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Preface

Euro-Par is an annual series of international conferences dedicated to the
promotion and advancement of all aspects of parallel and distributed computing.

Euro-Par covers a wide spectrum of topics from algorithms and theory to
software technology and hardware-related issues, with application areas ranging
from scientific to mobile and cloud computing.

Euro-Par provides a forum for the introduction, presentation and discussion
of the latest scientific and technical advances, extending the frontier of both the
state of the art and the state of the practice.

The main audience of Euro-Par are researchers in academic institutions, gov-
ernment laboratories and industrial organizations. Euro-Par’s objective is to be
the primary choice of such professionals for the presentation of new results in
their specific areas. As a wide-spectrum conference, Euro-Par fosters the synergy
of different topics in parallel and distributed computing. Of special interest are
applications which demonstrate the effectiveness of the main Euro-Par topics.

In addition, Euro-Par conferences provide a platform for a number of ac-
companying, technical workshops. Thus, smaller and emerging communities can
meet and develop more focussed topics or as-yet less established topics.

Euro-Par 2011 was the 17th conference in the Euro-Par series, and was or-
ganized by the INRIA (The French National Institute for Research in Com-
puter Science and Control) Bordeaux Sud-Ouest center and LaBRI (Computer
Science Laboratory of Bordeaux). Previous Euro-Par conferences took place in
Stockholm, Lyon, Passau, Southampton, Toulouse, Munich, Manchester, Pad-
derborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes, Las Palmas, Delft and
Ischia. Next year the conference will take place in Rhodes, Greece. More in-
formation on the Euro-Par conference series and organization is available on the
wesite http://www.europar.org.

The conference was organized in 16 topics. This year we introduced one new
topic (16: GPU and Accelerators Computing) and re-introduced the application
topic (15: High-Performance and Scientific Applications). The paper review pro-
cess for each topic was managed and supervised by a committee of at least four
persons: a Global Chair, a Local Chair, and two Members. Some specific topics
with a high number of submissions were managed by a larger committee with
more members. The final decisions on the acceptance or rejection of the sub-
mitted papers were made in a meeting of the Conference Co-chairs and Local
Chairs of the topics.

The call for papers attracted a total of 271 submissions, representing 41 coun-
tries (based on the corresponding authors’ countries). A total number of 1, 065
review reports were collected, which makes an average of 3.93 review reports
per paper. In total 81 papers were selected as regular papers to be presented at
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the conference and included in the conference proceedings, representing 27 coun-
tries from all continents, an yielding an acceptance rate of 29.9%. Three papers
were selected as distinguished papers. These papers, which were presented in a
separate session, are:

1. Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham,
Rob Ross and Nagiza F. Samatova “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-Temporal Data”

2. Aurelien Bouteiller, Thomas Herault, George Bosilca and Jack J. Dongarra
“Correlated Set Coordination in Fault-Tolerant Message Logging Protocols”

3. Edgar Solomonik and James Demmel “Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms”.

Euro-Par 2011 was very happy to present three invited speakers of high inter-
national reputation, who discussed important developments in very interesting
areas of parallel and distributed computing:

1. Pete Beckman (Argonne National Laboratory and the University of Chicago),
“Facts and Speculations on Exascale: Revolution or Evolution?”

2. Toni Cortes Computer Architecture Department (DAC) in the Universitat
Politècnica de Catalunya, Spain), “Why Trouble Humans? They Do Not
Care”

3. Alessandro Curioni (IBM, Zurich Research Laboratory, Switzerland), “New
Scalability Frontiers in Ab-Initio Molecular Dynamics”

In this edition, 12 workshops were held in conjunction with the main track
of the conference. These workshops were:

1. CoreGRID/ERCIM Workshop on Grids, Clouds and P2P Computing (CGWS
2011)

2. Algorithms, Models and Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar 2011)

3. High-Performance Bioinformatics and Biomedicine (HiBB)
4. System-Level Virtualization for High Performance Computing (HPCVirt

2011)
5. Algorithms and Programming Tools for Next-Generation High-Performance

Scientific Software (HPSS 2011)
6. Managing and Delivering Grid Services (MDGS)
7. UnConventional High-Performance Computing 2011 (UCHPC 2011)
8. Cloud Computing Projects and Initiatives (CCPI)
9. Highly Parallel Processing on a Chip (HPPC 2011)

10. Productivity and Performance (PROPER 2011)
11. Resiliency in High-Performance Computing (Resilience) in Clusters, Clouds,

and Grids
12. Virtualization in High-Performance Cloud Computing (VHPC 2011)

The 17th Euro-Par conference in Bordeaux was made possible thanks to the
support of many individuals and organizations. Special thanks are due to the au-
thors of all the submitted papers, the members of the topic committees, and all
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the reviewers in all topics, for their contributions to the success of the conference.
We also thank the members of the Organizing Committee and people of the Sud
Congrès Conseil. We are grateful to the members of the Euro-Par Steering Com-
mittee for their support. We acknowledge the help we had from Dick Epema of
the organization of Euro-Par 2009 and Pasqua D’Ambra and Domenico Talia of
the organization of Euro-Par 2010. A number of institutional and industrial spon-
sors contributed toward the organization of the conference. Their names and lo-
gos appear on the Euro-Par 2011 website http://europar2011.bordeaux.inria.fr/

It was our pleasure and honor to organize and host Euro-Par 2011 in Bor-
deaux. We hope all the participants enjoyed the technical program and the social
events organized during the conference.

August 2011 Emmanuel Jeannot
Raymond Namyst

Jean Roman
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Quantifying the Potential Task-Based Dataflow Parallelism in MPI
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Vladimir Subotic, Roger Ferrer, Jose Carlos Sancho,
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Introduction

Pierre Manneback, Thierry Gautier, Gudula Rnger, and Manuel Prieto Matias

Topic chairs

Developing parallel or distributed applications is a hard task and it requires ad-
vanced algorithms, realistic modeling, efficient design tools, high-level program-
ming abstractions, high-performance implementations, and experimental eval-
uation. Ongoing research in this field emphasizes the design and development
of correct, high-performance, portable, and scalable parallel programs. Related
to these central needs, important work addresses methods for reusability, per-
formance prediction, large-scale deployment, self-adaptivity, and fault-tolerance.
Given the rich history in this field, practical applicability of proposed methods,
models, algorithms, or techniques is a key requirement for timely research. This
topic is focusing on parallel and distributed programming in general, except
for work specifically targeting multicore and manycore architectures, which has
matured to becoming a Euro-Par topic of its own.

Each submission was reviewed by at least four reviewers and, finally, we were
able to select five regular papers, spanning the topics scope, ranging from low-
level issues like failure detectors, all the way up to parallelization of a parser.

