.

Fig. 5. Steals Breakdown

the implementation from 15 threads (one on each node) to 120 threads (8 on
each node). Figure 4 shows the results we obtained.

Discussion. Our implementation which combined the use of two different al-
gorithms consistently performed better than the two other implementations at
higher core counts on GEO1, GEO2 and BIN1. The MPI implementation is
slower than both the combined approach and the UPC approach in all the tests.
Let us consider the case when only 1 thread runs on each node of the cluster. We
call this the baseline case. Each additional test increases the number of threads
on the node by 1. In the baseline case, the Combined approach is slower than

Work Stealing for Multi-core HPC Clusters 215

the UPC approach by as much as up to 23%. With 2 threads running per node,
the Combined approach is slower than the UPC approach by approximately
2%. However, as we increase the number of threads per node, the Combined ap-
proach consistently performs better, with almost a 20% improvement when using
4 threads/node which only increases as we increase the number of threads/node.

The fact that the Combined approach is slower than the UPC implementation
when using a smaller number of threads points to two facts. That at lower
thread counts, the overheads of using two separate termination detection and
stealing algorithms slows down the overall execution and also that the base
UPC implementation is highly tuned and performs very well on machines with
low threads/node. However, we observe that at higher threads/node counts the
Combined approach provides significant speedups over the UPC approach and
the MPI approach.

Table 1 in 5(a) shows the breakdown of the number of inter-node and intra-
node steals performed by the various approaches. These numbers were obtained
by running GEO2 with a total of 90 threads on 15 nodes. The Combined ap-
proach prioritizes intra-node steals over inter-node steals. The UPC implemen-
tation however, performs a much higher number of inter-node steals while com-
pared to intra-node steals (however, roughly the same proportion considering
that there are 15 nodes). The MPI implementation performs only inter-node
steals since we assume a completely distributed memory. Table 2 in 5(a) points
to the fact that inter-node steals are almost 50 times slower than intra-node
steals!

The underlying reason behind the speedups is the fact that we use two different
algorithms for inter-node steals and intra-node steals. The speedup cannot be
attributed to the use of shared memory alone, since the UPC implementation
was compiled with Pthreads support which enables use of shared memory for
threads which are collocated on the same node. Similarly the speedup cannot be
attributed to improved victim selection (based on locality). In our experiments
we found that tuning victim selection in the UPC and MPI approach improved
performance by only a modest 2% (at 8 threads/node). We conclude that the
most important factor in the speedup is the use of a different algorithm for inter-
node steals and intra-node steals. Retrofitting either a shared memory paradigm
or a distributed memory paradigm on top of a multi-core cluster does not perform
as well at higher thread/node count.

5 Related Work

A large amount of effort has been invested in studying different kinds of load
balancing algorithms. Load balancing methods have been broadly classified into
static methods and dynamic methods. Static methods such as [16,12] are suit-
able in situations where work can be divided fairly before execution. Task graph
scheduling [13] finds a schedule given a set of tasks which are organized as a
graph. Dynamic approaches so far have focused on using a distributed memory
approach using MPI [7] and techniques like RDMA [17] or using a shared mem-
ory approach [14] using OpenMP. PGAS languages extend the shared memory

216 K. Ravichandran, S. Lee, and S. Pande

paradigm across an entire cluster (containing nodes with distributed memory)
hence allowing load balancing algorithms to work across an entire cluster. Cer-
tain languages like X10 [3], Cilk [9] employ dynamic load balancing techniques.
Hierarchical techniques have been proposed in ATLAS [11]. Work stealing tech-
niques, in general, have been well studied and have been shown to be applicable
to various applications on distributed memory machines such as [17,8].

6 Conclusion and Future Work

In this paper we propose an algorithm which uses different algorithms for inter-
node and intra-node steals and demonstrate marked improvements on the UTS
benchmark over current implementations. Future work involves optimizing our
implementation using various techniques such as work pushing and using smarter
victim identification schemes. We strongly believe that the concepts that are
presented in this paper can be applied to current implementations and can be
used in designing work stealing algorithms in the future. We would like to thank
the anonymous reviewers for their comments. We also gratefully acknowledge
the support of NSF grants CCF-1018544 and CCF-0916962.

References

1. Berlin, K., Huan, J.: Evaluating the impact of programming language features on
the performance of parallel applications on cluster architectures. In: Rauchwerger,
L. (ed.) LCPC 2003. LNCS, vol. 2958, pp. 194–208. Springer, Heidelberg (2004)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46, 720–748 (1999)

3. Charles, P., Grothoff, C., Saraswat, V.: X10: an object-oriented approach to non-
uniform cluster computing. SIGPLAN Not. 40, 519–538 (2005)

4. Scholten, C.S., Dijikstra, E.W.: Termination detection for diffusing computations
(1980)

5. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Information Processing Letters 11(1), 1–4 (1980)

6. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.: Scal-
able work stealing. In: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC 2009, pp. 53:1–53:11. ACM, New
York (2009)

7. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.-W.: Dynamic
load balancing of unbalanced computations using message passing. In: IPDPS 2007,
IEEE International, pp. 1–8 (2007)

8. Dowaji, S., Roucairol, C.: Load balancing strategy and priority of tasks in dis-
tributed environments (1994)

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 multi-
threaded language. SIGPLAN Not. 33, 212–223 (1998)

10. Isenberg, P.: Phyllotactic patterns for tree layout, http://pages.cpsc.ucalgary.
ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees

11. Eric Baldeschwieler, J., Blumofe, R.D., Brewer, E.A.: Atlas: An infrastructure for
global computing (1996)

http://pages.cpsc.ucalgary.ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees
http://pages.cpsc.ucalgary.ca/~pneumann/wiki/pmwiki.php?n=MyUniversity.PhylloTrees

Work Stealing for Multi-core HPC Clusters 217

12. Kim, C., Kameda, H.: An algorithm for optimal static load balancing in distributed
computer systems. IEEE Trans. Comput. 41, 381–384 (1992)

13. Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31, 406–471 (1999)

14. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.-W.:
Uts: an unbalanced tree search benchmark. In: Almási, G.S., Caşcaval, C., Wu, P.
(eds.) KSEM 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

15. Olivier, S., Prins, J.: Scalable dynamic load balancing using upc. In: ICPP 2008,
pp. 123–131. IEEE Computer Society, Washington, DC, USA (2008)

16. Tantawi, A.N., Towsley, D.: Optimal static load balancing in distributed computer
systems. J. ACM 32, 445–465 (1985)

17. van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient load balancing for wide-
area divide-and-conquer applications. SIGPLAN Not. 36, 34–43 (2001)

A Dynamic Power-Aware Partitioner with Task
Migration for Multicore Embedded Systems

José Luis March, Julio Sahuquillo, Salvador Petit, Houcine Hassan, and José Duato

Department of Computer Engineering (DISCA)
Universitat Politècnica de València, Spain

jomarcab@gap.upv.es,
{jsahuqui,spetit,husein,jduato}@disca.upv.es

Abstract. Nowadays, a key design issue in embedded systems is how to reduce
the power consumption, since batteries have a limited energy budget. For this
purpose, several techniques such as Dynamic Voltage Scaling (DVS) or task
migration can be used. DVS allows reducing power by selecting the optimal vol-
tage supply, while task migration achieves this effect by balancing the workload
among cores.

This paper first analyzes the impact on energy due to task migration in
multicore embedded systems with DVS capability and using the well-known
Worst Fit (WF) partitioning heuristic. To reduce overhead, migrations are only
performed at the time that a task arrives to and/or leaves the system and, in such
a case, only one migration is allowed.

The huge potential on energy saving due to task migration, leads us to propose
a new dynamic partitioner, namely DP, that migrates tasks in a more efficient way
than typical partitioners. Unlike WF, the proposed algorithm examines which is
the optimal target core before allowing a migration. Experimental results show
that DP can improve energy consumption in a factor up to 2.74 over the typical
WF algorithm.

1 Introduction

Embedded systems is an important segment of the microprocessor market since they are
becoming ubiquitous in our life. Systems like PDAs, smart phones, or automotive, pro-
vide an increasing number of functionalities such as voice communication, navigation,
or gaming, so that computational power is becoming more important every day. How-
ever, increasing computational power impacts on battery lifetime, so how to improve
power management is a major design concern.

To deal with both computational and power management requirements, many sys-
tems use multicore processors. These processors allow a better power management than
complex monolithic processors for the same level of performance. Moreover, many
manufacturers (Intel, IBM, Sun, etc.) deliver processors providing multithreading ca-
pabilities, that is, they provide support to run several threads simultaneously. Some
examples of current multithreaded processors are Intel’s Montecito [14] and IBM Power
5 [10]. Also, leading manufacturers of the embedded sector, like ARM, plan to include
multithreading technology in next-generation processors [16].

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 218–229, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Dynamic Power-Aware Partitioner with Task Migration 219

A power management technique that is being implemented in most current micro-
processors is Dynamic Voltage Scaling (DVS) [9]. This technique allows the system
to improve its energy consumption by reducing the frequency when the processor has
a low level of activity (e.g., a mobile phone that is not actively used). In a multicore
system, the DVS regulator can be shared among several cores also referred to as global
or private to each core. In the former case, all cores are forced to work at the same
speed but less regulators are required so it is a cheaper solution. The latter case, enables
more energy savings since each core frequency can be properly tuned to its applications
requirements but it is more expensive [15].

Energy consumption in systems with a global DVS regulator can be further improved
by properly balancing the workload [7,13]. To this end, a partitioner module is in charge
of distributing tasks according to a given algorithm (e.g., Worst Fit [1] or First Fit) that
selects the target core to run the task. Unfortunately, the nature of some workload mixes
prevents the partitioner from achieving a good balancing. To deal with this drawback
some systems allow tasks to migrate (move their execution) from one core to another,
which results in energy saving improvements.

This work presents a dynamic power-aware partitioner, namely DP, for a multicore
multithreaded system that dynamically (at run-time) assigns tasks to cores and allows
task migration to improve energy consumption. Our focus is on tasks presenting real-
time constraints, that is, tasks must end their execution before a given deadline or run
during several periods before leaving the system. The proposed partitioner readjusts
possible dynamic imbalances (due to new arrivals or exits of tasks) by reallocating
tasks among cores. In this way, the workload can be more fairly balanced, so system
frequency -in many cases- can be reduced, thus enabling further energy consumption
improvements. In addition, the number of migrations has been limited in order to reduce
overhead.

Finally, as the aim of migration is to reduce imbalance, it makes sense to analyze
the benefits of applying migration when the workload changes. Three cases have been
analyzed: when a task arrives to the system, when a task leaves the system, and both
cases together. Experimental results show that enabling migration only on arrival in
the classical WF algorithm allows achieving energy improvements in a factor up to
2.18 with respect to the case where no migration is allowed, while in the proposed DP
algorithm these improvements can be up to 2.74.

The remaining of this paper is structured as follows. Section 2 discusses the related
research on energy management and task migration. Section 3 describes the modeled
system, including the partitioner and the power-aware scheduler. Section 4 presents the
proposed workload partitioning algorithms. Section 5 analyzes experimental results of
performance and energy. Finally, Section 6 presents some concluding remarks.

2 Related Work

Scheduling in multiprocessor systems can be performed in two main ways depending
on the task queue management: global scheduling, where a single task queue is shared
by all the processors, or partitioned scheduling, that uses a private task queue for each
processor. The former allows task migrations since all the processors share the same

220 J.L. March et al.

task queue. In the latter case, the scheduling in each processor can be performed by
applying well-established uniprocessor theory algorithms such as EDF (Earliest Dead-
line First) or RMS (Rate Monotonic Scheduling). An example of global scheduling for
sporadic tasks can be found in [11].

In the partitioned scheduling case, research can focus either on the partitioner or the
scheduler. Acting in the partitioner, recent works have addressed the energy-aware task
allocation problem [19,2,1]. For instance, Wei et al. [19] reduce energy consumption by
exploiting parallelism of multimedia tasks on a multicore platform combining DVS with
switching-off cores. Aydin et al. [2] present a new algorithm that reserves a subset of
processors for the execution of tasks with utilization not exceeding a threshold. Unlike
our work, none of these techniques use task migration among cores.

Some proposals have been dealing with task migration. Brandenburg et al. [4] eval-
uate some scheduling algorithms (both global and partitioned) in terms of scalability,
although no power consumption were investigated. In [21] Zheng divides tasks into
fixed and migration tasks, allocating each of the latter to two cores, so they can migrate
from one to another. Unlike our work, in this paper there is no consideration about dy-
namic workload changes (tasks arriving to and leaving the system), instead, all tasks
are assumed to arrive at the same instant, so migrations can be scheduled off-line. Seo
et al. [15] present a dynamic repartitioning algorithm with migrations to balance the
workload and reduce consumption. In [5] Brião et al. analyze how soft tasks migra-
tion affects NoC-based MPSoCs in terms of deadline misses and energy consumption.
These two latter works focus on non-threaded architectures.

Regarding the scheduler, in [8] El-Haj-Mahmoud et al. virtualize a simultaneous
multithreaded (SMT) processor into multiple single-threaded superscalar processors
with the aim of combining high performance with real-time formalism. In order to im-
prove real-time tasks predictability, Cazorla et al. [6] devise an interaction technique
between the Operating System (OP) and an SMT processor. Notice that these works do
not tackle energy consumption.

3 System Model

Figure 1 shows a block diagram of the modeled system. When a task reaches the system,
a partitioner module allocates it into a task queue associated to a core, which contains
the tasks that are ready for execution in that core. These task queues are components of
the power-aware scheduler that communicates with a DVS regulator, in charge of ad-
justing the working frequency of the cores in order to satisfy the workload requirements.
To focus our research, experiments considered a two-core processor implementing three
hardware threads each.

Processor cores implement the coarse-grain multithreading paradigm that switches
the running thread when a long latency event occurs (i.e., a main memory access).
Thus, the running thread issues instructions to execute while the other threads access
memory, so overlapping their execution. In the modeled system, the issue slots are al-
ways assigned to the thread executing the task with the highest real-time priority. If this
thread stalls due to a long latency memory event, then the issue slots are temporarily
reassigned until the event is resolved.

A Dynamic Power-Aware Partitioner with Task Migration 221

3.1 Task Real-Time Behavior

The system workload executes periodic hard real-time tasks. There is no task depen-
dency and each task has its own period of computation. A task can be launched to
execute at the beginning of each active period, and it must end its execution before
reaching its deadline (hard real-time). The end of the period and the deadline of a task
are considered to be the same for a more tractable scheduling process. There are also
some periods where tasks do not execute since they are not active (i.e., inactive periods).
In short, a task arrives to the system, executes several times repeatedly, leaves the sys-
tem, remains out of the system for some periods, and then it enters the system again.
This sequence of consecutive active and inactive periods allows to model real systems
mode changes.

Besides its period and deadline, a task is also characterized by its Worst Case Execu-

tion Time (WCET). This parameter is used to obtain the task utilization: U =
WCET

Period
.

Different partitioning algorithms may use this value in the process of allocating incom-
ing tasks to a core, guaranteeing schedulability.

3.2 Power-Aware Scheduler

Once a task is allocated to a core, it is inserted into the task queue of that core, where
incoming tasks are ordered according to the EDF policy [3], which priorizes the tasks
with the closest deadlines. Thus, the three tasks with the closest deadlines will be always
mapped into the three hardware threads implemented in each core.

The scheduler is also in charge of calculating the target speed of each core according
to the tasks’s requirements. In this sense, in order to minimize power consumption,
each core will choose the minimum frequency that fulfills the temporal contraints of
its task set. This information is sent to the DVS regulator that selects the maximum
frequency/voltage level among the requested by the cores.

The target frequency is recalculated to check if it has to be updated, but only when
the workload changes, that is, when a task arrives to or/and leaves the system. In the
former case, a higher speed can be required because the workload increases. In the latter

Fig. 1. Modeled system

222 J.L. March et al.

Table 1. Energy (E) used per frequency (F)

F[MHz] 500 400 300 200 100
E[pJ/cycle] 450 349.2 261.5 186.3 123.8

case, it could happen that a lower frequency could satisfy the deadline requirements of
the remaining tasks.

Different speed values are considered for the power-aware scheduler, based on the
frequency levels of a Pentium M [18] that are shown in Table 1. The 5L configuration al-
lows the system to work at any of these five levels, whereas the 3L mode permits running
tasks at the highest, the lowest and the intermediate (300 Mhz) frequency. Futhermore,
the overhead of changing the frequency/voltage level has been modeled according to
the voltage transition rate in the Pentium M processor, that is approximately 1mv/1μs
[20].

4 Partitioning Heuristics with Task Migration

There are several partitioning heuristics that can be used to distribute tasks among cores
as they arrive to the system. The Worst Fit (WF) partitioning heuristic is considered one
of the best choices in order to balance the workload, thus improving energy savings
[1]. WF balances workload by assigning the incoming task to the least loaded core. If
more than one task arrives to the system at the same time, it arranges the incoming
tasks by increasing utilization order and assigns them to the cores beginning with the
task with highest utilization. This algorithm was initially used in partitioned scheduling,
thus, it does not support task migration among cores by design. Therefore, once WF has
assigned an incoming task to a given core, the task remains in that core until it leaves
the system (i.e., it has executed all its active periods).

4.1 Extending Worst Fit to Support Task Migration

Figure 2 shows an example of how task migration could improve workload balancing.
At the beginning of the execution (time t0), task 0 and task 1 are the only tasks assigned
to core 0 and core 1, respectively. Task 0 presents a utilization around 25% (i.e., its
WCET occupies a quarter of its period), while the utilization of task 1 is around 33%.
At point t2, task 2, whose utilization is around 66%, arrives to the system, and the WF
algorithm assign it to core 0 (since it is the least loaded core). Consequently, the system
would exhibit a high workload imbalance since the global utilization of core 0 and core
1 would be 91% and 33%, respectively. To solve this imbalance, task 0 can bee migrated
to core 1, so providing a better balance (66% in core 0 versus 58% in core 1).

The system can become unbalanced when the workload changes, that is, when a task
arrives to or leaves the system. Thus, migration policies should apply in these points in
order to be effective. This leads to three variants of the WF policy: WFin, WFout, and
WFin−out. WFin allows migration only when a new task arrives to the system, WFout

when a task leaves the system, and WFin−out allows migration in both previous cases.
To avoid performing too much migrations, which could lead to excessive overhead, we

A Dynamic Power-Aware Partitioner with Task Migration 223

Fig. 2. Task periods and migrations

limit the number of migrations performed when a task arrives to or leaves the system to
only one.

Figure 3 shows the Migration Attempt (MA) algorithm. This routine calculates the
imbalance by subtracting the utilization of the least loaded core from the utilization of
the most loaded one. This result is divided by two (since there are two cores) to obtain
a theoretical utilization value that represents the amount of work that should migrate to
achieve a perfect balancing. Then, it searches the task in the most loaded core whose
utilization is the closest to this one. Notice that it could happen that by migrating that
task the workload balancing would not improve (e.g., consider a situation where only
one task is assigned to the most loaded core). Therefore, the algorithm performs the
migration only if it improves the workload balancing.

1: imbalance ← max core utilization − min core utilization
2: target utilization ← imbalance/2
3: minimum difference ← MAX V ALUE
4: for all task in most loaded core do
5: if |Utask − target utilization| < minimum difference then
6: minimum difference ← |Utask − target utilization|
7: candidate ← task
8: end if
9: end for

10: new max core utilization ← max core utilization − Ucandidate

11: new min core utilization ← min core utilization + Ucandidate

12: new imbalance ← |new max core utilization − new min core utilization|
13: if new imbalance < imbalance then
14: migrate(candidate)
15: end if

Fig. 3. Migration Attempt algorithm

224 J.L. March et al.

4.2 Dynamic Partitioner

This subsection presents the proposed Dynamic Partitioner (DP). As done by the WF
algorithm, DP also arranges the tasks arriving to the system by increasing utilization
order. However, before assigning any incoming task to a given core, DP checks how
the workload balancing would become if the incoming task were assigned to the first
core. Then, it also calculates the effect of performing a migration attempt (as shown in
Figure 3). These testings are performed for each core in the system. Finally, the core
assignment that provides the best overall balance is applied. Two versions of DP are
considered: DPin and DPin−out. DPin refers to the described DP algorithm, where a
migration can be performed only when a task arrives to the system, while DPin−out

also performs a migration attempt when a task leaves the system.
Figure 4 depicts an example where the DPin heuristic improves the behavior of

WFin. The latter allocates the incoming task to core 0, and then performs a migration
attempt, but in this case, there is not any possible migration enabling a better workload
balancing. Thus, the final imbalance becomes 20% (i.e., 90%−70%). In contrast, when
DPin is applied, it also checks the result of allocating the new task to core 1 (DPin B
arrow) and then considering one migration. In this case, the migration enables a better
balance since both cores remain equally loaded with 80% of utilization, which will be
the distribution selected by DPin.

Fig. 4. WFin vs DPin

To sum up, the main difference between WFin and DPin is that the former selects
only one core and performs a migration attempt, whereas the proposed heuristic checks
different cores, and choses the best option in terms of workload balance.

A Dynamic Power-Aware Partitioner with Task Migration 225

5 Experimental Results

Experimental evaluation has been conducted by extending the Multi2Sim simulation
framework [17], to model the system described in Section 3. As stated before, experi-
ments considered a two-core processor implementing three hardware threads each. In-
ternal core features have been modeled like an ARM11 MPCore based processor, but
modified to work as a coarse-grain multithreaded processor with in-order execution,
two-instruction issue width, and a 100-cycle memory latency.

Table 2 shows the benchmarks from the WCET analysis project [12] that were used
to prepare real-time workload mixes. These mixes have been designed taking into ac-
count aspects such as task utilization, number of repetitions (task periodicity), and the
sequence of active and inactive periods. The global system utilization varies in a sin-
gle execution from 35% to 95%, in order to test the algorithms behavior across a wide
range of situations. In addition, all results are presented and analyzed for a system im-
plementing three and five voltage levels.

5.1 Impact of Applying Migrations at Different Points of Time

This section analyzes the best points of time to carry out migrations focusing on the
standard WF algorithm (no migration is supported) and its variants supporting migra-
tion (WFout, WFin, WFin−out). Figure 5 shows the relative energy consumption com-
pared to the energy consumed by the system working always at the maximum speed for
diverse benchmark mixes and DVS configurations.

As observed, migration can provide huge energy savings with respect to no migration
(WF) regardless when migration is applied. For instance, in the 5-level system with
task migration mixes 3 and 4 improve their energy consumption in a factor up to 1.33
and 2.18, respectively, when compared with their execution in the same system without
migrations. This trend is also followed, although to a lesser extent, in the 3-level system.

Comparing the three WF versions with task migration, it can be observed that if
migration can apply only each time a new task arrives instead of when a task terminates,

Table 2. Benchmark description

Name Function Description Name Function Description
adpcm Adaptive pulse code modulation algorithm insertsort Insertion sort on a reversed array of size 10
bs Binary search for a 15-element array janne complex Nested loop program
bsort100 Bubblesort program jfdctint Discrete-cosine transformation
cnt Counts non-negative numbers in a matrix lcdnum Read ten values, output half to LCD
compress Data compression program lms LMS adaptive signal enhancement
cover Program for testing many paths ludcmp LU decomposition algorithm
crc Cyclic redundancy check on 40-byte data matmult Matrix multiplication of two 20x20 matrices
duff Copy 43-byte array minver Inversion of floating point matrix
edn FIR filter calculations ns Search in a multi-dimensional array
expint Series expansion for integral function nsichneu Simulate an extended Petri Net
fac Factorial of a number qsort-exam Non-recursive version of quick sort algorithm
fdct Fast Discrete Cosine Transform qurt Root computation of quadratic equations
fft1 1024-point Fast Fourier Transform select Nth largest number in a floating point array
fibcall Simple iterative Fibonacci calculation sqrt Square root function
fir Finite impulse response filter statemate Automatically generated code

226 J.L. March et al.

(a) 5L

(b) 3L

Fig. 5. Worst Fit variants comparison for different DVS levels

then much higher energy savings can be achieved. The main reason is that the inter-
arrival time standard deviation is higher than that of the inter-leaving time, since several
tasks reach the system at the same time. Inter-arrival standard deviation values of the
mixes are 3.87, 24.48, 43.98, and 14.65 Mcycles for mix 1, mix 2, mix 3, and mix 4,
respectively. On the other hand, the inter-leaving time is, on average, 3.65, 22.50, 36.40,
and 12.32 Mcycles. Finally, WFin−out offers scarce benefits over WFin since it only
adds a low number of extra migrations.

Notice that if the system implements more DVS frequency levels (5 levels in the
figure), then more energy savings can be obtained since the system can select a fre-
quency closer to the optimal estimated by the scheduler. However, despite this fact, an
interesting observation is that energy benefits due to migration in the 3-level system can
reach or even surpass the benefits of having the 5-level system without migrations. For
example, the energy consumption of WFout for mix 4 in the 3-level system is around
11% of the consumption of the baseline, whereas the same value of WF in the 5-level
system is 17%.

5.2 Comparing DP versus WF Variants

This section analyzes the energy improvements of two variants of the proposed DP
algorithm (DPin and DPin−out) over the WF algorithm. For comparison purposes the
best variant of the WF (WFin−out) with migration has been also included in the plots.
Figure 6 shows the results.

Results show that, regardless the mix and system-level, both variants of DP always
consume less power than WFin−out. DPin−out achieves, for mixes 3 and 4, energy

A Dynamic Power-Aware Partitioner with Task Migration 227

(a) 5L

(b) 3L

Fig. 6. WF versus DP for different DVS levels

improvements over WF in a factor up to 2.74 and 1.56, respectively. Moreover, for
mix 2, where WFin−out is only able to find scarce benefits over WF, the proposed DP
improves the energy consumption of WF around 1.51.

For a better understanding of the algorithms behavior, we define the migration rate
metric as the number of migrations performed by the algorithm divided by the number
of times that the migration algorithm is executed. For instance, regarding the in variant
of the WF and DP algorithms, the migration rates of WFin are 64%, 62%, 54%, 45%
for mix 1, mix 2, mix 3, and mix 4, respectively; while for DPin the corresponding
values are 64%, 76%, 68%, and 73%. This means that the proposal performs migrations
in some cases where the WF is not able to find any candidate to migrate at all.

6 Conclusions

Workload balancing has been already proved to be an efficient power technique in
multicore systems. Unfortunately, unexpected workload imbalances can rise at run-time
provided that the workload is dynamically changing since new tasks arrive to or leave
the system. To palliate this situation this paper has analyzed the impact on energy con-
sumption of task migration combined with workload balancing.

To prevent excessive overhead, task migration has been strategically applied at three
different execution times where the workload changes (at task arrival, at task termina-
tion, and in both cases). Results with respect to the WF algorithm showed that applying
migration at arrival time can save results in a factor up to around 2.18. This results can
be slightly improved if migration is also applied when tasks terminate.

228 J.L. March et al.

Due to the potential of migration, this paper has proposed the DP algorithm, which
achieves much better energy improvements than classical partitioning algorithms like
WF. The proposal improves energy consumption in a factor of 1.51 in some workloads
where WF with migrations provides scarce benefits, and energy can be improved in a
factor up to 2.73 in the analyzed workloads.

Experimental results also showed that migration can provide energy consumption
improvements with respect to a more complex system with a higher number of fre-
quency/voltage levels. A final remark is that achieving a better workload balancing by
allowing task migrations not only results in energy savings, but also allows a wider set
of tasks to be scheduled.

Acknowledgments. This work was supported by Spanish CICYT under Grant
TIN2009-14475-C04-01, and by Consolider-Ingenio under Grant CSD2006-00046.

References

1. AlEnawy, T.A., Aydin, H.: Energy-Aware Task Allocation for Rate Monotonic Scheduling.
In: Proceedings of the 11th Real Time on Embedded Technology and Applications Sympo-
sium, March 7-10, pp. 213–223. IEEE Computer Society, San Francisco (2005)

2. Aydin, H., Yang, Q.: Energy-Aware Partitioning for Multiprocessor Real-Time Systems. In:
Proceedings of the 17th International Parallel and Distributed Processing Symposium, Work-
shop on Parallel and Distributed Real-Time Systems, April 22-26, p. 113. IEEE Computer
Society, Nice (2003)

3. Baker, T.P.: An Analysis of EDF schedulability on a multiprocessor. IEEE Transactions on
Parallel and Distributed Systems 16(8), 760–768 (2005)

4. Brandenburg, B.B., Calandrino, J.M., Anderson, J.H.: On the Scalability of Real-Time
Scheduling Algorithms on Multicore Platforms: A Case Study. In: Proceedings of the 29th
Real-Time Systems Symposium, November 30-December 3, pp. 157–169. IEEE Computer
Society, Barcelona (2008)

5. Brião, E., Barcelos, D., Wronski, F., Wagner, F.R.: Impact of Task Migration in NoC-based
MPSoCs for Soft Real-time Applications. In: Proceedings of the International Conference
on VLSI, October 15-17, pp. 296–299. IEEE Computer Society, Atlanta (2007)

6. Cazorla, F., Knijnenburg, P., Sakellariou, R., Fernández, E., Ramirez, A., Valero, M.: Pre-
dictable Performance in SMT Processors: Synergy between the OS and SMTs. IEEE Trans-
actions on Computers 55(7), 785–799 (2006)

7. Donald, J., Martonosi, M.: Techniques for Multicore Thermal Management: Classification
and New Exploration. In: Proceedings of the 33rd Annual International Symposium on Com-
puter Architecture, June 17-21, pp. 78–88. IEEE Computer Society, Boston (2006)

8. El-Haj-Mahmoud, A., AL-Zawawi, A., Anantaraman, A., Rotenberg, E.: Virtual Multipro-
cessor: An Analyzable, High-Performance Architecture for Real-Time Computing. In: Pro-
ceedings of the International Conference on Compilers, Architectures and Synthesis for Em-
bedded Systems, September 24-27, pp. 213–224. ACM Press, San Francisco (2005)

9. Hung, C., Chen, J., Kuo, T.: Energy-Efficient Real-Time Task Scheduling for a DVS Sys-
tem with a Non-DVS Processing Element. In: Proceedings of the 27th Real-Time Systems
Symposium, December 5-8, pp. 303–312. IEEE Computer Society, Rio de Janeiro (2006)

10. Kalla, R., Sinharoy, B., Tendler, J.M.: IBM Power5 Chip: A Dual-Core Multithreaded Pro-
cessor. IEEE Micro 24(2), 40–47 (2004)

A Dynamic Power-Aware Partitioner with Task Migration 229

11. Kato, S., Yamasaki, N.: Global EDF-based Scheduling with Efficient Priority Promotion. In:
Proceedings of the 14th International Conference on Embedded and Real-Time Computing
Systems and Applications, August 25-27, pp. 197–206. IEEE Computer Society, Kaohisung
(2008)

12. Malardalen Real-Time Research Center, Vasteras, Sweden: WCET Analysis Project. WCET
Benchmark Programs (2006), [Online],
http://www.mrtc.mdh.se/projects/wcet/

13. March, J., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A New Energy-Aware Dynamic
Task Set Partitioning Algorithm for Soft and Hard Embedded Real-Time Systems. To be
published on The Computer Journal (2011)

14. McNairy, C., Bhatia, R.: Montecito: A Dual-Core, Dual-Thread Itanium Processor. IEEE
Micro 25(2), 10–20 (2005)

15. Seo, E., Jeong, J., Park, S., Lee, J.: Energy Efficient Scheduling of Real-Time Tasks on
Multicore Processors. IEEE Transactions on Parallel and Distributed Systems 19(11), 1540–
1552 (2008)

16. Shah, A.: Arm plans to add multithreading to chip design. ITworld (2010), [On-
line], http://www.itworld.com/hardware/122383/arm-plans-add-
multithreading-chip-design

17. Ubal, R., Sahuquillo, J., Petit, S., López, P.: Multi2Sim: A Simulation Framework to Evaluate
Multicore-Multithreaded Processors. In: Proceedings of the 19th International Symposium
on Computer Architecture and High Performance Computing, October 24-27, pp. 62–68.
IEEE Computer Society, Gramado (2007)

18. Watanabe, R., Kondo, M., Imai, M., Nakamura, H., Nanya, T.: Task Scheduling under Per-
formance Constraints for Reducing the Energy Consumption of the GALS Multi-Processor
SoC. In: Proceedings of the Design Automation and Test in Europe, April 16-20, pp. 797–
802. ACM, Nice (2007)

19. Wei, Y., Yang, C., Kuo, T., Hung, S.: Energy-Efficient Real-Time Scheduling of Multime-
dia Tasks on Multi-Core Processors. In: Proceedings of the 25th Symposium on Applied
Computing, March 22-26, pp. 258–262. ACM, Sierre (2010)

20. Wu, Q., Martonosi, M., Clark, D.W., Reddi, V.J., Connors, D., Wu, Y., Lee, J., Brooks, D.: A
Dynamic Compilation Framework for Controlling Microprocessor Energy and Performance.
In: Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitec-
ture, November 12-16, pp. 271–282. IEEE Computer Society, Barcelona (2005)

21. Zheng, L.: A Task Migration Constrained Energy-Efficient Scheduling Algorithm for Mul-
tiprocessor Real-time Systems. In: Proceedings of the International Conference on Wireless
Communications, Networking and Mobile Computing, September 21-25, pp. 3055–3058.
IEEE Computer Society, Shanghai (2007)

http://www.mrtc.mdh.se/projects/wcet/
http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design
http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design

Exploiting Thread-Data Affinity in OpenMP

with Data Access Patterns�

Andrea Di Biagio, Ettore Speziale��, and Giovanni Agosta

Dipartimento di Elettronica ed Informazione, Politecnico di Milano
andrea.dibiagio@gmail.com, {speziale,agosta}@elet.polimi.it

Abstract. In modern NUMA architectures, preserving data access lo-
cality is a key issue to guarantee performance. We define, for the OpenMP
programming model, a type of architecture-agnostic programmer hint to
describe the behaviour of parallel loops. These hints are only related
to features of the program, in particular to the data accessed by each
loop iteration. The runtime will then combine this information with ar-
chitectural information gathered during its initialization, to guide task
scheduling, in case of dynamic loop iteration scheduling. We prove the
effectiveness of the proposed technique on the NAS parallel benchmark
suite, achieving an average speedup of 1.21x.

Current trends in computer architectures tend to increase the number of cores
per chip to cope with the power and frequency walls while exploiting the tran-
sistor density increase. This is driving designers towards multi- and many-core
architectures, where Non-Uniform Memory Access (NUMA) designs are needed
[9,2]. In NUMA architectures, cores incur in greater delays when accessing non-
local memories. Since NUMA machines preserve the shared memory abstraction,
it is possible to program them using programming models such as OpenMP [3],
which hide the complexity of the underlying memory hierarchy.

To achieve performance in NUMA architectures, it is essential to provide
data access locality, that is, data located in a given node are accessed as much
as possible from the cores of the same node, and as little as possible from the
other ones [14,21]. Recent works targeting OpenMP on Linux focus on exploiting
specialized page allocation policies [4] such as explicit data distribution, which
allows the programmer to select a precise distribution to be implemented at
initialization time. The next-touch policy, introduced in [8,6], allows dynamic
data relocation by exploiting memory protection mechanisms.

However, such works incur in one or more of the following drawbacks: they rely
on programmer knowledge of the underlying architecture, thus negating a major
benefit of OpenMP, architecture independence [15]; they lack dynamism, since
they provide only a single data distribution strategy which might not cover all
the access patterns the program employs during different phases of its execution;

� This work was supported in part by the European Commission under Grant
2PARMA FP7-248716 and ARTEMIS-SMECY.

�� This author was supported in part by a grant from ST Microelectronics.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 230–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 231

or, they do not deal with workload balancing, which in turn adversely affects
irregular parallel applications.

In this work, we take into account these issues, providing a solution to main-
tain thread-data affinity across the lifetime of the application, which relies on
programmer hints describing only the application behavior, and exploiting them
through a specialized runtime, balancing the workload by means of work-stealing.

The rest of this paper is organized as follows. Section 1 introduces the syn-
tax and semantics of the proposed hints, while Section 2 provides details on
our runtime design and implementation, and Section 3 provides an experimen-
tal evaluation. Finally, Section 4 provides a brief survey of related works, and
Section 5 draws some conclusions and highlights future research directions.

1 The Data Access Pattern Approach

The current OpenMP standard provides support for parallel loops through the
omp for and omp do directives1. The parallel loop syntax is restricted to force
the loop bounds to be loop invariants, since the runtime must always be able
to evaluate the iteration space. Once the iteration space has been computed,
iterations are first grouped into chunks2 and then mapped to the active threads of
the parallel team according to the scheduling policy implemented by the runtime.
Programmers can influence the behaviour of the runtime system only by forcing
a iteration scheduling policy and specifying a minimum chunk size.

Even though OpenMP allows the programmer to choose among different
scheduling strategies, to address the problem of mapping iterations over the
threads in a team, there is no support for expressing thread-data affinity [5,19].

The key idea of our approach is to allow the runtime to identify the portion of
data which will be accessed by the iterations of a parallel loop. These iterations
will then be scheduled to threads according to a novel dynamic scheduling policy,
which will try to preserve locality as much as possible.

To this end, we extend the existing OpenMP parallel loop directive through a
new clause representing the data access pattern, that is the way loop iterations
access the data. The runtime will then use the thread-data affinity information
derived from the data access pattern to improve the existing dynamic iteration
scheduling policy, by scheduling threads on the cores nearest to the memory
where the related data are stored. While automated approaches to page place-
ment do not require changes to the API, identifying and exploiting thread-data
affinity at compile time might not be feasible, and is in general a very complex
task [5]. By contrast, a skilled programmer is able to identify more effectively
the patterns used by threads when accessing data, and thus provide precise hints
to the runtime. This is, anyway, mandatory if a fine-tuning of the application
performances is desired [4,20,16].

1 omp for and omp do model the same type of parallel loop, in C and Fortran respec-
tively. For brevity in the rest of the paper we will refer to omp for but the same
considerations apply to omp do as well.

2 We use the term chunk to refer to a set of iterations as specified in OpenMP [3].

232 A. Di Biagio, E. Speziale, and G. Agosta

A key difference with respect to previous works [4], including PGAS lan-
guages [18,1], is that to minimize the programming efforts when writing parallel
programs, our approach does not rely on explicit data distribution and exploita-
tion of the processor space.

1.1 Data Access Pattern Definition

A data access pattern binds iterations in a parallel loop with the portion of
memory accessed at runtime. We formally define the data access pattern and
the OpenMP syntactic extension needed to support it as follows.

Definition 1. A data access pattern is an equivalence relation over the elements
of a k-dimensional array data structure. An equivalence class under the data
access pattern relation is called tile. Data access pattern relations are described by
means of pattern clauses, defined by the grammar in Figure 1 and its associated
semantics.

Axiom → pattern(Clause)
Clause → DataStructure [PESeq]
PESeq → PESeq , PatternExpr

| PatternExpr

PatternExpr → RangeExpr | SliceExpr
RangeExpr → Expr : Expr

| Expr | *
SliceExpr → ^ Expr

Fig. 1. Pattern Clause Syntax. Expr is any expression of runtime constants, while
DataStructure can be any array or pointer variable name.

In our OpenMP extension, a pattern clause (or, for brevity, a pattern) is asso-
ciated to a loop directive. The first argument of a pattern clause is a reference
to the shared data structure that is concurrently accessed by iterations in the
loop. The rest of the pattern clause consists of a sequence of pattern expressions,
one for each dimension. A pattern expression can be either a range expression
or a slice expression. A range expression is used to identify a range of indices in
a given dimension of the data structure, that are associated to all tiles. A slice
expression identifies the size of each tile in a given dimension.

A range expression has the form [n:m]. Both n and m must be loop invariant.
Their value is thus known at runtime before the loop execution starts. The lower
bound of a range expression may be omitted when it matches exactly the lower
bound of the associated dimension. Hence, a pattern expression m is an alias for
[lb:m], where lb is the lower bound of the index for the dimension considered.
The * operator is also a shorthand for [lb:ub], where lb and ub are the lower
bound and the upper bound values of the index for a given dimension. The latter
range expression variants allow a more compact definition of the pattern clause
in many practical cases, but do not add any expressive power.

A slice expression takes the form ^n, where n is a runtime constant.
Figure 2 demonstrates the data access pattern semantics. The two slice ex-

pressions define bi-dimensional tiles of size RSLICE × CSLICE on matrix A, thus
representing the block-wise accesses performed by the loop nest.

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 233

#pragma omp for collapse (2) \
pattern(A[^ RSLICE ,^ CSLICE])

for(i = 0; i < ROWS; i += RSLICE)
for(j = 0; j < COLS; j += CSLICE)

for(k = 0; k < RSLICE; ++k)
for(h = 0; k < CSLICE; ++h)

A[i+k][j+h] = ...;

R
S
L
I
C
E

CSLICE

Fig. 2. Pattern example. Matrix A is accessed in a block-wise fashion by the collapsed
parallel loop.

The mapping between tiles and iterations is defined as follows: if there is
no slice expression in the pattern there is a single tile which is accessed by all
iterations; otherwise, tiles and iterations are associated by a bijective relation,
that depends on both the iteration indices and the sign of the loop increment
expressions. In a normalized loop nest, each slice expression is associated to one
loop index il and the tiles can be ordered with respect to the indices id of the
dimension d associated to the slice expression divided by the tile size n. Iterations
of loop index il are mapped to tiles with id/n = il.

Back to the example in Figure 2, assuming RSLICE = CSLICE = 2, and A a 4×4
square matrix, the pattern identifies four tiles. The iterations with index i = 0
are associated to data items of indices 0 and 1 on the first dimension. The same
holds for loop index j, which is associated to the slice expression corresponding
to the second dimension of A. Thus, iteration i, j = 〈0, 0〉 is mapped to the data
in A[0][0], A[0][1], A[1][0], and A[1][1].

2 Runtime Extensions to Exploit Patterns

To employ the information encoded in the pattern clauses, we propose an exten-
sion of the OpenMP runtime. The runtime analyzes each pattern expressions to
identify the size of the memory tiles accessed by iterations. The tile information
can then be exploited at runtime to group together iterations that will probably
touch the same set of virtual memory pages. Since at runtime the base address
of the patterned data structure is known, it is always possible to identify the set
of memory pages that are expected to be touched by the iterations of the loop.
This is true also for dynamically allocated data-structures for which the size can
be assumed equal to the tile size times the size of the iteration space.

Since the runtime aims at maximizing the number of local accesses, while
avoiding, if possible, to incur in the penalty of long latency due to remote memory
accesses, the information obtained analyzing pattern clauses is used to identify
groups of iterations (blocks) that need to be scheduled together on the same
node. Iterations that access the same memory pages (or different pages physically
mapped to the same node) are grouped within the same block. The dynamic
scheduling policy is thus driven by the collected pattern information.

234 A. Di Biagio, E. Speziale, and G. Agosta

The implementation used in this work is based on the libgomp [7] OpenMP
runtime and uses the Linux NUMA API [12] to detect virtual page mappings.

2.1 Iteration Space Partitioning

To exploit the hints provided by the pattern information, the runtime has to
partition the iteration space so to minimize the number of remote accesses.

Finding an optimal partition is known to be NP-complete. Obviously, such
complexity cannot be handled at runtime even with moderate numbers of iter-
ations. Therefore, we propose a straightforward heuristic approach to minimize
the time spent by the runtime in analyzing pattern information while still pro-
viding a good, even if potentially sub-optimal, partitioning. To further reduce
the overhead, we base the partitioning of the iterations of each loop on the
information obtained from a single pattern.

The algorithm implemented in the proposed heuristic approach performs a
linear scan of the iteration space in search of opportunities for grouping adjacent
iterations. Let a and b be two adjacent iterations of the analyzed parallel loop.
Both a and b will be mapped to the same block if at least one of the following
conditions is satisfied: iteration a accesses to the same set of memory pages
touched by iteration b; the set of pages touched by a are physically mapped to a
node that is the same for the pages touched by b; pages touched by both a and
b are not physically mapped to any node in the system.

Let us now formally introduce the concept of iteration block.

Definition 2. Let lb and ub be respectively the lower and upper bound of the
iteration space I of the analyzed loop. A block of iterations is defined as a range
of indices of the form [base, last], where base ≥ lb and last ≤ ub.

Let B be the set of blocks obtained from the partitioning phase, and let b ∈ B
be a block of iterations. We call r(b) the range of indices described by b.

The runtime limits the maximum number of blocks to reduce the algorithm
complexity while maintaining the required flexibility to cope with irregular work-
loads. The limit has been set, considering the outcome of an experimental cam-
paign, to twice the number of available nodes in the system. To cope with the
imposed constraints, different blocks of iterations may be merged.

When no pattern clause is specified for a given parallel loop, the iteration
space is evenly partitioned into a number of blocks equal to the number of
available nodes. Since the output of the partitioning algorithm is not necessarily
the optimal partition, we later introduce a runtime work stealing mechanism to
reduce the effects of an unbalanced distribution of the workload.

2.2 A Dynamic Scheduling Policy for Pattern Enabled OpenMP
Runtimes

At the end of the partitioning stage, the iteration space of the parallel loop is
divided into blocks of iterations. When a loop has associated pattern information,
the runtime knows exactly which pages are touched by each iteration block. The

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 235

runtime assigns a work queue to each NUMA node. The work queue is used to
store information about iteration blocks. A global work queue is reserved for
those blocks that are not related to any of the active NUMA nodes.

The algorithm that maps blocks to work queues uses the iteration-data affinity
information coming from the analysis of the pattern. Each thread of the parallel
team analyzes the set of blocks in parallel. Let b be a block and let Pb be the
set of pages touched by iterations of b. The algorithm counts how many pages
in Pb are mapped to each node. The node with the highest number of mapped
pages is finally selected as the target node for the block b. If none of the nodes
is related to any of the pages in Pb, b is assigned to the global queue.

n0 n1

global queue

n2 n3

next last

local queue

Fig. 3. Runtime system with four dis-
tributed work queues and a global
queue

LF GF SI

local queue.is empty
∧

next == last

global queue.is empty
∧

next == last

Fig. 4. Runtime behaviour of a sub-
team. Local Fetch (LF): fetch blocks
from the local queue of the local node;
Global Fetch (GF): fetch blocks from
the global queue; Steal Iterations (SI):
steal blocks from the local queue of
neighbour nodes

Figure 3 shows the internal state of the runtime system in the case of a cc-
NUMA architecture with four nodes. The internal state of each node is composed
of a working queue called local queue and two integer fields next and last, used
respectively to store the lower bound and the upper bound index of the range
of iteration indices associated to the current block.

At runtime, parallel teams are split into sub-teams, each associated to a dis-
tinct NUMA node. A sub-team associated to a node n is composed only by
threads of the team that are running on node n. Threads are mapped to sub-
teams at runtime when a new team starts. The runtime behaviour of a sub-team
can be formally described by a finite state automaton as shown in Figure 4.

Each sub-team starts executing in the initial state LF . Threads of a sub-team
whose working state is LF , are only allowed to fetch blocks from the local work
queue of the node in which they are running. When the local block queue is
empty and no iterations are available in the current block, the sub-team moves

236 A. Di Biagio, E. Speziale, and G. Agosta

from LF to GF, where the sub-team fetches blocks from the global queue. In both
states, iterations are selected using the Guided Self Scheduling algorithm [17].

The idea is to exploit the locality of accesses preventing when possible threads
from accessing remote pages. To this end, at first threads are forced to execute
iterations from the local queue to maximize the probability of local accesses.
Only when there are no more iterations associated to the local node, threads start
fetching iterations from the global queue. Since global queue only stores blocks
related to virtual pages that are still not mapped, there is an high probability
that threads accessing the global queue will own those pages because of the first-
touch policy implemented by the OS. The first-touch policy is the default policy
for NUMA-aware Linux systems. It consists of placing memory pages on those
nodes that first access the data during the program execution.

2.3 Work Stealing Strategy

When the global queue is empty and there are no iterations available in the
local queue, the sub-team transitions from GF to SI. While in SI, threads start
stealing blocks of iterations from the queues associated to other nodes. According
to the implemented work stealing policy, threads in SI start stealing from the
work queues of the nearest neighbour nodes. Since the runtime is aware of the
distance between nodes (identified by means of calls to the Linux NUMA API),
each sub-team knows which nodes are the best candidates for stealing.

The work stealing procedure iterates over the neighbours set of a node n in
search of available blocks of iterations. By default the current neighbour node
(nneigh) is initially set equal to the node that hosts the current sub-team (n).

As long as there are iterations to fetch from the work queue of nneigh, threads
fetch new iterations from their work queues. Eventually, when the work queue
of the current neighbour becomes empty, a new neighbour is selected.

The selection strategy is based on the NUMA distance between nodes of the
underlying architecture. In the case shown in Figure 3, 〈dist(n0, ni)|i ∈ [0 :
3]〉 = 〈0, 1, 1, 2〉. The distance relation dist(n, ni) imposes a partial ordering of
the nodes ni ∈ K. We need, for each node, a sequence of nodes to poll for the
next neighbour, called a neighbours vector. To obtain the vectors, we make this a
total ordering by imposing that, when dist(n, ni) = dist(n, nj), ni ≺ nj if i < j.

3 Experimental Results

In this Section, we provide an experimental validation of our approach. The
main findings are that the proposed approach based on pattern clauses is able
to consistently reduce the number of remote memory accesses, and that the
reduction directly translates into a significant performance improvement.

The experimental campaign has been conducted on a AMD ccNUMA machine
with four nodes, each a quad core Opteron 8378 processor. Each core has a
two-level private cache hierarchy. L1 cache is composed by a 64KBytes data
cache and by a 64KBytes instruction cache. L2 cache is an unified 512KBytes

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 237

cache. All cores within a node share an unified 6144KBytes L3 cache. Inter-node
communication is supported by a ring network topology.

AMD event based counters have been used to measure memory accesses. Sep-
arate runs have been used for performance and memory access profiling, to avoid
memory access counter sampling overhead in timing measurements.

3.1 Benchmark Suite

We employ the NAS Parallel Benchmark suite, OpenMP version 3.3 [11]. We do
not report on DC and EP, since these benchmarks do not have any OpenMP
loop constructs (omp for and omp do). The benchmarks have been modified in
order to make use of dynamic scheduling. Table 1 shows the number of total
loops, dynamically scheduled loops, and loops tagged with the pattern clause.

Table 1. Benchmark characterization

Parallel Dynamic
Bench loops loops Patterns

bt.c 28 14 9
cg.c 18 16 16
ft.b 8 6 6
is.c 9 2 2

Parallel Dynamic
Bench loops loops Patterns

lu.c 26 10 9
mg.b 14 11 11
sp.c 33 20 20
ua.c 68 56 56

We compare the baseline libgomp runtime implementation opportunely ex-
tended to support a Guided Self Scheduling strategy for dynamically scheduled
loop iterations with our optimized runtime. This choice is dictated by the fact
that the libgomp dynamic scheduler provides only poor performance, thus com-
paring with it would result in a significant bias due to Guided Self Scheduling.

For all experiments we use 16 threads, each pinned on a different core.

3.2 Performance Analysis

Table 2 describes the runtime behaviour of the benchmarks, showing the percent-
age of blocks fetched in each of the states of the automaton in Figure 4 along with
the percentage of the execution time spent in loops tagged with pattern clauses.
A high percentage of fetches from local queues denotes a good distribution of the
data structures, which is effectively exploited by the iteration scheduling thanks
to correct pattern information. On the other hand, blocks fetched through work
stealing have higher probability of resulting in remote accesses since they were
originally intended to be executed on a different node.

Table 3 shows the speedups obtained by our optimized runtime with respect
to the baseline. Two scenarios are provided: Best, where the proposed work
stealing policy based on NUMA distances is used; and Worst, where neighbour
vectors are reversed. This shows that the order of the neighbours counts: the last
column (Δ) shows the maximum performance loss in case of random neighbours

238 A. Di Biagio, E. Speziale, and G. Agosta

Table 2. Runtime behaviour

Blocks fetched from
Time in

opt. loopsBench Local Global Steal
[%] [%] [%] [%]

bt.c 65.72 0.01 34.27 90.55
cg.c 99.61 0.03 0.36 87.26
ft.b 76.40 0.00 23.60 66.69
is.c 66.67 0.00 33.33 51.30
lu.c 80.21 0.21 19.58 26.49
mg.b 35.16 22.26 42.58 66.82
sp.c 70.03 0.00 29.97 91.92
ua.c 88.36 0.13 11.51 78.28

Table 3. Speedups

Speedup

Bench Worst Best Δ

bt.c 1.14 1.27 0.13
cg.c 1.81 1.82 0.01
ft.b 1.12 1.19 0.07
is.c 1.00 1.00 0.00
lu.c 1.02 1.05 0.03
mg.b 1.00 1.00 0.00
sp.c 1.18 1.23 0.05
ua.c 1.07 1.08 0.01

selection. However, the results also show that the impact of this policy is not so
large as to make the runtime less effective than the baseline. Thus, the Worst
scenario shows the impact of the iteration scheduling optimization, while the
Best scenario adds the impact of an effective work-stealing policy.

We can see that, for most benchmarks, we obtain a speedup between 1.05x
and 1.27x for the Best scenario. There are three exceptions: MG, IS and CG.

MG is the only benchmark where the initial distribution of frequently accessed
data structures is performed by the master thread alone. Since we rely on the
first-touch policy to provide the initial distribution, a large number of remote
accesses is generated regardless of the iteration scheduling policy. Note that the
pattern definition leads the runtime to place most of the iterations on the node
where the master thread resides, thus leading to a reduced amount of blocks
fetched from local queues.

IS benchmark implements a bucket sort algorithm. Excluding the time spent
in initializing data structures, most of the time is spent on a fast data parallel
loop used to sort keys of each bucket. There are several instances of non-linear
accesses where array indices are obtained from table lookups. This type of access
cannot be optimized, since it is by design hard to predict, to provide the required
randomness. While the proposed technique cannot obtain a speedup, it still does
not impose an overhead with respect to the baseline.

CG obtains the highest speedup, a remarkable 1.82x. It performs sparse ma-
trix multiplication, which can easily lead to irregular accesses. However, the
benchmark provides an initial data distribution that combined with the data ac-
cess pattern information allows a massive improvement in data access regularity,
which immediately translates into a performance improvement.

3.3 Remote Memory Access Analysis

Figure 5 shows the reduction in remote memory accesses obtained by our run-
time with respect to the baseline. Memory access reduction is at the base of
performance improvement, so these results mirror the performance speedups.

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 239

b
t.
c

cg
.c

ft
.b

is
.c

lu
.c

m
g.

b
sp

.c
u
a.

c

0

20

40

60

80

100
R

em
o
te

a
cc

es
se

s
[%

]

Base Pattern

(a) Remote accesses percentage

Bench Base Pattern Savings
[%]

bt.c 70,777.56 54,787.53 22.59
cg.c 40,969.86 3,592.73 91.23
ft.b 4,824.42 4,494.31 0.90
is.c 851.71 844.01 6.84
lu.c 37,674.95 32,731.91 13.12
mg.b 2,504.46 2,486.34 0.72
sp.c 269,485.03 192,971.48 28.39
ua.c 115,912.76 85,196.04 26.50

(b) Raw results (millions of accesses)

Fig. 5. Memory accesses performed by benchmarks

It is especially interesting to consider the reduction in CG, where remote
memory accesses are strongly minimized thanks to the pattern information.

In IS, the data access patterns are mostly unpredictable, as memory accesses
are defined through non-affine array functions. This makes it hard to find good
pattern information for most of the parallel loops in the code. While the savings
in terms of remote accesses are small, they are sufficient to offset the overhead
imposed by the pattern evaluation and iteration space partitioning phases.

In MG, most frequently accessed data structures are allocated on a single
node, which forces all threads on other nodes to perform remote accesses. Thus,
no significant reduction is obtained. Moreover, the high amount of global fetches
shows that part of data structures were not preallocated at all.

4 Related Work

Several different approaches are proposed in literature to mitigate the memory
latency penalty due to remote accesses. Some of these approaches rely on the
ability of the runtime system [6] or the OS itself [10] to implicitly trigger the
migration of worker threads to avoid the cost of remote accesses.

Other approaches, such as PGAS languages [18,1] rely on the ability of the
programmer to manually distribute data structures concurrently accessed by
threads at runtime. These languages provide the programmer a mean to force
a specific dynamic page placement policy for those shared data structures that
will be heavily accessed by loops. On the other hand, our solution does not rely
on explicit distribution hints, though it can take advantage of an initial data
distribution provided by means of the first-touch policy.

Dynamic data distribution based on memory protection mechanisms has been
introduced in [8,6,13]. Memory pages forming shared data structures can be
dynamically tagged, to trigger a page migration to the next node touching them

240 A. Di Biagio, E. Speziale, and G. Agosta

(next-touch strategy). Our approach is orthogonal with respect to this strategy,
since we reduce the number of remote accesses without triggering redistributions.

In [15] the authors propose a dynamic data redistribution solution similar
to [8,6] but based on information akin to our proposed data access pattern,
which is, contrary to our solution, computed at runtime by means of profiling.

5 Conclusions

We propose an optimized OpenMP runtime design for NUMA machines to ex-
ploit thread-data affinity in parallel programs by means of programmer hints
that take into account only the application behavior. Our experimental campaign
shows a reduction in the number of remote accesses for most NAS benchmarks.

The approach could be further improved by removing unnecessary pattern
evaluations when multiple subsequent loops share the same pattern. Moreover,
opportunities for data redistribution could be automatically detected at compile-
time by analysing pattern variations between subsequent loops.

Future extensions could include adding thread migration to handle the cases of
multiple concurrent applications as well as the case of applications with multiple
phases, alternating I/O bound phases with CPU bound ones. We also expect that
combining our technique with a next-touch strategy would further reduce the
remote accesses, while limiting the number of pages moved.

Furthermore, identifying patterns requires skill and time. It would be worth
exploring both static analysis and profiling based techniques to provide recom-
mended patterns to the programmer.

References

1. Allen, E., Chase, D., Hallet, J., Luchangco, V., Maessen, J., Ryu, S., Steele Jr.,
G.L., Tobin-Hochstadt, S.: The Fortress Language Specification. In: Sun Microsys-
tems (2008)

2. AMD: AMD Direct Connect Architecture (2010), http://www.amd.com/us/
products/technologies/direct-connect-architecture

3. ARB: OpenMP Application Program Interface, version 3.0 (2008), http://www.
openmp.org

4. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson, C.A., Offner,
C.D.: Extending OpenMP for NUMA Machines. In: SC (2000)

5. Broquedis, F., Diakhaté, F., Thibault, S., Aumage, O., Namyst, R., Wacrenier,
P.-A.: Scheduling Dynamic OpenMP Applications over Multicore Architectures.
In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp.
170–180. Springer, Heidelberg (2008)

6. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic
Task and Data Placement over NUMA Architectures: An OpenMP Runtime Per-
spective. In: Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009.
LNCS, vol. 5568, pp. 79–92. Springer, Heidelberg (2009)

7. GNU: GNU libgomp (2010), http://gcc.gnu.org/onlinedocs/libgomp/
8. Goglin, B., Furmento, N.: Enabling High-performance Memory Migration for Mul-

tithreaded Applications on LINUX. In: IPDPS, pp. 1–9. IEEE, Los Alamitos (2009)

http://www.amd.com/us/products/technologies/direct-connect-architecture
http://www.amd.com/us/products/technologies/direct-connect-architecture
http://www.openmp.org
http://www.openmp.org
http://gcc.gnu.org/onlinedocs/libgomp/

Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns 241

9. Intel: Intel QuickPath Architecture (2010), www.intel.com/technology/
quickpath/whitepaper.pdf

10. Jenks, S., Gaudiot, J.-L.: Exploiting Locality and Tolerating Remote Memory Ac-
cess Latency Using Thread Migration. Int. J. Parallel Program. 25(4), 281–304
(1997)

11. Jin, H., Frumkin, M.: The OpenMP Implementation of NAS Parallel Benchmarks
and its Performance. Tech. rep., NASA (1999)

12. Kleen, A.: An NUMA API for Linux (2004), http://www.halobates.de/numaapi3.
pdf

13. Lankes, S., Bierbaum, B., Bemmerl, T.: Affinity-On-Next-Touch: An Extension to
the Linux Kernel for NUMA Architectures. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 576–585.
Springer, Heidelberg (2010)

14. Marathe, J., Mueller, F.: Hardware Profile-guided Automatic Page Placement for
ccNUMA Systems. In: PPOPP, pp. 90–99. ACM, New York (2006)

15. Nikolopoulos, D.S., Artiaga, E., Ayguadé, E., Labarta, J.: Scaling Non-regular
Shared-memory Codes by Reusing Custom Loop Schedules. Scientific Program-
ming 11(2), 143–158 (2003)

16. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J.,
Ayguadé, E.: A Transparent Runtime Data Distribution Engine for OpenMP. Sci-
entific Programming 8(3), 143–162 (2000)

17. Polychronopoulos, C.D., Kuck, D.J.: Guided Self-Scheduling: A Practical Schedul-
ing Scheme for Parallel Supercomputers. IEEE Trans. Computers 36(12), 1425–
1439 (1987)

18. University, R.: High Performance Fortran Language Specification. SIGPLAN For-
tran Forum 12(4), 1–86 (1993)

19. Robertson, N., Rendell, A.P.: OpenMP and NUMA Architectures I: Investigating
Memory Placement on the SGI Origin 3000. In: Sloot, P.M.A., Abramson, D.,
Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003.
LNCS, vol. 2660, pp. 648–656. Springer, Heidelberg (2003)

20. Terboven, C., Mey, D.a., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread
Affinity in OpenMP Programs. In: MAW 2008: Proceedings of the 2008 workshop
on Memory access on future processors, pp. 377–384. ACM, New York (2008)

21. Tikir, M.M., Hollingsworth, J.K.: Using Hardware Counters to Automatically Im-
prove Memory Performance. In: SC, p. 46. IEEE Computer Society, Los Alamitos
(2004)

www.intel.com/technology/quickpath/whitepaper.pdf
www.intel.com/technology/quickpath/whitepaper.pdf
http://www.halobates.de/numaapi3.pdf
http://www.halobates.de/numaapi3.pdf

Workload Balancing and Throughput

Optimization for Heterogeneous Systems
Subject to Failures

Anne Benoit1, Alexandru Dobrila2,�, Jean-Marc Nicod2, and Laurent Philippe2

1 ENS Lyon, Université de Lyon, LIP laboratory (ENS, CNRS, INRIA, UCBL),
France

2 Université de Franche-Comté, LIFC laboratory, (UFC), France
adobrila@lifc.univ-fcomte.fr

Abstract. In this paper, we study the problem of optimizing the
throughput of streaming applications for heterogeneous platforms sub-
ject to failures. The applications are linear graphs of tasks (pipelines),
and a type is associated to each task. The challenge is to map tasks onto
the machines of a target platform, but machines must be specialized to
process only one task type, in order to avoid costly context or setup
changes. The objective is to maximize the throughput, i.e., the rate at
which jobs can be processed when accounting for failures. For identical
machines, we prove that an optimal solution can be computed in polyno-
mial time. However, the problem becomes NP-hard when two machines
can compute the same task type at different speeds. Several polynomial
time heuristics are designed, and simulation results demonstrate their
efficiency.

1 Introduction

Most of the distributed environments are subject to failures, and each compo-
nent of the environment has its own failure rate. Assuming that a failure may
be tolerated, as for instance in asynchronous systems [1] or production sys-
tems, the failures have an impact on the system performance. When scheduling
an application onto such a system, either we can account for failures to help
improve the performance in case of failures, or ignore them. In some environ-
ments, such as computing grids, this failure rate is so high that we cannot ignore
failures when scheduling applications that last for a long time as a batch of in-
put data processed by pipelined tasks for instance. This is also the case for
micro-factories where a production is composed of several instances of the same
micro-component that must be processed by cells.

In this paper, we deal with scheduling and mapping strategies for coarse-
grain workflow applications [18,19]. The applications are linear graphs of tasks
(pipelines), and a type is associated to each task. The target platform is a set

� Corresponding author.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 242–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Workload Balancing and Throughput Optimization 243

of execution resources (generically called machines), such as a grid or a micro-
factory, on which the tasks must be mapped. A series of jobs enters the workflow
and progresses from task to task until the final result is computed. Once a task
is mapped onto a set of dedicated resources (known in the literature as multi-
processor tasks [3,7]), the computation requirements and the failure rates for
each machine when processing one job of the workflow are known. After an
initialization delay, a new job is completed every period, where the period is the
inverse of the throughput. It is defined as the longest cycle-time of a machine.
Note that we target coarse-grain applications and platforms on which the cost
of communications is negligible in comparison to the cost of computations.

In the distributed computing system context, a use case of a streaming applica-
tion is for instance an image processing application where images are processed in
batches, on a SaaS (Software as a service) platform. In this context, failures may
occur because of the nodes, but they also may be impacted by the complexity of
the service [9]. On the production side, a use case is a micro-factory [13,5,12] com-
posed of several cells that provides functions as assembly or machining. But, at
this scale, the physical constraints are not totally controlled and it is mandatory
to take failures into account in the automated command. A common property
of these systems is that we cannot use replication, as for instance in [4,14,10], to
overcome the failures. For streaming applications, it may impact the through-
put to replicate each task. For a production which deals with physical objects,
replication is not possible. Fortunately, losing a few jobs may not be a big deal;
for instance, the loss of some images in a stream will not alter the result, as far
as the throughput is maintained, and losing some micro-products is barely more
costly than the occupation of the processing resources that have been dedicated
to it. The failure model is based on the Window-Constrained [16] model, often
used in real-time environment. In this model, only a fraction of the messages
will reach their destination. The losses are not considered as a failure but as a
guarantee: for a given network, a Window-Constrained scheduling [15,17] can
guarantee that no more than x messages will be lost for every y sent messages.

In this paper, we therefore solely concentrate on the problem of period min-
imization (i.e., throughput maximization), where extra jobs are processed to
account for failures. For instance, if there is a single task, mapped on a single
machine, with a failure rate of 1/2, a throughput of x jobs per unit time will be
achieved if the task processes 2 × x jobs per time unit.

The paper is organized as follows. Section 2 presents the framework and for-
malizes the optimization problems tackled in the paper. An exhaustive com-
plexity study is provided in Section 3: we exhibit some particular polynomial
problem instances, and prove that the remaining problem instances are NP-
hard problems. In Section 4, we design a set of polynomial-time heuristics to
solve the most general problem instance, building upon complexity results, and
in particular linear program formulations to solve sub-problems. Moreover, we
conduct extensive simulations to assess the relative and absolute performance of
the heuristics. Finally, we conclude in Section 5.

244 A. Benoit et al.

2 Framework and Optimization Problems

Applicative framework. The application consists of a linear chain of n tasks,
T1, T2, . . . , Tn. A type is associated to each task: we have a set of p task types
with n ≥ p, and a function t which returns the type of a task. Hence, t(i) is
the type of task Ti. A series of jobs enters the workflow and progresses from
task to task until the final result is computed, and xi is the average number of
jobs processed by task Ti to output one job out of the system. Note that xi+1

depends on xi and on the failure rate of the machine processing Ti (see below).

Target platform. The target platform is distributed and heterogeneous. It
consists of a set of m machines (a cell in the micro-factory or a host in a grid
platform), M1, M2, . . . , Mm. The task processing time depends on the machine
that performs it: it takes wi,u units of time to machine Mu to execute task Ti on
one job. Each machine is able to process all the task types. However, to avoid
costly context or setup changes during execution, the machines may be special-
ized to process only one task type. Note that we do not take communication
times into account as we consider that the processing time is much greater than
the communication time (coarse-grain applications).

Failure model. It may happen that a job (or product) is lost (or damaged)
while a task is being executed on this job. For instance, an electrostatic charge
may be accumulated on an actuator and a piece will be pushed away rather than
caught, or a message will be lost due to network contention. Note that we deal
only with transient failures, as defined in [8]: the tasks are failing for some jobs,
but we do not consider a permanent failure of the machine responsible of the
task, as this would lead to a failure for all the remaining jobs to be processed
and the inability to finish them. In order to deal with failures, we process more
jobs than needed, so that at the end, the required throughput is reached. The
failure rate of task Ti performed onto machine Mu is the percentage of failure
for this task and it is denoted fi,u.

Objective function. Our goal is to assign tasks to machines so as to optimize
some key performance criteria. A task can be allocated to several machines, and
q(i, u) is the quantity of task Ti executed by machine Mu; if q(i, u) = 0, Ti is
not assigned to Mu. Recall that xi is the average number of jobs processed by
task Ti to output one job out of the system. We must have, for each task Ti,∑m

u=1 q(i, u) = xi, i.e., enough jobs are processed for task Ti in the system.
The objective function is to maximize the number of jobs that exit the system

per time unit, making abstraction of the initialization and clean-up phases. This
objective is important when a large number of jobs must be processed. Actually,
we deal with the equivalent optimization problem that minimize the period,
the inverse of the throughput. One challenge is that we cannot compute the
number xi of jobs that must be processed by task Ti before allocating tasks
to machines, since xi depends on the failure rates incurred by the allocation.
However, each task Ti has a unique successor task Ti+1, and xi+1 is the amount
of jobs needed by Ti+1 as input. Since Ti is distributed on several machines

Workload Balancing and Throughput Optimization 245

with different failure rates, we have
∑m

u=1 (q(i, u) × (1 − fi,u)) = xi+1, where
q(i, u) × (1 − fi,u) represents the amount of jobs output by the machine Mu if
q(i, u) jobs are treated by that machine. For each task, we sum all the instances
treated by all the machines. We are now ready to define the cycle-time ctu of
machine Mu: it is the time needed by Mu to execute all tasks Ti with q(i, u) > 0:
ctu =

∑n
i=1 q(i, u) × wi,u. The objective function is to minimize the maximum

cycle-time, which corresponds to the period of the system: min max1≤u≤m ctu.

Rules of the game. Different rules of the game may be enforced to define the
allocation, i.e., the q(i, u) values. For one-to-many mappings, we enforce that a
single task must be mapped onto each machine: ∀i, i′ : 1 ≤ i, i′ ≤ n s.t. i �= i′,
q(i, u) > 0 ⇒ q(i′, u) = 0. This kind of mapping is quite restrictive because we
must have at least as many machines as tasks. Note that a task can be allocated
to several machines. We relax this rule to allow for specialized mappings, in
which several tasks of the same type can be mapped onto the same machine:
∀i, i′ : 1 ≤ i, i′ ≤ n s.t. t(i) �= t(i′), q(i, u) > 0 ⇒ q(i′, u) = 0. Note that if
each task has a different type, the specialized mapping and the one-to-many
mapping are equivalent. Finally, general mappings have no constraints: any task
(no matter the type) can be mapped on any machine.

Problem definition. For the optimization problem that we consider, the three
important parameters are: (i) the rules of the game (one-to-many (o2m) or
specialized (spe) or general (gen) mapping); (ii) the failure model (f if failures are
all identical, fi if the failure for a same task is identical on two different machines,
fu if the failure rate depends only on the machine, and the general case fi,u);
and (iii) the computing time (w if the processing times are all identical, wi if it
differs only from one task to another, wu if it depends only on the machine, and
wi,u in the general case). We are now ready to define the optimization problem:

Definition 1. MinPer(R, F, W): Given an application and a target platform,
with a failure model F = {f |fi|fu|fi,u|∗} and computation times W = {w|wi|wu

|wi,u|∗}, find a mapping (i.e., values of q(i, u) such that for each task Ti with
1 ≤ i ≤ n,

∑m
u=1 q(i, u) = xi) following rule R = {o2m|spe|gen|∗}, which

minimizes the period of the application, max1≤u≤m

∑n
i=1 q(i, u) × wi,u.

Note that ∗ is used to express the problem with any variant of the corresponding
parameter; for instance, MinPer(∗, fi,u, w) is the problem of minimizing the
period with any mapping rule, where failure rates are general, while execution
times are all identical.

3 Complexity Results

We assess the complexity of the different instances of the MinPer(R, F, W)
problem. First we provide the complexity of the problems with F = fi, and then
we discuss the most general problems with F = fi,u. Even though the general
problem is NP-hard, we show that once the allocation of tasks to machines
is known, we can optimally decide how to share tasks between machines, in
polynomial time. Also, we give an integer linear program to solve the problem.

246 A. Benoit et al.

3.1 Complexity of the MinPer(∗, fi, ∗) Problems

We first show how the MinPer(∗, fi, ∗) problems can be simplified. Indeed, in
this case, the number of products that should be computed for task Ti at each
period, xi, is independent of the allocation of tasks to machines. We can therefore
ignore the failure probabilities, and focus on the computation of the period of the
application. The following Lemma 1 allows us to further simplify the problem:
tasks of similar type can be grouped and processed as a single equivalent task.

Lemma 1. For MinPer(∗, fi, wi) or MinPer(∗, fi, wu), there exists an opti-
mal solution in which all tasks of the same type are executed onto the same set
of machines, in equal proportions: ∀i, j : 1 ≤ i, j ≤ n with t(i) = t(j),

∃αi,j ∈ Q s.t. ∀u : 1 ≤ u ≤ m, q(i, u) = αi,j × q(j, u) . (1)

The proof consists in building an optimal solution which follows Equation (1),
from an existing one. We redistribute the work and define the αi,j values for
each problem instance. The detailed proof is available in the companion research
report [2].

Corollary 1. For MinPer(∗, fi, wi) or MinPer(∗, fi, wu), we can group all
tasks of same type t as a single equivalent task T

(eq)
t , s.t. x

(eq)
t =

∑
1≤i≤n|t(i)=t xi.

Then, we can solve this problem with the one-to-many rule, and deduce the so-
lution of the initial problem.

Proof. Following Lemma 1, we search for the optimal solution which follows
Equation (1). Since all tasks of the same type are executed onto the same set of
machines in equal proportions, we can group them as a single equivalent task.
The amount of work to be done by the set of machines corresponds to the total
amount of work of the initial tasks, i.e., for a type t,

∑
1≤i≤n|t(i)=t xi.

The one-to-many rule decides on which set of machines each equivalent task
is mapped, and then we share the initial tasks in equal proportions to obtain the
solution to the initial problem: if task Ti is not mapped on machine Mu, then
q(i, u) = 0, otherwise q(i, u) = xi

x
(eq)
t(i)

× P
wi|u

, where wi|u = {wi | wu}.

We are now ready to establish the complexity of the MinPer(∗, fi, ∗) problems.
Recall that n is the number of tasks, m is the number of machines, and p is
the number of types. We start by providing polynomial algorithms for one-to-
many and specialized mappings with wi (Theorem 1 and Corollary 2). Then, we
discuss the case of general mappings, which can also be solved in polynomial time
(Theorem 2). Finally, we tackle the instances which are NP-hard (Theorem 3).

Theorem 1. MinPer(o2m, fi, wi) can be solved in time O(m × log n).

Proof. First, note that solving this one-to-many problem amounts to decide on
how many machines each task is executed (since machines are identical), and
then split the work evenly between these machines to minimize the period. Hence,
if Ti is executed on k machines, q(i, u) = xi

k , where Mu is one of these k machines,
and the corresponding period is xi

k × wi.

Workload Balancing and Throughput Optimization 247

We provide a greedy algorithm to solve the problem. The idea is to assign
initially one machine per task (note that there is a solution only if m ≥ n), sort
the tasks by non-increasing period, and then iteratively add a machine to the
task whose machine(s) have the greater period, while there are some machines
available. Let gi be the current number of machines assigned to task Ti: the
corresponding period is xi

gi
×wi. At each step, we insert the task whose period has

been modified in the ordered list of tasks, which can be done in O(log n) (binary
search). The initialization takes a time O(n log n) (sorting the tasks), and then
there are m − n steps of time O(log n). Since we assume m ≥ n, the complexity
of this algorithm is in O(m × log n). To prove that this algorithm returns the
optimal solution, let us assume that there is an optimal solution of period Popt

that has assigned oi machines to task Ti, while the greedy algorithm has assigned
gi machines to this same task, and its period is Pgreedy > Popt. Let Ti be the
task which enforces the period in the greedy solution (i.e., Pgreedy = xiwi/gi).
The optimal solution must have given at least one more machine to this task,
i.e., oi > gi, since its period is lower. This means that there is a task Tj such that
oj < gj , since

∑
1≤i≤n oi ≤

∑
1≤i≤n gi = m (all machines are assigned with the

greedy algorithm). Then, note that since oj < gj , because of the greedy choice,
xjwj/oj ≥ xiwi/gi (otherwise, the greedy algorithm would have given one more
machine to task Ti). Finally, Popt ≥ xjwj/oj ≥ xiwi/gi = Pgreedy , which leads
to a contradiction, and concludes the proof.

Corollary 2. MinPer(spe, fi, wi) can be solved in time O(n + m × log p).

Proof. For the specialized mapping rule, we use Corollary 1 to solve the problem:
first we group the n tasks by types, therefore obtaining p equivalent tasks, in
time O(n). Then, we use Theorem 1 to solve the problem with p tasks, in time
O(m × log p). Finally, the computation of the mapping with equal proportions
is done in O(n), which concludes the proof.

Theorem 2. MinPer(gen, fi, ∗) can be solved in polynomial time.

Proof. We exhibit a linear program to solve the problem for the general case
with wi,u. Note however that the problem is trivial for wi or wu: we can use
Corollary 1 to group all tasks as a single equivalent task, and then share the
work between machines as explained in the corollary.

In the general case, we solve the following (rational) linear program, where
the variables are P (the period), and q(i, u), for 1 ≤ i ≤ n and 1 ≤ u ≤ m.

Minimize P, subject to
(i) q(i, u) ≥ 0 for 1 ≤ i ≤ n, 1 ≤ u ≤ m
(ii)
∑

1≤u≤m q(i, u) = xi for each task Ti with 1 ≤ i ≤ n

(iii)
∑

1≤i≤n q(i, u) × wi,u ≤ P for each machine Mu with 1 ≤ u ≤ m

(2)

The size of this linear program is polynomial in the size of the instance, all n ×
m+1 variables are rational. Therefore, it can be solved in polynomial time [11].

Finally, we prove that the remaining problem instances are NP-hard (one-to-
many or specialized mappings, with wu or wi,u). Since MinPer(o2m, fi, wu) is

248 A. Benoit et al.

a special case of all other instances, it is sufficient to prove the NP-completeness
of the latter problem.

Theorem 3. The MinPer(o2m, fi, wu) problem is NP-hard in the strong sense.

Proof. We consider the following decision problem: given a period P , is there a
one-to-many mapping whose period does not exceed P? The problem is obviously
in NP: given a period and a mapping, it is easy to check in polynomial time
whether it is valid or not. The NP-completeness is obtained by reduction from
3-PARTITION [6], which is NP-complete in the strong sense.

We consider an instance I1 of 3-PARTITION: given an integer B and 3n
positive integers a1, a2, . . . , a3n such that for all i ∈ {1, . . . , 3n}, B/4 < ai < B/2
and with

∑n
i=1 ai = nB, does there exist a partition I1, . . . , In of {1, . . . , 3n} such

that for all j ∈ {1, . . . , n}, |Ij | = 3 and
∑

i∈Ij
ai = B? We build the following

instance I2 of our problem with n tasks, such that xi = B, and m = 3n machines
with wu = 1/au. The period is fixed to P = 1. Clearly, the size of I2 is polynomial
in the size of I1. We now show that I1 has a solution if and only if I2 does.

Suppose first that I1 has a solution. For 1 ≤ i ≤ n, we assign task Ti to the
machines of Ii: q(i, u) = au for u ∈ Ii, and q(i, u) = 0 otherwise. Then, we have∑

1≤u≤m q(i, u) =
∑

u∈Ii
au = B, and therefore all the work for task Ti is done.

The period of machine Mu is
∑

1≤i≤n q(i, u) × wu = au/au = 1, and therefore
the period of 1 is respected. We have a solution to I2.

Suppose now that I2 has a solution. Task Ti is assigned to a set of machines,
say Ii, such that

∑
u∈Ii

q(i, u) = B, and q(i, u) ≤ au for all u ∈ Ii. Since all the
work must be done, by summing over all tasks, we obtain q(i, u) = au, and the
solution is a 3-partition, which concludes the proof.

3.2 Complexity of the MinPer(∗, fi,u, ∗) Problems

When we consider problems with fi,u instead of fi, we do not know in advance
the number of jobs to be computed by each task in order to have one job exiting
the system, since it depends upon the machine on which the task is processed.
However, we are still able to solve the problem with general mappings, as ex-
plained in Theorem 4. For one-to-many and specialized mappings, the problem
is NP-hard with wu, since it was already NP-hard with fi in this case (see The-
orem 3). We prove that the problem becomes NP-hard with wi in Theorem 5,
which illustrates the additional complexity of dealing with fi,u rather than fi.

Theorem 4. MinPer(gen, fi,u, ∗) can be solved in polynomial time.

Proof. We modify the linear program (2) of Theorem 2 to solve the case with
general failure rates fi,u. Indeed, constraint (ii) is no longer valid, since the xi

are not defined before the mapping has been decided. It is rather replaced by
constraints (iia) and (iib):

(iia)
∑

1≤u≤m q(n, u) × (1 − fn,u) = 1 ;

(iib)
∑

1≤u≤m q(i, u) × (1 − fi,u) =
∑

1≤u≤m q(i + 1, u) for each Ti(1 ≤ i < n) .

Workload Balancing and Throughput Optimization 249

Constraint (iia) states that the final task must output one job, while constraint
(iib) expresses the number of jobs that should be processed for task Ti, as a
function of the number for task Ti+1. There are still n × m + 1 variables which
are rational, and the number of constraints remains polynomial, therefore this
linear program can be solved in polynomial time [11].

Theorem 5. The MinPer(o2m, fi,u, wi) problem is NP-hard.

The proof of this theorem is quite involved, and we refer to the companion
research report [2] for the details.

However, if the allocation of tasks to machines is known, then we can optimally
decide how to share tasks between machines, in polynomial time. We build upon
the linear program of Theorem 4, and we add a set of parameters: ai,u = 1 if Ti

is allocated to Mu, and ai,u = 0 otherwise (for 1 ≤ i ≤ n and 1 ≤ u ≤ m). The
variables are still the period P , and the amount of task per machine q(i, u). The
linear program writes:

Minimize P, subject to
(i) q(i, u) ≥ 0 for 1 ≤ i ≤ n, 1 ≤ u ≤ m

(iia)
∑

1≤u≤m q(n, u) × (1 − fn,u) = 1

(iib)
∑

1≤u≤m q(i, u) × (1 − fi,u) =
∑

1≤u≤m q(i + 1, u) for 1 ≤ i < n

(iii)
∑

1≤i≤n q(i, u) × wi,u ≤ P for 1 ≤ u ≤ m

(iv) q(i, u) ≤ ai,u × Fmax for 1 ≤ i ≤ n and 1 ≤ u ≤ m

(3)

We have added constraint (iv), which states that q(i, u) = 0 if ai,u = 0, i.e., it
enforces that the fixed allocation is respected. Fmax =

∏
1≤i≤n max1≤u≤m fi,u

is an upper bound on the q(i, u) values, it can be pre-computed before running
the linear program. The size of this linear program is clearly polynomial in the
size of the instance, all n × m + 1 variables are rational, and therefore it can be
solved in polynomial time [11].

The linear program of Equation (3) allows us to find the solution in polynomial
time, once the allocation is fixed. We also propose an integer linear program
(ILP), which computes the solution to the MinPer(spe, fi,u, wi,u) problem, even
if the allocation is not known. However, because of the integer variables, the
resolution of this program takes an exponential time. Note that this ILP can
also solve the MinPer(o2m, fi,u, wi,u): one just needs to assign a different type
to each task. We no longer have the ai,u parameters, and therefore we suppress
constraint (iv). Rather, we introduce a set of Boolean variables, x(u, t), for 1 ≤
u ≤ m and 1 ≤ t ≤ p, which is set to 1 if machine Mu is specialized in type t,
and 0 otherwise. We then add the following constraints:

(iva)
∑

1≤t≤p x(u, t) ≤ 1 for each machine Mu with 1 ≤ u < m ;

(ivb) q(i, u) ≤ x(u, ti) × Fmax for 1 ≤ i ≤ n and 1 ≤ u ≤ m .

Constraint (iva) states that each machine is specialized into at most one type,
while constraint (ivb) enforces that q(i, u) = 0 when machine Mu is not special-
ized in the type ti of task Ti. This ILP has n × m + 1 rational variables, and
m × p integer variables. The number of constraints is polynomial in the size of
the instance. Note that this ILP can be solved for small problem instances with
ILOG CPLEX (www.ilog.com/products/cplex/).

www.ilog.com/products/cplex/

250 A. Benoit et al.

4 Heuristics and Simulations

From the complexity study, we are able to find an optimal general mapping.
In this section, we provide practical solutions to solve MinPer(spe, fi,u, wi,u),
which is NP-hard. Indeed, general mappings are not feasible in some cases, since
it involves reconfiguring the machines between the execution of two tasks whose
type is different. This additional setup time may be unaffordable. We design
in Section 4.1 a set of polynomial time heuristics which return a specialized
mapping, building upon the complexity results of Section 3. Finally, we present
exhaustive simulation results in Section 4.2.

4.1 Polynomial Time Heuristics

Since we are able to find the optimal solution once the tasks are mapped onto
machines, the heuristics are building such an assignment, and then we run the
linear program of Equation (3) to obtain the optimal solution in terms of q(i, u).
The first heuristic is random, and serves as a basis for comparison. Then, the
next three heuristics (H2, H3 and H4) are based on an iterative allocation process
in two stages. In the first top-down stage, the machines are assigned from task
T1 to task Tn depending on their speed wi,u: the machine with the best w1,u is
assigned to T1 and so on. The motivation is that the workload of the first task is
larger than the last task because of the job failures that arise along the pipeline.
In the second bottom-up stage, the remaining machines are assigned from task
Tn to task T1 depending on their reliability fi,u: the machine with the best fn,u

is assigned to Tn and so on. The motivation is that it is more costly to lose a job
at the end of the pipeline than at the beginning, since more execution time has
been devoted to it. We iterate until all the machines have at least one task to
perform. Finally, H5 performs only a top-down stage, repetitively. The heuristics
are described below.

H1: Random heuristic. The first heuristic randomly assigns each task to a
machine when the allocation respects the task type of the chosen machine.

H2: Without any penalization. The top-down stage assigns each task to the
fastest possible machine. At the end of this stage, each task of the same type is
assigned onto the same machine, the fastest. Then, the already assigned machines
are discarded from the list. In the same way, the bottom-up stage assigns each
task of the same type to the same machine starting from the more reliable one.
We iterate on these two steps until all machines are specialized.

H3: Workload penalization. The difference with H2 is in the execution of
the top-down stage. Each time a machine is assigned to a task, this machine is
penalized to take the execution of this task into account and its wi,u is changed to
wi,u×(k+1) where k is the number of tasks already mapped on the machine Mu.
This implies that several machines can be assigned to the same task type in this
phase of the algorithm: if a machine is already loaded by several tasks then we

Workload Balancing and Throughput Optimization 251

 50000

 65

pe
ri

od
 in

 m
s

number of tasks

H5
H4
H3
H2
H1
LP

 0

 10000

 20000

 60000

 20 25 30 35 40 45 50 55

 30000

 40000

 60

Fig. 1. m = 20, p = 5.
Heuristics against the linear program.

H4

H2
LP

 25
 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 30 35 40 45 50 55 60 65

pe
ri

od
 in

 m
s

number of tasks

H5

H3

Fig. 2. m = 20, p = 5.
Without H1.

may find a faster machine and assign it to this task type. The bottom-up stage
has the same behavior as for H2.

H4: Cooperation work. In this heuristic, a new machine is assigned to each
task, depending on its speed, during the top-down stage; then the bottom-up
stage has the same behavior as the heuristic H2.

H5: Focus on speed. The heuristic H5 focuses only on the speed by repeating
the top-down stage of heuristic H3, until all the machines are allocated to at
least one task.

4.2 Simulations

In this section, we evaluate the performance of the five heuristics. The period
returned by each heuristic is measured in ms. Recall that m is the number of
machines, p the number of types, and n the number of tasks. Each point in a
figure is an average value of 30 simulations where the wi,u are randomly chosen
between 100 and 1000ms (these values are chosen to show the high level of
heterogeneity of the machines, and they are randomly chosen since machines
and tasks are unrelated), for 1 ≤ i ≤ n and 1 ≤ u ≤ m, unless stated otherwise.
Similarly, failure rates fi,u are randomly chosen between 0.2 and 10% unless
stated otherwise. Indeed, we observed that failure rates over 10% do not change
the behavior of the heuristics.

Heuristics versus linear program. In this set of simulations, the heuristics
are compared to the integer linear program which gives the optimal solution.
The platform is such that m = 20, p = 5 and 21 ≤ n ≤ 61. Figure 1 shows
that the random heuristic H1 has poor performance. Therefore, for visibility
reasons, H1 does not appear in the rest of the figures. Results in Figure 2 show
that the heuristics are not far from the optimal. The best heuristics H2 and H4
have a ratio of 1.5 and 2 to the optimal solution. The platform used for these
simulations is limited on cases where the integer linear program finds a result.
With the same platform but p = 10, the percentage of success of the linear
program is less than 50% with 61 tasks.

252 A. Benoit et al.

 50
number of tasks

H5
H4
H3
H2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 15 20

 1800

 25 30 35 40 45

pe
ri

od
 in

 m
s

Fig. 3. m = 50, p = 25.
Heuristics with more machines than tasks.

 350000

 450000

 500000

 60 70 80 90 100 110 120 130 140 150

pe
ri

od
 in

 m
s

number of tasks

H4
H5

H3
H2

 0

 50000

 100000

 150000

 200000

 250000

 300000

 400000

Fig. 4. m = 50, p = 25.
Heuristics with more tasks than machines.

 60000

 80000

 0 20 40 60 80 100 120

pe
ri

od
 in

 m
s

number of tasks

H5

H3
H2

 0

 10000

 20000

 30000

 40000

 50000

H4
 70000

Fig. 5. m = 40, p = 5.
Small number of types.

 30000

 120

 50000

 60000

 70000

 0 20 40 60 80 100

pe
ri

od
 in

 m
s

number of tasks

H5
H4
H3
H2

 0

 10000

 20000

 40000

Fig. 6. m = 40, p = 35.
High number of types.

General behavior of the heuristics. In a second set of simulations, we focus
on the behavior of the heuristics alone. First we compare settings with more
tasks than machines, or the contrary. In Figure 3, we have m = 50, p = 25, and
10 ≤ n ≤ 50. Results show that H2 is slightly worse than the other heuristics.
This lack of performance of H2 becomes even clearer when p is closer to m (see [2]
for further results). This is explained by the fact that H2 does not apply any
penalization to the machines, thus using a good machine for many tasks of the
same type. But when there is less tasks than machines, it is better to dedicate
more machines to a given type. However, when the number of tasks is higher
than the number of machines, H2 and H4 become clearly the best (see Figure 4).
Indeed, at the end of the first stage of allocation, H3 and H5 will almost have
used all the machines thus the second stage will not be decisive.

Also, we studied the impact of the number of types, for m = 40 and 10 ≤
n ≤ 110. In Figure 5, we have p = 5, versus p = 35 in Figure 6. For p = 5, the
possibilities to split groups are important. In this case, H2 and H4 are the best
heuristics because the workload is shared on a higher number of machines and
not only on those efficient for a given task. In the contrary, when the number
of types is close to the number of machines (p = 35), the number of split tasks
decreases. Indeed, each machine must be specialized to one type. In Figure 6, only
5 machines can be used to share the workload once each machine is dedicated
to a type, and therefore the performance of the heuristics is pretty much alike.

Workload Balancing and Throughput Optimization 253

Summary. Even though it is clear that H1 performs really poorly, the other
heuristics can all be the most appropriate, depending upon the situation. If the
number of tasks is greater than the number of machines, H2 is the best heuristic;
otherwise, H4 becomes better than H2. Further simulations are done in [2], in
particular to illustrate the impact of the failure rate on the results. Note that the
comparison between the heuristics is made easier if the gap between the number
of types and the number of machines is big. Indeed, with a small number of
types, the tasks can be split many times because more machines are potentially
dedicated to a same type. The choices made by a heuristic either to split a task
or not have more impact on the result.

5 Conclusion

In this paper, we investigate the problem of maximizing the throughput of coarse-
grain pipeline applications where tasks have a type and are subject to failures,
with different mapping strategies (one-to-many, specialized or general). A task
can be distributed on the platform so as to balance workload between the ma-
chines. From a theoretical point of view, an exhaustive complexity study is pro-
posed. We prove that an optimal solution can be computed in polynomial time in
the case of general mappings whatever the application/platform parameters, and
in the case of one-to-many and specialized mappings when the failure rates only
depend on the tasks, while the optimization problem becomes NP-hard in any
other cases. Since general mappings do not provide a realistic solution because
of unaffordable setup times when reconfiguration occurs, we propose to solve
the specialized mapping problem by designing several polynomial heuristics. An
exhaustive set of simulations demonstrate the efficiency of the heuristics: some
of them return a throughput close to the optimal, while random mappings never
give good solutions.

As future work, we plan to investigate other objective functions, such as the
mean time to output one job out of the system, or other models: the failure rate
associated to the task and/or the machine could be correlated with the time
required to perform that task.

Acknowledgment. A. Benoit is with the Institut Universitaire de France. This
work was supported in part by the ANR StochaGrid and RESCUE projects.

References

1. Bahi, J., Contassot-Vivier, S., Couturier, R.: Coupling dynamic load balancing with
asynchronism in iterative algorithms on the computational grid. In: International
Parallel and Distributed Processing Symposium, IPDPS 2003 (April 2003)

2. Benoit, A., Dobrila, A., Nicod, J.M., Philippe, L.: Workload balancing and through-
put optimization for heterogeneous systems subject to failures. Research report,
INRIA, France (February 2011), http://graal.ens-lyon.fr/~abenoit/

3. Blåzewicz, J., Drabowski, M., Weglarz, J.: Scheduling multiprocessor tasks to min-
imize schedule length. IEEE Trans. Comput. 35, 389–393 (1986)

http://graal.ens-lyon.fr/~abenoit/

254 A. Benoit et al.

4. Cirne, W., Brasileiro, F., Paranhos, D., Góes, L.F.W., Voorsluys, W.: On the ef-
ficacy, efficiency and emergent behavior of task replication in large distributed
systems. Parallel Computing 33(3), 213–234 (2007)

5. Descourvières, E., Debricon, S., Gendreau, D., Lutz, P., Philippe, L., Bouquet, F.:
Towards automatic control for microfactories. In: IAIA 2007, 5th Int. Conf. on
Industrial Automation (2007)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

7. Gröflin, H., Klinkert, A., Dinh, N.P.: Feasible job insertions in the multi-processor-
task job shop. European J. of Operational Research 185(3), 1308–1318 (2008)

8. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs
(1994)

9. Litke, A., Skoutas, D., Tserpes, K., Varvarigou, T.: Efficient task replication and
management for adaptive fault tolerance in mobile grid environments. Future Gen-
eration Computer Systems 23(2), 163–178 (2007)

10. Parhami, B.: Voting algorithms. IEEE Trans. on Reliability 43(4), 617–629 (1994)
11. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms

and Combinatorics, vol. 24. Springer, Heidelberg (2003)
12. Tanaka, M.: Development of desktop machining microfactory. Journal RIKEN

Rev 34, 46–49 (2001) iSSN:0919-3405
13. Verettas, I., Clavel, R., Codourey, A.: Pocketfactory: a modular and miniature

assembly chain including a clean environment. In: 5th Int. Workshop on Microfac-
tories (2006)

14. Weissman, J.B., Womack, D.: Fault tolerant scheduling in distributed networks
(1996)

15. West, R., Zhang, Y., Schwan, K., Poellabauer, C.: Dynamic window-constrained
scheduling of real-time streams in media servers (2004)

16. West, R., Poellabauer, C.: Analysis of a window-constrained scheduler for real-
time and best-effort packet streams. In: Proc. of the 21st IEEE Real-Time Systems
Symp., pp. 239–248. IEEE, Los Alamitos (2000)

17. West, R., Schwan, K.: Dynamic Window-Constrained Scheduling for Multimedia
Applications. In: ICMCS, vol. 2, pp. 87–91 (1999)

18. Wieczorek, M., Hoheisel, A., Prodan, R.: Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Gener. Comput. Syst. 25(3), 237–
256 (2009)

19. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid comput-
ing. Research Report GRIDS-TR-2005-1, Grid Computing and Distributed Sys-
tems Laboratory, University of Melbourne, Australia (April 2005)

On the Utility of DVFS for Power-Aware Job

Placement in Clusters

Jean-Marc Pierson1 and Henri Casanova2

1 IRIT, University of Toulouse, Toulouse, France
pierson@irit.fr

2 Dept. of Information and Computer Sciences, University of Hawai‘i at Manoa,
Honolulu, Hawai‘i, U.S.A.

henric@hawaii.edu

Abstract. Placing compute jobs on clustered hosts in a way that opti-
mizes both performance and power consumption has become a crucial is-
sue. Most solutions to the power-aware job placement problem boil down
to consolidating workload on a small number of hosts so as to reduce
power consumption which achieving acceptable performance levels. The
question we investigate in this paper is whether the capabilities provided
by DVFS, i.e., the ability to configure a host in one of several power con-
sumption modes, leads to improved solutions. We formalize the problem
so that a bound on the optimal solution can be computed. We then study
how the optimal, if it can be computed, and its bound vary across sce-
narios in which hosts provide various degrees of DVFS capabilities. We
rely on a DVFS model that we instantiate based on real-world exper-
iments. Our approach thus quantifies the potential improvements that
hypothetical job placement algorithms can hope to achieve by exploiting
DVFS capabilities.

1 Introduction

The problem of efficiently allocating resources among competing jobs and users
on clusters has received considerable attention. Job scheduling algorithms have
been developed that attempt to optimize job placement with respect to criteria
related to job performance, system throughput, and/or fairness. Electrical power,
although long been ignored in the job scheduling literature, has become a crucial
issue for large-scale clusters. Consequently, in recent years many authors have
studied the power-aware job placement problem, seeking theoretical as well as
practical solutions [18,9,17,16,2]. A common approach for reducing the power
consumption of a cluster is to place jobs so as to consolidate the workload on
a small but sufficient number of cluster nodes, temporarily powering off unused
nodes. Workload consolidation is enabled by virtual machine (VM) technology,
which provides mechanisms to control and adapt resource shares allocated to VM
instances, and to quickly migrate VM instances among cluster nodes. In addition
to workload consolidation, a possibility is to configure the hardware via Dynamic
Voltage Scaling (DVS), Dynamic Frequency Scaling (DFS), or a combination of

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 255–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

256 J.-M. Pierson and H. Casanova

the two (DVFS), which are now commonplace in modern processors. In this work,
we seek to answer the following question: What is the value added by DVFS when
used in addition to workload consolidation when solving the power-aware job
placement problem? Some authors have proposed solutions that exploit DVFS
capabilities [21,1,10,13]. However, obtained results are difficult to compare and
do not provide a conclusive answer to the above question. Instead, we opt for an
algorithm-agnostic approach and extend an existing formulation of the power-
aware job placement problem proposed in the literature so that it accounts for
cluster nodes that have DVFS capabilities. This problem can be formulated as
an Mixed Integer Linear Program (MILP), which makes it possible to compute a
bound on the optimal solution. Studying how the optimal and its bound vary as
the DVFS capabilities of cluster nodes are enhanced provides a sound theoretical
basis upon which to quantify the utility of DVFS when used in conjunction with
workload consolidation. More specifically, our original contributions are:

– We combine and extend the power-job placement formulations in [4] and [23]
and study two versions of the optimization problem: (i) optimize performance
given a constraint on power consumption; and (ii) optimize power consump-
tion given a constraint on job performance.

– We instantiate a model that captures the trade-off achieved between power
consumption and performance using DVFS, based both on previous work
and on experiments on a real-world platform.

– We compute the (bound on the) optimal for the optimization problem for
several instantiations of the DVFS model, thereby quantifying the added
benefit of increased DVFS capabilities.

Our main result is that using DVFS leads only to marginal improvements and
that these improvements require only one additional intermediate power mode
between the ”powered off” and ”powered on” modes.

2 Related Work

Since the power-aware job placement problem is NP-hard, most authors aim at
designing heuristics. A prevalent technique consists in designing workload con-
solidation techniques so as to use a limited number of nodes, possibly relying on
job migration. In [18,22], nodes are powered off when not used, and job place-
ment decisions attempt to power a node back on only when absolutely necessary.
Similarly, Hoyer et al. [16] propose statistical allocation planning for resource al-
location while maintaining each job over a certain threshold on performance
reduction. Others use various techniques to make online resource allocation de-
cisions, leading to consolidation of jobs to a minimal set of nodes [17,20,15,2].
In addition to workload consolidation, it is possible to tune the hardware con-
figuration of cluster nodes. For instance, users can specify that some hardware
components can be slowed down or powered off for particular jobs [7]. More
generally, the use of DVFS has been proposed in conjunction to workload con-
solidation techniques [9,21]. In the context of parallel applications, DVFS has

On the Utility of DVFS for Power-Aware Job Placement in Clusters 257

also been proposed as way to exploit and mitigate load imbalance and commu-
nication delays for the purpose of power consumption reduction [13,10]. Note
that, like in this work, several authors have formulated various classes of power-
aware job placement problems as linear programs [1,21,4]. But, to the best of
our knowledge, no work to date has exploited such formulations to quantify the
theoretical added benefit of using DVFS-enabled nodes.

3 Power-Aware Job Placement with DVFS

3.1 Problem Statement

We define the problem using [23] and [5] as foundations. We consider a cluster
with H nodes, or hosts, and N jobs that must be placed and allocated resources
on those hosts. Each job must be placed on exactly one host. We consider a static
workload: no job enters or leaves the system and job resource needs are constant.
Sound static job placement provides a good basis for job placement in the case of
(more realistic) dynamic workloads. For instance, a static resource allocation can
be recomputed periodically to account for changes in the workload. Alternately,
a resource allocation can be recomputed for each job arrival/departure.

As in [23], which does not consider power consumption, we consider that
hosts provide resources along an arbitrary number of resource dimensions (e.g.,
CPU time, RAM space, network bandwidth, disk space). Jobs have resource
needs along the resource dimensions provided by hosts. We consider two kinds
of resource needs: rigid and fluid. A rigid need denotes that a resource allocation
is required. The job cannot benefit from a larger allocation and cannot operate
with a smaller allocation. A fluid need specifies the maximum resource allocation
that the job could use if alone on a reference host. The job cannot benefit from
a larger allocation, but can operate with a smaller allocation at the cost of
reduced performance. All that follows assume a single, reference host. A job
could have two rigid needs: it could require 50% of the host’s RAM and 20%
of the host’s disk space. The job could have two fluid needs: it could use up to
40% of the host’s network bandwidth and up to 60% of the host’s CPU time.
In this example, the job cannot use both resources fully, for instance because of
interdependence between I/O and computation. While not true in all cases [8], for
simplicity we assume that rigid resource needs are completely independent from
fluid resource needs (and from each other). Job resource needs can be discovered
via benchmarking[24], analytical models [14], or runtime discovery [26,6].

Our metric for quantifying the performance of a particular job placement and
resource allocation is the scaled yield [23]. For each fluid resource need the yield
is defined as the ratio between the resource fraction allocated and the maximum
resource fraction potentially used. For instance, if a job has a fluid CPU need of
60% but is allocated only 42% of the host’s CPU, then the yield is 42/60 = 0.7.
Following the same rationale as in [23], we assume that the utilizations of all
resources corresponding to the fluid needs of a job are linearly correlated. For
the previous example, if the job were to be allocated only 20% of the host’s I/O
bandwidth (i.e., half of what it could potentially use), then it would use only

258 J.-M. Pierson and H. Casanova

30% of the host’s CPU (i.e., also half of what it could potentially use). The yield
of a job is thus identical for all its fluid needs. We thus simply refer to the yield
of a job, which takes values between 0 and 1. A job can, however, specify a QoS
requirement as a minimum acceptable yield value. For the earlier example, the
yield could be constrained to be higher than 0.4, which means that the CPU
fraction allocated to the job would be at least 0.4 × 60% = 24%. The scaled
yield of a job is then defined as:

scaled yield =
yield − minimum yield

1 − minimum yield
. (1)

The scaled yield of a job thus takes values between 0 and 1. The objective is
to maximize the minimum scaled yield over all jobs to optimize both aggregate
performance and fairness among jobs [23]. Note that maximizing the average
scaled yield is prone to starvation, as seen in [19] in the context of stretch
optimization. However, in [23] a second optimization phase is used to maximize
the average scaled yield while maintaining the previously maximized minimum
scaled yield. The same approach could be used in this work as well.

As in [5], which studies power-aware job placement but considers only two
resource dimensions, we assume that each host consumes power depending on
utilization of its resources. Unlike [23,5], we consider that each host provides
DVFS capabilities. More specifically, it is possible to reduce the power con-
sumption of a host by reducing the capacity of one or more of its resources (e.g.,
lowering the number of CPU cycles per seconds by lowering the clock rate). Un-
like [23,5], we allow for heterogeneous hosts. We quantify power consumption of
the system as the sum of the power consumptions of all hosts, accounting for
the load imposed on each host.

When faced with two distinct objectives (i.e., maximizing yield and minimiz-
ing power consumption) one possibility is to optimize a linear combination of
them. This approach, albeit commonplace, is problematic because the coefficient
of the linear combination must be chosen by the user, and also because the ob-
tained solution is not guaranteed to be Pareto optimal. Instead, we consider two
separate single-objective optimization problems:

1. BoundedPower: Maximize the minimum scaled yield given an upper bound
on power consumption (i.e., a power budget).

2. BoundedYield: Minimize the power consumption given a lower bound on
the minimum scaled yield (i.e., a performance budget).

3.2 Problem Formulation

In this section we formalize both optimization problems introduced in the pre-
vious section. We consider H hosts providing a d-dimensional resource and N
jobs that must be placed on these hosts. Each host h can operate in nvh ≥ 2 dis-
tinct power modes. Each power mode corresponds to a different tradeoff between
the resources available from the host and its power consumption. We ignore the
overhead of modifying a host’s power mode, including powering it on and off. In

On the Utility of DVFS for Power-Aware Job Placement in Clusters 259

∀h
∑

k phk = 1 (2)

∀i
∑

h,k eihk = 1 (3)

∀i, h eih1 = 0 (4)

∀i, h, k eihk ≤ phk (5)

∀i, h, k 0 ≤ yihk ≤ eihk (6)

∀i, h, k, j wihjk = rij(yihk(1 − δij) + eihkδij) (7)

∀h, k, j
∑

i wihjk ≤ phkfhjk (8)

∀i
∑

h,k yihk ≥ ŷi + Y (1 − ŷi) (9)

E =
∑

h,j,k Powerhjk(
∑

i wihjk) (10)

Fig. 1. Optimization constraints

power mode k, host h provides a capacity fhjk for resource dimension j. Rather
than quantifying fhjk with absolute resource-specific units, we use a relative
measure so as to easily account for heterogeneous hosts and/hosts in different
power states. For resource dimension j, we identify the maximum resource frac-
tion provided by any host in any power state in the platform. All fhjk values
are taken relative to this maximum and are thus between 0 and 1. For all h and
j, fhj1 is zero, meaning that the first power mode for each host corresponds to
being powered down. Job i’s resource need along dimension j is denoted by rij

and is relative to the aforementioned maximum. Furthermore, we define δij to
be 1 if job i’s resource need in resource dimension j is rigid, and 0 if the need is
fluid. The minimum yield required by job i, i.e., its Quality Of Service require-
ment, is denoted by ŷi. Finally, the power consumption of host h in power mode
k due to resource dimension j is given by a function Powerhjk(x), where x is the
total resource usage in this resource dimension due to jobs placed on the host.

To formulate both our job placement problems as constrained optimization
problems we define the following variables: (i) Y is a rational variable that quan-
tifies the minimum scaled yield over all jobs; (ii) E is a rational variable that
quantifies the power consumption of the platform; (iii) phk is a binary variable
that is 1 if host h is in power mode k, and 0 otherwise; (iv) eihk is a binary
variable that is 1 if job i is placed on host h in power mode k, and 0 otherwise;
(v) yihk is a rational variable which quantifies the yield of job i on host h in
power mode k; and (vi) wihjk is a rational variable which quantifies the resource
usage due to job i on host h in power mode k for resource dimension j.

We can now write the set of constraints shown in Figure 1, where i ∈ 1, . . . , N ,
h ∈ 1, . . . , H, j ∈ 1, . . . , d, and k ∈ 1, . . . , nvh. Constraint 2 states that a host
operates in a single power mode. Constraint 3 states that a job can only be
placed on a single host (which operates in a given power mode). Constraint 4
states that a job cannot be placed on a host that is powered down. Constraint 5
states that a job can only be placed on a host in a particular power mode if this
host operates in this power mode. Constraint 6 states that the yield of a job
can be non-zero only on the host (and its given power mode) on which the job

260 J.-M. Pierson and H. Casanova

is placed. Constraint 7 defines the resource usage wihjk , which is non-zero only
if job i is placed on host h that operates in power mode k. For a rigid resource
need (δij = 1) the resource usage is equal to the job’s resource need, while for a
fluid need (δij = 1) the resource usage is scaled by the job’s yield. Constraint 8
states that the resource usage on a host in a given power mode does not exceed
the corresponding resource capacity. Constraint 9 simply states that, for each
job, the minimum scaled yield, Y , is lower that the job’s scaled yield. Finally,
Constraint 10 states that the total power consumption of the platform is equal
to the sum of the power consumption on all hosts (in their respective power
states) along all resource dimensions. One can now formalize BoundedPower
as maximizing Y subject to the constraints in Figure 1 with an additional E ≤
Emax constraint. Similarly, BoundedYield consists in minimizing E subject
to the constraints in Figure 1 with an additional Y ≥ Ymin constraint.

In this work we make the simplifying assumption that the power consumption
of a host is entirely driven by the power consumption of its CPU, i.e., along a
single resource dimension. While it would be straightforward to incorporate other
sources of power consumption in our problem formalization, models need to be
developed for the corresponding Powerhjk() functions. In fact, it could very well
be that the power consumption of the different resources are not independent, in
which case a single Powerhk function that models power consumption given the
d resource usages on host h in power mode k. For now, given that such models
are not available and that the CPU does account for a large fraction of a host’s
dynamic power consumption, we assume the Powerhjk() always returns 0 for
j �= 1. Arbitrarily choosing that the CPU resource dimension corresponds to
j = 1, we define

Powerh1k(x) = Cmin
hk + Cprop

hk × x ,

where Cmin
hk is the power consumption of host h in power mode k when idle, and

Cprop
hk denotes the proportional increase in power consumption over Cmin

hk due to
a CPU load x (i.e the dynamic power consumption). This load is expressed as
fraction of the maximum possible number of CPU cycles executed per time unit
by a host, over all hosts in all their power states. This model and assumptions
were experimentally shown close to real clusters power consumptions [11,25].
All constraints in Figure 1 are thus linear, and both optimization problems are
thus MILPs. One can use a linear solver to compute exact solutions for small
instances. For larger instances, one can relax the binary variables (eihk and phk)
to take rational values between 0 and 1. The obtained solution is generally not
feasible in practice, but provides an optimistic bound on the optimal. Note that
for resources other than the CPU, the power consumption model may not be
linear, in which case the theoretical approach used in this work would not apply.

4 DVFS/DFS Model

In our problem definition a host h is fully specified by Cmin
hk , Cprop

hk , and fh1k,
for k = 1, . . . , nvh. In this section we explain how we instantiate these values so
as to generate problem instances that are representative of real-world platforms.

On the Utility of DVFS for Power-Aware Job Placement in Clusters 261

1000 1200 1400 1600 1800 2000 2200 2400 2600
Frequency

120

140

160

180

200

220

P
ow

er
 c

on
su

m
pt

io
n

(W
at

ts
)

Cmax
Cmin

1800 2000 2200 2400 2600
Frequency

120

140

160

180

200

220

P
ow

er
 c

on
su

m
pt

io
n

(W
at

ts
)

Cmax
152+15.390*(x/1000 - 1)^3
Cmin
143+12.071*(x/1000 -1)^3

Fig. 2. Left: Cmin and Cmax = Cmin + Cprop (in Watts) vs. operating frequency (in
MHz). Right: cubic fit on the 1800-2600 frequency range (in MHz).

Several authors have investigated the modeling of power consumption as a func-
tion of the frequency-voltage of the processor, which is correlated to compute
speed. Following [12], Dynamic Frequency Scaling (DFS), or T-States, allows for
running the processor at different frequencies. Dynamic Voltage and Frequency
Scaling (DVFS), or P-States, allows for reducing both frequency and voltage,
leading to better savings than DFS. Combined DVFS+DFS consists in applying
DFS to the lowest power consumption mode available in DVFS.

The most comprehensive processor power consumption study to date is the
one in [12]. The authors develop models that relate compute speed to power
settings. The derived models are linear for DFS and DVFS, and cubic when
both techniques are combined. While these models give power consumption as
a function of the frequency, they say nothing regarding the evolution of the
minimum and/or maximum power consumption at different frequencies. Conse-
quently, we experimented on a real-world platform (AMD bi-processors dual-core
in the Grid5000/Toulouse [3] platform) and we measured values for Cmin (when
hosts are idle) and Cmax = Cmin + Cprop (when processors run cpuburn) at the
6 available operating frequencies on these hosts so as to generate representative
problem instances. Results were consistent across hosts. Figure 2 shows result for
one host corresponding to the case when DFS and DVFS are combined, which is
what is assumed in all experiments hereafter. The frequency ranges from 1Ghz
to 2.6Ghz, and Cmin and Cmax range from 127 Watts to 210 Watts, as seen in
the graph on left-hand side. As in [12] we generate a cubic model for Cmin and
Cmax from the experimental data, as seen in the graph on a right-hand side.
The model is accurate on the 1.8GHz-2.6GHz range, which is the range used in
all experiments hereafter. Using this model, and given a number of power modes
and a frequency range, we can thus generate representative problem instances.

262 J.-M. Pierson and H. Casanova

5 Numerical Results

5.1 Experimental Methodology

We generate sets of problem instances for BoundedPower and BoundedYield
as follows. We generate instances with either H = 4 hosts (“small” instances for
which we can compute the optimal solution) and H = 32 hosts (“large” in-
stances). Given that our goal in this work is solely to investigate the effect of
DVFS on job placement, we generate problem instances in which hosts provide
only a CPU resource, for which jobs express fluid resource needs. Adding other
(rigid) resources would complexify the job placement problem (i.e., in terms of
bin packing) but have little impact on the bound on optimal we compute. Each
host in the platform can be configured in the same number of power modes
(i.e., nv = nvh does not depend on h). We use nv ∈ {2, 3, 4, 6, 8, 10, 15, 20} for
our instances, thus spanning the range from hosts that provide only two power
modes (on and off) to hosts that allow for a fine-grain trade-off between compute
speed and power consumptions. Although our problem formulation allows for
heterogeneous hosts, we found that conclusions regarding the utility of DVFS
are identical for homogeneous and heterogeneous platforms. Consequently, we
only present results obtained for homogeneous platforms hereafter as the exper-
imental scenarios are much simpler. Rather than picking a number of jobs N , we
instead pick a load factor α and generate the smallest number of N random jobs
such that the sum of their CPU resource needs is greater than or equal to α×H .
For instance, α = 2 corresponds to a scenario in which the platform is under-
provisioned by (slightly more than) a factor two. For small instances (H = 4),
we pick α between 1.0 and 1.5, while for large instances (H = 32), we pick α
between 1.0 and 3.0. Job CPU needs, numbers between 0 and 1, are picked ran-
domly using a truncated Gaussian distribution of mean 0.5. QoS requirements
are set to 0 for all jobs.

