Emmanuel Jeannot
Raymond Namyst
Jean Roman (Eds.)

Euro-Par 2011
Parallel Processing

17th International Conference, Euro-Par 2011
Bordeaux, France, August/September 2011
Proceedings, Part I

LNCS 6853

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6853

Emmanuel Jeannot Raymond Namyst
Jean Roman (Eds.)

Euro-Par 2011
Parallel Processing

17th International Conference, Euro-Par 2011
Bordeaux, France, August 29—September 2, 2011
Proceedings, Part II

@ Springer

Volume Editors

Emmanuel Jeannot

INRIA

351, Cours de la Libération

33405 Talence Cedex, France
E-mail: emmanuel.jeannot@inria.fr

Raymond Namyst

Université de Bordeaux, INRIA
351, Cours de la Libération
33405 Talence Cedex, France
E-mail: raymond.namyst @labri.fr

Jean Roman

Université de Bordeaux, INRIA
351, Cours de la Libération
33405 Talence Cedex, France
E-mail: jean.roman @inria.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23396-8 e-ISBN 978-3-642-23397-5
DOI 10.1007/978-3-642-23397-5

Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2011934379
CR Subject Classification (1998): F.1.2,C.3,C.2.4,D.1,D.4,1.6, G.1, G.2,F2,D.3

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.

Euro-Par covers a wide spectrum of topics from algorithms and theory to
software technology and hardware-related issues, with application areas ranging
from scientific to mobile and cloud computing.

Euro-Par provides a forum for the introduction, presentation and discussion
of the latest scientific and technical advances, extending the frontier of both the
state of the art and the state of the practice.

The main audience of Euro-Par are researchers in academic institutions, gov-
ernment laboratories and industrial organizations. Euro-Par’s objective is to be
the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications which demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of ac-
companying, technical workshops. Thus, smaller and emerging communities can
meet and develop more focussed topics or as-yet less established topics.

Euro-Par 2011 was the 17th conference in the Euro-Par series, and was or-
ganized by the INRIA (The French National Institute for Research in Com-
puter Science and Control) Bordeaux Sud-Ouest center and LaBRI (Computer
Science Laboratory of Bordeaux). Previous Euro-Par conferences took place in
Stockholm, Lyon, Passau, Southampton, Toulouse, Munich, Manchester, Pad-
derborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft and
Ischia. Next year the conference will take place in Rhodes, Greece. More in-
formation on the Euro-Par conference series and organization is available on the
wesite http://www.europar.org.

The conference was organized in 16 topics. This year we introduced one new
topic (16: GPU and Accelerators Computing) and re-introduced the application
topic (15: High-Performance and Scientific Applications). The paper review pro-
cess for each topic was managed and supervised by a committee of at least four
persons: a Global Chair, a Local Chair, and two Members. Some specific topics
with a high number of submissions were managed by a larger committee with
more members. The final decisions on the acceptance or rejection of the sub-
mitted papers were made in a meeting of the Conference Co-chairs and Local
Chairs of the topics.

The call for papers attracted a total of 271 submissions, representing 41 coun-
tries (based on the corresponding authors’ countries). A total number of 1,065
review reports were collected, which makes an average of 3.93 review reports
per paper. In total 81 papers were selected as regular papers to be presented at

VI

Preface

the conference and included in the conference proceedings, representing 27 coun-
tries from all continents, an yielding an acceptance rate of 29.9%. Three papers
were selected as distinguished papers. These papers, which were presented in a
separate session, are:

1.

Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,

Rob Ross and Nagiza F. Samatova “Compressing the Incompressible with

ISABELA: In-situ Reduction of Spatio-Temporal Data”

Aurelien Bouteiller, Thomas Herault, George Bosilca and Jack J. Dongarra
“Correlated Set Coordination in Fault-Tolerant Message Logging Protocols”

Edgar Solomonik and James Demmel “Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms”.

Euro-Par 2011 was very happy to present three invited speakers of high inter-

national reputation, who discussed important developments in very interesting
areas of parallel and distributed computing;:

1.

2.

Pete Beckman (Argonne National Laboratory and the University of Chicago),
“Facts and Speculations on Exascale: Revolution or Evolution?”

Toni Cortes Computer Architecture Department (DAC) in the Universitat
Politecnica de Catalunya, Spain), “Why Trouble Humans? They Do Not
Care”

Alessandro Curioni (IBM, Zurich Research Laboratory, Switzerland), “New
Scalability Frontiers in Ab-Initio Molecular Dynamics”

In this edition, 12 workshops were held in conjunction with the main track

of the conference. These workshops were:

1.

@

CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing (CGWS
2011)

Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar 2011)

High-Performance Bioinformatics and Biomedicine (HiBB)

System-Level Virtualization for High Performance Computing (HPCVirt
2011)

Algorithms and Programming Tools for Next-Generation High-Performance
Scientific Software (HPSS 2011)

Managing and Delivering Grid Services (MDGS)

UnConventional High-Performance Computing 2011 (UCHPC 2011)

Cloud Computing Projects and Initiatives (CCPI)

Highly Parallel Processing on a Chip (HPPC 2011)

Productivity and Performance (PROPER 2011)

Resiliency in High-Performance Computing (Resilience) in Clusters, Clouds,
and Grids

Virtualization in High-Performance Cloud Computing (VHPC 2011)

The 17th Euro-Par conference in Bordeaux was made possible thanks to the

support of many individuals and organizations. Special thanks are due to the au-
thors of all the submitted papers, the members of the topic committees, and all

Preface VII

the reviewers in all topics, for their contributions to the success of the conference.
We also thank the members of the Organizing Committee and people of the Sud
Congres Conseil. We are grateful to the members of the Euro-Par Steering Com-
mittee for their support. We acknowledge the help we had from Dick Epema of
the organization of Euro-Par 2009 and Pasqua D’Ambra and Domenico Talia of
the organization of Euro-Par 2010. A number of institutional and industrial spon-
sors contributed toward the organization of the conference. Their names and lo-
gos appear on the Euro-Par 2011 website http://europar2011.bordeaux.inria.fr/

It was our pleasure and honor to organize and host Euro-Par 2011 in Bor-
deaux. We hope all the participants enjoyed the technical program and the social
events organized during the conference.

August 2011 Emmanuel Jeannot
Raymond Namyst
Jean Roman

Organization

Euro-Par Steering Committee

Chair

Chris Lengauer

Vice-Chair

Luc Bougé

University of Passau, Germany

ENS Cachan, France

European Respresentatives

José Cunha
Marco Danelutto
Emmanuel Jeannot
Paul Kelly
Harald Kosch
Thomas Ludwig
Emilio Luque
Tomas Margalef
Wolfgang Nagel
Rizos Sakellariou
Henk Sips

Domenico Talia

Honorary Members

Ron Perrott
Karl Dieter Reinartz

Observers

Christos Kaklamanis

New University of Lisbon, Portugal
University of Pisa, Italy
INRIA, France
Imperial College, UK
University of Passau, Germany
University of Heidelberg, Germany
Autonomous University of Barcelona, Spain
Autonomous University of Barcelona, Spain
Dresden University of Technology, Germany
University of Manchester, UK
Delft University of Technology,

The Netherlands
University of Calabria, Italy

Queen’s University Belfast, UK
University of Erlangen-Nuremberg, Germany

Computer Technology Institute, Greece

X Organization
Euro-Par 2011 Organization

Conference Co-chairs

Emmanuel Jeannot INRIA, France
Raymond Namyst University of Bordeaux, France
Jean Roman INRIA, University of Bordeaux, France

Local Organizing Committee

Olivier Aumage INRIA, France
Emmanuel Agullo INRIA, France
Alexandre Denis INRIA, France
Nathalie Furmento CNRS, France
Laetitia Grimaldi INRIA, France
Nicole Lun LaBRI, France
Guillaume Mercier University of Bordeaux, France
Elia Meyre LaBRI France

Euro-Par 2011 Program Committee

Topic 1: Support Tools and Environments

Global Chair

Rosa M. Badia Barcelona Supercomputing Center and CSIC,
Spain

Local Chair

Fabrice Huet University of Nice Sophia Antipolis, France
Members

Rob van Nieuwpoort VU University Amsterdam, The Netherlands
Rainer Keller High-Performance Computing Center

Stuttgart, Germany

Topic 2: Performance Prediction and Evaluation
Global Chair
Shirley Moore University of Tennessee, USA

Local Chair
Derrick Kondo INRIA, France

Organization XI

Members
Giuliano Casale Imperial College London, UK
Brian Wylie Jilich Supercomputing Centre, Germany

Topic 3: Scheduling and Load-Balancing

Global Chair

Leonel Sousa INESC-ID/Technical University of Lisbon,
Portugal

Local Chair

Frédéric Suter IN2P3 Computing Center, CNRS, France
Members

Rizos Sakellariou University of Manchester, UK

Oliver Sinnen University of Auckland, New Zealand
Alfredo Goldman University of Sao Paulo, Brazil

Topic 4: High Performance Architectures and Compilers
Global Chair
Mitsuhisa Sato University of Tsukuba, Japan

Local Chair

Denis Barthou University of Bordeaux, France
Members

Pedro Diniz INESC-ID, Portugal

P. Saddayapan Ohio State University, USA

Topic 5: Parallel and Distributed Data Management
Global Chair

Salvatore Orlando Universita Ca’ Foscari Venezia, Italy

Local Chair

Gabriel Antoniu INRIA, France
Members
Amol Ghoting IBM T. J. Watson Research Center, USA

Maria S. Perez Universidad Politecnica de Madrid, Spain

XIT Organization

Topic 6: Grid, Cluster and Cloud Computing
Global Chair
Ramin Yahyapour TU Dortmund University, Germany

Local Chair

Christian Pérez INRIA, France

Members

Erik Elmroth Umea University, Sweden

Ignacio M. Llorente Complutense University of Madrid, Spain
Francesc Guim Intel, Portland, USA

Karsten Oberle Alcatel-Lucent, Bell Labs, Germany

Topic 7: Peer to Peer Computing
Global Chair

Pascal Felber University of Neuchatel, Switzerland

Local Chair

Olivier Beaumont INRIA, France

Members

Alberto Montresor University of Trento, Italy

Amitabha Bagchi Indian Institute of Technology Delhi, India

Topic 8: Distributed Systems and Algorithms
Global Chair
Dariusz Kowalski University of Liverpool, UK

Local Chair

Pierre Sens University Paris 6, France

Members

Antonio Fernandez Anta IMDEA Networks, Spain

Guillaume Pierre VU University Amsterdam, The Netherlands

Topic 9: Parallel and Distributed Programming
Global Chair

Pierre Manneback University of Mons, Belgium

Organization XIIT

Local Chair

Thierry Gautier INRIA, France

Members

Gudula Riinger Technical University of Chemnitz, Germany
Manuel Prieto Matias Universidad Complutense de Madrid, Spain

Topic 10: Parallel Numerical Algorithms

Global Chair

Daniela di Serafino Second University of Naples and ICAR-CNR,
Italy

Local Chair

Luc Giraud INRIA, France

Members

Martin Berzins University of Utah, USA

Martin Gander University of Geneva, Switzerland

Topic 11: Multicore and Manycore Programming
Global Chair

Sabri Pllana University of Vienna, Austria

Local Chair

Jean-Francois Méhaut University of Grenoble, France

Members

Eduard Ayguade Technical University of Catalunya and
Barcelona Supercomputing Center, Spain

Herbert Cornelius Intel, Germany

Jacob Barhen Oak Ridge National Laboratory, USA

Topic 12: Theory and Algorithms for Parallel Computation
Global Chair
Arnold Rosenberg Colorado State University, USA

Local Chair
Frédéric Vivien INRIA, France

X1V Organization

Members
Kunal Agrawal Washington University in St Louis, USA
Panagiota Fatourou University of Crete, Greece

Topic 13: High Performance Network and Communication
Global Chair

Jesper Traff University of Vienna, Austria

Local Chair

Brice Goglin INRIA, France

Members

Ulrich Bruening University of Heidelberg, Germany
Fabrizio Petrini IBM, USA

Topic 14: Mobile and Ubiquitous Computing
Global Chair

Pedro Marron Universitat Duisburg-Essen, Germany

Local Chair

Eric Fleury INRIA, France

Members

Torben Weis University of Duisburg-Essen, Germany
Qi Han Colorado School of Mines, USA

Topic 15: High Performance and Scientific Applications
Global Chair
Esmond G. Ng Lawrence Berkeley National Laboratory, USA

Local Chair

Olivier Coulaud INRIA, France
Members
Kengo Nakajima University of Tokyo, Japan

Mariano Vazquez Barcelona Supercomputing Center, Spain

Organization

Topic 16: GPU and Accelerators Computing

Global Chair
Wolfgang Karl

Local Chair
Samuel Thibault

Members

Stan Tomov
Taisuke Boku

Euro-Par 2011 Referees

Muresan Adrian
Kunal Agrawal
Emmanuel Agullo
Toufik Ahmed
Taner Akgun
Hasan Metin Aktulga
Sadaf Alam
George Almasi
Francisco Almeida
Jose Alvarez Bermejo
Brian Amedro
Nazareno Andrade
Artur Andrzejak
Luciana Arantes
Mario Arioli
Ernest Artiaga
Rafael Asenjo
Romain Aubry
Cédric Augonnet
Olivier Aumage
Eduard Ayguade
Rosa M. Badia
Amitabha Bagchi
Michel Bagein
Enes Bajrovic
Allison Baker
Pavan Balaji
Sorav Bansal
Jorge Barbosa

University of Karlsruhe, Germany

University of Bordeaux, France

University of Tennessee, USA
University of Tsukuba, Japan

Jacob Barhen

Denis Barthou
Rajeev Barua
Francoise Baude
Markus Bauer
Ewnetu Bayuh Lakew
Olivier Beaumont
Viceng Beltran
Joanna Berlinska
Martin Berzins
Xavier Besseron
Vartika Bhandari
Marina Biberstein
Paolo Bientinesi

Aart Bik

David Boehme

Maria Cristina Boeres
Taisuke Boku
Matthias Bollhoefer
Erik Boman

Michael Bond
Francesco Bongiovanni
Rajesh Bordawekar
George Bosilca
Frangois-Xavier Bouchez
Marin Bougeret
Aurelien Bouteiller
Hinde Bouziane
Fabienne Boyer

XV

XVI Organization

Ivona Brandic
Francisco Brasileiro
David Breitgand
Andre Brinkman
Francois Broquedis
Ulrich Bruening
Rainer Buchty

j. Mark Bull

Aydin Buluc
Alfredo Buttari
Edson Caceres
Agustin Caminero
Yves Caniou
Louis-Claude Canon
Gabriele Capannini
Pablo Carazo
Alexandre Carissimi
Giuliano Casale
Henri Casanova
Simon Caton

José Maria Cela
Christophe Cerin
Ravikesh Chandra
Andres Charif-Rubial
Fabio Checconi
Yawen Chen
Gregory Chockler
Vincent Cholvi
Peter Chronz

IHsin Chung
Marcelo Cintra
Vladimir Ciric
Pierre-Nicolas Clauss
Sylvain Collange
Denis Conan
Arlindo Conceicao
Massimo Coppola
Julita Corbalan
Herbert Cornelius
Toni Cortes

Olivier Coulaud
Ludovic Courtes
Raphael Couturier
Tommaso Cucinotta
Angel Cuevas

Pasqua D’Ambra
Anthony Danalis
Vincent Danjean
Eric Darve
Sudipto Das
Ajoy Datta
Patrizio Dazzi

Pablo de Oliveira Castro

César De Rose

Ewa Deelman

Olivier Delgrange
Alexandre Denis
Yves Denneulin
Frederic Desprez
Gérard Dethier
Daniela di Serafino
Francois Diakhaté
James Dinan
Nicholas Dingle
Pedro Diniz

Alastair Donaldson
Antonio Dopico
Matthieu Dorier

Niels Drost

Maciej Drozdowski
Licia Drummond
Peng Du

Cedric du Mouza
Vitor Duarte
Philippe Duchon

Jorg Diimmler
Alejandro Duran
Pierre-Francois Dutot
Partha Dutta

Eiman Ebrahimi
Rudolf Eigenmann
Jorge Ejarque Artigas
Vincent Englebert
Dominic Eschweiler
Yoav Etsion

Lionel Eyraud-Dubois
Flavio Fabbri
Fabrizio Falchi
Catherine Faron Zucker
Montse Farreras

Panagiota Fatourou
Hugues Fauconnier
Mathieu Faverge
Gilles Fedak

Dror G. Feitelson
Pascal Felber
Florian Feldhaus
Marvin Ferber
Juan Fernandez
Antonio Fernandez Anta
Ilario Filippini
Salvatore Filippone
Eric Fleury

Aislan Foina

Pierre Fortin
Markos Fountoulakis
Rob Fowler

Vivi Fragopoulou
Felipe Franga
Emilio Francesquini
Sébastien Frémal
Davide Frey
Wolfgang Frings
Karl Fuerlinger
Akihiro Fujii
Nathalie Furmento
Edgar Gabriel
Martin Gaedke
Georgina Gallizo
Efstratios Gallopoulos
Ixent Galpin

Marta Garcia
Thierry Gautier
Stéphane Genaud
Chryssis Georgiou
Abdou Germouche
Michael Gerndt
Claudio Geyer
Amol Ghoting
Nasser Giacaman
Mathieu Giraud
Daniel Gmach
Brice Goglin
Spyridon Gogouvitis
Alfredo Goldman

Organization

Maria Gomes

Jose Gémez

Jose Gonzalez

José Luis Gonzéalez Garcia
Rafael Gonzalez-Cabero
David Goudin
Madhusudhan Govindaraju
Maria Gradinariu
Vincent Gramoli
Fabiola Greve

Laura Grigori
Olivier Gruber

Serge Guelton

Gael Guennebaud
Stefan Guettel
Francesc Guim
Ronan Guivarch
Jens Gustedt
Antonio Guzman Sacristan
Daniel Hackenberg
Azzam Haidar

Mary Hall

Greg Hamerly

Qi Han

Toshihiro Hanawa
Mauricio Hanzich
Paul Hargrove
Masae Hayashi
Jiahua He

Eric Heien

Daniel Henriksson
Ludovic Henrio
Sylvain Henry
Francisco Hernandez
Enric Herrero

Pieter Hijma

Shoichi Hirasawa
Torsten Hoefler
Jeffrey Hollingsworth
Sebastian Holzapfel
Mitch Horton
Guillaume Houzeaux
Jonathan Hu

Ye Huang

Guillaume Huard

XVII

XVIII Organization

Fabrice Huet

Kévin Huguenin
Sascha Hunold

Costin lancu
Aleksandar Ilic
Alexandru Tosup

Umer Igbal

Kamil Iskra

Takeshi Iwashita
Julien Jaeger
Emmanuel Jeannot

Ali Jehangiri

Hideyuki Jitsumoto
Josep Jorba
Prabhanjan Kambadur
Yoshikazu Kamoshida
Mahmut Kandemir
Tejas Karkhanis
Wolfgang Karl
Takahiro Katagiri
Gregory Katsaros
Joerg Keller

Rainer Keller

Paul Kelly

Roelof Kemp

Michel Kern

Ronan Keryell
Christoph Kessler
Slava Kitaeft

Cristian Klein

Yannis Klonatos
Michael Knobloch
William Knottenbelt
Kleopatra Konstanteli
Miroslaw Korzeniowski
Dariusz Kowalski
Stephan Kraft

Sriram Krishnamoorthy
Diwakar Krishnamurthy
Rajasekar Krishnamurthy
Vinod Kulathumani
Raphael Kunis

Tilman Kiistner

Felix Kwok
Dimosthenis Kyriazis

Renaud Lachaize
Ghislain Landry Tsafack
Julien Langou
Stefan Lankes

Lars Larsson
Alexey Lastovetsky
Guillaume Latu
Stevens Le Blond
Bertrand Le Cun
Erwan Le Merrer
Adrien Lebre

Rich Lee

Erik Lefebvre
Arnaud Legrand
Christian Lengauer
Daniele Lezzi
Wubin Li

Charles Lively
Welf Loewe
Sebastien Loisel
Joao Lourenco
Kuan Lu

Jose Luis Lucas Simarro
Mikel Lujan

Ewing Lusk

Piotr Luszczek
Ignacio M. Llorente
Jason Maassen
Edmundo Madeira
Anirban Mahanti
Scott Mahlke

Sidi Mahmoudi
Nicolas Maillard
Constantinos Makassikis
Pierre Manneback
Loris Marchal
Ismael Marin
Mauricio Marin
Osni Marques
Erich Marth
Jonathan Marti
Xavier Martorell
Naoya Maruyama
Fabien Mathieu
Rafael Mayo

Abdelhafid Mazouz
Jean-Francois Méhaut
Wagner Meira

Alba Cristina Melo
Massimiliano Meneghin
Claudio Meneses
Andreas Menychtas
Jose Miguel-Alonso
Milan Mihajlovic
Alessia Milani
Cyriel Minkenberg
Neeraj Mittal
Flavio Miyazawa
Hashim Mohamed
Sébastien Monnet
Jesus Montes
Alberto Montresor
Shirley Moore
Matteo Mordacchini
Jose Moreira
Achour Mostefaoui
Miguel Mosteiro
Gregory Mounié
Xenia Mountrouidou
Hubert Naacke
Priya Nagpurkar
Kengo Nakajima
Jeff Napper

Akira Naruse
Bassem Nasser
Rajib Nath

Angeles Navarro
Philippe O. A. Navaux
Marco Netto
Marcelo Neves
Esmond Ng

Yanik Ngoko
Jean-Marc Nicod
Bogdan Nicolae
Dimitrios Nikolopoulos
Sébastien Noél
Ramon Nou

Alberto Nuniez

John O’Donnell
Satoshi Ohshima

Organization

Ariel Oleksiak

Stephen Olivier
Ana-Maria Oprescu
Anne-Cecile Orgerie
Salvatore Orlando
Per-Olov Ostberg
Herbert Owen

Sergio Pacheco Sanchez
Gianluca Palermo
George Pallis

Nicholas Palmer

Jairo Panetta
Alexander Papaspyrou
Michael Parkin

Davide Pasetto

George Pau

Christian Perez

Maria Perez-Hernandez
Francesca Perla
Jean-Jacques Pesqué
Franck Petit

Fabrizio Petrini
Frédéric Pétrot
Guillaume Pierre
Jean-Francois Pineau
Luis Pinuel

Jelena Pjesivac-Grbovic
Kassian Plankensteiner
Oscar Plata

Sabri Pllana,

Leo Porter

Carlos Prada-Rojas
Manuel Prieto Matias
Radu Prodan
Christophe Prud’homme
Vivien Quema

Enrique Quintana-Orti
Rajmohan Rajaraman
Lavanya Ramakrishnan
Pierre Ramet

Praveen Rao

Vinod Rebello

Pablo Reble

Sasank Reddy
Veronika Rehn-Sonigo

XIX

XX Organization

Giuseppe Reina
Olivier Richard
Etienne Riviere
Victor Robles
Thomas Roblitz
Jean-Louis Roch
David Rodenas

Ivan Rodero
Mathilde Romberg
Arnold Rosenberg
Diego Rossinelli
Philip Roth

Atanas Rountev
Francois-Xavier Roux
Jan Sacha
Ponnuswamy Sadayappan
Rizos Sakellariou
Tetsuya Sakurai
Alberto Sanchez
Jesus Sanchez

Frode Sandnes
Idafen Santana
Mitsuhisa Sato

Erik Saule

Robert Sauter
Bruno Schulze
Michael Schwind
Mina Sedaghat
Frank Seinstra
Pierre Sens

Damian Serrano
Patricia Serrano-Alvarado
Javier Setoain
Muhammad Shafique
Abhishek Sharma
Rémi Sharrock
Hemant Shukla
Christian Siebert
Juergen Sienel
Frederique Silber-Chaussumier
Claudio Silvestri
Luca Silvestri

Oliver Sinnen

Raiil Sirvent

Joao Sobral

Fengguang Song
Siang Song

Borja Sotomayor
Leonel Sousa

Daniel Spooner
Anton Stefanek
Manuel Stein

Mark Stillwell
Corina Stratan
Frederic Suter
Petter Svéard
Guillermo Taboada
Daisuke Takahashi
Domenico Talia

Jie Tao

Issam Tarrass
Osamu Tatebe
Shirish Tatikonda
Andrei Tchernykh
Marc Tchiboukdjian
Cedric Tedeschi
Enric Tejedor Saavedra
Christian Tenllado
Radu Teodorescu
Alexandre Termier
Dan Terpstra
Samuel Thibault
Jeyarajan Thiyagalingam
Gaél Thomas

Rollin Thomas
Christopher Thraves
Yuanyuan Tian
Mustafa Tikir
Sebastien Tixeuil
Stanimire Tomov
Nicola Tonellotto
Johan Tordsson
Juan Tourino
Jesper Traff
Damien Tromeur-Dervout
Paolo Trunfio
Hong-Linh Truong
Bora Ucar

Osman Unsal

Timo van Kessel

Rob van Nieuwpoort
Hans Vandierendonck
Ana Lucia Varbanescu
Sebastien Varrette
Mariano Vazquez

Tino Véazquez

Jose Luis Vazquez-Poletti
Luis Veiga

Rossano Venturini
Javier Verdu

Jerome Vienne
Frederic Vivien
Pierre-André Wacrenier
Frédéric Wagner
Stephan Wagner
Oliver Waldrich
Matthaus Wander
Takumi Washio

Vince Weaver
Jan-Philipp Weif3
Torben Weis

Philipp Wieder

Organization

Jeremiah Willcock
Samuel Williams
Martin Wimmer
Xingfu Wu

Brian Wylie
Changyou Xing
Lei Xu

Yingxiang Xu
Ramin Yahyapour
Edwin Yaqub
Asim YarKhan
Srikant YN

Elad Yom-Tov
Kazuki Yoshizoe
Haihang You

Fa Zhang

Hui Zhang

Li Zhao

Wolfgang Ziegler
Wolf Zimmermann
Jaroslaw Zola
Marco Zuniga

XXI

Table of Contents — Part 11

Topic 9: Parallel and Distributed Programming

Introduction.
Pierre Manneback, Thierry Gautier, Gudula Rnger, and
Manuel Prieto Matias

Parallel Scanning with Bitstream Addition: An XML Case Study
Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin,
Thomas C. Shermer, and Fred P. Popowich

HOMPI: A Hybrid Programming Framework for Expressing and
Deploying Task-Based Parallelism
Vassilios V. Dimakopoulos and Panagiotis E. Hadjidoukas

A Failure Detector for Wireless Networks with Unknown
Membershipot e
Fabiola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon

Towards Systematic Parallel Programming over MapReduce
Yu Liu, Zhenjiang Hu, and Kiminori Matsuzaki

Correlated Set Coordination in Fault Tolerant Message Logging
Protocols e
Aurelien Bouteiller, Thomas Herault, George Bosilca, and
Jack J. Dongarra

Topic 10: Parallel Numerical Algorithms

Introduction.

Martin Berzins, Daniela di Serafino, Martin Gander, and Luc Giraud

A Bit-Compatible Parallelization for ILU(k) Preconditioning
Xin Dong and Gene Cooperman

Parallel Inexact Constraint Preconditioners for Saddle Point
Problems
Luca Bergamaschi and Angeles Martinez

Communication-Optimal Parallel 2.5D Matrix Multiplication and LU
Factorization Algorithms.......... i
Edgar Solomonik and James Demmel

14

27

39

51

65

66

78

90

XXIV Table of Contents — Part 11

Topic 11: Multicore and Manycore Programming

Introduction. e
Sabri Pllana, Jean-Frangois Méhaut, Eduard Ayguade,
Herbert Cornelius, and Jacob Barhen

Hardware and Software Tradeoffs for Task Synchronization on

Manycore Architectures.c..o i
Yonghong Yan, Sanjay Chatterjee, Daniel A. Orozco, Elkin Garcia,
Zoran Budimli¢, Jun Shirako, Robert S. Pavel, Guang R. Gao, and
Vivek Sarkar

OpenMPspy: Leveraging Quality Assurance for Parallel Software..
Victor Pankratius, Fabian Knittel, Leonard Masing, and
Martin Walser

A Generic Parallel Collection Framework............................
Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and
Martin Odersky

Progress Guarantees When Composing Lock-Free Objects.............
Nhan Nguyen Dang and Philippas Tsigas

Engineering a Multi-core Radix Sort...........
Jan Wassenberg and Peter Sanders

Accelerating Code on Multi-cores with FastFlow
Marco Aldinucci, Marco Danelutto, Peter Kilpatrick,
Massimiliano Meneghin, and Massimo Torquati

A Novel Shared-Memory Thread-Pool Implementation for Hybrid
Parallel CFD Solverso e
Jens Jagerskipper and Christian Simmendinger

A Fully Empirical Autotuned Dense QR Factorization for Multicore
Architectures . .. oot
Emmanuel Agullo, Jack J. Dongarra, Rajib Nath, and
Stanimire Tomov

Parallelizing a Real-Time Physics Engine Using Transactional
MEMOTY . vttt e et e e e
Jaswanth Sreeram and Santosh Pande

Topic 12: Theory and Algorithms for Parallel
Computation

Introduction.
Kunal Agarwal, Panagiota Fatourou, Arnold L. Rosenberg, and
Frédéric Vivien

Table of Contents — Part 11 XXV

Petri-nets as an Intermediate Representation for Heterogeneous
Architectures 226
Peter Calvert and Alan Mycroft

A Bi-Objective Scheduling Algorithm for Desktop Grids with Uncertain
Resource Availabilities. 238
Louis-Claude Canon, Adel Essafi, Grégory Mounié, and
Denis Trystram

New Multithreaded Ordering and Coloring Algorithms for Multicore
Architectures . .. oot 250
Md. Mostofa Ali Patwary, Assefaw H. Gebremedhin, and Alex Pothen

Topic 13: High Performance Networks and
Communication

Introduction. e 263
Jesper Larsson Traff, Brice Goglin, Ulrich Bruening, and
Fabrizio Petrini

Kernel-Based Offload of Collective Operations — Implementation,

Evaluation and Lessons Learned 264
Timo Schneider, Sven Eckelmann, Torsten Hoefler, and
Wolfgang Rehm

A High Performance Superpipeline Protocol for InfiniBand 276
Alexandre Denis

Topic 14: Mobile and Ubiquitous Computing

Introduction. 288
Eric Fleury, Qi Han, Pedro Marron, and Torben Weis

ChurnDetect: A Gossip-Based Churn Estimator for Large-Scale
Dynamic Networks 289
Andrei Pruteanu, Venkat Iyer, and Stefan Dulman

Topic 15: High-Performance and Scientific
Applications

Introduction. 302
Olivier Coulaud, Kengo Nakajima, Esmond G. Ng, and
Mariano Vazquez

Real Time Contingency Analysis for Power Grids 303
Anshul Mittal, Jagabondhu Hazra, Nikhil Jain, Vivek Goyal,
Deva P. Seetharam, and Yogish Sabharwal

XXVI Table of Contents — Part 11

CRSD: Application Specific Auto-tuning of SpMV for Diagonal Sparse

Matrices . ..o e

Xiangzheng Sun, Yunquan Zhang, Ting Wang, Guoping Long,
Xianyi Zhang, and Yan Li

The LOFAR Beam Former: Implementation and Performance

Analysis . ..o

Jan David Mol and John W. Romein

Application-Specific Fault Tolerance via Data Access

Characterizationt

Nawab Ali, Sriram Krishnamoorthy, Niranjan Govind,
Karol Kowalski, and Ponnuswamy Sadayappan

High-Performance Numerical Optimization on Multicore Clusters

Panagiotis E. Hadjidoukas, Constantinos Voglis,
Vassilios V. Dimakopoulos, Isaac E. Lagaris, and
Dimitris G. Papageorgiou

Parallel Monte-Carlo Tree Search for HPC Systems...................

Tobias Graf, Ulf Lorenz, Marco Platzner, and Lars Schaefers

Petascale Block-Structured AMR Applications without Distributed

Meta-data

Brian Van Straalen, Phil Colella, Daniel T. Graves, and Noel Keen

Accelerating Anisotropic Mesh Adaptivity on nVIDIA’s CUDA Using

Texture Interpolation.

Georgios Rokos, Gerard Gorman, and Paul H.J. Kelly

Topic 16: GPU and Accelerators Computing

Introduction. o e

Wolfgang Karl, Samuel Thibault, Stanimire Tomov, and
Taisuke Boku

Model-Driven Tile Size Selection for DOACROSS Loops on GPUs

Peng Di and Jingling Xue

Iterative Sparse Matrix-Vector Multiplication for Integer Factorization

Bertil Schmidt, Hans Aribowo, and Hoang-Vu Dang

Table of Contents — Part 1I XXVII

Lessons Learned from Exploring the Backtracking Paradigm on the

GPU . 425
John Jenkins, Isha Arkatkar, John D. Owens, Alok Choudhary, and
Nagiza F. Samatova

Automatic OpenCL Device Characterization: Guiding Optimized

Kernel Designo 438
Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and
Thomas Fahringer

Author Index 453

Table of Contents — Part 1

Topic 1: Support Tools and Environments

Introduction. e
Rosa M. Badia, Fabrice Huet, Rob van Nieuwpoort, and
Rainer Keller

Run-Time Automatic Performance Tuning for Multicore
ApPpPLCationS. . .. oo
Thomas Karcher and Victor Pankratius

Exploiting Cache Traffic Monitoring for Run-Time Race Detection
Jochen Schimmel and Victor Pankratius

Accelerating Data Race Detection with Minimal Hardware Support
Rodrigo Gonzalez-Alberquilla, Karin Strauss, Luis Ceze, and
Luis Pinuel

Quantifying the Potential Task-Based Dataflow Parallelism in MPI
APDPLCAtIONS. . . oot
Viadimir Subotic, Roger Ferrer, Jose Carlos Sancho,
Jesus Labarta, and Mateo Valero

Event Log Mining Tool for Large Scale HPC Systems.................
Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and
Bill Kramer

Reducing the Overhead of Direct Application Instrumentation Using
Prior Static Analysiso i
Jan Mupler, Daniel Lorenz, and Felix Wolf

Topic 2: Performance Prediction and Evaluation

Introduction. e
Shirley Moore, Derrick Kondo, Brian Wylie, and Giuliano Casale

Reducing Energy Usage with Memory and Computation-Aware
Dynamic Frequency Scaling i
Michael A. Laurenzano, Mitesh Meswani, Laura Carrington,
Allan Snavely, Mustafa M. Tikir, and Stephen Poole

A Contention-Aware Performance Model for HPC-Based Networks:
A Case Study of the InfiniBand Network
Maxime Martinasso and Jean-Francois Méhaut

XXX Table of Contents — Part 1

Using the Last-Mile Model as a Distributed Scheme for Available
Bandwidth Prediction
Olivier Beaumont, Lionel Eyraud-Dubois, and Young J. Won

Self-stabilization versus Robust Self-stabilization for Clustering in
Ad-Hoc Networkot
Colette Johnen and Fouzi Mekhaldi

Multilayer Cache Partitioning for Multiprogram Workloads............
Mahmut Kandemir, Ramya Prabhakar, Mustafa Karakoy, and
Yuanrut Zhang

Backfilling with Guarantees Granted upon Job Submission
Alexander M. Lindsay, Mazwell Galloway-Carson,
Christopher R. Johnson, David P. Bunde, and
Vitus J. Leung

Topic 3: Scheduling and Load Balancing

Introduction. e
Leonel Sousa, Frédéric Suter, Alfredo Goldman,
Rizos Sakellariou, and Oliver Sinnen

Greedy “Exploitation” Is Close to Optimal on Node-Heterogeneous
CIUSEETS .ttt
Arnold L. Rosenberg

Scheduling JavaSymphony Applications on Many-Core Parallel
COMPULETS « .« ottt e e e e e e e e
Muhammad Aleem, Radu Prodan, and Thomas Fahringer

Assessing the Computational Benefits of AREA-Oriented
DAG-Schedulingo

Gennaro Cordasco, Rosario De Chiara, and Arnold L. Rosenberg

Analysis and Modeling of Social Influence in High Performance

Computing Workloadsc. i
Shuai Zheng, Zon-Yin Shae, Xiangliang Zhang, Hani Jamjoom, and
Liana Fong

Work Stealing for Multi-core HPC Clusters.
Kaushik Ravichandran, Sangho Lee, and Santosh Pande

A Dynamic Power-Aware Partitioner with Task Migration for Multicore
Embedded Systems.
José Luis March, Julio Sahuquillo, Salvador Petit,
Houcine Hassan, and José Duato

Table of Contents — Part I XXXI

Exploiting Thread-Data Affinity in OpenMP with Data Access
Patternso 230
Andrea Di Biagio, Ettore Speziale, and Giovanni Agosta

Workload Balancing and Throughput Optimization for Heterogeneous
Systems Subject to Failures 242
Anne Benoit, Alexandru Dobrila, Jean-Marc Nicod, and
Laurent Philippe

On the Utility of DVFS for Power-Aware Job Placement in Clusters.... 255
Jean-Marc Pierson and Henri Casanova

Topic 4: High-Performance Architecture and
Compilers

Introduction. 267
Mitsuhisa Sato, Denis Barthou, Pedro C. Diniz, and P. Saddayapan

Filtering Directory Lookups in CMPs with Write-Through Caches 269
Ana Bosque, Victor Vinals, Pablo Ibariez, and Jose Maria Llaberia

FELL: HW/SW Support for On-Chip Distributed Shared Memory in
MuUlbiCores ..o vv et e 282
Carlos Villavieja, Yoav Etsion, Alex Ramirez, and Nacho Navarro

Token3D: Reducing Temperature in 3D Die-Stacked CMPs through
Cycle-Level Power Control Mechanisms, 295
Juan M. Cebridn, Juan L. Aragon, and Stefanos Kaziras

Bandwidth Constrained Coordinated HW/SW Prefetching for
Multicoresot 310
Sai Prashanth Muralidhara, Mahmut Kandemir, and Yuanrui Zhang

Unified Locality-Sensitive Signatures for Transactional Memory 326
Ricardo Quislant, Eladio D. Gutierrez, Oscar Plata, and
Emilio L. Zapata

Using Runtime Activity to Dynamically Filter Out Inefficient Data
Prefetches. o 338
Oussama Gamoudi, Nathalie Drach, and Karine Heydemann

Topic 5: Parallel and Distributed Data Management

Introduction. e 351
Salvatore Orlando, Gabriel Antoniu, Amol Ghoting, and
Maria S. Perez

Distributed Scalable Collaborative Filtering Algorithm................ 353
Ankur Narang, Abhinav Srivastava, and Naga Praveen Kumar Katta

XXXII Table of Contents — Part 1

Compressing the Incompressible with ISABELA: In-situ Reduction of
Spatio-temporal Data 366
Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier,
Scott Klasky, Rob Latham, Rob Ross, and Nagiza F. Samatova

kNN Query Processing in Metric Spaces Using GPUs 380
Ricardo J. Barrientos, José I. Gomez, Christian Tenllado,
Manuel Prieto Matias, and Mauricio Marin

An Evaluation of Fault-Tolerant Query Processing for Web Search

Engines . ..o 393
Carlos Gomez-Pantoja, Mauricio Marin, Veronica Gil-Costa, and
Carolina Bonacic

Topic 6: Grid Cluster and Cloud Computing

Introduction. 405
Ramin Yahyapour, Christian Pérez, Erik Elmroth,
Ignacio M. Llorente, Francesc Guim, and Karsten Oberle

Self-economy in Cloud Data Centers: Statistical Assignment and
Migration of Virtual Machines i .. 407
Carlo Mastroianni, Michela Meo, and Giuseppe Papuzzo

An Adaptive Load Balancing Algorithm with Use of Cellular Automata
for Computational Grid Systems i .. 419
Laleh Rostami Hosoori and Amir Masoud Rahmani

Shrinker: Improving Live Migration of Virtual Clusters over WANs
with Distributed Data Deduplication and Content-Based Addressing ... 431
Pierre Riteau, Christine Morin, and Thierry Priol

Maximum Migration Time Guarantees in Dynamic Server Consolidation
for Virtualized Data Centers 443
Tiago Ferreto, César De Rose, and Hans-Ulrich Heiss

Enacting SLAs in Clouds Using Rules 455
Michael Maurer, Ivona Brandic, and Rizos Sakellariou

DEVA: Distributed Ensembles of Virtual Appliances in the Cloud 467
David Villegas and Seyed Masoud Sadjadi

Benchmarking Grid Information Systems............ 479
Laurence Field and Rizos Sakellariou

Green Cloud Framework for Improving Carbon Efficiency of Clouds 491
Saurabh Kumar Garg, Chee Shin Yeo, and Rajkumar Buyya

Table of Contents — Part 1 XXXIII

Optimizing Multi-deployment on Clouds by Means of Self-adaptive
Prefetching. o 503
Bogdan Nicolae, Franck Cappello, and Gabriel Antoniu

Topic 7: Peer to Peer Computing

Introduction. e 514
Amitabha Bagchi, Olivier Beaumont, Pascal Felber, and
Alberto Montresor

Combining Mobile and Cloud Storage for Providing Ubiquitous Data
ACCESS - o ot 516
Joao Soares and Nuno Preguica

Asynchronous Peer-to-Peer Data Mining with Stochastic Gradient
Descent 528
Robert Ormandsi, Istvan Hegedis, and Mark Jelasity

Evaluation of P2P Systems under Different Churn Models: Why We
Should Bother 541
Marc Sanchez-Artigas and Enrique Férnandez-Casado

Topic 8: Distributed Systems and Algorithms

Introduction. 554
Dariusz Kowalski, Pierre Sens, Antonio Fernandez Anta, and
Guillaume Pierre

Productive Cluster Programming with OmpSs 555
Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras,
Xavier Martorell, Rosa M. Badia, Eduard Ayguade, and
Jestus Labarta

On the Use of Cluster-Based Partial Message Logging to Improve Fault

Tolerance for MPI HPC Applications, 567
Thomas Ropars, Amina Guermouche, Bora Ugcar, Esteban Meneses,
Lazxmikant V. Kalé, and Franck Cappello

Object Placement for Cooperative Caches with Bandwidth

ConStraints . ..ot 579
UmaMaheswari C. Devi, Malolan Chetlur, and
Shivkumar Kalyanaraman

Author Index 595

Introduction

Pierre Manneback, Thierry Gautier, Gudula Rnger, and Manuel Prieto Matias

Topic chairs

Developing parallel or distributed applications is a hard task and it requires ad-
vanced algorithms, realistic modeling, efficient design tools, high-level program-
ming abstractions, high-performance implementations, and experimental eval-
uation. Ongoing research in this field emphasizes the design and development
of correct, high-performance, portable, and scalable parallel programs. Related
to these central needs, important work addresses methods for reusability, per-
formance prediction, large-scale deployment, self-adaptivity, and fault-tolerance.
Given the rich history in this field, practical applicability of proposed methods,
models, algorithms, or techniques is a key requirement for timely research. This
topic is focusing on parallel and distributed programming in general, except
for work specifically targeting multicore and manycore architectures, which has
matured to becoming a Euro-Par topic of its own.

Each submission was reviewed by at least four reviewers and, finally, we were
able to select five regular papers, spanning the topics scope, ranging from low-
level issues like failure detectors, all the way up to parallelization of a parser.

In particular, Greve et al. in A Failure Detector for Wireless Networks with
Unknown Membership propose a protocol for a new class of detector which
tolerates mobility and message losses. In Correlated Set Coordination in Fault
Tolerant Message Logging Protocols, Bouteiller et al. describe a hierarchical par-
titioning of a set of processes that takes benefit of a coordinated protocol on each
many-core nodes, as well as a message logging protocol for scalability between
nodes. Liu et al. contributed " Towards Systematic Parallel Programming over
MapReduce”, a framework based on list homomorphisms to derive MapReduce
programs from sequential specification. In "HOMPI: A Hybrid Programming
Framework for Expressing and Deploying Task-Based Parallelism”, Dimakopou-
los et al. present a framework to exploit cluster of multicores on task-based
parallel programs. Last but not least, Cameron et al. present a original paral-
lelization of the XML parser in their paper ”Parallel Scanning with Bitstream
Addition: An XML Case Study”.

We are proud of the scientific program that we managed to assemble. Of
course, this was only possible by combining the efforts of many. We would like
to take the opportunity to thank the authors who submitted their contributions,
and the external referees who have made the scientific selection process possible
in the first place.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Parallel Scanning with Bitstream Addition: An
XML Case Study

Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin,
Thomas C. Shermer, and Fred P. Popowich

Simon Fraser University, Surrey, BC, Canada
{cameron,eamiri,ksherdy,lindanl,shermer,popowich}@cs.sfu.ca

Abstract. A parallel scanning method using the concept of bitstream
addition is introduced and studied in application to the problem of XML
parsing and well-formedness checking. On processors supporting W-bit
addition operations, the method can perform up to W finite state tran-
sitions per instruction. The method is based on the concept of parallel
bitstream technology, in which parallel streams of bits are formed such
that each stream comprises bits in one-to-one correspondence with the
character code units of a source data stream. Parsing routines are initially
prototyped in Python using its native support for unbounded integers
to represent arbitrary-length bitstreams. A compiler then translates the
Python code into low-level C-based implementations. These low-level im-
plementations take advantage of the SIMD (single-instruction multiple-
data) capabilities of commodity processors to yield a dramatic speed-up
over traditional alternatives employing byte-at-a-time parsing.

Keywords: SIMD text processing, parallel bitstreams, XML, parsing.

1 Introduction

Although the finite state machine methods used in the scanning and parsing of
text streams is considered to be the hardest of the “13 dwarves” to parallelize
[1], parallel bitstream technology shows considerable promise for these types of
applications [34]. In this approach, character streams are processed N positions
at a time using the N-bit SIMD registers commonly found on commodity pro-
cessors (e.g., 128-bit XMM registers on Intel/AMD chips). This is achieved by
first slicing the byte streams into eight separate basis bitstreams, one for each bit
position within the byte. These basis bitstreams are then combined with bitwise
logic and shifting operations to compute further parallel bit streams of interest,
such as the [<] bit stream marking the position of all opening angle brackets in
an XML document.

Using these techniques as well as the bit scan instructions also available on
commodity processors, the Parabix 1 XML parser was shown to considerably
accelerate XML parsing in comparison with conventional byte-at-a-time parsers
in applications such as statistics gathering [4] and as GML to SVG conversion
[6]. Other efforts to accelerate XML parsing include the use of custom XML

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 2 2011.
© Springer-Verlag Berlin Heidelberg 2011

Parallel Scanning with Bitstream Addition 3

chips [8], FPGAs [5], careful coding and schema-based processing[7] and multi-
thread/multicore speedups based on data parallelism[9T0)].

In this paper, we further increase the parallelism in our methods by introduc-
ing a new parallel scanning primitive using bitstream addition. In essence, this
primitive replaces the sequential bit scan operations underlying Parabix 1 with a
new approach that independently advances multiple marker bits in parallel using
simple addition and logic operations. This paper documents the technique and
evaluates it in application to the problem of XML parsing and well-formedness
checking.

Section 2 reviews the basics of parallel bitstream technology and introduces
our new parallel scanning primitive. Section 3 goes on to show how this prim-
itive may be used in XML scanning and parsing, while Section 4 discusses the
construction of a complete XML well-formedness checker based on these tech-
niques. Section 5 then briefly describes the compiler technology used to generate
the low level code for our approach. A performance study in Section 6 shows
that the new Parabix 2 parser is dramatically faster than traditional byte-at-a-
time parsers as well as the original Parabix 1 parser, particularly for dense XML
markup. Section 7 concludes the paper.

2 The Parallel Bitstream Method

2.1 Fundamentals

A Dbitstream is simply a sequence of Os and 1s, where there is one such bit in
the bitstream for each character in a source data stream. For parsing, and other
text processing tasks, we need to consider multiple properties of characters at
different stages during the parsing process. A bitstream can be associated with
each of these properties, and hence there will be multiple (parallel) bitstreams
associated with a source data stream of characters.

The starting point for bitstream methods are basis bitstreams and their use
in determining character-class bitstreams. The kth basis bitstream Bj consists
of the kth bit (0-based, starting at the the least significant bit) of each character

source data <@ ——--173942---654----1----49731----321--
Br
Bo e
Bs 111111111111111111111111111111111111111
Ba PR 1 1 1 1 s AR I I AR O I A A 5 s P
Bs 1111...1. 111, 011110111101 11110 L1
B 1111.1..1. 1111111111 011111010 1111 L1
B L 1 s R 11..... 11...
Bo 11111111, 01111, 111111111 .111111111.11
[0-9] PR 1 1 1 1 s AR s I AR OO I A A 5 s P

Fig. 1. Basis and Character-Class Bitstreams

4 R.D. Cameron et al.

in the source data stream; thus each By is dependent on the encoding of the
source characters (ASCII, UTF-8, UTF-16, etc.). Given these basis bitstreams,
it is then possible to combine them using bitwise logic in order to compute
character-class bitstreams, that is, streams that identify the positions at which
characters belonging to a particular class occur. For example, the character class
bitstream D =[0-9] marks with 1s the positions at which decimal digits occur.
These bitstreams are illustrated in Figure [for an example source data stream
consisting of digits and hyphens. This figure also illustrates some of our conven-
tions for figures: the left triangle < after “source data” indicates that all streams
are read from right to left (i.e., they are in little-endian notation). We also use
hyphens in the input stream represent any character that is not relevant to a
character class under consideration, so that relevant characters stand out. Fur-
thermore, the 0 bits in the bitstreams are represented by periods, so that the 1
bits stand out.

Transposition of source data to basis bitstreams and calculation of character-
class streams in this way is an overhead on parallel bit stream applications, in
general. However, using the SIMD capabilities of current commodity processors,
these operations are fast, with an amortized overhead of about 1 CPU cycle per
byte for transposition and less than 1 CPU cycle per byte for all the character
classes needed for XML parsing [4].

Beyond the bitwise logic needed for character class determination, we also
need upshifting to deal with sequential combination. The upshift n(S) of a bit-
stream S is obtained by shifting the bits in .S one position forward, then placing
a 0 bit in the starting position of the bitstream; n is meant to be mnemonic of
“next”. In n(S), the last bit of S may be eliminated or retained for error-testing
purposes.

2.2 A Parallel Scanning Primitive

In this section, we introduce the principal new feature of the paper, a parallel
scanning method based on bitstream addition. Key to this method is the con-
cept of marker bitstreams. Marker bitstreams are used to represent positions of
interest in the scanning or parsing of a source data stream. The appearance of
a 1 at a position in a marker bitstream could, for example, denote the starting
position of an XML tag in the data stream. In general, the set of bit positions
in a marker bitstream may be considered to be the current parsing positions of
multiple parses taking place in parallel throughout the source data stream.
Figure [illustrates the basic concept underlying parallel parsing with bit-
stream addition. All streams are shown in little-endian representation, with
streams reading from right-to-left. The first row shows a source data stream that
includes several spans of digits, together with other nondigit characters shown as
hyphens. The second row specifies the parsing problem using a marker bitstream
My to mark four initial marker positions. In three instances, these markers are
at the beginning (i.e., little end) of a span, while one is in the middle of a span.
The parallel parsing task is to move each of the four markers forward (to the left)
through the corresponding spans of digits to the immediately following positions.

Parallel Scanning with Bitstream Addition 5

source data < ----173942---654----1----49731----321--

My ... 1..... 1.1, 1o,

D =[0-9] ST EEEEDUUE L UUUNE DUDUEEEE E BUUUEEE I
Mo+ D N DU 1o..... 11,11, .. 111,
My=(My+D)A=D ...1........ 1o..... 1ol

Fig. 2. Parallel Scan Using Bitstream Addition and Mask

The third row of Figure [2] shows the derived character-class bitstream D
identifying positions of all digits in the source stream. The fourth row then
illustrates the key concept: marker movement is achieved by binary addition of
the marker and character class bitstreams. As a marker 1 bit is combined using
binary addition to a span of 1s, each 1 in the span becomes 0, generating a carry
to add to the next position to the left. For each such span, the process terminates
at the left end of the span, generating a 1 bit in the immediately following
position. These generated 1 bits represent the moved marker bits. However, the
result of the addition also produces some additional bits that are not involved
in the scan operation. These are easily removed as shown in the fifth row, by
applying bitwise logic to mask off any bits from the digit bitstream; these can
never be marker positions resulting from a scan. The addition and masking
technique allows matching of the regular expression [0-9]* for any reasonable
(conflict-free) set of initial markers specified in M.

In the remainder of this paper, the notation s(M, C) denotes the operation to
scan from an initial set of marker positions M through the spans of characters
belonging to a character class C' found at each position.

s(M,C) = (M + C) A=C

3 XML Scanning and Parsing

We now consider how the parallel scanning primitive can be applied to the follow-
ing problems in scanning and parsing of XML structures: (1) parallel scanning of
XML decimal character references, and (2) parallel parsing of XML start tags.
The grammar of these structures is shown in Figure Bl

DecRef ::= "&#’ Digit™ ’;’

Digit ::= [0-9]

STag ::= ’<’ Name (W Attribute)* W’ >’
Attribute ::= Name W’ '=" W’ AttValue
AttValue = (07 [<"]x) | (€27 ["<r]% ©7)

W = (\x20 | \x9 | \xD | \x4)™"

Fig. 3. XML Grammar: Decimal Character References and Start Tags

6 R.D. Cameron et al.

Figure (] shows the parallel parsing of decimal references together with er-
ror checking. For clarity, the streams are now shown in left-to-right order as
indicated by the > symbol. The source data includes four instances of poten-
tial decimal references beginning with the & character. Of these, only the first
one is legal according to the decimal reference syntax, the other three instances
are in error. These references may be parsed in parallel as follows. The start-
ing marker bitstream My is formed from the [&] character-class bitstream as
shown in the second row. The next row shows the result of the marker advance
operation n(Mp) to produce the new marker bitstream M;. At this point, the
grammar requires a hash mark, so the first error bitstream Fy is formed using
a bitwise “and” operation combined with negation, to indicate violations of this
condition. Marker bitstream M5 is then defined as those positions immediately
following any M; positions not in error. In the following row, the condition that
at least one digit is required is checked to produce error bitstream E;. A parallel
scan operation is then applied through the digit sequences as shown in the next
row to produce marker bitstream Ms. The final error bitstream Fs is produced
to identify any references without a closing semicolon. In the penultimate row,
the final marker bitstream M, marks the positions of all fully-checked decimal
references, while the last row defines a unified error bitstream FE indicating the
positions of all detected errors.

Initialization of marker streams may be achieved in various ways, dependent
on the task at hand. In the XML parsing context, we rely on an important
property of well-formed XML: after an initial filtering pass to identify XML
comments, processing instructions and CDATA sections, every remaining < in
the file must be the initial character of a start, end or empty element tag, and
every remaining & must be the initial character of a general entity or character
reference. These assumptions permit easy creation of marker bitstreams for XML
tags and XML references.

The parsing of XML start tags is a richer problem, involving sequential struc-
ture of attribute-value pairs as shown in Figure Bl Using the bitstream addition
technique, our method is to start with the opening angle bracket of all tags as the
initial marker bitstream for parsing the tags in parallel, advance through the ele-
ment name and then use an iterative process to move through attribute-value pairs.

source data > —ϒ-&9; ——&#; ——-!-
My Ao, 1....1....1.....
Mlzn(Mo) P I 1....1....1....
Eo=M AN—=[#] 1. i
MQI’rL(Ml/\—!E()) F 1....1...
Ei=MxAN-D .. 1o.......
Msz= S(M2 A—\E1,D) I 1.
E2:M3/_‘[;] 1.
My= M3 N—-FEy 1o
E =E0‘E1‘E2 1..... 1...... 1.

Fig. 4. Parsing Decimal References

Parallel Scanning with Bitstream Addition 7

Figure [l illustrates the parallel parsing of three XML start tags. The figure
omits determination of error bitstreams, processing of single-quoted attribute
values and handling of empty element tags, for simplicity. In this figure, the
first four rows show the source data and three character class bitstreams: N for
characters permitted in XML names, W for whitespace characters, and @ for
characters permitted within a double-quoted attribute value string.

source data > --<e a= "137">---<el2 a="17" a2="3379">---<x>--
N = name chars 11.1.1.. 111, 111142010011, 011, 1111, 011101011
W = white space B T 1...... P
Q=-["<] 11 11111.111.1111.111111.11.1111.1111.1111.1111
My FR P 1....
M1=n(Mo) FR A A 1...
M0’7:8(M1,N) el 1 e 1..
MO,S = 8(M0’7,) A=) ... 1. e P
M1’1 = S(MO’S,N) 1o i 1 e
MLQ = 8(M1’1,W)/\[=] 1. i P
M1,3 :n(MLQ) 1. 1 e e
M1’4 :8(M1 3,)/\["] 1. ... 1 e e
M1,5 :TL(M1 4) 1. e 1. e
M1,6 :S(M1 5,)/\["] N N
M1’7 :’I’L(MLG) P 1.
Mg = S(M1,7,W) A=) 1.
Mg’l = S(MLS,N) 1
ngg = S(ngl,)A[T R
M2,3 = TL(MQQ) 1
M2’4 = S(MQ 3,)/\["] B
M2,5 :n(MQ 4) 1. . e,
M2,6 = S(M2 5,)/\["] 1.........
M2’7 = 'IFL(MQ’G) 1........