In particular, Greve et al. in A Failure Detector for Wireless Networks with
Unknown Membership propose a protocol for a new class of detector which
tolerates mobility and message losses. In Correlated Set Coordination in Fault
Tolerant Message Logging Protocols, Bouteiller et al. describe a hierarchical par-
titioning of a set of processes that takes benefit of a coordinated protocol on each
many-core nodes, as well as a message logging protocol for scalability between
nodes. Liu et al. contributed ”Towards Systematic Parallel Programming over
MapReduce”, a framework based on list homomorphisms to derive MapReduce
programs from sequential specification. In ”HOMPI: A Hybrid Programming
Framework for Expressing and Deploying Task-Based Parallelism”, Dimakopou-
los et al. present a framework to exploit cluster of multicores on task-based
parallel programs. Last but not least, Cameron et al. present a original paral-
lelization of the XML parser in their paper ”Parallel Scanning with Bitstream
Addition: An XML Case Study”.

We are proud of the scientific program that we managed to assemble. Of
course, this was only possible by combining the efforts of many. We would like
to take the opportunity to thank the authors who submitted their contributions,
and the external referees who have made the scientific selection process possible
in the first place.
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Abstract. A parallel scanning method using the concept of bitstream
addition is introduced and studied in application to the problem of XML
parsing and well-formedness checking. On processors supporting W -bit
addition operations, the method can perform up to W finite state tran-
sitions per instruction. The method is based on the concept of parallel
bitstream technology, in which parallel streams of bits are formed such
that each stream comprises bits in one-to-one correspondence with the
character code units of a source data stream. Parsing routines are initially
prototyped in Python using its native support for unbounded integers
to represent arbitrary-length bitstreams. A compiler then translates the
Python code into low-level C-based implementations. These low-level im-
plementations take advantage of the SIMD (single-instruction multiple-
data) capabilities of commodity processors to yield a dramatic speed-up
over traditional alternatives employing byte-at-a-time parsing.

Keywords: SIMD text processing, parallel bitstreams, XML, parsing.

1 Introduction

Although the finite state machine methods used in the scanning and parsing of
text streams is considered to be the hardest of the “13 dwarves” to parallelize
[1], parallel bitstream technology shows considerable promise for these types of
applications [3,4]. In this approach, character streams are processed N positions
at a time using the N -bit SIMD registers commonly found on commodity pro-
cessors (e.g., 128-bit XMM registers on Intel/AMD chips). This is achieved by
first slicing the byte streams into eight separate basis bitstreams, one for each bit
position within the byte. These basis bitstreams are then combined with bitwise
logic and shifting operations to compute further parallel bit streams of interest,
such as the [<] bit stream marking the position of all opening angle brackets in
an XML document.

Using these techniques as well as the bit scan instructions also available on
commodity processors, the Parabix 1 XML parser was shown to considerably
accelerate XML parsing in comparison with conventional byte-at-a-time parsers
in applications such as statistics gathering [4] and as GML to SVG conversion
[6]. Other efforts to accelerate XML parsing include the use of custom XML
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c© Springer-Verlag Berlin Heidelberg 2011
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chips [8], FPGAs [5], careful coding and schema-based processing[7] and multi-
thread/multicore speedups based on data parallelism[9,10].

In this paper, we further increase the parallelism in our methods by introduc-
ing a new parallel scanning primitive using bitstream addition. In essence, this
primitive replaces the sequential bit scan operations underlying Parabix 1 with a
new approach that independently advances multiple marker bits in parallel using
simple addition and logic operations. This paper documents the technique and
evaluates it in application to the problem of XML parsing and well-formedness
checking.

Section 2 reviews the basics of parallel bitstream technology and introduces
our new parallel scanning primitive. Section 3 goes on to show how this prim-
itive may be used in XML scanning and parsing, while Section 4 discusses the
construction of a complete XML well-formedness checker based on these tech-
niques. Section 5 then briefly describes the compiler technology used to generate
the low level code for our approach. A performance study in Section 6 shows
that the new Parabix 2 parser is dramatically faster than traditional byte-at-a-
time parsers as well as the original Parabix 1 parser, particularly for dense XML
markup. Section 7 concludes the paper.

2 The Parallel Bitstream Method

2.1 Fundamentals

A bitstream is simply a sequence of 0s and 1s, where there is one such bit in
the bitstream for each character in a source data stream. For parsing, and other
text processing tasks, we need to consider multiple properties of characters at
different stages during the parsing process. A bitstream can be associated with
each of these properties, and hence there will be multiple (parallel) bitstreams
associated with a source data stream of characters.

The starting point for bitstream methods are basis bitstreams and their use
in determining character-class bitstreams. The kth basis bitstream Bk consists
of the kth bit (0-based, starting at the the least significant bit) of each character

source data � ----173942---654----1----49731----321--

B7 .......................................

B6 .......................................

B5 111111111111111111111111111111111111111

B4 ....111111...111....1....11111....111..

B3 1111...1..111...1111.1111.1...1111...11

B2 1111.1..1.1111111111.11111.1..1111...11

B1 .....11..1...1.............11.....11...

B0 11111111..111.1.111111111.111111111.111

[0-9] ....111111...111....1....11111....111..

Fig. 1. Basis and Character-Class Bitstreams
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in the source data stream; thus each Bk is dependent on the encoding of the
source characters (ASCII, UTF-8, UTF-16, etc.). Given these basis bitstreams,
it is then possible to combine them using bitwise logic in order to compute
character-class bitstreams, that is, streams that identify the positions at which
characters belonging to a particular class occur. For example, the character class
bitstream D =[0-9] marks with 1s the positions at which decimal digits occur.
These bitstreams are illustrated in Figure 1, for an example source data stream
consisting of digits and hyphens. This figure also illustrates some of our conven-
tions for figures: the left triangle � after “source data” indicates that all streams
are read from right to left (i.e., they are in little-endian notation). We also use
hyphens in the input stream represent any character that is not relevant to a
character class under consideration, so that relevant characters stand out. Fur-
thermore, the 0 bits in the bitstreams are represented by periods, so that the 1
bits stand out.

Transposition of source data to basis bitstreams and calculation of character-
class streams in this way is an overhead on parallel bit stream applications, in
general. However, using the SIMD capabilities of current commodity processors,
these operations are fast, with an amortized overhead of about 1 CPU cycle per
byte for transposition and less than 1 CPU cycle per byte for all the character
classes needed for XML parsing [4].

Beyond the bitwise logic needed for character class determination, we also
need upshifting to deal with sequential combination. The upshift n(S) of a bit-
stream S is obtained by shifting the bits in S one position forward, then placing
a 0 bit in the starting position of the bitstream; n is meant to be mnemonic of
“next”. In n(S), the last bit of S may be eliminated or retained for error-testing
purposes.

2.2 A Parallel Scanning Primitive

In this section, we introduce the principal new feature of the paper, a parallel
scanning method based on bitstream addition. Key to this method is the con-
cept of marker bitstreams. Marker bitstreams are used to represent positions of
interest in the scanning or parsing of a source data stream. The appearance of
a 1 at a position in a marker bitstream could, for example, denote the starting
position of an XML tag in the data stream. In general, the set of bit positions
in a marker bitstream may be considered to be the current parsing positions of
multiple parses taking place in parallel throughout the source data stream.