For each instance specification, i.e., a (H, nv, α) triplet, we generate 100 ran-
dom host and job specifications. We then generate a BoundedPower instance
and a BoundedYield instance. For the BoundedPower instance, we con-
strain E to be below a fixed value. This fixed value is half of the power con-
sumption obtained when placing jobs on hosts using a simple greedy algorithm
(place the next job on the least loaded processor). For the BoundedYield in-
stance, we arbitrarily constrain Y to be above 0.5. For each problem and for
all instances we compute the solution of the relaxed MILP, which we denote
by LPBound. For small instance, we compute the optimal solution, which we
denote by Milp. We use the open-source GLPK linear solver to compute these
solutions on an 3.2GHz Intel Xeon processor. We arbitrarily set a timeout value
to 10 minutes and declare an instance not solvable if the timeout is exceeded.

5.2 Results for Small Instances

In this section we discuss results obtained on small instances. Our main objective
here is to quantify the difference between Milp and LPBound. Figure 3 plots
the average percentage difference between LPBound and Milp computed over

On the Utility of DVFS for Power-Aware Job Placement in Clusters 263

2 4 6 8 10 12 14 16 18 20
Num. of power modes (nv)

0

2

4

6

8

10

%
 r

el
at

iv
e

di
ffe

re
nc

e

load = 1.00 (52 instances)
load = 1.25 (50 instances)
load = 1.50 (19 instances)

2 4 6 8 10 12 14 16 18 20
Num. of power modes (nv)

0

5

10

15

20

25

30

35

%
 r

el
at

iv
e

di
ffe

re
nc

e

load = 1.00 (48 instances)
load = 1.25 (25 instances)
load= 1.50 (6 instances)

Fig. 3. Percent relative difference between LPBound and Milp vs. nv. Left-hand side:
BoundedPower; Right-hand side: BoundedYield

successfully solved problem instances as the number of power modes increases,
for small BoundedPower instances (left-hand side) and small BoundedYield
instances (right-hand side). Each graph contains three curves, one for each value
of α = 1.00, 1.25, 1.50. The number of successfully solved instances out of the
100 generated instances is indicated in the legend. As expected, as α increases
the number of solvable instances decreases since the number of optimization
constraints increases. For BoundedPower, we see that LPBound is at most
about 11% away from Milp. Interestingly the results for BoundedYield show
a different pattern, with the relative different dropping sharply as nv increases.
Regardless, in both cases, the relative difference is below 10% for large values
of nv. It is these large values that are particularly relevant in this work since
they correspond to scenarios in which hosts provide extensive DVFS capabilities.
We conclude that LPBound tracks the Milp solution well for small instances.
For large instances Milp cannot be computed, but we contend that a better
LPBound value (i.e., higher for BoundedPower, lower for BoundedYield)
is a strong indication of an opportunity for a better Milp value.

5.3 Results for Large Instances

Table 1 shows results for the averages and standard deviations of the percentage
relative improvement of LPBound with nv = 3 over the case nv = 2 (i.e., no
DVFS), both for BoundedPower and BoundedYield. Each row of the table
corresponds to a particular α value, and percentage relative improvements are
computed between two instances that are completely identical but for the nv
values (i.e., they have the exact job sets). The table does not show any results
for nv > 3 because results are identical to the nv = 3 case for all successfully
solved instances. Our first important conclusion is thus that configuring hosts in
more than 3 power modes does not lead to improved LPBound values.

For the BoundedPower problem, we see that α has no impact on the re-
sult. This is because LPBound is computed as the solution to a relaxed MILP,
meaning that jobs are considered perfectly divisible. In this case, the platform
can be conceptually considered as a single host whose compute capacity is sim-
ply bounded by the constraint on power consumption E. Changing the α value

264 J.-M. Pierson and H. Casanova

Table 1. Average relative percentage LPBound improvement for nv = 3 instances
over nv = 2 instances, for the BoundedPower and BoundedYield problems, and
percentage of successfully solved instances. Standard deviations are in parentheses.

BoundedPower BoundedYield

α % imprvmnt % success % imprvmnt % success

1.00 12.14 (8.43e-4) 100 10.83 (1.60e-7) 100
1.25 12.14 (1.05e-3) 100 10.83 (1.45e-7) 100
1.50 12.14 (1.25e-3) 100 9.59 (1.39) 100
1.75 12.14 (1.46e-3) 100 5.02 (1.40) 100
2.00 12.14 (1.53e-3) 100 1.85 (1.11) 88
2.25 12.14 (1.78e-3) 100 0.50 (0.36) 9
2.50 12.14 (2.07e-3) 100 n/a 0
2.75 12.14 (2.07e-3) 100 n/a 0
3.00 12.14 (2.56e-3) 100 n/a 0

simply amounts to scaling the yield of all jobs, meaning that the percentage
difference between two solutions with different nv values does not change. The
situation is different when solving BoundedYield. First, as α increases, GLPK
fails to compute solutions. In some cases, these errors are due to 10-minute
timeouts, likely due to the fact that the objective function is more complex than
for BoundedPower. In other cases, the instances are not solvable, simply be-
cause job yields are bounded below by the constraint on the minimum scaled
yield. Regardless, a more important observation is that the relative percentage
improvement of using nv = 3 power modes over using nv = 2 power modes de-
creases as α increases. This is because a larger α implies a higher computational
load on the system, which must be accommodated by configuring hosts in higher
power modes (while staying within the power consumption budget if possible).
Consequently, intermediate power modes are used increasingly less frequently in
highly loaded scenarios and DVFS is increasingly less useful.

6 Conclusion

We have extended an existing formulation of the power-aware job placement
problem proposed in the literature so that it accounts for cluster nodes that
have DVFS capabilities. This formulation is a Mixed-Integer Linear Program,
which makes it possible to compute a bound on the optimal solution, and relies
on a DVFS model that we have instantiated based on a real-world platform.
We have shown on small problem instances that the bound is reasonably close
from the optimal solution, thereby indicating the the bound is likely a good
indicator of the optimal. For large instances, in which case the optimal cannot
be computed in a feasible amount of time, our main results can be summarized
as: (i) using nv > 3 DVFS power modes never leads to improved LPBound
values; (ii) using nv > 2 power modes leads to marginal improvements (< 15%)
when solving BoundedPower; (ii) using nv > 2 power modes leads to lower
improvements (< 11%) when solving BoundedYield, and the improvement

On the Utility of DVFS for Power-Aware Job Placement in Clusters 265

decreases quickly as the compute load increases. Assuming that LPBound is
a good indicator of the optimal, our overall conclusion is that DVFS is at best
marginally useful, and that only one intermediate power mode between ”on”
and ”off” is needed.

References

1. Benoit, A., Renaud Goud, P., Robert, Y.: Sharing resources for performance and
energy optimization of concurrent streaming applications,
http://hal.archives-ouvertes.fr/hal-00457323/PDF/RR-LIP-2010-05.pdf,
RR-LIP-2010-05

2. Berral, J.L., Goiri, ĺ., Nou, R., Julià, F., Guitart, J., Gavaldà, R., Torres, J.: To-
wards energy-aware scheduling in data centers using machine learning. In: ACM
eEnergy. University of Passau, Germany (2010)

3. Bolze, R., Cappello, F., Caron, E., Daydé, M.J., Desprez, F., Jeannot, E., Jégou,
Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quétier,
B., Richard, O., Talbi, E.-G., Touche, I.: Grid’5000: A large scale and highly re-
configurable experimental grid testbed. IJHPCA 20(4), 481–494 (2006)

4. Borgetto, D., Casanova, H., Costa, G.D., Pierson, J.M.: Energy-aware service al-
location. Tech. Rep. IRIT/RT-2010-7-FR, IRIT (October 2010)

5. Borgetto, D., Da Costa, G., Pierson, J.-M., Sayah, A.: Energy-Aware Resource
Allocation. In: Proc. of the Energy Efficient Grids, Clouds and Clusters Workshop
(E2GC2). IEEE, Los Alamitos (2009)

6. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadé, E.: Utility-based place-
ment of dynamic web applications with fairness goals. In: IEEE Network Opera-
tions and Management Symposium, pp. 9–16 (2008)

7. Da Costa, G., Dias De Assuncao, M., Gelas, J.P., Georgiou, Y., LefËvre, L., Org-
erie, A.C., Pierson, J.M., Richard, O., Sayah, A.: Multi-Facet Approach to Re-
duce Energy Consumption in Clouds and Grids: The GREEN-NET Framework.
In: ACM/IEEE International Conference on Energy-Efficient Computing and Net-
working (e-Energy), Passau, Germany, pp. 95–104. ACM, New York (2010)

8. Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A.M.: Model-based resource
provisioning in a web service utility. In: Proc. of the USENIX Symposium on
Internet Technologies and Systems (2003)

9. Etinski, M., Corbalan, J., Labarta, J., Valero, M.: Utilization driven power-aware
parallel job scheduling. Computer Science - Research and Development 25, 207–216
(2010), doi:10.1007/s00450-010-0129-x

10. Etinski, M., Corbalan, J., Labarta, J., Valero, M., Veidenbaum, A.: Power-aware
load balancing of large scale mpi applications. In: IPDPS 2009: Proceedings of
the 2009 IEEE International Symposium on Parallel & Distributed Processing, pp.
1–8. IEEE Computer Society, Washington, DC, USA (2009)

11. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proceedings of the 34th Annual International Symposium on Com-
puter Architecture, ISCA 2007, pp. 13–23. ACM, New York (2007)

12. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation
in server farms. In: SIGMETRICS/Performance, pp. 157–168. ACM, New York
(2009)

http://hal.archives-ouvertes.fr/hal-00457323/PDF/RR-LIP-2010-05.pdf

266 J.-M. Pierson and H. Casanova

13. Ge, R., Feng, X., Cameron, K.W.: Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. In: SC 2005: Pro-
ceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 34. IEEE
Computer Society, Washington, DC, USA (2005)

14. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload Analysis and Demand
Prediction of Enterprise Data Center Applications. In: Proc of the 10th IEEE Intnl.
Symp. on Workload Characterization, September 2007, pp. 171–180 (2007)

15. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a Con-
solidation Manager for Clusters. Research Report RR-6639, INRIA (2008)

16. Hoyer, M., Schröder, K., Nebel, W.: Statistical static capacity management in vir-
tualized data centers supporting fine grained QoS specification. In: ACM eEnergy.
University of Passau, Germany (2010)

17. Kamitsos, Y., Andrew, L.L.H., Kim, H., Chiang, M.: Optimal Sleep Patterns for
Serving Delay Tolerant Jobs. In: ACM eEnergy. University of Passau, Germany
(2010), http://netlab.caltech.edu/lachlan/abstract/eEnergySleep.pdf

18. Lawson, B., Smirni, E.: Power-aware resource allocation in high-end systems via
online simulation. In: Proceedings of the 19th Annual international Conference on
Supercomputing, ICS 2005, pp. 229–238. ACM, New York (2005)

19. Legrand, A., Su, A., Vivien, F.: Minimizing the Stretch when Scheduling Flows of
Divisible Requests. Journal of Scheduling 11(5), 381–404 (2008)

20. Niyato, D., Chaisiri, S., Sung, L.B.: Optimal power management for server farm
to support green computing. In: CCGRID 2009: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.
84–91. IEEE Computer Society, Washington, DC, USA (2009)

21. Petrucci, V., Loques, O., Mossé, D.: A Dynamic Optimization Model for Power and
Performance Management of Virtualized Clusters. In: ACM eEnergy. University of
Passau, Germany (2010)

22. Rodero, I., Jamarillo, J., Quiroz, A., Parashar, M., Guim, F., Poole, S.: Energy-
efficient application-aware online provisioning for virtualized clouds and data cen-
ters. In: First IEEE Sponsored International Green Computing Conference (2010)

23. Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H.: Resource allocation algo-
rithms for virtualized service hosting platforms. Journal of Parallel and Distributed
Computing 70(9), 962–974 (2010)

24. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource Overbooking and Application
Profiling in Shared Hosting Platforms. SIGOPS Oper. Syst. Rev. 36(SI), 239–254
(2002)

25. Wang, Z., Tolia, N., Bash, C.: Opportunities and challenges to unify workload,
power, and cooling management in data centers. SIGOPS Oper. Syst. Rev. 44,
41–46 (2010)

26. Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., McKee, B.,
Hyser, C., Gmach, D., Gardner, R., Christian, T., Cherkasova, L.: 1000 Islands:
Integrated Capacity and Workload Management for the Next Generation Data
Center. In: Proceedings of the International Conference on Autonomic Computing
(ICAC 2008), pp. 172–181 (June 2008)

http://netlab.caltech.edu/lachlan/abstract/eEnergySleep.pdf

Introduction

Mitsuhisa Sato, Denis Barthou, Pedro C. Diniz, and P. Saddayapan

Topic chairs

This topic deals with architecture design and and compilation for high perfor-
mance systems. The areas of interest range from microprocessors to large-scale
parallel machines; from general-purpose platforms to specialized hardware; and
from hardware design to compiler technology. On the compilation side, topics of
interest include programmer productivity issues, concurrent and/or sequential
language aspects, program analysis, program transformation, automatic discov-
ery and/or management of parallelism at all levels, and the interaction between
the compiler and the rest of the system. On the architecture side, the scope
spans system architectures, processor micro-architecture, memory hierarchy, and
multi-threading, and the impact of emerging trends.

All the papers submitted to this track highlight the growing significance of
Chip Multi-Processors (CMP) and scalability issues in performance/power in
contemporary high-performance architectures.

The paper “Filtering directory lookups in CMPs with write-through caches”
by Ana Bosque, Victor Viñals, Pablo Ibañez and Jose Maria Llaberia proposes
an architectural enhancement to reduce the number of directory lookups for a
directory-based coherence protocol, in CMP shared caches. The authors describe
a hardware filter reducing the associativity of the lookups, eliminating these
lookups in some cases and reducing power consumption.

The paper “FELI: HW/SW support for On-Chip Distributed Shared Mem-
ory in Multicores” by Carlos Villavieja, Yoav Etsion, Alex Ramirez and Nacho
Navarro proposes a set of operating system mechanisms to automatically manage
memory on a CMP with on-chip scratchpad memories. The authors describe how
the virtual memory paging mechanism is leveraged to achieve this and reduce
power consumption.

The paper “Token3D: Reducing Temperature in 3D die-stacked CMPs through
Cycle-level Power Control Mechanisms” by Juan M. Cebrián, Juan L. Aragón
and Stefanos Kaxiras describes a token-based power management algorithm for
multi-core architectures organized as stacks of chips. The paper describes how
to take into account temperature and layer information when balancing power,
giving higher priority to cool cores over hot ones.

The paper “Unified Locality-sensitive Signatures for Transactional Memory”
by Ricardo Quislant, Eladio D Gutierrez, Oscar Plata and Emilio Zapata de-
scribes a new design for the hardware support of transactional memory. The
authors proposes to combine the use of locality-sensitive signatures with unified
hash functions for read and write sets.

Last but not least, two papers address prefetching issues with new hard-
ware prefetching schemes. The paper “Bandwidth Constrained Coordinated
HW/SW Prefetching For Multicores” by Sai Prashanth Muralidhara, Mahmut

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 267–268, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

268 M. Sato et al.

Taylan Kandemir and Yuanrui Zhang presents a hierarchical management and
bandwidth-constrained prefetching algorithm for multi-cores. The authors de-
scribe a prefetching scheme and the metrics used to adjust dynamically the
aggressiveness of the prefetch, handling bandwidth contention and performance.
The paper “Using runtime activity to dynamically filter out inefficient data
prefetches” by Gamoudi, Nathalie Drach and Karine Heydemann describes a
hardware prefetching strategy exploiting runtime activity information and a
history-based algorithm to filter out inefficient data prefetches. The paper de-
scribe a method to correlate runtime activities with prefetching effects in order
to increase prefetching efficiency.

We would like to take this opportunity to thank the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee, and the referees
with their highly useful comments, whose efforts have made this conference and
this topic possible.

Filtering Directory Lookups in CMPs with

Write-Through Caches

Ana Bosque1, Victor Viñals2, Pablo Ibañez2, and Jose Maria Llaberia1

1 DAC, UPC, Barcelona, Spain
{abosque,llaberia}@ac.upc.edu

2 DIIS, University of Zaragoza, Zaragoza, Spain
{victor,imarin}@unizar.es

Abstract. In CMPs, coherence protocols are used to maintain data co-
herence among the multiple local caches. In this paper, we focus on CMPs
using write-through local caches, and a directory-based coherence proto-
col implemented as a duplicate of the local cache tags. A large fraction
of directory lookups is due to stores performed on private data local to
the processor performing the store.

We propose to add a filter before the directory in order to either
reduce the associativity of the lookups or even eliminate those that are
unnecessary. When a block from the shared cache has only one copy in
the local caches, the filter identifies the processor and allows for reducing
the number of comparisons performed in the corresponding directory
lookup. When that is not possible, the filter bits are used to code other
situations that can also reduce the number of directory lookups or their
associativity.

We evaluate the fillter in a CMP with 8 in-order processors with 4
threads each and a memory hierarchy with local caches and a shared
cache. We show that a filter representing 0.7% of the size of the shared
cache can avoid, on average, 97% and 93% of all comparisons performed
by directory lookups for SPLASH2 and Specweb2005, respectively. Only
for SPLASH2, there is a small performance loss of 0.3%. As a result, on
average, directory power is reduced 30.8% and 22.4% for SPLASH2 and
Specweb2005, respectively.

1 Introduction

Chip-multiprocessors (CMPs) have become the industry choice of design for
high-performance processors. Nowadays, most computer manufactures offer
CMPs with different number of cores [20,4,13,16,18], where each of them has
at least a local cache level. All CMPs support the shared memory programming
paradigm. Thus, local caches need to be kept coherent by means of a coherence
protocol.

Directory-based protocols keep a directory that stores the state of each block
of main memory. All transactions should access this structure in order to deter-
mine which coherence actions to perform. A directory can be implemented in two

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 269–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

270 A. Bosque et al.

basic ways: by a full-map [8], or by duplicating the local cache tags [31]. Differ-
ences between duplicate tag directory and full-map arise in size, lookup method,
and retrieved information in a lookup operation. Concerning size, the duplicate
tag directory uses the smallest explicit representation of all blocks contained in
local caches. Thus, a duplicate tag directory requires less area than a full-map
directory. However, by duplicating local cache tags, any directory lookup re-
quires an associative lookup that is expensive in terms of energy consumption.
For example, in Niagara 2, a lookup can perform up to 256 comparisons.

The number of directory lookups necessary in a coherence protocol depends
on the write policy of the local caches. The commercial CMP Niagara 2 [18]
uses write-through local caches and a shared cache. It requires more bandwidth
than the Piranha prototype [6], which uses write-back local caches, because all
stores must access the shared cache. However, the extra bandwidth consumed
by Niagara 2 assures that data is always up-to-date in the shared cache. Thus,
an access to shared data is serviced directly from the shared cache without any
intervention from the local caches. The drawback of write-through local caches,
though, is that private stores are sent both to the shared cache and to the
directory, where a (probably useless) lookup needs to be necessarily performed.
In a CMP like Niagara 2, any store requires a 96-associative directory lookup.

In this paper, we show that many of the directory lookups done by stores are
useless. We propose a mechanism to identify stores to private data in order to
avoid many lookups in the directory. Furthermore, the mechanism is extended
to deal with other situations in which directory lookups can be avoided.

Our results show that for SPLASH2, just by using a filter whose size is 0.7%
the size of the shared cache, we can avoid 97% of the comparisons performed in-
side the directory with a tiny 0.2% performance loss. For Specweb2005, the num-
ber of comparisons performed by directory lookups is reduced by 93%. On aver-
age, directory power consumption is reduced by 30.8% and 22.4% for SPLASH2
and Specweb2005, respectively.

The rest of this paper is organized as follows. In Section 2, we motivate our
work. Section 3 describes the proposed filter. Section 4 shows our experimental
results. Section 5 discusses related work and Section 6 contains the conclusions.

2 Motivation

In a directory-based protocol, both stores that access the shared cache and evic-
tions in an inclusive shared cache require a directory lookup in order to invalidate
the copies of the block in the local caches.

In a CMP with write-back local caches, stores access the shared cache either
on a miss in the local data cache or to get the block ownership and change the co-
herence state of the block to Modified. However, if local caches are write-through,
all the stores must access the shared cache. In our workloads (Section 4.2) we
found that only 1 out of 100,000 stores access true shared data. Thus, in a CMP
with write-through local caches and a duplicate tag directory, when an associa-
tive lookup is performed by a store, it happens that most of the times the only
copy of the cache block is located in the processor performing the store. The

Filtering Directory Lookups in CMPs with Write-Through Caches 271

bi
llio

ns

0.00

0.15

0.30

0.45

0.60

0.75

0.90

barnes fmm ocean radiosity raytrace volrend water-
ns

water-
spatial

banking ecommerce support

directory lookups
(evictions + stores)
at least one copy
only itself

1.38

SPLASH2 Specweb2005

Fig. 1. Billions of directory lookups (directory lookups), billions of directory lookups
that find at least a copy of the cache block in any local cache (at least one copy),
and billions of directory lookups performed by stores that only find a copy just in the
local cache of the processor that performs the current store (only itself).

directory lookups performed by these stores are needless and it is possible to
improve directory energy-efficiency by filtering them out.

Figure 1 presents an analysis of directory lookups. Refer to Section 4.1 for
the parameters of the simulated CMP model and to Section 4.2 for a description
of the workloads used. The difference between the first two bars is the number
of times that there are no copies of the shared cache block in any local cache.
On average, this difference represents 30% of the directory lookups. The differ-
ence between the second and the third bar represents all cases that require to
invalidate local cache blocks. These cases are: a) evictions performed over shared
cache blocks which have local copies, and b) stores performed over shared cache
blocks that are allocated at least in a local cache different from the local cache
of the processor performing the store. On average, this difference represents 1%
of the directory lookups. The remaining directory lookups (69%) are performed
by private stores, i. e. stores that access cache blocks without copies in any other
processor’s local cache.

The proposed mechanism aims to reduce the number of total directory lookups
by filtering out private stores, so that they do not perform expensive and useless
directory lookups. Thus, the proposed mechanism reduces the number of directory
lookups shown in the third column in Figure 1. Additionally, the filter is enhanced
in order to also avoid the 30% of directory lookups that do not find any copy in
the local caches, and that are also useless. In Figure 1, these directory lookups are
represented by the difference between the first and the second column.

3 Filtering Mechanism

3.1 Overview

We assume a CMP with a shared inclusive L2 cache and multithreaded pro-
cessors that access local instruction and write-through data caches. A detailed
description of the CMP model is in Section 4.1.

272 A. Bosque et al.

As processors are multithreaded, local caches are highly accessed by the pro-
cessors. A directory organization such as a full-map directory requires a lookup
in the local cache tags for every invalidation. As a result, if processor requests
and invalidations sent from the directory share the same local cache port, thread
execution can be delayed. Thus, the local cache tags require two ports so that
thread performance is not diminished. An alternative is to replicate the cache
tags [28,9]. This replica is located side-to-side with the local cache tags and it is
used by invalidations to set the state bits of the cached blocks.

The replica of the local cache tags can be located in the other side of the
interconnection network and be used as a duplicate tag directory. The full-map
directory is removed. Now, when an invalidation is sent, the local cache set and
way to invalidate is already identified in the message, and a local cache lookup
is not needed. As the replica of the local cache tags is located together with the
inclusive shared cache, it is possible to keep pointers to the shared cache tags
(set index and way) instead of the local cache tags themselves. Consequently,
the duplicate tag structure is much smaller [18].

Every directory lookup requires an expensive associative lookup in the du-
plicate tag structure. However, using a full-map directory, only the tags of the
processors effectively having a copy of the block are looked up. Based on program
behavior, we propose to use a filter before accessing the duplicate tag directory
in order to reduce the lookup associativity. Figure 1 shows that, on average,
69% stores are private. If we identify these cases, the lookup in the duplicate
tag directory can be restricted to the duplicate tag of the processor performing
the private store (in order to determine which cache way to update in the local
cache, see Section 4.1).

The proposed filter manages the same information than a DIR1NB directory
scheme [1], but it is only used as a filter before looking up in the duplicate tag
directory. In a DIR1NB directory, the only processor than can have the copy of
a block (owner) is identified. Thus, the proposed filter has as many entries as
lines in the shared cache, and each entry has log2P bits plus a valid bit. When
the valid bit is zero, the representation of the owner identifier bits is changed to
a coarse granularity [14,19]. Consequently, other situations might be identified,
for example, whether there are no copies of a block in any local cache. Figure 1
shows that 30% directory lookups are performed under these conditions.

3.2 Filter Operation

Each line in the shared cache has associated one entry in the filter. For every
shared cache access or eviction (memory operation from now on), the filter entry
is read together with the state bits of the line. Depending on the value stored
in the filter, the directory lookup performed by any memory operation accessing
that line can be either eliminated or performed over a smaller number of entries
in the directory structure.

A filter entry state is updated using only the following information: memory
operation type, identifier of the processor performing the memory operation, and
previous filter state. We also know the evictions from local caches. Using them

Filtering Directory Lookups in CMPs with Write-Through Caches 273

Table 1. Filter states

valid bit owner identifier information filter state

1 xxx xxx is the only processor that can have a
local copy of the block in its local data cache

valid owner

0 000 there are no copies of the block no copies
0 001 block cached only in the local data caches

of processors identified as 0xx
data block (subgroup0)

0 010 block cached only in the local data caches
of processors identified as 1xx

data block (subgroup1)

0 011 data block data block (all)
0 100 unused
0 101 block cached only in the local instruction

caches of processors identified as 0xx
instruction block (subgroup0)

0 110 block cached only in the local instruction
caches of processors identified as 1xx

instruction block (subgroup1)

0 111 instruction block instruction block (all)

the filter information will be precise, but extra directory accesses and costly filter
updates will be required. Consequently, we decide to not keep filter information
precise all the time, that is, to only know a superset of the copies in the local
caches.

3.3 Filter States

The modeled CMP has 8 cores, so a filter entry has 3 owner identifier bits and a
valid bit. Table 1 shows how these bits are used to encode different filter states
that will reduce directory lookups or directory lookups associativity.

The directory is split in data and instruction directories. Most directory
lookups are performed on both directories (only lookups performed to keep in-
struction/data exclusivity are performed in only one directory (see Section 4.1)).
As long as the filter identifies the type of the block (data or instruction block),
directory lookups are limited to just one directory. Moreover, if the owner (valid
owner) or the owner’s group (subgroupX) is identified, the lookup associativity
is reduced since only the entries of the owner or its group have to be looked
up. Finally, directory lookups are completely avoided if the filter indicates that
there are no copies of the block in any local cache (no copies).

The filter state valid owner is set on three cases: a) local data cache misses
that also misses in the shared cache, b) local data cache misses to a block in the
shared cache without copies in the local caches (no copies), and c) store to a
block in the shared cache which may have copies in the local data cache of the
processor performing the store (valid owner equal to the processor performing
the store, data block (all), or data block (subgroupX) where ’X’ is the subgroup
which the processor performing the store belongs to).

The filter state is set to no copies in two cases: a) store that misses in the
shared cache, and b) store to a cache block in the shared cache which is not
present in the local data cache of the processor performing the store (no copies,
valid owner when the owner is different from the processor performing the store,
instruction block, or data block (subgroupX) where ’X’ is not the subgroup the
processor performing the store belongs to).

274 A. Bosque et al.

Both local instruction and data cache misses modify the filter state to add
the processor performing them as one of the processors that can have a copy of
the accessed block in its local caches. When a local data cache miss accesses a
block whose filter state is instruction block, the filter state is not modified.

3.4 Filter Overhead

The filter proposed requires (1 + log2P) bits per shared cache line, being P the
number of cores in the CMP. For the CMP described in Section 4.1, as it has 8
cores, four extra bits per shared cache line are required. For each 512KB, 64B
block-size L2 bank, the filter implementation requires 4KB. This represents 12%
of the tag array size (including the state bits in the tag array) and 0.7% of the
total bank size (tag array + data array).

4 Evaluation

4.1 Chip Multiprocessor Model

Figure 2 shows the CMP configuration we assume in this work. It is a CMP
with 8 in-order multithreaded cores with 4 threads each and a memory hierarchy
similar to the one in Niagara 2 [18]. The first cache level is local to each core,
and is composed of an instruction cache (L1 I) and a write-through no-write-
allocate data cache (L1 D). Each core also has a store buffer (SB) with several
entries per thread that contain all outstanding stores. The second-level cache
(L2), which is inclusive, is shared among all the cores. It is divided into different
banks interleaved by second-level cache blocks. A crossbar communicates the
two cache levels. A write-invalidate directory-based protocol is used to maintain
the cache coherence among the local caches. The directory is distributed among
the second-level cache banks, keeping close to each bank the information about
the blocks associated with it. Table 2 collects the specific parameters we chose
for the memory hierarchy.

MM

Pn

L1 I L1 D SB

L2 DIR

P0

L1 I L1 D SB

L2 DIR

CROSSBAR

Fig. 2. CMP model

Table 2. Memory hierarchy parameters

L1 D size 8KB L2 size 4MB
L1 D assoc. 4-way L2 no. banks 8
L1 D block 16B L2 assoc. 16-way
L1 I size 16KB L2 block 64B
L1 I assoc. 8-way L2 latency 7 cycles
L1 I block 32B L2 MSHR 8
store
buffer

8 entries
per thread

Crossbar arb. 3 cycles
Crossbar lat. 3 cycles

Phys. address 40 bits Memory lat. 117 cycles

We assume a directory similar to that of Niagara 2 [30], which consists of
a copy of the local cache tags. The directory is split into instruction and data
directories, replicating the organization of the local caches. The directory gives

Filtering Directory Lookups in CMPs with Write-Through Caches 275

Table 3. SPLASH2 benchmarks.

benchmark dataset
instr cycles
(109) (109)

barnes 64K particles 4.97 0.62
fmm 64K particles 9.57 1.20
ocean 1026x1026 5.99 0.91

radiosity
-largeroom,
-ae 5000 7.45 0.94
-en 0.050 -bf 0.1

raytrace balls4 5.77 0.79
volrend head 0.63 0.08
water-ns 2192 particles 13.79 1.72
water-spatial 4096 particles 4.02 0.50

Table 4. Specweb2005 workloads.

workload
simultaneous

sessions
web

trans.
instr simulation

runs(109)
Banking 200 100 15.52 30
Ecommerce 1000 1200 8.07 15
Support 1400 2200 8.07 10

the way or ways of the local caches where the copies of the subblocks are lo-
cated. Thus, an invalidation message consists of the local cache set and way to
invalidate. Stores update local caches when the ack message is received. The ack
message includes the way where the copy of the block is located in order to avoid
the local cache lookup.

Like in Niagara 2 [30], instruction/data block exclusivity is maintained in the
local caches, that is, the same block can not be at once in both instruction and
data caches (across all cores). The directory is responsible for ensuring instruc-
tion/data exclusivity. The shared cache block size is larger than the block size
of the local caches. Thus, copies of different subblocks from the same shared
cache block can reside in local caches of different types (instruction/data). The
proposed filter has only one entry for every shared cache line. As a result, in-
struction/data block exclusivity has to be maintained at a shared cache block
size granularity to guarantee the correct filter operation.

4.2 Methodology

We use a Simics-based simulator. Simics [21] is a full-system multiprocessor
simulator capable of running unmodified commercial OSs and applications. We
configured Simics to model a SPARC V9 target system with a Total Store Order
(TSO) consistency memory model running Solaris 9.

We use the applications from the SPLASH2 benchmark suite [27] and, as non-
numerical applications, the three workloads from Specweb2005: Banking, Ecom-
merce, and Support [15]. In order to adapt the SPLASH2 workloads to our simu-
lated scenario, we scaled the input dataset up as proposed by Monchiero et al. [22]
(Table 3). Due to simulation time restrictions, we cannot simulate as many Simics
processors in Specweb2005 as in SPLASH2. As a result, Specweb2005 applica-
tions are executed in a CMP with 8 non-multithreaded processors.

For the three workloads of Specweb2005, we use Apache 2.0.63 web server.
Web servers present high time and space variability [3] (Table 4). Conclusions
are based on the mean of the simulations and on statistical techniques used by
Alameldeen et. al. [3]. To determine the number of web transactions in each
workload, we warm the caches for 0.75 billion cycles and then we measure the
number of web transactions for 2.25 billion cycles. In the rest of the paper, for
Specweb2005 results we show the mean of all simulation runs.

276 A. Bosque et al.

4.3 Filter Coverage

Figure 3 shows the percentage of comparisons performed by the directory lookups
in the CMP with the proposed filter with respect to the comparisons performed
without filtering. Table 5 shows the number of comparisons performed in the
system without filtering.

%

0
5

10
15
20
25
30

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

(a) data directory

%

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

(b) instr directory

Fig. 3. Percentage of directory comparisons per-
formed by directory lookups when filtering

Table 5. Billions of di-
rectory comparisons without
filtering

benchmark data dir instr dir
barnes 24.87 57.34
fmm 26.54 61.56
ocean 21.73 53.38
radiosity 28.61 70.45
raytrace 6.23 47.29
volrend 1.28 3.23
water-ns 26.70 60.41
water-spatial 10.82 25.03
banking 45.21 90.09
ecommerce 24.84 43.87
support 28.33 48.59

Figure 3 shows that the number of comparisons performed by directory
lookups is reduced, on average, by 93%. The reduction is more important in
the instruction directory: more than 99% in the instruction directory for all
the benchmarks vs. 88% for SPLASH2 and 81% for Specweb2005 in the data
directory.

A data directory lookup is necessary to determine if a block in the local data
cache has to be updated and the way in which the copy of the block is located.
For this reason, there are several comparisons in the data directory that can not
be eliminated.

For Ecommerce and Support, the reduction in data directory comparisons
is lower than in the other benchmarks. More than 10% of their stores access
cache blocks that are in data block filter state, while in the other benchmarks
this number is below 1%. That means that the amount of shared data is also
larger than in the rest of benchmarks. In this situation, the number of needless
directory lookups is smaller, and so the number of comparisons to avoid.

4.4 Performance

The proposed filter modifies the coherence protocol forcing the instruction/data
exclusivity at a 64B granularity. Thus, we need to check that the performance

Filtering Directory Lookups in CMPs with Write-Through Caches 277

1.05

0.85

0.9

0.95

1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

Fig. 4. Normalized execution time

40
45

0
5

10
15
20
25
30
35

barnes fmm ocean radio-
sity

raytrace vol-
rend

water-
ns

water-
spatial

banking e-
commerce

support

%

Fig. 5. Percentage of power reduction in
the directory

remains unchanged. Figure 4 shows the normalized execution time of the CMP
with the filter proposed with respect to the baseline CMP. In SPLASH2 all
benchmarks show a performance loss below 0.5%, except raytrace, which has a
performance loss of 1.5% due to the increase in the local data cache miss rate.
In Specweb2005 we can differentiate two groups: for banking and ecommerce,
the mean execution time shows an increase of 1.4% and 1.1%, respectively, in
support, the mean shows an execution time decrease of 4.3%. In both groups the
confidence interval shows that the execution time is not statistically different.

4.5 Power Consumption

CACTI 6.5 [25] is used to estimate dynamic energy and leakage power for the
shared cache tag array and the proposed filter. We modified CACTI to model
CAM structures, so that the directory energy consumption, both dynamic and
static, can be estimated. All structures were modeled using a 65nm technology
with a target frequency of 1.2GHz.

The average dynamic power consumption is computed based on activity statis-
tics of the shared cache, the filter, and the data and instruction directories col-
lected during benchmark execution. The average dynamic power consumption
of the directory is 1.5 times the average dynamic power consumed by the tags
of the shared cache. However, the leakage power of the tags is 2.2 times the
directories leakage since these structures are smaller than the tags of the local
caches.

Figure 5 shows the percentage of power reduction in the directory using the
filter proposed. It takes into account power reduction in the directory as well
as additional consumption due to the filter structure embedded into the shared
cache tags. The directory power consumption includes the dynamic power and
the leakage power in both data and instruction directories. The proposed filter
is placed together with the shared cache tags, so tags and filter state bits are
read together in every access to the shared cache. This means that both the
energy consumed by the shared cache tag array on any operation and its leakage
power increase. These increases affect the energy reduction in the directory. The
energy to update the filter state also decreases the dynamic energy reduction in
the directory.

278 A. Bosque et al.

On average, the directory power is reduced by 30.8% for SPLASH2 and by
22.42% for Specweb2005. The difference between SPLASH2 and Specweb2005
is due to simulating Specweb2005 in single-thread processors. Ecommerce and
Support show a shared cache miss rate higher than the rest of benchmarks. As
there is only 1 thread per core, every shared cache miss stalls a core and, as
a result, the number of accesses to the shared cache and directory lookups are
smaller than in the rest of benchmarks. Thus, the dynamic power reduction in
the directory is smaller, but the increase in the leakage power due to the filter
remains the same. To prove this argument we simulate SPLASH2 suite in a
system with single-threaded cores and we observe a similar reduction in saved
power.

Other cache configurations and new generation technologies. The size
of the proposed filter is directly proportional to the number of shared cache lines.
Moreover, the energy consumed by the directory depends on the number of di-
rectory lookups performed which is determined by the shared cache accesses. If
the size of the local caches is increased, the shared cache accesses are modified.
Thus, we decide to analyze the reduction of power for different cache configura-
tions. We simulate a CMP in which the sizes of the shared cache and the local
caches are doubled. The percentage of power reduction is smaller than in the
baseline system due to the increase in the power consumption of the proposed
filter (bigger shared cache) and the decrease in the number of directory lookups
performed (bigger local caches). On average, in the worst case, the percentage
of power reduction is 24% for SPLASH2 and 10% for Specweb2005.

Finally, we analyze how the percentage of power reduction is affected for new
generation technologies. We model all structures using a 22nm technology with
a target frequency of 2.75GHz. On average, the percentage of power reduction
is 19.5% for SPLASH2 and 10.5% for Specweb2005.

5 Related Work

This section gathers together several techniques to filter out coherence actions,
e.g., local cache lookups or broadcast messages. The filter is either placed to-
gether with the local caches or distributed in the on-chip network.

When the filter is placed together with the local cache in snoopy-based proto-
cols in bus-based systems, we can distinguish several ways to reduce the power
consumed by coherence actions.

Several proposals try to filter snoop-induced lookups. JETTY [24] adds small
structures to SMPs that are accessed before doing the tag cache lookup and
Ekman et al. [11] evaluate this proposal on CMPs. Salapura et al. [26] propose a
structure that keeps a superset of cached blocks. The Page Sharing Table (PST),
proposed by Ekman et al. [12], uses vectors that identify sharing at the page level
with precise information.

There is a group of proposals that try to not only filter snoop-induced lookups
but to reduce broadcast messages. RegionScout [23] implements several struc-
tures per node in a similar way to JETTY [24], but these structures keep global

Filtering Directory Lookups in CMPs with Write-Through Caches 279

system information about regions, which are continuous sections of memory.
Cantin et al. [7] present an idea similar to RegionScout, but the information
kept in the structures is precise and the structures are bigger.

Focusing on logical ring interconnections, Strauss et al. [29] propose using an
adaptive filter in each node to skip the snoop-induced lookup when possible and
to decide if the lookup should be performed in parallel to sending the request to
the next node (to reduce snoop latency) or in sequence (to reduce the number
of messages).

Compiler time knowledge can also be used to reduce coherence actions. In-
formation about the behaviour of a program helps determining whether a re-
gion of memory is shared or private and limit snoop-induced lookups to shared
blocks [10,5].

There are proposals that distribute the filter over the on-chip network for
snoopy-based and directory-based protocols. Agarwal et. al. [2] propose adding
a region tracker structure in each output port of the routers. This structure indi-
cates which regions are not allocated in the local caches of the processors reached
from a specific port, so useless broadcast messages are not sent. Jerger [17], in
a coarse-grain like directory-based protocol, adds counting bloom filters to each
output port of the routers in order to not broadcast useless invalidation messages
addressed to the local caches reached from a specific port.

Unlike previous proposals, the goal of the proposed filter is to reduce energy
consumption in a coherence directory implemented as a duplicate tag directory
in a CMP with write-through caches. This CMP is similar to Niagara 2 that has a
limited number of cores. However, if the number of cores in the system increases
significantly (many-cores), cores could be organized in groups or clusters. Every
cluster might work like a small CMP with write-through local caches since the
coherence protocol inside the cluster is greatly simplified. The shared cache in
a cluster would be private for that cluster. It could use a write-back policy to
update the last-level cache shared among all the clusters or main memory. Our
filtering mechanism would be used inside each cluster. However, such systems
are out of the scope of this paper.

6 Conclusions

We have observed that in CMPs with write-through caches, a big fraction of
directory lookups is due to stores performed over data that are private to the
processor executing the store instruction. In such a situation, a directory lookup
is performed but no invalidations are necessary. This needless directory lookup
wastes energy. We propose to use a filter before accessing the directory. The filter
is able to identify private stores and reduce the number of directory lookups
performed or the number of directory entries looked up in a directory lookup.

The proposed filter has an entry for each line in the shared cache. For every
shared cache access, a filter entry is read together with the state bits of the
block accessed. Every filter entry keeps either the owner of the corresponding
block or some useful information to limit the associativity of a directory lookup

280 A. Bosque et al.

performed over the corresponding block. Using this information the number of
comparisons in the directory is greatly reduced.

The proposed filter area is 12% the tag array area and 0.7% the total shared
cache area, and filtering is performed on every access to the shared cache. Our
results show that, on average, the proposed filter reduces the number of compar-
isons performed by directory lookups by 95%, and reduces the directory power
by 28.2% for all the benchmarks.

References

[1] Agarwal, A., Simoni, R., Hennessy, J., Horowitz, M.: An Evaluation of Directory
Schemes for Cache Coherence. In: ISCA-15, pp. 280–289 (1988)

[2] Agarwal, N., Peh, L.-S., Jha, N.: In-Network Coherence Filtering: Snoopy coher-
ence without broadcasts, pp. 232–243 (2009)

[3] Alameldeen, A.R., Wood, D.A.: Variability in Architectural Simulations of Multi-
Threaded Workloads. In: HPCA-9, p. 7 (2003)

[4] AMD. AMD Multi-Core Technology, http://multicore.amd.com
[5] Ballapuram, C.S., Sharif, A., Lee, H.-H.S.: Exploiting Access Semantics and Pro-

gram Behavior to Reduce Snoop Power in Chip Multiprocessors. In: ASPLOS
XIII, pp. 60–69 (2008)

[6] Barroso, L.A., et al.: Piranha: a Scalable Architecture Based on Single-Chip Mul-
tiprocessing. In: ISCA-27, pp. 282–293 (2000)

[7] Cantin, J.F., Lipasti, M.H., Smith, J.E.: Improving Multiprocessor Performance
with Coarse-Grain Coherence Tracking. In: ISCA-32, pp. 246–257 (June 2005)

[8] Censier, L.M., Feautrier, P.: A New Solution to Coherence Problems in Multicache
Systems. IEEE Transactions on Computers C-27(12), 1112–1118 (1978)

[9] Charlesworth, A., Aneshansley, N., Haakmeester, M., Drogichen, D., Gilbert, G.,
Williams, R., Phelps, A.: The Starfire SMP Interconnect, p. 37 (1997)

[10] Dash, A., Petrov, P.: Energy-Efficient Cache Coherence for Embedded Multi-
Processor Systems through Application-Driven Snoop Filtering. In: DSD 2006,
pp. 79–82 (2006)

[11] Ekman, M., Dahlgren, F., Stenström, P.: Evaluation of Snoop-Energy Reduction
Techniques for Chip-Multiprocessors. In: Workshop on Duplicating, Deconstruct-
ing and Debunking, in conjunction with ISCA (May 2002)

[12] Ekman, M., Stenström, P., Dahlgren, F.: TLB and Snoop Energy-Reduction Using
Virtual Caches in Low-Power Chip-Multiprocessors. In: ISLPED 2002, pp. 243–
246 (2002)

[13] Fujitsu. Fujitsu SPARC64 VII Processor (June 2008)
[14] Gupta, A., dietrich Weber, W., Mowry, T.: Reducing Memory and Traffic Require-

ments for Scalable Directory-Based Cache Coherence Schemes. In: ICPP 1990, pp.
312–321 (1990)

[15] http://www.spec.org/web2005/
[16] Intel. Leading Virtualization Performance and Energy Efficiency in a Multi-

processor Server
[17] Jerger, N.: SigNet: Network-on-chip filtering for coarse vector directories. pp.

1378–1383 (2010)
[18] Johnson, T., Nawathe, U.: An 8-core, 64-thread, 64-bit Power Efficient SPARC

SOC (niagara2). In: ISPD 2007, p. 2 (2007)

http://multicore.amd.com
http://www.spec.org/web2005/

Filtering Directory Lookups in CMPs with Write-Through Caches 281

[19] Laudon, J., Lenoski, D.: The SGI Origin: A ccnuma Highly Scalable Server, pp.
241–251 (1997)

[20] Le, H.Q., et al.: IBM POWER6 microarchitecture. IBM J. Res. Dev. 51(6), 639–
662 (2007)

[21] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation
Platform. Computer 35(2), 50–58 (2002)

[22] Monchiero, M., Ahn, J.H., Falcón, A., Ortega, D., Faraboschi, P.: How to Simulate
1000 Cores. SIGARCH Comput. Archit. News 37(2), 10–19 (2009)

[23] Moshovos, A.: RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based Co-
herence. In: ISCA-32, pp. 234–245 (June 2005)

[24] Moshovos, A., Memik, G., Falsafi, B., Choudhary, A.: JETTY: Filtering Snoops
for Reduced Energy Consumption in SMP Servers. In: HPCA-7, 2001, pp. 85–96
(2001)

[25] Muralimanohar, N., Balasubramonian, R.: CACTI 6.0: A Tool to Model Large
Caches (2009)

[26] Salapura, V., Blumrich, M., Gara, A.: Improving the Accuracy of Snoop Filtering
Using Stream Registers. In: MEDEA 2007, pp. 25–32 (2007)

[27] Singh, J.P., Gupta, A., Ohara, M., Torrie, E., Woo, S.C.: The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In: ISCA-22, p. 24
(1995)

[28] Steinman, M.B., Harris, G.J., Kocev, A., Lamere, V.C., Pannell, R.D.: The Al-
phaServer 4100 Cached Processor Module Architecture and Design (1996)

[29] Strauss, K., Shen, X., Torrellas, J.: Flexible Snooping: Adaptive Forwarding and
Filtering of Snoops in Embedded-Ring Multiprocessors. SIGARCH Comput. Ar-
chit. News 34(2), 327–338 (2006)

[30] Sun Microsystems, Inc. OpenSPARC T2 System-On-Chip (SoC) Microarchitec-
ture Specification vol. 1 (May 2008)

[31] Tang, C.K.: Cache System Design in the Tightly Coupled Multiprocessor System.
In: AFIPS 1976, pp. 749–753 (1976)

FELI: HW/SW Support for On-Chip

Distributed Shared Memory in Multicores

Carlos Villavieja1,2, Yoav Etsion2, Alex Ramirez1,2, and Nacho Navarro1,2

1 Universitat Politecnica de Catalunya, Barcelona, Spain
2 Barcelona Supercomputing Center, Barcelona, Spain

{first.last}@bsc.es

Abstract. Modern Chip Multiprocessors (CMPs) composed of acceler-
ators and on-chip scratchpad memories are currently emerging as power-
efficient architectures. However, these architectures are hard to program
because they require efficient data allocation. In addition, when running
legacy applications on these architectures, unless their code is adapted to
utilize the distributed memory architecture, applications cannot benefit
from their high computational power.

In this paper, we propose FELI, a set of operating system mechanisms
that allocate application data to on-chip memories without any user
intervention. FELI1, automatically maps data to on-chip memories using
the address translation mechanism. It relies on a set of TLB counters, and
dynamical migration of pages from off-chip memory to on-chip memory.
We also introduce virtually tagged L0 caches to alleviate the address
translation overhead. Moreover, we make a comparison in performance
and power consumption versus a homogeneous cache-based CMP design.

Our evaluation shows a 50% average improvement in power consump-
tion with the scratchpad-based CMP compared to a cache-based CMP.
And a 10% in average memory access time even accounting for the cost
of page migrations and TLB invalidations. FELI can automatically allo-
cate on-chip memory to an average of 90% of the applications working
set.

Keywords: Chip MultiProcessors, Scratchpad on-chip memories, page
migration.

1 Introduction

In recent years, the power wall has led to the emergence of Chip Multiprocessors
(CMPs). However, the memory wall still remains a problem on CMPs, as more
cores have to be fed with data. Cache-based architectures have mainly been used
to alleviate high memory latencies. However, cache memories have unpredictable
access time and do not scale well as the number of cores increases in scenarios
with a high degree of data sharing. Cache coherency protocols become an issue.
1 FELI is an acronym for Fitting Everything Local In, which is the philosophy of the

proposed migration mechanism.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 282–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 283

Scratchpad-based architectures are becoming a promising alternative [2]. They
are software managed, have a predictable access time, and they are not as power
hungry as cache memories. Digital Signal Processors (DSPs), the Cell/BE or
GPU computing platforms already integrate on-chip scratchpad memories like
Local Storage (LS) or shared memory areas. Applications use scratchpad mem-
ories to fetch specific application data through direct memory access (DMA)
and then execute a kernel with all necessary data already present on-chip. After
execution, results are usually transferred back to off-chip memory. This allows
applications to benefit from lower latencies and predictable access time. More-
over, this memory architecture allows to overlap DMA data transfers with com-
putation which can completely hide memories latencies. In addition, scratchpad
memories do not require any coherence protocol and, thus are highly scalable.

Even the emergence of newer parallel programming models, there is still a
large number of parallel legacy applications that do not benefit from these ar-
chitectures. Without code modifications, all application data is located off-chip
and all accesses pay the full main memory access latency. These applications
were neither designed nor programmed for this kind of physically distributed
memory. Therefore, in order to run these applications on scratchpad-based ar-
chitectures efficiently, novel solutions need to be applied. Memory management
in runtime libraries and/or at the Operating System (OS) level are crucial
in order to transparently take advantage of these software-managed on-chip
memories.

In this paper, we introduce the concept of Local Partition (LP) as a scratch-
pad memory attached to each core memory management unit(MMU). Under our
shared memory physically distributed design, all cores can reference and access
any LP inside the CMP and off-chip. The system builds a single global(physical)
address space that includes all on-chip and off-chip memories. We show that
allocating data through local and remote LP on a chip is beneficial for applica-
tion performance. In this direction, we introduce FELI, a set of OS mechanisms
to transparently perform effective memory allocation and remapping. The OS
automatically moves data structures to those scratchpad memories that provide
the best memory access times. We describe and evaluate a simple page migra-
tion mechanism based on page access counters stored in all entries of the cores
Translation Lookaside Buffers (TLBs). Through the memory translation mech-
anisms data can be mapped to any on-chip/off-chip location. This allows the
execution of legacy code in these scratchpad-based CMP architectures with a
reasonable average memory access latency. All memory operations require the
TLB for address translation and at the same time data mappings to any physical
location. To alleviate the power consumption and overhead of the MMU that is
introduced by this mechanism, we also introduce a virtually tagged level 0 data
cache to avoid most of address translation requests. Finally, to evaluate our pro-
posal, we have also performed a comparison with a traditional cache-based CMP
architecture.

Contributions: To the best of our knowledge, this is the first paper that pro-
poses a system that allows to run legacy applications unmodified on a CMP

284 C. Villavieja et al.

architecture with scratchpad memories using a single global address space (on-
chip Distributed Shared Memory). We make the following contributions:

– We show that legacy (shared-memory) applications can run unmodified in
an on-chip Distributed Shared Memory (DSM) architecture without perfor-
mance penalties.

– We show that a simple page migration policy can move most of the applica-
tion working set in on-chip memory.

– We introduce a virtually tagged L0 exploring its size and invalidation mech-
anisms. This avoids TLB lookup and address translation for 70-80% of all
memory operations.

– We discuss the characteristics of the OS mechanisms and the hardware
(TLB) modifications proposed. These mechanisms enable the implementa-
tion of high efficient memory allocation policies in FELI.

– We evaluate FELI on a scratchpad-based CMP and compare the performance
and power consumption with an homogeneous cache-based CMP.

2 On-Chip Distributed Shared Memory

2.1 Chip MultiProcessor Architectures

Figures 1 and 2 illustrate the two baseline CMP architectures used in this paper.
Both are composed of multiple cores and several on-chip memories connected
through an interconnection network to off-chip main memory. Figure 1 shows a
cache-based architecture with a private L1 and a partitioned shared L2 cache per
core. Figure 2 shows a scratchpad-based architecture with an addressable on-chip
memory per core. In this architecture, we propose using a single global physical
address space to map together all on-chip and off-chip memories. The on-chip
scratchpad memories attached to each core from now on will be called Local Par-
titions (LPs). Since there is a single global physical address space, any core can
access any LP in the CMP with a single load/store instruction or through DMA
operations. All cores incorporate a Memory Management Unit (MMU) that in-
cludes a Translation Lookaside Buffer (TLB) for address translation, a Network
interface Controller (NiC) for packet routing, and a programmable DMA en-
gine to transfer data between local and remote memory (either the LP of an-
other core or the off-chip memory). Indeed, DMA is a key element that allows
the application or the Operating System(OS) to program data transfers with
the benefit of overlapping program computation and communication. No coher-
ence protocol is implemented for the LPs, so data replication or data migration
need to be explicitly performed by software, through DMA or remote read/write
operations.

2.2 Single Global Address Space On-Chip

Using a single global address space is essential to transparently manage data
transfers. It makes the architecture fully coherent and only one copy of each

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 285

Fig. 1. Cache-based CMP
architecture

Fig. 2. Scratchpad-based CMP
architecture

data is stored. Using address translation, the OS can map any virtual address to
any physical location(on-chip or off-chip). In Figure 3, both address spaces are
shown. Virtual address space in the top part is split in several parts or areas.
Each area named after the letters A to E, represent a virtually contiguous set
of pages. The physical address space in the bottom part is split in the physical
memory locations. The virtual address areas are mapped as follows: Area A is
fully mapped to the off-chip Main Memory. B and C areas are both mapped to
the same LP 0. D and E areas are mapped to other LPs. Since we rely on the
address translation mechanism to map virtual addresses to physical, the minimal
area size is the page size.

Fig. 3. Example of virtual to physical
mapping

Fig. 4. L0-MMU-core architecture

2.3 FELI - Operating System Support for Locality Management

We have built a set of OS mechanisms to run legacy applications transparently
and efficiently on top of the hardware described in Section 2.1. These mechanisms
are called FELI.

In a scratchpad-based architecture, an application starts running with all its
data loaded at the off-chip memory. A core that needs any data requires an
access to the off-chip memory paying the highest access latency. No access to
the on-chip memory or LP is done. FELI sets a page migration mechanism to
alleviate this problem.

286 C. Villavieja et al.

On a first data-page access, the requester core’s TLB misses for the address
translation, and a page-table request is sent to main memory. Next, the page-
table request returns the address translation for the page, and the core TLB
stores the translation and an access counter. Using the physical address a re-
quest is sent to main memory to obtain the data. From this moment on, each
subsequent access to that page increases the counter in the TLB entry. The
counter is required to monitor when the page is being actively used.

Once the access counter reaches a certain threshold (MMU threshold register),
a page migration process is triggered. The threshold value is based on different
costs (migration penalty and off-chip main memory accesses) commented in Sec-
tion 2.5. The page migration allows to have a zero copy policy of all data. Each
data has a unique location. Using this mechanism, FELI moves data from off-
chip memory to the on-chip LP and vice-versa. This way, FELI tries to keep
the most used data by each core in its LP. We do not consider page migrations
between Local Partitions.

The migration mechanism must ensure memory coherence, therefore the fol-
lowing transaction needs to be performed in order:

1. Invalidate the TLB entry: Once the threshold is reached, and we start
the page migration, the TLB page entry of the requester core is invalidated.

2. Invalidate page-table entry: In order to prevent other cores from re-
questing the page translation, the page-table entry is invalidated and locked.
Translation requests from other cores for that page are stalled.

3. Invalidate all TLBs: Once the request to the page table (2) is acknowl-
edged, the core holds the token for the page, and sends a broadcast message
to invalidate all TLBs within that entry. This is commonly known as a TLB
shootdown process. It includes waiting for all cores acknowledgments.

4. Victim selection: We choose a victim page from the LP, and perform a
TLB shootdown for the victim page.

5. Page Transfer: Once both pages are selected and invalidated, we program
the DMA controller to transfer both pages. The victim page from LP to
main memory, and the new page from main memory to LP.

6. DMA End: Once we receive the DMA finalization signal, we update the
page translation entry in the page table and unlock the entry. The next
access to the page will miss in the TLB and it will be updated through a
page-table request.

2.4 L0 Cache

Using LPs and FELI, we reduce the average memory access time by allocating
most of the application’s working set on-chip. However, all memory operations
pay for the overheads in time and power usage [5] of address translation and
request routing at the MMU. Address translation depending on the TLB config-
uration may take between 2-4 cycles [17]. To minimize the MMU overhead, we
have introduced a small virtually tagged cache (L0) attached to each core. Fig-
ure 4 shows the L0 cache architecture connected to a core MMU. This L0 cache

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 287

only stores data located at the core LP. Therefore, we skip cache coherency with
other cores. On a load miss in the L0, the data is requested to the MMU. The
data response to the load missed in the L0 is only cached in the L0 if its address
is hold at the core’s LP. On a store operation, if it hits in the L0, the store is
write-through to the LP.

Coherency at L0-LP level is only required for all stores to a LP from a remote
core, and for all page migrations. On any of these two operations, the affected
address is physical, however the L0 cache is virtually tagged. Since we do not have
a reverse translation mechanism because of its high cost, invalidation operations
must be performed. For this purpose, we have studied three different invalidation
policies:

1. Total L0 invalidation: On an invalidation operation, the entire L0 cache is
invalidated.

2. Perfect L0 invalidation: On an invalidation operation, using a reverse map-
ping we invalidate only the cache lines affected. This technique is easily
implemented in our simulator, however, we do not consider it for a viable
hardware option due to its real cost.

3. Bit filter L0 invalidation: The MMU holds a bitmap register to monitor all
LP pages with some data cached in the L0. Each bit represents a LP page.
On a local load request to an address stored in the LP, the bit field for that
page is marked. On an invalidation request, we only invalidate pages marked
in the bitmap. On a page migration the register is reset. This mechanism
minimizes the performance impact of invalidations.

The MMU/TLB monitors requests to the LP to skip synonyms being allocated
in the L0 cache. This way L0 can not hold two different virtual addresses pointing
to the same data and therefore avoid conflicts. Only data from one page of the
possible synonyms can be allocated at the L0. This leaves our L0 cache free of
synonym conflicts.

2.5 Discussion on DSM Architecture Parameters

In all system architectures where page migration or page replacement occur,
it is necessary to use a page replacement algorithm. In FELI, we have stud-
ied three well-known page replacement algorithms: Random, FIFO and LRU.
As previously studied [19], the victim selection algorithm becomes irrelevant on
configurations with enough space for the application working set. Our baseline
256KB LP can easily allocate application’s working set on-chip, while it is a
common L2 cache size. We use random because it requires less hardware com-
plexity. Previous work from Etsion et al. [8] also confirm using random selection
is efficient.

We have also quantified the overhead of adding a two bit counter to all TLB
entries using CACTI [12]. The total area increase of TLB size is negligible (below
0.1%). In addition, the two bit counter does not affect the TLB access latency.

Another parameter to take into account is the page size used for our evalua-
tion. Initially we chose 4K as the usual size for pages. Several experiments show

288 C. Villavieja et al.

that the evaluated benchmarks suffer from internal fragmentation with larger
page sizes. Moreover, when using larger sizes, we increase the number of ac-
cesses to remote LP increasing the overall memory access time. This translates
to a performance degradation as a result of having more accesses to remote LP
than LP.

We performed an exploration of the page-counter threshold value used to
trigger page migration. Our experiments show that it is necessary to have a
small threshold value to detect active pages in the working set of the benchmarks
evaluated. For the results shown Section 4, we use a threshold value of two. A
small value of the threshold ensures that pages in the LP are the most used ones
from the benchmark. This parameter might vary if larger memory page sizes are
used.

3 Methodology

Workloads: We use ten benchmarks (blackscholes, bodytrack, dedup, ferret,
fluidanimate, rtview, streamluster and swaptions) from PARSEC suite [3] to
evaluate the hardware and OS policies presented in this paper. We have selected
a set of the most representative benchmarks based on the degree of data sharing
between all threads. We used simlarge input set for PARSEC. We have used
PIN [11] to obtain all applications traces. All benchmarks are evaluated with
configurations of 32 threads. Using a methodology proposed by Casas et al. [4],
and validated against SimPoint [9], we selected the most representative part of
all benchmarks. Each benchmark trace contains 5 × 109 instructions.

Table 1. Table of the simulation configuration
parameters

CMP Size 32 cores
TLB 128 - 4-way - 1 cyc
L0 4KB - 4-way - 1 cyc
LP 256KB - 3 cyc
Remote LP 4 + NoC
L1 32KB - 4-way - 2 cyc
L2 256KB - 8-way - 7 cyc
Remote L2 7 + NoC cyc
Main Memory 250 cycs
NoC crossBar
NoC 25 cyc - 25.6GB/s

Table 2. Estimated breakdown
of all operation costs involved in
a page migration

Operation Cost (cyc)
TLB inv 50
PageTable inv 250-400
CMP TLB inv 200-300
Program DMA 10
Transfer 512

Migration 2000

Simulator: For the evaluation of the memory architecture, we have used
TaskSim [15], a trace-driven multicore simulator. TaskSim targets the simulation
of parallel applications. It allows performing detailed simulations of all compo-
nents in the CMP architectures shown in Figures 1 and 2. All memory accesses
behave the CMP architectures defined in Section 2.1. TaskSim simulates all la-
tencies for all components in the architecture, including memory controllers and

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 289

the interconnection network. All memory configurations and latencies in Table 1
have been obtained using CACTI [12]. Table 2 shows an approximated cost for
each operation concerning the implemented page migration mechanism. Based
on real measurements we have estimated the total cost of a page migration to
2000 cycles.

Metrics: To evaluate the CMP system performance, we measure the average
access time per memory location(AMAT). We have also evaluated the power
consumption of both CMP architectures. We account for static and dynamic
power of all memories on both CMPs architectures.

4 Experimental Evaluation

Both of the CMP architectures evaluated are similar in terms of on-chip mem-
ory capacity, however, memory access latency and power consumption are quite
different as we can observe in this Section.

All the scratchpad-based CMP configurations use a page migration threshold
of two. Discussion on choosing this value can be found in Section 2.5. For the
L0 coherency, we use the Bit filter invalidation policy described in Section 2.4
because it is high efficient at a reasonable performance cost compared to perfect
L0 invalidation which requires a reverse-mapping mechanism, or invalidating the
whole L0 cache which reduces the L0 performance dramatically.

First, we analyze the performance of the new L0 cache introduced to overcome
the overhead on address translation. Figure 5(a) shows the L0 cache hit ratio
as we increase its size. The X-axis represents different L0 cache sizes, and the
Y-axis shows the hit ratio. Each line of the figure represents a single benchmark.
As it can be observed, at size 4KB, the L0 cache size hit ratio stabilizes around
70%. We use 4KB size and not larger to maintain a small 1 cycle latency. In
addition, using a small L0 cache allows to avoid huge performance degradation
and power consumption when invalidating the L0 because of page migrations or
remote stores.

Figure 5(b) shows the percentage of memory accesses (Y-axis) that hit in
the different types of memories in each CMP architecture. For all benchmarks
shown in the X-axis, the left bar represents the cache-based and the right bar
represents the scratchpad-based results. It can be observed that the L0 hit ratio
for almost all benchmarks is above 75%. Although the L0 cache size is much
smaller (4KB to 32KB) than the L1 cache, the L0 hit ratio is in average just a
10% lower. Moreover, for most applications the hit ratio for remote LP is higher
than L2 cache. Page migration on other cores allows to allocate most of the
application working set on-chip minimizing accesses to off-chip main memory.
These results demonstrate that combining the L0 cache with the page migra-
tion mechanism to LP is a very efficient allocation policy. However, cache line
replacement outperforms on high irregular memory access pattern applications
(p.e: streamcluster).

In order to compare the two CMP architectures, we have evaluated the average
memory access time (AMAT) and the power consumption for the cache-based

290 C. Villavieja et al.

0 256 512 1024 2048 4096 8192
L0 Size

0

10

20

30

40

50

60

70

80

90

L
0
 H

it
 R

a
t
io

blackscholes

bodytrack

dedup

ferret

fluidanimate

rtview

streamcluster

swaptions

vips

(a) Evaluation of the L0 Hit Ratio/Size
for the LP CMP architecture.

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

a
ck

d
e
d
u
p

fe
rr

e
t

fl
u
id

a
n
im

a
te

rt
v
ie

w

st
re

a
m

cl
u
st

e
r

sw
a
p
ti
o
n
s

v
ip

s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%
 D

a
t
a
 a

c
c
e
s
s
e
s

Main Memory

Remote L2/LP

L2/LP

L1/L0

(b) Applications Data Layout comparing
cache/scratchpad-based CMP.

Fig. 5. In the left graph, we observe an evaluation of the L0 Hit Ratio/Size for the
LP CMP architecture. In the right graph, we observe the Applications Data Layout
comparing cache/scratchpad-based CMP.

and scratchpad-based CMP. Figure 6(a) shows the AMAT which represents in
terms of memory latency, which memories take most of accesses time over the
application execution. The X-axis of the graph shows the benchmarks. For all
applications two bars represent the cache and the scratchpad-based respectively.
The Y-axis shows the AMAT in cycles. The average access time for scratchpad-
based is around 13 cycles compared to 14 for the cache-based CMP. It can
be observed, in the bottom part of each bar, for scratchpad-based CMP the
percentage of time for TLB Hits is negligible because of the high hit ratio in L0
cache. Cache-based CMP benefit by the performance of a higher L1 but with a
higher cache latency and the addition of the address translation latency (1 cycle).
Moreover, applications with less regular access pattern (bodytrack, fluidanimate,
ferret, vips) have a lower L0 cache hit ratio. However, in these applications the
remote LP hit ratio is more effective than the L2 cache. This is because using
page migration more not yet used data is prefetched than on a L2 miss. For
the cache-based case, we observe a high percentage of accesses to the off-chip
memory.

Figure 6(b) shows an estimated power consumption comparison of both archi-
tectures. We used CACTI [12] to obtain the dynamic and static power consump-
tion of all memory components of both architectures. The X-axis of the graph
shows the benchmarks evaluated. As previous graphs, cache and scratchpad-
based CMP are shown. The Y-axis shows the power consumption normalized
to the architecture that consumes most. For all applications we can observe the
power consumption of the scratchpad-based architectures is around 50-55% more
efficient for all PARSEC benchmarks. The first reason why scratchpad-based ar-
chitecture is much more efficient is the high hit ratio of the L0 cache. This allows
to skip many lookups in the TLB, and since TLBs are power-hungry caches, the
overall power consumption is highly reduced. Moreover, even if the L0 has a
similar consumption to the L1 cache, the power consumption of the LP is much

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 291

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

a
ck

d
e
d
u
p

fe
rr

e
t

fl
u
id

a
n
im

a
te

rt
v
ie

w

st
re

a
m

cl
u
st

e
r

sw
a
p
ti
o
n
s

v
ip

s

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

A
v
e
r
a
g

e
 m

e
m

o
r
y
 a

c
c
e
s
s
 c

y
c
le

s

Migrations

Main Memory

Remote L2/LP

L2/LP

L1/L0

TLB Miss

TLB Hit

(a) Average Memory Access Time

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

a
ck

d
e
d
u
p

fe
rr

e
t

fl
u
id

a
n
im

a
te

rt
v
ie

w

st
re

a
m

cl
u
st

e
r

sw
a
p
ti
o
n
s

v
ip

s

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

z
e
d

 p
o
w

e
r

o
f

m
e
m

o
ry

 c
o
m

p
o
n

e
n

ts

Cache CMP

ScratchPad CMP

(b) Power Consumption Comparison

Fig. 6. Average Memory Access Time graph and Power Consumption of all benchmarks
for cache and scratchpad-based CMP architectures

better than that of an L2 cache. All benchmarks evaluated allocate most of their
working set on-chip, and therefore the main source of dynamic power consump-
tion comes from LP in the scratchpad-based CMP, while in the cache-based the
main source for the dynamic power consumption are the L1 and TLB caches.

5 Related Work

Distributed shared memory (DSM) machines have largely been used in the past.
However, as far as we know, FELI is the first to evaluate DSM in CMPs. DSM
related work mainly explores page migration techniques. In [10] several tech-
niques are described deeply dealing with memory management in local/remote
memory nodes. Holliday et al. [10] refers to Aging as an effective page migra-
tion technique. Corbalan et al. [7] demonstrate than page migration is relevant
to achieve high performance ratios in OpenMP parallel applications. However,
they also demonstrate that process scheduling and affinity are key when page
migration is considered. Since we are not considering OS context switch nei-
ther scheduling threads, thread affinity does not affect our results. Introducing
thread scheduling would require remote LP migration to transfer remote pages
to a new core LP when threads migrate. Dimitrios et al. [14] also uses page
reference information to support page migration. They achieve a performance
speedup of 264% for OpenMP parallel applications. As Corbalan et al. [7] they
combine page migration with scheduling. In contrast to our solution, they con-
sider compiler support to identify hot memory areas. In our initial experiments,
we evaluated first touch and profile based technique to feed the OS with profiling
information, however, our results using FELI obtained finer granularity over hot
memory areas without the use of profiling. FELI is based on the TLB trigger
and hence when page access reaches the threshold value, it obtains the appli-
cation’s hot memory areas dynamically at reasonable cost. Similarly Scheurich
et al. [16] and Jeun et al. [20] present the pivot mechanism as an alternative

292 C. Villavieja et al.

access reference based page migration algorithm. They use access information
from each processor as a threshold and as the direction to migrate memory pages
to other processors. These previous work has been done for Symmetric Multi-
Processors(SMPs). Our work is concentrated in Chip MultiProcessors (CMPs)
where latency and a high bandwidth is provided because of on-chip integration.
Our work is still not comparable since we do not migrate pages between LPs.

Chaundri [6] presents PageNUCA, a set of OS-assisted locality management
policies for large CMP NUCAS. It applies page-migration mechanisms for the
last level cache of a CMP achieving a 12% of performance and energy improve-
ment. This solution is closest to our scheme but it is designed for a cache-based
architecture and it is only applied for shared L2 cache. We evaluated FELI over
all on-chip memory.

Several work in scratchpad-based architectures are focused on compiler sup-
port to efficiently allocate data. Avissar et al. [1] and Nguyen at al. [13] present
an optimal scheme to allocate data on scratchpad-based architectures in em-
bedded applications. They use a compiler strategy that automatically partition
application data among the memory units. Other solutions to improve memory
allocation in scratchpad-based architectures can be found based on compile time
techniques [18].

6 Conclusions

In this paper, we propose FELI, a set of Hardware/Software mechanisms to
run legacy applications in a scratchpad-based CMP architecture. FELI uses a
page migration mechanism to dynamically allocate data into on-chip address-
able memories or Local Partitions (LPs). This is the first paper where DSM is
used for scratch-pad based CMPs. Our mechanisms use address translation to
map any virtual address to any physical address. In FELI, the OS manages the
LPs as caches of 4KB lines, exploiting the predictable access time and the power
efficiency of scratchpad memories. In addition, we have added a virtually tagged
L0 cache to improve the overall memory latency. FELI automatically allocates
around 90% of application data on-chip. On a performance and power consump-
tion comparison with a cache-based CMP, FELI achieves an average reduction
of 10% in memory access time and a reduction of 50% in power consumption.

Acknowledgments. This research is supported by the Consolider program
(contract No. TIN2007-60625) from the Ministry of Science and Innovation of
Spain, the TERAFLUX project (ICT-FP7-248647), and the European Network
of Excellence HIPEAC-2 (ICT-FP7-249013). Y. Etsion is supported by a Juan
de la Cierva Fellowship from Ministry of Science and Innovation of Spain. Special
thanks to the members of the Heterogeneous Architecture group at BSC and the
anonymous reviewers for their comments and suggestions.

HW/SW Support for On-Chip Distributed Shared Memory in Multicores 293

References

1. Avissar, O., Barua, R., Stewart, D.: An optimal memory allocation scheme for
scratch-pad-based embedded systems. ACM Trans. Embed. Comput. Syst. 1(1),
6–26 (2002)

2. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratch-
pad memory: design alternative for cache on-chip memory in embedded systems.
In: CODES 2002: Proceedings of the Tenth International Symposium on Hard-
ware/Software Codesign, pp. 73–78 (2002)

3. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Char-
acterization and architectural implications (October 2008)

4. Casas, M., Badia, R.M., Labarta, J.: Automatic structure extraction from MPI
applications tracefiles. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 3–12. Springer, Heidelberg (2007)

5. Chang, Y.-J., Lan, M.-F.: Two new techniques integrated for energy-efficient tlb
design. IEEE Trans. Very Large Scale Integr. Syst. 15, 13–23 (2007)

6. Chaudhuri, M.: Pagenuca: Selected policies for page-grain locality management in
large shared chipmultiprocessor caches. In: In Proceedings of HPCA-15 (2009)

7. Corbalan, J., Martorell, X., Labarta, J.: Evaluation of the memory page migration
influence in the system performance: the case of the SGI o2000. In: ICS 2003:
Proceedings of the 17th annual international conference on Supercomputing, pp.
121–129 (2003)

8. Etsion, Y., Feitelson, D.G.: L1 cache filtering through random selection of memory
references. In: PACT, pp. 235–244 (2007)

9. Hamerly, G., Perelman, E., Calder, B.: How to use simpoint to pick simulation
points. SIGMETRICS Perform. Eval. Rev. 31, 25–30 (2004)

10. Holliday, M.A.: Reference history, page size, and migration daemons in lo-
cal/remote architectures. SIGARCH Comput. Archit. News 17(2), 104–112 (1989)

11. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation, pp. 190–200 (2005)

12. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: Architecting efficient in-
terconnects for large caches with cacti 6.0. IEEE Micro 28(1), 69–79 (2008)

13. Nguyen, N., Dominguez, A., Barua, R.: Memory allocation for embedded sys-
tems with a compile-time-unknown scratch-pad size. ACM Trans. Embed. Comput.
Syst. 8(3), 1–32 (2009)

14. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J.,
Ayguadé, E.: User-level dynamic page migration for multiprogrammed shared-
memory multiprocessors. In: ICPP 2000: Proceedings of the Proceedings of the
2000 International Conference on Parallel Processing, p. 95 (2000)

15. Rico, A., Cabarcas, F., Quesada, A., Pavlovic, M., Vega, A.J., Villavieja, C., Etsion,
Y., Ramirez, A.: Scalable simulation of decoupled accelerator architectures. Tech.
Rep. UPC-DAC-RR-2010-14, Universitat Politècnica de Catalunya (June 2010)

16. Scheurich, C., Dubois, M.: Dynamic page migration in multiprocessors with dis-
tributed global memory. IEEE Transactions on Computers 38, 1154–1163 (1989)

294 C. Villavieja et al.

17. Swaminathan, S., Patel, S.B., Dieffenderfer, J., Silberman, J.: Reducing power con-
sumption during tlb lookups in a powerpc” embedded processor. In: Proceedings
of the 6th International Symposium on Quality of Electronic Design, ISQED 2005,
pp. 54–58 (2005)

18. Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans. Embed. Comput. Syst. 5(2),
472–511 (2006)

19. Villavieja, C., Ramirez, A., Navarro, N.: On-chip distributed shared memory. Tech.
Rep. UPC-DAC-RR-CAP-2011, Universitat Politècnica de Catalunya (February
2011)

20. Jeun, W.-C., Kee, Y.-S., Ha, S.: Improving performance of openMP for SMP clus-
ters through overlapped page migrations. In: Mueller, M.S., Chapman, B.M., de
Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006.
LNCS, vol. 4315, pp. 242–252. Springer, Heidelberg (2008)

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 295–309, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Token3D: Reducing Temperature in 3D Die-Stacked
CMPs through Cycle-Level Power Control Mechanisms

Juan M. Cebrián1, Juan L. Aragón1, and Stefanos Kaxiras2

1 University of Murcia, Spain
{jcebrian,jlaragon}@ditec.um.es

2 University of Uppsala, Sweden
kaxiras@it.uu.se

Abstract. Nowadays, chip multiprocessors (CMPs) are the new standard design
for a wide range of microprocessors: mobile devices (in the near future almost
every smartphone will be governed by a CMP), desktop computers, laptop,
servers, GPUs, APUs, etc. This new way of increasing performance by
exploiting parallelism has two major drawbacks: off-chip bandwidth and
communication latency between cores. 3D die-stacked processors are a recent
design trend aimed at overcoming these drawbacks by stacking multiple device
layers. However, the increase in packing density also leads to an increase in
power density, which translates into thermal problems. Different proposals can
be found in the literature to face these thermal problems such as dynamic
thermal management (DTM), dynamic voltage and frequency scaling (DVFS),
thread migration, etc. In this paper we propose the use of microarchitectural
power budget techniques to reduce peak temperature. In particular, we first
introduce Token3D, a new power balancing policy that takes into account
temperature and layout information to balance the available per core power
along other power optimizations for 3D designs. And second, we analyze a
wide range of floorplans looking for the optimal temperature configuration.
Experimental results show a reduction of the peak temperature of 2-26ºC
depending on the selected floorplan.

Keywords: Power budget, power tokens, DVFS, power balancing.

1 Introduction

With the global market dominated by chip multiprocessors and the GHz race over,
designers look for ways to increase productivity by increasing the number of available
processing cores inside the CMP. The shrinking of transistor’s feature size allows the
integration of more cores, as the per-core power consumption decreases with each
new generation. However, interconnects have not followed the same scaling trend as
transistors, becoming a limiting factor in both performance and power consumption.
One intuitive solution to reduce wirelength of the interconnection network is to stack
structures on top of each other, instead of using a traditional planar distribution.

Introduced by Souri et al. in [22], 3D architectures stack together multiple
device layers (i.e., cores, memory) with direct vertical interconnects through them

296 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

(inter-wafer vias or die-to-die vias). A direct consequence of this design is the
reduction on the communication delays and power costs between different cores, as
well as an increase in packing density that depends on the number of available layers.
However, despite of the great benefits of 3D integration, there are several challenges
that designers have to face. First, the increase in packing density also leads to an
increase in power density that eventually translates into thermal problems. Second, a
deeper design space exploration of different floorplan configurations is essential to
take advantage of these emerging 3D technologies. Third, chip verification
complexity increases with the number of layers.

To face the first challenge there are several proposals that come from the 2D field:

• Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption,
and thus temperature. DVFS-based approaches can be applied either to the
whole 3D chip or only to cores that show thermal problems (usually cores away
from the edges of the 3D chip) [1][13][20].

• Task/thread migration to move execution threads from internal to external cores
whenever possible, or reschedule memory intensive threads to internal cores and
CPU intensive threads to external cores [6][24][7].

These mechanisms are usually triggered by a Dynamic Thermal Management
(DTM) scheme, so whenever a core exceeds a certain temperature, power control or
task migration mechanisms take place inside the CMP. However, these mechanisms
are not perfect. DVFS is a coarse-grain mechanism usually triggered by the operating
system with very long transition times between power modes that leads to a high
variability in temperature. On the other hand, task migration, despite the fact that it
can be applied at a finer granularity (i.e., faster) than DVFS, has the additional
overhead of warming up both the cache and the pipeline of the target core. Moreover,
none of these mechanisms affects leakage power consumption. Leakage (or static
power) is something that many studies do not take into consideration when dealing
with temperature, but it cannot be ignored. For current technologies (32nm and
below), even with gate leakage under control by using high-k dielectrics, subthreshold
leakage has a great impact in the total power consumed by processors. Furthermore,
leakage depends on temperature, so it is crucial to add a leakage-temperature loop to
update leakage consumption in real time depending on the core/structure’s
temperature.

Therefore, in order to accurately control peak temperature, which is of special
interest in 3D-stacked processors as this integration technology exasperates thermal
problems, a much tighter control is necessary to restraint the power consumption of
the different cores. Recently, Cebrian et al. proposed the use of a hybrid mechanism
to match a predefined power budget [4][5]. This mechanism accurately matches a
power budget and ensures minimal deviation from the target power and the
corresponding temperature, by first using DVFS to lower the average power
consumption towards the power budget and then removing power spikes by using
microarchitectural mechanisms (e.g., pipeline throttling, confidence estimation on
branches, critical path prediction, etc).

In this paper we make three major contributions. First, we analyze the effects of
cycle-level accurate power control mechanisms to control peak temperature in 3D die-
stacked processors. Based on this analysis we propose Token3D, a novel power

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 297

balancing mechanism that takes into account temperature and layout information
when balancing power among cores and layers. Second, we analyze a wide range of
floorplan configurations looking for the optimal temperature configuration, taking
into account both dynamic and leakage power (as well as the leakage-temperature
loop). And third, we include some specific power control mechanisms for vertical 3D
floorplans. Experimental results show a reduction of the peak temperature of 2-26ºC
depending on the selected floorplan when including cycle-level power control
mechanisms into the 3D die-stacked design. Summarizing, the main contributions of
the present work are the following:

• Reducing the peak temperature through power control mechanisms:
◦ Implementation and analysis of power balancing mechanisms on 3D die-

stacked architectures to minimize hotspots.
◦ Introduction of a new policy to balance power among cores, Token3D. This

policy will use layout and temperature information to distribute the available
power among the different cores and layers, giving more work to cool cores
and cores close to edges than to internal cores.

• Temperature analysis of the main 3D design choices:
◦ Analysis of different 3D floorplan designs using accurate area, power (both

static and dynamic) and heatsink information.
◦ Analysis of the effects of ROB resizing [18] on temperature for vertical

designs.
◦ Temperature analysis when using ALUs with different physical properties

(energy-efficient vs. low latency ALUs) on the same layout.
◦ Implementation and analysis of a hybrid floorplan design (vertical+

horizontal).

The rest of this paper is organized as follows. Section 2 provides some background
on power-saving techniques for CMPs and 3D die-stacked multicores. Section 3
describes the proposed Token3D approach. Section 4 describes our simulation
methodology and shows the main experimental results. Finally, section 5 shows our
concluding remarks.

2 Background and Related Work

In this section we will introduce the main power and thermal control mechanisms as
well as an overview on 3D die-stacked processors along with the different floorplan
design choices.

2.1 Power and Thermal Control in Microprocessors

2.1.1 Dynamic Voltage Frequency Scaling (DVFS)
Dynamic Voltage and Frequency Scaling (DVFS) has been, for the past 20 years, one
of the most common mechanisms to reduce power consumption in microprocessors.
Introduced in [13], DVFS takes advantage of transistor quadratical dependence on
supply voltage and linear dependence on frequency (P = VDD

2 x f) and downscales

298 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

both voltage and frequency to save power. However, as the process technology scales
down, the margin between VDD (supply voltage) and VT (threshold voltage) is
reduced, decreasing the processor’s reliability among other undesirable effects.
Furthermore, the transistor’s delay (or switching speed) depends on δ ≈ 1/ (VDD –
VT)α, with α > 1. That means that VDD can lowered as long as the margin between VDD
and VT is kept constant (i.e., VT must be lowered accordingly). However, the
counterpart of reducing VT is twofold: a) leakage power increases as it exponentially
depends on VT [8]; and b) processor reliability is further reduced.

In the CMP field, Isci et al. [1] and later Sartori et al. [20] proposed DVFS-based
power control mechanisms specifically designed for single-threaded applications.
These proposals switch between different DVFS power modes trying to maximize
throughput under certain power constraints. Unfortunately, as they rely on the use of
performance counters and/or time estimation, these proposals only work properly for
multiprogrammed or single-threaded applications, because in parallel applications
synchronization points may increase global execution time although local core
performance counters show a performance increase (due to spinning).

2.1.2 Dynamic Thermal Management (DTM)
As mentioned before, temperature is the main drawback in 3D die-stacked designs. In
2001, Brooks and Martonosi [3] introduced Dynamic Thermal Management (DTM)
mechanisms in microprocessors. In that work they explore performance trade-offs
between different DTM mechanisms trying to tune up the thermal profile at runtime.
Thread migration [21], fetch throttling [6], clock gating or distributed dynamic
voltage scaling [9] are techniques that can be used by DTM mechanisms. For the
thermal management of 3D die-stacked processors, most of the prior work has
addressed design stage optimization, such as thermal-aware floorplanning (as in [10]).
In [24], the authors evaluate several policies for task migration and DVS specifically
designed for 3D architectures. Something similar is done in [7], where the authors
explore a wide range of different floorplan configurations using clock gating, DVFS
and task migration to lower peak temperature.

However, both thread migration and DVFS-based approaches exhibit really low
accuracy when matching a target power budget, and thus a high deviation from the
target temperature. So the designers have two choices, either to increase the power
constraint to ensure the target temperature or to use a more accurate way to match the
desired (if needed) power budget and temperature. In order to do this we first need a
way to measure power accurately, because up to now power was estimated by using
performance counters, although the new Intel Sandy Bridge processors include some
MSRs (machine specific registers) that can be used to retrieve power monitoring
information from different processor structures.

2.1.3 Measuring Power in Real-Time
Power tokens were introduced in 2009 [4] as a way to approximate the power being
consumed by the processor at a cycle level. The dynamic power consumed by an
instruction can be estimated at commit stage by adding, to the base power
consumption of the instruction (i.e., all regular accesses to structures done by that
instruction which are known a priori), a variable component that depends on the time
it spends in the pipeline. A power token unit is defined as the joules consumed by one

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 299

instruction staying in the instruction window for one cycle. The number of power
tokens consumed by an instruction will be calculated as the addition of its base power
tokens plus the number of cycles it spends in the instruction window. As in [4][5], the
implementation of the Power Token approach is done by means of an 8K-entry
history table (Power Token History Table – PTHT), accessed by PC, which stores the
power cost (in tokens) of each instruction’s last execution. The PTHT is updated with
the current number of power tokens consumed when an instruction commits. Hence,
the overall processor power consumption in a given cycle can be easily estimated
based on the instructions that are traversing the pipeline without using performance
counters just by accumulating the power tokens (provided by the PTHT) of each
instruction being fetched.

2.1.4 Hybrid Power Control Approaches
Along with power tokens, in [4] we introduced a two-level approach that firstly
applies DVFS as a coarse-grain approach to reduce power consumption towards a
predefined power budget, and secondly chooses between different microarchitectural
techniques to remove the remaining and numerous power spikes. The second-level
mechanism depends on how far the processor is over the power budget in order to
select the most appropriate microarchitectural technique.

However, previous approaches failed to match the target power budget when
considering the execution of parallel workloads in a CMP processor. Very recently,
we have proposed Power Token Balancing (PTB) [5]. This mechanism will balance
the power between the different cores of a 2D CMP to ensure a given power
constraint (or budget) with minimal energy and performance degradation. Based in
power token accounting, this proposal uses a PTB load-balancer as a centralized
structure that receives and sends power information (measured as power tokens) from
cores under the power budget to cores over the power budget. Tokens are used as a
currency to account for power, so it is important to note that they are neither sent nor
received, cores just send the number of spare tokens. PTB will benefit from any
power unbalance between cores. Note that task migration mechanisms are orthogonal
to PTB and can be applied together for further temperature reductions.

2.2 Building a 3D Die-Stacked Processor

In order to build a 3D die-stacked processor we need to decide two things: how we
build and put together the different layers and how we establish the communication
between them. There are two main approaches to build the layers: the bottom-up and
the top-down approaches. The first approach involves a sequential device process.
The frontend processing is repeated on a single wafer to build multiple active layers
before creating interconnects among them. The second approach processes each layer
separately (wafer-to-wafer), using conventional techniques, and then assembles them
using wafer-bonding technology. Once we have built the different layers we need to
establish communications between them. There are various vertical interconnect
technologies that have been explored, including wire bonded, microbump, contactless
(capacitive or inductive), and through-via vertical interconnect. A comparison in
terms of vertical density and practical limits can be found in [23][24].

300 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

L2
C1

C2

C1

C2
L2

C1

C2

C3

C4

C1
C2

C3
C4

C5
C6

C7
C8

L2
L2

L2
L2

L2
L2

L2
L2

 a) Direct packing b) Mirror packing c) L2 packing d) Vertical packing

Fig. 1. Core distribution along the layers

2.3 3D Integration Technology

From the previously introduced technologies, wafer-to-wafer bonding appears to be
the most promising approach [2] and there are many recent publications that have
chosen this type of 3D stacking technology [12][14][16]. Therefore, this is the
integration approach we are going to follow in this paper.

Now there are multiple choices on how cores are distributed along the different
layers, which are shown in Figure 1. We can clearly indentify two trends; either build
the cores vertical or horizontal. Horizontal distributions (a-c) are the most common
choices in literature, as they are easier to implement and validate. On the other hand,
vertical designs (Figure 1-d), introduced by Puttaswamy et al. in [19], offer improved
latency and power reduction compared to horizontal designs. However, they supposed
an inter-layer communication latency to be in the order of one FO4, and current
technologies can do 9-12 FO4 in one cycle. Therefore, in their proposal inter-layer
communication could be done in less than one cycle while other papers claim that
inter-layer communication takes as long as an off-chip memory access [23].
Furthermore, vertical designs require really accurate layer alignment to match a
structure split in different layers, and that is far from the current technology status.
However, as a possible future implementation of 3D die-stacked processors we also
evaluate these floorplans in this paper, and for comparative purposes, we also assume
one FO4 interconnection delay for our evaluation of vertical designs (10μm length
wires between layers).

3 Thermal Control in 3D Die-Stacked Processors

3.1 Token3D: Balancing Temperature on 3D-Staked Designs

As cited before, Power Token Balancing (PTB) is a global balancing mechanism to
restrain power consumption up to a preset power budget [5]. One of the main goals of
this paper is to analyze the effects of the original PTB approach in 3D die-stacked
architectures. We will also propose a novel policy, Token3D, aimed at distributing the
power among cores and/or dies that are over their local power budget. Token3D will
give priority to cooler cores, usually located close to the edges/surface of the 3D
stack. By prioritizing those cores, Token3D balances not only power but also

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 301

temperature, as cool cores will work more than the rest of cores, balancing the global
CMP temperature. Once a cool core gets to a synchronization point or to a low
computation phase (i.e., low IPC due to a misprediction event) it will naturally cool
down again, acting like a heatsink to hotter cores located beneath it in the 3D stack.

3.2 Token3D Implementation Details

Token3D is a new policy on how PTB splits the available power tokens, given by
cores under the power budget to the PTB load-balancer, among the cores that are over
the power budget (details about power tokens and the PTB approach are covered in
sections 2.1.3 and 2.1.4). Basically, Token3D will create N buckets, where N
represents the amount of layers of our 3D die-stacked processor. Then the PTB load-
balancer will place the coolest core in bucket one and will distribute the rest of the
cores between the available buckets in increments of 5% in temperature. So, cores
that have a difference between 0 and 5% in temperature with respect to the coolest
core will be placed in the same bucket; cores between 5% and 10% will be placed on

Table 1. Simulated CMP configuration

Processor Core

Process Technology:
Frequency:

VDD:
Instruction Window:

Decode Width:
Issue Width:

Functional Units:

Pipeline:
Branch Predictor:

32 nanometres
3000 MHz
0.9 V
128 entries + 64 LsQ
4 inst/cycle
4 inst/cycle
6 Int Alu; 2 Int Mult
4 FP Alu; 4 FP Mult
14 stages
64KB, 16 bit Gshare

Memory Hierarchy

Coherence Protocol:
Memory Latency:

L1 I-cache:
L1 D-cache:

L2 cache:

MOESI
300 Cycles
64KB, 2-way, 1 cycle lat.
64KB, 2-way, 1 cycle lat.
2MB/core, 4-way, unified,
12 cycles latency

Network Parameters

Topology:
Link Latency:

Flit size:
Link Bandwidth:

2D mesh
4 cycles
4 bytes
1 flit / cycle Fig. 2. Core floorplan

Table 2. Evaluated benchmarks and input working sets

 Benchmark Size Benchmark Size
Barnes 8192 bodies, 4 time steps Raytrace Teapot
Cholesky tk16.0 Water-NSQ 512 molecules, 4 time steps
FFT 256K complex doubles Water-SP 512 molecules, 4 time steps
Ocean 258x258 ocean Tomcatv 256 elements, 5 iterations

SPLASH-2

Radix 1M keys, 1024 radix Unstructured Mesh.2K, 5 time steps
Blackscholes simsmall Swaptions Simsmall

PARSEC Fluidanimate simsmall x264 Simsmall

L2

Dcache

Ic
ac

he

B
pr

ed

T
L

B

A
lu

m
ap

LsQ

FPAlu

FPRegs

ROB

IntRegs

302 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

the next bucket; and so on until N. Note that this process does not need to be done at a
cycle level, as temperature does not change so quickly. In our case, this process is
performed every 100K-cycles. For example, in a four layer 3D-stacked processor, if
the coolest core has an average temperature of 70ºC, bucket one will hold cores with
temperatures between 70ºC and 73.5ºC, bucket two will hold cores with temperate
between 73.5ºC and 77ºC, bucket three 77ºC to 80.5ºC and bucket four any core over
80.5ºC.

Once we have identified the cores that are over the power budget (those that did not
provide any tokens to the PTB load-balancer), the load balancer will distribute the
power tokens between the active buckets (i.e., the buckets that have cores over the
power budget) in an iterative way, giving extra tokens depending on the bucket the core
is in. For a 4-layer design, the bucket that holds the hottest core will have a x1 multiplier
on the number of received tokens, while the coolest bucket will have a x4 multiplier on
the amount of received tokens. For example, if buckets 1, 2 and 3 are active (being 1 the
one that holds the coolest cores), all the cores will receive one token, cores in buckets 2
and 1 will receive a second token and, finally, cores in bucket 1 will receive a third
token. If there are any power tokens left, we repeat the process.

4 Experimental Results

In this section we will evaluate both the original PTB and the novel Token3D
approaches as mechanisms to control temperature in a 3D die-stacked CMP. In
addition, we will evaluate some specific optimizations for a vertical design that uses a
custom floorplan where hotspot structures have been placed in the upper (cooler)
layers whereas cooler structures are placed in lower layers. We will also analyze the
different floorplan organizations in order to minimize peak temperature in the 3D die-
stacked architecture. For our evaluation the selected power budget is 50% of the
original power consumption of the processor.

4.1 Simulation Environment

For evaluating the proposed approache we have used the Virtutech Simics platform
extended with Wisconsin GEMS v2.1 [17]. GEMS provides both detailed memory
simulation through a module called Ruby and a cycle-level pipeline simulation
through a module called Opal. We have extended both Opal and Ruby with all the
studied mechanisms that will be explained next. The simulated system is a
homogeneous CMP consisting of a number of replicated cores connected by a
switched 2D-mesh direct network. Table 1 shows the most relevant parameters of the
simulated system. Power scaling factors for a 32nm technology were obtained from
McPAT [13]. To evaluate the performance and power consumption of the different
mechanisms we used scientific applications from the SPLASH-2 benchmark suite in
addition to some PARSEC applications (the ones that finished execution in less than 5
days in our cluster). Results have been extracted from the parallel phase of each
benchmark. Benchmark sizes are specified in Table 2.

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 303

3D thermal modeling can be accomplished using an automated model that forms
the RC circuit for given grid dimensions. For this work we have ported HotSpot 5.0
[21] thermal models into Opal and have built our tiled CMP by replicating N times
our customized floorplan, where N is the number of cores. Figure 2 shows the base
floorplan design we have chosen. This floorplan was obtained from Hotfloorplaner
(provided by the Hotspot 5.0). Our resulting CMP will be composed of a varying
number of these cores (from 2 to 16). As cited before, we will assume an
interconnection delay between layers of one FO4 (10μm length wires, as in [19]).

Moreover, thermal hotspots increase cooling costs and have a negative impact on
reliability and performance. The significant increase in cooling costs requires designs
for temperature margins lower than the worst-case. Leakage power is exponentially
dependent on temperature, and an incremental feedback loop exists between
temperature and leakage, which may turn small structures into hotspots and
potentially damage the circuit. High temperatures also adversely affect performance,
as the effective operating speed of transistors decreases as they heat up. In this paper
we model both leakage (through McPAT) and the leakage/temperature loop in Opal,
so leakage will be updated on every Hotspot exploration window (10K cycles).
Leakage power is translated into power tokens and updated according to the formula
Lnew = LBase x eLeak_Beta x (TCurrent – TBase) where Leak_Beta depends on technology scaling
factor and is provided by HotSpot 5.0, Lnew is the updated leakage, LBase is the base
leakage (obtained using McPAT), TCurrent is the current temperature and TBase is
the base temperature. Once leakage is updated, it is translated back to power tokens.

60

70

80

90

100

110

120

130

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

H
or

iz
.

M
irr

or L2

V
er

tic
al

C
us

to
m

2 Layer 4 Core 2 Layer 8 Core 2 Layer 16 Core 4 Layer 4 Core 4 Layer 8 Core 4 Layer 16 Core

P
ea

k
T

em
pe

ra
tu

re
 (

ºC
)

 Idle Token3D PTB Base

Fig. 3. Peak temperature for PTB, Token3D and the base case for different floorplans and core
configurations

Another important parameter is the cooling system. The regular thermal resistance
of a cooling system ranges from 0.25 K/W for the all-copper fan model at the highest
speed setting (very good), to 0.33 K/W for the copper/aluminum variety at the lowest
setting. In this work we model a real-world Zalman CNPS7700-Cu heatsink with 0.25
K/W thermal resistance and an area of 3.268 cm2 (136mm side).

4.2 Effects of Token3D on Peak Temperature

Figure 3 shows the peak temperature for different floorplan configurations and a
varying number of cores (from 4 to 16) using stacked bars. The reported idle

304 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

temperature corresponds to the average idle temperature of the cores1. The studied
floorplans are: Horizontal (Figure 1.a), Mirror (Figure 1.b), L2 (Figure 1.c), Vertical
(Figure 1.d) and Custom. As cited before, this last floorplan corresponds to a new
configuration that places hotspots into upper layers of the 3D stack, giving more
chances for them to cool down, and will be further discussed later in the next
subsection. In Figure 3 we can clearly see that both L2 and Custom are the best
designs to reduce peak temperature of the processor. This is due to the fact that both
designs place the L2 in lower layers, and, as it can be seen in Figure 4, the L2 is the
coolest structure within a core, even though we are accounting for leakage to calculate
temperature. This placement leaves hotspots close to the surface and hot structures
can cool down easily. We can also see that even a simple change in the floorplan such
as mirroring between layers gives substantial temperature reduction (5-6ºC) compared
to the horizontal design.

When considering the vertical design we can observe a higher peak temperature
than the horizontal one. This vertical design was introduced in [19] by Puttaswamy et
al. along with a dynamic power saving mechanism, Thermal Herding, that disables
layers at runtime, depending on the number of bits used by the different instructions.
This vertical design assumes each structure is vertically implemented across all
layers. In our evaluation of this vertical design, the area occupied by each structure
and its power consumption is divided by the number of available layers, but we do not
disable any layer, to isolate our proposed power control mechanisms from the benefits
obtained by Thermal Herding. For instance, in a 4-layer vertical design the
implemented thermal model calculates the temperature of a structure in layer i by
considering one fourth of its original power and area, however, the fraction of that
structure is stacked on top of another equal portion of the same structure, with all
portions simultaneously accessed, and therefore, increasing temperature. Note,
however, that the use of thermal herding and its ability to disable unused layers for
the vertical design is orthogonal to the use of our proposed PTB and Token3D
approaches.

When it comes to the studied power control mechanisms both the original PTB and
Token3D are able to reduce peak temperature by 2-26ºC depending on the floorplan
configuration. Token3D is always 1-3% better than the original PTB balancing
mechanism. We must also note that, as we get closer to the idle temperature, any
temperature reduction comes at a higher performance degradation.

Figure 4-left shows a more detailed analysis on the effects of both PTB and
Token3D in the peak temperature of the different core structures. We selected the
most probable configuration for 3D die-stacked cores (Mirror, Figure 1.b) and a 4-
layer 16-core CMP for this per structure temperature analysis. As cited before, PTB
and Token3D are evaluated with a preset power budget of 50% of the original average
power consumption. For comparison purposes we also evaluate DVFS trying to match
the same target power budget of 50%. Figure 4-left helps us to locate our design
hotspots (I-cache, TLB, Branch predictor, Load store queue) and see how both cycle-
level power control mechanisms are able to reduce peak temperature by 20-36%. For
example, the I-cache goes from 150ºC down to 110ºC, 30ºC less than DVFS. We can

1 We define “idle” temperature as the temperature of the whole CMP in idle state (i.e., only the

operating system is running).

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 305

Fig. 4. Peak temperature (left) and performance (right) of a 4-layer 16-core CMP using the
mirror floorplan

also see that, on average for this selected design, Token3D is 5-6ºC better than regular
PTB. It is also important to note that our cycle-level mechanisms are able to reduce
all hotspots peak temperature and put them close to the average core temperature.
This last result is specially interesting on 3D architectures, as they exacerbate thermal
problems and a much tighter power control is necessary. This is the benefit we
expected from the highly accurate power budget matching our mechanisms provide,
that ensures minimal deviation from the target power budget and, therefore,
temperature. In Figure 4-left we also show the spatial gradient (temperature
difference between the hottest and coolest structure of the core). Reducing spatial
gradients is important because they can cause clock skew and impact circuit delay [1].
In particular, both PTB and Token3D are able to reduce this gradient by more than
50%, from 50ºC to 22ºC.

In terms of performance degradation (Figure 4-right), regular PTB behaves slightly
better than Token3D, as power is equally divided between all cores and they can get
to the next synchronization point more evenly, while Token3D will unbalance cores
and make them wait at the synchronization point more time.

4.3 Further Temperature Optimizations

In addition to the PTB temperature analysis and the introduction of Token3D we also
wanted to perform some optimizations for the vertical 3D die-stacked layout. More
specifically, we will analyze the effects on peak temperature of MLP-based
instruction window (ROB) resizing [18] and ALU selection based on instruction
criticality (from ALUs placed on different layers) while varying the number of cores.

Figure 5 shows the effects on peak temperature of different instruction window
(IW) sizes for a 4-layer vertical core design (Figure 1.d). Each core has a 128-entry
IW that is equally distributed across the different layers in the vertical design (as we
are working with 4 layers, each layer has 32 entries). Entries are disabled by layer, so
we disable entries in groups of 32. In order to decide the current IW size we use a
dynamic MLP-based IW resizing mechanism as proposed in [18]. In Figure 5-left, we
also show the distribution of the average IW size for different benchmark suites
(represented with lines). This average window size highly varies between

0

5

10

15

20

25

ba
rn

es
ch

ol
es

ky fft
oc

ea
n

ra
di

x
ra

yt
ra

ce
to

m
ca

tv
un

st
ru

c.
w

at
er

ns
q

w
at

er
sp

bl
ac

ks
ch

.
flu

id
an

i.
sw

ap
tio

ns
x2

64
Av

er
ag

e

Benchmark

S
lo

w
do

w
n

(%
)

DVFS

PTB

Token3D

0

20

40

60

80

100

120

140

160
Ic

ac
he

D
ca

ch
e

B
pr

ed

T
LB

F
P

A
lu

F
P

R
eg

A
lu

M
ap

R
O

B
In

tR
eg

In
tE

xe
c

Ld
S

tQ L2
A

ve
ra

ge

M
ax M
in

G
ra

d
ie

nt

Structure

P
ea

k
T

em
pe

ra
tu

re
 (

ºC
)

Base
DVFS
PTB
Token3D

306 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

Fig. 5. Peak temperature of the instruction window (left) and ALUs (right) for a varying
number of cores

benchmarks, as memory-bound benchmarks require many IW entries to bring more
data simultaneously from memory, while CPU-bound applications do not need that
many entries. Therefore, instead of just showing the peak temperature reduction of the
average benchmarks (bars in Figure 5-left) we decided to do a design exploration of
the peak temperature based on the IW size. For example, Parsec benchmarks use 0%
of the time 25% and 50% of the IW, 55% of the time use a 75% of the IW (12ºC
reduction) and 45% of the time use the whole IW.

When working with vertical designs we can think of having different types of
ALUs placed into different layers: fast (and hot) ALUs placed on upper layers for
critical instructions plus slower power-saving ALUs placed in lower layers. As our
core design includes an instruction criticality predictor we can use this information to
decide where we want to send a specific instruction. Figure 5-right shows the effect
on peak core temperature having half of the ALUs placed in layers 2-3 (upper layers)
and half of the ALUs placed in layers 0-1 (lower layers). The ALUs in the lower
layers consume 25% of the original power consumption but are also 25% slower than
the original ALUs. Results show a peak temperature reduction of 3-5ºC. This small
temperature reduction is due to the fact that in our core design ALUs are not a hotspot
(as it can be seen in Figure 4-left: IntExec and FPAlu structures) for the studied
benchmarks, and thus, their temperature contribution has almost no impact on the
average peak temperature of the processor. However, we can expect better results
with other CPU-bound applications where ALUs become a hotspot.

Finally, we want to introduce a custom floorplan design that merges both vertical
and horizontal designs. This design is an extension of the L2 design (Figure 1.c) for a
4-layer core. Based on the information provided by Figure 4-left we can separate cool
from hot structures and place them in different layers. Hot structures are placed in the
top layer (Bpred, Icache, Alumap, TLB, LdStQ, IntReg and ROB), which is the
closest to the heatsink. The second layer consists of the rest of structures except the
L2, and the last two layers hold the L2 cache and memory controllers. This custom
design has the additional advantage of reducing inter-layer communication when
bringing data from memory, as memory controllers and the L2 are placed close to the
socket. As we can see in Figure 3 (last bar on each group), this design is able to
reduce peak temperature by almost 12ºC for a 4-layer 16-core processor.

0

20

40

60

80

100

120

140

2 4 8 16Cores

P
ea

k
Te

m
p

er
a

tu
re

 (º
C

)

Normal

Alu Crit Select

0

20

40

60

80

100

120

140

25% 50% 75% 100%

Usage of the Instruction Window (%)

P
e

ak
 T

e
m

p
er

at
u

re
 (

ºC

0

10

20

30

40

50

60

70

%
 o

f e
xe

cu
tio

n
 ti

m
e

2 Core 4 Core
8 Core 16 Core
SpecINT2000 SpecFP2000
Splash Parsec

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 307

5 Conclusions

3D die-stacked integration offers a great promise to increase scalability of CMPs by
reducing both bandwidth and communication latency problems. However, the
increase on core density leads to an increase in temperature and hotspots in these
designs. Moreover, as building process scales down below 32nm, leakage becomes an
important source of power consumption and, as it increases exponentially with
temperature, causes a power/temperature loop that negatively affects to 3D die-
stacked processors. To control temperature, regular DTM mechanisms detect
overheating in any of the temperature sensors and trigger a power control mechanism
to limit power consumption and cool the processor down. However, neither DVFS
nor task migration (the most frequently used mechanisms) offer accurate ways to
match this target power budget.

Power tokens and Power Token Balancing (PTB) were introduced by Cebrian et al.
as an accurate way to account for power and match a power constraint with minimal
performance degradation by balancing power among the different cores of a 2D CMP.
In this paper we evaluate these mechanisms in a new design scenario, 3D die-stacked
processors. In this scenario PTB is able to reduce average peak temperature by 2-20ºC
depending on the selected floorplan. For specific hotspot structures (i.e., instruction
cache) PTB can reduce peak temperature by almost 40% in a 4-layer 16-core CMP. In
addition, we have proposed Token3D, a novel policy that takes into account
temperature and layout information when balancing power, giving priority to cool
cores over hot ones. This new policy enhances PTB by providing an additional 3%
temperature reduction over the original PTB approach. Also note that task migration
is orthogonal to PTB and can be applied simultaneously for further temperature
reductions.

To conclude this work we have also extended 3D die-stacked vertical designs with
additional power control mechanisms. First, we enabled instruction window resizing
based on MLP. CPU-intensive applications are highly dependent on cache, but do not
show performance degradation if the instruction window is reduced. On the other
hand, memory-intensive applications require big instruction windows to locate loads
and stores and take advantage of MLP. Based on these properties we extended
previous vertical designs with adaptive instruction window resizing. Second, we split
ALUs in different groups, low latency and high latency ALUs. Low latency ALUs
consume more power and should be placed in upper layers of the 3D design, on the
other hand, high latency ALUs are more energy-friendly and can be placed in lower
layers of the 3D stack, lowering the chances of becoming a potential hotspot. An
instruction criticality predictor was used to decide where an instruction should be
placed, either in a fast but expensive or in a slow but efficient unit.

Finally, we explored a custom 3D design that merges both vertical and horizontal
designs trying to minimize hotspots. In this design hot processor structures are placed
in upper layers while cool structures are placed in lower layers. The design is able to
reduce peak temperature by an additional 10% / 85% over the best horizontal /
vertical designs.

308 J.M. Cebrián, J.L. Aragón, and S. Kaxiras

Acknowledgements. This work was supported by the Spanish MEC, MICINN and
EU Commission FEDER funds under Grants CSD2006-00046 and TIN2009-14475-
C04. Also by the EU-FP7 ICT Project “Embedded Reconfigurable Architecture
(ERA)”, contract No. 249059. Finally, the EU-FP7 HiPEAC funded an internship of
J.M. Cebrián at U. Uppsala.

References

[1] Ajami, A.H., Banerjee, K., Pedram, M.: Modeling and analysis of nonuniform substrate
temperature effects on global ULSI interconnects. IEEE Trans. on CAD 24(6), 849–861
(2005)

[2] Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G.H., McCaule,
D., Morrow, P., Nelson, D.W., Pantuso, D., Reed, P., Rupley, J., Shankar, S., Shen, J.,
Webb, C.: Die Stacking (3D) Microarchitecture. In: Proc. of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 469–479 (December 2006)

[3] Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance
microprocessors. In: Proc. of the 7th Int. Symposium on High Performance Computer
Architecture, HPCA (2001)

[4] Cebrián, J.M., Aragón, J.L., García, J.M., Petoumenos, P., Kaxiras, S.: Efficient
Microarchitecture Policies for Accurately Adapting to Power Constraints. In: Proc. of the
23rd Int. Parallel and Distributed Processing Symposium, IPDPS (2009)

[5] Cebrián, J.M., Aragón, J.L., Kaxiras, S.: Power Token Balancing: Adapting CMPs to
Power Constraints for Parallel Multithreaded Workloads. To appear in Proc. of the 25rd
Int. Parallel and Distributed Processing Symposium (May 2011)

[6] Coskun, A.K., Rosing, T.S., Whisnant, K.A., Gross, K.C.: Static and dynamic
temperature-aware scheduling for multiprocessor SOCS. IEEE Trans. on VLSI 16(9),
1127–1140 (2008)

[7] Coskun, A., Ayala, J., Atienza, D., Rosing, T., Leblebici, Y.: Dynamic Thermal
Management in 3D Multicore Architectures. In: Proc. of the Int. Conf. on Design,
Automation and Test in Europe (2009)

[8] Flynn, M.J., Hung, P.: Microprocessor Design Issues: Thoughts on the Road Ahead.
IEEE Micro 25(3) (2005)

[9] Gomaa, M., Powell, M.D., Vijaykumar, T.N.: Heat-and-Run: leveraging SMT and CMP
to manage power density through the operating system. In: Proc. of the 10th Int. Conf. on
Architectural Support for Programming Languages and Operating Systems ASPLOS
(2004)

[10] Healy, M., et al.: Multiobjective microarchitectural floorplanning for 2-d and 3-d ICs.
IEEE Transactions on CAD 26(1) (2007)

[11] Isci, C., Buyuktosunoglu, A., Cher, C., Bose, P., Martonosi, M.: An Analysis of Efficient
Multi-Core Global Power Management Policies: Maximizing Performance for a Given
Power Budget. In: Proc. of the 39th Int. Symposium on Microarchitecture, MICRO
(2006)

[12] Kgil, T., D’Souza, S., Saidi, A., Binkert, N., Dreslinski, R., Mudge, T., Reinhardt, S.,
Flautner, K.: PicoServer: using 3D stacking technology to enable a compact energy
efficient chip multiprocessor. In: Proc. of the 12th Int. Conf. on Arch. Support for
Programming Languages and Operating Systems (2006)

 Token3D: Reducing Temperature in 3D Die-Stacked CMPs 309

[13] Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: McPAT: an
integrated power, area, and timing modeling framework for multicore and manycore
architectures. In: Proc. of the 42nd Int. Symposium on Microarchitecture, MICRO (2009)

[14] Loi, G.L., Agrawal, B., Srivastava, N., Lin, S.C., Sherwood, T., Banerjee, K.: A
thermally-aware performance analysis of vertically integrated (3-D) processor-memory
hierarchy. In: Proc. of the 43rd Int. Conference on Design Automation (July 2006)

[15] Macken, P., Degrauwe, M., Paemel, V., Oguey, H.: A voltage reduction technique for
digital systems. In: Proc. of the IEEE Int. Solid-State Circuits Conf. (February 1990)

[16] Madan, N., Balasubramonian, R.: Leveraging 3D Technology for Improved Reliability.
In: Proc. of the 40th Annual IEEE/ACM Int. Symposium on Microarchitecture
(December 2007)

[17] Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R.,
Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset. SIGARCH Comput. Archit. News 33(4), 92–99
(2005)

[18] Petoumenos, P., Psychou, G., Kaxiras, S., Cebrian, J.M., Aragon, J.L.: MLP-aware
Instruction Queue Resizing: The Key to Power-Efficient Performance. In: Proc. of the
23rd Int. Conf. on Architecture of Computing Systems (ARCS) (February 2010)

[19] Puttaswamy, K., Loh, G.H.: Thermal Herding: Microarchitecture Techniques for
Controlling Hotspots in High-Performance 3D-Integrated Processors. In: Proc. of the 13th
Int. Symposium on High Performance Computer Architecture (HPCA), pp. 193–204
(2007)

[20] Sartori, J., Kumar, R.: Distributed Peak Power Management for Many-core Architectures.
In: Proc. of the Int. Conference on Design, Automation and Test in Europe, DATE (2009)

[21] Skadron, K., Stan, M., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan, D.:
Temperature-aware microarchitecture. In: Proc. of the Int. Symposium on Computer
Architecture, ISCA (2003)

[22] Souri, S.J., Banerjee, K., Mehrotra, A., Saraswat, K.C.: Multiple Si layer ICs: motivation,
performance analysis, and design implications. In: Proc. of the Int. Conf. on Design
Automation (2000)

[23] Xie, Y., Loh, G.H., Black, B., Bernstein, K.: Design space exploration for 3D
architectures. J. Emerg. Technol. Comput. Syst. 2(2), 65–103 (2006)

[24] Zhu, C., Gu, Z., Shang, L., Dick, R.P., Joseph, R.: Three-dimensional chip-
multiprocessor run-time thermal management. IEEE Transactions on CAD 27(8), 1479–
1492 (2008)

Bandwidth Constrained Coordinated HW/SW

Prefetching for Multicores

Sai Prashanth Muralidhara, Mahmut Kandemir, and Yuanrui Zhang

Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA 16802, USA

{smuralid,kandemir,yuazhang}@cse.psu.edu

Abstract. Prefetching is a highly effective latency hiding technique
that can greatly improve application performance. However, aggressive
prefetching can potentially stress the off-chip bandwidth. The result-
ing bandwidth stalls can potentially negate the performance gain due
to prefetching. In this paper, focusing on a multicore environment, we
first study the comparative benefits of hardware and software prefetching
and analyze if the two are complimentary or redundant. This analysis
also evaluates different aggressiveness levels of hardware prefetching. Sec-
ondly, we weigh the positive performance benefits of prefetching against
the negative performance effects of bandwidth stalls. Thirdly, we propose
a hierarchical prefetch management scheme for multicores that controls
the prefetch levels such that the overall performance gain is improved.
Lastly, we show that our proposed off-chip bandwidth aware prefetch
management scheme is very effective in practice, leading to performance
gains of upto about 10% in system throughput over a bandwidth agnostic
prefetching scheme.