Mag = S(ng, W) AT DT o e

Fig. 5. Start Tag Parsing

The parsing process is illustrated in the remaining rows of the figure. Each
successive row shows the set of parsing markers as they advance in parallel using
bitwise logic and addition. Overall, the sets of marker transitions can be divided
into three groups.

The first group My through Mj g shows the initiation of parsing for each of
the tags through the opening angle brackets and the element names, up to the
first attribute name, if present. Note that there are no attribute names in the
final tag shown, so the corresponding marker becomes zeroed out at the closing
angle bracket. Since Mj g is not all Os, the parsing continues.

8 R.D. Cameron et al.

The second group of marker transitions M;; through M; g deal with the
parallel parsing of the first attribute-value pair of the remaining tags. After these
operations, there are no more attributes in the first tag, so its corresponding
marker becomes zeroed out. However, M; g is not all Os, as the second tag still
has an unparsed attribute-value pair. Thus, the parsing continues.

The third group of marker transitions M ; through Ms g deal with the parsing
of the second attribute-value pair of this tag. The final transition to M3 g shows
the zeroing out of all remaining markers once two iterations of attribute-value
processing have taken place. Since My g is all Os, start tag parsing stops.

The implementation of start tag processing uses a while loop that terminates
when the set of active markers becomes zero, i.e. when some M}y, g = 0. Consid-
ered as an iteration over unbounded bitstreams, all start tags in the document
are processed in parallel, using a number of iterations equal to the maximum
number of attribute-value pairs in any one tag in the document. However, in
block-by-block processing, the cost of iteration is considerably reduced; the it-
eration for each block only requires as many steps as there are attribute-value
pairs overlapping the block.

Following the pattern shown here, the remaining syntactic features of XML
markup can similarly be parsed with bitstream based methods. One complication
is that the parsing of comments, CDATA sections and processing instructions
must be performed first to determine those regions of text within which ordinary
XML markups are not parsed (i.e., within each of these types of construct. This is
handled by first parsing these structures and then forming a mask bitstream, that
is, a stream that identifies spans of text to be excluded from parsing (comment
and CDATA interiors, parameter text to processing instructions).

4 XML Well-Formedness

In this section, we consider the full application of the parsing techniques of the
previous section to the problem of XML well-formedness checking [2]. We look
not only at the question of well-formedness, but also at the identification of error
positions in documents that are not well-formed.

Most of the requirements of XML well-formedness checking can be imple-
mented using two particular types of computed bitstream: error bitstreams, in-
troduced in the previous section, and error-check bitstreams. Recall that an error
bitstream stream is a stream marking the location of definite errors in accordance
with a particular requirement. For example, the Ey, F;, and E5 bitstreams as
computed during parsing of decimal character references in Figure [are error
bitstreams. One bits mark definite errors and zero bits mark the absence of
an error. Thus the complete absence of errors according to the requirements
listed may be determined by forming the bitwise logical “or” of these bitstreams
and confirming that the resulting value is zero. An error check bitstream is one
that marks potential errors to be further checked in some fashion during post-
bitstream processing. An example is the bitstream marking the start positions

Parallel Scanning with Bitstream Addition 9

of CDATA sections. This is a useful information stream computed during bit-
stream processing to identify opening <! [sequences, but also marks positions
to subsequently check for the complete opening delimiter <! [CDATA[at each
position.

In typical documents, most of these error-check streams will be quite sparse
or even zero. Many error conditions could actually be fully implemented using
bitstream techniques, but at the cost of a number of additional logical and shift
operations. In general, the conditions are easier and more efficient to check one-
at-a-time using multibyte comparisons on the original source data stream. With
very sparse streams, it is very unlikely that multiple instances occur within any
given block, thus eliminating the benefit of parallel evaluation of the logic.

The requirement for name checking merits comment. XML names may use
a wide range of Unicode character values. It is too expensive to check every
instance of an XML name against the full range of possible values. However, it
is possible and inexpensive to use parallel bitstream techniques to verify that
any ASCII characters within a name are indeed legal name start characters or
name characters. Furthermore, the characters that may legally follow a name in
XML are confined to the ASCII range. This makes it useful to define a name
scan character class to include all the legal ASCII characters for names as well
as all non-ASCII characters. A namecheck character class bitstream will then
be defined to identify non-ASCII characters found within namescans. In most
documents this bitstream will be all 0s; even in documents with substantial
internationalized content, the tag and attribute names used to define the doc-
ument schema tend to be confined to the ASCII repertoire. In the case that
this bitstream is nonempty, the positions of all 1 bits in this bitstream denote
characters that need to be individually validated.

Attribute names within a single XML start tag or empty element tag must
be unique. This requirement could be implemented using one of several different
approaches. Standard approaches include: sequential search, symbol lookup, and
Bloom filters [5].

Except for empty element tags, XML tags come in pairs with names that must
be matched. To discharge this requirement, we form a bitstream consisting of
the disjunction of three bitstreams formed during parsing: the bitstream marking
the positions of start or empty tags (which have a common initial structure),
the bitstream marking tags that end using the empty tag syntax (“/>”), and the
bitstream marking the occurrences of end tags. In post-bitstream processing,
we iterate through this computed bitstream and match tags using an iterative
stack-based approach.

An XML document consists of a single root element within which all others
contained; this constraint is also checked during post-bitstream processing. In
addition, we define the necessary ”miscellaneous” bitstreams for checking the
prolog and epilog material before and after the root element.

Overall, parallel bitstream techniques are well-suited to verification problems
such as XML well-formedness checking. Many of the character validation and
syntax checking requirements can be conveniently and efficiently implemented

10 R.D. Cameron et al.

using error streams. Other requirements are also supported by the computation
of error-check streams for simple post-bitstream processing or composite stream
over which iterative stack-based procedures can be defined for checking recursive
syntax. To assess the completness of our analysis, we have confirmed that our
implementations correctly handle all the well-formedness checks of the W3C
XML Conformance Test Suite.

5 Compilation to Block-Based Processing

While our Python implementation of the techniques described in the
previous section works on unbounded bitstreams, a corresponding C implemen-
tation needs to process an input stream in blocks of size equal to the SIMD
register width of the processor it runs on. So, to convert Python code into C,
the key question becomes how to transfer information from one block to the
next.

The answer lies in the use of carry bits. The parallel scanning primitive uses
only addition and bitwise logic. The logic operations do not require information
flow accross block boundaries, so the information flow is entirely accounted by the
carry bits for addition. Carry bits also capture the information flow associated
with upshift operations, which move information forward one position in the
file. In essence, an upshift by one position for a bitstream is equivalent to the
addition of the stream to itself; the bit shifted out in an upshift is in this case
equivalent to the carry generated by the additon.

Properly determining, initializing and inserting carry bits into a block-by-
block implementation of parallel bitstream code is a task too tedious for manual
implementation. We have thus developed compiler technology to automatically
insert declarations, initializations and carry save/restore operations into appro-
priate locations when translating Python operations on unbounded bitstreams
into the equivalent low-level C code implemented on a block-by-block bases.
Our current compiler toolkit is capable of inserting carry logic using a variety
of strategies, including both simulated carry bit processing with SIMD registers,
as well as carry-flag processing using the processor general purpose registers and
ALU. Details are beyond the scope of this paper, but are described in the on-line
source code repository at parabix.costar.sfu.ca.

6 Performance Results

In this section, we compare the performance of our xmlwf implementation us-
ing the Parabix 2 technology described above with several other implementa-
tions. These include the original xmlwf distributed as an example application of
the expat XML parser, implementations based on the widely used Xerces open
source parser using both SAX and DOM interfaces, and an implementation using
our prior Parabix 1 technology with bit scan operations.

Parallel Scanning with Bitstream Addition 11

Table [shows the document characteristics of the XML instances selected
for this performance study, including both document-oriented and data-oriented
XML files. The jawiki.xml and dewiki.xml XML files are document-oriented
XML instances of Wikimedia books, written in Japanese and German, respec-
tively. The remaining files are data-oriented. The roads.gml file is an instance
of Geography Markup Language (GML), a modeling language for geographic
information systems as well as an open interchange format for geographic trans-
actions on the Internet. The po.xml file is an example of purchase order data,
while the soap.xml file contains a large SOAP message. Markup density is de-
fined as the ratio of the total markup contained within an XML file to the total
XML document size. This metric is reported for each document.

Table 1. XML Document Characteristics

File Name dewiki.xml jawiki.xml roads.gml po.xml soap.xml

File Type document document data data data

File Size (kB) 66240 7343 11584 76450 2717
Markup Item Count 406792 74882 280724 4634110 18004
Attribute Count 18808 3529 160416 463397 30001
Avg. Attribute Size 8 8 6 5 9
Markup Density 0.07 0.13 0.57 0.76 0.87

Table 2] shows performance measurements for the various xmlwf implementa-
tions applied to the test suite. Measurements are made on a single core of an
Intel Core 2 system running a stock 64-bit Ubuntu 10.10 operating system, with
all applications compiled with llvm-gcc 4.4.5 optimization level 3. Measurements
are reported in CPU cycles per input byte of the XML data files in each case. The
first row shows the performance of the Xerces C parser using the tree-building
DOM interface. Note that the performance varies considerably depending on
markup density. Note also that the DOM tree construction overhead is substan-
tial and unnecessary for XML well-formedness checking. Using the event-based
SAX interface to Xerces gives much better results as shown in the second row.
The third row shows the best performance of our byte-at-a-time parsers, using
the original xmlwf based on expat.

The remaining rows of Table 2l show performance of parallel bitstream
implementations, including post-bitstream processing. The first row shows the
performance of our Parabix 1 implementation using bit scan instructions. While
showing a substantial speed-up over the byte-at-a-time parsers in every case, note
also that the performance advantage increases with increasing markup density,
as expected. The last two rows show Parabix 2 implementations using different
carry-handling strategies, with the “simd” row referring to carry computations
performed with simulated calculation of propagated and generated carries using
SIMD operations, while the “adc64” row referring to an implementation directly
employing the processor carry flags and add-with-carry instructions on 64-bit

12 R.D. Cameron et al.

Table 2. Parser Performance (Cycles Per Byte)

Parser Class Parser dewiki.xml jawiki.xml roads.gml po.xml soap.xml
Byte Xerces (DOM) 37.921 40.559 72.78 105.497 125.929
at-a Xerces (SAX) 19.829 24.883 33.435 46.891 57.119
Time expat 12.639 16.535 32.717 42982 51.468

Parallel Parabix1 8.313 9.335 13.345 16.136 19.047
Bit Parabix2 (simd) 6.103 6.445 8.034 8.685 9.53

Stream Parabix2 (adc64) 5.123 5.996 6.852 7.648 8.275

general registers. In both cases, the overall performance is impressive, with the
increased parallelism of parallel bit scans clearly paying off in improved perfor-
mance for dense markup.

7 Conclusion

In application to the problem of XML parsing and well-formedness checking,
the method of parallel parsing with bitstream addition is effective and efficient.
Using only bitstream addition and bitwise logic, it is possible to handle all of
the character validation, lexical recognition and parsing problems except for the
recursive aspects of start and end tag matching. Error checking is elegantly sup-
ported through the use of error streams that eliminate separate if-statements to
check for errors with each byte. The techniques are generally very efficient par-
ticularly when markup density is high. However, for some conditions that occur
rarely and/or require complex combinations of upshifting and logic, it may be
better to define simpler error-check streams that require limited postprocessing
using byte matching techniques.

The techniques have been implemented and assessed for present-day commod-
ity processors employing current SIMD technology. As processor advances see
improved instruction sets and increases in width of SIMD registers, the relative
advantages of the techniques over traditional byte-at-a-time sequential parsing
methods is likely to increase substantially. Of particular benefit to this method,
instruction set modifications that provide for more convenient carry propagation
for long bitstream arithmetic would be most welcome.

A significant challenge to the application of these techniques is the difficulty of
programming. The method of prototyping on unbounded bitstreams has proven
to be of significant value in our work. Using the prototyping language as input
to a bitstream compiler has also proven effective in generating high-performance
code. Nevertheless, direct programming with bitstreams is still a specialized skill;
our future research includes developing yet higher level tools to generate efficient
bitstream implementations from grammars, regular expressions and other text
processing formalisms.

Parallel Scanning with Bitstream Addition 13

References

10.

. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,

K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(December 2006)

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0, 5th edn. W3C Recommendation (2008)

Cameron, R.D.: A Case Study in SIMD Text Processing with Parallel Bit Streams.
In: ACM Symposium on Principles and Practice of Parallel Programming (PPoPP),
Salt Lake City, Utah (2008)

. Cameron, R.D., Herdy, K.S., Lin, D.: High performance XML parsing using parallel

bit stream technology. In: CASCON 2008: Proceedings of the 2008 Conference of
the Center for Advanced Studies on Collaborative Research, pp. 222-235. ACM
Press, New York (2008)

Dai, Z., Ni, N., Zhu, J.: A 1 cycle-per-byte XML parsing accelerator. In: FPGA
2010: Proceedings of the 18th Annual ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 199-208. ACM Press, New York (2010)
Herdy, K.S., Burggraf, D.S., Cameron, R.D.: High performance GML to SVG trans-
formation for the visual presentation of geographic data in web-based mapping
systems. In: Proceedings of SVG Open 2008 (August 2008)

Kostoulas, M.G., Matsa, M., Mendelsohn, N., Perkins, E., Heifets, A., Mercaldi,
M.: XML Screamer: An Integrated Approach to High Performance XML Parsing,
Validation and Deserialization. In: Proceedings of the 15th International Confer-
ence on World Wide Web (WWW 2006), pp. 93-102 (2006)

Leventhal, M., Lemoine, E.: The XML chip at 6 years. In: International Symposium
on Processing XML Efficiently: Overcoming Limits on Space, Time, or Bandwidth
(August 2009)

Shah, B., Rao, P.R., Moon, B., Rajagopalan, M.: A data parallel algorithm for XML
DOM parsing. In: Bellahseéne, Z., Hunt, E., Rys, M., Unland, R. (eds.) XSym 20009.
LNCS, vol. 5679, pp. 75-90. Springer, Heidelberg (2009)

Zhang, Y., Pan, Y., Chiu, K.: Speculative p-DFAs for parallel XML parsing. In:
2009 International Conference on High Performance Computing (HiPC), pp. 388—
397 (December 2009)

HOMPI: A Hybrid Programming Framework
for Expressing and Deploying Task-Based
Parallelism*

Vassilios V. Dimakopoulos and Panagiotis E. Hadjidoukas

Department of Computer Science
University of Ioannina, Ioannina, Greece, GR-45110
{dimako,phadjido}@cs.uoi.gr

Abstract. This paper presents HOMPI, a framework for programming
and executing task-based parallel applications on clusters of multipro-
cessors and multi-cores, while providing interoperability with existing
programming systems such as MPI and OpenMP. HOMPI facilitates ex-
pressing irregular and adaptive master-worker and divide-and-conquer
applications avoiding explicit MPI calls. It also allows hybrid shared-
memory / message-passing programming, exploiting fully the availability
of multiprocessor and multi-core nodes, as it integrates by design with
OpenMP; the runtime infrastructure presents a unified substrate that
handles local threads and remote tasks seamlessly, allowing both pro-
gramming flexibility and increased performance opportunities.

Keywords: cluster programming, task-based parallelism, load balanc-
ing, MPI

1 Introduction

The pool-of-tasks (or master-worker) paradigm is one of the most widely used
paradigms for programming a multitude of applications on a variety of parallel
computing platforms. According to this model, the master assigns tasks to a set
of workers, providing them with any required input data, and waits for the re-
sults. The number of tasks usually exceeds the number of workers and the master
may generate new tasks dynamically, depending on the received results. In the
simple case, a few primary message passing (MPI) calls are enough to implement
the model on a distributed-memory platform with a self scheduling mechanism
where inactive workers dynamically probe the master for work. On the other
hand, limitations and difficulties arise if advanced functionality is needed. First,
because of the bottleneck at the master, the model may suffer from low scala-
bility. Hierarchical task parallelism and techniques like distributed task queues
require additional and non-trivial programming effort. Finally, a pure MPI1-based
implementation cannot easily adapt to take advantage of a multi-core node’s
physically shared memory.

* This work is supported in part by the Artemisia SMECY project (grant 100230).

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 142011‘
© Springer-Verlag Berlin Heidelberg 2011

HOMPI: Hybrid Task-Based Parallelism 15

Although exploring new languages and programming models is currently a
major issue in the parallel processing research community (and possibly the
ultimate solution to leveraging current and emerging parallel hardware), other
pragmatic approaches seem more promising for wide adoption in the short- to
medium-term. Programming constructs that extend without changing a popular
language have proven quite successful, OpenMP [2] being the most prominent ex-
ample. Along the same lines, interoperability with popular programming models
is another important requirement, easing the utilization of existing codebases.

In this work we present HOMPI, an infrastructure for programming and
executing task-based applications on clusters of multi-cores. It consists of a
source-to-source compiler that provides for simple directive-based definition and
execution of tasks and a runtime library that orchestrates the execution over
a variety of platforms, including pure shared-memory systems and clusters of
such nodes. HOMPI targets message passing, shared address space and hybrid
programs. In the standard master-worker case, the programmer does not have
to use low-level message passing primitives at all, hiding away the communi-
cation details while providing load balancing transparently. For more advanced
functionality, HOMPI integrates the tasking model into traditional MPI programs,
allowing one or more MPI processes to independently spawn tasks. Each task may
also spawn OpenMP-based parallelism, allowing seamless hybrid programming
possibilities. The compiler supports OpenMP by design while the runtime sys-
tem provides unified support for OpenMP threads as well as remotely executed
tasks.

A number of programming tools and languages for task parallelism have been
proposed recently for contemporary and emerging architectures. On shared-
memory platforms, OpenMP has been extended in V3.0 with support for a
tasking model [2], similar to Cilk [I]. For the Cell BE, runtime libraries in-
clude MPI microtask [3], ALF [4] and StarPU [5]. HOMPI's programming model
borrows the #pragma-based annotation style of OpenMP and is reminiscent of
other proposals such as HMPP [6] and StarSs [7], which combine runtime and
compiler support to provide a (limited) task-based environment. These propos-
als target mainly accelerator-equipped systems and, in contrast to HOMPI, they
do not support the divide-and-conquer model, since they do not allow recursive
parallelism.

The contribution of this work is twofold. First, we introduce an easy-to-use
programming framework which preserves the base language, while providing con-
venient code annotation for expressing task-based master/slave and divide-and-
conquer parallel algorithms. While the annotation style is in the spirit of other
proposals, to the best of our knowledge, HOMPI is the first of its kind targeting
(and fully exploiting) clusters of SMPs/multi-cores. Second, albeit self-contained,
our framework is fully interoperable with standard programming systems like
MmpI and OpenMP, allowing legacy or already parallelized code to be trivially
integrated in an application. In our opinion this is a crucial attribute for the
viability of any programming model proposal.

16 V.V. Dimakopoulos and P.E. Hadjidoukas

#pragma hompi taskdef in(n) out(res)
void fib (int n, unsigned long *res) {
unsigned long resl, res2;

if (n <= 1) {
*res = n;
} else {

#pragma hompi task
fib(n-1, &resl);
#pragma hompi task
fib(n-2, &res2);
#pragma hompi tasksync

*res = resl+res2;

; : i }
» 4’ S _»M» }

C + HOMPI s s .
(+ MPI + OpenMP) void main(int argc, char *argv[]) {

unsigned long res;

TORC II: £ib(50, &res);
runtime
(HOMPI+OpenMP) +

Fig. 1. HOMPI compilation procedure Fig. 2. Recursive Fibonacci in HOMPI

hompicc

2 Programming Environment

HOMPI is based on a source-to-source translator that can handle #pragma-based
directives within the user code, similar to OpenMP. Fig. [Tl shows the compilation
steps: from the annotated source code, the source-to-source compiler (hompi)
produces an intermediate, transformed C file (x_prog.c) augmented by run-
time calls. This file is then compiled by the system’s native mpicc compiler and
linked with HOMPI’S runtime libraries to produce the final executable. The whole
process is automated by the hompicc script.

HOMPI’s execution model assumes that an application consists of multiple MPI
processes with private memory, running on cluster nodes. Furthermore, multi-
threading is used to exploit the multi-processor/core configuration of a node;
each process consists of one or more kernel threads sharing the process memory.

A task in HOMPI corresponds to the remote execution of a function on a set
of data that are passed as arguments to this function, in the spirit of remote
procedure calls. Tasks are executed asynchronously and in any order, without any
data dependencies or point-to-point communication between them. Tasks have a
parent-child relationship and can be arbitrarily nested, allowing multiple levels
of parallelism and straightforward coding of divide-and-conquer algorithms.

The HOMPI programming model in essence requires that the programmer only
designates which of the program functions can be used as tasks and be executed
on (possibly) remote nodes. In many cases, just two directives are enough for
the application to take advantage of the infrastructure, resulting in minimal pro-
grammer effort. The directive for designating a function as an independent task
is taskdef and is placed right before the definition of a C function. A taskdef
directive may contain intent clauses, similar to intent attributes of Fortan 90,
which specify the intended usage of the function arguments: in(variable-list),
for variables that are to be passed to the function by value, out (variable-list),

HOMPI: Hybrid Task-Based Parallelism 17

for results returned by the function and inout (variable-list) for variables whose
values are passed to the function but will also be used to return a result.

An example is given in Fig. 2] which presents a complete HOMPI application
that uses a recursive function (fib) to compute the 50t1 Fibonacci number. The
taskdef directive designates the fib function as a task that accepts an argument
by value (n) and computes a result (res). If any of the arguments is an array,
the number of elements must be known, and this is either determined by hompi
from the function prototype (if a size expression exists) or must be specified
explicitly in the intent clauses of the taskdef directive.

The actual execution of a function as a task occurs with the task directive, which
must be placed right before the function call. Finally, task joining (blocking until all
child tasks finish their work) is possible anywhere in the code through the tasksync
directive. In Fig.[2 the fib function generates two new tasks that are distributed
across the available workers and waits for their results. Notice (i) the complete ab-
sence of explicit messaging and (ii) that if the directives are ignored by the compiler,
the program’s semantics remain the same to pure sequential execution.

2.1 Callbacks, Reductions and Detached Tasks

Normally, a parent task creates an arbitrary number of tasks and uses the
tasksync directive to suspend itself until all child tasks have finished and their
results have been returned. HOMPI supports callback functions, which allow for
asynchronous execution of post-processing code on the process where the par-
ent task runs on, even if the parent task is suspended. The callback function is
defined immediately following the task definition through a callback directive;
the callback function specifier is generated by the compiler and assumes the ex-
act same arguments as the corresponding task function, providing thus access to
the input parameters and the result of the task. An example where the callback
just prints the results of each generated task, is depicted below.

#pragma hompi taskdef in(a) inout(b[2])
void taskfunc(int a,int *b) {
b[1] = b[0] + a + 1;
}
#pragma hompi callback

printf("result = %d\n", b[1]);

}

HOMPI also supports reduction operations (which can be actually seen as spe-
cial cases of callbacks) for the common scenario where each child task computes
a partial result which is collected by the parent to produce the final result.
These operations (summation, product, etc.) replace the out intent clause and
are specified exactly in OpenMP style, as seen below:

#pragma hompi taskdef in(a) reduction(+:b)

void taskfunc(int a, int *b) {

*b = a;

}

Reduction operations are supported for both scalar variables and arrays.

18 V.V. Dimakopoulos and P.E. Hadjidoukas

Finally HOMPI supports detached tasks, that is tasks that execute without
the parent being able to wait on them. In such cases task management is left
up to the programmer. Detached tasks are executed as such by including the
detached clause in the task directive. They can be combined with callbacks
which actually provide the only way for them to synchronize with their parents;
for example, within a callback, a detached task can modify a condition on which
the parent task is explicitly waiting. Moreover, new tasks can be created within
the callback routine. Detached tasks combined with callbacks offer a powerful
mechanism; for example, they can be used for implementing dependencies among
arbitrary subsets of tasks.

2.2 Task Distribution and Scheduling

Although not always necessary, in many cases one needs to control how tasks are
distributed across workers or cluster nodes (e.g. due to particular load balancing
needs). HOMPI offers two ways for achieving this. First, it provides a standard
cyclic distribution scheme with tunable parameters. This is especially useful
when tasks are created within a iterative control structure (e.g. while, for). The
parameters of this scheme include the scope (whether tasks are distributed per
node or per worker), the starting point (node id or worker id) and the stride
(increment). These parameters are specified using a taskschedule directive:

#pragma hompi taskschedule scope(workers) start(0) stride(1)
for (t =0; t < 8; t++) {

#pragma hompi task

func();

}

If the stride is zero then all tasks are submitted to the target node or worker.
The default scheduling policy is represented with the tuple (nodes, -1, 1), i.e.
distribution across nodes with stride 1 starting from the current node.

The second mechanism allows the user to explicitly specify the node or worker
where a task will be submitted for execution. This is achieved with the atnode ()
and atworker (y) clauses in the task directive, where x and y are the identities
of the intended node and worker respectively, e.g.

for (t = 0; t < K; t++) {
#pragma hompi task atworker(t % hompi_total_workers())
func();

}

It must be noted that the runtime system of HOMPI, which is presented next,
includes a work-stealing mechanism whereby tasks may be stolen from a node
and executed at another. If this mechanism is activated then all the above refer
to the initial placement of a task; the actual node/worker that will ultimately
execute it may be different. To explicitly control this, tasks can also be classified
as tied and untied (using homonymous clauses in the task directive), similarly
to OpenMP 3.0; a tied task can never be stolen, and will run on the process it
was initially submitted for execution.

HOMPI: Hybrid Task-Based Parallelism 19

3 TORC: The Runtime System

In this section we give a short overview of TORC, the runtime environment of
HOMPI. More details can be found in [I0]. TORC uses exclusively POSIX and MPI
calls for portability and performance, and integrates seamlessly hardware shared-
memory and message passing. It provides application adaptability to the same
application code, or even binary, on both shared-memory multiprocessors/multi-
cores and clusters of them. TORC views an application as a collection of MPI pro-
cesses. Each process consists of one or more POSIX kernel threads that execute
tasks and a server thread that is responsible for the remote queue management
and the asynchronous data movement. There exist private and public worker-
specific and node-specific ready queues where tasks can be submitted for execu-
tion. A two-level threading model is implemented, where each kernel thread is a
worker that continuously dispatches and executes ready-to-run tasks.

Tasks are associated with the process (home node) they were created on and
can be executed either locally or remotely. In the latter case, explicit but trans-
parent to the user data movement takes place. A worker thread executes a task
by calling the task function with the locally stored arguments. When it finishes,
it sends a notification message back to the home node, along with any argu-
ments that represent results (out/inout). These are received asynchronously by
the server thread and copied on their actual memory locations in the address
space of the home process. A running task that spawns parallelism can suspend
its execution, waiting for the termination of all its child tasks. The execution
state of the current task is saved, releasing the underlying kernel thread, which
runs the scheduling loop for selecting the next-to-run task. When all child tasks
have completed (and all callbacks, if any, have finished), the suspended task be-
comes ready for execution and eventually resumes. A callback is implemented
as a tied task, submitted for local execution when the corresponding user task
finishes and notifies its parent task. The submission is performed by either the
worker thread that executes the user task (if this is executed locally) or the
server thread of the same process.

Data transfer mechanisms. The low level communication subsystem of TORC is
based on MPI. However, other data transfer mechanisms have also been consid-
ered. In particular, we have successfully integrated two more mechanisms: MPI-2’s
one-side communications and software distributed shared memory (SDSM). MPI-
2’s remote memory access (RMA) [8] supports data transfer through one-sided
operations. In TORC, the MPI Get routine is used for fetching input data and
MPI Put for writing the results back to the home node. On the other hand,
SDSM implements the notion of global memory on distributed computing en-
vironments and provides implicit data movement through the memory consis-
tency protocol [9]. One-sided operations and SDSM provide receiver-initiated data
movement for remotely executed tasks, performed by the worker thread just be-
fore or during the execution of the task function. This on-demand data movement
does not allow data pre-fetching opportunities for server threads but may avoid
unnecessary data transfers if task stealing is enabled.

20 V.V. Dimakopoulos and P.E. Hadjidoukas

Dynamic load balancing. Spawning a large number of tasks can be an effective
approach to distribute the work evenly among the available workers. The user
can specify the node or worker where each task will be submitted for execution
and then employ the internal stealing mechanism for untied tasks that TORC
provides. A idle worker extracts and executes a task from its local ready queue.
If this is empty and task stealing is enabled, the worker first searches for work in
the rest of the ready queues of the same node and then visits randomly the remote
nodes. The worker waits synchronously for a response from the server thread of
the target node. The answer is either a message that denotes unavailability of
work at the target node, or an untied task descriptor that will be immediately
executed upon receipt. Remote task stealing includes the corresponding data
movement, unless the task returns to its home node.

4 Mixed-Mode and Hybrid Programming

Although the default execution model of HOMPI is that of master-worker, mixing
it with SPMD execution and dynamically switching between them may be ben-
eficial or required. For instance, a task parallel program may take advantage of
common scientific SPMD libraries built on top of MPI.

The atnode (*) clause is a special case in the task creation directive that
provides the above functionality; at runtime, the application creates as many
tasks as the number of available nodes. These tasks are marked as tied and are
distributed across the cluster nodes. The specified task function is executed by a
single worker on every node. This approach matches the execution model of MPI
and at the same time allows for hybrid Mp1 + OpenMP programming. When
all the tasks have finished, the execution model switches back to master-worker.
In Fig. Bl we demonstrate the flexibility of the atnode (*) clause; the master
broadcasts the global array (ga) to the other nodes by issuing a collective call to
the native MPI Bcast function (with all workers participating). In this way, the
application does not need to send ga with every task, avoiding thus unnecessary
data transfers.

The atnode (*) clause improves the programmability of our system by facil-
itating the insertion of legacy MPI codes into the supported task-based execu-
tion environment. Following a similar approach, native MPI applications can be
seamlessly enriched with the tasking model that HOMPI provides. Specifically,
by setting a particular environmental variable (HOMPI MODE), the TORC library
is initialized for SPMD execution and thus the primary thread of all MPI processes
executes the main routine. Switching the MPI application’s execution model to
master-worker is possible with a special directive (spmd barrier). In Fig.d one
of the MPI processes (e.g. the one with rank 0) becomes the master task that
spawns work, while the rest of the processes block at the spmd barrier directive
which converts them to workers, activating the scheduling loop in TORC. After
task completion, the master process reaches spmd barrier and all MPI processes
resume their execution, while the execution model switches back to SPMD.

HOMPI: Hybrid Task-Based Parallelism 21

int gal16]; #pragma hompi taskdef
void func(O { ... }
#pragma hompi taskdef in(root)
void spmdfunc(int root) { main(int argc, char *argv([]) {
/* legacy MPI code can run here */ /* legacy MPI code */
MPI_Bcast(ga, 16, MPI_INT, root, MPI_COMM_WORLD); MPI_Init(&argc, &argv);

} MPI_Comm_rank (MPI_COMM_WORLD, &rank);

#pragma hompi taskdef out(b[16])

void func(int *b) { if (rank==0) { /* tasking */
for (int i = 0; i < 16; i++) b[i] = galil; for (int i = 0; i < N; i++) {
¥ #pragma hompi task
func();
main() { ¥
int res[8][16], root = hompi_node(); #pragma hompi tasksync

for (int i = 0; i < 16; i++) galil = i;
#pragma hompi spmd_barrier
#pragma hompi atnode (*)

spmdfunc (root) ; /* legacy MPI code continues */
}
for (int t = 0; t < 8; t++) {
#pragma hompi task tied Fig. 4. Tasking in MPI code
func(res[t]);
}
#pragma hompi tasksync

Fig. 3. Example of atnode (*)

Implementation of hybrid programming. HOMPI allows expressing the intra-node
parallelism of a task function with OpenMP directives, in accordance to the
hybrid Mmp1 + OpenMP programming model. However, because task functions
are executed by TORC’s underlying worker threads, the utilized OpenMP com-
piler must support interoperability between OpenMP and independent POSIX
threads. Moreover, caution is needed because the combination of TORC threads
and OpenMP threads can easily oversubscribe the system, a situation resulting
in performance degradation [I1].

To cope with the above problem, we have constructed a unified library that
handles both levels of parallelism within the same compilation and runtime envi-
ronment. In particular, we have introduced a threading layer that is implemented
on top of TORC into the OMPi OpenMP compiler [12]. Thanks to the layered ar-
chitecture of OMPi, TORC was attached as an opaque OpenMP thread provider,
thus letting oMPi control OpenMP execution through TORC-provided threads
while at the same time TORC handles tasks independently.

The HOMPI translator was implemented by extending OMPi’s translator, in
order to have it parse and transform the new directives. Both HOMPI tasks and
OpenMP threads are executed within the same runtime infrastructure. Inter-
nally, as worker threads first access the private and then the public ready queues
of their node, OpenMP parallelism has a higher priority with respect to inter-
node parallelism expressed with HOMPI tasks.

22 V.V. Dimakopoulos and P.E. Hadjidoukas

5 Experimental Evaluation

In this section we present preliminary experimental evaluation of our HOMPI
prototype. We report both benchmarking results and results from full appli-
cations executed on a Sun Fire x4100 cluster of 16 nodes interconnected with
Gigabit Ethernet. Each node has 2 dual core AMD Opteron-275 processors run-
ning at 2.2GHz giving a total of 64 cores. The cluster nodes are running Linux
2.6, while HOMPI was built with GNU GCC 4.3 as the system’s native C com-
piler and the MPICH2 implementation of MPI. Thanks to the design of TORC, the
same application binary can exploit the 4 processor cores of a single node with
several combinations in the number of processes and workers. Therefore, our
performance results refer to both distributed and shared-memory organizations.

Data transfer overheads. To evaluate the three different data transfer methods we
discussed in Section B (MPI, RMA and SDSM) implemented in TORC, we measure
the time required for the remote execution of a single task with input argument
an array of double-precision floating point numbers that has been initialized
by the parent before task creation. The task computes the sum of the array
elements. For a fair comparison, we spawn exactly one task and thus preclude
any data prefetching through the server thread when MPI calls are used. Besides
the data movement for the argument of the task, the measured time includes
the overhead for the allocation of the descriptor and its insertion in the queue
of the remote process, the execution of the task function and the notification of
the parent task at the first process.

Figs. Bl and [Blillustrate the overhead of the three methods with respect to the
argument size, for in and inout argument types respectively. Regarding SDSM,
we provide results for two libraries: Mome [I3] and Mocha [I4]. To enforce the
inout semantics for the SDSM case, the parent task on process 0 accesses the
array after task completion. Due to the relaxed consistency model of Mocha,
SDSM barrier calls were introduced in the benchmark code. We observe that the
overhead of the MPI and RMA methods, which both involve explicit communica-
tion, is almost identical. SDSM exhibits significantly higher overhead, due to the
page-based consistency protocol and the multiple invocations of the page-fault
handler. The performance difference between Mocha and Mome is because the

10000 0 10000 0
——MOMF

—+—MOCHA
—=-RMA 0000

1000 0
100 0 100 0

00

Overhead (msec)
Overhead (msec)

G N O S R
Argument Size Argument Size
Fig. 5. Task execution overhead for the Fig. 6. Task execution overhead for the

three data transfer methods (in) three data transfer methods (inout)

HOMPI: Hybrid Task-Based Parallelism 23

4
——Multi threaded A —+Multi threaded /
-=-Multi process

—=-Multi process

0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Total workers Total workers

Fig. 7. EP performance Fig.8. PMCMC performance

former uses an 8KB (instead of 4KB) page size, resulting in a 50% reduction in
the number of page faults.

Applications. For evaluating the performance of HOMPI we used two applica-
tions: EP and PMCMC. EP is an Embarrassingly Parallel benchmark that in-
volves minimal inter-processor communication. The number of spawned tasks is
equal to the number of workers, while the results of the tasks are accumulated
through a reduction (4) operation. PMCMC implements an embarrassingly par-
allel Markov Chain Monte Carlo algorithm of the hard-disk problem. Each task
is assigned a seed and performs a large number of Markov Chain computations.
The code of this application was adapted from the ADLB library [I5].

Fig. [depicts the performance of EP for 228 random numbers and specifically
the best observed speedup for a particular number of workers, using the multi-
threaded and multiprocess configurations. When a single process per node and
multiple workers per process are used, we observe that EP scales almost linearly;
the slight performance degradation on 32 and 64 processors is mostly attributed
to load imbalance effects due to the small number of generated tasks. The perfor-
mance of the same application is significantly lower when multiple processes, of
a single worker thread each, are deployed at each node of the cluster. The draw-
backs of this configuration are the increased number of explicit messages and
the oversubscription of processor cores due to the the multiple server threads
on each node. Similarly, Fig. B presents the performance results for PMCMC
when 128 independent tasks are used. We observe that the application exhibits
almost perfect scalability for the multi-threaded approach. The performance of
the multi-process approach is similar for all but the 64-process case, where its
efficiency is significantly reduced to 78.87%.

Load balancing. We demonstrate the load balancing mechanism of HOMPI using
the Mandelbrot application included in the LAM/MPI software package, rewritten
to follow the tasking model of HOMPI. In our case, the main routine of the
application creates a single task for each image block. The task receives as input
arguments the coordinates of the block and as output argument an array for the
image block. Each task is also associated with a callback routine which copies
the processed block to the image region. Tasks are either distributed cyclically
across the available workers or inserted in the queue of the master process.

24 V.V. Dimakopoulos and P.E. Hadjidoukas

—+-Static
-=-Work Stealing
Central Queue

-]
o 40
=
3 32
o
» 24 4
16 _
8 o,

0 8 16 24 32 40 48 56 64
Total workers

Fig. 9. Performance of task scheduling schemes on Mandelbrot

Table 1. Speedup of Mandelbrot on the (16,1,4) configuration for various task numbers

Nodes Processes Workers Total Total Static Work Central
per node per process workers tasks Scheduling Stealing Queue
16 1 4 64 256 24.30 45.47 45.79
16 1 4 64 512 26.70 50.74 50.32
16 1 4 64 1024 24.78 56.83 55.12

Table 2. Speedup of Mandelbrot for the hybrid programming model (256 tasks)

Nodes Processes Workers OpenMP Total Static Work Central
per node per process threads workers Scheduling Stealing Queue
1 1 1 4 4 3.79 3.79 3.79
2 1 1 4 8 7.33 7.52 7.54
4 1 1 4 16 13.30 14.94 14.98
8 1 1 4 32 22.14 29.02 29.26
16 1 1 4 64 24.30 54.99 56.62

Fig. O presents the speedup of the Mandelbrot application on the Sun cluster
for an image of 2048x2048 pixels, 50000 maximum iterations for each pixel, and
blocks of 128x128 pixels (256 tasks). We spawn a single process per node and pro-
vide results for the cyclic task distribution scheme, having the inter-node steal-
ing mechanism disabled (termed ‘Static Scheduling’) or enabled (termed ‘Work
Stealing’). In addition, we evaluate the central-queue approach, where workers
access the queue of the master process to get a task to execute. We observe that
as the number of cores increases, the application manages to scale efficiently
only if task stealing has been activated. For instance, the speedup of the appli-
cation on 64 cores is approximately 24 and 45 for the static and work stealing
approach respectively. The attained performance of the cyclic distribution and
central queue are almost identical because, for this particular experiment, the
latter does not suffer from bottlenecks as the server thread manages to handle
the stealing requests efficiently. The scalability of the application declines with
the number of processors, mostly because of the overhead for storing the results
through the callback routine.

Table [l studies the behavior of Mandelbrot for the (16 nodes, 1 process per
node, 4 workers per node) configuration for smaller block sizes and thus a larger
number of spawned tasks. It is apparent that better load balancing is achieved if
the work stealing mechanism is enabled and thus the scalability of Mandelbrot

HOMPI: Hybrid Task-Based Parallelism 25

is further improved. As the number of tasks of finer granularity increases, the
cyclic distribution scheme with work stealing begins to outperform the central
queue approach.

Our last experiment demonstrates the effectiveness of hybrid programming
for the Mandelbrot application. Specifically, a single process is spawned on each
cluster node and the loop-level intra-task parallelism is expressed with OpenMP.
The performance results are depicted in table Bl We observe that the attained
performance of the hybrid programming approach is higher than that of the
corresponding configurations in the previously presented experiments. This is
attributed to better load balancing, as the 256 tasks are distributed to a smaller
number of processes, and the full utilization of OpenMP threads as the serial
fraction of the task function in this particular application is negligible.

6 Conclusion

This paper presents HOMPI, a directive-based programming and runtime envi-
ronment for task-parallel applications on clusters of multiprocessor/multi-core
nodes. The framework consists of a source-to-source C compiler that understands
a small number of #pragma-based directives which allow for rather straightfor-
ward task creation and scheduling across the cluster. The output of the com-
piler contains calls to TORC, a sophisticated runtime library that handles all
the task execution details, providing transparent load balancing and resulting
in significant performance figures. The HOMPI infrastructure integrates features
of several parallel programming models, from threads and OpenMP to MPI and
remote procedure calls and in addition it is fully interoperable with them. As
such, we believe its applicability will be quite general. We are currently extend-
ing our infrastructure on heterogeneous platforms and computational grids and
introducing fault tolerance mechanisms.

References

1. Blumofe, R.D., Joerg, C.F., et al.: Cilk: An efficient multithreaded runtime system.
J. Parallel Distrib. Comput. 37(1), 55-69 (1996)

2. OpenMP Architecture Review Board: OpenMP Specifications,
http://www.openmp.org

3. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for
programming the cell broadband engine processor. IBM Syst. Journal 45(1) (2006)

4. IBM Corporation: Accelerated Library Framework (ALF) for Cell Broadband En-
gine programmer’s guide and API reference. SDK for Multicore Acceleration V3.0

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: A unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863-874.
Springer, Heidelberg (2009)

6. Dolbeau, R., et al.: HMPP: A hybrid multi-core parallel programming environment.
In: 1st Wrkshp on General Purpose Processing on GPUs, Boston, MA (2007)

http://www.openmp.org

26

7

8

10.

11.

12.

13.

14.

15.

V.V. Dimakopoulos and P.E. Hadjidoukas

. Planas, J., Badia, R.M., et al.: Hierarchical task-based programming with StarSs.
Int’l. J. of High Perf. Comput. Applic. 23(3), 284299 (2009)

. Geist, A., Gropp, W., Lusk, E.; et al.: MPI-2: Extending the message-passing
interface. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par
1996. LNCS, vol. 1124, Springer, Heidelberg (1996)

. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM

Trans. on Computer Systems 7(4), 321-359 (1989)

Hadjidoukas, P.E., Dimakopoulos, V.V.: TORC: a tasking library for multicore

clusters. Tech. Report TR-2011-6, CS Dept., University of loannina, Greece (2011)

Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested parallelism in the OMPi OpenMP

C compiler. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,

vol. 4641, Springer, Heidelberg (2007)

Philos, G.C., Dimakopoulos, V.V., Hadjidoukas, P.E.: A runtime architecture for

ubiquitous support of OpenMP. In: 7th Int’l. Symposium on Parallel and Distrib.

Comput., Krakow, Poland (2008)

Jegou, Y.: Implementation of page management in Mome, a user-level DSM. In:

3rd IEEE Int’l. Symposium on Cluster Comput. and the Grid, Tokyo, Japan (2003)

Kise, K., et al.: Evaluation of the acknowledgment reduction in a sDSM system. In:

6th Int’l. Conf. on Parallel Processing and Applied Math., Poznan, Poland (2005)

ADLB library, http://www.cs.mtsu.edu/~rbutler/adlb/

http://www.cs.mtsu.edu/~rbutler/adlb/

A Failure Detector for Wireless Networks with
Unknown Membership

Fabiola Greve!:*, Pierre Sens?, Luciana Arantes?, and Véronique Simon?
! Department of Computer Science,
Federal University of Bahia (UFBA), Bahia - Brazil
2 LIP6, University of Paris 6, CNRS,
INRIA, 4 - Place Jussieu, 75005, Paris, France

Abstract. The distributed computing scenario is rapidly evolving for integrating
self-organizing and dynamic wireless networks. Unreliable failure detectors are
classical mechanisms which provide information about process failures and can
help systems to cope with the high dynamism of these networks. A number of
failure detection algorithms has been proposed so far; nonetheless, most of them
assume a global knowledge about the membership as well as a fully communi-
cation connectivity; additionally, they are timer-based, requiring that eventually
some bound on the message transmission will hold. These assumptions are no
longer appropriate to the new scenario. This paper presents a new failure detector
protocol which implements a new class of detectors, namely <»S*!, which adapts
the properties of the >S class to a dynamic network with an unknown member-
ship. It has the interesting feature to be time-free, so that it does not rely on timers
to detect failures; moreover, it tolerates mobility of nodes and message losses.

Keywords: Unreliable failure detector, dynamic distributed systems, wireless
mobile networks, asynchronous systems.

1 Introduction

The distributed computing scenario is rapidly evolving for integrating unstructured,
self-organizing and dynamic systems, like MANETSs (mobile ad-hoc networks) [LL].
Nonetheless, the issue of designing reliable services which can cope with the high dy-
namism of these systems is a challenge. Failure detector is a fundamental service, able
to help in the development of fault-tolerant distributed systems. Unreliable failure de-
tectors, namely FD, can informally be seen as a per process oracle, which periodically
provides a list of processes suspected of having crashed [2]. In this paper, we are in-
terested in the class of eventually strong FDs, denoted <{»S. Those FDs can make an
arbitrary number of mistakes; yet, there is a time after which some correct process is
never suspected (eventual weak accuracy property). Moreover, eventually, every pro-
cess that crashes is permanently suspected by every correct process (strong complete-
ness property). {5 is the weakest class allowing to solve consensus in an asynchronous
system (with the additional assumption that a majority of processes are correct) and

* The work of F. Greve is supported by grants from CAPES-Brazil and Paris City Hall, France.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 27 2011.
(© Springer-Verlag Berlin Heidelberg 2011

28 F. Greve et al.

consensus is as the heart of important middleware, e.g., group communication services,
transactions and replication servers.

The nature of wireless mobile networks creates important challenges for the devel-
opment of failure detection protocols. The inherent dynamism of these environments
prevents processes from gathering a global knowledge of the system’s properties. The
network topology is constantly changing and the best that a process can have is a lo-
cal perception of these changes. Global assumptions, such as the knowledge about the
whole membership, the maximum number of crashes, full connectivity or reliable com-
munication, are no more realistic.

This paper proposes a FD algorithm that implements the class <»S™ of failure de-
tectors. This class adapts the properties of the {»S class to a dynamic system with an
unknown membership. It is suitable for wireless mobile networks and has the following
innovative features that allow for scalability and adaptability: (i) it is conceived for a
network whose membership is unknown and whose communication graph is not com-
plete; (ii) it tolerates node mobility, beyond arbitrary joins and leaves; (iii) the failure
detection uses local information (for the membership of the neighborhood), instead of
traditional global information, such as n (the total number of nodes) and f (the max-
imum number of faults); (iv) the failure detection is time-free, thus the satisfaction of
the properties of the FD does not rely on traditional synchrony assumptions, but on a
message exchange pattern followed by the nodes; (v) the message exchange pattern is
based on local exchanged information among neighbors and not on global exchanges
among nodes in the system. As far as we are aware of, this is the first time-free FD
algorithm for networks with unknown membership that tolerates mobility of nodes.

1.1 Related Work

A number of failure detection algorithms has been proposed so far. Nonetheless, most
of current implementations of FDs are based on an all-to-all communication approach
where each process periodically sends “I am alive” messages to all processes [3]. As
they usually consider a fully connected set of known nodes, these implementations are
not adequate for dynamic environments. Furthermore, they are usually timer-based, as-
suming that eventually some bound of the transmission will permanently hold. Such
an assumption is not suitable for dynamic environments where communication delays
between two nodes can vary due to mobility of nodes. In [4], Mostefaoui et al. have
proposed an asynchronous implementation of FDs which is time-free. It is based on an
exchange of messages which just uses the values of f and n. However, their computa-
tion model consists of a set of fully connected initially known nodes. Some works [[5-7]
focus on the heartbeat FD for sparsely connected networks with unknown membership.
The heartbeat FD is a special class of FD which is time-free and is able to implement
quiescent reliable communication. But, instead of lists of suspects, it outputs a vector
of unbounded counters; if a process crashes, its counter eventually stops increasing. It
is worth remarking that none of these works tolerate mobility of nodes.

Few implementations of unreliable FDs focus on wireless mobile networks [8-410].
The fundamental difference between these works and ours is the fact that all of them
are timer-based. Friedman and Tcharny 8] propose a simple gossiping protocol which
exploits the natural broadcast range of wireless networks to delimit the local member-

A Failure Detector for Wireless Networks with Unknown Membership 29

ship of a node in a mobile network. Contrarily to our approach, this work assumes a
known number of nodes and provides probabilistic guarantees for the FD properties.
Tai et al. [9] exploit a cluster-based communication architecture to propose a hierarchi-
cal gossiping FD protocol for a network of non-mobile nodes. The FD is implemented
both via intra-cluster heartbeat diffusion and failure report diffusion across clusters, i.e.,
if a failure is detected in a local cluster, it will be further forwarded across the clusters.
Unlike our solution, this work considers a cluster-based communication architecture
and provides probabilistic guarantees for the accuracy and completeness properties;
moreover, it does not consider mobility. Sridhar [[10] adopts a hierarchical design to
propose a deterministic local FD. He introduces the notion of local failure detection
and restraints the scope of detection to the neighborhood of a node and not to the whole
system. While our approach allows the implementation of a <»S™ FD, this work im-
plements an eventually perfect local failure detector of the class P, i.e., it provides
perfect failure detection, but with regard to a node’s neighborhood. As soon as we are
aware of, the only work to follow a time-free detection strategy has been proposed
by [11] in order to implement a leader FD of the 2 class. This class ensures that, each
process will be provided by a unique leader, elected among the set of correct processes,
in spite of crashes. Differently from ours, this work is for a specific infra-structured
network composed of mobile and static nodes. We believe that our FD of class {S™
may be successful adopted to implement coordination protocols in a dynamic set, such
as the one proposed by Greve et al.[12], who present a solution for the fault-tolerant
consensus in a network of unknown participants with minimal synchrony assumptions.
The rest of the paper is organized as follows. Section [2 defines the model and speci-
fies the >S™ FD class. Section[3identifies assumptions to implement those FDs. Sec-
tion M presents a time-free FD of the ¢»S* class. Section 3] concludes the paper. In an
extended report [[13], one can find complete correctness proofs, a thorough related work
section and performance experiments showing that the proposed FD exhibits a good re-
activity to detect failures and revoke false suspicions, even in presence of mobility.

2 Model and Problem Definition

The wireless mobile network is a dynamic system composed of infinitely many pro-
cesses; but each run consists of a finite set II of n > 1 mobile nodes, namely, I =
{p1,...,pn}. Contrarily to a static network, the membership is unknown, thus pro-
cesses are not aware about I7 and n, because, moreover, these values can vary from run
to run; this coincides with the finite arrival model [14]. This model is suitable for long-
lived or unmanaged applications, as for example, sensor networks deployed to support
crises management or help on dealing with natural disasters. There is one process per
node; each process knows its own identity, but it does not necessarily knows the identi-
ties of the others. Nonetheless, nodes communicate by sending and receiving messages
via a packet radio network and may make use of the broadcast facility of this commu-
nication medium to know one another. There are no assumptions on the relative speed
of processes or on message transfer delays, thus the system is asynchronous; there is no
global clock, but to simplify the presentation, we take the range 7 of the clock’s tick to
be the set of natural numbers. A process may fail by crashing, i.e., by prematurely or
by deliberately halting (switched off); a crashed process does not recover.

30 F. Greve et al.

The network is represented by a communication graph G = (V, E) in which V' = IT
represents the set of mobile nodes and E represents the set of logical links. The topol-
ogy of GG is dynamic due to arbitrary joins, leaves, crashes and moves. A bidirectional
link between nodes p; and p; means that p; is within the wireless transmission range
of p; and vice-versa. If this assumption appears to be inappropriate for a mobile envi-
ronment, one can use the strategy proposed in [[15] for allowing a protocol originally
designed for bidirectional links to work with unidirectional links. Let R; be the trans-
mission range of p;, then all the nodes that are at distance at most R; from p; in the
network are considered 1-hop neighbors, belonging to the same neighborhood. We de-
note N; to be the set of 1-hop neighbors from p;; thus, (p;, p;) € E iff (pi,pj) € N;.
Local broadcast between 1-hop neighbors is fair-lossy. This means that messages may
be lost, but, if p; broadcasts m to processes in its neighborhood an infinite number of
times, then every p; in the neighborhood receives m from p; an infinite number of times,
or p; is faulty. This condition is attained if the MAC layer of the underlying wireless
network provides a protocol that reliably delivers broadcast data, even in presence of
unpredictable behaviors, such as fading, collisions, and interference; solutions in this
sense have been proposed in [16-18]. Nodes in II may be mobile and they can keep
continuously moving and pausing in the system. When a node p,, moves, its neighbor-
hood may change. We consider a passive mobility model, i.e., the node that is moving
does not know that it is moving. Hence, the mobile node p,,, cannot notify its neighbors
about its moving. Then, for the viewpoint of a neighbor, it is not possible to distinguish
between a moving, a leave or a crash of p,,. During the neighborhood changing, p,,
keeps its state, that is, the values of its variables.

2.1 Stability Assumptions

In order to implement unreliable failure detectors with an unknown membership, pro-
cesses should interact with some others to be known. If there is some process in the
system such that the rest of processes have no knowledge whatsoever of its identity,
there is no algorithm that implements a failure detector with weak completeness, even
if links are reliable and the system is synchronous [[19]. In this sense, the characteriza-
tion of the actual membership of the system, that is, the set of processes which might
be considered for the computation is of utmost importance for our study. We consider
then that after have joined the system for some point in time, a mobile process p; must
communicate somehow with the others in order to be known. Afterwards, if p; leaves,
it can re-enter the system with a new identity, thus, it is considered as a new process.
Processes may join and leave the system as they wish, but the number of re-entries is
bounded, due to the finite arrival assumption. One important aspect concerns the time
period and conditions in which processes are connected to the system. During unstable
periods, certain situations, as for example, connections for very short periods, the rapid
movement of nodes, or numerous joins or leaves along the execution (characterizing a
churn) could block the application and prevent any useful computation. Thus, the sys-
tem should present some stability conditions that when satisfied for longtime enough
will be sufficient for the computation to progress and terminate.

Definition 1. Membership Lett,t' € T. Let UP(t) C II be the set of mobile processes
that are in the system at time t, that is, after have joined the system before t, they neither

A Failure Detector for Wireless Networks with Unknown Membership 31

leave it nor crash before t. Let p;, p; be mobile nodes. Let the known; set denotes the
partial knowledge of p; about the system’s membership. The membership of the system
is the KNOWN set.

staBLE < {p; : 3, t',st. V' > t, p; € UP(t')}.

FauLTY < {p; - 3t,t, t <t', p; € UP(t) Ap; & UP(t')}.

KNowN & {pi : (pi € STABLE U FAULTY) A (p; € known;,p; € STABLE)}.

The actual membership is in fact defined by the KNOWN set. A process is known fif,
after have joined the system, it has been identified by some stable process. A stable
process is thus a mobile process that, after had entered the system for some point in
time, never departs (due to a crash or a leave); otherwise, it is faulty. A process is faulty
after time ¢, when, after had entered the system at ¢, it departs at ¢’ > ¢. The STABLE
set corresponds to the set of correct processes in the classical model of static systems.

Assumption 1. Connectivity Let G(KNOWN N STABLE) = G(S) C G be the graph
obtained from the stable known processes. Then, 3t € T, s.t., in G(S) there is a path
between every pair of processes p;, p; € G(S5).

This connectivity assumption states that, in spite of changes in the topology of GG, from
some point in time ¢, the set of known stables forms a strongly connected component in
G. This condition is frequently present in the classical model of static networks and is
indeed mandatory to ensure dissemination of messages to all stable processes and thus
to ensure the global properties of the failure detector [2,[19-21].

2.2 A Failure Detector of Class {>S™

Unreliable failure detectors provide information about the liveness of processes in the
system [2]. Each process has access to a local failure detector which outputs a list of
processes that it currently suspects of being faulty. The failure detector is unreliable in
the sense that it may erroneously add to its list a process which is actually correct. But
if the detector later believes that suspecting this process is a mistake, it then removes
the process from its list. Failure detectors are formally characterized by two properties:
(i) Completeness characterizes its capability of suspecting every faulty process perma-
nently; (ii) Accuracy characterizes its capability of not suspecting correct processes.
Our work is focused on the class of Eventually Strong detectors, also known as {>S.
Nonetheless, we adapt the properties of this class in order to implement a FD in a
dynamic set. Then, we define the class of Eventually Strong Failure Detectors with Un-
known Membership, namely <»S™ . This class keeps the same properties of <»S, except
that they are now valid to known processes, that are stable and faulty.

Definition 2. Eventually Strong FD with Unknown Membership ({S™) Let t,t' €
T. Let p;, pj be mobile nodes. Let susp; be the list of processes that p; currently sus-

pects of being faulty. The >SM class contains all the failure detectors that satisfy:

Strong completeness def {3t,t',st. V&' > t, ¥p; € KNOWN N FAULTY = p; €

susp;, Vp; € KNOWN N STABLE}.