Figure 2 illustrates the basic concept underlying parallel parsing with bit-
stream addition. All streams are shown in little-endian representation, with
streams reading from right-to-left. The first row shows a source data stream that
includes several spans of digits, together with other nondigit characters shown as
hyphens. The second row specifies the parsing problem using a marker bitstream
M0 to mark four initial marker positions. In three instances, these markers are
at the beginning (i.e., little end) of a span, while one is in the middle of a span.
The parallel parsing task is to move each of the four markers forward (to the left)
through the corresponding spans of digits to the immediately following positions.
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source data � ----173942---654----1----49731----321--

M0 .........1.....1....1......1...........

D =[0-9] ....111111...111....1....11111....111..

M0 + D ...1........1......1....1...11....111..

M1 = (M0 + D) ∧ ¬D ...1........1......1....1..............

Fig. 2. Parallel Scan Using Bitstream Addition and Mask

The third row of Figure 2 shows the derived character-class bitstream D
identifying positions of all digits in the source stream. The fourth row then
illustrates the key concept: marker movement is achieved by binary addition of
the marker and character class bitstreams. As a marker 1 bit is combined using
binary addition to a span of 1s, each 1 in the span becomes 0, generating a carry
to add to the next position to the left. For each such span, the process terminates
at the left end of the span, generating a 1 bit in the immediately following
position. These generated 1 bits represent the moved marker bits. However, the
result of the addition also produces some additional bits that are not involved
in the scan operation. These are easily removed as shown in the fifth row, by
applying bitwise logic to mask off any bits from the digit bitstream; these can
never be marker positions resulting from a scan. The addition and masking
technique allows matching of the regular expression [0-9]* for any reasonable
(conflict-free) set of initial markers specified in M0.

In the remainder of this paper, the notation s(M, C) denotes the operation to
scan from an initial set of marker positions M through the spans of characters
belonging to a character class C found at each position.

s(M, C) = (M + C) ∧ ¬C

3 XML Scanning and Parsing

We now consider how the parallel scanning primitive can be applied to the follow-
ing problems in scanning and parsing of XML structures: (1) parallel scanning of
XML decimal character references, and (2) parallel parsing of XML start tags.
The grammar of these structures is shown in Figure 3.

DecRef ::= ’&#’ Digit+ ’;’
Digit ::= [0-9]

STag ::= ’<’ Name (W Attribute)* W? ’>’
Attribute ::= Name W? ’=’ W? AttValue
AttValue ::= ( ‘"’ [^<"]* ‘"’) | (“’” [^<’]* “’”)

W ::= (\x20 | \x9 | \xD | \xA)+

Fig. 3. XML Grammar: Decimal Character References and Start Tags
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Figure 4 shows the parallel parsing of decimal references together with er-
ror checking. For clarity, the streams are now shown in left-to-right order as
indicated by the � symbol. The source data includes four instances of poten-
tial decimal references beginning with the & character. Of these, only the first
one is legal according to the decimal reference syntax, the other three instances
are in error. These references may be parsed in parallel as follows. The start-
ing marker bitstream M0 is formed from the [&] character-class bitstream as
shown in the second row. The next row shows the result of the marker advance
operation n(M0) to produce the new marker bitstream M1. At this point, the
grammar requires a hash mark, so the first error bitstream E0 is formed using
a bitwise “and” operation combined with negation, to indicate violations of this
condition. Marker bitstream M2 is then defined as those positions immediately
following any M1 positions not in error. In the following row, the condition that
at least one digit is required is checked to produce error bitstream E1. A parallel
scan operation is then applied through the digit sequences as shown in the next
row to produce marker bitstream M3. The final error bitstream E2 is produced
to identify any references without a closing semicolon. In the penultimate row,
the final marker bitstream M4 marks the positions of all fully-checked decimal
references, while the last row defines a unified error bitstream E indicating the
positions of all detected errors.

Initialization of marker streams may be achieved in various ways, dependent
on the task at hand. In the XML parsing context, we rely on an important
property of well-formed XML: after an initial filtering pass to identify XML
comments, processing instructions and CDATA sections, every remaining < in
the file must be the initial character of a start, end or empty element tag, and
every remaining & must be the initial character of a general entity or character
reference. These assumptions permit easy creation of marker bitstreams for XML
tags and XML references.

The parsing of XML start tags is a richer problem, involving sequential struc-
ture of attribute-value pairs as shown in Figure 3. Using the bitstream addition
technique, our method is to start with the opening angle bracket of all tags as the
initial marker bitstream for parsing the tags in parallel, advance through the ele-
ment name and then use an iterative process to move through attribute-value pairs.

source data � -&#978;-&9;--&#;--&#13!-

M0 .1......1....1....1.....

M1= n(M0) ..1......1....1....1....

E0 = M1 ∧ ¬[#] .........1..............

M2= n(M1 ∧ ¬E0) ...1...........1....1...

E1 = M2 ∧ ¬D ...............1........

M3= s(M2 ∧ ¬E1, D) ......1...............1.
E2 = M3 ∧ ¬[;] ......................1.

M4= M3 ∧ ¬E2 ......1.................

E = E0 |E1 |E2 .........1.....1......1.

Fig. 4. Parsing Decimal References
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Figure 5 illustrates the parallel parsing of three XML start tags. The figure
omits determination of error bitstreams, processing of single-quoted attribute
values and handling of empty element tags, for simplicity. In this figure, the
first four rows show the source data and three character class bitstreams: N for
characters permitted in XML names, W for whitespace characters, and Q for
characters permitted within a double-quoted attribute value string.

source data � --<e a= "137">---<el2 a="17" a2="3379">---<x>--

N = name chars 11.1.1...111..111.111.1..11..11..1111..111.1.11

W = white space ....1..1.............1......1..................

Q = ¬["<] 11.11111.111.1111.111111.11.1111.1111.1111.1111

M0 ..1..............1........................1....

M1 = n(M0) ...1..............1........................1...

M0,7 = s(M1, N) ....1................1......................1..

M0,8 = s(M0,7, W ) ∧ ¬[>] .....1................1........................

M1,1 = s(M0,8, N) ......1................1.......................

M1,2 = s(M1,1, W )∧[=] ......1................1.......................

M1,3 = n(M1,2) .......1................1......................

M1,4 = s(M1,3, W )∧["] ........1...............1......................

M1,5 = n(M1,4) .........1...............1.....................

M1,6 = s(M1,5, Q)∧["] ............1..............1...................

M1,7 = n(M1,6) .............1..............1..................

M1,8 = s(M1,7, W ) ∧ ¬[>] .............................1.................

M2,1 = s(M1,8, N) ...............................1...............

M2,2 = s(M2,1, W )∧[=] ...............................1...............

M2,3 = n(M2,2) ................................1..............

M2,4 = s(M2,3, W )∧["] ................................1..............

M2,5 = n(M2,4) .................................1.............

M2,6 = s(M2,5, Q)∧["] .....................................1.........

M2,7 = n(M2,6) ......................................1........

M2,8 = s(M2,7, W ) ∧ ¬[>] ...............................................