1 Introduction

Prefetching is a well-known memory latency hiding technique, which predicts
future memory accesses and proactively fetches the corresponding memory ele-
ments to the cache ahead of time in order to hide memory access latencies during
execution [7] [8] [9] [10]. Prefetching can either be implemented at the hardware
level [7] [8] [10] [9] or by the software [20] [18]. The effectiveness of a prefetching
scheme is directly dependent on the predictability of memory accesses, which is
an application characteristic. In a multicore system, each core prefetches data el-
ements independently into the cache. The benefits due to prefetching can poten-
tially be different for different cores depending on the application characteristics.
Further, each core/application can potentially be involved in both hardware and
software prefetching. There have been previous techniques proposed to throttle
inaccurate prefetchers and increase aggressiveness levels on more accurate ones
[28]. Also, when the last level cache is shared, aggressive prefetching can worsen
the cache interference problem, especially when it is inaccurate and/or ineffi-
cient. In such cases, it is helpful to throttle the prefetches that are inaccurate
and cause high interference in the shared cache space [11].

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 310–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 311

In this paper, we first study the comparative accuracies and benefits of soft-
ware prefetching and different levels of hardware prefetching. We then study
and analyze the impact of prefetching on the off-chip memory bandwidth per-
formance. Prefetching can lead to increased off-chip bus traffic, and can poten-
tially increase the pressure on the off-chip bandwidth. This can cause extensive
bandwidth stalls.We explore the tradeoff between extensive aggressive prefetch-
ing and bandwidth stalls. Further, we study if the performance degradation due
to bandwidth stalls wipe away the performance gains achieved as a result of
prefetching.

We propose a hierarchical bandwidth-aware coordinated prefetching scheme
that manages the prefetch aggressiveness levels of different cores such that the
performance gains due to prefetching are improved, while the performance losses
due to bandwidth stalls are reduced. This prefetch management scheme operates
dynamically and decisions are made at the end of each execution interval. More
specifically, a global prefetch manager considers the overall bandwidth delay and
the prefetch effectiveness of each core during each execution interval, and then
decides to increase or decrease the prefetch aggressiveness levels of the cores.
This decision to change the prefetch levels of the cores is made such that the
performance improvement due to prefetching is higher than the stall time due
to limited bandwidth and contention. It then directs the individual core-level
prefetch managers to change the prefetch levels correspondingly. At each core,
a core-level prefetch manager manages and enforces the prefetch aggressiveness
levels. This prefetch manager not only issues hardware prefetch requests but also
handles the software prefetch instructions. It decides whether to allow software
prefetching or hardware prefetching or both and also at what aggressiveness lev-
els. It is to be noted that prefetching on a core can be termed very aggressive
if both hardware prefetching at the highest aggressiveness level and software
prefetching is enabled. Aggressiveness can be downgraded by reducing the ag-
gressiveness of hardware or software prefetching or both. Overall, the main goal
of our approach is to reward useful prefetchers and punish the ones that hurt
bandwidth availability without any performance benefit. Lastly, we evaluate our
proposed scheme on set of workloads comprising of applications from the SPEC
2006 benchmark suite [1] on a simulation based setup, and show that our scheme
yields average system throughput benefits of about 8%, and up to about 10%
over an off-chip bandwidth unaware scheme. To summarize, we make the follow-
ing contributions in this paper:

• We evaluate the performance benefit of both hardware (different levels) and
software prefetching schemes. We later compare the performance improvement
due to prefetching against the performance degradation due to the extra pressure
it exerts on the off-chip bandwidth.

• We propose a hierarchical prefetch management scheme that tries to dy-
namically change the prefetch levels of the individual cores such that the perfor-
mance degradation due to bandwidth contention is reduced and the performance
improvement due to prefetching is improved.

312 S.P. Muralidhara, M. Kandemir, and Y. Zhang

• We present an extensive experimental evaluation of the proposed hierar-
chical prefetch management. Our results show that the proposed scheme is very
effective in practice and improves the system throughput by up to 10%, and by
an average of 8%.

2 Background and Methodology

2.1 Prefetching

Prefetching is a widely employed technique intended to improve on-chip cache
performance [7] [8] [9] [10] [20] [18]. Prefetching, however, is not always beneficial.
Some fraction of the predicted memory requests are never accessed. This is not
the only instance of wasted prefetching. A future memory request prediction
can turn out to be true but before the prefetched memory element is accessed, it
might be evicted from the cache. Also, a prefetched request may kick out a useful
data element from the cache. In these instances, prefetching increases the off-chip
bus traffic and possibly cause bandwidth stalls without any significant benefit.
Therefore, prefetch accuracy, which is an application characteristic determines
the overall performance benefit from prefetching.

Hardware Prefetching. In the case of hardware prefetching, the future mem-
ory access prediction and the process of initiating requests to prefetch those
elements are carried out by the hardware at runtime. Due to costs and limits on
delay, hardware prefetchers generally implement a simple stride based prefetch-
ing or a stream based prefetching. A very aggressive hardware prefetcher would
typically predict a large number of future memory requests and prefetch them.
In comparison, a prefetcher with a lower aggressiveness level would be more
conservative, predicting and issuing fewer prefetches. In this paper, we refer to
and implement a stream prefetcher [28] [6] [24]. Aggressiveness level of a stream
prefetcher is defined by two parameters: prefetch distance and prefetch degree
[28] [6] [24]. Prefetch Distance dictates how far ahead of the demand access
stream the prefetcher can issue prefetch requests, and Prefetch Degree deter-
mines how many cache blocks to prefetch when there is a cache block access to
a monitored memory region.

Software Prefetching. In this case, the future memory access prediction is
made statically, at compile time or at the coding time, and specific instruc-
tions are inserted into the code body to prefetch those predicted elements at
the time of execution. Some applications render themselves to easy compile time
prediction in which case the software prefetching is very effective [20] [18] [19].
Software prefetching also has the ability to employ complex and time consuming
prefetching algorithms since the process is done apriori at compile time. Hard-
ware prefetching, on the other hand, employs simpler prediction mechanisms but
does well where software prefetching fails to analyze the code, e.g., as in the case
of pointer-based applications.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 313

2.2 Experimental Setup

Core architecture UltraSparc 3, 3.1 GHz
Operating system Sun Solaris 9
L1 caches private, 3 cycle latency, direct-mapped
L2 cache shared, 15 cycle latency, 16 way associative
Memory latency 260 cycles
Hardware Prefetcher 64 stream prefetcher per core, 4 prefetch levels
DRAM controller demand-prefetch equal priorities, on-chip,

128 entry req buffer, FR-FCFS
DRAM chip refer to Micron DDR2-800 [2]

Fig. 1. Default system parameters used

We model the off-
chip memory band-
width and implement
the prefetching infras-
tructure for multicores
using a Simics [3] based
in-house module. The
base system architec-
ture simulated in our

evaluations is a four-core multicore machine with a shared L2 cache and a shared
off-chip memory bandwidth. The shared L2 cache is assumed to be a partitioned
cache (i.e., its cache ways are distributed evenly across applications though in
principle we could use any partitioning strategy). The cores simulated in this
system are based on the UltraSparc 3 architecture [5]. The main architectural
details of the simulated system are shown in the table given in Figure 1. In the
evaluation of the proposed dynamic scheme later, we employ execution intervals
of 10 million instructions. The hardware prefetcher used in this paper is a stream
prefetcher [28] [6] [24] with 64 streams per prefetcher.

Benchmarks. For all the motivational and evaluation purposes, we use the ap-
plications from the SPEC 2006 benchmark suite [1], and construct our workloads
from the subsets of these applications. To enable software prefetching on the ap-
plications, they are compiled on a SUN compiler with the highest optimization
flag set.

Terminology. In this paper, by “prefetch level”, we mean the “aggressiveness
level” of the prefetcher. All types of prefetching mentioned in this paper are
implemented for the last level of cache in a multicore. Whenever we refer to
“software prefetching” in this paper, we mean the handling of the software-
inserted prefetch instructions in the hardware. We do not propose or implement a
new software prefetching algorithm. We compile the applications using a software
prefetch enabled compiler that inserts prefetch instructions into the executable.
We only refer to the way these instructions are handled in the hardware.

3 Empirical Motivation

3.1 Prefetching Benefits

The goal of this section is to compare the performance of various prefetching
techniques with different aggressiveness levels across different applications.

Hardware Prefetching. Figure 2 plots the performance of our applications
when different levels of prefetching are enabled compared to the case of no
prefetching. We experimented with four different prefetch levels: no prefetch-
ing, level 1, level 2 and level 3. Level 1 prefetching has a prefetch distance of
4 and prefetch degree of 1. Prefetch distance and prefetch degree of level 2 are

314 S.P. Muralidhara, M. Kandemir, and Y. Zhang

���

���

���

���

���

���

�
	

�
�

�
�
�
	

���������� ������� �

������� ������� !

Fig. 2. Performance comparisons of
different levels of hardware prefetch-
ing. The performance values are nor-
malized to that of the no prefetching
case.

"#$

%#%

%#&

%#'

%#(

%#$

)
*
+,
-
+.
/
0
1
*

234567689: ;<=6>6? @

A< A<B ;< =6>6?@

Fig. 3. Performance
comparisons of software
prefetching, hardware level
3prefetching,andbothwith
the case of no prefetching.
The performance values are
normalized to that of the no
prefetching case.

16 and 2
respectively,
and those
of level 3
are 64 and
4. In this
set of ex-
periments,
software
prefetching
is disabled,
which means
the prefetch
instructions
are ignored as no-ops. Since we are first interested in studying the performance
benefits of prefetching in isolation, the performance effects due to bandwidth
constraints are not considered in these experiments. From Figure 2, we can infer
that while some applications are prefetch sensitive and, therefore benefit from
more aggressive levels of prefetching, others do not exhibit large performance
gains as prefetch levels are increased. In the above scenario, the prefetch lev-
els can be reduced on applications that are not very prefetch-sensitive without
a high performance penalty. On the flip side, increasing the prefetch levels on
prefetch-sensitive applications can be very beneficial.

Software Prefetching. Figure 3 compares software prefetching, hardware level
3 prefetching, combined software-hardware prefetching against the no-prefetching
case. One can see from this plot that, for some applications, hardware prefetch-
ing does much better than software prefetching, whereas for some others, it is
the other way around. More interestingly, in some cases, enabling both hardware
and software prefetching is much better than enabling just one of them, as in the
case of gcc and perl. In some other cases, although effective individually, enabling
both does not do any better than enabling only one of them, as in the case of
astar and h264. Therefore, in a multicore system, some applications perform
better when both hardware and software prefetching are enabled, while some
others perform equally well with just one of them enabled.

3.2 Off-Chip Bandwidth Effects

In this section, we study the effect of prefetching on off-chip bandwidth pres-
sure. We employ an off-chip bandwidth of 6.4 GB/s in these experiments. For
this purpose, we selected a workload of four applications: lbm, mcf, libquantum,
and milc. These four applications are executed on a four-core processor (one
application per core) with a shared, partitioned cache, and a shared off-chip
bandwidth.

One core prefetching. In the first run, we enabled prefetching only on the
first core which executed lbm, while disabling prefetching on all other cores. We

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 315

���

���

���

���

�
�
	

��
�
��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�
��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�
��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
�
�
��
��
��

�
�
	

��
�
��
��
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
�
��
��
��
��

��� � ! �"�# �"�

$
%
&'
(
&)
*
+
,%

"-!"-"./ 0123456

Fig. 4. Performance comparisons of
different prefetching schemes with
both the infinite bandwidth case
and a bandwidth of 6.4 GB/s, when
prefetching is enabled only on core
1 (lbm) and disabled for all others

789
78:
;8<
;8=
;8>

?
@
AB
CD
CE
FG
HI
J

KL

ML
NC
OC
PQ

ML
NC
OC
PR

ML
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

ML
NC
OC
PQ

ML
NC
OC
PR

ML
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

M
L
NC
OC
PQ

M
L
NC
OC
PR

M
L
NC
OC
PS

KL
T
ML
NC
OC
PS

?
@
AB
CD
CE
FG
HI
J

KL

M
L
NC
OC
PQ

M
L
NC
OC
PR

M
L
NC
OC
PS

KL
T
ML
NC
OC
PS

UVW WXY UZV[WZUX

\
]
_̂̀

â
b
c
d]

ZeYZeZfg hij klmn

Fig. 5. Performance comparisons of different
prefetching schemes with both the infinite
bandwidth case and a bandwidth of 6.4 GB/s,
when prefetching is enabled on all cores

fg

hg

ig

jg

klm mno kplq mpkn

r
s
t
u
vw
xx
yz

{
|}
}}
}}

~� ����������� ��
�� ����� � �� ����� �
�� ����� � �� � �� ����� �

Fig. 6. Contribu-
tions to the bus
traffic by different
applications

�

���

���

���

���

���

�
�
�
�
�
��
��
�
��
��
�

�
���
��
�
�

 ¡¢ ¢£¤
 ¥¡¦ ¢¥ £

Fig. 7. Bandwidth stalls (in
cycles) suffered by applica-
tions as the prefetching level
is increased

¦
¦§¨
¦§©
¦§�
¦§�
�

�§¨

��� ��� �	�
 �	��

�
�
�
��
�
�
��
�

�
������	��	�	�� ��������	���

Fig. 8. Comparison of
equal priorities for prefetch
and demand requests
versus a scheme where
demand requests are pri-
oritized over prefetch
requests in terms of the
number of useful prefetches

experimented with software prefetching, three levels of hardware prefetching,
and a combined hardware-software prefetching scheme. The results in Figure 4
show that lbm, which executed on core 1, achieves a performance benefit when
compared to the case of no prefetching. However, its benefits are reduced due to
the limited bandwidth constraint. Further, it degrades the performance of the
other applications due to the additional requests (prefetch requests from core 1)
and the resulting bandwidth stalls. When using the most aggressive prefetching,
the performance degradations on the other cores are significant. We also repeated
this by enabling prefetching on core 2, core 3 and core 4 alone, and observed
similar results. Therefore, prefetching can have different degrees of performance
degradation due to bandwidth constraints. Further, aggressive prefetching by one
core can adversely impact the performance of other applications due to bandwidth
contention and the resulting delays.

All cores prefetching. We also considered a more realistic execution scenario,
where different applications prefetch memory elements individually and the cores
share the available off-chip bandwidth. In this case, prefetching is enabled on all

316 S.P. Muralidhara, M. Kandemir, and Y. Zhang

the cores. In Figure 6, we plot the comparative contributions to the bus traffic
by the applications when prefetching is enabled on all the cores. The bus traffic
increases rapidly when the prefetch level is increased for some applications, while
for others, the increase is not that steep (for instance milc). Figure 7 shows how
this increase in bus traffic translates into stalls due to limited bandwidth. Note
that, even if the bus traffic increase is small, bandwidth stalls can be significant.
The above two graphs plot absolute values of bus traffic increase and bandwidth
stall cycles. Figure 5, on the other hand, illustrates how these factors affect the
performance of applications when different prefetch variants are enabled for both
the infinite bandwidth case and a more realistic case of 6.4 GB/s bandwidth.
In the limited bandwidth case, prefetching aggressively in a bandwidth unaware
manner on all the cores results in some performance improvement only on core
3 (libq). In all other applications/cores, performance degradation due to lim-
ited bandwidth completely wipes out all the benefits from prefetching and in
some cases results in a net performance degradation. This effect increases with
increasing prefetch levels. Also, for some applications, while absolute values of
bandwidth stalls in Figure 7 increase sharply with prefetch levels, performance
degradation is not that steep. Therefore, some applications are more bandwidth-
stall resistant (tolerant). In modeling the performance effects later in Section 4.3,
we take this into account. We do not just consider prefetch accuracies and the
resulting bus traffic as the basis as done previously [28] [11] but also consider
the bandwidth stalls and the actual impact of bandwidth stalls on application
performance as the basis.

To summarize, while prefetching aggressively can improve performance, it can
also hurt the performance due to bandwidth constraints. Therefore, it is impor-
tant to enable prefetching without increasing bandwidth delays extensively.

3.3 Prefetch Request Priority

Increase in bandwidth delays due to prefetching typically occurs only if prefetch
requests are treated on par with demand memory requests. If normal load/store
(demand) memory requests have a higher priority than the prefetching requests,
then additional bus traffic due to prefetch requests may not lead to any addi-
tional bandwidth delay. It is to be noted here that bandwidth delays might still
be present in the system but those delays are due to the normal (demand) mem-
ory requests, and will be present irrespective of whether prefetching is turned on
or not. Prioritizing demand requests and prefetching requests equally leads to
increased performance improvement from prefetching as can be seen in Figure 8.
This is due to the fact that if the prefetch requests have a lower priority than
the demand requests, then the prefetch requests can get delayed inordinately
and these increased bandwidth delays can render most of prefetch requests use-
less (since prefetched data would be brought into the cache late). This leads
to decreased prefetch efficiency and, therefore, decreased positive performance
impact of prefetching [16]. Therefore, our proposed scheme employs equal prior-
ities, and tries to keep the number of useful prefetches high, while at the same
time, mitigating the additional bandwidth stalls due to prefetch requests.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 317

4 Bandwidth Aware Prefetching

Figure 9 summarizes the operation of our proposed scheme. A global prefetch
manager makes decisions on whether to increase or decrease the prefetching
levels on the individual cores and the decisions are communicated to the core-
level prefetch manager.

������ ���	�
��

��������������

����������

���������

�����

 !"# $
%"#&'
()*"'

+,,
 !"# -
%"#&'
()*"'

 !"#)
%"#&'
()*"'

Fig. 9. Hierarchical band-
width aware prefetching
scheme that includes a global
prefetch manager and a
set of core-level prefetch
managers

./01 21314 50161789

:;<;=10

>;0?@;01

5016178910

ABCDEFGEHIECDEFGE
JDEKELCM NEOEN

PQRSRTUV
QRWXRYTY

Z/67@;01

5016178910

PQRSRTUV
QRWXRYTY

[\]^YRQTR_
`QRSRTUV
]^YTQXUT]a^Y

ABCDEFGEHIECDEFGE
JDEKELCM NEOEN

Fig. 10. Details of a core-
level prefetch manager,
which controls the prefetch
levels of both hardware and
software prefetchers of a
core

The details on
how these deci-
sions are made
are presented in
Section 4.3. After
the global man-
ager directs a core-
level prefetch man-
ager to either in-
crease or decrease
the prefetch level
of the core, the
core-level manager
applies the prefetch-level changes locally (i.e., to the core it is attached to), as
described in Section 4.1. This prefetch management scheme works dynamically,
making decisions on prefetch level changes and applying those changes at the
end of each execution interval. This scheme is also history based, in the sense
that all the relevant statistics, which include the total bandwidth stall-time and
the prefetch efficiency counters of individual cores, collected during an execution
interval are used to make decisions for the next execution interval.

Implementation. Hardware support is needed to maintain the performance
counters. The prefetch management scheme itself is implemented in the runtime
system/OS, which reads these hardware performance counters.

4.1 Core-Level Prefetch Manager

The core-level prefetch manager sets and enforces the prefetch aggressiveness
level at the core level. It can either increase or decrease the prefetch level based
on the directions from the global prefetch manager.

increase prefetch level()
begin

accuracyHW =
prefhitsSW

prefetchesHW

accuracySW =
P refhitsSW

prefetchesSW
if accuracyHW > accuracySW

//Increase HW prefetch level
increase prefetch distanceHW
increase prefetch degreeHW

else
//Increase SW prefetch level
increase prefetch distanceSW
increase prefetch degreeSW

end

Fig. 11. Prefetch level increase func-
tion

The core-level prefetch manager han-
dles the changes in prefetch levels of the
hardware prefetcher similar to that pro-
posed in [11]. In addition to the hard-
ware prefetcher, our proposed prefetch man-
ager also employs a software prefetcher,
which is an engine that handles all the
software prefetch instructions issued by the
core (compiler-inserted or programmer in-
serted). A prefetch instruction, when is-
sued, results in a prefetch request. All such

318 S.P. Muralidhara, M. Kandemir, and Y. Zhang

prefetch requests are routed through our proposed software prefetcher. When
the global prefetch manager directs the core-level manager to either increase
or decrease the prefetch level, the core-level manager can increase or decrease
the prefetch level of either the hardware prefetcher or the software prefetcher.
What we mean by “prefetch levels” in hardware and software prefetchers is ex-
plained later in detail. The role of the core-level prefetch manager in controlling
the prefetch levels of both hardware and software prefetches is illustrated in
Figure 10. The global prefetch manager either increases or decreases prefetch
level, and does not set absolute values. The decision of whether to change the
prefetch level of the hardware prefetcher or the software prefetcher is determined
by calculating the corresponding prefetch accuracies. More accurate prefetcher is
always preferred. This way, we prioritize either hardware or software prefetching
based on their accuracies (the prefetch increase function is shown in Figure 11,
prefetch decrease function is on similar lines).

4.2 Prefetch Levels

Hardware Prefetch Levels. We implement a stream prefetcher for hard-
ware prefetching [6]. As mentioned earlier, the aggressiveness level of a stream
prefetcher is defined by two parameters: prefetch distance and prefetch degree.
Our hardware prefetcher design is similar to that implemented in [28] and further
details on implementation can be found in [28] [6] [24]. In essence, the prefetch
distance determines how far ahead of the memory stream the prefetch requests
are issued and the prefetch degree determines how many prefetch requests are
issued each time. We implement four prefetch levels in this work: no prefetch,
low prefetch, medium prefetch, and high prefetch. No prefetch level performs no
prefetching. Low prefetch level performs prefetching with a prefetch distance
of 4 and prefetch degree of 1. Medium prefetch performs prefetching with a
prefetch distance of 16 and a prefetch degree of 2, while the high prefetch level
has prefetch distance of 64 and prefetch degree of 4.

Software Prefetch Levels. The software prefetcher implements the software
prefetch levels by filtering the prefetch requests. As mentioned before, the soft-
ware prefetcher receives all the prefetch requests that are issued by the software
(compiler inserted or programmer inserted) instructions. The four aggressiveness
levels of software prefetching are: no prefetch, low prefetch, medium prefetch, and
high prefetch. When the level is set to no prefetch, all the prefetch requests are
dropped. In the case of low prefetch level, two in every four prefetch requests are
dropped, while only one in every four is dropped in the case of medium prefetch
level. When the level is set to high prefetch, all prefetch requests coming from
the software inserted prefetch instructions are issued by the software prefetcher
without dropping any of them.

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 319

4.3 Global Prefetch Manager

As shown in Figure 9, the two main inputs to the global prefetch manager are
the total bandwidth stall-time and the prefetch statistics.

Bandwidth stall-time. A demand request stalls in the memory controller
queue if there are other requests ahead which are being serviced or waiting to be
serviced. While the prefetch requests may also wait, they do not contribute to
performance degradation (a higher wait-time for prefetch requests can of course
limit the benefits due to prefetching). We define “bandwidth stall” as the total
stall-time (in cycles) experienced by the demand requests in a given execution
interval. It is the sum of all individual demand request stall-times in that exe-
cution interval. Observe that “stall-time” in this context refers to wait-time in
the queue due to bandwidth constraint. It does not include the time for a de-
mand request to get serviced (to perform the memory operation). We compute
bandwidth stall using a simple counter in the memory controller. Since the off-
chip bandwidth is a single resource shared across all the cores, bandwidth stall
is a single value, which is the sum of bandwidth stalls of all requests of all cores
serviced by the off-chip bandwidth during the given execution interval.

Prefetch Statistics. As described in Section 4.1, each core has a hardware
prefetcher and a software prefetcher associated with it. We define “prefetchesi”
to be the total number of prefetches issued by core i. It is the sum of the number
of prefetches issued by the hardware prefetcher and those issued by the software
prefetcher. The metric “prefhitsi” is defined as the total number of prefetch
requests (both hardware and software) that turned out to be hits for core i. These
values are calculated using the prefetch bit of the cache line and by employing
counters in the prefetchers.

Benefit Estimation. The performance improvement on core i due to prefetch-
ing is quantified by a parameter called “benefiti”. This improvement is specif-
ically due to the avoidance of a fraction of core i cache misses. The metric
benefiti is computed for each core i using the prefetch statistics collected dur-
ing the execution interval as follows: benefiti = Reduction in cache miss stall timei

instructionsi
.

Therefore, accounting for this reduction in cache misses, we obtain:
benefiti = (misses oldi−misses newi)×avg miss penalty

instructionsi
= prefhitsi×avg miss penalty

instructionsi
,

where instructionsi is the number of instructions executed in the current execu-
tion interval, misses oldi is the estimated number of cache misses if prefetching
was not enabled, misses newi is the number of cache misses with prefetching,
and avg miss penalty is the average cache miss penalty in cycles.

Cost Estimation. Prefetching leads to additional memory requests (in addi-
tion to the normal load/store demand requests). The measure of performance
degradation suffered by core i due to memory bandwidth stall-time resulting
from these prefetch requests it issues is quantified by the metric costi. Due to
the fact that memory bandwidth is shared, the additional prefetches issued by
core i can cause bandwidth stalls for not only core i but also for all other cores
as well. As a result, costi should take all these stalls into account. Firstly, the

320 S.P. Muralidhara, M. Kandemir, and Y. Zhang

total bandwidth stall caused by the prefetches issued by all the cores can be esti-
mated as below: total prefetch stall = Σn

i=0prefetchesi

total requests × bandwidth stall, where
Σn

i=0prefetchesi is the sum of prefetches issued by all the cores during the in-
terval, total requests is the total number of requests that reached the memory
controller during the execution interval (i.e., sum of the demand and prefetch
requests), and bandwidth stall is the total bandwidth stall time as defined ear-
lier. We can now estimate the stall caused by core i (due to the prefetches issued
by core i) as follows: prefetch stalli = prefetchesi

Σn
i=0prefetchesi

× total prefetch stall.
For each core i, we now have prefetch stalli, which is the estimated absolute
bandwidth stall-time caused by the prefetch requests issued by core i. Since
the off-chip bandwidth is a shared resource, prefetch stalli, caused by core i
can affect demand requests of any of the cores. We define band stalli,j as the
bandwidth stall caused by the prefetches from core i on the performance of core
j (on the demand requests of core j). This value estimates the fraction of the
bandwidth stall of core j, due to the prefetch requests issued by core i. We can
estimate band stalli,j as follows: band stalli,j = demandj

Σn
i=0demandk

× prefetch stalli,
where demandj is the total number of demand requests issued by core j, which
in this case is approximately equal to the number of L2 cache misses on core j,
Σn

i=0demandk is the total number of demand requests issued by all cores.These
band stalli,j values estimated above are the absolute stall times in cycles and
not the impact on performance. Therefore, we now estimate costi, which is a
measure of the total performance degradation caused by the prefetches issued
by core i on the performance of all cores including core i. Note that performance
degradation considered above is just the effect of bandwidth stalls. The value
of costi can be estimated as follows: costi = Σn

j=0
band stalli,j

instructionsj
. It is important

to note that, we do not consider prefetch accuracies or the absolute bandwidth
stalls in our estimation of benefiti and costi values. We estimate both these
values in terms of the net effect on the application performance.

Algorithm. The global prefetch manager manages the prefetch levels for each
core with the goal of improving the overall performance gains due to prefetching.
In order to do so, global manager employs a cost/benefit analysis based scheme.

global prefetch manager()
begin
for each execution interval:

read bandwidth stall
for each i from 0 to numcores:

read instructionsi, prefetchesi and prefhitsi
compute benefiti and costi
if (benefiti − costi) >= costi × α then

//increase the prefetch level of core i
core level manager i.increase prefetch level()

else if (benefiti − costi > 0 and
benefiti − costi < costi × α)

//do not change the prefetch level of core i
else (benefiti − costi) <= 0 then

//decrease the prefetch level of core i
core level manager i.decrease prefetch level()

end for
end

Fig. 12. The algorithm executed by the global
prefetch manager

A prediction based dy-
namic scheme is employed
by the global manager, i.e.,
the algorithm works by com-
puting and making prefetch
level changes for cores at
the end of each execution
interval. To begin with, all
cores prefetch at the high-
est aggressiveness levels. The
benefiti and costi values are
estimated for every core i at
the end of each interval after

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 321

reading the relevant performance counter values. For each core i, the prefetch
level is increased if the benefiti−costi is greater than the costi×α (i.e., if benefiti
is greater than costi by α percentage). If, on the other hand, the benefiti −costi
is lower than the costi × α but greater than zero, then the prefetch level is left
unchanged. Finally, if benefiti is less than the costi value, then the prefetch level
is decreased for core i. The global prefetch manager enforces the prefetch level
change for a given core i by directing the core-level manager of the correspond-
ing core. The reason for reducing the prefetch level for a given core is obvious
since the estimated benefit is lower than the estimated cost. On the other hand,
increasing the prefetch level is more nuanced. The level is increased only if the
estimated benefit is greater than the cost by a pre-defined threshold value (α).If
the benefit is not greater than the cost by α percentage, the prefetch level is left
unchanged. This algorithm can reduce the prefetch level of a core i gradually
to zero (which means no prefetches are issued) when benefiti continues to be
lesser than costi after continuous prefetch level decrements. In this case, when
the prefetch level is zero, benefiti will always be zero and the prefetch level will
potentially be stuck at zero without being increased. To avoid this scenario, the
core-level prefetch manager increments the prefetch level of a core to level 1 if the
prefetch level is stuck at zero for more than two execution intervals. In this al-
gorithm, since we consider benefit and cost values in terms of estimated changes
in application performance, the goal is always to improve the performance of
applications and improve the overall system throughput.

α values. The α values are tunable to make the prefetching scheme more con-
servative or more aggressive. We experimented with a lot of α values and finally
determined that a value of 0.2 is reasonable. Therefore, in our implementation,
if the benefit exceeds the cost by 20%, we increase the prefetch level.

5 Experimental Evaluation

Our evaluation setup is described in Section 2. A four-core machine with a
shared, partitioned L2 cache was modeled as the underlying multicore archi-
tecture. We built several workloads that consist of four applications, each from
the SPEC 2006 suite [1]. In all our evaluations, we collect results and data for
a period of 1 billion cycles. Cache is however warmed up for a period of 500
million instructions prior to collecting results. We consider execution intervals
of 10 million instructions. Our proposed prefetching scheme is called Dyn Band
throughout the experimental section.

Average Throughput. Figure 13 presents the throughput gain acheived by
our proposed scheme (Dyn Band) over other prior prefetching schemes when
averaged over 10 different workloads we experimented with. Different work-
loads might benefit differently from the prior prefetching schemes. Our proposed
scheme recognizes this and enables only those prefetching schemes and levels that
benefits the workloads, also taking into account the bandwidth pressure exerted
by the extra prefetch memory requests. Our proposed scheme yeilds an average

322 S.P. Muralidhara, M. Kandemir, and Y. Zhang

system throughput gain of about 8% over the best of the previous prefetching
schemes.

���
���
���
�

���
���

�
	

�
�

��
�

�
�
�

Fig. 13. Comparison
of workload through-
put averaged across
multiple workloads

���

���

�

���

���

�
�
��
�
�
�
�
�

Fig. 14. Throughput
comparison for the
workload (lbm, mcf,
libquantum, and milc).

!"#

$

$"%

$"&

'())*+ ',(-),'*

.
/
01
2
03
4
5
6/

789:;< => ?>@ ?>A
?>B =>C ?>B DEFGHIFJ

Fig. 15. Performance com-
parisons of the applications
in the workload (lbm, mcf,
libquantum, and milc).

Workload Instance. In order to understand our proposed scheme in more
detail, we now present the results for a single workload instance that consists of
lbm, mcf, libquantum, and milc. The corresponding throughput results are shown
in Figure 14. In this case, our proposed dynamic bandwidth-aware prefetching
scheme improves throughput by 15% over the no prefetching scheme. Among the
other prefetching schemes, hardware level 2 prefetching does better than others
because of lower pressure on off-chip bandwidth. Our dynamic bandwidth-aware
scheme has a throughput gain of about 8% over this hardware level 2 prefetching.
Figure 15 shows the individual application performance values. We observe that
the application milc gains about 40% in performance over the no prefetching
scheme and mcf gains about 20%.

Dynamics of the system. In order to analyze the working of our proposed
scheme, we consider the execution of a workload comprising of bzip2, libq, sphinx
and gromacs applications, and focus on the performances of libq and gromacs.
We track how our scheme works dynamically, and adjusts the prefetch levels of
these two applications based on their benefit and cost values (note here that our
scheme works and adjusts the prefetch levels of all four applications; we focus
on just two for clarity).

Figures 16 and 17 plot the observed benefit and cost values for these two
applications for 11 execution intervals, when our scheme is used. In the case of
libq, the benefit value is consistently higher than the cost value, while in the case
of gromacs, the values are very close together. In order to study how our scheme
dynamically changes the prefetch levels in accordance with the above values, we
plot the benefit−cost

cost values for the two applications for the same 11 execution
intervals in Figure 18. Recall that, in the global prefetch management algorithm
presented earlier in Figure 12, the equation benefiti − costi > costi × α is used
to decide whether to increase the prefetch level or not. If the value benefit−cost

cost
is greater than α (0.2), then the prefetch level is increased and so on. Figure 19
plots the prefetch level changes made by our proposed scheme for both the
applications. Note that, at execution interval 3, the prefetch level of gromacs

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 323

�

���

���

���

���

���

��	

� � �
 � � � 	 � ����

�������� ���������

������� !"�

Fig. 16. Benefit
and cost values
of libq during
execution

#

#$#%

#$#&

#$#'

#$#(

#$)

#$)%

) % * & + ' , (-)#))

./0123456 �630�����

��	�
�� ���

Fig. 17. Benefit
and cost values of
gromacs during
execution

����
�

���
�

���
�

���
�

���
�

� � � � � ��

�
�
�

�
!
�
"#
�

$%&'()*+, -,)&./012

3456789 :;<=

Fig. 18. Net
benefit values of
libquantum and
gromacs during
execution

7

8

9

:

;

<

8 : < = > 88

?
@A
BA
CD
E
FA
G
A
HI

JKLMNOPQR SROLTUVWX

YZ[\]^_ `abc

Fig. 19. Prefetch
levels of libquan-
tum and gromacs
during execution

is reduced to 2 because the benefit − cost value is less than zero (circled in
Figures 18 and 19). Also, at execution interval 10, when benefit−cost

cost becomes
greater than 0.2 for gromacs, the prefetch level is increased to 4. However, it is
reverted back because it was not highly benefitial. On the flipside, the prefetch
level of libq is maintained at 4 since its benefit−cost

cost values are consistently greater
than 0.2.

Sensitivity analysis. We increased the memory bandwidth from 6.4 GB/s to
12.8 GB/s and executed the workloads. An average throughput improvement of
about 7% over the best other prefetching scheme was observed. Therefore, even
with higher bandwidth, our scheme achieves significant throughput improve-
ment. We also experimented with different α values and found that a value of
0.2 provides the right balance.

6 Related Work

Hardware Prefetching. Hardware-controlled prefetching is an efficient way to
implement prefetching [15] [7] [8] that tries to mitigate the negative effect of
cold misses. Sequential prefetching automatically prefetches several consecutive
data blocks into the cache upon a miss in the cache [9] [10]. Palacharla and
Kessler investigate advanced stream buffers and filtering techniques to enhance
the prefetching efficiency [24]. Hur and Lin discuss a dynamic stream detection
technique that adapts the aggressiveness levels of prefetching in order to improve
prefetching performance [13].

Software Prefetching. Seminal work related to software prefetching was au-
thored by Mowry et al in [20], where they propose to use software controlled
prefetch instruction insertion to enable prefetching. Other software prefetching
schemes include [18] [20].

Prefetch Control. Srinath et al propose to use feedback control to improve
the positive impact of prefetching and mitigate the adverse impact of harmful
prefetches [28]. In [11], Ebrahimi et al investigate a control mechanism that can
dynamically adjust the prefetch aggressiveness levels.

324 S.P. Muralidhara, M. Kandemir, and Y. Zhang

Off-Chip Bandwidth Studies. Rixner et al [27] introduce a scheduling pol-
icy that favors requests that hit in the row buffer over other requests. Nesbit
et al suggest to prioritize memory requests of applications in accordance to their
QoS requirements [23]. Rafique et al propose to adaptively change the fraction
of memory bandwidth allocation for each thread [25]. In [14], Ipek et al study
a machine learning approach in which a reinforcement learning based scheme is
used to dynamically adapt scheduling decisions in the memory controller. Mutlu
and Moscibroda proposed a stall time fair memory access scheduling in [21] and
a parallelism-aware batch scheduling scheme in [22]. Liu et al study the effects
of memory bandwidth partitioning on system performance [17].

Prefetching and Off-Chip Bandwidth. Lee et al propose to dynamically
increase and decrease the priorities of prefetch requests at the memory controller
in order to improve the benefits due to prefetching and decrease the penalties
of inaccurate prefetchers [16]. In [12], Ebrahimi et al introduce a cooperative
hardware/sofwtare approach to prefetch linked date structures in a bandwidth-
efficient way.

In this paper, we considered the off-chip bandwidth as an important con-
straint, based on which, the prefetching levels of different cores are adjusted
such that the prefetch benefits are improved. We considered the off-chip band-
width stalls instead of the inter-core interferences [11] as the constraint. We did
so because inter-core interferences are not prefetch specific and can result from
demand accesses as well. We also modeled the benefits and costs of prefetching
in terms of performance changes in this work, which makes our scheme through-
put driven, and evaluated the comparative benefits of hardware and software
prefetching.

7 Concluding Remarks

In this paper, we proposed a smart prefetch management scheme that exploits
the performance benefits of prefetching while mitigating the performance degra-
dation due to bandwidth stalls. Our proposed scheme is very effective in practice
yielding a performance benefit of up to 8% in throughput over a bandwidth un-
aware prefetching strategy.

References

1. http://www.spec.org/spec2006
2. Micron: 1GB DDR2 SDRAM component: MT47H128M8HQ-25,

http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDr2.pdf
3. Magnusson, P.S., et al.: Simics: A full system simulation platform. Computer 35(2),

50–58 (2002)
4. Xie, Y., Loh, G.H.: Dynamic Classification of Program Memory Behaviors in

CMPs. In: CMP-MSI (2008)
5. Hetherington, R.: The UltraSparc T1 processor. SUN (2005)

http://www.spec.org/spec2006
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDr2.pdf

Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores 325

6. Tendler, J., et al.: Power4 System Microarchitecture. IBM Technical White Paper
(October 2001)

7. Baer, J.-L., Chen, T.-F.: An effective on-chip preloading scheme to reduce data
access penalty. In: Proc. SC (1991)

8. Charney, M.J., Puzak, T.R.: Profetching and memory system behavior of the
spec95 benchmark suite. IBM J. Res. Dev. (1997)

9. Dahlgren, F., et al.: Fixed and adaptive sequential prefetching in shared memory
multiprocessors. In: Proc. ICPP (1993)

10. Dahlgren, F., et al.: Sequential hardware prefetching in shared-memory multipro-
cessors. IEEE Trans. Parallel Distrib. Syst. (1995)

11. Ebrahimi, E., et al.: Coordinated control of multiple prefetchers in multi-core sys-
tems. In: Proc. MICRO (2009)

12. Ebrahimi, E., et al.: Techniques for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In: Proc. HPCA (2009)

13. Hur, I., Lin, C.: Memory prefetching using adaptive stream detection. In: Proc.
MICRO (2006)

14. Ipek, E., et al.: Self-optimizing memory controllers: A reinforcement learning ap-
proach. In: Proc. ISCA (2008)

15. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. SIGARCH Comput. Archit. News
(1990)

16. Lee, C.J., et al.: Prefetch-aware dram controllers. In: Proc. MICRO (2008)
17. Liu, F., et al.: Understanding how off-chip memory bandwidth partitioning in chip

multiprocessors affects system performance. In: Proc. HPCA (2010)
18. Mowry, T., Gupta, A.: Tolerating latency through software-controlled prefetching

in shared-memory multiprocessors. J. Parallel Distrib. Comput. (1991)
19. Vanderwiel, S., Lilja, D.: Data Prefetch Mechanisms. ACM Computing Surveys,

CSUR (2000)
20. Mowry, T.C., et al.: Design and evaluation of a compiler algorithm for prefetching.

In: Proc. ASPLOS (1992)
21. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip mul-

tiprocessors. In: Proc. MICRO (2007)
22. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: Enhancing both

performance and fairness of shared dram systems. In: Proc. ISCA (2008)
23. Nesbit, K.J., et al.: Fair queuing memory systems. In: Proc. MICRO (2006)
24. Palacharla, S., Kessler, R.E.: Evaluating stream buffers as a secondary cache re-

placement. In: Proc. ISCA (1994)
25. Ebrahimi, E., et al.: Fairness via source throttling: a configurable and high-

performance fairness substrate for multicore memory systems. In: Proc. ASPLOS
(2010)

26. Rafique, N., et al.: Effective management of dram bandwidth in multicore proces-
sors. In: Proc. PACT (2007)

27. Rixner, S., et al.: Memory access scheduling. In: Proc. ISCA (2000)
28. Srinath, S., et al.: Feedback directed prefetching: Improving the performance and

bandwidth-efficiency of hardware prefetchers. In: Proc. HPCA (2007)

Unified Locality-Sensitive Signatures for

Transactional Memory

Ricardo Quislant, Eladio D. Gutierrez, Oscar Plata, and Emilio L. Zapata

Department of Computer Architecture, University of Málaga,
ETSI Informática, Campus Teatinos, Málaga, E 29071, Spain

{quislant,eladio,oplata,zapata}@uma.es

Abstract. Transactional memory systems coordinate the execution of
concurrent transactions by committing non-conflicting ones. Transaction
conflicts are detected by recording on-the-fly the memory locations is-
sued by the threads. Some implementations use two per-thread Bloom
filters (signatures), one for reads and another for writes, for that pur-
pose. Signatures summarize sets of memory addresses accessed inside a
transaction in bounded hardware. However, fixed-sized hardware intro-
duces the address aliasing problem that results in false positives during
the conflict checking process.

It is known that the false positive rate increases with the size of the
transactions, which has a strong negative impact in the performance
of their concurrent execution. In a previous work, authors developed a
technique with the aim of reducing the probability of false positives by
exploiting spatial locality. In this paper we propose a new technique
based on joining the two Bloom filters into a single one and partially
sharing the hash function mappings for reads and writes. This unification
technique is combined with the locality-sensitive one and it is proved that
the false positive rate is further reduced.

This paper proves that unified locality-sensitive signatures improve
the execution performance of large concurrent transactions in most tested
codes compared to separate signatures, without increasing significantly
the required hardware area and with a small increment of power con-
sumption.

Keywords: Hardware transactional memory, memory locality, signa-
tures, Bloom filters.

1 Introduction

Transactional Memory (TM) [8,7] emerges as an alternative to the conventional
multithreaded programming to ease the writing of concurrent programs. TM
introduces the concept of transaction, a block of computations which appears to
be executed with atomicity and isolation. Transactions replace a pessimistic lock-
based model by an optimistic one which solves the abstraction and composition
problems.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 326–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unified Locality-Sensitive Signatures for Transactional Memory 327

TM systems coordinate the execution of concurrent transactions by commit-
ting non-conflicting ones. A conflict occurs when concurrent transactions access
the same memory location and, at least, one of the accesses is a write. Transac-
tion conflicts are detected by recording on-the-fly the memory locations issued
by the threads. Some TM implementations use two per-thread Bloom filters [1]
(signatures), one for reads and another for writes, for that purpose. Signatures
summarize sets of memory addresses accessed inside a transaction in bounded
hardware. However, fixed-sized hardware introduces the address aliasing problem
(different memory addresses with the same signature representation) that results
in false positives during the conflict checking process. Examples of systems that
use signatures are BulkSC [4], LogTM-SE [19], SigTM [12], FlexTM [17], and
STMlite [11].

It is known that the false positive rate increases with the size of the trans-
actions, and this have a strong negative impact in the performance of their
concurrent execution. In a previous work [14], authors developed a technique
with the aim of reducing the probability of false positives. This technique de-
fines new hash function mappings so that nearby located addresses share some
bits in the Bloom filters, that is, it exploits spatial locality. In this paper we
propose a new technique based on joining the two Bloom filters into a single one
and partially sharing the hash function mappings for reads and writes without
adding significant hardware complexity. The rationale behind this technique is
the uneven cardinality that transactional read/write sets exhibit, where read sets
are usually larger than write sets. As a result, the signature for reads populates
much more than the one for writes and, consequently, the false positive rate for
the read signature may be high while, at the same time, the write filter has still
a low occupation, with negligible false positive rate. This unification technique is
combined with the locality-sensitive one and it is proved that the false positive
rate is further reduced.

We use the Wisconsin GEMS LogTM-SE simulator [10] to implement and
evaluate the performance of the proposed unified locality-sensitive signatures.
Besides, we use CACTI [18] to evaluate the hardware area and power require-
ments. Experimental results show that the proposed approach is able to reduce
the false positive rate and improve the execution performance in most of the
benchmark codes, with an insignificant increase in hardware area and a slight
increase in power consumption.

The rest of the paper is organized as follows. Next section presents a back-
ground on signatures, describing how they are usually designed and implemented,
and a brief review of the related work. In Section 3 we introduce and discuss
our proposed unified signature design, including their implementation, and a
comparison with the separate signature design. Section 4 analyzes the hardware
area and power requirements of our signature designs. In section 5 we show an
analysis of our proposed signatures and we determine the false positive rate in
different cases. Section 6 presents the implementation of unified signatures on
the GEMS simulator, and discusses how our novel signature design may improve
the execution performance. Finally, Section 7 concludes the paper.

328 R. Quislant et al.

2 Background and Related Work

In the context of TM, each concurrent thread uses its signatures to record all the
memory locations issued when executing inside a transaction. These locations
are sorted out into a read set (RS) and a write set (WS). Thus, each thread needs
a pair of private signatures. As they are used for conflict detection amongst con-
current transactions, signatures do not tolerate false negatives (undetected true
conflicts) but may assume a limited amount of false positives (false conflicts).
On the other hand, the RS and WS sizes are unknown in advance, therefore,
signatures should not limit the number of addresses to be tracked. In addition,
test and insertion of an address should be fast operations.

Fulfilling the requirements above, Ceze et al. [5] proposed a signature im-
plementation with per-thread Bloom filters. These filters were devised to test
whether an element is a member of a set in a time and space-efficient way. The
Bloom filter comprises a bit array and k different hash functions that map ele-
ments into k randomly distributed bits of the array. At first, all the array bits
are set to 0. Inserting an element into the Bloom filter consists in setting to 1
the k bits given by the hash functions. Test for membership consists in checking
that those k bits are asserted.

Bloom filters are also known as true or regular Bloom filters. Sanchez et
al. [16] proposed the parallel Bloom filter as a hardware-efficient implementation
of regular Bloom filters. Whereas the regular filter is implemented as a k-ported
SRAM, the parallel one consists of k 1-ported SRAMs, yielding the same or
better false positives rate. The same work concludes that Bloom filters should
include the H3 class of hash functions [3], instead of bit-selection ones [15], since
they are closer to random distribution. However, H3 is more hardware expensive
than bit-selection as it needs an XOR tree per hash bit.

An alternative hardware-efficient implementation of hash functions, Page-
Block-XOR hashing (PBX), has been proposed in [20]. They use the concept of
entropy to find the input bits to the hash functions with high randomness, allow-
ing to reduce the hardware complexity of those functions. Notary also proposes
a technique to reduce the number of asserted bits in the signature, based on seg-
regating addresses into private and shared sets. Then, only the shared addresses
are recorded in the signature. This solution requires support at the compiler,
runtime/library and operating system levels. In addition, the programmer must
define which objects are private or shared.

Recently, Choi et al. [6] proposed adaptive grain signatures, that keep the
history of transaction aborts and dynamically changes the input bit range to the
hash functions based on the abort history. The aim of this design is to reduce
the number of false positives that harm the execution performance.

3 Unified Signature Design

Parallel Bloom filters have been proved to yield similar or better performance
than regular ones and they require less hardware [16] [14]. Consequently, regular
implementation will not be taken into account in this paper.

Unified Locality-Sensitive Signatures for Transactional Memory 329

0110 1010

h0 h1 hk-1
...

0 2m/k

Address
Read Set
Signature

Write Set
Signature

0110 ...

0110 1010

h'0 h'1 h'k-1
...

0 2m/k

Address

0110 ...

(a) Design

h0 h1 hk-1
...

Address

k single-ported SRAMs of 2m/k bits

...

h'0 h'1 h'k-1
...

Address

k single-ported SRAMs of 2m/k bits

...

(b) Hardware

Fig. 1. Parallel Separate Signatures

Unified Signature

01101010

h'k-1

0 2m+1/k

RS Address

1010

hs h's hk-1
...

WS Address

1010

h0

... ...

...hs-1

(a) Design

hs hk-1
...

WS Address

k-s double-ported
SRAMs of 2m+1/k bits

...

h's h'k-1h0

RS Address

hs-1

...

...

s single-ported
SRAMs of 2m+1/k bits

(b) Hardware

Fig. 2. Parallel Unified Signatures

Parallel Bloom filters comprise k arrays of 2m/k bits, each of which is only
indexed by its own hash function. Figure 1 shows the design and implementation
of parallel Bloom signatures. They consist of two separate parallel filters to
record the read set and write set addresses. Parallel filters can be implemented
as single-ported SRAMs, thus saving in hardware area with respect to regular
filters which are implemented as multi-ported SRAMs.

The unified counterpart for the parallel separate signature is depicted in Fig-
ure 2. In this case, the bit array is also partitioned into k smaller arrays but
(2m+1/k)-bit length. Each array is indexed by two hash functions, one for the
read set, h[0,k−1], and the other one for the write set, h′

[0,k−1]. Consequently,
parallel unified filters need 2-ported SRAMs instead of single-ported ones tak-
ing about twice the area of parallel separate filters. To alleviate this problem,
s SRAMs can be made single-ported as Figure 2b shows. This way, an address
inserted as a read address is also inserted as a write and vice-versa.

The motivation behind unified signatures come from Table 1 which shows the
percentage of addresses that have been both read and written inside transactions
for each benchmark (a description of the simulation environment can be found in
Section 6.1) with respect to the total number of addresses (without repetition).
About 50% of locations are both read and written for Bayes, Kmeans and Yada.
Overall, about 30% of total locations addressed by each benchmark has been
both read and written.

In order to work out the value of s a trade off between hardware requirements
and signature performance has to be carried out. On the one hand, if s is set
to k, the unified signature implements k single-ported SRAMs. Thus, such a
signature requires the same hardware than the parallel separate signature but
it is unable to discriminate between read and written addresses and it could
degrade the performance. On the other hand, if s is set to 0, the unified signa-
ture implements k double-ported SRAMs increasing the hardware requirements
but maximizing the probabilities of discrimination between read and written
addresses. Section 6.2 explores every possible scenario.

330 R. Quislant et al.

Table 1. Percentage of ad-
dresses that have been both read
and written inside transactions

Bench % Bench %

Bayes 51.0 Labyrinth 15.3

Genome 16.0 SSCA2 25.0

Intruder 7.1 Vacation 8.4

Kmeans 48.6 Yada 45.0

Table 2. Area (mm2) and dynamic energy per ac-
cess (nJ) requirements of parallel separate and par-
allel unified signatures. 32nm technology. k = 4.

Area Energy

Filter size (2m) 4Kbit 16Kbit 4Kbit 16Kbit

Separate 0.0084 0.0292 0.0020 0.0047

Unified s = 0 0.0191 0.0640 0.0030 0.0081

Unified s = 3 0.0098 0.0331 0.0026 0.0068

Finally, hash functions are implemented as H3 XOR functions [3] that only
comprise a set of XOR gate trees per function. XOR gate trees do not require
significant area and, moreover, they can be replaced by a single line of XOR
gates by using PBX hashing [20].

4 Hardware Evaluation

Table 2 compares the area required by unified and separate signatures for sev-
eral filter sizes. “Filter size” row is the size of one set filter, i.e. 4Kbit means
two filters of 4Kbit (for RS and WS) for separate signatures and one filter of
8Kbit for unified ones. We used CACTI 6.5 [13] to model the SRAMs using
the 32nm technology node. Parallel separate signatures comprise eight single-
ported SRAMs (4 for the RS and 4 for the WS) as k = 4, while parallel unified
s = 0 signatures have four double-ported SRAMs. Separate read/write ports are
used. Parallel unified s = 3 signatures have three single-ported SRAMs and only
one double-ported SRAM. Ports are dual-ended which means that two lines are
required per bitline.

Table 2 shows that parallel separate signatures yield the best area and energy
numbers. Regarding the parallel unified s = 0 signature, it is about twice larger
than the parallel separate signature due to its double-ported SRAMs. The par-
allel unified s = 3 configuration, is the closest to the parallel separate one in
terms of area. It is only a 13% larger because of the double-ported SRAM. How-
ever, parallel unified s = 3 signatures outperforms parallel separate ones as seen
in Section 6.3. Regarding energy, Table 2 shows a 30% increment in dynamic
energy consumption for parallel unified s = 3 signatures.

Concerning the hashing logic area, Sanchez et al. [16] worked out one-fifth of
the SRAM area for 4 XOR hash functions. This area can be halved using PBX
hashing [20] without impact in the performance.

5 False Positive Analysis

Let A be a sequence of addresses, to be inserted in a single Bloom filter of 2m

bits with k hash functions, whose cardinality is n = Card(A). The false positive
probability is commonly calculated [16] [14] as:

pFP(m, k, n) =
(
1 −
(
1 − 1

2m

)nk
)k

. (1)

Unified Locality-Sensitive Signatures for Transactional Memory 331

Eq. (1) can be adapted to the locality-sensitive signature scheme of [14] by
considering two supplementary parameters: f which is the probability of an
address to be local, that is, near to another one in the sequence, and b which
measures the average number of bits asserted by a local reference with respect
to its closest neighbor in the sequence. The value of f will depend on the spatial
locality of the program. The value of b can be estimated as b = 1

2 +2· 14 +3· 18 +4· 18
for the locality-sensitive signatures defined in [14] with k = 4 hash functions.
For such signatures the false positive probability is given now by:

pFP LOC(m, k, n, f) =
(
1 −
(
1 − 1

2m

)n(1−f)k+nfb
)k

. (2)

First, consider separate filters, where the read and write sets are stored sep-
arately, in order to compare their false positive rates to those of the unified
filter. Let us define pR = Card(R−R∩W)

Card(R∪W) and pW = Card(W−R∩W)
Card(R∪W) as the prob-

ability of an address of the sequence being only read or written, respectively,
using the cardinality function of the read (R) and write (W) sets. Consequently,
n = Card(R∪W). Also an address in the sequence can be both read and written
with probability pRW = Card(R∩W)

Card(R∪W) . Therefore, the false positive probability in
each filter, assuming locality-sensitive signatures, can be expressed as:

pread
FP LOC =

(
1 −
(
1 − 1

2m

)n(pR+pRW)k̄
)k

, pwrite
FP LOC =

(
1 −
(
1 − 1

2m

)n(pW +pRW)k̄
)k

,

(3)
where k̄ = (1 − f)k + fb ≤ k is the average number of hash insertions in the
locality-sensitive scheme.

The effective false positive rate will finally depend on how many checks take
place on each separate filter. This way, a mathematical expectation of the false
positive rate for the separated locality-sensitive signatures can be expressed as:

E[pSEPARATE
FP LOC (m, k, n, f)] = cRpread

FP LOC + cW pwrite
FP LOC. (4)

Here cR and cW denote the probability of each filter being checked during the
sequence of references. This checking pattern is directly linked to the way in
which the threads inspect the potential data dependencies. It remains unknown
until run-time, being very dependent on the parallelization strategy and the
input data. Other important issues having influence on the checking pattern are
the coherence protocol and the abort/resume policy of transactions.

Regarding unified filters, Eq. (2) is still valid as long as the k hashing functions
used by reads and writes are disjoint. To make a fair comparison, the size of the
unified locality-sensitive filter must be the sum of the sizes of the separate filters.
Thus, the false positive probability for this unified locality-sensitive filter is given
by

pUNIFIED
FP LOC (m, k, n, f) = pFP LOC(m + 1, k, n(1 + pRW), f). (5)

332 R. Quislant et al.

In Table 3 several scenarios are shown for different values of the parameters
defined above. Eqs. (4) and (5) have been evaluated with high and low values
for the given parameters: locality (f), only read addresses (pR), read and writ-
ten addresses (pRW), and number of checks in the read filter (cR). Note that
pR + pRW + pW = 1 and cR + cW = 1. Labels in the table point out the scheme
(separate or unified) with the lowest false positive rate according to equations.
In the 66% of the explored scenarios the unified scheme beats the separate one.
Nevertheless, the scenario which is closer to real workloads is cR = 0.5, i.e. read
and write filters are evenly checked, because the TM system assures strong atom-
icity [8] and data requested to main memory (out of the bounds of TM) must be
checked in both filters. Notice that, in this case, the unified scheme yields better
false positive rates until the filter gets filled in about 2

3 of its total capacity. With
high locality such a limit shifts to 3

4 or even disappears.

Table 3. Signature scheme, separate (sep) or unified (uni), with the lowest false
positive rate according to Eqs. (4) and (5) for several values of the given parameters
(Bloom filters with m = 10 and k = 4)

pR = 0.15 pR = 0.25 pR = 0.5

pRW = 0.2 pRW = 0.5 pRW = 0.2 pRW = 0.5 pRW = 0.2 pRW = 0.5

f
����n

cR 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0
.2

128 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

256 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

512 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

768 uni sep sep uni sep sep uni sep sep uni uni uni sep sep uni sep sep uni

1024 uni sep sep uni sep sep uni sep sep uni uni uni sep sep uni sep sep uni

0
.8

128 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

256 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

512 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

768 uni uni sep uni uni sep uni uni sep uni uni uni sep uni uni sep uni uni

1024 uni uni sep uni sep sep uni uni sep uni uni uni sep uni uni sep sep uni

6 Evaluation

6.1 Methodology

To evaluate the performance of our unified locality-sensitive signatures we used
Simics [9] full system execution-driven simulator along with the TM module
GEMS [10] from the Wisconsin Multifacet Project. Simics simulates the SPARC
architecture and it is able to run an unmodified copy of a Solaris operating
system. Solaris 10 was installed on the simulated machine and all workloads run
on top of it. GEMS’ Ruby module implements the LogTM-SE TM [19] and also
includes a detailed timing model for the memory system. Ruby was modified to
include the proposed unified signature design described in Section 3.

The base CMP system consists of 16 in-order, single-issue cores with a 32KB
split, 4-way associative, 64B block private L1 cache each. L2 cache is unified,

Unified Locality-Sensitive Signatures for Transactional Memory 333

Table 4. Workloads: Input parameters and TM characteristics

Bench Input #xact
Time avg avg max max

in xact |RS| |WS| |RS| |WS|
Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2 523 94% 76.9 40.9 2067 1613

Genome -g512 -s64 -n8192 30304 86% 12.1 4.2 400 156

Intruder -a10 -l128 -n128 -s1 12123 96% 19.1 2.5 267 20

Kmeans -m40 -n40 -t0.05 -i rand-n1024-d1024-c16 1380 6% 99.7 48.5 134 65

Labyrinth -i rand-x32-y32-z3-n64 158 100% 76.5 62.9 278 257

SSCA2 -s13 -i1.0 -u1.0 -l3 -p3 47295 19% 2.9 1.9 3 2

Vacation -n4 -q60 -u90 -r16384 -t4096 24722 97% 19.7 3.6 90 30

Yada -a20 -i 633.2 5384 100% 62.7 38.4 776 510

8MB, 16-bank, 8-way associative, and 64B block size. A packet-switched inter-
connect with 64B links connects the cores and cache banks. Cache coherence
implements the MESI protocol and maintains an on-chip directory which holds
a bit vector of sharers. Main memory is 4GB.

Simulation experiments use perfect signatures (no false positives, hardware
unimplementable) as the reference. Filter size ranges from 64 bits, which matches
the word length in SPARC architecture, to 8K bits length, which matches the
performance of perfect signatures for the simulated workloads. All filters use 4
hash functions of the H3 family [3]. Same H3 matrices of Ruby were used.

The benchmarks belong to the Stanford’s STAMP suite [2] which is designed
for TM research and includes a wide range of applications with emphasis on
large read and write sets. STAMP benchmarks have been adapted to GEMS by
applying Luke Yen’s patches from the University of Wisconsin, Madison. Table 4
summarizes the input parameters and main transactional characteristics of the
benchmarks.

6.2 Unified Signature Results

Unified signature motivation and design are described in Section 3. Table 1
shows that the percentage of addresses both read and written inside transactions
is substantial, so we conducted the experiments to find out the number of hash
functions that can be shared by read and write filters without losing performance.
For that purpose, shared functions range from s = 0, all SRAMs are double-
ported, to s = 4, all SRAMs are single-ported which means that every insertion
into the read set is also an insertion into the write set and vice-versa.

Figure 3 shows the execution time of unified signatures. The more read set
and write set hash functions are shared (s > 0) the better results are obtained
for all the benchmarks. In fact, the best results are obtained for s = 4 in every
benchmark except Bayes and Genome, which execution is slowed down about
1.25× with respect to separate filters for 8Kbit signatures. Therefore, unified
s = 3 signatures should be used instead of s = 4 ones, as these benchmarks are
not pretty sensitive to read and write discrimination but other might be.

334 R. Quislant et al.

64 128 256 512 1K 2K 4K 8K
0

1

2

3

4

5

6
Bayes

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0

0.5

1

1.5

2

2.5

3

3.5

4
Genome

Signature size (bits)
E

xe
cu

tio
n

tim
e

(n
or

m
al

iz
ed

 to
 P

er
fe

ct
)

64 128 256 512 1K 2K 4K 8K
0

1

2

3

4

5
Intruder

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Kmeans

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

256 512 1K 2K 4K 8K
0

10

20

30

40

50

60

70
Labyrinth

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
SSCA2

Signature size (bits)
E

xe
cu

tio
n

tim
e

(n
or

m
al

iz
ed

 to
 P

er
fe

ct
)

64 128 256 512 1K 2K 4K 8K
0

5

10

15

20
Vacation

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128256512 1K 2K 4K 8K
0

2

4

6

8
Yada

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

Separate
Unified s=0
Unified s=1
Unified s=2
Unified s=3
Unified s=4

Fig. 3. Execution time normalized to perfect signature comparing separate to unified
signatures. Parameter s varies from 0 (2-ported SRAMS) to 4 (1-ported).

6.3 Unified Locality-Sensitive Signature Results

Locality-sensitive hashing [14] takes advantage of locality of reference to store
an address stream more concisely in a Bloom filter. Locality-sensitive hash func-
tions store nearby locations sharing some bits of the bit array, thus lowering the
occupancy of the filter. For contiguous addresses, the number of hashing outputs
with different values is 1. Addresses with distance 2 are different in no more than
2 hashing outputs and, addresses with distance greater than 2k−1 − 1 may have
no hashing outputs in common.

Figure 4 shows the results of unified s = 3 locality-sensitive signatures. Two
different possibilities are shown:

– L1: This scheme makes that the hash functions h3 and h′
3 assert less bits in

their filter. This reduces the false positive rate because of low occupancy,

Unified Locality-Sensitive Signatures for Transactional Memory 335

64 128 256 512 1K 2K 4K 8K
0

1

2

3

4

5

6
Bayes

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0

0.5

1

1.5

2

2.5

3

3.5

4
Genome

Signature size (bits)
E

xe
cu

tio
n

tim
e

(n
or

m
al

iz
ed

 to
 P

er
fe

ct
)

64 128 256 512 1K 2K 4K 8K
0

1

2

3

4

5
Intruder

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Kmeans

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

256 512 1K 2K 4K 8K
0

5

10

15

20

25

30
Labyrinth

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 128 256 512 1K 2K 4K 8K
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
SSCA2

Signature size (bits)
E

xe
cu

tio
n

tim
e

(n
or

m
al

iz
ed

 to
 P

er
fe

ct
)

64 128 256 512 1K 2K 4K 8K
0

5

10

15

20
Vacation

Signature size (bits)

E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

64 1282565121K 2K 4K 8K
0

2

4

6

8

10
Yada

Signature size (bits)E
xe

cu
tio

n
tim

e
(n

or
m

al
iz

ed
 to

 P
er

fe
ct

)

Separate
Locality
Unified s=3
Unified s=3 L1
Unified s=3 L2

Fig. 4. Execution time normalized to perfect signatures comparing separate, separate
locality and unified s = 3 signatures enhanced with locality hashing (L1 and L2)

but the filter may fail to discriminate reads/writes from nearby located
reads/writes.

– L2: This scheme is the opposite to L1. In this case, h3 and h′
3 behaves

as normal but the others assert less bits. The filter not sharing the hash
functions stay the same as in s = 3 configuration, discriminating between
locations read and written, and the other filters get the locality improvement.

Figure 4 shows similar results for L1 and L2 schemes for all benchmarks
except Labyrinth, Genome and Yada. Labyrinth behaves better with L2 for small
signatures and, Genome and Yada get slightly worse results for small signatures
and L2. Unified locality-sensitive signatures outperform separate ones for the
majority of the tested codes.

336 R. Quislant et al.

7 Conclusions

We propose a unified signature design in the context of transactional memory
which keeps track of both the read and write sets in the same filter without
adding significant hardware complexity. Several configurations of unified signa-
tures are analyzed and evaluated. Additionally, unified signatures are enhanced
using locality-sensitive hashing, proposed by the authors in a previous work.

We used the Wisconsin GEMS to implement and evaluate the performance
of the proposed unified locality-sensitive signatures. Besides, we used CACTI
to evaluate the hardware area and power requirements. Experimental results
show that the proposed approach improves the execution performance in most
of the benchmark codes, with an insignificant increase in hardware area and a
slight increase in power consumption, making of it a good alternative to separate
signatures.

Acknowledgment

We would like to thank Dr. Luke Yen (AMD) for providing his patches to adapt
STAMP workloads to GEMS simulator. This work has been supported by the
Ministry of Education of Spain with project CICYT TIN2006-01078 and by the
Junta de Andalucia with project P08-TIC-04341.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

2. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford Transac-
tional Applications for Multi-Processing. In: IEEE Int’l Symp. on Workload Char-
acterization (IISWC 2008), pp. 35–46 (2008)

3. Carter, L., Wegman, M.: Universal classes of hash functions. J. Computer and
System Sciences 18(2), 143–154 (1979)

4. Ceze, L., Tuck, J., Montesinos, P., Torrellas, J.: BulkSC: Bulk enforcement of
sequential consistency. In: 34th Ann. Int’l. Symp. on Computer Architecture (ISCA
2007), pp. 278–289 (2007)

5. Ceze, L., Tuck, J., Torrellas, J., Cascaval, C.: Bulk disambiguation of speculative
threads in multiprocessors. In: 33th Ann. Int’l. Symp. on Computer Architecture
(ISCA 2006), pp. 227–238 (2006)

6. Choi, W., Draper, J.: Locality-aware adaptive grain signatures for transactional
memories. In: IEEE Int’l. Symp. on Parallel and Distributed Processing (IPDPS
2010), pp. 1–10 (2010)

7. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: 20th Ann. Int’l. Symp. on Computer Architecture (ISCA
1993), pp. 289–300 (1993)

8. Larus, J., Rajwar, R.: Transactional Memory. Morgan & Claypool Pub. (2007)
9. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-

berg, J., Larsson, F., Moestedt, A., Werner, B., Werner, B.: Simics: A full system
simulation platform. IEEE Computer 35(2), 50–58 (2002)

Unified Locality-Sensitive Signatures for Transactional Memory 337

10. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-
driven multiprocessor simulator GEMS toolset. ACM SIGARCH Comput. Archit.
News 33(4), 92–99 (2005)

11. Mehrara, M., Hao, J., Hsu, P.-C., Mahlke, S.: Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In: ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI
2009), pp. 166–176 (2009)

12. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,
Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system with
strong isolation guarantees. In: 34th Ann. Int’l. Symp. on Computer Architecture
(ISCA 2007), pp. 69–80 (2007)

13. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: CACTI 6.0: A tool to model
large caches. Tech. Rep. HPL-2009-85, HP Laboratories (2009)

14. Quislant, R., Gutierrez, E., Plata, O., Zapata, E.: Improving signatures by locality
exploitation for transactional memory. In: Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT 2009), pp. 303–312 (2009)

15. Ramakrishna, M.V., Fu, E., Bahcekapili, E.: Efficient hardware hashing functions
for high performance computers. IEEE Trans. on Computers 46(12), 1378–1381
(1997)

16. Sanchez, D., Yen, L., Hill, M., Sankaralingam, K.: Implementing signatures for
transactional memory. In: 40th Ann. IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO 2007), pp. 123–133 (2007)

17. Shriraman, A., Dwarkadas, S., Scott, M.L.: Flexible decoupled transactional mem-
ory support. In: 35th Ann. Int’l. Symp. on Computer Architecture (ISCA 2008),
pp. 139–150 (2008)

18. Wilton, S.J.E., Jouppi, N.P.: CACTI: an enhanced cache access and cycle time
model. IEEE Journal of Solid-State Circuits 31(5), 677 (1996)

19. Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: LogTM-SE: Decoupling hardware transactional memory from caches.
In: 13th Int’l. Symp. on High-Performance Computer Architecture (HPCA 2007),
pp. 261–272 (2007)

20. Yen, L., Draper, S.C., Hill, M.D.: Notary: Hardware techniques to enhance signa-
tures. In: 41st Ann. IEEE/ACM Int’l Symp. on Microarchitecture (MICRO 2008),
pp. 234–245 (2008)

Using Runtime Activity to Dynamically Filter

Out Inefficient Data Prefetches

Oussama Gamoudi, Nathalie Drach, and Karine Heydemann

UPMC/LIP6, Paris, France
{oussama.gamoudi,nathalie.drach,karine.heydemann}@lip6.fr

Abstract. Data prefetching is an effective way to bridge the increasing
performance gap between processor and memory. Prefetching can im-
prove performance but it has some side effects which may lead to no
performance improvement while increasing memory pressure or to per-
formance degradation. Adaptive prefetching aims at reducing negative
effects of prefetching while keeping its advantages. This paper proposes
an adaptive prefetching method based on runtime activity, which cor-
responds to the processor and memory activities retrieved by hardware
counters, to predict the prefetch efficiency. Our approach highlights and
relies on the correlation between the prefetch effects and runtime activity.
Our method learns all along the execution this correlation to predict the
prefetch efficiency in order to filter out predicted inefficient prefetches.
Experimental results show that the proposed filter is able to cancel the
negative impact of prefetching when it is unprofitable while keeping the
performance improvement due to prefetching when it is beneficial. Our
filter works similarly well when several threads are running simultane-
ously which shows that runtime activity enables an efficient adaptation
of prefetch by providing information on running-applications behaviors
and interactions.

1 Introduction

Data prefetching, either hardware-based or compiler-assisted, is an effective
way to bridge the increasing performance gap between processor and memory.
Prefetching has the potential to improve performance if the memory access pat-
terns are correctly predicted and if prefetching requests are initiated early enough
before the program accesses the predicted memory addresses. However, when
the prediction is wrong, when prefetches are issued too early or when the access
demands are numerous, prefetching may lead to cache pollution by occupying
cache space, by evicting useful data and uselessly generate a higher pressure on
memory. In some cases, prefetching may even degrade performance.

Hardware prefetching can be effective for some applications whereas any con-
figuration of a prefetching scheme may not be beneficial to some other applica-
tions [12]. As an example, for the next sequence prefetcher (NSP) [11], the con-
figuration determines by how far in advance data are preteched, named prefetch
distance, and the amount of prefetched data, named prefetch degree and is also

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 338–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using Runtime Activity to Dynamically Filter 339

called prefetcher aggressiveness. Figure 1 shows the performance improvement
for different levels of aggressiveness of a next sequence prefetcher (the aggres-
siveness of the prefetcher varies from not aggressive to very aggressive). Figure 1
groups benchmarks into two classes: the prefetch friendly benchmarks for whom
at least one aggressive prefetching improves performance by more than 20%, and
the prefetch unfriendly benchmarks for whom none of the prefetching schemes
increases performance, or for whom prefetching tends to degrade performance.
Prefetch unfriendly benchmarks have irregular behaviors: irregular control flow
and/or irregular memory accesses. These behaviors are specific to an application,
in addition prefetching effects vary according to application execution phases in
which the number and the patterns of data accesses change [8]. Moreover, some
applications, either prefetch friendly or unfriendly, can be negatively impacted
by prefetching when their execution is disturbed by applications running simul-
taneously. In order to limit any performance degradation and useless memory
bandwith usage, so to reduce the number of unsuitable prefetches, it is necessary
to dynamically adapt prefetch to match it to all running programs behaviors and
phases.

Fig. 1. IPC (instructions per cycle) improvement for different aggressivenesses of a
next sequence prefetcher

Previous works [12,14,13] on adaptive prefetching techniques are mostly based
on prefetch efficiency metrics, such as prefetch accuracy, to adapt the prefetch
policy. In this paper, we propose an adaptive prefetching technique that uses in
addition to a prefetch efficiency metric runtime information, we call runtime ac-
tivity, to filter prefetching requests. Runtime activity gives some insight on the
running applications behaviors (irregular/regular control, high memory activ-
ity,...). A runtime activity is a vector of events (number of L1/L2 cache misses,
of executed load/store, of executed branches, ...) recorded during a sampling
interval or interval thanks to hardware counters present in current hardware
architectures. As shown in this paper, there exists a correlation between the
runtime activity and the prefetch efficiency. Our approach continuously learns
on-line this correlation to predict the outcome of prefetches. Thus, predicted
ineffective prefetches are dynamically filtered out (cancelled).

340 O. Gamoudi, N. Drach, and K. Heydemann

Our experimental results show that our adaptive method enables to filter out
predicted inefficient prefetches, and so to reduce the negative effects of prefetch-
ing while keeping the high performance improvement for prefetch friendly appli-
cations. Indeed, our filter is able to cancel 90% of the inefficient prefetches for
prefetch unfriendly benchmarks and even to improve performance in presence
of prefetching up to 18% for some of them. We also show that our filter works
similarly well when several threads are running simultanaously: more than 70%
of the inefficient prefetches are eliminated, which shows the relevancy of using
runtime information.

The rest of this paper is organized as follows. The section 2 describes re-
lated work. Section 3 discusses the correlation between runtime activity and
prefetch efficiency. Section 4 describes our adaptive prefetching method. Sec-
tion 5 presents experimental results. Finally, conclusions are presented in
section 6.

2 Related Works

Adaptive prefetch has been investigated to improve prefetch efficiency and per-
formance. Adaptive prefetching techniques can be classified into two categories,
the adaptive dependent techniques and the adaptive independent techniques.

The first category adapts dynamically the prefetch algorithm (parameter
values). S. Srinath et al. [12] proposed to reduce the negative performance
of prefetching by dynamically adjusting the aggressiveness (prefetch distance
and/or degree) of the hardware prefetcher with rules using prefetch accuracy,
prefetch lateness and an estimation of cache pollution. Saavedra et al. [10] pro-
posed an adaptive scheme for software prefetching: prefetching instructions are
inserted at compile time. At runtime, the prefetch distance is increased or re-
duced depending on the prefetch accuracy and memory latency periodically es-
timated. Nesbit et al. [8] proposed to detect program phase changes by using
an instruction working set signature. Then, when a stable phase is detected,
prefetcher’s parameters are tuned according to the average number of instruc-
tions per cycle (IPC). Dahlgren et al. [3] proposed to increment or decrement
prefetch degree for the next block prefetching scheme with simple threshold rules
using prefetch accuracy.

Adaptive dependent methods reduce the negative effects of prefetching by
adjusting the prefetcher parameters or aggressiveness [12,10]. However, with
the usage of a new prefetcher, these methods need to be redesigned to con-
sider the new prefetcher’s parameters. Hence, the second category, the adaptive
independent techniques which do not act on the prefetch algorithm, has the
advantage to be completely transparent to the prefetching mechanism. More-
over, in presence of more than one prefetcher as implemented in some recent
processors [1], an adaptive independent approach enables to control over them.
Some adaptive independent techniques try to filter prefetches by predicting if a
prefetch request will be inefficient. X. Zhuang et al. [14] proposed a hardware-
based prediction mechanism of prefetches efficiency using a history-based table

Using Runtime Activity to Dynamically Filter 341

similar to a two-level branch predictor. Two table indexing schemes have been
proposed, an address-based one (PA-based) and a program counter based one
(PC-based). These schemes reduce ineffective data prefetches by more than 90%
when combined with a Next Sequence Prefetcher (NSP) and Shadow Directory
Prefetcher (SDP). However, their schemes seem not robust to encountered in-
efficient prefetch instructions or prefetched data addresses that turn out to be
efficient afterwards during execution. Some other works addressed the issue of
cache pollution due to prefetching independently of the prefetcher by adapting
the cache replacement policy either with rules based on cache pollution, prefetch
accuracy and lateness [12], either by predicting dead-blocks [6,5] or by using a
metric of usefulness of prefetched blocks [7]. These techniques could be profitably
combined with our method, they are complementary.

3 Correlation between Runtime Activity and Prefetch
Efficiency

As said in the introduction, prefetching efficiency varies according to program
phases during execution and depends on running applications behaviors and
their interactions. In this section, we show that runtime information able to
express these characteristics involved in prefetch efficiency can be used to predict
prefetching outcome.

Runtime information, we call runtime activity, is a vector of events (number of
L1/L2 cache misses, of executed load/store, of executed branches, ...) recorded
during a sampling interval. Many events can be recorded and various combi-
nations of them are related to prefetch efficiency. However, it is necessary to
keep the number of events as low as possible for implementation considerations.
We empirically reduced the set of events related to runtime activity involved in
prefetch efficiency such as irregular/regular control, speculation, high memory
activity, etc. to five events: 1) the number of executed load/store 2) the number
of executed branches 3) number of hit-predicted branches, 4) the number of L1
cache misses and 5) the number of L2 cache misses.

Runtime activity can be used to predict the prefetch efficiency if it is dif-
ferent before/during phases where prefetching turns out to be efficient and dur-
ing/before phases where prefetching turns out to be inefficient. As runtime activ-
ity is recorded during an interval, an interval duration able to record a significant
activity and able to discriminate prefetch efficiency must be determined. To do
so, we simulated different benchmarks and recorded runtime activity and the
prefetch efficiency for various interval durations.

As adaption decision computation requires few cycles (see section 4) and for
hardware implementation reasons, a filtering decision could not be taken at
each prefetch request. Thus, a filtering decision is to be computed periodically
and taken for a small while. Therefore, execution is divided into sampling in-
tervals during which runtime activity and prefetch efficiency are recorded. The
prefetching intervals are classified into two classes depending on the prefetch
efficiency during them : the good prefetching intervals correspond to intervals

342 O. Gamoudi, N. Drach, and K. Heydemann

Table 1. Percentage of similar runtime activities assigned to both good and bad
prefetching intervals depending on the sampling interval duration given in cycles

interval duration 10 1000 2500 5000 7500 10000 20000 50000 100000

similar activities 65.5% 12.72% 3.81% 1.03% 1.04% 1.02% 2.02% 77.98% 96.37%

where there are more pending and useful prefetches than the evinced ones, and
the bad prefetching intervals to the opposite case. We assigned to a runtime ac-
tivity recorded during an interval T the prefetching interval efficiency retrieved
at the end of the next interval T + 1.

Table 1 shows the percentage of similar runtime activities that correspond to
both good and bad prefetching intervals for increasing interval durations. A low
percentage means that runtime activity is different before good and bad prefetch-
ing intervals. Therefore, the runtime activity is relevant to predict its efficiency.
Results show that this percentage is less than 4% for interval durations rang-
ing 2,500 cycles to 10,000 cycles. So, there exists a correlation between runtime
activity and prefetching intervals efficiency for such interval durations. Indeed,
in our experiments, the prefetching intervals of these durations are in average
composed of 87.3% of the same kind of prefetches (good or bad). Such interval
durations are then smaller than the duration of program phases where prefetch-
ing is either efficient or inefficient. When increasing the duration of the sampling
interval (more than 20,000 cycles), the number of good and bad prefetches in-
cluded in an interval becomes more and more close. Thus, interval duration must
not be too large compared to phases duration. Also, a too small interval is not
able to record significant activity.

In the remainder, a sampling interval of 5,000 cycles is considered in the
experiments. This interval duration allows: 1) several prefetches to be issued, 2)
to discriminate both classes of prefetching effects, 3) a more reactive adaptation
by taking an adaptation decision more frequently than with a larger interval,
and 4) to compute the prediction and take the adaptation decision.

4 Adaptive Prefetching Method Based on Runtime
Activity

In this section, we present our adaptive approach which uses the correlation
between runtime activity and the prefetch efficiency intervals to filter prefetches.
A filtering decision is taken for an interval duration and consists in cancelling
all prefetches during the corresponding interval or left them being issued.

Principle. Execution time is divided into sampling intervals during which run-
time activity as well as the prefetch efficiency, when prefetches are not cancelled,
are recorded. At the end of each sampling interval, the Acur runtime activity
recorded during this interval is used to compute a filtering decision thanks to
a predictor. The prediction of prefetch efficiency uses a n-entry activity table

Using Runtime Activity to Dynamically Filter 343

AT of runtime activities and their corresponding prefetch efficiency. The filter-
ing decision is taken by computing the distance between the current activity
and all activities recorded in the activity table. The closest activity is selected.
If it is close enough, the filtering decision for the next interval depends on the
prefetch efficiency class associated with it: if the interval is a bad one, prefetches
are cancelled during the next interval, in the opposite, prefetches are issued as
if no filter was present. Otherwise, the current activity is recorded in the ac-
tivity table, prefetches are launched during the next interval and the prefetch
efficiency recorded during the next interval is assigned to the newly recorded ac-
tivity. Thus, prefetching is either enabled (not filtered out) or disabled (filtered
out) during the next interval.

The predictor uses a n-entry activity table AT whose each entry contains a
runtime activity A (the counter values recorded during one sampling interval T)
and the prefetch efficiency assigned to it (retrieved at the end of the sampling
interval T+1). An activity A recorded in the table is viewed as the center of
a region in the events space (space of events values or of activities) leading to
the same prefetching effect. It is necessary to learn a right size for each recorded
activity. Thus, each entry also contains a distance D which defines the size of the
zone in the events space centered in A for which A can give a filtering decision:
a current activity is said close enough to A if the distance d(A, Acur) <= D. By
default, D is set to a predefined value Dmax and D is decremented each time
the entry has led to a misprediction. Moreover, as some good and bad recorded
runtime activities may be close to each others in the events space, using only the
distance D for prediction is not robust enough. Hence, a training phase is used
to encounter several times activities close to each others in the events space
and leading to the same prefetching effect. Therefore, a confidence level C is
associated to each recorded activity to indicate if the entry is mature enough
to predict or is still in the learning phase. While the confidence level is greater
than zero the entry cannot be used for prediction. The confidence level is set
to a predefined value Cmax at the insertion of an activity in the table and is
decremented each time it is the nearest activity of the current activity and the
prefetching efficiency of the following interval is the same as the one already
recorded. Otherwise, the distance D of the immature entry is decremented. A
counter used by the replacement policy and needed at each new entry insertion
while the table is full is also associated with each entry.

To sum up, with our approach prefetching is enabled either because all activ-
ities in the table are too far, because the nearest activity enables prefetching or
is not mature yet.

Parameters and distance function. We studied empirically the parameters
Dmax and Cmax of our mechanism. Since this requires an exponential number
of simulations in terms of combinations of parameters, we studied the effects
of parameters one by one. We empirically selected the value 20 for Dmax. We
set Cmax equal to 3: an higher value requires a too long learning phase leading to

344 O. Gamoudi, N. Drach, and K. Heydemann

too few filtering decisions and a lower one is not robust enough. We also em-
pirically compared the Euclidean and the Manhattan distance functions for the
computation of the distance between the current activity and those recorded in
the activity table. Our study showed that both distance functions are equivalent
in terms of prediction rate. So, as the Euclidean distance is more costly in terms
of hardware implementation and CPU-cycles, we choose the Manhattan distance
as the distance function.

Filter decision computation time. The determination of the nearest activ-
ity requires n distance computations (between the current activity and the n
activities stored in the n-entry activity table) and n − 1 comparisons to find
the minimal distance. However, comparisons can be done in parallel with the
distance computation. Assuming that a comparison requires in one cycle and
distance computation p CPU-cycles, then around n ∗ p cycles are needed to de-
termine the nearest activity. It is then important to keep n ∗ p small compared
to the sampling interval duration. The size n of the activity table is discussed in
section 5.2.

Hardware cost. In order to collect feedback on the prefetch efficiency, it is pos-
sible to use only one counter to record the difference in good and bad prefetches
as follows: one control bit is affiliated to each prefetched cache line. This bit is
used to mark if a line was prefetched (1 for prefetched data, 0 otherwise). When
a cache line whose control bit is set is referenced by the processor, the prefetch
counter is incremented and the control bit is reset. If a cache line with a set
control bit is replaced, the prefetch counter is decremented and the control bit is
reset. Hence, at the end of a sampling interval, if the prefetch counter is positive,
then the runtime activity observed in the previous interval is marked as good.
Otherwise, the runtime activity is marked as bad. The prefetch counter is reset
at the end of each sampling interval.

The activity table AT is used to keep relevant activities. Each entry of AT
requires 2 bytes per event counter so 10 bytes for the runtime activity, 1 bit for
the class membership (1 for good, and 0 for bad), �log2(Cmax)� that is 2 bits
for the confidence level of an activity : any entry has to be encountered three
times with the same prefetch outcomes to be considered as mature i.e. to be
used for prediction, �log2(Dmax)� that is 5 bits for the distance threshold, and
log2(n) bits for the slot dedicated to the replacement policy (LRU), giving the
relevance of the entry, where n is the size of the activity table.

To model activity, our approach needs 5 hardware counters to record the 5
events involved in the prediction. Also, a register is needed to keep a pointer
to the nearest or to a newly added activity. This pointer enables to update the
corresponding entry of the table at the end of the next interval, once the prefetch
efficiency is known. Moreover, an additionner and a comparator are needed to
compute distances, to determine the minimal one and also for the replacement
policy.

Using Runtime Activity to Dynamically Filter 345

5 Experimental Evaluation

5.1 Experimental Environment

Simulation environment. For the experiments, we used the M5 simulator [2]
configured as a SMT processor with a 2GHz clock. The simulated SMT pro-
cessor settings are specified in Table 2. The hardware prefetch generator can
be triggered by data accesses either to the L1 or to the L2 cache, in our work
the hardware prefetcher is triggered by L1 cache accesses. As in the evaluation
framework MicroLib [9], the Stride Prefetcher (SP) [4] is among those that have
the best performance, low cost and power consumption, we added it to the sim-
ulation tools. Moreover, we also considered the Next Sequence Prefetcher (NSP)
since it is the best among those that prefetch into L1 cache as shown in [9]. We
selected a fixed prefetch distance and a fixed degree that improves the IPC per-
formance for each prefetch friendly benchmark, and that shows the least worst
IPC performance for each prefetch unfriendly benchmark. The M5 simulator was
also added with our adaptive prefetch filter that executes concurrently with the
main processor simulator.

Simulation methodology. We use the SPEC CPU2000 benchmarks for our
experimental evaluation. As discussed in Section 1, the considered benchmarks
are classified into two groups: prefetch friendly benchmarks and prefetch un-
friendly benchmarks. Each benchmark was compiled using GCC with the -O4
option. We ran each benchmark with the reference input set up to 500-millions
instructions when running alone or with other applications. Each benchmark
was run: 1) alone as in a single-thread wide-issue processor 2) with a bench-
mark from the same benchmark group and 3) with a benchmark from a different
benchmark group. The results present a subset of all benchmark pairs that covers
the behaviors encountered among all pairs.

Table 2. Microarchitecture parameter values

CPU frequency 2GHz
Fetch, decode, issue width 4 instructions per cycle
Instruction windows 128-RUU, 128-LSQ
BTB entries 4096
SMT commit policy round-robin
L1 Icache 32KB, 4-way, 32 bytes, 1 cycle hit latency, 1 read port
L1 Dcache 32KB, 4-way, 64 bytes, 2 cycle hit latency, LRU,

writeback, 4 read ports, 1 write port
L1 data MSHRs 8

Unified L2 cache
1MB, 4-way, 64 bytes, 12 cycles hit latency, LRU,

writeback, 1 read port, 1 write port
L2 MSHRs 8
Bus frequency 600 MHz, width 64 bytes
Memory latency 150 cycles
Stride prefetcher 512 PC-entries
Prefetch request queue 64 entries - access demand

have an higher priority

346 O. Gamoudi, N. Drach, and K. Heydemann

5.2 Experimental Results

In order to evaluate our approach, we considered different metrics presented
in Tables 4 and 3. We considered the IPC improvement with and without our
method relatively to no prefetch (third and fourth columns of tables), the IPC
improvement with our method relatively to without filtering (fifth column of
tables). We also computed the percentage of reduction of bad prefetch requests
and good prefetch requests (sixth and seventh columns respectively). Table 3
shows all these results when a NSP prefetcher is used and Table 4 corresponds
to a SP prefetcher.

Reduction of good and bad prefetches. For prefetch unfriendly bench-
marks running alone, the bad prefetches are, in average for both prefetchers,
reduced by 90% with our method and can be up to 98%. The reduction is in
average 55% for other benchmarks when they are running alone. In the case of
SMT execution, the reduction of bad prefetches is on average 75%, 87% and
62% for respectively friendly + friendly, unfriendly + unfriendly, and friendly +
unfriendly benchmarks. On average 50% and 9% of good prefetches are removed
for prefetch unfriendly benchmarks and prefetch friendly benchmarks when they
are running alone. In a SMT context, the reduction varies from less than 10%
to 95%. Thus, despite the potential of our method to cancel bad prefetches,
it can not cancel all bad prefetches, and in some cases it disables many good
prefetches. Indeed, when an interval is a good (resp. bad) one, it does not exclude

Table 3. Experimental results using a NSP prefetcher

Benchmarks Type
IP Cpref

IP Cwo pref
%

IP Cfilter
IPCwo pref

%
IP Cfilter
IP Cpref

%
Bad pref. Good pref.
reduction reduction

Equake U -10.5 1.2 13.1 98.4 95.1
Gcc U -5.5 0.8 6.7 85.6 27.5
Gzip U -5.7 0.4 6.5 90.2 83.1
Lucas U 9 9 -0.04 96.1 5
Mesa U -12.4 3.4 18.1 99.1 89.5

Average U -5 3 8.4 93.9 60

Applu F 21.6 21.7 0.02 79 20.4
Mcf F 45.1 44.8 -0.23 86.2 14.0

Mgrid F 100.3 99.2 -0.51 53.7 1
Swim F 70.8 70.6 -0.11 23.6 7

Average F 59.4 59.1 -0.24 60.6 10.6

Applu + Swim F + F 48,6 48,6 0 34.1 9.1
Mgrid + Applu F + F 73 70 -1.72 94.1 43.3
Swim + Mgrid F + F 94.9 93.5 -0.7 90.3 55.4
Mcf + Applu F + F 09.1 19.4 9.5 94.1 25.3

Average F + F 56.4 57.9 0.96 78.2 33.3

Mgrid + Equake F + U 35.6 37.4 1.33 39.3 8.2
Swim + Lucas F + U 60.4 61 0.36 48.9 11.2
Mgrid + Gzip F + U 37.3 39.9 1.86 56.2 17.7

Average F + U 44.4 46.1 1.14 48.1 12.4

Lucas + Gzip U + U 25.8 25 -0.6 41.8 12.9
Gcc + Equake U + U -14.2 0.8 17.4 98.4 92.1
Gcc + Mesa U + U -6 1.5 8 98.8 73.4

Mesa + Lucas U + U 13 17 3.5 95.4 25.8
Average U + U 4.7 11.1 5.6 83.6 51.1

Using Runtime Activity to Dynamically Filter 347

the presence of bad (resp. good) prefetches. For some benchmarks like Gcc +
Gzip or Equake most of the good prefetches are filtered due to the low number
of good prefetches and their inclusion in the bad prefetching intervals. Thus, the
heterogeneity of intervals causes the privation of some good prefetches or the
achievement of some bad prefetches whatever the accuracy of the prediction.
Moreover, during the training phase bad prefetches are issued.

Nevertheless, these results show that our adaptive prefetch based on runtime
activity is able to dynamically highly reduce the number of bad prefetches when
one or several benchmarks are running simultaneously.

Performance impact. The third and fourth columns of Tables 3 and 4 show
the IPC improvement with and without filter with respect to no prefetching.

For prefetch unfriendly benchmarks running alone, whatever the prefetcher
used, our filter avoids any IPC degradation compared to no prefetching. In the
case of a NSP prefetcher, our filter improves IPC resulting from prefetching
up to 18% (on Mesa) and by 8.4% on average. Also, our filter improves IPC
resulting from prefetching by 9.5% on average when a SP prefetcher is consid-
ered. This performance improvement is due to the removal of negative effects
of prefetching thanks to the filtering of a large number of bad prefetches. For
prefetch friendly benchmarks, the same or almost the same IPC values are ob-
served when our method is enabled or disabled: our approach enables to keep the
benefits of prefetching by rightly predicting the good intervals and improves the

Table 4. Experimental results using a SP prefetcher

Benchmarks Type
IP Cpref

IP Cwo pref
%

IP Cfilter
IPCwo pref

%
IP Cfilter
IP Cpref

%
Bad pref. Good pref.
reduction reduction

Equake U -11.2 0.11 12.7 93.7 74.5
Gcc U -4.6 1.05 5.9 97.3 83
Gzip U -7.7 0.3 8.7 86.6 43
Lucas U -4.6 3.4 8.4 76.1 2.5
Mesa U -3.7 1.2 16.8 81.4 66.3
Mcf U -4.8 0.02 5.1 75.2 9.4

Average U -7.7 1.01 9.5 85 46.5

Applu F 23,3 23.2 -0.1 87.6 19.9
Mgrid F 51.3 50.4 -0.6 16 0.4
Swim F 46.9 45.7 -0.8 33.4 0.02

Average F 29.2 29.8 0.5 53 7.4

Applu + Swim F + F 45.7 44.2 -1.04 88.7 33.2
Mgrid + Applu F + F 51.3 51 -0.2 32.6 16.2
Swim + Mgrid F + F 71.8 70.1 -1 72.1 35.8

Average F + F 39.9 42.2 1.6 72.9 43.3

Mgrid + Equake F + U 19.5 21.8 1.9 72.1 12.3
Swim + Lucas F + U 45.8 47.3 1 71.3 29.9
Mgrid + Gzip F + U 23.9 25.2 1.1 62 10.1
Applu + Mcf F + U -9.1 3.4 13.7 98.2 88.1

Average F + U 20.04 24.4 3.65 75.9 35.1

Lucas + Gzip U + U 16.1 14.3 -1.6 97.1 72.3
Gcc + Equake U + U -0.9 2.1 3 96.2 88.6
Mcf + Lucas U + U 28.8 27.1 -1.33 68.9 32.7
Mesa + Lucas U + U 0 0.9 0.9 96.8 95.2

Average U + U 11 11.1 0.65 89.8 72.2

348 O. Gamoudi, N. Drach, and K. Heydemann

Fig. 2. Reduction of good and bad prefetches for different sizes of the activity table

usage of memory bandwidth due to prefetching thanks to the reduction of inef-
ficient prefetches. In the context of SMT-execution, the results show that some
benchmarks derived from prefetch unfriendly benchmarks groups favor prefetch-
ing when they are running simultaneously (e.g the IPC improvement for Lucas +
Gzip is over 20%). Indeed, as the execution of instructions belonging to several
threads are interleaved, the distance between demand accesses may be increased
allowing more prefetches to be issued and thus to transform bad prefetches in
the single-threaded context into good ones in the SMT-context. To the opposite,
some prefetch friendly benchmarks combinations do not profit from prefetching
(e.g the IPC improvement for Mcf + Applu is less than 20%) in a SMT context.
Indeed, cache sharing may increase the number of evinced prefetched cache lines.
Also, the higher memory traffic in a SMT-context can provoke the cancellation
of prefetches in the prefetch queue. Therefore, less prefetches may be issued in a
SMT-context. As a consequence, the average performance improvement is lower
in a SMT-context: IPC is improved less than 3% in average. However, any appli-
cation performance is no more degraded by prefetching thanks to our filter and
the benefit can be up to 17.4% (Gcc + Equake). The runtime activity reflecting
the events of all simultaneously running applications enables an efficient filtering
of prefetch in such a context.

In summary, these experimental results show that the proposed filter is able
to cancel the negative impact of prefetching when it is unprofitable while keeping
the performance improvement due to prefetching when it is beneficial. Our fil-
ter works similarly well when several threads are running simultaneously which
shows that runtime activity enables to efficiently adapt prefetch by providing
information on running-applications behaviors and interactions.

Size of the table. As we mentioned in section 4, at the beginning of each
interval the current activity is compared to all activities in the activity table
AT . AT is a n-entry table. Figure 2 shows the reduction of bad prefetches for
different table sizes. The results show that when the size of the table is too small,
the reduction of bad prefetches is low: most of activities have not the time to
become mature; they are evinced to record activities encountered afterwards. A
large table is useful since it allows to keep relevant activities and avoid too many
training phases, hence the bad prefetching intervals will be rapidly predicted and

Using Runtime Activity to Dynamically Filter 349

filtered out. Nevertheless, a large table AT is very costly in computation time
since all entries must be parsed and it requires more hardware. As shown by the
results, a value of n higher than 128 enables a high reduction of bad prefetches.
As a table of 128 entries is not expensive both in hardware and filtering decision
computation time, we choose this value in our experiments.

6 Conclusion

This paper has proposed a hardware independent adaptive prefetching method
based on runtime activity which corresponds to the processor and memory ac-
tivities retrieved by hardware counters to predict the prefetch efficiency. The
method highlights and relies on the correlation between the prefetch effects and
runtime activity, which expresses the applications behaviors and their interac-
tions. All along the execution, this correlation is learnt in order to predict the
prefetch efficiency to filter predicted inefficient prefetches. Experimental results
have shown that the proposed filter is able to cancel the negative impact of
prefetching when it is unprofitable while keeping the performance improvement
due to prefetching when it is beneficial. The reduction of the bad prefetches is
in average of 90% which, in some cases, can improve performance up to 18%.
Our filter works similarly well when several threads are running simultaneously
which shows that runtime activity enables an efficient adaptation of prefetch by
providing information on running-applications behaviors and interactions.

References

1. Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Corpora-
tion (2009)

2. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.:
The m5 simulator: Modeling networked systems. IEEE Micro 25(1), 52–60 (2006)

3. Dahlgren, F., Dubois, M., Stenstrm, P.: Sequential hardware prefetching in shared-
memory multiprocessors. IEEE Trans. Parallel Distrib. Syst. 25(1), 733–746 (1995)

4. Fu, J.W.C., Patel, J.H., Janssens, B.L.: Stride directed prefetching in scalar pro-
cessors. In: MICRO 25: Proceedings of the 25th Annual International Symposium
on Microarchitecture, pp. 102–110. IEEE Computer Society Press, Los Alamitos
(1992)

5. Hu, Z., Kaxiras, S., Martonosi, M.: Timekeeping in the memory system: predicting
and optimizing memory behavior. In: ISCA 2002: Proceedings of the 29th Annual
International Symposium on Computer Architecture, pp. 209–220. IEEE Computer
Society, Washington, DC, USA (2002)

6. Lai, A.-C., Fide, C., Falsafi, B.: Dead-block prediction & dead-block correlating
prefetchers. In: ISCA 2001: Proceedings of the 28th Annual International Sympo-
sium on Computer Architecture, pp. 144–154. ACM, New York (2001)

7. Mutlu, O., Kim, H., Armstrong, D.N., Patt, Y.N.: Cache filtering techniques to
reduce the negative impact of useless speculative memory references on processor
performance. In: SBAC-PAD 2004: Proceedings of the 16th Symposium on Com-
puter Architecture and High Performance Computing, pp. 2–9. IEEE Computer
Society Press, Los Alamitos (2004)

350 O. Gamoudi, N. Drach, and K. Heydemann

8. Nesbit, K.J., Dhodapkar, D., Smith, J.E.: Ac/dc: An adaptive data cache
prefetcher. In: PACT 2004: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, pp. 135–145. IEEE Computer
Society, New York (2004)

9. Perez, D.G., Gilles, M., Temam, O.: Microlib: A case for the quantitative com-
parison of micro-architecture mechanisms. In: MICRO 37: Proceedings of the 37th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 43–54.
IEEE Computer Society, New York (2004)

10. Saavedra, R.H., Park, D.: Improving the effectiveness of software prefetching with
adaptive execution. In: PACT 1996: Proceedings of the 1996 Conference on Par-
allel Architectures and Compilation Techniques, p. 68. IEEE Computer Society,
Washington, DC, USA (1996)

11. Smith, A.J.: Cache memories. Computing Surveys 14(3) (1982)
12. Srinath, S., Mutlu, O., Kim, H., Patt, Y.N.: Feedback directed prefetching: Improv-

ing the performance and bandwidth-efficiency of hardware prefetchers. In: HPCA
2007: Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture, pp. 63–74. IEEE Computer Society, Washington,
DC, USA (2007)

13. Srinivasan, V., Davidson, E.S., Tyson, G.S.: A prefetch taxonomy. IEEE Trans.
Comput. 53(2), 126–140 (2004)

14. Zhuang, X., Lee, H.-H.S.: Reducing cache pollution via dynamic data prefetch
filtering. IEEE Trans. Comput. 56(1), 18–31 (2007)

Introduction

Salvatore Orlando, Gabriel Antoniu, Amol Ghoting, and Maria S. Perez

Topic chairs

The manipulation and handling of an ever increasing volume of data by current
data-intensive applications require novel techniques for efficient data manage-
ment. Despite recent advances in every aspect of data management (storage,
access, querying, analysis, mining), future applications are expected to scale to
even higher degrees, not only in terms of volumes of data handled but also
in terms of users and resources, often making use of multiple, pre-existing au-
tonomous, distributed or heterogeneous resources. The notion of parallelism and
concurrent execution at all levels remains a key element in achieving scalabil-
ity and managing efficiently such data-intensive applications, but the changing
nature of the underlying environments requires new solutions to cope with such
changes. In this context, this topic sought papers in all aspects of data manage-
ment (including databases and data-intensive applications) that focus on some
form of parallelism and concurrency. Each paper was reviewed by four reviewers
and, after discussion, we were able to select four regular papers.

The accepted papers address relevant issues on various topics such as effec-
tive data compression, GPU-based data indexing, distributed collaborative data
filtering and parallel query processing.

The paper entitled “Compressing the Incompressible with ISABELA: In-situ
Reduction of Spatio-Temporal Data” by S. Lakshminarasimhan et al. proposes
an effective method for In-situ Sort-And-B-spline Error-bounded Lossy Abate-
ment (ISABELA) of scientific data that is widely regarded as effectively incom-
pressible. ISABELA achieves an accurate fitting model that guarantees a ¿= 0.99
correlation with the original data and leverages temporal patterns in scientific
data to compress data by 85%, while introducing only a negligible overhead
on simulations in terms of runtime. The authors demonstrate that the proposed
method outperforms existing lossy compression methods, such as Wavelet com-
pression.

The second paper, entitled “kNN Query Processing in Metric Spaces using
GPUs” by R. Barrientos addresses the idea of using GPUs to accelerate brute-
force searching algorithms for metric-space databases. It shows how to improve
existing GPU implementations and explores the viability of using GPUs in this
context. The paper discusses the performance of both brute-force and indexing-
based algorithms that take into account the intrinsic dimensionality of the ele-
ments of the database.

The third paper, entitled “An Evaluation of Fault-Tolerant Query Processing
for Web Search Engines” by M. Marin et al. addresses strategies to perform
parallel query processing in large scale Web search engines. The paper studies

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 351–352, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

352 S. Orlando et al.

the suitability of such strategies for the case where processor replication is used
to improve query throughput and to support fault-tolerance.

The forth paper, entitled “Performance Optimizations for Distributed Col-
laborative Filtering” by A. Narang et al. focuses on the usage of collaborative-
filtering-based recommender systems by Internet-oriented companies for auto-
matic predictions about user interests: the idea is to infer data from information
about like-minded users. The paper presents a distributed algorithm that uses
collaborative filtering for soft real-time distributed co-clustering. The proposed
algorithm is optimized for multi-core cluster architectures.

We take this opportunity to thank the authors who submitted a contribution,
the Euro-Par Organizing Committee, as well as the referees whose relevant com-
ments and efforts substantially contributed to the effectiveness of the evaluation
process and to the quality of the resulted program for this topic.

Distributed Scalable Collaborative Filtering Algorithm

Ankur Narang, Abhinav Srivastava, and Naga Praveen Kumar Katta

IBM India Research Laboratory, New Delhi
{annarang,abhin122,nagapkat}@in.ibm.com

Abstract. Collaborative filtering (CF) based recommender systems have gained
wide popularity in Internet companies like Amazon, Netflix, Google News, and
others. These systems make automatic predictions about the interests of a user
by inferring from information about like-minded users. Real-time CF on highly
sparse massive datasets, while achieving a high prediction accuracy, is a compu-
tationally challenging problem. In this paper, we present a novel design for soft
real-time (less than 10 sec.) distributed co-clustering based Collaborative Filter-
ing algorithm. Our distributed algorithm has been optimized for multi-core cluster
architectures using pipelined parallelism, computation communication overlap
and communication optimizations. Theoretical parallel time complexity analysis
of our algorithm proves the efficacy of our approach. Using the Netflix dataset
(100M ratings), we demonstrate the performance and scalability of our algorithm
on 1024-node Blue Gene/P system. Our distributed algorithm (implemented us-
ing OpenMP with MPI) delivered training time of around 6s on the full Netflix
dataset and prediction time of 2.5s on 1.4M ratings (1.78μs per rating predic-
tion). Our training time is around 20× (more than one order of magnitude) better
than the best known parallel training time, along with high accuracy (0.87±0.02
RMSE). To the best of our knowledge, this is the best known parallel performance
for collaborative filtering on Netflix data at such high accuracy and also the first
such implementation on multi-core cluster architectures such as Blue Gene/P.

1 Introduction

Collaborative filtering (CF) is a subfield of machine learning that aims at creating algo-
rithms to predict user preferences based on past user behavior in purchasing or rating
of items [13], [15]. Here, the input is a set of known item preferences per user, typically
in the form of a user-item ratings matrix. This (user ∗ item) ratings matrix is typically
very sparse. The Collaborative Filtering problem is to find the unknown preferences of
a user for a specific item, i.e. an unknown entry in the ratings matrix, using the under-
lying collaborative behavior of the user-item preferences. Collaborative Filtering based
recommender systems are very important in e-commerce applications. They help peo-
ple find more easily, items that they would like to purchase [16]. This enhances the user
experience which typically leads to improvements in sales and revenue. Such systems
are also increasingly important in dealing with information overload since they can lead
users to information that others like them have found useful. With massive data rates
in telecom, finance and other industries, there is a strong need to deliver soft real-time
training for CF as it will lead to further increase in customer experience and revenue
generation. Hence, soft real-time CF (with less than 10 sec.) based recommender sys-
tems are very useful.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 353–365, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

354 A. Narang, A. Srivastava, and N.P.K. Katta

Typical approaches for CF include matrix factorization based techniques, correlation
based techniques , co-clustering based techniques and concept decomposition based
techniques. Matrix factorization [17] and correlation [5] based techniques are computa-
tionally expensive hence cannot deliver soft real-time CF. Further, in matrix factoriza-
tion based approaches, updates to the input ratings matrix leads to non-local changes
which leads to higher computational cost for online CF. Concept Decomposition based
technique [1] perform spherical k-means followed by least-squares based approxima-
tion of the original matrix. This work presents only sequential performance of 13.5
minutes for training of the full Netflix dataset which is far from being considered soft
real-time. Co-clustering based techniques [8], [6] have better scalability but have not
been optimized to deliver high throughput on massive data sets. [6] presented dataflow
parallelism based co-clustering implementation which did not scale beyond 8 cores due
to cache miss and in-memory lookup overheads. Moreover, CF over highly sparse data
sets leads to lower compute utilization. Further, for large scale distributed / cluster envi-
ronment (256 nodes and beyond), communication cost can dominate the overall perfor-
mance and the communication cost becomes worse with increasing size of the cluster,
leading to performance degradation. Thus, high computational demand, low parallel
efficiency (due to cache overheads and low compute utilization) and high communica-
tion cost are the key challenges to achieving high throughput distributed Collaborative
Filtering on highly sparse data sets.

In order to optimize the parallel performance, achieve high parallel efficiency and
give near real time guarantees, we optimized our distributed algorithm using pipelined
parallelism, compute communication overlap and communication optimizations (in-
cluding topology mapping, steiner node for communication time reduction) for mas-
sively parallel multi-core cluster architectures such as Blue Gene/P 1. In order to main-
tain high parallel efficiency, our algorithm makes compute vs. communication trade-
offs at various phases of the algorithm. Analytical parallel time complexity analysis
proves the scalability provided by our performance optimizations as compared to the
naive MPI based approach that has been used in all prior implementations. We eval-
uated our parallel CF algorithm on the prestigious Netflix Prize data set [3]. Netflix
provides around 100M ratings (on a scale from 1 to 5 integral stars) along with their
dates from 480189 randomly-chosen, anonymous subscribers on 17770 movie titles.
On this dataset, we test the hybrid(MPI+OMP) parallel version of our optimized algo-
rithm. We demonstrate around 20× CF performance (including training time) over the
full Netflix dataset as compared to the best prior parallel approaches.

This paper makes the following key contributions:

– We present the design of a novel distributed co-clustering based Collaborative
Filtering algorithm for soft real-time (less than 10 sec.) performance over highly
sparse massive data sets on multi-core cluster architectures. Our algorithm involves
performance optimizations such as pipelined parallelism, computation communi-
cation overlap and communication optimizations (including topology mapping and
steiner nodes for communication cost reduction).

– Analytical parallel time complexity analysis, theoretically establishes the improve-
ment in performance and scalability using our algorithm.

1 www.research.ibm.com/bluegene

Distributed Scalable Collaborative Filtering Algorithm 355

– We demonstrate soft real-time distributed CF using the Netflix Prize dataset on a
1024-node Blue Gene/P system. We achieved a training time of around 6s with the
full Netflix dataset and prediction time of 2.5s on 1.4M ratings with RMSE (Root
Mean Square Error) of 0.87 ± 0.02. This is around 20× (more than one order of
magnitude) better than the best known parallel training time [6] along with high
accuracy. To the best of our knowledge, this is the highest known distributed per-
formance at such high accuracy. Our algorithm also demonstrates high scalability
for large number of nodes on MPP architectures.

2 Related Work

Typical CF techniques are based on correlation criteria [5] and matrix factorization [17].
The correlation-based techniques use similarity measures such as Pearson correlation
and cosine similarity to determine a neighborhood of like-minded users for each user
and then predict the users rating for a product as a weighted average of ratings of the
neighbors. Correlation-based techniques are computationally very expensive as the cor-
relation between every pair of users needs to be computed during the training phase.
Further, they have much reduced coverage since they cannot detect item synonymy. The
matrix factorization approaches include Singular Value Decomposition (SVD [14]) and
Non-Negative Matrix Factorization (NNMF) based [17] filtering techniques. They pre-
dict the unknown ratings based on a low rank approximation of the original ratings ma-
trix. The missing values in the original matrix are filled using average values of the rows
or columns. Unlike correlation-based methods, the matrix factorization techniques treat
the users and items symmetrically and hence, handle item synonymy and sparsity in a
better fashion. However, the training component of these techniques is computationally
intensive, which makes them impractical to have frequent re-training. Incremental ver-
sions of SVD based on folding-in and exact rank-1 updates [4] partially alleviate this
problem. But, since the effects of small updates are not localized, the update operations
are not very efficient.

[8] studies a special case of the weighted Bregman co-clustering algorithm. The co-
clustering problem is formulated as a matrix approximation problem with non-uniform
weights on the input matrix elements. Both the users and the items are clustered so
that item synonymy ceases to be a problem. As in the case of SVD and NNMF, the
co-clustering algorithm also optimizes the approximation error of a low parameter re-
construction of the ratings matrix. However, unlike SVD and NNMF, the effects of
changes in the ratings matrix are localized which makes it possible to have efficient
incremental updates. [8] presents parallel algorithm design based on co-clustering. It
compares the performance of the algorithm against matrix factorization and correlation
based approaches on the MovieLens2 and BookCrossing dataset [19] (269392 explicit
rating(1-10) from 47034 users on 133438 books). We consider soft real-time (around
10 sec.) CF framework using hierarchical parallel co-clustering optimized for multi-
core clusters using pipelined parallelism and computation communication overlap. We
deliver scalable performance over 100M ratings of the Netflix data using 1024 nodes

2 http://www.grouplens.org/data/. 100K ratings(1-5) 943 users, 1682 movies.

356 A. Narang, A. Srivastava, and N.P.K. Katta

of Blue Gene/P with 4 cores at each node. [6] uses a dataflow parallelism based frame-
work (in Java) to study performance vs. accuracy trade-offs of co-clustering based CF.
However, it doesn’t consider re-training time for incremental input changes. Further,
the parallel implementation does not scale well beyond 8 cores due to cache miss and
in-memory lookup overheads. We demonstrate parallel scalable performance on 1024
nodes of Blue Gene/P and 20× better training time and better prediction time along
with high prediction accuracy (0.87 ± 0.02 RMSE).

[18] presents a parallel algorithm based on Alternating-Least-Squares with
Weighted-λ-Regularization (ALS-WR) for the Netflix Prize dataset. Their solution, us-
ing parallel Matlab on a Linux cluster, takes 2.5 hrs for training (30 ALS iterations) and
with RMSE value around 0.9 on 1000 hidden features. We address the matrix approxi-
mation problem using a novel distributed co-clustering algorithm that incorporates per-
formance optimizations to achieve highly scalable performance with the record training
time of 5.9s on the full Netflix dataset and high accuracy. [10] studies IO scalable co-
clustering by mapping a significant fraction of computations performed by the Bregman
co-clustering algorithm to an on-line analytical processing (OLAP) engine. [12] stud-
ies the scalability of basic MPI based implementation of co-clustering. We deliver more
than one order of magnitude higher performance compared to this work, by performing
communication optimizations for multi-core cluster based MPPs such as Blue Gene/P.
[1] presents results of collaborative filtering using Concept decomposition based ap-
proach. Concept decomposition is a matrix approximation scheme that solves a least-
squares problem after clustering. It has been empirically established [7] that the approx-
imation power (when measured using the Frobenius norm) of concept decompositions
is comparable to the best possible approximations by truncated SVDs [9]. However, [1]
presents the results of a sequential concept decomposition based algorithm that takes
13.5mins. training time for the full Netflix data, which is very high when looking at soft
real-time performance. We achieve around 138× better performance using an optimized
distributed algorithm designed for multi-core cluster architectures.

3 Background and Notation

In this paper, we deal with partitional co-clustering where all the rows and columns
are partitioned into disjoint row and column clusters respectively. We consider a gen-
eral framework for addressing this problem that considerably expands the scope and
applicability of the co-clustering methodology. As part of this generalization, we view
partitional co-clustering as a lossy data compression problem [2] where, given a speci-
fied number of rows and column clusters, one attempts to retain as much information as
possible about the original data matrix in terms of statistics based on the co-clustering
[11]. The main idea is that a reconstruction based on co-clustering should result in the
same set of user-specified statistics as the original matrix.