Eventual weak accuracy def {3t,t',st. ¥t' > t, Ip; € KNOWN N STABLE = p; ¢
susp;, Vp; € KNOWN N STABLE}.

32 F. Greve et al.

3 Towards a Time-Free Failure Detector for the <>.S™ Class

None of the failure detector classes can be implemented in a purely asynchronous sys-
tem [2]. Indeed, while completeness can be realized by using “I am alive” messages and
timeouts, accuracy cannot be safely implemented for all system executions. Thus, some
additional assumptions on the underlying system should be made in order to implement
them. With this aim, two orthogonal approaches can be distinguished: the timer-based
and the time-free failure detection [22]. The timer-based model is the traditional ap-
proach and supposes that channels in the system are eventually timely; this means that,
for every execution, there are bounds on process speeds and on message transmission
delays. However, these bounds are not known and they hold only after some unknown
time [2]. An alternative approach suggested by [4] and developed so far by [lL1, 20]
considers that the system satisfies a message exchange pattern on the execution of a
query-based communication and is time-free. While the timer-based approach imposes
a constraint on the physical time (to satisfy message transfer delays), the time-free ap-
proach imposes a constraint on the logical time (to satisfy a message delivery order).
These approaches are orthogonal and cannot be compared, but, they can be combined at
the link level in order to implement hybrid protocols with combined assumptions [22].

3.1 Stable Query-Response Communication Mechanism

Our failure detector is time-free and based on a local QUERY-RESPONSE communica-
tion mechanism [20] adapted to a network with unknown membership. At each query-
response round, a node systematically broadcasts a QUERY message to the nodes in
its neighborhood until it possibly crashes or leaves the system. The time between two
consecutive queries is finite but arbitrary. Each couple of QUERY-RESPONSE messages
are uniquely identified in the system. A process p; launches the primitive by sending a
QUERY (m) with a message m. When a process p; delivers this query, it updates its local
state and systematically answers by sending back a RESPONSE() to p;. Then, when p;
has received at least «; responses from different processes, including a stable one, the
current QUERY-RESPONSE terminates. Without loss of generality, the response for p;
itself is among the «; responses. An implementation of a QUERY-RESPONSE communi-
cation over fair-lossy local channels can be done by the repeated broadcast of the query
by the sender p; until it has received at least a; responses from its neighbors. Formally,
the stable QUERY—RESPONSE primitive has the following properties:

(i) QR-Validity: If a QUERY(m) is delivered by process p;, it has been sent by p;;

(i) QR-Uniformity: A QUERY(m) is delivered at most once by a process;

(iii) QR-Stable-Termination: If a process p; is not faulty (it does not crash nor leave the
system) while it is issuing a query, that query generates at least «; responses.

The value associated to «; should correspond to the expected number of processes
with whom p; can communicate, in spite of moves and faults. Since communication
is local, «; is a local parameter and can be defined as the value of the neighborhood
density of p; (i.e., |V;|) minus the maximum number of faulty processes in its neigh-
borhood; let f; be this number; that is, «; = | N;| — f;. This local choice for ; changes
from previous works which consider a global value either proportional to the number

A Failure Detector for Wireless Networks with Unknown Membership 33

of correct processes [4] or the number of stable processes [2(] or the global number of
faults [[11]]. Moreover, it follows recent works on fault tolerant communication in radio
networks which propose a “local” fault model, instead of a “global” fault model, as an
adequate strategy to deal with the dynamism and unreliability of wireless channels in
spite of failures [[17]. To reliably delivery data in spite of crashes, the maximum num-
ber of local failures should be f; < |N;|/2 [23]. From Assumption[IJabout the network
connectivity over time, at least one stable known node p; will receive the QUERY and
send a RESPONSE to p;, since moreover channels are fair-lossy. Thus, the following
property holds:

Property 1. Stable Termination Property (SatP). Let p; be a node which issues a
QUERY. Let X; be the set of processes that issued a RESPONSE to that query. Thus,
dp; € Xi,p; € KNOWN N STABLE, p; # p;.

For the failure detection problem, the stable termination is important for the diffusion
of the information to the whole network and consequent satisfaction of the accuracy and
completeness properties. Moreover, it ensures that the first QUERY issued by p;, when
it joins the network, will be delivered by at least one stable process in such a way that
p; may take part to the membership of the system.

3.2 Behavioral Properties

Node p; can keep continuously moving and pausing, but, infinitively often, p; should
stay within its neighborhood for a sufficient period of time in order to be able to update
its state with recent information regarding suspicions and mistakes; otherwise, it would
not update its state properly and thus completeness and accuracy properties would not
be ensured. Recent information is gathered by p; from its neighbors via the delivery
of a QUERY message. Hence, the following mobility property, namely MobiP, has
been defined and should be satisfied by all nodes. It ensures that, after reaching a new
neighborhood at ¢/, there will be a time ¢ > ¢’ at which p; should have received QUERY
messages from at least one stable neighbor p;, beyond itself. Since channels are fair-
lossy, the QUERY sent by p; will be received by p;, except if p; is faulty.

Property 2. Mobility Property (MobiP). Let t',t € T,t < t. Let p; be a node.
Let ¢’ be the time after which p; has changed of neighborhood. Let SQ! be the set of
processes from which p; has received a QUERY message after ¢’ and before or at ¢.
Process p; satisfies MobiP at time ¢ if:

MobiPt(p;) = dpjj+i € SQL,t >t : p; € KNOWN N STABLE V p; is faulty
after t'.

Instead of synchrony assumptions, to ensure the accuracy of the detection, the time-
free model establishes conditions on the logical time the messages are delivered by
processes. These are unified in the stabilized responsiveness property, namely SRP.
Thus, SRP(p;) states that eventually, for any process p; (which had received a response
from p;in the past), the set of responses received by p; to its last QUERY always includes
a response from p;, that is, the response of p; is always a winning response [22].

34 F. Greve et al.

Property 3. Stabilized Responsiveness Property (SRP). Let t”/,t',t € T. Let p; be
a stable known node. Let rec f rom§ (rec f rom§) be the set of processes from which
p; has received responses to its last QUERY that terminated at or before ¢'(¢). Process

p; satisfies SRP at time ¢ if:

SRP(p;) gy > LV >t p; € rec fromt = p; € rec fromt V

J J
p; is faulty after ¢.

This property denotes the ability of a stable known node p; to reply, among the first o;
nodes, to a QUERY sent by a node p;, who had received responses from p; before. It
should hold for at least one stable known node p;; thus preventing p; to be permanently
suspected. As a matter of comparison, in the timer-based model, this property would
approximate the following: there is a time ¢ after which the output channels from a
stable process p; to every other process p; that knows p; are eventually timely.

In order to implement a {»S™ FD, the following behaviors should be satisfied:
1) Vp; € KNOWN : MobiPt(p;) holds after p; moves and changes of neighborhood,;
2) 3p; € KNOWN N STABLE : SRP"(p;) eventually holds.

A discussion about how to satisfy in practice the properties and assumptions of the
model is done in Section E.2] after the protocol’s explanation.

4 A Failure Detector Algorithm for the >S™ Class

4.1 Algorithm Description

Algorithm[Tldescribes our protocol for implementing a FD of class {»S™ for a network
of KNOWN mobile nodes that satisfies the model stated in Sections [2and Bl

Notations. We use the following notations:

e susp;: denotes the current set of processes suspected of being faulty by p;. Each el-
ement of this set is a tuple of the form (id, ct), where id is the identifier of the suspected
node and ct is the tag associated to this information.

e mist;: denotes the set of nodes which were previously suspected of being faulty
but such suspicions are currently considered to be a mistake. Similar to the susp; set,
the mist; is composed of tuples of the form (id, ct).

e rec from;: denotes the set of nodes from which p; has received responses to its
last QUERY message.

e known;: denotes the partial knowledge of p; about the system’s membership, i.e.,
it denotes the current knowledge of p; about its neighborhood.

o Add(set, (id, ct)): is a function that includes (id, ct) in set. If an (id, —) already
exists in set, it is replaced by (id, ct).

Description. The algorithm is composed of two tasks 7'1 and T'2.

Task T'1: Generating suspicions. This task is made up of an infinite loop. At each
round, a QUERY(susp;, mist;) message is sent to all nodes of p;’s neighborhood (line
B). Node p; waits for at least ; responses, which includes p;’s own response (line
[6). Then, p; detects new suspicions (lines BHI3). It starts suspecting each node p;, not
previously suspected (p; & susp;), which it knows (p; € known;), but from which

A Failure Detector for Wireless Networks with Unknown Membership 35

it does not receive a RESPONSE to its last QUERY. If a previous mistake information
related to this new suspected node exists in the mistake set mist;, it is removed from
it (line[I1)) and the suspicion information is then included in susp; with a tag which is
greater than the previous mistake tag (line[T0). If p; is not in the mist set (i.e., it is the
first time p; is suspected), p; suspected information is tagged with O (line [[3).

Algorithm 1. Time-Free Implementation of a {»S™ Failure Detector

1 init:

2 susp; «— I;mist; — I ; known; — &

3 Task T1:

4 Repeat forever

5 broadcast QUERY (susp;, mist;)

6 wait until RESPONSE received from > «; processes

7 rec from; «<— all p;j, a RESPONSE is received in line [@]
8 For all p; € known; \ rec from; | (pj, —) € susp; do

9 If (pj,ct) € mist;

10 Add(suspi, (pj, ct + 1))

i mist; = mist; \ {(p;, =)}
12 Else

13 Add(suspi, <pj7 O>)

14 End repeat

16 Task T2:

17 Upon reception of QUERY (suspj,mist;) from p; do

8 known; «— known; U {p;}

v For all (ps,cty) € susp; do

2 If (pz,—) & susp; Umist; or ((pa,ct) € susp; Umist; and ct < cty)

21 If p: =pi

2 Add(mist;, (ps, cte + 1))
23 Else

2 Add(suspi, (De, cta))

25 mist; = mist; \ {(p=z, —)}

% For all (ps,cty) € mist; do
27 If (pz,—) & susp; Umist; or ((pa,ct) € susp; Umist; and ct < cty)

28 Add(mist;, (pz, cta))

e susp; = susp; \ {(pz, —)}

30 If (ps #pj)

31 known; — known; \ {pz}

» send RESPONSE to pj

Task T2: Propagating suspicions and mistakes. This task allows a node to handle
the reception of a QUERY message. A QUERY message contains the information about
suspected nodes and mistakes kept by the sending node. However, based on the tag
associated to each piece of information, the receiving node only takes into account the
ones that are more recent than those it already knows or the ones that it does not know
at all. The two loops of task T2 respectively handle the information received about
suspected nodes (lines[T9H23)) and about mistaken nodes (lines 26H3T). Thus, for each

36 F. Greve et al.

node p, included in the suspected (respectively, mistake) set of the QUERY message, p;
includes the node p,. in its susp; (respectively, mist;) set only if the following condition
is satisfied: p; received a more recent information about p,. status (failed or mistaken)
than the one it has in its susp; and mzst; sets. Furthermore, in the first loop of task 72,
a new mistake is detected if the receiving node p; is included in the suspected set of the
QUERY message (line 21]) with a greater tag. At the end of the task (line 32)), p; sends
to the querying node a RESPONSE message.

Dealing with mobility and generating mistakes. When a node p,, moves to another
destination, the nodes of its old destination will start suspecting it, since p,, is in their
known set and it cannot reply to QUERY messages from the latter anymore. Hence,
QUERY messages that include p,,, as a suspected node will be propagated to nodes of
the network. Eventually, when p,,, reaches its new neighborhood, it will receive such
suspicion messages. Upon receiving them, p,,, will correct such a mistake by including
itself (p;,) in the mistake set of its corresponding QUERY messages with a greater tag
(lines21122)). Such information will be propagated over the network. On the other hand,
P Will start suspecting the nodes of its old neighborhood since they are in its known,,
set. It then will broadcast this suspicion in its next QUERY message. Eventually, this in-
formation will be corrected by the nodes of its old neighborhood and the corresponding
generated mistakes will spread over the network, following the same principle.

In order to avoid a “ping-pong” effect between information about suspicions and
mistakes, lines allow the updating of the known sets of both the node p,,, and
of those nodes that belong to the original destination of p,,. Then, for each mistake
(P, cty) received from p;, such that p; keeps an old information about p,, p; verifies
whether p, is the sending node p; (line 30). If they are different, p,, should belong to
a remote neighborhood, because otherwise, p; would have received the mistake by p,,
itself. Notice that only the node can generate a new mistake about itself (line 21]). Thus,
P, is removed from the known, set (line B1)). Notice, however, that this condition is
not sufficient to detect the mobility, because p, can be a neighbor of p; and due to an
asynchronous race, the QUERY sent by p, with the mistake has not yet arrived at p;. In
fact, the propagated mistake sent by p; has arrived at p; firstly. If that is the case, p, has
been unduly removed from known;. Fortunately, since local broadcast is fair-lossy, the
QUERY from p, is going to eventually arrive at p;, if p; is stable, and, as soon as the
QUERY arrives, p; will once again add p, to know; (lines T7HIS8).

4.2 Practical Issues

The stable termination of the QUERY-RESPONSE primitive and the MobiP property
may be satisfied if the time of pause, between changes in direction and/or speed, is
defined to be greater than the time to transmit the QUERY and receive the RESPONSE
messages. This condition is attained when for example, the most widely used Random
Waypoint Mobility Model [24] is considered. In practice, the value of «; (the number
of responses that a process p; should wait in order to implement a QUERY-RESPONSE)
relates not only with the application density and the expected number of local faults,
but also with the type of network considered (either WMN, WSN, etc.) and the current
topology of the network during execution. Thus, it can be defined on the fly, based on
the current behavior of the network. Wireless Mesh Network (WMN), Wireless Sensor

A Failure Detector for Wireless Networks with Unknown Membership 37

Network (WSN), and infra-structured mobile networks [11, 25] are a good examples
of platforms who would satisfy the assumptions of our model, specially the SRP. In a
WMN, the nodes move around a fixed set of nodes (the core of the network) and each
mobile node eventually connects to a fix node. A WSN is composed of stationary nodes
and can be organized in clusters, so that communication overhead can be reduced; one
node in each cluster is designated the cluster head (CH) and the other nodes, cluster
members (CMs). Communication inter-clusters is always routed through the respective
CHs which act as gateway nodes and are responsible for maintaining the connectivity
among neighboring CHs. An infra-structured mobile network is composed of mobile
hosts (MH) and mobile support stations (MSS). A MH is connected to a MSS if it is
located in its transmission range and two MHs can only communicate through MSSs,
but, due to mobility, an MH can leave and enter the area covered by other MSSs. The
system is composed of N MSSs but infinitely many MHs. However, in each run the
protocol has only finitely many MHs. There are some works to implement a leader
oracle [[11] and to solve consensus in this type of network [25].

For all these platforms, special nodes (the fixed node for WMN, CHs for WSN or
MSSs for infra-structured networks) eventually form a strongly connected component
of stable nodes; additionally, they can be regarded as fast, so that they will always an-
swer to a QUERY faster than the other nodes, considered as slow nodes (the mobile
node for WMN, CMs for WSN or MHs for infra-structured networks). Thus, one of
these fast nodes may satisfy the SRP property. The SRP may seem strong, but in
practice it should just hold during the time the application needs the strong complete-
ness and eventual weak accuracy properties of FDs of class <»S™ | as for instance, the
time to execute a consensus algorithm.

5 Conclusion

This paper has presented a new algorithm for an unreliable failure detector suitable for
mobile wireless networks, such as WMNs or WSNs. It implements failure detectors of
class {SM (eventually strong with unknown membership) when the exchanged pattern
of messages satisfies some behavioral properties. As a future work, we plan to adapt the
algorithm and properties to implement other classes of failure detectors.

References

1. Conti, M., Giordano, S.: Multihop ad hoc networking: The theory. IEEE Communications
Magazine 45(4), 78-86 (2007)

2. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225-267 (1996)

3. Devianov, B., Toueg, S.: Failure detector service for dependable computing. In: Proc. of the
1st Int. Conf. on Dependable Systems and Networks, pp. 14-15 (2000)

4. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detec-
tors. In: Proc. of Int. Conf. on Dependable Systems and Networks (2003)

5. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: A timeout-free failure detector for quies-
cent reliable communication. In: Proc. of the 11th International Workshop on Distributed
Algorithms, pp. 126-140 (1997)

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

F. Greve et al.

Hutle, M.: An efficient failure detector for sparsely connected networks. In: Proc. of the
IASTED International Conference on Parallel and Distributed Computing and Networks, pp.
369-374 (2004)

Tucci-Piergiovanni, S., Baldoni, R.: Eventual leader election in infinite arrival message-
passing system model with bounded concurrency. In: Dependable Computing Conference
(EDCC), pp. 127-134 (2010)

Friedman, R., Tcharny, G.: Evaluating failure detection in mobile ad-hoc networks. Int. Jour-
nal of Wireless and Mobile Computing 1(8) (2005)

Tai, A., Tso, K., Sanders, W.: Cluster-based failure detection service for large-scale ad hoc
wireless network applications. In: Int. Conf. on Dependable Systems and Networks, pp. 805—
814 (2004)

Sridhar, N.: Decentralized local failure detection in dynamic distributed systems. In: The
25th IEEE Symp. on Reliable Distributed Systems, pp. 143-154 (2006)

Cao, J., Raynal, M., Travers, C., Wu, W.: The eventual leadership in dynamic mobile net-
working environments. In: 13th Pacific Rim Intern. Symp. on Dependable Computing, pp.
123-130 (2007)

Greve, F., Tixeuil, S.: Knowledge conectivity vs. synchrony requirements for fault-tolerant
agreement in unknown networks. In: Int. Conf. on Dependable Systems and Networks, pp.
82-91 (2007)

Sens, P., Arantes, L., Bouillaguet, M., Simon, V., Greve, F.: Asynchronous implementation
of failure detectors with partial connectivity and unknown participants. Technical Report,
RR6088, INRIA - France, http://hal.inria.fr/inria-00122517/fr/
Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures. SIGACT
News 35(2), 36-59 (2004)

Ramasubramanian, V., Chandra, R., Mossé, D.: Providing a bidirectional abstraction for uni-
directional adhoc networks. In: Proc. of the 21st IEEE International Conference on Computer
Communications (2002)

Min-Te, S., Lifei, H., Arora, A.A., Ten-Hwang, L.: Reliable mac layer multicast in ieee
802.11 wireless networks. In: Proc. of the Intern, August 2002, pp. 527-536 (2002)

Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: 23th
Symp. on Principles of Distributed Computing, pp. 275-282 (2004)

Bhandari, V., Vaidya, N.H.: Reliable local broadcast in a wireless network prone to byzantine
failures. In: The 4th Int. Work. on Foundations of Mobile Computing (2007)

Jiménez, E., Arévalo, S., Ferndndez, A.: Implementing unreliable failure detectors with un-
known membership. Inf. Process. Lett. 100(2), 60-63 (2006)

Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., Abbadi, A.: From static
distributed systems to dynamic systems. In: Proc. of the 24th IEEE Symposium on Reliable
Distributed Systems, pp. 109-118 (2005)

Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally bounded fail-
ures. IEEE Trans. on Parallel and Distributed Systems 21, 801-811 (2010)

Mostefaoui, A., Raynal, M., Travers, C.: Time-free and timer-based assumptions can be com-
bined to obtain eventual leadership. IEEE Trans. Parallel Distrib. Syst. 17(7), 656—-666 (2006)
Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: 24th Symp. on
Principles of Distributed Computing, pp. 138-147. ACM, New York (2005)

Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research.
Wireless Communications & Mobile Computing: Special issue on Mobile Ad Hoc Network-
ing: Research, Trends and Applications 2, 483-502 (2002)

Wu, W, Cao, J., Yang, J., Raynal, M.: Design and performance evaluation of efficient con-
sensus protocols for mobile ad hoc networks. IEEE Trans. Comput. 56(8), 1055-1070 (2007)

http://hal.inria.fr/inria-00122517/fr/

Towards Systematic Parallel Programming
over MapReduce

Yu Liu', Zhenjiang Hu?, and Kiminori Matsuzaki?

! The Graduate University for Advanced Studies, Japan
yuliu@nii.ac.jp
2 National Institute of Informatics, Japan
hu@nii.ac.jp
3 School of Information, Kochi University of Technology, Japan
matsuzaki.kiminori@kochi-tech.ac. jp

Abstract. MapReduce is a useful and popular programming model for
data-intensive distributed parallel computing. But it is still a challenge
to develop parallel programs with MapReduce systematically, since it is
usually not easy to derive a proper divide-and-conquer algorithm that
matches MapReduce. In this paper, we propose a homomorphism-based
framework named Screwdriver for systematic parallel programming with
MapReduce, making use of the program calculation theory of list ho-
momorphisms. Screwdriver is implemented as a Java library on top of
Hadoop. For any problem which can be resolved by two sequential func-
tions that satisfy the requirements of the third homomorphism theorem,
Screwdriver can automatically derive a parallel algorithm as a list homo-
morphism and transform the initial sequential programs to an efficient
MapReduce program. Users need neither to care about parallelism nor to
have deep knowledge of MapReduce. In addition to the simplicity of the
programming model of our framework, such a calculational approach en-
ables us to resolve many problems that it would be nontrivial to resolve
directly with MapReduce.

1 Introduction

Google’s MapReduce [5] is a programming model for data-intensive distributed
parallel computing. It is the de facto standard for large scale data analysis,
and has emerged as one of the most widely used platforms for data-intensive
distributed parallel computing.

Despite the simplicity of MapReduce, it is still a challenge for a programmer
to systematically solve his or her (nontrivial) problems. Consider the mazimum
prefix sum problem of a sequence. For instance, if the input sequence is

3,-1,4,1,-5,9,2, 6,5

the maximum of the prefix sums should be 13 to which the underlined prefix
corresponds. It is not obvious how to solve this problem efficiently with MapRe-
duce (and we encourage the reader to pause to think how to solve this). Such
problems widely exist in the real world, e.g, financial time series analysis.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 39 2011.
© Springer-Verlag Berlin Heidelberg 2011

40 Y. Liu, Z. Hu, and K. Matsuzaki

Our basic idea to resolve such problems is to wrap MapReduce with list ho-
momorphisms (or homomorphisms for short) [2]. We propose a simpler pro-
gramming model based on the theory of list homomorphisms, and implement an
associated framework called Screwdriver] for systematic parallel programming
over MapReduce. Screwdriver provides users with an easy-to-use programming
interface, where users just need to write two sequential programs: one for solving
the problem itself and the other for solving the inverse problem. By building an
algorithmic parallelization layer upon MapReduce, Screwdriver automatically
generates homomorphisms from user-specific programs and efficiently executes
them with MapReduce. We implemented this homomorphism-based framework
efficiently in Java on top of an open source MapReduce framework HadooIE.

The rest of the paper is organized as follows. In Section 2l we review the con-
cept of MapReduce and the theory of homomorphisms. The design and imple-
mentation of the homomorphism-based algorithmic layer on top of MapReduce
are illustrated in Section Bl Then, we demonstrate the usefulness of our system
with the maximum prefix sum problem above in Section [and report some
experiment results in Section Bl The conclusion and highlight of future work are
summarized in Section [6l

2 MapReduce and List Homomorphisms

The notations are mainly based on the functional language Haskell [I]. Function
application is denoted with a space with its argument without parentheses, i.e.,
f a equals to f(a). Functions are curried and bound to the left, and thus f a b
equals to (f a) b. Function application has higher precedence than using oper-
ators, so f a®b = (f a) ® b. We use two operators o and 2 over functions:
by definition, (fog) x = f (g) and (f 2 g) x = (f z,g x). Function id is the
identity function.

Tuples are written like (a,b) or (a,b,c). Function fst (snd) extracts the first
(the second) element of the input tuple.

We denote lists with square brackets. We use [] to denote an empty list, and
+ to denote the list concatenation: [3,1,4] + [1,5] = [3,1,4,1,5]. A list that
has only one element is called a singleton. Operator [-] takes a value and returns
a singleton list with it.

2.1 MapReduce and MapReduce Programming Model

Figure[Ildepicts the MapReduce computation model. The input and output data
of MapReduce are managed as a set of key-value pairs and stored in distributed
file system over a cluster. MapReduce computation mainly consists of three
phases: the MAP phase, SHUFFLE & SORT phase, and the REDUCE phaseE.

! Tt is available online http://code.google.com/p/screwdriver/

2 http://hadoop.apache.org/

3 For readability, we use MAP and REDUCE to denote the phases in MapReduce,
and fmap and frepuck for the parameter functions used in the MAP and REDUCE
phases. When unqualified, map and reduce refer to the functions of Haskell.

Towards Systematic Parallel Programming over MapReduce 41
|lIEULDRE.) Shuffle & sort _Output Data |

==

=)

e

reduce

map phase reduce phase

Fig. 1. MapReduce Computation

In the MAP phase, each input key-value pair is processed independently and a
list of key-value pairs will be produced. Then in the SHUFFLE & SORT phase,
the key-value pairs are grouped based on the key. Finally, in the REDUCE phase,
the key-value pairs of the same key are processed to generate a result.

To make the discussion precise, we introduce a specification of the MapRe-
duce programming model in a functional programming manner. Note that the
specification in this paper is based on that in [II] but is more detailed. In this
model, users need to provide four functions to develop a MapReduce application.
Among them, the fyap and frepuce functions performs main computation.

— Function fMAP-
Jmap i (k1 v1) — [(k2,v2)]

This function is invoked during the MAP phase, and it takes a key-value
pair and returns a list of intermediate key-value pairs.
— Function fSHUFFLE~
JsHUFFLE :: k2 — k3

This function is invoked during the SHUFFLE&SORT phase, takes a key of
an intermediate key-value pair, and generate a key with which the key-value
pairs are grouped.

— Function fSORT~
fsorr it k2 — kg — {—1,0,1}
This function is invoked during the SHUFFLE&SORT phase, and compares
two keys in sorting the values.

— Function frepuck-

frebuce = (ks, [v2]) — (k3,v3)

This function is invoked during the REDUCE phase, and it takes a key and
a list of values associated to the key and merges the values.

42 Y. Liu, Z. Hu, and K. Matsuzaki

Now a functional specification of the MapReduce framework can be given as
follows, which accepts four functions fmap, fSHUFFLE, fsorT, and frRepuce and
transforms a set of key-value pairs to another set of key-value pairs.

MapReduce :: ((k1,v1) — [(k2,v2)]) — (k2 — k3) — (k2 — ko2 — {—1,0,1})
— ((ks; [v2]) — (k3,v3)) — {(k1,v1)} — {(ks, v3)}
MapReduce fmap fsuurrLe fsort fREDUCE input
= let subl = mapg fmap input
sub2 = mapg (A(K', kvs). (k', map snd (sortByKey fsorr kvs)))
(shuffleByKey fsuurrLe subl)
in maps fREDUCE sub2

Function mapg is a set version of the map function: i.e., it applies the input
function to each element in the set. Function shuffleByKey takes a function
fsuurrLe and a set of a list of key-value pairs, flattens the set, and groups
the key-value pairs based on the new keys computed by fspurrrg. The result
type after shuffleByKey is {(ks, {k2,v2})}. Function sortByKey takes a function
fsorT and a set of key-value pairs, and sorts the set into a list based on the
relation computed by fsorr-

2.2 List Homomorphism and Homomorphism Theorems

List homomorphisms are a class of recursive functions on lists, which match very
well the divide-and-conquer paradigm [2L[A[5LT2)I5,[16]. They are attractive in
parallel programming, not only because they are suitable for parallel implemen-
tation, but also because they enjoy many nice algebraic properties, among which,
the three well-known homomorphism theorems form the basis of systematic de-
velopment of parallel programs [4[6,[7L9,10]. Recently, it has been shown [8][14]
that homomorphisms can be automatically developed for solving various kinds
of problems. All these have indeed motivated us to see how to apply these results
to parallel programming with MapReduce.

Definition 1 (List homomorphism). Function h is said to be a list homo-
morphism, if and only if there is a function f and an associative operator ®
such that the function h is defined as follows.

h [a] =fa

h(x+Hy)=hxzOhy

Since h is uniquely determined by f and ®, we write h = (f, ®@)).

For instance, the function that sums up the elements in a list can be described
as a list homomorphism (id, +]):

sum [a] =a
sum (x Hy) = sum = + sum y.

Below is the well-known theorem for homomorphisms [6]. It provides a neces-
sary and sufficient condition for the existence of a list homomorphism.

Towards Systematic Parallel Programming over MapReduce 43

User specific AN
functions /
— L

List-Homomorphism Layer \

Fig. 2. System Overview

Homomorphism Programming
Interfaces

.,
.

Theorem 1 (The third homomorphism theorem). Let h be a given func-
tion and © and @ be binary operators. If and only if the following two equations
hold for any element a and list y

h(la] ++y)=achy
h(y+la))=hyoa

then the function h is a homomorphism.

In order to show how to automatically derive a list homomorphism, firstly, we
introduce the concept of function’s right inverse.

Definition 2 (Right inverse). For a function h, its right inverse h° is a func-
tion that satisfies h o h® o h = h.

By taking use of right inverse, we can obtain the list-homomorphic definition as

follows.
h=(f,®) where f a ="h [a]
lor=h(h° I+ h°r)

With this property, the third homomorphism theorem is also an important and
useful theorem for automatic derivation of list homomorphisms [I4]. Our paral-
lelization algorithm is mainly based on the third homomorphism theorem.

3 A Homomorphism-Based Framework for Parallel
Programming with MapReduce

The main contribution of our work is a novel programming model and its frame-
work for systematic programming over MapReduce, based on theorems of list
homomorphisms [8l[I4]. Our framework Screwdriver is built on top of Hadoop,
purely in Java.

As shown in Fig. 2l Screwdriver consists of three layers: the interface layer
for easy parallel programming, the homomorphism layer for implementing ho-
momorphism, and the base layer of the MapReduce engine (Hadoop).

44 Y. Liu, Z. Hu, and K. Matsuzaki

Listing 1.1. Programming Interface

public abstract class ThirdHomomorphismTheorem<T1,T2> {

public abstract T2 fold(ArrayList<T1> values);
public abstract ArrayList<T1> unfold(T2 value);

U WN

3.1 Programming Interface and Homomorphism Derivation

The first layer of Screwdriver provides a simple programming interface and gen-
erates a homomorphism based on the third homomorphism theorem.

Users specify a pair of sequential functions instead of specifying a homomor-
phism directly: one for solving the problem itself and the other for a right inverse
of the problem. Consider the summing-up example again. A right inverse sum®
of the function sum takes a value (the result of sum) and yields a singleton
list whose element is the input value itself. The functional definition of sum?® is:
sum® s = [s].

Listing [T shows the programming interface provided in Screwdriver, where
users should write a program by inheriting the ThirdHomomorphismTheorem
class. The function fold corresponds to the sequential function that solves the
problem, and the function unfold corresponds to the sequential function that
computes a right inverse. In a functional specification, the types of the two func-
tions are fold :: [t1] — t2 and unfold :: t2 — [t1]. The concrete Java source code
with Screwdriver for the summing-up example can be found on our project’s
site.

To utilize the third homomorphism theorem, users are requested to confirm
that the two functions satisfy the following conditions. Firstly, the function
unfold should be a right inverse of the function fold. In other words, the equation
foldounfoldo fold = fold should hold. Secondly, for the fold function there should
exist two operators © and @ as stated in Theorem [Il A sufficient condition for
this second requirement is that the following two equations hold respectively for
any a and x.

fold([a] + z) = fold([a] H unfold(fold(x))) (1)

fold(x ++ [a]) = fold(unfold(fold x) + [a]) (2)
Note that we can use some tools (such as QuickCheck [3]) in practice to verify
whether Equations ([I]) and (2] hold or not.

Under these conditions, Screwdriver automatically derives a list homomor-
phism from the pair of fold and unfold functions. A list homomorphism (f, ®)
that computes fold can be obtained by composing user’s input programs, where
the parameter functions f and @ are defined as follows.

fa = fold([a])
x ®y = fold(unfold x + unfold y).

Towards Systematic Parallel Programming over MapReduce 45

3.2 Homomorphism Implementation on MapReduce

In the second layer, Screwdriver provides an efficient implementation of list ho-
momorphisms over MapReduce. In particular, the implementation consists of
two passes of MapReduce.

Manipulation of Ordered Data

The computation of a list homomorphism obeys the order of elements in the
input list, while the input data of MapReduce is given as a set stored on the
distributed file system. This means we need to represent a list as a set.

On Screwdriver, we represent each element of a list as an (indez, value) pair
where indez is an integer indicating the position of the element. For example,
a list [a, b, ¢, d, €] may be represented as a set {(3,d), (1,b),(2,¢), (0,a),(4,e)}.
Note that the list can be restored from this set representation by sorting the
elements in terms of their indices. Such indexed pairs permit storing data in
arbitrary order on the distributed file systems

Implementing Homomorphism by two Passes of MapReduce

For the input data stored as a set on the distributed file system, Screwdriver
computes a list homomorphism in parallel by two passes of MapReduce compu-
tation. Here, the key idea of the implementation is that we group the elements
consecutive in the list into some number of sublists and then apply the list
homomorphism in parallel to those sublists.

In the following, we summarize our two-pass implementation of homomor-
phism (f, ®)). Here, hom f (@) denotes a sequential version of (f, ®)), comp is
a comparing function defined over the Int type, and const is a constant value
defined by the framework.

homur (e — 8) — (B— 00— 0) = {(Int,a)} =
hommr f (®) = getValue o MapReduce ([']) gsuurrLE comp grEDUCE
o MapReduce (H) fsHUFFLE comp fREDUCE
where
fsHUFFLE = Int — Int
fsuurrLe k = k/const
JrepUCE @ (Int, [a]) — (Int, 3)
frepuce (k, as) = (k,hom f (D) as)
gsHUFFLE :: Int — Int
gSHUFFLE k =1
grEDUCE = (Int, [8]) — (Int, §)
greEDUCE (1, b8) = (1, hom id (&) bs)
getValue :: {(Int,3)} — 0
getValue {(1,b)} = b

46 Y. Liu, Z. Hu, and K. Matsuzaki

First pass of MapReduce: The first pass of MapReduce divides the list into
some sublists, and computes the result of the homomorphism for each sublist.
Firstly in the MAP phase, we do no computation (except for wrapping the key-
value pair into a singleton list). Then in the SHUFFLE&SORT phase, we group
the pairs so that the set-represented list is partitioned into some number of
sublists and sort each grouped elements by their indices. Finally, we apply the
homomorphism to each sublist in the REDUCE phase.

Second pass of MapReduce: The second pass of MapReduce computes the result
of the whole list from the results of sublists given by the first pass of MapReduce.
Firstly in the MAP phase, we do no computation as in the first pass. Then in
the SHUFFLE&SORT phase, we collect the subresults into a single set and sort
them by the their indices. Finally, we reduce the subresults using the associative
operator of the homomorphism.

Finally, by the getValue function, we picked the result of the homomorphism
out from the set (of single value).

Implementation Issues

In terms of the parallelism, the number of the MAP tasks in the first pass is
decided by the data splitting mechanism of Hadoop. For one split data of the
input, Hadoop spawns one MAP task which applies fypap to each record. The
number of the REDUCE tasks in the first pass of MapReduce should be chosen
properly with respect to the total number of the task-trackers inside the cluster.
By this number of REDUCE task, the parameter const in the program above
is decided. In the REDUCE phase in the second pass of MapReduce, only one
REDUCE task is invoked because all the subresults are grouped into a single
set.

4 A Programming Example

In this section we demonstrate how to develop parallel programs with our frame-
work, by using the maximum prefix sum problem in the introduction as our ex-
ample. As discussed in Section [3] users need to define a Java class that inherits
the Java class shown in Listing [Tl and implement the two abstract methods
fold and unfold.

Recall the maximum prefix sum problem in the introduction. It is not difficult
to develop a sequential program for computing the maximum prefix sum:

mps [1,-2,3,..]=01T17T(1+(-2)TA+(-2)+3) 11+ (-2)+3+...)

where a T b returns a if a > b otherwise returns b.

Although the mps function cannot be represented by a homomorphism in the
sense that it cannot be described at the same time, it is not difficult to see, as
discussed in [14], that the tupled function mps & sum can be described leftwards
and rightwards.

Towards Systematic Parallel Programming over MapReduce 47

Listing 1.2. Our Parallel Program for Solving MPS Problem

1 import

2

3 public class Mps extends ThirdHomomorphismTheorem <LongWritable, LongPair > {
4

5 // Computing mps and sum at a time.

6 public LongPair fold (ArrayList <LongWritable> values) {
7 long mps = 0;

8 long sum = 0;

9 for (LongWritable v : values) {

10 sum += v.get ();

11 if (sum > mps) mps = sum;

12 }

13

14 return new LongPair (mps, sum);

15 }

16

17 // A right inverse of fold.

18 public ArrayList <LongWritable> unfold(LongPair value) {
19 long m = value.getFirst();

20 long s = value.getSecond ();

21

22 Arraylist <LongWritable> rst = new ArrayList <LongWritable>();
23 rst.add(new LongWritable (m));

24 rst.add (new LongWritable (s-m));

25 return rst;

26 }

27 ¥

What we need to do now is to develop an efficient sequential program for
computing mps 2 sum and an efficient sequential program for computing a right
inverse of mps 2 sum. These two sequential programs are not difficult to obtain.
A simple sequential program for computing the tupled function (mps & sum)
can be defined by

(mps > sum) [a] = (a10,0)
(mps & sum) (z + [a]) = let (m,s) = (mps 2 sum) x in (m T (s+a),s+a)

and a right inverse of (mps sum) can be defined as follows.
(mps & sum)® (m,s) = [m,s —m].

That is all for our development. We can now use (mps & sum) as the fold
function and (mps 2 sum)® as unfold function. Listing gives the concrete
Java program for solving the maximum prefix sum problem using Screwdriver.

5 Experiments

In this section, we report experiment results that evaluate the performance of
our framework on PC clusters. We evaluated the scalability of programs on our
framework, the overhead of our framework compared with the direct Hadoop
program, and the overhead of the non-trivial parallel program compared with
sequential program.

48 Y. Liu, Z. Hu, and K. Matsuzaki

We configured clusters with 2, 4, 8, 16, and 32 virtual machines (VM) in-
side the EdubaseCloud system in National Institute of Informatics. Each VM
has one CPU (Xeon E5530@2.4GHz, 1 core), 3 GB memory, and 5 GB disk
space. We installed Hadoop (version 0.20.2.203) on each VM. Three sets of
programs are used for the evaluation: SUM computes the sum of 64-bit inte-
gers; VAR computes the variance of 32-bit floating-point numbers; MPS solves
the maximum-prefix-sum problem for a list of 64bit-integers. We both imple-
mented the programs with the Hadoop APIs directly (SUM-MR, VAR-MR,
MPS-MR), and with our Screwdriver (SUM-LH, VAR-LH, MPS-LH). Also a
sequential program is implemented (MPS-Segq). The input for SUM and MPS
was a list of 10® 64bit-integer elements (593 MB), and the input for VAR is
a list of 10% 32bit-floating-point numbers (800 MB). Note that the elements
of lists are indexed as in Section with the type information (each element
has a 64bit-integer index), stored in the Avro data format, and put in the
HDFS.

The experiment results are summarized in Fig. [}l and Table [l Note that the
relative speedup is calculated with respect to the result of 2 nodes. The execution
of the parallel programs on our framework and on Hadoop failed on 1 node, due
to the limitation of disk space for the intermediate data.

All the programs achieved good scalability with respect to the number of
nodes: the speedup ratios for 32 nodes against 2 nodes are more than 10 times.
This shows that our framework does not spoil the strong advantage of MapRe-
duce framework, namely scalable data processing. For the summation problem,
the SUM-LH program on our framework cannot use combiner due to the limita-
tion of Hadoop’s implementation, so SUM-MR which uses combiner doing local
reductionism can run almost twice faster. for almost all MapReduce programs
combiners usually can increase performance very much. So we will work on to
let our framework taking full use of data-locality. And we think it will bring no-
table performance improvement. Besides this, two-passes MapReduce processing
and sorting with respect to the keys, which are unnecessary for the summation
problem. In other words, with these overheads we can extend the MapReduce
framework to support computations on ordered lists.

Finally we discuss the execution times for the maximum-prefix-sum problem.
Although the parallel program on our framework MPS-LH shows good scal-
ability (as well as MPS-MR), it ran slower on 32 nodes than the sequential
program MPS-Seq. We consider this is a reasonable result: first, in this case of
the maximum-prefix-sum problem, the parallel algorithm becomes more complex
than that of sequential one, and in particular we produced (large) intermediate
data when doing parallel processing on our framework but it is not the case for
sequential processing. Second, the test data is not big enough, so the sequential
program can still handle it. Because the limitation of our cloud, we cannot test
big enough data. An important work to improve the performance in future is to
make use of data locality to optimize the parallel execution.

Towards Systematic Parallel Programming over MapReduce 49

: I ..J.
2 nodes. 4 node: 8nodes 16 nodes. 32 modes.
v

Fig. 3. Time Consuming

Table 1. Execution Time (second) and Relative Speedup w.r.t. 2 Nodes

Program 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
SUM-MR NA (NA) 304 (1.00) 156 (1.95) 75 (4.05) 50 (6.08) (11 69)
SUM-LH A (NA) 628 (1.00) 309 (2.03) 166 (3.78) 93 (6.75) 61 (10.30)
VAR-LH A (NA) 723 (1.00) 321 (2.25) 189 (3.82) 111 (6.50) (10 45)
MPS-LH A (NA) 635 (1.00) 311 (2.04) 169 (3.76) 93 (6.78) 62 (10.24)
MPS-MR NA (NA) 621 (1 00) 304 (2.04) 163 (3.81) 91 (6.82) 61 (10.22)
MPS-Seq 37 A (NA) NA (NA) A (NA) NA (NA) NA (NA)

6 Concluding Remarks

The research on list homomorphisms and the third homomorphism theorem indi-
cate a systematic and constructive way to parallelization, by which this work was
inspired. List homomorphisms and the theory related to them are very suitable
for providing a method of developing MapReduce programs systematically.

In this paper, we presented a new approach to systematic parallel program-
ming over MapReduce based on program calculation, and gave a concrete imple-
mentation to verify the approach. We believe that the calculation theorems for
list homomorphisms can provide a higher abstraction over MapReduce, and such
abstraction brings good algebraic properties of list homomorphisms to parallel
programming with MapReduce.

We introduced a novel parallel programming approach based on list homo-
morphism to wrapping MapReduce. And we believe such approach is not limited
to wrapping MapReduce, but also can be adopted to other parallel programming
environments to provide higher-level programming interfaces.

As a future work, we plan to extend this framework for resolving parallel
programming problems on trees and graphs. It will enlarge the computation
capability of Screwdriver.

50 Y. Liu, Z. Hu, and K. Matsuzaki
References
1. Bird, R.S.: Introduction to Functional Programming using Haskell. Prentice-Hall,

2.

10.

11.

12.

13.

14.

15.

16.

Englewood Cliffs (1998)

Bird, R.S.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of
Programming and Calculi of Discrete Design. NATO ASI Series F, vol. 36, pp.
5-42. Springer, Heidelberg (1987)

Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Odersky, M., Wadler, P. (eds.) ICFP 2000: Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming,
pp. 268-279. ACM Press, New York (2000)

. Cole, M.: Parallel programming with list homomorphisms. Parallel Processing Let-

ters 5(2), 191-203 (1995)

Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: 6th Symposium on Operating System Design and Implementation (OSDI 2004),
pp. 137-150 (2004)

Gibbons, J.: The third homomorphism theorem. Journal of Functional Program-
ming 6(4), 657-665 (1996)

Gorlatch, S.: Systematic extraction and implementation of divide-and-conquer par-
allelism. In: Kuchen, H., Swierstra, S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp.
274-288. Springer, Heidelberg (1996)

Hu, Z.: Calculational parallel programming. In: HLPP 2010: Proceedings of the
Fourth International Workshop on High-level Parallel Programming and Applica-
tions, p. 1. ACM Press, New York (2010)

Hu, Z., Iwasaki, H., Takeichi, M.: Formal derivation of efficient parallel programs
by construction of list homomorphisms. ACM Transactions on Programming Lan-
guages and Systems 19(3), 444-461 (1997)

Hu, Z., Takeichi, M., Chin, W.N.: Parallelization in calculational forms. In: POPL
1998, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 316-328. ACM Press, New York (1998)

Lammel, R.: Google’s MapReduce programming model — Revisited. Science of
Computer Programming 70(1), 1-30 (2008)

Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A library of constructive skeletons
for sequential style of parallel programming. In: InfoScale 2006: Proceedings of the
1st International Conference on Scalable Information Systems. ACM International
Conference Proceeding Series, vol. 152. ACM Press, New York (2006)

Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism theo-
rem on trees: downward & upward lead to divide-and-conquer. In: Shao, Z., Pierce,
B.C. (eds.) POPL 2009: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 177-185. ACM Press,
New York (2009)

Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inversion
generates divide-and-conquer parallel programs. In: ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation (PLDI 2007), pp.
146-155. ACM Press, New York (2007)

Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Dis-
tributed Computing. Springer, Heidelberg (2002)

Steele Jr. G.L.: Parallel programming and parallel abstractions in fortress. In:
Hagiya, M. (ed.) FLOPS 2006. LNCS, vol. 3945, pp. 1-1. Springer, Heidelberg
(2006)

Correlated Set Coordination in Fault Tolerant
Message Logging Protocols

Aurelien Bouteiller', Thomas Herault!, George Bosilca',
and Jack J. Dongarra'-?

! Innovative Computing Laboratory,
The University of Tennessee
2 QOak Ridge National Laboratory
{bouteill,herault,bosilca,dongarra}@eecs.utk.edu

Abstract. Based on our current expectation for the exascale systems,
composed of hundred of thousands of many-core nodes, the mean time
between failures will become small, even under the most optimistic as-
sumptions. One of the most scalable checkpoint restart techniques, the
message logging approach, is the most challenged when the number of
cores per node increases, due to the high overhead of saving the message
payload. Fortunately, for two processes on the same node, the failure
probability is correlated, meaning that coordinated recovery is free. In
this paper, we propose an intermediate approach that uses coordination
between correlated processes, but retains the scalability advantage of
message logging between independent ones. The algorithm still belongs
to the family of event logging protocols, but eliminates the need for costly
payload logging between coordinated processes.

1 Introduction

High Performance Computing, as observed by the Top 500 mnkin7 has ex-
hibited a constant progression of the computing power by a factor of two every
18 months for the last 15 years. Following this trend, the exaflops milestone
should be reached as soon as 2019. The International Exascale Software Project
(IESP) [7] proposes an outline of the characteristics of an exascale machine, based
on the foreseeable limits of the hardware and maintenance costs. A machine in
this performance range is expected to be built from gigahertz processing cores,
with thousands of cores per computing node (up to 10'? flops per node), thus
requiring millions of computing nodes to reach the exascale. Software will face
the challenges of complex hierarchies and unprecedented levels of parallelism.
One of the major concerns is reliability. If we consider that failures of com-
puting nodes are independent, the reliability probability of the whole system
(i.e. the probability that all components will be up and running during the next
time unit) is the product of the reliability probability of each of the components.
A conservative assumption of a ten years mean time to failure translates into a

http://www.top500.org/

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 51k64.]2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.top500.org/

52 A. Bouteiller et al.

probability of 0.99998 that a node will still be running in the next hour. If the
system consists of a million of nodes, the probability that at least one unit will be
subject to a failure during the next hour jumps to 1 —0.9999819° > 0.99998. This
probability being disruptively close to 1, one can conclude that many computing
nodes will inevitably fail during the execution of an exascale application.

Automatic fault tolerant algorithms, which can be provided either by the
operating system or the middleware, remove some of the complexity in the de-
velopment of applications by masking failures and the ensuing recovery process.
The most common approaches to automatic fault tolerance are replication, which
consumes a high number of computing resources, and rollback recovery. Rollback
recovery stores system-level checkpoints of the processes, enabling rollback to a
saved state when failures happen. Consistent sets of checkpoints must be com-
puted, using either coordinated checkpointing or some variant of uncoordinated
checkpointing with message logging (for brevity, in this article, we use indiffer-
ently message logging or uncoordinated checkpointing). Coordinated checkpoint-
ing minimizes the overhead of failure-free operations, at the expense of a costly
recovery procedure involving the rollback of all processes. Conversely, message
logging requires every communication to be tracked to ensure consistency, but its
uncoordinated recovery procedure demonstrates unparalleled efficiency in failure
prone environments.

Although the low mean time to failure of exascale machines calls for prefer-
ring an uncoordinated checkpoint approach, the overhead on communication of
message logging is bound to increase with the advent of many-core nodes. Unco-
ordinated checkpointing has been designed with the idea that failures are mostly
independent, which is not the case in many-core systems where multiple cores
crash when the node is struck by a failure. Not only do simultaneous failures
negate the advantage of uncoordinated recovery, but the logging of messages
between cores is also a major performance issue. All interactions between two
uncoordinated processes have to be logged, and a copy of the transaction must
be kept for future replay. Since making a copy has the same cost as doing the
transaction itself (as the processes are on the same node we consider the cost of
communications equal to the cost of memory copies), the overhead is unaccept-
able. It is disconcerting that the most resilient fault tolerant method is also the
most bound to suffer, in terms of performance, on expected future systems.

In this paper, we consider the case of correlated failures: we say that two
processes are correlated or co-dependent if they are likely to be subject to a si-
multaneous failure. We propose a hybrid approach between coordinated and
non coordinated checkpointing, that prevents the overhead of keeping mes-
sage copies for communications between correlated processes, but retains the
more scalable uncoordinated recovery of message logging for processes whose
failure probability is independent. The coordination protocol we present is a
split protocol, which takes into account the fragmentation of messages, to avoid
long waiting cycles, while still implementing a transactional semantic for whole
messages.

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 53

2 Rollback Recovery Background

2.1 Execution Model

Events and States: Each computational or communication step of a process is
an event. An execution is an alternate sequence of events and process states, with
the effect of an event on the preceding state leading the process to the new state.
As the system is basically asynchronous, there is no direct time relationship
between events occurring on different processes. However, Lamport defines a
causal partial ordering between events with the happened before relationship [14].

Events can be classified into two categories. An event is deterministic when,
from the current state, all executions lead to the same outcome state. On the
contrary, if in different executions, the same event happening on a particular
state can result in several different outcome states, then it is nondeterministic.
Examples of nondeterministic events are message receptions, which depend on
external influences like network jitter.

Fig. 1. Recovery line based on rollback recovery of a failed process

Recovery Line: Rollback recovery addresses mostly fail-stop errors: a failure
is the loss of the complete state and actions of a process. A checkpoint is a copy
of a past state of a particular process stored on some persistent memory (remote
node, disk, ...), and used to restore the process in case of failure. The recovery
line is the configuration of the entire application after some processes have been
reloaded from checkpoints. If the checkpoints can happen at arbitrary dates,
some messages can cross the recovery line. Consider the example execution of
Figure [l When the process P fails, it rolls back to checkpoint C7. If no other
process rolls back, messages ms, my, ms are crossing the recovery line. A recovery
set is the union of the saved states (checkpoint, messages, events) and a recovery
line.

In-transit Messages: Messages m3 and my are crossing the recovery line from
the past, they are called in-transit messages. The in-transit messages are neces-
sary for the progression of the recovered processes, but are not available anymore,
as the corresponding send operation is in the past of the recovery line. For a re-
covery line to form a complete recovery set, every in-transit message must be
added to the recovery line.

54 A. Bouteiller et al.

Orphan Messages: Message mj is crossing the recovery line from the future
to the past; such messages are referred to as orphan messages. By following the
happened-before relationship, the current state of Py depends on the reception
of ms; by transitivity, it also depends on events es, e4, €5 that occurred on P;
since C}. Since the channels are asynchronous, the reception of mg and my,
from different senders, can occur in any order during re-execution, leading to a
recovered state of P; that can diverge from the initial execution. As a result,
the current state of Py depends on a state that P; might never reach after
recovery. Checkpoints leading to such inconsistent states are useless and must
be discarded; in the worst case, a domino effect can force all checkpoints to be
discarded.

2.2 Building a Consistent Recovery Set

Two different strategies can be used to create consistent recovery sets. The first
one is to create checkpoints at a moment in the history of the application where
no orphan messages exist, usually through coordination of checkpoints. The
second approach avoids coordination, but instead saves all in-transit messages
to be able to replay those without rollback, and keep track of nondeterministic
events, so that orphan messages can be regenerated identically. We focus our
work on this second approach, deemed more scalable.

Coordinated Checkpoint: Checkpoint coordination aims at eliminating in-
transit and orphan messages from the recovery set. Several algorithms have
been proposed to coordinate checkpoints, the most usual being the Chandy-
Lamport algorithm [6] and the blocking coordinated checkpointing, [BI7], which
silences the network. In these algorithms, waves of tokens are exchanged to form
a recovery line that eliminates orphan messages and detects in-transit messages.
Coordinated algorithms have the advantage of having almost no overhead outside
of checkpointing periods, but require that every process, even if unaffected by
failures, rolls back to its last checkpoint, as this is the only recovery line that is
guaranteed to be consistent.

Message Logging: Message Logging is a family of algorithms that attempt to
provide a consistent recovery set from checkpoints taken at independent dates. As
the recovery line is arbitrary, every message is potentially in-transit or orphan.
Event Logging is the mechanism used to correct the inconsistencies induced
by orphan messages, and nondeterministic events, while Payload Copy is the
mechanism used to keep the history of in-transit messages. While introducing
some overhead on every exchanged message, this scheme can sustain a much
more adverse failure pattern, which translates to better efficiency on systems
where failures are frequent [15].

FEvent Logging: In event logging, processes are considered Piecewise determinis-
tic: only sparse nondeterministic events occur, separating large parts of deter-
ministic computation. Event logging suppresses future nondeterministic events

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 55

by adding the outcome of nondeterministic events to the recovery set, so that
it can be forced to a deterministic outcome (identical to the initial execution)
during recovery. The network, more precisely the order of reception, is consid-
ered the unique source of nondeterminism. The relative ordering of messages
from different senders (e3, e4 in fig. []), is the only information necessary to be
logged. For a recovery set to be consistent, no unlogged nondeterministic event
can precede an orphan message.

Payload Copy: When a process is recovering, it needs to replay any reception
that happened between the last checkpoint and the failure. Consequently, it
requires the payload of in-transit messages (ms, my in figll). Several approaches
have been investigated for payload copy, the most efficient one being the sender-
based copy [I8]. During normal operation, every outgoing message is saved in
the sender’s volatile memory. The surviving processes can serve past messages
to recovering processes on demand, without rolling back. Unlike events, sender-
based data do not require stable or synchronous storage (although this data is
also part of the checkpoint). Should a process holding useful sender-based data
crash, the recovery procedure of this process replays every outgoing send and
thus rebuilds the missing messages.

3 Group-Coordinated Message Logging

3.1 Shared Memory and Message Logging

Problem Statement: In uncoordinated checkpoint schemes, the ordering be-
tween checkpoint and message events is arbitrary. As a consequence, every mes-
sage is potentially in-transit, and must be copied. Although the cost of the
sender-based mechanism involved to perform this necessary copy is not negligi-
ble, the cost of a memory copy is often one order of magnitude lower than the
cost, of the network transfer. Furthermore, the copy and the network operation
can overlap. As a result, proper optimization greatly mitigates the performance
penalty suffered by network communications (typically to less than 10%, [23]).
One can hope that future engineering advances will further reduce this overhead.

Unlike a network communication, a shared memory communication is a
strongly memory-bound operation. In the worst case, memory copy induced by
message logging doubles the volume of memory transfers. Because it competes
for the same scarce resource - memory bandwidth - the cost of this extra copy
cannot be overlapped, hence the time to send a message is irremediably doubled.

A message is in-transit (and needs to be copied) if it crosses the recovery line
from the past to the future. The emission and reception dates of messages are
beyond the control of the fault tolerant algorithm: one could delay the emission
or reception dates to match some arbitrary ordering with checkpoint events, but
these delays would obviously defeat the goal of improving communication per-
formance. The only events that the fault tolerant algorithm can alter, to enforce
an ordering between message events and checkpoint events, are checkpoint dates.
Said otherwise, the only way to suppress in-transit messages is to synchronize
checkpoints.

56 A. Bouteiller et al.

Correlated Failures: Fortunately, although many-core machines put a strain
on message logging performance, a new opportunity opens, thanks to the side ef-
fect that failures do not have an independent probability on such an environment.
All the processes hosted by a single many-core node are prone to fail simulta-
neously: they are located on the same piece of silicon, share the same memory
bus, network interface, cooling fans, power supplies, operating system, and are
subject to the same physical interferences (rays, heat, vibrations, ...). One of
the motivating properties of message logging is that it tolerates a large number
of independent failures very well. If failures are correlated, the fault tolerant
algorithm can be more synchronous without decreasing its effective efficiency.

The leading idea of our approach is to propose a partially coordinated fault
tolerant algorithm, that retains message logging between sets of processes ex-
periencing independent failure probability, but synchronize the checkpoints of
processes that have a strong probability of simultaneous failures, what we call
a correlated set. It leverages the correlated failures property to avoid message
copies that have a high chance of being useless.