Fig. 5. Start Tag Parsing

The parsing process is illustrated in the remaining rows of the figure. Each
successive row shows the set of parsing markers as they advance in parallel using
bitwise logic and addition. Overall, the sets of marker transitions can be divided
into three groups.

The first group M0 through M0,8 shows the initiation of parsing for each of
the tags through the opening angle brackets and the element names, up to the
first attribute name, if present. Note that there are no attribute names in the
final tag shown, so the corresponding marker becomes zeroed out at the closing
angle bracket. Since M0,8 is not all 0s, the parsing continues.
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The second group of marker transitions M1,1 through M1,8 deal with the
parallel parsing of the first attribute-value pair of the remaining tags. After these
operations, there are no more attributes in the first tag, so its corresponding
marker becomes zeroed out. However, M1,8 is not all 0s, as the second tag still
has an unparsed attribute-value pair. Thus, the parsing continues.

The third group of marker transitions M2,1 through M2,8 deal with the parsing
of the second attribute-value pair of this tag. The final transition to M2,8 shows
the zeroing out of all remaining markers once two iterations of attribute-value
processing have taken place. Since M2,8 is all 0s, start tag parsing stops.

The implementation of start tag processing uses a while loop that terminates
when the set of active markers becomes zero, i.e. when some Mk,8 = 0. Consid-
ered as an iteration over unbounded bitstreams, all start tags in the document
are processed in parallel, using a number of iterations equal to the maximum
number of attribute-value pairs in any one tag in the document. However, in
block-by-block processing, the cost of iteration is considerably reduced; the it-
eration for each block only requires as many steps as there are attribute-value
pairs overlapping the block.

Following the pattern shown here, the remaining syntactic features of XML
markup can similarly be parsed with bitstream based methods. One complication
is that the parsing of comments, CDATA sections and processing instructions
must be performed first to determine those regions of text within which ordinary
XML markups are not parsed (i.e., within each of these types of construct. This is
handled by first parsing these structures and then forming a mask bitstream, that
is, a stream that identifies spans of text to be excluded from parsing (comment
and CDATA interiors, parameter text to processing instructions).

4 XML Well-Formedness

In this section, we consider the full application of the parsing techniques of the
previous section to the problem of XML well-formedness checking [2]. We look
not only at the question of well-formedness, but also at the identification of error
positions in documents that are not well-formed.

Most of the requirements of XML well-formedness checking can be imple-
mented using two particular types of computed bitstream: error bitstreams, in-
troduced in the previous section, and error-check bitstreams. Recall that an error
bitstream stream is a stream marking the location of definite errors in accordance
with a particular requirement. For example, the E0, E1, and E2 bitstreams as
computed during parsing of decimal character references in Figure 4 are error
bitstreams. One bits mark definite errors and zero bits mark the absence of
an error. Thus the complete absence of errors according to the requirements
listed may be determined by forming the bitwise logical “or” of these bitstreams
and confirming that the resulting value is zero. An error check bitstream is one
that marks potential errors to be further checked in some fashion during post-
bitstream processing. An example is the bitstream marking the start positions
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of CDATA sections. This is a useful information stream computed during bit-
stream processing to identify opening <![ sequences, but also marks positions
to subsequently check for the complete opening delimiter <![CDATA[ at each
position.

In typical documents, most of these error-check streams will be quite sparse
or even zero. Many error conditions could actually be fully implemented using
bitstream techniques, but at the cost of a number of additional logical and shift
operations. In general, the conditions are easier and more efficient to check one-
at-a-time using multibyte comparisons on the original source data stream. With
very sparse streams, it is very unlikely that multiple instances occur within any
given block, thus eliminating the benefit of parallel evaluation of the logic.

The requirement for name checking merits comment. XML names may use
a wide range of Unicode character values. It is too expensive to check every
instance of an XML name against the full range of possible values. However, it
is possible and inexpensive to use parallel bitstream techniques to verify that
any ASCII characters within a name are indeed legal name start characters or
name characters. Furthermore, the characters that may legally follow a name in
XML are confined to the ASCII range. This makes it useful to define a name
scan character class to include all the legal ASCII characters for names as well
as all non-ASCII characters. A namecheck character class bitstream will then
be defined to identify non-ASCII characters found within namescans. In most
documents this bitstream will be all 0s; even in documents with substantial
internationalized content, the tag and attribute names used to define the doc-
ument schema tend to be confined to the ASCII repertoire. In the case that
this bitstream is nonempty, the positions of all 1 bits in this bitstream denote
characters that need to be individually validated.

Attribute names within a single XML start tag or empty element tag must
be unique. This requirement could be implemented using one of several different
approaches. Standard approaches include: sequential search, symbol lookup, and
Bloom filters [5].

Except for empty element tags, XML tags come in pairs with names that must
be matched. To discharge this requirement, we form a bitstream consisting of
the disjunction of three bitstreams formed during parsing: the bitstream marking
the positions of start or empty tags (which have a common initial structure),
the bitstream marking tags that end using the empty tag syntax (“/>”), and the
bitstream marking the occurrences of end tags. In post-bitstream processing,
we iterate through this computed bitstream and match tags using an iterative
stack-based approach.

An XML document consists of a single root element within which all others
contained; this constraint is also checked during post-bitstream processing. In
addition, we define the necessary ”miscellaneous” bitstreams for checking the
prolog and epilog material before and after the root element.

Overall, parallel bitstream techniques are well-suited to verification problems
such as XML well-formedness checking. Many of the character validation and
syntax checking requirements can be conveniently and efficiently implemented
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using error streams. Other requirements are also supported by the computation
of error-check streams for simple post-bitstream processing or composite stream
over which iterative stack-based procedures can be defined for checking recursive
syntax. To assess the completness of our analysis, we have confirmed that our
implementations correctly handle all the well-formedness checks of the W3C
XML Conformance Test Suite.

5 Compilation to Block-Based Processing

While our Python implementation of the techniques described in the
previous section works on unbounded bitstreams, a corresponding C implemen-
tation needs to process an input stream in blocks of size equal to the SIMD
register width of the processor it runs on. So, to convert Python code into C,
the key question becomes how to transfer information from one block to the
next.

The answer lies in the use of carry bits. The parallel scanning primitive uses
only addition and bitwise logic. The logic operations do not require information
flow accross block boundaries, so the information flow is entirely accounted by the
carry bits for addition. Carry bits also capture the information flow associated
with upshift operations, which move information forward one position in the
file. In essence, an upshift by one position for a bitstream is equivalent to the
addition of the stream to itself; the bit shifted out in an upshift is in this case
equivalent to the carry generated by the additon.

Properly determining, initializing and inserting carry bits into a block-by-
block implementation of parallel bitstream code is a task too tedious for manual
implementation. We have thus developed compiler technology to automatically
insert declarations, initializations and carry save/restore operations into appro-
priate locations when translating Python operations on unbounded bitstreams
into the equivalent low-level C code implemented on a block-by-block bases.
Our current compiler toolkit is capable of inserting carry logic using a variety
of strategies, including both simulated carry bit processing with SIMD registers,
as well as carry-flag processing using the processor general purpose registers and
ALU. Details are beyond the scope of this paper, but are described in the on-line
source code repository at parabix.costar.sfu.ca.