A k ∗ l partitional co-clustering is defined as a pair of functions:
ρ : 1, . . . , m �−→ 1, ..., k; and, γ : 1, . . . , n �−→ 1, ..., l. Let Û and V̂ be random
variables that take values in 1, ..., k and 1, ..., l such that Û = ρ(U) and V̂ = γ(V).
Let, Ẑ = [ẑuv] ∈ Sm×n be an approximation of the data matrix Z such that Ẑ de-
pends only upon a given co-clustering (ρ, γ) and certain summary statistics derived from

Distributed Scalable Collaborative Filtering Algorithm 357

co-clustering. Let Ẑ be a (U,V)-measurable random variable that takes values in this ap-
proximate matrix Ẑ following w, i.e., p(Ẑ(U, V) = ẑuv) = wuv . Then, the goodness
of the underlying co-clustering can be measured in terms of the expected distortion
between Z and Ẑ , that is,

E[dφ(Z, Ẑ)] =
m∑

u=1

n∑

v=1

wuvdφ(zuv, ẑuv) = dΦw(Z, Ẑ) (1)

where Φw : Sm×n �−→ R is a is a separable convex function induced on the matrices
such that the Bregman divergence (dΦ()) between any pair of matrices is the weighted
sum of the element-wise Bregman divergences corresponding to the convex function φ.
From the matrix approximation viewpoint, the above quantity is simply the weighted
element-wise distortion between the given matrix Z and the approximation Ẑ . The co-
clustering problem is then to find (ρ, γ) such that (1) is minimized.

Now we consider two important convex functions that satisfy the Bregman diver-
gence criteria and are hence studied in this paper.

(I-Divergence) : Given z ∈ R+, let φ(z) = zlogz − z. For z1, z2 ∈ R, dφ(z1, z2) =
z1log(z1/z2) − (z1 − z2).
(Squared Euclidean distance) : Given z ∈ R, let φ(z) = z2. For z1, z2 ∈ R,
dφ(z1, z2) = (z1 − z2)2.

Given a co-clustering (ρ, γ), Modha et al. discuss six co-clustering bases where each
co-clustering basis preserves certain summary statistics on the original matrix. It also
proves that the possible co-clustering bases (C1 . . . C6) form a hierarchical order in
the number of cluster summary statistics they preserve. The co-clustering basis C6
preserves all the summaries preserved by the other co-clustering bases and hence is
considered the most general among the bases. In this paper we discuss the partition-
ing co-cluster algorithms for the basis C6. For co-clustering basis C6 and Euclidean-
divergence objective, the matrix approximation is given by: Âij = ACOC

gh + (ACC
ih −

ARC
gj), where, ARC

gj =
SRC

gj

W RC
gj

=
∑

i′|ρ(i′)=g Ai′j∑
i′|ρ(i′)=g Wi′j

; ACC
ih = SCC

ih

W CC
ih

=
∑

j′|γ(j′)=h Aij′∑
j′|γ(j′)=h Wij′

;

Algorithm 1. Sequential Static Training via Co-Clustering
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method:
1. Randomly initialize (ρ,γ)
while RMSE value is converging do

2a. Compute averages ACOC ,ARC
gj ,ACC

ih ,AR and AC .
2b. Update row cluster assignments
ρ(i) = argmin

1≤g≤k

∑n
j=1 Wijdφ(Aij , Âij), 1 ≤ i ≤ m

2c. Update column cluster assignments
γ(i) = argmin

1≤h≤l

∑m
i=1 Wijdφ(Aij , Âij), 1 ≤ j ≤ n

end

358 A. Narang, A. Srivastava, and N.P.K. Katta

ACOC
gh = SCOC

gh

W COC
gh

=
∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Ai′j′∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Wi′j′

. The sequential update algorithm for

the basis C6 is as shown in Algorithm 1 where the approximation matrix Â for various
co-clustering bases can be obtained from [2]. For Euclidean divergence, Step 2b. and
2c. of Algorithm 1 use dφ(Aij , Âij) = (Aij − Âij)2. For I-divergence, Step 2b. and 2c.
of Algorithm 1 use dφ(Aij , Âij) = Aij ∗ log(Âij/Aij) − Aij + Âij

In the above sequential algorithm (Algorithm 1), we notice two important steps - a)
Calculating the matrix averages, and, b) updating the row and column cluster assign-
ments. Further, given the matrix averages, row and column cluster updates can be done
independently, and row updates themselves can be done in parallel.

4 Optimized Distributed Co-clustering Algorithm

For multi-core cluster architectures, one can utilize the available intra-node parallelism
along with inter-node parallelism to get highly scalable distributed co-clustering algo-
rithm. Let, c be the number of cores (threads) per node in the distributed architecture,
referred to as T1 . . . Tc. These cores (threads) per node can be used to obtain computa-
tion communication overlap as well pipelining across the iterations in the distributed al-
gorithm. This can significantly reduce the communication bottlenecks of the algorithm.
Algorithm 2 presents the distributed algorithm with these performance optimizations.
The while loop executes iterations until the RMSE value converges to within a given
error bound. Within each iteration the following steps (Step5..Step10) get executed. In
Step 5., threads (T2 . . . Tc) compute the partial contribution to row-cluster averages,
ARC

gj ; while simultaneously, thread T1, performs MPI Allgather to get the column-
cluster membership (γ). Thus, (intra-iteration) computation communication overlap is
achieved which leads to improved performance. Similarly, computation communication
overlap is achieved in the following steps. In Step 6., threads (T2 . . . Tc) compute the
partial contribution to column-cluster averages, ACC

ih ; while simultaneously, thread T1,
performs MPI Allreduce to compute the row-cluster averages ARC

gj . In Step 7., threads
(T2 . . . Tc) compute the partial contribution to co-cluster averages, ACOC

gh ; while si-
multaneously, thread T1, performs MPI Allreduce to compute the column-cluster aver-
ages ACC

ih . In Step 8., threads (T2 . . . Tc) compute the partial Âij values using ACC
ih

and ARC
gj ; while simultaneously, thread T1, performs MPI Allreduce to compute the

co-cluster averages ACOC
gh . In Step 9., all threads (T1 . . . Tc) in a node, compute final

row-cluster memberships for all the rows that are owned by that node. In Step 10.,
threads (T2 . . . Tc) compute final column-cluster memberships while simultaneously,
thread T1, performs MPI Allgather to get the row-cluster memberships from all other
nodes.

In order to reduce the communication cost, the nodes are divided into groups, each
group having the same number of nodes. A small constant number of nodes in each
group act as Steiner nodes and help in inter-group communication. So, each communi-
cation step in Algorithm 2 is broken into two phases: (a) Intra-group communication,
followed by (b) Inter-group communication using the Steiner nodes. Since, the com-
munication group sizes are significantly reduced by using this grouping strategy, the
communication cost goes down thus improving the scalability of the distributed al-
gorithm. Further, to ensure non-overlap, across any two groups, of their intra-group

Distributed Scalable Collaborative Filtering Algorithm 359

communication, we use topology mapping to map each group onto a plane in the 3D
Torus Interconnect architecture of Blue Gene/P. This leads to further decrease in the
communication time.

5 Parallel Time Complexity Analysis

In this section, we establish theoretically, the performance and scalability advantage of
our optimized distributed algorithm. Refer notation given in Table 5.

The distributed algorithm described in section 2 takes a certain number of iterations,
say I . In each iteration the rows are assigned to row clusters and columns are assigned
to column clusters. Each iteration has multiple steps. In Step 5., the thread T1 of all
nodes communicate using all-gather operation to aggregate column to column-cluster
mapping information. This communication time is given by: O(S0+(n/B0)∗ log(P0)).
Simultaneously, threads T2 . . . Tc of each node compute partial contributions of each
node towards ARC

gj . This computation time is O(mn/(P0.c)). The overall time for Step
5. is given by max(O(S0 + (n/B0) ∗ log(P0)), mn/(P0.c)). Assuming, that compute
time dominates, the time complexity for Step 5. can be approximated by O(mn/(P0∗c)).

In Step 6., the thread T1 of all nodes communicate using all-reduce operation to
compute the row-cluster averages ARC

gj . This communication time is given by: O(S0 +
(mn/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of each node compute partial
contributions of each node towards ACC

ih . This computation time is O(mn/(P0.c)).
Thus, the overall time for Step 6. is given by max(O(S0 + (mn/B0) ∗ log(P0)),
mn/(P0.c)). Assuming, that the communication time dominates, the time complex-
ity for Step 6. can be approximated by O(S0 +(mn/B0)∗ log(P0)). Similarly, the time
complexity for Step 7. can be approximated by O(S0 + (mn/B0) ∗ log(P0)).

In Step 8., the thread T1 of all nodes communicate using all-reduce operation to
compute the co-cluster averages ACOC

gh . This communication time is given by: O(S0 +
(kl/B0)∗ log(P0)). Simultaneously, threads T2 . . . Tc of each node compute partial val-
ues for assignment of each row (and column) to k possible row-clusters (and l possible
column-clusters). This computation time is O(mns ∗ (k + l)/(P0.c)). Thus, the overall
time for Step 8. is given by max(O(S0 + (kl/B0) ∗ log(P0)), mns ∗ (k + l)/(P0.c)).
Assuming that the compute time dominates, the time complexity for Step 8. can be ap-
proximated by O(mns∗(k+ l)/(P0.c)). In a similar fashion, the compute time for Step
9. is O(mns ∗ (k + l)/(P0 ∗ c)). Assuming that the compute time dominates Step 10.,
its time complexity can be approximated by O(mns ∗ (k + l)/(P0 ∗ c)).

Thus, the overall time complexity for the hybrid distributed co-clustering algorithm
, per iteration, is given by:

Th(m, n, P0) = O((mn/P0 ∗ c) + S0 + (mn/B0) ∗ log(P0)+
mns ∗ (k + l)/(P0 ∗ c))

(2)

One can observe, that an MPI only (algorithm referred to as base algorithm), which
does not have computation communication overlap, has run time around c× higher as
compared to the hybrid Algorithm 2. This is so, because the hybrid algorithm achieves
effective overlap between computation and communication in most of the steps of the
algorithm and utilizes c available cores per node to get higher performance, while the

360 A. Narang, A. Srivastava, and N.P.K. Katta

Algorithm 2. Distributed (Hybrid - MPI+OMP) Static Training via Co-Clustering
Input: Ratings Matrix (A), Non-zeros matrix (W), No. of row clusters (l), No. of column clus-

ters (k).
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC

gh ,ARC
gj ,ACC

ih .
Data Distribution: (Each node has total c threads - {T1 . . . Tc})
1. Each node p gets mp = m/P0 rows and np = n/P0 columns.
2. Further, threads T1 . . . Tc of each node p, each get mp′ rows (i.e, a mp′ × n submatrix) and
np′ columns (i.e, a m × np′ submatrix, where m′

p =
mp

Tc
and n′

p =
np

Tc
.

Method:
1. Each Ti, i ∈ [1..c] : Randomly initialize (ρp

i ,γp
i)

2. T1 : Gather all the row and column sums/weights SR
i , SC

j , W R
i , W C

j ∀i, j from the other
nodes using MPI Allgather.

3. T1 . . . Tc : Calculate all row and column averages AR
i =

SR
i

W R
i

and AC
j .

(Note that Step 2 and Step 3 can be executed in parallel)
4. T1: Gather the global Row-cluster membership (ρ) by concatenating (ρp) using MPI Allgather.

while RMSE value has not converged, Each thread in a node does the following do
5. T2 . . . Tc : Calculate the partial contributions to Row-Cluster Averages ARC

gj

T1 : Gather the global Column-cluster membership (γ) by concatenating (γp) using
MPI Allgather.

6. T2 . . . Tc : Calculate the partial contribution to Column-Cluster Averages ACC
ih

T1: Do MPI AllReduce to compute the global row-cluster averages ARC
gj

7. T2 . . . Tc : Calculate the contribution of the local rows and columns to the co-cluster
sums/weights i.e, SCOC

p and W COC
p .

T1: Do MPI AllReduce to compute the global col-cluster averages ARC
ih

8. T1:Do an MPI AllReduce on above contributions and get the global co-cluster
sums/weights SCOC , W COC and calculate ACOC .
T2 . . . Tc : Partially compute ÂR(i, j, g), ÂC(i, j, h) the local row cluster and column
cluster assignment steps for each choice of assignment g,h

9. T1 . . . Tc : Update all the local row cluster assignments ρp by first updating ÂR(i, j, g)
with the co-cluster averages to generate Âij

ρp(i) = argmin
1≤g≤k

∑n
j=1 wijdφ(Aij , Âij), i : rows owned by node p

10. T0 : Gather the global Row-cluster membership (ρ) by concatenating (ρp) using
MPI Allgather.
T1 . . . T3: Update all the local column cluster assignments γp by first updating ÂC(i, j, h)
with the cocluster averages to generate Âij

γp(i) = argmin
1≤h≤l

∑m
i=1 wijdφ(Aij , Âij), j : cols owned by node p

end

Distributed Scalable Collaborative Filtering Algorithm 361

Table 1. Notation

Symbol Definition
P0 Total number of nodes for computation
c Number of threads (cores) per node

(m,n) Number of rows and columns in the input matrix
s Sparsity factor of the matrix

(k, l) Number of row and column clusters respectively
(m/k) Average number of rows per row cluster
n/l Average number of columns per column cluster
B0 Interconnect Bandwidth for AllReduce / Allgather operation
S0 Setup cost for AllReduce / Allgather operation

MPI only (base) algorithm performs all the computation and communication steps se-
quentially. Further, the load-imbalance across the nodes is reduced, by factor c, in the
hybrid algorithm as compared to the base algorithm. Assuming, γ as the load-imbalance
factor for the base algorithm, the training time for the base algorithm gets magnified by
the factor, (1 + γ). For the same data distribution, the hybrid algorithm will have load
imbalance of (1 + γ/c) and hence a lower magnification factor in its training time.
Thus, in the best case, this leads to O(c2 ∗ (1+γ)

(c+γ)) performance gain of hybrid vs. base
algorithm.

5.1 Optimum Thread Distribution

In a general case, one can optimize the communication by providing more than one
thread for communication. We study this general communication optimization tech-
nique in this section and determine the optimum number of threads to achieve best
performance.

Let r be the number of threads (cores) that are devoted to computation per step, while
the remaining (c− r) threads (cores), perform communication per step. When, multiple
threads are used for communication, we assume that it takes x steps to complete one
communication task across all nodes. In this case, the time complexity of the hybrid
distributed co-clustering algorithm is given by:

Th(m, n, r, P0) = O((mn/P0 ∗ r) + (S0 + (mn/B0) ∗ log(P0)) ∗ (2x/(c − r))+
3mns ∗ (k + l)/(P0 ∗ r))

(3)

Differentiating the above expression for Th(m, n, r, P0) with respect to r, and setting it
to zero, we can determine the optimum number of threads to be used for computation
per node. We get the following quadratic equation to determine the optimum r:

2xP0 ∗ (S0 + mn/B0 ∗ log(P0)) ∗ r2 = (mn + 3mns ∗ (k + l)) ∗ (c2 + r2 − 2cr)
(4)

362 A. Narang, A. Srivastava, and N.P.K. Katta

Solving, the optimum value of r is given by:

r∗ =

√
(4c2Z2 + 8c2xP0Y) − 2cZ

2 ∗ (2xP0Y − Z)
, where,

Y = S0 + mn/B0 ∗ log(P0), and, Z = mn + 3mns(k + l)
(5)

6 Results and Analysis

The hybrid distributed algorithm was implemented using MPI and OpenMP, while the
base distributed algorithm was implemented using only MPI. The Netflix Prize dataset
was used to evaluate and compare the performance and scalability of these distributed
co-clustering algorithms. The experiments were performed on the Blue gene/P (MPP)
architecture. Each node in Blue Gene/P is a quad-core chip with frequency of 850 MHz
having 2 GB of DRAM and 32 KB of L1 cache per core. Blue Gene/P has the following
major interconnects:(a) 3D-Torus interconnect which provides 3.4 Gbps per link on
each of the 12 links per node (total 5.1 GBps per node), and, (b) Collective Network that
provides 6.8 Gbps per link. MPI was used across the nodes for communication, while
within each node OpenMP was used to parallelize the computation and communication
amongst the four cores. For all the experiments, we obtained RMSE in the range 0.87±
0.02 on the data. Below, k refers to the number of row clusters generated while l refers
to the number of column clusters generated. Netflix data was used for evaluation of the
distributed algorithms. For Netflix, the number of rows, m, is around 480K; the number
of columns, n, is 17, 770, and the sparsity factor, s is around 85. We present the strong,
weak and data scalability analysis of the training phase for both Euclidean divergence
and I-divergence based co-clustering.

6.1 Strong Scalability

For strong scalability, we used the full Netflix data for each experiment, while increas-
ing the number of nodes, from 64 to 1024. Fig. 1(a) illustrates that the hybrid algorithm
(for Euclidean divergence) has consistently better performance over the base algorithm:
5.1× better than the base when P0 = 32 and 2.1× better at P0 = 1024. Here, the hybrid
algorithm has more than (c = 4)× better performance than the base algorithm due to
reduction in load-imbalance as explained in Section 5. In the hybrid algorithm, as the
number of nodes increases from 32 to 1024, the compute time decreases by 26× while
the communication time remains almost the same, this leads to overall 4× decrease in
total training time with 32× increase in the number of nodes(P0). Fig. 1(b) illustrates
the performance gain of the hybrid algorithm over the base algorithm for I-divergence.
Here, the performance gain of hybrid vs base decreases from 3.2× for P0 = 32 nodes to
1.25× for P0 = 1024 nodes. By using more efficient load balancing techniques, the per-
formance of the hybrid (MPI+OpenMP) algorithm can be improved further. Moreover,
by using the optimum number of cores for communication using the formula specified
in the Section 5.1, one can get better overall performance. Further, for I-divergence, the
gain for the hybrid algorithm from the decrease in inter-node load-imbalance is offset
by the loss from intra-node load-imbalance amongst the threads. Hence, in case of I-
divergence the gain of the hybrid algorithm over the base algorithm is not as large as in
the Euclidean divergence.

Distributed Scalable Collaborative Filtering Algorithm 363

Strong Scalability (Euclidean Div.): k=16,l=16

12.3

118.69

68.5

23.5
34.8

15.7

6.11 5.97.34
10.2

14.2

23.3

0

20

40

60

80

100

120

140

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Sscal-mpi

Sscal-mpi-omp

Strong Scalability (I-Divergence): k=16,l=16

90.57

246.83

144.7

459.63

797.84

64.8

250.23

144.09
99.09

66.1 51.853.140

100

200

300

400

500

600

700

800

900

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Sscal-mpi

Sscal-mpi-omp

(a) (b)

Fig. 1. Strong Scalability: (a) Euclidean divergence. (b) I-divergence

6.2 Weak Scalability

Fig. 2(a) displays the weak scalability for Euclidean distance based co-clustering as the
number of nodes (P0) increases from 32 to 1024 and the training data increases from
3.125% to 100% of the full Netflix dataset (with k = 16, l = 16). Here, the hybrid
algorithm performs consistently better compared to the base algorithm: 3.61× better
at P0 = 32 and 2.1× better at P0 = 1024. The total time for the hybrid algorithm
increases by 8.67× as the number of nodes increase from 32 to 1024. This is due to the
compute time increase by 2.91× and also increase in load imbalance. Fig. 2(b) illus-
trates the weak scalability of the hybrid algorithm for I-divergence: with 32× increase
in the data and number of nodes, the training time only increases by 6.13×. Further, the
hybrid algorithm performs consistently better than the base algorithm.

6.3 Data Scalability

Fig. 3(a) displays the data scalability for Euclidean distance based co-clustering as the
training data increases from 6.25% to 100% of the full Netflix dataset, while P0 = 1024.

Weak Scalability (Euclidean Div.) : k=16,l=16

12.31

2.46 2.73

4.15
3.36

6.62

3.34

5.9

1.76
1.250.90.68

0

2

4

6

8

10

12

14

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

Weak Scalability (I-Divergence): k=16,l=16

64.8

25.14
28.25

35.7630.99

46.34

26.2

51.88

16
12.05

9.01

8.46

0

10

20

30

40

50

60

70

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

(a) (b)

Fig. 2. Weak Scalability: (a) Euclidean divergence. (b) I-divergence

364 A. Narang, A. Srivastava, and N.P.K. Katta

The training time for the hybrid algorithm increases by 8.55× with 16× increase in
data, while that for the base algorithm increases by 11.3×. Thus, the hybrid algorithm
shows better than linear data scalability and also better data scalability as compared to
the base algorithm. The hybrid algorithm also performs better than the base by 1.58× at
P0 = 32 and 2.1× better at P0 = 1024. Fig. 3(b) illustrates the data scalability for the
hybrid algorithm with I-divergence as the training time increases only by 14.8× with
16× increase in data, while the number of nodes is kept constant at P0 = 1024.

Data Scalability (Euclidean Div.) : k=16,l=16, P0 = 1024

12.31

3.36

6.68

1.88
1.09

0.69 1.14 1.95
3.32

5.9

0

2

4

6

8

10

12

14

6.25% 12.50% 25% 50% 100%

Percentage of full Netflix data

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

Data Scalability (I-Divergence): k=16,l=16

49.55

17.09

33.72

9.23
4.74

64.8

3.5 6.4
12.8

26.13

51.88

38.64

0

10

20

30

40

50

60

70

6.
25

%

12
.5

0%
25

%
50

%
75

%
10

0%

Percentage of Netflix Dataset

T
im

e(
s) Dscal-mpi

Dscal-mpi-omp

(a) (b)

Fig. 3. Data Scalability: (a)Euclidean divergence. (b) I-divergence

7 Conclusions and Future Work

Real-time collaborative filtering with high prediction accuracy is a computationally
challenging problem. We have presented the design of a novel distributed co-clustering
based Collaborative Filtering algorithm. Our algorithm demonstrates soft real-time (less
than 10 sec.) performance over highly sparse massive data sets. Using pipelined paral-
lelism and compute communication overlap optimizations our hybrid (MPI+OpenMP)
algorithm outperforms all known prior results for CF while maintaining high accu-
racy. Theoretical time complexity analysis proves the scalability of our algorithm. We
demonstrated soft real-time parallel CF using the Netflix Prize dataset on Blue Gene/P
architecture. We delivered the best known training time of around 6s for the full Netflix
dataset and the best known prediction of 1.78us per prediction (rating) for 1.4M ratings
with high prediction accuracy (RMSE value of 0.87 ± 0.02). This training time is 20×
(more than one order of magnitude) better than the best known parallel training time.
We also demonstrated strong, weak and data scalability for multi-core cluster architec-
tures. In future, we intend to investigate performance analysis using queuing theoretic
models for large scale systems.

References

1. Ampazis, N.: Collaborative filtering via concept decomposition on the netflix dataset. In:
ECAI, pp. 143–175 (2008)

2. Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., Modha, D.S.: A generalized maximum
entropy approach to bregman co-clustering and matrix approximation. Journal of Machine
Learning Research 8(1), 1919–1986 (2007)

Distributed Scalable Collaborative Filtering Algorithm 365

3. Bennett, J., Lanning, S.: The netflix prize. In: KDD-Cup and Workshop at the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2007)

4. Brand, M.: Fast online svd revisions for lightweight recommender systems. In: SIAM Inter-
national Conference on Data Mining, pp. 37–48 (2003)

5. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for col-
laborative filtering. In: Fourteenth International Conference on Uncertainty in Artificial In-
telligence, pp. 43–52 (1998)

6. Daruru, S., Marin, N.M., Walker, M., Ghosh, J.: Pervasive parallelism in data mining:
dataflow solution to co-clustering large and sparse netflix data. In: 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 1115–1124 (2009)

7. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using cluster-
ing. In: Machine Learning, pp. 143–175 (1999)

8. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-clustering.
In: Fifth International Conference on Data Mining, pp. 625–628 (2005)

9. Golub, G.H., Loan, C.F.V.: Matrix computations. The Johns Hopkins University Press, Bal-
timore (1996)

10. Hsu, K.-W., Banerjee, A., Srivastava, J.: I/o scalable bregman co-clustering. In: Proceedings
of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining
(2008)

11. Mallela, I.D.S., Modha, D.: Information-theoretic co-clustering. In: Proceedings of the 9th
International Conference on Knowledge Discovery and Data Mining, pp. 89–98 (2003)

12. Kwon, B., Cho, H.: Scalable co-clustering algorithms. In: Hsu, C.-H., Yang, L.T., Park, J.H.,
Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 32–43. Springer, Heidelberg (2010)

13. Resnick, P., Varian, H.R.: Recommender systems - introduction to special section. Comm.
ACM 40(3), 56–58 (1997)

14. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Application of dimensionality reduction in
recommender systems: a case study. In: WebKDD Workshop (2000)

15. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommendation algorithms
for e-commerce. In: ACM Conference on Electronic Commerce, pp. 158–167 (2000)

16. Schafer, J.B., Konstan, J.A., Riedi, J.: Recommender systems in e-commerce. In: ACM Con-
ference on Electronic Commerce, pp. 158–166 (1999)

17. Srebro, N., Jaakkola, T.: Weighted low rank approximation. In: Twentieth International Con-
ference on Machine Learning, pp. 720–728 (2003)

18. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large scale parallel collaborative filtering for
the netflix prize. In: Fourth International Conference on Algorithmic Aspects in Information
and Management, pp. 337–348 (2008)

19. Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists
through topic diversification. In: Fourteenth International World Wide Web Conference
(2005)

Compressing the Incompressible with ISABELA:

In-situ Reduction of Spatio-temporal Data

Sriram Lakshminarasimhan1,2, Neil Shah1, Stephane Ethier3, Scott Klasky2,
Rob Latham4, Rob Ross4, and Nagiza F. Samatova1,2,�

1 North Carolina State University, Raleigh, NC 27695, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

3 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
4 Argonne National Laboratory, Argonne, IL 60439, USA

samatova@csc.ncsu.edu

Abstract. Modern large-scale scientific simulations running on HPC
systems generate data in the order of terabytes during a single run.
To lessen the I/O load during a simulation run, scientists are forced to
capture data infrequently, thereby making data collection an inherently
lossy process. Yet, lossless compression techniques are hardly suitable for
scientific data due to its inherently random nature; for the applications
used here, they offer less than 10% compression rate. They also impose
significant overhead during decompression, making them unsuitable for
data analysis and visualization that require repeated data access.

To address this problem, we propose an effective method for In-situ
Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) of sci-
entific data that is widely regarded as effectively incompressible. With IS-
ABELA, we apply a preconditioner to seemingly random and noisy data
along spatial resolution to achieve an accurate fitting model that guaran-
tees a ≥ 0.99 correlation with the original data. We further take advan-
tage of temporal patterns in scientific data to compress data by ≈ 85%,
while introducing only a negligible overhead on simulations in terms of
runtime. ISABELA significantly outperforms existing lossy compres-
sion methods, such as Wavelet compression. Moreover, besides being a
communication-free and scalable compression technique, ISABELA is
an inherently local decompression method, namely it does not decode
the entire data, making it attractive for random access.

Keywords: Lossy Compression, B-spline, In-situ Processing, Data-intensive
Application, High Performance Computing.

1 Introduction

Spatio-temporal data produced by large-scale scientific simulations easily reaches
terabytes per run. Such data volume poses an I/O bottleneck—both while writ-
ing the data into the storage system during simulation and while reading the
data back during analysis and visualization. To alleviate this bottleneck, scien-
tists have to resort to subsampling, such as capturing the data every sth timestep.
� Corresponding author.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 366–379, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compressing the Incompressible with ISABELA 367

This process leads to an inherently lossy data reduction.
In-situ data processing—or processing the data in-tandem with the simulation

by utilizing either the same compute nodes or the staging nodes—is emerging
as a promising approach to address the I/O bottleneck [12]. To complement ex-
isting approaches, we propose an effective method for In-situ Sort-And-B-spline
Error-bounded Lossy Abatement (ISABELA) of scientific data.

ISABELA is particularly designed for compressing spatio-temporal scientific
data that is characterized as being inherently noisy and random-like, and thus
commonly believed to be uncompressible [16]. In fact, any lossless compression
technique [3,13] is capable of reducing such data by no more than a 10% of
its original size, besides being computationally intensive and, therefore, hardly
suitable for in-situ processing (see Section 3).

The intuition behind ISABELA stems from the following three observations.
First, while being almost random and noisy in its natural form—when sorted—
scientific data exhibits a very strong signal-to-noise ratio due to its monotonic
and smooth behavior in its sorted form. Second, prior work done in curve fitting
[7,17] have shown that monotone curve fitting, such as monotone B-splines, can
offer some attractive features for data reduction, including, but not limited to,
their goodness of fit with significantly fewer coefficients to store. Finally, the
monotonicity property of the sorted data gets preserved in most of its positions
with respect to adjacent time steps. Hence, this property of monotonic inheri-
tance across temporal resolution offers yet another venue for improvement of the
overall data compression ratio.

While intuitively simple, ISABELA has addressed a number of technical
challenges imposed by end-user’s requirements. One of the most important fac-
tors for the user’s adoption of any lossy data reduction technology is the as-
surance that the user-acceptable error-bounds are respected. Since curve fitting
accuracy is often data-dependent, ISABELA must be robust in its approxi-
mation. While curve fitting operations are traditionally time consuming, per-
forming the compression in-situ, mandates ISABELA to be fast. Finally, while
data sorting—as a pre-conditioner for data reduction—is “a blessing,” it is “a
curse” at the same time; reordering the data requires keeping track of the new
position indices to associate the decoded data with its original ordering. While
management of spline coefficients could be viewed as a light-weight task, the
heavy-weight index management forces ISABELA to make some non-trivial
decisions between the data compression rates and the data accuracy.

2 A Motivating Example

Much of the work for in-situ data reduction in this paper stems from a Gyroki-
netic Tokamak Simulation (GTS) [15] for studying plasma micro-turbulence in
the core of magnetically confined fusion plasmas of toroidal devices in nuclear
reactors. On current petaflop systems, such as NCCS/ORNL Jaguarpf, the GTS
code, utilizing ADIOS [11] for its intensive I/O, has demonstrated weak scaling
for up to 65,536 cores on the 8-core per node configuration.

368 S. Lakshminarasimhan et al.

The entire GTS data set can be broadly divided into: (1) checkpoint data to
restart the simulation in case of an execution failure (C&R); (2) analysis (A)
data, such as density and potential fluctuations, for performing various post-
processing physics analyses, and (3) diagnostics data used, for example, for code
validation and verification (V&V) (see Table 1).

Table 1. Summary of GTS output data by different categories

Category Write Frequency Read Access Size/Write Total Size
C&R Every 1-2 hours Once or never A few TBs ≈TBs

A Every 10th time step Many times A few GBs ≈TBs

V&V Every 2nd time step A few times A few MBs ≈GBs

Unlike C&R data that requires lossless compression, analysis (A) data is inher-
ently lossy, and as such, it can tolerate some error-bounded loss in its accuracy.
What is more important is that it is the analysis data that is being accessed
many times by different scientists using various analysis and visualization tools
or Matlab physics analysis codes. Therefore, aggressive data compression that
could enable interactive analytical data exploration is of paramount concern, and
is, therefore, the main focus of ISABELA. For illustrative purposes, throughout
the paper, we will use temporal snapshots of the GTS analysis data consisting of
one-dimensional 64-bit double precision floating point arrays of 172,111 values
each for Potential and Density fluctuations.

3 Problem Statement

The inherent complexity of scientific spatio-temporal data drastically limits the
applicability of both lossless and lossy data compression techniques and presents
a number of challenges for new method development. Such data not only con-
sists of floating-point values, but also exhibits randomness without any distinct
repetitive bit and/or byte patterns (also known as high entropy data, and hence,
uncompressible [5,14]). Thus, applying standard lossless compression methods
does not result in an appreciable data reduction.

Table 2 illustrates the compression rates achieved and the time required to com-
press and decode 12,836KB of GTS analysis data by state-of-the-art methods.
In addition, scientific data often exhibits a large degree of fluctuations in values
across even directly adjacent locations in the array. These fluctuations render lossy
multi-resolution compression approaches like Wavelets [6] ineffective.

The compression ratio CRM (D) of a compression method M for data D of
size |D| reduced to size |DM | is defined by Eq. 1:

CRM (D) =
|D| − |DM |

|D| × 100%. (1)

The accuracy of lossy encoding techniques is measured using Pearson’s cor-
relation coefficient (ρ) and Normalized Root Mean Square Error between an

Compressing the Incompressible with ISABELA 369

N−dimensional original data vector D = (d0, d1, . . . , dN−1) and decompressed
data vector D′ = (d′0, d

′
1, . . . , d

′
N−1) defined by Eq. 2:

NRMSEM (D) =
RMSEM (D, D′)

Range(D)
=

√∑N−1
i=0 (di − d′i)

2

max(D) − min(D)
. (2)

Table 2. Performance of examplar lossless and lossy data compression methods

Metric FPC LZMA ZIP BZ2 ISABELA Wavelets B–splines
Lossless? Yes Yes Yes Yes No No No

CRM (%) 3.12 2.72 1.13 1.11 81.44* 22.51* 0*

Compression (sec.) 0.58 7.01 1.03 3.96 0.93 0.62 0.78

Decompression (sec.) 0.56 1.38 0.49 1.18 1.05 0.58 0.82
∗CR achieved by lossy models for 0.99 correlation and 0.01 NRMSE fixed accuracy. All runs are
performed on an Intel Core 2 Duo 2.2 GHz processor with 4 GB RAM, openSUSE Linux v11.3.

4 Theory and Methodology

Existing multi-resolution compression methods often work well on image data or
time-varying signal data. For scientific data-intensive simulations, however, data
compression across the temporal resolution requires data for many timesteps be
buffered in memory that is, obviously, not a viable option. Applying lossy com-
pression techniques on this data across the spatial resolution requires a significant
tradeoff between the compression ratio and the accuracy. Hence, to extract the
best results out of the existing approximation techniques, a transformation of
this data layout becomes necessary.

Fig. 1. A slice of GTS Potential: (A) original; (B) sorted; (C) decoded after B–splines
fitting to original; and (D) decoded after B–splines fitting to sorted

370 S. Lakshminarasimhan et al.

4.1 Sorting-Based Data Transformation

Sorting changes the data distribution in the spatial domain, from a highly ir-
regular signal (Fig. 1, A) to a smooth and monotonous curve (Fig. 1, B). The
rationale behind sorting—as a pre-conditioner for a compression method—is
that fitting on a monotonic curve can provide a model that is more accurate
than the one on unordered and randomly distributed data. Figure 1 illustrates
the significant contrast in how closely (D) or poorly (C) the decompressed data
approximates the original data when the B−splines curve fitting [2] operates on
sorted versus unsorted data, respectively.

4.2 Cubic B−Splines Fitting

Sorting the data in an increasing order provides a sequence of values whose rate
of change is guaranteed to be the slowest. Although this sequence resembles a
smooth curve, performing curve fitting using non-linear polynomial interpolation
becomes difficult for complex shape curves. Computing interpolation constants
for higher-order polynomials in order to fit these complex curves is computa-
tionally intensive for in-situ processing.

A more effective technique is by using B−splines curve fitting. A B−splines
curve is a sequence of piecewise lower order parametric curves joined together via
knots. Cubic B−splines are composed of polynomial functions of degree d = 3,
which have faster interpolation time and produce “smooth” curves (i.e., second-
order differentiable) at the knot locations. The shape of the B−splines curve
is determined by a knot sequence that describes the span of the piecewise seg-
ments, and a set of basis functions that influences the segments of the curve.
Because of this property splines can control the local shape of the curve without
affecting the shape of the curve globally. This also implies that both curve fit-
ting and interpolation are efficient operations and can provide location-specific
data decoding without decompressing all the data. While sorting rearranges the
points, location-specific decoding is still possible by performing an additional
single level translation of data location from the original to the sorted vector,
and then retrieving the interpolated value on the sorted B−spline curve.

4.3 Maximizing Compression Ratio via Window Splitting

In this section, we look at approaches to maximizing the compression ratio, while
maintaining an accurate approximation model. Let us assume that the original
data D is a vector of size N , namely D = (d0, d1, . . . , dN−1). This way we can
associate a value di with each index value i ∈ I = {0, 1, . . . , N − 1}. Let us also
assume that each vector element, di ∈ R, is stored as a 64-bit double-precision
value. Therefore, storing the original data requires |D| = N × 64 bits.

Assuming that D is a discrete approximation of some curve, its B−splines
interpolation DB requires storing only B−splines constants—the knot vector
and the basis coefficients—in order to reconstruct the curve. Let C denote the

Compressing the Incompressible with ISABELA 371

number of such 64-bit double-precision constants. Then storing the compressed
data after B-splines curve fitting requires |DB| = C × 64 bits.

The random-like nature of D (see Fig. 1, (A)) requires C ∼ N to provide
accurate lossy compression, and hence, leads to a poor compression rate (see
Table 2, last column). However, applying B-splines interpolation after sorting
D requires only a few constants, C = O(1) << N , in order to provide high
decompression accuracy (see Fig. 1, (D)).

While significantly reducing the number of B−splines constants C, sorting D
will reorder the vector elements via some permutation π of its indices, namely
I

π→ Iπ = {i1, i2, . . . , iN}, such that dij ≤ dij+1 , ∀ij ∈ Iπ . As a result, we need
to keep track of the new index Iπ so that we could associate the decompressed
sorted vector Dπ back to the original vector D by using its correct index I. Since
each index value ij requires log2N bits, the total storage requirement for Iπ is
thus |Iπ | = N × log2N bits. Therefore, the vector length N is the only factor
that determines the storage requirements for the index Iπ .

One way to optimize the overall compression ratio, CRISABELA, is to first
split the entire vector D into fixed-sized windows of size W0, or D =

⋃
Dk,

Di ∩ Dj = ∅, Ik = {(k − 1)W0, (k − 1)W0 + 1, . . . , kW0}, i, j, k ∈ 1, NW , i 	= j,
and NW =

⌈
N
W0

⌉
. Then, the B−splines interpolation is applied to each window

Dk separately.
With this strategy, ISABELA’s storage requirement for the compressed data

is defined by Eq. 3:

|DISABELA| =
NW∑

k=1

(|Dk
B| + |Ik

π |), (3)

= NW × (C × 64 + W0 × log2W0)

Substituting Eq. 3 into Eq. 1 and simplifying the resulting equation, we obtain
the following compression ratio for ISABELA defined by Eq. 4:

CRISABELA(D) = (1 − log2(W0)
64

− C

W0
) × 100% (4)

From Eq. 4, we can analytically deduce the trade-off between the window size
W0 and the number of B−splines constants C that give the best compression
ratio. For example, for W0 > 65, 536, the size of the index alone would consume
more than 25% of the original data. We found that C = 30 and W0 = 1024 allows
ISABELA to achieve both > 0.99 correlation and < 0.05 NRMSE between the
original and decompressed GTS data. Also, fixing W0 = 1024 balances the cost of
storing both the index and the fitting coefficients giving an overall compression
rate of 81.4% per time step.

4.4 Error Quantization for Guaranteed Point-by-Point Accuracy

The above sorting-based curve fitting model ensures accurate approximation
only on a per window basis and not on a per point basis. As a result, in certain

372 S. Lakshminarasimhan et al.

locations, the B−splines estimated data deviates from the actual by a margin
exceeding a defined tolerance. For example, almost 95% of the approximated
GTS Potential values average a 2% relative error, where the percentage of the
relative error (ε) at each index i between D = (d0, d1, ..., dN−1) and DISABELA =
(d′0, d′1, ..., d′N−1) is defined as εi = di−d′

i

di
× 100%. While the number of such

location points is reasonably low due to accurate fitting achieved by B−splines
on monotonic data, ISABELA guarantees that a user-specified point-by-point
error is respected by utilizing an error quantization strategy.

Storing relative errors between estimated and actual values enables us to
reconstruct the data with high accuracy. Quantization of these errors into 32-bit
integers results in a large degree of repetition, where majority of the values lie
between [-2, 2]. These integer values lend themselves to high compression rates
(75% − 90%) with standard lossless compression libraries. These compressed
relative errors are stored along with the index during encoding. Upon decoding,
applying these relative errors ensures decompressed values to be within a user-
defined threshold τε for per point relative error.

4.5 Exploiting Δ–Encoding for Temporal Index Compression

To a large extent, the ordering of the sorted data values is similar between
adjacent timesteps, i.e., the monotonicity property of the data extends to index
integer values. Hence, we apply a differential encoding scheme to the index vector
Iπ before compressing the index using standard lossless compression libraries.
[Note that subsequent scheme is applied to each individual data window Dn.]

Suppose that at timestep t0, we first build the index Iπ(t0) consisting of
no redundant values, essentially, incompressible. Hence, this index is stored as
is. But, at the next timestep t0 + 1, the difference in index values ΔI+1 =
Iπ(t0 + 1)− Iπ(t0) is small (see Fig. 2) due to monotonicity of the original data
values Dn and, hence, the sorted values across adjacent timesteps.

Thus, instead of storing the index values at each timestep, we store the index
values at t0, denoted as the reference index, along with the compressed pairwise
index differences ΔI+1 between adjacent timesteps. But, in order to recover the

Fig. 2. Illustration of Δ–encoding of the index across temporal resolution

Compressing the Incompressible with ISABELA 373

data at time t0 + δt, we must read in both the reference index Iπ(t0) and all
the first-order differences ΔI+1 between adjacent timesteps in the time window
(t0, t0+δt). Therefore, the higher value of δt will adversely affect reading time. To
address this problem, we instead store and compress a higher-order difference,
ΔI+j = Iπ(t0 +j)−Iπ(t0), where j ∈ (1, δt), for the growing value of δt until the
size of the compressed index crosses a user-defined threshold. Once the threshold
is crossed, the index for the current timestep is stored as is, and is considered as
the new reference index.

5 Results

Evaluation of a lossy compression algorithm primarily depends on the accuracy
of the fitting model and the compression ratio (CR) achieved. As this compres-
sion is performed in-situ, analysis of the time taken to perform the compression
assumes significance as well. Here, we evaluate ISABELA with emphasis on the
aforementioned factors, using normalized root mean standard error (NRMSE)
and Pearson correlation (ρ) between the original and decompressed data as ac-
curacy metrics. [Note that achieving NRMSE ∼ 0, ρ ∼ 1, and CR ∼ 100%
would indicate excellent performance.]

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160

P
ea

rs
o

n
 c

o
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Window Id

Wavelets B -S plines IS A B E L A

(a)

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100 120 140 160

P
ea

rs
o

n
 c

o
rr

el
at

io
n

 c
o

effi
ci

en
t

Window Id

Non-L inear L inear

(b)

Fig. 3. Accuracy (ρ): (a) Per window correlation for Wavelets, B−splines, and IS-
ABELA with fixed CR = 81% for GTS Density. (b) Per window correlation for GTS
linear and non-linear stage Potential decompressed by ISABELA.

5.1 Per Window Accuracy

In this section, we compare the Pearson correlation (ρ) between the original and
decompressed data using Wavelets and B-Splines on original data and using IS-
ABELA. The following parameters are fixed in this experiment: CR = 81% for
Density, W0 = 1024, CB−spline = 150, and CISABELA = 30. Wavelet coefficients
are thresholded to achieve the same compression rate. Figure 3(a) illustrates that
ISABELA performs exceptionally well even for much smaller C values due to

374 S. Lakshminarasimhan et al.

the monotonic nature of the sorted data. In fact, ρ > 0.99 for almost all the win-
dows. However, both Wavelets and B−splines exhibit a large degree of variation
and poor accuracy across different windows. This translates to NRMSE values
that are one-to-two orders of magnitude larger than the average 0.005 NRMSE
value produced by ISABELA.

ISABELA performs exceptionally well on data from the linear stages of the
GTS simulation (first few thousand timesteps), as shown in Fig. 3(b). Yet, the
performance for the non-linear stages (timestep ≈ 10, 000), where the simulation
is characterised by a large degree of turbulence, is of particular importance to
scientists. Figure 3(b), with intentionally magnified correlation values, shows
that accuracy for the non-linear stages across windows drops indeed. Unlike
Wavelets (Fig. 3(a)), however, this correlation does not drop below 0.92.

67.7
68.7

75.3

76.9
77.8

78.5 78.9

67.5
68.2

74.3
75.4

76.1 76.6
77.0

60

65

70

75

80

0.1 0.5 1 2 3 4 5

O
ve

ra
ll

co
m

p
re

ss
io

n
 r

at
io

 (
C

R
)

Maximum relative error (%) at eac h point

L inear Non-L inear

(a)

60

65

70

75

80

85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
o

m
p

re
ss

io
n

 R
at

io
 (

C
R

)

T imes tep Id

F las h - Veloc ity G T S - P otential

(b)

Fig. 4. Compression ratio (CR) performance: (a) For various per point relative error
thresholds (τε) in GTS Potential during linear and non-linear stages of the simulation.
(b) For various timesteps with τε = 1% at each point (for GTS Potential: t1 = 1, 000,
Δt = 1, 500; for Velocity in Flash: t1 = 3, 000, Δt = 3, 500.

5.2 Trade-Off between Compression and Per Point Accuracy

To alleviate the aforementioned problem, we apply error quantization, as de-
scribed in Sec. 4.4. In both linear and non-linear stages of GTS simulation, the
compression ratios are similar when the per point relative error (τε) is fixed (see
Fig. 4(a)). This is because the relative error in consecutive locations for the
sorted data tends to be similar. This property lends well to encoding schemes.
Thus, even when the error tends to be higher in the non-linear stage, compared
with the linear stage, the compression rates are highly similar. For τε = 0.1% at
each point, the CR lowers to an around 67.6%. This implies that by capturing
99.9% of the original values, the data from the simulation is reduced to less than
one-third of its total size.

Figure 4(b) shows the compression ratio (with τε = 1%) over the entire sim-
ulation run using the GTS fusion simulation and Flash astrophysics simulation
codes. For GTS Potential data, the compression ratio remains almost the same

Compressing the Incompressible with ISABELA 375

across all stages of the simulation. With Flash, after error quantization, most
relative errors are 0’s. Compressing these values results in negligible storage
overhead, and hence CR remains at 80% for the majority of timesteps.

5.3 Effect of Δ–encoding on Index Compression

In this section, we show that compressing along the time dimension further
improves ISABELA’s overall compression of spatio-temporal scientific datasets
by up to 2%—5%. Table 3 show the compression rates achieved for different
orders of ΔI+j , j = 1, 2, 3. While increasing W0 improves spatial compression
to a certain extent, it severely diminishes the reduction of the index along the
temporal resolution. This is due to the fact that with larger windows and a
larger δt between timesteps, the difference in index values lacks the repetitiveness
necessary to be compressed well by standard lossless compression libraries.

Table 3. Impact of Δ–encoding on CR for Potential (Density)

W0 Without Δ–encoding ΔI+1 ΔI+2 ΔI+3

512 80.08 (80.08) 81.83 (84.14) 81.87 (85.09) 81.68 (85.36)

1024 81.44 (81.44) 83.14 (85.65) 83.21 (86.57) 82.98 (86.76)
2,048 81.34 (81.34) 83.03 (85.56) 83.07 (86.44) 82.88 (86.66)

4,096 80.51 (80.51) 82.14 (84.64) 82.21 (85.51) 82.03 (85.76)

8,192 79.32 (79.32) 80.99 (83.38) 81.04 (84.24) 80.83 (84.46)

5.4 Compression Time

The overhead induced on the runtime of the simulation due to in-situ data
compression is the net sum of the times taken to sort D, build Iπ , and perform
cubic B−spline fitting. However, for a fixed window size W0, sorting and building
the index is computationally less expensive compared to B−spline fitting. When
executed in serial, ISABELA compresses data at ≈12 MB/s rate, the same
as gzip, compression level 6, as shown in Table 2. Within the context of the
running simulation, each core is expected to generate around 10 MB of data every
10 seconds that can be reduced to ≈2 MB in 0.83 seconds using ISABELA.
Additionaly, to further reduce the impact of in-situ compression on the main
computation, ISABELA can be executed at the I/O nodes rather than at the
compute nodes [1,18].

In the case of compression, parallelization is achieved by compressing each
window independently. However, a more fine-grain parallelization can be applied
to decompression, as each point in the B−spline curve can be reconstructed
independently. To evaluate the scalability and parallelization characteristics of
ISABELA decompression, we evaluate the time taken for decompression against
serial, OpenMP and GPU-based implementations in a single node environment.
Figure 5 shows the performance of decompression of all three implementations.
The serial implementation is faster when decompressing less than 1,000 points,

376 S. Lakshminarasimhan et al.

but as the number of decompressed points increases, both GPU and OpenMP
versions offer the advantage in terms of computational time. This is especially
true with a GPU-based implementation, which is better suited for fine-grain
parallel computation.

Fig. 5. Computational time for serial, CPU-parallelized, and GPU-parallelized versions
of ISABELA’s B−spline reconstruction part. 8 OpenMP threads were used in this
particular plot, corresponding to two quad core Intel Xeon X5355 processors.

5.5 Performance for Fixed Compression

In this section, we evaluate the performance of ISABELA and Wavetlets
on 13 public scientific datasets (from numerical simulations, observations, and
parallel messages) [3] for the fixed CR = 81%. We compare the averages of
ρa and NRMSEa of ISABELA and Wavelets across 400 windows (see Table
4). Out of the 13 datasets, eleven (three) datasets exhibit ρa = 0.98 with
ISABELA (Wavelets). The NRMSEa values for Wavelets are consistently
an order of magnitude higher than for ISABELA. Wavelets outperform IS-
ABELA on obs spitzer consisting of a large number of piecewise linear seg-
ments for most of its windows. Cubic B−splines do not estimate well when
segments are linear.

6 Related Work

Lossy compression methods based spline fitting or Wavelets have been primarily
used in the field of visualization, geometric modeling, and signal processing.
Very few studies applied such techniques when neither spatial nor temporal
correlation of data can be directly exploited. Chou et al. [4] and Lee et al. [9]
explored spline fitting for random data to optimize the location of control points
to reduce approximation error. In contrast, we aim to transform the data to take
advantage of the accuracy and easily-expressible qualities of splines.

Compressing the Incompressible with ISABELA 377

Table 4. ISABELA vs. Wavelets for fixed CR = 81% and W0 = 1, 024.

ρa NRMSEa

Wavelets ISABELA Wavelets ISABELA

msg sppm 0.400 ± 0.287 0.982 ± 0.017 0.203 ± 0.142 0.051 ± 0.015
msg bt 0.754 ± 0.371 0.981 ± 0.054 0.112 ± 0.151 0.038 ± 0.024
msg lu 0.079 ± 0.187 0.985 ± 0.031 0.422 ± 0.103 0.048 ± 0.015
msg sp 0.392 ± 0.440 0.967 ± 0.051 0.307 ± 0.243 0.064 ± 0.033
msg sweep3d 0.952 ± 0.070 0.998 ± 0.006 0.075 ± 0.036 0.004 ± 0.003
num brain 0.994 ± 0.008 0.983 ± 0.028 0.010 ± 0.011 0.011 ± 0.005

num comet 0.988 ± 0.018 0.994 ± 0.025 0.020 ± 0.020 0.010 ± 0.006
num control 0.614 ± 0.219 0.993 ± 0.017 0.083 ± 0.037 0.009 ± 0.002
num plasma 0.605 ± 0.062 0.994 ± 0.004 0.277 ± 0.038 0.033 ± 0.004
obs error 0.278 ± 0.203 0.994 ± 0.004 0.303 ± 0.091 0.024 ± 0.009
obs info 0.717 ± 0.136 0.993 ± 0.006 0.181 ± 0.078 0.026 ± 0.016
obs spitzer 0.992 ± 0.001 0.742 ± 0.004 0.005 ± 0.000 0.030 ± 0.000

obs temp 0.611 ± 0.114 0.994 ± 0.011 0.096 ± 0.025 0.009 ± 0.003

Lossless compression techniques [3,8,10,13] have been recently applied to float-
ing point data. Unlike most lossless compression algorithms, the techniques pre-
sented in [3,10] are specifically designed for fast online compression of data.
Lindstrom and Isenberg [10] introduced a method for compressing floating-point
values of 2D and 3D grids that functions by predicting each floating point value
in the grid and recording the difference between the predictive estimator and the
actual data value. They also provide the option of discarding least significant
bits of the delta and making the compresion lossy. However, the number of sig-
nificant precision bits that can be saved is limited to 16, 32, 48, or 64 for double
precision data. When applied to a one-dimensional data from GTS simulation,
storing only 16 significant bits provided a compression of 82%, which is com-
parable with ISABELA’s, but more than 75% of points had per-point relative
error of over 1%. By storing 32 bits, the per-point relative error was found to
be within 0.1%, but the compression rate achieved (58.2%) was 13% less than
ISABELA’s. Morever, like other lossless algorithms, location- specific decoding
is not possible.

Most lossy compression techniques either use Wavelets or some form of data
quantization to compress the data sets that are fed as input to visualization
tools. However, visualization community focuses on providing multi-resolution
view-dependent level of detail. The error rate tolerated with lossy compression
techniques on data used for visualization tend to be higher when compared to the
data used for analysis. Hence, very little work exists that accurately compresses
non-image or seemingly random data, even outside the scientific community.
In fact, to the best of our knowledge, ISABELA is the first approach to use
B−spline fitting in the context of reduction for data that is essentially random.

378 S. Lakshminarasimhan et al.

7 Summary

This paper describes ISABELA, an effective in-situ method designed to com-
press spatio-temporal scientific data. ISABELA compresses data over both
the spatial and temporal resolutions. For the former, it essentially applies data
sorting, as a pre-conditioner, that significantly improves the efficacy of cubic
B-spline spatial compression. For the latter, it uses Δ–encoding of the higher-
order differences in index values to further reduce index storage requirements.
By capturing the relative per point errors and applying error quantization, IS-
ABELA provides over 75% compression on data from GTS, while ensuring
99% accuracy on all values. On 13 other scientific datasets ISABELA provides
excellent approximation and reduction, consistently outperforming extensively
used Wavelets compression.

Acknowledgements. This work was supported in part by the U.S. Department
of Energy, Office of Science (SciDAC SDM Center, DE-AC02-06CH11357, DE-
FC02-10ER26002/DE-SC0004935,DE-FOA-0000256, DE-FOA-0000257) and the
U.S. National Science Foundation (CCF-1029711 (Expeditions in Computing)).
Oak Ridge National Laboratory is managed by UT-Battelle for the LLC U.S.
D.O.E. under contract no. DEAC05-00OR22725.

References

1. Abbasi, H., Lofstead, J., Zheng, F., Klasky, S., Schwan, K., Wolf, M.: Extending
I/O through high performance data services. In: Cluster Computing, Austin, TX,
IEEE International (September 2007)

2. De Boor, C.: A Practical Guide to Splines. Springer, Heidelberg (1978)
3. Burtscher, M., Ratanaworabhan, P.: FPC: A high-speed compressor for double-

precision floating-point data (2009),
http://www.csl.cornell.edu/~burtscher/research/FPC/

4. Chou, J., Piegl, L.: Data reduction using cubic rational B-splines. IEEE Comput.
Graph. Appl. 12, 60–68 (1992)

5. Cover, T.M., Thomas, J.: Elements of information theory. Wiley-Interscience, New
York (1991)

6. Frazier, M.W.: An introduction to Wavelets through linear algebra, p. 501.
Springer, Heidelberg (1999)

7. He, X., Shi, P.: Monotone B-spline smoothing. Journal of the American Statistical
Association 93(442), 643–650 (1998)

8. Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted
floating-point geometry. Computer-Aided Design 37(8), 869–877 (2005); CAD 2004
Special Issue: Modelling and Geometry Representations for CAD

9. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-
splines. IEEE Trans. on Viz. and Comp. Graphics 3(3), 228–244 (1997)

10. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.
IEEE Trans. on Viz. and Comp. Graphics 12(5), 1245–1250 (2006)

11. Lofstead, J., Zheng, F., Klasky, S., Schwan, K.: Adaptable, metadata rich IO meth-
ods for portable high performance IO. In: IPDPS 2009, Rome, Italy (May 2009)

http://www.csl.cornell.edu/~burtscher/research/FPC/

Compressing the Incompressible with ISABELA 379

12. Ma, K., Wang, C., Yu, H., Tikhonova, A.: In-situ processing and visualization for
ultrascale simulations. Journal of Physics: Conference Series 78(1), 012043 (2007)

13. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific
floating-point data. In: Proc. of the DCC (2006)

14. Sayood, K.: Introduction to data compression. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

15. Wang, W.X., al, e.: Gyro-kinetic simulation of global turbulent transport properties
in Tokamak experiments. Physics of Plasmas 13(9), 092505 (2006)

16. Welch, T.A.: A technique for high-performance data compression. Computer 17,
8–19 (1984)

17. Wold, S.: Spline functions in data analysis. American Statistical Association and
American Society for Quality 16(1), 1–11 (1974)

18. Zheng, F., al, e.: PreDatA–preparatory data analytics on peta-scale machines. In:
IPDPS, Atlanta, GA (April 2010)

kNN Query Processing in Metric Spaces Using

GPUs

Ricardo J. Barrientos1, José I. Gómez1, Christian Tenllado1,
Manuel Prieto Matias1, and Mauricio Marin2

1 Architecture Department of Computers and Automatic, ArTeCS Group,
Complutense University of Madrid, Madrid, España

ribarrie@fdi.ucm.es
2 Yahoo! Research Latin America, Santiago, Chile

mmarin@yahoo-inc.com

Abstract. Information retrieval from large databases is becoming cru-
cial for many applications in different fields such as content searching
in multimedia objects, text retrieval or computational biology. These
databases are usually indexed off-line to enable an acceleration of on-line
searches. Furthermore, the available parallelism has been exploited using
clusters to improve query throughput. Recently some authors have pro-
posed the use of Graphic Processing Units (GPUs) to accelerate brute-
force searching algorithms for metric-space databases. In this work we
improve existing GPU brute-force implementations and explore the vi-
ability of GPUs to accelerate indexing techniques. This exploration in-
cludes an interesting discussion about the performance of both brute-
force and indexing-based algorithms that takes into account the intrinsic
dimensionality of the element of the database.

1 Introduction

Similarity search has been widely studied in recent years and it is becoming
more and more relevant due to its applicability in many important areas. Ef-
ficient kNN search, namely k nearest-neighbors search, is useful in multimedia
information retrieval, data mining or pattern recognition problems. In general,
when similarity search is undertaken by using metric-space database techniques,
this problem is often featured by a large database whose objects are represented
as high-dimensional vectors. A distance function operates on those vectors to de-
termine how similar the objects are to a given kNN query object. The distance
between any given pair of objects (i.e. high-dimensional vectors) is known to be
an expensive operation to compute and thereby the use of parallel computation
techniques can be an effective way to reduce running times to practical values
in large databases.

In this paper we propose and evaluate efficient metric-space techniques to
solve kNN search on GPUs. Obtaining efficient performance from this hardware
can be particularly difficult in our application domain since metric-space solu-
tions developed for traditional shared memory multiprocessors and distributed
systems [16] cannot be implemented efficiently on GPUs.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 380–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

kNN Query Processing in Metric Spaces Using GPUs 381

Our focus is on search systems devised to solve large streams of queries. Con-
ventional parallel implementations for clusters and multicore systems that ex-
ploit corse-grained inter-query parallelism are able to improve query throughput
by employing index data structures constructed off-line upon the database ob-
jects. On GPUs we are able to exploit fine-grained parallelism and it can be more
efficient to just resort to brute-force algorithms, especially for high-dimensional
metric-spaces. The interesting problem to solve in this case is how to reduce the
amount of work required to keep track of the current objects making into the
kNN set. We propose a realization of this approach that outperforms alternative
approaches to brute-force based on global ordering of the distances of database
objects to the query. Our proposal keeps a partial ordering of objects which
results from applying a novel strategy based on parallel priority queues.

We also experimented with a couple of metric-space index data structures
that we have found amenable for GPU parallelization as they allow matrix-
like computations. Finding a way of mapping these indexes onto GPUs resulted
quite complex and tricky (the main difficulty is to exploit the available memory
bandwidth), and thereby a second contribution of this paper is the proposal of
a GPU based metric-space index data structure for similarity search.

The remaining of this paper is organized as follows. Section 2 gives some back-
ground information on similarity search and metric-space databases. Section 3
describes the main features of our computing platform and summarizes some
previous related work. In Section 4 and 5 we introduce our proposals and dis-
cuss the most important finding from a performance evaluation against baseline
strategies. We conclude in Section 6 highlighting our main contributions.

2 Similarity Search Background and Related Work

A metric space (X, d) is composed of an universe of valid objects X and a distance
function d : X x X → R+ defined among them. The distance function determines
the similarity between two given objects and holds several properties such as
strict positiveness, symmetry, and the triangle inequality The finite subset U ⊂ X

with size n = |U|, is called the database and represents the collection of objects
of the search space.

There are two main queries of interest: Range Search [6] and The k nearest
neighbors (kNN) [1,8]. In the former, the goal is to retrieve all the objects
u ∈ U within a radius r of the query q (i.e. (q, r)d = {u ∈ U/d(q, u) ≤ r}),
whereas in the latter, the goal is to retrieve the set kNN(q) ⊆ U such that
|kNN(q)| = k and ∀u ∈ kNN(q), v ∈ U − kNN(q), d(q, u) ≤ d(q, v).

For solving both kind of queries and to avoid as many distance computations
as possible, many indexing approaches have been proposed. We have focused
on the List of Clusters (LC) [5] and SSS-Index [2] strategies since (1) they are
two of the most popular non-tree structures that are able to prune the search
space efficiently and (2) they hold their indexes on dense matrices which are
very convenient data structures for mapping algorithms onto GPUs [9].

382 R.J. Barrientos et al.

In the following subsections we explain the construction of both indexes and
describe how range queries are solved using them (range searches are simpler
than kNN , but many kNN searches are built on them).

2.1 List of Clusters (LC)

This index [5] is built by choosing a set of centers c ∈ U with radius rc where
each center maintains a bucket that keeps tracks of the objects contained within
the ball (c, rc). Each bucket holds the closest k-elements to c. Thus the radius
rc is the maximum distance between the center c and its k-nearest neighbor.

The buckets are filled up sequentially as the centers are created and thereby
a given element i located in the intersection of two or more center balls remains
assigned to the first bucket that hold it. The first center is randomly chosen from
the set of objects. The next ones are selected so that they maximize the sum of
the distances to all previous centers.

A range query q with radius r is solved by scanning the centers in order of
creation. For each center d(q, c) is computed and only if d(q, c) ≤ rc + r, it is
necessary to compare the query against the objects of the associated bucket. This
process ends up either at the first center that holds d(q, c) < rc − r, meaning
that the query ball (q, r) is totally contained in the center ball (c, rc), or when
all centers have been considered.

2.2 Sparse Spatial Selection (SSS-Index)

During construction, this pivot-based index [2] selects some objects as pivots
from the collection and then computes the distance between these pivots and
the rest of the database. The result is a table of distances where columns are
the pivots and rows the objects. Each cell in the table contains the distance
between the object and the respective pivot. These distances are used to solve
queries as follows. For a range query (q, r) the distances between the query and
all pivots are computed. An object x from the collection can be discarded if
there exists a pivot pi for which the condition |d(pi, x)d(pi, q)| > r does hold.
The objects that pass this test are considered as potential members of the final
set of objects that form part of the solution for the query and therefore they are
directly compared against the query by applying the condition d(x, q) ≤ r. The
gain in performance comes from the fact that it is much cheaper to effect the
calculations for discarding objects using the table than computing the distance
between the candidate objects and the query.

A key issue in this index is the method that calculates the pivots, which must
be good enough to drastically reduce total number of distance computations
between the objects and the query. An effective method is as follows. Let (X, d)
be a metric space, U ⊂ X an object collection, and M the maximum distance
between any pair of objects, M = max{d(x, y)/x, y ∈ U}. The set of pivots
contains initially only the first object of the collection. Then, for each element
xi ∈ U, xi is chosen as a new pivot if its distance to every pivot in the current set
of pivots is equal or greater than αM , being α a constant parameter. Therefore,

kNN Query Processing in Metric Spaces Using GPUs 383

an object in the collection becomes a new pivot if it is located at more than a
fraction of the maximum distance with respect to all the current pivots.

3 Graphic Processing Units (GPU)

GPUs have emerged as a powerful cost-efficient many-core architecture. They
integrate a large number of functional units following a SIMT model. We develop
all our implementations using NVIDIA graphic cards and its CUDA program-
ming model ([9]). A CUDA kernel executes a sequential code on a large num-
ber of threads in parallel. Those threads are grouped into fixed size sets called
warps1. Threads within a warp proceed in a lock step execution. Every cycle,
the hardware scheduler of each GPU multiprocessor chooses the next warp to
execute (i.e. no individual threads but warps are swapped in and out). If the
threads in a warp execute different code paths, only those that follow the same
path can be executed simultaneously and a penalty is incurred.

Warps are further organized into a grid of CUDA Blocks: threads within
a block can cooperate with each other by (1) efficiently sharing data through
a shared low latency local memory and (2) synchronizing their execution via
barriers. In contrast, threads from different blocks can only coordinate their ex-
ecution via accesses to a high latency global memory. Within certain restrictions,
the programmer specifies how many blocks and how many threads per block are
assigned to the execution of a given kernel. When a kernel is launched, threads
are created by hardware and dispatched to the GPU cores.

According to NVIDIA the most significant factor affecting performance is the
bandwidth usage. Although the GPU takes advantage of multithreading to hide
memory access latencies, having hundreds of threads simultaneously accessing
the global memory introduces a high pressure on the memory bus bandwidth.
The memory hierarchy includes a large register file (statically partitioned per
thread) and a software controlled low latency shared memory (per multiproces-
sor). Therefore, reducing global memory accesses by using local shared memory
to exploit inter thread locality and data reuse largely improves kernel execu-
tion time. In addition, improving memory access patterns is important to allow
coalescing of warp loads and to avoid bank conflicts on shared memory accesses.

4 GPU Mapping of k-Nearest Neighbor Algorithms

In this section we describe the mapping of three k -NN algorithms onto CUDA-
enabled GPUs: a brute-force approach and two index-based search methods.

All of them exploit two different levels of parallelism. As in some previous
papers [11][15][7] we assume a high frequency of incoming queries and exploit
coarse-grained inter-query parallelism. However, we also exploit the fine-grained
parallelism available when solving a single query. Overall, each query is processed
by a different CUDA Block that contains hundreds of threads (from 128 to 512,

1 Currently, there are 32 threads per warp.

384 R.J. Barrientos et al.

depending of the specific implementation) that efficiently cooperate to solve
it. Communication and synchronization costs between threads within the same
CUDA Block are rather low, so this choice looks optimal to fully exploit the
enormous parallelism present in k -NN algorithms.

Another common point of our three implementations is the usage of priority
queues (implemented using a heap [12]) to keep track of the potential candidates
found by the threads. This avoids the sorting of the full vector of distances at the
cost of a final reduction stage (described in subsection4.1), as well as increasing
the irregularity of the accesses. Nevertheless, data locality is optimized as much
as possible holding queries and heaps in shared memory whenever possible.

4.1 Exhaustive Search Algorithm

k -NN is typically implemented on GPUs using brute force methods applying a
two-stage scheme. First, all the distances from the target query to the elements
on the database are evaluated and then a second stage sorts these distances
to obtain the nearest elements. In [10], the final stage is implemented with a
modified parallel insertion sort in order to just get the k closest elements, whereas
in [13] authors used an improved Radix-sort. In both cases, full GPU resources
are employed to solve a single query. As mentioned above, we assume a high
frequency of incoming queries and also exploit a coarser level of parallelism by
solving several queries simultaneously. In this case, the first stage becomes a
matrix multiplication (Q ∗ U , where Q rows hold the queries and U columns
store the database), which can be implemented very efficiently on GPUs [19].

Our implementation of the sorting phase is based on a logarithmic reduc-
tion algorithm that consists of three steps. First, the distance vector is evenly
distributed across the CUDA Block threads. To fulfill CUDA alignment and co-
alescing requirements, elements are assigned in a round-robin fashion such that
concurrent accesses of threads within a warp are performed to consecutive mem-
ory addresses. Each thread keeps its own private heap to store its partial K
results (i.e. the K minimal values found in its part of the vector). For real size
problems, the size of hte distance vector is higher than K ; thus, the time to fill
each heap is almost negligible. In the steady state, each thread must compare the
new distance with the top of the heap. Just in case this distance is lower than
the current top, a heap insertion is performed. As computation evolves, is less
and less likely to find smaller elements. At that point, memory accesses become
very regular and threads within a warp almost never diverge.

The other two stages implement the reduction of the local heaps and are
common to all our implementations as mentioned above. The second step starts
once all the threads in the CUDA Block have finished its assigned computations.
A synchronization barrier is needed to ensure that all threads have finished before
starting this step. The input to this stage is a set of tpb heaps, each filled with
K elements (tpb stands for the number of threads per CUDA Block). Now,
just one warp from the whole CUDA Block becomes active. At this point, we
sacrifice parallelism to guarantee a better memory exploitation, which reveals to
be much more relevant for final performance. Heaps are statically assigned, again

kNN Query Processing in Metric Spaces Using GPUs 385

in a round-robin fashion, to each individual thread within the warp. Each thread
will traverse its set of heaps, keeping the K minimal values found. Once again,
a heap is used to store temporal results and the output of this step consists of
32 (the warp size) heaps filled with K elements. For the investigated values of
K, these heaps can be allocated on the shared memory.

In the last step, a single thread performs the reduction of the K smaller values
out of the 32 heaps. There is no need of explicit synchronization between steps
in this case, due to the locked-step execution of threads in the same warp during
the second step. The final results are also stored on a heap, allocated in shared
memory (in order to keep the memory footprint as low as possible, in-place
mapping is performed if the set of 32 heaps from step 2 were also allocated in
shared memory). Both in the second and third step we exploit the fact that
input elements are already organized in heaps, which allows us to heavily reduce
the number of comparisons and insertions in the new output heap.

4.2 LC

The data structure that holds the LC index consists of 3 arrays denoted as
CENTER, RC and CLUSTERS. CENTER is a D × Ncen matrix (D is the
dimension of the elements2 and Ncen is the number of centers), where each
column represents the center of a cluster, RC is an array that stores the covering
radius of each cluster, and CLUSTERS is a D × (Bsize · Nclu) matrix (Nclu is
the number of clusters and Bsize is the number of elements per clusters) that
holds the elements of each cluster. Index information is stored column-wise to
favor coalesce memory accesses.

kNN queries are solved with LC indexes using auxiliary range queries with
increasing or decreasing radius. The former starts performing a range query with
a given initial range Rini and repeat those range queries increasing the radius
by Δ until the nearest K-elements are found3. The latter starts with Rini =
∞ and performs a single iteration in which the radius is reduced dynamically.
Sequential implementations usually employ the decreasing alternative since it
provides better performance [6]. However the increasing radius strategy exhibits
higher inherent parallelism and we have analyzed both of them. In both cases,
parallelism comes from the distribution of distance evaluations.

In our implementations, all threads evaluate first the distance between the
assigned query q and a subset of the elements of CENTER following a Round-
Robin distribution of this matrix. Based on these distances some centers and
their respective clusters are discarded using triangle inequality. For clusters can-
not be discarded, more distances are evaluated in parallel following again Round-
Robin distribution of the CLUSTERS matrix. As in the exhaustive approach,
each thread holds potential candidates in a local heap, which are finally reduced
using the same logarithmic strategy. For the decreasing radius strategy we start
2 For the Spanish database, D is the maximum size of a word.
3 Both parameters Rini and Δ are usually set empirically with an off-line analysis of

the database using a small sample of its elements. In our experiments we have used
less than 1% of their elements to set them.

386 R.J. Barrientos et al.

with Rini = ∞ and perform some initial updates of this radius when threads fill
their local heaps for the first time. At these events, the radius is adjusted with the
longest distance processed so far by the thread (i.e. the root of its local heap) us-
ing CUDA atomicMin(radiuscurrent, locallongest−distance) function. Later on,
the radius is adjusted similarly whenever a new element is inserted on a local
heap. The current radius is always used to test if the elements of a given cluster
can be discarded using the triangle inequality.

As shown in Figure 1(a), although both methods are able to discard a sim-
ilar proportion of the database collection, the increasing strategy outperforms
the decreasing counterpart. Note that in a sequential setting, the decreasing ap-
proach scans the database elements in order and may adjusts the current radius
after processing every single element. However, in a parallel setting these updates
are performed at a higher granularity since many elements are processed in par-
allel. Therefore, the current radius decreases more slowly and less clusters are
discarded. Furthermore, warps divergences are more expensive in the decreasing
strategy. They occur when new elements are inserted into local heaps and in the
decreasing method involve an additional atomic instruction in order to adjust
the radius. As a consequence of these penalties, the decreasing method exhibits
a worse memory behavior since costly divergences prevent coalesce memory
accesses.

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 V
al

ue
s

K

LC, D.B. Images

Read-Write Operations

Running Time

Distance Evaluations

Decreasing LC
Increasing LC

(a)

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 V
al

ue
s

K

SSS-Index, D.B. Images

Read-Write Operations

Running Time

Distance Evaluations

alpha=0.5; 73 piv.
alpha=0.53;32 piv.
alpha=0.56;15 piv.
alpha=0.58; 8 piv.
alpha=0.66; 1 piv.

Batch Heap-Reduction

(b)

Fig. 1. Performance of kNN queries using a) LC with both increasing and decreasing
radius range queries and b) SSS-Index with different number of pivots.

4.3 SSS-Index

We have used 3 matrices to implement SSS-Index : PIVOTS, DISTANCES and
DB. PIVOTS is a D×Npiv matrix (D is the dimension of the elements and Npiv

is the number of pivots) where each column represents a pivot. DISTANCES is
a Npiv ×NDB matrix (NDB = number of elements of the database) where each
row holds the distance vector between pivots and an element of the database.
DB is the reference database. As in the LC, the index information is stored
column-wise to favor coalesce memory accesses.

kNN Query Processing in Metric Spaces Using GPUs 387

As centers in LC, pivots are distributed across threads following a round-
robin distribution to evaluate their distance with the query. On a later stage, the
rows of DISTANCES are distributed across threads, that test if their respective
elements of the database can be discarded. For every non discarded element, a
distance evaluation is performed and a set of heaps is filled accordingly (as in
previous implementations).

In [2], authors have found empirically that α = 0.4 yields the minimal number
of distance evaluations. Our own experiments on GPUs confirm this behavior:
the more pivots are used (up to a certain threshold), the less distance evalua-
tions are performed. However, as shown in Figure 1(b), the best performance
is obtained with just one pivot. Indeed the more pivots used, the worst the ex-
ecution time becomes. Irregularity explains this apparent contradiction: when
using more pivots, threads within a warp are more likely to diverge. Moreover,
memory access pattern becomes more irregular and hardware cannot coalesced
them. This leads to the observed increase in the number of Read/Write opera-
tions. Summarizing, less distance evaluations do not pay off due to the overheads
caused by warp divergences and irregular access patterns. Overall, just one pivot
provides the optimal performance for many of our reference databases.

5 Experimental Results

As computing platforms we have used a NVIDIA GeForce GTX 280 GPU (30
multiprocessors, 8 cores per multiprocessor, 16K of shared memory) equipped
with 4GB of device memory and an Intel’s Clovertown processor with 16 GB
of RAM. We have use three different reference databases (described below) and
the parameter K (the number of nearest neighbors) has been set to 8, 16 and
32. Similar values have been also used in previous papers [13][10][3].

Spanish: A Spanish dictionary with 51,589 words and we used the edit dis-
tance [14] to measure similarity. On this metric-space we processed 40,000 queries
selected from a sample of the Chilean Web which was taken from the TODOCL
search engine. This can be considered a low dimensional metric space.

Images: We took a collection of images from a NASA database containing
40,700 images vectors, and we used them as an empirical probability distribution
from which we generated a large collection of random image objects containing
120,000 objects. We built each index with the 80% of the objects and the remain-
ing 20% objects were used as queries. In this collection we used the euclidean
distance to measure the similarity between two objects. Intrinsic dimensionality
of this space higher than in the previous database, but it is still considered low.

Faces: This database was created from a collection of 8480 face images obtained
from Face Recognition Grand Challenge [17]. We apply the Eigen Face Method
[18] to obtain a projection matrix, that can be used to generate a feature vector
from any face image. We used this collection as an empirical probability distri-
bution from which we generated a large collection of random face image objects
containing 120,000 objects. We used the euclidean distance to measure the sim-
ilarity between two objects. Each eigenface consist in a vector of 254 elements.

388 R.J. Barrientos et al.

Even if the intrinsic dimensionality of the space may be lower than 254, it is
large enough to ruin traditional indexing benefits.

Figure 2 compares different exhaustive search methods. Ordering reduction
stands for the state-of-the-art solution: all the distance evaluations are performed
first. Next, the whole GPU is devoted to sort the obtained distances per query
(i.e., queries are solved one at a time, and full resources are employed to sort
a single vector of distances). A very efficient parallel version of the quicksort
algorithm is employed at that step [4]. Batch-Heap Reduction corresponds with
the technique explained in Section 4.1: one CUDA Block solves a single query and
multiple queries are solved in parallel. Finally, we include a third version labeled
Heap-Reduction that follows our implementation but solves just one query at
a time. Figure 2(a) compares normalized running times for different reference
database size and different values of K. The points are normalized to the largest
value of the experiment. Figure 2(b) shows the absolute running time of the
same set of experiments.

Our proposals are able to outperform the Ordering counterpart in most ex-
periments. Even if we solve one query at a time (Heap-Reduction in the Figure)
we outperform sorting-based algorithms for large databases and small values of
K due to a better memory management. When we exploit the full strength of
GPU launching as many CUDA Blocks as queries the difference increases and,
more relevant, our implementation becomes much less sensitive to K. Note the
performance of any sorting-based implementation is independent of K, since they
sort the full distance vector).

We now turn our attention to the proposed indexing algorithms. For LC, the
preliminary analysis presented in Section 4.2 motivated us to pick 64 as the
number of elements per cluster in the high-dimensional database, while lowering
it to 32 in the Spanish database. Similarly, we restrict ourselves to the increasing
radius approach since it always perform better than the decreasing counterpart.
Regarding SSS-Index, and following the conclusions drawn in Section 4.3, we

0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

K

DB of 50000 Elems. DB of 100000 Elems.

DB of 300000 Elems. DB of 500000 Elems.

Ordering Reduction
Heap-Reduction

Batch Heap-Reduction

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

R
un

ni
ng

 T
im

e

DB Size=50000

DB Size=100000

DB Size=300000

DB Size=500000

Ordering
Heap

Batch-H
Ordering

Heap
Batch-H

Ordering
Heap

Batch-H
Ordering

Heap
Batch-H

K=32
K=16
K=8

(b)

Fig. 2. Normalized (a) and absolute (b) running times of the investigated exhaustive
search algorithms for different K and number of elements using Faces database

kNN Query Processing in Metric Spaces Using GPUs 389

use just a single pivot (α = 0.66) for vector high-dimensional databases and 68
pivots (α = 0.5) for Spanish database.

Figure 3 shows different set of results to illustrate several important findings
of our three implementations. We first place our attention on the total number
of distance evaluations (Figure 3(a)). The Spanish database behaves as expected:
indexing mechanisms do significantly decrease the number of distance evaluations
when compared to the exhaustive search method. However, as space dimensional-
ity increases, that is no longer the case. Indeed the opposite behavior is observed:
indexing mechanisms perform more distance evaluations than the exhaustive al-
gorithm. This is specially true for SSS-Index with just one pivot. Obviously, this
fact implies that some evaluations are performed more than once with the index-
ing mechanism, which is possible due to the increasing radius approach. It must
be noted that we intentionally decided not to reuse distance evaluations to avoid
repeated computations since it introduces an enormous source of irregularity. On
GPUs, decreasing the amount of work in this way, does not pay off.

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 A
ve

ra
ge

 o
f

D
.E

.

D.B. Images

D.B. Faces

D.B. Spanish

K

Batch Heap−Reduction
SSS−Index

L.C.

(a) Number of Distance Evaluations

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

D.B. Images

D.B. Faces

D.B. Spanish

K

Batch Heap−Reduction
SSS−Index

L.C.

(b) Running time

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

8 16 32 8 16 32

N
or

m
al

iz
ed

 Q
ua

nt
ity

 o
f

R
ea

d−
W

ri
te

 O
pe

ra
tio

ns

D.B. Images

D.B. Faces

D.B. Spanish

K

Batch Heap−Reduction
SSS−Index

L.C.

(c) Number of read/write operations

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380

8 16 32

Sp
ee

d-
U

p

K

LC
SSS-Index

Optimized LC
Optimized SSS-Index

(d) Speed-Up of LC and SSS-Index

Fig. 3. Normalized a) Distance evaluations per query (average) b) Running time and
c) Read-write Operations (of 32, 64 o 128 bytes) to device memory. d) Speed-Up of LC
and SSS-Index over sequential counterparts with DB Images.

390 R.J. Barrientos et al.

One would expect that running times mimic the trend exhibited by the dis-
tance evaluations but results in Figure 3(b) partially contradicts this intuition:
the exhaustive search algorithm behaves worse than expected, specially for the
Images database. Figure 3(c) has the clue: memory access pattern, which heavily
influences performance on current GPUs, behaves better for the indexing mech-
anism, specially for LC. As stated in Section 3, when a warp launches misaligned
or non-consecutive memory accesses, hardware is not able to coalesce it and a
single reference may become up to 32 separate accesses. In all our implementa-
tions, heap insertions usually imply warp divergences and lack of locality, thus
increasing the number of read/write operations. Indexed algorithms performs
more distance evaluations but, since many distance evaluations are evaluated
several times, the number of heap insertions is significantly reduced. However,
as dimensionality increases the higher cost of these evaluations starts to trade-
off the difference in heap insertions. There, indexed mechanisms perform poorly
and our exhaustive-search implementation outperforms both of them. The Faces
database, the one with largest dimensionality in our experiments, illustrates this
situation (see Figure 3(b)).

Finally, Figure 3(d) shows the performance speed-ups of our indexed imple-
mentations over its corresponding sequential implementations. For each of the
two algorithms, we implemented a naive out-of-the-box version and a heavily
tuned and compiler optimized one. Results are very impressive for SSS-Index
due to the poor CPU performance of this indexing mechanisms. Regarding the
optimized sequential version, we obtain up to 144x speedup for k = 8. But even
for the lighter index (List of Clusters) our implementation achieves reasonable
speedups of a 17x. Our experiments show that this speed-up is not easy to attend
with OpenMP versions running on medium-sized clusters.

6 Conclusions

In this paper we have presented efficient implementations of typical indexing
mechanisms together with an exhaustive-search version which are mapped on
CUDA based GPUs.

We may highlight the following findings after our exploration: 1) when per-
forming kNN search based on range searches in parallel, an increasing radius
strategy becomes more efficient than the traditional decreasing radius. This is
specially true for GPUs given their memory system restrictions. 2) Optimal pa-
rameters for both, List of Clusters and SSS-Index metrics are extremely different
than those found on distributed implementations. In particular, the best GPU
implementation found for SSS-Index uses a single pivot to prune the search
space, which is highly inefficient since this pivot is found randomly. 3) In such a
context, considering running time, our exhaustive-search proposal outperforms
the indexed versions whereas for the lower dimension datasets our index strate-
gies outperform exhaustive-search.

Note that from sequential computing literature we can learn that in metric-
spaces with very high dimensions, indexing strategies are no longer useful as they

kNN Query Processing in Metric Spaces Using GPUs 391

lose their ability to reduce running time. Here, the only option is to compare the
query against the whole set of database objects. For that case, the exhaustive
search strategy proposed in this paper is clearly the most efficient alternative for
GPU based metric-space query processing.

References

1. Aha, D.W., Kibler, D.: Instance-based learning algorithms. In: Machine Learning,
pp. 37–66 (1991)

2. Brisaboa, N.R., Fariña, A., Pedreira, O., Reyes, N.: Similarity search using sparse
pivots for efficient multimedia information retrieval. In: ISM, pp. 881–888 (2006)

3. Bustos, B., Deussen, O., Hiller, S., Keim, D.A.: A graphics hardware accelerated al-
gorithm for nearest neighbor search. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 196–199. Springer,
Heidelberg (2006)

4. Cederman, D., Tsigas, P.: Gpu-quicksort: A practical quicksort algorithm for graph-
ics processors. J. Exp. Algorithmics 14, 1.4–1.24 (2009)

5. Chavéz, E., Navarro, G.: An effective clustering algorithm to index high dimen-
sional metric spaces. In: The 7th International Symposium on String Processing
and Information Retrieval (SPIRE 2000), pp. 75–86. IEEE CS Press, Los Alamitos
(2000)

6. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. In: ACM Computing Surveys, pp. 273–321 (September 2001)

7. Costa, V.G., Barrientos, R.J., Maŕın, M., Bonacic, C.: Scheduling metric-space
queries processing on multi-core processors. In: Proceedings of the 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP 2010),
pp. 187–194. IEEE Computer Society, Pisa (2010)

8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions
on Information Theory 13(1), 21–27 (1967), http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=1053964

9. CUDA: Compute Unified Device Architecture. c©2007 NVIDIA Corporation,
http://developer.nvidia.com/object/cuda.html

10. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using gpu.
In: Computer Vision and Pattern Recognition Workshop, pp. 1–6 (2008)

11. Gil-Costa, V., Marin, M., Reyes, N.: Parallel query processing on distributed clus-
tering indexes. Journal of Discrete Algorithms 7(1), 3–17 (2009)

12. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading
(1973)

13. Kuang, Q., Zhao, L.: A practical gpu based knn algorithm, Huangshan, China, pp.
151–155 (2009)

14. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Physics Doklady 10, 707–710 (1966)

15. Marin, M., Gil-Costa, V., Bonacic, C.: A search engine index for multimedia
content. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS,
vol. 5168, pp. 866–875. Springer, Heidelberg (2008)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1053964
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1053964
http://developer.nvidia.com/object/cuda.html

392 R.J. Barrientos et al.

16. Marin, M., Ferrarotti, F., Gil-Costa, V.: Distributing a metric-space search index
onto processors. In: 39th International Conference on Parallel Processing, ICPP
2010, San Diego, California, pp. 13–16 (2010)

17. Phillips, P.J., Flynn, P.J., Scruggs, T., W., K., Bowyer, J.C., Hoffman, K., J.,
Marques, J.M., Worek, W.: Overview of the face recognition grand challenge. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 947–954 (June 2005)

18. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuro-
science 3(1), 71–86 (1991)

19. Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear algebra. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC 2008, pp.
31:1–31:11. IEEE Press, Piscataway (2008), http://portal.acm.org/citation.
cfm?id=1413370.1413402

http://portal.acm.org/citation.cfm?id=1413370.1413402
http://portal.acm.org/citation.cfm?id=1413370.1413402

An Evaluation of Fault-Tolerant

Query Processing for Web Search Engines

Carlos Gomez-Pantoja1,2, Mauricio Marin1,3,
Veronica Gil-Costa1,4, and Carolina Bonacic1

1 Yahoo! Research Latin America, Santiago, Chile
2 DCC, University of Chile, Chile

3 DIINF, University of Santiago of Chile, Chile
4 CONICET, University of San Luis, Argentina

Abstract. A number of strategies to perform parallel query processing
in large scale Web search engines have been proposed in recent years.
Their design assume that computers never fail. However, in actual data
centers supporting Web search engines, individual cluster processors can
enter or leave service dynamically due to transient and/or permanent
faults. This paper studies the suitability of efficient query processing
strategies under a standard setting where processor replication is used
to improve query throughput and support fault-tolerance.

1 Introduction

Search engines index very large samples of the Web in order to quickly answer
user queries. The data structure used for this purpose is the so-called inverted
file [2]. In order to support parallel query processing the inverted file is evenly
distributed among P processors forming a cluster of computers. Here either
a local or global approach to indexing can be employed. A number of parallel
query processing strategies can be applied to process queries under the local and
global indexing approaches. They are based on what we call below distributed
and centralized ranking. Each one has its own advantages under an idealized
setting in which processors never fail.

The research question in this paper is what combination of indexing and
ranking is the most suitable one under a real-life setting in which processors can
leave and re-enter service at unpredictable time instants. We focus on the case in
which full quality of service is required, namely the final outcome is not affected
by processor failures. More specifically, responding approximated answers to user
queries by ignoring the contribution of temporarily out-of-service processors is
not an option. This implies that queries (or part of them) hit by failures must
be re-executed trying to keep as low as possible their response times.

Note that the complete processing of a query goes through several major
steps where usually each step is executed in a different set of cluster processors.
The system is dimensioned to make each query last for a very small fraction of a
second in each cluster and thereby query re-execution from scratch upon a failure

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 393–404, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

394 C. Gomez-Pantoja et al.

is feasible. At the same time, query response time per step cannot be too high
since the cumulative sum of response times must not overcome a given upper
bound for the latency experienced by users. In this paper we focus on the most
costly step for a query, that is, the determination of the top-R documents IDs
that best fit the query. In this scenario, our aim is to know how the response time
of the individual queries that were active at the instant of a failure is affected
and how a failure affects the stability of the whole system in aspects such as
overall load balance and query throughput.

To compare the approaches under exactly the same conditions we developed
discrete-event simulators validated against actual implementations, which model
the essentials of the query processing tasks and uses traces from actual executions
to generate the work-load associated with each ranking and indexing strategy.

The remaining of this paper is organized as follows. Section 2 describes the
indexing and ranking strategies. Section 3 describes the experimental testbed
used to obtain the results presented in Section 4. Conclusions are in Section 5.

2 Indexing and Ranking

User queries are received by a broker machine that distributes them among
processors (nodes) forming a cluster of P machines. The processors/nodes work
cooperatively to produce query answers and pass the results back to the broker.
Support for fault-tolerance is made by introducing replication. To this end, and
assuming a P -processor search cluster, D− 1 copies for each of the P processors
are introduced. The system can be seen as a P × D matrix in which each row
maintains an identical copy of the respective partition (column) of the data.

Local and global indexing: Each column keeps a 1/P fraction of an index
data structure, called inverted file [2], which is used to speed up the processing of
queries. In order to support parallel query processing the inverted file is evenly
distributed among the P columns and replicated D−1 times along each column.
An inverted file is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of distinct relevant terms found in the
document collection. Each of these terms is associated with a posting list that
contains the document identifiers where the term appears in the collection along
with additional data used for ranking purposes.

The two dominant approaches to distributing an inverted file [1,9,10,11,15,17,7]
among P processors are: (a) the document partitioning strategy (also called local
indexing), in which the documents are evenly distributed among the processors
and an inverted index is constructed in each processor using the respective subset
of documents, and (b) the term partitioning strategy (called global indexing), in
which a single inverted file is built from the whole text collection to then evenly
distribute the terms and their respective posting lists among the processors.

Distributed and centralized ranking: Trying to bring into the same com-
parison context the strategies reported in the literature is quite involved since
almost each research group uses different methods for document ranking, query

An Evaluation of Fault-Tolerant Query Processing for Web Search Engines 395

processing upon the term, and document partitioned inverted files [1,9,10,15,17].
Some use either intersection (AND) or union (OR) queries [6,8,18]. Others per-
form exhaustive traversal of posting lists while others do list pruning which can
be made on posting lists sorted by term frequency or document ID.

In this work, the ranking of documents is performed using the list pruning
method described in [16]. This method generates a workload onto processors that
is representative of other alternative methods [2,4,5]. In this case, posting lists
are kept sorted by in-document term frequency. The method works by pushing
forward a barrier Smax [16]. A given posting list pair (id doc, freq) is skipped if
the term frequency freq in the document id doc is not large enough to overcome
the barrier Smax. For either local or global indexing, one can apply this method
for either distributed or centralized ranking.

For local indexing under distributed ranking, the broker sends a given query
to a processor selected in a circular manner. We say this processor becomes the
merger for this query. A merger receives a query from the broker and broadcasts
it to all processors. Then all processors execute the document ranking method
and update their barrier Smax using the local posting lists associated with the
query terms. After these calculations, each processor sends to the merger its
local top-R results to let the merger calculate the global top-R documents and
send them to the broker machine. These documents are then sent to a second
cluster of computers, which contain the actual text of documents, in order to
produce the final answer web-page presented to the user.

For global indexing under distributed ranking, the broker sends the query to
one of the processors that contain the query terms (the least loaded processor is
selected). This processor becomes the merger for the query. In the case that the
query terms are not located all in the same processor, the merger processor sends
the query to all other processors containing query terms. Then those processors
compute their estimation of the top-R results. In this case, however, the proces-
sors that do not contain co-resident terms can only compute an approximation
of the ranking because they do not have information about the remote posting
lists to increase their respective barriers Smax.

In [1], it is suggested that processors should send to the merger at least 6 R
results for global indexing. The merger must re-compute the document scores by
using information of all terms and then produce the global top-R results. Note
that with probability 1/P two query terms are co-resident. This probability can
be increased by re-distributing terms among processors so that terms appearing
very frequently in the same queries tend to be stored in the same processors.
This can be made by obtaining term correlation information from actual queries
submitted in the recent past. We call this approach clustered global indexing.

Centralized ranking [3,12] is different in the sense that now pieces of post-
ing lists are sent to processors to be globally ranked rather than performing
local ranking on them in their respective processors. The rationale is that the
granularity of ranking is much larger than the cost of communication in current
cluster technology and that by performing global ranking the barrier Smax goes
up much faster which significantly reduces the overall fraction of posting lists

396 C. Gomez-Pantoja et al.

scanned during ranking. Centralized ranking stops computations earlier than dis-
tributed ranking. In practice, this means that each query requires less processor
time to be solved.

For local indexing under centralized ranking the broker sends the query to
one of the processors selected circularly. This processor becomes the ranker for
the query. Then the ranker broadcasts the query to all processors and they reply
with a piece of posting list of size K/P for each query term (with K fairly larger
than R, say K = 2 R).

The ranker merges these pieces of posting lists and execute the ranking method
sequentially. After this, for all terms in which the pruning method consumed all
the pairs (id doc, freq), a new block of K/P pairs per term is requested to the
P processors (ranker included) and the same is repeated. The ranking ends up
after completing a certain number of these iterations of size K per term.

For global indexing under centralized ranking the broker sends the query
to one of the processors circularly selected. This processor becomes the ranker
for the query and it might not contain any of the query terms. The reason
for this is to favor the load balance of the ranking process (at the expense of
communication) which is the most costly part of the solution of a query. Upon
reception of a query, the ranker processor sends a request for the first K-sized
piece of posting list for each query term to each processor holding them. The
arriving pairs (id doc, freq) are merged and passed through the ranking method
sequentially as in the local indexing and centralized ranking case.

The disadvantage of the global indexing approach is the above mentioned
AND queries in which a large amount of communication is triggered each time
it is necessary to calculate the intersection of two posting lists not located in
the same processor. Another difficulty in the global index is the huge extra
communication required to construct the index and distribute it among the
processors. A practical solution to this problem has been proposed in [11].

Note that in the local indexing approach it is possible to reduce the average
number of processors involved in the solution of queries as proposed in [13] by
using a location cache. This comes from the fact that one can re-order documents
stored in the processors in such a way that they form clusters to which queries can
be directed. At search time, when there is not enough information to determine
which of the clusters can significantly contribute to the global top-R results, the
query is sent to all processors as in the conventional approach. In this paper we
study this approach as well. We call it clustered local indexing.

Overall, in this paper we investigate how efficient are the different query pro-
cessing strategies listed in Table 1 under fails of randomly selected processors.

3 Experimental Framework

The processing of a query can be basically decomposed into a sequence of very
well defined operations [12]. For instance, for local indexing and centralized rank-
ing, the work-load generated by the processing of an one-term query requiring
r iterations to be completed and arriving to processor pi can be represented by
the sequence,

An Evaluation of Fault-Tolerant Query Processing for Web Search Engines 397

Table 1. The different strategies for parallel query processing investigated in this paper
and the code names used to label them in the figures of Section 4

Code Query Processing Strategy

GIDR Global Indexing with Distributed Ranking
CGIDR Clustered Global Indexing with Distributed Ranking
LIDR Local Indexing with Distributed Ranking

CLIDR Clustered Local Indexing with Distributed Ranking

GICR Global Indexing with Centralized Ranking
CGICR Clustered Global Indexing with Centralized Ranking
LICR Local Indexing with Centralized Ranking

CLICR Clustered Local Indexing with Centralized Ranking

Table 2. Boldface letters in the expressions stand for the primitive operations Broad-
cast (B), Fetch (F), Rank (R), Send (S) and Merge (E). Also M ≤ P and we use “+”
to indicate one or more repetitions of the same sequence of operations.

Code Most-likely Sequence of Primitive Operations for Two-Terms Queries

GIDR [F(K)‖2 → R(K)‖2]+ → S(6R) → E(12R)〈pi〉 (just one term in pi)
CGIDR [2F(K) → R(2K)]+ (both terms are in pi with high probability)

LIDR B(2t)
〈pi〉
P → [2F(K/P)‖P → R(2K/P)‖P]+ → S(R)‖P → E(PR)〈pi〉

CLIDR B(2t)
〈pi〉
M → [2F(K/M)‖M → R(2K/M)‖M]+ → S(R)‖M → E(MR)〈pi〉

GICR [F(K)‖2 → S(K) → R(2K)〈pi〉]+ (one term in pi, probability 1−1/P)
CGICR [2F(K) → R(2K)]+ (both terms are in pi with high probability)

LICR B(2t)
〈pi〉
P → [2F(K/P)‖P → 2S(K/P)‖P → R(2K)〈pi〉]+

CLICR B(2t)
〈pi〉
M → [2F(K/M)‖M → 2S(K/M)‖M → R(2K)〈pi〉]+

Broadcast(t)〈pi〉 →
[

Fetch(K/P) ‖ P → Send(K/P) ‖ P → Rank(K)〈pi〉
]r

The broadcast operation represents the part in which the ranker processor pi

sends the term t to all processors. Then, in parallel (‖), all P processors per-
form the fetching, possibly from secondary memory, of the K/P sized pieces
of posting lists. Also in parallel they send those pieces to the ranker pi. The
ranker merges them and performs a ranking of size K repeated until completing
the r iterations. Similar workload representations based on the same primitives
Broadcast, Fetch, Send, and Rank can be formulated for the combinations of
Table 1. The exact order depends on the particular indexing and ranking meth-
ods, and basically all of them execute the same primitive operations but with
(i) different distribution among the processors, (ii) different timing as their use
of resources is directly proportional to their input parameter (e.g., Send(K) or
Send(R)‖ P), and (iii) different number of repetitions r. For the sake of a fair
comparison, we perform distributed ranking partitioned in quanta of size K for
global indexing and K/P for local indexing (this does not imply an extra cost, it
just fixes the way threads compete and use the hardware resources in the simu-
lator). We ignore the cost of merging because it is comparatively too small with

398 C. Gomez-Pantoja et al.

respect to ranking. In Table 2 we show the sequences of primitive operations for
the strategies described in Table 1.

For each query we obtained the exact trace or sequence of primitive calls (in-
cluding repetitions) from executions using query logs on actual implementations
of the different combinations for ranking and indexing. Those programs also al-
low the determination of the relative cost of each primitive with respect to each
other. We included this relative cost into the simulator. Apart from allowing a
comparison under exactly the same scenario, the simulator with its primitive
operations competing for resources, has the advantage of providing an imple-
mentation independent view of the problem since results are not influenced by
interferences such as programming decisions and hardware among others.

3.1 Process-Oriented Discrete-Event Simulator

The query traces are executed in a process-oriented discrete-event simulator
which keeps a set of P ×D concurrent objects of class Processor. The simulator
keeps at any simulation time instant a set of q ·P active queries, each at a differ-
ent stage of execution as its respective trace dictates. An additional concurrent
object is used to declare out of service a processor selected uniformly at random,
and another object is used to re-start those processors. These events take place
at random time intervals with negative exponential distribution.

For each active query there is one fetcher/ranker thread per processor and
one ranker/merger thread for centralized/distributed ranking. To cause cost,
the simulator executes query quanta for both centralized and distributed ranking
(Table 2). The type of indexing determines the size of the quanta, either K or
K/P , to be used by each primitive operation and also the level of parallelism,
either P , number of non-resident terms or none. The quanta can be K/M , with
M ≤ P , when clustered local indexing is used. Here the level of parallelism is
M , where M is the number of processors where the query is sent based on a
prediction of how “good” are document clusters stored in those processors for
the query (for each query, M is determined from actual execution traces).

The asynchronous threads are simulated by concurrent objects of class Thread
attached to each object of class Processor. Competition for resources among the
simulated threads is modeled with P concurrent queuing objects of class CPU
and ram-cached Disk which are attached to each Processor object respectively,
and one concurrent object of class Network that simulates communication among
processors. Each time a thread must execute a Rank(x) operation it sends a
request for a quanta of size x to the CPU object. This object serves requirements
in a round-robin manner. In the same way a Fetch(x) request is served by the
respective Disk object in a FCFS fashion. These objects, CPU and Disk, execute
the SIMULA like Hold(time_interval) operation to simulate the period of time
in which those resources are servicing the requests, and the requesting Thread
objects “sleep” until their requests are served.

The concurrent object Network simulates an all-to-all communication topol-
ogy among processors. For our simulation study the particular topology is not
really relevant as long as all strategies are compared under the same set of

An Evaluation of Fault-Tolerant Query Processing for Web Search Engines 399

resources CPU, Disk and Network, and their behavior is not influenced by the
indexing and ranking strategy. The Network object contains a queuing commu-
nication channel between all pairs of processors. The average rate of channel
data transfer between any two processors is determined empirically by using
benchmarks on the hardware described in Section 4.

Also the average service rate per unit of quanta in ranking and fetching is
determined empirically using the same hardware, which provides a precise esti-
mation of the relative speed among the different resources. We further refined
this by calibrated the simulator to achieve a similar query throughput to the one
achieved by the actual hardware. This allows us to evaluate the consequences of
a processor failure under a fairly realistic setting with respect to its effects in
the throughput and average response time of queries.

The simulator has been implemented in C++ and the concurrent objects are
simulated using LibCppSim library [14]. To obtain the exact sequence of prim-
itive operations (Table 2) performed by each strategy (Table 1), we executed
MPI-C++ implementations of each strategy on a cluster of computers using P=
32 processors and an actual query log. We indexed in various forms a 1.5TB
sample of the UK Web and queries were taken from an one year log containing
queries submitted by actual users to www.yahoo.co.uk.

3.2 Simulating Failures

During the simulation of centralized ranking and just before a failure, all pro-
cessors are performing their roles of rankers and fetchers for different queries.
Upon failure of processor pi, all queries for which pi was acting as ranker must
be re-executed from scratch. This is mainly so because the current (potentially
large) set of candidate documents to be part of the global top-R results is ir-
reversibly lost for each query in which pi was their ranker. In this case a new
ranker processor for those queries must be selected from one of the D−1 running
replicas of processor pi and re-execution is started off. Nevertheless, all pieces
of posting lists already sent by the fetchers are at this point cached in their
respective processors so the disk accesses are avoided and the extra cost comes
only from the additional communication. For other queries, the processor pi was
acting as a fetcher (and sender) of pieces of posting lists. The respective rankers
detect inactivity of pi and send their following requests for pieces of posting lists
to one of the D − 1 running replicas. In both cases (i.e., pi ranker and fetcher)
the replicas are selected uniformly at random.

For distributed ranking and just before a failure, the processors are performing
merging of local top-R results to produce the global top-R ones for a subset of
the active queries. They are also performing local ranking to provide their local
top-R results to the mergers of other subset of queries. Upon failure of processor
pi, a new replica pi is selected uniformly at random for each query for which
pi is a merger. The other processors performing local-ranking for those queries
send their local top-R results to those replicas of pi and the replicas selected as
mergers must re-execute the local ranking for those queries to finally obtain the
global top-R results for the affected queries. The processor pi was also acting as

400 C. Gomez-Pantoja et al.

local ranker for mergers located in other processors. In that case, the randomly
selected replicas pi recalculate the local top-R for the affected queries and send
them to their mergers.

3.3 Simulator Validation

Proper tuning of the simulator cost parameters is critical to the comparative
evaluation of the strategies. We set the values of these parameters from actual
implementation runs of the query processing strategies. These implementations
do not support fault tolerance and thereby are not able to exactly reproduce the
same conditions before, during and after processor failures. Such an objective
would be impossible in practice given the hardware and system software available
for experimentation. Even so, this would require us to modify the MPI library
protocols to make it able to detect failures without aborting the program in all
processors and to selectively re-start queries hit by failures. These protocols have
to be application specific as it is a firm requirement that response time of queries
must be below a fraction of a second. This excludes MPI realizations prone to
scientific and grid computing applications that provide support for processor
failures. This also excludes systems such as map-reduce (e.g., Hadoop) which
are also intended to perform off-line processing in terms of what is understood
as on-line processing in Web search engines.

Nevertheless, the simulator allows us to achieve the objectives of evaluating
different failure scenarios. These scenarios start from a situation in which the
simulator mimics, in a very precise manner, the steady state regime of the ac-
tual program running the respective query processing strategy. From that point
onwards processor failures are injected, there is an increase in load for surviving
processors, the underlying network must cope with lost connections, and signal
re-execution of queries. The cost parameters of the concurrent objects do not
change in this case and these objects properly simulate saturation when some
sections of the network and processors are overloaded.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

321684

N
o

rm
al

iz
ed

 R
u
n
n
in

g
 T

im
e

Number of Processors

UK Web
LICR
LIDR

GIDR
GICR

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

6432168464321684

N
o
rm

al
iz

ed
 r

u
n
n
in

g
 t

im
e

Number of Processors

Top-128 Top-1024

Real
Sim

(b)

Fig. 1. Validation of simulations against actual implementations

An Evaluation of Fault-Tolerant Query Processing for Web Search Engines 401

Figure 1 shows results for overall running time achieved with actual implemen-
tations of the query processing strategies. We injected the same total number of
queries in each processor. Thereby, running times are expected to grow with the
number of processors. The results from the simulator (omitted in Figure 1.a, dif-
ferences below 1%) overlap each curve very closely. Figure 1.b shows results both
for real execution time and simulation time for the LIDR strategy. These results
are for an implementation of the LIDR strategy independent to ours. They were
obtained with the Zettair Search Engine (www.seg.rmit.edu.au/zettair) and we
adjusted our simulator parameters to simulate the performance of Zettair. We
installed Zettair in the 32 processors of our cluster and broadcast queries to all
processors using TCP/IP sockets to measure query throughput. Again the sim-
ulator is capable of almost overlapping each point in the curves of Figure 1.b.
The two sets of curves show results for K= 128 and 1024 respectively.

4 Comparative Evaluation

In the following, we show results normalized to 1 in order to better understand
and illustrate a comparative analysis in terms of percentage differences among
the strategies. We assume that main memory of processors is large enough to
make negligible disk accesses as it indeed occurs in current search engines.

Figures 2.a, 2.c, 2.e and 2.g show results for centralized ranking (CR) upon
global and local indexing (GI and LI respectively) for P = 32 and D = 4.
Figure 2.a shows the average number of queries that are affected by failures for
different rates of failures. The x-axis values indicate a range of rates of failures
from to very high to very low; the value 10 indicates a very high rate whereas
80 indicates a very low rate. Figure 2.c shows the effect in the response time of
queries that must be re-executed from scratch upon a failure. Figure 2.e shows
the effect in all of the queries processed during the experiments. Figure 2.e shows
overall query throughput.

Firstly, these results show that overall queries are not significantly affected by
failures in the P ×D arrangement of processors. Secondly, these results indicate
that the strategies that aim at reducing the number of processors involved in the
solution of individual queries are more effective. This is counter intuitive since
as they use less processors, the amount of calculations that must be re-executed
is larger than the strategies that use more processors to solve individual queries.
However, these strategies are fast enough to let re-executions be performed with
a more quiet effect in the surrounding queries not hit by the failure.

The same trend is observed in the strategies that use distributed ranking
(DR) upon the global and local indexes (GI and LI). This can be seen in the
Figures 2.b, 2.d, 2.f and 2.h. The performance of these strategies is quite behind
the centralized ranking strategies. On average they performed at least 5 more
iterations during query processing making that the impact of failures were more
significant in terms of query throughput degradation. This is reflected in Fig-
ures 3.a and 3.b which show the average response time for all queries (3.a) and
for queries involved in a failure only (3.b).

402 C. Gomez-Pantoja et al.

0.2

0.4

0.6

0.8

1.0

1.2

10 20 40 80

N
u
m

b
er

 o
f

Q
u
er

ie
s

af
fe

ct
ed

 b
y
 F

ai
lu

re
s

Delta

LICR
GICR

CGICR
CLICR

(a)

0.2

0.4

0.6

0.8

1.0

1.2

10 20 40 80

N
u
m

b
er

 o
f

Q
u
er

ie
s

af
fe

ct
ed

 b
y
 F

ai
lu

re
s

Delta

LIDR
GIDR

CGIDR
CLIDR

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o

rm
al

iz
ed

 A
v

er
ag

e
R

es
p
o
n
se

 T
im

e

Delta

LICR
GICR

CGICR
CLICR

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o

rm
al

iz
ed

 A
v

er
ag

e
R

es
p
o
n
se

 T
im

e

Delta

LIDR
GIDR

CGIDR
CLIDR

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o

rm
al

iz
ed

 A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

Delta

LIDR
GIDR

CGIDR
CLIDR

(f)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
u

t

Delta

LICR
GICR

CGICR
CLICR

(g)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o
rm

al
iz

ed
 A

v
er

ag
e

R
es

p
o

n
se

 T
im

e

Delta

LICR
GICR

CGICR
CLICR

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80

N
o
rm

al
iz

ed
 A

v
er

ag
e

R
es

p
o

n
se

 T
im

e

Delta

LIDR
GIDR

CGIDR
CLIDR

(f)

Fig. 2. Experiments for centralized and distributed ranking

An Evaluation of Fault-Tolerant Query Processing for Web Search Engines 403

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80 10 20 40 80

A
v
er

ag
e

Q
u
er

y
 R

es
p
o
n
se

 T
im

e

Delta

CR DR

LI
GI

CGI
CLI

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 40 80 10 20 40 80

A
v
er

ag
e

Q
u
er

y
 R

es
p
o
n
se

 T
im

e

Delta

CR DR

LI
GI

CGI
CLI

(b)

Fig. 3. Normalized average response times for all queries (a) and for queries involved
in failures (b). Both figures are in the same normalized scale.

5 Concluding Remarks

In this paper we have evaluated different strategies for indexing and ranking in
Web search engines under a fault-tolerant scenario. We resorted to simulators to
re-produce exactly the same conditions for each tested strategy. The simulators
were properly tuned with actual implementations of the strategies. Simulations
and actual executions agreed within a small difference. For each strategy, traces
were collected from the execution of the actual implementations and injected in
the respective simulators to cause cost in the simulated time and react upon fail-
ures by re-executing the respective traces of affected queries. The failure arrival
rate was kept independent of the query processing strategy being simulated.

The results from a set of relevant performance metrics, clearly show that
centralized ranking strategies behave better than distributed ranking strategies
upon failures. This holds for both local and global indexing. At first glance
this appears counter intuitive since distributed ranking gets more processors
involved in the document ranking process and thereby upon a failure it is only
necessary to re-execute 1/P -th of the computations, with P being the number of
involved processors. In contrast, centralized ranking assigns just one processor to
the document ranking process and thereby the query must be re-executed from
scratch in another processor. The key point is that centralized ranking is much
faster than distributed ranking and this makes the difference in a environment
prone to failures since the system quickly gets back into steady state.

In addition, the simulations show that global indexing achieves better per-
formance than local indexing for list-pruning ranking methods under processor
failures. This kind of methods have become current practice in major vertical
search engines since they reduce the amount of hardware devoted to process each
single query. Our results show that global indexing in combination with centra-
lized ranking is able to significantly reduce hardware utilization for disjunctive
queries. Conjunctive queries are better adapted to local indexing but in both
cases, centralized ranking is a better alternative than distributed ranking.

404 C. Gomez-Pantoja et al.

A combination of distributed and centralized ranking is also possible: a first
round can be made using the centralized approach to quickly increase the global
Smax barrier for the query, and then the global barrier is communicated to the
involved processors so that they can use it to perform distributed ranking from
this point onwards. This combination, which reduces overall communication,
is expected to be useful in cases in which the ranking method is not able to
aggressively prune posting list traversal for all query terms. We plan to study
this alternative in the near future.

References

1. Badue, C., Baeza-Yates, R., Ribeiro, B., Ziviani, N.: Distributed query processing
using partitioned inverted files. In: SPIRE, pp. 10–20 (November 2001)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)

3. Bonacic, C., Garcia, C., Marin, M., Prieto, M.E., Tirado, F.: Exploiting Hybrid
Parallelism in Web Search Engines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.)
Euro-Par 2008. LNCS, vol. 5168, pp. 414–423. Springer, Heidelberg (2008)

4. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.Y.: Efficient query
evaluation using a two-level retrieval process. In: CIKM, pp. 426–434 (2003)

5. Broder, A.Z., Ciccolo, P., Fontoura, M., Gabrilovich, E., Josifovski, V., Riedel, L.:
Search advertising using web relevance feedback. In: CIKM, pp. 1013–1022 (2008)

6. Chaudhuri, S., Church, K., Christian König, A.: Liying Sui. Heavy-tailed distri-
butions and multi-keyword queries. In: SIGIR, pp. 663–670 (2007)

7. Ding, S., Attenberg, J., Baeza-Yates, R.A., Suel, T.: Batch query processing for
Web search engines. In: WSDM, pp. 137–146 (2011)

8. Falchi, F., Gennaro, C., Rabitti, F., Zezula, P.: Mining query logs to optimize index
partitioning in parallel web search engines. In: INFOSCALE, p. 43 (2007)

9. Jeong, B.S., Omiecinski, E.: Inverted file partitioning schemes in multiple disk
systems. TPDS 16(2), 142–153 (1995)

10. MacFarlane, A.A., McCann, J.A., Robertson, S.E.: Parallel search using parti-
tioned inverted files. In: SPIRE, pp. 209–220 (2000)

11. Marin, M., Gil-Costa, V.: High-performance distributed inverted files. In: CIKM
2007, pp. 935–938 (2007)

12. Marin, M., Gil-Costa, V., Bonacic, C., Baeza-Yates, R.A., Scherson, I.D.:
Sync/async parallel search for the efficient design and construction of web search
engines. Parallel Computing 36(4), 153–168 (2010)

13. Marin, M., Gil-Costa, V., Gomez-Pantoja, C.: New caching techniques for web
search engines. In: HPDC, pp. 215–226 (2010)

14. Marzolla, M.: Libcppsim: a Simula-like, portable process-oriented simulation li-
brary in C++. In: ESM, pp. 222–227. SCS (2004)

15. Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.: A pipelined architecture for
distributed text query evaluation. Information Retrieval (August 2007)

16. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-
sorted indexes. JASIS 47(10), 749–764 (1996)

17. Xi, W., Sornil, O., Luo, M., Fox, E.A.: Hybrid partition inverted files: Experimental
validation. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 422–
431. Springer, Heidelberg (2002)

18. Zhang, J., Suel, T.: Optimized inverted list assignment in distributed search engine
architectures. In: IPDPS (2007)

Introduction

Ramin Yahyapour, Christian Pérez, Erik Elmroth, Ignacio M. Llorente,
Francesc Guim, and Karsten Oberle

Topic chairs

There has been a considerable discussion in the past years on the similarities
and differences between Clouds and Grid Computing. This included extreme
positions whether Clouds are a pure marketing hype, or whether Grids became
obsoleted by failing a wide commercial adoption as a resource sharing platform.
Now, we can assess that neither is true nor necessary. Grids and clouds share
many similarities as they both address questions concerning access to resources
in a large-scale distributed environment. Thus, there is significant overlap be-
tween the two areas in the ways that infrastructures may evolve. Grids became a
common production infrastructure especially in the scientific domain including
cluster and HPC resources. Clouds became a common provisioning paradigm in
service infrastructures with many public/commercial providers or private clouds
within data centers. It is very successful in creating a layered architecture that
separates the infrastructure access from applications through virtualization. In-
frastructure as a Service can be utilized to run arbitrary applications. Similarly,
applications can be broken down to several software services which run on such
virtual infrastructures. Grids target a similar space by combining resources from
different providers in a networked infrastructure.