3.2 Correlated Set Coordinated Message Logging

Whenever a process of a correlated set needs to take a checkpoint, it forces a
synchronization with all other processes of the set. If a failure hits a process, all
processes of that set have to roll back to their last checkpoint (see the recovery
line in example execution depicted in figure 2)). Considering a particular corre-
lated set, every message can be categorized as either ingoing (m1, ma), outgoing
(ms), or internal (mg, m4). Between sets, no coordination is enforced. A process
failing in another correlated set does not trigger a rollback, but messages between
sets have no guaranteed properties with respect to the recovery line, and can still
be orphan or in-transit. Therefore, regular message logging, including payload
copy and event logging must continue for outgoing and ingoing messages.

As checkpoints are coordinated, all orphan and in-transit messages are elim-
inated between processes of the correlated set. However, as the total recovery

S1

J

Fig. 2. An execution of the Correlated Set Coordinated Message Logging Algorithm

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 57

set does contain in-transit and orphan messages, the consistency proof of coor-
dinated checkpoint does not hold for the recovery set formed by the union of
the coordinated sets. In an uncoordinated protocol, a recovery set is consistent
if all in-transit messages are available, and no orphan message depends on the
outcome of a non-deterministic event. In the next paragraphs, we demonstrate
that payload copy can be disabled for internal messages, but that event logging
must apply to all types of messages.

Intra-set Payload Copy: By the direct application of the coordination algo-
rithm, no message is in-transit between any pair of synchronized processes at
the time of checkpoint (in the case of the Chandy/Lamport algorithm, occa-
sional in-transit messages are integrated inside the checkpoint, hence they are
not in-transit anymore). Because an internal message cannot be in-transit, it
is never sent before the recovery line and received after. Therefore, the payload
copy mechanism, used to recover past sent messages during the recovery phase,
is unnecessary for internal messages.

Intra-set Event Logging:

Theorem 1. In a fault tolerant protocol creating recovery sets with at least two
distinct correlated sets, if the nondeterministic outcome of any internal messages
preceding an outgoing message is omitted from the recovery set, there exists an
ezecution that reaches an inconsistent state.

Outgoing messages are crossing a non-coordinated portion of the recovery line,
hence the execution follows an arbitrary ordering between checkpoint events
and message events. Therefore, for any outgoing message there is an execution
in which it is orphan. Consider the case of the execution depicted in figure (21
In this execution, the message ms, between the sets S and Sy is orphan in the
recovery line produced by a rollback of the processes of 5.

Let’s suppose that Event logging of internal messages is unnecessary for build-
ing a consistent recovery set. The order between the internal receptions and any
other reception of the same process on another channel is nondeterministic. By
transitivity of the Lamport relationship, this nondeterminism is propagated to
the dependent outgoing message. Because an execution in which this outgoing
message is orphan exists, the recovery line in this execution is inconsistent. The
receptions of messages ms, m4 are an example: the nondeterministic outcome
created by the unknown ordering of messages in asynchronous channels is prop-
agated to Py through ms. The state of the correlated set So depends on future
nondeterministic events of the correlated set S, therefore the recovery set is in-
consistent. One can also remark that the same proof holds for ingoing messages
(as illustrated by m; and ma).

As a consequence of this theorem, it is necessary to log all message receptions,
even if the emitter is located in the same correlated set as the receiver. Only the
payload of this message can be spared.

58 A. Bouteiller et al.

3.3 Implementation

We have implemented the correlated set coordinated message logging algorithm
inside the Open MPI library. Open MPI [9] is one of the leading Message Passing
Interface standard implementations [19]. In Open MPI, the PML-V framework
enables researchers to express their fault tolerant policies. The Vprotocol Pes-
simist is such an implementation of a pessimistic message logging protocol [3].
In order to evaluate the performance of our new approach, we have extended
this fault tolerant component with the capabilities listed below.

Construction of the Correlated Set, Based on Hardware Proximity:
Open MPI enables the end user to select a very precise mapping of his application
on the physical resources, up to pinning a particular MPI rank to a particular
core. As a consequence, the Open MPI’s runtime instantiates a process map
detailing node hierarchies and ranks allocations. The detection of correlated sets
parses this map and extracts the groups of processes hosted on the same node.

Internal Messages Detection: In Open MPI, the couple formed by the rank
and the communicator is translated into a list of endpoints, each one representing
a channel to the destination (eth0, ib0, shared memory, ...). During the construc-
tion of the correlated set, all endpoints pertaining to a correlated process are
marked. When the fault tolerant protocol considers making a sender-based copy,
the endpoint is checked to determine if the message payload has to be copied.

Checkpoint Coordination in a Correlated Set: The general idea of a
network-silence based coordination is simple: processes send a marker in their
communication channels to notify other processes that no other message will
be sent before the end of the phase. When all output channels and input chan-
nels have been notified, the network is silenced, and the processes can start
communicating again. However, MPI communications do not exactly match the
theoretical model, which assumes message emissions or receptions are atomic
events. In practice, an MPI message is split into several distinct events. The
most important include the emission of the first fragment (also called eager frag-
ment), the matching of an incoming fragment with a receive request, and the
delivery of the last fragment. Most of those events are unordered, in particular,
a fragment can overtake another fragment, even from the same message (espe-
cially with channel bonding). Fortunately, because the MPI matching has to be
FIFO, in Open MPI, eager fragments are FIFO, an advantageous property that
our algorithm leverages. Our coordination algorithm has three phases: it silences
eager fragments so that all posted sends are matched; it completes any matched
receives; it checkpoints processes in the correlated set.

Eager silence: When a process enters the checkpoint synchronization, it sends a
token to all correlated opened endpoints. Any send targeting a correlated end-
point, if posted afterwards, is stalled upon completion of the algorithm. When

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 59

a process not yet synchronizing receives a token, it enters the synchronization
immediately. The eager silence phase is complete for a process when it has re-
ceived a token from every opened endpoint. Because no new message can inject
an eager fragment after the token, and eager fragments are FIFO, at the end of
this phase, all posted sends of processes in the correlated set have been matched.

Rendez-vous Silence: Unlike eager fragments, the remainder fragments of a mes-
sage can come in any order. Instead of a complex non-FIFO token algorithm, the
property that any fragment left in the channel belongs to an already matched
message can be leveraged to drain remaining fragments. In the rendez-vous si-
lence phase, every receive request is considered in turn. If a request has matched
an eager fragment from a process of the correlated set, the progress engine of
Open MPI is called repeatedly until it is detected that this particular request
completed. When all such requests have completed, all fragments of internal
messages to this process have been drained.

Checkpoint phase: When a process has locally silenced its internal inbound chan-
nels, it enters a local barrier. After the barrier, all channels are guaranteed to
be empty. Each process then takes a checkpoint. A second barrier denotes that
all processes finished checkpointing and that subsequent sends can be resumed.

4 Experimental Evaluation

4.1 Experimental Conditions

The Pluto platform features 48 cores, and is our main testbed for large shared
memory performance evaluations. Pluto is based on four 12-core AMD opteron
6172 processors with 128GB of memory. The operating system is Red Hat 4.1.2
with the Linux 2.6.35.7 kernel. Despite the NUMA hierarchies, in this machine,
the bandwidth is almost equal between all pairs of cores. The Dancer cluster is
an 8 node cluster, where each node has two quad-core Intel Xeon E5520 CPUs,
with 4GB of memory. The operating system is Caos NSA with the 2.6.32.6 Linux
kernel. Nodes are connected through an Infiniband 20G network.

All protocols are implemented in Open MPI devel r20284. Vanilla Open MPI
means that no fault tolerant protocol is enabled, regular message logging means
that the pessimistic algorithm is used, and coordinated message logging denotes
that cores of the same node belong to a correlated set. The evaluation includes
synthetic benchmarks, such as NetPIPE 3.7 and IMB 3.3, and application bench-
marks, such as the NAS 3.3 and HPL (with MKL BLAS10.2). The different
benchmarks of the NAS suite accept a constrained number of processes (some
expect a square number of processes, others a power of two). In all cases, we
ran the largest possible experiment, for a given benchmark and a given parallel
machine.

60 A. Bouteiller et al.

L
4
107 - | ¥ N
*

2 103 * !]

~ ¥ I
s |, Lt
a 102 | E f I | |
10! /i Synchronization Barrier Times x|

g Average Synchronization Barrier Time
Il Il Il L L L L L L L
2 6 81012 18 24 30 36 42 48

Number of cores

Fig. 3. Time to synchronize a correlated set (Pluto platform, log/log scale)

4.2 Shared Memory Performance

Coordination Cost: The cost of coordinating a growing number of cores is
presented in the figure Bl The first token exchange is a complete all-to-all, that
cannot rely on a spanning tree algorithm. Although, all other synchronizations
are simple barriers, the token exchange dominates the execution time, which
grows quadratically with the number of processes. Note, however, that this syn-
chronization happens only during a checkpoint, and that its average cost is com-
parable to sending a 10KB message. Clearly, the cost of transmitting a checkpoint
to the I/O nodes overshadows the cost of this synchronization.

Ping Pong: Figure[d presents the results of the NetPIPE benchmark on shared
memory with a logarithmic scale. Processes are pinned to two cores sharing
an L2 cache, a worst case scenario for regular message logging. The maximum
bandwidth reaches 53Gb/s, because communication cost is mostly related to
accessing the L2 cache. The sender-based algorithm decreases the bandwidth to
11Gb/s, because it copies data to a buffer that is never in the cache. When the
coordination algorithm allows for disabling the sender-based mechanism, event
logging obtains the same bandwidth as the non fault tolerant execution.

NAS Benchmarks: Figure[l presents the performance of the NAS benchmarks
on the shared memory Pluto platform. BT and SP run on 36 cores, all others run
on 32. One can see that avoiding payload copy enables the coordinated message
logging algorithm to experience at most a 7% slowdown, and often no overhead,
while the regular message logging suffers from up to 17% slowdown.

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 61

100
B
10 b
z 12
] g 12;
£ 1. g1
H 508
E 5 gg |=.-_..—Ly-éf=ﬁi‘" |
m 0.2 ! !

Il Il Il
0.1 7 2 75 6, v’%);i_ d
Vanilla ——
Regular Message Logging —+—

Correlated Message Logging —&—
L L L L L L L

7776,6‘7\-’%);,_74_76;’_6‘%\-‘:%*%%

Message Size (bytes)

Fig. 4. Ping pong performance (Dancer node, shared memory, log/log scale)

Perf. Regular Message Logging / Perf. Vanilla —»—
Perf. Coordinated Message Logging / Perf. Vanilla —=—

Fig. 5. NAS performance (Pluto platform, shared memory, 32/36 cores)

4.3 Cluster of Multicore Performance

Figure[f] presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging suffers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the

62 A. Bouteiller et al.

600
500 B
o
s
9 400 -
(T8
e
8 300 -
c
©
E
8 200 +
e Theoretical peak
100 Vanilla Open MPI —— |
Coordinated Message Logging —=—
0 Regular Message Logging ——
Il Il L L L L
4800 4900 ,q0e0 A220 1880 0080 v

Matrix size (N)

Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

reduction on the amount of logged messages enables the coordinated message
logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-
transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that aims
at constructing a consistent recovery set without coordination. The CIC algo-
rithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [I].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint traffic, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [I1], Ho, Wang and Lau propose a group-based approach that combines coor-
dinated and uncoordinated checkpointing, similar to the technique we use in this
paper, to reduce the cost of message logging in uncoordinated checkpointing. Their

Correlated Set Coordination in Fault Tolerant Message Logging Protocols 63

work, however, focuses on communication patterns of the application, to reduce
the amount of message logging. Similarly, in the context of Charm++ [I3], and
AMPI[T6], Meneses, Mendes and Kalé have proposed in [§] a team-based approach
to reduce the overhead of message logging. The Charm++ model advocates a high
level of oversubscription, with a ratio of user-level thread per core much larger than
one. In their work, teams are of fixed, predetermined sizes. The paper does not ex-
plicitly explain how teams are built, but an emphasis on communication patterns
seems preferred. In contrast, our work takes advantage of hardware properties of
the computing resources, proposing to build correlated groups based on likeliness
of failures, and relative efficiency of the communication medium.

6 Concluding Remarks

In this paper, we proposed a novel approach combining the best features of coor-
dinated and uncoordinated checkpointing. The resulting fault tolerant protocol,
belonging to the event logging protocol family, spares the payload logging for
messages belonging to a correlated set, but retains uncoordinated recovery scal-
ability. The benefit on shared memory point-to-point performance is significant,
which translates into an observable improvement of many application types.
Even though inter-node communications are not modified by this approach, the
shared memory speedup translates into a reduced overhead on cluster of mul-
ticore type platforms. Last, the memory required to hold message payload is
greatly reduced; our algorithm provides a flexible control of the tradeoff between
synchronization and memory consumption. Overall, this work greatly improves
the applicability of message logging in the context of distributed systems based
on a large number of many-core nodes.

Acknowledgement. This work was partially supported by the DOE Coopera-
tive Agreement DE-FC02-06ER25748, and the INRIA-Illinois Joint Laboratory
for Petascale Computing and the ANR RESCUE project.

References

1. Alvisi, L., Elnozahy, E., Rao, S., Husain, S.A., Mel, A.D.: An analysis of communi-
cation induced checkpointing. In: 29th Symposium on Fault-Tolerant Computing
(FTCS 1999). IEEE CS Press, Los Alamitos (1999)

2. Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Dongarra, J.J.: Dodging
the cost of unavoidable memory copies in message logging protocols. In: Keller, R.,
Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp.
189-197. Springer, Heidelberg (2010)

3. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model
for high performance. In: ISC 2008, Wiley, Dresden (June 2008) (p. to appear)

4. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons to be
pessimist or optimist for failure recovery in high performance clusters. In: IEEE
(ed.) Proceedings of the 2009 IEEE Cluster Conference (September 2009)

64

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Bouteiller et al.

Buntinas, D., Coti, C., Herault, T., Lemarinier, P., Pilard, L., Rezmerita, A., Ro-
driguez, E., Cappello, F.: Blocking vs. non-blocking coordinated checkpointing
for large-scale fault tolerant MPI protocols. Future Generation Computer Sys-
tems 24(1), 73-84 (2008),
http://wuw.sciencedirect.com/science/article/B6V06-4N2KT6H-1/2/
00e790651475028977cc3031d9ea3980

Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. Transactions on Computer Systems 3(1), 63-75 (1985)
Dongarra, J., Beckman, P., et al.: The international exascale software roadmap.
Intl. Journal of High Performance Computer Applications 25(11) (to appear)
(2011)

Esteban Meneses, C.L.M., Kalé, L.V.: Team-based message logging: Preliminary re-
sults. In: 3rd Workshop on Resiliency in High Performance Computing (Resilience)
in Clusters, Clouds, and Grids (CCGRID 2010) (May 2010)

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97-104 (September 2004)

Gao, Q., Huang, W., Koop, M.J., Panda, D.K.: Group-based coordinated check-
pointing for mpi: A case study on infiniband. In: International Conference on Par-
allel Processing, ICPP 2007 (2007)

Ho, J.C.Y., Wang, C.L., Lau, F.C.M.: Scalable Group-based Checkpoint/Restart
for Large-Scale Message-Passing Systems. In: Proceedings of the 22nd IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS), pp. 1-12.
IEEE, Los Alamitos (2008)

Hlary, J.M., Mostefaoui, A., Raynal, M.: Communication-induced determination
of consistent snapshots. IEEE Transactions on Parallel and Distributed Sys-
tems 10(9), 865-877 (1999)

Kale, L.: Charm++. In: Padua, D. (ed.) Encyclopedia of Parallel Computing,
Springer, Heidelberg (to appear) (2011)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 5568-565 (1978)

Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., Cappello, F.: Improved
message logging versus improved coordinated checkpointing for fault tolerant MPI.
In: TEEE International Conference on Cluster Computing. IEEE CS Press, Los
Alamitos (2004)

Negara, S., Pan, K.C., Zheng, G., Negara, N., Johnson, R.E., Kale, L.V., Ricker,
P.M.: Automatic MPI to AMPI Program Transformation. Tech. Rep. 10-09, Par-
allel Programming Laboratory (March 2010)

Plank, J.S.: Efficient Checkpointing on MIMD Architectures. Ph.D. thesis, Prince-
ton University (June 1993),
http://www.cs.utk.edu/~plank/plank/papers/thesis.html

Rao, S., Alvisi, L., Vin, H.M.: The cost of recovery in message logging protocols.
In: 17th Symposium on Reliable Distributed Systems (SRDS), October 1998, pp.
10-18. IEEE CS Press, Los Alamitos (1998)

The MPI Forum: MPI: a message passing interface. In: Supercomputing 1993:
Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, pp. 878-883.
ACM Press, New York (1993)

http://www.sciencedirect.com/science/article/B6V06-4N2KT6H-1/2/00e790651475028977cc3031d9ea3980
http://www.sciencedirect.com/science/article/B6V06-4N2KT6H-1/2/00e790651475028977cc3031d9ea3980
http://www.cs.utk.edu/~plank/plank/papers/thesis.html

Introduction

Martin Berzins, Daniela di Serafino, Martin Gander, and Luc Giraud

Topic chairs

The solution of Computational Science problems relies on the availability of
accurate and efficient numerical algorithms and software capable of harnessing
the processing power of modern parallel and distributed computers. Such algo-
rithms and software allow to prototype and develop new large-scale applications,
as well as to improve existing ones, by including up-to-date numerical methods,
or well-assessed ones re-designed in the light of the new architectures.

This conference topic is aimed at discussing new developments in the de-
sign and implementation of numerical algorithms for modern parallel architec-
tures, including multi-core systems, multi-GPU based computers, clusters and
the Grid. Different aspects, ranging from fundamental algorithmic concepts to
software design techniques and performance analysis, are considered.

The papers submitted to this topic came from Austria, Australia, the Czech
Republic, France, India, Italy, Japan, the Netherlands, Russia, Spain, and the
USA. Each paper received at least three reviews and, finally, we selected three
regular papers, all related to numerical linear algebra. E. Solomonik and J. Dem-
mel describe and analyze a class of 2.5D linear algebra algorithms for matrix-
matrix multiplication and LU factorization, that use extra memory to reduce
bandwidth and latency costs. X. Dong and G. Cooperman present a paral-
lel version of the ILU(k) preconditioner, that preserves stability properties.
L. Bergamaschi and A. Martinez describe a parallel implementation of an inexact
constraint preconditioner, based on sparse approximate inverse, for generalized
saddle-point linear systems. We think that these papers provide a significant
contribution to the scientific programme of Euro-Par 2011 and will contribute
to the success of the conference.

Finally, we would like to thank all the authors for their submissions, the
referees for helping us to select high-quality papers, and the Euro-Par Organizing
Committee for the coordination of all the conference topics.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, p. 65, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Bit-Compatible Parallelization for ILU(k)
Preconditioning

Xin Dong* and Gene Cooperman*

College of Computer Science, Northeastern University
Boston, MA 02115, USA
{xindong,gene}@ccs.neu.edu

Abstract. ILU(k) is a commonly used preconditioner for iterative lin-
ear solvers for sparse, non-symmetric systems. It is often preferred for
the sake of its stability. We present TPILU(k), the first efficiently par-
allelized ILU(k) preconditioner that maintains this important stability
property. Even better, TPILU(k) preconditioning produces an answer
that is bit-compatible with the sequential ILU(k) preconditioning. In
terms of performance, the TPILU(k) preconditioning is shown to run
faster whenever more cores are made available to it — while continu-
ing to be as stable as sequential ILU(k). This is in contrast to some
competing methods that may become unstable if the degree of thread
parallelism is raised too far. Where Block Jacobi ILU(k) fails in an ap-
plication, it can be replaced by TPILU(k) in order to maintain good
performance, while also achieving full stability. As a further optimiza-
tion, TPILU(k) offers an optional level-based incomplete inverse method
as a fast approximation for the original ILU(k) preconditioned matrix.
Although this enhancement is not bit-compatible with classical ILU(k),
it is bit-compatible with the output from the single-threaded version of
the same algorithm. In experiments on a 16-core computer, the enhanced
TPILU(k)-based iterative linear solver performed up to 9 times faster.
As we approach an era of many-core computing, the ability to efficiently
take advantage of many cores will become ever more important.

1 Introduction

This work introduces a parallel preconditioner, TPILU(k), with good stability
and performance across a range of sparse, non-symmetric linear systems. For a
large sparse linear system Az = b, parallel iterative solvers based on ILU(k) [1I2]
often suffer from instability or performance degradation. In particular, most of
today’s commonly used algorithms are domain decomposition preconditioners,
which become slow or unstable with greater parallelism. This happens as they
attempt to approximate a linear system by more and smaller subdomains to
provide the parallel work for an increasing number of threads. The restriction to
subdomains of ever smaller dimension must either ignore more of the off-diagonal

* This work was partially supported by the National Science Foundation under Grant
CCF 09-16133.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 66 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Bit-Compatible Parallelization for ILU (k) Preconditioning 67

matrix elements, or must raise the complexity by including off-diagonals into the
computation for an optimal decomposition. The former tends to create instability
for large numbers of threads (i.e., for small subdomains), and the latter is slow.

Consider the parallel preconditioner PILU [3/4] as an example. PILU would
experience performance degradation unless the matrix A is well-partitionable
into subdomains. This condition is violated by linear systems generating many
fill-ins (as occurs with higher initial density or higher level k) or by linear solvers
employing many threads. Another parallel preconditioner BJILU [5] (Block Ja-
cobi ILU(k)), would fail to converge as the number of threads w grows. This is
especially true for linear systems that are not diagonally dominant, in which the
solver might become invalid by ignoring significant off-diagonal entries. This kind
of performance degradation or instability is inconsistent with the widespread ac-
ceptance of parallel ILU(k) for varying k to provide efficient preconditioners.

In contrast, TPILU(k) is as stable as sequential ILU(k) and its performance
increases with the number of cores. TPILU(k) can capture both properties si-
multaneously — precisely because it is not based on domain decomposition. In
the rest of this paper, we will simply write that TPILU(k) is stable as a short-
ened version of the statement that TPILU(k) is stable for any number of threads
whenever sequential ILU(k) is stable.

TPILU(k) uses a task-oriented parallel ILU(k) preconditioner for the base
algorithm. However, it optionally first tries a different, level-based incomplete
inverse submethod (TPIILU(k)). The term level-based incomplete inverse is used
to distinguish it from previous methods such as “threshold-based” incomplete
inverses [6]. The level-based submethod either succeeds or else it fails to converge.
If it doesn’t converge fast, TPILU(k) quickly reverts to the stable, base task-
oriented parallel ILU(k) algorithm.

A central point of novelty of this work concerns bit-compatibility. The base
task-oriented parallel component of TPILU(k) is bit-compatible with classical
sequential ILU(k), and the level-based optimization produces a new algorithm
that is also bit-compatible with the single-threaded version of that same al-
gorithm. Few numerical parallel implementations can guarantee this stringent
standard. The order of operations is precisely maintained so that the low order
bits due to round-off do not change under parallelization. Further, the output
remains bit-compatible as the number of threads increases — thus eliminating
worries whether scaling a computation will bring increased round-off error.

In practice, bit-compatible algorithms are well-received in the workplace. A
new bit-compatible version of code may be substituted with little discussion. In
contrast, new versions of code that result in output with modified low-order bits
must be validated by a numerical analyst. New versions of code that claim to
produce more accurate output must be validated by a domain expert.

A prerequisite for an efficient implementation in this work was the use of
thread-private memory allocation arenas. The implementation derives from [7],
where we first noted the issue. The essence of the issue is that any implementa-
tion of POSIX-standard “malloc” libraries must be prepared for the case that a
second thread frees memory originally allocated by a first thread. This requires

68 X. Dong and G. Cooperman

a centralized data structure, which is slow in many-core architectures. Where it
is known that memory allocated by a thread will be freed by that same thread,
one can use a thread-private (per-thread) memory allocation arena. The issue
arises in the memory allocations for “fill-ins” for symbolic factorization. In LU-
factorization based algorithms, the issue is still more serious than incomplete LU,
since symbolic factorization is a relatively larger part of the overall algorithm.

The rest of this paper is organized as follows. Section [reviews LU factor-
ization and sequential ILU(k) algorithm. Section [B] presents task-oriented paral-
lel TPILU(k), including the base algorithm (Sections Bl through B2)) and the
level-based incomplete inverse submethod (Section B3). Section Hl analyzes the
experimental results. We review related work in Section

2 Review of the Sequential ILU(k) Algorithm

A brief sketch is provided. See [§] for a detailed review of ILU (k). LU factorization
decomposes a matrix A into the product of a lower triangular matrix L and an
upper triangular matrix U. From L and U, one efficiently computes A~! as
U~1L~!. While computation of L and U requires O(n?) steps, once done, the
computation of the inverse of the triangular matrices proceeds in O(n?) steps.
For sparse matrices, one contents oneself with solving x in Az = b for vectors
x and b, since A~!, L and U would all be hopelessly dense. Iterative solvers are
often used for this purpose. An ILU(k) algorithm finds sparse approximations,
L ~ L and U ~ U. The preconditioned iterative solver then implicitly solves
AU'L™!, which is close to the identity. For this purpose, triangular solve op-
erations are integrated into each iteration to obtain a solution y such that

LUy =p (1)

where p varies for each iteration. This has faster convergence and better nu-
merical stability. Here, the level limit k controls how many elements should be
computed in the process of incomplete LU factorization. A level limit of k = oo
yields full LU-factorization.

Similarly to LU factorization, ILU(k) factorization can be implemented by the
same procedure as Gaussian elimination. Moreover, it also records the elements
of a lower triangular matrix L. Because the diagonal elements of L are defined
to be 1, we do not need to store them. Therefore, a single filled matriz F is
sufficient to store both L and U.

2.1 Terminology for ILU (k)

For a huge sparse matrix, a standard dense format would be wasteful. Instead,
we just store the position and the value of non-zero elements. Similarly, incom-
plete LU factorization does not insert all elements that are generated in the
process of factorization. Instead, it employs some mechanisms to control how
many elements are stored. ILU(k) [1l2] uses the level limit k as the parameter
to implement a more flexible mechanism. We next review some definitions.

A Bit-Compatible Parallelization for ILU (k) Preconditioning 69

Definition 2.1. A fill entry, or entry for short, is an element stored in memory.
(Elements that are not stored are called zero elements.)

Definition 2.2. Fill-in: Consider Figure[Id If there exists h such that i,5 > h
and both fir, and fr; are fill entries, then the ILU(k) factorization algorithm may
fill in a non-zero value when considering rows i and j. Hence, this element f;;
is called a fill-in; i.e., an entry candidate. We say the fill-in f;; is caused by the
existence of the two entries f;n, and fr;. The entries f;n and fr; are the causative
entries of fi;. The causality will be made clearer in the next subsection.

Definition 2.3. Level: Fach entry fi;; is associated with a level, denoted as
level (i,7) and defined recursively by

.. 0, ’Lf [£%7] 75 0
level (i,j) =4 . : . .
ming <p<min (i,5) level (i, h) + level (h,j)+ 1, otherwise
The level limit k is used to control how many fill-ins should be inserted into the
filled matrix during ILU(k) factorization. Those fill-ins with a level smaller than
or equal to k are inserted into the filled matrix F'. Other fill-ins are ignored. By
limiting fill-ins to level k or less, ILU(k) maintains a sparse filled matrix.

2.2 ILU(k) Algorithm and Its Parallelization

For LU factorization, the defining equation A = LU is expanded into a;; =
Z;”{(Z’]) Linunj, since Ly, = 0 for i > j and up; = 0 for ¢ < j. When i > j,
fij = lij and we can write Q5 = 22;11 lihuhj + fiju]'j. When ¢ S j, fij = Uy

and we can write a;; = (22;11 lih'U/hj) +liifi; = (;;11 lih'U/hj) + fij. Rewriting

them yields the equations for LU factorization.

j—1 . .
Qi — Y 51 linUng) fujj, 1>
fis {(i~ 2n= b hJ) Jui (2)

aij — Yy Lintung, i<J
The equations for ILU(k) factorization are similar except that an entry f;; is
computed only if level(i,j) < k. Hence, ILU(k) factorization is separated into
two passes: symbolic factorization and numeric factorization. Symbolic factor-
ization computes the levels of all entries less than or equal to k. Numeric factor-
ization computes the numerical values in the filled matrix of all fill entries with
level less than or equal to k. While the remaining description considers numeric
factorization, the algorithm applies equally to symbolic factorization.

The ILU(k) algorithm reorganizes the above Equations (2] for efficient use
of memory. The filled matrix F' is initialized to A. As the algorithm proceeds,
additional terms of the form —I;puyp; are added to f;;. Figure [[al illustrates f;;
accumulating an incremental value based on the previously computed values of
fih (i.e., lzh) and fhj (i.e., Uhj).

The algorithmic flow of control is to factor the rows in order from first to last.
In the factorization of row ¢, h varies from 1 to ¢ in an outer loop, while j varies

70 X. Dong and G. Cooperman

Column g h j : Column 0 3 6 9
Band 0
Row g
Rowh ™~ Inj Band 1 NS
Row i - 7 - VN :
i v Band 2 >
Band 3 >
Fill-in fj with its causative entries fz; and fin Four bands of 3 rows. After band 0 is reduced,
In the incomplete case, J; ij is a candidate entry. first block of 3 further bands is reduced in parallel.
(a) Causative Relationship (b) View of Matrix as Bands

Fig. 1. Parallel Incomplete LU Factorization

from h to n in an inner loop. In the example of Figure[lal, f5; has clearly already
been fully completed. Before the inner loop, f;; is divided by wupp following the
case ¢ > j of Equations (2]) since ¢ > h. This is valid because f;;, depends on
terms of the form l;5ugp only for the case g < h, and those terms have already
been accumulated into f;;, by previous inner loops. Inside the inner loop, we just
subtract l;up; from f;; as indicated by Equations (2I).

The algorithm has some of the same spirit as Gaussian elimination if one
thinks of ILU(k) as using the earlier row h to reduce the later row i. This is the
crucial insight in the parallel ILU(k) algorithm of this paper. One splits the rows
of F' into bands, and reduces the rows of a later band by the rows of an earlier
band. Distinct threads can reduce distinct bands simultaneously, as illustrated
in Figure [IHl

3 TPILU(k): Task-Oriented Parallel ILU(k) Algorithm

3.1 Parallel Tasks and Static Load Balancing

To describe a general parallel model valid for Gaussian elimination as well as
ILU(k) and ILUT, we introduce the definition frontier: the maximum number
of rows that are currently factored completely. The frontier 7 is the limit up to
which the remaining rows can be partially factored except for the (i + 1) row.
The (i +1)*" row can be factored completely. That changes the frontier to i + 1.

Threads synchronize on the frontier. To balance and overlap computation and
synchronization, the matrix is organized as bands to make the granularity of the
computation adjustable, as demonstrated in Figure [l A task is associated to
a band and is defined as the computation to partially factor the band to the
current frontier.

A Bit-Compatible Parallelization for ILU (k) Preconditioning 71

For each band, the program must remember up to what column this band has
been partially factored. We call this column the current position, which is the
start point of factorization for the next task attached to this band. In addition,
it is important to use a variable to remember the first band that has not been
factored completely. After the first unfinished band is completely factored, the
frontier global value is increased by the number of rows in the band.

The smaller the band size, the larger the number of synchronization points.
However, TPILU(k) prefers a smaller band size, that leads to more parallel
tasks. Moreover, the lower bound of the factorization time is the time to factor
the last band, which should not be very large. Luckily, shared memory allows
for a smaller band size because the synchronization here is to read/write the
frontier, which has a small cost.

While the strategy of bands is well known to be efficient for dense matrices
(e.g., see []), researchers hesitate to use this strategy for sparse matrices be-
cause they may find only a small number of relatively dense bands, while all
other bands are close to trivial. The TPILU(k) algorithm works well on sparse
matrices because successive factoring of bands produces many somewhat dense
bands (with more fill-ins) near the end of the matrix. TPILU(k) uses static load
balancing whereby each worker is assigned a fixed group of bands chosen round
robin so that each thread will also be responsible for some of the denser bands.

3.2 Optimized Symbolic Factorization

Static Load Balancing and TPMalloc. Simultaneous memory allocation
for fill-ins is a performance bottleneck for shared-memory parallel computing.
TPILU(k) takes advantage of a thread-private malloc library to solve this issue
as discussed in [7]. TPMalloc is a non-standard extension to a standard allocator
implementation, which associates a thread-private memory allocation arena to
each thread. A thread-local global variable is also provided, so that the modified
behavior can be turned on or off on a per-thread basis. By default, threads
use thread-private memory allocation arenas. The static load balancing strategy
guarantees that if a thread allocates memory, then the same thread will free it,
which is consistent with the use of a thread-private allocation arena.

Optimization for the Case £k = 1. When k = 1, it is possible to symbolically
factor the bands and the rows within each band in any desired order. This is
because if either f;; or f; is an entry of level 1, the resulting fill-in f;; must be
an element of level 2 or level 3. So f;; is not inserted into the filled matrix F. As
a first observation, the symbolic factorization now becomes pleasingly parallel
since the processing of each band is independent of that of any other.

Second, since the order can be arbitrary, even the purely sequential process-
ing within one band by a single thread can be made more efficient. Processing
rows in reverse order from last to first is the most efficient, while the more nat-
ural first-to-last order is the least efficient. First-to-last is inefficient, because we
add level 1 fill-ins to the sparse representation of earlier rows, and we must then

72 X. Dong and G. Cooperman

skip over those earlier level 1 fill-ins in determining level 1 fill-ins of later rows.
Processing from last to first avoids this inefficiency.

3.3 Optional Level-Based Incomplete Inverse Method

The goal of this section is to describe the level-based incomplete inverse method

for solving Lz = p by matrix-vector multiplication: z = E—lp. This avoids the
sequential bottleneck o of using f forward substitution on Lz = p. We produce

incomplete inverses L1 and | U-1 so that the triangular solve stage of the linear
solver (i.e., solving for y in LUy =pas described in Equation () of Section[2) can

be trivially parallelized (y = U-1L-1 p) while also enforcing bit compatibility.
Although details are omitted here, the same ideas are then used in a second
stage: using the solution z to solve for y in Uy = . _
Below, denote the matrix (—f8;;)t<; to be the lower triangular matrix L1
Recall that 3;; = 1, just as for L. First, we have Equation (Bal), i.e., z = zflp.
Second, we have Equation (BH), i.e., the equation for solving Lz = p by forward
substitution. Obviously, Equation ([Ba) and Equation (BL) define the same z.

T = Z(—ﬁit)pt + pi (3a) T =pi— Z Jin®n (3b)

t<i h<i
Substituting Equation (Bal) into Equation (3H), one has Equation (@).

Ti =DPi— Zfih <Z(5ht)Pt +ph> = Z < (fit - Z fihﬂht) > Dt + pi

h<i t<h t<u t<h<i
(4)

Combining the right hand sides of equations ([Ba) and (@) yields Equation (&),
the defining equation for G;;.

Bi=fie— Y FinBu (5)

t<h<i

Equation (F) is the basis for computing L= (a.k.a. (— Bit)i<i). Recall that f;
was initialized to the matrix A. In algorithm steps (Ga) and (EED below, row i
is factored using ILU(k) factorization, which computes L and U as part of a
single matrix. These steps are reminiscent of Gaussian elimination using pivoting

element fy,,. Steps (6al) and (Gh) are used in steps (6d) and (6d)) to compute L~1.

fin = finfir (6a) Vi > h,fij — fij — finfnj (6b)
YVt < h, fit < fit — finfnt (6¢) Vit <, fit < —fat (6d)

The matrix L' is in danger of becoming dense. To maintain the sparsity,

we compute the level-based incomplete inverse matrix L1 following the same

non-zero pattern as L~L. The computation for L1 can be combined with the
original numeric factorization phase. A further factorization phase is added to

A Bit-Compatible Parallelization for ILU (k) Preconditioning 73

compute U-1 by computing matrix entries in reverse order from last row to first
and from right to left within a given row.

Given the above algorithm for L1 and a similar algorithm for (7—1, the tri-
angular solve stage is reduced to matrix-vector multiplication, which can be
trivially parallelized. Inner product operations are not parallelized for two rea-
sons: first, even when sequential, they are fast; second, parallelization of inner
products would violate bit-compatibility by changing the order of operations.

4 Experimental Results

We evaluate the performance of the bit-compatible parallel ILU(k) algorithm,
TPILU(k), by comparing with two commonly used parallel preconditioners,
PILU [3] and BJILU [5] (Block Jacobi ILU(k)). Both PILU and BJILU are based
on domain decomposition. Under the framework of Euclid [10, Section 6.12], both
preconditioners appear in Hypre [I0], a popular linear solver package under de-
velopment at Lawrence Livermore National Laboratory since 2001.

The primary test platform is a computer with four Intel Xeon E5520 quad-
core CPUs (16 cores total). Figure Bl demonstrates the scalability of TPILU(k)
both on this primary platform and a cluster including two nodes connected by
Infiniband. Each node has a single Quad-Core AMD Opteron 2378 CPU. The
operating system is CentOS 5.3 (Linux 2.6.18) and the compiler is gcc-4.1.2 with
the “-02” option. The MPI library is OpenMPI 1.4. Within Hypre, the same
choice of iterative solver is used to test both Euclid (PILU and BJILU) and
TPILU(k). The chosen iterative solver is preconditioned stabilized bi-conjugate
gradients with the default tolerance rtol = 10~%. Note that the Euclid frame-
work employs multiple MPI processes communicating via MPI’s shared-memory
architecture, instead of directly implementing a single multi-threaded process.

Driven Cavity Problem. This set of test cases [II] consists of some diffi-
cult problems from the modeling of the incompressible Navier-Stokes equations.
These test cases are considered here for the sake of comparability. They had pre-
viously been chosen to demonstrate the features of PILU by [4]. Here, we test
on three representatives: 2073000, e3073000 and e4073000. Figure 2 shows that
both Euclid PILU and Euclid BJILU are influenced by the number of processes
and the level £ when solving driven cavity problems. With more processes or
larger k, both the PILU and BJILU preconditioners tend to slow down, break
down or diverge.

Euclid registers its best solution time for e20r3000 by using PILU(2) with
1 process, for e30r3000 by using BJILU with 2 processes, and for e40r3000 by
using PILU(1) with 2 processes. The reason that Euclid PILU obtains only a
small speedup for these problems is that PILU requires the matrix to be well-
partitionable, which is violated when using a larger level k£ or when employing
more processes. Similarly, Euclid BJILU must approximate the original matrix
by a number of subdomains equal to the number of processes. Therefore, higher
parallelism forces BJILU to ignore even more off-diagonal matrix entries with

74 X. Dong and G. Cooperman

L Matrix dimension: 4,241 4 L p———— X | L N
20" Number of non-zeros: 131,556 20 - - PILU(4) 20
10F _.X="PILU&)] 10f / 4 1oF E
- ~
L / R L //"'—"'—X—"'—"X B L B
26 / ~AILue| 26 B PILUG) | 26
o . X Py </ o
E st / - 1 Esp /! 1 Esf b
) - - & - =)
g r g ! g 7
g4t j 189 7 PILUQ) 4 £4r 7! BILU
3 ! 3 : 3 reedoomTX
23 l: PILUQ)- # 3F : EEC N i
- PILU(1)
14 B i X
2k /‘/\ o ok ”_— PILU(1) | 2k -
_ - -=X%""PILU() IR ITEtt RE T 3
i TR e 3 -[L-X , 1~ Matrix dimension: 9,661 BJILU 1~ Matrix dimension: 17,281 ,
JILU Number of non—zeros: 306,356 Number of non—zeros: 553,956
0 Il Il Il Il Il Il Il Il Il Il Il Il
2 3 4 1 2 3 4 1 2 3
Number of Cores (Processes) Number of Cores (Processes) Number of Cores (Processes)

(a) Euclid for 2073000 (b) Euclid for 303000 (c) Euclid for e40r3000

Fig. 2. Euclid PILU and BJILU for Driven Cavity Problem using a Single AMD
Opteron (4 Cores). “X” means fail, and the time is arbitrarily shown to be an in-
terpolated value or the same as for the preceding number of threads. Note that in
Figure 2la), PILU(k) actually breaks down for 3 threads, while then succeeding for
4 threads.

TPILU(4 TPILU(3 TPILU(3
()—.—TutulA Cores on 2 nodes. ()—.—'Toml. Cores on 2 nodes. ()—.—TutulA Cores on 2 nodes.

1.0 =++®-=:Symbolic. Cores on 2 nodes.o 2.0 ==-®-=:Symbolic. Cores on 2 nodes.— 4.0 =++®-=:Symbolic. Cores on 2 nodes.o

=@ =Numeric. Cores on 2 nodes. ='® =Numeric. Cores on 2 nodes. =@ =Numeric. Cores on 2 nodes.
0.9 —e—Total. Cores on 1 node. - 1.8 —S—Total. Cores on I node. B 3.6 —e—Total. Cores on 1 node. -
***©=*:Symbolic. Cores on 1 node. *+*©=*:Symbolic. Cores on 1 node. ***©=*:Symbolic. Cores on 1 node.

0.8 = '@ =Numeric. Cores on 1 node. - 1.6 =@ =Numeric. Cores on 1 node. 321 ='@*=Numeric. Cores on 1 node. -
07k i
£
0.6
g
0.5
=2
504/

0.3

0.2{&,

~.
0.1+ iy
L]
oL 1
1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6
Number of Cores Number of Cores Number of Cores
(a) Matrix 2073000 (b) Matrix €3073000 (¢) Matrix e40r3000

Fig. 3. TPILU(k) for the Driven Cavity Problem Using 2 AMD Opteron (2 x 4 Cores).
The experimental runs for 1,2,3,4 threads are all for a 4-core shared memory CPU.
The experimental runs for 2,4,6 threads are all for two nodes with 4-cores per node,
while an additional thread per node is reserved for communication between nodes in
order to replicate bands.

more blocks of smaller block dimension, and eventually the BJILU computation
just breaks down.

In contrast, TPILU(k) is bit-compatible. Greater parallelization only acceler-
ates the computation, while also never introducing instabilities or other negative
side effects. Figure [Bal illustrates that for the 2073000 case, TPILU with level
k = 4 and 4 threads leads to a better performance (0.55 s) than Euclid’s 0.78 s
(Figure 2a)). For the e30r3000 case, TPILU(k) finishes in 1.16 s (Figure B), as
compared to 1.47 s for BJILU and 1.64 s for PILU (Figure 2H). For the 4073000
case, TPILU(k) with k£ = 3 finishes in 2.14 s (Figure Bd), as compared to 3.15 s

A Bit-Compatible Parallelization for ILU (k) Preconditioning 75

for PILU and 3.52 s for BJILU (Figure[2d). Figure[3d demonstrates the potential
of TPILU(k) for further performance improvements when a hybrid architecture
is used to provide additional cores: the hybrid architecture with 6 CPU cores
over two nodes connected by Infiniband is even better (2.14 s) than the shared-
memory model with a single quad-core CPU (2.20 s).

3D 27-point Central Differencing. As pointed out in [4], ILU(k) precondi-
tioning is amenable to performance analysis since the non-zero patterns of the
resulting ILU(k) preconditioned matrices are identical for any partial differen-
tial equation (PDE) that has been discretized on a grid with a given stencil.
However, a parallelization based on domain decomposition may eradicate this
feature since it generally relies on re-ordering to maximize the independence
among subdomains. The re-ordering is required for domain decomposition since
it would otherwise face a higher cost dominated by the resulting denser matrix.
As Figure [4a] shows, Euclid PILU degrades with more processes when solving a
linear system generated by 3D 27-point central differencing for Poisson’s equa-
tion. The performance degradation also increases rapidly as the level k grows.

107PILU for a system from 3D 27—print i 401 TPIILU(0) for systems from 3D i
central diferencing on a gri —point central differencing on
] dif i 40X40X40 grid 27-poi I diff i
oL ¥+ Preconditioning. Level 1. . | 361 various grids [=—9(X90X90 i
~®--Total. Level 1. *x N ====80X80X80
sk —>*=Preconditioning. Level 0 S .\ [70X70X70 i
—*—Total. Level 0. - ~60X60X60
29t] Zogl =+=50X50X50 | |
2 2 = "40X40X40
£ 6 — & 24 Lines with arrow indicate —
B = PILU optimals respectively
g 5+ - -
E
3 4 1 .
3L i ,
1L i///x | i
0 | I I I
1 2 3 4 1 2 3 4
Number of Cores (Processes) Number of Cores

(a) Euclid PILU (b) Comparison of Euclid PILU and TPIILU

Fig. 4. Solving Linear System from 3D 27-point Central Differencing on Grid using
a Single AMD Quad-Core Opteron. Focusing on the algorithm only, the comparison
ignores reusing the domain decomposition over multiple linear system solutions.

This performance degradation is not an accident. The domain-decomposition
computation dominates when the number of non-zeros per row is larger (about 27
in this case). Therefore, the sequential algorithm with the level k£ = 0 wins over
the parallelized PILU in the contest for the best solution time. This observation
holds true for all grid sizes tested: from 50 x 50 x 50 to 90 x 90 x 90. In contrast,
for all of these test cases, TPIILU (the level-based incomplete inverse submethod
of TPILU(k)) leads to improved performance using 4 cores, as seen in Figure 4Ll

Model for DNA Electrophoresis: cagel5. The cage model of DNA elec-
trophoresis [12] describes the drift, induced by a constant electric field, of ho-
mogeneously charged polymers through a gel. We test on the largest case in this

76 X. Dong and G. Cooperman

problem set: cagel5. For cagel5, TPIILU(0) obtains a speedup of 2.93 using
8 threads (Figure [Bal). The ratio of the number of FLoating point arithmetic
OPerations (FLOPs) to the number of non-zero entries is less than 5. This im-
plies that ILU(k) preconditioning just passes through matrices with few FLOPs.
In other words, the computation is too “easy” to be further sped up.

TPILU(0) for cagel5 TPIILU(1) for ns3Da 1.0 TPILU(3) for e40r3000 |
Matrix dimension: 5,154,859 Speedup: 8.93 with 16 cores —"—E!iﬁ'fgllsﬁﬁlﬁé‘r’ﬁ'éﬂé%‘;l or
Number of non—zeros: 99,199,551 90 |- b 0.9+ N P b
—— - - Symbolic factorizatjon
32 || Preconditioning floating point i 801 i 08k —e—using the thread—private i
arithmetic operations: 476,940,712 : malloc library
Numeric factorization.
228 ~ A 370 - A @7’ o] nltllle e#denl olnsLynllbolic A
o o o actorization
= - E60 |- g E0.61-%
= S =
820 B 850 - B 805
216 |- 4 240 | 4 2041
w 1] wv
12+ B 30 - B 0.3+
8 — 20 - — 0.2+
4 B 10 - B 0.1+
0L L L L L 0l L L L L oLy I L L L L L L
1 2 4 6 8 1 2 4 8 16 1 3 4 S 6 8
Number of Cores Number of Cores Number of Cores

(a) TPIILU(0) for cagel5 (b) TPIILU(1) for ns3Da (c¢) TPMalloc Performance

Fig. 5. TPIILU(k)/TPILU(k) using 4 Intel Xeon E5520 (4 x 4 Cores)

Computational Fluid Dynamics Problem: ns3Da. The problem ns3Da [12]
is used as a test case in FEMLAB, developed by Comsol, Inc. Because there are
zero diagonal elements in the matrix, we use TPIILU with level £ = 1 as the
preconditioner. Figure Bhl shows a speedup of 8.93 with 16 threads since the
preconditioning is floating-point intensive.

TPMalloc Performance. For a large level k, the symbolic factorization time
will dominate. To squeeze greater performance from this first phase, glibc’s stan-
dard malloc is replaced with a thread-private malloc (TPMalloc). Figure [Bd
demonstrates that the improvement provided by TPMalloc is significant when-
ever the number of cores is greater than 2.

4.1 Experimental Analysis

Given a denser matrix, or a higher level k£ or more CPU cores, the time for
domain-decomposition based parallel preconditioning using Euclid’s PILU(k)
can dominate over the time for the iterative solving phase. This degrades the
overall performance, as seen both in Figure dal and in Figures[2{(a,b,c). A second
domain-decomposition based parallel preconditioner, Euclid’s BJILU, generally
produces a preconditioned matrix of lower quality than ILU(k) in Figure[2{a,b,c).
This happens because it ignores off-diagonal non-zero elements. Therefore, where
Euclid PILU(k) degrades the performance, it is not reasonable to resort to Euclid
BJILU. Figures[2al and 2d show that the lower quality of BJILU-based solvers of-
ten performed worse than PILU (k). Figure Blshows TPILU(k) to perform better
than either while maintaining the good scalability expected of a bit-compatible
algorithm. TPILU(k) is also robust enough to perform reasonably even in a

A Bit-Compatible Parallelization for ILU (k) Preconditioning 7

configuration with two quad-core nodes. Additionally, Figures [4bl and [5] demon-
strate very good scalability on a variety of applications when using the optional
level-based incomplete inverse optimization.

5 Related Work

ILU(k) [I] was formalized to solve the system of linear equations arising from
finite difference discretizations in 1978. In 1981, ILU(k) was extended to ap-
ply to more general problems [2]. Some previous parallel ILU(k) precondition-
ers include [3[13[14]. The latter two methods, whose parallelism comes from
level/backward scheduling, are stable and were studied in the 1980’s and achieved
a speedup of about 4 or 5 on an Alliant FX-8 [0 1st edition, page 351] and a
speedup of 2 or 3 on a Cray Y-MP. The more recent work [3] is directly compared
with in the current work, and is not stable.

References

1. Gustafsson, I.: A Class of First Order Factorization Methods. BIT Numerical Math-
ematics, Springer Netherlands 18(2), 142-156 (1978)

2. Watts III, J.W.: A Conjugate Gradient-Truncated Direct Method for the Itera-
tive Solution of the Reservoir Simulation Pressure Equation. SPE Journal 21(3),
345-353 (1981)

3. Hysom, D., Pothen, A.: A Scalable Parallel Algorithm for Incomplete Factor Pre-
conditioning. STAM J. Sci. Comput 22, 2194-2215 (2000)

4. Hysom, D., Pothen, A.: Efficient Parallel Computation of ILU(k) Preconditioners.
In: Supercomputing 1999 (1999)

5. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM,
Philadelphia (2003)

6. Bollhofer, M., Saad, Y.: On the Relations between ILUs and Factored Approximate
Inverses. SIAM J. Matrix Anal. Appl. 24(1), 219-237 (2002)

7. Dong, X., Cooperman, G., Apostolakis, J.: Multithreaded Geant4: Semi-Automatic
Transformation into Scalable Thread-Parallel Software. In: Euro-Par 2010 (2010)

8. Saad, Y., van der Vorst, H.A.: Iterative Solution of Linear Systems in the 20th
Century. J. Comput. Appl. Math. 123(1-2), 1-33 (2000)

9. Cooperman, G.: Practical Task-Oriented Parallelism for Gaussian Elimination in
Distributed Memory. Linear Algebra and Its Applications 275-276, 107-120 (1998)

10. hypre: High Performance Preconditioners. User’s Manual, version 2.6.0b,
https://computation.llnl.gov/casc/hypre/download/
hypre-2.6.0b usr manual.pdf

11. Matrix Market.: Driven Cavity from the SPARSKIT Collection,
http://math.nist.gov/MatrixMarket/data/SPARSKIT/drivcav/drivcav.html

12. UF Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/

13. Anderson, E.: Parallel Implementation of Preconditioned Conjugate Gradient
Methods for Solving Sparse Systems of Linear Equations. Master’s Thesis, Center
for Supercomputing Research and Development, University of Illinois (1988)

14. Heroux, M.A., Vu, P.; Yang, C.: A Parallel Preconditioned Conjugate Gradient
Package for Solving Sparse Linear Systems on a Cray Y-MP. Appl. Num. Math. 8
93-115 (1991)

https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_usr_manual.pdf
https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_usr_manual.pdf
http://math.nist.gov/MatrixMarket/data/SPARSKIT/drivcav/drivcav.html
http://www.cise.ufl.edu/research/sparse/matrices/

Parallel Inexact Constraint Preconditioners for
Saddle Point Problems

Luca Bergamaschi and Angeles Martinez

Department of Mathematical Methods and Models for Scientific Applications
University of Padua, via Trieste 63, 35121 Padova, Italy
berga@dmsa.unipd.it, acalomar@dmsa.unipd.it

Abstract. In this paper we propose a parallel implementation of the
FSAI preconditioner to accelerate the PCG method in the solution of
symmetric positive definite linear systems of very large size. This pre-
conditioner is used as building block for the construction of an indefinite
Inexact Constraint Preconditioner (ICP) for saddle point-type linear sys-
tems arising from Finite Element (FE) discretization of 3D coupled con-
solidation problems. The FSAI-ICP preconditioner, based on an efficient
approximation of the inverse of the (1,1) block proves very effective in
the acceleration of the BICGSTAB iterative solver in parallel environ-
ments. Numerical results on a number of realistic test cases of size up to
6% 10® unknowns and 3 x 10® nonzeros show the almost perfect scalability
of the overall code up to 512 processors.

Keywords: Parallel computing Preconditioning Krylov subspace meth-
ods coupled consolidation.

1 Introduction

The time-dependent displacements and fluid pore pressure in porous media are
controlled by the consolidation theory. This was first mathematically described
by Biot [§], who coupled the elastic equilibrium equations with a continuity or
mass balance equation to be solved under appropriate boundary and initial flow
and loading conditions.

The coupled consolidation equations are typically solved numerically using
FE in space, thus giving rise to a system of first-order differential equations
whose solution is addressed by an appropriate time marching scheme. A major
computational issue is the repeated solution in time of the resulting discretized
indefinite equations, which can be generally written as

B —C e

T
Ax = b, where A[K B }
The sub-matrices K and C' are both symmetric and positive definite (SPD).
Denoting with m the number of FE nodes, C € R™*™ B € R™*" and K €
R™ "™ where n is equal to 2m or 3m according to the spatial dimension of the

problem.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 78 2011.
© Springer-Verlag Berlin Heidelberg 2011

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 79

Matrix A in () is a classical example of saddle point problem, which is encoun-
tered in other fields as well including constrained optimization, least squares, and
Navier-Stokes equations. Because of the large size of realistic three-dimensional
(3D) consolidation models (and particularly so in problems related to fluid with-
drawal/injection from/into geological formations) the use of iterative solvers is
strongly recommended against direct factorization methods. However, well es-
tablished iterative methods such as Krylov subspace methods are very slow or
even fail to converge if not conveniently preconditioned. The constraint precon-
ditioners for Krylov solvers in the solution of saddle point problems have been
studied by a number of authors [II4BITIIT4]. In this work we propose a fully
explicit parallel ICP based on the FSAI preconditioner [16] of the matrices K
and S where S is an approximate Schur complement of a block matrix M re-
sembling A. The FSAI preconditioner is based on prefiltration and postfiltration
techniques and allows to choose nonzeros in the preconditioner factors in the
same position as those of Adx , where Ais an sparse approximation of A ob-
tained by eliminating the small entries below a given threshold and dx = 1,2, 4.

We have developed parallel codes which implement both the FSAI-PCG solver
for solution of K& = b and the BiCGSTAB solver preconditioned with the
parallel FSAI-ICP preconditioner described above. We show numerical results
obtained in the solution of a number of problems of large size arising from 3D
FE discretization of realistic engineering problems.

The paper is organized as follows. Section 2 gives a brief description of the
consolidation equations. In Section 3 we describe the Inexact Constraint Pre-
conditioner and recall the main spectral properties of the block preconditioned
matrices. Section 4 describes the parallel preconditioner used in this work and
explains in detail how it is implemented and applied during the BiICGSTAB it-
eration. Section 5 contains the numerical results obtained with PCG accelerated
with FSAI preconditioner on seven test cases arising from realistic engineering
applications as well as the results of the FSAI-ICP code on a difficult problem
arising from a Coupled Consolidation model. We include also a scalability study
of the parallel solution of system (II). Finally, some conclusions are stated in
Section 6.

2 Finite Element Coupled Consolidation Equations

The system of partial differential equations governing the 3D coupled consolida-
tion process in fully saturated porous media is derived from the classical Biot’s
formulation [§] and successive modifications as:

Oe s Op .
()\—&—M)az,—&-uVui—aai i=x, Yy, 2 (2)
1 Op Oe
LV = 05+ enla - 6) 4ol ®)

where ¢, and § are the volumetric compressibility of solid grains and water, re-
spectively, ¢ is the porosity, £ the medium hydraulic conductivity, € the medium

80 L. Bergamaschi and A. Martinez

volumetric dilatation, « the Biot coefficient, A and p are the Lamé constant and
the shear modulus of the porous medium, respectively, v is the specific weight
of water, t is time, and p and wu; are the incremental pore pressure and the
components of incremental displacement along the i—direction, respectively.

Use of standard linear Galerkin FE in space yields a system of first order
differential equations which can be integrated by the Crank-Nicolson scheme.
The resulting linear system has to be repeatedly solved to obtain the transient
displacements and pore pressures. The nonsymmetric matrix controlling the so-
lution scheme reads:

k)2 -Q/2
A= | QT P (4)
A B2

where K, H, P and @ are the elastic stiffness, flow stiffness, flow capacity and
flow-stress coupling matrices, respectively. Matrix A can be readily symmetrized
by multiplying the upper set of equations by 2 and the lower set by —At, thus
obtaining the sparse 2 x 2 block symmetric indefinite matrix (Il where B = —QT
and C = AtH/2+ P.