6 Performance Results

In this section, we compare the performance of our xmlwf implementation us-
ing the Parabix 2 technology described above with several other implementa-
tions. These include the original xmlwf distributed as an example application of
the expat XML parser, implementations based on the widely used Xerces open
source parser using both SAX and DOM interfaces, and an implementation using
our prior Parabix 1 technology with bit scan operations.
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Table 1 shows the document characteristics of the XML instances selected
for this performance study, including both document-oriented and data-oriented
XML files. The jawiki.xml and dewiki.xml XML files are document-oriented
XML instances of Wikimedia books, written in Japanese and German, respec-
tively. The remaining files are data-oriented. The roads.gml file is an instance
of Geography Markup Language (GML), a modeling language for geographic
information systems as well as an open interchange format for geographic trans-
actions on the Internet. The po.xml file is an example of purchase order data,
while the soap.xml file contains a large SOAP message. Markup density is de-
fined as the ratio of the total markup contained within an XML file to the total
XML document size. This metric is reported for each document.

Table 1. XML Document Characteristics

File Name dewiki.xml jawiki.xml roads.gml po.xml soap.xml

File Type document document data data data

File Size (kB) 66240 7343 11584 76450 2717

Markup Item Count 406792 74882 280724 4634110 18004

Attribute Count 18808 3529 160416 463397 30001

Avg. Attribute Size 8 8 6 5 9

Markup Density 0.07 0.13 0.57 0.76 0.87

Table 2 shows performance measurements for the various xmlwf implementa-
tions applied to the test suite. Measurements are made on a single core of an
Intel Core 2 system running a stock 64-bit Ubuntu 10.10 operating system, with
all applications compiled with llvm-gcc 4.4.5 optimization level 3. Measurements
are reported in CPU cycles per input byte of the XML data files in each case. The
first row shows the performance of the Xerces C parser using the tree-building
DOM interface. Note that the performance varies considerably depending on
markup density. Note also that the DOM tree construction overhead is substan-
tial and unnecessary for XML well-formedness checking. Using the event-based
SAX interface to Xerces gives much better results as shown in the second row.
The third row shows the best performance of our byte-at-a-time parsers, using
the original xmlwf based on expat.

The remaining rows of Table 2 show performance of parallel bitstream
implementations, including post-bitstream processing. The first row shows the
performance of our Parabix 1 implementation using bit scan instructions. While
showing a substantial speed-up over the byte-at-a-time parsers in every case, note
also that the performance advantage increases with increasing markup density,
as expected. The last two rows show Parabix 2 implementations using different
carry-handling strategies, with the “simd” row referring to carry computations
performed with simulated calculation of propagated and generated carries using
SIMD operations, while the “adc64” row referring to an implementation directly
employing the processor carry flags and add-with-carry instructions on 64-bit
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Table 2. Parser Performance (Cycles Per Byte)

Parser Class Parser dewiki.xml jawiki.xml roads.gml po.xml soap.xml

Byte Xerces (DOM) 37.921 40.559 72.78 105.497 125.929
at-a Xerces (SAX) 19.829 24.883 33.435 46.891 57.119
Time expat 12.639 16.535 32.717 42.982 51.468

Parallel Parabix1 8.313 9.335 13.345 16.136 19.047
Bit Parabix2 (simd) 6.103 6.445 8.034 8.685 9.53

Stream Parabix2 (adc64) 5.123 5.996 6.852 7.648 8.275

general registers. In both cases, the overall performance is impressive, with the
increased parallelism of parallel bit scans clearly paying off in improved perfor-
mance for dense markup.

7 Conclusion

In application to the problem of XML parsing and well-formedness checking,
the method of parallel parsing with bitstream addition is effective and efficient.
Using only bitstream addition and bitwise logic, it is possible to handle all of
the character validation, lexical recognition and parsing problems except for the
recursive aspects of start and end tag matching. Error checking is elegantly sup-
ported through the use of error streams that eliminate separate if-statements to
check for errors with each byte. The techniques are generally very efficient par-
ticularly when markup density is high. However, for some conditions that occur
rarely and/or require complex combinations of upshifting and logic, it may be
better to define simpler error-check streams that require limited postprocessing
using byte matching techniques.

The techniques have been implemented and assessed for present-day commod-
ity processors employing current SIMD technology. As processor advances see
improved instruction sets and increases in width of SIMD registers, the relative
advantages of the techniques over traditional byte-at-a-time sequential parsing
methods is likely to increase substantially. Of particular benefit to this method,
instruction set modifications that provide for more convenient carry propagation
for long bitstream arithmetic would be most welcome.

A significant challenge to the application of these techniques is the difficulty of
programming. The method of prototyping on unbounded bitstreams has proven
to be of significant value in our work. Using the prototyping language as input
to a bitstream compiler has also proven effective in generating high-performance
code. Nevertheless, direct programming with bitstreams is still a specialized skill;
our future research includes developing yet higher level tools to generate efficient
bitstream implementations from grammars, regular expressions and other text
processing formalisms.
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Abstract. This paper presents hompi, a framework for programming
and executing task-based parallel applications on clusters of multipro-
cessors and multi-cores, while providing interoperability with existing
programming systems such as mpi and OpenMP. hompi facilitates ex-
pressing irregular and adaptive master-worker and divide-and-conquer
applications avoiding explicit mpi calls. It also allows hybrid shared-
memory / message-passing programming, exploiting fully the availability
of multiprocessor and multi-core nodes, as it integrates by design with
OpenMP; the runtime infrastructure presents a unified substrate that
handles local threads and remote tasks seamlessly, allowing both pro-
gramming flexibility and increased performance opportunities.

Keywords: cluster programming, task-based parallelism, load balanc-
ing, MPI

1 Introduction

The pool-of-tasks (or master-worker) paradigm is one of the most widely used
paradigms for programming a multitude of applications on a variety of parallel
computing platforms. According to this model, the master assigns tasks to a set
of workers, providing them with any required input data, and waits for the re-
sults. The number of tasks usually exceeds the number of workers and the master
may generate new tasks dynamically, depending on the received results. In the
simple case, a few primary message passing (mpi) calls are enough to implement
the model on a distributed-memory platform with a self scheduling mechanism
where inactive workers dynamically probe the master for work. On the other
hand, limitations and difficulties arise if advanced functionality is needed. First,
because of the bottleneck at the master, the model may suffer from low scala-
bility. Hierarchical task parallelism and techniques like distributed task queues
require additional and non-trivial programming effort. Finally, a pure mpi-based
implementation cannot easily adapt to take advantage of a multi-core node’s
physically shared memory.
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Although exploring new languages and programming models is currently a
major issue in the parallel processing research community (and possibly the
ultimate solution to leveraging current and emerging parallel hardware), other
pragmatic approaches seem more promising for wide adoption in the short- to
medium-term. Programming constructs that extend without changing a popular
language have proven quite successful, OpenMP [2] being the most prominent ex-
ample. Along the same lines, interoperability with popular programming models
is another important requirement, easing the utilization of existing codebases.