Both domains cannot only co-exist, but also benefit each other. The core
research challenges are very similar and include, for example, topics like resource
management, scheduling, SLA management, security or workflow management.

The topic 6 of Euro-Par addresses such core research topics Grid Cluster and
Cloud Computing. The call for participation asked for contributions on Grid and
Cloud middlewares, applications and platforms. In the following, you will find
contributions which focus on different aspects.

We saw an increased interest in the aggregation and federation of Grids and
Clouds which requires suitable models and protocols to interoperate between
systems. This includes questions on migration of virtual machines between cloud
providers as well as the consideration of virtual clusters on top of Clouds. Such
approaches need suitable solutions for efficient data management.

Similarly, Quality-of-Service and Service-Level-Agreement gained attention in
the scientific and industrial domain. The set of selected papers include work in
the area of SLA management for Cloud environments in which a rule based
approach is proposed to manage such agreements.

Efficiency of infrastructure management remains a key topic. This includes
aspects of Green computing by considering carbon efficiency of nodes. The load
balancing and scheduling has been subject to research for many years. However,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 405–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

406 R. Yahyapour et al.

this aspect is still very relevant due to the complexity at hand. This year’s
contribution include autonomic self-management aspects, as well as optimization
mechanisms through load-balancing

The number of submission to this topic reflected the high interest in this area.
The selection process was very competitive and we are happy to achieve a very
good coverage of different perspectives. All papers were reviewed by at least
three, usually four, independent reviewers. The selection process was not easy as
many papers provided very good research insights and interesting approaches.

We would like to thank all the reviewers, for their time and effort, who helped
us in the selection process. At the same time, we would like to thank all authors
who help to maintain Euro-Par as one of the premier scientific conferences at
which innovative ideas for Grid, Cluster and Cloud computing are presented.

Self-economy in Cloud Data Centers: Statistical

Assignment and Migration of Virtual Machines

Carlo Mastroianni1, Michela Meo2, and Giuseppe Papuzzo1

1 ICAR-CNR, Rende (CS), Italy
{mastroianni,papuzzo}@icar.cnr.it

2 Politecnico di Torino, Italy
michela.meo@polito.it

Abstract. The success of Cloud computing has led to the establish-
ment of large data centers to serve the increasing need for on-demand
computational power, but data centers consume a huge amount of electri-
cal power. The problem can be alleviated by mapping virtual machines,
VMs, which run client applications, on as few servers as possible, so that
some servers with low traffic can be put in low consuming sleep modes.
This paper presents a new approach for the adaptive assignment of VMs
to servers and their dynamic migration, with a twofold goal: reduce the
energy consumption and meet the Service Level Agreements established
with users. The approach, based on ant-inspired algorithms, founds on
statistical processes: the mapping and migration of VMs are driven by
Bernoulli trials whose success probability depends on the utilization of
single servers. Experiments highlight the two main advantages with re-
spect to the state of the art: the approach is self-organizing and mostly
decentralized, since each server locally decides whether or not a new VM
can be served, and the migration process is continuous and adaptive,
thus avoiding the need for the simultaneous reassignment of many VMs.

1 Introduction

The need for on-demand computing, i.e., the possibility of using computational
resources on a pay-as-you-go basis, was identified many years ago, but so far
it is has been hindered by technological constraints. Recently, the availability
of powerful data centers and high bandwidth connections have expedited the
success of the Cloud computing paradigm, which is making on-demand com-
puting a common practice for many enterprizes and scientific communities. The
main advantage of this paradigm is that a company does not need to operate
its own data center, with all the related costs and administration burdens, but
can access to CPU power, storage facilities, software packages on the basis of
current needs. For example, a Web server operated by a company can be hosted
by a Cloud center, a choice that has many advantages in addition to money
savings, among which higher security and availability guarantees (anti-hacker
and back up procedures are managed by IT professionals), and much lower or
even zero risks of under- or over-provisioning of resources. These advantages are
particularly welcome by small companies, especially in their start up phase [3].

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 407–418, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 C. Mastroianni et al.

One of the main issues related to the success of Cloud computing is that
the ever growing number of large data centers is causing a notable increase
of electrical power consumed by hardware facilities and cooling systems. This
increases the cost of computation itself and affects the carbon footprint of data
centers, thus aggravating, on the global scale, the problem of global warming.
It has been estimated that in 2006 the energy consumed by IT infrastructures
in USA was about 61 billion kWh, corresponding to 1.5% of all the produced
electricity, and these figures are expected to double by 2011 [2].

A major reason for this huge amount of consumed power is the inefficiency
of data centers, which are often under-utilized: it has been estimated that only
20-30% of the total server capacity is used on average [1]. Despite the adoption
of techniques that try to scale the energy consumption with respect to the actual
utilization of a computer (for example, Dynamic Voltage and Frequency Scal-
ing or DVFS), an idle server still consumes approximately 65-70% of the power
consumed when it is fully utilized [8]. To cope with this problem, Cloud data
centers exploit the virtualization paradigm: user processes are not assigned di-
rectly to servers, but are first associated with Virtual Machine (VM) instances,
which, in turn, are run by servers. The use of virtualization allows heterogeneous
platforms to be executed on any kind of hardware facility, which facilitates the
consolidation of VMs, that is, their clustering on as few computers as possible.

Unfortunately, the optimal mapping of VMs to servers, so as to minize en-
ergy consumption, is an NP-hard problem and requires a full knowledge of the
servers load. Centralized algorithms that explore sub-optimal solutions may be
computationally costly, and do not scale well with the size of the system. This
paper presents a self-organizing approach that is partly inspired by the basic
ant algorithms used by Deneubourg et al. [6] to model the phenomenon of larval
clustering in ant colonies. In our case, the approach aims at clustering VMs in
as few servers as possible, using two types of statistical procedures, for the as-
signment and the migration of VMs. Specifically, a new VM is assigned to one
of the available servers through statistical Bernoulli trials for which the success
probability depends on the current utilization of the servers. The assignment
probability function is defined so as to favor the assignment of a VM to a highly
loaded server, in order to improve VM consolidation. On the other hand, the
migration procedure fosters the migration of VMs from servers in which the cur-
rent utilization is either too high or too low, that is, above or below two defined
thresholds. In the first case, the migration of a VM helps to prevent a possi-
ble overload of the server, which may lead to Service Level Agreement (SLA)
violations. In the second case, the objective of the migration is to take VMs
away from lightly loaded servers, and then power off these servers. Migration is
also driven by Bernoulli trials, for which the success probability is defined by
appropriate migration probability functions.

The use of statistical processes has two important advantages: (i) assign-
ment and migration processes are self-organizing and mostly decentralized. The
data center manager coordinates the processes, but decisions are taken locally
by each server on the basis of local information; (ii) the migration process is

Self-economy in Cloud Data Centers 409

continuous and gradual, and the cost of migration (e.g., performance degrada-
tion) is smoothed over time, so that the quality of service perceived by users is
hardly affected. Conversely, several approaches proposed in the literature (e.g.,
[12] and [2]) often require the simultaneous migration of many VMs. These
properties, self-organization and gradual migration of VMs, favor the scalability
of the approach and its capacity to adapt to the dynamic workload of client
applications.

The rest of the work is organized as follows: Section 2 discusses the assign-
ment and migration procedures; Section 3 reports the results of simulation ex-
periments, which prove that the approach succeeds in efficiently consolidating
VMs, and that power consumption is close to the theoretical minimum, while
the number of SLA violations is minimized; Section 4 describes related work,
and Section 5 concludes the paper and proposes some avenues for future work.

2 Assignment and Migration of Virtual Machines

This section describes the statistical procedures used for the assignment of VMs
to the data center servers and for their dynamic migration. The examined sce-
nario is pictured in Figure 1: an application request is transmitted from a client
to the data center manager, which selects a VM that is appropriate for the
application, on the basis of application characteristics such as the amount of
required resources (CPU, memory, storage space) and the type of operating sys-
tem specified by the client. Then, the VM is assigned to one of the available
multi-core servers through the assignment procedure. The workload of the appli-
cation is dynamic, that is, its demand for CPU varies with time, provided that
it does not exceed the VM capacity. This is typical, for example, of Web servers,
for which the CPU demand depends on the workload generated by Web users.
Periodically, each server checks if its CPU utilization is between the specified
upper and lower thresholds and, when this condition is violated, it activates the
migration procedure, in order to move one VM to another server. The parame-
ters λ and μ shown in Figure 1 are, respectively, the arrival rate of application
requests and the service rate of a server core. They will be used in Section 3 for
the performance analysis.

Fig. 1. Assignment and migration of VMs in a data center

410 C. Mastroianni et al.

2.1 Assignment Procedure

Once a client application is associated with a compatible VM, the latter must
be assigned to a server for execution. The choice should take into account the
following considerations: (i) it is preferable to assign the VM to a server with high
CPU utilization, in order to enforce the consolidation of VMs and possibly allow
idle servers to be powered off; (ii) the CPU utilization should not be too close to
the server capacity: in such a case, if the VMs workload increases, the server may
be unable to grant the amount of CPU required by the applications, and SLA
violations may occur; (iii) the VM should be allocated on a powered off server
only when strictly necessary, since switching on a server reduces consolidation
and increases consumed power.

Given these objectives, the assignment procedure is defined as follows. The
data center manager broadcasts the assignment request to servers1. Each active
server executes a Bernoulli trial, whose success probability depends on its current
CPU utilization, u (valued between 0 and 1), and on the maximum allowed
utilization, Ta. The assignment probabilistic function, fassign(u), is null when
u > Ta, otherwise it is defined as:

fassign(u) = 1/Mp · up · (Ta − u) Mp =
pp

(p + 1)(p+1)
· T (p+1)

a (1)

Figure 2 shows the function graph for some values of the integer parameter p,
and Ta = 0.9. The factor 1/Mp is used to normalize the maximum value to 1. The
function definition ensures that the CPU utilization cannot exceed the threshold
Ta (because no further VMs can be assigned when u reaches this threshold)
and that VMs are preferably assigned to highly loaded servers, thus favoring
consolidation. The value of u at which the function reaches its maximum - that
is, the value at which assignment attempts succeed with the highest probability
- is p/(p + 1) ·Ta, which increases and approaches Ta as the value of p increases.
Therefore, the value of p can be used to modulate the shape of the function and
tune the consolidation effort.

Each server for which the Bernoulli trial succeeds, responds to the broadcast
message declaring its availability to accommodate the VM. Then, the data center
manager randomly selects one of these available servers, and assigns the VM
to it. If all active servers are unavailable - because their utilization exceeds the
threshold Ta, or because Bernoulli trials are unsuccessful - an inactive server will
be switched on and will accommodate the VM. If this is not possible, because
all the servers are already active, the VM will be forcedly assigned to any server
that has some spare CPU fraction (such a server may be chosen after a second
broadcast request), or it will be put in a waiting queue: this is a hint that the
number of servers is too low to sustain the load.

1 The broadcast strategy is the most reasonable when all the servers are located in
a single high-speed network. If the servers are grouped in multiple clusters, a more
efficient alternative can be to forward the request only to a subset of servers. The
behavior is nearly equivalent.

Self-economy in Cloud Data Centers 411

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

as
si

gn
m

en
t p

ro
ba

bi
lit

y
fu

nc
tio

n

cpu utilization

p=2
p=3
p=5

Fig. 2. Assignment probability function fassign(u) for different values of the parameter
p. The value of the threshold Ta is set to 0.9.

One of the main advantages of the approach can now be appreciated, that
is, its self-organizing and decentralized nature, since main decisions are taken
locally. The manager is only required to know which servers are active and which
are switched off, and to perform the random selection among the servers that
are available to accommodate a new VM. The manager, though, is not requested
to perform any algorithm to decide how to distribute the VMs to servers, nor to
keep updated information about servers’ state.

2.2 Migration Procedure

The assignment procedure allows VMs to be clustered in a reduced number of
servers, as is shown in the performance evaluation section. Nevertheless, it can
still happen that some servers are under-utilized and might be switched off.
Indeed, even after an efficient allocation of VMs to computing resources, the
VMs running in a server may terminate or may reduce their demand for CPU.
Moreover, overload situations can also occur. In fact, the assignment of a VM to
a server is made on the basis of its current CPU utilization, but the workload of
other VMs in the same server may subsequently increase. This can cause SLA
violations, thus affecting the degree of dependability of the data center and the
quality of service offered to users. In both these situations, some VMs can be
profitably migrated to other servers, either to switch off a server, or to alleviate
its load.

Live migration of VMs is driven by the migration procedure. As opposed to
other techniques recently proposed for VM migration (see the related work sec-
tion), our approach is self-organizing and ensures a gradual and continuous
migration process. At random time intervals, each server checks whether it is
under-utilized or over-utilized and, when this occurs, evaluates the correspond-
ing migration probability function, f l

migrate(u) or fh
migrate(u):

f l
migrate(u) = (1 − u/Tl)α (2)

fh
migrate(u) = (1 +

u − 1
1 − Th

)β (3)

412 C. Mastroianni et al.

In either case, the server performs a Bernoulli trial and decides whether or not
to request the migration of one of the local VMs. The functions, shown in Figure
3, are defined so as to trigger the migration of VMs when the CPU utilization
is, respectively, below the threshold Tl or above the threshold Th. When the
utilization is in between, migrations are inhibited. The shape of the functions
can be modulated by tuning the parameters α and β, which can therefore be
used to foster or hinder migrations. A migration procedure completes when the
VM is successfully assigned to another server, using the assignment procedure
described in Section 2.1. In the case of the migration from an overloaded server,
the threshold Ta of the assignment function is set to 0.9 times the CPU utiliza-
tion of the current server. This ensures that the VM migrates to a less loaded
server, and prevents situations in which a VM is continuously migrated from an
overloaded server to another. The new value of Ta is sent to the other servers
along with the migration request, and the VM is assigned to one of the available
servers. If no server is available, the VM is kept by the original server.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ig

ra
tio

n
pr

ob
ab

ili
ty

 f
un

ct
io

n

cpu utilization

fl, α=1
fl, α=0.25

fh, β=1
fh, β=0.25

Fig. 3. Migration probability functions f l
migrate(u) and fh

migrate(u), labeled as f l and
fh, for two values of α and β. The threshold Tl is set to 0.3, Th is set to 0.8.

3 Performance Evaluation

The approach described in the previous section was tested with a Java simulator
implemented at ICAR-CNR. The evaluated data center has Ns=100 servers, 33
of which have 4 cores, 34 have 6 cores and 33 have 8 cores. All cores have CPU
frequency of 2 GHz. The Virtual Machines that host client applications have
nominal CPU frequencies of 500 MHz, 1 GHz and 2 GHz. They are assigned to
applications with the following probability distribution: 50% of applications are
assigned to 500 MHz VMs, 25% to 1 GHz VMs, and 25% to 2 GHz VMs.

Each VM runs for a time interval generated with a Gamma distribution and
average 1/μ set to 100 minutes, where μ is the service rate of each server core.
During its execution, the application hosted by the VM can require all the VM
capacity or a fraction of it. This fraction can vary over time, as Cloud appli-
cations - in many cases Web servers - usually experience dynamic workload.

Self-economy in Cloud Data Centers 413

For each application, the average interval between workload changes is set to
20 minutes (with Gamma distribution), and after each interval the fraction of
the VM capacity demanded by the application is extracted uniformly between 0
and 1. Requests for client applications are received by the data center manager
at rate λ (see Figure 1), whose value ranges between 1.2 and 24 requests per
minute. The average load of the data center, denoted as ρ, can be computed as
0.5λ/μT . Here, the arrival rate of requests is halved because applications ask on
average for half the capacity of a VM, while μT = μ · Ns · 6 · 2 is the overall
service rate of the data center: indeed, the average number of cores per server is
6, and the capacity of each core (2 GHz) is twice the average frequency of a VM
(1 GHz). The parameter ρ ranges between 0.05 (nearly idle data center) and 1
(data center loaded at its maximum CPU capacity), and will be used to analyze
the system performance in different load conditions. Servers can be dynamically
activated and powered off: an inactive server is switched on when it is asked
to accommodate a new or a migrating VM; an active server is switched off (or
hibernated) when all the running VMs terminate or when they are migrated to
other servers.

To analyze the amount of consumed power, the model described by some
recent studies (e.g., [8] and [2]) is adopted. Specifically, the power consumed by
servers can be obtained with a simple relationship between CPU utilization and
power consumption, assuming that an idle server consumes about 70% of the
power consumed by a fully utilized server. The power consumption is expressed
as P (u) = Pmax · (0.7 + 0.3 · u). In our tests, Pmax, the power consumed at
maximum utilization, is set to 250 W.

Figure 4 reports the average number of active servers, in steady condition, vs.
the system load, when setting the threshold Ta of the assignment function (1) to
0.9, and with the following parameter setting for the migration functions (2) and
(3): Tl=0.2, Th=0.95, α=0.25 and β=0.25. The migration procedure is evaluated
by each server every 10 minutes. The figure reports results obtained with different
values of the parameter p of the assignment function. For comparison purposes,
the results are shown together with three other curves. The first is the average
number of servers activated when each VM is randomly assigned to one of the
servers, regardless of their current utilization. The related curve is by far the
highest, and has a typical negative exponential trend. The VM mapping problem
can be formulated in terms of the bin packing problem, i.e., the NP-hard problem
of allocating objects of heterogeneous sizes in as few bins as possible [12]. The
second curve corresponds to the optimal solution of this problem, i.e., when
the minimum number of servers is used to accommodate the VMs. The curve
labeled as BFD corresponds to the performance achievable when the bin packing
problem is solved with the Best Fit Decreasing algorithm, which has quadratic
complexity and guarantees to use at most 11/9 MIN+1 servers, where MIN is
the minimum number of servers [13].

Figure 4 shows that our approach performs better than the BFD, especially
when the load is high, and that the number of active servers is very close to the
optimal curve. Of course, reducing the number of active servers allows the data

414 C. Mastroianni et al.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

no
. o

f
ac

tiv
e

se
rv

er
s

load, ρ

p=2
p=3
p=5

random
optimum

BFD

Fig. 4. Average number of active servers for different values of the parameter p of the
assignment function. The meaning of the other curves is explained in the text.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

po
w

er
 (

K
W

)

load, ρ

p=2
p=3
p=5

random

Fig. 5. Average power consumed by the data center for different values of the parameter
p of the assignment function

center to save power, as appears in in Figure 5. The “green” behavior of our
approach is testified by the fact that consumed power increases almost linearly
with load. The two figures also show that the performance is not very sensitive
to the value of p, which is a sign of robustness. Nevertheless, larger values of p
can be used to improve consolidation (and reduce power consumption) in high
load conditions, because they increase the probability of allocating a VM to a
highly loaded server. Conversely, a low value of p is preferable when the load is
low. The tuning of p can be done dynamically by the data center manager, by
estimating the overall system load. In the next experiments, the parameter p is
set to 3, as this value ensures a good behavior for all load conditions.

As explained before, VM migrations can be performed either because the uti-
lization of a server is too low or too high. In the following, the migration events
of the two kinds are referred, respectively, as l migrations and h migrations. Any
migration causes a slight performance degradation of the application hosted by
the VM for the time necessary to migrate, which in general is estimated in the

Self-economy in Cloud Data Centers 415

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

l_
m

ig
ra

tio
ns

 a
nd

 s
w

itc
he

s
pe

r
ho

ur

load, ρ

l_migrations
switches

Fig. 6. Frequency of l migrations and server switches vs. load.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

h_
m

ig
ra

tio
ns

 p
er

 h
ou

r

load, ρ

h_migrations

Fig. 7. Frequency of h migrations vs. load.

order of 60 seconds [9]. Similarly, the activation of an off server needs a start
up time and additional power. Therefore, it is important to limit the frequency
of migrations and switches, though a certain number is essential for VM con-
solidation and power reduction. Figure 6 reports the frequencies of l migrations
and server activations experienced in the whole data center. Both frequencies
are inversely proportional to the load. In fact, with high load, most servers are
always active and highly loaded, so both events are impossible or rare. With low
load, many servers are off, and the assignment procedure has more chances to
assign a VM to an inactive server, which is then switched on. Since this server is
initially under-utilized, it will likely attempt a migration procedure in the near
future, which explains the higher migration frequency. Both frequencies are al-
ways lower than 4 events per hour in the whole data center, which is an easily
sustainable burden.

Conversely, the frequency of h migrations, reported in Figure 7, is directly
proportional to the load. The trend is nearly linear, but becomes exponential
when the load approaches the data center capacity: this suggests that new servers
should be acquired when the load exceeds 0.8. Finally, Figure 8 reports the
percentage of time in which the VMs allocated to a server demand more CPU

416 C. Mastroianni et al.

than what the server can provide, which may lead to SLA violations. This index,
in accordance with recent studies [2], is used to measure the QoS level offered
to users. Conditions for potential SLA violations are rare when ρ is lower than
0.8, then their frequency increases rapidly. The figure reports the index values
obtained with and without the use of h migrations, which clearly testifies the
beneficial impact of these events.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

%
 o

f
tim

e
of

 C
PU

 o
ve

r-
de

m
an

d

load, ρ

without h_migr
with h_migr

Fig. 8. Percentage of time in which the VMs require more CPU than that offered by
a server, with and without the use of h migrations

4 Related Work

As the Cloud computing paradigm rapidly emerges, a notable amount of studies
focus on algorithms and procedures that aim at improving the “green” char-
acteristics of Cloud data centers. A common aspect is the use of virtualization
as a means to consolidate applications on as few servers as possible and in this
way reduce power consumption. Some approaches - e.g., [4] and [10] - try to
forecast the demand and aim at determining the minimum number of servers
that should be switched on to satisfy the client requests, so as to reduce energy
consumption and maximize data center revenue. However, even a correct setting
of this number is only a part of the solution: algorithms are needed to decide
how the VMs should be mapped to servers in a dynamic environment, and how
live migration of VMs can be exploited to unload servers and switch them off
when possible, or to avoid SLA violations.

As mentioned in Section 3, the problem of dynamically mapping VMs to
servers is in some way similar to the bin packing problem, and the analogy is
indeed exploited in recent research, for example in [12] and in [2]. Live migra-
tion of VMs between servers is adopted in [2] and by the VMWare Distributed
Power Management system, using lower and upper utilization thresholds to en-
act migration procedures. All these approaches represent important steps ahead
for the deployment of green-aware data centers, but still they share a couple of
notable drawbacks: (i) the centralized manager is required to execute complex
algorithms and solve a problem that is inherently NP-hard, and must always be
aware of the state of all the servers, which becomes an issue in large and highly

Self-economy in Cloud Data Centers 417

dynamic data centers; (ii) mapping strategies may require the concurrent mi-
gration of many VMs, which can cause considerable performance degradations
during the reassignment process. Conversely, the approach presented here is self-
organizing, decentralized for the most part (assignment and migration decisions
are taken autonomously by each server), and uses a gradual migration process.

Bio-inspired algorithms and protocols are emerging as a useful means to man-
age distributed systems. Assignment and migration procedures presented here
are partly inspired by the pick and drop operations performed by some species
of ants that cluster items in their environment [6]. The pick and drop paradigm,
though very simple and easy to implement, has already proved to be surprisingly
powerful: for example, it was used to cluster and order resources in P2P net-
works, in order to facilitate their discovery [7]. Another ant-inspired mechanism
was proposed in [5]: in this study, the data center is modeled as a P2P network,
and ant-like agents explore the network to collect information that can later
be used to migrate VMs and reduce power consumption. Since the mapping of
VMs to servers is essentially an optimization problem, evolutionary and genetic
algorithms can also represent a valid solution. In [11], a genetic algorithm is
used to optimize the assignment of VMs, and minimize the number of active
servers. The main limitations of this kind of approach are the need for a strong
centralized control and the difficulties in the setting of key parameters, such as
the population size and the crossover and mutation rates.

5 Conclusion and Future Work

This paper presents an approach that aims at minimizing the number of active
servers and reducing power consumption in Cloud data centers. The core of the
proposal stands in the statistical and self-organizing procedures that are used
to assign Virtual Machines to servers, and to migrate them when this helps ei-
ther to power off under-utilized computers or to prevent possible SLA violations
in highly loaded servers. Simulation experiments show that the adopted tech-
niques succeed in the combined objective of reducing power consumption and
ensuring a good level of the QoS experienced by users, but the novelty of the
approach requires further research to better assess its performance and explore
its potentialities. Some of the avenues are: (i) a deeper analysis of the sensitivity
to parameter values; (ii) a study of scalability properties; preliminary evalua-
tions are promising, as performance seems to improve with the data center size,
which is not surprising given the statistical nature of the algorithms; (iii) adapt
assignment and migration procedures to take into account not only the CPU
utilization of servers, but also other aspects such as the necessity of assigning
several VMs to the same server, when they need to cooperate with each other;
(iv) the definition of mathematical models, which may help in giving a more
formal foundation to the approach.

418 C. Mastroianni et al.

References

1. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Com-
puter 40(12), 33–37 (2007)

2. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: 10th IEEE/ACM Int. Symp. on Cluster Computing and the Grid,
CCGrid 2010, pp. 577–578 (2010)

3. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Compututer Systems 25(6), 599–616 (2009)

4. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Manag-
ing server energy and operational costs in hosting centers. SIGMETRICS Perform.
Eval. Rev. 33(1), 303–314 (2005)

5. Dubois, D.J., Mirandola, R., Barbagallo, D., Di Nitto, E.: A bio-inspired algo-
rithm for energy optimization in a self-organizing data center. In: Self-Organizing
Architectures. Springer, Heidelberg (2010)

6. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting: robot-like ants and ant-like robots. In: First
International Conference on Simulation of Adaptive Behavior on From Animals to
Animats, pp. 356–363. MIT Press, Cambridge (1990)

7. Forestiero, A., Mastroianni, C., Spezzano, G.: So-grid: A self-organizing grid fea-
turing bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive
Systems 3(2) (May 2008)

8. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–
73 (2009)

9. Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., Sekiguchi, S.: A live storage migra-
tion mechanism over wan for relocatable virtual machine services on clouds. In: 9th
IEEE/ACM Int. Symp. on Cluster Computing and the Grid, CCGrid 2009 (2009)

10. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via
energy aware allocation policies. In: 10th IEEE/ACM Int. Symp. on Cluster Com-
puting and the Grid, CCGrid 2010, pp. 131–138 (2010)

11. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration
with performance guarantee for energy-efficient large-scale cloud computing data
centers. In: 2010 IEEE Int. Conference on Services Computing, SCC 2010, Miami,
Fl, USA, pp. 514–521 (July 2010)

12. Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware applica-
tion placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)

13. Yue, M.: A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, for all
L for the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7(4),
321–331 (1991)

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 419–430, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Adaptive Load Balancing Algorithm with Use of
Cellular Automata for Computational Grid Systems

Laleh Rostami Hosoori and Amir Masoud Rahmani

Department of Computer Engineering
Islamic Azad University, Science and Research Branch

Tehran, Iran
l.rostami@srbiau.ac.ir, rahmani@srbiau.ac.ir

Abstract. Load balancing algorithms play a challenging, complicated, and
important role in the performance of computational Grid systems. In this paper,
we present a decentralized adaptive load balancing algorithm with use of
cellular automata, named LBA_CA. Each computing node in the Grid system is
modeled as a cell of proposed cellular automata and can be in four states.
Cellular automata (abbreviated to CA) are used for designing a load balancing
algorithm for computational Grids because of its distributed and dynamic
manner. In addition, such natural properties of CA make LBA_CA an
appropriate local load balancing algorithm for each cluster of computational
Grids. Due to resource heterogeneity and communication overheads exist in
computational Grid systems; we take account of several issues in LBA_CA
such as processing power of computing nodes and communication latency. The
main goal of our algorithm is to reduce the average response time of arrival
jobs. The performance of our algorithm is evaluated in terms of several metrics
including the average response time of jobs, processor utilization, percent of
executed jobs, and average Off time in relation to considerable variations in
transition time, service time, and number of jobs.

Keywords: Load balancing; Cellular Automata; Computational Grid systems;
Distributed systems.

1 Introduction

The computational Grid is a promising platform that provides large resources for
distributed algorithmic processing [1]. Computational Grid environments promise to
support resource sharing and coordinated problem solving in dynamic multi-
institutional Virtual Organizations [2]. End users and applications see this
environment as a big virtual computing system. The systems connected together by a
grid might be distributed globally, running on multiple hardware platforms, under
different operating systems and owned by different organizations. However,
computational Grids have different constraints and requirements than those of
traditional high-performance computing systems, such as heterogeneous computing
resources and considerable communication delays [3]. In distributed systems, every
node has different processing speed and system resources, so in order to enhance the

420 L.R. Hosoori and A.M. Rahmani

utilization of each node and minimize the average response time of jobs, load
balancing will play a critical role [4].

In general, load balancing algorithms can be classified as centralized or
decentralized. In the centralized algorithms (e.g., [5]), one computing node makes all
the load-balancing decisions. In the decentralized algorithms (e.g., [6]), all computing
nodes are involved in the load-balancing decisions.

Moreover, Load balancing algorithms are classified as static, dynamic, adaptive, or
hybrid, based on the used information. Static load balancing algorithms (e.g., [7])
assume that all required information about computing nodes, jobs, and
communication network that influence load-balancing decisions are determined in
advance, on the other hand, dynamic load balancing algorithms (e.g., [8] and [9])
attempt to gather the current state information to make more informative load-
balancing decisions. Adaptive algorithms are a special type of dynamic algorithms
where the parameters of the algorithm and/or the scheduling policy themselves are
changed based on the global state of the system [10]. Finally hybrid algorithms
(e.g.,[11]) attempt to combine the merits of static and dynamic load balancing
algorithms in order to minimize their weak points.

A cellular automaton is a discrete dynamical system that consists of a regular
network of definite state automata (cells) that change their states depending on the
states of their neighbors, according to a local update rule. All cells change their state
simultaneously, using the same update rule. The process is repeated at discrete time
steps. It turns out that amazingly simple update rules may produce extremely complex
dynamics when applied in this fashion. A well known example is the Game-of-life by
John Conway [12]. For this reason, CA is often used to model real-world phenomena.
CA is also considered as a model of highly parallel and distributed computations in
multiprocessor and distributed systems [13]. They were used to find solutions of such
problems as scheduling and resource management [14].

This paper presents a load balancing algorithm with using CA. The remainder of
the paper is organized as follows: In section 2, an introduction to cellular automata is
addresses. Section 3 describes our proposed load balancing algorithm in detail.
Section 4 discusses our simulation and results of evaluation. Finally, section 8
concludes this paper.

2 Cellular Automata

Cellular automata are a class of discrete dynamical systems, consisting of an array of
nodes (cells) of n-dimension. Each cell can be in one of k different states at a given
time t [15]. At each discrete time, each cell may change its state, in a way determined
by the local transition rules of the particular CA. The transition rules describe
precisely how a given cell should change states, depending on its current state and the
states of its neighbors. The neighborhood of a given cell must be specified explicitly.

More precisely, CA consists of 4 major components. At first all cells in the CA
constitute the cellular space, which may be of any dimension, and is of infinite extent.
For example, one-dimensional CA can be visualized as having a cell at each integral
point on the real number line [15]. A two-dimensional CA has cells at all points in the
plane that has only integral coordinates. Minutely state set is a finite set whose

 An Adaptive Load Balancing Algorithm with Use of Cellular Automata 421

elements are all the possible distinct states of the cells. The state of cell i at discrete
time t is denoted by Si(t). Then neighbourhood is defined as the neighbours of each
cell. Vi(t) denotes the neighborhood of cell i at time t. Finally, each cell transforms
from its current state to a new state (at the next time) based on its current state and the
states of its neighbors, according to the transition rules. f denotes the transition rule of
cell i in (1):

Si(t + 1) = f(Si(t), Vi(t)) . (1)

3 The Proposed Load Balancing Algorithm

We assume that the computational Grid environment consists of three major
components including processors, communication network, and jobs. Our Grid
system consists of M heterogeneous processors, P1; P2;...; PM. It is assumed each
processor Pi has several different attributes. Firstly processing power (Wi) is the ratio
of the processing power of the processor Pi to the processing power of the reference
processor Pref (with a relative Wref equal to 1) in the system. In this paper, we elect the
slowest processor as Pref. Minute attribute is job queue. It is assumed that each
processor has an infinite capacity job queue to store jobs waiting for execution.
Finally neighbours (Ni) defined as a set of processors that are directly connected to
the processor Pi.

The jobs are assumed to be computationally intensive, mutually independent, and
can be executed at any processor. Several different attributes are assumed for each job
Jj. First attribute is arrival time (ATj) of job Jj. It is assumed that the arrival rate of
jobs follows Poisson distribution with mean λ. In other words, the inter-arrival time is
exponentially distributed with mean1/λ. It is assumed that service time (STj) of job Jj
follows an exponential distribution with mean 1/μ. We assume that job Jj will be
missed if it isn’t executed until its deadline time (DTj). In addition, deadline times are
distributed exponentially with a given mean.

One of the important parts of Grid computing system is communication network
that connects processors to each other. The network topology is varying, since
computational Grid systems are dynamic in nature. Thus, our model assumes no
specific topology for the network and generates a random topology. Due to diverse
network topologies in computational Grid systems, network heterogeneity also exists.

All items that each processor takes account of during the proposed load balancing
algorithm are described below:

• Transition Time (Tn): The period of time, at the end of that each cell i of CA
transforms from its current state Si(Tn-1) to a new state (at the next time) Si(Tn), in a
way determined by transition rules f.

• Qi (t): The number of jobs waiting in the processor Pi’s job queue at time t
• λi (Tn): The number of arrived jobs at the processor Pi during the interval [Tn-1, Tn]
• μi (Tn): The number of served jobs at the processor Pi during the interval [Tn-1, Tn]
• li (Tn): Qi(Tn) divided by μi(Tn)
• Wi: The processing power of Pi in relation to the reference processor Pref
• lN (Tn): The average of normalized load in the neighbours Ni of the processor Pi

during the interval [Tn-1, Tn] as presented in (2):

422 L.R. Hosoori and A.M. Rahmani

lN(Tn) =
Wi * li(Tn)

i∈Neighbourhood

∑
Wi

i∈Neighbourhood

∑
 (2)

• Si(Tn): The cell state of processor Pi during the interval [Tn-1, Tn], denoted as below
in (3):

 Si(Tn)=(Six(Tn), Siy(Tn)) . (3)

• Senderp(Tn): The percent of the processor Pi’s neighbours Ni whose S(Tn) are
Sender, during the interval [Tn-1, Tn] as presented in (4):

Senderp(Tn) =
Six (Tn)*Siy (Tn)

i∈Neighbourhood

∑
i

i∈Neighourhood

∑
 . (4)

• Receiverp(Tn): The percent of the processor Pi’s neighbours Ni whose S(Tn) are
Receiver, during the interval [Tn-1, Tn] as presented in (5):

Receiverp(Tn) =
Six (Tn)*Siy (Tn)

i∈Neighbourhood

∑
i

i∈Neighourhood

∑
 . (5)

• Threshold: The load threshold (The default value is 1)
• CLj

k: The communication latency between processor Pi and the processor Pk when
the job Jj transferred.

• ˜ l k (t): The estimated added load on the processor Pk at time t, as presented in (6):

˜ l k (t) =
λk (Tn −1)
μk (Tn −1)

* (t − Tn −1) . (6)

• STj
i: The duration in which the job Jj will expectedly be served on the processor Pi,

as denoted in (7):

STj

i =
STj

Wi

 . (7)

• ETj
i(t): When the job Jj will expectedly leave the system, if it is served on the

processor Pi , as described in (8):

ETj

i(t) =
Qi(t)

μi(Tn −1)
+STj

i . (8)

• ETj
k(t): When the job Jj will expectedly leave the system, if it is sent form the

processor Pi to Pk to be served, as formulated in (9):

k
j

k
jk1nk

k
j ST)CL),t(l~)T(lmax()t(ET . (9)

 An Adaptive Load Balancing Algorithm with Use of Cellular Automata 423

Our goal is to minimize the Average Response Time (ART) as calculated in (10):

∑

=

−=
N

1j
jj eArrivalTimimeExecutionT

N

1
ART . (10)

Where N is the number of jobs executed by the system, ExecutionTimej is the time
when the job Jj is completely executed, and ArrivalTimej is the time when the job Jj

arrives. As obviously clear, ART takes account of the communication latency, waiting
time in queues, and service time.

Our algorithm has proposed a CA with following features. All processors of an
arbitrary network are cells of cellular space, in other words each processor is
considered as a cell. State set of CA includes four states. The state of cell i at time t
represented by the tuple Si(t) as in (11), where each element of the tuple can be a
binary number (0 or 1):

 Si(t) = (Six (t), Siy (t)) . (11)

We assumed each cell can be in four states. At first, whenever a processor becomes
overloaded in comparison with its neighbours, it is assumed as a sender processor. It
means the processor will send all incoming jobs to its neighbours, which are in
receiver state. This state is represented by tuple (1,1). Minutely whenever a processor
becomes balanced in comparison with its neighbours, it is denoted as a balanced
processor. It means the processor will run jobs, which exist in its queue and will
accept new jobs as well. Meanwhile, the processor will refuse jobs sent form sender
processors. This state is represented by tuple (1,0). Thirdly whenever a processor
becomes under-loaded in comparison with its neighbours, it is assumed as a receiver
processor. It means the processor will run jobs, which exist in its queue and will
accept all new jobs and jobs sent form sender processors. This state is represented by
tuple (0,1). Whenever a processor is idle for a while, it will be denoted as an off
processor. It means the processor will go off. This state is represented by tuple (0,0).

The neighbourhood Vi(t) of processor Pi at time t is the set of its neighbours Ni in
the communication network. Finally the transition rule is the same for all processors
as denoted by f in (12) and described in depth in Table 1.

 Si (Tn) = f(Si (Tn-1), Vi (Tn-1)) . (12)

Table 1. Transition rule

Si (Tn) f(Si (Tn-1), Vi(Tn-1))
Sender (1,1) If (li (Tn) – lN (Tn)) > Threshold
Balanced (1,0) If |li (Tn) – lN (Tn)| ≤ Threshold
Receiver (0,1) If (li (Tn) – lN (Tn)) < Threshold or

If Si(Tn-1) == Off and Senderp (Tn) ≥ Receiverp (Tn)
Off (0,0) If (li(Tn), λi(Tn), μi(Tn)) == (0, 0, 0)

 If Si(Tn-1) == Off: Si(Tn) = Off
 Else: Si(Tn) will be Off with probability 0.01

Our proposed model focuses on the dynamic and distributed properties of cellular
automata, in order to offer an efficient load balancing algorithm. LBA_CA gathers

424 L.R. Hosoori and A.M. Rahmani

up-to-date information in each transition time. Nowadays, energy conservation
becomes a hot discussion all over the world. So LBA_CA put some computing nodes
in the Off state under special circumstances. This feature might be a step toward
approaching energy conservation.

LBA_CA consists of two procedures. Transition Procedure indicates processes
that each processor performs in each transition time Tn in order to run transition rule
and update its state. Main Procedure is invoked whenever a new job Jj arrives to
processor Pi at time t. If the processor Pi is in Sender or Off state, this procedure firstly
will generate a set of processors which are suitable to execute the job Jj maybe
including also the processor Pi. Afterwards it will assign different probability to each
processor of the set. Then the job Jj will be sent to a processor with the highest
probability. Otherwise, the job Jj will be executed by the processor Pi or kept in its
queue.

Transition Procedure:
Each processor Pi runs the following statements
simultaneously at the Transition time (Tn):
StateInfo = (i(Tn), i(Tn), li(Tn))
Transfer StateInfo to neighbours Ni

TransitionInfo = (lN(Tn), Senderp(Tn), Receiverp(Tn))
Call Transition rule

Main Procedure:
If Si(Tn) == Sender OR Si(Tn) == Off
Calculate ETj

i(t)
If Receiverp(t) 0.1
pb = Generate a probability in range [0.9, 1]

Else
pb = Generate a probability in range [0, 1]

Add (Pi, pb) to the set PET

For each Pk in Ni

If Sk(Tn) == Receiver
Calculate ETj

k(t)
If ETj

k(t) < ETj

i(t)
If Receiverp(t) 0.9
pb = Generate a probability in range [0.9, 1]

Else
pb = Generate a probability in range [0, 1]

Add (Pk, pb) to the set PET

Choose a processor as Pdest in PET with highest
probability
Send the job Jj to the processor Pdest

Else
If Pi is Idle
Execute Jj

Else
Put Jj into the job queue of Pi

 An Adaptive Load Balancing Algorithm with Use of Cellular Automata 425

4 Simulation and Results

In the simulation, our algorithm is compared with ELISA (Estimated Load
Information Scheduling Algorithm). In ELISA [16], each processor exchanges the
actual queue length, the actual service rate, and the estimated arrival rate at state
exchange times. The queue lengths of its neighbours are estimated at estimation times
using information received at state exchange times. The main reason that ELISA has
been chosen for the comparison is it considers regular time intervals in order to make
load-balancing decisions. Therefore, we can compare two algorithms more precisely
by varying intervals. In this paper, four performance metrics are considered,
addressed in detail as follow:

1. Average Response Time (ART)
2. Processor Utilization (U): The utilization Ui of the processor Pi calculates as

mentioned in (13):

Ui =

Busyi

Busyi + Idlei

 . (13)

Where Busyi is the amount of time that the processor Pi remains busy and Idlei is
the amount of time that the processor Pi remains idle.

3. Percent of Executed Jobs (PEJ): Percent of jobs that their deadlines do not miss.
4. Average Off Time (AOT): Let us begin by offTimei that is the amount of time that

the processor Pi remains off. Next AOT is defined as presented in (14). It should be
mentioned that this metric is unique to LBA_CA.

AOT =

1

M
offTimei

i=1

M

∑ . (14)

4.1 Simulation Model

It is assumed that our simulated Grid system includes 60 heterogeneous computing
nodes. Processing powers of nodes are assumed to follow a uniform distribution in
range [1, 20]. Communication latency between each processing nodes is chosen from
a lognormal distribution with a mean of 0.2 time units and a standard deviation 0.5. It
is assumed that time unites are minutes.

In most cases, the number of executed jobs is 10000 unless otherwise stated
explicitly. 300 extra jobs are executed at first that are considered as “warm-up jobs”.
After warm-up jobs, performance metrics are traced. Jobs arrive at the Grid system
according to a Poisson process with rate 1. Service times and deadline times of jobs
are assumed to follow an exponential distribution with a mean of 50 and 300 minutes
as default values, respectively. Other parameters in LBA_CA are the transition time
(Tn) and threshold assumed 10 minutes and 1, as the default values, respectively.

4.1.1 Effect of Number of Jobs
In order to measure the effect of this factor, we increase the number of jobs from
10000 to 50000. At first, as can be seen from Fig. 1, the average response time of

426 L.R. Hosoori and A.M. Rahmani

LBA_CA is significantly lower than that of ELISA although it slightly increases due
to sharp rises in number of jobs. By using LBA_CA, it clearly shows that jobs leave
the system sooner than when ELISA runs due to better load-balancing decisions. The
average improvement factor of LBA_CA in terms of the average response time under
the effect of number of jobs is 28.7% over ELISA.

Fig. 1. Effect of number of jobs on average response time of the both algorithms

Afterwards, the amount of difference between the minimum and maximum of
processor utilization in the Grid system partly states the quality of load-balancing
services provided. As can be easily seen from Fig. 2, the minimum and maximum
utilization of processors of LBA_CA are approximately 47.1% closer to the average
utilization of the Grid system than those of ELISA. Therefore, this performance
metric approves improvements in load-balancing decisions of LBA_CA as well as
previous one.

Fig. 2. Comparing processor utilization of the both algorithms

 An Adaptive Load Balancing Algorithm with Use of Cellular Automata 427

Fig. 3. Effect of number of jobs on percent of executed jobs of the both algorithms

After that Fig. 3 illustrates that the percent of executed jobs for LBA_CA gradually
falls nearly from 87% to 83%. Meanwhile, the percent of executed jobs for ELISA
remains fairly constant at about 73%. However, LBA_CA shows the average
improvement factor 15.8% over ELISA, in terms of the percent of executed. The
reason of this improvement is LBA_CA reduces the waiting time of jobs in
comparison to ELISA through properly balancing the load across the processors.

Lastly, Fig. 4 wonderfully shows that the average off time has a linear growth with
a slope about 0.0002. This metric indicates that some computing nodes usually exist
in the Grid system do not take part in load-balancing process due to their
inappropriate network situation such as link bandwidths. Therefore, it might be a
good idea to turn off such computing nodes in order to conserving energy.

Fig. 4. Effect of number of jobs on average off time of LBA_CA

4.1.2 Effect of Service Time
In this part, it is assumed that the mean of service time varies from 12 to 150 minutes.
In order to keep the percent of executed jobs acceptable, the mean of deadline times

428 L.R. Hosoori and A.M. Rahmani

for all jobs is fairly raised as the corresponding service time increases. Fig. 5
illustrates that changes in the service time cause dramatic increases in the average
response time of the both algorithms. When the mean of service time is under or equal
to 50 minutes, LBA_CA shows better results than ELISA. On the other hand, when it
is above 50 minutes, ELISA indicates more acceptable results than LBA_CA.
However, the average improvement factor of LBA_CA in terms of the average
response time under the effect of service time is 13.8% over ELISA.

Fig. 5. Effect of service time on average response time of the both algorithms

Fig. 6. Effect of transition time on average response time of the both algorithms

4.1.3 Effect of Transition Time
In order to find the most proper transition time (Tn) in terms of performance metrics
for running transition rule, we experimented on LBA_CA with different transition
times in the wide range of 2 to 40 minutes. It should be mentioned that the state
exchange time and estimation time of ELISA are assumed equal to transition time and
five times the length of it, respectively. Firstly, in Fig. 6, for transition times under or
equal to 10 minutes, LBA_CA certainly shows a slight downward trend of this
performance metric. But whenever the transition time rises more than 10 minutes, the
average response time of LBA_CA gradually increases. On the other hand, this metric

 An Adaptive Load Balancing Algorithm with Use of Cellular Automata 429

of ELISA shows an increasing growth. However, LBA_CA indicates the better
performance than ELISA due to the average improvement factor of 26.8%. Since
LBA_CA reaches its minimum at the transition time of 10 minutes, it is concluded
that the most proper time for the transition time is about 10 minutes.

5 Conclusion

Natural dynamic and distributed properties of CA convince us to use it in our
proposed local load balancing algorithm and make LBA_CA partly practical for each
cluster of computational Grid systems. As mentioned before, each computing node
assumed as a cell of CA. Each cell of our proposed CA can be in four state including
Sender, Balanced, Receiver, and Off. We address resource heterogeneity and
communication overheads in LBA_CA through taking several parameters into
account such as processing power of computing nodes and communication latency.
Moreover, since energy conservation gets a high priority in each aspect of our lives;
LBA_CA puts that node into Off state under special circumstances.

LBA_CA attempts to improve the average response time of jobs, although LBA_CA
is evaluated in terms of some other performance metrics including processor utilization,
the percent of executed jobs, and the average off time. In order to experiment LBA_CA,
several items such as number of jobs, service time and transition time are varied in wide
ranges of values and it is compared with ELISA. As addressed in depth, LBA_CA
plainly performs far better than ELISA in all performance metrics measured by the
average improvement factor between 10% and 47%.

Consequently, since LBA_CA gathers up-to-date state information in each
transition time, communication overheads may partly increase, although LBA_CA
takes account of communication latency for load-balancing decisions. Therefore, it
might be a good idea to use estimation methods in some intervals of time instead of
providing accurate information. However, it seems that CA is a proper instrument for
designing load balancing algorithms and it can be applied to design more efficient
load balancing algorithms in future.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco (1999)

2. Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In:
Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS,
vol. 2150, pp. 1–4. Springer, Heidelberg (2001)

3. Subrata, R., Zomaya, A.Y., Landfeldt, B.: Game-Theoretic Approach for Load Balancing
in Computational Grids. IEEE Transactions on Parallel and Distributed Systems 19(1), 66–
76 (2008)

4. Lu, K., Zomaya, A.Y.: A Hybrid Policy for Job Scheduling and Load Balancing in
Heterogeneous Computational Grids. In: 6th International Symposium on Parallel and
Distributed Computing, p. 19. IEEE Computer Society, Washington, D.C (2007)

5. Shivaratri, N., Krueger, P., Singhal, M.: Load Distributing for Locally Distributed
Systems. Computer 25(12), 33–44 (1992)

430 L.R. Hosoori and A.M. Rahmani

6. Lu, K., Subrata, R., Zomaya, A.Y.: Towards Decentralized Load Balancing in a
Computational Grid Environment. In: Chung, Y.-C., Moreira, J.E. (eds.) GPC 2006.
LNCS, vol. 3947, pp. 466–477. Springer, Heidelberg (2006)

7. Penmatsa, S., Chronopoulos, A.T.: Game-theoretic static load balancing for distributed
systems. Journal of Parallel and Distributed Computing (2010)

8. Nasir, H.J.A., Mahamud, K.R.K., Din, A.M.: Load Balancing Using Enhanced Ant
Algorithm in Grid Computing. In: 2nd International Conference on Computational
Intelligence, Modelling and Simulation, pp. 160–165. IEEE Computer Society Press,
Washington, D.C (2010)

9. Zheng, Q., Tham, C.K., Veeravalli, B.: Dynamic Load Balancing and Pricing in Grid
Computing with Communication Delay. Journal of Grid computing 6(3), 239–253 (2008)

10. Shah, R., Veeravalli, B., Misra, M.: On the Design of Adaptive and Decentralized Load-
Balancing Algorithms with Load Estimation for Computational Grid Environments. IEEE
Transactions on Parallel and Distributed Systems 18(12), 1675–1686 (2007)

11. Yan, K.Q., Wang, S.S., Wang, S.C., Chang, C.P.: Towards a hybrid load balancing policy
in grid computing system. Journal Expert Systems with Applications 36(10), 12054–12064
(2009)

12. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays,
vol. 2. Academic Press, New York (1982)

13. Gramb, T., Bornholdt, S., Grob, M., Mitchell, M., Pellizzari, T.: Computation in Cellular
Automata: A Selected Review. In: Mitchell, M. (ed.) Non-Standard Computation:
Molecular Computation - Cellular Automata - Evolutionary Algorithms - Quantum
Computers, pp. 95–140. Wiley-VCH Verlag GmbH & Co, Weinheim (1998)

14. Swiecicka, A., Seredynski, F., Zomaya, A.Y.: Multiprocessor Scheduling and
Rescheduling with Use of Cellular Automata and Artificial Immune System Support. IEEE
Transactions on Parallel and Distributed Systems 17(3), 253–262 (2006)

15. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334(1-3),
3–33 (2005)

16. Anand, L., Ghose, D., Mani, V.: ELISA: An Estimated Load Information Scheduling
Algorithm for Distributed Computing Systems. Computers & Mathematics with
Applications 37(8), 57–85 (1999)

Shrinker: Improving Live Migration of Virtual

Clusters over WANs with Distributed Data
Deduplication and Content-Based Addressing

Pierre Riteau1,2, Christine Morin2, and Thierry Priol2

1 Université de Rennes 1, IRISA, Rennes, France
2 INRIA, Centre INRIA Rennes - Bretagne Atlantique, Rennes, France

Pierre.Riteau@irisa.fr, {Christine.Morin,Thierry.Priol}@inria.fr

Abstract. Live virtual machine migration is a powerful feature of virtu-
alization technologies. It enables efficient load balancing, reduces energy
consumption through dynamic consolidation, and makes infrastructure
maintenance transparent to users. While live migration is available across
wide area networks with state of the art systems, it remains expensive
to use because of the large amounts of data to transfer, especially when
migrating virtual clusters rather than single virtual machine instances.
As evidenced by previous research, virtual machines running identical
or similar operating systems have significant portions of their memory
and storage containing identical data. We propose Shrinker, a live vir-
tual machine migration system leveraging this common data to improve
live virtual cluster migration between data centers interconnected by
wide area networks. Shrinker detects memory pages and disk blocks du-
plicated in a virtual cluster to avoid sending multiple times the same
content over WAN links. Virtual machine data is retrieved in the desti-
nation site with distributed content-based addressing. We implemented
a prototype of Shrinker in the KVM hypervisor and present a perfor-
mance evaluation in a distributed environment. Experiments show that
it reduces both total data transferred and total migration time.

Keywords: Virtualization, Live Migration, Wide Area Networks, Cloud
Computing.

1 Introduction

The complete encapsulation of execution environments (applications combined
together with their underlying OS) in virtual machines (VMs) allowed the de-
velopment of live virtual machine migration [4,20]. This mechanism relocates a
virtual machine from one host to another with minimal downtime, usually not
noticeable by users. This offers numerous advantages for data center manage-
ment, including:

Load balancing: VMs can be dynamically migrated depending on workload,
offering more efficient usage of computing resources.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 431–442, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

432 P. Riteau, C. Morin, and T. Priol

Reduced energy consumption: VMs with low workloads can be consolidated
to fewer physical machines, making it possible to power off nodes to reduce
energy consumption.

Transparent infrastructure maintenance: Before physical machines are
shut down for maintenance, administrators can relocate VMs to other nodes
without noticeable interruption of service for users.

Mainstream hypervisors usually do not support live migration between dif-
ferent data centers connected with wide area networks (WANs). To avoid trans-
ferring persistent state of VMs, which can be of large size (from hundreds of
megabytes to dozens of gigabytes and beyond), they depend on shared stor-
age, usually not accessible across different data centers. They also require that
migrated VMs stay in the same local network, to keep network connections un-
interrupted after migration to new host machines.

These restrictions prevents users from getting the benefits of live virtual ma-
chine migration over WANs. It would allow administrators to load balance work-
load between several data centers, and offload VMs to other sites whenever a
site-wide maintenance is required. Users with access to private clouds (private
computing infrastructures managed with cloud computing stacks) could seam-
lessly migrate VMs between private and public clouds depending on resource
availability. It could also allow them to leverage variable price between compet-
ing cloud providers.

Fortunately, state of the art systems allow to use live migration over WANs
by migrating storage [3,16,10,32] and network connections [3,7,32]. However, the
large amounts of data to migrate make live migration over WANs expensive to
use, especially when considering migrations of virtual clusters rather than single
VM instances.

Previous research showed that VMs running identical or similar operating sys-
tems have significant portions of their memory and storage containing identical
data [30,5]. In this paper, we propose Shrinker, a live virtual machine migration
system leveraging this common data to improve live virtual cluster migration
between data centers interconnected by wide area networks. Shrinker detects
memory pages and disk blocks duplicated in a virtual cluster to avoid send-
ing multiple times the same content over WAN links. Virtual machine data is
retrieved in the destination site with distributed content-based addressing. We
implemented a prototype of Shrinker in the KVM hypervisor [12] and present
a performance evaluation in a distributed environment. Our experiments show
that it reduces both total data transferred and total migration time.

This paper is organized as follows. Section 2 presents related work. Section 3
covers the architecture of Shrinker. Section 4 describes our prototype imple-
mentation in the KVM hypervisor, presents our experiments and analyzes the
results. Finally, Section 5 concludes and discusses future work.

2 Background and Related Work

Live virtual machine migration [4,20] has traditionally been implemented with
pre-copy [27] algorithms. Memory pages are transferred to the destination host

Shrinker: Improving Live Migration of Virtual Clusters over WANs 433

while the virtual machine is still executing. Live migration continues sending
modified memory pages until it enters a phase where the virtual machine is
paused, the remaining pages are copied, and the virtual machine is resumed on
the destination host. This phase is responsible for the downtime experienced
during live migration, which should be kept minimal. This downtime can range
from a few milliseconds to seconds or minutes, depending on page dirtying rate
and network bandwidth [1].

Numerous works have been proposed to improve live migration and opti-
mize its performance metrics: total data transferred, total migration time, and
downtime. They can be classified in two types: optimizations of the pre-copy ap-
proach, and alternatives to pre-copy. Optimizations include compression, delta
page transfer, and data deduplication. Compression is an obvious method to
reduce the amount of data transferred during live migration. Jin et al. [11]
use adaptive compression to reduce the size of migrated data. Their system
chooses different compression algorithms depending on memory page character-
istics. Delta page transfer [6,32,26] optimizes the transmission of dirtied pages
by sending difference between old pages and new pages, instead of sending full
copies of new pages. Data deduplication [34,32] detects identical data inside the
memory and disk of a single virtual machine and transfers this data only once.

An alternative to pre-copy is live migration based on post-copy [8,9], which
first transfers CPU state and resumes the VM on the destination host. Mem-
ory pages are then fetched from the source host on demand, in addition to a
background copying process to decrease the total migration time and quickly
remove the residual dependency on the source host. Similarly, SnowFlock [13]
uses demand-paging and multicast distribution of data to quickly instantiate
VM clones on multiple hosts. Another alternative was proposed by Liu et
al. [15], based on checkpointing/recovery and trace/replay. By recording non-
deterministic events and replaying them at the destination, live migration effi-
ciency is greatly improved. However, their approach is not adapted to migrate
SMP guests.

All these systems were designed in the context of live migration of single VMs,
and do not take advantage of data duplicated across multiple VMs. However,
previous research [30,5,33,17] has shown that multiple VMs have significant por-
tions of their memory containing identical data. This identical data can be caused
by having the same versions of programs, shared libraries and kernels used in
multiple VMs, or common file system data loaded in buffer cache. This identical
data can be leveraged to decrease memory consumption of colocated VMs by
sharing memory pages between multiple VMs [30,5,33,17]. The same observation
has been made for VM disks [21,23,14], which is exploited to decrease storage
consumption. To our knowledge, Sapuntzakis et al. [25] were the first to leverage
identical data between multiple VMs to improve migration. However, their work
predates live migration and supported only suspend/resume migration, where
the VM is paused before being migrated. Additionally, they only took advan-
tage of data available on the destination node, limiting the possibility of finding
identical data. A similar approach was also proposed by Tolia et al. [28].

434 P. Riteau, C. Morin, and T. Priol

To allow live migration of VMs over WANs, two issues need to be solved: lack
of shared storage and relocation to a different IP network. Storage can be mi-
grated with algorithms similar to memory migration [3,16,10,32]. Network con-
nections can be kept uninterrupted after migration using tunneling [29,3], VPN
reconfiguration [32] or Mobile IPv6 [7]. The architecture of Shrinker supports
storage migration. Additionally, since Shrinker focuses solely on optimizing data
transmission during live virtual cluster migrations over WAN, it is compatible
with all solutions for keeping network connections uninterrupted. Therefore, we
do not discuss further this issue, as it is out of scope of this paper.

3 Architecture of Shrinker

We propose Shrinker, a system that improves live migration of virtual clus-
ters over WANs by decreasing total data transferred and total migration time.
During live migration of a virtual cluster between two data centers separated
by a WAN, Shrinker detects memory pages and disk blocks duplicated among
multiple virtual machines and transfers identical data only once. In the destina-
tion site, virtual machine disks and memory are reconstructed using distributed
content-based addressing. In order to detect identical data efficiently, Shrinker
leverages cryptographic hash functions. These functions map blocks of data, in
our case memory pages or disk blocks, to hash values of fixed size, also called
digests. These functions differ from ordinary hash functions because they are
designed to render practically infeasible to find the original block of data from
a hash value, modify a block of data while keeping the same hash value, and
find two different blocks of data with the same hash value. Using hash values
to identify memory pages and disk blocks by content is interesting because hash
values are much smaller than the data they represent. For instance, a 4 kB mem-
ory page or disk block is mapped to a 20 bytes hash value using the SHA-1 [19]
cryptographic hash function, a size reduction of more than 200 times.

We first present the architecture of Shrinker, and then discuss security con-
siderations caused by our use of cryptographic hash functions.

3.1 Architecture Overview

In a standard live migration of a virtual cluster composed of multiple VMs
running on different hypervisors, each live VM migration is independent. VM
content is transferred from each source host to the corresponding destination
host, with no interaction whatsoever between the source hypervisors or between
the destination hypervisors. As a consequence, when migrating a virtual cluster
over a WAN, data duplicated across VMs is sent multiple times over the WAN
link separating the source and destination hypervisors.

To avoid this duplicated data transmission, Shrinker introduces coordination
between the source hypervisors during the live migration process. This coordi-
nation is implemented by a service, running in the source site, that keeps track
of which memory pages and disk blocks have been sent to the destination site.

Shrinker: Improving Live Migration of Virtual Clusters over WANs 435

Before sending a memory page or a disk block, a source hypervisor computes
the hash value of this data and queries the service with this hash value. If no
memory page or disk block with the same hash value has previously been sent
to the destination site, the service informs the hypervisor that it should transfer
the data. The service also registers the hash value in its database. Later, when
the service receives a subsequent query for another memory page or disk block
with the same hash value, it informs the querying hypervisor that the data has
already been sent to the destination site. Based on this information, the hyper-
visor sends the hash value of the data to the destination host instead of the real
content. This mechanism essentially performs data deduplication by replacing
duplicated transmissions of memory pages and disk blocks by transmissions of
much smaller hash values. Figure 1 illustrates a live migration between two pairs
of hypervisors, with a cryptographic hash function creating 16-bit hash values.1

(2) Insert a0f3
in database

Coordination
service

Source
node 1

Source
node 2

Destination
node 1

Destination
node 2

(3) Send data a0f3 (4 KB)

(6) Send hash a0f3

(1) Data a0f3 sent?

(2) No

(4) Data a0f3 sent?

(5) Yes

WAN

Source site Destination
site

Fig. 1. Distributed data deduplication used in Shrinker to avoid sending duplicate data
on a WAN link

Source node 1 has to send a memory page or disk block identified by the hash
value a0f3. Instead of sending it directly like in a standard live migration, it
first queries the coordination service (step 1). Since this is the first time that
this data has to be sent to the destination site, the service informs source node 1
that it should send the data. It also updates its internal database to keep track
of this hash value (step 2). After receiving the answer from the coordination
service, source node 1 sends the data to destination node 1 (step 3). Afterwards,
source node 2 queries the service for the same data (step 4). The service informs

1 Note that this small hash value size is chosen to improve readability of the figure. In
a real scenario, Shrinker can not use such hash function, since 65,536 different hash
values would likely create collisions even for virtual machines of moderate sizes.

436 P. Riteau, C. Morin, and T. Priol

source node 2 that this data has already been sent to a node in the destination
site (step 5), which prompts source node 2 to send the hash value a0f3 (2 bytes)
instead of the full content (4 kB) to destination node 2 (step 6).

Since destination nodes receive a mix of VM data (memory and disk content)
and hash values from source nodes, they need to reconstruct the full VM content
before the VM can be resumed. This is where distributed content-based address-
ing is used. When a full memory page or disk block is received by a destination
node, its hash value and the IP of the node are registered into an indexing ser-
vice, running in the destination site. When destination nodes receive hash values
from source nodes, they query the indexing service to discover a node that has
a copy of the content they are requesting. After contacting a node and receiv-
ing a copy of the content, they register themselves in the indexing service for
this data, which increases the number of hosts capable of sending this data to
another hypervisor. This process is illustrated in Fig. 2.

Indexing
service

Source
node 1

Source
node 2

Destination
node 1

Destination
node 2

(1) Send data a0f3 (4 KB)

(3) Send hash a0f3

(2) Register
data a0f3:

node 1

(4) Where is
a0f3?

(5) data a0f3:
node 1

(7) Send data
a0f3 (4 KB)(6) Ask a0f3

(8) Register
data a0f3:

node 2

WAN

Source site Destination site

Fig. 2. Distributed content-based addressing used in Shrinker to reconstruct VM con-
tent on destination nodes

As in Fig. 1, destination node 1 receives a memory page or disk block identified
by hash a0f3 (step 1). It registers itself as having a copy of this data in the
indexing service (step 2). Afterwards, as in Fig. 1, source node 2 sends hash
value a0f3 to destination node 2 (step 3). In order to get the data identified
by this hash value, destination node 2 queries the indexing service to discover a
host which has a copy of the corresponding content (step 4). The indexing service
informs it that destination node 1 has a copy of this data (step 5). Destination
node 2 asks destination node 1 for this content (step 6), receives it (step 7), and
registers itself in the indexing server as having a copy (step 8).

Since the live migration is performed while the virtual machine is still
executing, it is possible that data that was sent to the destination site has
since been overwritten and is not accessible in any destination hypervisor. All

Shrinker: Improving Live Migration of Virtual Clusters over WANs 437

destination hypervisors open a communication channel with their correspond-
ing source hypervisor. This channel can be used to directly request data to the
source node.

3.2 Security Considerations

The possible number of different 4 kB memory pages and disk blocks (24096) is
bigger than the number of possible hash values (2160 for SHA-1). As a conse-
quence, the use of cryptographic hash functions opens the door to collisions: it is
theoretically possible that memory pages and disk blocks with different content
map to an identical hash value. However, the properties offered by cryptographic
hash functions allow us to use these hash values with a high confidence. The
probability p of one or more collisions occurring is bounded by (1), where n is
the number of objects in the system and b the number of bits of hash values [22]:

p ≤ n(n − 1)
2

× 1
2b

. (1)

If we consider a very large virtual cluster consisting of 1 exabyte (260 bytes)
of 4 kB memory pages and disk blocks migrated by Shrinker using the SHA-1
hash function, the collision probability is around 10−20. This is considered to
be much less than other possible faults in a computing system, such as data
corruption undetectable by ECC memory. However, (1) gives the probability of
an accidental collision. Although the theoretical number of operations to find
a collision is approximately 2

n
2 (birthday attack), attackers can exploit weak-

nesses of the hash function algorithm to find collisions more easily. For example,
researchers have shown attacks against SHA-1 that decrease the number of op-
erations to find collisions from 280 to 269 [31]. Assuming that finding collisions
is possible, an attacker capable of storing arbitrary data in VMs (for instance,
by acting as a client interacting with web servers) could inject colliding data
in these VMs. After migrating them with Shrinker, memory content would be
corrupted because two different pages would have been replaced by the same
data. If such attacks become practically feasible in the future, Shrinker can use
stronger cryptographic hash functions, such as those from the SHA-2 family.
Even though these hash functions are more computationally expensive, Shrinker
remains interesting as long as the hash computation bandwidth is larger than
the network bandwidth available to each hypervisor.

4 Implementation and Performance Evaluation

In this section, we first describe the implementation of our Shrinker prototype.
Then, we present and analyze the results of our experiments performed on the
Grid’5000 testbed.

4.1 Implementation

We implemented a prototype of Shrinker in the KVM hypervisor [12]. KVM is
divided in two main parts. The first part is composed of two loadable kernel

438 P. Riteau, C. Morin, and T. Priol

modules providing the core virtualization infrastructure. The second part is a
modified version of QEMU [2] running in user space to provide higher level
features, including virtual device emulation and live migration. This prototype
is fully implemented in the user space component of KVM version 0.14.0-rc0
and is about 2,000 lines of C code. We use Redis [24] version 2.2.0-rc4, a high
performance key-value store, to implement the coordination and indexing service.
Additional dependencies are OpenSSL, used to compute hash values, Hiredis, a
C client library for Redis, and libev, a high-performance event loop library.

Support for data deduplication of storage migration in our prototype is not
yet fully finalized. As such, in the following experiments, we use the storage
migration mechanism of KVM, with copy-on-write images. The use of copy-on-
write images allows KVM to send only storage data that has been modified since
the boot of the VM, minimizing the amount of storage data to migrate. We ex-
pect our finalized prototype to offer even greater amounts of data deduplication
for storage than for memory, since VM disks typically present large amounts of
identical data, as shown in previous work (c.f. Sec. 2).

As explained in Sec. 3, before sending a memory page, source hypervisors
need to contact the coordination service to know if the same page as already
been sent to the destination site. Performing this query in a sequential manner
would drastically reduce the live migration throughput (because of the round-
trip time between source hypervisors and the coordination service). To overcome
this problem, our implementation performs these queries in a pipelined manner.
Queries for multiple memory pages are sent in parallel, and the decision of send-
ing the full content or the hash is made when the answer is received. The same
method is used on the destination site for hypervisors to get memory content.

The coordination service is implemented using the Redis SETNX command,
with a memory page hash as key. If the hash is not already known by the service,
it is registered and the return value notifies the source hypervisor that it was
the first to register it. Otherwise, no change is performed in the service and the
source hypervisor is notified that the hash was already registered.

The indexing service is implemented using the set data structure of Redis.
For each registered memory page, there is one corresponding set which holds
information about hypervisors having a copy of the page. When destination
hypervisors register a memory page, they send a SADD command with the page
hash as key and an IP/port pair as value. When other destination hypervisors
need to get a page, they send a SRANDMEMBER command, which selects a random
hypervisor in the set corresponding to the queried page and returns its IP/port
information. After connecting on this IP and port, they query the content of the
page. Finally, when a destination hypervisor doesn’t hold any more copy of a
page, it unregisters it with a SREM command.

4.2 Evaluation Methodology

All the experiments presented in this paper are run on the paradent cluster of
the Grid’5000 site of Rennes. We use Carri System CS-5393B nodes supplied
with 2 Intel Xeon L5420 processors (each with 4 cores at 2.5 GHz), 32 GB of

Shrinker: Improving Live Migration of Virtual Clusters over WANs 439

memory, and Gigabit Ethernet network interfaces. Physical nodes and VMs use
the AMD64 port of Debian 5.0 (Lenny) as their operating system, with a 2.6.32
Linux kernel from the Lenny backports repository. VMs are configured to use
1 GB of memory. Two instances of Redis are running, each on a dedicated node.

To study the performance of our prototype, we configured a dedicated node
to act as a router between source and destination hypervisors. Using the netem
Linux kernel module, this router emulates wide area networks with different
bandwidth rates. The emulated latency is set to a round trip time of 20 ms.

For our performance evaluation, we use a program from the NAS Parallel
Benchmarks (NPB) [18], which are derived from computational fluid dynamics
applications. We evaluate performance metrics of live migration during the exe-
cution of this workload. We measure total migration and total data transmitted
by live migration. During our experiments, we discovered that the downtime
caused by a live migration in KVM was overly important because of a mis-
calculation of the available bandwidth. This is why we do not report numbers
for downtime, as they may be not representative of a correct behavior. We are
investigating the issue and will report it to the KVM community.

4.3 Performance Results

Figure 3(a) shows the total migration time of a 16 VMs cluster executing the
ep.D.16 program, for two different bandwidth rates. Figure 3(b) shows the total
amount of transmitted data during the live migration of these 16 VMs, for the
same two bandwidth rates.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

500 1000

T
ot

al
 m

ig
ra

to
n

tim
e

(m
s)

WAN link bandwidth (Mbps)

Standard KVM
Shrinker

(a) Average total migration time of 16
VMs running ep.D.16

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

500 1000

T
ot

al
 d

at
a

tr
an

sf
er

re
d

(M
B

)

WAN link bandwidth (Mbps)

Standard KVM
Shrinker

(b) Total data transmitted over the
WAN link during the live migration of
16 VMs running ep.D.16

Fig. 3. Performance evaluation of Shrinker

First, we observe that, whatever the bandwidth, the same amount of data is
transmitted for both bandwidth rates. However, we can see that Shrinker sends
much less data over the WAN link than the standard KVM migration. This
allows Shrinker to reduce the total migration time, for instance from one minute
to 20 seconds for the 500 Mbps link. Note that in the regular KVM live migration

440 P. Riteau, C. Morin, and T. Priol

protocol, memory pages containing only identical bytes are already compressed
and sent efficiently. As such, the improvement showed by Shrinker come from
real data deduplication, and not from deduplication of zero pages.

5 Conclusion

In this paper, we presented the design and prototype implementation of Shrinker,
a system that improves live migration of virtual clusters over WANs by decreas-
ing total data transferred and total migration time. Shrinker detects memory
pages and disk blocks duplicated among multiple virtual machines to transfer
identical data only once. Virtual machine data is retrieved in the destination
site with distributed content-based addressing. We implemented a prototype of
Shrinker in the KVM hypervisor. Our experiments show that it reduces both
total data transferred and total migration time.

In the future, we will finalize our Shrinker prototype to perform data dedu-
plication on storage migration and evaluate its performance. We also plan to
study how Shrinker can allow destination hypervisors to fetch data from local
VM image repositories found in most cloud computing infrastructures to further
decrease the amount of data sent over WAN links.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr).

References

1. Akoush, S., Sohan, R., Rice, A., Moore, A.W., Hopper, A.: Predicting the Per-
formance of Virtual Machine Migration. In: International Symposium on Model-
ing, Analysis, and Simulation of Computer Systems (MASCOTS 2010), pp. 37–46
(2010)

2. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of
the 2005 USENIX Annual Technical Conference (USENIX 2005), pp. 41–46 (2005)

3. Robert, B., Evangelos, K., Anja, F., Harald, S.: Live wide-area migration of virtual
machines including local persistent state. In: Proceedings of the 3rd International
Conference on Virtual Execution Environments (VEE 2007), pp. 169–179 (2007)

4. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live Migration of Virtual Machines. In: Proceedings of the 2nd Sym-
posium on Networked Systems Design & Implementation (NSDI 2005), pp. 273–286
(2005)

5. Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A.C., Varghese, G., Voelker,
G.M., Vahdat, A.: Difference Engine: Harnessing Memory Redundancy in Virtual
Machines. In: 8th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 2008), pp. 309–322 (2008)

6. Hacking, S., Hudzia, B.: Improving the live migration process of large enterprise
applications. In: Proceedings of the 3rd international Workshop on Virtualization
Technologies in Distributed Computing (VTDC 2009), pp. 51–58 (2009)

Shrinker: Improving Live Migration of Virtual Clusters over WANs 441

7. Harney, E., Goasguen, S., Martin, J., Murphy, M., Westall, M.: The Efficacy of
Live Virtual Machine Migrations Over the Internet. In: Proceedings of the 3rd
International Workshop on Virtualization Technology in Distributed Computing
(VTDC 2007), pp. 1–7 (2007)

8. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE 2009), pp. 51–60 (2009)

9. Hirofuchi, T., Nakada, H., Itoh, S., Sekiguchi, S.: Enabling Instantaneous Reloca-
tion of Virtual Machines with a Lightweight VMM Extension. In: Proceedings of
the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid 2010), pp. 73–83 (2010)

10. Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., Sekiguchi, S.: A Live Storage Migra-
tion Mechanism over WAN for Relocatable Virtual Machine Services over Clouds.
In: Proceedings of the 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2009), pp. 460–465 (2009)

11. Jin, H., Deng, L., Wu, S., Shi, X., Pan, X.: Live Virtual Machine Migration with
Adaptive Memory Compression. In: Proceedings of the 2009 IEEE International
Conference on Cluster Computing, Cluster 2009 (2009)

12. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux Virtual
Machine Monitor. In: Proceedings of the 2007 Linux Symposium, vol. 1, pp. 225–
230 (June 2007)

13. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P., Rumble, S.M.,
Lara, E.d., Brudno, M., Satyanarayanan, M.: SnowFlock: rapid virtual machine
cloning for cloud computing. In: Proceedings of the 4th ACM European Conference
on Computer Systems (EuroSys 2009), pp. 1–12 (2009)

14. Liguori, A., Hensbergen, E.V.: Experiences with Content Addressable Storage and
Virtual Disks. In: Proceedings of the First Workshop on I/O Virtualization, WIOV
2008 (2008)

15. Liu, H., Jin, H., Liao, X., Hu, L., Yu, C.: Live migration of virtual machine based
on full system trace and replay. In: Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing (HPDC 2009), Garching,
Germany, pp. 101–110 (2009)

16. Luo, Y., Zhang, B., Wang, X., Wang, Z., Sun, Y., Chen, H.: Live and incremental
whole-system migration of virtual machines using block-bitmap. In: 2008 IEEE
International Conference on Cluster Computing (Cluster 2008), pp. 99–106 (2008)

17. Milos, G., Murray, D.G., Hand, S., Fetterman, M.: Satori: Enlightened Page Shar-
ing. In: Proceedings of the 2009 USENIX Annual Technical Conference, USENIX
2009 (2009)

18. NASA Advanced Supercomputing Division: NAS Parallel Benchmarks,
http://www.nas.nasa.gov/Software/NPB/

19. National Institute of Standards and Technology: Secure Hash Standard (April
1995)

20. Nelson, M., Lim, B.-H., Hutchins, G.: Fast Transparent Migration for Virtual
Machines. In: Proceedings of the 2005 USENIX Annual Technical Conference
(USENIX 2005), pp. 391–394 (2005)

21. Partho, N., Kozuch, M.A., O’Hallaron, D.R., Harkes, J., Satyanarayanan, M., To-
lia, N., Toups, M.: Design tradeoffs in applying content addressable storage to
enterprise-scale systems based on virtual machines. In: Proceedings of the 2006
USENIX Annual Technical Conference (USENIX 2006), pp. 1–6 (2006)

http://www.nas.nasa.gov/Software/NPB/

442 P. Riteau, C. Morin, and T. Priol

22. Quinlan, S., Dorward, S.: Venti: A New Approach to Archival Storage. In: Proceed-
ings of the Conference on File and Storage Technologies (FAST 2002), pp. 89–101
(2002)

23. Rhea, S., Cox, R., Pesterev, A.: Fast, inexpensive content-addressed storage in
foundation. In: Proceedings of the 2008 USENIX Annual Technical Conference
(USENIX 2008), pp. 143–156 (2008)

24. Sanfilippo, S.: Redis, http://redis.io
25. Sapuntzakis, C.P., Chandra, R., Pfaff, B., Chow, J., Lam, M.S., Rosenblum, M.:

Optimizing the migration of virtual computers. In: Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI 2002), pp. 377–390
(2002)

26. Svärd, P., Hudzia, B., Tordsson, J., Elmroth, E.: Evaluation of Delta Compression
Techniques for Efficient Live Migration of Large Virtual Machines. In: Proceedings
of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE 2011), pp. 111–120 (2011)

27. Theimer, M.M., Lantz, K.A., Cheriton, D.R.: Preemptable remote execution facili-
ties for the V-system. In: Proceedings of the Tenth ACM Symposium on Operating
Systems Principles (SOSP 1985), pp. 2–12 (1985)

28. Tolia, N., Bressoud, T., Kozuch, M., Satyanarayanan, M.: Using Content Address-
ing to Transfer Virtual Machine State. Tech. rep., Intel Corporation (2002)

29. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat, C., Mambretti, J.,
Monga, I., van Oudenaarde, B., Raghunath, S., Wang, P.Y.: Seamless live migration
of virtual machines over the MAN/WAN. Future Gener. Comput. Syst. 22(8), 901–
907 (2006)

30. Waldspurger, C.A.: Memory resource management in VMware ESX server. In: Pro-
ceedings of the 5th Symposium on Operating Systems Design and Implementation
(OSDI 2002), pp. 181–194 (2002)

31. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

32. Wood, T., Ramakrishnan, K., Shenoy, P., van der Merwe, J.: CloudNet: Dynamic
Pooling of Cloud Resources by Live WAN Migration of Virtual Machines. In: Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 2011 (2011)

33. Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E., Corner, M.:
Memory Buddies: Exploiting Page Sharing for Smart Colocation in Virtualized
Data Centers. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2009), pp. 31–40 (2009)

34. Zhang, X., Huo, Z., Ma, J., Meng, D.: Exploiting Data Deduplication to Accelerate
Live Virtual Machine Migration. In: IEEE International Conference on Cluster
Computing (Cluster 2010), pp. 88–96 (2010)

http://redis.io

Maximum Migration Time Guarantees in

Dynamic Server Consolidation for Virtualized
Data Centers

Tiago Ferreto1, César A.F. De Rose1, and Hans-Ulrich Heiss2

1 Faculty of Informatics, PUCRS, Brazil
tiago.ferreto@pucrs.br, cesar.derose@pucrs.br

2 Technische Universitaet Berlin, Germany
heiss@cs-tu-berlin.de

Abstract. Server consolidation is a vital mechanism in modern data
centers in order to minimize expenses with infrastructure. In most cases,
server consolidation may require migrating virtual machines between
different physical servers. Although the downtime of live-migration is
negligible, the amount of time to migrate all virtual machines can be
substantial, delaying the completion of the consolidation process. This
paper proposes a new server consolidation algorithm, which guarantees
that migrations are completed in a given maximum time. The migration
time is estimated using the max-min fairness model, in order to consider
the competition of migration flows for the network infrastructure. The
algorithm was simulated using a real workload and shows a good consol-
idation ratio in comparison to other algorithms, while also guaranteeing
a maximum migration time.

1 Introduction

Server consolidation is a key feature in current virtualized data centers. It fo-
cuses on minimizing the amount of resources required to handle the data center
workload, and therefore, it has a direct impact on the costs of the data center
infrastructure. Due to the variations in demand of the applications executed in
the data center, virtual machines capacities should be periodically revisited in
order to provide good performance to the applications and minimize overprovi-
sioning. A server consolidation algorithm evaluates these capacity changes and
derives a new mapping of virtual machines to the available resources. The new
mapping may require migrating virtual machines among physical servers, which
can be performed using live-migration techniques with negligible downtime.

Although the migration of virtual machines is imperceptible for the users, mi-
grating several virtual machines concurrently can require a considerable amount
of time, which results in a larger delay in the server consolidation process. There-
fore, estimating the total migration time is essential when planning the server
consolidation of virtual machines. Even so, current server consolidation algo-
rithms disregard this matter.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 443–454, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

444 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

This paper proposes a new server consolidation algorithm which minimizes the
number of required physical servers to handle a set of virtual machines, while also
guaranteeing that the migrations performed in the transition to the new mapping
be completed in a specified maximum time. The algorithm was evaluated using
real workloads from TU-Berlin and compared with common implementations
of the server consolidation problem, such as heuristics and linear programming.
The results obtained show that the algorithm is able to guarantee a maximum
migration time in most cases and also minimizes considerably the number of
migrations performed, while requiring a small amount of additional physical
servers.

2 Related Work

The server consolidation problem consists in mapping a set of virtual machines
with different capacities to a set of physical servers in order to minimize the
number of physical servers required. This problem is analogous to the classic
bin-packing problem, which is classified as an NP-hard problem [6], and aims
at mapping a set of items with different capacities into a minimal set of bins.
There are several approaches in the literature to solve this problem, in which
the most common use heuristics and linear programming. Some of the most
common heuristics for the bin-packing problem are [6,11]: first-fit, best-fit, worst-
fit and almost worst-fit. Each heuristic uses a different policy to select which
bin should receive an item. A common optimization is to order the items in
decreasing order before starting the mapping process, resulting in the algorithms:
first-fit decreasing, best-fit decreasing, worst-fit decreasing and almost worst-fit
decreasing. The main goal of heuristics is to find good solutions at a reasonable
computational cost, however it does not guarantee optimality. Another common
approach is to use linear programming to find an optimal solution. The drawback
of this approach is that it usually has higher requirements in terms of computing
power and time.

Applications running in data centers usually present periods of high and low
utilization. In order to minimize the amount of active resources, the capac-
ity required in each virtual machine is periodically evaluated, and a new map-
ping is produced using server consolidation. Server consolidation techniques have
widespread adoption in virtualized data centers. However, the process of map-
ping virtual machines to physical servers is not trivial. Depending on the appli-
cation requirements and the resource provider goals, different strategies can be
applied. Several works have been published in the last years proposing different
approaches in the server consolidation process.

Andrzejak et al. [2] proposed static and dynamic server consolidation algo-
rithms based on integer programming and genetic algorithm techniques. The
algorithms were evaluated using a production workload containing traces from
enterprise applications. The results present the benefits of using server consol-
idation, showing that the same workload could be allocated in a much smaller
number of physical servers. The genetic algorithm resulted in solutions as good

Maximum Migration Time Guarantees in Dynamic Server Consolidation 445

as with integer programming, with the benefit of reaching the solution much
faster. In this work, migrations are considered to happen instantaneously, i.e.,
there is no migration cost included in the algorithms.

Speitkamp and Bichler [4,15] described linear programming formulations for
the static and dynamic server consolidation problems. They also designed ex-
tension constraints for limiting the number of virtual machines in a physical
server, guaranteeing that some virtual machines are assigned to different physical
servers, mapping virtual machines to a specific set of physical servers that contain
some unique attribute, and limiting the total number of migrations for dynamic
consolidation. In addition, they proposed an LP-relaxation based heuristic for
minimizing the cost of solving the linear programming formulations.

Bobroff et al. [5] proposed a dynamic server consolidation algorithm, which fo-
cus on minimizing the cost of running the data center. The cost is measured using
a penalty over underutilized and overloaded physical servers, and over service level
agreements (SLA) violations, defined as CPU capacity guarantees. The algorithm
uses historical data to forecast future demand and relies on periodic executions to
minimize the number of physical servers to support the virtual machines.

Khanna et al. [9] proposed a dynamic management algorithm, which is trig-
gered when a physical server becomes overloaded or underloaded. The main
goals of their algorithm are to: i) guarantee that SLAs are not violated (SLAs
are specified considering mainly response time and throughput); ii) minimize mi-
gration cost; iii) optimize the residual capacity of the system; and iv) minimize
the number of physical servers used. Migration cost is defined as the amount of
resources used by each virtual machine.

Wood et al. [17] developed the Sandpiper system for monitoring and detecting
hotspots, and remapping/reconfiguring virtual machines whenever necessary. In
order to choose which virtual machines to migrate, Sandpiper sorts them using
a volume-to-size ratio (VSR), which is a metric based on CPU, network, and
memory loads. Sandpiper tries to migrate the most loaded virtual machine from
an overloaded physical server to one with sufficient spare capacity.

Mehta and Neogi [13] introduced the ReCon tool, which aims at recommend-
ing dynamic server consolidation in multi-cluster data centers. ReCon consid-
ers static and dynamic costs of physical servers, the costs of virtual machine
migration, and the historical resource consumption data from the existing en-
vironment in order to provide an optimal dynamic plan of virtual machines to
physical server mapping over time. Virtual machine migration costs are defined
as directly related to amount of resources used by the VM, such as CPU and
memory. Similarly, Verma et al. [16] developed the pMapper architecture and
a set of server consolidation algorithms for heterogeneous virtualized resources.
The algorithms take into account power and migration costs and the performance
benefit when consolidating applications into physical servers. In the pMapper ar-
chitecture, the migration cost is analyzed as the impact of the migration during
the application execution. However, the migration cost model only considers the
impact when migrating a single virtual machine, i.e. the migration cost does not
change when several migrations occur concurrently.

446 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

Despite the several approaches investigated in server consolidation, none of
them have already studied the real impact of virtual machines migration in the
server consolidation process. Most of the works that deal with virtual machine
migration only take into account the number of migrations, or the amount of
memory transferred (related to the amount of resources used by the VM), but
the impact of these transfers in the completion of the consolidation process
have never been explored. It is necessary to estimate how long does it take to
migrate each virtual machine considering that they compete for the network
infrastructure.

3 Server Consolidation Algorithm

The server consolidation problem focus on minimizing the number of physical
servers required to map a list of virtual machines, respecting the capacity of
physical servers and demands of virtual machines. In the algorithm proposed
here, besides minimizing the number of physical servers, it also aims at estab-
lishing a maximum migration time during the server consolidation process. The
migration time directly reflects the amount of time required to complete the
consolidation.

One of the main challenges is to accurately estimate migration time, taking
into consideration that migrations are performed in a shared network infras-
tructure, and it may affect the available bandwidth for each migration. In the
proposed algorithm, the evaluation of the available bandwidth for each migra-
tion is performed using the max-min fairness (MMF) model [8,14]. This model is
often considered in the context of IP networks carrying elastic traffic. It presents
the following properties: i) all transfers have the same priority over the available
bandwidth, ii) link bandwidths are fairly shared among transfers being allocated
in order of increasing demand, iii) no transfer gets a capacity larger than its de-
mand, and iv) transfers with unsatisfied demands get an equal share of the link
bandwidth.

Given a set of network links with respective bandwidths and the links used
by each migration, it is possible to obtain the available bandwidth for each
migration using a progressive filling algorithm which respects the MMF model
properties [3]. The algorithm initializes the bandwidth available for each transfer
with 0. It increases the bandwidth for all transfers equally, until one link becomes
saturated. The saturated links serve as a bottleneck for all transfers using them.
The bandwidths for all transfers not using these saturated links are incremented
equally until one or more new links become saturated. The algorithm continues,
always equally incrementing all transfer bandwidths not passing through any
saturated link. When all transfers pass through at least one saturated link, the
algorithm stops.

The migration time is measured as the time it takes to transfer the current
memory allocation of each virtual machine, with the available bandwidth ob-
tained using the MMF model. However, it is not possible to simply divide one
by the other. Considering that some migrations finish before others, the available

Maximum Migration Time Guarantees in Dynamic Server Consolidation 447

bandwidth for each migration can change, and the remaining amount of mem-
ory to be transferred should take into account the new available bandwidth.
Therefore, migration time is measured in incremental steps.

After each migration finishes, the amount of time passed is added to the
migration time of all virtual machines, and the amount of memory transferred
during this time is decreased from the total amount of memory to transfer. If
there is no more memory to transfer, the migration is removed from the set of
running migrations. The algorithm continues until there are no more running
migrations. In the end, we have an estimation of the migration time of each
migration.

The proposed algorithm is divided in two distinct phases. The first phase aims
at finding a feasible mapping of virtual machines to physical servers that mini-
mizes the maximum migration time of all virtual machines. In the second phase,
the feasible mapping is iteratively modified in order to produce solutions using
a smaller number of physical servers, but also respecting a maximum migration
time threshold. In cases where it is not possible to guarantee migration times
smaller than a specified threshold, the algorithm finds a solution that minimizes
the number of virtual machines that have their migration times higher than the
specified threshold.

3.1 First Phase: Minimizing Migration Time

The first phase is based on the traditional descent method for local neighborhood
search. Based on an initial solution, a set of small modifications to this solution is
derived. The result obtained with each modification is analyzed and the best one
is chosen. If this modification optimizes the current solution, then it is applied
and the process repeats, otherwise the algorithm stops.

Algorithm 1 presents the algorithm for the first phase. It starts using a copy of
the current mapping as the current solution. The repetition of the current map-
ping results in zero migrations, however the physical servers can become over-
loaded, i.e., the physical server capacity can not be able to handle the changes
of the virtual machines demands mapped to it. The strategy is to remove each
overloaded physical server from this overload state, migrating some of its vir-
tual machines to other physical servers, choosing every time the alternative that
results in minimal migration times. The algorithm generates migration alter-
natives for each overloaded physical server. The physical server that performs
migrations which results in minimal migration time is chosen. The migrations
are included in the current solution, and the process repeats, until there are no
more overloaded physical servers.

The migration alternatives for each overloaded physical server are generated
as the combinations of virtual machines that remove the physical server from
the overload state. For example, given an overloaded physical server with capac-
ity 100, packing virtual machines: v1 with demand 50, v2 with demand 40, v3

with demand 30, and v4 with demand 20, the algorithm generates the following
combinations of virtual machines: (v1), (v2), and (v3, v4). Each combination of
virtual machines is applied in the current solution using the best-fit decreasing

448 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

heuristic and its cost is evaluated. The cost function considers the maximum mi-
gration time and also the sum of the migration times of all migrations. The goal
is to find a feasible mapping, respecting physical servers capacities and virtual
machines demands, which minimizes this cost function, i.e., results in the lowest
maximum migration time.

The algorithm repeats until there are no more overloaded physical servers. In
the end, the result generated will contain at least the same amount of physical
servers as the present mapping. The second phase is used to decrease the number
of physical servers, while guaranteeing that the maximum migration time stays
under a given threshold.

Algorithm 1. First phase of the server consolidation algorithm
current solution ← getCurrentMapping()
while there are overloaded physical servers in current solution do

for all p in overloaded physical servers do
alternatives ← generateMigrationAlternatives(p)
for all alt in alternatives do

sol ← bestFitDecreasing(alt)
cost ← calculateCost(sol)

end for
end for
current solution ← getAlternativeWithLowestCost()

end while

3.2 Second Phase: Minimizing the Number of Physical Servers

The second phase is implemented using the tabu search metaheuristic [7]. The
main idea of tabu search is to maintain a memory about previous local searches,
in order to avoid performing repeatedly the same moves, returning to the same
solution and staying confined into a local optima. The tabu search method is
based on a repetition of steps that explores the possible solutions for the problem.

The second phase is presented in Algorithm 2, and it starts by using as initial
solution the mapping resulted from the first phase. The strategy is to select in
each iteration one physical server to empty, reassigning its virtual machines to
other physical servers. The selection of the physical server is based on a filling
function, proposed by [12], which gives a measure of easiness to empty a physical
server. The function gives higher priority to physical servers with low occupied
capacity and more virtual machines packed on it. The physical server with the
lowest filling index, according to the filling function, and that is not in the tabu
list is chosen. The tabu list stores a list of previously chosen physical servers,
and the goal of the tabu list is to avoid choosing repeatedly the same physical
servers to empty.

Maximum Migration Time Guarantees in Dynamic Server Consolidation 449

After choosing the physical server using the filling function, the virtual ma-
chines mapped to it are retrieved and the physical server is set as unavailable
during this iteration, in order to avoid remapping all virtual machines to it again.
The list of virtual machines is used as input to a permutation function, which
returns lists with these virtual machines in all possible orderings. Each alterna-
tive is evaluated, applying the worst-fit heuristic to map the virtual machines
to the physical servers. The alternative that provides a solution with best cost,
according to the cost function, is selected and its solution is defined as the cur-
rent solution. The cost function that should be minimized combines the number
of physical servers and the number of breaks of maximum migration time. This
last term refers to the number of migrations with migration time higher than
the specified threshold.

The physical server chosen at first is included in the tabu list and set as
available again to pack virtual machines in the next iterations. The tabu list
size has a fixed capacity, and when this capacity is exceeded, the oldest entry is
removed. The tabu list size should be smaller than the number of physical servers.
If the cost of the current solution is smaller than the cost of the best solution,
then the current solution is defined as the best solution. This process repeats until
the best solution does not present any enhancements in a pre-specified number
of iterations. The final solution can result in a situation that guaranteeing the
maximum migration time is not possible, however it will minimize the number
of breaks of maximum migration time.

4 Evaluation

The evaluation of the server consolidation algorithm was performed using work-
loads composed of traces from servers of the Technical University of Berlin
(TU-Berlin), which are normally used by researchers and students to execute
computational experiments. Each workload contains samples of CPU and mem-
ory utilization per hour during a week, totalizing 168 samples per trace. The
workloads present different characteristics, such as: number of traces, average
CPU utilization, average memory utilization, and average variability. The vari-
ability in a trace indicates the percentage of consecutive samples that present a
variation in CPU or memory values. A variability of 0% indicates that the trace
keeps with same CPU and memory utilization during the whole trace duration,
whereas 100% indicates that each consecutive sample presents a different CPU
or memory utilization. The higher the variability, higher also is the probability
of changes in the mapping of virtual machines to physical machines, and hence a
higher number of migrations can be performed. Table 1 presents the workloads
and its characteristics.

The physical infrastructure simulated in the experiments is a data center
composed of 100 homogeneous physical servers with CPU and memory capac-
ities equal to 100. Each server is connected to a single crossbar switch using
bidirectional links forming a star network topology. Each link has a capacity of
100 per unit of time. It means that it takes 1 unit of time to transfer all memory
from one physical server to another one using full link capacity.

450 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

Algorithm 2. Second phase of the server consolidation algorithm
current solution ← getFirstPhaseMapping()
best solution ← current solution
repeat

for all p in physical servers not in tabu list do
pindex ← getFillingIndex()

end for
p ← getPhysicalServerWithLowestIndex()
vms ← getVirtualMachinesFrom(p)
set p as unavailable
moves ← getPermutations(vms)
for all m in moves do

sol ← worstFit(m)
cost ← calculateCost(sol)

end for
current solution ← getAlternativeWithLowestCost()
insertIntoTabuList(p)
set p as available
if calculateCost(current solution) < calculateCost(best solution) then

best solution ← current solution
end if

until termination condition

Table 1. Details of TU-Berlin workload groups

Number of Avg. CPU Avg. memory Avg. variability

traces utilization (%) utilization (%) (%)

Workload 1 43 25.2 28.36 17

Workload 2 61 32.37 39.39 41

Workload 3 36 47.28 48.67 63

The server consolidation algorithm proposed was compared with typical im-
plementations of the server consolidation problem using heuristics and linear pro-
gramming. The heuristics implemented were: first-fit decreasing (FFD), best-fit
decreasing (BFD), worst-fit decreasing (WFD) and almost worst-fit decreasing
(AWFD). They were all implemented using the Python language. The linear
programming (LP) solution was implemented using Zimpl [10] and solved using
the SCIP [1] solver. The solver was configured with a timeout of 5 minutes, i.e., if
the solver can not find the optimal result in 5 minutes, it returns the best result
found so far. This approach is usually used since linear programming problems
can take a long time to find an optimal solution. All experiments were performed
on a Intel Core 2 Duo processor with 2.4 GHz and 4 GBytes of memory. The
server consolidation algorithm proposed was implemented using the Python lan-
guage. The second phase (using Tabu Search) was configured with tabu list size

Maximum Migration Time Guarantees in Dynamic Server Consolidation 451

equal to 5 and to terminate when the solution does not present any changes in
the last 10 iterations (termination condition). The first mapping is performed
using the first-fit heuristic since there is no previous mapping to be used by the
algorithm. The server consolidation algorithm was executed using five different
thresholds of maximum migration time. The thresholds are: 1.0, 0.8, 0.6, 0.4 and
0.2 units of time.

For each experiment combining algorithm and workload, the metrics measured
are: the average number of physical servers required to process the workload,
the average number of migrations required, and the maximum migration time.
Figures 1a, 1b and 1c present the results obtained with the algorithms for each
workload. The heuristics bar only presents the heuristic that presented the best
solution.

LP presented the lowest average number of physical servers in all workloads,
but it was closely followed by the best heuristic. However, LP also presented
the highest average number of migrations, requiring migrating almost all virtual
machines each consolidation step in all workloads. The average percentage of vir-
tual machines migrated each consolidation step using LP are: 90% for workload
1, 97.2% for workload 2 and 95.8% for workload 3 using LP. These high values
are due to the aggressive methods applied by linear programming in order to
find an optimal solution. Despite the lowest number of physical servers, the high
number of migrations is a huge obstacle for its utilization in a real environment.
The heuristics required a lower number of migrations, but with a considerable
increase when using workloads with higher variability. Heuristics tend to keep
the mapping of virtual machines in the same physical servers when there is a low
variation in the virtual machines capacities. Besides presenting a high number of
migrations, LP and heuristics also presented, as expected, a high maximum mi-
gration time, considering that these algorithms only try to optimize the number
of physical servers used by the workload.

The proposed server consolidation algorithm (named as SCAlgo in the charts)
was able to maintain the maximum migration time for the first three thresholds:
1.0, 0.8 and 0.6. The reduction in the number of required migrations is con-
siderable, requiring only a small increase in the number of physical servers. In
workload 1, with the time threshold of 1.0, the algorithm migrates an aver-
age of 6.5% of the virtual machines against 90% using LP, requiring only an
increase of a single machine in average. Workloads 2 and 3 migrate an aver-
age of 8.3% (against 97.2% in LP) and 13.6% (against 95.8% in LP) of virtual
machines, while requiring an increase of approximate 2.9 and 1.5 machines in
average in comparison to the results obtained using LP. In the cases where the
proposed server consolidation could not guarantee the maximum migration time
(thresholds of 0.4 and 0.2), the algorithm minimized the number of migration
breaks, i.e., the number of migrations that presented migration times higher
than the specified threshold. In the charts, the number of migration breaks is
presented in parentheses besides the maximum migration time for thresholds
0.4 and 0.2. This limitation is directly related to the characteristics of the work-
load, specially regarding the amount of memory utilization. Even when using

452 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

(a) Results for Workload 1

(b) Results for Workload 2

(c) Results for Workload 3

Maximum Migration Time Guarantees in Dynamic Server Consolidation 453

full network capacity, virtual machines with high memory demands cannot be
transferred during the maximum migration time specified.

5 Conclusion and Future Work

This paper presented a new server consolidation algorithm to be used in virtual-
ized data centers that, besides minimizing the number of physical servers used,
also guarantees that all necessary migrations occur during a specified maximum
migration time. The maximum migration time has direct relation to the com-
pletion of the consolidation process and, therefore, should be taken into account
in the server consolidation algorithm. Several algorithms have been proposed for
the server consolidation problem, but none of them have focused on ensuring
a maximum migration time in order to minimize the delay in the consolida-
tion process. The server consolidation algorithm proposed has been evaluated
using real workloads and typical solutions for server consolidation using linear
programming and heuristics. The results obtained indicate that the proposed
algorithm can efficiently provide guarantees using common thresholds of time,
with a huge decrease in the number of migrations performed and a slight in-
crease in the number of additional physical servers required. As future work,
we intend to perform more experiments using different workloads and optimize
the algorithm in order to provide guarantees of maximum migration time in
more complex scenarios. We also intend to analyze how resource providers can
use the maximum migration time in SLAs in order to offer a more controlled
environment for its users.

References

1. Achterberg, T.: SCIP - a framework to integrate constraint and mixed integer
programming. Tech. Rep. 04-19, Zuse Institute Berlin (2004)

2. Andrzejak, A., Arlitt, M., Rolia, J.: Bounding the resource savings of utility com-
puting models. Technical report hpl-2002-339, Hewlett Packard Laboratories (2002)

3. Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)

4. Bichler, M., Setzer, T., Speitkamp, B.: Capacity planning for virtualized servers.
In: Proceedings of the 16th Annual Workshop on Information Technologies and
Systems, WITS 2006 (2006)

5. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing sla violations. In: Proceedings of the 10th IFIP/IEEE International Sym-
posium on Integrated Network Management (2007)

6. Coffman Jr., E., Garey, M., Johnson, D.: Approximation Algorithms for Bin Pack-
ing - A Survey. In: Approximation algorithms for NP-hard problems, PWS Pub-
lishing Co. (1996)

7. Floudas, C.C.A., Pardalos, P.M.: Encyclopedia of Optimization. Springer-Verlag
New York, Inc., Secaucus (2006)

8. Ioannis, D.: New Algorithm for the Generalized Max-Min Fairness Policy based on
Linear Programming. IEICE Transactions on Communications (2005)

454 T. Ferreto, C.A.F. De Rose, and H.-U. Heiss

9. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application performance management
in virtualized server environments. In: Proceedings of the 10th IEEE/IFIP Network
Operations and Management Symposium, NOMS 2006 (2006)

10. Koch, T.: Rapid Mathematical Programming. Ph.D. thesis, Technische Universi-
taet Berlin (2004)

11. Kou, L., Markowsky, G.: Multidimensional bin packing algorithms. IBM Journal
of Research and development 21(5) (1977)

12. Lodi, A., Martello, S., Vigo, D.: TSpack: A Unified Tabu Search Code for Multi-
Dimensional Bin Packing Problems. Annals of Operations Research 131(1-4) (2004)

13. Mehta, S., Neogi, A.: ReCon: A Tool to Recommend Dynamic Server Consolidation
in Multi-Cluster Data Centers. In: Proceedings of the IEEE Network Operations
and Management Symposium, NOMS 2008 (2008)

14. Nace, D., Nhatdoan, L., Klopfenstein, O., Bashllari, a.: Max-min fairness in multi-
commodity flows. Computers & Operations Research 35(2) (2008)

15. Speitkamp, B., Bichler, M.: A Mathematical Programming Approach for Server
Consolidation Problems in Virtualized Data Centers. IEEE Transactions on Ser-
vices Computing (2010)

16. Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware applica-
tion placement in virtualized systems. In: Proceedings of the ACM/IFIP/USENIX
9th International Middleware Conference (2008)

17. Wood, T., Shenoy, P.J., Venkataramani, A., Yousif, M.S.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17)
(2009)

Enacting SLAs in Clouds Using Rules

Michael Maurer1, Ivona Brandic1, and Rizos Sakellariou2

1 Vienna University of Technology, Distributed Systems Group,
Argentinierstraße 8, 1040 Vienna, Austria
{maurer,ivona}@infosys.tuwien.ac.at

2 University of Manchester, School of Computer Science, U.K.
rizos@cs.man.ac.uk

Abstract. The emergence of Cloud Computing raises the question of
dynamically allocating resources of physical (PM) and virtual machines
(VM) in an on-demand and autonomic way. Yet, using Cloud Computing
infrastructures efficiently requires fulfilling three partially contradicting
goals: first, achieving low violation rates of Service Level
Agreements (SLA) that define non-functional goals between the Cloud
provider and the customer; second, achieving high resource utilization;
and third achieving the first two issues by as few time- and energy con-
suming reallocation actions as possible. To achieve these goals we propose
a novel approach with escalation levels to divide all possible actions into
five levels. These levels range from changing the configuration of VMs
over migrating them to other PMs to outsourcing applications to other
Cloud providers. In this paper we focus on changing the resource config-
uration of VMs in terms of storage, memory, CPU power and bandwidth,
and propose a knowledge management approach using rules with threat
thresholds to tackle this problem. Simulation reveals major improve-
ments as compared to recent related work considering SLA violations,
resource utilization and action efficiency, as well as time performance.

1 Introduction

One of the main challenges Cloud Computing providers face is the question
of dynamically allocating resources in an on-demand way. Service Level Agree-
ments (SLAs) settle non-functional requirements between the Cloud Computing
providers and their customers. These SLAs contain Quality of Service (QoS)
goals, which are expressed as, e.g., “storage ≥ 1000GB”. Penalties that have
to be paid to the customers in case these goals are violated are also part of
the SLA. Thus, Cloud Computing providers face three contradicting challenges:
First, they aim for providing enough resources for every application. Second,
they try to efficiently use their resources and only allocate what applications
currently really need. Third, they consider energy consumption of reallocation
actions and strive for an efficient usage of these executed actions.

In [10] we presented Case Based Reasoning (CBR) for decision making in the
MAPE-K (Monitoring, Analysis, Planning, Execution, Knowledge) cycle of an
autonomic SLA enactment environment in Clouds. We evaluated it by a generic

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 455–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

456 M. Maurer, I. Brandic, and R. Sakellariou

simulation engine we developed and showed the suitability of CBR for resource-
efficient SLA management. However, we also determined some drawbacks of CBR
as far as its learning performance and its scalability were concerned. Therefore, in
this paper we design and implement a rule-based knowledge management (KM)
approach, and utilize the same simulation engine enhanced by more accurate
and general utility functions to evaluate it and reevaluate CBR. Using rules we
attempt to improve not only SLA adherence and resource allocation efficiency
as discussed in [10], but also new aspects, i.e., the efficient use of reallocation ac-
tions, as well as scalability. Additionally, we adapt a wholesome view of different
adaptation levels like virtual machine (VM) configuration or VM migration, and
propose a hierarchical model of so called escalation levels for dynamically and
efficiently managing resource allocation for Cloud Computing infrastructures.

The challenge in this work is to evaluate KM techniques for autonomic SLA
enactment in Cloud Computing infrastructures that fulfill the three following
conflicting goals: (i) achieving low SLA violation rates; (ii) achieving high re-
source utilization such that the level of allocated but unused resources is as low
as possible; and (iii) achieving (i) and (ii) by as few time- and energy consum-
ing reallocation actions as possible. We will call this problem resource allocation
problem throughout the rest of the paper.

The main contributions of this paper are:

1. partitioning the resource allocation problem for Cloud infrastructures into
several subproblems by proposing escalation levels that structure all possible
reaction possibilities into different subproblems using a hierarchical model.

2. designing, implementing and evaluating a rule-based approach to propose a
solution for one of the subproblems presented in 1), i.e., for virtual machines
in Cloud infrastructures, and comparing it to the CBR approach.

2 Related Work

Concerning related work, we have determined two different ways to compare
our work with other achievements in this area. Whereas the first level compares
other works dealing with SLA enactment and resource efficiency, the second one
considers the area of knowledge management.

At first, considerable work on optimizing resource usage while keeping QoS
goals has been conducted. One general main difference to our approach consists
of the fact that related work examines either only certain subsystems of large-
scale distributed systems, as [8] the performance of memory systems, or constrain
themselves to one or two specific SLA parameters. Whereas Petrucci et al. [14] or
Bichler et al. [4] consider one general resource constraint, Khanna et al. [2] only
investigate response time and throughput, and Kalyvianaki [6] CPU usage. [5,17]
examine specific use cases of web servers deployed in Cloud-like environments
by investigating horizontal scaling of servers. The Sandpiper framework [18],
which offers black-box and gray-box resource management for VMs, provides a
quite similar approach to ours. Contrary to our project, though, Sandpiper plans
reactions just after violations have occurred. Also the VCONF model by Rao

Enacting SLAs in Clouds Using Rules 457

et al. [15] has similar goals as presented in Section 1, but depends on specific
parameters, can only execute one action per iteration and neglects the energy
consumption of executed actions. Other papers focus on different escalation levels
(as described in Section 3). [19,12] focus on VM migration and [11] on turning on
and off physical machines, whereas our paper focuses on VM re-configuration.

Secondly, there has been work on KM of SLAs, especially rule-based systems.
Paschke et al. [13] look into a rule based approach in combination with the logical
formalism ContractLog. It specifies rules to trigger after a violation has occurred,
e.g., it obliges the provider to pay some penalty, but it does not deal with avoid-
ance of SLA violations. Others inspected the use of ontologies as knowledge
bases (KBs) only at a conceptual level. Koumoutsos et al. [9] view the system
in four layers (i.e., business, system, network and device) and break down the
SLA into relevant information for each layer, but give no implementation details.
Bahati et al. [3] also use policies, i.e., rules, to achieve autonomic management.
They provide a system architecture including a KB and a learning component,
and divide all possible states of the system into so called regions, which they
assign a certain benefit for being in this region. A bad region would be, e.g.,
response time > 500 (too slow), fair region response time < 100 (too fast, con-
suming unnecessary resources) and a good region 100 ≤ response time ≤ 500.
The actions are not structured, but are mixed together into a single rule, which
makes the rules very hard to manage and to determine a salience concept be-
hind them. However, we share the idea of defining “over-utilized”, “neutral” and
“under-utilized” regions. Our KM system allows to choose any arbitrary number
of resource parameters that can be adjusted on a VM. Moreover, our paper pro-
vides a more wholesome approach than related work and integrates the different
action levels that work has been carried out on.

3 Escalation Levels

This section presents a methodology of dividing the resource allocation problem
into smaller subproblems using a hierarchical approach. It demonstrates which
actions can be executed in what level to achieve SLA adherence and efficient
resource allocation for Cloud infrastructures. We call these levels escalation levels
and present them in Table 1. The idea is that every problem that occurs should
be solved on the lowest escalation level. Only if this is not possible, the problem
is tried to be solved on the next level, and again, if this fails, on the next one,
and so on. The levels are ordered in a way such that lower levels offer faster and
more local solutions than higher ones. The first escalation level (“change VM
configuration”) works locally on a PM and tries to change the amount of storage
or memory, e.g., that is allocated to the VM from the PM resources. Then,
migrating applications (escalation level 2) is more light-weight than migrating
VMs and turning PMs on/off (escalation levels 3 and 4). For all three escalation
levels already the whole system state has to be taken into account to find an
optimal solution. The problem stemming from escalation level 3 alone can be
formulated into a Binary integer problem (BIP), which is known to be NP-
complete [7]. The proof is out of scope for this paper, but a similar approach can

458 M. Maurer, I. Brandic, and R. Sakellariou

Table 1. Escalation levels

1. Change VM configuration.
2. Migrate applications from one VM to another.
3. Migrate one VM from one PM to another or create new VM on appropriate PM.
4. Turn on / off PM.
5. Outsource to other Cloud provider.

be seen in [14]. The last escalation level has least locality and greatest complexity,
since the capacity of other Cloud infrastructures have to be taken into account
too, and negotiations have to be started with them as well.

Also the rule-based approach benefits from this hierarchical action level model,
because it provides a salience concept for contradicting rules. Without this con-
cept it would be troublesome to determine which of the actions, e.g., “Power on
additional PM with extra-storage and migrate VM to this PM”, “Increase stor-
age for VM by 10%” or “Migrate application to another VM with more storage”
should be executed, if a certain threshold for allocated storage has been ex-
ceeded. The proposed rule-based approach will present a solution for escalation
level 1.

Figure 1 visualizes the escalation levels from Table 1 in the context of Infras-
tructure as a Service (IaaS) before and after actions are executed. Figure 1(a)
shows applications App1 and App2 deployed on VM1 that is itself deployed on
PM1, whereas App3 runs on VM2 running on PM2. Figure 1(b) shows exam-
ple actions for all five escalation levels. The legend numbers correspond to the
respective numbering of the escalation levels.

– Escalation level 1 : At first, the autonomic manager tries to change VM
configuration. Actions 1) show VM1 being up-sized and VM2 being down-
sized.

– Escalation level 2 : If the attempt to increase a certain resource for a VM in
escalation level 1 fails, because some resource cannot be increased anymore
due to the constraints of the PM hosting the VM, in level 2 the autonomic
manager tries to migrate the application to another larger VM that fulfills
the required specifications from level 1. So if, e.g., provided storage needs
to be increased from 500 to 800GB, but only 200 GB are available on the
respective VM, then the application has to be migrated to a VM that has
at least the same resources as the current one plus the remaining 100GB of
storage. Action 2) shows the re-deployment of App2 to VM2. Due to possi-
ble confinements of some applications to certain VMs, e.g., a user deployed
several applications that need to work together on one VM, this escalation
might be skipped in some scenarios.

– Escalation level 3 : If there is no appropriate VM available in level 2, in level
3 the autonomic manager tries to create a new VM on an appropriate PM
or migrate the VM to a PM that has enough available resources. Action 3)
shows the re-deployment of VM2 to PM1.

Enacting SLAs in Clouds Using Rules 459

– Escalation level 4 : Again, if there is no appropriate PM available in level
3, the autonomic manager suggests turning on a new PM (or turning it off
if the last VM was emigrated from this PM) in level 4. Action 4) shows
powering on a new PM (PM3).

– Escalation level 5 : Finally, the last escalation level 5 tries to outsource the
application to another Cloud provider as explained, e.g., in the Reservoir
project [16]. Action 5) outsources App3 to another Cloud provider.

(a) Before action
execution

(b) After action execution

Fig. 1. Actions used in 5 escalation levels: before
and after action execution

Fig. 2. Example behavior
of actions at time inter-
vals t1-t6

4 Rule-Based Approach for VM Level

This section describes the rule-based approach for escalation level 1.

4.1 Prerequisites

For resource management, we need to define how the measured, provided and
agreed values interrelate, and what an SLA violation actually is [10]. The mea-
sured value (1) represents the amount of a specific resource that is currently
used by the customer. The amount of allocated (2) resource determines to what
extent a specific resource can be used by the customer, i.e., how much of the
resource is allocated to the VM hosting the application. The agreed value (3)
corresponds to the Service Level Objective (SLO) agreed in the SLA. An SLA
violation occurs, if less is provided (2) than the customer utilizes (or wants to
utilize) (1) with respect to the limits set in the SLA (3).

Dealing with SLA-bound resource management, where resource usage is paid
for on a “pay-as-you-go” basis with SLOs that guarantee a minimum capacity
of these resources as described above, raises the question, whether the Cloud
provider should allow the consumer to use more resources than agreed. We will
refer to this behavior as over-consumption. Since the consumer will pay for ev-
ery additional resource, it should be in the Cloud provider’s interest to allow
over-consumption as long as this behavior does not endanger the SLAs of other
consumers. Thus, Cloud providers should not allow over-consumption when the

460 M. Maurer, I. Brandic, and R. Sakellariou

Table 2. Resource policy modes

green Plenty of resources left. Over-consumption allowed.
green-orange Heavy over-consumption is forbidden. All applications that consume more than τ%

(threshold to be specified) of the agreed resource SLO are restrained to τ/2% over-
consumption

orange Resource is becoming scarce, but SLA demand can be fulfilled if no over-
consumption takes place. Thus, over-provisioning is forbidden.

orange-red Over-provisioning forbidden. Initiate outsourcing of some applications.
red Over-provisioning forbidden. SLA resource requirements of all consumers cannot be

fulfilled. If possible, a specific choice of applications is outsourced. If not enough,
applications with higher reputation points or penalties are given priority over appli-
cations with lower reputation points / penalties. SLAs of latter ones are deliberately
broken to ensure SLAs of former ones.

resulting penalties they have to pay are higher than the expected revenue from
over-consumption. To tackle this problem, we introduce five policy modes for
every resource that describe the interaction of the five escalation levels. As can
be seen in Table 2 the policy modes are green, green-orange, orange, orange-red
and red. They range from low utilization of the system with lots of free resources
left (policy mode green) over a scarce resource situation (policy mode orange)
to an extreme tight resource situation (policy mode red), where it is impossible
to fulfill all SLAs to its full extent and decisions have to be made which SLAs
to deliberately break and which applications to outsource.