3 Inexact Constraint Preconditioners

To solve system ([]) we look for a preconditioner M1 where

(57

B -C

with G; an SPD approximation of the 1 x 1 block K. Its inverse, G;17 which
can be viewed as a preconditioner for K, is assumed to be explicitly known. To
fulfill such a requirement we compute G ' using FSAT [I5/16] which is readily
available in the factorized form K~ ~ G' = W{W;. The Inexact Constraint
Preconditioner (ICP) is written as Mz~ ! where:

[, —a{*BT) Gyt 0 I, 0
M; {o Inm 0 —G3'| | -BG I, (5)

I; begin i x i identity matrix and G;l an approximation of the inverse of the
Schur complement matrix S relative to M: S = BG;'BT + C.

A further approximation can be used by simply neglecting the right matrix
in the above expression thus obtaining a Triangular ICP preconditioner:

(6)

o[58

0 In 0 —Gg'

Following the approach in [3], we construct an approximate Schur complement
S = BG;IBT + C, with the aim of reducing its fill-in. G;l is computed as a
further (sparser) FSAI approximation for the inverse of the structural block. A
third FSAT preconditioner is used to approximate the inverse of §, G;l ~ S,

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 81

3.1 Eigenvalue Distribution of the Preconditioned Matrices

Let G; and Gg be SPD approximations of K and S = C + BG;IBT, respec-
tively. Gfl and G;l can also be viewed as preconditioners for the corresponding
matrices, so that we can define the following SPD preconditioned matrices:

Kp=G;"?KG;'"?* and Sp=Gg'?9G5"?
Let us assume that

0< A = Amin(KP) <1l< Amax(KP) = ﬂK?
0< ag =)\min(SP) <1<)\max(SP) = BS- (7)

The conditions 1 € [ak, Ok] and 1 € [ag, Bs] are very often fulfilled in practice
since preconditioners G; and Gg are expected to cluster eigenvalues around unit.
The following two theorems give bounds on the eigenvalues of the precon-
ditioned matrix using ICP and TICP. They show that the eigenvalues of the
preconditioned matrix are clustered around one if those of the preconditioned K
and the preconditioned Schur complement are so. An exhaustive spectral analysis
can be found in [2]. We denote a generally complex eigenvalue X\ as Ag + iAs.

Theorem 1

If B < 2 then the real eigenvalues of the ICP preconditioned matriz satisfy:

min {QK, o } <\ < max{(2 — ax)Bs, Br).
K

If A\ # 0 then

arx +as(2 — POk)
2

Bx + Bs(2 — ax)

<Ar < 9

1] < v/Bs max{l — ax, Bx — 1}.
Proof. See proof of Theorem 3 in [2].
Theorem 2
The eigenvalues of ./\/l}lA satisfy the following bounds. If Ay # 0 then
1
IA—1] < V1-ag, and Q;SARSmin{ +2ﬁ572}_

The real eigenvalues satisfy:

. as
<Ag < .
mm{aK75K+Oés}_ r < Bs+ Bk

Proof. See proof of Theorem 5 in [2].

82 L. Bergamaschi and A. Martinez

4 FSAI-Based ICP

The FSAI preconditioner, initially proposed in [I5] and [I6], has been later de-
veloped and implemented in parallel by Bergamaschi et al. in [6]. Here, we only
shortly recall the main features of this preconditioner. Given and SPD matrix
K the FSAI preconditioner approximately factorize its inverse as a product of
two sparse triangular matrices as

Kl'rG'=wTw.

The choice of nonzeros in W' are based on a sparsity pattern which in our work
may be the same as K* where K is the result of prefiltration [7] of K i.e. dropping
of all elements below of a threshold parameter . In the present paper we allow
the power k to be equal to 1,2 or 4. The entries of W are computed by minimizing
the Frobenius norm of I — WL where L is the exact Cholesky factor of K. The
computed W is then sparsified by dropping all the elements which are below
a second tolerance parameter (¢). The final FSAI preconditioner is therefore
related to the following three parameters: d, prefiltration threshold; dx = 1,2,4,
power of K generating the sparsity pattern; e, postfiltration threshold.
Recalling equation (fl), the full ICP can be written as:

Mot [T —WEWBT) [WW 0 I, 0
1 0 I 0 —WIWs||-BWIW, I,
(WP —wIw,BTWT 8 0 @®
“ 1o w¥ WsBWEIW, —Ws

where G| b= WI'W, and Wy is the FSAI factor of the approximate Schur com-

plement matrix S , Sl = Wg Ws. The Schur complement matrix S is evaluated

as S = BWSW,oBT + C = Sy + C, W being the triangular factor of a sparser

FSAI approximation of K !, obtained from W; by a further postfiltration.
Analogously the Triangular ICP can be written as

_[wr —WlTVVlBTWST} [Wl 0 } ©

-1
Me =1 W 0 —Ws

The application of M™! requires the explicit computation of the Schur com-
plement matrix S whose construction may be time and memory consuming,
However, it should be noted that the evaluation of Sy = BWJ WyBT, which
involves the main computational burden in building S, is independent of the
time step At, and therefore can be done just once at the beginning of the simu-
lation. The construction of the preconditioner is therefore based on the following
parameters:

1. 01, di and &1, for the 1st FSAI preconditioner (Wh).

2. &4, postfiltration threshold for W,

3. dg, dg and eg, for the FSAI preconditioner applied to the Schur complement
matrix (Wg).

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 83

4.1 Parallel Implementation

Our code is written in FORTRAN 90 and exploits the MPI library for exchanging
data among the processors. We used a block row distribution of all matrices, that
is, with complete rows assigned to different processors. All these matrices are
stored in static data structures in CSR format.

Any row i of matrix W of FSAI preconditioner is computed independently
of each other, by solving a small SPD dense linear system of size n; equal to
the number of nonzeros allowed in row ¢ of W. Some of the rows which con-
tribute to form this linear system may be non local to processor ¢ and should
be received from other processors. To this aim we implemented a routine called
get extra rows which carries out all the row exchanges among the processors,
before starting the computation of W, which proceed afterwards entirely in par-
allel. Since the number of non local rows needed by each processor is relatively
small we chose to temporarily replicate these rows on auxiliary data structures.
Once W is obtained a parallel transposition routine provides every processor
with its part of W7

The FSAI and the FSAI-ICP preconditioners will be used to accelerate the
PCG and the BiCGSTAB Krylov subspace methods. These iterative solvers
are essentially based on matrix-vector products. We made use of an optimized
parallel matrix-vector product which has been developed in [I7] showing its
effectiveness up to 1024 processors.

5 Numerical Results

5.1 Solution of Kx = b.

Since the key of the success of ICP is related to the goodness of the precon-
ditioner for matrix K (numerical experience shows that the Schur complement
matrix is instead well-conditioned), we analyze the performance of our FSAI pre-
conditioner when used within the PCG method to solve a linear system Kx = b.

The test cases are all realistic examples of large size arising from 2D and 3D
FE discretization of geomechanical problems. In detail:

1. FAULT-639: arises from the numerical solution by a linear FE of the inequality-
constrained minimization problem governing the mechanical equilibrium of a
3D body with contact surfaces [12]. The contact is solved with the aid of a
penalty formulation that gives rise to an SPD ill-conditioned linear system.

2. STOCF-729: arises from the FE integration of the diffusion partial differen-
tial equation governing the 3D transient flow of groundwater in saturated
porous media. The problem is solved assuming a stochastic distribution of
the hydraulic conductivity tensor with a large permeability contrast in ad-
jacent elements.

3. GEO-1438: arises from a regional geomechanical model of the sedimentary
basin underlying the Venice lagoon discretized by a linear FE with randomly
heterogeneous properties [1§].

84 L. Bergamaschi and A. Martinez

4. FLAN-1565: arises from the mechanical equilibrium of a steel flange dis-
cretized by a 3D 8-node brick FE [13].

5. HOOK-1498: arises from the mechanical equilibrium of a steel hook dis-
cretized by 3D 4-node tetrahedral FE [13].

6. PO-878: arises in the simulation of the consolidation of a real gas reservoir of
the Po Valley, Italy, used for underground gas storage purposes (for details,
see [9]).

7. CUBE-6536: simulates the compaction of a shallow confined aquifer due
to groundwater withdrawal in a representative 3D sedimentary basin at a
regional scale. The discretization employes 1171140 grid nodes, giving raise
to a very large problem of more than 6 million unknowns.

Table 1. Size n and number of
nonzeros nnz of the test matrices

The size and number of nonzero terms

for each matrix is provided in Table [l

The linear system is solved by PCG us-

ing the exact solution as a vector of name n nnz

all ones. The exit test for the itera- FAULT-639 638812 14626683

el =10 . STOCF-729 729400 10765 586
< , Tr being

tive solver is ° GEO-1438 1437960 63156690

the relative residual at iteration k. Each
matrix has been preliminarily reordered
by a Reverse Cuthill McKee (RCM) al-
gorithm [10].

FLAN-1565 1564794 117406 044
HOOK-1498 1498023 60917445
PO-878 878355 38896 749
CUBE-6353 6353100 282438234

All tests are performed on the IBM SP6/5376 cluster at the CINECA Cen-
tre for HCP, equipped with IBM Power6 processors at 4.7 GHz with 168 nodes,
5376 computing cores, and 21 Thytes of internal network RAM. The code is writ-
ten in Fortran 90 and compiled with -04 -q64 -qarch=pwr6 -qtune=pwr6 -qnoipa
-gstrict -bmaxdata:0x70000000 options.

In Table 2] we report the results of the PCG runs for the seven test cases
and a number of combination of the FSAI parameters. In particular we provide
the number of iteration (iter) the density of the FSAI preconditioner computed
nnz(G; 1)

nnz(K)
computation (Tp), the cost of iterative solver (Tso;) and the total time (Tior =
Tp + Tso1)-) For a fixed test case all the runs have been performed using a fixed
number of processors.

Inspection of Table[reveals that the choice of dg = 4 produces in all tests the
smallest number of iterations and (with the only exception of Problem FLAN-
1565) the smallest T, CPU time. However, in some instances the large cost to
compute the FSAI preconditioner may greatly influence the total CPU time.

as p = as well as three CPU times referring to the cost of FSAI

5.2 Parallel Results and Scalability

We will use a strong scaling measure to see how the CPU times vary with the
number of processors for a fixed total problem size. We will denote with T},

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 85

Table 2. Iteration number, iter, density p of the preconditioner, CPU times obtained
using a fixed number of processors for each combination of parameters. Best iteration
number, smallest Ts,; and Tio: for each test are printed in boldface.

name p dxd € iter p Tp Tsot Tiot
FLAN-1565 64 4 0.1 0.1 4546 0.12 12.60 67.62 80.22
0.1 0.01 2785 1.1711.79 82.06 93.85
0.1 0.05 3909 0.29 12.47 63.44 75.91
0.1 0.1 5414 0.10 0.81 62.49 63.30
0.01 0.1 6064 0.09 0.72 75.55 76.27
0.1 0.01 674132 590 21.92 27.82
0.2 0.01 9860.18 0.35 13.54 13.89
0.2 0.01 1667 0.10 0.23 26.35 26.58
0 0.01 9381.41 8.03 29.64 37.67
0 0.01 17450.56 0.83 38.25 39.08
0.1 0.1 3511 0.28 49.29 142.05 191.34
0.1 0.01 2362 2.76 46.38 267.64 314.02
0.2 0.01 5195 0.10 0.49 215.56 216.05
0.01 0.1 4164 0.18 1.12 149.00 150.12
0.01 0.01 3416 0.66 0.96 168.83 169.79
0.1 0.1 585 0.34 20.12 20.34 40.46
0.1 0.01 405 2.13 26.77 42.93 69.70
0.1 0.1 766 0.21 1.24 34.06 35.30
0.1 0.01 6710.58 1.42 38.65 40.07
0.0 0.01 8180.65 1.13 45.03 46.16
0.1 0.05 7551.61 1.96 17.06 19.02
0.1 0.1 881 0.95 1.51 9.96 11.47
0.1 0.01 1230 1.11 0.30 11.75 12.05
0.2 0.1 20300.24 0.17 11.00 11.17
0.01 0.01 1699 0.77 0.20 15.67 15.87
0.2 0.1 844 0.14 0.27 4.47 4.74
0.1 0.1 728 0.26 2.99 3.55 6.54
0.1 0.01 698 1.42 2.75 7.30 10.05
0.1 0.1 1414 0.17 0.34 6.27 6.61
0.01 0.1 2297 0.13 0.22 8.31 8.53
0.1 0.01 459 1.13 5.24 12.29 17.53
0.1 0.1 649020 576 8.56 14.32
0.01 0.01 5111.09 3.68 16.02 19.70

FAULT-639 16

HOOK-1498 16

GEO-1438 16

STOCF-729 16

PO-878 64

CUBE-6353 256

I N N O N N N N I O R T O SO NS N N S S O

the total CPU elapsed times expressed in seconds on p processors. As relative
measures of the parallel efficiency achieved by the code we denote as SZ(;p) the
pseudo speedup computed with respect to the smallest number of processors (p)

used to solve a given problem and E,(,ﬁ) the corresponding efficiency:

_) _
g _ ToP go _ 5 _Tib
P Tp ? P P Tpp

86 L. Bergamaschi and A. Martinez

Scalability of FSAI-PCG. In Table [§] we report number of iterations and
timings in solving problems GEO-1438 and CUBE-6536 by FSAI-PCG with
varying number of processors. The parameters used are: dx = 4,0 = 0.1 and
€ = 0.1 for both cases. We also report the scaled speedups and efficiencies for the
total CPU time. Speedups larger than p and efficiencies larger than 1 are printed
in boldface. They can be put in connection both with cache effects and with the
not optimal use of the memory for small number of processors which slow down
the performance the code. We note from the table that our code scales almost
perfectly up to 128 processors for problem GEO-1438 and up to p = 512 for
problem CUBE-6536 which is roughly 4 times larger. This is also accounted by
the results of Figure[ll where pseudo-speedups vs processor number are displayed
in a log-log plot.

Table 3. Number of iterations and timings of FSAI-PCG in the solution of problems
GEO-1438 (left) and CUBE-6536 (right)

piter Tp Teor Tior S E?
2 585 195.0 175.4 370.4
4585 83.5 95.5179.0 4.11.03

8585 45.1 40.7 85.8 8.6 1.08 piter Tp Teor Tior SH® ES®
16 585 20.1 20.3 414 17.91.12 16 459 76.9 198.4 275.3
32585 11.0 104 21.4 34.6 1.08 32 459 43.6 88.2131.8 33.6 1.05
6458 59 52 11.1 66.7 1.04 64 459 22.3 454 67.7 65.3 1.02
128 585 3.1 2.7 5.9125.6 0.98 128 459 10.0 24.1 34.1 129.8 1.01
256 585 2.0 1.8 3.8195.0 0.76 256 459 5.2 12.3 17.5 252.2 0.99
512585 1.0 1.4 2.4308.7 0.60 512459 3.2 6.7 99 444.8 0.87
s12 T T T T T 7
256l * Problem: GEO-1438 * |
— Perfect scalability *
128— O Problem: CUBE-6536 n
=
3 64 —
(]
=
T -
ks
=
2 16+ .
~
8% —
4 |
) \ | \ \ \ ! | !
) 4 8 16 32 64 28 256 512

Number of processors

Fig. 1. Speedups vs number of processors. Problems GEO-1438 and CUBE-6536

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 87

Scalability of ICP preconditioner. We report in this Section the results
obtained in the solution of our saddle point problem with PO-878 as the test
example whose main features are summarized as follows.

m n N nnz(K) nnz(B) nnz(C) nnz(A)
292785 878355 1171140 38896 749 12965583 4321861 69039776

We choose this problem among the seven presented in Section 5.1 since it is
the most challenging one due to the complexity and the heterogeneity of the
geological domain which give raise to a large number of distorted tetrahedra.
This produces a very ill-conditioned matrix A, especially for small timesteps.
Moreover, the bandwidth is very large and this forces a large amount of in-
terprocessor communication. We solved symmetrized system () using At = 1
after an intensive testing to tune the parameters. We choose BiICGSTAB as the
iterative solver with the same exit test of Section 5.1.

Table 4. Combinations of parameters and results for problem PO-878 on 128
processors

Run 61 dx e1 e ds ds es p iter Tp1 Tp2 Tsot Tiot
ICP1 0 1 0 0010011 0 1.23 >10000 1.4 0.2 > 200.0 > 200.0
ICP 20.01 2 0.01 0.1 0.01 1 1072 1.36 4945 2.9 1.4 127.8 129.2
ICP3 0.1 4 0.1 0.1 001 1 107%0.72 1254 2.3 2.2 24.3 26.6
TICP 0.1 4 0.1 0.1 0.01 1 10720.72 3669 3.6 2.3 66.1 68.4

In Table @ we report for each run the parameters related to the three FSAI
approximations as described in the previous sections. We also provide a measure
p of the density of the preconditioner matrices as:

B B nnz(Gfl) nnz(G;l)
pP=pitp2= nnz(A) nnz(A)

Parameter p gives an indication of the additional core memory needed for com-
puting and storing the preconditioner. We present the following timings, all given
in seconds: T'py is the preprocessing time needed to construct Gfl, Gy Land S,
T'po refers to the construction of G;l and T, to the CPU time required by the
iterative solver. Finally, T;,; = Tpa + Tso; is the total CPU time.

We report in Table [the results of three ICP and one TICP runs employing
the three different patterns for the FSAI preconditioner in the approximation
of K (with p = 128). Using dx = 1 no convergence is attained within 10000
iterations, dxg = 2 yields 4945 iterations while with dx = 4 the iterative method
obtains convergence after 1254 iterations. From the table we see that only a
sparsity pattern for the block K which uses nonzeros far away from the diagonal
(drx = 4) allows for a (relatively) fast convergence. We note on passing that the
TICP with the same parameters as the third ICP run yields more than twice
the ICP iterations and roughly twice CPU time. This is again a consequence of
the ill conditioning of this problem.

88 L. Bergamaschi and A. Martinez

Table 5. Parallel performance of FSAI-ICP (TICP) code for problem PO-878

run p Ipy Sg> iter Tre Tsoi Tiot Sff) E,(,2>
299.7 1409 83.1 1667.4 1750.5

442.8 4.7 1521 32.3 693.0 725.3 4.81.21

823.6 8.5 1518 17.6 350.5 368.1 9.51.19

ICP 3 16 13.6 14.7 1407 10.1 171.8 181.9 19.3 1.20

32 7.925.2 1397 5.7 929 98.6 35.51.11

64 4.3 46.7 1521 3.4 553 58.7 59.7 0.93

128 2.386.4 1254 2.2 24.3 26.6131.81.03
2 86.5 3726 67.9 2998.5 3066.4

442.3 4.1 3916 32.2 1523.7 1556.0 3.9 0.99

823.6 7.3 3754 17.5 T67.6 783.1 7.8 0.98

TICP 16 13.6 12.7 3842 10.0 397.1 407.1 15.1 0.94

32 7.921.9 3737 5.7 206.8 212.5 28.9 0.90

64 4.241.2 3834 3.4 1155 1189 51.6 0.81

128 2.375.2 3669 2.2 57.5 59.7 102.7 0.80

We present in the sequel the results of the scalability study carried out with
the FSAI-ICP code when used to solve the PO-878 test problem. We show in
Table Bl the results obtained running our FSAI-ICP code using p = 2 to p = 128,
regarding the two preconditioners ICP3 and TICP of Table[dl These results show
that our code exhibits almost perfect scalability both on the preprocessing stage
and the iterative part. As before, superspeedups can occur due to cache effects
and also to the variable number of iterations with different processor number p.

Acknowledgments. We acknowledge the CINECA Iscra Award PARPSEA
(2010) for the availability of HPC resources and support. We also thank the four
anonymous reviewers who helped improve the overall quality of the paper.

6 Conclusions

This paper describes a parallel block preconditioner for saddle point type linear
systems based on an FSAI preconditioner with variable sparsity pattern. We
first show that our FSAI-PCG code is efficient and scalable for the solution
of K& = b. Then the FSAI preconditioner is used to develop a parallel fully
explicit ICP within the BICGSTAB Krylov subspace solver. We have presented
a portable parallel code implemented in Fortran 90 using MPI for interprocessor
communications. This ensures portability on a whole range of supercomputers.
The efficiency of our code is evaluated on realistic engineering applications arising
from 3D FE discretization of a coupled consolidation problem exhibiting almost
perfect scalability both on the preprocessing stage and the iterative part as well
as satisfactory computational efficiency.

Parallel Inexact Constraint Preconditioners for Saddle Point Problems 89

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems.
Acta Numer. 14, 1-137 (2005)

Bergamaschi, L.: Eigenvalue distribution of constraint preconditioned saddle point
matrices. Numer. Lin. Alg. Appl (submitted) (2011)

Bergamaschi, L., Ferronato, M., Gambolati, G.: Mixed constraint preconditioners
for the solution to FE coupled consolidation equations. J. Comp. Phys. 227(23),
9885-9897 (2008)

Bergamaschi, L., Gondzio, J., Venturin, M., Zilli, G.: Inexact constraint precon-
ditioners for linear systems arising in interior point methods. Comput. Optim.
Appl. 36(2-3), 136-147 (2007)

Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in inte-
rior point methods for optimization. Comput. Optim. Appl. 28(2), 149-171 (2004)
Bergamaschi, L., Martinez, A.: Parallel acceleration of Krylov solvers by factorized
approximate inverse preconditioners. In: Daydé, M., Dongarra, J., Hernandez, V.,
Palma, J.M.L.M. (eds.) VECPAR 2004. LNCS, vol. 3402, pp. 623-636. Springer,
Heidelberg (2005)

Bergamaschi, L., Martinez, A., Pini, G.: An efficient parallel MLPG method
for poroelastic models. CMES: Computer and Modeling in Engineering & Sci-
ences 49(3), 191-216 (2009)

Biot, M.A.: General theory of three-dimensional consolidation. J. Appl.
Phys. 12(2), 155-164 (1941)

Castelletto, N., Ferronato, M., Gambolati, G., Janna, C., Teatini, P., Marzorati,
D., Cairo, E., Colombo, D., Ferretti, A., Bagliani, A., Mantica, S.: 3D geomechanics
in UGS projects: a comprehensive study in northern Italy. In: Proceedings of the
44th US Rock Mechanics Symposium, Salt Lake City, UT (2010)

Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 1969 24th National Conference, pp. 157-172. ACM, New York
1969

](')’Apzlzzo, M., De Simone, V., di Serafino, D.: On mutual impact of numerical
linear algebra and large-scale optimization with focus on interior point methods.
Comput. Optim. Appl. 45(2), 283-310 (2010)

Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in
computational contact mechanics. Comp. Methods App. Mech. Engrg. 197(45-48),
3922-3931 (2008)

Janna, C., Comerlati, A., Gambolati, G.: A comparison of projective and direct
solvers for finite elements in elastostatics. Adv. Engrg. Soft. 40(8), 675685 (2009)
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite
linear systems. SIAM J. Matrix Anal. Appl. 21, 1300-1317 (2000)

Kolotilina, L.Yu., Nikishin, A.A., Yeremin, A.Yu.: Factorized sparse approximate
inverse preconditionings IV. Simple approaches to rising efficiency. Numer. Lin.
Alg. Appl. 6, 515-531 (1999)

Kolotilina, L.Yu., Yeremin, A.Yu.: Factorized sparse approximate inverse precon-
ditionings I. Theory. STAM J. Matrix Anal. Appl. 14, 45-58 (1993)

Martinez, A., Bergamaschi, L., Caliari, M., Vianello, M.: A massively parallel expo-
nential integrator for advection-diffusion models. J. Comput. Appl. Math. 231(1),
82-91 (2009)

Teatini, P., Ferronato, M., Gambolati, G., Bau, D., Putti, M.: Anthropogenic
Venice uplift by seawater pumping into a heterogeneous aquifer system. Water
Resour. Res. 46 (2010)

Communication-Optimal Parallel 2.5D Matrix
Multiplication and LU Factorization Algorithms

Edgar Solomonik and James Demmel

Department of Computer Science
University of California at Berkeley, Berkeley, CA, USA
solomon@eecs.berkeley.edu, demmel@eecs.berkeley.edu

Abstract. Extra memory allows parallel matrix multiplication to be
done with asymptotically less communication than Cannon’s algorithm
and be faster in practice. “3D” algorithms arrange the p processors in
a 3D array, and store redundant copies of the matrices on each of p'/3
layers. ‘2D” algorithms such as Cannon’s algorithm store a single copy of
the matrices on a 2D array of processors. We generalize these 2D and 3D
algorithms by introducing a new class of “2.5D algorithms”. For matrix
multiplication, we can take advantage of any amount of extra memory
to store ¢ copies of the data, for any ¢ € {1,2,.., Lp1/3j}, to reduce
the bandwidth cost of Cannon’s algorithm by a factor of ¢*/? and the
latency cost by a factor 2. We also show that these costs reach the
lower bounds, modulo polylog(p) factors. We introduce a novel algorithm
for 2.5D LU decomposition. To the best of our knowledge, this LU algo-
rithm is the first to minimize communication along the critical path of
execution in the 3D case. Our 2.5D LU algorithm uses communication-
avoiding pivoting, a stable alternative to partial-pivoting. We prove a
novel lower bound on the latency cost of 2.5D and 3D LU factorization,
showing that while ¢ copies of the data can also reduce the bandwidth
by a factor of ¢'/2, the latency must increase by a factor of 2, so
that the 2D LU algorithm (¢ = 1) in fact minimizes latency. We provide
implementations and performance results for 2D and 2.5D versions of
all the new algorithms. Our results demonstrate that 2.5D matrix mul-
tiplication and LU algorithms strongly scale more efficiently than 2D
algorithms. Each of our 2.5D algorithms performs over 2X faster than
the corresponding 2D algorithm for certain problem sizes on 65,536 cores
of a BG/P supercomputer.

1 Introduction

Goals of parallelization include minimizing communication, balancing the work
load, and reducing the memory footprint. In practice, there are tradeoffs among
these goals. For example, some problems can be made embarrassingly parallel
by replicating the entire input on each processor. However, this approach may
use much more memory than necessary and require significant redundant com-
putation. At the other extreme, one stores exactly one copy of the data spread

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 90 2011.
© Springer-Verlag Berlin Heidelberg 2011

Communication-Optimal Parallel 2.5D Matrix Multiplication 91

evenly across the processors, tries to balance the load, and minimize communi-
cation subject to this constraint.

However, some parallel algorithms do successfully take advantage of limited
extra memory to increase parallelism or decrease communication. In this paper,
we examine the trade-off between memory usage and communication cost in
linear algebra algorithms. We introduce 2.5D algorithms (the name is explained
below), which have the property that they can utilize any available amount of
extra memory beyond the memory needed to store one distributed copy of the
input and output. 2.5D algorithms use this extra memory to provably reduce
the amount of communication they perform to a theoretical minimum.

We measure costs along the critical path to make sure our algorithms are well
load balanced as well as communication efficient. In particular, we measure the
following quantities along the critical path of our algorithms (which determines
the running time):

— F, the computational cost, is the number of flops done along the critical
path.

— W, the bandwidth cost, is the number of words sent/received along the
critical path.

— S, the latency cost, is the number of messages sent /received along the critical
path.

— M, the memory footprint, is the maximum amount of memory, in words,
utilized by any processor at any point during algorithm execution.

Our communication model does not account for network topology. However, it
does assume that all communication has to be synchronous. So, a processor can-
not send multiple messages at the cost of a single message. Under this model a
reduction or broadcast among p processors costs O(logp) messages but a one-
to-one permutation requires only O(1) messages. This model aims to capture
the behavior of low-dimensional mesh or torus network topologies. Our LU com-
munication lower-bound is independent of the above collective communication
assumptions, however, it does leverage the idea of the critical path.

Our starting point is n-by-n dense matrix multiplication, for which there are
known algorithms that minimize both bandwidth and latency costs in two special
cases:

1. Most algorithms assume that the amount of available memory, M, is enough
for one copy of the input/output matrices to be evenly spread across all p
processors (so M =~ 3n?/p). If this is the case, it is known that Cannon’s
Algorithm [7] simultaneously balances the load (so F' = ©(n?/p)), minimizes
the bandwidth cost (so W = ©(n?/p'/?)), and minimizes the latency cost (so
S = O(p'/?)) [15I5]. We call Cannon’s algorithm a “2D algorithm” because
it is naturally expressed by laying out the matrices across a p*/2-by-p'/2 grid
of processors.

2. “3D algorithms” assume the amount of available memory, M, is enough
for p'/3 copies of the input /output matrices to be evenly spread across all
p processors (so M ~ 3n?/p?/3). Given this much memory, it is known

92

E. Solomonik and J. Demmel

that algorithms presented in [R[II2IT6] simultaneously balance the load (so
F = 6(n?/p)), minimize the bandwidth cost (so W = ©(n?/p*/?)), and
minimize the latency cost (so S = O(logp)) [IH5]. These algorithms are
called “3D” because they are naturally expressed by laying out the matrices
across a p'/3-by-pl/3-by-p!/3 grid of processors.

The contributions of this paper are as follows.

1.

We present a new matrix multiplication algorithm that uses M =~ 3cn?/p
memory for ¢ € {1,2, ..., Lpl/SJ}, sends ¢!/2 times fewer words than the 2D
(Cannon’s) algorithm, and sends /2 times fewer messages than Cannon’s
algorithm. We call the new algorithm 2.5D matriz multiplication, because it
has the 2D and 3D algorithms as special cases, and effectively interpolates
between them, by using a processor grid of shape (p/c)'/2-by-(p/c)'/?-by-
c. Our 2.5D matrix multiplication algorithm attains lower bounds (modulo
polylog(p) factors) on the number of words and messages communicated.
Our implementation of 2.5D matrix multiplication achieves better
strong scaling and efficiency than Cannon’s algorithm and ScaLAPACK’s
PDGEMM [6]. On 2048 nodes of BG/P, our 2.5D algorithm multiplies square
matrices of size n = 65, 536 5.3X faster than PDGEMM and 1.2X faster than
Cannon’s algorithm. On 16,384 nodes of BG/P, our 2.5D algorithm multi-
plies a small square matrix (n = 8192), 2.6X faster than Cannon’s algorithm.

. We present a 2.5D LU algorithm that also reduces the number of words

moved by a factor of ¢'/? in comparison with standard 2D LU algorithms.

2.5D LU attains the same lower bound on the number of words moved as 2.5D
matrix multiplication Our 2.5D LU algorithm uses tournament pivoting as
opposed to partial pivoting [9/12]. Tournament pivoting is a stable alternative
to partial pivoting that was used to minimize communication (both number
of words and messages) in the case of 2D LU. We will refer to tournament
pivoting as communication-avoiding pivoting (CA-pivoting) to emphasize
the fact that this type of pivoting attains the communication lower-bounds.
We present 2.5D LU implementations without pivoting and with CA-
pivoting. Our results demonstrate that 2.5D LU reduces communication and
runs more efficiently than 2D LU or ScaLAPACK’s PDGETRF [6]. For an
LU factorization of a square matrix of size n = 65,536, on 2048 nodes of
BG/P, 2.5D LU with CA-pivoting is 3.4X faster than PDGETRF with par-
tial pivoting. Further, on 16384 nodes of BG/P, 2.5D LU without pivoting
and with CA-pivoting are over 2X faster than their 2D counterparts.
2.5D LU does not, however, send fewer messages than 2D LU; instead it sends
a factor of ¢'/2 more messages. Under minor assumptions on the algorithm,
we demonstrate an inverse relationship among the latency and bandwidth
costs of any LU algorithms. This relation yields a lower bound on the latency
cost of an LU algorithm with a given bandwidth cost. We show that 2.5D
LU attains this new lower bound. Further, we show that using extra memory
cannot reduce the latency cost of LU below the 2D algorithm, which sends
Q(pl/ 2) messages. These results hold for LU with CA-pivoting and without
pivoting.

Communication-Optimal Parallel 2.5D Matrix Multiplication 93
2 Previous Work

In this section, we detail the motivating work for our algorithms. First, we recall
linear algebra communication lower bounds that are parameterized by memory
size. We also detail the main motivating algorithm for this work, 3D matrix
multiplication, which uses extra memory but performs less communication. The
communication complexity of this algorithm serves as a matching upper-bound
for our general lower bound.

2.1 Communication Lower Bounds for Linear Algebra

Recently, a generalized communication lower bound for linear algebra has been
shown to apply for a large class of matrix-multiplication-like problems [5]. The
lower bound applies to either sequential or parallel distributed memory, and
either dense or sparse algorithms. The distributed memory lower bound is for-
mulated under a communication model identical to that which we use in this
paper. This lower bound states that for a fast memory of size M (e.g. cache size
or size of memory space local to processor) the lower bound on communication
bandwidth is

W= (#arithmetic 0perati0ns)

VM
words, and the lower bound on latency is

#arithmetic operations
s g Horitnetc

messages. On a parallel machine with p processors and a local processor memory
of size M, this yields the following lower bounds for communication costs of
matrix multiplication of two dense n-by-n matrices as well as LU factorization
of a dense n-by-n matrix:

n®/p n®/p
=2 () 5= (i)
These lower bounds are valid for ’;2 <M < p’;ja and suggest that algorithms

can reduce their communication cost by utilizing more memory. If M < T;z, the
entire matrix won’t fit in memory. As explained in [5], conventional algorithms,
for example those in ScaLAPACK [6], mostly do not attain both these lower
bounds, so it is of interest to find new algorithms that do.

2.2 3D Linear Algebra Algorithms

Consider we have p processors arranged into a 3D grid as in Figure with
each individual processor indexed as P; ;. We replicate input matrices on 2D

94 E. Solomonik and J. Demmel

layers of this 3D grid so that each processor uses M = (2 (p’;ja) words of memory.

In this decomposition, the lower bound on bandwidth is
Wsq = 12 (nQ/pg/?’) .

According to the general lower bound the lower bound on latency is trivial: £2 (1)
messages. However, for any blocked 2D or 3D layout,

Sza = 12 (logp).

This cost arises from the row and column dependencies of dense matrix-
multiplication-like problems. Information from a block row or block column of
can only be propagated to one processor with 2(logp) messages.

Algorithm 1. [C] = 3D-matrix-multiply(A,B,n,p)

Input: n-by-n matrix A distributed so that P;;o owns 1"/3'by' 1"/3 block Aj;; for each i, j
P

1'”/’37by7p1'”/’3 block By, for each j, k

Output: n-by-n matrix C = A - B distributed so that P;g owns pI"/S—by— p1"/3 block C;j for each i, k

Input: n-by-n matrix B distributed so that Pg;, owns

// do in parallel with all processors

forall i, j, k € {0,1,...,p*/3 — 1} do
P;jo broadcasts A;; to all Pyjp /* replicate A on each ij layer */
Pyj broadcasts Bjy to all Py /* replicate B on each jk layer */
Cijk = Aij - Bjk
Py, contributes Cjj to a sum-reduction to Pjgx

end

3D matrix multiplication. For matrix multiplication, Algorithm [[SITI2/16]
achieves the 3D bandwidth and latency lower bounds. The amount of mem-

ory used in this 3D matrix multiplication algorithm is M = © (p’;j?,) so the

3D communication lower bounds apply. The only communication performed is
the reduction of C' and, if necessary, a broadcast to spread the input. So the

bandwidth cost is W = O (p’;;), which is optimal, and the latency cost is

S = O (logp), which is a optimal for a blocked layout.

Memory efficient matrix multiplication. McColl and Tiskin [I8] present
a memory efficient variation on the 3D matrix multiplication algorithm for a
PRAM-style model. They partition the 3D computation graph to pipeline the
work and therefore reduce memory in a tunable fashion. However, their theo-
retical model is not reflective of modern supercomputer architectures, and we
see no clear way to reformulate their algorithm to be communication optimal.
Nevertheless, their research is in very similar spirit to and serves as a motivating
work for the new 2.5D algorithms we present in later sections.

Communication-Optimal Parallel 2.5D Matrix Multiplication 95

Previous work on 3D LU factorization. Irony and Toledo [14] introduced
a 3D LU factorization algorithm that minimizes total communication volume
(sum of the number of words moved over all processors), but does not minimize
either bandwidth or latency along the critical path. This algorithm distributes
A and B cyclically on each processor layer and recursively calls 3D LU and 3D
TRSM routines on sub-matrices.

Neither the 3D TRSM nor the 3D LU base-case algorithms given by Irony
and Toledo minimize communication along the critical path which, in practice,
is the bounding cost. We define a different 2.5D LU factorization algorithm that
does minimize communication along its critical path.

Ashcraft [4J3] suggested that total communication volume can be reduced for
LU and Cholesky via the use of aggregate data. Aggregate data is a partial sum
of updates, rather than simply the matrix entries. Our 2.5D LU algorithm uses
aggregate data to reduce communication by the amount Ashcraft predicted.

3 2.5D Lower and Upper Bounds

The general communication lower bounds are valid for a range of M in which
2D and 3D algorithms hit the extremes. 2.5D algorithms are parameterized
to be able to achieve the communication lower bounds for any valid M. Let
c € {1,2,...,|p*?|} be the number of replicated copies of the input matrix.
Consider the processor grid in Figure (indexed as P, j ;) where each proces-

. 2 . .
sor has local memory size M = 2 Cz) The lower bounds on communication

are
n2 pl/2
Wasq = £2 Sa.5q4 = 12 .
0 () seumn()

The lower bound in Section 6 of [5] is valid while ¢ <= p'/3. When ¢ = p'/3, the
latency lower bound is trivial, £2(1) messages, and the bandwidth lower bound is
2(n?/p?/3) words. If the initial data is not replicated, we claim the £2(n?/p?/3)
bandwidth lower bound also holds for ¢ > p'/3. A total of £2(cn? —n?) = 2(cn?)
words must be communicated to produce the replicated copies without local
entry duplicates. Therefore, some processor must communicate £2(cn?/p) words.
When ¢ > p'/3, this replication bandwidth cost is bound from below by cn? /p=
2(n?/p?/3) words.

From a performance-tuning perspective, by formulating 2.5D linear algebra
algorithms, we are essentially adding an extra tuning parameter to the algorithm.
Also, as a sanity check for our 2.5D algorithms, we made sure they reduced
to practical 2D algorithms when ¢ = 1 and to practical 3D algorithms when
c=p'/3.

3.1 2.5D Matrix Multiplication

For matrix multiplication, Algorithm[2 achieves the 2.5D bandwidth lower bound
and gets within a factor of O(logp) of the 2.5D latency lower bound (likely

96 E. Solomonik and J. Demmel

pl/?l
c-1
‘(—/ 0\(_/
of 0

P71 (ploy : g

° |~ A 0 j— (pref*1
(a) 3D processor grid of dimension p'/3- (b) 2.5D processor grid of dimen-
by-p*/-by-p'/?. sion (p/c)/*-by-(p/c)'/ % by-¢ (replica-

tion factor c).

Fig. 1.

optimal). Algorithm [2] generalizes Cannon’s algorithm (set ¢ = 1). At a high
level, our 2.5D algorithm does a portion of Cannon’s algorithm on each set of
copies of matrices A and B, then combines the results. To make this possible,
we adjust the initial shift done by Cannon’s algorithm to be different for each
set of copies of matrices A and B.

Our 2.5D algorithm doesn’t quite generalize Algorithm [since C' is reduced
in a different dimension and shifted initially. However, in terms of complexity,
only two extra matrix shift operations are required by the 3D version of our 2.5D
algorithm. Further, the 2.5D algorithm has the nice property that C' ends up
spread over the same processor layer that both A and B started on. The algo-

rithm moves W = O (\’/L;) words and sends S = O (\/p/cg + log c) messages.

This cost is optimal according to the general communication lower bound. The
derivations of these costs are in Appendix A in [19].

We also note that if the latency cost is dominated by the intra-layer
communication S = O(y/p/c?), our 2.5D matrix multiplication algorithm can
achieve perfect strong scaling in certain regimes. Suppose we want to multiply
n X n matrices, and the maximum memory available per processor is My ax.
Then we need to use at least pmin = O(n?/Mpax) processors to store one
copy of the matrices. The 2D algorithm uses only one copy of the matrix and
has a bandwidth cost of W, _, = O(n?/ \/Pmin) words and latency cost of
Spin = O(\/pmin) messages. If we use p = ¢ - puin processors, with a total
available memory of p - Myax = € Pmin - Mmax, We can afford to have ¢ copies
of the matrices. The 2.5D algorithm can store a matrix copy on each of ¢
layers of the p processors. Utilizing ¢ copies reduces the bandwidth cost to
W, = O(n?//cp) = O(n?/(¢\/Pmin)) = O(Wp,../c) words, and the latency cost
to S, = O(\/p/c3) = O(\/Pmin/c) = O(Sp,... /) messages. This strong scaling is

Communication-Optimal Parallel 2.5D Matrix Multiplication 97

Algorithm 2. [C] = 2.5D-matrix-multiply(A,B,n,p,c)

Input: square n-by-n matrices A, B distributed so that P;;o owns ™ -by- ™ blocks A;; and By
Vp/e Vp/e
for each 1, j
Output: square n-by-n matrix C = A - B distributed so that P;;o owns ™ _by- ™ block Cij
Vp/e Vp/e

for each 1, j

/* do in parallel with all processors */
forall i,5 € {0,1,...,\/p/c— 1}, k € {0,1,...,c — 1} do
P;jo broadcasts A;; and B;j; to all P; /* replicate input matrices */
s:= mod (j — i+ k\/p/c?’7 \/p/c) /* initial circular shift on A */

P;jp sends A;j to Ajgeal on Pigp

s’ = mod (i —j + ky/p/c3,/p/c) /x initial circular shift on B %/
Pzijk sends B;; to Blgcal On Ps’jk

Cijk = Alocal * Blocal

mod (j + 1,/p/c)

s’ := mod (i 4+ 1, \/P/C)

fort =1 to \/P/C3_1 do

s

P;j sends Ajgeal to Pigy /* rightwards circular shift on A *x/
Piji sends Bigcal t0 Py, /* downwards circular shift on B */
Cijk: = Cijk + Alocal * Blocal

end

Py contributes Cj to a sum-reduction to P;j o

end

ki[Au ’\
k2| Az ’\

Ka Aaa

Koa| Ad1rd1

n

Fig. 2. LU diagonal block dependency path. These blocks must be factorized in order
and communication is required between each block factorization.

perfect because all three costs (flops, bandwidth and latency) fall by a factor of
c. (up to a factor of ¢ = p'/3, and ignoring the log(c) latency term).

4 2.5D LU Communication Lower Bound

We argue that for Gaussian-elimination style LU algorithms that achieve the
bandwidth lower bound, the latency lower bound is actually much higher, namely

St = 2 (\/cp).

98 E. Solomonik and J. Demmel

Given a parallel LU factorization algorithm, we assume the algorithm must
uphold the following properties

1. Consider the largest k-by-k matrix Agg factorized sequentially such that
Ao Aot
A= [Am Ay
element of A is factorized sequentially), the following conditions must hold,
(a) (k) flops must be done before A;; can be factorized (it can be updated
but Gaussian elimination cannot start).
(b) 2(k?) words must be communication before A1; can be factorized.
(¢) (1) messages must be sent before Aq; can be factorized.
2. The above condition holds recursively (for factorization of Aj; in place of

A).

} (we can always pick some Agg since at least the top left

We now lower bound the communication cost for any algorithm that follows
the above restrictions. Any such algorithm must compute a sequence of di-
agonal blocks {Ago, A11,...,Ad—1,4—1}. Let the dimensions of the blocks be
{ko,k1,...,kq—1}. As done in Gaussian Elimination and as required by our con-
ditions, the factorizations of these blocks are on the critical path and must be
done in strict sequence.

Given this dependency path (shown in Figure), we can lower bound the
complexity of the algorithm by counting the complexity along this path. The
latency cost is £2(d) messages, the bandwidth cost is Zf;ol 2(k?) words and the
computational cost is Zj;ol 2(k3) flops. Due to the constraint, Zf;ol ki = n,
it is best to pick all k; = k, for some k (we now get d = n/k), to minimize
bandwidth and flop costs. Now we see that the algorithmic costs are

Fi, = Qnk?) Sp,=2(n/k) Wi, = 2(nk).

Evidently, if we want to do O(n3/p) flops we need k = O (&Lp) , which would
necessitate S = 2(,/p). Further, the cost of sacrificing flops for latency is large.

Namely, if S = O (\{ap), the computational cost is F' = 2 (7'2:3), a factor of

r2 worse than optimal. Since we are very unlikely to want to sacrifice so much

computational cost to lower the latency cost, we will not attempt to design
algorithms that achieve a latency smaller than £2(,/p).
If we want to achieve the bandwidth lower bound we need,

Wi =0 (n?/yep) k=0 (n/yep) S = 2(/cp).

A latency cost of O(,/cp/r), would necessitate a factor of r larger bandwidth
cost. So, an LU algorithm can do minimal flops, bandwidth, and latency as
defined in the general lower bound, only when ¢ = 1. For ¢ > 1, we can achieve
optimal bandwidth and flops but not latency.

It is also worth noting that the larger c is, the higher the latency cost for LU
will be (assuming bandwidth is prioritized). This insight is the opposite of that
of the general lower bound, which lower bounds the latency as £2(1) messages for

Communication-Optimal Parallel 2.5D Matrix Multiplication 99

3D (c = p'/3). However, if a 3D LU algorithm minimizes the number of words
communicated, it must send §2(p?/3) messages. This tradeoff suggests that c
should be tuned to balance the bandwidth cost and the latency cost.

5 2.5D Communication Optimal LU

In order to write down a 2.5D LU algorithm, it is necessary to find a way to
meaningfully exploit extra memory. A 2D parallelization of LU typically factor-
izes a vertical and a top panel of the matrix and updates the remainder (the
Schur complement). The dominant cost in a typical parallel LU algorithm is the
update to the Schur complement. Our 2.5D algorithm exploits this by accumu-
lating the update over layers. However, in order to factorize each next panel we
must reduce the contributions to the Schur complement. We note that only the
panel we are working on needs to be reduced and the remainder can be further
accumulated. Even so, to do the reductions efficiently, a block-cyclic layout is
required. This layout allows more processors to participate in the reductions and
pushes the bandwidth cost down to the lower bound.

Algorithm 3. [L,U] = 2.5D-LU-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each I, m, (n/c)-by-(n/c) block Ay, is spread over Pjjg in
(n/\/pc)-by-(n/\/pc) blocks.
Output: triangular n-by-n matrices L, U such that A = L - U and for each [, m, (n/c)-by-(n/c) blocks
Lim, Uy are spread over Pjjq.
P;jo broadcasts its portion of A to each P
fort =0toc—1do

[Ltt, Utt] = 2D-LU(A¢e) /* redundantly factorize top right (n/c)-by-(n/c) block */

[L?+k+1,t] = 2D-TRSM(UE;,A3"+,€+1J) /* perform TRSMs on (n/c)-by-(n/c) blocks */

[Ut,t4k+1] = 2D-TRSM(Ltt, Ay ¢4 k+1)

P;j broadcasts its portions of Ly g 41,4 and Uy y4 41 to Pzijk’ for all k/ /* all-gather panels */

if Lk\/p/c?’j <ji<|(k+ 1)\/p/63j then /* broadcast sub-panels of L */
P;jp broadcasts its portion of Lyj1.c—1,t to each Pzij’k for all 5’

end

if Lk\/p/c?’j <i< [(k+ 1)\/p/63j then /* broadcast sub-panels of U */
P; ji broadcasts its portion of Uy ¢t41:c—1 to each Pi’jk for all 4’

end

P, jj, computes and accumulates its portion of the Schur complement

update S /* multiply sub-panels */
All-reduce (sum and subtract from A) S¢y1.c—1,641, St41,642:c—1 /* reduce next big block panels */

end

Algorithm B] (work-flow diagram in FigureB]) is a communication optimal LU
factorization algorithm for the entire range of ¢ € {1,2,...,|p'/?|}. The algo-
rithm replicates the matrix A on each layer and partitions it block cyclically
across processors with block size (n/,/pc)-by-(n/./pc). Note that this block di-
mension corresponds to the lower bound derivations in the previous section.
Every processor owns one such block within each bigger block of size n/c-by-
n/c. We will sometimes refer to big blocks (block dimension n/c) and small
blocks (block dimension n/,/pc) for brevity.

100 E. Solomonik and J. Demmel

Uoo 3. Broadcast blocks so all
x AN
layers own the panels = | (B)
of L and U.
X Yoo - ‘ ‘ | | |] 4.Broadcast different
00] 4 T [% subpanels within each
L layer.
x | | 1
\ u [
2 Nd YN !
. T
Y | | |
U oINS 58 BolE =
@ [N -
;]
1. Factorize Aoo | | —
redundantly on each layer.
Y Y 5.Multiply subpanels
2. Perform TRSMs to compute |—g on each layer.
a panel of L and a panel of U.

7. Broadcast the panels and
continue factorizing the Schur's
complement...

6.Reduce (sum) the
next panels.*

* All layers always need to contribute to reduction
even if iteration done with subset of layers.

Fig. 3. 2.5D LU algorithm work-flow

Algorithm Bl has a bandwidth cost of W = O (\’/’;) words and a latency cost

of =0 (\/cp log(p)) messages. Therefore, it is asymptotically communication
optimal for any choice of ¢ (modulo a log(p) factor for latency). Further, it is
also always asymptotically computationally optimal (the redundant work is a
low order cost). These costs are derived in Appendix B in [19].

6 2.5D Communication Optimal LU with Pivoting

Regular partial pivoting is not latency optimal because it requires 2(n)
messages if the matrix is in a 2D blocked layout. £2(n) messages are required by
partial pivoting since a pivot needs to be determined for each matrix column

Communication-Optimal Parallel 2.5D Matrix Multiplication 101

Algorithm 4. [V, L, U] = 2.5D-TSLU-pivot-factorization(A,n,m,p,c)
Let [V] = CA-Pivot; (A;,n,b) be a function that performs CA-pivoting with block size b on A of size n-by-b
and outputs the pivot matrix V to all processors.

Input: n-by-m matrix A distributed so that for each i, j, P;;, owns ™ -by- ™
Vp/e Vp/e

l; € {i,i+/p/e,i+2y/p/c,...,i+ (n/m—1)y/p/c}.

Output: n-by-n permutation matrix V and triangular matrices L, U such that V- A = L - U and for each

blocks Al“- for

i,J, Pyji owns \/Zc—by— \/7;’m blocks L, ; and U;; for each i, l;, and j.

for s =0 to \/p/cfldo

P; s compute [Vg] = CA—PiVOtk\/p/chi(Ak\/p/c+i,s’n’m)

P,;jk pivots rows between Ak\/p/ and each copy of Ag; stored on each stk according to Vg

cti,g
Ags 1= ‘/S,TLSSUSS /* factorize top left small block redundantly using GEPP */
Usj = L_:Sl V;Asj for j > s /* do TRSMs on top small block row redundantly */
L;.I;, = U;STA;.I;, for i > s /* do TRSMs on the top part of a small block column redundantly */

T =T AT
Lk\/p/c+i,s =Ug, A’€\/p/c+1_,S /* do TRSMs on rest of small block column */

P, broadcasts L;s and Llc\/p/c+z‘,s to all Py
Pgj) broadcasts Usgj to all Py
Ajj = Ay — Lis - Ugj for i, j > s /* update top big block redundantly */
Ak\/ﬁ/c+i,j = Ak\/p/c+j)j - Lk\/p/c#»’i,s ~Ugj for j > s /* update Temaining big blocks */
Update V with Vg

end

P;j, broadcasts Lk\/p/chi j to Pz‘jk’ for all k’

which always requires communication unless the entire column is owned by one
processor. However, tournament pivoting (CA-pivoting) [9], is a new LU pivot-
ing strategy that can satisfy the general communication lower bound. We will
incorporate this strategy into our 2.5D LU algorithm.

CA-pivoting simultaneously determines b pivots by forming a tree of factor-
izations as follows,

1. Factorize each 2b-by-b block [Ag ok, Ao 2k41]" = P LiUy for k € [0, ;i — 1]
using GEPP.

2. Write By = Py[Ao.2k, Ao2k+1]T, and By = | ,’C,B,’C’]T. Each By represents
the ’best rows’ of each sub-panel of A.

3. Now recursively perform steps 1-3 on [By, B},
ber of total best pivot rows is b.

B/

T
s n/(2b)71}

until the num-

For a more detailed and precise description of the algorithm and stability analysis
see [9/12).

To incorporate CA-pivoting into our LU algorithm, we would like to do piv-
oting with block size b = n/,/pc. The following modifications need to be made
to accomplish this,

1. Previously, we did the big-block side panel Tall-Skinny LU (TSLU) via
a redundant top block LU-factorization and TRSMs on lower blocks. To
do pivoting, the TSLU factorization needs to be done as a whole rather

102 E. Solomonik and J. Demmel

Algorithm 5. [V, L, U] = 2.5D-LU-pivot-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each I, m, (n/c)-by-(n/c) block Aj,, is spread over P;jq in
(n/+/pc)-by-(n//pc) blocks.
Output: n-by-n matrices V and triangular L, U such that V- A = L - U and for each I, m, (n/c)-by-(n/c)
blocks Ly, , Uy, are spread over Pjjq.
S1:n,1:n =0 /* S will hold the accumulated Schur complemented updates to A */
P;jo broadcasts its portion of A to each P

fort =0toc—1do
Vi, Liinjc—1,t» Utt] = 2.5D-TSLU-pivot-factorization(A¢.c—1,¢,n — tn/c,n/c,p,c)

Update V' with V4

Swaps any rows as required by V¢ to (A, S)¢ 1:c—1 /* pivot remainder of matriz redundantly */
All-reduce (sum and subtract from A) St ¢41.c—1 /* reduce big block top panel */
[Ut,t4k+1] = 2D-TRSM(Ltt,A¢ ¢4 k+1) /* perform TRSMs on (n/c)-by-(n/c) blocks */
P;j broadcasts its portion of Uy 441 to each Pt for all &k’ /* all-gather top panel */
if |ky/p/c3] <j < [(k+1)y/p/c3] then /* broadcast sub-panels of L */
P;j, broadcasts its portion of Lyt 1.c—1,¢ to each Pty for all 5’

end

if _k:\/p/c3j <i< [(k+ 1)\/p/c3j then /* broadcast sub-panels of U */

P;j, broadcasts its portion of Uy t41:c—1 to each Pyt for all 4’
end
P; ;i computes and accumulates its portion the Schur complement update S /* multiply sub-panels */
All-reduce (sum and subtract from A) S¢y1.c-1,641 /* reduce next big block vertical panel */

end

than in blocks. We can still have each processor layer compute a different

"TRSM block’ but we need to interleave this computation with the top block

LU factorization and communicate between layers to determine each set of

pivots as follows (Algorithm [gives the full TSLU algorithm),

(a) For every small block column, we perform CA-pivoting over all layers to
determine the best rows.

(b) We pivot the rows within the panel on each layer. Interlayer communi-
cation is required, since the best rows are spread over the layers (each
layer updates a subset of the rows).

(c¢) Each ij processor layer redundantly performs small TRSMs and the
Schur complement updates in the top big block.

(d) Each ij processor layer performs TRSMs and updates on a unique big-
block of the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this
redundantly on each layer, since each layer will have to contribute to the
update of the entire Schur complement.

3. We still reduce the side panel (the one we do TSLU on) at the beginning
of each step but we postpone the reduction of the top panel until pivoting
is complete. Basically, we need to reduce the ’correct’ rows which we know
only after the TSLU.

Communication-Optimal Parallel 2.5D Matrix Multiplication 103

3. Pivot rows in first big block column
on each layer.

N Uos
I I
A i
i
I I
I] Us
1 I
I /Ne
—1 !
I I /{ e Us
I | 1 / \ -
v) k£
al v i 8'-'\ N
5 b 7 g /K T L Ut
B b 2 «
U 4 -
: k 7
BN RN . \
/
4. Apply TRSMs to k
compute first column of L

1. Factorize each block and the first block of a row of U.
in the first column with pivoting |

Uo 8. Perform TRSMs
6. Recurse to compute the rest to compute panel of U
of the first big block column of L.

T

9. Update the rest
| U 7]of the matrix as
0 Uozi— -+ before and recurse

= Lo on next block panel...
-]
2 r i U Joo i

g | Uo1

7. Pivot rows in the rest
of the matrix on each

o

oTT
&
8

5. Update corresponding layer.
interior blocks S=A-L«o*Uo1.

Fig. 4. 2.5D LU with pivoting panel factorization (step A in Figure B

Algorithm [B] details the entire 2.5D LU with CA-pivoting algorithm and Figure[d]
demonstrates the workflow of the new TSLU with CA-pivoting. Asymptotically,
2.5D LU with CA-pivoting has almost the same communication and computa-
tional cost as the original algorithm. Both the flops and bandwidth costs gain an
extra asymptotic logp factor (which can be remedied by using a smaller block
size and sacrificing some latency). Also, the bandwidth cost derivation requires
a probabilistic argument about the locations of the pivot rows, however, the
argument should hold up very well in practice. For the full cost derivations of
this algorithm see Appendix C in [19].

104 E. Solomonik and J. Demmel

7 Performance Results

We implemented 2.5D matrix multiplication and LU factorization using MPT [13]
for inter-processor communication. We perform most of the sequential work us-
ing BLAS routines: DGEMM for matrix multiplication, DGETRF, DTRSM,
DGEMM, for LU. We found it was fastest to use provided multi-threaded BLAS
libraries rather than our own threading. All the results presented in this paper
use threaded ESSL routines.