In this work we present hompi, an infrastructure for programming and
executing task-based applications on clusters of multi-cores. It consists of a
source-to-source compiler that provides for simple directive-based definition and
execution of tasks and a runtime library that orchestrates the execution over
a variety of platforms, including pure shared-memory systems and clusters of
such nodes. hompi targets message passing, shared address space and hybrid
programs. In the standard master-worker case, the programmer does not have
to use low-level message passing primitives at all, hiding away the communi-
cation details while providing load balancing transparently. For more advanced
functionality, hompi integrates the tasking model into traditional mpi programs,
allowing one or more mpi processes to independently spawn tasks. Each task may
also spawn OpenMP-based parallelism, allowing seamless hybrid programming
possibilities. The compiler supports OpenMP by design while the runtime sys-
tem provides unified support for OpenMP threads as well as remotely executed
tasks.

A number of programming tools and languages for task parallelism have been
proposed recently for contemporary and emerging architectures. On shared-
memory platforms, OpenMP has been extended in V3.0 with support for a
tasking model [2], similar to Cilk [1]. For the Cell BE, runtime libraries in-
clude mpi microtask [3], alf [4] and StarPU [5]. hompi’s programming model
borrows the #pragma-based annotation style of OpenMP and is reminiscent of
other proposals such as hmpp [6] and StarSs [7], which combine runtime and
compiler support to provide a (limited) task-based environment. These propos-
als target mainly accelerator-equipped systems and, in contrast to hompi, they
do not support the divide-and-conquer model, since they do not allow recursive
parallelism.

The contribution of this work is twofold. First, we introduce an easy-to-use
programming framework which preserves the base language, while providing con-
venient code annotation for expressing task-based master/slave and divide-and-
conquer parallel algorithms. While the annotation style is in the spirit of other
proposals, to the best of our knowledge, hompi is the first of its kind targeting
(and fully exploiting) clusters of SMPs/multi-cores. Second, albeit self-contained,
our framework is fully interoperable with standard programming systems like
mpi and OpenMP, allowing legacy or already parallelized code to be trivially
integrated in an application. In our opinion this is a crucial attribute for the
viability of any programming model proposal.
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Fig. 1. hompi compilation procedure

#pragma hompi taskdef in(n) out(res)
void fib (int n, unsigned long *res) {

unsigned long res1, res2;

if (n <= 1) {
*res = n;

} else {
#pragma hompi task
fib(n-1, &res1);

#pragma hompi task
fib(n-2, &res2);

#pragma hompi tasksync
*res = res1+res2;

}
}

void main(int argc, char *argv[]) {
unsigned long res;
fib(50, &res);

}

Fig. 2. Recursive Fibonacci in hompi

2 Programming Environment

hompi is based on a source-to-source translator that can handle #pragma-based
directives within the user code, similar to OpenMP. Fig. 1 shows the compilation
steps: from the annotated source code, the source-to-source compiler (hompi)
produces an intermediate, transformed C file (x_prog.c) augmented by run-
time calls. This file is then compiled by the system’s native mpicc compiler and
linked with hompi’s runtime libraries to produce the final executable. The whole
process is automated by the hompicc script.

hompi’s execution model assumes that an application consists of multiple mpi
processes with private memory, running on cluster nodes. Furthermore, multi-
threading is used to exploit the multi-processor/core configuration of a node;
each process consists of one or more kernel threads sharing the process memory.

A task in hompi corresponds to the remote execution of a function on a set
of data that are passed as arguments to this function, in the spirit of remote
procedure calls. Tasks are executed asynchronously and in any order, without any
data dependencies or point-to-point communication between them. Tasks have a
parent-child relationship and can be arbitrarily nested, allowing multiple levels
of parallelism and straightforward coding of divide-and-conquer algorithms.

The hompi programming model in essence requires that the programmer only
designates which of the program functions can be used as tasks and be executed
on (possibly) remote nodes. In many cases, just two directives are enough for
the application to take advantage of the infrastructure, resulting in minimal pro-
grammer effort. The directive for designating a function as an independent task
is taskdef and is placed right before the definition of a C function. A taskdef
directive may contain intent clauses, similar to intent attributes of Fortan 90,
which specify the intended usage of the function arguments: in(variable-list),
for variables that are to be passed to the function by value, out(variable-list),
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for results returned by the function and inout(variable-list) for variables whose
values are passed to the function but will also be used to return a result.

An example is given in Fig. 2, which presents a complete hompi application
that uses a recursive function (fib) to compute the 50th Fibonacci number. The
taskdef directive designates the fib function as a task that accepts an argument
by value (n) and computes a result (res). If any of the arguments is an array,
the number of elements must be known, and this is either determined by hompi
from the function prototype (if a size expression exists) or must be specified
explicitly in the intent clauses of the taskdef directive.

The actual execution of a function as a task occurswith thetaskdirective,which
must be placed right before the function call. Finally, task joining (blocking until all
child tasks finish theirwork) is possible anywhere in the code through thetasksync
directive. In Fig. 2, the fib function generates two new tasks that are distributed
across the available workers and waits for their results. Notice (i) the complete ab-
sence of explicitmessaging and (ii) that if the directives are ignoredby the compiler,
the program’s semantics remain the same to pure sequential execution.

2.1 Callbacks, Reductions and Detached Tasks

Normally, a parent task creates an arbitrary number of tasks and uses the
tasksync directive to suspend itself until all child tasks have finished and their
results have been returned. hompi supports callback functions, which allow for
asynchronous execution of post-processing code on the process where the par-
ent task runs on, even if the parent task is suspended. The callback function is
defined immediately following the task definition through a callback directive;
the callback function specifier is generated by the compiler and assumes the ex-
act same arguments as the corresponding task function, providing thus access to
the input parameters and the result of the task. An example where the callback
just prints the results of each generated task, is depicted below.

#pragma hompi taskdef in(a) inout(b[2])
void taskfunc(int a,int *b) {

b[1] = b[0] + a + 1;
}
#pragma hompi callback
{

printf("result = %d\n", b[1]);
}

hompi also supports reduction operations (which can be actually seen as spe-
cial cases of callbacks) for the common scenario where each child task computes
a partial result which is collected by the parent to produce the final result.
These operations (summation, product, etc.) replace the out intent clause and
are specified exactly in OpenMP style, as seen below:

#pragma hompi taskdef in(a) reduction(+:b)
void taskfunc(int a, int *b) {

*b = a;
}

Reduction operations are supported for both scalar variables and arrays.
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Finally hompi supports detached tasks, that is tasks that execute without
the parent being able to wait on them. In such cases task management is left
up to the programmer. Detached tasks are executed as such by including the
detached clause in the task directive. They can be combined with callbacks
which actually provide the only way for them to synchronize with their parents;
for example, within a callback, a detached task can modify a condition on which
the parent task is explicitly waiting. Moreover, new tasks can be created within
the callback routine. Detached tasks combined with callbacks offer a powerful
mechanism; for example, they can be used for implementing dependencies among
arbitrary subsets of tasks.