4.2 Design and Implementation

In order to know whether a resource r is in danger of under-provisioning or
already is under-provisioned, or whether it is over-provisioned, we calculate the
current utilization utr = user

prr × 100, where user and prr signify how much of a
resource r was used and provided, respectively, and divide the percentage range
into three regions by using the two “threat thresholds” TT r

low and TT r
high:

– Region −1: Danger of under-provisioning, or under-provisioning (> TT r
high)

– Region 0: Well provisioned (≤ TT r
high and ≥ TT r

low)
– Region +1: Over-Provisioning (< TT r

low)

The idea of this rule-based design is that the ideal value that we call target
value tv(r) for utilization of a resource r is exactly in the center of region 0.
So, if the utilization value after some measurement leaves this region by using
more (Region -1) or less resources (Region +1), then we reset the utilization
to the target value, i.e., we increase or decrease allocated resources so that the
utilization is again at

tv(r) =
TT r

low + TT r
high

2
%.

As long as the utilization value stays in region 0, no action will be executed.
E.g., for r = storage, TT r

low = 60%, and TT r
high = 80%, the target value would

be tv(r) = 70%. Figure 2 shows the regions and measurements (expressed as
utilization of a certain resource) at time steps t1, t2, . . . , t6. At t1 the utilization

Enacting SLAs in Clouds Using Rules 461

of the resource is in Region −1, because it is in danger of a violation. Thus, the
KB recommends to increase the resource such that at the next iteration t2 the
utilization is at the center of Region 0, which equals the target value. At time
steps t3 and t4 utilization stays in the center region and consequently, no action
is required. At t5, the resource is under-utilized and so the KB recommends
the decrease of the resource to tv(r), which is attained at t6. Additionally, if
over-provisioning is allowed in the current policy mode, then the adjustment
will always be executed as described regardless of what limit was agreed in the
SLA. On the other hand, if over-provisioning is not allowed in the current policy
mode, then the rule will allocate at most as much as agreed in the SLA (SLOr).

The concept of a rule increasing resource r is depicted in Figure 3. The rule
executes if the current utilization utr and the predicted utilization utrpredicted of
the next iteration (cf. next paragraph) both exceed TT r

high (line 2). Depending
on what policy level is active the rule either sets the provided resource prr to the
target value tv(r) for policy levels green and green-orange (line 3) or to at most
what was agreed in the SLA (SLOr) plus a certain percentage ε to account for
rounding errors when calculating the target value in policy levels orange, orange-
red and red (line 5). A similar rule scheme for decreasing a resource can be seen
in Figure 4. The main difference is that it does not distinguish between policy
modes and that it sets the provisioned resource to at least a minimum value
minPrr, which may be 0, that is needed to keep the application alive (line 4).
The rule is executed if the current utilization utr and the predicted utilization
utrpredicted of the next iteration both lie below TT r

low (line 2).
A large enough span between the thresholds TT r

low and TT r
high helps to prevent

oscillations of repeatedly increasing and decreasing the same resource. However,
to further reduce the risk of oscillations, we suggest to calculate a prediction for
the next value based on the latest measurements. Thus, an action is only invoked
when the current AND the predicted measurement exceed the respective TT.
So, especially when only one value exceeds the TT, no action is executed.

1 IF
2 utr > TT r

high AND utr
predicted > TT r

high

3 THEN
4 Set prr to user

tv(r) for policy modes green,
green-orange.
5 Set prr to min(user

tv(r) , SLOr∗(1+ε/100))
for policy modes orange, orange-red, red.

Fig. 3. Rule scheme for increasing a re-
source

1 IF
2 utr < TT r

low AND utr
predicted <

TT r
low

3 THEN
4 Set prr to max(user

tv(r) , minPrr).

Fig. 4. Rule scheme for decreasing a re-
source

The rules have been implemented using the Java rule engine Drools [1]. The
Drools engine sets up a knowledge session consisting of different rules and a
working memory. Rules get activated when specific elements are inserted into
the working memory such that the conditional “when” part evaluates to true.
Activated rules are then triggered by the simulation engine. In our case, the sim-
ulation engine inserts measurements and SLAs of applications into the working

462 M. Maurer, I. Brandic, and R. Sakellariou

memory. Different policy modes will load slightly modified rules into the Drools
engine and thus achieve a high adaptability of the KM system reacting to the
general performance of the Cloud infrastructure. As opposed to the CBR based
approach in [10], the rule-based approach is able to fire more than one action
at the same iteration, which inherently increases the flexibility of the system.
Without loss of generality we can assume that one application runs on one VM
(several applications’ SLAs can be aggregated to form one VM SLA) and we as-
sume the more interesting case of policy modes orange, orange-red or red, where
over-provisioning is not allowed.

5 Evaluation

In this section we evaluate the quality of the proposed rule-based approach
measured by a utility function, as well as its time performance and scalability.

5.1 Utility-Driven Evaluation

TTlow TThigh Rules T

Fig. 5. Simulation engine evaluating a rule-
based knowledge management system

We evaluated the rule-based approach
for escalation level 1 with the simu-
lation engine described in [10]. This
simulation engine simulates measure-
ments of SLA parameters for an arbi-
trary number of VMs, forwards them
to the KB, asks the KB for appro-
priate actions, and simulates the ex-
ecution of these actions; thus it tra-
verses the complete MAPE cycle in
one iteration as depicted in Figure 5.
As resources for IaaS one can use all
parameters that can be adapted on a

VM. For the evaluation we chose to take the following parameters and SLOs:
storage ≥ 1000GB, incoming bandwidth ≥ 20 Mbit/s, outgoing bandwidth ≥ 50
Mbit/s, memory ≥ 512 MB, and CPU power ≥ 100 MIPS (Million Instructions
Per Second).

The simulation engine keeps track of the SLA of every VM, the violations
thereof, resource utilization and costs of action execution. All evaluations for
this subsection are executed with 100 iterations and 500 applications. We in-
vestigate low, middle and high values for TT r

low and TT r
high, where TT r

low ∈
{30%, 50%, 70%} and TT r

high ∈ {60%, 75%, 90%} for all resources stated above.
We combine the TTs to form eight different scenarios as depicted in Table 3. The
workload follows an (increasing or decreasing) trend for an a-priori unknown pe-
riod of time and different for every resource. As the intensity of the trend varies
for every iteration, the simulation comprises both, slow developments and rapid
changes, and thus simulates workload in a quite general way.

To be able to compare the utility of the individual threshold pairs, we define a
generic cost function that maps SLA violations, resource wastage and the costs of

Enacting SLAs in Clouds Using Rules 463

Table 3. 8 Simulations Scenarios for TTlow and TThigh

Scenarios
1 2 3 4 5 6 7 8

TTlow 30% 30% 30% 50% 50% 50% 70% 70%
TThigh 60% 75% 90% 60% 75% 90% 75% 90%

executed actions into a monetary unit, which we want to call Cloud EUR. First,
we define a penalty function pr(p) : [0, 100] → R+ that defines the relationship
between the percentage of violations p (as opposed to all possible violations) and
the penalty for a violation of resource r. Second, we define a function wastage
wr(w) : [0, 100] → R+ that relates the percentage of unused resources w to the
energy in terms of money that these resources unnecessarily consume. Third,
we define a cost function ar(a) : [0, 100] → R+ from the percentage of executed
actions a (as opposed to all possible actions that could have been executed) to
the energy and time costs in terms of money. The total cost c is then defined as

c(p, w, c) =
∑

r

pr(p) + wr(w) + ar(a). (1)

We assume functions pr, wr and ar for this evaluation with pr(p) = 100p,
wr(w) = 5w, and ar(a) = a for all r. The intention behind choosing these
functions is (i) to impose very strict fines in order to proclaim SLA adherence as
top priority, (ii) to weigh resource wastage a little more than the cost of actions.

In Figure 6 we compare the outcome of the rule-based approach evaluating
the aforementioned eight scenarios. From Figure 6(a) we see that in terms of
SLA violations Scenario 1 achieves the best result, where only 0.0908% of all
possible violations occur, and the worst result with Scenario 8, with a still very
low violation rate of 1.2040%. In general, the higher the values are for TThigh,
the worse is the outcome. The best result achieved with CBR was at 7.5%.

Figure 6(b) shows resource utilization. We see that the combination of high
TTlow and high TThigh (Scenario 8) gives the best utilization (83.98%), whereas
low values for TTlow and TThigh lead to the worst utilization (62.03% in Scenario
1). Still, compared to CBR which scored a maximum of 80.36% and a minimum
of 51.81%, the rule-based approach generally achieves better results. Also, when
comparing resource allocation efficiency (RAE), which is defined as

RAE =
u

v + 1
, (2)

where u is the average utilization over all resources and v is the number of
violations, the rule-based approach achieves a maximum of 795.9 and a minimum
of 69.8 (see Figure 6 (e)), whereas CBR achieves 10.0 at most.

The percentage of all executed actions as compared to all possible actions that
could have been executed is shown in Figure 6(c). One observes that the greater
the span between TTlow and TThigh is, the less actions have to be executed.
Most actions (60.75%) are executed for Scenario 7 (span of only 5% between TT
values), whereas least actions (5.44%) are executed for Scenario 3 (span of 60%

464 M. Maurer, I. Brandic, and R. Sakellariou

between TT values). CBR almost always recommended exactly one action and
hardly ever (in about 1% of the cases) recommended no action.

Figure 6(d) shows the costs for each scenario using Equation 1. The best
trade-off between the three terms is achieved by Scenario 5 that has medium
values for TT r

low and TT r
high. It has a very low violation rate of 0.0916%, a quite

elaborate utilization of 72.90%, but achieves this with only 19.79% of actions.
Scenario 7 achieves a better violation and utilization rate but at the cost of an
action rate of 60.75%, and consequently has higher costs. The lowest cost value
for CBR is 923 Cloud EUR, the highest 2985 Cloud EUR.

If the utility of the decision decreases for a certain time frame (as cost in-
creases), the KB could determine the cost summand in Equation 1 that con-
tributes most to this decrease. For any resource r, if the term is p, then decrease
TT r

high. If the term is w, then increase TT r
low. Otherwise, if the term is c, then

widen the span of TT r
high and TT r

low, i.e., increase TT r
high and decrease TT r

low.
We plan to investigate this in our future research.

Summarizing, we have seen that in all 8 scenarios the proposed approach
outperforms the CBR approach with respect to the SLA violation rate (up to 82
times better results) and the resource allocation efficiency (up to 80 times better
results). 7 out of 8 scenarios achieved better results in terms of actions needed
and were better than the worst CBR value for utilization, whereas only one
scenario was better than the best CBR utilization value. However, accumulating
these results into cost, all rule-based scenarios outperform CBR by a factor of
at least 4 (worst rule-based scenario (236) compared to best CBR result (923)),
which to a large extent is due to the huge number of violations that the rule-
based approach is able to prevent and the high number of actions it can save.

(a) Violations (b) Utilization (c) Actions

(d) Cost (e) Resource allocation effi-
ciency

(f) Average execution time
per VM

Fig. 6. Violations, Utilization, Actions and Utility for Scenarios 1-8, Execution time

Enacting SLAs in Clouds Using Rules 465

5.2 Performance-Driven Evaluation

As far as time performance and scalability is concerned, the performance tests
are very encouraging. We executed 100 iterations from 100 to 3000 VMs. We
performed every test twice and calculated the average execution time as well
as the average time it took for the simulation engine to handle one VM. As
shown in Figure 6(f) the execution time per VM stays quite constant for up
to 1500 VMs, and thus average execution time is about linear. For 3000 VMs,
it took 647s/100 = 6.47s for one iteration to treat all VMs. The high time
consumption per VM for 100 VMs in Figure 6(f) is due to the initialization of
the rule knowledge base which takes over-proportionally long for just a small
number of VMs and does not weigh so much for more VMs.

CBR took 240s for 50VMs and 20 iterations. Thus, CBR took 240s/20 = 12s
for one iteration to treat all VMs, which is twice as long as the rule-based
approach takes, which even has 60 times more VMs. However, CBR implements
learning features, what the rule-based currently does not, and could be sped up
by choosing only specific cases to be stored in the KB.

6 Conclusion and Outlook

This paper structured the set of possible actions to govern Cloud infrastructures
into five escalation levels from changing the configuration of virtual machines
over migrating them to other physical machines to outsourcing applications to
other Cloud providers. A use case has been developed together with resource
policy modes that govern the high-level behavior of Cloud infrastructures. We
developed a rule-based knowledge management approach to tackle the first of
the five escalation levels: dynamic adaptation of VM configuration in an energy-
efficient way. We proposed a rule-based approach and showed that it had several
advantages over an approach using Case Based Reasoning (CBR). We tested
the rule-based approach using 8 scenarios that differed in the threat thresholds
employed to mark the limits between “regular performance”, over- and under-
utilization. In almost all scenarios, we gained even better results with the rule-
based approach than with CBR. In the future we want to ameliorate the cost
functions by relating them to real-world measurements of energy consumption
and with it learn and adjust the high and low threat thresholds.

Acknowledgments. The work described in this paper is supported by the
Vienna Science and Technology Fund (WWTF) under grant agreement ICT08-
018 Foundations of Self-Governing ICT Infrastructures (FoSII) and by COST-
Action IC0804 on Energy Efficiency in Large Scale Distributed Systems.

References

1. Drools, http://www.drools.org
2. Application Performance Management in Virtualized Server Environments (2006),

http://dx.doi.org/10.1109/NOMS.2006.1687567

http://www.drools.org
http://dx.doi.org/10.1109/NOMS.2006.1687567

466 M. Maurer, I. Brandic, and R. Sakellariou

3. Bahati, R.M., Bauer, M.A.: Adapting to run-time changes in policies driving auto-
nomic management. In: ICAS 2008: Proceedings of the 4th Int. Conf. on Autonomic
and Autonomous Systems. IEEE Computer Society, Washington, DC, USA (2008)

4. Bichler, M., Setzer, T., Speitkamp, B.: Capacity Planning for Virtualized Servers.
Presented at Workshop on Information Technologies and Systems (WITS), Mil-
waukee, Wisconsin, USA (2006)

5. Dutreilh, X., Rivierre, N., Moreau, A., Malenfant, J., Truck, I.: From data center
resource allocation to control theory and back. In: 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD), 2010, pp. 410–417 (July 2010)

6. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured cpu
resource provisioning for virtualized servers using kalman filters. In: Proceedings of
the 6th International Conference on Autonomic Computing, ICAC 2009, pp. 117–
126. ACM, New York (2009), http://doi.acm.org/10.1145/1555228.1555261

7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations: Proc. of a Symp.
on the Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

8. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance man-
agement for computing systems. Cluster Computing 11(2), 167–181 (2008)

9. Koumoutsos, G., Denazis, S., Thramboulidis, K.: SLA e-negotiations, enforcement
and management in an autonomic environment. In: Modelling Autonomic Com-
munications Environments, pp. 120–125 (2008)

10. Maurer, M., Brandic, I., Sakellariou, R.: Simulating autonomic SLA enactment in
clouds using case based reasoning. In: Di Nitto, E., Yahyapour, R. (eds.) Service-
Wave 2010. LNCS, vol. 6481, pp. 25–36. Springer, Heidelberg (2010)

11. Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via
energy aware allocation policies. In: CLOUD 2010, pp. 131–138 (2010)

12. Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., Pendarakis, D.: Efficient
resource provisioning in compute clouds via VM multiplexing. In: Proceeding of
the 7th International Conference on Autonomic Computing, ICAC 2010, pp. 11–20.
ACM, New York (2010), http://doi.acm.org/10.1145/1809049.1809052

13. Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decision Support Systems 46(1), 187–205 (2008)

14. Petrucci, V., Loques, O., Mossé, D.: A dynamic optimization model for power and
performance management of virtualized clusters. In: e-Energy 2010, pp. 225–233.
ACM, New York (2010)

15. Rao, J., Bu, X., Xu, C.-Z., Wang, L., Yin, G.: Vconf: a reinforcement learning ap-
proach to virtual machines auto-configuration. In: ICAC 2009, pp. 137–146. ACM,
New York (2009), http://doi.acm.org/10.1145/1555228.1555263

16. Rochwerger, B., et al.: The RESERVOIR model and architecture for open feder-
ated cloud computing. IBM Journal of Research and Development 53(4) (2009),
http://www.research.ibm.com/journal/rd/534/rochwerger.pdf

17. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning
for non-stationary data center workloads. In: ICAC 2010, pp. 21–30. ACM, New
York (2010), http://doi.acm.org/10.1145/1809049.1809053

18. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: Black-box and
gray-box resource management for virtual machines. Computer Networks 53(17),
2923–2938 (2009)

19. Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S.,
Coady, Y.: Dynamic resource allocation in computing clouds using distributed
multiple criteria decision analysis. In: 2010 IEEE 3rd International Conference on
Cloud Computing (CLOUD), pp. 91–98 (2010)

http://doi.acm.org/10.1145/1555228.1555261
http://doi.acm.org/10.1145/1809049.1809052
http://doi.acm.org/10.1145/1555228.1555263
http://www.research.ibm.com/journal/rd/534/rochwerger.pdf
http://doi.acm.org/10.1145/1809049.1809053

DEVA: Distributed Ensembles of Virtual

Appliances in the Cloud

David Villegas and Seyed Masoud Sadjadi

School of Computing and Information Sciences
Florida International University

Miami, FL, USA
{dvill013,sadjadi}@cs.fiu.edu

Abstract. Low upfront costs, rapid deployment of infrastructure and
flexible management of resources has resulted in the quick adoption of
cloud computing. Nowadays, different types of applications in areas such
as enterprise web, virtual labs and high-performance computing are al-
ready being deployed in private and public clouds. However, one of the
remaining challenges is how to allow users to specify Quality of Service
(QoS) requirements for composite groups of virtual machines and en-
force them effectively across the deployed resources. In this paper, we
propose an Infrastructure as a Service resource manager capable of al-
locating Distributed Ensembles of Virtual Appliances (DEVAs) in the
Cloud. DEVAs are groups of virtual machines and their network connec-
tivities instantiated on heterogeneous shared resources with QoS speci-
fications for individual entities as well as their connections. We discuss
the different stages in their lifecycle: declaration, scheduling, provision-
ing and dynamic management, and show how this approach can be used
to maintain QoS for complex deployments of virtual resources.

1 Introduction

Infrastructure as a Service (IaaS) clouds allow users to instantiate Virtual Ma-
chines (VMs) on demand in remote shared resources for a certain period of
time. One of the currently faced challenges in such systems is allowing users
to specify fine-grained requirements for groups of resources and ensure that the
promised Quality of Service (QoS) is met for them, not only in terms of individ-
ual machines, but also in their aggregate traffic assignment. This requirement
is essential to run certain parallel and distributed workloads such as scientific
applications that rely on low network latencies or high bandwidth, for example.
We propose an IaaS cloud manager to tackle this problem at different levels: user
request definition, scheduling of virtual resources and management of physical
infrastructure to secure the requested service.

In order to maximize resource utilization, providers assign VMs to shared
physical infrastructure. Consequently, mechanisms need to be implemented to
ensure that utilization is fairly distributed according to the requested alloca-
tion. These measures have to consider various aspects such as VM placement,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 467–478, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

468 D. Villegas and S.M. Sadjadi

creation of virtual network links between them that provide the appropriate
bandwidth and latency, and dynamic monitoring and management of the com-
posite allocations. Our proposed work in this paper is an attempt to address the
above mentioned issues in the current IaaS implementations such as Amazon [1],
OpenNebula [14], Eucalyptus [11] or Nimbus [6].

Our approach allows users to submit requests by specifying the requirements
of their application. A cloud resource manager is in charge of brokering for the
appropriate resources and acquiring them for the desired time. This process is
akin to the act of planning for traditional computing equipment, where hard-
ware —architecture, processor speed, memory, switching and routing devices, or
machine interconnections— can be carefully tailored based on costs and capa-
bilities, except with the benefits of the cloud, such as elasticity or pay-per-use.
An additional advantage is that, by defining concrete Service Level Agreements
(SLA), the broker can use heterogeneous resources, reducing the fragmentation
between clouds with different capabilities. This fact can also be employed to
enable federation among providers.

In this paper, we implement a heuristic placement algorithm based on the
assign mapping method used in Emulab [4] for network topologies. Next, we
create a cloud interface on top of OpenNebula which accepts user requests for
Distributed Ensembles of Virtual Appliances (DEVAs) with annotated network
connections and VM descriptions. We also define DEVA agents in charge of en-
forcing QoS, isolating traffic, monitoring resource usage and tunneling packets
between remote resources to seamlessly create layer 2 networks among ensem-
ble members. Finally, we perform experiments to validate our architecture and
demonstrate how QoS can be fulfilled.

The results demonstrate that our system can be used to instantiate groups
of VMs in clouds with user-defined QoS requirements to execute different types
of applications. The DEVA IaaS manager enables fine-grained control over the
allocated resources, allowing users to request the appropriate infrastructure and
providers to apply the right policies so that resources are not allocated in excess.

2 System Overview

Figure 1 depicts the general architecture of the system and the flow of interac-
tions among the different components. Users prepare a request description based
on their application requirements and send it to the Cloud Interface component.
When a request is received, it is parsed and a graph describing the virtual deploy-
ment is generated. The Mapper component tries to find the most appropriate
resources based on pre-defined site policies and the fulfillment of the user spec-
ified requirements. The resulted mapping is then sent to a VM provisioner, for
example, the OpenNebula [14], which is the one that we used in our prototype
implementation. The provisioner transfers the required VM images to the desti-
nation nodes, instantiates them, and notifies the DEVA Agents in every hosting
node. Each agent then applies the appropriate network mechanisms to perform
traffic monitoring, isolation and traffic control. Agents also monitor the state of

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 469

the VMs and notify the central manager. The steps mentioned in the process
are enumerated and discussed in detail next.

Fig. 1. General architecture

We define a Distributed Ensemble of Virtual Appliances (or DEVA) as a group
of virtual appliances, including virtual machines, virtual network devices, and
their connections, altogether with a set of QoS requirements applied either glob-
ally or to individual members of the ensemble. DEVAs can be described using
XML, and sent to a resource manager capable of processing and instantiating
them within a pool of physical resources. Our current implementation supports
single VM requirements such as CPU power and memory, network bandwidth
in megabits per second and latency, as low or high.

3 DEVA Manager

3.1 Mapping of DEVAs

After a DEVA description is sumitted to the DEVA Manager, the Mapper mod-
ule decides where to place each of the individual components. During this pro-
cess, there is a match-making algorithm that selects those resources that can
fulfill the request: this stage considers both individual VMs (i.e., available CPU
and memory), and the whole ensemble (network connectivity, available band-
width, etc.). We assume that physical resources may be heterogeneous, and that
they may belong to different administrative domains. We implement a central-
ized match-making approach, where the main process is on the DEVA manager
front-end node and has all the information about the available resources, even
if they are located on different sites.

As it has already been discussed in the literature, the process of mapping a
virtual topology to a physical one is an NP-hard problem, making comprehensive
algorithms too costly. Instead, we have adopted the assign algorithm [12], used
in emulab [4], for the mapping stage.

Our implementation of assign differs from the original one in various aspects
based on the different targeted use. While this algorithm was originally designed

470 D. Villegas and S.M. Sadjadi

to solve the so called network testbed mapping problem (i.e., how to find an
optimal or close to optimal mapping from a virtual network topology to a phisical
one), we take a more pragmatic approach, focusing on providing the required
connectivity and QoS rather than an exact replica of the topology.

The algorithm considers five types of connection mapping with different scores
that lead to various solutions. These types are:

– Trivial: Both VMs share the same physical host, thus sharing an internal
connection.

– Direct: The hosting machines are directly connected through a cable.
– IntraSwitch: The hosting machines are connected to the same switch.
– InterSwitch: The hosting machines are connected to different switches

which in turn are connected through a cable.
– InterRouter: The hosting machines are in different layer 2 networks, con-

nected by one or more routers in between.

Each of the itemized connection types has a cost in terms of latency and pos-
sible bandwdith, which is accounted for in the mapping process. The algorithm
gives each connection a score, promoting results with better connectivity. The
case of InterRouter connections is special since, when a connection between two
machines that share a logical layer 2 link is mapped to this kind of connection,
tunneling will be necessary at the provisioning stage, which also results in addi-
tional network latency. The algorithm takes this fact in consideration, creating
a policy violation if the mapped connection won’t be able to fulfill the request.
In particular, low latency links from the DEVA request mapped to InterRouter
connection may result in a policy violation.

3.2 DEVAs across Heterogeneous Resources

The previous phase of the process is in charge of finding a good mapping between
the virtual topology and the physical resources. The assign algorithm outputs
a list of pairs of virtual resource to physical resources mappings altogether with
the policies in the links. The next step takes this mapping and realizes it.

We use the OpenNebula virtual infrastructure manager, version 1.4, to provi-
sion and control individual machines. OpenNebula is an IaaS resource manager
that receives requests via a command line interface or remote procedure calls
and instantiates the appropriate VMs, described by a template file. The DEVA
manager receives the output of the infrastructure mapper and translates it to
calls to OpenNebula’s XMLRPC protocol in order to provision and start the
VMs. The process to realize a DEVA involves four steps:

1. Translate the original DEVA request into OpenNebula VM templates
2. Send instantiation requests to OpenNebula, using the mapping results to

indicate the appropriate hosting machines
3. Apply the network configuration at each machine to ensure QoS is met
4. Monitor traffic at each host and aggregate it at the DEVA manager to form

a picture of the overall state

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 471

OpenNebula’s VM template requires some information that is provided in the
original DEVA request, such as the location of the kernel, ramdisk and filesystem
images. Other data is generated by the DEVA manager, such as the VM’s MAC
address, and the rest of information is provided by the mapping algorithm, for
example the destination host. The template is created dynamically and sent to
OpenNebula, which is in charge of transferring the required images from a central
repository to the host machine and starting the VM. Each of the instantiated
VMs is identified by its uniquely generated MAC address, controlled by the
central DEVA manager.

The next step consists of applying the required network configuration at each
host in order to perform traffic monitoring, network isolation, bandwidth man-
agement and intelligent routing between ensemble members. To accomplish this,
each physical machine needs to know the details about the hosted VM’s network
configuration. We use OpenNebula’s hook functionality for this. Hooks are small
scripts that can be configured to run at certain points of OpenNebula’s request
lifecycle, such as when a VM is started, stopped or removed. They are executed
either in the head node or in the hosting machine. Since we need a process to
manage network settings accordingly to the original user’s request at each node,
we have developed a daemon (called a DEVA Agent) that runs at each host that
can perform these actions.

4 DEVA Agents

A DEVA agent runs as a background process that listens for new requests, runs
some pre-defined commands on the host machines, monitors network and VM
behavior, and creates VPN (Virtual Private Network) tunnels between sites.
The DEVA Manager notifies the appropriate agent of a new VM member using
a hook, which sends a command through the agent’s specified port. There is
one designated agent per site that creates VPN tunnels, called a site gateway.
All agents in a site know the address of the site gateway and can send requests
to create new tunnels. There are three supported commands: ADD, DEL and
TUN.

When an agent receives an ADD request, it looks for the virtual network
interface of the specified VM and queries the DEVA manager to retrieve global
information about the DEVA, such as which ensemble members this VM is
connected to and what is the requested network QoS. After this information is
returned, the agent can perform the appropriate actions. In the case that one
or more of the ensemble members share a virtual layer 2 connection with VMs
assigned to machines in different domains, the agent on the host machine of the
newly assigned VM issues an additional call to its corresponding site gateway
asking for a tunnel to be created between the VMs using the TUN command.
Finally, the DEL command is analogous to ADD, which basically removes a VM
from a host.

472 D. Villegas and S.M. Sadjadi

Different DEVAs are completely isolated from one another at network layer 2.
When the DEVA agent receives a request to add a new VM, it creates ebtables 1

rules to block all traffic except those frames originating from or directed to other
ensemble members in the same logical network.

When an ADD request is received by the agent, it retrieves a list of the
VM’s neighbors from the DEVA manager, and then it adds two rules for each
of them: one to allow outgoing traffic from the VM’s unique MAC address to
the neighbor’s one, and the reciprocal rule to accept packets originating from
the neighbor’s address with the local VM as the destination. ARP requests are
special since they do not have a unique target, and therefore an additional rule
is added to allow this kind of packets from and to the network.

In the original DEVA request, each link in the ensemble may be annotated
with a desired latency and bandwidth. The DEVA Agent consults the manager
to retrieve the bandwidth constraints between the local VM and each of its
neighbors. For each pair, the agent creates a queuing class discipline in the
kernel’s traffic control module using the tc command. Next, packets are marked
in the kernel and filtered to use the appropriate class. We use the Hierarchical
Tocken Bucket (HTB) for its versatility and good performance.

Site gateways are in charge of routing frames that are not targetted to the
host’s Local Area Network. Since DEVAs may be distributed among different
networks that are not reachable at layer 2, agents must encapsulate the frames
that are directed to another network and send them. In our architecture, each
site must have a VPN server and allow client connections from other sites. Also,
each site that needs to tunnel traffic has to have at least one site gateway. When
the site gateway agent starts, it runs a VPN client for each of the remote sites
and connects to them. The client is configured to create a special tap device,
in such a way that all traffic send through a tap will be tunneled to a different
site. Then agents that instantiate new VMs retrieve the neighboring VM hosts,
and for each host that is located outside of the VM’s domain, they send a TUN
request to the local site gateway so that packets originating from the VM directed
to the destination neighbor are tunneled through the appropriate channel.

5 Experimental Results

Here we perform different experiments to demonstrate the use of DEVAs as a
viable cloud resource management approach. We have run several measurements
to quantify the performance and scalability of our design and the prototype
implementation. We evaluate the following hypothesis experimentally:

1. The overhead of the DEVA agents is small when executing High-Performance
Computing applications.

2. Traffic is effectively isolated between different deployed DEVAs.
3. User requested QoS is fulfilled through the execution of applications.

1 http://ebtables.sourceforge.net

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 473

For all experiments, we employ our Magellan cluster, which is composed of 8
nodes, each of them with a Pentium 4 CPU at 3 GHz and Hyper Threading and
1 GB of memory. The nodes are connected using a 1 Gbps ethernet link and a
Gigabit switch. The head node of the cluster has two network interfaces, one is
connected to the Internet and the other to the private network where the other
7 nodes are also connected. Each node runs CentOS 5.3 and the Rocks cluster
administration software version 5.2 with the Xen roll, which provides Xen 3.0.3.

5.1 Overhead Measurement

In the first set of experiments, we quantify the overhead imposed by the agents
at each host. The agents control network isolation and bandwidth usage. Each
agent manages incoming and outgoing traffic at the virtual network interface
of each VM by filtering packets based on the source and destination addresses.
In our prototype implementation, since each VM has a unique MAC address,
the agent can control traffic for each pair of ensemble members, which implies
that there are two ebtable rules for each pair to manage incoming and outgoing
traffic.

For this experiment, we execute the Weather Research and Forecast (WRF)
package [8], a simulation software used for atmospheric research, using differ-
ent setups. WRF uses the Message Passing Interface (MPI) middleware 2 for
communication between processes, and can be executed with different number
of processes. We have previously studied the behavior of this program [7], and
demonstrated that its communication model is highly sensitive to network de-
lays. In particular, link latencies of more than 1 ms result in slower executions
when adding more nodes to the computation, making it impossible to perform
blind scaling across Internet.

In this macro-benchmark, we perform executions of WRF for 1, 2, 4 and 8
nodes using the physical cluster running Xen’s Domain 0, a set of OpenNebula
instantiated VMs, and a DEVA instantiated through our manager. Each process
is assigned to a different node. For all runs that involve VMs, we use a base
CentOS 5.3 Xen image with 512 MB of memory and a 2.6.18 Linux kernel. We
installed the required software to compile and run WRF version 2.2.

Figure 2 shows the execution time for the three considered cases, namely the
physical cluster, the VMs instantiated through OpenNebula and the DEVA VMs.
The slowdown between the physical execution and OpenNebula’s execution is
entirely produced by the Xen virtualization overhead. It can be observed that
when the number of nodes grows, so does the amount of communication among
them. This factor is specially significant, since I/O virtualization is known to
have a huge performance hit. The use of more sophisticated network drivers
and newer hardware would certainly alleviate the slowdown, although this is
outside the scope of the current paper. The overhead produced by the filtering
and monitoring by the agents is minimal in this case, averaging to less than 1
percent.

2 http://www.mpi-forum.org

474 D. Villegas and S.M. Sadjadi

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 4 8

S
ec

on
ds

Nodes

Physical
OpenNebula

DEVA

Fig. 2. WRF Execution time

The next experiment performs a micro-benchmark of the same parameters as
the previous one. We investigate the performance impact of adding the necessary
filtering rules to provide isolation between VMs in different networks. For this
experiment, we instantiate two VMs connected to a virtual switch, but we add
rules as if there were a greater number of VMs in the DEVA. Since rules are
directly dependent on the number of connections a VM has to other VMs, this
allows us to measure the slowdown produced by those rules in relation to the
size of the broadcast group.

Figure 3 shows bandwidth, round trip time and number of generated rules in
relation to the VM connections. We use netperf to measure the total available
bandwidth between two physical machines, two VMs instantiated with 0, 10 and
100 connections instantiated through the DEVA manager. Note that the number
of rules depends on how many ensemble members are in the same broadcast
group (i.e., share the same virtual link) and not the size of the DEVA.

0

100

200

300

400

500

600

700

800

900

Physical Xen 10VMs 100VMs

B
an

dw
id

th
 M

bp
s

Experiment

MAC
VLAN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Physical Xen 10VMs 100VMs

R
TT

 m
s

Experiment

MAC
VLAN

0

50

100

150

200

Physical Xen 10VMs 100VMs

nu
m

be
r o

f r
ul

es

Experiment

Rules
VLAN

Fig. 3. Overhead introduced by filtering rules

From the results, we can see that the impact of adding more VMs is increas-
ingly high, specially in terms of total bandwidth. Although 10 connections still
has a tolerable overhead of 6.2% over the zero-connection case, adding more
VMs results in a great overhead due to the number of filtering rules that need
to be added.

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 475

The approach of assigning unique MAC addresses to control network isolation
is therefore not scalable for large groups of ensemble members. To address this
problem, we employ VLANs to identify which virtual network each packet be-
longs to. VLANs are defined by adding 4 additional bytes to each datagram at
the source interface. To implement this method, we modified the DEVA manager
to assign a unique id to each broadcast group. The downside of this solution is
that VLANs need to be supported by the physical switch, while the individual
MAC filtering is network agnostic.

5.2 Isolation and QoS Conservation

Isolation is also demonstrated in the provided QoS. Traffic from one DEVA
should not impact bandwidth and latency allocated by the manager to another
one. The only exception to this is when best effort links are requested, in which
case no guarantee is made by the system.

In the next experiment, we test the effects of multiple DEVAs running in our
Magellan cluster. First we execute two applications that share the same physical
resources, and we constrain the allocated bandwidth to ensure each of them has
the requested QoS. We compare it to the same case when allocating the VMs
individually through the IaaS manager, OpenNebula.

For this experiment, we choose two applications with different behaviors: first,
we create HTTP traffic between two VMs, one of them with the Apache Web
server version 2.2.3, and the other with the apache benchmark tool. Next, we
simulate network traffic by transferring files between another pair of VMs. The
two clients share one host, and the two servers are placed in another host.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

re
qu

en
cy

Request response time (ms)

HTTP
HTTP+SSH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

re
qu

en
cy

Request response time (ms)

HTTP
HTTPS+SSH

Fig. 4. HTTP traffic between two VMs with and without network contention. Right
figure uses DEVA traffic control mechanisms to fulfill requested QoS.

Figure 4 shows the cumulative distribution function of the Web server response
time. The left figure shows unmanaged network traffic: while half of the requests
take similar time, the waiting time for the other half increases up to four times
with the additional network load. In the right figure, two DEVAs are requested
with different requirements: the pair of VMs with the HTTP traffic has a 600
Mbps virtual link, while the other two VMs have a virtual link of 40Mbps. It

476 D. Villegas and S.M. Sadjadi

can be seen that the response time when additional traffic is generated remains
similar to the case in which only the HTTP requests take place. As the figure
shows, 80% of requests are completed in the same time, while the top 20%
experience delays up to three times.

5.3 Use of Heterogeneous DEVAs and Resources

Finally, we run an experiment to demonstrate how VMs in a DEVA can be placed
across different administrative domains while QoS is enforced. In this case, we
provision a DEVA with three VMs: two of them are connected among them with
a 160 Mbps virtual link, and the third is connected to the first two with a 16
Mbps link. Next, we reduce the available nodes in the Magellan cluster to two
and add a physical machine from another cluster, Mind, located in a different
campus at FIU. The assign algorithm maps two of the VMs to Magellan and the
third one to Mind, and creates a VPN tunnel among them to provide a virtual
network. We calculate link bandwidth among VMs by using netperf and the
round trip time by averaging 50 pings between the machines. Figure 5 shows
how the virtual ensemble maintains the requested QoS.

BW: 16.06 Mbps
RTT: 1.156 ms

BW: 16.07 Mbps
RTT: 1.172 ms

magellan.cs.fiu.edu mind.eng.fiu.edu

BW: 158 Mbps
RTT: 0.250 ms

192.168.1.1

192.168.1.2

192.168.1.3

Fig. 5. Intersite deployment of a DEVA

6 Related Work

Amazon EC2 [1] is perhaps the most prominent example of IaaS public cloud.
Users can request any number of virtual machines to be instantiated in the shared
infrastructure. VM capabilities are defined by the requested instance type, and
price is set accordingly to the time and characteristics of the used VMs. One of
the main shortcomings of EC2 is the lack of QoS assurances for network traffic:
while processor, memory and disk capabilities are well defined, users can’t make
assumptions about the network.

Eucalyptus [11], OpenNebula [14] and Nimbus [6] are IaaS cloud implemen-
tations that have some similarities with EC2. However, these solutions do not
support composite groups of VMs with a defined network QoS in the requests.
Another difference is in the deployment of VMs accross different domains. Open-
Nebula supports interoperation by implementing different protocols such as the

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 477

Open Cloud Computing Interface (OCCI) or by extending the local resources
into public clouds. In our case, we the DEVA manager decides when to create a
tunnel to connect VMs in different sites based on the requested QoS.

Another type of solutions focus on the network virtualization aspect, rather
than in the resource management and providing an interface for users to manage
composite groups of virtual resources. VIOLIN [13], VNET [15], VINE [16] or
IPOP [3] are examples of such systems.

Also, DEVAs have similitudes with virtual clusters such as [9] or [10]. Differ-
ently than in our work, these solutions focus on instantiating the required virtual
resources and providing the appropriate software and network configuration.

Finally, our work has points in common with network testbeds, where many
of the problems of provisioning execution environments to replicate network
topologies have to be solved. Emulab [4] allows users to create network experi-
ments over shared resources by requesting a configuration of virtual hosts and
connections. The main difference from our work and Emulab is that the latter
is principally targeted for repeatable network experiments, while our system is
designed to host virtual environments to run possibly long lasting applications.
Also, since our primary goal is not to replicate the user’s network characteristics,
we can make some optimizations in the requested topologies. In GENI, [2] de-
scribes a similar approach in which ORCA [5] is extended to support additional
networking infrastructure to create multi-site VM deployments via VLAN tags.
Our work is more focused in the placement aspect and QoS fulfillment.

7 Conclusions and Future Work

We have described an approach to instantiate groups of Virtual Machines in
the cloud while fulfilling their composite QoS requirements. Our experiments
indicate that this implementation is viable and can be used to execute different
workloads with specific network and processing requirements. As future work, we
plan to further investigate the dynamic behavior of DEVAs, and how to respond
to varying traffic and resource utilization. The DEVA manager can perform
actions to further control QoS of the sytem by migrating VMs among resources,
or adjusting the allocations according to the global state. Finally, we want to
explore different placement policies among sites to accomplish site-specific and
global goals such as lower power utilization or higher throughput.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grants No. OISE-0730065 and HRD-083309.

References

1. Amazon elastic compute cloud, http://aws.amazon.com/ec2
2. Baldine, I., Xin, Y., Mandal, A., Renci, C.H., Chase, U.-C.J., Marupadi, V.,

Yumerefendi, A., Irwin, D.: Networked cloud orchestration: A geni perspective.
In: 2010 IEEE GLOBECOM Workshops (GC Wkshps), pp. 573–578 (2010)

http://aws.amazon.com/ec2

478 D. Villegas and S.M. Sadjadi

3. Ganguly, A., Agrawal, A., Boykin, P.O., Figueiredo, R.: Ip over p2p: Enabling
self-configuring virtual ip networks for grid computing. In: In Proc. of 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2006), pp. 1–10
(2006)

4. Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb, K.,
Lepreau, J.: Large-scale virtualization in the emulab network testbed. In: USENIX
2008 Annual Technical Conference on Annual Technical Conference, pp. 113–128.
USENIX Association, Berkeley (2008)

5. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing
networked resources with brokered leases. In: Proceedings of the Annual Confer-
ence on USENIX 2006 Annual Technical Conference, p. 18. USENIX Association,
Berkeley (2006)

6. Keahey, K., Foster, I., Freeman, T., Zhang, X., Galron, D.: Virtual workspaces in
the grid. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 421–431. Springer, Heidelberg (2005)

7. Martinez, J.C., Wang, L., Zhao, M., Sadjadi, S.M.: Experimental study of large-
scale computing on virtualized resources. In: Proceedings of the 3rd International
Workshop on Virtualization Technologies in Distributed Computing (VTDC 2009)
of the IEEE/ACM 6th International Conference on Autonomic Computing and
Communications (ICAC 2009), Barcelona, Spain, pp. 35–41 (June 2009)

8. Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W.,
Wang, W.: Reseach and Forecast Model: Software Architecture and Performance.
In: 11th ECMWF Workshop on the Use of High Performance Computing In Me-
teorology, Reading, UK, pp. 156–168 (October 2004)

9. Murphy, M.A., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual
organization clusters. In: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID 2009, pp. 364–371.
IEEE Computer Society, Washington, DC, USA (2009)

10. Nishimura, H., Maruyama, N., Matsuoka, S.: Virtual clusters on the fly - fast,
scalable, and flexible installation. In: IEEE International Symposium on Cluster
Computing and the Grid, pp. 549–556 (2007)

11. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: IEEE
International Symposium on Cluster Computing and the Grid, pp. 124–131 (2009)

12. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Comput. Commun. Rev. 33, 65–81 (2003)

13. Ruth, P., Jiang, X., Xu, D., Goasguen, S.: Virtual distributed environments in a
shared infrastructure. Computer 38, 63–69 (2005)

14. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing 13, 14–22
(2009)

15. Sundararaj, A.I., Dinda, P.A.: Towards virtual networks for virtual machine grid
computing. In: Proceedings of the 3rd Conference on Virtual Machine Research
And Technology Symposium - Volume 3, p. 14. USENIX Association, Berkeley
(2004)

16. Tsugawa, M., Fortes, J.A.B.: A virtual network (vine) architecture for grid com-
puting. In: International Parallel and Distributed Processing Symposium, p. 123
(2006)

Benchmarking Grid Information Systems

Laurence Field1 and Rizos Sakellariou2

1 CERN, Geneva, Switzerland
Laurence.Field@cern.ch

2 The University of Manchester, Manchester, UK
rizos@cs.man.ac.uk

Abstract. Grid information systems play a central role in today’s pro-
duction Grid infrastructures, enabling the discovery of a range of in-
formation about the Grid services that exist in an infrastructure. As
the number of services within these infrastructures continues to grow,
it must be understood whether the current implementations are able to
scale to meet the future requirements. Existing approaches for evaluat-
ing Grid information systems mainly focus on performance metrics and
do not consider the quality of the information itself. This paper pro-
poses a comprehensive benchmarking methodology for the evaluation of
Grid information systems which includes a metric to assess the quality of
the information returned. Using this methodology, two commonly used
Grid information system implementations, Metadata Directory Service
(MDS) and the Berkeley Database Information Index (BDII), are evalu-
ated using data obtained from the Enabling Grids for E-SciencE (EGEE)
production Grid.

1 Introduction

Grid information systems enable users, applications and services to discover
which Grid services exist in a Grid infrastructure along with further information
about their structure and state [2,7]. Information describing each Grid service
originates from the Grid service itself and hence the Grid service, in terms of
Grid computing, is the primary information source. Grid information systems
provide an interface that can be used to resolve queries over these information
sources, which can be numerous and widely distributed geographically. From the
perspective of an information consumer, the information system can be repre-
sented by an abstract interface to which queries can be sent and a query response
is received. How the Grid information system resolves that query, taking into
consideration all the information sources, is an implementation detail for the
specific system. What matters from the users perspective is the overall quality
of the service provided by the interface.

As Grid infrastructures grow, more Grid services and hence information
sources will exist in the infrastructure, which will increase the total volume of in-
formation. In addition, a larger infrastructure also experiences greater utilization
and the amount of queries made to the information system will also increase.
Ensuring that Grid information systems will meet the future requirements in

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 479–490, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

480 L. Field and R. Sakellariou

terms of information volume and query load, is one of the main challenges fac-
ing today’s production Grid infrastructures.

In recent years, a number of Grid information systems have been developed.
Despite their differences [4], there is a great deal of commonality between their
core functionality and deployment scenarios. Grid infrastructure managers need
to compare these different Grid information systems implementations in order
to choose which solution best meets the needs of their infrastructure. This is a
decision that should not be taken lightly. Large scale distributed infrastructures
can exist for many years, during which time it can be too difficult to migrate
between different implementations. A benchmarking methodology for evaluating
and comparing these different implementations would provide valuable insight
for Grid infrastructure managers. Such a methodology should evaluate the Grid
information system in order to understand its scalability limitations. The results
of this evaluation could then be compared with the estimated future requirements
from growth projections of that Grid infrastructure.

Existing literature evaluating Grid information systems [3,9,11,12,13,14,15] fo-
cuses mainly on performance metrics such as response time (that is, how quickly
a user query is answered) or throughput (that is, how many concurrent queries
can be handled over a period of time). However, these metrics alone cannot be
used to assess the overall performance of Grid information systems as they ne-
glect some important aspects such as the nature of the queries (different queries
have different requirements) as well as the quality of the answers delivered by
the Grid information system. In fact, a recent study [5], whose results largely
motivated the present paper, demonstrated that how up-to-date the information
delivered by a Grid information system is may vary significantly across different
types of Grid information; this affects the quality of the answers obtained and
must be considered in any evaluation study.

Taking into account the above, this paper presents a comprehensive bench-
marking methodology to evaluate Grid information systems, which is based on
the assessment of three different components: (i) a set of commonly executed
queries; (ii) query response time; and (iii) quality of information returned. To
the best of our knowledge, this is the first time that such a comprehensive bench-
marking methodology for Grid information systems, which incorporates the use
of a quality metric, is proposed. The proposed benchmarking methodology is
then used to evaluate two different Grid information system implementations;
the Metacomputing Directory Service (MDS) [2] from the Globus project and
the Berkeley Database Information Index (BDII) [6], which is a simplified imple-
mentation of Metadata Directory Service (MDS). The evaluation takes place on
the Enabling Grids for E-science (EGEE) [8] infrastructure, the largest multi-
disciplinary Grid infrastructure in the world.

The paper is outlined as follows. Section 2 gives a critical evaluation of previ-
ous, related work. Section 3 describes in detail the components of the benchmark-
ing methodology and how the metrics included can be measured. The evaluation

Benchmarking Grid Information Systems 481

of the two Grid information systems using the benchmarking methodology pre-
sented is given in Section 4. Finally, some concluding remarks can be found in
Section 5.

2 Related Work

This section reviews work that has been done to evaluate Grid information
systems. As already mentioned, and will be observed next, most of this work
does not assess the quality of the information obtained.

In a frequently cited study [13,14,15], the functional components of three
systems were grouped into similar types and the performance of each compo-
nent type was evaluated against those of their counterparts. The focus was to
evaluate the effect of a large number of users and information sources for each
implementation. In addition to the average query response time, a throughput
metric (average number of queries per second) was also used. Both of these met-
rics were measured for different numbers of concurrent queries and information
sources. However, in this study little attention was given to the data itself. A
single query (return all information for a specific information source) was used
and it was assumed that the response was always correct (i.e., up-to-date, or
current, or fresh). In addition, the information volume used was small (10Kb)
compared with today’s infrastructures.

A study investigating the scalability and analyzing the performance of an
information system [3] addressed some of these deficiencies by using real data
from a large-scale Grid infrastructure. It also investigated how the performance
is affected by the size of the query response, however, again only the average
query response time was used as a metric and again it was assumed that all
responses were correct.

A Grid information benchmark has previously been proposed [9], based on a
set of queries and scenarios, which were used to compare the access language
and platform capabilities for three different database platforms serving Grid in-
formation. Although in total 13 different queries were used, the specific case for
using this set was not made. The databases were populated with synthetic but
realistic information about Grid services, which conformed to the GLUE infor-
mation model [1]. Short synthetic workloads (scenarios) were used to measure
the query response time of concurrent query requests to the repository. The ma-
jor difference with our work is that we include a quality metric and actual results
from a production Grid.

Of particular interest is the study in [12], which, in addition to query re-
sponse time, proposed two further metrics, network overhead and information
freshness, for evaluating Grid information systems. Network overhead is defined
as the number of bytes that a crawler downloads to update the information in
the system. The crawler in this context is a specific implementation detail of this
system and although important, it is not a concern for the user from a quality of
service perspective. Information freshness, on the other hand is of great concern
to the user. Information of the Grid information system is considered fresh (or

482 L. Field and R. Sakellariou

correct), at a given point in time, if it is synchronized with its real-world equiv-
alent value at the information source (that is, both values are the same). This
concept of freshness is useful as a quality metric for the information returned,
and it is missing from other studies. However, the proposed calculation of fresh-
ness may not be feasible in a real system as it requires a continuous comparison
of all values.

All of the above studies demonstrate the need to evaluate Grid information
systems. They show that the query response time is a key metric and should be
a core part of any proposed benchmarking method. The studies also show that
the query response time can be affected by four main factors; the total infor-
mation volume, the type of query (both due to the complexity and size of the
response), the number of concurrent queries (query loading) and the implemen-
tation (hardware, software and internal architecture).

Extending the current state-of-art further, our benchmarking methodology
takes into account the above, also including a metric to measure the quality of
the query response.

3 Methodology

The benchmarking methodology will be based on the GLUE 1.3 information
model [1] as this information model is used by the majority of today’s pro-
duction Grid infrastructures [10]. The information model used is a key part of
any benchmarking study as it defines a number of constants of relevance to the
benchmarking method. These include the object types, and hence expected fre-
quency of change for those object types, the composition of the queries and the
size of the query response. If an alternative information model is used, these con-
stants will have to be measured for that information model. Due to the different
constants being used, benchmarking results cannot be compared for different
information models.

The volume of information and the use case for the benchmarking methodol-
ogy will be taken from a large-scale production Grid infrastructure, the infras-
tructure from the Enabling Grids for E-science (EGEE) project. This is a fair
choice to use as a reference for the benchmarking methodology as EGEE oper-
ates the largest multi-disciplinary Grid infrastructure in the world. In addition,
it also makes use of the GLUE 1.3 information model. As of November 2010, the
EGEE Grid information system contained information representing 4102 Grid
services deployed between 375 sites. This information represents an information
size of 102MB in the LDIF format, which corresponds to an average of 272KB
per site or 25KB per service.

Set of queries: In order to consider queries commonly made to the EGEE Grid
information system, we used the information provided in [3] to choose a top-ten
of queries. The type of each query and its frequency as a percentage of the total
number of queries made to the system are shown in Table 1.

We further analyzed the characteristics of each query in terms of the query
response size and the object type that they use. As different objects experience

Benchmarking Grid Information Systems 483

Table 1. The top ten queries made to the EGEE infrastructure as a percentage of the
total number of queries

Query %

Q1 Find the Closest Computing Service to a Storage Service 19.6
Q2 Find the VO’s Storage Area for a Storage Service 17.7
Q3 Find all Storage Services 16.3
Q4 Find a Storage Service 15.5
Q5 Find the Closest Storage Service to a Computing Service 7.8
Q6 Find all Services for a VO 6.8
Q7 Find all Computing Services for a VO 2.1
Q8 Find all Storage Areas for a VO 2.1
Q9 Find all Sub Clusters 1.5
Q10 Find the VO’s Computing Share for a Computing Service 1.4

a different frequency of change [5], the object type being used by each query
may indicate how up-to-date the results of this query are expected to be. These
characteristics are shown in Table 2.

A few observations are interesting to note. All queries have a similar level of
complexity: they either return all the objects of a particular type or filter by
only one predicate. As such, the two key differences between the ten queries are
the size of the query response and the object type that is queried.

The size of the query response allows a classification of the queries into three
groups: (i) queries that return information about one service (denoted by ‘small’
in the table); (ii) queries that return all information for an object type (denoted
by ‘large’ in the table); and (iii) queries that filter information for one object
type (denoted by ‘varying’ in the table). For queries of the latter group the actual
size of the response varies depending on the filter being used. To ensure that the
filter used for a particular query provides a good representation of the query
response size for that query, all possible values for that filter were evaluated and

Table 2. Characteristics of each of the top ten queries

Query Size(bytes) Size(class.) Object Frequency

Q1 2858 small CESEBind Low
Q2 5436 small SA High
Q3 315225 large SE High
Q4 642 small SE High
Q5 1875 small CESEBind Low
Q6 49801 varying Service High
Q7 16607 varying CE High
Q8 12348 varying SA High
Q9 8959015 large SubCluster High
Q10 6009 varying VOView High

484 L. Field and R. Sakellariou

the response size in each case was calculated. The median size was then chosen
(and is shown in the table) to avoid the average being skewed by the few large
query responses. Regarding the object type used by each query, we classify these
objects according to the classification in [5] into high-frequency objects (those
that experience over 1% changes per day) and low-frequency objects (those that
experience less than 1% changes per day).

Query response time: Each query is executed 50 times against the deployed
instance of the Grid information system under evaluation. Each time, the query
response time (QRT) is measured from the start of the client connection to when
all the data for the query response has been received by the client. The average
query response time can be calculated using Equation 1, where n = 50.

QRTaverage =
∑

QRT

n
(1)

Quality of information: For each query, the (α, β)-currency will be used to assess
the quality of information returned. This metric, first investigated in the context
of the Grid in [5], can be used to calculate a probability, α, that a selected object
value stored by the Grid information system is current with respect to a grace
period β. The probability α can be calculated by using Equation 2, where β is
the age of the information and λ is a constant for each object type.

α = e−λβ (2)

The method used to measure β, the age of the information, depends on the
specific Grid information system implementation. If a timestamp is available for
when the information was created, this can be compared to the time when the
query was executed. Alternatively, the time between when the information was
created and when the query was executed will need to be measured. The latter
will be the method that will be used later in our benchmarking comparison
of MDS and BDII. We assume that the information is fresh and the query is
executed as soon as the cache has been updated. Hence, we use the time it takes
to update the cache as the time between when the information was created and
when the query was executed; this provides a value for β.

The constant λ can be calculated using Equation 3, where f is the frequency
of change for a specific object type and N is the number of objects of that type,

λ =
f

N
. (3)

Further information regarding the frequencies of change for the GLUE 1.3 object
types (as well as the number of objects for each type) can be found in [5].

4 Benchmarking MDS and BDII

This section benchmarks two Grid information system implementations, MDS
and BDII, using the benchmarking methodology described in the previous
section.

Benchmarking Grid Information Systems 485

4.1 Background

The MDS query interface hides the details [2,7] of the MDS architecture and
implementation from the client. This interface is provided in MDS by the Grid
Index Information Service (GIIS) using the Grid Resource Information Protocol
(GRIP). The GIIS maintains a dynamic registry for information source loca-
tions populated from registration notifications received via the Grid Resource
Registration Protocol (GRRP). The GIIS parses each incoming GRIP request
and then forwards this request to one or more information sources found in the
registry depending on the type of information requested. To improve perfor-
mance [15], each response may be cached for a configurable period of time by
specifying the cache time-to-live (TTL) per information source as part of the
registration. In the MDS implementation, the standard Lightweight Directory
Access Protocol (LDAP) has been adopted for both the GRRP and GRIP, where
it was used to define the data model, query language and wire protocol, and the
GIIS is implemented as a special purpose back-end for an OpenLDAP server.

The Berkeley Database Information Index (BDII) is a simplified implemen-
tation of the MDS GIIS. The main simplification is the absence of the GRRP
protocol with the dynamic registry functionality being replaced by a static reg-
istry where new information source locations are added manually by a system
administrator. The other simplification is that the BDII maintains its informa-
tion cache using a parallel process rather than caching query results. This serves
to decouple the cache update process from incoming queries; therefore, the in-
formation sources are isolated from the queries and this results in a predictable
behavior of the system.

In both implementations, the information is cached and queries are evaluated
using this cache. The implementations diverge in the method employed to refresh
that cache. Further discussion on the impact of the cache update method can
be found in Section 4.5.

4.2 Experiment Setup

The MDS and BDII software was installed and configured on a physical machine.
The machine used had a 1.80GHz single processor Intel Pentium and 1Gb of
memory. The MDS version used was 2.4, which is based on OpenLDAP 2.0 and
the BDII version used was 5.1.9, which is based on OpenLDAP 2.3. A second
machine was used to run client queries. This machine had four 2.66GHz Intel
Xeon CPUs and 8Gb of memory. The two machines were connected through a
100 Mbps LAN.

The caches were populated with data representing the information from the
EGEE production infrastructure and the cache update processes were disabled.

4.3 Query Response Time

Each query was executed in a single thread that iterated 50 times over the same
query. The average response time for each query type made to the MDS GIIS
and the BDII can be seen in Figure 1.

486 L. Field and R. Sakellariou

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07

Q
ue

ry
 r

es
po

ns
e

tim
e

(s
)

Response size in bytes

The BDII and MDS query response times for the top ten queries.

BDII QRT
MDS QRT

Fig. 1. Average query response time for the top ten queries made to MDS and BDII

These results show that for MDS GIIS the query response time is almost
constant, approximately 2.6s, for all query result sizes, with the exception of the
8.9Mb result size, which causes the query response time to increase to 3.2s. This
suggests that the connection overhead and query execution time are the main
factors that affect the query response time for the MDS GIIS. The query result
size, and hence transfer overhead, only has an impact for large query response
sizes. By contrast, the BDII implementation has much lower query response
times, which seem to be affected by the query response size. This suggests that
the connection overhead and query execution time are much lower for the BDII
implementation and that the transfer overhead is the main factor that affects
the query response time.

4.4 Quality of Information

As already mentioned in Section 3, for the value of β we can use the time it takes
to update the cache. However, we note that the BDII and MDS GIIS differ in the
way the cache is updated. In the MDS GIIS, the cache is updated synchronously
with the query, whereas with the BDII this update is done asynchronously. This
means that for the MDS GIIS, when the cache is stale, the next query will
trigger the update process and subsequent queries will block until this process
has finished. In the BDII a parallel process updates the cache while the cache
is still responding to queries. In either case, the time to update the cache is the
minimal value for β in Equation 2, with the maximum value being defined by
the TTL of the cache in the MDS GIIS or the delay between update cycles in
the BDII. The best-case scenario, which will be measured here, is where these
values are zero.

Benchmarking Grid Information Systems 487

Table 3. The result of calculating (α, β)-currency for the MDS GIIS and BDII

Query Object λ αMDS αBDII

Q1 CESEBind 1.14 × 10−08 1.000 1.000
Q2 SA 5.11 × 10−04 0.279 0.902
Q3 SE 4.85 × 10−04 0.298 0.907
Q4 SE 4.85 × 10−04 0.298 0.907
Q5 CESEBind 1.14 × 10−08 1.000 1.000
Q6 Service 4.86 × 10−04 0.298 0.907
Q7 CE 1.91 × 10−03 0.008 0.681
Q8 SA 5.11 × 10−04 0.279 0.902
Q9 SubCluster 2.28 × 10−06 0.994 1.000
Q10 VOView 1.48 × 10−03 0.025 0.743

To measure the query response time for the MDS GIIS the cache TTL was set
to zero so that every query made to the cache would trigger the update process.
A simple query that returned zero results was used to trigger the update. The
query response time for 10 successive queries was measured and the average
query response time was calculated. The average query response time when the
cache is valid was also calculated. The difference between the query response
time when the cache is valid and invalid gives the cache update time. The cache
update time for the MDS GIIS was 2496s with σ=13.6s.

For the BDII, the update process is instrumented and the update time is
recorded in the log file of the update process. Thus, the average time for 10
updates was calculated. The cache update time for the BDII was 201s with
σ=14.9s.

Using the cache update times for β (that is, βMDS=2496 and βBDII=201) and
the frequencies of change from [5] to calculate λ, the value of α was calculated
using Equation 2 for each query. The results are shown in Table 3. The values
αMDS and αBDII correspond to the probability that the information is current
for the MDS GIIS and BDII, respectively.

4.5 Discussion

Comparing the query response times of the BDII and MDS GIIS implementa-
tions for a single query thread, the result depends on the query used. For Q4, the
query with the smallest response size (642 bytes), the query response times are
0.003s and 2.58s for the BDII and the MDS GIIS, respectively. For Q9, the query
with the largest response size (8.5Mbytes), the query response times are 0.41s
and 3.19s, respectively. The BDII implementation delivers much better perfor-
mance than the MDS GIIS for queries with a small response size, however, this
advantage is reduced for larger response sizes.

As stated previously, looking at the query response time is only one aspect
of the overall quality of service. The quality of the information returned also
needs to be considered. In the case of querying a low frequency object type, for
example Q1 (CESEBind), it is almost certain that all information is current.

488 L. Field and R. Sakellariou

However, for the case of querying a high frequency object type, Q7 (CE), the
probability that the information is current is 0.008 for the MDS GIIS, while,
for the BDII, the probability that the information is current is 0.681. We note
that these figures represent the best-case scenario as they assume the original
information is current. The value for α will degrade further during the period
after the caches have been updated. The length of this period can be defined by
a configuration parameter in both instances. Knowledge of (α, β)-currency can
be used to set an optimal value for this parameter, however, the limit is reached
when the value is set to zero.

Comparing the query response times will show which implementation gives
a faster response, however, it does not indicate whether the query response
time is acceptable. In both implementations, the query response time may be
acceptable for a particular deployment scenario. Including the (α, β)-currency
metric gives additional insight by providing a measurement of the quality of
the information returned. What values are acceptable will be dependent on the
particular deployment scenario, however, we can make some general statements
about the result. Any value less than 1 would result in the client having to include
a probabilistic approach when using this information. Any value less than 0.5
means that the information returned is more likely to be incorrect than it is
likely to be correct. With this interpretation, the MDS GIIS is returning more
incorrect information when querying high frequency object types than correct
information and although the BDII is returning more correct information than
incorrect information when querying high frequency object types, a probabilistic
approach to using that information would be required.

We also note that when the cache in the MDS GIIS is stale, the next query will
trigger the cache to be updated and subsequent queries will be blocked until this
process has finished. Unlike the MDS GIIS, the BDII can be queried while the
cache is being refreshed. To see how the query load affects the cache update time
and hence β, the query Q3 was used to produce a query load using a single thread.
This query load caused the cache update time to increase to 1100s with σ=145
while the average query response time for the query increased from 0.0427s with
σ=0.00114 to 0.0472s with σ=0.0339. Although for low frequency object types, it
is still almost certain that the information in the cache is current (which implies
better quality), the value of α for high frequency object types was reduced from
0.907 to 0.58 (for Q3). Also, the values for Q7 and Q10 were reduced from 0.681
and 0.743 to 0.12 and 0.2, respectively.

As a final remark, we note that a potentially important aspect for Grid infor-
mation system benchmarking, which has not been a central issue in this paper,
but in other similar studies, is how the query response time varies with the num-
ber of parallel queries. In some preliminary results, the query response time for
varying numbers of concurrent queries executed against the MDS GIIS and BDII
was measured. The results showed that for the MDS GIIS doubling the number
of query threads essentially doubles the query response time. However, with only
4 query threads, a few queries time out, that is they exceed the 20s threshold set

Benchmarking Grid Information Systems 489

in the test framework as a protection against queries hanging indefinitely. With
only 6 query threads, up to 35% of the queries time out and with 8 query threads
up to 52% of the queries time out. For the BDII up to 100 parallel query threads
were used, as provisional tests showed that BDII could handle much more than 8
query threads. Even with 100 query threads, many of the queries return a result
in less than 1s. The exception is for queries that return large query responses,
where timeouts were observed with 75 and 100 query threads. Although briefly
mentioned here, the issue of concurrent query execution is highly relevant for
today’s production Grid infrastructures; however, lack of space does not allow
us to cover it in-depth and has been covered in other related studies.

5 Conclusion

This paper investigated the benchmarking of Grid information systems and pro-
posed a comprehensive benchmarking methodology, suggesting that the addition
of (α, β)-currency as a metric for describing the quality of a Grid Information
System would give additional insight. Two Grid information system implementa-
tions that have had production exposure, MDS and the BDII, were then bench-
marked using this methodology. The results showed that in terms of response
time, the BDII implementation gives better performance than the MDS GIIS
for queries with a small response size, 0.003s and 2.58s for the BDII and the
MDS GIIS respectively for Q4 (642 bytes). However, this advantage is reduced
for larger response sizes, giving 0.41s and 3.19s for the BDII and the MDS GIIS,
respectively, for Q9 (8.5Mbytes).

While this comparison showed that the query response time for the BDII
was better (faster) than for the MDS GIIS, a statement could not be made on
whether or not this result was acceptable for deployment in a production Grid
infrastructure. Including the (α, β)-currency metric gave additional insight by
providing a quality measurement for the information returned. For low frequency
object types, it is almost certain that the information in the cache is current.
However, for the high frequency object type in Q7 (CE), the probability that
the information is current is 0.008 and 0.681 for the MDS GIIS and the BDII,
respectively. This suggests that for Q7, the MDS GIIS would mainly be returning
incorrect values and that a probabilistic approach would be required for the
information returned from the BDII.

In conclusion, this paper has presented a comprehensive methodology for
benchmarking Grid information systems. This methodology demonstrated that
including the concept of (α, β)-currency gives additional insight over using the
query response time alone. Our experimental results have also indicated that the
existing Grid information system used in the EGEE production infrastructure is
not particularly suited for high frequency object types. Future work can consider
further improvements of the query set or more exhaustive experimental results.

490 L. Field and R. Sakellariou

References

1. Andreozzi, S., Burke, S., Field, L., Litmaath, M.: GLUE schema version 1.3,
http://glueschema.forge.cnaf.infn.it/Spec/V13

2. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information ser-
vices for distributed resource sharing. In: Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed Computing, San Francisco,
CA, USA, pp. 181–194 (2001)

3. Ehm, F., Field, L., Schulz, M.W.: Scalability and performance analysis of the EGEE
information system. Journal of Physics: Conference Series 119(6), 062029 (2008)

4. Field, L., Andreozzi, S., Konya, B.: Grid information system interoperability: The
need for a common information model. In: Proceedings of the 4th IEEE Interna-
tional Conference on eScience, Indianapolis, IN, USA, pp. 501–507 (2008)

5. Field, L., Sakellariou, R.: How dynamic is the grid? Towards a quality metric for
grid information systems. In: Proceedings of the 11th ACM/IEEE International
Conference on Grid Computing, Brussels, Belgium, pp. 113–120 (2010)

6. Field, L., Schulz, M.W.: Grid deployment experiences: The path to a production
quality LDAP based grid information system. In: Proceedings of the Conference
for Computing in High-Energy and Nuclear Physics, pp. 723–726 (2004)

7. Fitzgerald, S., Foster, I., Kesselman, C., von Laszewski, G., Smith, W., Tuecke,
S.: A directory service for configuring high-performance distributed computations.
In: Proceedings of the 6th IEEE International Symposium on High Performance
Distributed Computing, Portland, OR, USA, pp. 365–375 (1997)

8. Gagliardi, F., Jones, B., Grey, F., Heikkurinen, M.: Building an infrastructure
for scientific grid computing: status and goals of the EGEE project. Philo-
sophical Transactions. Series A, Mathematical, Physical, and Engineering Sci-
ences 363(1833), 1729–1742 (2005)

9. Plale, B., Jacobs, C., Jenson, S., Liu, Y., Moad, C., Parab, R., Vaidya, P.: Un-
derstanding grid resource information management through a synthetic database
benchmark/workload. In: Proceedings of the 4th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid), Chicago, IL, USA, pp. 277–284
(2004)

10. Riedel, M.: Interoperation of world-wide production e-Science infrastructures. Con-
currency and Computation: Practice and Experience 21(8), 961–990 (2009)

11. Smith, W., Waheed, A., Meyers, D., Yan, J.: An evaluation of alternative designs
for a grid information service. In: Proceedings of the 9th IEEE International Sym-
posium on High Performance Distributed Computing, Pittsburgh, PA, USA, pp.
185–192 (2000)

12. Zanikolas, S., Sakellariou, R.: An importance-aware architecture for large-scale grid
information services. Parallel Processing Letters 18(3), 347–370 (2008)

13. Zhang, X., Freschl, J., Schopf, J.: A performance study of monitoring and informa-
tion services for distributed systems. In: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, Seattle, WA, USA, pp.
270–281 (2003)

14. Zhang, X., Freschl, J.L., Schopf, J.M.: Scalability analysis of three monitoring
and information systems: MDS2, R-GMA, and Hawkeye. Journal of Parallel and
Distributed Computing (JPDC) 67(8), 883–902 (2007)

15. Zhang, X., Schopf, J.: Performance analysis of the globus toolkit monitoring and
discovery service, MDS2. In: IEEE International Conference on Performance, Com-
puting, and Communications, Phoenix, AZ, USA, pp. 843–849 (2004)

http://glueschema.forge.cnaf.infn.it/Spec/V13

Green Cloud Framework for Improving Carbon

Efficiency of Clouds

Saurabh Kumar Garg1, Chee Shin Yeo2, and Rajkumar Buyya1

1 Cloud Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{sgarg,raj}@csse.unimelb.edu.au

2 Distributed Computing Group
Computing Science Department

Institute of High Performance Computing, Singapore
yeocs@ihpc.a-star.edu.sg

Abstract. The energy efficiency of ICT has become a major issue with
the growing demand of Cloud Computing. More and more companies
are investing in building large datacenters to host Cloud services. These
datacenters not only consume huge amount of energy but are also very
complex in the infrastructure itself. Many studies have been proposed to
make these datacenter energy efficient using technologies such as virtual-
ization and consolidation. Still, these solutions are mostly cost driven and
thus, do not directly address the critical impact on the environmental
sustainability in terms of CO2 emissions. Hence, in this work, we propose
a user-oriented Cloud architectural framework, i.e. Carbon Aware Green
Cloud Architecture, which addresses this environmental problem from
the overall usage of Cloud Computing resources. We also present a case
study on IaaS providers. Finally, we present future research directions to
enable the wholesome carbon efficiency of Cloud Computing.

Keywords: Cloud Computing, Green IT, Resource Management.

1 Introduction

Cloud Computing provides a highly scalable and cost-effective computing in-
frastructure for running IT applications such as High Performance Computing
(HPC), Web and enterprise applications which require ever-increasing compu-
tational resources. The emergence of Cloud Computing has rapidly changed the
paradigm of ownership-based computing approach to subscription-oriented com-
puting by providing access to scalable infrastructure and services on-demand.
The Cloud users can store, access, and share any amount of information online.
Similarly, small and medium enterprises/organizations do not have to worry
about purchasing, configuring, administering, and maintaining their own com-
puting infrastructure. They can instead focus on improving their core compe-
tencies by exploiting a number of Cloud Computing benefits such as low cost,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 491–502, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

492 S.K. Garg, C.S. Yeo, and R. Buyya

datacenter efficiencies, on-demand computing resources, faster and cheaper soft-
ware development capabilities.

However, Clouds are essentially datacenters hosting application services of-
fered on a subscription basis. They require high energy usage to maintain their
operations. Today, a typical datacenter with 1000 racks needs 10 Megawatt of
power to operate [19]. High energy usage results in high energy cost. Thus, for
a datacenter, the energy cost is a significant component of its operating and up-
front costs. In addition, in April 2007, Gartner estimated that the Information
and Communication Technologies (ICT) industry generates about 2% of the to-
tal global CO2 emissions, which is equal to the aviation industry [8]. According to
a report published by the European Union [1], a decrease in emission volume of
15–30% is required before the year 2020 to keep the global temperature increase
below 2oC. Thus, the rapidly growing energy consumption and CO2 emission of
Cloud infrastructure has become a key environmental concern [20][4].

Hence, energy efficient solutions are required to ensure the environmental
sustainability of this new computing paradigm. Up to now, as datacenters are
the major elements of Cloud Computing resources, most solutions primarily
focus on minimizing the energy consumption of datacenters which indirectly
minimizes the CO2 emission [2]. However, although such solutions can decrease
the energy consumption to a great degree, they do not ensure the minimization
of CO2 emissions as a whole. For example, consider a Cloud datacenter which
uses cheap energy generated by coal. The usage of such a datacenter will only
increase CO2 emissions.

Therefore, we propose a user-oriented Carbon Aware Green Cloud Archi-
tecture for reducing the carbon footprint of Cloud Computing in a wholesome
manner without sacrificing the Quality of Service (QoS) (such as performance,
responsiveness and availability) offered by multiple Cloud providers. Our archi-
tecture is designed such that it provides incentives to both users and providers to
utilize and deliver the most “Green” services respectively. Our evaluation results
in the context of IaaS Clouds show that a large amount of CO2 savings can be
gained using our proposed architecture. The contributions of this paper are:

– a novel Carbon Aware Green Cloud Architecture that aims to reduce CO2

emissions without impacting the service performance; and
– a Carbon Efficient Green Policy (CEGP) for carbon-based scheduling that

can reduce the carbon footprint of Cloud Computing by 25% compared to a
basic Cloud resource management system.

2 Related Work

Most works improve the energy efficiency of Clouds by addressing the issue
within a particular datacenter and not from the usage of Clouds as a whole.
They focus on scheduling and resource management within a single datacen-
ter to reduce the amount of active resources executing the workload [2]. The
consolidation of Virtual Machines (VMs), VM migration, scheduling, demand

Green Cloud Framework for Improving Carbon Efficiency of Clouds 493

projection, heat management, temperature aware allocation, and load balancing
are used as basic techniques for minimizing energy consumption. Virtualization
plays an important role in these techniques due to its several benefits such as
consolidation, live migration and performance isolation.

Some works also propose frameworks to enable the energy efficiency of Clouds
from user and provider perspectives. From the provider perspective, GreenCloud
architecture [16] aims to reduce virtualized datacenter energy consumption by
supporting optimized VM migration and VM placement. Similar work is pre-
sented by Lefevre et al. [14] who propose Green Open Cloud (GOC). GOC is
designed for next generation Cloud datacenter that supports facilities like ad-
vance reservation. GOC aggregates the workload by negotiating with users so
that idle servers can be switch-off longer.

Although these works maximize the energy efficiency of Cloud datacenters,
they do not consider CO2 emission which measures the environmental sustainibil-
ity of Cloud Computing. Even if a Cloud provider has used most energy efficient
solutions for building his datacenter, it is still not assured that Cloud Computing
will be carbon efficient. Greenpeace [10] indicates that current datacenters are
really not environmentally friendly as Cloud providers are more concerned about
reducing energy cost rather than CO2 emission. For instance, Google Datacenter
in Lenoir, NC, USA, uses 50.5% of dirty energy generated by coal. Thus, our pre-
vious work [7] proposes policies to simultaneously maximize the Cloud provider’s
profit and minimize the CO2 emission of its non-virtualized datacenters. Le et
al. [13] consider a similar multi-datacenter scenario, but with a different per-
spective of leveraging green energy by capping the brown energy. In contrast,
here we propose an architectural framework which focuses on reducing the car-
bon footprint of Cloud Computing as a whole. Specifically, we consider all the
elements of Cloud computing including Software, Platform, and Infrastructure
as a Service. We also present a carbon aware policy for IaaS providers.

3 Carbon Aware Green Cloud Architecture

We propose Carbon Aware Green Cloud Architecture (Figure 1), which considers
the goals of both users and providers while curbing the CO2 emission of Clouds.
Its elements include:

1. Third Party: Green Offer Directory and Carbon Emission Directory listing
available green Cloud services and their energy efficiency respectively;

2. User: Green Broker accepting Cloud service requests (i.e. software, platform,
or infrastructure) and selecting the most green Cloud provider; and

3. Provider: Green Middleware enabling the most carbon efficient operation
of Clouds. The components of this middleware vary depending on the Cloud
offerings (i.e. SaaS, PaaS, or IaaS).

494 S.K. Garg, C.S. Yeo, and R. Buyya

Public Cloud B

Private
Cloud

End User

Carbon Emission
Directory

Public Cloud A

1) Request
a Cloud
service

4) Allocate
service

5) Request
service
allocation

3) Request
energy
efficiency
information

Green Offer
Directory

2) Request
any ‘Green
Offer’

Routers Internet

Green Broker

Fig. 1. Carbon Aware Green Cloud Architecture

3.1 Third Party: Green Offer Directory and Carbon Emission
Directory

We propose two new elements, i.e. Green Offer Directory and Carbon Emission
Directory, which are essential to enforce the green usage of Cloud Computing.
Governments have already introduced energy ratings for datacenters and var-
ious laws to cap the energy usage of these datacenters [12][22]. There is also
increasing awareness on the impact of greenhouse gases on climate change [10].
Therefore, users will likely prefer using Cloud services of providers which ensure
the minimum carbon footprint. Cloud providers can also use these directories as
an advertising tool to attract more users. For instance, Google has released the
energy efficiency of its datacenters [17]. Hence, the introduction of such directo-
ries is practical in the current context of Cloud Computing.

Cloud providers register their services in the form of ‘Green Offers’ to a Green
Offer Directory which is accessed by Green Broker. These offers consist of the
type of service provided, pricing, and time when it can be accessed for the least
CO2 emission. The Carbon Emission Directory maintains data related to the
energy efficiency of Cloud services, which include the Power Usage Effectiveness
(PUE) and cooling efficiency of Cloud datacenters which are providing the ser-
vice, network cost, and CO2 emission rate of electricity. Hence, Green Broker
can get the current status of energy parameters for using various Cloud services
from Carbon Emission Directory.

Green Cloud Framework for Improving Carbon Efficiency of Clouds 495

Cloud Programming Environment
and Tools: Green Profiler, Power
Capping, Green Compiler, Workflow
Cloud Hosting Platforms: Admission
Control, Pricing (Green Offers), SLA
Management, Monitoring, Green
Resource Allocation

Cloud Physical Resources: Storage,
Virtualized Clusters, Servers, Networks,
Energy and Temperature Sensors,
Demand Prediction

Power Capping, Green Software
Services such as energy-efficient
scientific, social networking, gaming
applications

User
Applications

User and
Infrastructure
level Platform

C

Infrastructure

Cloud Econom
y

Ia
aS

Sa
aS

Sa
aS

Ia
aS

Pa
aS

Green Broker

User

Cloud Request Services

QoS
Application

Profiling
Cloud
Offers

CO2 Analysis Services
Cost

Calculator
CO2 Emission

Calculator

Green
Information

System

Brokering Services such as
scheduling, monitoring

Green
Policies

Cloud
Leasing

Scheduler

Public Cloud

Public Cloud Services

n Br

Green SaaS

Green PaaS

Green IaaS

Private Cloud

Fig. 2. (a) Green Broker and (b) Green Middleware components for each Cloud service
(SaaS, PaaS, and IaaS)

3.2 User: Green Broker

Green Broker (Figure 2) has similar responsibility as a typical Cloud broker, i.e.
to lease Cloud services on behalf of users and schedule their applications. Its first
layer comprises Cloud request services that analyze the requests and their QoS
requirements. Its second layer calculates the cost and carbon footprint of leasing
particular Cloud services based on information about various Cloud offerings and
current CO2 emission factors obtained from Green Offer Directory and Carbon
Emission Directory respectively. With these calculations, Green Policies make
the decisions of leasing Cloud services. If no exact match is found for a request,
alternate ‘Green Offers’ are suggested to users by Cloud Request Services.

The carbon footprint of a user request depends on the type of Cloud service it
requires, i.e. SaaS, PaaS and IaaS, and is computed as the sum of CO2 emission
due to data transfer and service execution at datacenter. SaaS and PaaS requests
use CO2 emission per second (CO2PS) to reflect long term usage, while IaaS
request uses CO2 emission as data transfer is mostly once.

– SaaS and PaaS Request (CO2 emission per second):

CO2PSSaaS/PaaS = (rCO2
dT EdT × adT) + (rCO2 × 1

DCiE
× Eserv) (1)

where rCO2
dT is the CO2 emission rate per joule of energy spent from the

user’s machine to the datacenter, EdT is the per-bit energy consumption

496 S.K. Garg, C.S. Yeo, and R. Buyya

of data transfer, adT is the data bits transferred per second, rCO2 is the
CO2 emission rate where the datacenter is located, DCiE is the power ef-
ficiency of the datacenter defined as the fraction of total power dissipated
that is used for IT resources, and Eserv is the energy spent per second by
the server for executing the user’s request. The total power dissipated by a
Cloud provider is used not only for computers, but also for other purposes,
including power conditioning, HVAC (Heating, Ventilating, and Air Condi-
tioning), lighting, and wiring [9]. Therefore, DCiE is the most appropriate
parameter for selecting Cloud providers.

– IaaS Request (CO2 emission):

CO2IaaS = (rCO2
dT EdT × IOdata) + (rCO2 × 1

DCiE
× Eserv × V time) (2)

where IOdata is the data transferred to run application on VM leased from
Clouds and V time is the time for which VM is active.

3.3 Provider: Green Middleware

To support carbon aware Cloud Computing, a Cloud provider must implement
“Green” conscious middleware at various layers depending on the type of Cloud
service offered (SaaS, PaaS, or IaaS) (Figure 2) as follows:

– SaaS Level: SaaS providers mainly offer software installed in their own
datacenters or resources leased from IaaS providers. Therefore, they require
Power Capping component to limit the usage of software services by each
user. This is especially important for social networking and game applica-
tions where users become completely unaware of their actions on environ-
mental sustainability. SaaS providers can also offer Green Software Services
deployed on carbon efficient datacenters with less replications.

– PaaS Level: PaaS providers in general offer platform services for appli-
cation development and their deployment. Thus, to ensure energy efficient
development of applications, relevant components such as Green Compiler
to compile applications with the minimum carbon footprint and carbon mea-
suring tools for users to monitor the carbon footprint of their applications.
For example, JouleSort [19] is a Green Profiler providing energy efficiency
benchmarks to measure the energy required to perform an external sort.

– IaaS level: IaaS providers play the most crucial role in the success of Green
Cloud Architecture since IaaS not only offers independent infrastructure ser-
vices, but also support other services (SaaS and PaaS) offered by Clouds.
They use the latest technologies for IT and cooling systems to have the most
energy efficient infrastructure. By using virtualization and consolidation, the
energy consumption is further reduced by switching off unutilized servers.
Energy and Temperature Sensors are installed to calculate the current en-
ergy efficiency of each IaaS provider and their datacenters. This information
is advertised regularly by Cloud providers in the Carbon Emission Direc-
tory. Various green scheduling and resource provisioning policies will ensure

Green Cloud Framework for Improving Carbon Efficiency of Clouds 497

minimum energy usage. In addition, IaaS providers can design attractive
‘Green Offers’ and pricing schemes providing incentives for users to use their
services during off-peak or maximum energy efficiency hours.

4 Case Study: IaaS Cloud

To illustrate the effectiveness of our proposed architecture in reducing the energy
and CO2 emissions across the entire Cloud infrastructure in a unified manner, we
present a simple scenario focussed on IaaS. It considers multiple IaaS providers
offering computational resources to run HPC jobs. A user request consists of an
application, its estimated length in time, the deadline to complete execution,
and the number of resources required. Requests are submitted to Green Broker
which interprets and analyzes the service requirements before deciding where to
execute them.

Cloud datacenters have different CO2 emission rates and energy costs based on
their locations. Each datacenter updates this data to Carbon Emission Directory
for facilitating carbon efficient scheduling. For this study, we consider three CO2

emission related parameters: CO2 emission rate (kg/kWh) (rCO2
i), average DCiE

(Ieffi), and VM power efficiency (V Meffi). The VM power efficiency is the
amount of power dissipated by fully active VM running at maximum utilization
level [3]. In Green Offer Directory, IaaS providers specify the maximum number
of VMs that can be initiated at a particular time for achieving the highest energy
efficiency due to the variation in datacenter efficiency with time and load [18]
and power capping technologies used within the datacenter [15].

5 Carbon Efficient Green Policy (CEGP)

We develop Carbon Efficient Green Policy (CEGP) for Green Broker to period-
ically select the Cloud provider with the minimum carbon footprint and initiate
VMs to run the jobs (Algorithm 1). Based on user requests at each schedul-
ing interval, Green Broker obtains information from Carbon Emission Directory
about the current CO2 emission related parameters of providers as described
in Section 4 (Line 2). The QoS requirements of a job j is defined in a tuple
(dj , nj , ej , f

m
j), where dj is the deadline to complete job j, nj is the number of

CPUs required for job execution, and ej is the job execution time when operating
at the CPU frequency fm

j (Line 3).
CEGP then sorts the incoming jobs based on Earliest Deadline First (EDF)

(Line 4), before sorting the Cloud datacenters based on their carbon footprint
(Line 5). CEGP schedule jobs to IaaS Clouds in a greedy manner to reduce
the overall CO2 emission. For IaaS providers, CEGP uses three main factors to
calculate the CO2 emission: CO2 emission rate, DCiE, and CPU power efficiency.
The carbon footprint of an IaaS Cloud i is given by: rCO2

i × 1
Ieffi

× 1
V Meffi

where V Meffi can be calculated by Cloud providers based on the proportion
of resources on a server utilized by the VM using tools such as PowerMeter [3].
If a VM consumes the power equivalent to a processor running at fi frequency

498 S.K. Garg, C.S. Yeo, and R. Buyya

while current time < next schedule time do1
RecvCloudPublish(P);2
//P contains information of Cloud datacenters
RecvJobQoS(Q);3
//Q contains information of Cloud users

Sort jobs in ascending order of deadline;4

Sort datacenters in ascending order of rCO2
i × 1

Ieffi
× 1

V Meffi
;5

foreach job j ∈ RecvJobQoS do6
foreach datacenter i ∈ RecvCloudPublish do7

if isInitiatedVM(i) then8
if MaxIniVMlimitReached(i) then9

Try to schedule the job j on already initiated VMs;10
if job j is missing deadline then11

continue;12

break;13

else14
InitiateVM(i) and schedule job j;15
break;16

Algorithm 1. Carbon Efficient Green Policy (CEGP)

level, then we can use the following power model [5][23] to calculate its power
efficiency: βi + αi(fi)3, where βi is the static power dissipated by the CPU and
αi is the proportionality constant. Therefore, the approximate energy efficiency
of VM is: V Meffi = | fi

βi+αi(fi)3
|. If job j executes at CPU frequency f , then its

CO2 emission will be the minimum when it is allocated to the datacenter with the
minimum CO2 emission rate rCO2

i , maximum DCiE value Ieffi, and maximum
CPU power efficiency V Meffi. CEGP then assigns jobs to VMs initiated on
each Cloud datacenter according to this ordering (Line 6–16).

6 Performance Evaluation and Results

We use the Lawrence Livermore National Laboratory (LLNL) Thunder trace
from Feitelson’s Parallel Workload Archive (PWA) [6] with the highest resource
utilization of 87.6% to ideally model a heavy HPC workload scenario. The trace
contains the submit time, requested number of CPUs, and actual runtime of
jobs. We use a methodology proposed by Irwin et al. [11] to synthetically assign
deadlines through two classes, namely Low Urgency (LU) and High Urgency
(HU). We set LU jobs to have a deadline mean of 12, which is 3 times longer
than HU jobs with a deadline mean of 4. The arrival sequence of jobs from the
HU and LU classes is randomly distributed.

Provider Configuration: We model 8 different IaaS providers with different
configurations as listed in Table 1. Power parameters (i.e. CPU power factors
and frequency level) of the CPUs at different datacenters are derived from Wang
and Lu’s work [23]. Green Broker uses CEGP to schedule jobs periodically at
a scheduling interval of 50 seconds, which is to ensure that Green Broker can
receive at least one job in every scheduling interval. The DCiE value of Cloud

Green Cloud Framework for Improving Carbon Efficiency of Clouds 499

Table 1. Characteristics of Cloud datacenters

Location of Cloud Datacenter CO2 Emission CPU Power Factors CPU Frequency Level
Rate (kg/kWh) a β α fi

New York, USA 0.389 65 7.5 1.8
Pennsylvania, USA 0.574 75 5 1.8
California, USA 0.275 60 60 2.4

Ohio, USA 0.817 75 5.2 2.4
North Carolina, USA 0.563 90 4.5 3.0

Texas, USA 0.664 105 6.5 3.0
France 0.083 90 4.0 3.2

Australia 0.924 105 4.4 3.2

a CO2 emission rates are drived from a US Department of Energy (DOE) document
[21] (Appendix F-Electricity Emission Factors 2007).

datacenters is randomly generated using a uniform distribution between [0.33,
0.80] as indicated in the study conducted by Greenberg et al. [9].

Experimental Scenarios: We compare the carbon efficiency of CEGP with
a performance-based scheduling algorithm (Earliest Start Time (EST)) using
two metrics: average energy consumption and CO2 emissions. EST schedules
jobs to the datacenter where jobs can start as earliest as possible with the least
waiting time. The average energy consumption shows the amount of energy
saved by our green framework using CEGP compared to an existing approach
using EST which just focus on performance, whereas the average CO2 emission
shows its corresponding environmental impact. We examine two experimental
scenarios: 1) comparison of CEGP with EST and 2) effect of relationship between
CO2 emission rate and datacenter power efficiency DCiE. The first scenario
demonstrates how our proposed architecture can achieve higher carbon efficiency.
The second scenario reveals how the relationship between CO2 emission rate and
DCiE can affect the achievement of carbon efficiency. Hence, we consider two
types of relationship between CO2 emission rate and DCiE: 1) datacenter with
the highest CO2 emission rate has the highest DCiE (HH) and 2) datacenter
with the highest CO2 emission rate has the lowest DCiE (HL). We generate 8
DCiE values using uniform distribution between [0.33, 0.80] and assign them to
the 8 datacenters to achieve HH and HL configurations accordingly.

6.1 Comparison of CEGP with Performance-Based Algorithm
(EST)

We compare CEGP with EST for datacenters with HH configuration. The effect
of job urgency on energy consumption and CO2 emission is prominent. As the
percentage of HU jobs with more urgent (shorter) deadlines increases, the energy
consumption (Figure 3(a)) and CO2 emission (Figure 3(b)) also increase due to
more urgent jobs running on datacenters with lower DCiE value and at the
highest CPU frequency to avoid deadline violations.

It is clear that our proposed architecture using CEGP (EDF-CEGP) can
reduce up to 23% of the energy consumption (Figure 3(a)) and 25% of the
CO2 emission (Figure 3(b)) compared to an existing approach using EST (EDF-
EST) across all datacenters. CEGP is also able to complete very similar amount

500 S.K. Garg, C.S. Yeo, and R. Buyya

0

50

100

150

200

250

300

350

400

450

500

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 E
ne

rg
y

Co
ns

um
pt

io
n

(J
ou

le
s/

U
ni

t W
or

kl
oa

d)

% of High Urgency (HU) Jobs

EDF-EST
EDF-CEGP

(a) Energy Consumption

0

50

100

150

200

250

0% 20% 40% 60% 80% 100%

A
ve

ra
ge

 C
O

2
Em

is
si

on
(T

on
ne

s/
U

ni
t W

or
kl

oa
d)

% of High Urgency (HU) Jobs

EDF-EST

EDF-CEGP

(b) CO2 Emission

0

500

1000

1500

2000

2500

0% 20% 40% 60% 80% 100%

W
or

kl
oa

d
M

ill
io

ns

% of High Urgency (HU) Jobs

EDF-EST

EDF-CEGP

(c) Workload Executed

Fig. 3. Comparison of CEGP with performance-based algorithm (EST)

of workload1 as EST (Figure 3(c)), but with much less energy consumption
and CO2 emission. This highlights the importance of considering the DCiE and
CO2 emission related factors in achieving the carbon efficient usage of Cloud
Computing. In particular, CEGP can reduce energy consumption (Figure 3(a))
and CO2 emission (Figure 3(b)) even more when there are more LU jobs with
less urgent (longer) deadline.

6.2 Effect of Relationship between CO2 Emission Rate and
Datacenter Power Efficiency DCiE

This experiment analyzes the impact of different configurations (HH and HL) of
datacenters with respect to CO2 emission rate and datacenter power efficiency
DCiE based on 40% of high urgency jobs.

In both HH and HL configurations, CEGP reduces CO2 emission and energy
consumption between 23% to 25% (Figure 4(a) and 4(b)). Therefore, we infer
that for other configurations, we will also achieve similar carbon efficiency in
Cloud Computing by using CEGP. Moreover, in Figure 4(a), there is a decrease
in energy consumption of all the Cloud datacenters from HH to HL configuration
by using EST, while there is almost no corresponding decrease by using CEGP.

1 workload=
∑

(job execution time × number of required processors).

Green Cloud Framework for Improving Carbon Efficiency of Clouds 501

0

50

100

150

200

250

300

350

400

450

500

HH HL

A
ve

ra
ge

 E
ne

rg
y

Co
ns

um
pt

io
n

(J
ou

le
s/

U
ni

t W
or

kl
oa

d)

Configurations

EDF-EST
EDF-CEGP

(a) Energy Consumption

0

20

40

60

80

100

120

140

160

180

200

HH HL

A
ve

ra
ge

 C
O

2
Em

is
si

on
(T

on
ne

s/
U

ni
t W

or
kl

oa
d)

Configurations

EDF-EST
EDF-CEGP

(b) CO2 Emission

Fig. 4. Effect of relationship between CO2 emission rate and DCiE

This shows that how important is the consideration of global factors such as
DCiE and CO2 emission rate in order to improve the carbon footprint of Cloud
Computing.

7 Conclusion

In this paper, we present a Carbon Aware Green Cloud Architecture to improve
the carbon footprint of Cloud Computing taking into account its global view.
Our architecture is designed such that it provides incentives to both users and
providers to utilize and deliver the most “Green” services respectively. There-
fore, it embeds components such as Green broker from user side to ensure the
execution of their applications with the minimum carbon footprint. Similarly,
from provider side, we propose features for next generation Cloud providers
who will publish the carbon footprint of their services in public directories and
provide ‘Green Offers’ to minimize their overall energy consumption. We also
propose a Carbon Efficient Green Policy (CEGP) for Green broker which sched-
ules user application workload with urgent deadline on Cloud datacenters with
more energy efficiency and low carbon footprint.

Further, the simulation-based evaluation of our architecture is done in multiple
IaaS Cloud provider scenario. We compare two scheduling approaches to prove
how our proposed architecture helps in improving carbon and energy footprint of
Cloud Computing. Performance evaluation results show how our proposed archi-
tecture using a Green Policy CEGP can save up to 23% energy while improving
the carbon footprint by about 25%. Therefore, these promising results show that
by using our architectural framework carbon footprint and energy consumption
of Cloud Computing can be improved.

In the future, we will investigate different ‘Green Policies’ for Green broker
and also how Cloud providers can design various ‘Green Offers’ based on their
internal power efficiency techniques such as VM consolidation and migration.
We will also conduct experiments for our architecture using real Clouds.

502 S.K. Garg, C.S. Yeo, and R. Buyya

References

1. Baer, P.: Exploring the 2020 global emissions mitigation gap (December 2008),
http://www.ippr.org/uploadedFiles/globalclimatenetwork/
Exploring the Mitigation Gap[1].pdf

2. Beloglazov, A., Buyya, R., Lee, Y., Zomaya, A.: A Taxonomy and Survey of Energy-
Efficient Data Centers and Cloud Computing Systems. In: Zelkowitz, M. (ed.)
Advances in Computers. Elsevier, San Francisco (2011)

3. Bohra, A.E.H., Chaudhary, V.: Vmeter: Power modelling for virtualized clouds. In:
Proc. of 24th IEEE IPDPS Workshops, Atlanta, USA (2010)

4. Cameron, K.W.: Trading in Green IT. Computer 43(3), 83–85 (2010)
5. Chen, Y., et al.: Managing server energy and operational costs in hosting centers.

ACM SIGMETRICS Performance Evaluation Review 33(1), 303–314 (2005)
6. Feitelson, D.: Parallel workloads archive (2011),

http://www.cs.huji.ac.il/labs/parallel/workload
7. Garg, S., Yeo, C., Anandasivam, A., Buyya, R.: Environment-conscious scheduling

of HPC applications on distributed cloud-oriented data centers. Journal of Parallel
and Distributed Computing 71(6), 732–749 (2011)

8. Gartner: Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2
Emissions (April 2007), http://www.gartner.com/it/page.jsp?id=503867

9. Greenberg, S., et al.: Best practices for data centers: Results from benchmarking 22
data centers. In: ACEEE Summer Study on Energy Efficiency in Buildings (2006)

10. Greenpeace International: Make IT green: Cloud computing and its contribution
to climate change (2010)

11. Irwin, D., Grit, L., Chase, J.: Balancing risk and reward in a market-based task
service. In: Proc. of 13th IEEE HPDC, Honolulu, USA (2004)

12. Kurp, P.: Green computing. Commun. ACM 51, 11–13 (2008)
13. Le, K., et al.: Managing the cost, energy consumption, and carbon footprint of

internet services. ACM SIGMETRICS Perf. Eval. Review 38(1), 357–358 (2010)
14. Lefèvre, L., Orgerie, A.C.: Designing and evaluating an energy efficient Cloud. The

Journal of Supercomputing 51(3), 352–373 (2010)
15. Lefurgy, C., Wang, X., Ware, M.: Power capping: a prelude to power shifting.

Cluster Computing 11(2), 183–195 (2008)
16. Liu, L., et al.: GreenCloud: a new architecture for green data center. In: Proc. of

6th International Conference on Autonomic Computing, Barcelona, Spain (2009)
17. Miller, R.: Google: Raise Your Data Center Temperature (October 2008),

http://www.datacenterknowledge.com/archives/2008/10/14/
google-raise-your-data-center-temperature

18. Patel, C., et al.: Energy Aware Grid: Global Workload Placement based on Energy
Efficiency. Technical Report HPL-2002-329, HP Labs, Palo Alto (2002)

19. Rivoire, S., Shah, M.A., Ranganathan, P., Kozyrakis, C.: Joulesort: a balanced
energy-efficiency benchmark. In: Proc. of ACM SIGMOD, Beijing, China (2007)

20. Tomlinson, B., Silberman, M.S., White, J.: Can More Efficient IT Be Worse for
the Environment? Computer 44, 87–89 (2011)

21. U.S. DOE: Voluntary Reporting of Greenhouse Gases: Appendix F. Electricity
Emission Factors,
http://www.eia.doe.gov/oiaf/1605/pdf/Appendix

22. U.S. EPA: Report to Congress on Server and Data Center Energy Efficiency, Public
Law 109-431 (August 2007)

23. Wang, L., Lu, Y.: Efficient Power Management of Heterogeneous Soft Real-Time
Clusters. In: Proc. of 29th IEEE RTSS, Barcelona, Spain (2008)

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.gartner.com/it/page.jsp?id=503867
http://www.eia.doe.gov/oiaf/1605/pdf/Appendix

Optimizing Multi-deployment on Clouds by Means of
Self-adaptive Prefetching

Bogdan Nicolae1, Franck Cappello1,2, and Gabriel Antoniu3

1 INRIA Saclay, France
bogdan.nicolae@inria.fr

2 University of Illinois at Urbana Champaign, USA
cappello@illinois.edu

3 INRIA Rennes Bretagne Atlantique, France
gabriel.antoniu@inria.fr

Abstract. With Infrastructure-as-a-Service (IaaS) cloud economics getting in-
creasingly complex and dynamic, resource costs can vary greatly over short peri-
ods of time. Therefore, a critical issue is the ability to deploy, boot and terminate
VMs very quickly, which enables cloud users to exploit elasticity to find the opti-
mal trade-off between the computational needs (number of resources, usage time)
and budget constraints. This paper proposes an adaptive prefetching mechanism
aiming to reduce the time required to simultaneously boot a large number of VM
instances on clouds from the same initial VM image (multi-deployment). Our
proposal does not require any foreknowledge of the exact access pattern. It dy-
namically adapts to it at run time, enabling the slower instances to learn from the
experience of the faster ones. Since all booting instances typically access only a
small part of the virtual image along almost the same pattern, the required data
can be pre-fetched in the background. Large scale experiments under concurrency
on hundreds of nodes show that introducing such a prefetching mechanism can
achieve a speed-up of up to 35% when compared to simple on-demand fetching.

1 Introduction

The Infrastructure-as-a-Service (IaaS) cloud computing model [1,2] is gaining increas-
ing popularity both in industry [3] and academia [4,5]. According to this model, users
do not buy and maintain their own hardware, but rather rent such resources as virtual
machines, paying only for what was consumed by their virtual environments.

One of the common issues in the operation of an IaaS cloud is the need to deploy
and fully boot a large number of VMs on many nodes of a data-center at the same time,
starting from the same initial VM image (or from a small initial set of VM images) that
is customized by the user. This pattern occurs for example when deploying a virtual
cluster or a set of environments that support a distributed application: we refer to it as
the multi-deployment pattern.

Multi-deployments however can incur a significant overhead. Current techniques [6]
broadcast the images to the nodes before starting the VM instances, a process that can
take tens of minutes to hours, not counting the time to boot the operating system it-
self. Such a high overhead can reduce the attractiveness of IaaS offers. Reducing this

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 503–513, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

504 B. Nicolae, F. Cappello, and G. Antoniu

overhead is even more relevant with the recent introduction of spot instances [7] in the
Amazon Elastic Compute Cloud (EC2) [3], where users can bid for idle cloud resources
at lower than regular prices, however with the risk of their virtual machines being ter-
minated at any moment without notice. In such dynamic contexts, deployment times in
the order of tens of minutes are not acceptable.

As VM instances typically access only a small fraction of the VM image throughout
their run-time, one attractive alternative to broadcasting is to fetch only the necessary
parts on-demand. Such a “lazy” transfer scheme is gaining increasing popularity [8],
however it comes at the price of making the boot process longer, as the necessary parts
of the image not available locally need to be fetched remotely from the cloud repository.

In this paper we investigate how to improve on-demand transfer schemes for the
multi-deployment pattern. Our proposal relies on the fact that the hypervisors will gen-
erate highly similar access patterns to the image during the boot process. Under these
circumstances, we exploit small delays between the times when the VM instances ac-
cess the same chunk (due to jitter in execution time) in order to prefetch the chunk
for the slower instances based on the experience of the faster ones. Our approach does
not require any foreknowledge of the access pattern and dynamically adapts to it as
the instances progress in time. A multi-deployment can thus benefit from our approach
even when it is launched for the first time, with subsequent runs fully benefiting from
complete access pattern characterization.

We summarize our contributions as follows:

– We introduce an approach that optimizes the multi-deployment pattern by means of
adaptive prefetching and show how to integrate this approach in IaaS architectures.
(Sections 2.1 and 2.2)

– We propose an implementation of these design principles by enriching the metadata
structures of BlobSeer [9,10], a distributed storage service designed to sustain a
high throughput even under concurrency (Section 2.3).

– We experimentally evaluate the benefits of our approach on the Grid’5000 [11]
testbed by performing multi-deployments on hundreds of nodes (Section 3).

2 Our Approach

In this section we present the design principles behind our proposal, show how to inte-
grate them in cloud architectures and propose a practical implementation.

2.1 Design Principles

Stripe VM images in a distributed repository. In most cloud deployments [3,4,5],
the disks locally attached to the compute nodes are not exploited to their full potential:
they typically serve to cache VM images and provide temporary storage for the running
VM instances. Most of the time, this access pattern utilizes only a small fraction of the
total disk size. Therefore, we propose to aggregate the storage space of the local disks
in a common pool that is used as a distributed VM image repository. This specialized
service stores the images in a striped fashion: VM images are split into small equally-
sized chunks that are evenly distributed among the local disks of the compute nodes.

Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching 505

When the hypervisor running on a compute node needs to read a region of the VM image
that has not been locally cached yet, the corresponding chunks are fetched in parallel
from the remote disks storing them. Under concurrency, this scheme effectively enables
an even distribution of the read workload, which ultimately improves overall throughput.

Record the access pattern and use it to provide prefetching hints to subsequent
remote reads. According to our observations, a multi-deployment generates a read
access pattern to the VM image that exhibits two properties: (1) only a small part of the
VM image is actually accessed during the boot phase (boot-sector, kernel, configuration
files, libraries and daemons, etc.) and (2) read accesses follow a similar pattern on all
VM instances, albeit at slightly different moments in time.

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
of

fs
et

 (
G

B
)

Time (s)

Fig. 1. Accesses to the VM image during a
multi-deployment of 100 VM instances

For example, Figure 1 shows the read
access pattern for a multi-deployment of
100 instances booting a Debian Sid Linux
distribution from a 2 GB large virtual raw
image striped in chunks of 256 KB. The
read access pattern is represented in terms
of what chunks are accessed (disk offset)
as time progresses. A line corresponds to
each chunk and indicates the minimum,
average and maximum time since the be-
ginning of the multi-deployment when the
chunk was accessed by the instances. It
can be noticed that a large part of the disk
remains untouched, with significant jitter
between the times when the same chunk
is accessed.

Based on these observations, we propose to monitor two attributes: the total number
of accesses to a chunk and the average access time since the beginning of the multi-
deployment. These two attributes help establish the order in which chunks are accessed
during the boot phase, with an increasing number of accesses leading to a higher pre-
cision. Both attributes are updated in real time for each chunk individually. Using this
information, the slower instances to access a chunk can “learn from the experience”
of the faster ones: they can query the metadata in order to predict what chunks will
probably follow and prefetch them in the background. As shown on Figure 1, gaps be-
tween periods of I/O activity and I/O inactivity are in the order of seconds, large enough
enable prefetching of considerable amounts of data.

To minimize the query overhead, we propose to piggyback information about po-
tential chunk candidates for prefetching on top of every remote read operation to the
repository. We refer to this extra information as prefetching hints from now on. Since
remote read operations need to consult the metadata that indicates where the chunks are
stored anyway, the extra overhead in order to build prefetching hints is small. However,
too many prefetching hints are not needed and only generate unnencessary overhead.
Thus, we limit the number of results (and thereby the number of “false positives”) by
introducing an access count threshold that needs to be reached before a chunk is con-
sidered as a viable candidate.

506 B. Nicolae, F. Cappello, and G. Antoniu

An example for an access threshold of 2 is depicted in Figure 3(a), where 4 instances
that are part of the same multi-deployment access the same initial VM image, which is
striped into four chunks: A, B, C and D. Initially, all four instances need to fetch chunk
A, which does not generate any prefetching hints, as it is the only chunk involved in the
requests. Next, the first instance fetches chunk B, followed by instances 2 and 3, both
of which fetch chunk C. Finally instance 4 fetches chunk D. Since B is accessed only
once, no prefetching hints are generated for instances 2 and 3, while chunk C becomes
a prefetching hint for instance 4.

Note that a growing number of chunks that need to be stored in the repository (as a
result of adding new VM images) can lead to a high overhead of building prefetching
hints, which can even offset the benefits of prefetching. This in turn leads to the need to
implement a scalable distributed metadata management scheme (see Section 2.3).

Prefetch chunks in the background using the hints. The prefetching hints returned
with each remote read operation can be combined in order to build a prefetching strat-
egy in the background that operates during the periods of I/O inactivity. Note that this
scheme is self-adaptive: it can learn on-the-fly about “unknown” VM images during the
first multi-deployment, with no need for pre-staging. After the first run, the whole ac-
cess pattern can be completely characterized in terms of prefetching hints immediately
after the first read occurred, which leaves room to employ optimal prefetching strategies
for subsequent multi-deployments.

2.2 Architecture

A simplified IaaS cloud architecture that integrates our approach is depicted in Figure 2.
The typical elements of a IaaS architecture are illustrated with a light background, while
the elements that are part of our proposal are highlighted by a darker background.

A distributed storage service is deployed on all compute nodes. It aggregates the
space available on the local disks in a common shared pool that forms the virtual ma-
chine image repository. This storage service is responsible to transparently stripe the
virtual machine images into chunks. The cloud client has direct access to the repos-
itory and is allowed to upload and download VM images from it. Furthermore, the
cloud client also interacts with the cloud middleware through a control API that enables

Hypervisor

Prefetch module

Local disk

Cloud middleware

Compute node

Client

R/W image

Remote read
with hints

Put/get image

Control API

Start VM
Hypervisor

Prefetch module

Compute node

R/W image

Local R/W

Local disk

Local diskLocal diskLocal diskLocal diskLocal disk

Distributed VM image repository

Remote read
with hints

Local R/W

Start VM

Stop VMStop VM

Fig. 2. Cloud architecture that integrates our approach (dark background)

Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching 507

launching and terminating multi-deployments. It is the responsibility of the cloud mid-
dleware to initiate the multi-deployment by concurrently launching the hypervisors on
the compute nodes.

The hypervisor in turn runs the VM instances and issues corresponding reads and
writes to the underlying virtual machine images. The reads and writes are intercepted by
a prefetching module, responsible to implement the design principles proposed in Sec-
tion 2.1. More specifically, writes are redirected to the local disk (using either mirror-
ing [12] or copy-on-write [13]). Reads are either served locally, if the involved chunks
are already available on the local disk, or transferred first from the repository to the
local disk otherwise. Each read brings new prefetching hints that are used to transfer
chunks in the background from the repository to the local disk.

2.3 Implementation

We have chosen to implement the distributed VM image repository on top of Blob-
Seer [9,10]. This choice was motivated by several factors. First, BlobSeer enables scal-
able aggregation of storage space from the participating nodes with low overhead in
order to store BLOBs (Binary Large OBjects). BlobSeer handles striping and chunk
distribution of BLOBs transparently, which can be directly leveraged in our context:
each VM image is stored as a BLOB, effectively eliminating the need to perform ex-
plicit chunk management.

Second, BlobSeer uses a distributed metadata management scheme based on dis-
tributed segment trees [10] that can be easily adapted to efficiently build prefetching
hints. More precisely, a distributed segment tree is a binary tree where each tree node
covers a region of the BLOB, with the leaves covering individual chunks. The tree root
covers the whole BLOB, while the other non-leaf nodes cover the combined range of
their left and right children. Reads of regions in the BLOB imply descending in the tree
from the root towards the leaves, which ultimately hold information about the chunks
that need to be fetched.

In order to minimize the overhead of building prefetching hints, we add additional
metadata to each tree node such that it records the total number of accesses to that node.
Since a leaf can be reached only by walking down into the tree, the number of accesses
to inner nodes is higher than the number of accesses to leaves. Thus, if the access count
threshold is not reached, the whole sub-tree can be skipped, greatly limiting the number
of chunks that need to be inspected in order to build the prefetching hints.

Furthermore, we designed a metadata caching scheme that avoids unnecessary re-
mote accesses to metadata: each tree node that that has reached the threshold since it
was visited the last time, is added to the cache and retrieved from there for any sub-
sequent visits. Cached tree nodes might not always reflect an up-to-date number of
accesses, however this does not affect correctness as the number of accesses can only
grow higher than the threshold. Obviously, the tree nodes that are on the path towards
the required chunks (i.e. those chunks that make up the actual read request) need to be
visited even if they haven’t reached the threshold yet, so they are added to the cache
too.

508 B. Nicolae, F. Cappello, and G. Antoniu

Instance 1 Instance 2 Instance 3 Instance 4

READ(A)
hints: {}

READ(A)
hints: {}

READ(A)
hints: {}

READ(A)
hints: {}

READ(B)
hints: {}

READ(C)
hints: {}

READ(C)
hints: {}

READ(D)
hints: {C}

A B C D

Chunk composition of VM image

(a) Evolution of remote fetches in time
and the associated hints

1

1 0

1 1 0 0

A C DB

Instance 1: READ(B)

(b) Local view of the
segment tree for Instance
1 after reading chunk B

4

4 3

4 1 2 1

A C DB

Instance 4: READ(D)

(c) Local view of the
segment tree for Instance
4 after reading chunk D

Fig. 3. Adaptive prefetching by example: multi-deployment of 4 instances with a prefetch thresh-
old of 2

An example of how this works is presented in Figures 3(b) and 3(c). Each tree node
is labeled with the number of accesses that is reflected in the local cache. Figure 3(b)
depicts the contents of the cache for Instance 1 at the moment when it reads chunk
B. White nodes were previously added in the cache when Instance 1 accessed chunk
A (access count 1 because it was the first to do so). Dark grey nodes are on the path
towards chunk B and are therefore added to the local cache during the execution of the
read access. Since the access count of the right child of the root is below the threshold,
the whole right subtree is skipped (dotted pattern). Similarly, Figure 3(c) depicts the
segment tree at the moment when Instance 4 reads chunk D. Again, white nodes on
the path towards chunk A are already in the cache. Dark grey nodes are on the path
towards chunk D and are about to be added in the cache. Since the access count of the
leaf corresponding to chunk C (light grey) has reached the threshold, it is added to the
cache as well and C becomes a prefetching hint, while the leaf of chunk B is skipped
(dotted pattern).

Using this scheme, each read from the BLOB potentially returns a series of prefetch-
ing hints that are used to prefetch chunks in the background. This is done in a separate
thread during the periods of I/O inactivity of the hypervisor. If a read is issued that does
not find the required chunks locally, the prefetching is stopped and the required chunks
are fetched first, after which the prefetching is resumed. We employ a prefetching strat-
egy that gives priority to the most frequently accessed chunk.

3 Experimental Evaluation

This section presents a series of experiments that evaluate how well our approach per-
forms under the multi-deployment pattern, when a single initial VM image is used to
concurrently instantiate a large number of VM instances.

3.1 Experimental Setup

The experiments presented in this work have been performed on Grid’5000 [11], an ex-
perimental testbed for distributed computing that federates 9 different sites in France.

Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching 509

We have used the clusters located in Nancy. All nodes of Nancy, numbering 120 in total,
are outfitted with x86 64 CPUs offering hardware support for virtualization, local disk
storage of 250 GB (access speed �55 MB/s) and at least 8 GB of RAM. The nodes
are interconnected with Gigabit Ethernet (measured: 117.5 MB/s for TCP sockets with
MTU = 1500 B with a latency of �0.1 ms). The hypervisor running on all compute
nodes is KVM 0.12.5, while the operating system is a recent Debian Sid Linux distri-
bution. For all experiments, a 2 GB raw disk image file based on the same Debian Sid
distribution was used.