We benchmarked our implementations on a Blue Gene/P (BG/P) machine lo-
cated at Argonne National Laboratory (Intrepid). We chose BG/P as our target
platform because it uses few cores per node (four 850 MHz PowerPC proces-
sors) and relies heavily on its interconnect (a bidirectional 3D torus with 375
MB/sec of achievable bandwidth per link). On this platform, reducing inter-node
communication is vital for performance.

BG/P also provides topology-aware partitions, which 2.5D algorithms are able
to exploit. For node counts larger than 16, BG/P allocates 3D cuboid partitions.
Since 2.5D algorithms have a parameterized 3D virtual topology, a careful choice
of ¢ allows them to map precisely to the allocated partitions (provided enough
memory).

Topology-aware mapping can be very beneficial since all communication hap-
pens along the three dimensions of the 2.5D virtual topology. Therefore, net-
work contention is minimized or, in certain scenarios, completely eliminated.
Topology-aware mapping also allows 2.5D algorithms to utilize optimized line
multicast and line reduction collectives provided by the DCMF communication
layer [1IUT7].

We study the strong scaling performance of 2.5D algorithms on a 2048 node
partition (Figures . The 2048 node partition is arranged in a 8-by-
8-by-32 torus. In order to form square layers, our implementation uses 4 processes
per node (1 process per core) and folds these processes into the X dimension.
Now, each XZ virtual plane is 32-by-32. We strongly scale 2.5D algorithms from
256 nodes ¢ =Y =1 to 2048 nodes ¢ =Y = 8. For ScaLAPACK we use smp or
dual mode on these partitions, since it is not topology-aware.

We also compare performance of 2.5D and 2D algorithms on 16,384 nodes
(65,536 cores) of BG/P. The 16,384 node partition is a 16-by-32-by-32 torus. We
run both 2D and 2.5D algorithms in SMP mode. For 2.5D algorithms, we use
c =16 YZ processor layers.

7.1 2.5D Matrix Multiplication Performance

Our 2.5D matrix multiplication implementation is a straight-forward adjustment
of Cannon’s algorithm. We assume square and correctly padded matrices, as
does Cannon’s algorithm. A more general 2.5D matrix multiplication algorithm
ought to be built on top of a more general 2D algorithm (e.g. the SUMMA
algorithm [20]). However, our algorithm and implementation provide an idealistic
and easily reproducible proof of concept.

Communication-Optimal Parallel 2.5D Matrix Multiplication 105

2.5D MM on BG/P (n=65,536) 2.5D MM on 16,384 nodes of BG/P
100 T 60

25D MM —— 25D MM sacdec

™ 2D MM —%— 2D MM xx
S 80 | ScalLAPACK PDGEMM —=— | ~ 50 u
a ©
g 2 40
= 2 - .
5 e T 65 1
5 o 1 5
g € 20| RS b
g g roos
g *r 1 F et B35 1
%%
XX
0 i i 0 Jodes
256 512 1024 2048 8192 32768 131072
p n
a) MM strong scalin, b) Matrix multiplication on 16,384 nodes
b

Fig. 5. Performance of 2.5D MM on BG/P

Figure demonstrates that 2.5D matrix multiplication achieves better
strong scaling than its 2D counter-part. However, both run at high efficiency
(over 50%) for this problem size, so the benefit is minimal. The performance of
the more general ScaLAPACK implementation lags behind the performance of
our code by a large factor.

Figure shows that 2.5D matrix multiplication outperforms 2D matrix
multiplication significantly for small matrices on large partitions. The network
latency and bandwidth costs are reduced, allowing small problems to execute
much faster (up to 2.6X for the smallest problem size).

7.2 2.5D LU Performance

We implemented a version of 2.5D LU without pivoting. While this algorithm
is not stable for general dense matrices, it provides a good upper-bound on the
performance of 2.5D LU with pivoting. The performance of 2.5D LU is also
indicative of how well a 2.5D Cholesky implementation might perform.

Our 2.5D LU implementation has a structure closer to that of Algorithm
rather than Algorithm[Bl Processor layers perform updates on different big-block
subpanels of the matrix as each corner small block gets factorized.

Our 2.5D LU implementation made heavy use of subset broadcasts (multi-
casts). All communication is done in the form of broadcasts or reductions along
axis of the 3D virtual topology. This design allowed our code to utilize efficient
line broadcasts on the BG/P supercomputer.

Figure shows that 2.5D LU achieves more efficient strong scaling than
2D LU. 2D LU maps well to the 2D processor grid on 256 nodes. However, the
efficiency of 2D LU suffers when we use more nodes, since the network parti-
tion becomes 3D. On 3D partitions, the broadcasts within 2D LU are done via
topology-oblivious binomial trees and suffer from contention. For this problem
configuration, 2.5D LU achieves a 2.2X speed-up over the 2D algorithm on 2048
nodes.

106 E. Solomonik and J. Demmel
2.5D LU on BG/P (n=65,536) 2.5D LU without pivoting on 16,384 nodes of BG/P
100 ‘ : 40 ‘ \ \
2.5D LU (no pvt) —+— 25D LU =z
~ 2D LU (no pvt) —%— 35 2D LU =33 E
§ s0f = %
g g 30 R
sy g
£ @
3 s]
E S 20 B
s g
? 2
g £ 15 (8558 1
€ g Lodeetets!
3 5 10 RREKL g
5 & KRR
& KREKKE
5 KRKL 1
0 s \ 0 ‘ RRZS
256 512 1024 2048 8192 32768 131072
P n
(a) LU strong scaling (b) LU on 16,384 nodes
Fig. 6. Performance of 2.5D LU without pivoting on BG/P
2.5D LU on BG/P (n=65,536) 2.5D LU with CA-pivoting on 16,384 nodes of BG/P
100 20
! 25D LU (CA-pvt) —— 2.5D LU with CA-pvt soe '
. 2D LU (CA-pvl) —%— 2D LU with CA-pvt &5
g sl Scal APACK PDGETRF —x—] x
©
g g 15 R
y g
£ @
S s 10| 1
s} (o)
) g
£ 5
£
5] a
o
‘ L e

i !
1024 2048 8192 32768
p n

(a) LU with CA-pivoting strong scaling (b) LU with CA-pivoting on 16,384 nodes

512 131072

Fig. 7. Performance of 2.5D LU with pivoting on BG/P

Figure demonstrates that 2.5D LU is also efficient and beneficial at a
larger scale. However, the efficiency of both 2D and 2.5D LU falls off for small
problem sizes. The best efficiency and relative benefits are seen for the largest
problem size (n = 131,072). We did not test larger problem sizes, since execution
becomes too time consuming. However, we expect better performance and speed-
ups for larger matrices.

7.3 2.5D LU with CA-Pivoting Performance

2.5D LU performs pivoting in two stages. First, pivoting is performed only in
the big-block panel. Then the rest of the matrix is pivoted according to a larger,
accumulated pivot matrix. We found it most efficient to perform the subpanel
pivoting via a broadcast and a reduction, which minimize latency. For the rest of
the matrix, we performed scatter and gather operations to pivot, which minimize
bandwidth. We found that this optimization can also be used to improve the
performance of 2D LU and used it accordingly.

Communication-Optimal Parallel 2.5D Matrix Multiplication 107

Figure shows that 2.5D LU with CA-pivoting strongly scales with
higher efficiency than its 2D counter-part. It also outperforms the ScaLAPACK
PDGETRF implementation. Though, we note that ScaLAPACK uses partial
pivoting rather than CA-pivoting and therefore computes a different answer.

On 16,384 nodes, 2D and 2.5D LU run efficiently only for larger problem
sizes (see Figure . The latency costs of pivoting heavily deteriorate the
performance of the algorithms when the matrices are small. Since, 2.5D LU
does not reduce latency cost, not much improvement is achieved for very small
matrix sizes. However, for medium sized matrices (n = 131,072) over 2X gains
in efficiency are achieved. We expect similar trends and better efficiency for even
larger matrices.

The absolute efficiency achieved by our 2.5D LU with CA-pivoting algorithm is
better than ScaLAPACK and can be improved even further. Our implementation
does not exploit overlap between communication and computation and does
not use prioritized scheduling. We observed that, especially at larger scales,
processors spent most of their time idle (waiting to synchronize). Communication
time, on the other hand, was heavily reduced by our techniques and was no longer
a major bottleneck.

8 Future Work

Preliminary analysis suggests that a 2.5D algorithm for TRSM can be written
using a very similar parallel decomposition to what we present in this paper for
LU. We will formalize this analysis.

Our 2.5D LU algorithm can also be modified to do Cholesky. Thus, using
Cholesky-QR we plan to formulate many other numerical linear algebra opera-
tions with minimal communication. As an alternative, we are also looking into
adjusting the algorithms for computing QR, eigenvalue decompositions, and the
SVD which use Strassen’s algorithm [I0] to using our 2.5D matrix multiplica-
tion algorithm instead. Further, we plan to look for the most efficient and stable
2.5D QR factorization algorithms. In particular, the 2D parallel Householder al-
gorithm for QR has a very similar structure to LU, however, we have not found
a way to accumulate Householder updates across layers. The Schur complement
updates are subtractions and therefore commute, however, each step of House-
holder QR orthogonalizes the remainder of the matrix with the newly computed
panel of Q. This orthogonalization is dependent on the matrix remainder and is
a multiplication, which means the updates do not commute. Therefore it seems
to be difficult to accumulate Housholder updates onto multiple buffers.

We plan to implement a more general 2.5D MM algorithm based on
SUMMA [20]. We also plan to further tune our 2.5D LU algorithms. Incorporat-
ing better scheduling and overlap should improve the absolute efficiency of our
implementation. We hope to apply these implementations to accelerate scientific
simulations that solve distributed dense linear algebra problems. Our motivat-
ing scientific domain has been quantum chemistry applications, which spend a
significant fraction of execution time performing small distributed dense matrix
multiplications and factorizations.

108 E. Solomonik and J. Demmel

Acknowledgements. The first author was supported by a Krell Department of
Energy Computational Science Graduate Fellowship, grant number DE-FG02-
97ER25308. Research was also supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by U.C. Discov-
ery (Award #DIG07-10227). This material is supported by U.S. Department
of Energy grants numbered DE-SC0003959, DE-SC0004938, and DE-FC02-06-
ER25786. This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under contract DE-AC02-06CH11357.
We acknowledge the support of NSF grant OCI-1032639.

References

1. Agarwal, R.C., Balle, S.M., Gustavson, F.G., Joshi, M., Palkar, P.: A three-
dimensional approach to parallel matrix multiplication. IBM J. Res. Dev. 39, 575—
582 (1995)

2. Aggarwal, A., Chandra, A.K., Snir, M.: Communication complexity of PRAMs.
Theoretical Computer Science 71(1), 3-28 (1990)

3. Ashcraft, C.: A taxonomy of distributed dense LU factorization methods. Boeing
Computer Services Technical Report ECA-TR-161 (March 1991)

4. Ashcraft, C.: The fan-both family of column-based distributed Cholesky factoriza-
tion algorithms. In: Alan George, J.R.G., Liu, JJW.H. (eds.) Graph Theory and
Sparse Matrix Computation. IMA Volumes in Mathematics and its Applications,
vol. 56, pp. 159-190. Springer, Heidelberg (1993)

5. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in
numerical linear algebra. To appear in STAM J. Mat. Anal. Appl., UCB Technical
Report EECS-2009-62 (2010)

6. Blackford, L.S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I., Ham-
marling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScalLA-
PACK User’s Guide, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA (1997)

7. Cannon, L.E.: A cellular computer to implement the Kalman filter algorithm. Ph.D.
thesis, Bozeman, MT, USA (1969)

8. Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algorithms. SIAM
Journal on Computing 10(4), 657-675 (1981)

9. Demmel, J., Grigori, L., Xiang, H.: A Communication Optimal LU Factorization
Algorithm. EECS Technical Report EECS-2010-29, UC Berkeley (March 2010)

10. Demmel, J., Dumitriu, I., Holtz, O.: Fast linear algebra is stable. Numerische Math-
ematik 108, 59-91 (2007)

11. Faraj, A., Kumar, S., Smith, B., Mamidala, A., Gunnels, J.: MPI collective com-
munications on the Blue Gene/P supercomputer: Algorithms and optimizations.
In: 17th IEEE Symposium on High Performance Interconnects HOTI 2009, pp.
63-72 (2009)

12. Grigori, L., Demmel, J.W.; Xiang, H.: Communication avoiding Gaussian elimina-
tion. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing SC
2008, pp. 29:1-29:12. IEEE Press, Piscataway (2008)

13. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with
the message-passing interface. MIT Press, Cambridge (1994)

14.

15.

16.

17.

18.

19.

20.

Communication-Optimal Parallel 2.5D Matrix Multiplication 109

Irony, D., Toledo, S.: Trading replication for communication in parallel distributed-
memory dense solvers. Parallel Processing Letters 71, 3-28 (2002)

Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Comput-
ing 64(9), 1017-1026 (2004)

Johnsson, S.L.: Minimizing the communication time for matrix multiplication on
multiprocessors. Parallel Comput. 19, 1235-1257 (1993)

Kumar, S., Dozsa, G., Almasi, G., Heidelberger, P., Chen, D., Giampapa, M.E.,
Michael, B., Faraj, A., Parker, J., Ratterman, J., Smith, B., Archer, C.J.: The
deep computing messaging framework: generalized scalable message passing on the
Blue Gene/P supercomputer. In: Proceedings of the 22nd Annual International
Conference on Supercomputing ICS 2008, pp. 94-103. ACM, New York (2008)
McColl, W.F., Tiskin, A.: Memory-efficient matrix multiplication in the BSP
model. Algorithmica 24, 287-297 (1999)

Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix mul-
tiplication and LU factorization algorithms. Tech. Rep. UCB/EECS-2011-
10, EECS Department, University of California, Berkeley (February 2011),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-10.html

Van De Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurrency: Practice and Experience 9(4), 255-274 (1997)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-10.html

Introduction

Sabri Pllana, Jean-Frangois Méhaut, Eduard Ayguade,
Herbert Cornelius, and Jacob Barhen

Topic chairs

Modern multicore and manycore systems offer impressive performance for var-
ious applications. However, achieving this performance is a challenging task.
While multicore and manycore processors alleviate several problems that are
related to single-core processors — known as memory wall, power wall, or
instruction-level parallelism wall — they raise the issue of the programmability
wall. The multicore and manycore programmability wall calls for new parallel
programming methods and tools. Therefore, this topic focuses on novel solutions
for efficient programming of multicore and manycore processors in the context
of general-purpose and embedded systems.

The quality of submissions was very high. Papers have been selected based
on the recommendations of at least four reviewers. The nine accepted papers
address a representative set of issues related to the multicore and manycore
programming.

The paper — "Hardware and Software Tradeoffs for Task Synchronization on
Manycore Architectures” by Yonghong Yan, Sanjay Chatterjee, Daniel Orozco,
Elkin Garcia, Zoran Budimlic, Jun Shirako, Robert Pavel, Guang R. Gao, and
Vivek Sarkar — describes an implementation of the ”phasers” synchronization
construct on the IBM Cyclops64 manycore processor.

In the paper — ”OpenMPspy: Leveraging Quality Assurance for Parallel Soft-
ware” by Victor Pankratius, Fabian Knittel, Leonard Masing, and Martin Walser
— authors describe OpenMPspy. This tool may be used for detecting mistakes
that occur while the code is typed in Eclipse and for collecting statistics on the
use of OpenMP language constructs.

The paper — ”"A Generic Parallel Collection Framework” by Aleksandar
Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky — describes an ap-
proach for development of parallel containers such as parallel arrays or hash
maps.

In the paper — ”"Progress Guarantees when Composing Lock-free Objects” by
Nhan Nguyen Dang and Philippas Tsigas — authors describe a novel synchroniza-
tion mechanism for composing lock-free data objects that guarantees lock-free
progress.

The paper — ”Engineering a multicore Radix Sort” by Jan Wassenberg and
Peter Sanders — describes a novel variant of radix sorting algorithm that is based
on a micro-architecture-aware variant of counting sort.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 110 2011.
© Springer-Verlag Berlin Heidelberg 2011

Introduction 111

In the paper — ”Accelerating code on multicores with FastFlow” by Marco
Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Mas-
simo Torquati — authors describe an approach for parallelization of sequential
codes via thread-offloading. Basically, a thread uses other threads as software
accelerators.

The paper — ” A Novel Shared-Memory Thread-Pool Implementation for Hy-
brid Parallel CED Solvers” by Jens Jgerskpper and Christian Simmendinger
— describes an approach for shared-memory parallelization of grid-based CFD
solvers.

In the paper — ”A Fully Empirical Autotuned Dense QR Factorization for
Multicore Architectures” by Emmanuel Agullo, Jack Dongarra, Rajib Nath, and
Stanimire Tomov — authors describe an empirical approach for tuning dense
linear algebra libraries on multicore architectures.

The paper — ”Parallelizing a Real-Time Physics Engine Using Transactional
Memory” by Jaswanth Sreeram and Santosh Pande — describes experiences of
authors in parallelizing the ODE physics engine that is used in computer games.

We are grateful to all authors for submitting their high-quality papers to this
topic and to reviewers for their efforts to evaluate submitted papers. Further-
more, we would like to acknowledge the encouragement and support of conference
chairs Emmanuel Jeannot, Raymond Namyst, and Jean Roman.

Hardware and Software Tradeoffs for Task
Synchronization on Manycore Architectures

Yonghong Yan!, Sanjay Chatterjee!, Daniel A. Orozco?, Elkin Garcia?,
Zoran Budimli¢!, Jun Shirako', Robert S. Pavel?,
Guang R. Gao?, and Vivek Sarkar!

! Department of Computer Science, Rice University
{yanyh,sanjay.chatterjee,zoran,shirako,vsarkar}@rice.edu
2 Department of Electrical Engineering, University of Delaware
{egarcia@,orozcoleecis. ,rspavel@,ggaoQcapsl. judel.edu

Abstract. Manycore architectures — hundreds to thousands of cores per
processor — are seen by many as a natural evolution of multicore proces-
sors. To take advantage of this massive parallelism in practice requires
a productive parallel programming model, and an efficient runtime for
the scheduling and coordination of concurrent tasks. A critical prerequi-
site for an efficient runtime is a scalable synchronization mechanism to
support task coordination at different levels of granularity.

This paper describes the implementation of a high-level synchroniza-
tion construct called phasers on the IBM Cyclops64 manycore processor,
and compares phasers to lower-level synchronization primitives currently
available to Cyclops64 programmers. Phasers support synchronization of
dynamic tasks by allowing tasks to register and deregister with a phaser
object. It provides a general unification of point-to-point and collective
synchronizations with easy-to-use interfaces, thereby offering productiv-
ity advantages over hardware primitives when used on manycores. We
have experimented with several approaches to phaser implementation
using software, hardware and a combination of both to explore their
portability and performance. The results show that a highly-optimized
phaser implementation delivered comparable performance to that ob-
tained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

1 Introduction

Manycore architectures, with hundreds to thousands of cores per processor, are
seen by many as a natural evolution of multicore processors. In practice, a pro-
ductive parallel programming model, and an efficient runtime for thread execu-
tion and coordination, are essential to take advantage of this massive parallelism.
Programming models using dynamic task parallelism, such as the ones intro-
duced in the programming languages of the DARPA HPCS program (X10 [I] and
Chapel [2]), present a promising approach to productive parallel programming
on manycore processors. However, the overhead of communication and synchro-
nization between concurrent tasks typically presents one of the greatest obstacles

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 112 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hardware and Software Tradeoffs for Task Synchronization 113

to achieving high performance and scalability on parallel systems. To support
diverse workloads on manycore architectures, synchronization mechanisms that
provide high-level operations such as barrier using different granularity levels,
would be highly desirable.

Phasers, first introduced in the Habanero-Java multicore programming sys-
tem [3], are synchronization constructs for task parallel programs. Phasers unify
barrier operation and point-to-point synchronization in a single interface, and
feature deadlock-freedom and phase-ordering. The current Habanero-Java phaser
implemented on a Java virtual machine does not leverage hardware support for
synchronization and only works on top of a work-sharing runtime, a much less
scalable choice for task parallel runtime than workstealing [4]. In this paper,
we present the evaluations of phaser implementations in a workstealing runtime
using a C-based Habanero-C parallel programming language. Using the IBM
Cyclops64 (C64) manycore architecture [5], we have experimented with several
approaches to phaser implementations using software, hardware, and a combina-
tion of both to explore their portability and performance. The results show that
a highly-optimized phaser implementation delivered comparable performance to
that obtained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

The contributions of this work includes the following. First, we have provided
a highly-optimized spin-based implementation of phasers. It is software-based
and portable across POSIX-compliant systems. Secondly, we have optimized a
phaser implementation that leverages hardware support for synchronization to
deliver superior performance over the software approach while maintaining the
same interfaces and features. Finally, we have provided a runtime that is able to
switch between software and hardware based implementations to better leverage
hardware support, if available.

In the rest of the paper, Section 2 presents the Habanero-C task parallel
programming language, and the portable software implementation of phasers.
Section [3] describes the phaser implementations on Cyclops64, taking advantage
of its hardware features. Section [presents the experimental results. Finally,
Section [A discusses related work and Section [l concludes the paper.

2 Asynchronous Task Parallelism and Software Phasers

Phasers were implemented in the Habanero-C research language developed at
Rice University. Habanero-C language has two basic primitives, borrowed from
X10 [II, for asynchronous task parallel programming: async and finish. The async
statement, async (stmt), causes the parent task to fork a new child task that may
execute (stmt) in parallel with the parent task. Execution of the async statement
returns immediately, i.e. the parent task does not wait for the child task to
complete. The finish statement, finish (stmt), performs a join operation on all
the tasks created within (stmt), including transitively spawned tasks.

The async and finish constructs are simpler than the conventional pthread create
and pthread join APIs, and more flexible than the Cilk spawn and sync key-
words [6] and OpenMP task and taskwait directives. For example, the sync or

114 Y. Yan et al.

1: finish {
SIGNAL_WAIT_NEXT 2: new_phaser(SIGNAL_WAIT);
(SINGLE) 3 for (int j=0; j<ntasks; j++)
l 4 async phased IN(j) {
5: for (int i=0; i<innerreps; i++) {
SIGNAL_WAIT 6: delay(delaylength);
7 printf("Task %d at step %d\n", j, i);
/\ 8 next; }
SIGNAL_ONLY WAIT_ONLY |[% !}
(a) Phaser Mode Lattice (b) Barrier Example Using Phasers

Fig. 1. Phaser Mode Lattice and Barrier Example

taskwait constructs can only synchronize tasks that are created within the same
function scope. Using async and finish as a foundation, we were able to easily
experiment with different choices of task parallelism and target platforms.

2.1 Asynchronous Task Synchronization Using Phasers

There are several nice features to use phasers as synchronization constructs with
the async and finish task parallel programming model. First, phasers unify collec-
tive and point-to-point synchronization in a single set of programming interfaces.
The interfaces are ease of use, improving programmer productivity in paral-
lel programming and debugging. Secondly, phasers have two safety properties:
deadlock-freedom and phase-ordering [3]. These properties, along with the gener-
ality of its use for dynamic parallelism, distinguish phasers from other synchro-
nization constructs in past works including barriers, counting semaphores [7],
and X10 clocks [I]. Thirdly, in implementation, phasers have been integrated
with a workstealing scheduler that was used in Habanero-C runtime. As a new
contribution of this paper, the implementation provided reference solutions to
how to map asynchronous tasks with hardware threads when performing syn-
chronization operations. The details of these solutions are discussed in Section [3

Figure shows an example of using phasers to implement a barrier among
multiple asynchronously created tasks. The async statement in line 4 and the
J-for loop create ntasks child tasks, each registering with the phaser created in
line 2 in the same mode as in the master task. The next statement in line 8 is
the actual barrier wait; each task waits until all tasks arrive at this point in each
iteration of the i-for loop. The first next operation of each task causes itself to
wait for the master task to do next operation or to deregister. When the master
task reaches the end of the finish scope, it deregisters from the phaser so all child
tasks continue and synchronize by themselves in each iteration.

2.2 Software Phasers in Habanero-C

As a synchronization object for dynamic tasks, a phaser has two phases, the
signal phase and wait phase, each represented by a counter. Given the mode a
task registers with a phaser, a phaser operation could be either or both of a

Hardware and Software Tradeoffs for Task Synchronization 115

signal and a wait operation, which advances the corresponding phase counter. A
task registration is represented by a unique synchronization object, named sync,
which contains the registration mode and the current signal and wait phase.
In order to guarantee deadlock freedom, a child task can only register in a
mode that is the same as or below the mode in the parent task according to
the phaser mode lattice shown in Figure When signaling on a phaser, a
task simply increments the signal phase in the sync object. The next operation
has the effect of advancing each phaser with which a task registers to its next
phase, thereby synchronizing all tasks registering with the same phaser. Details
operation semantics are described in [3].

Hierarchical Phaser Implementation: The phaser implementation discussed
above has used a single master task to advance to its next phase. While the single
master approach provides an effective solution for modest levels of parallelism, it
quickly becomes a scalability bottleneck as the number of tasks increases. To ad-
dress this limitation, we have used an approach based on hierarchical phasers [8]
for scalable synchronization.

The hierarchical phaser employs a tree of sub-masters, instead of a single
master, as in the case of a flat phaser. Tree-based barriers have the advantage
that gather operations in the same level (tier) can be executed in parallel by sub-
masters. Also, in cases when the hierarchy of sub-masters follows the natural
hierarchy in the hardware, each sub-master will leverage data locality among
workers in its sub-group. Although the initialization overhead of building a tree
is greater than the flat phasers, the runtime of hierarchical phasers outperform
the flat phasers heavily on higher number of tasks, as discussed soon in Section[dl

3 Hardware Support in Phasers

The counter-based phaser implementation is a spin-based software approach, also
referred to as busy-wait. It consumes both CPU cycles and memory bandwidth,
and may quickly become a scalability bottleneck when a large number of tasks
are involved in a phaser operations, as in manycores. Recent trends in manycore
processor design use tiled architectures to reduce the dependency on the memory
bus [9] and to localize synchronizations. In this Section, we explore a phaser
implementation that leverages hardware support for synchronization using the
IBM Cyclops64 (C64) manycore chip [5] as our evaluation platform.

3.1 Cyclops64 Manycore Architecture

The IBM Cyclops64 is a massively parallel architecture initially developed by
IBM as part of the Blue Gene project. As shown in Figure 2] a C64 processor
features 80 processing cores on a chip, with two hardware thread units per core
that share one 64-bit floating point unit. Each core can issue one double precision
floating point Multiply Add instruction per cycle, for a peak performance of 80
GFLOPS per chip when running at 500MHz. The processor chip includes a high-
bandwidth on-chip crossbar network with a total bandwidth of 384 GB/s. C64

116 Y. Yan et al.

Latenc
Read: 1 cycle Overall Bandwidth

N Write: 1 cycle,
Processor 1 Processor2 Processor 80 ap B HL‘
SEHIEENEEE

. E] m w = Load: 2 cycles; Store: 1 cycle|
T : oA
Il 1 1

Enenst oM
Load: 31 cycles; Store: 15 cycles ~2.5MB

I Crossbar Network l 320G8/5

L1 L1 L1

€ E € - - € | PORZ SORAMR,, OF Y Load: 57 cycles; Store: 28 cycles
ES % ES %‘ E’ﬂ Es % @J 16GB/s (Multiple load and Multiple store

instructions); 2GB/s
(a) C64 Chip Architecture (b) C64 Memory Hierarchy

Fig. 2. Cyclops64 Architecture Details

employs three-levels of software-managed memory hierarchy, with the Scratch-
Pad (SP) currently used to hold thread-specific data. Each hardware thread unit
has a high-speed on-chip SRAM of 32KB that can be used as a cache.

C64 utilizes a dedicated signal bus (SIGB) that allows thread synchronization
without any memory bus interference. The SIGB connecting all threads on a chip
can be used for broadcast operations taking less than 10 clock cycles, enabling
efficient barrier operations and mutual exclusion synchronization. Fast point-to-
point signal /wait operations are directly supported by hardware interrupts, with
costs on the order of tens of cycles.

The C64 tool chain includes a highly efficient threading library, named TiNy-
Threads (TNT) [5], which uses the C64 hardware support to implement thread-
ing primitives. Additionally, TNT provides APIs that can be used to access
the hardware synchronization primitives to allow for suspension of threads, and
including and excluding specific threads from barriers, as shown in Table [II

Table 1. Cyclops64 TNT APIs for Hardware Synchronization Primitives

Name Description
tnt suspend() Suspend current thread
tnt awake (const tnt desc t) Awaken a suspended thread

tnt barrier include (tnt barrier t *) Join in the next barrier wait operation
tnt barrier exclude (tnt barrier t ¥) ~ Withdraw from the next barrier wait operation
tnt barrier wait (tnt barrier t *) Wait until all threads arrive this point

3.2 Optimization Using Hardware Barriers

Barrier operations using phasers can be optimized in manycore architectures
that offer direct hardware support for barriers, such as C64. The phaser runtime
is able to detect if a phaser operation specified by the user program is equiv-
alent to a barrier operation by checking whether all phasers are registered in
SIGNAL WAIT mode. If so, the underlying hardware support is used directly
to perform the barrier operation.

Hardware and Software Tradeoffs for Task Synchronization 117

Implementing a hardware barrier in a phaser requires threads to include them-
selves in the barrier by calling tnt barrier include. This requirement is particularly
interesting in a workstealing environment due to the fact that the worker that
executes the task which is participating in the barrier, has to include itself in
the hardware barrier. In workstealing, we cannot include the worker a priori in
the barrier. The Habanero-C runtime only includes a worker in the hardware
barrier when it is ready to execute a task.

3.3 Optimization Using Thread Suspend and Awake

The TNT API provides functions to suspend a thread and to awake a sleeping
thread. A suspend instruction temporarily stops execution in a non-preemptive
way, and a signal instruction awakes the sleeping task. Using thread suspend and
awake mechanism in place of the busy-wait approach reduces memory bandwidth
pressure because all waiting tasks can suspend themselves instead of spinning.
The master can collect all the signals from waiting tasks and finally signals the
suspended tasks to resume the execution.

The C64 chip provides an interesting hardware feature called the “wake-up
bit”. When a thread tries to wake up another thread, it sets the “wake-up bit” for
that thread. This enables a thread to store a wake-up signal. Hence, if a thread
tries to suspend itself after a wake-up signal is sent, it wakes up immediately and
the suspend effectively becomes a no-op. This feature is fully utilized by phasers
to easily move from phase to phase without worrying about a thread that can
execute a suspend after a wake up signal.

3.4 Adaptive Phasers

Adaptability is one of the main features of our phaser implementation. As ex-
plained before, the runtime can directly detect the synchronization operation be-
ing performed and make a reasonable decision as to how to execute it. A phaser
operation can switch to the optimized versions that utilize hardware primitives.
These details of how a phaser operation is executed are hidden from the user.

Phaser operations can be implemented in a number of ways to take advan-
tage of the particular characteristics of the underlying hardware. Even when a
phaser has all tasks registered in SIGNAL WAIT mode, it is not guaranteed that
a hardware barrier will be used. A task that is registered to support split-phase
or fuzzy barriers may signal ahead of its next operation. When a task registers
as SIGNAL ONLY or WAIT ONLY on a phaser that has been using a hardware
barrier, our runtime detects such a scenario and switches to software mode.

The runtime chooses the best mode of operation, depending on the current
program state and available features. Each implementation alternately exhibits
particular traits: maximum portability and reasonable performance is achieved
with a busy-wait implementation; low bandwidth and low power usage are fea-
tured in the suspend-awake implementation.

118 Y. Yan et al.

3.5 Memory Optimizations

Phaser and sync objects contain volatile phase counters, and phaser operations
involve frequent read and write of those counters in both software based busy-
wait approach and hardware-optimized implementations. So low latency and
high bandwidth of the memory system are key to the performance of phasers.
The C64’s memory hierarchy, as seen in Figure [is similar to hardware
cache in regular commodity CPUs. The power of using it comes from program
manageability as our runtime itself can decide which synchronization objects
need to reside on or move to the high-speed SRAM. Yet there is a tradeoff in
this software-managed caching approach because the DRAM is limited in its
sizes and shared with stack in C64. For a simple DRAM-optimization, the run-
time allocates on SRAM, synchronization objects that contain spinning counters.
More complex optimizations use heuristic or historical information to identify
frequently-accessed data and move them to SRAM. Further memory manage-
ment by the Habanero-C runtime, such as allocating a list of synchronization
objects in a dense array, provide another level of memory optimizations on C64.

4 Implementation and Experiments

Habanero-C includes a workstealing runtime and a compiler for the async and
finish task parallel programming constructs. The C64 manycore processor de-
scribed in Section 3] was used as experimental platform for this study. This
work is the result of a joint research effort between Rice University and Univer-
sity of Delaware (UDel). Figure Bl shows a description of the infrastructure used
for this project as well as the contributions of each institution.

Generated
C Program
C64 Program
Habanero-C
Runtime Experiments run on C64 Simulator

Rice and UDel and C64 Machine by UDel

Conventions: So_fl_tc\ﬁre Executable

Fig. 3. Collaboration and Software Infrastructure

Habanero-C
Applications

UDel and Rice

Habanero-C
Compiler

Rice

C64 Toolchain
and TNT Runtime
ETI

4.1 Implementation and Experimental Benchmarks

Habanero-C compiler was implemented on top of the ROSE source-to-source
compiler framework [10]. The compiler transforms async and finish statements to
appropriate library and runtime calls that create and enqueue tasks, and calls
to ensure proper task termination within each finish scope.

Habanero-C runtime contains a number of worker threads; each worker thread
maintains a double-ended queue (deque). A worker enqueues and dequeues tasks

Hardware and Software Tradeoffs for Task Synchronization 119

from the tail end of its deque when creating and executing local tasks, respec-
tively. Other workers steal tasks from the head of the deque, when they do not
have local tasks to work on. While this approach to the workstealing runtime
is similar to the Cilk runtime [6], task creation and enqueuing policy when en-
countering an async is different from Cilk. In Cilk’s “work-first” policy, the code
after the async task body (the continuation) is pushed onto the deque while the
current worker continues the execution of the async body. In our policy, which
is referred to as “help first” [4], the async task itself is pushed onto the deque
while the current worker continues the execution of the continuation.

The evaluation was conducted using microbenchmarks and common appli-
cations. The microbenchmarks include barrier and threadring for evaluating
phaser barrier and point-to-point synchronizations. The applications include
two-dimensional finite difference time domain (FDTD2D), and Successive Over
Relaxation (SOR), to study the performance impact of synchronization overhead
using software and hardware approaches, and their tradeoffs.

4.2 Hierarchical Phasers and Memory Optimizations

In Figure @, we show the barrier overhead of using software flat phasers versus
hierarchical phasers, and phasers residing on SRAM versus on DRAM. The dra-
matic scalability improvements of using hierarchical phasers (4-degree fan-out
hierarchy) as compared to flat phasers are obvious. Placing phasers in SRAM
results in large (one to two orders of magnitude) overhead reduction for both flat
phaser and hierarchical phasers. While this performance does not imply superi-
ority of SRAM over DRAM implementation in general (spin-based solutions may
have adverse effects as well), we use the SRAM hierarchical phasers as baseline
to compare with other hardware-based implementations in later sections.

40

35

30

25

barrier overhead (us)
N
o

i
threads 0
ESRAM-flat | 1.882 | 2.343 | 3.204 | 4.877 | 8.122 | 14.836 | 29.178
ODRAM-flat | 3.73 5.19 8.66 26.14 | 113.56 | 416.82 | 1681.59
ESRAM-tree| 2.164 | 2.651 | 3.469 | 3.808 | 4.465 | 4.734 | 5678
O DRAM-tree| 4.06 71 10.37 1435 | 21.33 41.2 89.85

Fig. 4. Hierarchical Phasers and SRAM Optimization

120 Y. Yan et al.

4.3 Barrier and Point-to-Point Microbenchmarks

The barrier microbenchmark was based on the EPCC OpenMP syncbench bench-
mark that was developed for evaluating OpenMP barrier overhead. When using
phasers as barriers, barrier wait operations are performed by phaser next op-
erations. A task can dynamically join and leave a barrier wait operation by
registering and deregistering with the phaser that is created (with at least SIG-
NAL WAIT capability) for this operation. This is different from OpenMP barrier
that only allows a fixed number of threads involved in a barrier from the begin-
ning to the end of a parallel region. OpenMP does not permit the use of barriers
within parallel loops, either.

35 500
Bphaser with hardware barrier
450

Osoftware phaser

30 { msoftware barrier-tree — Dphaser with hardware
X 400 suspend/awake
phaser with hardware suspend/awake
_ 25 I 350
B msoftware barrier-flat
2 | —~300
© 20 0
8 2
2 2 250
o
= 200
3 =
150
100
50
. 0 =
2 4 16 32 64 128 2 4 8 16 32
threads # threads
(a) Phaser Barrier (b) Threadring

Fig. 5. Barrier and Point-to-Point Microbenchmarks

Figure shows the barrier overheads using four phaser implementations
on C64. The implementation that leverages the C64 hardware barrier incurs
much lower overhead than that of the software barrier. The reason behind this
is the phaser implementation switches to hardware barriers whenever the tasks
registering with the phaser are actually perform the barrier wait operations.
The implementation that uses suspend/awake performs worse than software
phasers because of the sequentially accumulated cost of hardware interrupt in
suspend /awake implementation. For software hierarchical phasers, both signal
gathering and wait operations are performed in parallel, thus reducing overhead.

The threadring microbenchmark evaluates point-to-point signal-wait opera-
tion of two tasks. In this program, a group of tasks form a signal ring; each task
waits on the signal from the previous task and signals the next task after receiv-
ing the signal. As shown in Figure the memory consumption of the software
busy-wait approach has little impact on the time required to complete a round
of the ring. In fact, the implementation using software phasers performs slightly
better than the one using hardware interrupts. These imply the effectiveness of
using the portable software-based solution for point-to-point synchronizations.

The high performance obtained using the busy-wait implementation is due in
part to the high bandwidth and low latency of the local on-chip memory in C64.

Hardware and Software Tradeoffs for Task Synchronization 121

Although the other techniques in our experiments use hardware support, they
still suffer from overhead in the supporting software required to use the hardware
primitives. In contrast, busy-wait uses a very simple polling mechanism that does
not require complex software support.

4.4 Applications

A simulation of propagation of electromagnetic waves that uses the two-
dimensional finite difference time domain (FDTD2D) algorithm was used to
test the effectiveness of phasers for commonly used scientific applications. The
FDTD algorithm used [II] is an excellent choice to study synchronization and
parallelization techniques for manycore architectures; the algorithm has abun-
dant parallelism and its complexity depends on the physical phenomena that it
models, ranging from a simple read-modify-write of an array to numerical in-
tegration of physical variables. The experiments simulate the propagation of a
wave in two dimensions, with an implementation that results in a two dimen-
sional array where each element is updated several times using data from the
array elements that surround it. A full description of the FDTD algorithm used
here can be found in [I2].

The case presented in Figure is characterized by a constant amount of
computation per array element. Barriers have been successfully used to synchro-
nize multiple threads executing the program, since all threads share approxi-
mately the same amount of workload.

12 35
Dasync/finish hardware barrier
10 @async/finish+phaser 307 phaser with hardware barrier
Basync/finish+hardware barrier 25 Bphaser with hardware suspend/awake
s 1
20
T
£
=15
10
5
04
2 4 8 16 32 64 128
threads # threads
(a) FDTD 2D (b) SOR

Fig. 6. Applications Performance Using Different Implementations

Figure shows FDTD2D performance using following implementations:

1. async/finish: use finish to join tasks as barrier operations; tasks are recreated
via async and joined in each iteration. This approach is commonly used in
task parallel programming language, such as Cilk.

2. async/finish+phaser: use phaser to perform barrier wait; tasks are created
once, and then coordinated via phasers in each iteration. Tasks are termi-
nated when the computation completes.

122 Y. Yan et al.

3. async/finish+hardware barrier: similar to async/finish+phaser, but using
hardware barrier to perform barrier wait.

The implementation using phasers doubles the performance of the one using fin-
ish for synchronization. The reason behind this is that finish is a coarse-grained
synchronization approach, and it suffers from the runtime overhead for creating
and scheduling tasks. Thus algorithms that require fine grained synchronization
with large number of iterations should use lower-overhead, finer-grained task co-
ordination mechanism such as phasers. The similar performance between the one
using phasers and the one using hardware barriers is because phasers adaptively
switch to hardware barrier when it detects a barrier wait should be performed.

Another application we used for the evaluation is Red-Black Successive Over-
Relaxation (SOR). SOR is a method of solving partial differential equations using
a variant of Gauss Seidel method. Task synchronization patterns are similar to
FDTD2D, requiring barrier operations to synchronize each iteration. Figure
shows similar executions time for phasers and hardware barriers, demonstrating
the adaptivity of our phaser implementation to the underlying hardware.

5 Related Work

Cilk [6], Cilk+4, and OpenMP 3.0 introduced task parallelism at the program-
ming language level. The Cilk’s sync and OpenMP’s taskwait constructs, related
to finish in Habanero-C, are global barrier synchronization points indicating that
the execution of current task cannot proceed until all previously spawned tasks
have completed. Using this style of synchronization, the runtime efficiency de-
pends heavily on the granularity of parallelism built into the program.

X10 [I] and Chapel [2] provide constructs for dynamic task creation and con-
structs for task synchronization. X10 allows for the barrier-style phase advancing
among all participating tasks using the next operation but it lacks of the point-
to-point signal-wait style coordination capability that is available in phasers.
Chapel introduce sync variables for programming producer-consumer coordina-
tion among tasks. Chapel does not provide direct language construct for barrier
operations, or phase-ordered synchronization.

The JUC CyclicBarrier class [I3] supports periodic barrier synchronization
among a set of threads. Unlike phasers, however, CyclicBarrier does not sup-
port the dynamic addition or removal of threads; nor do they support one-way
synchronization or split-phase operations.

6 Conclusions and Future Work

In this paper, we present the design and implementation of phasers, a high-
level synchronization construct for asynchronous tasks on manycore Cyclops64
processors in the Habanero-C workstealing runtime. We have designed and im-
plemented different techniques for phaser synchronization on C64 that use a

Hardware and Software Tradeoffs for Task Synchronization 123

combination of software-based busy-wait approach, hardware barriers, and hard-
ware support for thread suspend/awake. Our experiments show that phasers are
able to take advantage of hardware primitives on manycore architectures and
optimizations for their memory subsystems to provide superior performance to
portable software approaches.

In the future, we will experiment with more bandwidth-limited applications on
C64 to evaluate the limitations of our busy-wait phaser implementation. We will
also investigate more applications for other phasers operations, such as broadcast
and reduction.

Acknowledgments. We wish to thank Vincent Cavé and Joshua Landwehr for
their hard work on the correctness, performance and efficiency of the Habanero-
C runtime. We wish to express our gratitude to ET International for their advice
and their logistics support which ultimately boosted the quality and quantity of
our experiments. This work was supported by the National Science Foundation
through grants CCF-0833122, CCF-0925863, CCF-0937907, CNS-0720531, and
OCI-0904534.

References

1. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
OOPSLA, pp. 519-538. ACM, New York (2005)

2. Chapel Programming Language, http://chapel.cray.com/

3. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In: Proceedings of
the 22nd ICS, New York, NY, USA, pp. 277-288 (2008)

4. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-First and Help-First Scheduling
Policies for Async-Finish Task Parallelism. In: IPDPS 2009 (2009)

5. Cuvillo, J.d., Zhu, W., Hu, Z., Gao, G.R.: TiNy Threads: A Thread Virtual Ma-
chine for the Cyclops64 Cellular Architecture. In: IPDPS 2005, 265.2 (2005)

6. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN Conference on PLDI.
Ser. PLDI 1998, pp. 212-223. ACM Press, New York (1998)

7. Sarkar, V.: Synchronization using counting semaphores. In: Proceedings of the 2nd
International Conference on Supercomputing, pp. 627-637. ACM, New York (1988)

8. Shirako, J., Sarkar, V.: Hierarchical phasers for scalable synchronization and re-
ductions in dynamic parallelism. In: IPDPS 2010 (2010)

9. Wentzlaff, D.; et al.: On-chip interconnection architecture of the tile processor.
IEEE Micro. 27(5), 15-31 (2007)

10. ROSE compiler framework, http://www.rosecompiler.org

11. Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference
Time-Domain Method, 3rd edn. Artech House Publishers, Boston (2005)

12. Orozco, D., Gao, G.: Diamond tiling: A tiling framework for time-iterated scientific
applications. In: CAPSL Technical Memo 091 (December 2009)

13. Goetz, B.: Java Concurrency In Practice. Addison-Wesley, Reading (2007)

http://chapel.cray.com/
http://www.rosecompiler.org

OpenMPspy: Leveraging Quality Assurance
for Parallel Software

Victor Pankratius, Fabian Knittel, Leonard Masing, and Martin Walser

Karlsruhe Institute of Technology, IPD
76128 Karlsruhe, Germany
pankratius@kit.edu, {knittel,masing,walser}@student.kit.edu

Abstract. OpenMP is widely used in practice to create parallel soft-
ware, however, software quality assurance tool support is still imma-
ture. OpenMPspy introduces a new approach, with a short-term and
a long-term perspective, to aid software engineers write better paral-
lel programs in OpenMP. On the one hand, OpenMPspy acts like an
online-debugger that statically detects problems with incorrect construct
usage and which reports problems while programmers are typing code in
Eclipse. We detect simple slips as well as more complex anti-patterns that
can lead to correctness problems and performance problems. In addition,
OpenMPspy can aggregate statistics about OpenMP language usage and
bug patterns from many projects. Insights generated from such data help
OpenMP language designers improve the usability of constructs and re-
duce error potential, thus enhancing parallel software quality in the long
run. Using OpenMPspy, this paper presents one of the first detailed em-
pirical studies of over 40 programs with more than 4 million lines of code,
which shows how OpenMP constructs are actually used in practice. Our
results reveal that constructs believed to be frequently used are actually
rarely used. Our insights give OpenMP language and compiler designers
a clearer picture on where to focus the efforts for future improvements.

1 Introduction

Multicore processors are everywhere. Many programmers now use OpenMP [3/4]
to write parallel software that exploits the hardware capabilities. Programming
with OpenMP does not require programmers to deal with low-level parallelism
details; instead, higher-level #pragma statements are used to introduce paral-
lelization, e.g., in Fortran and C.

While programming with OpenMP appears to be simple, its approach still
has its pitfalls. It is possible to slip and forget important pragma declarations,
introduce data races, or use constructs in a way that harms parallel performance.
Error feedback from compilers and tools might come too late and thus require
significant effort to fix follow-up problems that could have been avoided ear-
lier. In addition, the design of language constructs influences how programmers
use those constructs and what kind of mistakes they make. Consequently, infor-
mation about how OpenMP constructs are used in practice helps assess their
usability and make future improvements that reduce error potential.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 124 2011.
© Springer-Verlag Berlin Heidelberg 2011

OpenMPspy: Leveraging Quality Assurance for Parallel Software 125

This paper takes a new position with a broader view on parallel software
quality assurance. Parallel code has good quality if it is correct, easy to under-
stand, performs within defined parameters, and if the potential of introducing
errors during extensions is low. Our quality assurance process thus introduces
two systematic feedback loops: (1) In a short-term approach, programmers re-
ceive feedback on errors in an instant while they are programming. (2) In a
long-term approach, we aim to improve parallel language design. To achieve
this, we need to learn from individual programmers and projects. Our approach
thus establishes the second feedback loop that provides such empirical data back
to language designers, so they can improve future versions of OpenMP. In con-
trast to the status quo where this kind feedback might be sporadically posted
on the Web in an unstructured fashion, we are among the first to collect and use
it in a structured and systematic way.

In particular, our paper makes the following novel contributions. We present
OpenMPspy, a tool that demonstrates the feasibility of our approach. OpenMPspy
acts as an online-debugger in the Eclipse environment and gives developers in-
stant feedback. The tool uses static analysis and reports errors affecting correct-
ness (e.g., that might lead to race conditions) and hints on how to improve
parallel performance. Furthermore, it collects statistics on matching bug patterns,
performance-harming patterns, and construct usage patterns. OpenMPspy can
operate in different modes to aggregate such empirical data from many projects.
Language designers and compiler writers are provided with a big picture on the
usability of OpenMP, so they can make better decisions. We conduct one of the
first empirical studies on 46 projects with over 4 million lines of code to determine:
(1) what are the most frequently used constructs are and where it makes sense
to spend most effort; (2) where to improve syntax and semantics to reduce paral-
lel programming error potential; (3) detect and deal with unused or rarely used
language constructs. Generally speaking, such an empirically grounded approach
— as opposed to subjective expectations — not only improves parallel software
quality, but tailors programming languages to real market needs.

The paper is organized as follows. Section [2] introduces OpenMPspy and ex-
plains how it works. Section [l shows how OpenMPspy works on real projects.
We illustrate that OpenMPspy detects previously unreported bugs and discuss
how OpenMP language constructs are used in practice on 46 projects. Section @l
presents insights and lessons learned on how to improve OpenMP. Section
contrasts related work. Section [d] provides a conclusion.

2 Overview of OpenMPspy

This section introduces OpenMPspy’s mode of operations, its code analysis
framework, and its analysis features.

2.1 Modes of Operation

OpenMPspy has three modes of operation. In mode (1), it works as a stand-alone
online debugger in Eclipse. It provides OpenMP programmers with interactive

126 V. Pankratius et al.

feedback directly in the IDE. Mode (2) is a batch mode that allows execut-
ing OpenMPspy from the command line to analyze a collection of individual
projects. OpenMPspy creates aggregate statistics on patterns matching errors,
performance problems, and language construct usage. Mode (3) is a client-server
mode that implements the data collection in a distributed environment (e.g., over
the Internet). In this mode, OpenMPspy locally collects statistics while program-
mers use the tool during regular program development. Statistics are sent to a
server that creates overviews from data of potentially hundreds of thousands of
programmers.

2.2 The Code Analysis Framework

OpenMPspy integrates into the Eclipse CDT framework. In particular, it draws
upon the abstract syntax tree (AST) generated by Eclipse CDT. However,
Eclipse’s OpenMP support is incomplete; OpenMP statements are not part of
the Eclipse AST and provided separately as a list with preprocessor symbols and
code locations. We thus extended the AST data structure to include new nodes
for all OpenMP statements, as exemplified below:

#pragma omp parallel for ASTPragma (OpenMP pragma: omp parallel for)

for(int i = 2;i<10;i++4) CPPASTForStatement

{ CPPASTDeclarationStatement
) CPPASTSimpleDeclaration

We use extensions based on the CODAN framework [I] for static OpenMP
code analysis. CODAN and CDT provide functionality to walk our AST and use
visitor patterns [6] to perform individual analyses. In the implementation, we
define a checker for each issue or problem that we want to analyze. Each checker
has one or more associated patterns. A checker is represented by a single class
that extends a base checker class from the framework, as outlined below:

public class MyChecker extends AbstractIndexExtendedAstChecker { ...
class CheckStmpVisitor extends ExtendedASTVisitor { ...
public int visit(...) {...}
}
}

It is possible to employ several visitors at the same time; for example, an outer
visitor might visit OpenMP directives and start a nested specialized visitor to
work on certain nodes. When a pattern specified within a visitor matches on
the AST, results can be displayed in the Eclipse IDE (e.g., as hints, warnings,
errors) and provide direct feedback to developers. A pattern detection is usually
triggered after each source code modification. This way, we realize an online
OpenMP debugger that reports problems while programmers are typing code
(see Figure [)).

Our program design based on checkers makes OpenMPspy extensible. For
example, it is easy to add an extension and enhance the race detection with
additional patterns. The detection capabilities of our tool can be updated by
exchanging checker patterns (e.g., by ones downloaded from the Web).

OpenMPspy: Leveraging Quality Assurance for Parallel Software 127

P (D b G« G~ K-8~ B0 Q- @54~ DEs

% Possible Race on non private or threadlocal variable sum

sum +e Y poren
| £ Coutd use omp atomic intead: Crincal sectien centans oaly primine types and assgements |
if (kmown_sum '= sum) |

Fig. 1. Instant IDE feedback from OpenMPspy’s online debugger

2.3 Analysis Features for OpenMP

OpenMPspy implements three types of code checkers: (1) checkers for error pat-
terns; (2) checkers for performance-harming patterns; (3) checkers for statistics
collection of OpenMP construct usage. We describe each category in brief.

(1) Checkers for error patterns. Several checkers are implemented to
detect various kinds of parallel programming errors. One of the most complex
checkers is the race checker. Using multiple AST visitors, it searches for code
patterns that can lead to races. As the entire analysis is static, it can report false
positives, however, we use several techniques with specific focus on OpenMP
to reduce the number of warnings. For example, the race checker analyzes for
each parallel region which variables are private or shared. Then, it looks for
unsynchronized variable accesses that can be potentially performed by several
threads. In contrast to other tools, our checker pays attention to a variety of
special cases that do not lead to races, e.g., for constructs such as threadprivate,
firstprivate, lastprivate, and variables declared within parallel regions. To avoid
unnecessary warnings, the race checker performs analyses on the specific error
potential of the most frequently used constructs, such as omp parallel for.
Further unnecessary warnings are avoided for variables in reduction clauses
whose write accesses are handled implicitly by OpenMP. Other special cases are
considered for section blocks that perform parallel work. In parallel regions,
the checker performs additional analyses on function calls to determine whether
variables are copied or passed on by reference. It ensures for referenced variables
that no update operations are performed without synchronization.

Another checker controls the wrong usage of the nowait clause in work sharing
constructs. This clause removes implicit barriers to increase performance, but
might introduce data races. The checker analyzes all constructs that have an
implicit barrier that is overridden by nowait. It statically follows the control
flow until it reaches the next barrier. Along the path so far, it checks all variable
read and write accesses for potential races. In particular, it pays attention to
special cases such as using nowait together with lastprivate; this situation
might lead to unsynchronized updates on loop variables.

Other checkers detect slips in OpenMP construct usage. For example, they
identify inconsistent usage of omp for with no associated parallel. In addition,

128 V. Pankratius et al.

warnings are issued for orphaned work sharing constructs, e.g., work sharing
declarations with sections that don’t have a section actually defining work.
As another example, checkers detect if an ordered directive is not within the
extent of a for or parallel for with an ordered clause.

OpenMPspy also addresses problems encountered with new constructs from
the OpenMP 3 standard, such as untied tasks. These tasks can be executed by
one thread, halted, and be resumed by another thread. This implicit assumption
can cause problems, for example when threadprivate variables are accessed in
untied tasks. A particular checker reports this kind of problem.

Loop variables are another common source of errors. OpenMPspy detects if
code within a parallel for loop attempts to modify loop variables and termi-
nation conditions, which is not allowed by the OpenMP standard [3].

Other checkers ensure that calls to the OpenMP runtime are used correctly,
thus avoiding run-time errors and crashes. For example, specific checks are done
to ensure that calls to set num threads are only done in appropriate locations.

(2) Checkers for performance-harming patterns. Static analysis can
detect code that may cause performance problems and provide developers with
suggestions for improvement. One of our checkers analyzes critical sections and
generates hints if an atomic construct could be used instead of a critical
construct. The atomic construct allows more parallelism in certain situations
than the critical construct. Our tool relieves the programmers from the burden
of looking up the language specification about the syntactical details of operators
and the data types where atomic applies to.

(3) Checkers for language usage patterns. Language usage statistics
are collected by special checkers that do not display information in the IDE. For
example, these checkers count the number of times a particular construct is used,
or the level of nesting. The checkers distinguish between all specific options of
a construct. OpenMPspy is able to create statistics showing which syntactical
construct variants are actually used.

3 Analyzing with OpenMPspy: A Study of Real Projects

This Section presents results on using OpenMPspy on 46 projects. We sketch
the projects, the effectiveness of OpenMPspy to find previously unreported er-
rors, and the statistics collected on OpenMP language construct usage that are
relevant to software quality assurance.

3.1 Applications

We study a total 46 OpenMP programs, divided in two categories: real-world
programs and OpenMP benchmark programs. As later data will show (Tables[I]
2 and [3), this categorization reveals that real-world programs employ OpenMP
differently than benchmark programs.

The benchmark programs are collected from well-known OpenMP benchmarks
as presented in Table [Il The real-world projects are collected from the Debian

OpenMPspy: Leveraging Quality Assurance for Parallel Software 129

Repository. We selected all programs that have a dependency to OpenMP lib-
gomp. Each program was manually checked to ensure it uses OpenMP constructs;
a few programs that did not satisfy this condition were pruned. We added to the
program set a few more OpenMP programs that were not part of the Debian
Repository, and ensured that we used the latest stable version of every programs.
Our final set is listed in Table 2l

Tables [[land 2linclude the total number of uncommented lines of code (LOC)
for each project and illustrate how many lines contain OpenMP constructs (LOC
OpenMP). It is worth noting that on average, OpenMP makes up less than 1% of
all lines of code. In particular, benchmarks have a higher percentage of OpenMP
(0.21% of LOC) compared to real-world projects (0.022% of LOC).