2.2 Task Distribution and Scheduling

Although not always necessary, in many cases one needs to control how tasks are
distributed across workers or cluster nodes (e.g. due to particular load balancing
needs). hompi offers two ways for achieving this. First, it provides a standard
cyclic distribution scheme with tunable parameters. This is especially useful
when tasks are created within a iterative control structure (e.g. while, for). The
parameters of this scheme include the scope (whether tasks are distributed per
node or per worker), the starting point (node id or worker id) and the stride
(increment). These parameters are specified using a taskschedule directive:

#pragma hompi taskschedule scope(workers) start(0) stride(1)
for (t = 0; t < 8; t++) {

#pragma hompi task
func();

}

If the stride is zero then all tasks are submitted to the target node or worker.
The default scheduling policy is represented with the tuple (nodes, -1, 1), i.e.
distribution across nodes with stride 1 starting from the current node.

The second mechanism allows the user to explicitly specify the node or worker
where a task will be submitted for execution. This is achieved with the atnode(x)
and atworker(y) clauses in the task directive, where x and y are the identities
of the intended node and worker respectively, e.g.

for (t = 0; t < K; t++) {
#pragma hompi task atworker(t % hompi_total_workers())
func();

}

It must be noted that the runtime system of hompi, which is presented next,
includes a work-stealing mechanism whereby tasks may be stolen from a node
and executed at another. If this mechanism is activated then all the above refer
to the initial placement of a task; the actual node/worker that will ultimately
execute it may be different. To explicitly control this, tasks can also be classified
as tied and untied (using homonymous clauses in the task directive), similarly
to OpenMP 3.0; a tied task can never be stolen, and will run on the process it
was initially submitted for execution.
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3 TORC: The Runtime System

In this section we give a short overview of torc, the runtime environment of
hompi. More details can be found in [10]. torc uses exclusively posix and mpi
calls for portability and performance, and integrates seamlessly hardware shared-
memory and message passing. It provides application adaptability to the same
application code, or even binary, on both shared-memory multiprocessors/multi-
cores and clusters of them. torc views an application as a collection of mpi pro-
cesses. Each process consists of one or more posix kernel threads that execute
tasks and a server thread that is responsible for the remote queue management
and the asynchronous data movement. There exist private and public worker-
specific and node-specific ready queues where tasks can be submitted for execu-
tion. A two-level threading model is implemented, where each kernel thread is a
worker that continuously dispatches and executes ready-to-run tasks.

Tasks are associated with the process (home node) they were created on and
can be executed either locally or remotely. In the latter case, explicit but trans-
parent to the user data movement takes place. A worker thread executes a task
by calling the task function with the locally stored arguments. When it finishes,
it sends a notification message back to the home node, along with any argu-
ments that represent results (out/inout). These are received asynchronously by
the server thread and copied on their actual memory locations in the address
space of the home process. A running task that spawns parallelism can suspend
its execution, waiting for the termination of all its child tasks. The execution
state of the current task is saved, releasing the underlying kernel thread, which
runs the scheduling loop for selecting the next-to-run task. When all child tasks
have completed (and all callbacks, if any, have finished), the suspended task be-
comes ready for execution and eventually resumes. A callback is implemented
as a tied task, submitted for local execution when the corresponding user task
finishes and notifies its parent task. The submission is performed by either the
worker thread that executes the user task (if this is executed locally) or the
server thread of the same process.

Data transfer mechanisms. The low level communication subsystem of torc is
based on mpi. However, other data transfer mechanisms have also been consid-
ered. In particular, we have successfully integrated two more mechanisms: mpi-2’s
one-side communications and software distributed shared memory (sdsm). mpi-
2’s remote memory access (rma) [8] supports data transfer through one-sided
operations. In torc, the MPI Get routine is used for fetching input data and
MPI Put for writing the results back to the home node. On the other hand,
sdsm implements the notion of global memory on distributed computing en-
vironments and provides implicit data movement through the memory consis-
tency protocol [9]. One-sided operations and sdsm provide receiver-initiated data
movement for remotely executed tasks, performed by the worker thread just be-
fore or during the execution of the task function. This on-demand data movement
does not allow data pre-fetching opportunities for server threads but may avoid
unnecessary data transfers if task stealing is enabled.
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Dynamic load balancing. Spawning a large number of tasks can be an effective
approach to distribute the work evenly among the available workers. The user
can specify the node or worker where each task will be submitted for execution
and then employ the internal stealing mechanism for untied tasks that torc
provides. A idle worker extracts and executes a task from its local ready queue.
If this is empty and task stealing is enabled, the worker first searches for work in
the rest of the ready queues of the same node and then visits randomly the remote
nodes. The worker waits synchronously for a response from the server thread of
the target node. The answer is either a message that denotes unavailability of
work at the target node, or an untied task descriptor that will be immediately
executed upon receipt. Remote task stealing includes the corresponding data
movement, unless the task returns to its home node.

4 Mixed-Mode and Hybrid Programming

Although the default execution model of hompi is that of master-worker, mixing
it with spmd execution and dynamically switching between them may be ben-
eficial or required. For instance, a task parallel program may take advantage of
common scientific spmd libraries built on top of mpi.

The atnode(*) clause is a special case in the task creation directive that
provides the above functionality; at runtime, the application creates as many
tasks as the number of available nodes. These tasks are marked as tied and are
distributed across the cluster nodes. The specified task function is executed by a
single worker on every node. This approach matches the execution model of mpi
and at the same time allows for hybrid mpi + OpenMP programming. When
all the tasks have finished, the execution model switches back to master-worker.
In Fig. 3, we demonstrate the flexibility of the atnode(*) clause; the master
broadcasts the global array (ga) to the other nodes by issuing a collective call to
the native MPI Bcast function (with all workers participating). In this way, the
application does not need to send ga with every task, avoiding thus unnecessary
data transfers.

The atnode(*) clause improves the programmability of our system by facil-
itating the insertion of legacy mpi codes into the supported task-based execu-
tion environment. Following a similar approach, native mpi applications can be
seamlessly enriched with the tasking model that hompi provides. Specifically,
by setting a particular environmental variable (HOMPI MODE), the torc library
is initialized for spmd execution and thus the primary thread of all mpi processes
executes the main routine. Switching the mpi application’s execution model to
master-worker is possible with a special directive (spmd barrier). In Fig. 4, one
of the mpi processes (e.g. the one with rank 0) becomes the master task that
spawns work, while the rest of the processes block at the spmd barrier directive
which converts them to workers, activating the scheduling loop in torc. After
task completion, the master process reaches spmd barrier and all mpi processes
resume their execution, while the execution model switches back to spmd.
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int ga[16];

#pragma hompi taskdef in(root)
void spmdfunc(int root) {

/* legacy MPI code can run here */
MPI_Bcast(ga, 16, MPI_INT, root, MPI_COMM_WORLD);

}

#pragma hompi taskdef out(b[16])
void func(int *b) {

for (int i = 0; i < 16; i++) b[i] = ga[i];
}

main() {
int res[8][16], root = hompi_node();
for (int i = 0; i < 16; i++) ga[i] = i;