3.2 Performance of Multi-deployment

We perform series of experiments that consists in concurrently deploying an increasing
number of VMs, one VM on each compute node. For this purpose, we deploy BlobSeer
on all of the 120 compute nodes and store the initial 2 GB large image in a striped
fashion into it. The chunk size was fixed at 256 KB, large enough to cancel the latency
penalty for reading many small chunks, yet small enough to limit the competition for
the same chunk. All chunks are distributed using a standard round-robin allocation strat-
egy. Once the VM image was successfully stored, the multi-deployment is launched by
synchronizing KVM to start on all the compute nodes simultaneously.

A total of three series of experiments is performed. In the first series, the original im-
plementation with no prefetching is evaluated. In the second series of experiments, we
evaluate our approach when a multi-deployment is launched for the first time such that
no previous information about the access pattern is available, which essentially forces
the system to self-adapt according to the prefetching hints. We have fixed the access
count threshold to be 10% of the total number of instances in the multi-deployment. Fi-
nally, the third series of experiments evaluates our approach when a multi-deployment
was already launched before, such that its access pattern has been recorded. This sce-
nario corresponds to the ideal case when complete information about the access pattern
is available from the beginning.

Performance results are depicted in Figure 4. As can be observed, a larger multi-
deployment leads to a steady increase in the total time required to boot all VM instances
(Figure 4(a)), for all three scenarios. This is both the result of increased read contention
to the VM image, as well as increasing jitter in execution time. However, prefetch-
ing chunks in the background clearly pays off: for 120 instances, our self-adaptation
technique lowers the total time to boot by 17% for the first run and almost 35% for
subsequent runs, once the access pattern has been learned.

Figure 4(b) shows the number of successful prefetches of our approach as the number
of instances in the multi-deployment grows. For the second run, almost all of the �450
chunks are successfully prefetched by each instance, for a total of �54000 prefetches.
As expected, for the first run it can be clearly observed that a higher number of con-
current instances benefits the learning process more, as there are more opportunities
to exploit jitter in execution time. For 120 instances, the total number of successful
prefetches is about half compared to the second and subsequent runs.

Figures 5(a) and 5(b) show the remote read access pattern for a multi-deployment
of 100 instances: for our approach during the first run and the second run respectively.
Each line represents the minimum, average and maximum time from the beginning

510 B. Nicolae, F. Cappello, and G. Antoniu

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

T
ot

al
 ti

m
e

to
 b

oo
t (

s)

Number of concurrent instances

no prefetching
our approach, first run

our approach, second run

(a) Total time to boot all VM instances of a
multi-deployment

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100 120

T
ot

al
 s

uc
ce

ss
fu

l p
re

fe
tc

he
s

Number of concurrent instances

our approach, first run
our approach, second run

(b) Total number of remote accesses that were
avoided for reads issued by the hypervisor as
the result of successful prefetches

Fig. 4. Performance of self-adaptive prefetching when increasing the number of VM instances in
the multi-deployment

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
of

fs
et

 (
G

B
)

Time (s)

(a) Remote accesses during the learning phase
of the first-time run

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20

D
is

k
of

fs
et

 (
G

B
)

Time (s)

(b) Remote accesses for the second and subse-
quent runs

Fig. 5. Remote accesses to the VM image during a multi-deployment of 100 VM instances using
our approach

of the deployment when the same chunk (identified by its offset in the image) was
accessed by the VM instances. The first run of our approach generates a similar pattern
with the case when no prefetches are performed (represented in Figure 1). While jitter
is still observable, thanks to our prefetching hints the chunks are accessed earlier, with
average access times slightly shifted towards the minimum access times.

Once the access pattern has been learned, the second run of our approach (Fig-
ure 5(b)) is able to prefetch the chunks much faster, in less than 25% of the total execu-
tion time. This prefetching rush slightly increases both the remote read contention and
jitter in the beginning of the execution but with the benefit of reducing both parameters
during the rest of the execution. Thus, jitter accumulates to a lesser extent for a small
number of concurrent instances and could be a possible explanation of why the first run
is actually slightly faster than the second run for smaller multi-deployments.

Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching 511

4 Related Work

Many hypervisors provide native copy-on-write support by defining custom virtual ma-
chine image file formats (such as [13]). They rely on a separate read-only template as
the backing image file, while storing local modifications in the derived copy-on-write
file. Much like our approach, a parallel file system [14,15,16] can be relied upon to
stripe and distribute the read-only image template among multiple storage elements.
However, unlike our approach, a parallel file system is not specifically optimized for
multi-deployments and thus does not perform prefetching that is aware of the global
trend in the access pattern.

Several storage systems such as Amazon S3 [17] (backed by Dynamo [18]) have
been specifically designed as highly available key-value repositories for cloud infras-
tructures. They are leveraged by Amazon to provide elastic block level storage volumes
(EBS [8]) that support striping and lazy, on-demand fetching of chunks. Amazon en-
ables the usage of EBS volumes to store VM images, however we are not aware of any
particular optimizations for the multi-deployment pattern.

Finally, dynamic analysis of access patterns was proposed in [19] for the purpose of
building adaptive prefetching strategies. The proposal uses heuristic functions to predict
the next most probable disk access using the recent reference history. The algorithms
involved however are designed for centralized approaches. They typically utilize only a
small recent window of the reference history in order to avoid computational overhead
associated with prefetching. Thanks to our distributed metadata management scheme, we
can maintain a full access history that represents the global trend of the multi-deployment,
which can be leveraged to perform an optimal prefetching after the first run.

5 Conclusions

This paper proposed a self-adaptive prefetching mechanism for “lazy” transfer schemes
that avoid full broadcast of VM images during multi-deployments on IaaS clouds. We
rely on the fact that all VM instances generate a highly similar access pattern, which is
slightly shifted in time due to runtime jitter. Our proposal exploits this jitter to enable
VM instances to learn from experience of the other concurrently running VM instances
in order to speed-up reads not already cached on the local disk by prefetching the nec-
essary parts of the VM image from the repository.

Our scheme is highly adaptive and does not require any past traces of the deployment,
bringing a speed-up of up to 17% for the first run when compared to simple, on-demand
fetching only. Once the access pattern has been learned, subsequent multi-deployments
of the same VM image benefit from the full access history and can perform an optimal
prefetching that further increases the speed-up to up to 35% compared to the case when
no prefetching is performed.

Thanks to these encouraging results, we plan to further investigate the potential ben-
efits of exploiting the similarity of access pattern to improve multi-deployments. In
particular, we see a good potential to reduce the prefetching overhead by means of
replication and plan to investigate this issue more closely. Furthermore, an interesting
direction to explore is the use of push approaches (rather then pull) using broadcast
algorithms once the access pattern has been learned.

512 B. Nicolae, F. Cappello, and G. Antoniu

Acknowledgments. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, an initiative from the French Ministry of Research
through the ACI GRID incentive action, INRIA, CNRS and RENATER and other con-
tributing partners (see http://www.grid5000.fr/).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53,
50–58 (2010)

2. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities. In: HPCC 2008: Proceedings of the
2008 10th IEEE International Conference on High Performance Computing and Communi-
cations, pp. 5–13. IEEE Computer Society, Washington, DC, USA (2008)

3. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
4. Nimbus, http://www.nimbusproject.org/
5. Opennebula, http://www.opennebula.org/
6. Wartel, R., Cass, T., Moreira, B., Roche, E., Manuel Guijarro, S.G., Schwickerath, U.: Image

distribution mechanisms in large scale cloud providers. In: CloudCom 2010: Proc. 2nd IEEE
International Conference on Cloud Computing Technology and Science, Indianapolis, USA
(2010) (in press)

7. Andrzejak, A., Kondo, D., Yi, S.: Decision model for cloud computing under sla constraints.
In: Proceedings of the 2010 IEEE International Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems, MASCOTS 2010, pp. 257–266. IEEE
Computer Society, Washington, DC, USA (2010)

8. Amazon elastic block storage (ebs), http://aws.amazon.com/ebs/
9. Nicolae, B.: BlobSeer: Towards efficient data storage management for large-scale, distributed

systems. PhD thesis, University of Rennes 1 (November 2010)
10. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: Blobseer: Next-

generation data management for large scale infrastructures. J. Parallel Distrib. Comput. 71,
169–184 (2011)

11. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G.,
Touche, I.: Grid’5000: A large scale and highly reconfigurable experimental grid testbed. Int.
J. High Perform. Comput. Appl. 20, 481–494 (2006)

12. Nicolae, B., Bresnahan, J., Keahey, K., Antoniu, G.: Going Back and Forth: Efficient Multi-
Deployment and Multi-Snapshotting on Clouds. In: HPDC 2011: The 20th International
ACM Symposium on High-Performance Parallel and Distributed Computing, San José, CA
United States (2011)

13. Gagné, M.: Cooking with linux: still searching for the ultimate linux distro? Linux
J. 2007(161), 9 (2007)

14. Carns, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: Pvfs: A parallel file system for Linux
clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, GA,
pp. 317–327. USENIX Association (2000)

15. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scalable, high-
performance distributed file system. In: Proceedings of the 7th symposium on Operating sys-
tems design and implementation, OSDI 2006, pp. 307–320. USENIX Association, Berkeley
(2006)

http://www.grid5000.fr/
http://aws.amazon.com/ec2/
http://www.nimbusproject.org/
http://www.opennebula.org/
http://aws.amazon.com/ebs/

Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching 513

16. Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST 2002,
USENIX Association, Berkeley (2002)

17. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
18. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-

subramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value
store. In: SOSP 2007: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles, pp. 205–220. ACM, New York (2007)

19. Zhu, Q., Gelenbe, E., Qiao, Y.: Adaptive prefetching algorithm in disk controllers. Perform.
Eval. 65, 382–395 (2008)

http://aws.amazon.com/s3/

Introduction

Amitabha Bagchi, Olivier Beaumont, Pascal Felber, and Alberto Montresor

Topic chairs

Peer-to-peer (P2P) systems enable computers to share information and other
resources with their networked peers in large-scale distributed computing en-
vironments. The resulting overlay networks are inherently decentralized, self-
organizing, and self-coordinating. Well-designed P2P systems should be adaptive
to peer arrivals and departures, resilient to failures, tolerant to network perfor-
mance variations, and scalable to huge numbers of peers (tens of thousands
to millions). As P2P research becomes more mature, new challenges emerge
to support complex and heterogeneous decentralized environments for sharing
and managing data, resources, and knowledge with highly dynamic and unpre-
dictable usage patterns. This topic provides a forum for researchers to present
new contributions to P2P systems, technologies, middleware, and applications
that address key research issues and challenges.

This year, three papers have been accepted for publication in the P2P track.
The general trend among submitted papers was on the study of the properties
of P2P networks and their extensions to new services, rather than on the design
of new overlays. Each paper was evaluated by four referees.

The paper Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient
Descent by Róbert Ormándi, István Hegedűs and Mark Jelasity from the Univer-
sity of Szeged, Hungary, proposes a method based on stochastic gradient search
to support fully decentralized data mining, with no assumptions on the relia-
bility or synchrony of communication. The idea of applying stochastic gradient
descent for SVMs to P2P platforms is particularly original and, in keeping with
current trends in computing, opens out the possibility of using a P2P system as
a decentralized and dynamic database, thereby creating interesting perspectives
for future applications.

The other two papers accepted speak directly to the notion of dynamism
that underlies P2P networks by addressing the problem of churn. The first of
these, Evaluation of P2P Systems Under Different Churn Models: Why Should
We Bother? by Marc Sánchez-Artigas and Enrique Fernández-Casado from the
Universitat Rovira i Virgili, Spain, helps place the evaluation of P2P systems on
a more rigorous basis by investigating the relationships between four different
models suggested in the literature for churn in P2P systems. The authors study
statistical properties of these models and highlight their similarities and differ-
ences. The purpose of this work is to determine if there are significant variations
between the models, and hence if they provide different insights when used to
study P2P systems.

The paper ChurnDetect: Gossip-based Churn Estimator for Large-Scale Dy-
namic Networks by Andrei Pruteanu, Venkat Iyer and Stefan Dulman from Delft
University of Technology, the Netherlands, presents an algorithm to detect in a

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 514–515, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Introduction 515

distributed way the rate of nodes joining/leaving in multi-hop large scale net-
works, even in presence of nodes behind firewalls. The algorithm relies on gossip-
based communications along with a periodic reset mechanism, and mixes ideas
coming from the P2P and ad-hoc communities.

We would like to take the opportunity of thanking the authors who submitted
a contribution, as well as the Euro-Par Organizing Committee, and the exter-
nal referees with their highly useful comments, whose efforts have made this
conference and this topic possible.

Combining Mobile and Cloud Storage for

Providing Ubiquitous Data Access�

João Soares and Nuno Preguiça

CITI/DI-FCT-Univ. Nova de Lisboa
Quinta da Torre, Portugal

Abstract. Users increasingly own, and use, multiple computing devices.
To be able to access their personal data, at any time and in any device,
users usually need to create replicas in each device. Managing these mul-
tiple replicas becomes an important issue.

In this paper we present the FEW Phone File System, a data man-
agement system that combines mobile and cloud storage for providing
ubiquitous data access. To this end, our system takes advantage of the
characteristics of mobile phones for storing a replica of a user’s personal
data, thus allowing these devices to be used as personal and portable file
servers. As users tend to always carry their mobile phone with them at
all times, these replicas are the basis for providing high data availability,
and keeping replicas automatically synchronized.

Our system also uses other replicas located in web servers and cloud
storage systems, to reduce the volume of data stored, and transferred
to/from mobile phones, by maintaining only the information needed to
obtain them.

1 Introduction

Users increasingly own, and use, multiple computing devices, from desktop com-
puters, to laptops, tablets, consoles and mobile phones. In such an environment,
data availability is an important issue, as users want to access their personal
data everywhere, independently of their current machine or location.

To address this problem, users tend to rely on at least one of the following
available solutions: i) on-line storage services (e.g. Dropbox [1], Google Docs [3]),
and/or ii) portable storage devices (e.g. USB flash drives). While both solutions
aim at providing “ubiquitous” storage space, they also force users to deal with
additional problems. On-line storage services force users to trust third parties for
storing their personal data. Both solutions force users to maintain synchronized
replicas of the stored data, for minimizing losses due to possible device failure
or for guaranteeing access in case of network disconnection. In many solutions
(e.g. Google Docs, USB flash drives), synchronization is done manually, and only
strict discipline avoids replicas from diverging.
� This work was partially supported by CITI and FCT/MCTES project

POSC/EIA/59064/2004, with Feder funding. João Soares was partially supported
by CITI and FCT/MCTES research grant # SFRH/ BD/ 62306/ 2009.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 516–527, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 517

In this paper, we present the FEW Phone File System (FEW), a data manage-
ment system for providing high data availability to mobile users. While sharing
some of the goals and solutions with existing systems [19,9,12,2,16,15], FEW
provides a unique solution for offering users ubiquitous access to their personal
data, independently of their location, device and/or network connectivity. To
this end, FEW builds on the characteristics of current mobile phones, taking
advantage of their i) storage capacity; ii) wireless communication capabilities
(Wi-Fi and/or Bluetooth); iii) mobility of such devices.

In FEW, the mobile phone of a user acts as his personal and portable file
server, storing and maintaining replicas of his personal files. This allows our
system to provide ubiquitous access to these files, since users tend to carry their
mobile phones with them at all times. The Wi-Fi and Bluetooth communication
capabilities guarantee access to these replicas from any computer, in a location
independent manner, without the hurdles of needing extra cables. The system
includes an optimistic replication solution, allowing for replicas to be created
and accessed when needed, including a novel scalable update tracking solution,
and a reconciliation algorithm based on commutative operations.

As a large number of users’ files are currently stored, or are obtained from re-
mote web sources, FEW includes a data source verification mechanism to record
the alternative sources for each file. This allows the integration of online storage
systems as alternative data sources for each file, achieving both the reduction of
communications, as well as data that needs to be stored in the mobile phone,
while still providing high data availability. Additionally, FEW includes a data
transcoding mechanism for minimizing storage consumption due to multimedia
data that needs to be stored in the mobile phone - these two mechanisms allow,
for example, the mobile phone to store only thumbnails of photo collections,
while keeping information on how to obtain full fidelity photos from on-line
systems, like Flickr, Facebook, etc.

The remainder of this paper is organized as follows: Section 2 presents the
design of our systems; Section 3 details the advanced mechanisms to address
limitations of using mobile phones; Section 4 presents an evaluation of the sys-
tem; Section 5 discusses related work; and Section 6 concludes the paper with
some final remarks.

2 System Design

The FEW Phone File System (FEW) is a data management system designed to
provide high data availability to users, allowing them permanent access to their
personal data, across multiple computers, independently of location, ownership,
and network connectivity. In this section we present the system general design
and synchronization algorithms.

2.1 Architecture

FEW is based, primarily, on a client-server architecture, where mobile phones
act as personal, and portable, file servers, storing replicas of the personal data

518 J. Soares and N. Preguiça

Fig. 1. FEW Phone File System architecture

of some user. A typical FEW configuration includes a set of computing devices,
called nodes, accessed by a common user, and, at least, one mobile phone, as
depicted in Figure 1. In the remainder of this paper, a mobile phone acting as a
file server will be addressed as a mobile server.

Each node is responsible for managing its replicas of the user’s files, which
are organized into collections named containers. Containers are collections of
files stored under the same common path name, and can be seen as subtrees
of a file system, similar to volumes in Coda [18]. FEW allows containers to be
created, in any client node, from any existing directory in the file system, or
when replicating an existing container on a new node.

Applications access these files as any other files, i.e., using the file system
interface. This allows FEW to provide data availability, without forcing appli-
cations to be modified. To this end, clients intercept and handle all file system
calls executed on the files managed by the system. In the current prototype,
we rely on Fuse [6] (and Fuse-J java-bindings) for implementing the client side.
Typically, mobile phones only include the server component, while computer
nodes run both the client and the server component of the system. This allows
computers to synchronize files with mobile servers, using a client-server model,
and also with other active client nodes, in a peer-to-peer fashion, as described
later.

FEW fully replicates a container’s complete namespace in every replica, thus
allowing users to have a coherent view of its contents in every node. File contents,
on the other hand, do not need to be fully replicated. As explained later, the
system includes several mechanisms that allow the system to use partial or full
replication policies. If necessary, file contents can be fetched on-demand when
applications access files not locally replicated.

For improved performance, we use optimistic replication techniques [5] to
allow replicas of the files to be created in any client computer that accesses them1.
This way, files can be modified in any computer without requiring immediate
server communication, thus addressing performance and energy limitations of
mobile phones. Data consistency is maintained by a periodic synchronization

1 Users can decide in which computer these replicas can be created, and in which
replicas can be long-lived, thus addressing privacy concerns.

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 519

process, used for propagating updates from clients to servers, and vice-versa.
This process includes a reconciliation mechanism for resolving possible conflicts
due to concurrent updates.

2.2 Synchronization Process

To preserve consistency, allowing users to always access the latest version of
their files, FEW relies on a periodic synchronization process for propagating
updates between replicas of a container. Replicas are synchronized using an
epidemic approach, by establishing pair-wise communication sessions. Although
any node can synchronize with any other node, mobile servers tend to function
as mediators for propagating updates between replicas.

This approach has several benefits. First, it allows our system to provide even-
tual consistency, i.e., over time, an update executed in a node will be propagated
to all other nodes, even to nodes that have no network connectivity (besides short
range connectivity to the mobile phone). Second, since users are expected to al-
ways carry their mobile phones with them at all times, maintaining the most
recent version of a container on a mobile server allows FEW to always provide
users access to the most recent version of their data.

A synchronization session is automatically initiated whenever a node detects a
nearby mobile server. During this session, local updates, i.e., updates performed
on a computer node, are propagated to the mobile server, while missed updates
are propagated from the server to that node. This process is re-executed peri-
odically while a mobile server is nearby. As a result, we expect a mobile server
to always store the most recent version of its containers.

The synchronization process also allows nodes to gain knowledge of other ex-
isting replicas. Whenever a container is replicated on a node, the node’s address
is stored on the server, thus creating additional sources for obtaining the data.
This information is exchanged during the synchronization process.

This allows the basic synchronization process to be extended using node-
to-node synchronization. This way replicas are kept synchronized, even if the
mobile server cannot be used to efficiently propagate updates among them. In
this case, a node uses this information to form an overlay network for exchanging
updates with existing replicas. Two situations for using such an approach have
been identified. First, when the user forgets his mobile phone, it is obvious that
synchronization must be performed using peer-to-peer communication. Second,
when files are too large it might be too costly to store them in the mobile phone.

Synchronization Algorithm. FEW uses a two stage synchronization algo-
rithm. First stage synchronizes the name space, i.e., it propagates unknown
directory updates, while the second stage synchronizes data, i.e., files contents.

Object identifiers. Internally, all objects handled by FEW are addressed by
unique identifiers (UID), assigned to each object (file or directory) when cre-
ated, or during the container creation process, remaining the same during the

520 J. Soares and N. Preguiça

lifetime of that object, independently of name changes. Other information (i.e.
meta-data) is also maintained for each object in a container. This information
includes common file system attributes, such as file names, access permissions,
etc., and system-specific attributes, such as information for tracking dependen-
cies among versions, a digest of its contents, a list of alternative file sources, etc.
This information is essential for the synchronization process.

Name Space Synchronization. For synchronizing the name space of a container,
FEW maintains a log with name space updates, and an associated version vec-
tor [10]. Each log entry includes all the necessary information for reproducing
the operation in other nodes, i.e., a time stamp of the operation, the type of op-
eration (create, delete, rename), the UID of the updated object, its version, and
the UID of the parent directory, while the version vector allows for recording the
number of updates performed on each replica of the container. During synchro-
nization, each node exchanges version vectors, thus allowing missed updates to
be determined. The respective log entries are then exchanged, and reproduced.

Concurrent updates are deterministically resolved using the principles of com-
mutative replicated data types [14]. Concurrent operations have been designed
in a way that a deterministic result is obtained independent of their execution
order, thus guaranteeing that all replicas converge to the same state.

Data Synchronization. For tracking data dependencies, FEW uses a novel ap-
proach. Updated files are initially signaled using an ’updated’ flag associated
with the file and all parent directories. During synchronization, each file marked
as updated is synchronized with the peer and only at this moment the version
vectors are modified. Unlike the traditional approach, if only one replica has been
modified and only one peer has an entry in the version vector, it is that entry
that is updated to record the new version, independently of the replica in which
the file has been changed. This approach allows the reduction of the number of
entries in version vectors. In our scenario, where we expect a node to synchronize
with a single (or a small number of) mobile servers, it is possible to keep the
number of entries in version vectors equal to the number of mobile servers, as
the updates performed in a node will always be reflected in the server’s entry.

Additionally, in FEW, version vectors of directories summarize the updates
in the subtree. Thus, during synchronization it is only necessary to propagate
the version vector of the root to be able to determine which files need to be
synchronized. This allows the volume of exchanged data, during synchronization,
to be proportional to the number of updated files, rather than the total number
of files in a container. Concurrent updates to the same file are automatically
resolved by deterministically selecting a predominant file version. Additional
details of the synchronization process can be found in [8,7].

3 Advanced Mechanism for Using Mobile Phones

Relying on mobile phones as file servers, imposes the following limitations that
need to be addressed: i) limited communication bandwidth, leading to higher

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 521

data access times, compared to local hard drives; ii) insufficient storage capacity;
iii) limited energy resources; and iv) low reliability of mobile phones [17]. Next
we briefly present some of the solutions used to address these problems.

3.1 Minimizing Communications

As in any distributed file system, accessing all files directly on the file server
proves impractical [11,18]. This results from limited bandwidth and high latency
limitations, which increase access times, when compared to local hard drives.
Also, since in our case the file server is a mobile phone, server communications
are highly energy consuming operations, thus minimizing them in essential.

As explained before, FEW addresses this problem by creating temporary or
long-lived replicas in the clients nodes. The system relies on periodic synchro-
nization to keep replicas up-to-date, exchanging, during these interactions, in-
formation that is proportional to the number of updated replicas in the system
(as in Cimbiosys [15]). This approach helps minimizing communications with the
mobile phone, for both file access and synchronization, providing faster access
times to the users files, improving the user experience, while also minimizing
power consumption of due to communications.

3.2 Improving Storage Usage

Although mobile phones have increasingly larger amounts of storage capacity,
they offer reduced storage space when compared to the current capacity of hard
disks, and the amount of personal data users tend to store. This way, we expect
to be impossible storing replicas of all files kept by an user. FEW addresses this
limitation in different ways.

Container Set. Since FEW is designed to manage a set of containers, we believe
users would assign, to different containers, different types of data. For instances,
one container would have personal documents, like word documents, text files,
spread sheets, etc., while others would contain video files, audio files, etc.. This
way users can select which containers should always be available, i.e., replicated
on the mobile server, and which are less important. This can be manually ad-
justed, thus allowing users to always keep relevant data “close by”.

Integrating Remote Storage Systems. Users tend to store significant number of
resources obtained from remote sites, or that have additional remote copies.
Among this data, we can include, not only, files downloaded from Web sites, for
example, ’pdf’ files, but also data uploaded by the user to Internet workspaces,
or other remote storage systems, such as cloud storage services. Since these
files tend to be preserved for long periods of time, and, in some cases, remain
unchanged during this time, there is no reason why these remote sites cannot be
used as alternative data sources for obtaining data.

With this in mind, FEW includes a Data Source Verification (DSV) mecha-
nism that allows it to automatically keep track of additional sources for the files

522 J. Soares and N. Preguiça

managed by the system. DSV is a modular, plugin based component, allowing
different services to be used as alternative data sources, simply by choosing the
corresponding plugin, including Web servers, CVS servers, and Cloud storage
systems. For instance, the current HTTP generic plugin acts as a proxy, moni-
toring HTTP connections. For each HTTP operation, it computes the digest for
the obtained result, storing it, as well as the associated URL, for a short period
of time.

When a file is created or updated in a container, the system checks with the
DSV if the new contents were remotely obtained (by comparing its digest). If
those contents were obtained remotely, the source URL is added, as meta-data,
to the corresponding file. This information is used during the synchronization
process, allowing our system to retrieve remotely stored files directly from these
sources. This way, FEW prevents those contents from being stored on the mobile
server, storing only their meta-data. FEW can still provide high data availability
for these files, by leveraging on the alternative data sources associated with
those contents for retrieving them. Doing so allows our system to reduce storage
requirements.

Some DSV plug-ins require more complex solutions the one used in the HTTP
plugin. For example, a CVS plugin requires additional information to work cor-
rectly, since remote files have an associated version. Thus, the CVS plugin checks,
not only if a file’s pathname is under control of a CVS server, but also if the ver-
sion of the remote file is identical to the one stored locally. If so, the CVS server
can be used as an alternative source for retrieving the file. This information is
added as meta-data, thus allowing our system to retrieve these contents during
synchronization.

Currently we are developing a plugin for integrating FEW with Cloud stor-
age services, such as Dropbox [1]. As in the CVS plugin, this plugin requires
additional information from the user, such as login credentials. With this infor-
mation, the plugin can use the Dropbox API to create an authenticated session,
using it for browsing the contents remotely stored.

Maintaining Consistency of Remote Replicas. Our system also allows the auto-
matic update of remote replicas whenever a local replica is updated. To this end,
the DSV plugin includes methods to allow these updates to be performed. For
example, the HTTP plugin relies on using HTTP POST and PUT operations.

During synchronization, if remote replicas cannot be updated, either because
updates are not supported by some plugin or were unsuccessful, the mobile
phone is used to store the most recent version of the file. Our experience says,
that most resources downloaded from Web pages are kept unchanged by users.
Only personal data is regularly updated, and this information is normally stored
on services that allow remote update operations to be performed.

Multimedia data. Another mechanism designed to reduce storage requirements
relates to multimedia files. With the proliferation of digital cameras, and other
multimedia devices, users tend to store significant amounts of multimedia con-
tents. Since these files tend to consume considerable amounts of storage space,

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 523

it is unreasonable to store them on a mobile phone. Although some of these files
can be addressed using the previous mechanism, others can not.

For these files, FEW relies on data transcoding techniques [13]. These tech-
niques allow for multimedia contents to be adapted accordingly to the available
resources on mobile servers, storing only lower fidelity versions of multimedia
files. FEW automatically performs data transcoding during synchronization, im-
mediately before transferring multimedia data to the mobile server, allowing the
level of fidelity to be specified for each device.

The Data Transcoding (DTC) module includes a set of plug-ins for transcod-
ing different types of data. In our current prototype, we include support only for
transcoding a very limited number of multimedia formats, using existing appli-
cations. We also include support for transcoding generic files to an empty file.
This provides support for implementing partial replication of a container. Addi-
tionally, users can configure the transcoding parameters for each supported file
type. allowing these parameters to be changed according to the available storage
space. For example, users can define a “more aggressive” level of transcoding
when the available storage space is low.

Combining this mechanism with the previously described DSV mechanism,
allows lower-fidelity versions to be used only when they are satisfactory, or when
no connectivity to an alternative source is available, since the full fidelity versions
can be downloaded from the alternative sources, whenever needed.

4 Evaluation

In this section we present an evaluation of the FEW Phone File System, focusing
on the advanced modules: DSV and DTC. We evaluate both the importance of
the modules and their performance.

4.1 Importance of DSV and DTC

For evaluating the importance of DSV and DTC modules, we have studied the
percentage of user files obtained from remote web sources, which can be handled
by DSV; and the percentage and relative volume of multimedia files, which can
be addressed by DTC.

As we could not run our system for a long enough period and with a large
enough number of users to obtain relevant statistics, we have obtained statistics
analyzing the personal data of 5 users. For determining which files had been
obtained from a remote source, we have used the application-specific attributes
with the URL added by the Safari web browser in Mac OS X. Obviously, this
is a lower-bound estimation of the files obtained remotely, as some of these
users reported that they also use other browsers that do not add this attribute.
Additionally, files obtained using other programs are also not computed.

Table 1 shows the type and the relative volume of data stored by users (office
data includes, not only word documents, spreadsheets and presentations, but
also digital documents such as “pdf” files). As we expected, users tend to store

524 J. Soares and N. Preguiça

Table 1. Statistics on personal files

Data Relative Data Source
Type Volume Locally Created Web Transferred

Multimedia 56% 98% 2%
Archives 17% 68% 32%
Office 6% 53% 47%

Sources 0% 95% 5%
Other 21% 79% 21%

considerable amounts of multimedia data. In average we found that more than
50% of the files stored by current users are multimedia data. Since these files
tend to be large, the use of the Data Transcoding module is essential for allowing
FEW to achieve its goals.

Table 1 also presents the data obtained from the Internet using Safari. From
these results, it is possible to observe that approximately 14% of the personal
data has been obtained from remote sites. The largest amount of downloaded files
are office and archive files, which results from the fact that users tend to store
large numbers of digital documents, such as “pdf” files, and that archives are
largely used to enclose other resources, such as source files. The low percentage
for multimedia files can be justified by the fact that most of these files are: (1)
copies of data users own(e.g. CDs) or have created (e.g. photos from cameras);
(2) obtained using applications other than browsers - e.g. iTunes and peer-to-peer
applications. For source files, we know that some users have a large percentage of
their files in version control systems, but we could not quantify the percentage.
For some multimedia files - e.g. photos, it is common for users to store them in
remote sites. Thus, the files that could be handled by DSV is expected to be
much higher.

These results show that keeping track of alternative sources can reduce the
need for storing the contents of files, thus showing that the DSV module can
be a good solution for minimizing the data that needs to be stored on a mobile
server. Additionally, as multimedia files seem to be the category that has less
additional sources, DTC seems a good complement to DSV.

4.2 Performance Impact of the DSV and DTC

In this section we present performance results obtained when synchronizing
nodes using the DSV and the DTC modules. The results were obtained using
our Java/Android prototype. The mobile server runs on an HTC Magic mobile
phone running Android 1.5, while the client nodes are desktop computers with
an Intel Core 2 Duo T8300 @ 2.4 GHz process, running Linux Ubuntu 9.10.
Devices communicate using a Wi-fi network.

To determine the impact of the DSV module, we measured the time for syn-
chronizing a new node with a mobile server, and those obtained performing the
same operation using a third node as an additional source for transferring data.
The results, presented in Table 2, show performance gains when using the DSV

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 525

Table 2. Synchronization times with
DSV

Num. Total Sync. time
files Size w/ DSV wo/ DSV
83 450 KB 5.984s 6.502s
97 2 MB 7.806s 9.171s
357 5 MB 25.467s 35.689s

Table 3. Synchronization times with
DTC

Num. Total Sync. time
files Size w/ DTC wo/ DTC

1 9 MB 5.211s 8.775s
2 8 MB 9.216s 18.556s

modules, even for small data volumes. The actual impact on performance is di-
rectly related with the bandwidth and latency of the connection with the server.
Besides the performance improvement, this module allows for a considerable re-
duction of the volume of data transferred from the mobile phone to the node,
also reducing power consumption of the mobile device.

For evaluating the impact of the DTC module, we measured the time for
synchronizing a container with one and two 14 mega-pixels (4672x3104 pixels)
digital photos from a node to a mobile server. Table 3 compares the values
when propagating the full fidelity photos and when using the DTC module (the
two photos were transcoded to a resolution of 1024x680 pixels, and color depth
from 32 to 24 bits per pixel, for a size reduction from 9 MBytes to 63 kBytes).
Results show a significant performance improvement and, above all, present a
significant reduction in the volume of data that is transferred to and from the
server. Combining these two modules allows users to access their full-fidelity
data, while reducing the volume of data transferred and stored on the mobile
phone, thus improving performance while reducing power consumption.

5 Related Work

Some distributed file systems (e.g. Ficus [4], Coda [18]) include support for mo-
bile computing environments. However, the complexity associated with setting
up a new server and using it in a network with private networks and firewalls
lead most users to prefer using portable storage devices to transport their data.

Other solutions for addressing similar problems have been proposed recently
in the literature. PersonalRAID [19] allows a portable storage devices to be
used for propagating updates among several personal replicas. However, this ap-
proach makes it impossible for a user to access all his data in a new computer.
Footloose [9] introduces the concept of physical eventual consistency, allowing
portable devices to be used to automatically propagate updates amongst repli-
cas. FEW extends the approach of Footloose by allowing clients to obtain data
contents from other replicas (even outside the system), thus minimizing the
requirements of the mobile devices. Also, we allow multimedia data to be trans-
ported efficiently.

EnsemBlue [12] supports the integration of data created in consumer devices
into a common namespace, transcoding data based on application needs, using
what the authors describe as persistent queries. FEW uses a similar approach

526 J. Soares and N. Preguiça

during the synchronization process for adapting multimedia contents based on
the specifications of the user.

Unmanaged Internet Architecture [2] allows users to provide personal names
to their devices and data, providing users access this data, from any device, using
these names. Perspective [16] and Cimbiosys [15] provide replication solutions,
allowing users to keep data replicas in multiple devices, based on the semantic
description of that data. Contrarily to our system, these have no mechanism to
efficiently store data in mobile devices, other than partial replication.

New cloud storage services (e.g. Dropbox) offer functionalities similar to tradi-
tional distributed file systems. While these minimize the complexity of setting up
file servers, their use is not fully transparent (since data needs to be stored under
specific directories), also requiring users to trust on third-party organizations.
Additionally, these services are usually only used to store a small subset of users’
files. Our system can integrate these services for improving data availability.

6 Final Remarks

FEW is a data management system designed to allow users access their per-
sonal data in any machine, independently of location and network connectivity.
To this end, FEW has been designed to take advantage the storage capacity
and wireless communication capabilities of current mobile phones, for main-
taining replicas of the users data (the most up-to-date version). The optimistic
replication approach allows for long lived replicas to be created, and accessed,
whenever and wherever needed. For guaranteeing consistency, we have proposed
novel techniques for tracking dependencies among replicas that can improve the
scalability of commonly used version vectors.

FEW addresses the limitations of mobile devices, in particular of the storage
capacity of mobile phones. A Data Transcoding module allows FEW to deal
with the volume of multimedia data stored by current users, reducing storage
requirements by storing lower fidelity versions of these files. A Data Source Ver-
ification module allows the system to record alternative sources for the files
stored in a container. This approach explores the common case where the files
stored were obtained from the Web, or are stored in some remote server. To
our knowledge, FEW is the first system to combine mobile and cloud storage
to provide high availability while reducing the volume of data that needs to be
stored and still offering an single view of a container in all devices the users uses.
This mechanism help improving the performance of the system, while reducing
power consumption by reducing communications with the mobile phone.

By combining both modules, FEW allows clients to always access full-fidelity
contents. This is a new feature when compared with previous solutions that use
data transcoding. The obtained evaluation results suggest that the combination
of DTC and DSV are important for achieving the goals of the system, since
considerable percentages of files, stored by the users, are multimedia files and/or
have additional Web sources.

Combining Mobile and Cloud Storage for Providing Ubiquitous Data Access 527

References

1. Dropbox: Dropbox (2011), http://www.dropbox.com/
2. Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., Morris, R.:

Persistent personal names for globally connected mobile devices. In: Proc. of the
7th Symp. on Operating Systems Design and Implementation, pp. 233–248 (2006)

3. Google: Google docs (2009),
http://docs.google.com/, http://docs.google.com/

4. Guy, R.G., Heidemann, J.S., Mak, W., Popek, G.J., Rothmeier, D.: Implementation
of the Ficus Replicated File System. In: USENIX Conf. Proc., pp. 63–71 (1990)

5. Hac, A., Jin, X., Soo, J.H.: Algorithms for file replication in a distributed system.
J. Syst. Softw. 14(3), 173–181 (1991)

6. Henk, C., Szeredi, M., Pavlinusic, D., Dawe, R., Delafond, S.: Filesystem in
Userspace (FUSE) (December 2008), http://fuse.sourceforge.net/

7. Soares, J.: FEW Phone File System. Master’s thesis, Faculdade de Ciências e Tec-
nologia (April 2009)

8. Soares, J., Preguiça, N.: Proving Ubiquitous Access to the User’s Data Combining
Mobile and Cloud Storage. Tech. Rep. 04/2011, CITI / DI-FCT-Univ. Nova de
Lisboa (May 2011)

9. Paluska, J., Saff, D., Yeh, T., Chen, K.: Footloose: a case for physical eventual
consistency and selective conflict resolution. In: Proc. Fifth IEEE Workshop on
Mobile Computing Systems and Applications, pp. 170–179 (October 2003)

10. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E.,
Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of Mutual Inconsistency
in Distributed Systems. IEEE Trans. Softw. Eng. 9(3), 240–247 (1983)

11. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS
version 3 design and implementation. In: Proc. of the Summer USENIX Conf., pp.
137–152 (1994)

12. Peek, D., Flinn, J.: Ensemblue: integrating distributed storage and consumer elec-
tronics. In: Proc. of the 7th Symp. on Operating Systems Design and Implemen-
tation, pp. 219–232 (2006)

13. Phan, T., Zorpas, G., Bagrodia, R.: Middleware support for reconciling client up-
dates and data transcoding. In: Proc. Int. Conf. on Mobile Systems, Applications,
and Services, MobiSys (2004)

14. Preguiça, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: Proc. of the 2009 IEEE Int. Conf. on Dis-
tributed Computing Systems, pp. 395–403 (2009)

15. Ramasubramanian, V., Rodeheffer, T.L., Terry, D.B., Walraed-Sullivan, M., Wob-
ber, T., Marshall, C.C., Vahdat, A.: Cimbiosys: a platform for content-based partial
replication. In: NSDI 2009: Proc. of the 6th USENIX Symp. on Networked systems
design and implementation, pp. 261–276 (2009)

16. Salmon, B., Schlosser, S.W., Cranor, L.F., Ganger, G.R.: Perspective: semantic
data management for the home. In: FAST 2009: Proccedings of the 7th Conf. on
File and Storage Technologies, pp. 167–182 (2009)

17. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proc. of the
ACM Symp. on Principles of Distributed Computing, pp. 1–7 (1996)

18. Satyanarayanan, M.: The evolution of coda. ACM Trans. Comput. Syst. 20, 85–124
(2002), http://doi.acm.org/10.1145/507052.507053

19. Sobti, S., Garg, N., Zhang, C., Yu, X., Arvind Krishnamurthy, R., Wang, O.Y.:
PersonalRAID: Mobile Storage for Distributed and Disconnected Computers. In:
Proc. First Conf. on File and Storage Technologies, pp. 159–174 (2002)

http://www.dropbox.com/
http://docs.google.com/
http://docs.google.com/
http://fuse.sourceforge.net/
http://doi.acm.org/10.1145/507052.507053

Asynchronous Peer-to-Peer Data Mining with
Stochastic Gradient Descent�

Róbert Ormándi1, István Hegedűs1, and Márk Jelasity2

1 University of Szeged, Hungary
{ormandi,ihegedus}@inf.u-szeged.hu

2 University of Szeged and Hungarian Academy of Sciences, Hungary
jelasity@inf.u-szeged.hu

Abstract. Fully distributed data mining algorithms build global models
over large amounts of data distributed over a large number of peers in a
network, without moving the data itself. In the area of peer-to-peer (P2P)
networks, such algorithms have various applications in P2P social net-
working, and also in trackerless BitTorrent communities. The difficulty
of the problem involves realizing good quality models with an affordable
communication complexity, while assuming as little as possible about
the communication model. Here we describe a conceptually simple, yet
powerful generic approach for designing efficient, fully distributed, asyn-
chronous, local algorithms for learning models of fully distributed data.
The key idea is that many models perform a random walk over the net-
work while being gradually adjusted to fit the data they encounter, using
a stochastic gradient descent search. We demonstrate our approach by
implementing the support vector machine (SVM) method and by ex-
perimentally evaluating its performance in various failure scenarios over
different benchmark datasets. Our algorithm scheme can implement a
wide range of machine learning methods in an extremely robust manner.

1 Introduction

Data aggregation has long been considered an important aspect of a peer-to-peer
(P2P) system. In the past decade, an extensive literature has accumulated on
the subject. Research has mainly focused on very simple statistics over fully dis-
tributed databases, such as the average of a distributed set of numbers [18,15],
separable functions [22], or network size [20]. General SQL queries have also
been implemented in this fashion [25]. The main attraction of the known fully
distributed (mostly gossip-based) algorithms for data aggregation is their im-
pressive simplicity and efficiency, combined with robustness to benign failure.

Simple statistics or queries are very useful, but often more is needed. For ex-
ample, for a P2P platform that offers rich functionality to its users including
� M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy

of Sciences. This work was partially supported by the Future and Emerging Tech-
nologies programme FP7-COSI-ICT of the European Commission through project
QLectives (grant no.: 231200).

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 528–540, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 529

spam filtering, personalized search, and recommendation [24,1,3], or for P2P ap-
proaches for detecting distributed attack vectors [5], complex predictive models
have to be built based on fully distributed, and often sensitive, data. At the same
time, it would be highly desirable to build these models without sacrificing any
of the nice properties of the aggregation algorithms mentioned above.

In sum, we need to find fully distributed, efficient, and lightweight data min-
ing algorithms that make no or minimal assumptions about the synchrony and
reliability of communication, work on fully distributed datasets without collect-
ing the data to a central location, and make the learned models available to
all participating nodes. Our contribution is that we propose a method based on
stochastic gradient search that meets these requirements. In stochastic gradient
search, the model of the data is gradually evolved as it is exposed to random
records from the training dataset. A wide range of models—including artificial
neural networks, and support vectors—can be evolved in this fashion. Stochas-
tic gradient methods can naturally be implemented in a gossip fashion, where
models perform a random walk over the network, while converging to an op-
timal model. Furthermore, we can even improve the performance of sequential
stochastic gradient methods, exploiting the fact that there are many interacting
models making random walks at the same time.

2 System and Data Model

We assume that the system consists of a potentially very large number of nodes,
typically personal computing devices such as PCs or mobile devices. Every node
has a network address. Every node can send messages to every other node,
provided the address of the target node is available. We assume that messages
can have arbitrary delays, and messages can be lost as well. In addition, nodes
can join and leave at any time without warning, thus leaving nodes and crashed
nodes are treated identically. Leaving nodes can join again, and while offline,
they may retain their state information.

The only middleware service our algorithm relies on is the peer sampling
service [16]. Through this service, each node can request uniform random samples
of the nodes in the network that are likely to be online at the time of the request.
The API of the service consists of a local function getRandomPeer(), which
returns a random node address. Many implementations of the peer sampling
service are known. In this paper we apply the NewsCast protocol, a gossip
based implementation [16]. The overhead of NewsCast consists of sending one
message of a constant size to a random node periodically. This protocol has been
extended to deal with uneven request rates at different nodes, as well as uneven
distributions of message drop probabilities [30].

As for the data distribution model, we assume that each node stores exactly
one data record. These records are of the same type (contain the local values of
the same features) at each node. This extreme distribution model allows us to
support applications that require extreme privacy where, for example, the profile
of a user never leaves the computer of the user.

530 R. Ormándi, I. Hegedűs, and M. Jelasity

3 Background

The basic problem of supervised binary classification can be defined as follows.
Let us assume that we are given a labeled database in the form of pairs of feature
vectors and their correct classification, i.e. (x1, y1), . . . , (xn, yn), where xi ∈ Rd,
and yi ∈ {−1, 1}. The constant d is the dimension of the problem (the number
of features). We are looking for a model f : Rd → {−1, 1} that correctly classifies
the available feature vectors, and that can also generalize well; that is, which can
classify unseen examples too. For testing purposes, the available data is often
partitioned into a training set and a test set, the latter being used only for testing
candidate models.

Supervised learning can be thought of as an optimization problem, where
we want to maximize prediction performance, which can be measured via, for
example, the number of feature vectors that are classified correctly over the
training set. The search space of this problem consists of the set of possible
models (the hypothesis space) and each method also defines a specific search
algorithm (often called the training algorithm) that eventually selects one model
from this space.

Stochastic gradient search is one such generic search algorithm. Without going
into too much detail, the basic idea is that we iterate over the training examples
in a random order repeatedly, and for each training example, we calculate the
gradient of the error function (which describes classification error), and modify
the model along this gradient to reduce the error on this particular example.
At the same time, the step size along the gradient is gradually reduced. In
many instantiations of the method, it can be proven that the converged model
minimizes the sum of the errors over the examples [8].

Let us now turn to support vector machines (SVM), the learning algorithm we
apply in this paper [6]. In its simplest form, the SVM approach works with the
space of linear models to solve the binary classification problem. Assuming a d
dimensional problem, we want to find a d−1 dimensional separating hyperplane
that maximizes the margin that separates examples of the two class. The margin
is defined by the hyperplane as the sum of the minimal perpendicular distances
from both classes.

Equation (1) states the formal SVM optimization problem, where w ∈ Rd and
b ∈ R are the parameters of model, namely the norm of the separating hyper-
plane and the bias parameters, respectively. Furthermore, ξi is the slack variable
of the ith sample, which can be interpreted as the amount of misclassification
error of the ith sample, and C is a trade-off parameter between generalization
and error minimization.

min
w,b,ξi

1
2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi(wT xi + b) ≥ 1 − ξi and ξi ≥ 0 (∀i : 1 ≤ i ≤ n)

(1)

The Pegasos algorithm is an SVM training algorithm, based on a stochastic
gradient descent approach [27]. It directly optimizes a form of the above defined,

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 531

so-called primal optimization task. We will use the Pegasos algorithm as a basis
for our distributed method. In this primal form, the desired model w is explicitly
represented, and is evaluated directly over the training examples. Since in the
context of SVM learning this is an unusual approach, let us take a closer look at
why we decided to work in the primal formulation. The standard SVM algorithms
solve the dual problem instead of the primal form [6]. The dual form is

max
α

n∑

i=1

αi −
1
2

n∑

i,j=1

αiyiαjyjx
T
i xj

s.t.
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C (∀i : 1 ≤ i ≤ n),

(2)

where the variables αi are the Lagrangian variables. The Lagrangian variables
can be interpreted as the weights of the training samples, which specify how
important the corresponding sample is from the point of view of the model.

The primal and dual formalizations are equivalent, both in terms of theoretical
time complexity and the optimal solution. Solving the dual problem has some
advantages; most importantly, one can take full advantage of the kernel-based
extensions (which we have not discussed here) that introduce nonlinearity into
the approach. However, methods that deal with the dual form require frequent
access to the entire database to update αi, which is unfeasible in our system
model. Besides, the number of variables αi equals the number of training samples,
which could be orders of magnitude larger than the dimension of the primal
problem, d. Finally, there are indications that applying the primal form can
achieve a better generalization on some databases [4].

4 Related Work

Here we do not consider parallel data mining algorithms. This field has a large
literature, but the rather different underlying system model means it is of little
relevance to us here. Apart from the related work mentioned in the Introduction,
we focus here on fully distributed data mining algorithms.

We divide fully distributed data mining algorithms into two main groups. In
the first group we can find approaches that do not build models or that build
minimal models like the unsupervised learners [28] or the collaborative filtering
based recommender algorithms [23,2,12,31]. These types of approaches mainly
use other well-studied P2P services like aggregation [18,15] with perhaps some
kind of overlay support like T-Man [14]. We stress that these algorithms do
not implement optimization or generative probability modeling like most of the
state-of-the-art machine learning algorithms do.

In the second group there are algorithms that do build models, but require
services such as round-based synchronization, and other reliability assumptions
(e.g. [7]). As for SVM algorithms, we are aware of only one comparable P2P SVM
implementation called Gadget SVM [13]. This algorithm applies the Push-Sum
algorithm [18], but it requires round synchronization as well.

532 R. Ormándi, I. Hegedűs, and M. Jelasity

Algorithm 1. P2P Stochastic Gradient Descent Algorithm
1: initModel()
2: loop
3: wait(Δ)
4: p ← selectPeer()
5: send currentModel to p

6: procedure onReceiveModel(m)
7: m ← updateModel(m)
8: currentModel ← m
9: modelQueue.add(m)

Algorithm 2. P2Pegasos
1: procedure updateModel(m)
2: η ← 1/(λ · m.t)
3: if y 〈m.w, x〉 < 1 then
4: m.w ← (1 − ηλ)m.w + ηyx
5: else
6: m.w ← (1 − ηλ)m.w

7: m.t ← m.t + 1
8: return m

9: procedure initModel
10: m.t ← 0
11: m.w ← (0, . . . , 0)T

12: send model(m) to self

Hence, to the best of our knowledge there is no other learning approach de-
signed to work in our fully asynchronous system model, and which is capable of
producing a large array of state-of-the-art models.

5 The Algorithm

The skeleton of the algorithm we propose is shown in Algorithm 1. This algorithm
is run by every node in the network. When joining the network, each node
generates a model via initModel(). After the initialization each node starts to
periodically send its current model to a random neighbor that is selected using
the peer sampling service (see Section 2). When receiving the model, the node
updates it using a stochastic gradient descent step based on the training sample
it stores, and subsequently it stores the model. The model queue can be used
for voting, as we will explain later.

Recall that we assumed that each node stores exactly one training sample.
This is a worst case scenario; if more samples are available locally, then we can
use them all to update the model without any network communication, thus
speeding up convergence.

In this skeleton, we do not specify what kind of models are used and what
algorithms operate on them. For example, a model is a d − 1 dimensional hy-
perplane in the case of SVM, as described earlier, which can be characterized
by a d dimensional real vector. In other learning paradigms other model types
are possible. To instantiate the framework, we need to implement initModel()
and updateModel(). This can be done based on any learning algorithm that
utilizes the stochastic gradient descent approach. In this paper we will focus
on the Pegasos algorithm [27], which implements the SVM method. The two
procedures are shown in Algorithm 2.

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 533

Algorithm 3. P2Pegasos prediction procedures

1: procedure predict(x)
2: w ← currentModel
3: return sign(〈w, x〉)

4: procedure votedPredict(x)
5: pRatio ← 0
6: for m ∈ modelQueue do
7: if sign(〈m.w, x〉) ≥ 0 then
8: pRatio ← pRatio +1

9: return sign(pRatio/modelQueue.size()−0.5)

We assume that the model m has two fields: m.t ∈ N, which holds the number
of times the model was updated, and m.w ∈ Rd that holds the linear model. The
parameter λ ∈ R is the learning rate. In our experiments we used the setting
λ = 10−4. Vector x ∈ Rd is the local feature vector at the node, and y ∈ {−1, 1}
is its correct classification. The operator < ·, · > calculates the inner product.
Line 4 gets executed if the local example x is misclassified by the model m.w.

The effect of the algorithm will be that the models will perform a random
walk in the network while being updated using the update rule of the Pegasos
algorithm. In this sense, each model corresponds to an independent run of the
sequential Pegasos, hence the theoretical results of the Pegasos algorithm are
applicable. Accordingly, we know that all these models will converge to an opti-
mal solution of the SVM primal optimization problem [27]. For the same reason,
the algorithm does not need any synchronization or coordination. Although we
do not give a formal discussion of asynchrony, it is clear that as long as each
node can contact at least one new uniform random peer in a bounded time after
each successful contact, the protocol will converge to the optimal solution.

An important aspect of our protocol is that every node has at least one model
available locally, and thus all the nodes can perform a prediction. Moreover,
since there are N models in the network (where N is the network size), we can
apply additional techniques to achieve a higher predictive performance than that
of an output model of a simple sequential implementation. Here we implement
a simple voting mechanism, where nodes will use more than one model to make
predictions. Algorithm 3 shows the procedures used for prediction in the original
case, and in the case of voting. Here the vector x is the unseen example to be
classified. In the case of linear models, the classification is simply the sign of the
inner product with the model, which essentially describes on which side of the
hyperplane the given point lies. We note, that modelQueue is assumed to be
of a bounded size. When storing a new model in it, an old one will be removed
if the queue is full. In our experiments we used a queue implementation, where
the queue holds the 10 latest added models.

6 Experimental Results

We selected data sets of different types including small and large sets containing
a small or large number of features. Our selection includes the commonly used
Fiser’s Iris data set [9]. The original data set contains three classes. Since the

534 R. Ormándi, I. Hegedűs, and M. Jelasity

Table 1. The main properties of the data sets, and the prediction error of the baseline
sequential algorithms

Iris1 Iris2 Irirs3 Reuters SpamBase Malicious10
Training set size 90 90 90 2000 4140 2155622
Test set size 10 10 10 600 461 240508
Number of features 4 4 4 9947 57 10
Classlabel ratio 50/50 50/50 50/50 1300/1300 1813/2788 792145/1603985
Pegasos 20000 iter. 0 0 0 0.025 0.111 0.080 (0.081)
Pegasos 1000 iter. 0 0 0.4 0.057 0.137 0.095 (0.060)
SVMLight 0 0 0.1 0.027 0.074 0.056 (–)

SVM method is designed for the binary (two-class) classification problem, we
transformed this database into three two-class data sets by simply removing each
of the classes once, leaving classes 1 and 2 (Iris1), classes 1 and 3 (Iris2), and
classes 2 and 3 (Iris3) in the data set. In addition, we included the Reuters [11],
the Spambase, and the Malicious URLs [19] data sets as well. All the data sets
were obtained from the UCI database repository [10]. Table 1 shows the main
properties of these data sets, as well as the prediction performance of the baseline
algorithms. SVMLight [17] is an efficient SVM implementation. Note that the
Pegasos algorithm can be shown to converge to the same value as SVMlight [27].

The original Malicious URLs data set has about 3,000,000 features, hence
we first reduced the number of features so that we could carry out simulations.
The message size in our algorithm depends on the number of features, therefore
in a real application this step might also be useful in such extreme cases. We
used a simple and well-known method, namely we calculated the correlation
coefficient of each feature with the class label, and kept the ten features with
the maximal absolute values. If necessary, this calculation can also be carried
out in a gossip-based fashion [15], but we performed it offline. The effect of this
dramatic reduction on the prediction performance is shown in Table 1, where
the results of Pegasos on the full feature set are shown in parentheses (SVMlight
could not be run due to the large size of the database).

6.1 Scenarios

The experiments were carried out in the event based engine of the PeerSim sim-
ulator [21]. The peer sampling service was provided by the NewsCast protocol.
The network size is the same as the database size; each node has exactly one sam-
ple. Each node starts running the protocol at the same time. The protocol does
not require a synchronized startup, but we need it here to analyze convergence
in a clearly defined setting.

In our experimental scenarios we modeled message drop, message delay, and
churn. The drop probability of each message was 0.5. This can be considered
an extremely large drop rate. Message delay was modeled as a uniform random
delay from the interval [Δ, 10Δ], where Δ is the gossip period, as shown in

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 535

Algorithm 1. This is also an extreme delay, which is orders of magnitudes higher
than what can be expected in a realistic scenario.

We also modeled realistic churn based on probabilistic models in [29]. Accord-
ingly, we approximated the online session length with a lognormal distribution,
and we approximated the parameters of the distribution using a maximum like-
lihood estimate based on a trace from a private BitTorrent community called
FileList.org, obtained from Delft University of Technology [26]. We set the offline
session lengths so that at any moment in time 90% of the peers were online. In
addition, we assumed that when a peer came back online, it retained its state
that it had at the time of leaving the network. We now list the scenarios we
experimented with: No failure: there is no message drop, no delay and no churn;
Drop only: we simulate message drop as described, but no other types of failure;
Delay only: we simulate message delay only; Churn only: we simulate node churn
only; All failures: we apply message drop, delay and churn at the same time.

6.2 Metrics

The evaluation metric we focus on is prediction error. To measure prediction
error, we need to split the datasets into training sets and test sets. The ratios
of this splitting are shown in Table 1. At a given point in time, we select 100
peers at random (or all the peers, if there are fewer than 100) and we calculate
the average misclassification ratio of these 100 peers over the test set using the
current models of the peers. The misclassification ratio of a model is simply
the number of the misclassified test examples divided by the number of all test
examples, which is the so called 0-1 error.

Moreover, we calculated the similarities between the models circulating in the
network using the cosine similarity measure. This was done only for the Iris
databases, where we calculated the similarity between all pairs of models, and
calculated the average. This metric is useful for studying the speed at which the
actual models converge. Note that under uniform sampling it is known that all
models converge to an optimal model.

6.3 Results

Figure 1 shows the results over the Iris datasets for algorithm variants that do
not apply voting for prediction. The plots show results as a function of cycles.
One cycle is defined as a time interval of one gossip period Δ. Although the size
of each data set is the same, the dynamics of the convergence are rather different.
The reason is that the learning complexity of a database depends primarily on
the inner structure of the patterns of the data, and not on the size of data
set. In trivially learnable patterns a few examples are enough to construct a
good model, while under complex patterns a large number of samples as well as
many iterations might be required. Since Pegasos also has a similar convergence
behavior, we can be sure that this is not an artifact of parallelization.

Let us now turn to the analysis of the individual effects of the different fail-
ures we modeled, comparing them to two baseline algorithms. The first baseline
algorithm is SVMLight, a sequential efficient SVM solver [17] that optimizes the

536 R. Ormándi, I. Hegedűs, and M. Jelasity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris1

DelayOnly
DropOnly
NoFailure

Pegasos
SVMLight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris2

DelayOnly
DropOnly
NoFailure

Pegasos
SVMLight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris1

AllFailures
ChurnOlny

Pegasos
SVMLight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris2

AllFailures
ChurnOlny

Pegasos
SVMLight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100 1000 10000

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris3

AllFailures
NoFailure

Pegasos
SVMLight

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000A
ve

ra
ge

 o
f m

od
el

 si
m

ila
rit

ie
s (

ov
er

 n
od

es
)

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Model similarities of Iris databases

Iris1 similarity
Iris3 similarity

Iris3 error
Iris1 error

Fig. 1. Experimental results over the Iris databases

dual SVM problem given in (2). It is independent of the cycles, hence its perfor-
mance is shown as a horizontal line. The second baseline algorithm is Pegasos.
We ran Pegasos 100 times, and show the average error at each cycle. Note that
for Pegasos each cycle means visiting another random teaching example.

Clearly, the best performance is observed under no failure. This performance
is very close to that of Pegasos, and converges to SVMlight (like Pegasos does).
The second best performance is observed with churn only. Adding churn simply
introduces an extra source of delay since models do not get forgotten as men-
tioned in 6.1. The situation would be different in an adaptive scenario, which we
do not consider here. In the scenario with message drop only, the performance is
still very close to the ideal case. Considering the extremely large drop rates, this
result is notable. This extreme tolerance to message drop comes from the fact
that the algorithm is fully asynchronous, and a 25% drop rate on average causes
only at most a proportional slowdown of the convergence. Among the individual
failure types, extreme message delay is the most significant factor. On average,
each message takes as much as 5 cycles to reach its destination. The resulting

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 537

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Iris1

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 1 10 100 1000

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Reuters

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000 10000

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

SpamBase

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100

A
ve

ra
ge

 o
f 0

-1
 E

rr
or

 (o
ve

r n
od

es
)

Cycles

Malicious URLs

AllFailures
AllFailuresV

NoFailure
NoFailureV

Pegasos
SVMLight

Fig. 2. Experimental results over the large databases, and the Iris1 database. Labels
marked with a ‘V’ are variants that use voting.

slowdown is less then a factor of 5, since some messages do get through faster,
which speeds up the convergence of the prediction error.

In Figure 1 we also present the convergence of the averaged cosine similari-
ties over the nodes together with their prediction performance under no failures,
without voting. We can see that in the case of each data set the models con-
verge, so the observed learning performance is due to good models as opposed
to random influences.

Although, as mentioned above, in our case convergence speed depends mainly
on data patterns, and not on the database size, to demonstrate scalability we
performed large scale simulations as well with our large data sets. The results can
be seen in Figure 2. Here we plotted just the two scenarios with no failures and
with all the failures. The figure also shows results for the variants that use voting.
A general observation regarding the distinction between the P2Pegasos variants
with and without voting is that voting results in a better performance in all sce-
narios, after a small number of cycles. In the first few cycles, the version without
voting outperforms voting because there is insufficient time for the queues to
be filled with models that are mature enough. On some of the databases the
improvement due to voting can be rather dramatic. We note that where the test
data sets were larger (see Table 1) we obtained smoother convergence curves.

7 Conclusions

In this paper we have proposed a generic framework for fully distributed data
mining, which implements stochastic gradient search. Nodes in the network

538 R. Ormándi, I. Hegedűs, and M. Jelasity

gossip models that are continuously updated at each node along their random
walk. We experimented with an instantiation of this framework using the Pega-
sos algorithm, that is a stochastic gradient descent implementation of the SVM
method. Our main conclusion is that the approach is able to produce SVM mod-
els in a very hostile environment, with extreme message drop rates and delays,
with very limited assumptions about the communication network. The only ser-
vice that is needed is uniform peer sampling. The quality of the models are very
similar to that of the sequential Pegasos algorithm. Furthermore, we can also
outperform Pegasos with the help of a voting technique that makes use of the
fact that there are many independent models in the network passing through
each node. The models are available at each node, so all the nodes can perform
predictions as well. At the same time, nodes never reveal their data, so this
approach is a natural candidate for privacy preserving solutions.

References

1. Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Gossiping per-
sonalized queries. In: Proc. 13th Intl. Conf. on Extending Database Technology
(EBDT 2010) (2010)

2. Bakker, A., Ogston, E., van Steen, M.: Collaborative filtering using random neigh-
bours in peer-to-peer networks. In: Proc. 1st ACM Intl. Workshop on Com-
plex Networks Meet Information & Knowledge Management (CNIKM 2009),
pp. 67–75. ACM, New York (2009)

3. Buchegger, S., Schiöberg, D., Vu, L.-H., Datta, A.: PeerSoN: P2P social networking:
early experiences and insights. In: Proc. Second ACM EuroSys Workshop on Social
Network Systems (SNS 2009), pp. 46–52. ACM, New York (2009)

4. Chapelle, O.: Training a support vector machine in the primal. Neural Computa-
tion 19, 1155–1178 (2007)

5. Cheetancheri, S.G., Agosta, J.M., Dash, D.H., Levitt, K.N., Rowe, J., Schooler,
E.M.: A distributed host-based worm detection system. In: Proc. 2006 SIGCOMM
Workshop on Large-Scale Attack Defense (LSAD 2006), pp. 107–113. ACM, New
York (2006)

6. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, Cambridge
(2000)

7. Datta, S., Giannella, C., Kargupta, H.: Approximate distributed k-means clustering
over a peer-to-peer network. IEEE Trans. on Knowl. and Data Eng. 21, 1372–1388
(2009)

8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Inter-
science, Hoboken (2000)

9. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7(7), 179–188 (1936)

10. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
11. Guyon, I., Hur, A.B., Gunn, S., Dror, G.: Result analysis of the nips 2003 feature

selection challenge. In: Advances in Neural Information Processing Systems 17, pp.
545–552. MIT Press, Cambridge (2004)

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent 539

12. Han, P., Xie, B., Yang, F., Wang, J., Shen, R.: A novel distributed collaborative
filtering algorithm and its implementation on p2p overlay network. In: Dai, H.,
Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 106–115.
Springer, Heidelberg (2004)

13. Hensel, C., Dutta, H.: GADGET SVM: a gossip-based sub-gradient svm solver.
In: Intl. Conf. on Machine Learning (ICML), Numerical Mathematics in Machine
Learning Workshop (2009)

14. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In:
Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA
2005. LNCS (LNAI), vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

15. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dy-
namic networks. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

16. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)

17. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, ch.
11, pp. 169–184. MIT Press, Cambridge (1999)

18. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proc. 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2003), pp. 482–491. IEEE Computer Society, Los Alamitos (2003)

19. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious urls: an appli-
cation of large-scale online learning. In: Proc. 26th Annual Intl. Conf. on Machine
Learning, ICML 2009, pp. 681–688. ACM, New York (2009)

20. Massoulié, L., Merrer, E.L., Kermarrec, A.M., Ganesh, A.: Peer counting and sam-
pling in overlay networks: random walk methods. In: Proc. 25th Annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 123–132. ACM,
New York (2006)

21. Montresor, A., Jelasity, M.: Peersim: A scalable P2P simulator. In: Proc. 9th IEEE
Intl. Conf. on Peer-to-Peer Computing (P2P 2009), pp. 99–100. IEEE, Los Alamitos
(2009), extended abstract

22. Mosk-Aoyama, D., Shah, D.: Fast distributed algorithms for computing separable
functions. IEEE Transactions on Information Theory 54(7), 2997–3007 (2008)

23. Ormándi, R., Hegedűs, I., Jelasity, M.: Overlay management for fully distributed
user-based collaborative filtering. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010. LNCS, vol. 6271, pp. 446–457. Springer, Heidelberg (2010)

24. Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,
D.H.J., Reinders, M., van Steen, M.R., Sips, H.J.: TRIBLER: a social-based peer-
to-peer system. Concurrency and Computation: Practice and Experience 20(2),
127–138 (2008)

25. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems 21(2), 164–206 (2003)

26. Roozenburg, J.: Secure Decentralized Swarm Discovery in Tribler. Master’s thesis,
Parallel and Distributed Systems Group, Delft University of Technology (2006)

27. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated
sub-gradient solver for SVM. Mathematical Programming B (2010)

540 R. Ormándi, I. Hegedűs, and M. Jelasity

28. Siersdorfer, S., Sizov, S.: Automatic document organization in a p2p environment.
In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky,
A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 265–276. Springer, Heidelberg (2006)

29. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proc.
6th ACM Conf. on Internet measurement (IMC 2006), pp. 189–202. ACM Press,
New York (2006)

30. Tölgyesi, N., Jelasity, M.: Adaptive peer sampling with newscast. In: Sips, H.,
Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 523–534.
Springer, Heidelberg (2009)

31. Tveit, A.: Peer-to-peer based recommendations for mobile commerce. In: Proc. 1st
Intl. workshop on Mobile commerce (WMC 2001), pp. 26–29. ACM Press, New
York (2001)

Evaluation of P2P Systems under Different

Churn Models: Why We Should Bother�

Marc Sànchez-Artigas and Enrique Férnandez-Casado

Department of Computer Engineering and Mathematics
Universitat Rovira i Virgili, Catalonia, Spain

{marc.sanchez,enriqueeduardo.fernandez}@urv.cat

Abstract. Research on peer-to-peer (P2P) systems has been hampered
by the fact that few systems are actually in use, and the space of possible
applications is still under scrutiny. As a consequence, new ideas have been
mostly evaluated using synthetic data, traces from a few existing systems
and simulators, with a poor characterization of churn. This void has lead
to the formulation of a variety of models, with implications that have not
yet been made altogether clear to the community. In this work, we discuss
the question whether it pays off to evaluate P2P applications using more
than one churn model. Although an affirmative response could appear to
be obvious at first glance, we show that depending on the aspects under
consideration, models can yield equivalent results, saving implementation
time but leading to spurious generalizations if proper care is not taken.

1 Introduction

Simulations are the most popular tool for studying peer-to-peer (P2P) systems.
The cost of implementation is less than that of large-scale experimentation and, if
carefully crafted, a simulation can be more realistic than any tractable analytical
model. However, when we talk about churn, the continuous process of user arrival
and departure, it is easy to come to the question of how to model the dynamics of
a system appropriately. Since there is not a clear picture yet, there is no means to
protect researchers against bias in the evaluation of new ideas and applications.
Despite best intentions, researchers very often assume that the results obtained
from a model apply to other configurations. For this reason, it is vital to ascertain
whether there exists any apparent danger in the generalization of results due to
the technical peculiarities of existing churn models.

These peculiarities include the arrival process of users into the system, their
ontime and offtime durations, and the proportion of temporary and permanent
departures. The exponential and Pareto distributions have been widely employed
to model the behavior of users [8][12][19], with marked differences in the results
depending on the distribution. We consider both distributions in our analysis.

In this paper, we try to answer the “why bother” question, i.e., whether it pays
off to use more than one churn model to evaluate a new idea, simply because a
� This research work has been partially funded by the Spanish Ministry of Science and

Innovation through project DELFIN, TIN2010-20140-C03-03.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 541–553, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

542 M. Sànchez-Artigas and E. Férnandez-Casado

general extrapolation of results to reality might be problematic. To inform this
debate, we use four state-of-the-art models and compare them according to some
metrics to quantify the magnitude of their difference. Armed with these metrics,
and equating all models in terms of asymptotic availability, we see that although
models can seem equivalent in appearance, the peculiarities of each one can lead
to disparate conclusions in practice. Proof of that is their close similarity in the
Poissonity of user arrivals, which, in conjunction with the same mean availability,
can give a strong sensation of indistinguishability across all models. In this case,
by following a reasoning similar to that in [6], a typical false generalization might
be that lifetime-based churn models have an equivalent uniform failure model in
the steady state. On the contrary, we argue that, although a single model makes
for rapid prototyping, a deeper inspection is necessary to clarify to which extent
the results from one model are enough to draw firm conclusions. To whet reader’s
appetite, we provide here a first interesting finding of this piece of research:

Based on our analysis, we show that for general situations, where arrivals are
well-modeled by a Poisson process, any model is as good as any other, and only
when results relatively depend on availability patterns, it pays off to account for
their differences. This result provides a rule of thumb to determine when a claim
on churn is exaggerated, or when it can be considered adequate.

The rest of this work is organized as follows. In Section 2, we overview related
work. Section 3 presents the churn models that are subject of our comparison as
well as their concrete instances. Section 4 compares the models in three different
relevant aspects. Section 5 concludes this work.

2 Related Work

The phenomenon of churn widely exists in P2P systems, large-scale distributed
systems, etc. Quite a few measurements have been conducted to understand the
characteristics of churn in recent years. Particularly enriching are the works [2][14]
and [13]. In these works, the authors found similar phenomena of system churn.
They observed that the distribution of user lifetimes in real P2P systems is often
heavy-tailed, which means that while most users spend several minutes per day, a
handful of other users keep their computers logged in for weeks. We investigated
the properties of each model using a Pareto distribution to reflect reality.

Analytical models capturing the many faces of churn are available too, such
as [19][8][7]. Each of these works proposed a new model to analyze one aspect of
P2P systems, such as connectivity in this case, each from a particular viewpoint,
thereby making it hard for someone not familiar in the area to come to the right
conclusions. The same happened in other areas, though it is particularly visible
in the storage literature (see [18] for references therein).

Surprisingly, despite the broad literature on churn, no comparative analysis
has yet been conducted to ascertain whether the peculiarities of each model are
problematic to predict the performance of a system in the real world. If this was
the case, the potential of a new solution may be either over- or underestimated,
leading to misleading conclusions. To the best of our knowledge, this is the first

Understanding Churn Evaluation 543

work to elucidate some of the existing differences between the models, even when
the mean online and offline durations are the same in all models.

3 Models and Distributions

In this section, we describe the models we chose to support our thesis as well as
the specific distributions chosen for the ON/OFF durations.

3.1 Churn Models

Despite numerous studies of the effects of churn, there are no general simula-
tors that incorporate the most popular churn models. To fill this gap, we im-
plemented a tool called Affluenza[4], available at http://ast-deim.urv.cat/
trac/affluenza/, with several representative churn models. For this analysis,
we chose four models for their characteristics and referred to each one by the
name of the first author. These models were: Leonard [8], Yao [19], Duminuco [3]
and Wang [17].

With the exception of Leonard, in the rest of models, each peer can be viewed
as alternating between online/offline states. Formally, this can be represented as
an ON/OFF right-continuous process {Zi(t)} on time interval [0,∞), indicating
the state of user i. That is, Zi(t) = 1 if user i is ON at time t, and 0 otherwise.
What varies across these models is either the common assumption of stationarity
in user arrivals or the distinction between temporary or permanent churn.

Yao: This model describes a stationary alternating renewal process, where users
behave independently of each other. This means that for i 	= j, processes {Zi(t)}
and {Zj(t)} are independent, and therefore users do not synchronize their arrival
or departures, exhibiting uncorrelated lifetime characteristics. For each process
{Zi(t)}, this model assumes that ON durations Li have some distribution Fi(x)
with mean li = E {Li} < ∞ and that OFF durations Di have some distribution
Gi(x) with mean di = E {Di} < ∞, respectively. Consequently, this model takes
into account the heterogeneous behavior of users as a main characteristic.

Duminuco: In this model each user can be described by a stationary alternating
process with independent and identically distributed online and offline durations.
However, ON/OFF durations are drawn from two general distributions F (x) and
G(x), which are not unique to each user. Moreover, users may permanently leave
the network or become temporarily offline according to an abandon ratio P . To
prevent the network size from depleting to zero, new users arrive according to a
Poisson process with rate R = μPn, where n is the target network size and μ is
the disconnection rate which includes permanent and temporary disconnections.

Wang: This model can be viewed as an extension of Yao model to accommodate
non-stationary dynamics like diurnal arrival/departure patterns. As Duminuco,
the duration of ON periods is drawn from a general distribution F (x), but OFF
states are now split into two sub-states: REST and WAIT. The REST state can

http://ast-deim.urv.cat/trac/affluenza/
http://ast-deim.urv.cat/trac/affluenza/

544 M. Sànchez-Artigas and E. Férnandez-Casado

be visualized as the delay between a departure and midnight. The WAIT state
represents the delay from midnight until the user rejoins the system again within
a given day, which follows its own distribution FA(x). Unlike prior models, Wang
model allows OFF periods to be dependent on the time of day and the duration
of the previous ON period.

Leonard: The main particularity of this model is the absence of OFF durations.
Upon joining, each user is given a random lifetime drawn from some distribution
F (x) which reflects the amount of time the user stays in the network. Once the
lifetime expires, the user departs from the system permanently. To maintain the
network size stable, each failed node is immediately replaced by a fresh one with
another random lifetime.

3.2 ON/OFF Distributions

In line with measurement results that demonstrate heavy-tailed user lifetimes in
real P2P networks [2][14], we use a shifted Pareto distribution to allow arbitrarily
small lifetimes and offtimes. Heavy-tailed distributions exhibit tails that follow a
power-law with small exponent in contrast to traditional distributions (Gaussian,
exponential) whose tails decline faster. Any random variable whose distribution
is heavy-tailed exhibits high variability, and may have infinite variance and mean.
In practical terms, this means that lifetimes following a heavy-tailed distribution
can give rise to extremely large values with non-negligible probability. As a result,
when observed collectively, a group of users can appear to be correlated over time
even when their ON/OFF processes are independent of each other.

The cumulative distribution function of a shifted Pareto is given by F (x) =

Pr {X ≥ x} = 1 −
(
1 + x

β

)−α

, x > 0, α > 1, where scale parameter β > 0 can
change the mean of the distribution without affecting its range (0,∞). Observe
that the mean of this distribution E {X} = β

α−1 is finite only if β > 1, which we
assume holds throughout the paper. Further, we use the exponential distribution
as a baseline for some of the comparisons. Unless noted otherwise, configurations
are as follows (notation Par(α, β) refers to F (x) = 1 − (1 + x/β)−α):

– Yao: We generate n pairs of means li and di that are randomly drawn from
two Pareto distributions with α = 3 to model heterogeneity. For mean ON
periods, we use β = 1 to obtain E {li} = 1/2 hour. For mean OFF durations,
we use β = 2 to get E {di} = 1 hour. We consider three cases:
1. heavy-tailed system HY with Fi(x) ∼ Par(3, 2li) and Gi(x) ∼

Par(3, 2di);
2. very heavy-tailed system VHY with Fi(x) ∼ Par(1.5, li

2) and Gi(x) ∼
Par(1.5, di

2); and
3. exponential EY with Fi(x) ∼ exp(1

li
) and Gi(x) ∼ Par(3, 2di).

– Duminuco: We fix abandon probability to P = 0.05 to let each user stay in
the system for sufficiently long time. Again, we consider three cases:
1. heavy-tailed system HD with F (x) ∼ Par(3, 1) and G(x) ∼ Par(3, 1);

Understanding Churn Evaluation 545

2. very heavy-tailed system VHD with F (x) ∼ Par(1.5, 0.25) and G(x) ∼
Par(1.5, 0.25); and

3. exponential ED with F (x) ∼ exp(2) and G(x) ∼ Par(3, 1).
– Leonard : We investigate three cases: 1) heavy-tailed system HL with F (x) ∼

Par(3, 1); 2) very heavy-tailed system VHL with F (x) ∼ Par(1.5, 0.25) and
3) exponential E with F (x) ∼ exp(2).

To make the comparison fair, it is important to note here that the asymptotic
availability of all Yao and Duminuco instances is 0.5. From Smith’s theorem, it
is easy to see that the asymptotic availability of each user i in the Yao model:
ai = limt→∞ Pr {Zi(t) = 1} = li

li+di
. For sufficiently large n, the availability of

Yao model becomes a = 1
n

∑n
i=1 ai = 0.5, which is equal to Duminuco availability

a = E[L]
E[L]+E[D] , where E[L] =

∫∞
0

(1 − F (x))dx and E[D] =
∫∞
0

(1 − G(x))dx.
For the Wang model, we use only one instance as the purpose of this model is

to be a baseline to study the arrival non-stationarity of the a priori uncorrelated
Yao and Duminuco models. The exact configuration is given in 4.2.

4 Comparative Analysis

Our focus is on the aggregate behavior of a random groups of n users. The reason
is that the particularities of churn models are more apparent for small groups of
users. Observe that while replica sets, routing tables and streaming trees rarely
exceed a few tens of members, entries and connections, respectively, prior works
have paid too much attention to large n behavior, overlooking subtle side effects.

To capture these effects, we compare the models against each other according
to three aspects: 1) the degree of Poissonity in user arrivals, 2) availability inter-
dependence, and 3) system reliability. It is important to note that not all models
can be compared against each other in all aspects. For instance, it does not make
sense to evaluate the Poissinity of the Wang model since the arrivals in this model
are not stationary by definition. Similarly, the absence of offline durations in the
Leonard model precludes any evaluation of its behavior based on user availability.
Despite this caveat, the number of divergences is high and worth to be discussed.

4.1 Poissonity in Arrivals

In the absence of a “universal” churn model, researchers have traditionally made
simplifying assumptions about churn behavior in their definition and evaluation.
One common modeling assumption is that user arrivals follow a Poisson process
(e.g., see [7][10][9][13]). Poisson processes are characterized by interarrival times
that are distributed exponentially and are independent of each other. Also, the
number of Poisson arrivals in non-overlapping time intervals are independent.
When such a process is aggregated to large time-scales, the law of large numbers
applies and the aggregated process converges to the mean quickly. Visually, the
aggregated process appears “smooth” and non-bursty.

In this section, we examine the deviation from Poissonity in user arrivals for
each model. This question is particularly intriguing for ON/OFF models due to

546 M. Sànchez-Artigas and E. Férnandez-Casado

the effect of superposition. While the Palm-Khintchine Theorem states that the
superposition of n renewal processes converges to a Poisson process as n → ∞,
it requires that each point process associated with the renewal process becomes
sparser1 as n → ∞ and the various processes be independent. However, these
conditions are difficult to find in real systems simply because the inter-occurrence
times in the superposition process are statistically dependent, which is especially
visible for small n. In this sense, it is interesting to study the Poissonity of user
arrivals as a function of n, particularly at small values, since in many situations
the response of a user essentially depends on the aggregate behavior of a reduced
number of other users. For instance, in P2P storage systems, peers increase the
availability of their data by replicating it on other users in the network. In these
systems, the number of replicas to maintain high availability is significantly much
lower (by orders of magnitude) than the total network size. To wit, if mean host
availability is 0.5, it can be easily shown than the number of replicas to guarantee
a target availability of 0.999 is only 10 [1]. This result substantiates the need to
characterize arrivals at the group level.

Test for Poissonity in Arrivals. An arrival process is said to be Poisson
having rate λ, λ > 0, if the interarrival times X1, X2, . . . have a common
exponential distribution function: Pr {Xn ≤ t} = 1 − eλt, t ≥ 0. The average
interarrival time is given by λ−1. All the arrivals are independent of each other
and the number of arrivals occurring in a given interval depends only on the
length of that interval.

To evaluate whether a process is Poisson or not, we need to test whether the
process is exponentially distributed and is consistent with independent arrivals.
A linear trend in the Complementary Cumulative Distribution Function (CCDF)
with y-axis on log scale indicates an exponential distribution. To check whether
arrivals are uncorrelated, we compute the autocorrelation function (ACF), r(k),
at different lags. ACF of a time series Xn at lag k corresponds to its normalized
auto-covariance:

r(k) =
Cov {Xn, Xn+k}

σ2
=
∑N−k

n=1 (Xn − μ)(Xn+k − μ)
∑N

n=1(Xn − μ)2
, (1)

where μ and σ are the sample mean and standard deviation, respectively. If the
arrivals are completely uncorrelated, the sample ACF is approximately normally
distributed with mean 0 and variance 1/N , where N is the number of samples.
The 95% confidence limits for r(k) can then be approximated to 0± 2√

N
2. Thus,

for example, if a time series has length N = 100, the approximate 95% confidence
limits are ± 2√

100
= ±0.20.

1 Sparsity can be formulated as follows: Given ε > 0, for each t > 0 and n sufficiently
large: Fjn(t) ≤ ε, j = 1, . . . , n, where Fjn(t) is the inter-occurrence time distribution
of the j-th process. Loosely speaking, this asserts that as n increases, the processes
being combined have renewals very infrequently.

2 Observe that about 95% of values drawn from a normal distribution are within two
standard deviations.

Understanding Churn Evaluation 547

Table 1. Coefficient of determination R2 for a 240-hour portion

Model Scenario n R2 Model Scenario n R2 Model Scenario n R2

Yao VHY 1 0.2771 Leonard VHL 1 0.5584 Duminuco VHD 1 0.2411
VHY 2 0.6440 VHL 2 0.8206 VHD 2 0.8766
VHY 5 0.8804 VHL 5 0.8903 VHD 5 0.9455
VHY 50 0.9934 VHL 50 0.9943 VHD 50 0.9899
VHY 100 0.9970 VHL 100 0.9987 VHD 100 0.9984
HY 1 0.8351 HL 1 0.7935 HD 1 0.5130
HY 2 0.8744 HL 2 0.9628 HD 2 0.8531
HY 5 0.9330 HL 5 0.9896 HD 5 0.9324
HY 50 0.9862 HL 50 0.9984 HD 50 0.9987
HY 100 0.9922 HL 100 0.9994 HD 100 0.9977
EY 1 0.9874 EL 1 0.9927 ED 1 0.3166
EY 2 0.9910 EL 2 0.9961 ED 2 0.5678
EY 5 0.9957 EL 5 0.9966 ED 5 0.6303
EY 50 0.9991 EL 50 0.9980 ED 50 0.6926
EY 100 0.9963 EL 100 0.9990 ED 100 0.7157

Another statistical measure is the Index of Dispersion for Intervals (IDI). Let
Sk denote the sum of k consecutive inter-arrival times Sk = X1 +X2 + · · ·+Xk.
The IDI or k-interval squared coefficient of variation is defined as:

c2
k =

kV ar {Sk}
E {Sk}2 =

kCov {X1, X1} + 2
∑k−1

j=1 (k − j)Cov {X1, X1+j}
kE {X1}2 . (2)

The IDI of an ideal Poisson process equals to 1 for all k. If the arrival process
has larger variance than Poisson at some time scale, then this index increases as
a function of k. c2

k only depends on the length of the series, not on any specific
part of the trace [16]. In addition, for a renewal process, c2

k = c2
1 for all k. Observe

that when c2
k = c2

1 for all k, then Cov {Xi, Xj} = 0 for all i, j(i 	= j). As a result,
looking for fluctuations in the IDI sequence

{
c2
k; k ≥ 1

}
is a good manner to test

for deviations from the renewal property.

Results. We first verify if interarrival times follow an exponential distribution.
From the CCDF plot of interarrival times with the y-axis in logarithmic scale,
we can conjecture that the interarrival times are exponentially distributed if the
plot shows approximately linear behavior. In Fig.1a, we show the CCDF for 240-
hour portion of the VHY as a function of n. As shown in the figure, the shape of
the tail, while never strictly linear, shows a stronger linear trend as n increases,
verifying the Palm-Khintchine Theorem. For the rest of configurations, we found
a similar behavior, though we have not included the plots due to lack of space.
To give insight into the their potential Poissonity, Table 1 reports the coefficient
of determination, R2, for all configurations after performing linear regression on
log10 (1 − Pr{X < x}), where Pr {X < x} is the interarrival time distribution.
If R2 is found to be more than 99%, we can conjecture that arrivals are Poisson,
which is, in general, true for n = 100.

548 M. Sànchez-Artigas and E. Férnandez-Casado

However, to strictly claim Poissonity, it is necessary to verify that interarrival
times are independent of each other, which can be done by inspecting the ACF.
For lack of space, we only plot the autocorrelation coefficients for the very heavy-
tailed instances of Yao, Duminuco and Leonard for n = 50. In the plot, horizontal
lines correspond to 95% confidence bounds. As shown in Fig. 1b, autocorrelation
coefficients for most lags lie within 95% confidence interval, which demonstrates
that interarrival times are almost independent of each other.

To quantify deviation from Poisson at different time scales, we use the Index of
Dispersion for Intervals (IDI). As before, we only have considered the instances
VHY , VHL and VHD for n = 50 due to space constraints, although we got similar
results for other configurations. The results are shown in Fig. 1c. An ideal Poisson
process has c2

k ≡ 1 for all k. If an arrival process has higher variance at a given
timescale, c2

k increases with increasing k. Fig. 1c illustrates such behavior. The
values of c2

k for large timescales rapidly diverge as k increases, which indicates a
deviation from Poisson behavior. Altogether the above results show that:

– For sufficiently large n (n typically ∼ 100), arrival processes follow a Poisson
process. Given the same mean availability, such similarity in arrival processes
verifies our rule of thumb that for basic analysis any model is good enough.

– For small n and heavy-tailed durations, arrival processes are not Poisson, so
it critical to account for the existing differences to avoid overestimations.

To conclude, we provide a pictorial proof of the burstiness on the the number
of arrivals per time unit at two different timescales in Fig. 1d. Timescales plotted
are 30 seconds and 5 minutes and the instance chosen is VHY for n = 50. We can
see that the arrival process exhibits burstiness at the two timescales, confirming
the deviation from Poisson and indicating the presence of self-similarity.

4.2 Availability Inter-dependence: A First Difference

As shown in the earlier experiment, for sufficiently small n, the aggregate arrival
process might be non-stationary3 in certain models, in particular, in the models
where the possibilities of a user to contribute too much to the arrivals is high. In
this sense, it is prudent to check if non-stationarity induces availability patterns
between users that vary with time-of-day. A low availability inter-dependence is
desirable for many P2P applications, such as storage systems, where correlated
churn exhibits a degree of burstiness and impacts file availability and durability
greatly [18][5]. In this case, we will see that the differences are significant. Hence,
it will be risky to extrapolate results from one model to another.

We characterize the dependence between every pair of users using the cosine
similarity between their uptime histories. We represent the uptime history of a
host as a binary string of size W , where bit bt is 1 if the host was online a time t,
and −1 otherwise. We assume that samples are taken at discrete points tj = Δj,

3 Let λ(t) =
∑n

i=1 λi(t) be the aggregate arrival rate of a random set of exactly n
users, where λi(t) is the arrival rate of user i in [0, t]. We consider that the arrival
process is non-stationary when λ(t) is not simply a constant λ.

Understanding Churn Evaluation 549

0 200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Interarrival Time (seconds)

Pr
{X

 ≥
 x

}

n = 5
n = 50
n = 100

(a) CCDF plot with y-axes in log scale.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Lag

Sa
m

pl
e

A
ut

oc
or

re
la

ti
on

Duminuco
Yao
Leonard
upper 95% confidence bound
lower 95% confidence bound

(b) ACF plot for n = 50.

10
1

10
2

10
3

0

2

4

6

8

10

12

k

ID
I

Yao
Duminuco
Leonard

Poisson

(c) IDI plot for n = 50.

0 500 1000 1500 2000
0

10

20

30

Time Unit = 5 minutes

A
rr

iv
al

s/
T

im
e

U
ni

t

0 500 1000 1500 2000
0

2

4

6

Time Unit = 30 seconds

A
rr

iv
al

s/
T

im
e

U
ni

t

(d) Arrival process at two timescales.

Fig. 1. Poissonity in arrivals for very heavy-tailed instances: VHY , VHL, VHD

j = 1, 2, . . . , W , in the interval [Δ, τ] for any Δ > 0, where τ = ΔW . To capture
time-of-day effects, we fix τ = 24 hours with Δ = 1 minute.

Once we have the uptime story for each host, we can construct random groups
of size n, where a group contains a uptime string for each member host. Let Ai

be the uptime history of user i in a group G. For each group, we then compute
the average pairwise cosine similarity of all users in each group G, using the next
equation:

Sim(G) =

∑
i,j∈G,i=j cosSim(Ai, Aj)

∑|G|−1
i=1 i

, (3)

where cosSim(Ai, Aj) =
∑W

k=1 Ai[k]Aj [k]√∑
W
k=1 Ai[k]2

√∑
W
k=1 Aj [k]2

is nothing but the cosine

similarity between vectors Ai and Aj. Note that this measure can vary between
−1 and 1. If the value of the measure is close to −1, this means that users i and
j do not overlap in time. If the value of the measure is near zero, then it can be
concluded that there is no correlation between users i and j, i.e., the availability
of i does not tell anything about the availability of j over time. Otherwise, if the
value of the cosine measure is near 1, users i and j are perfectly correlated. For
P2P systems, a value close to 1 is highly undesirable as it means that users tend

550 M. Sànchez-Artigas and E. Férnandez-Casado

to abandon the network irregularly and in batches, which can trigger unnecessary
repairs in P2P storage systems [18], or induce overlay partitions [11], for instance.

To characterize availability inter-dependence, we conducted two experiments,
one with n = 5 and the other with n = 50. We used the very-heavy tailed systems
VHY and VHD together with the following instance of the Wang model. For ON
periods, we chose F (x) ∼ Par(1.5, 0.25) with arrival distribution FA(x) following
a truncated Weibull distribution with shape parameter k = 0.53.

In Fig. 2, we plot the probability density function (PDF) of mean pairwise
cosine similarity for a collection of 1000 random groups. As shown in the figure,
PDF of cosine similarity differs notably from one model to another. As expected,
cosine similarity is peaked around 0.95 for the Wang model as arrivals are highly
correlated. However, what is surprising is the high level of correlation exhibited
by the Duminuco configuration. This high correlation is explained by the action
of the Poisson process that compensates permanent departures. On expectation,
R = μPn new users join the system every hour to compensate the users departing
permanently from the system. This means that within time period (12, 24], it is
expected that 12 R new users join the system, which equals to 6 for n = 5. Since
these users have the first half of their availability histories set to −1 as they were
initially OFF, their correlation is close to 1, which makes the average pairwise
cosine similarity to be near 0.5. Even Yao configuration exhibits a certain positive
correlation due to heavy tails despite that user processes are independent.

4.3 Reliability: A Second Difference

As defined by Siewiorek and Swarz in [15], the reliability of a system as a function
of time, R(t), is the conditional probability that the system has survived the time
interval [0, t], given that the system was operational at time t = 0. For storage
systems, this might mean that the system does not lose data before the mission
time t. In terms of overlay connectivity, this might mean that the system has no
isolated nodes, and hence partitions, provided that the overlay was connected
at time t = 0. Whatever the context, reliability gives us sense of the odds of
failure-free operation over time t, irrespective of whether a failure represents the
loss of a data unit or the isolation of a host from the network. As in the previous
two sections, we construct random groups of size n and investigate the statistical
behavior of R(t) as a function of n. Our goal is to determine if there are any
obvious difference between the models in the probability to find all the hosts of
a group offline within time t, given that all were initially online at time 0.

Although the reliability function R(t) can be obtained using Markov models4

in some cases, it is generally difficult to develop closed-form expressions for the
superposition of ON/OFF processes with heavy-tailed ON and OFF periods. To
better understand this, let W (t) be the superposition of n heavy-tailed ON/OFF
processes. Clearly, W (t) =

∑n
i=1 Zi(t) and therefore, W (t) returns the number of

online hosts at time t. Denote by T the time when the last online host of the group
4 One can construct a Markov chain where the states of the chain represent the number

of departures and where the transitions correspond to joins and departures, what is
often referred to as “birth and death processes” in the literature.

Understanding Churn Evaluation 551

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SIM(G)

PD
F

Yao VH
Wang
Duminuco VH

(a) n = 5.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SIM(G)

PD
F

Yao VH
Duminuco VH
Wang

(b) n = 50.

Fig. 2. PDF of mean pairwise cosine similarity for 1000 random groups

logged off. Then, it is easy to see that T can be formalized as the first hitting
time of process W (t) on level 0, i.e., T = inf {t > 0 : W (t) = 0|W (0) = n}. Since
R(t) = 1−Pr{T < t}, the calculation of R(t) reduces to compute the distribution
of T . However, the main problem is that the exact distribution of T is difficult
to develop in closed-form since it depends on transient properties of W (t) [8].

Instead, our recommendation is to use Monte Carlo simulation to calculate
R(t) for the distinct churn models. We accomplish this as follows. We implement
the function I(T < t), which equals to 1 if the last online host departed before
the mission time t, and 0 otherwise. In other words, if the group had all members
offline at least once during [0, t] or not. Since many trials are required to produce
statistically meaningful results, the standard method of approximating reliability
is to run N iterations (typically chosen experimentally) of the simulator and then
make the following calculation: R(t) = 1 −

∑N
i=1

I(T<t)
N .

Since I(T < t) evaluates to 1 when there is a group failure in iteration i, and
0 otherwise, R(t) directly calculates the probability of no group failure in [0, t].

For this experiment, we conducted two simulations, one with n = 5 and the
other with n = 20. In this case, we restricted our attention to the configurations
VHY and VHD and a variant of Yao where Fi(x) ∼ exp(2) and Gi(x) ∼ exp(2)
for all users. We called this variant Exp and we used it as a baseline to quantify
the effects of heavy tails on R(t). To obtain meaningful results, we set N = 1000.

In Fig. 3, we depict R(t) as a function of the mission time t. Non-surprisingly,
the results show that heavy tails increase reliability in all cases, although their
effect is not homogeneous and depends on the group size. For n = 20, Duminuco
performs better whereas for n = 5 is more unreliable than Yao. This phenomenon
can be explained by the arrival of fresh users into the system with Poisson arrival
rate R = μPn. For n = 20, two new users join the system every hour on average,
which combined with heavy-tailed lifetimes prolong significantly the time to find
all users simultaneously offline. For n = 5, however, the extremely large offtimes
cannot be compensated by the arrival of a new user every 2 hours and reliability
declines faster. This result reinforces the idea that the peculiarities of each model

552 M. Sànchez-Artigas and E. Férnandez-Casado

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time (hours)

R
el

ia
bi

lit
y

Duminuco VH
Exp
Yao VH

(a) n = 5.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

time (hours)

R
el

ia
bi

lit
y

Exp
Yao VH
Duminuco VH

(b) n = 20.

Fig. 3. R(t) as a function of the mission time t in hours

emerge when one takes a closer look at the ON-OFF pattern of users, rather than
considering only typical macroscopic aggregates such as the mean availability and
the exact shape of the lifetime distributions.

5 Conclusions

In this paper, we have shown, with the aid of some measures, that the differences
between existing models for churn analysis and evaluation are subtle and require
of technical expertise to interpret results in an appropriate manner. For a general
evaluation, we have seen than any model is as good as any other, but for a reliable
extrapolation it is vital to understand if a particular singularity can overestimate
simulation results. To wit, we have found that user availabilities are surprisingly
more dependent on each other if a small fraction of the departures are permanent,
an insight that we could have not reached without a comparison between models.
For this reason, it is critical to determine to which extent the singularities of each
model can affect the results, and classify them to help researchers not familiar in
the area to correctly evaluate their proposals. Here, we have taken the first step.

References

1. Bhagwan, R., Tati, K., Cheng, Y.-C., Savage, S., Voelker, G.M.: Total recall: Sys-
tem support for automated availability management. In: NSDI 2004, pp. 337–350
(2004)

2. Bustamante, F.E., Qiao, Y.: Friendships that last: peer lifespan and its role in p2p
protocols. In: Web Content Caching and Distribution, pp. 233–246 (2004)

3. Duminuco, A., Biersack, E., En-Najjary, T.: Proactive replication in distributed
storage systems using machine availability estimation. In: CoNext, pp. 27–41 (2007)

4. Fernández-Casado, E., Sànchez-Artigas, M., Garćıa-López, P.: Affluenza: Towards
universal churn generation. In: IEEE P2P 2010, pp. 1–2 (2010)

5. Haeberlen, A., Mislove, A., Druschel, P.: Glacier: highly durable, decentralized
storage despite massive correlated failures. In: NSDI 2005, pp. 143–158 (2005)

Understanding Churn Evaluation 553

6. Kong, J.S., Roychowdhury, V.P.: Price of structured routing and its mitigation in
p2p systems under churn. In: IEEE P2P 2007, pp. 97–104 (2007)

7. Krishnamurthy, S., et al.: An analytical study of a structured overlay in the pres-
ence of dynamic membership. IEEE/ACM TON 16(4), 814–825 (2008)

8. Leonard, D., Rai, V., Loguinov, D.: On lifetime-based node failure and stochastic
resilience of decentralized peer-to-peer networks. In: ACM SIGMETRICS, pp. 26–
37 (2005)

9. Li, J., Stribling, J., Gil, T.M., Morris, R., Kaashoek, M.F.: Comparing the perfor-
mance of distributed hash tables under churn. In: Voelker, G.M., Shenker, S. (eds.)
IPTPS 2004. LNCS, vol. 3279, pp. 87–99. Springer, Heidelberg (2005)

10. Li, J., et. al.: A performance vs. cost framework for evaluating dht design tradeoffs
under churn. In: INFOCOM’05. pp. 225–236 (2005)

11. Mahajan, R., Castro, M., Rowstron, A.: Controlling the cost of reliability in peer-
to-peer overlays. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735,
Springer, Heidelberg (2003)

12. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter p2p networks.
In: FOCS, pp. 492–499 (2001)

13. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
USENIX 2004, pp. 127–140 (2004)

14. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: SPIE/ACM MCN 2002, pp. 156–170 (2002)

15. Siewiorek, D.P., Swarz, R.S.: Reliable computer systems (3rd ed.): design and eval-
uation. A.K. Peters, Ltd., Wellesley (1998)

16. Sriram, K., Whitt, W.: Characterizing superposition arrival processes in packet
multiplexers for voice and data. IEEE JSAC 4(6), 833–846 (1986)

17. Wang, X., et al.: Robust lifetime measurement in large-scale p2p systems with
non-stationary arrivals. In: IEEE P2P 2009, pp. 101–110 (2009)

18. Wu, D., Tian, Y., Ng, K.W., Datta, A.: Stochastic analysis of the interplay between
object maintenance and churn. Comput. Commun. 31, 220–239 (2008)

19. Yao, Z., Leonard, D., Wang, X., Loguinov, D.: Modeling heterogeneous user churn
and local resilience of unstructured p2p networks. In: ICNP, pp. 32–41 (2006)

Introduction

Dariusz Kowalski, Pierre Sens,
Antonio Fernandez Anta, and Guillaume Pierre

Topic chairs

Parallel computing is increasingly exposed to the development and challenges of
distributed systems, such as asynchrony, long latencies, failures, network parti-
tions, mobility, heterogeneity, malicious and selfish behavior, disconnected op-
erations, the lack of load balancing, and many others. Furthermore, distributed
systems are becoming larger, more diverse and more dynamic, for example, in
terms of highly dynamic number of participants and topology changes. The
Euro-Par topic dedicated to distributed systems and algorithms provides a fo-
rum for research and practice, of interest to both academia and industry, to
present and discuss novel approaches in distributed computing and to explore
relations between parallel processing and distributed systems.

We encouraged submission of papers across the whole area of distributed sys-
tems and algorithms, with emphasis on several classical and recent popular sub-
areas, see the topic web page europar2011.bordeaux.inria.fr/topic08.php
for details.

This year three papers were accepted. The paper “Productive Cluster Pro-
gramming with OmpSs”, by J. Bueno, L. Martinell, A. Duran, M. Farreras, X.
Martorell, R.M. Badia, E. Ayguade, and J. Labarta, proposes a novel imple-
mentation of the system for cluster programming, supporting asynchrony, het-
erogeneity and data movement. Another paper — “On the Use of Cluster-Based
Partial Message Logging to Improve Fault Tolerance for MPI HPC Applications”
by T. Ropars, A. Guermouche, B. Ucar, E. Meneses, L.V. Kale, and F. Cappello
— studies the communication patterns of message passing HPC applications in
relation to partial message logging. The third paper “Object Placement for Co-
operative Caches with Bandwidth Constraints”, by U.C. Devi, M. Chetlur, and
S. Kalyanaraman, develops an efficient solution to the caching problem moti-
vated by high-volume streaming through bounded-constrained links.

We would like to take the opportunity of thanking all the authors who submit-
ted their work to the topic, as well as all people involved in the organization and
reviewing process within Euro-Par 2011. In particular, we would like to acknowl-
edge the work of the external referees, who offered enormous help and expertise
in reviewing and assessing papers from many different sub-areas covered by the
topic.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, p. 554, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Productive Cluster Programming with OmpSs

Javier Bueno1,2, Luis Martinell1, Alejandro Duran1, Montse Farreras1,2,
Xavier Martorell1,2, Rosa M. Badia1,3, Eduard Ayguade1,2, and Jesús Labarta1,2

1 Barcelona Supercomputing Center (BSC-CNS)
2 Universitat Politècnica de Catalunya (UPC)

3 Artificial Intelligence Research Institute (IIIA) - Spanish National Research Council (CSIC)

Abstract. Clusters of SMPs are ubiquitous. They have been traditionally pro-
grammed by using MPI. But, the productivity of MPI programmers is low be-
cause of the complexity of expressing parallelism and communication, and the
difficulty of debugging. To try to ease the burden on the programmer new pro-
gramming models have tried to give the illusion of a global shared-address space
(e.g., UPC, Co-array Fortran). Unfortunately, these models do not support, in-
creasingly common, irregular forms of parallelism that require asynchronous task
parallelism. Other models, such as X10 or Chapel, provide this asynchronous par-
allelism but the programmer is required to rewrite entirely his application.

We present the implementation of OmpSs for clusters, a variant of OpenMP
extended to support asynchrony, heterogeneity and data movement for task par-
allelism. As OpenMP, it is based on decorating an existing serial version with
compiler directives that are translated into calls to a runtime system that manages
the parallelism extraction and data coherence and movement. Thus, the same pro-
gram written in OmpSs can run in a regular SMP machine, in clusters of SMPs,
or even can be used for debugging with the serial version. The runtime uses the
information provided by the programmer to distribute the work across the cluster
while optimizes communications using affinity scheduling and caching of data.

We have evaluated our proposal with a set of kernels and the OmpSs versions
obtain a performance comparable, or even superior, to the one obtained by the
same version of MPI.

1 Introduction

Parallel and distributed programming has always been a difficult endeavour. But the
rise in the number of systems and their complexity have put a stress in the way paral-
lel applications are programmed. In recent years, there has been a significant effort to
improve programming models to yield more productive models which still are able to
provide good performance.

Applications for clusters have traditionally been programmed with MPI. But, while
MPI allows to achieve very good performance it comes at the cost of programming
at a very low-level which is error-prone and difficult to debug. Even more, as clusters
become even larger obtaining high-performance requires using asynchronous commu-
nication and overlapping of computation which exacerbates the previous problems.

Shared-memory models, like OpenMP, offer a more productive and easy to debug
environment but all efforts to devise implementations that could scale on clusters have

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 555–566, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

556 J. Bueno et al.

failed so far except for some applications. Other models built specifically for clusters,
like UPC or Co-array Fortran, try give programmers the illusion of a global address-
space where data can be explicitly placed on each node and communications happen
implicitly. But these models do not support well emerging task parallelism where work
is more dynamic and synchronization and communication follow irregular patterns.

Asynchronous Partitioned Global Address Spaces (APGAS) languages, like X10 or
Chapel, were created to address these needs but require programmers to rewrite their
applications completely. Furthermore, to implement communication overlapping, data
prefetch or locality scheduling, the compiler needs to implement complex and costly
analysis of the application.

We designed OmpSs, which combines ideas from OpenMP[11] and StarSs[12], to
try to tackle these problems. It enhances OpenMP with support for irregular and asyn-
chronous parallelism and heterogeneous architectures. It incorporates the idea of dis-
joint address spaces that allows the compiler/runtime to automatically move data as
necessary and perform different kinds of optimizations.

Our previous work has shown successful implementations of these ideas for multi-
core [12], the Cell B.E.[13] and GPUs[10]. In this work, we present the implementation
of the model and evaluation with a set of applications for clusters of multicores. We
show that using OmpSs the same application prepared to run in an SMP can be run in a
cluster. The runtime takes care of moving the data around the different nodes as needed
and of performing different optimizations to improve the overall performance.

Our results with different applications show that, compared with MPI, the speed-
up obtained with OmpSs can be on par or even higher thanks to the asynchronous
parallelism that can be expressed with it.

The paper is structured as follows: section 2 describes OmpSs, the programming
model used to develop the presented work, section 3 presents the main contribution of
this work, the design of Nanos++ for clusters, our implementation of OmpSs, section 4
shows the evaluation of Nanos++, section 5 describes related work to this project and
section 6 concludes and discusses the future directions of this work.

2 OmpSs: From Multicores to Clusters

2.1 Overview

Our proposal is to have a single programming model, OmpSs, covering the different
homogeneous and heterogeneous architectures in use today and opened to future ones.
OmpSs is based on the OpenMP programming model with some modifications to its
execution and memory model. This changes and additions come from ideas from the
Star SuperScalar (StarSs) programming model.

StarSs is a programming model focused on exploiting asynchronous parallelism ex-
pressed using annotations on a sequential code like OpenMP. StarSs also targets dif-
ferent architectures. StarSs is actually the conjuction of a collection of programming
models that targeted different architectures: CellSs, SMPSs, ClusterSs and GridSs.

Execution model. The OmpSs execution model is a thread-pool model instead of the
traditional OpenMP fork-join model. The master thread starts the execution and all

Productive Cluster Programming with OmpSs 557

other threads cooperate executing the work it creates (whether it is from worksharing
or task constructs). Therefore, there is no need for a parallel region. Nesting of
constructs allows other threads to become work generators as well.

Memory model. OmpSs assumes a non-homogeneous disjoint memory address space.
As such shared data may reside in memory locations that are not directly accessible
from some of the computational resources. Therefore, all parallel code can only safely
access private data and for shared data it must specify how it is going to be used (see
below). This assumption is true even for SMP machines as the implementation may
reallocate shared data taking into account memory effects (e.g., NUMA).

Function tasks. OmpSs allows to annotate function declarations or definitions, a la
Cilk[3], with a task directive. In this case, any call to the function creates a new task
that will execute the function body. The data environment of the task will be captured
from the function arguments.

Dependence synchronization. OmpSs integrates the StarSs dependence support[9]. It
allows to annotate both task and worksharings constructs with three additional clauses:

input It specifies that the construct depends on some input data, and therefore, it is not
eligible for execution until any previous construct with an output clause over the
same data is completed.

output It specifies that the construct will generate some output data, and therefore, it is
not elegible for execution until any previous construct with an input or output
clause over the same data is completed.

inout It specifies a combination of input and output over the same data.

The target construct. To support heterogeneity and data motion between address
spaces a new construct is introduced: the target construct[1]. The target construct
can be applied to either task, worksharing constructs or functions. Its syntax is:

1 # pragma omp t a r g e t [c l a u s e s]
2 t a s k c o n s t r u c t | w o r k s h a r i n g c o n s t r u c t | f u n c t i o n d e f i n i t i o n | f u n c t i o n h e a d e r

Where the possible clauses are:

device. It allows to specify on which devices should be targeting the construct (e.g.,
cell, gpu, smp, . . .). If no device clause is specified then the target devices are
decided by the implementation (by default SMP).

copy in. It specifies that a set of shared data may be needed to be transferred to the
device before the associated code is going to be executed.

copy out. It specifies that a set of shared data may be needed to be transferred from
the device after the associated code is executed.

copy inout. This clause is a combination of copy in and copy out.
copy deps. It specifies that if the attached construct has any dependence clauses then

they will also have copy semantics (i.e., input will also be considered copy in,
output copy out and inout copy inout).

558 J. Bueno et al.

implements. It specifies that the code is an alternate implementation for the target
devices of the function name specified in the clause. This alternate can be used
instead of the original if the implementation considers it appropriately.

The different copy clauses are advisory and not mandatory. This allows the imple-
mentation to take advantage of devices with access to the shared memory or implement
different caching and prefetch techniques. To make sure that data that could have moved
to a device is valid again in the host, SMP code must also use the copy clauses or ap-
pear after an OpenMP flush (either explicit or implicit).

2.2 Example

Fig. 1 shows some of these features applied to a SparseLU code. The master thread
traverses the kk loop and because a task construct prepends the functions lu0, fwd,
bdiv and bmod, it will spawn tasks for each of the calls. When the tasks are created,
the runtime will use the dependence information to build a dynamic task graph. The
[BS][BS] pointer notation specifies that a block of size BSxBS is being pointed
by the pointer. Task with no predecessors will be elegible for execution and they will
release new tasks as they finish. Note that because of the sparseness of the computation
it is difficult to have a pre-computed task dependence graph.

1 # pragma omp t a r g e t copy deps
2 # pragma omp t a s k i n p u t ([BS] [BS] d i a g) i n o u t ([BS] [BS] c o l)
3 vo id fwd (f l o a t ∗d iag , f l o a t ∗ c o l) ;
4 # pragma omp t a r g e t copy deps
5 # pragma omp t a s k i n p u t ([BS] [BS] row , [BS] [BS] c o l) i n o u t ([BS] [BS] i n n e r)
6 vo id bmod (f l o a t ∗row , f l o a t ∗co l , f l o a t ∗ i n n e r) ;
7 # pragma omp t a r g e t copy deps
8 # pragma omp t a s k i n p u t ([BS] [BS] d i a g) i n o u t ([BS] [BS] row)
9 vo id bd iv (f l o a t ∗d iag , f l o a t ∗row) ;

10 # pragma omp t a r g e t copy deps
11 # pragma omp t a s k i n o u t ([BS] [BS] d i a g)
12 vo id l u 0 (f l o a t ∗ d i a g) ;
13

14 f o r (kk =0 ; kk<NB; kk ++) {
15 l u 0 (A[kk] [kk]) ;
16 /∗ fwd phase ∗ /
17 f o r (j j =kk +1 ; j j <NB; j j ++) {
18 i f (A[kk] [j j] != NULL)
19 fwd (A[kk] [kk] , A[kk] [j j]) ;
20 /∗ bdiv phase ∗ /
21 f o r (i i =kk +1 ; i i <NB; i i ++)
22 i f (A[i i] [kk] != NULL)
23 bd iv (A[kk] [kk] , A[i i] [kk]) ;
24 /∗ bmod phase ∗ /
25 f o r (i i =kk +1 ; i i <NB; i i ++)
26 f o r (j j =kk +1 ; j j <NB; j j ++)
27 i f (A[kk] [j j] != NULL) {
28 i f (A[i i] [j j]==NULL) A[i i] [j j]= a l l o c a t e c l e a n b l o c k () ;
29 bmod (A[i i] [kk] , A[kk] [j j] , A[i i] [j j]) ;
30 }
31 }
32 # pragma omp t a s k w a i t

Fig. 1. SparseLU example with OmpSs

Productive Cluster Programming with OmpSs 559

The target directive prepending each task specifies that the execution of the tasks
requires that the specified data (in this case the same as the data dependences) is ready
in the location where the task is executed. In case of a pure SMP run this information
will be ignored, but for our cluster implementation it means that the runtime will need
to move the data as necessary. After, the taskwait all tasks will be completed and
the data will be available to the master thread (so it could print the result for example).

3 Implementation

Nanos++ overview. The OmpSs infrastructure is composed by the Mercurium com-
piler and the Nanos++ runtime library. The compiler gets as an input the program an-
notated with the OmpSs directives and generates a transformed version that invokes
services of the Nanos++ runtime.

Nanos++ is an extensible runtime library that supports OmpSs. Its responsibility is to
execute task parallel applications as specified by the compiler. Nanos++ offers mecha-
nisms to schedule the execution of the tasks. The runtime schedules these tasks on the
available resources making sure all constraints specified by the user (order, coherence,
. . .) are maintained. Nanos++ comes with a few scheduling policies (e.g. fifo, lifo, . . .)
but allows new ones by means of plug-in extensions.

Most of the runtime is independent from the actual target architectures supported
(and various of these architectures can be active at the same time). Nanos++ currently
supports several ”conceptual” architectures: smp, smp-numa, gpu[10], tasksim (a simu-
lated architecture)[14] and cluster.

In the following sections we describe the Nanos++ cluster architecture, the general
ordering and coherence mechanisms that ensure the correctnes of the execution and the
data-affinity scheduler that we have implemented to improve performance.

Fig. 2. Nanos++ cluster overview

560 J. Bueno et al.

Nanos++ cluster architecture. Fig. 2 shows the general design of Nanos++ for clus-
ters. The main difference with respect to other supported architectures is that, when
running in a cluster, there will be more than one image of the runtime running at the
same time (i.e., one on each cluster node). When the execution starts, the first image
will become the master image and the rest of the images will become the slave images.
This structure creates an identical address space on each node, which gives the view
of a single distributed address space. This eases the implementation of the proposed
programming model(s) but it limits the total amount of memory used by the program
(i.e., it can use only as much memory as is available in the master node).

All low level communications for control information and data transfers are imple-
mented using active messages. We used GASNet [4] for this functionality since it offers
a network-independent API with native support for various network technologies.

Initially there is only one task that is executed by the master. As this task starts
creating new tasks, they will be scheduled to the local threads of the master node and
to a communication thread that represents the remote nodes. When a task is scheduled
to the communication thread it will be executed by a remote node. There is only one
communication thread1 that will be pooling the task pool for each node of the cluster in
a round-robin fashion. This thread also keeps track of the execution of tasks on remote
nodes, when a node has no task on execution, it will send a new one to it.

The remote execution of tasks is a straightforward process. First, the general coher-
ence mechanisms of the runtime are invoked to ensure that all data that will be needed
by a task is available in the remote node (and it is up-to-date). If not, data is gathered
from its current location. If the data is available in the master node it is sent directly
to the remote node. If it is only available in a remote node, a message is sent to that
node so it sends the data to the new owner. This first step can be done concurrently with
the execution of other remote tasks to overlap communication and computation but our
current implementation does not apply this optimization yet.