3.2 Finding Unreported Errors in Real Projects

We illustrate in depth several problems that OpenMPspy was able to detect
in real projects, which were not reported so far. The races described next are
related to OpenMP language design and suggest that it favors slips and misun-
derstandings in certain situations.

Error 1: The problem is a race in a video subtitle editor, aegiSub-2.1.8, au-
dio spectrum.cpp, line 186. A variable “sample” is declared globally and implic-
itly shared, and the programmer might have forgotten about this assumption.
Inside a pragma omp for, the “sample” variable is updated by potentially sev-
eral threads without synchronization, which can cause a race. This is an error
has not been reported so far. It is worth noting that this project has a total of
just 2 lines of OpenMP, and the programmer already introduced a race!

Error 2: The problem is a race in a fluid flow tracking application, libgpiv-
0.6.1, valid.c, line 494. Initially, two variables i and j are declared outside a
parallel region. Then, a pragma omp for is inserted before a nested loop, where
the first loop iterates over i and the second over j (without re-declaration inside
the for parenthesis). No constructs are used to define visibility for i and j, so
implicitly i is treated as private and j as shared. The programmer might have
wrongly assumed that j is private as well. This can lead to races when the second
loop is executed by different threads that each update their counter variable j.
This incorrect pattern is used in several places in the code. This problem is
serious considering that the project has a total of 25 lines of OpenMP code.

Error 3: The problem is a race in an artificial life simulation application,
critterding-1.0-betal2.1, roundworld.cpp, line 100. In a pragma omp parallel
for ordered shared(freeEnergyc, lmax), the programmer includes the or-
dered clause, with the intention to execute loop iterations in the same order
as if they were executed on a sequential processor. However, he or she forgets
to include a pragma omp ordered directive within the loop, which should ac-
tually specify what is to be ordered. This causes potentially racy accesses to
freeEnergyc+=... within the loop, which has no synchronization. This is again
an error in a project with just 15 lines of OpenMP code.

130

Table 1. Programs from OpenMP benchmarks

V. Pankratius et al.
No. Project name
Bl EPCC Microbench 2.0
B2 NPB3.3 OMP
B3 OmpSCR 2.0
B4 OpenMP Validation Suite
Parsec 2.1
B5 /blackscholes
B6 /bodytrack
B7 /ferret
B8 /freqmine
B9 /tbblib
IPP 7.0.1.041
B10 /audio video codecs
B1l /data compression
B12 /image codecs
B13 /realistic rendering
specomp2001
B14 /L2001/321.equake 1
B15 /L2001/331.art |
B16 /M2001/320.equake m
B17 /M2001/330.art m
B18

Description

OpenMP Microbenchmark
NASA Parallel Benchmark
Various OpenMP sources

PARSEC benchmark suite
Option pricing

Computer vision app
Search engine app

Data mining app

Intel TBB lib

Intel IPP code samples
Codecs samples

Data compression samples
Image codecs samples
Rendering samples

SPEC OMP benchmarks
Finite element simulation
Neural network simulation
Finite element simulation
Neural network simulation

/M2001/332.ammp m Computational chemistry

Validates OMP implement.

Table 2. Real projects using OpenMP

z
o

. Project name

3depict 0.0.3
AegiSub 2.1.8
aaphoto 0.41
blender 2.49.2
ccbuild 2.0.1
coin-or csdp 6.1.1
critterding 1.0 b12.1
enblend enfuse 4.0
gettext 0.18.1.1
gmsh 2.5.0
gpivtools 0.6.0
graphicsmagick 1.3.12
gretl 1.9.3
imagemagick 6.6.7
inkscape 0.48.0
kdegraphics 4.4.5
kipi plugins 1.7.0
libcomplearn 1.1.7
libgpiv 0.6.1
libgsearch 1.0.8
opencv 2.2.0
pdf2djvu 0.7.4
pfstmo 1.4
projectm 2.0.1

sox 14.3.1

tintii 2.4.0

ufraw 0.17

yamas 0.8.5

© 000Uk WN -

Description

Point cloud visual./analysis
Video subtitle editor

Photo adjusting

3D content creation

C++ Source build utility
Operations research
Artificial life simulation
Image blending
Localization of software

3D meshing

Fluid flow tracking

Image processing
Econometric analysis

Image manipulation

Vector graphics editor

Gfx apps and libs for KDE
KDE Image Plugin Interface
Machine learning compressor
Fluid flow tracking

Tree search library
Computer vision library
Document conversion

HDR tone mapping

Music visualizer

Audio file conversion
Selective image coloring
Raw image format importer
Genome meta-analysis

LOC LOC % LOC
total OpenMP OpenMP
886 41 4,63%
4.920 23 0,47%
4.291 126 2,94%
6.562 799 12,18%
1.262 4 0,16%
7.696 6 0,08%
10.765 13 0,12%
2.164 18 0,83%
38.319 3 0,01%
371.749 4 0,001%
7.520 4 0,001%
112.123 66 0,06%
19.565 85 0,43%
1.128 28 2,48%
1.594 15 0,94%
1.102 16 1,45%
1.594 15 0,94%
9.785 33 0,34%
603.025 1.299 0,21%
LOC LOC % LOC
Total OpenMP OpenMP
30.816 75 0,24%
133.987 2 0,002%
3.614 38 1,05%
973.291 10 0,001%
7.305 9 0,12%
6.875 17 0,25%
81.839 15 0,02%
17.551 49 0,28%
506.366 2 0,0004%
296.876 9 0,003%
6.804 3 0,04%
233.960 174 0,07%
287.215 9 0,003%
299.304 345 0,12%
396.756 4 0,001%
175.507 9 0,01%
150.388 3 0,002%
2.935 3 0,10%
17.801 25 0,14%
2.597 4 0,15%
426.339 14 0,003%
5.869 3 0,05%
6.235 27 0,43%
64.370 41 0,06%
41.597 7 0,02%
4.619 15 0,32%
34.799 31 0,09%
2.500 12 0,48%
4.218.115 955 0,022%

OpenMPspy: Leveraging Quality Assurance for Parallel Software 131

Table 3. OpenMP language usage in real-world and benchmark projects

(a) LOC Total

(b) %LOC with resp. to R
(¢) % of total OpenMP LOC
(d) LOC Total

(e) %LOC with resp. to R
(£)% of total OpenMP LOC

OpenMP Bench-

Real Projects mark Projects

(A) Synchronization Constructs

1. critical 246 94.6 25,8 98 49,2 7,5
2. ordered 3 1.2 0,3 9 4,5 0,7
3. atomic 1 0.4 0,1 26 13,1 2,0
4. taskwait 1 04 0,1 0o 00 0,0
5. barrier 0 0 0,0 11 5,5 0,8
6. omp set lock 6 2.3 0,6 32 16,1 2,5
7. omp init lock 3 1.1 0,3 20 10,1 1,5
8. omp set nest lock 0 0 0,0 1 0,5 0,1
9. omp test lock 0 0 0,0 1 0,5 0,1
10. omp test nest lock 0 0 0,0 1 0,5 0,1
R: Reference for col. b & e: sum A1..A10 260 100 27,2 199 100 15,3
(B) Variable Visibility Constructs
1. shared 279 76.0 29 59 24.1 4,5
2. private 87 23.7 9 175 71.4 13,5
3. threadprivate 1 0.3 0 11 4.5 0,8
R: Reference for col. b € e: sum B1..B3 367 100 38 245 100 18,9
(C) Variable Initialization Constructs
1. firstprivate 8 100 0,8 10 62.5 0,8
2. lastprivate 0 0 0,0 4 25 0,3
3. copyin 0 0 0,0 2 12.5 0,2
R: Reference for col. b & e: sum C1..C3 8 100 0,8 16 100 1,2
(D) Parallel For Loop Constructs
(D1)#pragma omp parallel for
1. sum of for 491 100 51,4 110 100 8,5
2. schedule dynamic 235 48 24,6 34 31 2,6
3. schedule static 88 18 9,2 11 10 0,8
4. schedule guided 1 0 0,1 7 6 0,5
5. schedule runtime 1 0 0,1 0 0 0,0
6. no schedule option 166 34 17,4 58 53 4,5
7. reduction in for 17 3 1,8 26 24 2,0
R: Reference for col. b € e: D1 1 491 100 51,4 110 100 8,5
(D2)#pragma omp parallel{... #pragma omp for
1. sum of for 26 100 2,7 118 100 9,1
2. schedule dynamic 9 35 0,9 35 30 2,7
3. schedule static 1 4 0,1 12 10 0,9
4. schedule guided 4 15 0,4 3 3 0,2
5. schedule runtime 1 4 0,0 0 0 0,0
6. no schedule option 11 42 1 68 58 5
7. reduction in for 0 0 0,0 17 14 1,3
R: Reference for col. b € e: D2 1 26 100 2,7 118 100 9,1
(E) Tasking Constructs
1. task 3 75 0,3 0 - 0
2. taskwait 1 25 0,1 0 - 0
R: Reference for col. b & e: sum E1..E2 4 100 0,4 0 - 0
(F) Feedback and Control of Parallelism
1. get thread num 31 74 3,2 102 63 7,9
2. get num threads 8 19 0,8 27 17 2,1
3. master 2 5 0,2 15 9 1,2
4. single 1 2 01 17 11 1,3
R: Reference for col. b € e: sum F1..Fj 42 100 4,4 161 100 12,4
(G) Parallel Section Constructs
1. section 16 100 1,7 218 100 16,8
2. sections 5 31 0,5 73 33 5,6
R: Reference for col. b € e: G1 16 100 1,7 218 100 16,8

132 V. Pankratius et al.

Error 4: The problem is a race in a visual analysis applications, 3depict-0.0.3,
rdf.cpp, line 720. The programmer defines a variable warnBiasCount outside
a parallel region. Within a parallel for, the visibility of warnBiasCount is
not defined explicitly, which means that it is implicitly shared. Incrementing
warnBiasCount within the loop without synchronization can lead to races. This
project has 75 lines of OpenMP code.

OpenMPspy also reports performance issues, which are technically not an er-
ror, but which should be fixed to improve performance. Such patterns indeed oc-
cur in practice. For example, OpenMPspy reports a CriticallnsteadOfAtomic pat-
tern in graphicsmagick-1.5.12, file pnm.c, line 621. There, a variable status up-
date could be done with pragma omp atomic instead of pragma omp critical.

Insights. These empirical examples illustrate that even when programmers
use just a few lines of OpenMP they still inadvertently introduce races. Im-
plicit assumptions about shared and private variable visibility seem to favor
error-proneness. Error potential could have been reduced in the aforementioned
examples with explicit visibility declarations for all variables.

3.3 How OpenMP Constructs Are Used in Practice

Table Bl shows OpenMPspy’s quantitative results on how OpenMP language
constructs are used in all projects. There are seven categories of constructs that
are discussed in this Section. The table partitions results by real projects and
benchmark projects. Columns (a),(d) show how many lines of code contain a
certain construct; columns (b),(e) show the percentage of LOC in relation to
the reference value defined for each construct category; columns (c),(f) show the
percentage of LOC with a certain construct to the total lines of OpenMP code
(see bottom of Tables [l and []).

(A) Synchronization constructs. In real projects, critical is the most
frequently used synchronization construct, which makes up 95.6% of all syn-
chronization constructs. Other constructs such as atomic, explicit barrier,
and explicit locks are almost never used. By contrast, in OpenMP benchmarks,
critical makes up 49.2% of all synchronization constructs usage. Atomic and
locks are used more often in benchmarks to optimize performance.

(B) Variable visibility constructs. In real projects, the shared declaration
is used in 76% of all visibility declarations and private in 23.7%, which is an
interesting observation. As OpenMP defines most variables as shared by default,
one would expect that private occurs more frequently as programmers rely on
implicit shared declarations. It appears that the shared declaration is often used
for documentation purposes. The situation is reversed in benchmark projects,
where shared is used in 24.1% of all visibility declarations, and private in
71.4%.

(C) Variable initialization constructs. Constructs such as firstprivate,
lastprivate, copyin, handle input and output to parallel sections. Real projects,
however, hardly use any of these clauses and exchange data mostly over shared
variables. In benchmark projects, these clauses are also rarely used.

OpenMPspy: Leveraging Quality Assurance for Parallel Software 133

(D) Parallel for loop constructs. The #pragma omp parallel for (D1)
is the flagship of OpenMP and the most frequently used directive in real projects
(used in about half of all OpenMP lines). It has several options to guide schedul-
ing and improve performance. Looking at all #pragma omp parallel for, the
most frequently employed option is dynamic (48%), followed by no option (34%),
and static (18%). The slightly different syntax (D2) with #pragma omp for
within a parallel region is rarely used (in less than 3% of all OpenMP lines).
In the benchmark projects, both syntactical forms (D1) and (D2) have similar
frequency of occurrence, but are not too dominant in relation to the total lines
of OpenMP benchmark code. The benchmark projects use no schedule option
most frequently, followed by dynamic and static. Surprisingly, reduction isn’t
used a lot — both in real projects and in benchmark projects.

(E) Tasking constructs. Tasking is almost never used in real projects. This
is surprising, as tasks were expected to make OpenMP parallel programming
easier. It is well possible that programmer don’t use tasks because the language
standard is too new and the tool chain is immature.

(F) Feedback and control of parallelism constructs. A few real projects
use constructs helping with feedback and manual parallelism control, such as
get thread num and get max threads, master, and single. About 3% of all
OpenMP lines include get thread num. The other constructs are almost never
used. These observations suggest that OpenMP programmers in real projects
did not control parallelization too deeply. In the benchmark projects, these con-
structs are more frequently used (7.9%), which matches the more frequent usage
of locks.

(G) Parallel sections constructs. The section construct, in combination
with the nested sections constructs, give programmers more control over what
can be run in parallel. Obviously this functionality is almost never used in real
programs. By contrast, these constructs are more frequently employed in bench-
mark projects.

4 Insights for Parallel Software Quality Improvement

OpenMPspy’s empirical results teach us important lessons on how OpenMP can
be enhanced. In the long run, a better match of OpenMP’s syntax and seman-
tics to programmer’s intuitions helps improve software quality by: (1) reducing
the potential for parallel programming errors and (2) making code easier to un-
derstand. Results also show where developers of real-world projects might need
more training.

As shown in Section [3.3] programmers specify shared variable visibility of-
ten, even though it might not be necessary. This can be explained by a need
to document the parallel program and make its understanding easier. However,
the errors described in Section B2 provide evidence that programmers misunder-
stand when variables are implicitly shared and when they are private, which is
a fertile ground for races. We therefore recommend that each OpenMP variable
has a mandatory visibility declaration. In addition, races could be easier to avoid
if variables are implicitly private by default.

134 V. Pankratius et al.

The atomic keyword is almost never used. Perhaps most users don’t under-
stand how it can improve performance. As critical is used for most critical
sections, it would make sense to invest in compiler optimizations that replace,
where appropriate, critical by atomic behind the scenes. Locks are also rarely
used, which suggests that OpenMP programmers actually want a higher level of
parallel programming. This is also supported by the fact that none of the real
projects use explicit barriers, which implies that OpenMP’s implicit barriers
suffice.

Our real program set hardly uses any constructs that give programmers more
control over parallelization, such as sections, master, single, get thread num.
This observation is yet another indication that OpenMP programmers are risk-
averse in practice and do not want to get involved in low-level parallelism details.

The #pragma omp parallel for is OpenMP’s most frequently used con-
struct. Results show that programmers typically chose scheduling options that
delegate performance management to the run-time environment. Future run-time
environments should therefore emphasize more sophisticated ways to optimize
loop performance behind the scenes. Debuggers and race detectors, on the other
hand, can refine and perform more detailed analyses to account for the increased
error probabilities due to more frequent usage of parallel loop constructs.

The empirical evidence suggests that OpenMP programmers prefer higher-
level parallel programming constructs and that there is a clear preference on
which constructs are used in practice. Language designers must therefore focus
on these issues in the future. Removing unused constructs is another point for
discussion in the standardization committee, so compiler and tool developers
don’t have to invest in unnecessary features.

5 Related Work

An empirical study of parallel

programming errors has been pre- Tool Comparison / Patterns
. . for loop / loop var. modification
sented in [9]a but it does not for loop / loop-test var. modification

address OpenMP. Recent work- performance: critical instead atomic
’omp set num threads()’ in par. region

ShOpS [2} have begun to taCkle us- data dependency / bad ’nowait’ use

abi]ity aspects for programming ordered clause / no ordered directive
empty “#pragma omp ordered” region

language demgn; hOWGVGI‘, Open' empty “#pragma omp sections” region x x x

Intel Parallel Lint

VivaMP

Eclipse + gcc
KK KKK KKK KXKXNX KX OpenMPspy

% % VisualStudio2008
% % VisualStudio2010

®

®
L] "
" ® "

MPSpy is the first to present an directly nested parallels X X
. . orphaned “#pragma omp for” X X

automated usablhty CheCklng AP~ orphaned “#pragma omp section” X X X
proach for OpenMP. Debugging no data-sharing attr. set reminder XX X X
races / modified shared variables X X

parauel prograis has been ex- threadprivate vars in “task untied”
plored in various contexts; [7]

presents a taxonomy of race detection algorithms and shows the general problem
is equivalent to the halting problem, which is why no universal detector exists.
Static race detectors such as [8] analyze code without execution; OpenMPspy’s
static approach detects a larger variety of different patterns, which also include
races and performance-harming patterns (see Table). OpenMPspy specializes its

OpenMPspy: Leveraging Quality Assurance for Parallel Software 135

code checkers on the particular characteristics of OpenMP constructs to reduce
the number of false warnings. In addition, our tool is among the first to also col-
lect and aggregate language usage statistics to enhance language design. Most
on-the-fly race detectors require program executions [I1] or specialized hardware
[10]. Dynamic race detectors such as [5] introduce large run-time overhead, which
makes them inappropriate to execute while programmers are typing code.

6 Conclusion

OpenMPspy presents a novel approach to enhance OpenMP software quality.
OpenMPspy’s online debugger instantly alerts developers to correctness and
performance problems. In the long run, OpenMPspy helps language designers
improve OpenMP syntax and semantics. Decisions can be based on statistical
data from many projects, such as typical errors, performance problems, and lan-
guage construct usage. The evidence in this paper shows that OpenMP can be
adapted in many ways to better match programmer intuitions. Closing this cog-
nitive gap will reduce parallel programming error potential and lead to better
code quality.

Acknowledgements. We thank the Excellence Inititative and the Landess-
tiftung Baden-Wiirttemberg for their support.

References

1. Code Analysis Framework for Eclipse CDT (CODAN) (2010),
http://wiki.eclipse.org/CDT/designs/StaticAnalysis

2. Evaluation and Usability of Programming Languages and Tools (PLATEAU)
Workshops (2010), http://ecs.victoria.ac.nz/Events/PLATEAU

3. The OpenMP API specification for parallel programming (2011),
http://www.openmp.org

4. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP. Portable Shared Memory
Parallel Programming. The MIT Press, Cambridge (2007)

5. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proc. PLDI 2009, pp. 121-133. ACM, New York (2009)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software, vol. 206. Addison-Wesley, Reading (1995)

7. Helmbold, D.P., McDowell, C.E.: A taxonomy of race detection algorithms. Tech-
nical report, UC Santa Cruz, Santa Cruz, CA, USA, September 28 (1994)

8. Intel. Intel parallel lint. (2010), http://software.intel.com

9. Lu, S., et al.: Learning from mistakes: a comprehensive study on real world con-
currency bug characteristics. In: Proc. ASPLOS XIII (2008)

10. Nistor, A., et al.: Light64: Lightweight hardware support for data race detection
during systematic testing of parallel programs. In: MICRO 2009 (2009)

11. Pozniansky, E., Schuster, A.: Multirace: efficient on-the-fly data race detection in
multithreaded C++ programs. Concurr. Comput.: Pract. Exper. 19(3) (2007)

http://wiki.eclipse.org/CDT/designs/StaticAnalysis
http://ecs.victoria.ac.nz/Events/PLATEAU
http://www.openmp.org
http://software.intel.com

A Generic Parallel Collection Framework

Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract. Most applications manipulate structured data. Modern lan-
guages and platforms provide collection frameworks with basic data
structures like lists, hashtables and trees. These data structures have a
range of predefined operations which include mapping, filtering or finding
elements. Such bulk operations traverse the collection and process the
elements sequentially. Their implementation relies on iterators, which are
not applicable to parallel operations due to their sequential nature.

We present an approach to parallelizing collection operations in a
generic way, used to factor out common parallel operations in collection
libraries. Our framework is easy to use and straightforward to extend to
new collections. We show how to implement concrete parallel collections
such as parallel arrays and parallel hash maps, proposing an efficient
solution to parallel hash map construction. Finally, we give benchmarks
showing the performance of parallel collection operations.

1 Introduction

With the arrival of multicore architectures, parallel programming is becoming
more widespread. One programming approach is to implement existing program-
ming abstractions using parallel algorithms under the hood. This omits low-level
details such as synchronization and load-balancing from the program. Most pro-
gramming languages have libraries which provide data structures such as arrays,
trees, hashtables or priority queues. The challenge is to use them in parallel.

Collections come with bulk operations like mapping or traversing elements.
Functional programming encourages the use of predefined combinators, which is
beneficial to parallel computations — a set of well chosen collection operations can
serve as a programming model. These operations are common to all collections,
making extensions difficult. In sequential programming common functionality
is abstracted in terms of iterators or a generalized foreach. But, due to their
sequential nature, these are not applicable to parallel computations which split
data and assemble results [I8]. This paper describes how parallel operations can
be implemented with two abstractions — splitting and combining.

Our parallel collection framework is generic and can be applied to different
data structures. It enhances collections with operations executed in parallel,
giving direct support for programming patterns such as map/reduce or parallel
looping. Some of these operations produce new collections. Unlike other frame-
works proposed so far, our solution adresses parallel construction without the
aid of concurrent data structures. While data structures with concurrent access

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 136 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Generic Parallel Collection Framework 137

are crucial for many areas, we show an approach that avoids synchronization
when constructing data structures in parallel from large datasets.
Our contributions are the following:

1. Our framework is generic in terms of splitter and combiner abstractions,
used to implement a variety of parallel operations, allowing extensions to
new collections with the least amount of boilerplate.

2. We apply our approach to specific collections like parallel hash tables. We do
not use concurrent data structures. Instead, we structure the intermediate
results and merge them in parallel. Specialized data structures with efficient
merge operations exist, but pay a price in cache-locality and memory usage
[20] [T7]. We show how to merge existing data structures, allowing parallel
construction and retaining the efficiency of the sequential access.

3. Our framework has both mutable and immutable (persistent) versions of
each collection with efficient update operations.

4. We present benchmark results which compare parallel collections to their se-
quential variants and existing frameworks. We give benchmark results which
justify the decision of not using concurrent data structures.

5. Our framework relieves the programmer of the burden of synchronization
and load-balancing. It is implemented as an extension of the Scala collec-
tion framework. Due to the backwards compatibility with regular collections,
existing applications can improve performance on multicore architectures.

The paper is organized as follows. Sect. 2 gives an overview of the Scala collection
framework. Sect. 3 describes adaptive work stealing. Sect. 4 describes the design
and several concrete parallel collections. Sect. 5 presents experimental results.
Sect. 6 shows related work.

2 Scala Collection Framework

Scala is a modern general purpose statically typed programming language for
the JVM which fuses object-oriented and functional programming [3]. Readers
interested to learn more are referred to textbooks on Scala [4].

Its features of interest for this paper are higher-order functions and traits.
These language features are not a prerequisite for parallel collections — they
serve as a convenience. Qur approach can be applied to other general purpose
languages as well. Functions are first-class objects — they can be assigned to
variables or specified as arguments to other functions. For instance, to find the
first even number in the list of integers 1st, we write: 1st.find(_ % 2 == 0). In
languages like Java without first-class functions, anonymous classes can achieve
the same effect. Traits are similar to Java interfaces and may contain abstract
methods. They also allow defining concrete methods.

Collections form a class hierarchy with the most general collection type
Traversable, which is subclassed by Iterable, and further subclassed by Set,
Seq and Map, representing sets, sequences and maps, respectively [5]. Some oper-
ations (filter, take or map) produce collections as results. They use objects of

138 A. Prokopec et al.

type Builder. Builder declares a method += for adding elements to the builder.
Its method result is called after all the desired elements have been added and
it returns the collection. Each collection provides a specific builder.

We give a short example program (Fig. [[). Assume we have two sequences
names and surnames. We want to group names starting with ’A’ which have same
surnames and print all such names and surnames for which there exists at most
one other name with the same surname. The example uses for-comprehensions
[4] to iterate the sequence of pairs of names and surnames obtained by zip and
filter those which start with ’A’. They are grouped according to the surname
(second pair element) with groupBy. Surname groups with 2 or less names are
printed. The sugared code on the left is translated to a sequence of method
calls similar to the one shown on the right. PLINQ uses a similar approach of
translating a query-based DSL into method calls.

We want to run such programs in parallel, but new operations have to be in-
tegrated with the existing collections. Data Parallel Haskell defines a new set of
names for parallel operations [I4]. Method calls in existing programs have to be
modified to use corresponding parallel operations. A different approach is imple-
menting parallel operations in separate classes. We add a method par to regular
collections which returns a parallel version of the collection pointing to the same
underlying data. We also add a method seq to parallel collections to switch back.
Furthermore, we define a separate hierarchy of parallel sequences, maps and sets
which inherit corresponding general collection traits GenSeq, GenMap and GenSet.

val withA = for {
(n, s) <- names zip surnames

if n startsWith "A" val groups = names.zip(surnames)
} vield (n, s) filter(_._1.startsWith("A"))
val groups = withA.groupBy(_._2) .groupBy(_._2)
for { groups.filter(_._2.size < 3)

(surname, pairs) <- groups .flatMap(_._2)

if pairs.size < 3 .foreach(p => println(p))

(name, surname) <- pairs
} println(name, surname)

Fig. 1. Example program

3 Adaptive Work Stealing

When using multiple processors load-balancing techniques are required. Work
is divided to tasks and distributed among processors. Each processor maintains
a task queue. Once a processor completes a task, it dequeues the next one. If
the queue is empty, it tries to steal a task from another processor’s queue. This
technique is known as work stealing [§] [2]. We use the Java fork-join framework
to schedule tasks [I]. For effectiveness, work must be partitioned into tasks that
are small enough, which leads to overheads if there are too many tasks.

A Generic Parallel Collection Framework 139

— L |

Zhan F8

Fig. 2. Fine-grained and exponential task splitting

Assuming uniform amount of work per element, equally sized tasks guarantee
that the longest idle time is equal to the time to process one task. This happens
if all the processors complete when there is one more task remaining. If the
number of processors is P, the work time for P = 1 is T and the number of tasks
is N, then equation [I] denotes the theoretical speedup in the worst case.

T
(T —T/N)/P+T/N pomo (1)

In practice, there is an overhead with each created task — fewer tasks can lead
to better performance. But this can also lead to worse load-balancing. This is
why we’ve used exponential task splitting [9]. If a worker thread completes its
work with more tasks in its queue that means other workers are preoccupied
with work of their own, so the worker thread does more work with the next task.
The heuristic is to double the amount of work (Fig. 2)). If the worker thread
hasn’t got more tasks in its queue, then it steals tasks. The stolen task is always
the biggest task on a queue. Stolen tasks are split until reaching threshold size
— the need to steal indicates that other workers may be short on tasks too.

The worst case scenario is a worker being assigned the biggest task it processed
so far when that task is the last remaining. We know this task came from the
processor’s own queue (otherwise it would have been split, enabling the other
processors to steal and not be idle). At this point the processor will continue
working for some time 77,. We assume input data is uniform, so 77, must be equal
to the time spent up to that moment. If the task size is fine-grained enough to
be divided among P processors, work up to that moment took (T'— T1)/P, so
T, =T/(P +1). Total time for P processors is then Tp = 2T,. The equation
gives a bound on the worst case speedup, assuming P < N:

speedup =

L=)
je

This estimate says that the execution time is never more than twice as great
as the lower limit, given that the biggest number of tasks generated is N > P.
To ensure this, we define the minimum task size as threshold = max(1,n/8P),
where n is the number of elements to process.

speedup =

140 A. Prokopec et al.
4 Design and Implementation

4.1 Splitters and Combiners

For the benefits of easy extension and maintenance we want to define most
operations (such as filter or flatMap from Fig.[I]) in terms of a few abstractions.
We define splitters — iterators which have operations next and hasNext used to
traverse. In addition, a splitter has a method split which returns a sequence of
splitters iterating over disjunct subsets of elements. This allows parallel traversal.

trait Splitter[T] extends Iterator[T] {
def split: Seq[Splitter[T]]
}

trait Combiner[T, Coll] extends Builder[T, Coll] {
def combine(other: Combiner[T, Coll]): Combiner[T, Coll]
}

Some operations produce collections (e.g. filter). Collection parts produced
by different workers must be combined into the final result and combiners ab-
stract this. Type parameter T is the element type, and Coll is the collection
type. Parallel collections provide combiners, just as regular collections provide
builders. Method combine takes another combiner and produces a combiner con-
taining the union of their elements. Combining results from different tasks occurs
more than once during a parallel operation in a tree-like manner (Fig. [2).

The parallel collection base trait ParIterable extends the GenIterable trait.
It defines operations splitter and newCombiner which return a new splitter
and a new combiner, respectively. Subtraits ParSeq, ParMap and ParSet define
parallel sequences, maps and sets.

class Map[S](f: T => S, s: Splitter[T]) extends Task {
var cb = newCombiner
def split = s.split.map(subspl => new Map[S](f, subspl))
def leaf() = while (s.hasNext) cb += f(s.next)
def merge(that: Map[S]) = cb = cb.combine(that.cb)

Parallel operations are implemented within tasks, corresponding to those de-
scribed previously. Tasks define split, merge and leaf. For example, the Map task
is given a mapping function f of type T => S and a splitter s. Tasks are split
to achieve better load balancing — the split typically calls split on the splitter
and maps subsplitters into subtasks. Once the threshold size is reached, leaf is
called, mapping the elements and adding them into a combiner. Results from
different processors are merged hierarchically using the merge method, which
merges combiners. In the computation root cb is evaluated into a collection.
More than 40 collection operations were parallelized and some tasks are more
complex — they handle exceptions, can abort or communicate with other tasks,
splitting and merging them is often more involved, but they follow this pattern.

A Generic Parallel Collection Framework 141

4.2 Parallel Array

Arrays are mutable sequences — class ParArray stores the elements in an array.

Splitters. A splitter contains a reference to the array, and two indices for
iteration bounds. Method split divides the iteration range in 2 equal parts, the
second splitter starting where the first ends. This makes split an O(1) method.

Combiners do not know the final array size (e.g. flatMap), so they construct
the array lazily. They keep a linked list of buffers holding elements. A buffer is
either a dynamic arrayﬂ or an unrolled linked list. Method += adds the element
to the last buffer and combine concatenates the linked lists (an O(1) operation).
Method result allocates the array and executes the Copy task which copies the
chunks into the target array (we omit the complete code here). When the size
is not known a priori, evaluation is a two-step process. Intermediate results are
stored in chunks, an array is allocated and elements copied in parallel.

class ArrayCombiner[T] extends Combiner[T, ParArray[T]] {

val chunks = LinkedList[Buffer[T]]() += Buffer[T]()

def +=(elem: T) = chunks.last += elem

def combine(that: ArrayCombiner[T]) = chunks append that.chunks

def result = exec(new Copy(chunks, new Array[T](chunks.fold(0)(_+_.size))))
}

4.3 Parallel Rope

To avoid the copying step altogether, a data structure such as a rope is used to
provide efficient splitting and concatenation [I0]. Ropes are binary trees whose
leaves are arrays of elements. They are used as an immutable sequence which is
a counterpart to the ParArray. Indexing an element, appending or splitting the
rope is O(log n), while concatenation is O(1). However, iterative concatenations
leave the tree unbalanced. Rebalancing can be called selectively.

Splitters are implemented similarly to ParArray splitters.

Combiners may use the append operation for +=, but this results in unbalanced
ropes [10]. Instead, combiners internally maintain a concatenable list of array
chunks. Method += adds to the last chunk. The rope is constructed at the end
from the chunks using the rebalancing procedure [I0].

4.4 Parallel Hash Table

Associative containers implemented as hash tables guarantee O(1) access with
high probability. There is plenty of literature available on concurrent hash tables
[13]. We describe a technique that constructs array-based hash tables in parallel
by assigning non-overlapping element subsets to workers, avoiding the need for
synchronization. This technique is applicable both to chained hash tables (used
for ParHashMap) and linear hashing (used for ParHashSet).

! In Scala, this collection is available in the standard library and called ArrayBuffer.
In Java, for example, it is called an ArrayList.

142 A. Prokopec et al.

Splitters maintain a reference to the hash table and two indices for iteration
range. Splitting divides the range in 2 equal parts. For chained hash tables, a
splitter additionally contains a pointer into the bucket. Since buckets have a
probabilistic bound on lengths, splitting a bucket remains an O(1) operation.

Combiners. Given a set of elements, we want to construct a hash table using
multiple processors. Subsets of elements are assigned to different processors and
must occupy a contiguous block of memory to avoid false sharing. To achieve this,
elements are partitioned by their hashcode prefixes, which divide the table into
logical blocks. This will ensure that they end up in different blocks, independently
of the final table size. The resulting table is filled in parallel.

class TableCombiner[K](ttk: Int = 32) extends Combiner[K, ParHashTable[K]] {
val buckets = new Array[Unrolled[K]](ttk)
def +=(elem: K) = buckets(elem.hashCode & (ttk - 1)) += elem
def combine(that: TableCombiner[K]) = for (i <- 0 until ttk)
buckets(i) append that.buckets(i)
private def total = buckets.fold(0)(_ + _.size)
def result = exec(new Fill(buckets, new Array[K](nextPower2(total / 1f)))

Combiners keep an array of 2¥ buckets, where k is a constant such that 2¥ is
greater than the number of processors to ensure good load balancing (from exper-
iments, k = 5 works well for up to 8 processors). Buckets are unrolled linked lists.
Method += computes the element hashcode and adds it to the bucket indexed by
the k-bit hashcode prefix. Unrolled list tail insertion amounts to incrementing an
index and storing an element into an array in most cases, occasionally allocating
a new node. We used n = 32 for the node size. Method combine concatenates all
the unrolled lists — for a fixed 2%, this is an O(1) operation.

Method result is called in the computation root — the total number of ele-
ments total is obtained from bucket sizes. The required table size is computed
by dividing total with the load factor 1f and rounding to the next power of 2.
The table is allocated and the Fill task is run, which can be split in up to 2*
subtasks, each responsible for one bucket. It stores the elements from different
buckets into the hash table. Assume table size is sz = 2. The position in the
table corresponds to the first m bits of the hashcode. The first & bits denote
the index of the table block, and the remaining m — k bits denote the position
within that block (Fig. [B]). Elements of a bucket have their first & bits the same
and are all added to the same block — writes to different blocks are not synchro-
nized. With linear hashing, elements occasionally “spill” to the next block. The
Fill task records and inserts them into the next block in the merging step. The
average number of spills is equal to average collision lengths — a few elements.

4.5 Parallel Hash Trie

A hash trie is an immutable map or set implementation with efficient element
lookups and updates (O(logs, 1)) [11]. Updates do not modify existing tries, but
create new versions which share parts of the data structure. Hash tries consist

A Generic Parallel Collection Framework 143

k m-k
Element hashcode
N ~
Hash table I I I T -]
0 1 2 ok _ 1

Fig. 3. Hash code mapping

e [@\D O 0 S s
& %]\“D D%]D D%]D JAVAVENRVEN ABA“;A

Fig. 4. Hash trie operations

of a root table of 2¥ elements. Adding an element computes the hash code and
takes the first k£ bits for the table index 7. In the case of a collision a new array is
allocated and stored into entry i. Colliding elements are stored in the new array
using the next k bits. This is repeated as long as there are collisions. To ensure
low space consumption, each node has a 2 bitmap to index its table (typically
k =5) [II]. Hash tries have low space overheads and good cache-locality.

Splitters maintain a reference to the hash trie data structure. Method split
divides the root table into 2 new root tables, assigning each to a new splitter.

Combiners can contain hash tries. Method combine could merge the hash tries
(figure[]). The elements in the root table are copied from either of the root tables,
unless there is a collision, as with subtries B and E which are recursively merged.
This technique turns out to be more efficient than sequentially building a trie —
we observed speedups of up to 6 times. We compare the performance recursive
merging against hash table merging and sequentially building tries in figure Bl
Although it requires less work, recursive merging scales linearly with the trie size.
This is why we use the two-step approach shown for hash tables, which results
in better performance. Combiners maintain 2* unrolled lists, holding elements
with the same k-bit hashcode prefixes (k = 5). The difference is in the method
result, which evaluates root subtries instead of filling table blocks.

time/ms

—— Recursive trie merge
—— Hash table merge 4

—e— Sequential construction

| . |
10° 101 10°

size

Fig. 5. Recursive trie merge vs. Sequential construction

144 A. Prokopec et al.

4.6 Parallel Views
Assume we increment numbers in a collection ¢, take one half and sum positives:
c.map(_ + 1).take(c.size / 2).filter(_ > 0).reduce(_ + _)

Each operation produces an intermediate collection. To avoid this we provide
views. For example, a Filtered view traverses elements satisfying a predicate,
while a Mapped view maps elements before traversing them. Views can be stacked
— each view points to its parent. Method force evaluates the view stack to a
collection. In the example, calling view and the other methods on ¢ stacks views
until calling reduce. Reducing traverses the view to produce a concrete result.
Splitters call split on their parents and wrap the subsplitters. The framework
provides a way to switch between strict and lazy on one axis (view and force),
and sequential and parallel on the other (par and seq).

5 Experimental Results

To measure performance, we follow established measurement methodologies [19].
Tests were done on a 2.8 GHz 4 Dual-core AMD Opteron and a 2.66 GHz Quad-
core Intel i7. We first compare two JVM concurrent maps — ConcurrentHashMap
and ConcurrentSkipListMap (both from the standard library) to justify our de-
cision of avoiding concurrent containers. A total of n elements are inserted. In-
sertion is divided between p processors. This process is repeated over a sequence
of 2000 runs on a single JVM invocation and the average time is recorded. We
compare against sequentially inserting n elements into a java.util.HashMap.

Fig. [6] shows a performance drop due to contention. Concurrent data struc-
tures are general purpose and pay a performance penalty for this generality. Par-
allel hash tables are compared against java.util.HashMap in figure[7]I (mapping
with a few arithmetic operations) and L (the identity function) — when no time
is spent processing an element and entire time spent creating the table (L), hash
maps are faster for 1 processor. For 2 or more, the parallel construction is faster.

Microbenchmarks A-L shown in Fig. [l use inexpensive operators (e.g foreach
writes to an array, map does a few arithmetic operations and the find predicate
does a comparison). Good performance for fine-grained operators compared to
which processing overhead is high means they work well for computationally ex-
pensive operators (shown in larger benchmarks M-O). Parallel array is compared
against Doug Lea’s extral66y.ParallelArray for Java.

Larger benchmarkd? are shown at the end. The Coder benchmark brute-force
searches a set of all sentences of english words for a given sequence of digits,
where each digit corresponds to letters on a phone keypad (e.g. '2’ represents
A’ B’ and 'C’; 43’ can be decoded as ’if’” or 'he’). It was run on a 29 digit
sequence and around 80 thousand words. The Grouping benchmark loads the
words of the dictionary and groups words which have the same digit sequence.

2 Complete source code is available at:
http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/

http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/

A Generic Parallel Collection Framework 145

20[1 a0l 1 ol 1wl

15 | 4 30 R

10} 1 20| 1 e
20 - N

'r”@/’\s‘e>:g’ 10 b j\/\\e‘>€ 20 |-

2 4 6 8 2 4 6 8 2 4 6 8
A B ¢ D
java.util. HashMap, AMD - — - java.util.HashMap, i7
—A- ConcurrentHashMap, AMD —6— ConcurrentHashMap, i7 (time[ms] vs #processors)

—>— ConcurrentSkipListMap, AMD —@— ConcurrentSkipListMap, i7

Fig. 6. Concurrent insertion, total elements: (A) 50k; (B) 100k; (C) 150k; (D) 200k

6 Related Work

General purpose programming languages and platforms provide various forms
of parallel programming support. Most have multithreading support. However,
starting a thread can be computationally expensive and high-level primitives for
parallel computing are desired. We give a short overview of the related work in
the area of data parallel frameworks, which is by no means comprehensive.

There exists a body of work on data structures which allow access from several
threads, either through locking or wait-free synchronization primitives [I3]. They
provide atomic operations such as insertion or lookup. Operations are guaranteed
to be ordered, paying a price in performance — ordering is not always required
for bulk parallel executions [I§].

.NET langugages support patterns such as parallel looping, aggregations and
the map/reduce pattern [6]. NET Parallel LINQ provides parallelized imple-
mentations query operators. On the JVM, one example of a data structure with
parallel operations is the Java ParallelArray [7], an efficient parallel array im-
plementation. Its operations rely on the underlying array representation, which
makes them efficient, but also inapplicable to other data representations. Data
Parallel Haskell has a parallel array implementation with bulk operations [14].

Some languages recognized the need for catenable data structures. Fortress in-
troduces conc-lists, tree-like lists with efficient concatenation [I7]. We generalize
them to maps and sets, and both mutable and immutable data structures.

Intel TBB for C+-+ bases parallel traversal on iterators with splitting and
uses concurrent containers. Operations on concurrent containers are slower than
their sequential counterparts [15]. STAPL for C++ has a similar approach —
they provide thread-safe concurrent objects and iterators that can be split [16].
The STAPL project also implements distributed containers. Data structure con-
struction is achieved by concurrent insertion, which requires synchronization.

146 A. Prokopec et al.
T T 1,000 '
Laool — Sequential || — ial 10001 J— 1]
’ —— ParArray —— ParArray —— ParArray
—o— extral66 800 - —e— extral66 || —o— extral66
1,000 |- B 800 - 1
H 600 B
& 8001 600 e
600 |-
4001 400 | N
400 | 1
. \ | , | \ , | |
2 6 8 2 6 8 2 4 6 8
A B C
800 : . : - . 1.600 F . . —
— Sequential || 3.000 | —— HashTrie —— HashTrie
— ParArray —o— HashMap 1400 —o— HashMap ||
—— extral66 || o0 | —— ParflashTrie || —— ParflashTrie
600 |- 1 1,200 | R
2,000 |- R
2 1,000 | 4
1.500 -
400 1 800 i
1,000 - R
600 g
200 L | .] 500 | | 1 400 . . | |
2 6 8 2 g B 2 1 3 B
D E F
500 F T T
— Rope — HashMap —
——ParRope 6.000 L —<— ParHashMap 600 —e— java.util. HashMap ||
—— ParHashMap
400 | B
5,000 - 1 500l B
E 300 - 4,000 | -
400 - ,
3,000 -
200 - ! 300 B
2,000 -
, \ , . \ \ 200 \
2 6 8 2 6 8 2 6 8
G H 1
:
—— HashSet — Range —— java.util. HashMap
100] —— ParHashSet ——ParRange || 300 - —o— ConcurrentHashMap ||
1500 | —— ParHashMap
250 R
z 300
g 200 1
1,000 |- -
150 -
200
500 - 100 | -
\ \ | , \ | \
2 6 B 2 6 B 2 6 B
J K L
: . .
——20x20 matrix 800 -
4,000 ——30x30 matrix {{ 5,000 |-
—e— 40x40 matrix
. —=—50x50 matrix
3000 4,000 |- 600 - b
= 2,000 | 1
3.000
400 ,
1,000 |- 1
2,000 [
ot . . - . . A 200 |- \ L 4
2 6 8 2 g B 2 g 8
Fig.7. Benchmarks (running time [ms| vs number of processors): (A)

ParArray.foreach, 200k; (B) ParArray.reduce, 200k; (C)

(D) ParArray.filter, 100k; (E) ParHashTrie.reduce, 50k; (F)

ParArray.find, 200k;
ParHashTrie.map, 40k;

(G) ParRope.map, 50k; (H) ParHashMap.reduce, 25k; (I) ParHashMap.map, 40k; (J)
ParHashSet.map, 50k; (K) ParRange.map, 10k; (L) ParHashMap.map(id), 200k; (M)
Matrix multiplication; (N) Coder; (O) Grouping

A Generic Parallel Collection Framework 147

7 Conclusion

We provided parallel implementations for a wide range of operations found in
the Scala collection library. We did so by introducing two divide and conquer ab-
stractions called splitters and combiners needed to implement most operations.

In the future, we plan to implement bulk operations on concurrent containers.
Currently, parallel arrays hold boxed objects instead of primitive integers and
floats, which causes boxing overheads and keeps objects distributed throughout
the heap, leading to cache misses. We plan to apply specialization to array-based
data structures in order to achieve better performance for primitive types [12].

References

1. Lea, D.: A Java Fork/Join Framework (2000)
2. Traore,D.,Roch,J.-L.,Maillard, N., Gautier, T., Bernard, J.: Deque-free work-optimal
parallel STL algorithms. In: Proceedings of the 14th Euro-Par Conference (2008)

3. Odersky, M., et al.: An Overview of the Scala Programming Language. Technical
Report LAMP-REPORT-2006-001, EPFL (2006)

. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press (2008)

. Odersky, M.: Scala 2.8 collections. EPFL (2009)

Toub, S.: Patterns of Parallel Programming. Microsoft Corporation (2010)

Doug Lea’s, Home page, http://gee.cs.oswego.edu/

. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. In: 35th IEEE Conference on Foundations of Computer Science (1994)
9. Cong, G., Kodali, S., Krishnamoorthy, S., Lea, D., Saraswat, V., Wen, T.: Solving

Large, Irregular Graph Problems Using Adaptive Work Stealing. In: Proceedings
of the 2008 37th International Conference on Parallel Processing (2008)

10. Boehm, H.-J., Atkinson, R., Plass, M.: Ropes: An Alternative to Strings. Software:
Practice and Experience (1995)

11. Bagwell, P.: Ideal Hash Trees (2002)

12. Dragos, 1., Odersky, M.: Compiling Generics Through User-Directed Type Special-
ization. In: Fourth ECOOP Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems (2009)

13. Moir, M., Shavit, N.: Concurrent data structures. Handbook of Data Structures
and Applications. Chapman and Hall, Boca Raton (2007)

14. Jomes, S.P., Leshchinskiy, R., Keller, G., Chakravarty, M.M.T.: Harnessing the Mul-
ticores: Nested Data Parallelism in Haskell. Foundations of Software Technology
and Theoretical Computer Science (2008)

15. Intel Thread Building Blocks: Tutorial (2010), http://www.intel.com

16. Buss, A., Harshvardhan, Papadopoulos, 1., Tkachyshyn, O., Smith, T., Tanase, G.,
Thomas, N., Xu, X., Bianco, M., Amato, N.M., Rauchwerger, L.: STAPL: Standard
Template Adaptive Parallel Library. In: Haifa Experimental Systems Conference

2010)

17. Ekllen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele
Jr., G.L., Tobin-Hochstadt, S., et al.: The Fortress Language Specification (2008)

18. Steele Jr., G.L.: How to Think about Parallel Programming: Not! (2011),
http://www.infoq.com/presentations/Thinking-Parallel-Programming

19. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance
Evaluation. In: OOPSLA (2007)

20. Hinze, R., Paterson, R.: Finger Trees: A Simple General-purpose Data Structure.
Journal of Functional Programming (2006)

OIS S NI

http://gee.cs.oswego.edu/
http://www.intel.com
http://www.infoq.com/presentations/Thinking-Parallel-Programming

Progress Guarantees When Composing
Lock-Free Objects*

Nhan Nguyen Dang and Philippas Tsigas

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden
{nhann, tsigas}@chalmers.se

Abstract. Highly concurrent and reliable data objects are vital for parallel pro-
gramming. Lock-free shared data objects are highly concurrent and guarantee
that at least one operation, from a set of concurrently executed operations, fin-
ishes after a finite number of steps regardless of the state of the other operations.
Lock-free data objects provide progress guarantees on the object level. In this pa-
per, we first examine the progress guarantees provided by lock-free shared data
objects that have been constructed by composing other lock-free data objects. We
observe that although lock-free data objects are composable when it comes to lin-
earizability, when it comes to progress guarantees they are not. More specifically
we show that when a lock-free data object is used as a component (is shared)
by two or more lock-free data objects concurrently, these objects can no longer
guarantee lock-free progress. This makes it impossible for programmers to di-
rectly compose lock-free data objects and guarantee lock-freedom. To help pro-
grammability in concurrent settings, this paper presents a new synchronization
mechanism for composing lock-free data objects. The proposed synchronization
mechanism provides an interface to be used when calling a lock-free object from
other lock-free objects, and guarantees lock-free progress for every object con-
structed. An experimental evaluation of the performance cost that the new mecha-
nism introduces, as expected, for providing progress guarantees is also presented.

1 Introduction

A concurrent data object is lock-free if it guarantees that at least one, among all con-
current operations, finishes after a finite number of steps. Lock-free data objects are
immune to deadlocks and livelocks, and typically provide high scalability and perfor-
mance [12]] [L1]] [20] [22]], especially in shared memory multiprocessor architectures.
Several lock-free implementations of fundamental data structures have been
introduced in the literature, such as queues [[15] [21] [9], priority queues [[L8], linked-
lists 23] [[19]] [L8] [[LO], and hashtables [7] [[17] [4]. Moreover, the problem of compos-
ing lock-free data objects has been considered recently in an effort to support the use
of lock-free objects in the context of complex software development. Composite data

* This work was partially supported by the EU as part of FP7 Project PEPPHER
(www.peppher.eu) under grant 248481 and the Swedish Research Council under grant
37252706.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 148 2011.
(© Springer-Verlag Berlin Heidelberg 2011

Progress Guarantees When Composing Lock-Free Objects 149

structures, which are built by nesting multiple basic data structures, were first studied
by Cohen and Campell [5]. Recently, Gidenstam et al. [8]] and Cederman and Tsigas [3]
studied the problem of composing two operations from two different lock-free objects
into one compound atomic operation. These results made it possible to perform com-
plex atomic operations such as moves that could move an item from one lock-free data
object to another lock-free data object in a lock-free way.

Petrank and Steensgaard [16] also studied the problem of composing lock-free pro-
grams and services. They provided new formal definitions of lock-freedom, the bounded
and unbounded lock-freedom and they extended them to programs and services. These
new definitions allowed the authors to formally state and prove the composition theo-
rem. The theorem guarantees lock-free progress for a lock-free program when compos-
ing with a service supporting lock-freedom, using the new definitions. This contribution
is a step towards formally studying lock-freedom. However, the paper did not consider
the case when multiple programs share a service and compete with each other to use it.
This way of composing programs and services can affect their progress guarantees.

In this work, we address the lock-free composition problem but from the perspective
of object-oriented programming and we do not consider changing the definition of lock-
freedom in order to guarantee composition. In object-oriented programs, one lock-free
object can be concurrently shared by other lock-free objects. In this setting, composition
of several lock-free objects in one object is possible. When examining progress guaran-
tees provided by these objects, we found that they can not provide the lock-free progress
guarantee offered by the shared objects that compose them. To help solve this problem,
a synchronization mechanism is proposed for a lock-freedom progress guarantee. By
applying this mechanism when composing lock-free objects, we can compose as many
objects as possible without fear of losing lock-freedom of the individual participants.

The rest of this paper is organized as follows. Section[2]examines the progress guar-
antees for lock-free objects in a composition. Then, the new synchronization mecha-
nism for composing lock-free objects is proposed in section 3l Section d] presents a set
of experiments to evaluate our synchronization mechanism in practice. A conclusion of
our work and discussions about future improvements come last in the section

2 Progress Guarantee When Composing Lock-Free Data Objects

This section examines progress guarantees by lock-free objects used in an object-oriented
program. The program can also contain blocking objects. However, since we are consid-
ering composing lock-free objects, blocking objects can be taken away without degra-
dation of generality. In the remainder of this paper, all objects mentioned are lock-free.

2.1 Lock-Free Data Objects

Lock-free objects are objects that provide lock-free progress guarantee for their op-
eration executions. The guarantee ensures that some among its concurrent operations
succeed after a finite number of steps of their own execution. To provide such a guar-
antee, lock-free objects usually use non-blocking synchronization primitives to syn-
chronize concurrent accesses to shared memory among the concurrent operations. Two

150 N.N. Dang and P. Tsigas

Algorithm 1. A template of a lock-free object ~ Algorithm 2. Operation Descriptor

1 class LF 9 struct OpDesc

> word xptr 10 void *oper (void =*args)
3 public op(args) 1 void xargs

4 while (1) 12 bool done

5 oldval « xptr 13 Object src

6 newVal < calculate(args)

7 if (CAS(ptr, oldval, newVal))

8 return 16

synchronization primitives that are commonly used are Compare-And-Swap (CAS),
Load-Link/Store-Conditional (LL/SC). CAS [12]] takes three arguments: an address, an
expected value, and an update value. If the value at the address is equal to the expected
value, it is replaced by the update value; otherwise the value is left unchanged. LL/SC is
a pair of instructions. The LL instruction reads from an address. A later SC instruction
attempts to store a new value at the address. The instruction succeeds if content of the
address are unchanged since that thread issued the earlier LL instruction to it. The in-
struction fails if the content has changed in the interval. These instructions are equally
powerful since they both have an infinitive consensus number [12].

By observing several lock-free implementation of fundamental data structures such
as queues [[15] [21]], linked-lists [23]], and memory allocators [14]], we found a common
template that most of these implementations followed presented in Algorithm [Il The
template object LF offers one operation op, which takes generalized arguments args.
This operation computes a newVal (line [f)) and updates it to ptr variable. In a multi-
threaded environment, several threads can try to update ptr concurrently. Therefore,
the CAS primitive is used to keep each update atomic. Examples of an LF object and
an operation op that it supports are a lock-free Queue [15] and its engueue operation,
respectively. The enqueue operation creates a new node containing the new value and
inserts it to the head of the queue (by a CAS) to become the new head node.

2.2 Examining Lock-Free Progress Guarantee in Object-Oriented Program

An object-oriented program comprised by three lock-free objects is examined as an
example. Among the objects, one, Os1, is concurrently shared by the other objects: Oy
and O12. All are assumed to be implemented by using the above template.

During the executions of O11 and O12’s operations, they invoke operations in Oz
and wait for the returned results. Object Oo; is lock-free and therefore, always has some
executed operations, invoked by O1; or O12, finish and return after a finite number of
executed steps. But, O2; provides no mechanism to ensure fairness among the execu-
tions invoked by different objects. As a result, that only executed operations called by
one object (e.g O11) succeed while those called by the other object fail to succeed is
possible. Consequently, the former object progresses while the latter does not and fails
to provide lock-freedom. So, composition causes a lock-free conflict point at Oo; for
011 and O15. When it is the case, lock-freedom of objects that conflict can be violated.

Progress Guarantees When Composing Lock-Free Objects 151

This lock-free conflict concept can be generalized. There can be several objects shar-
ing another object. An object sharing another object can also be shared by other objects
and become itself a conflict point. This sharing scenario creates a hierarchy of sharing
lock-free objects together with the respective hierarchy of lock-free conflicts.

Our objective is to introduce a new synchronization mechanism enhancing the shared
object so that it supports the lock-free property of the sharing objects.

3 A Synchronization Mechanism for Composing Lock-Free
Objects

3.1 Our Approach

A new synchronization mechanism for sharing lock-free objects is proposed. Applica-
tion of this mechanism enhances objects with the capability to maintain fairness among
all the objects that invoke its operations. This fairness ensures that any invoking object
has at least one operation returned after a finite number of steps. In other words, no
object starves because of performing operations at the shared object.

In detail, the proposed synchronization mechanism keeps track of all invocations by
sharing objects to the shared object’s operations. When those by an object are unsuc-
cessful to execute the instruction(s) at the linearization point many times, the mecha-
nism will announce one of the operations. When such an announcement is made, later
invocations help finish the announced operation before performing their expected oper-
ations. Completion of the announced operation allows the sharing object to progress.

The description of the proposed synchronization mechanism are introduced in the
two next subsections. A correctness proof for the mechanism is also presented.

3.2 The Operation Descriptor

The new synchronization mechanism is introduced so that an unfinished operation can
be helped to finish. The operation can be executed by more than one thread but the
mechanism guarantees that only at most one execution can successfully complete. To
make this helping scheme possible, a description of the operation and its execution sta-
tus is needed. Any thread can read the description and execute the operation it describes.

The data structure OpDesc illustrated in Algorithm[2]is such an operation descriptor.
OpDesc contains a function pointer *oper to the operation, along with arguments for
the operation; a boolean variable done records the status of the operation (finished or
unfinished); src is a unique identity of the object that invokes this operation.

An OpDesc object encapsulates an operation (e.g enqueue operation) provided by
shared lock-free object. The mechanism introduces a special kind of operation which
can help executing other operations. In other words, operations that can read OpDesc
and execute the operation it described. We call them “super-operations”. The term “op-
eration”, from this point, refer to an operation representing functionality that other ob-
jects want to perform at the shared object, which is described as an OpDesc object.

152 N.N. Dang and P. Tsigas

3.3 The Synchronization Mechanism

The implementation of our synchronization mechanism for the lock-free object LF is
presented in Algorithm[3l The new object CLF provides the same interface as that LF
does to other objects. However each method in the interface is associated with a super-
operation instead of an operation.