After this, the master sends a control message with the task information to start the
execution of the remote task. The slave images are constantly waiting for upcoming
requests and they will start the execution of the task as soon as the request arrives.
When the task finishes, another active message is sent back to the master to notify the
completion of the task.

Tasks executed in a remote node can create new tasks that use the data transferred or
created by their parent task. This allows scalable data decomposition to be coded in the
application. These local tasks will be executed by any thread that becomes available in
the node (and before going to fetch more work from the master node). Currently, we do
not implement stealing between the local queues of the slave nodes.

Nanos++ coherence support. To run tasks in architectures with separated address
spaces, is necessary a mechanism that copies data from the host (or where the task
was created) to where the task will execute and to control the coherence between the
different address spaces. With this mechanism Nanos++ is able to schedule tasks to run
everywhere in the system.

A centralized directory keeps track of the physical location of the data and one soft-
ware cache per cluster node stores data for tasks executed in that node. This cache

1 Our design allows to have more than one if necessary.

Productive Cluster Programming with OmpSs 561

manages the transfers from main memory to the remote nodes memory, avoiding un-
necessary data movement and implementing different coherence policies (by default a
writeback policy is used).

From the point of view of the runtime, copy operations can be of two types: syn-
chronous and asynchronous. Having synchronous copies means that the cache will wait
until all data is available when preparing a task for execution. Asynchronous copies
allow the runtime to place all copy operations of a to-be-scheduled task and start doing
other things while data is being transferred for that task. Although asynchronous op-
erations are not implemented for clusters (as mentioned before), it is relatively easy to
incorporate to the Nanos++ cluster architecture and would enable the runtime to overlap
data transfers and computation.

It is important to notice that the coherence mechanisms assume program correctness.
Applications where tasks write to the same data simultaneously without specifying de-
pendencies result in an undefined behavior.

Nanos++ task scheduler. Minimizing the number of transfers through the network is
critical in clusters to avoid network saturation and reduce the impact of latency in per-
formance. A locality-aware scheduling policy has been implemented to favor schedul-
ing of tasks in the remote nodes where most of their data reside. Directory entries store
a map with the location of data in the system. When a new task is submitted, the sched-
uler computes, for each node, an affinity score based on the location and size of the data
needed by the task. This score is used to place the task in the queue of the node with the
highest affinity. A global queue is used when there is no node with the highest affinity.

The runtime looks for work for work on each node’s queue first, if it is empty, the
global queue is used, if this is empty too then another node’s queue may be used to fetch
a ready task, this aims to prevent application imbalance.

4 Evaluation

4.1 Methodology

In order to evaluate our runtime environment we measured the scalability of several
applications on a cluster of SMPs. We implemented two versions of each application:
one using OmpSs and one using MPI. With this, we compared the performance of the
OmpSs version while running with Nanos++ with the performance obtained by the MPI
version. We consider this a good measure of how good can OmpSs can be compared to
a well known standard like MPI.

Environment. The benchmarks were run in the MareNostrum cluster of PowerPC
970MP @ 2.3GHz processors. Each node has 2 CPUs with 2 cores each and 4 Gb of
physical memory and runs the SLES 10 operating system. The interconnection network
of the cluster is based on Myrinet hardware along with the Myrinet Express driver. All
benchmarks were compiled using the Mercurium C++ compiler version 1.3.5.7 using
the GCC compiler as the backend compiler, -O3 optimization level was always used.

OmpSs was run using the MPI conduit for GASNet. Since there is no specific conduit
available for the Myrinet Express driver, the MPI conduit allowed us to indirectly use
Myrinet Express through the MPICH library that was installed on the system.

562 J. Bueno et al.

Applications

Matrix Multiply. It performs a dense matrix multiplication of two square matrices.
Each matrix is divided in blocks; in the MPI version this is used to tile the execution
of the algorithm, in the OmpSs version tiling is also applied, however the algorithm
is structured slightly different. In the OmpSs version there are two different types of
tasks; the mission of the first type tasks is to create the other type of tasks, which are
the ones that perform the computation, and also distribute the data implicitly during
the process. Using this schema the second tasks benefit from better data locality,
since the parent task already requested their needed data. The MPI version and the
OmpSs version used a simple kernel in order to perform the matrix multiplication.
The matrices had 32x32 blocks of 400x400 doubles on both versions.

NAS EP. The EP benchmark generates pairs of Gaussian random deviates according
to a specific scheme. The main loop keeps all its data private until the end of the
execution, where a reduction is done. The implementation for OmpSs divides the
main loop of the benchmark in tasks, and implements the reduction manually. We
implemented the OmpSs version porting it from the C implementation of the 2.3
NAS Parallel Benchmarks. The MPI version comes from the original NPB v2.3 for
Fortran. We used the class C problem size.

STREAM. STREAM is a benchmark that measures memory bandwith for simple ker-
nels, intended for use with large data sets. It performs 4 simple operations on a
three one dimensional arrays. It does not share any data between nodes so, as EP,
we expected to be able to run STREAM without any problems with OmpSs. We
used 500 Mb arrays in order to use the maximum memory that the GASNet config-
uration used could handle.

Sparse LU. The Sparse LU computes a LU decomposition on a sparse matrix and can
have empty blocks. Due to the sparseness, the total number of tasks generated is
less than in a regular LU. Task parallelism with dependencies can benefit from this
situation as it can overlap multiple iterations at the same time whereas MPI needs
barriers across different iterations. The matrix size used was the same as for the
Matrix Multiply, 32x32 blocks of 400x400 doubles.

Experiments. We run the selected applications with different configurations of num-
bers of nodes to obtain the speed-up of each application for both OmpSs and MPI. We
selected the biggest data set possible, since we did not wanted that the performance
obtained was limited due to using a small problem size. As a baseline, for the speed-up
we use the execution time of the serial version.

4.2 Results

Matrix Multiply. The benchmark achieves a good performance on OmpSs, almost
identical to the MPI version. This is somewhat expected since Matrix Multiply has a lot
of data parallelism that can be exploited efficiently using either MPI or task parallelism.
Figure 3(a) shows the results obtained for both OmpSs and MPI, perfect scalability is
not achieved since communication and computation are not overlapped, but the scala-
bility of the OmpSs code is on par with the MPI code.

Productive Cluster Programming with OmpSs 563

(a) Matrix Multiply (32x32 blocks of
400x400 doubles)

(b) NAS EP (Class C)

(c) STREAM (500Mb arrays) (d) Sparse LU (32x32 blocks of
400x400 doubles)

Fig. 3. Results comparing OmpSs and MPI

STREAM. The results obtained by the STREAM benchmark are almost on par with
MPI. As seen in figure 3(c) We achive almost the same scalability, only losing a little
bit of performance due to the centralized initialization of the tasks. MPI outperforms
OmpSs because of the SPMD model, since, besides the first synchronization done when
initializing the MPI runtime, there is nothing to setup. On the other hand the creation
of tasks in OmpSs takes some time, and it is proportional to the number of tasks, in
addition, the distribution of these tasks also takes time proportional to the number of
nodes of the execution.

Sparse LU. Sparse LU performs better than MPI since it exploits the advantages of
having fine-grained tasks with dependences. This is specially important in sparse ma-
trices since data parallelism is lower than in non-sparse ones. The MPI code can also
be optimized in order to be conscious of this sparseness, however the changes we did to
the benchmark only optimized the amount of data transferred between nodes, keeping
the same application structure. On the other hand, the changes to the OmpSs code were
minimal, and the benefits measured were greater than with the MPI version. Figure 3(d)
shows this effect, where the OmpSs application achieves higher scalability than MPI on
any number of nodes.

564 J. Bueno et al.

NAS EP. The EP benchmark has almost no data sharing among tasks, so it fits well on
the set of applications that can achieve a good performance on distributed environments.
With OmpSs there is no exception and the results showed a perfect lineal speed-up, on
par with the original MPI implementation. Figure 3(b) shows the results we obtained
executing the class C of the benchmark.

5 Related Work

Probably the best well known examples of parallel programming models are OpenMP
and MPI. However, each of them has its own disadvantages and there has always been
a good number of projects trying to address them or proposing new features in order to
make them more suitable for the HPC systems we can find nowadays.

OpenMP was designed to provide a high productivity environment to produce paral-
lel programs. Originally focused on dealing with loop-based parallelism, it was recently
updated to the version 3.0, which includes new ways of expressing parallelism in the
form of tasks [11].

OpenMP has influenced many projects due to its ease of use and simplicity. Cilk[3]
is an example of a programming model which also provides task-based parallelism
that can be expressed with simple keywords in a sequential code. Distributed Shared
Memory (DSM) systems have also tried to offer this simple vision of a distributed en-
vironment by adding an extra software and/or hardware layer to the memory hierarchy
that virtualizes the address space of the applications, allowing OpenMP, or other appli-
cations conceived for shared memory, to run on distributed memory architectures. The
big disadvantage of these systems is that the memory access time increases dramati-
cally, difficulting the task of achieving a reasonable performance. Techniques like data
pre-send and pre-fetch along with relaxed memory consistency [8] have tried to over-
come this, however, only a limited number of applications have benefited from such
techniques.

Basumallik et al.[2] presented another approach that aimed to translate OpenMP
to MPI, focusing on parallel loops. While it has achieved a good performance when
running several OpenMP benchmarks, it does not offer asynchronous parallelism like
we provide with OmpSs.

MPI has been a de facto standard in parallel programming for distributed environ-
ments. It offers explicit communication calls to transfer data among a set of processes
running on different nodes of a cluster. The main disadvantage is that this approach
can be complex to apply to some applications, and it requires a lot of effort from the
programmer.

Partitioned Global Address Space (PGAS) programming models have tried to sim-
plify all this burden, and offer a more friendly environment to develop distributed ap-
plications. They try to accomplish this by providing a global address space, which is
distributed among the memory of each node of the execution. With this, they offer the
programmer a simplified vision of the distributed environment, easing the development
and porting of sequential applications to the PGAS. UPC [7] is one of these models, it
takes also ideas from OpenMP in the form of compiler annotations but also has explicit
communication calls.

Productive Cluster Programming with OmpSs 565

Chapel [5] and X10 [6] implement an Asynchronous PGAS (APGAS), which of-
fer asynchronous parallelism and mechanisms to synchronize it. In both environments
is the responsibility of the programmer to deal with the data distribution and
coherence.

An alternative way to provide asynchronous parallelism on clusters is the one ex-
plored by Marjanovic et al.[15], a hybrid programming model that composes SMPSs,
a programming model that inspired OmpSs, with MPI. The main idea is to encapsu-
late the communications in tasks so they are executed when the data is ready. This
technique achieves an asynchronous dataflow execution of both communication and
computation.

6 Conclusions and Future Work

We have presented an implementation of OmpSs for clusters, a programming model that
aims to be a high productivity environment without loss of performance when compared
to other solutions. Coming from StarSs and OpenMP, OmpSs parallelization comes in
the form of compiler directives that can be used to annotate sequential code. With this
annotated code, the Mercurium C++ compiler can generate parallel code to run on top
of the Nanos++ runtime. Applications built this way can be run on several architectures
including GPUs and clusters of SMPs. In this work, we have evaluated the performance
of different applications when running on a cluster of SMPs, and we have compared the
performance obtained against the same applications developed with MPI. The perfor-
mance achieved by OmpSs is on par with the performance obtained by MPI and even in
some cases it can outperform MPI thanks to the asynchronous parallelism implemented
in the form of task-based parallelism with data dependencies.

Since Nanos++ is a young project there is still much work to be done. We plan to
implement techniques that allow us to overlap computation and communication, in the
form of pre-sending or pre-fetching data before a tasks starts the execution, this will
be done in collaboration with a more conscious scheduling. Also, one of our goals
is to being able to scale further than the number of nodes that we have presented on
this work, and also to offer a better handling of multiple threads on slave images. To
achieve this, we will have to implement techniques to improve data distribution and
allow local memory allocation on the remote nodes. This will allow us to fully use the
physical memory of the cluster. Another direction we would like to explore is to include
other devices into the cluster architecture, making Nanos++ capable of managing the
execution of a single application on a cluster composed by SMPs and GPU devices.

Acknowledgments. We thankfully acknowledge the support of the European Com-
mission through the HiPEAC-2 Network of Excellence (FP7/ICT 217068) and the
ENCORE project (FP7-248647), the support of the Spanish Ministry of Education
(TIN2007-60625, and CSD2007-00050), the Generalitat de Catalunya (2009-SGR-980)
and the TEXT project (IST-2007-261580).

566 J. Bueno et al.

References

1. Ayguade, E., Badia, R., Cabrera, D., Duran, A., Gonzalez, M., Igual, F., Jimenez, D., Labarta,
J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Orti, E.S.: A Proposal to Extend the
OpenMP Tasking Model for Heterogeneous Architectures. In: IWOMP: Evolving OpenMP
in an Age of Extreme Parallelism, Dresden, Germany, pp. 154–167 (June 2009)

2. Basumallik, A., Eigenmann, R.: Towards automatic translation of openmp to mpi. In: Pro-
ceedings of the 19th Annual International Conference on Supercomputing, ICS 2005, pp.
189–198. ACM, New York (2005)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216 (1995)

4. Bonachea, D.: GASNet Specification, v1.8. Technical report, U.C. Berkeley (2006)
5. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the chapel lan-

guage. Int. J. High Perform. Comput. Appl. 21, 291–312 (2007)
6. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,

C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, New York, NY, USA (2005)

7. UPC Consortium. UPC Language Specifications v1.2 (May 2005)
8. Costa, J.J., Cortes, T., Martorell, X., Ayguade, E., Labarta, J.: Running OpenMP applications

efficiently on an everything-shared SDSM. J. Parallel Distrib. Comput. (May 2006)
9. Duran, A., Pérez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the OpenMP Task-

ing Model to Allow Dependent Tasks. In: OpenMP in a New Era of Parallelism, pp. 111–122.
Springer, Heidelberg (2008)

10. Ferrer, R., Planas, J., Bellens, P., Duran, A., Gonzalez, M., Martorell, X., Badia., R.,
Ayguade, E., Labarta, J.: Optimizing the Exploitation of Multicore Processors and GPUs
with OpenMP and OpenCL. In: Proceedings of the 23rd International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC 2010) (October 2010)

11. OpenMP ARB. OpenMP Application Program Interface, v. 3.0 (May 2008)
12. Josep, M., Perez, R.M.: Badia, and Jesus Labarta. A dependency-aware task-based program-

ming environment for multi-core architectures. In: IEEE Int. Conference on Cluster Com-
puting, pp. 142–151 (September 2008)

13. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Making it easier to program the
Cell Broadband Engine processor. IBM Journal of Research and Development 51(5), 593–
604 (2007)

14. Rico, A., Duran, A., Cabarcas, F., Ramirez, A., Etsion, Y., Valero, M.: Trace-driven Simula-
tion of Multithreaded Applications. In: Proceedings of the 2011 ISPASS (to appear, 2011)

15. Ayguadé, E., Marjanovic, V., Labarta, J., Valero, M.: Effective communication and computa-
tion overlap with hybrid mpi/smpss. In: Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2010, pp. 337–338. ACM, New
York (2010)

On the Use of Cluster-Based Partial Message

Logging to Improve Fault Tolerance for MPI
HPC Applications

Thomas Ropars1, Amina Guermouche1,2, Bora Uçar3, Esteban Meneses4,
Laxmikant V. Kalé4, and Franck Cappello1,4

1 INRIA Saclay-̂Ile de France, France
thomas.ropars@inria.fr

2 Université Paris-Sud
guermou@lri.fr

3 CNRS and ENS Lyon, France
bora.ucar@ens-lyon.fr

4 University of Illinois at Urbana-Champaign, USA
{emenese2,kale,cappello}@illinois.edu

Abstract. Fault tolerance is becoming a major concern in HPC sys-
tems. The two traditional approaches for message passing applications,
coordinated checkpointing and message logging, have severe scalability
issues. Coordinated checkpointing protocols make all processes roll back
after a failure. Message logging protocols log a huge amount of data
and can induce an overhead on communication performance. Hierarchi-
cal rollback-recovery protocols based on the combination of coordinated
checkpointing and message logging are an alternative. These partial mes-
sage logging protocols are based on process clustering: only messages
between clusters are logged to limit the consequence of a failure to one
cluster. These protocols would work efficiently only if one can find clus-
ters of processes in the applications such that the ratio of logged messages
is very low. We study the communication patterns of message passing
HPC applications to show that partial message logging is suitable in
most cases. We propose a partitioning algorithm to find suitable clusters
of processes given the communication pattern of an application. Finally,
we evaluate the efficiency of partial message logging using two state of
the art protocols on a set of representative applications.

1 Introduction

The generation of HPC systems envisioned for 2018-2020 will reach Exascale
from 100s of millions of cores. At such scale, failures cannot be considered as
rare anymore and fault tolerance mechanisms are needed to ensure the success-
ful termination of the applications. In this paper, we focus on message pass-
ing (MPI) HPC applications. For such applications, fault tolerance is usually
provided through rollback-recovery techniques [9]: the state of the application
processes is saved periodically in a checkpoint on a reliable storage to avoid

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 567–578, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

568 T. Ropars et al.

restarting from the beginning in the event of a failure. In most cases, rollback-
recovery protocols are used flat: the same protocol is executed for all processes.

Flat rollback-recovery protocols have several drawbacks. Coordinated check-
pointing requires to restart all processes in the event of a failure leading to a
massive waste of resources and energy. Message logging protocols need to log
all messages contents and delivery order, which leads to high storage resource
occupation, high communication overhead and high energy consumption.

One way to cope with these limitations is to use hierarchical rollback-recovery
protocols [11, 12, 15, 16, 21]. Clusters of processes are defined during the exe-
cution and different protocols are used inside and between clusters, giving a
hierarchical aspect to the protocol. Typically, a partial message logging protocol
logs messages between clusters to confine the effects of a process failure to one
cluster and a coordinated checkpointing protocol is used within clusters [21, 15].
The efficiency of these protocols depends on two conflicting requirements: i) the
size of the clusters should be small to limit the rollbacks in the event of a failure;
ii) the volume of inter-cluster messages should be low to limit the impact of
logging on failure free performance.

This paper provides three main contributions: i) it shows that suitable process
clustering can be found in most applications; ii) it proposes a bisection-based
partitioning algorithm to find such clusters in an application based on its exe-
cution communication pattern; iii) it shows that partial message logging limits
the amount of computing resources wasted for failure management compared to
flat rollback-recovery protocols.

The paper is organized as follows. Section 2 details the context of this work,
and presents the related work on MPI applications communications analysis.
Section 3 analyzes a set of execution communication patterns in MPICH2. Sec-
tion 4 presents our bisection-based partitioning algorithm, designed to address
the partitioning problem for a partial message logging protocol. Using this al-
gorithm, we evaluate the performance of two state-of-the-art partial message
logging protocols [11, 15] on a set of representative MPI HPC applications. Re-
sults are presented in Section 5. Finally, conclusions are detailed in Section 6.

2 Context

In this section, we first present existing hierarchical rollback-recovery protocols.
Then we present the applications studied in this paper. Finally, we detail the
related work on analyzing characteristics of MPI HPC applications.

Hierarchical Rollback-Recovery Protocols. Rollback-recovery techniques
are based on saving information during the execution of an application to avoid
restarting it from the beginning in the event of a failure. One of the main concerns
is the amount of resources wasted with respect to computing power or energy.
Several factors are contributing to this waste of resources: i) the overhead on
performance during failure free execution; ii) the amount of storage resources
used to save data; iii) the amount of computation rolled back after a failure.

On the Use of Cluster-Based Partial Message Logging 569

Rollback-recovery protocols are usually divided into two categories: check-
pointing-based and logging-based protocols [9]. In checkpointing protocols,
processes checkpoints can be either coordinated at checkpoint time, taken in-
dependently or induced by the communications. For all these protocols, a single
failure implies the rollback of all processes in most cases, which is a big waste
of resources. On the other hand, message logging protocols log the content as
well as the delivery order (determinant) of the messages exchanged during the
execution of the application to be able to restart only the failed processes after
a failure. However, logging all messages during a failure free execution can be
very wasteful regarding communications and storage resources.

Hierarchical rollback-recovery protocols divide the processes of the applica-
tions into clusters and apply different protocols for the communications inside a
cluster and for the communications among clusters. Our work focuses on partial
message logging protocols [11, 12, 15, 21] which apply a checkpointing protocol
inside the clusters and a message logging protocol among the clusters. They are
attractive at large scale because only one cluster has to rollback in the event of a
single failure. These protocols can work efficiently if the volume of inter-cluster
messages is very low in which case the cost of message logging is small.

In this paper, we use two of these protocols for evaluations. Meneses et al.
[15] use a coordinated checkpointing protocol inside clusters. Intra-cluster mes-
sages determinants are logged to be able to replay these messages in the same
order after the failure and reach a consistent state. Considering a single fail-
ure, determinants can be logged in memory. In this study [15] is comparable to
[12] and [21]. Guermouche et al. [11] propose an uncoordinated checkpointing
protocol without domino effect, relying on the send-determinism of MPI HPC
applications. Using this protocol, an ordered set of p clusters can be defined.
Only messages going from one cluster to a higher cluster are logged, limiting the
number of clusters to roll back after a failure to (p+1)/2 on average. Thanks to
send-determinism, this protocol does not require any determinant to be logged
and can tolerate multiple concurrent failures.

Applications Studied. We study a representative set of MPI HPC appli-
cations to see if partial message logging could be used. Thirteen dwarfs have
been defined and seven of them represent seven main classes of computation
and communication patterns corresponding to numerical methods for high-end
simulation in the physical sciences [2]: dense linear algebra, sparse linear alge-
bra, spectral methods, N-body methods, structured grids, unstructured grids,
and MapReduce. This paper does not consider MapReduce applications because
rollback-recovery is not adapted in this case. Our set of applications includes five
of the NAS Parallel Benchmarks (NPB) [3] containing BT, LU, CG, FT, and
MG; three of NERSC-6 Benchmarks [1] (GTC, MAESTRO, and PARATEC);
one of the Sequoia Benchmarks, http://asc.llnl.gov/sequoia/benchmarks/,
(LAMMPS); and an Nbody kernel. Table 1 summarizes the dwarfs covered.

HPC Applications Communications Characteristics. The communica-
tion patterns of most of the applications considered in this paper have already

http://asc.llnl.gov/sequoia/benchmarks/

570 T. Ropars et al.

Table 1. Dwarfs covered by the studied applications

Dense linear
algebra

Sparse linear
algebra

Spectral
methods

N-body simu-
lations

Structured
grids

Unstructured
grids

BT, LU,
PARATEC

CG, MAE-
STRO

FT,
PARATEC

GTC,
LAMMPS,
Nbody

MG, GTC,
MAESTRO,
PARATEC

MAESTRO

been published [1, 18]. Previous studies highlighted some properties. First, most
MPI applications make use of collective communications, but in general with
a very small payload size that remains invariant with respect to the problem
size [20]. Second, the communication graphs of many MPI HPC applications
have a low degree of connectivity [13], which might indicate that processes can
be partitioned into clusters.

3 Communication Patterns

In this section, we first study the communication patterns of some collective
operations in MPICH2. Then, we present communication patterns we collected
by running some applications. To get the communication patterns of MPI ap-
plications execution, we modified the code of MPICH21 to collect data on com-
munications. The applications run on Rennes Grid’5000 cluster over TCP.

We focus on collective communications because they could generate patterns
that are hard to cluster (they involve all processes in the application). Figure
1 presents the set of communication patterns used for MPICH2 collective com-
munications, for a power-of-two number of processes (64 processes) and short
messages (4 bytes). Details on the implementation of collective communications
in MPICH2 can be found in [19]. The recursive doubling algorithm, Fig. 1(a),
is used to implement MPI Allgather and MPI Allreduce operations. The recur-
sive halving algorithm, used in MPI Reduce scatter, has the same communica-
tion pattern. A binomial tree, Fig. 1(b), is used in MPI Bcast, MPI Reduce,
MPI Gather and MPI Scatter. These two patterns are easily clusterizable using
for instance clusters of size 16. The last pattern, corresponding to a store-and-
forward algorithm, is the one used for MPI Alltoall. This pattern is more difficult
to cluster, but the use of MPI Alltoall should be limited in applications targeting
very large scale. For large messages, many of the collective operations do involve
communications between all application processes. Clustering is also difficult to
apply to such patterns. However, as mentioned in Section 2, the payload for
collective communications is usually small: on the set of applications we tested,
we only found this pattern in NPB FT.

Although some of the collective communication patterns define natural clus-
ters (see Fig. 1(a)), some others do not (see Fig. 1(c)). Furthermore, the point-
to-point communications can render the patterns more sophisticated, so much
so that the size or the number of clusters cannot be known a priori. Figure 2
presents the communication pattern of MAESTRO and GTC executed on 512
1 http://svn.mcs.anl.gov/repos/mpi/mpich2/trunk:r7592

On the Use of Cluster-Based Partial Message Logging 571

0

16

32

48

64

0 16 32 48 64

R
ec

ei
ve

r
R

an
k

Sender Rank

 (a) Recursive Doubling

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

0

16

32

48

64

0 16 32 48 64

R
ec

ei
ve

r
R

an
k

Sender Rank

 (b) Binomial Tree

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4

0

16

32

48

64

0 16 32 48 64

R
ec

ei
ve

r
R

an
k

Sender Rank

 (c) Store and Forward

 0

 20

 40

 60

 80

 100

 120

 140

B
yt

es

Fig. 1. Communication patterns inherent in collective communications of MPICH2

 0

 128

 256

 384

512

 0 128 256 384 512

R
ec

ei
ve

r
R

an
k

Sender Rank

 (a) MAESTRO

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08
B

yt
es

 0

 128

 256

 384

512

 0 128 256 384 512

R
ec

ei
ve

r
R

an
k

Sender Rank

 (b) GTC

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

B
yt

es

Fig. 2. Communications patterns of two applications

processes. As exemplified by these two applications, an automated means of
clustering is strictly required to identify clusters of processes in an application.

4 Partitioning for Partial Message Logging Protocols

Here, we propose a bisection-based partitioning algorithm to automate clustering
for partial message logging protocols. The objectives of the clustering are to
reduce the inter-cluster communications, to increase the number of clusters, and
to limit the maximum size of a cluster. We first illustrate the limits of existing
tools and then present our new method.

4.1 Two Possible Approaches

A simplified version of the partitioning problem in which the objectives are to
minimize the size of the logged messages and the maximum size of a part corre-
sponds to the NP-complete graph partitioning problem (see the problem ND14
in [10]). This can be easily seen by considering a graph whose vertices represent
the processes and whose edges represent the communication between the cor-
responding two processes. Using heuristics for the graph partitioning problem
would require knowing the maximum part size. This can be done but requires
an insight into the application and the target machine architecture.

A common variant of the above graph partitioning problem specifies the num-
ber of parts (in other words, specifies the average size of a part) and requires

572 T. Ropars et al.

parts to have similar sizes (thusly reducing the maximum size of a partition).
The problem remains NP-complete [4]. Tools such as MeTiS [14] and Scotch [17]
can be used to solve this problem. A possible but not an economical way to use
those tools in our problem is to partition the processes for different number of
parts (say 2, 4, 8, . . .) and try to select the best partition encountered.

4.2 Bisection-Based Partitioning

Bisection based algorithms are used recursively in graph and hypergraph par-
titioning tools, including PaToH [6], MeTiS and Scotch, to partition the input
graph or hypergraph into a given number of parts. Simply put, for a given num-
ber K of parts, this approach divides the original graph or hypergraph into two
almost equally sized parts and then recursively partitions each of the two parts
into K/2 parts until the desired number of parts is obtained.

We adapt the bisection based approach and propose a few add-ons to address
our partitioning problem. The proposed algorithm is seen in Algorithm 1. The
algorithm accepts a set of P processes and a matrix M of size P × P represent-
ing the communications between the processes where M(u, v) is the volume of
messages sent from the process u to the process v. The algorithm returns the
number of parts K� and the partition Π� = 〈P1, P2, . . . , P

�
K〉. In the algorithm,

the operation Π ← Π � Pk ⊕ Pk1 ⊕ Pk2 removes the part Pk from the partition
Π and adds Pk1 and Pk2 as new parts, where Pk = Pk1 ∪ Pk2 . We use M(U, V)
to represent the messages from processes in the set U to those in the set V .

Algorithm 1. The proposed partitioning algorithm
Input: The set of P processes = {p1, p2, . . . , pP }; the P × P matrix M representing

the communications between the processes
Output: K�: the number of process parts; Π� = 〈P1, P2, . . . , P

�
K〉: a partition of

processes
1: K� ← K ← 1; B� ← B ← 0
2: Π� ← Π ← 〈P1 = {p1, p2, . . . , pP }〉 � a single part
3: while there is a part to consider do
4: Let Pk be the largest part
5: if ShouldPartition(Pk) then
6: 〈Pk1 , Pk2〉 ←Bisect(Pk, M(Pk, Pk))
7: if AcceptBisection(Pk1 , Pk2) then
8: K ← K + 1
9: Π ← Π � Pk ⊕ Pk1 ⊕ Pk2 � replace Pk

10: B ← B +
∑

M(Pk1 , Pk2) � Update volume of inter-parts messages
11: if BestSoFar(Π) then
12: Π� ← Π ; B� ← B; K� ← K � save for output
13: else
14: mark Pk in order not to consider it again at lines 3 and 4.
15: return Π�

The algorithm uses bisection to partition the given number of processes into
an unknown number of parts. Initially, all the processes are in a single part.

On the Use of Cluster-Based Partial Message Logging 573

At every step, the largest part is partitioned, if it should be, into two (by the
subroutine Bisect), and then if the bisection is acceptable (determined by the
subroutine AcceptBisection), that largest part is replaced by the two parts
resulting from the bisection. If this new partition is the best one seen so far
(tested in subroutine BestSoFar), it is saved as a possible output. Then, the
algorithm proceeds to another step to pick the largest part. We now add a few
details. Let Pk be the largest part, then if Pk should be partitioned (tested in the
subroutine ShouldPartition), it is bisected into two Pk1 and Pk2 and tested
for acceptance; if not accepted then the bisection is discarded and Pk remains as
is throughout the algorithm. Notice that when a bisection of Pk is accepted, then
Pk is partitioned for good; if any BestSoFar test after this bisection returns
true, then Pk will not be in the output Π�.

The computational core of the algorithm is the Bisect routine. This routine
accepts a set of processes and the communication between them and tries to
partition the given set of processes into two almost equally sized parts by using
existing tools straightforwardly. One can use MeTiS or Scotch quite effectively
if the communications are bidirectional (M(u, v) 	= 0 =⇒ M(v, u) 	= 0),
in which case M+MT

2 can be used. Alternatively one can use PaToH as each
communication (bidirectional or not) can be uniquely represented as an edge.

The routines ShouldPartition, AcceptBisection, and BestSoFar form
the essence of the algorithm. The routine BestSoFar requires a cost function to
evaluate a partition. The cost function should be defined based on the metric the
user wants to optimize, e.g., the performance overhead, and the characteristics
of the targeted partial message logging protocol. It is function of the part sizes
and of the volume of inter-parts messages. We define a cost function for both of
the mentioned rollback-recovery protocols later in Section 5.1.

ShouldPartition is used to stop partitioning very small parts. It returns
false if the size of the part in question is smaller than a threshold. Although
we mostly used 1 as threshold in our experiments, using a larger threshold will
make the algorithm faster. One could select this threshold based on a minimal
part size considering the properties of the target machine architecture.

The routine AcceptBisection returns true in two cases. The first one is
simply that for Π and Π ′ = Π � Pk ⊕ Pk1 ⊕ Pk2 , we have cost(Π ′) ≤ cost(Π)
according to the cost function. If this does not hold, we may still get better par-
titions with further bisections. To this end, we have adapted the graph strength
formula [7]. For a partition Π = 〈P1, P2, . . . , PK〉, we use strength(Π) = B

K−1
as its strength, B being the volume of inter-parts data. We accept the bisection
if strength(Π ′) ≤ strength(Π). If the bisection reduces the strength, then it can
be beneficial, as it increases the size of the logged messages only a little with
respect to the number of parts.

5 Evaluation

This section presents our experimental results. For the evaluations, we consider
the two partial message logging protocols described in Section 2. We start by

574 T. Ropars et al.

defining a cost function for each of them, evaluating the amount of wasted com-
puting resources for failure management. Then we present the results obtained
by running our implementation of the proposed partitioning algorithm using
these cost functions, on the set of applications executions data we collected. We
first show that these results overcome coordinated checkpointing and message
logging protocols. Then we validate our partitioning algorithm by comparing our
results to the results obtained by the existing graph partitioning tools.

5.1 Defining a Cost Function

We define a cost function to evaluate the amount of computing resources wasted
by failure management, for the two partial message logging protocols. We would
like to stress that the cost functions we define in this section do not give a very
precise evaluation of the protocols, because a lot of parameters would have to
be taken into account. We use some parameters, that we consider realistic, to
provide an insight of the protocols cost. The main goal in this section, is to show
that we manage to find clustering configurations with good trade-off between
the clusters size and the amount of data logged.

We model the cost of a partial message logging protocol for a given clustering
configuration as a function of the total volume of logged messages and the size
of the clusters. We use a formula of the form

cost(Π) = α × L + β × R (1)

where L is the ratio of logged data and R is the ratio of processes to restart after
a failure. The multipliers α and β are the cost associated with message logging
and with restarting processes after a failure, respectively.

To evaluate the overhead of message logging, we use results from [11], where
message logging impact on communications (latency and bandwidth) on a high
performance network results in a 23% performance drop on average. Therefore,
α = 23% can be considered as a maximum theoretical overhead induced by
message logging for a communication-bounded application. For the sake of sim-
plicity, we do not consider in this study the cost of logging intra-cluster messages
reception order in Meneses et al. protocol [15].

To evaluate the amount of computing resources wasted during recovery after
a failure, we consider the global performance of the system. While a subset of the
processes are recovering from a failure, the other processes usually have to wait
for them to progress. We assume that the resources of the hanging processes could
be temporarily allocated for other computations, until all application processes
are ready to resume normal execution. So β includes only the amount of resources
wasted by rolling back processes after a failure.

To compute β, we consider an execution scenario with the following parame-
ters [5]: a Mean Time Between Failure (MTBF) of 1 day; 30 minutes to check-
point the whole application (C); 30 minutes to restart the whole application
(Rs). The optimum checkpoint interval (I) can be computed using Daly’s for-
mula [8]: I =

√
(2×C× (MTBF +Rs)) = 297min. This formula was originally

used in coordinated checkpointing protocols, but we think we can safely apply

On the Use of Cluster-Based Partial Message Logging 575

it to our case. Assuming that failures are evenly distributed a failure occurs at
time I

2 on average. The total time lost per MTBF period can be approximated
by I

2 + Rs = 179min, that is 12, 4% of the period, giving β = 12.4%.
The two other parameters, L and R, are protocol-dependent. In the protocol

proposed by Meneses et al. [15], all inter-cluster messages are logged and only
the cluster where the failure occurs roll back. Considering a partition Π =
〈P1, P2, . . . , PK〉 which entails a volume of B inter-cluster messages over a total
volume of messages D,

cost(Π) = 23% × B

D
+ 12.4%×

∑
k |Pk|2
P 2

(2)

where
∑

k |Pk|2
P 2 is the average number of processes restarting after a failure if the

failures are evenly distributed among the P application processes. As described
in Section 2, the protocol proposed by Guermouche et al. [11] only logs half of
the inter-cluster messages but requires to roll back K+1

2 clusters on average after
a failure:

cost(Π) = 23% × B

2 × D
+ 12.4%× K + 1

2
×
∑

k |Pk|2
P 2

. (3)

5.2 Results

We first evaluate the cost of partial message logging. Table 2 presents the results
obtained by running our partitioning algorithm with PaToH and cost function
(2). The results show that for all applications except FT and MAESTRO, our
tool was able to find a clustering configuration where less than 15% of the pro-
cesses have to roll back on average after a failure, while logging less than 20%
of the data exchanged during the execution.

To get an insight on the quality of the costs obtained, they might be compared
to the cost of a coordinated checkpointing and a message logging protocol. With
a coordinated checkpointing (L = 0, R = 1), the amount of wasted resources
would be 12.4%. With a message logging protocol (L = 1, R = 1

P), this amount
would be 23%. The results show that for all applications except FT, using the
partial message logging protocol minimizes the cost. For applications based on
dense linear algebra (BT, LU, SP, and PARATEC) or N-body methods (GTC,
LAMMPS, and Nbody), the cost obtained is always below 5%.

Table 3 presents the results obtained by running our partitioning algorithm
with PaToH and cost function (3). We evaluate it only with the applications
having a symmetric communication pattern, because in this protocol, messages
logging is not bidirectional and our partitioning tool does not take this in account
yet. In all the tests except MAESTRO, we managed to find clusters such that
the ratio of rolled back processes is around 55% while logging less than 5.3%
of the messages. The cost function of the two partial message logging protocols
cannot be compared because the first one is only valid for a single failure case
while the second one can handle multiple concurrent failures.

576 T. Ropars et al.

Table 2. Partitioning for the protocol of Meneses et al

Size
Nb

Clusters
Min/Max
cluster size

Processes to
roll back

Log/Total Amount
of data (in GB)

Cost

NPB BT 1024 8 123/133 12.5% 201/1635 (12.3%) 4.37
NPB CG 1024 32 32/32 3.1% 910/5606 (16.2%) 4.12
NPB FT 1024 2 502/522 50% 432/864 (50%) 17.7
NPB LU 1024 16 64/64 6.25% 67/700 (9.7%) 3.0
NPB MG 1024 8 128/128 12.5% 20/107 (18.5%) 5.8
NPB SP 1024 8 123/133 12.5% 366/2989 (12.2%) 4.4
GTC 512 16 32/32 6.25% 240/3654 (6.6%) 2.3
MAESTRO 1024 4 252/259 25% 55/309 (17.7%) 7.17
PARATEC 1024 13 64/128 8.5% 2262/23914 (9.4%) 3.23
LAMMPS 1024 8 127/129 12.5% 0.3/4 (7.6%) 3.3
Nbody 1024 30 31/61 3.5% 80/2733 (2.9%) 1.1

Table 3. Partitioning for the protocol of Guermouche et al

Size
Nb

Clusters
Min/Max
cluster size

Processes to
roll back

Log/Total Amount
of data (in GB)

Cost

NPB LU 1024 16 64/64 53.1% 34/700 (4.8%) 7.7
MAESTRO 1024 4 250/262 62.5% 27/309 (8.9%) 9.78
PARATEC 1024 16 61/68 53.1% 1285/23914 (5.3%) 7.8
LAMMPS 1024 8 127/129 56.2% 0.15/4 (3.8%) 7.9

Table 4. Evaluating three tools on PARATEC with the cost function (2)

2 4 8 13 16 32 64

PaToH 7.07 4.52 3.42 3.47 3.36 3.95 5.04
run time 0.60 0.57 0.60 0.59 0.60 0.61 0.60

MeTiS 7.47 5.36 5.38 5.47 5.92 3.82 4.96

Scotch 7.09 4.56 3.44 3.37 3.22 3.67 4.94

To validate our bisection-based partitioning algorithm, we used PaToH, MeTiS
and Scotch as outlined in Section 4.1. Table 4 presents the result of running the
three tools on PARATEC with the cost function (2). We ran the experiment with
K = 2, 4, 8, 16, 32, 64, and also with K = 13 which is the result provided by our
tool (see table 2). First, it has to be noticed that the number of clusters found by
our tool is close to the number of clusters that minimizes the cost function with
PaToH and Scotch. Second, only Scotch manages to slightly improve the cost com-
pared to our tool. However, if we use our tool with Scotch instead of PaToH, we
obtain exactly the same cost. This is mostly due to the fact that Scotch obtains
well balanced partitions for any given K, and that the β in (2) is relatively high. In
cases where β is smaller, the partitioner has a higher degree of freedom. Whereas
the proposed method automatically exploits this leeway, it is hard to specify the
imbalance parameter for the three existing tools we have used (we have not re-
ported these experiments, but this was observed for β around 5). We conclude from
these results that the proposed algorithm manages to find good clusters without
taking a number of clusters as input. The row “run time” below PaToH contains
the running time of PaToH with the given K compared to that of the proposed

On the Use of Cluster-Based Partial Message Logging 577

algorithm (which finds K = 13). As is seen, two runs of PaToH take more time
than a single run of the proposed algorithm (despite the overheads associated with
repeated calls to the library, including converting the data structure).

6 Conclusion

Partial message logging protocols, combining a checkpointing and a message
logging protocol, are an attractive rollback-recovery solution at very large scale
because they can provide failure containment by logging only a subset of the
application messages during the execution. To work efficiently, such protocols
require to form clusters of processes in the application, such that inter-cluster
communications are minimized. In this paper, we showed that such clustering
can be done in many MPI HPC applications. To do so, we analyzed the com-
munication patterns we gathered from the execution of a representative set of
HPC MPI applications. To find clusters, we proposed a bisection-based parti-
tioning algorithm that makes use of a cost function evaluating the efficiency of
a partial message logging protocol for a given clustering configuration. Contrary
to existing graph partitioning tools, this algorithm does not require the number
of clusters as input. We defined a cost function for two state-of-the-art partial
message logging protocols and ran tests on our set of execution data. With both
protocols, results show that we were able to get a good trade-off between the size
of the clusters and the amount of logged messages. Furthermore, with Meneses et
al. protocol, percentage of processes to rollback and of message to log is in many
cases around 10%, which is an order of magnitude improvement compared to
flat rollback-recovery protocols. This result encourages us to continue our work
on partial message logging protocols.

Acknowledgments. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr). This
work was supported by INRIA-Illinois Joint Laboratory for Petascale Computing
and the ANR RESCUE project.

References

[1] Antypas, K., Shalf, J., Wasserman, H.: NERSC-6 Workload Analysis and Bench-
mark Selection Process. Technical Report LBNL-1014E, Lawrence Berkeley Na-
tional Laboratory, Berkeley (2008)

[2] Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Land-
scape of Parallel Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183, University of California, Berkeley (2006)

[3] Bailey, D., Harris, T., Saphir, W., van der Wilngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center (1995)

578 T. Ropars et al.

[4] Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is
NP-hard. Information Processing Letters 42, 153–159 (1992)

[5] Cappello, F.: Fault tolerance in petascale/exascale systems: Current knowledge,
challenges and research opportunities. International Journal of High Performance
Computing Applications 23, 212–226 (2009)

[6] Çatalyürek, Ü.V., Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool,
version 3.0. Technical Report BU-CE-9915, Bilkent Univ.(1999)

[7] Cunningham, W.H.: Optimal attack and reinforcement of a network. J. ACM 32,
549–561 (1985)

[8] Daly, J.: A model for predicting the optimum checkpoint interval for restart
dumps. In: Proceedings of the 2003 International Conference on Computational
Science, ICCS 2003, pp. 3–12. Springer, Heidelberg (2003)

[9] Elnozahy, E.N(M.), Alvisi, L., Wang, Y.-M., Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys 34(3),
375–408 (2002)

[10] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

[11] Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
Checkpointing Without Domino Effect for Send-Deterministic Message Passing
Applications. In: 25th IEEE International Parallel & Distributed Processing Sym-
posium (IPDPS 2011), Anchorage, USA (2011)

[12] Ho, J.C.Y., Wang, C.-L., Lau, F.C.M.: Scalable Group-Based Checkpoint/Restart
for Large-Scale Message-Passing Systems. In: 22nd IEEE International Parallel
and Distributed Processing Symposium, Miami, USA (2008)

[13] Kamil, S., Shalf, J., Oliker, L., Skinner, D.: Understanding ultra-scale applica-
tion communication requirements. In: Proceedings of the 2005 IEEE International
Symposium on Workload Characterization, pp. 178–187 (2005)

[14] Karypis, G., Kumar, V.: MeTiS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices Version 4.0. Univ. Minnesota, Minneapolis (1998)

[15] Meneses, E., Mendes, C.L., Kale, L.V.: Team-based Message Logging: Prelimi-
nary Results. In: 3rd Workshop on Resiliency in High Performance Computing
(Resilience) in Clusters, Clouds, and Grids (CCGRID 2010) (May 2010)

[16] Monnet, S., Morin, C., Badrinath, R.: Hybrid Checkpointing for Parallel Appli-
cations in Cluster Federations. In: Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 2004), pp. 773–782.
IEEE Computer Society, Washington, DC, USA (2004)

[17] Pellegrini, F.: SCOTCH 5.1 User’s Guide. LaBRI (2008)
[18] Riesen, R.: Communication Patterns. In: Workshop on Communication Architec-

ture for Clusters CAC 2006, Rhodes Island, Greece, IEEE, Los Alamitos (2006)
[19] Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-

tion Operations in MPICH. International Journal of High Performance Computing
Applications 19(1), 49–66 (2005)

[20] Vetter, J.S., Mueller, F.: Communication Characteristics of Large-Scale Scientific
Applications for Contemporary Cluster Architectures. Journal of Parallel and Dis-
tributed Computing 63, 853–865 (2003)

[21] Yang, J.-M., Li, K.F., Li, W.-W., Zhang, D.-F.: Trading Off Logging Overhead
and Coordinating Overhead to Achieve Efficient Rollback Recovery. Concurrency
and Computation: Practice and Experience 21, 819–853 (2009)

Object Placement for Cooperative Caches with
Bandwidth Constraints

UmaMaheswari C. Devi, Malolan Chetlur, and Shivkumar Kalyanaraman

IBM Research – India, Bangalore

Abstract. The projected growth in video traffic delivered to mobile devices is ex-
pected to stress the backhaul and core of a broadband wireless network. Caches
deployed at the edge elements, such as base stations, are one of alleviating this
stress. Limits on the sizes of the base station caches and restrictions on frequent
upgrades to the hardware necessitate that techniques that can increase the hit rates
with the growing traffic, given the constraints, be explored. In this paper, we con-
sider using cooperative caching schemes for the purpose. The edge elements are
connected via bandwidth-constrained links, and hence, the assumption made in
most prior work that the cooperating nodes are located on a high-speed network
do not apply here. We show that the problem of placing objects to maximize hit
rate in such a bandwidth-constrained caching system is NP-hard in the strong
sense. We develop an efficient placement algorithm when the caches have identi-
cal characteristics and show that its performance is within a constant factor of the
optimal under practical conditions. We also discuss how to extend the algorithm
for the non-identical case. Our simulation experiments show that in practice, the
performance of our algorithm is very close to the optimal and a few tens of co-
operating nodes are sufficient to significantly increase the hit rate even with a 1%
base cache size.

1 Introduction

Data and Video-on-Demand (VoD) traffic delivered over mobile networks are projected
to grow tremendously in the next few years [5]. Current wireless infrastructures are not
provisioned to handle this growth. The projected growth is hence expected to signifi-
cantly increase the stress on not just the wireless channel, but also the wired backhaul
and core of a cellular network. Wireless network operators are therefore seeking opti-
mizations that can ease this pressure and help defer infrastructure upgrades.

One simple and effective method to reduce the backhaul traffic is to cache frequently
requested content at the edge elements, such as base stations (BS) and central con-
trollers (CC). The limit on the size of a cache that can be placed at a BS is lower than
that of traditional Internet caches by an order of magnitude or more. While the smaller
caches might be capable of providing good hit rates to traditional web traffic, the same
may not hold for VoD and other types of multimedia traffic. This is due to the facts that
video objects are much larger in size and the number of video clips is increasing by the
day. The latter growth is spurred by the growth in user-generated content and IP and
mobile TV, which produce numerous shows per day. In such a scenario, adequate hit
rates may be obtained for the growing traffic by increasing the effective cache size by
enabling cooperation and sharing of objects among the caching nodes.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 579–593, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

580 U.C. Devi, M. Chetlur, and S. Kalyanaraman

Cooperative caching has been studied previously for traditional wired networks.
However, as discussed below, most of the prior work assumes that the caching nodes
are placed on a high-speed network, and hence, that bandwidth available for inter-cache
communication is not a constraint.1 Also, most of the work focuses on minimizing the
average object access latency. In contrast, the bandwidth available for inter-BS or inter-
CC communication in the wireless edge is limited, and our focus is on reducing the
network traffic in the backhaul and core by reducing the byte miss ratio in the edge.
Hence, we explore placing objects in a set of cooperating caches such that the hit rate
(not access latency) of the caches is optimized subject to not violating the inter-cache
communication bandwidth (ICCB) constraints.

Cellular BSs and CCs are organized in a two-level hierarchy with a few 100s of BSs
connected to a CC. We assume that any pair of BSs may communicate either directly
or via their parent CC. In either case, we assume that the bandwidth available for trans-
ferring objects among BSs is limited. In such a setup, we first consider the problem
of placing video objects at the BSs (assuming that there is no cache at the CC) and
specifying how those objects should be shared for the hit rate is maximized. We show
that this problem is NP-hard in the strong sense even when all the caches have identical
sizes and see identical object access patterns, an assumption made in several studies. We
then develop an efficient object placement algorithm for the case of identical caches and
show that it has a constant-factor approximation ratio under conditions expected to hold
in practice. Thirdly, we discuss how to extend the algorithm when second-level caches
are available at the CCs and relax the assumption that caches are identical. Finally, we
evaluate our scheme through simulations.

Our placement algorithm is centralized and the idea is to periodically determine the
placement map at a common node such as the parent CC using object popularity infor-
mation gathered from the BSs. The maps would then be distributed to the BSs, which
would subsequently cache the newly specified objects the first time each is requested.
To reduce object churn, knowledge of objects already cached at the various nodes may
be used while laying out a new map.

Related Work: Cooperative caching was (among other works) first explored as part
of the Harvest project [4]. A notable follow up was the Summary Cache [6], which
introduced efficient directory services. The above efforts were on the development of
techniques and protocols for directing URL requests that miss to sibling or parent nodes
and did not deal with bandwidth constraints.

The above work was followed by a good amount of research on object placement al-
gorithms for a cooperating cluster of web caches. Significant works in this area include
[11], which provides a 13.93-approximation algorithm for placing objects to minimize
the average access cost while imposing no constraints on the available bandwidth, and
[13], which extends the algorithm in [11] by including bandwidth constraints. [13] how-
ever assumes that the cache size at each node is very large and an object will be stored
locally after the initial miss. Hence, unlike our paper, the bandwidth constraints apply
only for the initial object placement and for periodic object updates, and not for serving
requests to objects from peer nodes on a continuous basis. Also, since video objects are

1 Works that impose a bandwidth constraint differ in the objective explored or in the exact nature
of the bandwidth constraint imposed.

Object Placement for Cooperative Caches with Bandwidth Constraints 581

immutable, the need for object updates is obviated, as is the initial object placement as
discussed earlier.

Replicating objects in a content-distribution network (CDN) to minimize the aver-
age number of ASs traversed [10], heuristics for minimizing the end-user retrieval cost
subject to meeting end-user QoS under the assumption of sufficient combined storage
for all the objects [14], and placing objects in a CDN layered on a P2P overlay [12]
have also been studied. P2P techniques are redundant for BS caches as BSs are reliable
entities.

The work that comes closest to ours is [2], which considers placing video objects in
a 2-level hierarchical network with costs on bandwidth usage on the links connecting
the nodes such that the total bandwidth cost is minimized and proposes distributed
algorithms with constant-factor approximation ratios. Bandwidth constraints cannot be
converted to bandwidth costs, and hence, the solution of [2] does not extend to the
problem in this paper, although there is similarity in the structure of our solution and
theirs.

Placing all of a large set of video objects in the video hub offices of a large-scale
distributed VoD system while minimizing the cost of total byte transfer subject to link
bandwidth limits is considered in [1]. The problem differs from ours since we also need
to determine which of the objects need to be placed. Another problem with a similar
flavor, that of distributing chunks of videos among end clients with local connectivity
to reduce the stress on the access networks is considered in [9].

The rest of the paper is organized as follows. Our system model is described in
Sec. 2. Sec. 3 develops a placement algorithm, derives an approximation ratio for it,
and discusses extensions to the algorithm. Simulation studies are described in Sec. 4.
Sec. 5 concludes.

2 System Model and Problem Formulation

We consider a cooperative caching proxy system of N nodes, 1, . . . , N , where node j
is provided with a cache of size Cj . Each request to each of a set of M video objects,
where the size of object i is Si bytes, pass through one of the N nodes. If a requested
object is cached at the node that receives the request, it is served from the node’s local
cache. The nodes are assumed to be provided with dedicated bandwidths, referred to
as inter-cache communication bandwidth, (ICCB), both in the upload and download
directions, that may be used for letting an object cached at a node to be borrowed by a
peer node. Hence, a request that misses at a node’s local cache can be served from either
a peer node or the origin server. The upload and download bandwidth limits at node j
are denoted Bu

j and Bd
j , respectively. The average demand in requests per second for

object i at node j is denoted Rij ; its bandwidth is hence Rij · Si bytes/sec. The total
bandwidth of objects borrowed by/from a node cannot exceed its ICCB limits. We are
concerned with placing a subset of M objects at the N nodes and designating how
objects are shared such that the total bytes served per second from the caches (byte hit
rate) is maximized. Note that since nodes have dedicated ICCB, an object served by
borrowing from a peer cache is considered a hit. We refer to the set of all caches at the
N nodes as the combined or collective cache.

582 U.C. Devi, M. Chetlur, and S. Kalyanaraman

O Place Gen

Maximize
M∑

i=1

N∑

j=1

(xij · Rij · Si +
N∑

k=1

xikj · Rij · Si)

subject to
M∑

i=1

Si · xij ≤ Cj , j = 1, . . . , N (1)

xik +
N∑

j=1

xijk ≤ 1, i = 1, . . . , M, k = 1, · · · , N (2)

xijk ≤ xij , i = 1, . . . , M, j, k = 1, . . . , N (3)
M∑

i=1

N∑

j=1

xijk · Rik · Si ≤ Bu
k , k = 1, . . . , M (4)

M∑

i=1

N∑

k=1

xijk · Rik · Si ≤ Bd
j , j = 1, . . . , M (5)

xij ∈ {0, 1}, xijk ∈ {0, 1}, i = 1, . . . , M,

j, k = 1, . . . , N (6)

Let xij be a 0-1 integer vari-
able denoting whether object i
is placed at cache j. Similarly,
let xijk denote whether object i
placed in cache j is borrowed by
cache k. The problem of placing
objects at the caches and deter-
mining how objects are shared to
maximize the byte hit rate, de-
noted O Place Gen, can then be
formulated as shown in the inset
to the right.

Object i served from node
j, either using a copy locally
cached at it or borrowed from
another node k, would lead to
Rij ·Si fewer bytes per second re-
quested from the hosting servers
and transported over the core and
backhaul networks. The objective function is therefore as indicated. The constraints in
(1) account for the limits on the cache sizes. Constraint (2) prevents a node from both
caching a node locally as well as borrowing from one or more caches, while (3) ensures
that node k borrows an object i from node j only if i is cached at j. (4) and (5) ensure
that the limits on uplink and downlink bandwidths available for inter-cache transport
are not violated at any node.

In O Place Gen, the objective function and all the constraints are linear in the deci-
sion variables, so it is an integer linear program. Solving it with generic integer program
methods can therefore require exponential time. It turns out that even a simpler special
case of the problem with uniform object and cache sizes, denoted S and C, respectively,
identical uplink and downlink bandwidth limits, denoted B, and identical popularity
distributions at all nodes, denoted Ri for object i (the bandwidth for object i would be
Ri · S bytes per sec at all nodes), is actually NP-hard in the strong sense, so an exact
solution to it or the general problem cannot be obtained in polynomial time using alter-
native methods either, unless P=NP. The special case, denoted O Place Spl, is obtained
from O Place Gen by replacing Rij ’s and Rik’s with Ri, Si’s with S, Cj with C, and
Bu

k and Bd
j with B. A complete problem statement is omitted due to space constraints.

3 Hardness Result and Approximation Algorithm

The special case of the object placement problem O Place Spl is NP-hard in the strong
sense as we show in the longer version of this paper. The reduction is from the 3-
PARTITION (3-PART) problem, which is NP-complete in the strong sense. Hence, a
pseudo-polynomial-time algorithm or an FPTAS are also not possible for O Place Spl,
apart from a polynomial-time algorithm.

Object Placement for Cooperative Caches with Bandwidth Constraints 583

3.1 Hardness Proof

3-PART is a number problem [7, pp. 224 and 94] defined as follows.

Definition 1 (3-PART): Given set E of 3m elements, e1, e2, . . . , e3m, a bound K ∈ Z+,
and a size s(ei) = si ∈ Z+ for each ei ∈ E such that K/4 < si < K/2 and∑3m

i=1 si = mK . The problem is to determine whether E can be partitioned into m
disjoint sets E1, E2, . . . , Em such that

∑
e∈Ei

s(e) = K , for 1 ≤ i ≤ m.

Theorem 1. O Place Spl is NP-hard in the strong sense.

Proof: To prove the theorem, we show that the decision version of O Place Spl is NP-
complete in the strong sense. It is easy to see that the decision version is in NP. We
provide a pseudo-polynomial reduction [7] from 3-PART to it.

Consider an arbitrary instance of 3-PART and construct an instance of O Place Spl,
denoted objpl-3-part, from it, as follows. Let N = m, M = 3m, C = 3 · S, S = 1, and
B = (m − 1) · K . Let Ri = si/S for 1 ≤ i ≤ N . Let Bi = Ri · S = si denote the
bandwidth of object i. We now show that a solution to 3-PART exists if and only if there
is a solution to objpl-3-part with objective value exactly equal to N · m · K = m2K .

⇐ Assume that there is a solution to objpl-3-part with objective value exactly m2K .
Because C = 3 · S, each node can store at most three objects locally in its cache.

We first show that this number is exactly three. If some node stores fewer than three
objects, then the total number of objects stored in the combined cache is less than 3m.
Thus, there exists at least one object that is not served by the combined cache, and
hence, the objective value of the solution to objpl-3-part cannot equal or exceed m2K ,
which contradicts our assumption. Thus, each node stores exactly three objects in its
cache. Next, we show that for each node, the total bandwidth of the three objects stored
in its cache is exactly K . For this, first note that for the objective value to equal m2K ,
each of the m nodes should serve all the 3m objects from the combined cache. The
total bandwidth of all the objects is mK . The total bandwidth of the objects that a node
borrows from other caches cannot exceed (m−1) ·K (since the downlink bandwidth at
each node (B) is limited to (m− 1) ·K). Hence, each node should serve the remaining
mK − (m − 1)K = K bytes from its local cache. Thus, the total bandwidth of the
three objects that each node caches is exactly K . Therefore, since Bi = si, a solution
to 3-PART can be obtained from a solution to objpl-3-part by assigning element ei to set
Ej if object i is assigned to node j (that is xij = 1).

⇒ A solution to objpl-3-part with objective value exactly m2K that satisfies cache
capacity constraints and bandwidth constraints can be obtained by simply setting xij =
1 if ei is assigned to set Ej , and xijk = 1 for all k 	= j, if xij = 1.

The reduction can be performed in polynomial time. All numbers in objpl-3-part
are polynomially bounded by the numbers in 3-PART. Thus, the decision version of
O Place Spl is NP-complete in the strong sense. O Place Spl is hence NP-hard in the
strong sense. �

3.2 Efficient Placement Algorithm

In this section, we focus on designing an efficient centralized algorithm for solving
O Place Spl. We assume that at least a few of the top K most popular objects have

584 U.C. Devi, M. Chetlur, and S. Kalyanaraman

bandwidth at most B/(N − 1). (K = C/S, the number of objects that fit in a cache.)
Otherwise, the scope for cooperation would be very limited and one may consider en-
abling cooperation among fewer caches (i.e., with smaller N).

Identifying Heuristics. Before presenting an algorithm for O Place Spl, we present
some rules of thumb that have been used in its design. In what follows, we will refer
to an object that is cached at all N nodes as fully replicated. An object that is cached
at two or more nodes, but not all nodes, is said to be partially replicated, and one that
is cached at a single node as unreplicated. An unreplicated object that is shared by all
nodes is said to be totally shared, while an unreplicated or a partially-replicated object
that is shared by some but not all nodes or borrowed partly by all nodes is referred to
as partially shared. An object cached at a node is said to be partly borrowed by a peer
node if part of the requests to the object at the peer node that are evenly distributed is
served from the caching node.

Rule 1. Cache objects with the largest bandwidths (in fully-replicated, partially-
replicated, or unreplicated manner).

This rule is quite obvious and is used by most caching systems.

Rule 2. Since ICCB is constrained, replicate, either fully or paritially, objects of larger
bandwidths.

If ICCB is abundant, then bytes served from the collective cache can be maximized
by having unique copies of as many objects as possible in the constituent caches and
serving those objects from the combined cache at every node. In such a case, most
objects (if not all) are unreplicated and the rule does not apply.

If ICCB is limited, then it can be shown that fully replicating one or more objects
will serve to increase the combined hit rate. To see that replicating higher bandwidth
objects is beneficial, suppose a higher bandwidth object, H , is unreplicated or partially
replicated, while a lower bandwidth object, L, is fully replicated. Then, a node N that
does not cache H has two options: it either fetches H from the hosting server or borrows
it from a peer. It is easy to see that simply replacing L by H would in the former case
increase the number of bytes served locally from N (while not decreasing the number
of bytes borrowed from the other caches and served). In the latter case, the replacement
would lead to H being served locally. The downlink bandwidth that consequently gets
freed up at N can be used to borrow at least L, and potentially, a few more objects. So,
the total bytes that N serves from the combined cache is not lowered. Thus, replicating
larger bandwidth objects serves, in general, to increase the bytes served.

Rule 3. Among the objects chosen for caching, unreplicate and totally share those with
lower bandwidths, subject to not violating the ICCB constraints.

The rationale for this rule is similar to that for the prior one.

Object-Placement Algorithm. Let O denote the set of all M objects arranged in non-
increasing order of their bandwidths. We start with the set of objects with the highest
demand (that is, the largest bandwidth objects), referred to as OC, that will fit in a cache
of size C. (These will be the objects that each node caches in a non-cooperative setting.)
These would form the initial set of replicated objects, while the initial shared object set
is ∅.

Object Placement for Cooperative Caches with Bandwidth Constraints 585

1: b : array 1..M of real sorted descending {object
bandwidths}

2: shr from : integer {starting index of unreplicated and shared
objects in OC}

3: L : integer {no. of objects in OC that are unreplicated and
shared}

4: Btop : real {total bandwidth of unreplicated and shared objects in
OC}

5: Binc : real {total bandwidth of unreplicated and shared objects in
ŌC}

6: {Determine the objects with total bandwidth at most B/(N − 1) at
the tail of the objects in OC}

7: i := K; {K is the no. of objects that can be held in a cache}
8: Btop := 0;
9: while Btop + b[i] ≤ B/(N − 1) do

10: Btop := Btop + b[i];
11: i := i − 1;
12: end while
13: shr from := i + 1;
14: L := K − shr from + 1;
15: /* Select (N − 1) · L objects from ŌC*/
16: Binc :=

∑K+(N−1)·L
i=K+1 b[i]

17: Oshared := objects K − L + 1 . . . K + (N − 1) · L;
18: while NB/(N − 1) > Binc + Btop do

19:

/* Check if unreplicating and sharing the next lowest
bandwidth object from OC can increase the total band-
width of objects from ŌC brought into the combined
cache and shared */

20:
21: if b[shr from − 1] +

∑K+(N−1)(L+1)
i=K+(N−1)L+1 b[i] + Binc + Btop ≤

NB/(N − 1) then
22: shr from := shr from − 1; L := L + 1;
23: Btop := Btop + b[shr from];

24: Binc := Binc +
∑K+(N−1)(L+1)

i=K+(N−1)L+1 b[i];
25: Update Oshared to include the newly selected objects;
26: end if
27: end while

28:
/* Distribute the objects in Oshared using a balanced
fit heuristic such that the total bandwidth of all objects
assigned to any node is at most B/(N − 1) */

29: for each object with index O in Oshared do
30: /* consider objects in non-increasing order of their bandwidths */

31:

assign O to the node with the largest unused ICCB
among those with spare physical slots if such a node
exists and unused ICCB at the node is at least (N − 1) ·
b[O];

32: mark O as totally shared from the node caching it;
33: end for

34:
assign the remaining objects in Oshared to nodes with
available physical slots; mark them unshared

Fig. 1. Object Placement Algorithm PA

Let ŌC denote
the set of objects
in O excluding those
in OC. Since ICCB
B is constrained,
not all objects can
be unreplicated and
shared, and by Rule
2, high bandwidth
objects should be
replicated. Our goal
is to identify the
boundary at which
unreplication and
sharing should com-
mence.

Given that ICCB
is B, the amount
of data that each
node serves from
the combined cache
can be at most B
bytes per second
higher than the to-
tal bandwidth of
the objects in OC.
Let Oinc ⊆ ŌC de-
note the set of ob-
jects brought into
the combined cache
when cooperation
is enabled. By Rule
3, as many of these
objects should be
totally shared. If
all the objects in
Oinc could be to-
tally shared, then
the total bandwidth
of all the objects
in Oinc could be
at most B. Fur-
thermore, for ev-
ery N − 1 ob-
jects brought into

586 U.C. Devi, M. Chetlur, and S. Kalyanaraman

the combined cache, due to cache capacity constraints, at least one object from OC

should be unreplicated and shared (to make room for the incoming objects). Thus, if
� = |Oinc|, L = ��/(N − 1)� of the OC objects should be unreplicated and shared.

By the ICCB constraint B, at each node, the total bandwidth of all the objects that
are unreplicated and totally shared cannot exceed B/(N−1). Thus, the total bandwidth
of all the unreplicated and totally shared objects in the combined cache cannot exceed
NB/(N − 1). Our objective of maximizing the total bytes served from the combined
cache thus reduces to the following:

Phase 1. Choosing L objects from OC and objects from ŌC for sharing such that the total
bandwidth of the objects from ŌC is maximized and the constraints below hold.

(C1) ≤ (N − 1) · L

(C2) The total bandwidth of the L + objects chosen is at most NB/(N − 1)

Phase 2. Partitioning the L + chosen objects among the N nodes such that the total bandwidth
of the objects assigned to each node is at most B/(N − 1).

Listing for an algorithm, denoted PA, that accomplishes the above is provided in Fig. 1.
Choosing objects that should be unreplicated and totally shared is performed in the
first phase in lines 7–27. In this phase, L is initially set to the number of the lowest
bandwidth objects in OC with total bandwidth at most B/(N − 1) (lines 7–17). If the
combined bandwidth of the first (N − 1) · L objects from ŌC, Binc, and the L objects
from OC, Btop, is at least NB/(N − 1), then the algorithm moves to the second phase.
Since objects are arranged in non-increasing order of bandwidths, Binc ≤ (N−1)·Btop

holds at every step.
On the other hand, if the combined bandwidth is less than NB/(N − 1), then the

while loop in line 18 is entered. L is incremented by one and � by N − 1 as long as the
combined bandwidth of the chosen objects remains less than NB/(N − 1). The first
phase ends when no more objects can be brought in from ŌC. At its end, NL objects
are marked for sharing.

Fig. 2. Placement example

In the second phase, the objects chosen for
sharing are partitioned among the nodes. In the
first step of this phase in lines 29–32, objects
are distributed such that the total bandwidth of
all the objects assigned and totally shared from
a node is at most B/(N − 1). Since distribut-
ing objects without violating the ICCB constraint
is a bin packing problem, for which feasible so-
lutions are known to not exist for all instances,
not all objects can be expected to be success-
fully assigned. The remaining objects are filled
in the available slots of all the caches in the next
step in line 34. Exactly K − L objects are fully
replicated while no object is partially replicated.
Hence, each cache can hold exactly L more ob-
jects for a total of NL objects in all the caches.
Thus, since the total number of objects chosen
for distribution is NL, all objects will be success-
fully assigned to some cache but not all may necessarily be shared.

Object Placement for Cooperative Caches with Bandwidth Constraints 587

Example. To better understand the algorithm, consider the example in Fig. 2. Here
N = 3 and C = 6S so that K = 6. M = 14 objects, and their bandwidths are
indicated in the boxes. The objects in OC and ŌC are as indicated. ICCB B is 600. Since
B = 600, in the first phase, L = 3 objects and � = 2L = 6 objects as marked in the
figure could be selected for sharing from OC and ŌC, respectively. Btop is 321, Binc is
579, and Btop + Binc = 900 = NB/(N − 1).

In the second phase, eight of the objects selected in the first phase could be dis-
tributed among the three caches using the heuristic in lines 29–32 such that ICCB is
respected. The final object (with lowest bandwidth) is assigned to the first cache but
is marked unshared as otherwise ICCB would be violated. It can be verified that the
objects cannot be partitioned among the caches such that the constraints are satisfied.

Byte hit rate after cooperation increases by 579 Bps for Cache 1 and 486 Bps for each
of the other two nodes. Hit rates for the latter two can be increased by 93/2 = 46.5 Bps
by serving half their requests to the ninth object from Cache 1.

Algorithm complexity: If the objects are sorted by their bandwidths, the complexity
of the algorithm can easily be seen to be O(NK). Otherwise, it is O(NK +M log M),
which is O(M(K + log M)).

3.3 Approximation Ratio

We now derive an approximation ratio for Algorithm PA, assuming Zipf-like distribu-
tion [3] or its generalization, the MZipf distribution [8], for object popularity distri-
butions. The approximation ratio would hold as long as the ratio of the probability of
accesses of objects with ranks i and i + 1 is at most i+1

i .
PA chooses L and (N − 1)L contiguous objects from the tail and head of OC and

ŌC, respectively, such that their total bandwidth is maximized subject to not exceeding
NB/(N − 1). Let the two subsets be denoted OPA

C and ŌPA
C , respectively, and let BW(.)

denote the bandwidth function. The increase in hit rate achieved by PA per node is
therefore at most BW(ŌPA

C). (It would be less than BW(ŌPA
C) if the objects OPA

C and ŌPA
C

cannot be partitioned among the nodes.) The hit rate per node obtained by an optimal
algorithm may be higher by less than the bandwidth corresponding to the next N − 1
objects from ŌC. To see this note that since PA could not choose the next N −1 objects,
the total bandwidth of those objects and an additional lightest object from OC along
with objects in OPA

C and ŌPA
C exceeds NB/(N − 1). Hence, choosing any other object

from OC would not enable choosing N − 1 objects from ŌC with larger bandwidth than
the next N − 1.

Let the maximum bandwidth BWmax of any object in OPA
C ∪ ŌPA

C be at most f · B
N−1 ,

where 0 < f < 1, and let R = � 1
f �. In general, for 1

n+1 < f ≤ 1
n , R = n holds. Also,

R = � 1
f � ⇒ R ≤ 1

f , and hence,

f ≤ 1

R
. (7)

To determine an approximation ratio, we need to determine a lower bound on the
increase to hit rate achieved by PA. As discussed above, it would be less than BW(ŌPA

C)
if objects in OPA

C ∪ ŌPA
C are not all fully shared. If β denotes the bandwidth of objects

in OPA
C ∪ ŌPA

C that are not fully shared, then the increase in hit rate achieved by PA is

588 U.C. Devi, M. Chetlur, and S. Kalyanaraman

given by BW(ŌPA
C) − β. The following lemma provides a lower bound on the sharing

achieved by PA.

Lemma 1. The total bandwidth of the objects that are unreplicated and fully shared at
the end of Phase 2 of PA is at least R

R+1 (BW(OPA
C) + BW(ŌPA

C)).

Proof: The total number of objects chosen for sharing is NL. These objects may be
assigned to one of the N nodes and the maximum number of objects assigned to a
node cannot exceed L. An object assigned to a node may be fully shared if the total
bandwidth of all the objects assigned previously to the same node and the new object is
at most B/(N − 1).

During the partition phase of PA, let Ω be the first object that could not be assigned
in a fully-shared manner, and let w denote its bandwidth. Then for each node C, one of
following conditions hold: (1) The total assigned bandwth in C is at least (B/(N −1)−
w). (2) C is full with L assigned objects (has no empty slots), but the total bandwidth
of the objects assigned to it is less than B/(N − 1).

Let n of the N nodes be of type 1, with condition 1 holding, and the remaining
N − n, of type 2. Since objects are assigned in monotonically decreasing order of their
bandwidths, the bandwidth of every object assigned to a node of type 2 is at least w.
Then, the total bandwidth B, of all the objects before Ω assigned to the N nodes is at
least n(B

N−1 − w) + (N − n)wL. By (7) and the definition of f , the bandwidth of any
object is at most B/(R(N − 1)). Hence, if L ≤ R, the total bandwidth of any subset of
L objects is at most B/(N − 1). Thus, the NL objects in OPA

C ∪ ŌPA
C can be partitioned

among the N nodes such that each is fully shared. Hence, for the rest of the proof take
L > R. Since the total bandwidth expression is an increasing function of L, B is at
least nB

N−1 + ((R + 1)N − (R + 2)n)w. We consider the following cases.

Case 1: n ≤ 1
R+1N . In this case at least R/(R + 1) of the nodes are of type 2, which

are full. Thus, at least a fraction R/(R + 1) of the objects are fully shared. Since the
objects are assigned in the order of decreasing bandwidths, the total shared bandwidth
is at least a fraction R/(R + 1) of the bandwidth of the objects in OPA

C and ŌPA
C .

Case 2: 1
R+1N < n ≤ R

R+1N . The proof for this case is a little involved and hence
omitted due to space constraints. It will be made available in a longer version of the
paper.

Case 3: R
R+1N < n ≤ R+1

R+2N . Since (R + 1)N − (R + 2)n ≥ 0 holds and B ≥
nB

N−1 + ((R + 1)N − (R + 2)n)w, B ≥ R
R+1NB(N − 1).

Case 4: n > R+1
R+2N . In this case, (R + 1)N − (R + 2)n < 0, and hence, nB

N−1 +
((R + 1)N − (R + 2)n)w is a decreasing function of w. If w > 1

R+1
B

N−1 , then since
objects are assigned in decreasing bandwidth order and each of the N nodes has at least
R objects assigned (because as discussed above R < L and the bandwidth of any object
is at most 1

R
B

N−1), B ≥ R · N · 1
R+1

B
N−1 ≥ R

R+1 (BW(OPA
C) + BW(ŌPA

C)). If not B is

minimized for w = 1
R+1

B
N−1 and hence B ≥ nB

N−1 +((R+1)N −(R+2)n) 1
R+1

B
N−1 ,

which simplifies to NB
N−1 −

n
R+1

B
N−1 . This expression is minimized at n = N , yielding

B ≥ R
R+1

NB
N−1 . �

Object Placement for Cooperative Caches with Bandwidth Constraints 589

Thus, the bandwidth of objects not fully shared is at most 1
R+1 (BW(OPA

C) + BW(ŌPA
C))

and the increase in hit rate is at least R
R+1BW(ŌPA

C) − 1
R+1BW(OPA

C).
The lemma below provides a lower bound on BW(ŌPA

C). Recall that K = C/S
denotes the number of objects that fit in a cache.

Lemma 2. If the object popularity distribution follows Zipf-like or MZipf, then

BW(ŌPA
C) ≥ ln K+(N−1)L

K+1

ln K+1
max(K−L,1)

× BW(OPA
C).

Proof: Follows from the facts that the probability of accessing an object at rank i is
proportional to 1/i for the Zipf object popularity distribution and lower than 1/i for
Zipf-like and MZipf distributions, and

∑n1
i=1

1
i − ln(n1) ≥

∑n2
i=1

1
i − ln(n2 + 1), for

all n1, n2 ≥ 1. �

We are now ready to provide an approximation ratio. Let α = L/K .
Theorem 2. The approximation ratio of PA when object popularities conform to the

Zipf, Zipf-like or MZipf distributions is given by L+1
L

(R+1) ln(K+(N−1)L
K+1)

R ln((K+(N−1)L)
K+1 −ln(K+1

max K−L,1)
,

which is, L+1
L

(R+1) ln(1+(N−1)α
1+ 1

K

)

R ln(1+(N−1)α
1+ 1

K

)+ln(
max(1−α, 1

K
)

1+ 1
K

)
, which is L+1

L
(R+1) ln(1+(N−1)α)

R ln(1+(N−1)α)+ln(max(1−α,ε))+

δ.
Proof: As discussed earlier, by Lemma 1, the effective increase to hit rate achieved by
Algorithm PA is at least (R · BW(ŌPA

C) − BW(OPA
C))/(R + 1). Letting BW(ŌPA

C) = κ ·
BW(OPA

C), the increase to hit rate achieved by PA is at least (Rκ−1)·BW(OPA
C)/(R+1).

To determine the approximation ratio, we need to determine a bound on the increase
in hit rate achieved by an optimal algorithm. As discussed at the beginning of this
subsection, this value is at most the bandwidth of an additional N − 1 objects from ŌC.
Since objects are arranged in decreasing order of bandwidths, the total bandwidth of
these additional objects would be at most the bandwidth of any N − 1 objects in ŌPA

C .
Since |ŌPA

C | = (N−1)L, the increase in hit rate achieved by an optimal algorithm would
be at most (N−1)(L+1)

(N−1)L times BW(ŌPA
C) = (L+1)

L × κ · BW(OPA
C). The approximation

ratio, given by the ratio of the optimal increase in hit rate to the effective increase
achieved by PA is hence (R+1)κ

Rκ−1 · L+1
L . Using the lower bound provided by Lemma 2

for κ and simplifying, we obtain the approximation ratios in the lemma. �
Discussion: The approximation ratio ρ in Thm. 2 decreases with increasing N and R.
For a given N and R, ρ initially decreases with α and then increases. ρ is valid for all
values except when N , R, and L are all at most 3, in which case, cooperation is of very
little or no use anyway. When K is at least 1000, for α ≤ 0.1, that is, when at most
10% of the objects in cache are chosen for sharing, ρ < 2.96 for N ≥ 5, for all R, and
ρ < 2.7 for R ≥ 3, for all N . In general, ρ is small if α is not large (≤ 0.7) or one
of R and N is not too small, with values at least 3 and 5, respectively, which are very
reasonable. Recall that the achievable increase in hit rate depends on the ICCB B and
for an appreciable increase, say x%, B should be at least x% of the total bandwidth
of all the objects. For the Zipf distribution, the bandwidth of the object with rank n
is 1/(n · ln(K)) of the total object bandwidth. Hence, for x ≥ 10, the bandwidths of
objects with rank 10 and higher is less than 1/90th the total bandwidth for a modest

590 U.C. Devi, M. Chetlur, and S. Kalyanaraman

M = 10000. Thus, R ≥ 9, and in practice can be expected to be much higher. For
R ≥ 10, ρ ≤ 1.76 and ρ ≤ 3.48 for α as high as 0.99 and 0.9, respectively, for all N .
The approximation ratio of the placement algorithm PA can thus be taken to be a small
constant for all practical purposes.

3.4 Extensions to Algorithm PA

Hierarchical Caching: Suppose a second-level parent cache of K ′ objects is provided
in the path of the object requests, e.g., at the CC in the wireless backhaul. In the absence
of cooperation among child nodes, the most popular K objects will be replicated at
the children, while the next K ′ popular objects would be placed at the parent. Which
objects to unreplicate and share at the children when cooperation is enabled would
depend on the limit on the amount by which the content served from the parent node
may be increased. If this traffic need not be limited as long as the total hit rate increases,
then an object placement may be obtained by assuming a cache of K + K ′ objects at
each child and applying algorithm PA, but restricting L to at most K . The K − L most
popular objects should then be replicated at all the child nodes, the next K ′ objects
placed at the parent, and the next NL objects placed in one of the children as specified
by PA. The reason for considering K + K ′ objects as opposed to K during placement
is to reduce the mean bandwidth of the objects that are shared, and thereby improve
the efficiency of partitioning them in a fully shared manner without violating ICCB. If
there is a restriction on the traffic that may be increased on the parent to child links,
the restriction should be used to determine the cache size that PA should assume to
determine a placement.

Relaxing the assumptions: The most restrictive of the similarity characteristics as-
sumed for the caches and objects is that of identical sizes for all the objects. Identical
object popularity distributions can be expected in a cluster of a few tens of BSs, which
as discussed in Sec. 4, are sufficient in practice to achieve close to ideal hit rates. This is
because at least a couple of thousand BSs are typically deployed in a mid-size city and
hence 20-30 BSs can be expected to cover just a fraction of a city with somewhat ho-
mogeneous object access patterns. Homogeneity would also be enhanced by the larger
expected mobility within a smaller region. The assumption of identical cache sizes may
be expected to hold for the same reason that the number of BSs needed for good hit
rates can be found within a small geography. If the assumption does not hold, it may
easily be overcome by running PA with the smallest of the cache sizes. The additional
capacity in the larger caches may simply be used for storing additional objects beyond
those specified by PA for higher hit rates at the larger caches. Handling non-identical
object sizes is discussed below.

Non-Identical Object Sizes: If object sizes are not identical, then since it is the band-
width per unit size that matters, objects should be ordered by their popularity instead of
bandwidths. Next, instead of choosing N − 1 objects from ŌC for every object chosen
from OC, Algorithm PA should be modified to choose the maximum number of objects
whose combined size does not exceed N − 1 times the size of an object chosen from
OC. While non-homogeneity in object sizes can lead to inefficiencies in object selection
and distribution, they can be expected to be minimal when the object pool is large.

Object Placement for Cooperative Caches with Bandwidth Constraints 591

4 Empirical Evaluation

In this section, we present the results of simulations conducted to evaluate the perfor-
mance of our placement algorithm. We conducted experiments for varying values of
total objects M , nodes N , and cache size C. Object size S was set to 1GB. Taking the
total bandwidth served by BSs into account, the total object bandwidth was set to 20
Mbps, yielding a request rate of 0.0025/sec. ICCB B was set to 5 Mbps, for a maxi-
mum achievable increase of 25% to the hit rate. The M-Zipf distribution [8], in which
the probability of accessing object of rank i is proportional to 1/(i + q)γ , was used for
object popularities, with q = 50 γ = 0.75.

0 20 40 60 80 100
0

5

10

15

20

25

no. of cooperating nodes

in
cr

ea
se

 in
 h

it
ra

te
 (

%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

no. of cooperating nodes
al

ph
a

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
20

40

60

80

100

no. of cooperating nodes

hi
t r

at
e

(%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
0

50

100

150

no. of cooperating nodes

ba
nd

w
id

th
 o

ve
rh

ea
d

(%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

(a) (b)

(c) (d)

Fig. 3. Performance evaluation results for the placement algorithm
PA. (a) Additional hit rates for varying % of cache sizes. (b) Values
of α = L/K for the runs in (a). (c) Hit rates with varying N when
ICCB is not a limitation. (d) Bandwidth overhead for the runs in
(c). The legend entries are in the curve order in insets (a) and (c)
and reverse order in insets (b) and (d).

Representative results
with M = 20, 000, that
is a total corpus size
of 20 TB, and varying
cache sizes as indicated
are plotted in Fig. 3.
Inset (a) plots the in-
crease in hit rate as a
% of the total object
bandwidth of 20 Mbps.
Since B is 25% of the
total object bandwidth,
the maximum achiev-
able increase to the hit
rate is 25%. The hit rate
increase is rather low
for small values of N .
We also determined an
upper bound to the opti-
mal achievable increase
for all the cases. The
plots of the optimal in-
crease almost coincide
with the observed in-
crease and hence have
been omitted. The low
hit rates for small N are therefore not due to the partitioning inefficiency of PA. This
is because for M = 20, 000, the bandwidth due to the most popular object is roughly
0.001% of the total bandwidth, hence R is quite large, easily exceeding 200. The ap-
proximation ratio as given by Thm. 2 is therefore close to 1. The low hit rates for small
N are rather due to the larger values for B/(N − 1), and hence a large L, as indicated
by the plots of α = L/K in Fig. 3(b). For large L, the ratio of the mean bandwidth
of objects in OPA

C and ŌPA
C is high. Since the total bandwidth of the two subsets is con-

strained to be at most NB/(N − 1), BW(ŌPA
C), as a fraction of the total bandwidth,

is low. Recall that the optimal increase in hit rate only slightly exceeds BW(ŌPA
C), and

hence when N is small, the increase, both optimal and observed, are low. The hit rate

592 U.C. Devi, M. Chetlur, and S. Kalyanaraman

increases with increasing N and is quite good for N > 10. The difference in the in-
crease achieved with the largest (30% cache) and smallest caches (1% cache) is around
6% for N ≤ 10, with the maximum of 6.83% seen for N = 5. The gap narrows for
higher values of N . Similar trends were observed for varying M and object size S. The
results indicate that a few tens of cooperating nodes are sufficient to achieve adequate
hit rates. Also, the number of nodes needed to achieve a given increase to hit rate in-
creases with decreasing cache size, by a factor of around two for an order of magnitude
smaller cache. This is despite the fact that the base hit rate of a larger cache is higher.

Inset (c) plots the maximum cumulative hit rate achieved by PA when
ICCB is not constrained. In this case, we also determined the minimum ICCB
needed to achieve the observed hit rate. Bandwidth overhead %, given by
minimum needed ICCB−increase in hit rate

increase in hit rate × 100% is plotted in inset (d). It can
be noted from inset (c) that a hit rate of 100% is reached at N = N100% =

� total corpus size
cache size �, which is as expected. However, the bandwidth overhead at N ≤

N100% is quite high. This is because when N ≤ N100%, the caching system is space
constrained, and hence, all the objects are unreplicated and fully shared, including the
popular, high-bandwidth objects. As N increases beyond N100%, the number of high
bandwidth objects that are replicated increases, bringing down the bandwidth overhead.
N needed to achieve 100% hit rate with minimal overhead is roughly an order of mag-
nitude larger for a cache that is an order of magnitude smaller.

5 Conclusion

We have explored cooperative caching among the edge elements of a wireless infras-
tructure to ease the traffic stress expected in the wireless backhaul and core due to the
manifold increase in video traffic. We have proposed an efficient object placement al-
gorithm for cooperative caching that has a constant factor approximation ratio under
practical conditions. Our simulation studies show that, in practice, the performance of
the algorithm is very close to the optimal, and enabling cooperation among a few 10s
of nodes may be sufficient to reap significant benefits. The viability of converting the
proposed algorithm to a distributed one will be considered as part of future work.

References

1. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K.: Optimal content
placement for a large-scale vod system. In: ACM Co-NEXT (2010)

2. Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution net-
works. In: INFOCOM (2010)

3. Breslan, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions:
Evidence and implications. In: Proceedings of IEEE INFOCOM, pp. 126–134 (1999)

4. Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., Worrell, K.: A hierarchical in-
ternet object cache. In: USENIX Annual Technical Conference, pp. 153–163 (September
1996)

5. Cisco Systems Inc. Cisco visual networking index: Global mobile data traffic forecast update
(2009-2014)

Object Placement for Cooperative Caches with Bandwidth Constraints 593

6. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area web cache
sharing protocol. In: SIGCOMM, pp. 254–265 (September 1998)

7. Garey, M., Johnson, D.: Computers and Intractability: a Guide to the Theory of NP-
Completeness, vol. ch. 4. W. H. Freeman and company, NY

8. Hafeeda, M., Saleh, O.: Traffic modeling and proportional partial caching for peer-to-peer
systems. IEEE/ACM Transactions on Networking 16(6), 1447–1460 (2008)

9. Han, D., Andersen, D., Kaminsky, M., Papagiannaki, D., Seshan, S.: Hulu in the neighbor-
hood. In: COMSNETS (2011)

10. Kangasharju, J., Roberts, J.W., Ross, K.W.: Object replication strategies for content distribu-
tion networks. Computer Communication Journal 25(4), 376–383 (2002)

11. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Placement algorithms for hierarchical coop-
erative caching. In: SODA, pp. 586–595 (1998)

12. Song, Y., Ramasubramanian, V., Sirer, E.: Cobweb: a proactive analysis-driven approach to
content distribution. In: SOSP, Poster (2005)

13. Venkataramani, A., Weidmann, P., Dahlin, M.: Bandwidth constrained placement in a wan.
In: Principles of Distributed Computing, pp. 134–143 (2001)

14. Xu, Z., Bhuyan, L.: Qos-aware object replica placement in cdns. In: GLOBECOM (2005)

Author Index

Agarwal, Kunal II-224
Agosta, Giovanni I-230
Agullo, Emmanuel II-194
Aldinucci, Marco II-170
Aleem, Muhammad I-167
Ali, Nawab II-340
Amiri, Ehsan II-2
Anta, Antonio Fernandez I-554
Antoniu, Gabriel I-351, I-503
Aragón, Juan L. I-295
Arantes, Luciana II-27
Aribowo, Hans II-413
Arkatkar, Isha II-425
Ayguade, Eduard I-555, II-110

Badia, Rosa M. I-1, I-555
Bagchi, Amitabha I-514
Bagwell, Phil II-136
Barhen, Jacob II-110
Barrientos, Ricardo J. I-380
Barthou, Denis I-267
Beaumont, Olivier I-103, I-514
Benoit, Anne I-242
Bergamaschi, Luca II-78
Berzins, Martin II-65
Boku, Taisuke II-399
Bonacic, Carolina I-393
Bosilca, George II-51
Bosque, Ana I-269
Bouteiller, Aurelien II-51
Brandic, Ivona I-455
Bruening, Ulrich II-263
Budimlić, Zoran II-112
Bueno, Javier I-555
Bunde, David P. I-142
Buyya, Rajkumar I-491

Calvert, Peter II-226
Cameron, Robert D. II-2
Canon, Louis-Claude II-238
Cappello, Franck I-52, I-503, I-567
Carrington, Laura I-79
Casale, Giuliano I-77
Casanova, Henri I-255

Cebrián, Juan M. I-295
Ceze, Luis I-27
Chatterjee, Sanjay II-112
Chetlur, Malolan I-579
Choudhary, Alok II-425
Colella, Phil II-377
Cooperman, Gene II-66
Cordasco, Gennaro I-180
Cornelius, Herbert II-110
Coulaud, Olivier II-302

Danelutto, Marco II-170
Dang, Hoang-Vu II-413
Dang, Nhan Nguyen II-148
De Chiara, Rosario I-180
Demmel, James II-90
Denis, Alexandre II-276
De Rose, César I-443
Devi, UmaMaheswari C. I-579
Di, Peng II-401
Di Biagio, Andrea I-230
Dimakopoulos, Vassilios V. II-14, II-353
Diniz, Pedro C. I-267
di Serafino, Daniela II-65
Dobrila, Alexandru I-242
Dong, Xin II-66
Dongarra, Jack J. II-51, II-194
Drach, Nathalie I-338
Duato, José I-218
Dulman, Stefan II-289
Duran, Alejandro I-555

Eckelmann, Sven II-264
Elmroth, Erik I-405
Essafi, Adel II-238
Ethier, Stephane I-366
Etsion, Yoav I-282
Eyraud-Dubois, Lionel I-103

Fahringer, Thomas I-167, II-438
Farreras, Montse I-555
Fatourou, Panagiota II-224
Felber, Pascal I-514
Férnandez-Casado, Enrique I-541
Ferrer, Roger I-39

596 Author Index

Ferreto, Tiago I-443
Field, Laurence I-479
Fleury, Eric II-288
Fong, Liana I-193

Gainaru, Ana I-52
Galloway-Carson, Maxwell I-142
Gamoudi, Oussama I-338
Gander, Martin II-65
Gao, Guang R. II-112
Garcia, Elkin II-112
Garg, Saurabh Kumar I-491
Gautier, Thierry II-1
Gebremedhin, Assefaw H. II-250
Ghoting, Amol I-351
Gil-Costa, Veronica I-393
Giraud, Luc II-65
Goglin, Brice II-263
Goldman, Alfredo I-154
Gómez, José I. I-380
Gomez-Pantoja, Carlos I-393
Gonzalez-Alberquilla, Rodrigo I-27
Gorman, Gerard II-387
Govind, Niranjan II-340
Goyal, Vivek II-303
Graf, Tobias II-365
Graves, Daniel T. II-377
Greve, Fab́ıola II-27
Guermouche, Amina I-567
Guim, Francesc I-405
Gutierrez, Eladio D. I-326

Hadjidoukas, Panagiotis E. II-14, II-353
Han, Qi II-288
Hassan, Houcine I-218
Hazra, Jagabondhu II-303
Hegedűs, István I-528
Heiss, Hans-Ulrich I-443
Herault, Thomas II-51
Herdy, Kenneth S. II-2
Heydemann, Karine I-338
Hoefler, Torsten II-264
Hosoori, Laleh Rostami I-419
Hu, Zhenjiang II-39
Huet, Fabrice I-1

Ibañez, Pablo I-269
Iyer, Venkat II-289

Jägersküpper, Jens II-182
Jain, Nikhil II-303

Jamjoom, Hani I-193
Jelasity, Márk I-528
Jenkins, John II-425
Johnen, Colette I-117
Johnson, Christopher R. I-142

Kalé, Laxmikant V. I-567
Kalyanaraman, Shivkumar I-579
Kandemir, Mahmut I-130, I-310
Karakoy, Mustafa I-130
Karcher, Thomas I-3
Karl, Wolfgang II-399
Katta, Naga Praveen Kumar I-353
Kaxiras, Stefanos I-295
Keen, Noel II-377
Keller, Rainer I-1
Kelly, Paul H.J. II-387
Kilpatrick, Peter II-170
Klasky, Scott I-366
Knittel, Fabian II-124
Kofler, Klaus II-438
Kondo, Derrick I-77
Kowalski, Dariusz I-554
Kowalski, Karol II-340
Kramer, Bill I-52
Krishnamoorthy, Sriram II-340

Labarta, Jesús I-39, I-555
Lagaris, Isaac E. II-353
Lakshminarasimhan, Sriram I-366
Latham, Rob I-366
Laurenzano, Michael A. I-79
Lee, Sangho I-205
Leung, Vitus J. I-142
Li, Yan II-316
Lin, Dan II-2
Lindsay, Alexander M. I-142
Liu, Yu II-39
Llaberia, Jose Maria I-269
Llorente, Ignacio M. I-405
Long, Guoping II-316
Lorenz, Daniel I-65
Lorenz, Ulf II-365

Manneback, Pierre II-1
March, José Luis I-218
Marin, Mauricio I-380, I-393
Marron, Pedro II-288
Martinasso, Maxime I-91
Martinell, Luis I-555

Author Index 597

Martinez, Angeles II-78
Martorell, Xavier I-555
Masing, Leonard II-124
Mastroianni, Carlo I-407
Matias, Manuel Prieto I-380, II-1
Matsuzaki, Kiminori II-39
Maurer, Michael I-455
Méhaut, Jean-François I-91, II-110
Mekhaldi, Fouzi I-117
Meneghin, Massimiliano II-170
Meneses, Esteban I-567
Meo, Michela I-407
Meswani, Mitesh I-79
Mittal, Anshul II-303
Mol, Jan David II-328
Montresor, Alberto I-514
Moore, Shirley I-77
Morin, Christine I-431
Mounié, Grégory II-238
Muralidhara, Sai Prashanth I-310
Mußler, Jan I-65
Mycroft, Alan II-226

Nakajima, Kengo II-302
Narang, Ankur I-353
Nath, Rajib II-194
Navarro, Nacho I-282
Ng, Esmond G. II-302
Nicod, Jean-Marc I-242
Nicolae, Bogdan I-503

Oberle, Karsten I-405
Odersky, Martin II-136
Orlando, Salvatore I-351
Ormándi, Róbert I-528
Orozco, Daniel A. II-112
Owens, John D. II-425

Pande, Santosh I-205, II-206
Pankratius, Victor I-3, I-15, II-124
Papageorgiou, Dimitris G. II-353
Papuzzo, Giuseppe I-407
Patwary, Md. Mostofa Ali II-250
Pavel, Robert S. II-112
Pérez, Christian I-405
Perez, Maria S. I-351
Petit, Salvador I-218
Petrini, Fabrizio II-263
Philippe, Laurent I-242
Pierre, Guillaume I-554

Pierson, Jean-Marc I-255
Piñuel, Luis I-27
Plata, Oscar I-326
Platzner, Marco II-365
Pllana, Sabri II-110
Poole, Stephen I-79
Popowich, Fred P. II-2
Pothen, Alex II-250
Prabhakar, Ramya I-130
Preguiça, Nuno I-516
Priol, Thierry I-431
Prodan, Radu I-167
Prokopec, Aleksandar II-136
Pruteanu, Andrei II-289

Quislant, Ricardo I-326

Rahmani, Amir Masoud I-419
Ramirez, Alex I-282
Ravichandran, Kaushik I-205
Rehm, Wolfgang II-264
Riteau, Pierre I-431
Rnger, Gudula II-1
Rokos, Georgios II-387
Romein, John W. II-328
Rompf, Tiark II-136
Ropars, Thomas I-567
Rosenberg, Arnold L. I-155, I-180,

II-224
Ross, Rob I-366

Sabharwal, Yogish II-303
Sadayappan, Ponnuswamy II-340
Saddayapan, P. I-267
Sadjadi, Seyed Masoud I-467
Sahuquillo, Julio I-218
Sakellariou, Rizos I-154, I-455, I-479
Samatova, Nagiza F. I-366, II-425
Sànchez-Artigas, Marc I-541
Sancho, Jose Carlos I-39
Sanders, Peter II-160
Sarkar, Vivek II-112
Sato, Mitsuhisa I-267
Schaefers, Lars II-365
Schimmel, Jochen I-15
Schmidt, Bertil II-413
Schneider, Timo II-264
Seetharam, Deva P. II-303
Sens, Pierre I-554, II-27
Shae, Zon-Yin I-193

598 Author Index

Shah, Neil I-366
Shermer, Thomas C. II-2
Shirako, Jun II-112
Simmendinger, Christian II-182
Simon, Véronique II-27
Sinnen, Oliver I-154
Snavely, Allan I-79
Soares, João I-516
Solomonik, Edgar II-90
Sousa, Leonel I-154
Speziale, Ettore I-230
Sreeram, Jaswanth II-206
Srivastava, Abhinav I-353
Strauss, Karin I-27
Studt, Heiko II-438
Subotic, Vladimir I-39
Sun, Xiangzheng II-316
Suter, Frédéric I-154

Tenllado, Christian I-380
Thibault, Samuel II-399
Thoman, Peter II-438
Thomson, John II-438
Tikir, Mustafa M. I-79
Tomov, Stanimire II-194, II-399
Torquati, Massimo II-170
Träff, Jesper Larsson II-263
Trausan-Matu, Stefan I-52
Trystram, Denis II-238
Tsigas, Philippas II-148

Uçar, Bora I-567

Valero, Mateo I-39

van Nieuwpoort, Rob I-1
Van Straalen, Brian II-377
Vazquez, Mariano II-302
Villavieja, Carlos I-282
Villegas, David I-467
Viñals, Victor I-269
Vivien, Frédéric II-224
Voglis, Constantinos II-353

Walser, Martin II-124
Wang, Ting II-316
Wassenberg, Jan II-160
Weis, Torben II-288
Wolf, Felix I-65
Won, Young J. I-103
Wylie, Brian I-77

Xue, Jingling II-401

Yahyapour, Ramin I-405
Yan, Yonghong II-112
Yeo, Chee Shin I-491

Zapata, Emilio L. I-326
Zhang, Xiangliang I-193
Zhang, Xianyi II-316
Zhang, Yuanrui I-130, I-310
Zhang, Yunquan II-316
Zheng, Shuai I-193

	Title
	Preface
	Organization
	Table of Contents
	Topic 1: Support Tools and Environments
	Introduction
	Run-Time Automatic Performance Tuning for Multicore Applications
	Introduction
	The Perpetuum Run-Time Application Tuner
	Preparing Applications for Online Tuning
	Perpetuum in Action: Automated Online-Tuning in Parallel Compression
	Environment
	Scenario 1: Tuning a Single Process
	Scenario 2: Simultaneously Auto-tuning Two Processes
	Scenario 3: Simultaneously Auto-tuning Two Processes Starting with a Time Lag
	Summary

	Automated Online-Tuning in Parallel Video Processing
	Scenario 1: Tuning a Single Process
	Scenario 2: Simultaneously Tuning Two Processes Starting with a Time Lag

	Related Work
	Conclusion
	References

	Exploiting Cache Traffic Monitoring for Run-Time Race Detection
	Introduction
	Assumptions and Requirements
	Software
	Hardware

	Monitoring Cache Traffic to Detect and Heal Races
	Race Detection
	Race Healing

	TheDetector
	Evaluation
	Setup
	Results

	Related Work
	Conclusion
	References

	Accelerating Data Race Detection with Minimal Hardware Support
	Introduction
	Background
	Minimal Hardware Support for Data Race Detection
	AccessedBefore (AccB) Algorithm
	Sources of Inaccuracy

	Implementation
	Hardware Support
	Software Layer
	Optimizations
	System Issues

	Experimental Setup
	Evaluation
	AccB versus HapB
	Overheads Characterization
	Accuracy Characterization

	Related Work
	Conclusions
	References

	Quantifying the Potential Task-Based Dataflow Parallelism in MPI Applications
	Introduction
	SMPSs Programming Model
	Motivation
	Framework
	Input Code
	Code Translator
	Tracer
	Replay Simulator

	Experiments
	Results

	Related Work
	Conclusion
	References

	Event Log Mining Tool for Large Scale HPC Systems
	Introduction
	Related Work
	Methodology
	Offline Clustering
	Splitting Process
	Output
	Online Clustering

	Log Files
	Results
	Offline
	Online

	Conclusion and Future Work
	References

	Reducing the Overhead of Direct Application Instrumentation Using Prior Static Analysis
	Introduction
	Related Work
	A Configurable Instrumenter
	Adapter Specification
	Filter Specification

	Filter Criteria
	Evaluation
	Conclusion and Future Work
	References

	Topic 2: Performance Prediction and Evaluation
	Introduction
	Reducing Energy Usage with Memory and Computation-Aware Dynamic Frequency Scaling
	Introduction
	Methodology
	Benchmarking for Power and Performance
	Application Characterization

	Experimental Results
	Drawing Conclusions about System Behavior
	Energy-Optimal Clock Frequency Selection
	Technique Validation

	Related Work
	Future Work
	Conclusions
	References

	A Contention-Aware Performance Model for HPC-Based Networks: A Case Study of the InfiniBand Network
	Introduction
	Background
	Elements Influencing Network Contention

	Methodology
	Dynamic Contention Graph
	Sequence of Linear Models
	Approximation of Penalty Coefficients

	Modelling Penalty Coefficients over InfiniBand
	InfiniBand Network Testbed
	Penalty Coefficients and Model for InfiniBand

	Examples and Validation
	Conclusion and Future Work
	References

	Using the Last-Mile Model as a Distributed Scheme for Available Bandwidth Prediction
	Introduction
	Related Works
	Latency Estimation
	Bandwidth Estimation

	Last-Mile Bandwidth Prediction Model
	Last-Mile Model
	Initial Values
	Iterative Procedure

	Evaluation
	Methodology
	Parameter Tuning
	Comparison Methods
	Evaluation Results

	Concluding Remarks
	References

	Self-stabilization versus Robust Self-stabilization for Clustering in Ad-Hoc Network
	Introduction
	Overview of the Studied Clustering Protocols
	Model and Simulation Remarks
	Observed Metrics
	Simulation Results and Performances Analysis
	Average Number of Cluster-Heads
	Availability of Minimum Service
	Availability of Optimum Service

	Concluding Remarks
	References

	Multilayer Cache Partitioning for Multiprogram Workloads
	Introduction
	Motivational Example for Multilayer Partitioning
	Dynamic Performance Model
	Proposed Partitioning Algorithm
	Experimental Evaluation
	Implementation and Setup
	Results

	Concluding Remarks
	References

	Backfilling with Guarantees Granted upon Job Submission
	Introduction
	Algorithms
	Prioritized Compression
	Delayed Compression

	Related Work
	Experimental Results
	Increasing Responsiveness
	Favoring Wide Jobs
	Scheduler Running Time

	Discussion
	References

	Topic 3: Scheduling and Load Balancing
	Introduction
	Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous Clusters
	Introduction
	Formal Details
	Work Production under the LIFO and FIFO Protocols
	The LIFO Protocol Is Approximately Optimal
	A Lower Bound on the LIFO Work Production W(L)(C; L)
	An Upper Bound on the FIFO Work Production W(F)(C; L)
	The LIFO-FIFO Bounding Ratio

	Conclusions
	References

	Scheduling JavaSymphony Applications on Many-Core Parallel Computers
	Introduction
	Related Work
	JavaSymphony
	JavaSymphony Scheduler
	System Architecture
	Scheduling Methodology
	Algorithm

	Experiments
	Experimental Methodology
	Communication-Intensive Applications
	Training Experiments.
	Validation Experiments.

	Computation-Intensive Applications
	Training Experiments.
	Validation Experiments.

	Conclusions

	Assessing the Computational Benefits of AREA-Oriented DAG-Scheduling
	Introduction
	Background
	Finding Good AO-Schedules Efficiently
	Experiments to Assess the Quality of aoh
	Experimental Design
	Experimental Methodology
	Experimental Results and Discussion

	Conclusion

	Analysis and Modeling of Social Influence in High Performance Computing Workloads
	Introduction
	Data Sources
	Social Influence Model
	Analysis of Social Influence
	Community Extraction from HPC Workloads
	Power-Law Distribution of Discovered Communities

	Design of Online Learning Mechanism
	Related Work
	Conclusions and Future Work

	Work Stealing for Multi-core HPC Clusters
	Introduction
	Work Stealing
	Design for Our Approach
	Shared Memory Design
	Distributed Memory Design
	Combined Approach

	Evaluation
	UTS
	Results

	Related Work
	Conclusion and Future Work

	A Dynamic Power-Aware Partitioner with Task Migration for Multicore Embedded Systems
	Introduction
	Related Work
	System Model
	Task Real-Time Behavior
	Power-Aware Scheduler

	Partitioning Heuristics with Task Migration
	Extending Worst Fit to Support Task Migration
	Dynamic Partitioner

	Experimental Results
	Impact of Applying Migrations at Different Points of Time
	Comparing DP versus WF Variants

	Conclusions

	Exploiting Thread-Data Affinity in OpenMP with Data Access Patterns
	The Data Access Pattern Approach
	Data Access Pattern Definition

	Runtime Extensions to Exploit Patterns
	Iteration Space Partitioning
	A Dynamic Scheduling Policy for Pattern Enabled OpenMP Runtimes
	Work Stealing Strategy

	Experimental Results
	Benchmark Suite
	Performance Analysis
	Remote Memory Access Analysis

	Related Work
	Conclusions

	Workload Balancing and Throughput Optimization for Heterogeneous Systems Subject to Failures
	Introduction
	Framework and Optimization Problems
	Complexity Results
	Complexity of the MinPer (*,fi,*) Problems
	Complexity of the MinPer (*,fi,u,*) Problems

	Heuristics and Simulations
	Polynomial Time Heuristics
	Simulations

	Conclusion

	On the Utility of DVFS for Power-Aware Job Placement in Clusters
	Introduction
	Related Work
	Power-Aware Job Placement with DVFS
	Problem Statement
	Problem Formulation

	DVFS/DFS Model
	Numerical Results
	Experimental Methodology
	Results for Small Instances
	Results for Large Instances

	Conclusion

	Topic 4: High-Performance Architecture and Compilers
	Introduction
	Filtering Directory Lookups in CMPs with Write-Through Caches
	Introduction
	Motivation
	Filtering Mechanism
	Overview
	Filter Operation
	Filter States
	Filter Overhead

	Evaluation
	Chip Multiprocessor Model
	Methodology
	Filter Coverage
	Performance
	Power Consumption

	Related Work
	Conclusions
	References

	FELI: HW/SW Support for On-Chip Distributed Shared Memory in Multicores
	Introduction
	On-Chip Distributed Shared Memory
	Chip MultiProcessor Architectures
	Single Global Address Space On-Chip
	FELI - Operating System Support for Locality Management
	L0 Cache
	Discussion on DSM Architecture Parameters

	Methodology
	Experimental Evaluation
	Related Work
	Conclusions
	References

	Token3D: Reducing Temperature in 3D Die-Stacked CMPs through Cycle-Level Power Control Mechanisms
	Introduction
	Background and Related Work
	Power and Thermal Control in Microprocessors
	Building a 3D Die-Stacked Processor
	3D Integration Technology

	Thermal Control in 3D Die-Stacked Processors
	Token3D: Balancing Temperature on 3D-Staked Designs
	Token3D Implementation Details

	Experimental Results
	Simulation Environment
	Effects of Token3D on Peak Temperature
	Further Temperature Optimizations

	Conclusions
	References

	Bandwidth Constrained Coordinated HW/SW Prefetching for Multicores
	Introduction
	Background and Methodology
	Prefetching
	Experimental Setup

	Empirical Motivation
	Prefetching Benefits
	Off-Chip Bandwidth Effects
	Prefetch Request Priority

	Bandwidth Aware Prefetching
	Core-Level Prefetch Manager
	Prefetch Levels
	Global Prefetch Manager

	Experimental Evaluation
	Related Work
	Concluding Remarks
	References

	Unified Locality-Sensitive Signatures for Transactional Memory
	Introduction
	Background and Related Work
	Unified Signature Design
	Hardware Evaluation
	False Positive Analysis
	Evaluation
	Methodology
	Unified Signature Results
	Unified Locality-Sensitive Signature Results

	Conclusions
	References

	Using Runtime Activity to Dynamically Filter Out Inefficient Data Prefetches
	Introduction
	Related Works
	Correlation between Runtime Activity and Prefetch Efficiency
	Adaptive Prefetching Method Based on Runtime Activity
	Experimental Evaluation
	Experimental Environment
	Experimental Results

	Conclusion
	References

	Topic 5: Parallel and Distributed Data Management
	Introduction
	Distributed Scalable Collaborative Filtering Algorithm
	Introduction
	Related Work
	Background and Notation
	Optimized Distributed Co-clustering Algorithm
	Parallel Time Complexity Analysis
	Optimum Thread Distribution

	Results and Analysis
	Strong Scalability
	Weak Scalability
	Data Scalability

	Conclusions and Future Work
	References

	Compressing the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data
	Introduction
	A Motivating Example
	Problem Statement
	Theory and Methodology
	Sorting-Based Data Transformation
	Cubic B-Splines Fitting
	Maximizing Compression Ratio via Window Splitting
	Error Quantization for Guaranteed Point-by-Point Accuracy
	Exploiting –Encoding for Temporal Index Compression

	Results
	Per Window Accuracy
	Trade-Off between Compression and Per Point Accuracy
	Effect of –encoding on Index Compression
	Compression Time
	Performance for Fixed Compression

	Related Work
	Summary
	References

	kNN Query Processing in Metric Spaces Using GPUs
	Introduction
	Similarity Search Background and Related Work
	List of Clusters (LC)
	Sparse Spatial Selection (SSS-Index)

	Graphic Processing Units (GPU)
	GPU Mapping of k-Nearest Neighbor Algorithms
	Exhaustive Search Algorithm
	LC
	SSS-Index

	Experimental Results
	Conclusions
	References

	An Evaluation of Fault-Tolerant Query Processing for Web Search Engines
	Introduction
	Indexing and Ranking
	Experimental Framework
	Process-Oriented Discrete-Event Simulator
	Simulating Failures
	Simulator Validation

	Comparative Evaluation
	Concluding Remarks
	References

	Topic 6: Grid Cluster and Cloud Computing
	Introduction
	Self-economy in Cloud Data Centers: Statistical Assignment and Migration of Virtual Machines
	Introduction
	Assignment and Migration of Virtual Machines
	Assignment Procedure
	Migration Procedure

	Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

	An Adaptive Load Balancing Algorithm with Use of Cellular Automata for Computational Grid Systems
	Introduction
	Cellular Automata
	The Proposed Load Balancing Algorithm
	Simulation and Results
	Simulation Model

	Conclusion
	References

	Shrinker: Improving Live Migration of Virtual Clusters over WANs with Distributed Data Deduplication and Content-Based Addressing
	Introduction
	Background and Related Work
	Architecture of Shrinker
	Architecture Overview
	Security Considerations

	Implementation and Performance Evaluation
	Implementation
	Evaluation Methodology
	Performance Results

	Conclusion
	References

	Maximum Migration Time Guarantees in Dynamic Server Consolidation for Virtualized Data Centers
	Introduction
	Related Work
	Server Consolidation Algorithm
	First Phase: Minimizing Migration Time
	Second Phase: Minimizing the Number of Physical Servers

	Evaluation
	Conclusion and Future Work
	References

	Enacting SLAs in Clouds Using Rules
	Introduction
	Related Work
	Escalation Levels
	Rule-Based Approach for VM Level
	Prerequisites
	Design and Implementation

	Evaluation
	Utility-Driven Evaluation
	Performance-Driven Evaluation

	Conclusion and Outlook
	References

	DEVA: Distributed Ensembles of Virtual Appliances in the Cloud
	Introduction
	System Overview
	DEVA Manager
	Mapping of DEVAs
	DEVAs across Heterogeneous Resources

	DEVA Agents
	Experimental Results
	Overhead Measurement
	Isolation and QoS Conservation
	Use of Heterogeneous DEVAs and Resources

	Related Work
	Conclusions and Future Work
	References

	Benchmarking Grid Information Systems
	Introduction
	Related Work
	Methodology
	Benchmarking MDS and BDII
	Background
	Experiment Setup
	Query Response Time
	Quality of Information
	Discussion

	Conclusion
	References

	Green Cloud Framework for Improving Carbon Efficiency of Clouds
	Introduction
	Related Work
	Carbon Aware Green Cloud Architecture
	Third Party: Green Offer Directory and Carbon Emission Directory
	User: Green Broker
	Provider: Green Middleware

	Case Study: IaaS Cloud
	Carbon Efficient Green Policy (CEGP)
	Performance Evaluation and Results
	Comparison of CEGP with Performance-Based Algorithm (EST)
	Effect of Relationship between CO2 Emission Rate and Datacenter Power Efficiency DCiE

	Conclusion
	References

	Optimizing Multi-deployment on Clouds by Means of Self-adaptive Prefetching
	Introduction
	Our Approach
	Design Principles
	Architecture
	Implementation

	Experimental Evaluation
	Experimental Setup
	Performance of Multi-deployment

	Related Work
	Conclusions
	References

	Topic 7: Peer to Peer Computing
	Introduction
	Combining Mobile and Cloud Storage forProviding Ubiquitous Data Access
	Introduction
	System Design
	Architecture
	Synchronization Process

	Advanced Mechanism for Using Mobile Phones
	Minimizing Communications
	Improving Storage Usage

	Evaluation
	Importance of DSV and DTC
	Performance Impact of the DSV and DTC

	Related Work
	Final Remarks
	References

	Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient Descent
	Introduction
	System and Data Model
	Background
	Related Work
	The Algorithm
	Experimental Results
	Scenarios
	Metrics
	Results

	Conclusions
	References

	Evaluation of P2P Systems under Different Churn Models: Why We Should Bother
	Introduction
	Related Work
	Models and Distributions
	Churn Models
	ON/OFF Distributions

	Comparative Analysis
	Poissonity in Arrivals
	Availability Inter-dependence: A First Difference
	Reliability: A Second Difference

	Conclusions
	References

	Topic 8: Distributed Systems and Algorithms
	Introduction
	Productive Cluster Programming with OmpSs
	Introduction
	OmpSs: From Multicores to Clusters
	Overview
	Example

	Implementation
	Evaluation
	Methodology
	Results

	Related Work
	Conclusions and Future Work
	References

	On the Use of Cluster-Based Partial Message Logging to Improve Fault Tolerance for MPI HPC Applications
	Introduction
	Context
	Communication Patterns
	Partitioning for Partial Message Logging Protocols
	Two Possible Approaches
	Bisection-Based Partitioning

	Evaluation
	Defining a Cost Function
	Results

	Conclusion
	References

	Object Placement for Cooperative Caches with Bandwidth Constraints
	Introduction
	System Model and Problem Formulation
	Hardness Result and Approximation Algorithm
	Hardness Proof
	Efficient Placement Algorithm
	Approximation Ratio
	Extensions to Algorithm PA

	Empirical Evaluation
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