Any operation op in LF' is re-written into a pair of one public method op (a super-
operation) and one private one op m (an operation). The operation CLF.op m executes
steps to make changes to the CLF object similar to that LF.op does to the LF ob-
ject. The difference between CLF.op m and LF.op is additional steps required by the

Algorithm 3. A lock-free object employing the proposed synchronization mechanism

17 class CLF
18 word *ptr
19 OpDesc hlps([M], EMPTY; //EMPTY .done=true

21 public op(src, args)
2 OpDesc me(src, &op m, (voidx)args), hlp

2 for(int 1 «— 0; 1 < M; i++) {

25 hlp « hlps([i];

26 hp_x < hlp; //protect hlp with hazard pointer
27 if (hlp != hlps[i]) continue;

28 if (!'hlp.done) xhlp.oper(me, hlp)

30 if (—me.done) op m(me, me)

» private op m(OpDesc me, OpDesc hlp)
3 while (—hlp.done)

34 for (tries=0; tries<Tyax A—hlp.done; tries++)
35 oldval <« *ptr

36 newVal « calculate(hlp.args)

37 tmp <« hlps[hlp.src]

38 if (DCAS(ptr, oldval, newVal, &hlp.done, false, true))
39 counter [hlp.src] « O0;

40 CAS (hlps[hlp.src], tmp, EMPTY) ;

41 break;

43 if (—hlp.done)

4 if (++counter[me.src] >Onmax)

45 announce (me)

47 void announce (OpDesc me)

48 curr <« hlps[me.src]

49 if (curr.done)

50 CAS (hlps[me.src], curr, me)

Progress Guarantees When Composing Lock-Free Objects 153

synchronization mechanism that will be discussed later. CLF.op, is to provide the same
interface as that LF but the content is totally new. When CLF.op is invoked, it is ex-
pected to perform modifications on CLF similar to functionality of operation LF.op.
The functionality is now implemented in C'LF.op m. In addition, CLF.op can help fin-
ish other CLF.0op m operations that other objects want to perform.

When CLFop is invoked (assuming by object O;) to perform the operation
CLF.op m, it does not perform the operation immediately. Instead, it first creates an
OpDesc describing the operation (line[22) which it can perform by itself (line BQ) or
any thread can help finishing the operation. Then it checks if there are operations of any
object needing help to finish (line 24)). If there are such operations, the super-operation
will execute these operations (line 28). The checking for any object that needs help is
performed through a newly introduced array Alps/]. When one among the objects needs
help, one of the concurrent operations the object performs will be placed in hlps[] at
a dedicated position for the object. Other concurrent super-operation executions then
can help to finish that one. We assume that there are M objects sharing CLF object.
Therefore, hips[] can have M elements that one is assigned to an object.

The operation CLF.op m introduces two main changes compared to LF.op. The first
change is that a Double-Compare-And-Swap (DCAS) is used instead of a CAS in LF.op
(line [7). DCAS atomically compares and exchanges values at two separate memory
locations. Lock-free implementations of DCAS have been introduced in [[6] and [3]. In
CLF.op m, the DCAS performs modification of *p¢r and a status variable atomically.
The former is similar to CAS in LF.op. The latter is to set the execution status variable
of OpDesc. This status variable, which is allowed to be changed only once, makes sure
that an OpDesc only succeeds once even when multiple threads are executing it.

The second change in CLF.op m is the introduction of a counter array counter|] to
record the numbers of times invocations by sharing objects try (but fail) to commit the
changes to the shared object CLF. The counter at position ¢ is increased after a failed
DCAS execution (line 38) in an operation invoked by object O;. When this number
reaches a threshold, an executed operation invoked by O; will be announced in Alps(]
to be helped.

Due to this change, the loop inside this operation is also modified. Our algorithm
could have followed the idea of increasing the counter after every failed DCAS. In
this case, the counter at any position would be shared among several threads and need
synchronization for every update which decreases the performance. To avoid this high
overhead, in our design, this counter was split into two counters. One local counter tries
for each operation execution and a shared one (counter[]) to record number of tries the
executions invoked by the object have made. When tries reach a threshold T4 x, an
update to counter[me.src] is made. And if this counter reaches its threshold Ojs4x,
one of the operation executions whose src is the same as me.src is announced.

In addition to those changes, a CAS is added to remove the reference from the an-
nouncement array hlps|| to a successful operation hip. This avoids any unsafe reference
to hlp in the future when its hazard-pointer protection (line 26)) is removed. The mem-
ory used by hlp can safely be reclaimed later by a memory reclamation scheme.

In short, the synchronization mechanism guarantees that new invocations of CLF’s
operations helps finish on-going executed operations that need help. Then they executes

154 N.N. Dang and P. Tsigas

the operation they are supposed to perform. With this mechanism, objects invoking
operations of CLF always has one of the invocations finish after a finite number of
steps. Therefore, these objects make progress.

3.4 ABA Problem

Similar to other lock-free objects, our mechanism also encounters the ABA problem.
The ABA problem happens when the content at an address changes from A to B, and
then changes back to A. CAS cannot distinguish this case and the case where the content
is unchanged. A number of methods have been introduced to tackle with ABA problem
such as tagging [1l], hazard pointers [[13]]. In addition, memory words used by lock-free
objects must be protected from deletion by concurrent threads when they are in use and
reclaimed when they are no more used. Safe Memory Reclamation with hazard pointers
introduced in [13] is used for these purposes.

3.5 Linearizability

This section states the lemmas for the linearizability and lock-freedom property of CLF.
Due to the space limitation, the proofs for these lemmas are not included in this version
of the paper.

Lemma 1. Regardless of the number of threads executing an operation op m with the
same value of hlp argument, only one can succeed.

Lemma 2. CLF is linearizable with the linearization point at line[38

Lemma 3. The presented object CLF is lock-free.

3.6 How Does the Proposed Synchronization Mechanism Resolve Lock-Free
Conflicts?

When a lock-free object is concurrently used by other lock-free objects Oy ... Oy, it
can become a lock-free conflict and block the progress of those objects. This section
will prove that when there is such a conflict point at CLF, our mechanism can resolve
the conflict. Therefore, CLF does not block lock-free progress of the objects using it.

A scenario of using CLF is a program containing M lock-free objects O;... O and
one CLF object. An object O; can have at most n concurrent invocations (executed by
n threads) to CLF.op to perform an intended CLF.op m (referred to as me). Each in-
vocation creates an execution of operation CLF.op. We seek a bound of the maximum
number of steps (a step is one execution of DCAS) performed by these executions be-
tween any two successful operations. If this bound is finite, it guarantees that any object
that uses CLF progresses. The lemmas and theorem below figure out this bound.

Lemma 4. Anobject O; can make at most n concurrent invocations to super-operation
CLF.op. Starting from when the last invocation returns (or when the program starts, if
there is no such invocation), if any of these invocations has executed:

U BOUND =Tyax-Onax (1)

steps, one of the following condition must hold:

Progress Guarantees When Composing Lock-Free Objects 155

— at least one invocation finished. Or
— one of these concurrent CLF.op m operations has been announced.

Lemma 5. When an operation me is announced in hlps, either me or another opera-
tion that has the same src as me.src finishes after it has executed at most

HELP BOUND =n(M —1)+1
steps since when the announcement is made.

Theorem 1. When CLF is shared by several objects by invoking to CLF’s super-
operation op, there is always one, among all invocations by one object, finishing after
executing a finite number of steps.

Proof. From lemmaf] there must be one among the invocations from O which finishes
before any of them has executed U BOU N D steps. Otherwise, one of the invocations
has its operation me announced.

If me is announced, lemmal3] stated that one of the operations whose src is the same
as me.src (including me) finishes after it has executed at most H ELP BOU N D steps
since the announcement is made. Therefore, one of the invocations from one object
returns after executing at most:

U BOUND + HELP BOUND = n(M— 1) +Thviax Opmax +1

steps; where:

— Tyrax is the number of steps executed by an operation before it checks if it should
announce itself.

— Opax is the number of times Ths4x was reached by all invocations from one
object.

— n is the maximum number of concurrent operations of CLF that can be executed.

— M is the number of objects that are sharing CLF.

4 Experimental Evaluation

For our experimental evaluation we considered the composition scenario where a pro-
gram containing a number of pseudo objects sharing one queue. The queue is an imple-
mentation of the Michael-Scott Queue [15] enhanced with the proposed synchroniza-
tion mechanism. A set of experiments to evaluate the effectiveness and performance
cost of our synchronization mechanism was performed and the results are presented.
In our experiments, the program was executed to perform queue’s operations at three
contention levels. In high contention, each thread performed one operation right after
another. In medium contention, “other work™ with a ratio following the normal dis-
tribution between 0 and 1 was performed between two consecutive operations. The
“other work” was a fixed-times spin loop of a simple calculation. In low contention,
“other work” was always performed between two consecutive operations. An exponen-
tial back-off was also used after any failed DCAS. The program can be run by one to 8

156 N.N. Dang and P. Tsigas

7
0 w/o SM, w/o backoff —0— 5 w/o SM, w/o backoff —0— 5 w/o SM, w/o backoff —+—
w/o SM, w/ backoff X w/o SM, w/ backoff X w/o SM, w/ backoff R
60 { W/ SM, w/o backoff * w/ SM, w/o backoff * w/ SM, w/o backoff *
w/ SM, w/ backoff a2 4 {w/ SM, w/ backoff a2 4 { w/ SM, w/ backoff izt

50

g 40 g @ =
£ £ p ’
g o £
z 30 <2 F o2
20
1 1
10
0 0 0
12 4 6 8 12 4 6 8
Threads Threads Threads
(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time

Fig. 1. Measurement results in high contention level

threads and each thread performs 1 000000 queue operations. Each experiment is the
program configured to one contention level and with or without back-off, and set up
with a specific number of threads. Each experiment ran five times on a platform with
two Intel Core 17 quad-core processors and the average result of the runs was reported.
When running the experiments, no other users were using the system.

Three measurements were recorded. The first two were the maximum and average
number of attempts between two consecutive successful operations invoked by one ob-
ject. The maximum number of attempts is an indicator to know whether the proposed
synchronization mechanism helped the sharing objects before they starved. The lower
this number, the more likely an object is to be helped. On the other hand, the aver-
age number of attempts, helps answer a question: does the synchronization mechanism
cause the total number of attempts to perform the set of operations increasing? The third
measurement was the time it took to finish a run.

Fig. [l presents the experimental results for the case of high contention. Fig.[Talshows
that our synchronization mechanism (w/ SM) significantly reduced the maximum num-
ber of attempts to finish one operation when there was no back-off. In the case where
no synchronization mechanism was used (w/o SM), the maximum number of attempts
when back-off is used (w/ backoff) is much lower than when it is not (w/o backoff). The
reason is that back-off reduces the contention among threads and, therefore, lowers the
number of attempts. Even though, in this case, there is no lock-free progress guarantee
for the sharing objects. The average number of attempts in Fig. [[blshows that when our
synchronization mechanism is used, one queue operation needs, on average, about only
two thirds of the number of attempts compared to when it is not used. Similar improve-
ments when the synchronization mechanism was used are also observed in medium and
low contention levels as shown in Figs.[2al 2Bl 3a] and

Fig.[Id shows the time to finish all operations at high contention level. Either with or
without back-off, the execution time of the runs where our synchronization mechanism
was used took about 1.7 of those where the original queue is used. This degradation
in performance is because of the overhead cost when applying our synchronization
mechanism to achieve the lock-freedom property. In medium and low contention levels,
our synchronization performed better which reduced the ratios to 1.5 (Fig. 2d) and 1.2

Progress Guarantees When Composing Lock-Free Objects 157

70 w/o SM, w/o backoff —0— 5 w/o SM, w/o backoff —0— 5 w/o SM, w/o backoff —+—
w/o SM, w/ backoff X w/o SM, w/ backoff X w/o SM, w/ backoff R
60 { W/ SM, w/o backoff * w/ SM, w/o backoff * w/ SM, w/o backoff *
w/ SM, w/ backoff & 4 {w/ SM, w/ backoff & 4 { w/ SM, w/ backoff iz}
50
2 40 g3 g3
£ £ o
2 g £
z 30 2 o2
20
1 1
10
0 0 0
12 4 6 8 12 4 6 8
Threads Threads Threads
(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time
Fig. 2. Measurement results in medium contention level
70 5 5
w/o SM, w/o backoff —+— w/o SM, w/o backoff —+— w/o SM, w/o backoff ~——
w/o SM, w/ backoff e w/o SM, w/ backoff e w/o SM, w/ backoff e
60 1 w/ SM, w/o backoff *- w/ SM, w/o backoff *- w/ SM, w/o backoff *-
w/ SM, w/ backoff 1=} 4 1w/ SM, w/ backoff 1=} 4 1 w/ SM, w/ backoff 1=}
50
£ a0 g3 G 3
£ £ o
2 I £
z 30 £ 2 F o2
1 J— B 1
10
0 0 0
1 2 4 6 8 12 4 6 8
Threads Threads Threads
(a) attempts(max)/op (b) attempts(avg)/op (c) Execution time

Fig. 3. Measurement results in low contention level

(Fig.[3d) respectively. Especially, in low contention level with back-off, the performance
of the queue where our synchronization was used is closer to that when it was not used.
Our synchronization mechanism performed better in these contention levels than in
high contention levels. This is consistent with the previous result that fewer attempts
were performed to finish one queue operation in lower contention level. In addition,
when the number of attempts were fewer, the number of cases that the synchronization
mechanism was activated to help “unlucky object” were fewer too.

We performed additional experiments to analyze the overhead cost by measuring the
performance of DCAS comparing to that of CAS. The experimental setup was similar
to the one described in previous experiments. The only difference was that the queue
operations were replaced by an operation containing a simple mathematical calculation
and a DCAS (or CAS). The performance result in Fig. 4 shows that DCAS is much more
expensive than CAS especially in high and medium contention levels. In low contention
level, execution time of a DCAS operations is quite comparable to that of a CAS. These
results support a claim that DCAS contributes a big portion to the overhead cost of our
synchronization mechanism.

158 N.N. Dang and P. Tsigas

5 5 5
CAS, w/o backoff — CAS, w/o backoff — CAS, w/o backoff —
CAS, w/ backoff X CAS, w/ backoff X CAS, w/ backoff X
DCAS, w/o backoff * DCAS, w/o backoff * DCAS, w/o backoff *
4 | DCAS, w/ backoff = 4 | DCAS, w/ backoff = 4 | DCAS, w/ backoff =
*
3a}
g 3 g 3 Va g 3 /
1) 1) o
£ o £ £
F o2 “x F 2 =2
1 1
0

1 2 4 6 8
Threads Threads Threads
(a) High contention (b) Medium contention (¢) Low contention

Fig. 4. Performance of DCAS and CAS

In brief, the experimental results demonstrate that our synchronization mechanism
reduces the maximum number of attempts in all the contention level cases. The pre-
sented experimental results support the theoretical proofs. The results also show, as
expected, that there is a performance overhead cost in order to achieve lock-freedom
when composing. The software-implemented DCAS mainly contributes to this cost. We
expect that with the use of a hardware-supported DCAS such as the Advanced Synchro-
nization Facility by Advanced Micro Devices [2], this cost will be reduced significantly.

5 Conclusion

This paper presents our observation on progress guarantees provided by lock-free ob-
jects that concurrently share other lock-free objects. We found that these sharing ob-
jects can not provide lock-free progress guarantee as expected. A new synchronization
mechanism for composing lock-free objects is proposed in order to provide lock-free
progress guarantees for each individual. The experimental results show the effective-
ness of the new mechanism. A preliminary study for the performance cost introduced
by the new mechanism is also presented.

The assumption of the fixed number M of sharing objects should be studied further
and if possible removed. Additional experiments can be performed to investigate the
influence of choosing Thsax and Op;4x on the performance of the mechanism. In
addition, an implementation of the mechanism that uses a hardware-supported DCAS
such as Advanced Synchronization Facility by Advanced Micro Devices is expected to
reduce the performance cost.

References

1. IBM System/370 Extended Architecture, Principles of Operations. No. SA22-7085. IBM
Publication (1983)

2. AMD: Advanced Synchronization Facility - Proposed Architectural Specification. No.
45432/rev 2.1, AMD (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Progress Guarantees When Composing Lock-Free Objects 159

. Cederman, D., Tsigas, P.: Supporting lock-free composition of concurrent data objects. In:

Conf. Computing Frontiers, pp. 53-62. ACM, New York (2010)

. Click, C.: A lock-free wait-free hash table, lecture notes in Course EE380 (2006-2007), Stan-

ford University (2007),
http://www.stanford.edu/class/ee380/Abstracts/
070221 LockFreeHash.pdf

. Cohen, D., Campbell, N.: Automatic composition of data structures to represent relations.

In: Proceedings of KBSE 1992, pp. 182-191 (September 1992)

. Fraser, K., Harris, T.: Concurrent programming without locks. ACM Trans. Comput.

Syst. 25(2) (2007)

. Gao, H., Groote, J., Hesselink, W.: Almost wait-free resizable hashtables. In: Proceedings of

IPDPS 2004, p. 50a (2004)

. Gidenstam, A., Papatriantafilou, M., Tsigas, P.: Allocating memory in a lock-free manner.

Algorithmica 58, 304-338 (2005)

. Gidenstam, A., Sundell, H., Tsigas, P.: Cache-aware lock-free queues for multiple produc-

ers/consumers and weak memory consistency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 302-317. Springer, Heidelberg (2010)

Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Lecture Notes in
Computer Science, pp. 300-314. Springer, Heidelberg (2001)

Herlihy, M.: A methodology for implementing highly concurrent objects. ACM Trans. Pro-
gram. Lang. Syst. 15(5), 745-770 (1993)

Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann, San
Francisco (2008)

Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. 15(6), 491-504 (2004)

Michael, M.M.: Scalable lock-free dynamic memory allocation. SIGPLAN Not. 39(6), 35—
46 (2004)

Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-
rent queue algorithms. In: Proceedings of PODC 1996, pp. 267-275 (1996)

Petrank, E., Musuvathi, M., Steesngaard, B.: Progress guarantee for parallel programs via
bounded lock-freedom. In: Proceedings of PLDI 2009, pp. 144-154 (2009)

Purcell, C., Harris, T.: Non-blocking hashtables with open addressing. In: Fraigniaud, P. (ed.)
DISC 2005. LNCS, vol. 3724, pp. 108-121. Springer, Heidelberg (2005)

Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-thread sys-
tems. J. Parallel Distrib. Comput. 65(5), 609-627 (2005)

Sundell, H., Tsigas, P.: Lock-free and practical doubly linked list-based deques using single-
word compare-and-swap 3544, 240-255 (2005)

Tsigas, P., Zhang, Y.: Evaluating the performance of non-blocking synchronization on
shared-memory multiprocessors. SIGMETRICS Perform. Eval. Rev. 29, 320-321 (June
2001)

Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue for
shared memory multiprocessor systems. In: Proceedings of SPAA 2001, pp. 134-143 (2001)
Tsigas, P., Zhang, Y.: Integrating non-blocking synchronisation in parallel applications: per-
formance advantages and methodologies. In: Proceedings of the 3rd International Workshop
on Software and Performance WOSP 2002, pp. 55-67 (2002)

Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proceedings of PODC 1995,
pp- 214-222. ACM, New York (1995)

http://www.stanford.edu/class/ee380/Abstracts/070221_LockFreeHash.pdf
http://www.stanford.edu/class/ee380/Abstracts/070221_LockFreeHash.pdf

Engineering a Multi-core Radix Sort

Jan Wassenberg! and Peter Sanders?

! Fraunhofer I0SB, Ettlingen, Germany
jan.wassenberg@iosb.fraunhofer.de
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
sanders@kit.edu

Abstract. We present a fast radix sorting algorithm that builds upon
a microarchitecture-aware variant of counting sort. Taking advantage of
virtual memory and making use of write-combining yields a per-pass
throughput corresponding to at least 89% of the system’s peak memory
bandwidth. Our implementation outperforms Intel’s recently published
radix sort by a factor of 1.64. It also compares favorably to the reported
performance of an algorithm for Fermi GPUs when data-transfer over-
head is included. These results indicate that scalar, bandwidth-sensitive
sorting algorithms remain competitive on current architectures. Various
other memory-intensive applications can benefit from the techniques de-
scribed herein.

1 Introduction

Sorting is a fundamental operation that is a time-critical component of various
applications such as databases and search engines. The well-known lower bound
of (N -log N) for comparison-based algorithms no longer applies when special
properties of the keys can be assumed. In this work, we focus on 32-bit integer
keys, optionally paired with a 32-bit (or larger) value. This simplifies the imple-
mentation without loss of generality, since applications can often replace large
records with a pointer or index [I]. The radix sort algorithm is commonly used
in such cases due to its O(n) complexity. In this report, we show a 1.64-fold
performance increase over results recently published by Intel [2].

The remaining sections are organized in a bottom-up fashion, with Section
dedicated to the basic realities of current and future microarchitectures that af-
fect memory-intensive programs and motivate our approach. We build upon this
foundation in Section [3] showing how to speed up counting sort by taking ad-
vantage of virtual memory and write-combining. Section M applies this technique
towards a novel variant of radix sort. The performance of our implementation is
evaluated in Section fl Bandwidth measurements indicate the per-pass through-
put is nearly optimal for the given hardware. Its two CPUs outperform a Fermi
GPU when accounting for data-transfer overhead.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 160 2011.
© Springer-Verlag Berlin Heidelberg 2011

Engineering a Multi-core Radix Sort 161

2 Software Write-Combining

We begin with a description of basic microarchitectural realities that are likely to
have a serious impact on applications with numerous memory accesses, and show
how to avoid performance penalties by means of Software Write-Combining.
These topics are not new, but we believe they are often not adequately addressed.

The first problem arises when writing items to multiple streams. An ideal
cache with at least as many lines could exploit the writes’ spatial locality and
entirely avoid noncompulsory misses. However, perfect hit rates are not achiev-
able in practice due to limited ways of associativity a [3]. Since only a lines
can be mapped to a cache set, any further allocations from that set result in
the eviction of one of the previous lines. If possible, applications should avoid
writing to many different streams. Otherwise, the various write positions should
map to different sets to avoid thrashing and conflict misses. For current L1
caches with a = 8 ways, size C' = 32 KiB and lines of B = 64 bytes, there are
S = GQB = 64 sets, and bits [lg B,lg B + 1g S) of the destination addresses should
differ (e.g. by ensuring the write positions are not a multiple of S - B = 4 KiB
apart).

A second issue is provoked by a large number of write-only accesses. Even if
an entire cache line is to be written, the previous destination memory must first
be read into the cache. While the corresponding latency may be partially hidden
via prefetching, the cache line allocations remain problematic due to capacity
constraints and eviction policy. Instead of displacing write-only lines that are
not accessed after having been filled, the widespread (pseudo-)Least-Recently-
Used strategy displaces previously cached data due to their older timestamp.
An attempt to avoid these evictions by explicitly invalidating cache lines (e.g.
with the TA-32 CLFLUSH instruction) did not yield meaningful improvements.
Instead, applications should use non-temporal streaming store instructions that
write directly to memory. These are guaranteed to avoid cache pollution since
they circumvent the cache.

This leads directly to the next concern: single memory accesses involve sig-
nificant bus overhead. The architecture therefore combines neighboring non-
temporal writes into a single burst transfer. However, currently microarchitec-
tures only provide four to ten write-combine (WC) buffers [4]. Non-temporal
writes to multiple streams may force these buffers to be flushed to memory via
‘partial writes’ before they are full. The application can prevent this by making
use of Software Write-Combining [5]. The data to be written is first placed into
temporary buffers, which almost certainly reside in the cache because they are
frequently accessed. When full, a buffer is copied to the actual destination via
consecutive non-temporal writes, which are guaranteed to be combined into a
single burst transfer.

This scheme avoids reading the destination memory, which may incur rela-
tively expensive Read-For-Ownership transactions and would only pollute the
cache. It works around the limited number of WC buffers by using L1 cache lines
for that purpose. Interestingly, this is tantamount to direct software control of
the transparently managed cache.

162 J. Wassenberg and P. Sanders

We recommend the use of such Software Write-Combining whenever a core’s
active write destinations outnumber its write-combine buffers. Fortunately, this
can be done at a fairly high level, since only the buffer copying requires special
vector loads and non-temporal stores (which are best expressed by the SSE2
intrinsics built into the major compilers).

3 Virtual-Memory Counting Sort

We now review Counting Sort of N elements with keys in [0, M) and describe
an improved variant that makes use of virtual memory and write-combining.

The nalve algorithm first generates a histogram of the N keys. After comput-
ing the prefix sum to yield the starting output location for each key, each value
is written at its key’s output position, which is subsequently incremented.

Our first optimization goal is to avoid the initial counting pass. We could
instead insert each value into a per-key container, e.g. a list of data blocks.
However, this incurs some overhead for checking whether the current bucket is
full. Preallocating space for M arrays of size N is more efficient, because items
can simply be written to the next free position (c.f. Algorithm [introduced in
[6]). This algorithm only writes and reads each item once, a feat that comes at

Algorithm 1: Single-pass counting sort
storage := ReserveAddressSpace (N - M);
for i:=0to M — 1 do next[i] :=i- N;
foreach key,value do

storage [next [key]] := value;
next [key] := next [key] + 1;

the price of N - M space. While this appears problematic in the Random-Access-
Machine model, it is easily handled by 64-bit CPUs with paged virtual memory.
Physical memory is only mapped to pages when they are first accessed thus
reducing the actual memory requirements to O(N + M -pageSize). The remainder
of the initial allocation only occupies address space, of which multiple terabytes
are available on 64-bit systems.

Having avoided the initial counting pass, we now show how to efficiently write
values to storage using the write-combining technique described in Section[2l Our
implementation initializes the next pointers to consecutive, naturally aligned,
cache-line-sized buffers. A buffer is full when its (post-incremented) position is
evenly divisible by its size. When that happens, an unrolled loop of non-temporal
writes copies the buffer to its key’s current output position within storage. These
output positions are also stored in an array of pointers.

1 Accesses to non-present pages result in a page fault exception. The application re-
ceives such events via signals (POSIX) or Vectored Exception Handling (Microsoft
Windows) and reacts by committing memory, after which the faulting instruction is
repeated.

Engineering a Multi-core Radix Sort 163

4 Radix Sort

After a brief review of radix sorting, we introduce a new variant based on the
virtual-memory counting sort described in Section [l

A radix sort successively examines D-bit ‘digits’ of the K-bit keys. They are
characterized by the order in which digits are processed: starting at the Least
Significant Digit (LSD), or Most Significant Digit (MSD).

An MSD radix sort partitions the items according to the current digit, then
recursively sorts the resulting buckets. While it no longer needs to move items
whose previously seen key digits are unique, this is not especially helpful when
the number of passes K/D is small. In fact, the overhead of managing numerous
(nearly empty) buckets makes MSD radix sort less suited for relatively small N.

By contrast, each iteration of the LSD variant partitions all items into buckets
by the current key digit. This amortizes the bucket setup cost over the number
of elements and avoids the possibility of load imbalance for parallelization at the
price of increased data copying.

To reduce this overhead and also parallel communication, we make use of
“reverse sorting” [7], in which one or more MSD passes partition the data into
buckets, which are then locally sorted via LSD. This turns out to be even more
advantageous for Non-Uniform Memory Access (NUMA) systems because each
processor is responsible for writing a contiguous range of outputs, thus ensuring
the OS allocates those pages from the processor’s NUMA node [§].

Let us now examine the pseudocode of the radix sort (Algorithm [2]), choosing
K = 32 for brevity and D = 8 to allow extracting key digits without masking.
Each Processing Element (PE) first uses counting sort to partition its items into
local buckets by the MSD (digit = 3). Note that items consist of a key and
value, which are adjacent in memory (ideally within a native 64-bit word, but
larger combinations are possible in our implementation via larger user-defined
types). After all are finished, the output index of the first item of a given MSD
is computed via prefix sum. Each PE is assigned a range of MSD values, sorting
the buckets from all PEs for each value. Skewed MSD distributions can cause
load imbalance. However, this could be resolved via special treatment of large
bucketdd. The local sort entails K /D —1 iterations in LSD order. The first copies
all other PEs’ buckets into local memory. The second to last pass also computes
the last digit’s histogram, thus allowing writing directly to the output positions
in the final pass. Note that three sets of buckets are required, which makes heavy
use of virtual memory (3 - 2P - |PE| = 6144 times the input size). While 64-bit
Linux grants each process 128 TiB address space, Windows limits this to 8 TiB,
which means only about 1.4 GiB of inputs can be sortedd.

We briefly discuss additional system-specific considerations. The radix 27
was motivated by easy access to each digit, but is also limited by the cache

2 Sorting buckets larger than N/|PE| using multiple PEs.

3 This limitation could be circumvented by estimating bounds for bucket sizes via
sampling. In the unlikely case that they are exceeded, a new sample would be drawn
and the process repeated.

164 J. Wassenberg and P. Sanders

Algorithm 2: Parallel Radix Sort
parallel foreach item do
d := Digit(item, 3);
buckets3 [d] := buckets3 [d] U {item};
Barrier;
foreach i € [0,2") do
bucketSizes [i] :=)", |buckets3 []|;
outputindices := PrefixSum(bucketSizes);
parallel foreach bucket3 € buckets3 do
foreach item € bucket3VPE do
d := Digit(item, 0);
buckets0 [d] := buckets0 [d] U {item};
foreach bucket0 € bucketsO do
foreach item € bucketO do
d :=Digit(item,1);
bucketsl [d] := bucketsl [d] U {item};
d := Digit(item, 2);
histogram2 [d] := histogram2 [d] + 1;
foreach bucketl € bucketsl do
foreach item € bucketl do
d :=Digit(item, 2);
1 := outputindices [d] + histogram?2 [d];
histogram?2 [d] := histogram2 [d] + 1;
output [¢] := item;

and TLB size. Because of the many required TLB entries, we map the buckets
with small pages, for which the Intel i7 microarchitecture has 512 second-level
TLB entries. To increase TLB coverage, we use large pages for the inputs. The
working set consists of 2 buffers, buffer pointers, output positions, and 32-bit
histogram counters. This fits in a 32 KiB L1 data cache if the software write-
combine buffers are limited to a single 64-byte cache line. To avoid associativity
and aliasing conflicts, these arrays are contiguous in memory. Interestingly, these
optimizations do not detract from the readability of the source code. Knowledge
of the microarchitecture can also be applied towards middle-level languages and
enables principled design decisions.

5 Performance Evaluation

We characterize the performance of our sorting implementation by its through-
put, defined as tljf to where N is the number of items and tg and ¢; are the ear-
liest and latest start and finish times reported by any thread. The test platform
consists of dual W5580 CPUs (3.2 GHz, 48 GiB DDR3-1066 memory) running
Windows XP x64. Our implementation is compiled with ICC 11.1.082 /0x /0g

/0i /0t /Qipo /GA /GR- /GS- /EHsc /Qopenmp /QaxSSE4.2. When sorting 350 M

Engineering a Multi-core Radix Sort 165

uniformly distributed 32-bit keys generated by the WELL512 algorithm [9], the
basic algorithm (‘VM only’) reaches a throughput of 391 M items/s, as shown
in the second column of Table [l After enabling write-combining (‘VM+WC’),
performance nearly doubles to 657 M/s.

Intel has reported 240 M/s for the same task and a single but identical CPU
[2]. For a fair comparison with our dual-CPU system, we double their through-
put, which optimistically assumes their algorithm is NUMA-aware, scales per-
fectly and is not running at a lower memory clock (since our DDR3-1066 is at
the lower end of currently available frequencies). We must also divide by the
given speedup of 1.2 due to hyperthreads, since those are disabled on our ma-
chine. This (‘Intel x2) yields 400 M/s; the proposed algorithm is therefore 1.64
times as fast. A separate publication has also presented results [I0] for the Many
Integrated Cores architecture. The Knights Ferry processor provides 32 cores,
each with 4 threads and 16-wide SIMD. The simulation (‘KNF MIC’) shows a
throughput of 560 M/s. Our scalar implementation is currently 1.17 times as
fast when running on 8 cores.

Recently, a throughput of 1005 M /s was reported on a GTX 480 (Fermi) GPU
[11]. However, this excludes driver and data-transfer overhead. For applications
in which the data is generated and consumed by the CPU, we must include at
least the time required to read and write data over the PCle 2.0 bus. Assuming
the peak per-direction bandwidth of 8 GB/s is reached, the aggregate throughput
(‘GPU+PCIe’) is 501 M/s. Our implementation, running on two CPUs, therefore
outperforms this algorithm on a current top-of-the-line GPU by a factor of 1.31
despite lower transistor counts (2-731 M vs. 3000 M) and thermal design power
(2130 W vs. 275 — 300 W).

Table 1. Throughputs [million items per second] for 32-bit keys and optional 32-bit
values

Algorithm ~ K=32,V=0 K=32,V=32

VM only 391 238
Intel x2 400 307
GPU+PCle 501 303
KNF MIC 560 @)
VM+WC 657 452

Similar measurements and extrapolations for the case of 32-bit keys associated
with V' = 32-bit values are given in the third column of Table [l Since the
slowdown is less than a factor of two, the implementations are at least partially
limited by computation instead of bandwidth. Intel’s algorithm is more efficient
in this regard, with only a 1.3-fold decrease vs. our factor of 1.45. The additional
data transfers over PCle render the GPU algorithm uncompetitive.

166 J. Wassenberg and P. Sanders

Speedup vs. single thread

1 | | | | | |
1 2 3 4 5 6 7 8

Number of threads

Fig. 1. Linear scalability on two quad-core CPUs with a NUMA factor of 1.5

Since radix sort is bandwidth-sensitive, it is also interesting to examine per-
formance for a varying number of processors. We manually distribute OpenMP
threads across CPU packages and cores (in that order) to make use of all avail-
able memory controllers. Our NUMA-aware implementation scales linearly with
the number of threads, as shown by Figure [Il

To explain the 95% parallel efficiency, we measured the total traffic at each
socket’s memory controller. Since this information is not available from current
profilers such as VTune (which use per-core performance counters), we have
developed a small kernel-mode driver to provide access to the model-specific
performance counters in the Intel i7 uncored. Uncached writes constitute the bulk
of the write combiners’ memory traffic and are therefore of particular interest.
They are apparently reported as Invalid-To-Exclusive transitions and can thus
be counted as the total number of reads minus ‘normal’ reads [12]. We find that
2041 MiB are written, which corresponds to 64 Mi items - 8 bytes per item -
4 passes (slightly less because our final pass cannot use non-temporal writes
when the output position is not aligned). Surprisingly, 2272 MiB are read —
about 10% more than expected. This amount seems to be influenced by the
number of threads. Possible causes may include coherency traffic or page walks
and will be investigated in future work. However, we can provide a conservative
estimate of the bandwidth utilization. Given the pure read and write bandwidths
(38687 MB/s and 28200 MB/s) measured by RightMark [13], the minimum
time required for 4 reads and writes of 175 M 8-byte items is 343 ms, which
is 89% of the total measured time. This calculation does not include write-to-
read turnaround [I4, p. 486], so there is even less room for improvement than
indicated.

4 The part of the socket not associated with a particular core.

Engineering a Multi-core Radix Sort 167

1.7

1.68 n

1.66 N

164l — Un1f01'rm |
—— Gaussian

1.62 -

1.6 -

1.58 |-

Nanoseconds per item

1.56 |-

1.54 |-

1.52 - i

1.5 | | | | | |
50 100 150 200 250 300

Number of 32-bit items [-22]

Fig. 2. Time per item for various input sizes and distributions

The previous measurements concern large numbers of items. We now study
performance over a wider range of input sizes. The elapsed time per item, shown
in Figure 2] varies inversely with the number of items N due to amortization of
thread-startup overhead. Performance is within 10% of the best measurement
when N > 26-22° or N > 21220 in the case of the approximated Gaussian
distribution [I5]. It is initially surprising that this distribution does not require
more time to sort than uniformly distributed numbers. However, interleaving
buckets in the LSD passes (successive buckets are assigned to different threads)
avoids load imbalance, and increased occupancy of the central buckets improves
locality at the memory page level.

6 Conclusion

We have introduced improvements to counting sort and a novel variant of radix
sort for integer key/value pairs. Bandwidth measurements indicate our algo-
rithm’s throughput is within 11% of the theoretical optimum for the given hard-
ware. It outperforms the recently published results of Intel’s radix sort by a factor
of 1.64 and also outpaces a Fermi GPU when data transfer overhead is included.

168 J. Wassenberg and P. Sanders

These results indicate that scalar, bandwidth-sensitive sorting algorithms still
have their place on current architectures. However, achieving this level of perfor-
mance requires awareness of the underlying microarchitecture and some degree
of tuning. Our implementation encompasses 5700 lines of C++ (including tests),
plus 40,000 lines of shared infrastructure. A demo executable [16] capable of gen-
erating or reading 32-bit integers, sorting and efficiently writing them to disk is
being made available so that our measurements may be reproduced.

Future Work: While carefully engineered, our implementation is not yet a general
solution for all possible sorting applications. Radix sort is limited to relatively
small integer keys, and we also assume at least one of the key digits (the MSB) is
reasonably equally distributed. Skewed (e.g. constant) distributions currently re-
sult in load imbalance. This could be avoided by sorting extremely large buckets
from the MSD phase using multiple processors.

We are also interested in testing on larger multi-socket machines with higher
NUMA factors and investigating details of the memory subsystem that reduce
effective bandwidth. Finally, we believe the general software write-combining
technique can provide similar speedups for other memory-intensive applications.
In particular, comparison-based sample sort is also expected to benefit from our
implementation techniques.

References

1. Bohannon, P., Mcllroy, P., Rastogi, R.: Main-memory index structures with fixed-
size partial keys. In: SIGMOD Conference, pp. 163-174 (2001),
http://www.acm.org/sigs/sigmod/sigmod01/eproceedings/papers/
Research-Bohannon-et-al.pdf

2. Satish, N., Kim, C., Chhugani, J., Nguyen, A., Lee, V., Kim, D., Dubey, P.: Fast
sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In: Elma-
garmid, A., Agrawal, D. (eds.) SIGMOD Conference, pp. 351-362. ACM Press,
New York (2010), http://doi.acm.org/10.1145/1807167.1807207

3. Mehlhorn, Sanders: Scanning multiple sequences via cache memory. Algorith-
mica 35 (2003)

4. Intel. Intel Architecture Software Developer Manual (2010), System Programming
Guide, http://www.intel.com/Assets/PDF/manual/253668.pdf

5. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual (November 2007),
http://www.intel.com/design/processor/manuals/248966.pdf

6. Wassenberg, J., Middelmann, W., Sanders, P.: An efficient parallel algorithm for
graph-based image segmentation (June 2009),
http://algo2.iti.uni-karlsruhe.de/wassenberg/
wassenbergO9parallelSegmentation.pdf

7. Jimenez-Gonzalez, D., Navarro, J., Larriba-Pey, J.: Fast parallel in-memory 64-bit
sorting. In: Proceedings of the 2001 International Conference on Supercomputing
(15th ICS 2001), Sorrento, Napoli, Italy, pp. 114-122. ACM, New York (2001)

http://www.acm.org/sigs/sigmod/sigmod01/eproceedings/papers/Research-Bohannon-et-al.pdf
http://www.acm.org/sigs/sigmod/sigmod01/eproceedings/papers/Research-Bohannon-et-al.pdf
http://doi.acm.org/10.1145/1807167.1807207
http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/design/processor/manuals/248966.pdf
http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf
http://algo2.iti.uni-karlsruhe.de/wassenberg/wassenberg09parallelSegmentation.pdf

10.

11.

12.

13.

14.

15.

16.

Engineering a Multi-core Radix Sort 169

. an Mey, D., Terboven, C.: Affinity matters! OpenMP on multicore and ccNUMA

architectures. In: Parallel Computing: Architectures, Algorithms and Applications,
vol. 15, Forschungszentrum Jiilich and RWTH Aachen University (Febuary 2008),
http://www.compunity.org/events/pastevents/parco07/

AffinityMatters DaM.pdf

. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based

on linear recurrences modulo 2. ACM Transactions on Mathematical Software 32
(2006)

Satish, N., Kim, C., Chhugani, J., Nguyen, A., Lee, V., Kim, D., Dubey, P.: Fast
sort on CPUs, GPUs and intel MIC architectures. Technical report, Intel (2010),
http://techresearch.intel.com/userfiles/en-us/

FASTsort CPUsGPUs IntelMICarchitectures.pdf

Merrill, D., Grimshaw, A.: Revisiting sorting for GPGPU stream ar-
chitectures. Technical Report 3, University of Virginia (February 2010),
http://www.cs.virginia.edu/~dgm4d/papers/RadixSortTR.pdf

Levinthal, D.: Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon 5500 processors. Intel,
http://software.intel.com/sites/products/collateral/hpc/vtune/
performance analysis guide.pdf

Besedin, D.: RightMark memory analyzer, http://cpu.rightmark.org

(accessed January 9, 2009)

Jacob, B., Ng, S., Wang, D.: Memory systems: cache, DRAM, disk. Morgan Kauf-
mann, San Francisco (2007)

Helman, D., Bader, D., JaJa, J.: A randomized parallel sorting algorithm with an
experimental study. J. Parallel Distrib. Comput. 52(1), 1-23 (1998)

Wassenberg, J.: Vmesort demo (May 2011),
http://algo2.iti.kit.edu/wassenberg/vmcsort/demo.html

http://www.compunity.org/events/pastevents/parco07/AffinityMatters_DaM.pdf
http://www.compunity.org/events/pastevents/parco07/AffinityMatters_DaM.pdf
http://techresearch.intel.com/userfiles/en-us/FASTsort_CPUsGPUs_IntelMICarchitectures.pdf
http://techresearch.intel.com/userfiles/en-us/FASTsort_CPUsGPUs_IntelMICarchitectures.pdf
http://www.cs.virginia.edu/~dgm4d/papers/RadixSortTR.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://cpu.rightmark.org
http://algo2.iti.kit.edu/wassenberg/vmcsort/demo.html

Accelerating Code on Multi-cores with FastFlow

Marco Aldinucci', Marco Danelutto?, Peter Kilpatrick?,
Massimiliano Meneghin*, and Massimo TorquatiZ

1 Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it
2 Computer Science Department, University of Pisa, Italy
3 Computer Science Department, Queen’s University Belfast, UK
4 IBM Dublin Research Lab, Ireland

Abstract. FastFlow is a programming framework specifically target-
ing cache-coherent shared-memory multi-cores. It is implemented as a
stack of C++ template libraries built on top of lock-free (and mem-
ory fence free) synchronization mechanisms. Its philosophy is to combine
programmability with performance. In this paper a new FastFlow pro-
gramming methodology aimed at supporting parallelization of existing
sequential code via offloading onto a dynamically created software accel-
erator is presented. The new methodology has been validated using a set
of simple micro-benchmarks and some real applications.

Keywords: offload, patterns, multi-core, lock-free synchronization, C++-.

1 Introduction

Parallel programming is becoming more and more a must with the advent of
multi-core architectures. While up to few years ago faster and faster execution
of programs was mainly the result of increased clock speed and of improvements
in single processor architecture, from now on improvements may only come from
better and more scalable parallel programs.

Here we discuss a semi-automatic parallelization methodology for existing
code which is based on streamization, i.e. on the introduction and exploitation
in the user application of stream parallelism. The methodology is based on the
identification of suitable stream parallel patterns within the user application.
Once these patterns have been recognized the computation of a stream of tasks
according to the patterns is delegated to a structured parallel library—FastFlow—
targeting in a very efficient way common cache coherent multi-core architectures.

The proposed methodology is semi-automatic as i) the programmer is still in
charge of identifying the appropriate stream parallel patterns, but ii) the stream
parallel pattern implementation is completely and efficiently delegated to the
FastFlow runtime system. This happens by way of offloading onto a software
device behaving as an accelerator (FastFlow software accelerator) which realizes
a parallel pattern (skeleton).

Stream parallelism is the well-known programming paradigm supporting the
parallel execution of a stream of tasks by using a series of sequential or parallel

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 170 2011.
© Springer-Verlag Berlin Heidelberg 2011

Accelerating Code on Multi-cores with FastFlow 171

stages [I]. A stream program can be naturally represented as a graph of indepen-
dent stages (kernels or filters) that communicate explicitly over data channels.
Parallelism is achieved by running each stage simultaneously on subsequent or
independent data.

As with all kinds of parallel program, stream programs can be expressed as a
graph of concurrent activities, and directly programmed using a low-level shared
memory or message passing programming framework. Although this is still a
common approach, writing a correct, efficient and portable program in this way
is a non-trivial activity. Attempts to reduce the programming effort by raising the
level of abstraction through the provision of parallel programming frameworks
date back at least three decades with a number of significant contributions.

Notable among these is the skeletal approach [2] (a.k.a. pattern-based parallel
programming), which is becoming increasingly popular after being revamped by
several successful parallel programming frameworks [3J4I5/6]. Parallel patterns
capture common parallel programming paradigms (e.g. MapReduce, ForAll, Di-
vide&Conquer, etc.) and make them available to the programmer as high-level
constructs equipped with well-defined functional and parallel semantics. Some
of these attempts explicitly include stream parallelism as a major source of con-
currency exploitation, such as pipeline (running each stage simultaneously on
subsequent stream items), farm (running multiple independent stages in paral-
lel, each operating on a different task), and loop (providing a way to generate
cycles in a stream graph). The loop skeleton together with the farm skeleton can
be effectively used to model recursive and Divide&Conquer computations.

The stream paradigm perfectly suits the need for reducing inter-core synchro-
nization overheads in parallel programs for shared cache multi-cores. Therefore,
it can be used to build an efficient run-time support for a high-level programming
model aimed at the effective design of parallel applications.

The rest of paper discusses the idea of streamization (Sec.), outlines the
main FastFlow features (Sec. [), describes the stream acceleration methodol-
ogy (Sec. Hl) and gives experimental results (Sec.). Related work (Sec. [6) and
Conclusions are then presented.

2 Code Acceleration through Streamization

The parallelization of a sequential code is typically tackled via data dependence
analysis [7]. Having fixed a reference grain for the parallelization, the tasks to
compute are released from strict sequential order in such a way that the program
semantics is preserved. As a result, these objects are organized in a static or
dynamically evolving graph of communicating tasks.

Instruction level parallelism is typically exploited at the hardware level within
the single core, while coarser grain parallelism is expressed among cores at soft-
ware level. In the latter case, the primary sources of parallelism exploitation are
iterative and recursive tasks since they often model heavy kernels that can be
unfolded into fully or partially independent tasks.

Also, if the parallel code is derived from existing sequential code, variable
privatization and scalar/array expansion are often applied to further relax false

172 M. Aldinucci et al.

dependencies [Q[7]. These techniques consist in various levels of duplication of
some memory area. Variable privatization nicely couples with stream parallelism
making possible dynamic privatization. Privatized variables can be copied into a
dynamically created data structure (e.g. the stream task type task t in Fig.[2]
right, lines 44-46) and offloaded in a non-blocking fashion to an accelerator.

Computation offloading, which is typically used to feed hardware accelera-
tors (e.g. via OpenCL or CUDA), naturally creates a stream of tasks for the
accelerator, provided it is realized via non-blocking mechanisms. As with GPUs,
streamization techniques may offer significant opportunities on shared-cache
multi-cores.

We classify stream sources in two broad categories: ezo- and endo-streams.

Exo-streams. A stream parallel approach naturally matches the parallelization
of applications that manage externally produced (exo) streams of input and
output data. These applications are increasingly found in many domains, e.g.
multimedia and networking. In many cases, the whole dataset is large and has to
be processed online. Moreover, there may be few or no sources of data parallelism
to allow use of classical data parallel techniques.

Endo-streams. A stream parallel approach also matches those computations
that internally (endo) generate streams. We recognize three distinct sources
of endo-streams: recursive computations and iterative computations, with and
without dependencies. Recursion (Recursive kernels) appears as a natural pro-
gramming technique in many algorithms working with dynamic data structures
such as graphs and trees. In many cases they are data intensive algorithms and
require significant computational power. Recursion could be easily modeled as a
streaming network using a cyclic graph, whereas it can not readily be modeled by
way of a data parallel approach. In this case, stream items are generated on-the-
fly and represent different invocations of the recursive kernel. Iterative kernels
with independent iterations represent the simplest case of endo-stream sources
and are typically parallelized using a data-parallel approach. Streamization can
also be applied in this case (e.g. generating and then processing a stream of
items representing the different iterations) and is particularly useful when dy-
namic loops (i.e. while) or for loops with conditional jumps in the body (i.e. break
or goto statements) are used. In fact, in all cases when flag variables are used in
the code to skip the next code section, classical data parallel techniques are diffi-
cult to apply and may lead to poor performance. In the presence of loop-carried
dependencies (Iterative kernels with dependencies), streamization may lead to
more efficient synchronization patterns because it reduces the synchronization
overhead due to data sharing in shared memory systems and thus shortens the
critical path of execution. In doAcross task scheduling, the dependencies across
threads are typically cross-iteration dependencies, which means that the under-
ling memory location cannot be privatized. The synchronization overhead must
be paid at least once for each iteration of a loop. On the contrary, in a pipeline
schedule, loop-carried dependencies can be mapped onto the same thread. The

Accelerating Code on Multi-cores with FastFlow 173

remaining dependencies will still have the same overhead, but privatization will
better tolerate the latency.

3 The FastFlow Parallel Programming Framework

FastFlow is a C++ parallel programming framework aimed at simplifying the
development of efficient applications for multi-core platforms. The key vision of
FastFlow is that ease-of-development and runtime efficiency can both be achieved
by raising the abstraction level of the design phase, thus providing developers
with a suitable set of parallel programming patterns that can be efficiently com-
piled onto the target platforms.

FastFlow is conceptually designed as a stack of layers that progressively ab-
stract the shared memory parallelism at the level of cores up to the definition of
useful programming constructs supporting structured parallel programming on
cache-coherent shared memory multi- and many-core architectures [9].

FastFlow’s core is based on efficient Single-Producer-Single-Consumer (SPSC)
and Multiple-Producer-Multiple-Consumer (MPMC) FIFO queues, which are
implemented in a lock-free and wait-free fashion. On top of its core, FastFlow
provides programmers with a set of patterns implemented as C++ templates:
farm, farm-with-feedback (i.e. Divide&Conquer) and pipeline patterns, as well as
their arbitrary nesting and composition. A FastFlow farm is logically built out
of three entities: emitter, workers, collector. The emitter dispatches stream items
to a set of workers which compute the output data. Results are then gathered
by the collector back into a single stream.

Thanks to the lock-free implementation that significantly reduces cache inval-
idations in core-to-core synchronizations, FastFlow typically demonstrates in-
creased speedup for fine-grained computations over other programming tools
such as POSIX, Cilk, OpenMP, and Intel TBB [10]. For more information about
the FastFlow implementation and features see [9].

unique thr main thr stream of independent clusters

. W of pixels
.: ; . thr 1

v persd Flestoration

£ e : | [|Bestorstion)

+ appiications + | Seif-oficacing i] : e

hing
thrn
FastFlow

" "
Composable parametric Residual reduction

patterns: pipeling, farm, ...
accelerator

Multi-core and many-core

co-UMA or co-NUMA global residual
ce-UMA or ce-|

Parallel - with FastFlow farm accelerator

(b)

Sequential

Fig. 1. FastFlow accelerator architecture with usage examples. Flow charts
of sequential and a FastFlow accelerated real case algorithm: two-step denoising.

174 M. Aldinucci et al.

1 // Original code 20 // FastFlow accelerated code
2 #define N 1024 —l |_ 21 #define N 1024
s long A[N][N],BIN][N],C[N][N]; 22 long A[NJ[N],BIN][N],C[N][N]:
4 int main() {) @D 2 int ma‘?‘(_) {
5 // < init A,B,C> J L 24 // < init A,B,C>
6 25
7 for(int i=0ji<N;++i) { - 26 ff :: ff_farm<> farm(true /* accel */);
8 for(int j=0;j<N;++j) { @ 27 std::vector<ff:: ff_node *> w;
9 — 28 for(int i=0;i<PAR_DEGREE;++i)
10 int _C=0; —l 29 w.push_back(new Worker);
11 for(int k=0;k<N;++k) 6 30 farm.add_workers(w);
12 _C += A[i][K]*B[K][j]; 31 farm.run_then_freeze();
s Clll=c d o .
14 A T~ 33 for (int i=0;i<N;i++) {
s @ @ s for(int j=0;<Ni++j) {
6} 1 35 task_t * task = new task_t(i,j); £
17} = 36 farm.offload(task); »
® a7 -
- @ 4 }
- 39 farm.offload((void #)ff:: FF_EOS);
~ 40 farm.wait(); // Here join
Regions marked with white circled fig- @ a1}
ures ©,0,®,® are copy-pasted. 42
The region marked with the black circled 43 // Includes
figure (®) has been selected to be ac- 44 struct task_t {
celerated with a farm. It is copied with 45 task_t(int i,int j):i(i),j(j) {}
renaming of variables that are concur- 46 int i; int j;};

rently changed, e.g. automatic variables 47 X
in a loop. A stream of task t variables is 48 class Worker: public ff:: ff-node {
used to keep all different values of these 49 public: // Offload target service

.) 50 void * svc(void xtask) {
variables. D 51 task-t * t = (task-t *)task;
Grey boxes create and run the acceler- |— 52 int _C—=0:
ator; they are pre-determined according 53 for(;nt k;O-k<N'++k)
to the accelerator type. (3] 54 _C += Alt—>i][k]+B[K][t—>]];
The code marked with ™ executes the |_ 55 Clt—>i][t—>j] = -C;
offloading onto the accelerator; the tar- 56 delete t; ’
get of the offloading is the svec method 57 return GO_ON;

O of the Worker class. 58 }

59}

Fig. 2. Derivation of FastFlow accelerated code from a simple sequential C++ appli-
cation (matrix multiplication)

4 Self-offloading on the FastFlow Accelerator

A FastFlow accelerator is a software device that extends the FastFlow framework
with a functional self-offloading feature, i.e. offloading from a thread running
on the main CPU to other threads running on the main (multi-core) CPUs. The
architecture of the accelerator is sketched in Fig.

The main aim of self-offloading is to give the programmer an easy and semi-
automatic way to introduce parallelism into a C/C++ sequential code by moving
parts of the original code into the body of C++ methods, which will be executed
in parallel according to the selected FastFlow skeleton (or skeleton composition).
As shown in Fig. Bl this requires limited programming effort and may signifi-
cantly speed up the original code by exploiting efficient stream parallelism.

An accelerator is a collection of threads and has a global life-cycle with two
stable states: running and frozen, plus several transient states. In a running
state, all threads of an accelerator are logically able to run (either running or
actively waiting on a non-blocking synchronization), whereas in a frozen state

Accelerating Code on Multi-cores with FastFlow 175

they are suspended (at the O.S. level). At any given time, due to non-blocking
synchronizations, the total number of threads in running accelerators should
typically be smaller (or equal) than core count for performance reasons. This kind
of configuration typically benefits from O.S. affinity scheduling. In the case of a
higher thread count, running threads will share available cores according to O.S.
scheduling policies. The thread-to-core pinning is possible via FastFlow utility
functions; automatic thread pinning/mapping are planned for future work.

The accelerator provides the programmer with one (untyped) streaming input
channel and one (untyped) streaming output channel that can be dynamically
created (and destroyed) from C++ code (either sequential or multi-threaded)
as a C++ object (Fig. 2 right, lines 10-13). Thanks to the underlying shared
memory architecture, messages flowing into these channels may carry both values
and pointers to data structures.

When an accelerator is created (Fig. 2] lines 26-30), it can be switched on
(Fig. @ line 31): the accelerator threads are created and bound to system cores.
A thread of a user can wait for an accelerator, i.e. suspend until the accelerator
completes its input tasks, and then can put the accelerator into the frozen state.
It is also possible to activate the accelerator asynchronously and pop output
tasks from the accelerator’s output channel using the load result method.

A FastFlow accelerator is defined by a FastFlow skeletal composition aug-
mented with an input stream and an output stream that can be, respectively,
pushed and popped from outside the accelerator. Both the functional and extra-
functional behaviour of the accelerator are fully determined by the chosen skele-
tal composition. For example, the farm skeleton provides the parallel execu-
tion of the same code (within a worker object) on independent items of the
input stream. The pipeline skeleton provides the parallel execution of filters
(or stages) exhibiting a direct data dependency. More complex behaviours can
be defined by creating compositions of skeletons whose behaviour could be de-
scribed using a (cyclic or acyclic) graph of tasks with well-defined functional and
extra-functional semantics. Clear understanding of accelerator behaviour makes
it possible to correctly parallelize segments of code.

The use of a farm accelerator is illustrated in Fig. 2l The code in Fig. 2] (left)
shows a sequential program including three loops: simple matrix multiplication.
Tts accelerated version, shown in Fig.[2 (right), can be semi-automatically derived
from the sequential by copy-pasting pieces of code into placeholders on a code
template (parts in white background in the left column): for example, code
marked with ©,@,®, and ® are copied from left to right. The code that has
been selected for offloading, in this case the body of a loop marked with @, is
copied into the worker body after a suitable renaming of variables.

The accelerator shares the memory with its caller. As is well-known, trans-
forming a sequential program into a para