#pragma hompi atnode(*)
spmdfunc(root);

for (int t = 0; t < 8; t++) {
#pragma hompi task tied
func(res[t]);

}
#pragma hompi tasksync

}

Fig. 3. Example of atnode(*)

#pragma hompi taskdef
void func() { ... }

main(int argc, char *argv[]) {
/* legacy MPI code */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...

if (rank==0) { /* tasking */
for (int i = 0; i < N; i++) {

#pragma hompi task
func();

}
#pragma hompi tasksync

}
#pragma hompi spmd_barrier

/* legacy MPI code continues */
}

Fig. 4. Tasking in MPI code

Implementation of hybrid programming. hompi allows expressing the intra-node
parallelism of a task function with OpenMP directives, in accordance to the
hybrid mpi + OpenMP programming model. However, because task functions
are executed by torc’s underlying worker threads, the utilized OpenMP com-
piler must support interoperability between OpenMP and independent posix
threads. Moreover, caution is needed because the combination of torc threads
and OpenMP threads can easily oversubscribe the system, a situation resulting
in performance degradation [11].

To cope with the above problem, we have constructed a unified library that
handles both levels of parallelism within the same compilation and runtime envi-
ronment. In particular, we have introduced a threading layer that is implemented
on top of torc into the ompi OpenMP compiler [12]. Thanks to the layered ar-
chitecture of ompi, torc was attached as an opaque OpenMP thread provider,
thus letting ompi control OpenMP execution through torc-provided threads
while at the same time torc handles tasks independently.

The hompi translator was implemented by extending ompi’s translator, in
order to have it parse and transform the new directives. Both hompi tasks and
OpenMP threads are executed within the same runtime infrastructure. Inter-
nally, as worker threads first access the private and then the public ready queues
of their node, OpenMP parallelism has a higher priority with respect to inter-
node parallelism expressed with hompi tasks.
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5 Experimental Evaluation

In this section we present preliminary experimental evaluation of our hompi
prototype. We report both benchmarking results and results from full appli-
cations executed on a Sun Fire x4100 cluster of 16 nodes interconnected with
Gigabit Ethernet. Each node has 2 dual core amd Opteron-275 processors run-
ning at 2.2GHz giving a total of 64 cores. The cluster nodes are running Linux
2.6, while hompi was built with gnu gcc 4.3 as the system’s native C com-
piler and the mpich2 implementation of mpi. Thanks to the design of torc, the
same application binary can exploit the 4 processor cores of a single node with
several combinations in the number of processes and workers. Therefore, our
performance results refer to both distributed and shared-memory organizations.

Data transfer overheads. To evaluate the three different data transfer methods we
discussed in Section 3 (mpi, rma and sdsm) implemented in torc, we measure
the time required for the remote execution of a single task with input argument
an array of double-precision floating point numbers that has been initialized
by the parent before task creation. The task computes the sum of the array
elements. For a fair comparison, we spawn exactly one task and thus preclude
any data prefetching through the server thread when mpi calls are used. Besides
the data movement for the argument of the task, the measured time includes
the overhead for the allocation of the descriptor and its insertion in the queue
of the remote process, the execution of the task function and the notification of
the parent task at the first process.

Figs. 5 and 6 illustrate the overhead of the three methods with respect to the
argument size, for in and inout argument types respectively. Regarding sdsm,
we provide results for two libraries: Mome [13] and Mocha [14]. To enforce the
inout semantics for the sdsm case, the parent task on process 0 accesses the
array after task completion. Due to the relaxed consistency model of Mocha,
sdsm barrier calls were introduced in the benchmark code. We observe that the
overhead of the mpi and rma methods, which both involve explicit communica-
tion, is almost identical. sdsm exhibits significantly higher overhead, due to the
page-based consistency protocol and the multiple invocations of the page-fault
handler. The performance difference between Mocha and Mome is because the

Fig. 5. Task execution overhead for the
three data transfer methods (in)

Fig. 6. Task execution overhead for the
three data transfer methods (inout)
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Fig. 7. EP performance Fig. 8. PMCMC performance

former uses an 8KB (instead of 4KB) page size, resulting in a 50% reduction in
the number of page faults.

Applications. For evaluating the performance of hompi we used two applica-
tions: EP and PMCMC. EP is an Embarrassingly Parallel benchmark that in-
volves minimal inter-processor communication. The number of spawned tasks is
equal to the number of workers, while the results of the tasks are accumulated
through a reduction (+) operation. PMCMC implements an embarrassingly par-
allel Markov Chain Monte Carlo algorithm of the hard-disk problem. Each task
is assigned a seed and performs a large number of Markov Chain computations.
The code of this application was adapted from the adlb library [15].

Fig. 7 depicts the performance of EP for 228 random numbers and specifically
the best observed speedup for a particular number of workers, using the multi-
threaded and multiprocess configurations. When a single process per node and
multiple workers per process are used, we observe that EP scales almost linearly;
the slight performance degradation on 32 and 64 processors is mostly attributed
to load imbalance effects due to the small number of generated tasks. The perfor-
mance of the same application is significantly lower when multiple processes, of
a single worker thread each, are deployed at each node of the cluster. The draw-
backs of this configuration are the increased number of explicit messages and
the oversubscription of processor cores due to the the multiple server threads
on each node. Similarly, Fig. 8 presents the performance results for PMCMC
when 128 independent tasks are used. We observe that the application exhibits
almost perfect scalability for the multi-threaded approach. The performance of
the multi-process approach is similar for all but the 64-process case, where its
efficiency is significantly reduced to 78.87%.

Load balancing. We demonstrate the load balancing mechanism of hompi using
the Mandelbrot application included in the lam/mpi software package, rewritten
to follow the tasking model of hompi. In our case, the main routine of the
application creates a single task for each image block. The task receives as input
arguments the coordinates of the block and as output argument an array for the
image block. Each task is also associated with a callback routine which copies
the processed block to the image region. Tasks are either distributed cyclically
across the available workers or inserted in the queue of the master process.
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Fig. 9. Performance of task scheduling schemes on Mandelbrot

Table 1. Speedup of Mandelbrot on the (16,1,4) configuration for various task numbers

Nodes Processes Workers Total Total Static Work Central
per node per process workers tasks Scheduling Stealing Queue

16 1 4 64 256 24.30 45.47 45.79
16 1 4 64 512 26.70 50.74 50.32
16 1 4 64 1024 24.78 56.83 55.12

Table 2. Speedup of Mandelbrot for the hybrid programming model (256 tasks)

Nodes Processes Workers OpenMP Total Static Work Central
per node per process threads workers Scheduling Stealing Queue

1 1 1 4 4 3.79 3.79 3.79
2 1 1 4 8 7.33 7.52 7.54
4 1 1 4 16 13.30 14.94 14.98
8 1 1 4 32 22.14 29.02 29.26
16 1 1 4 64 24.30 54.99 56.62

Fig. 9 presents the speedup of the Mandelbrot application on the Sun cluster
for an image of 2048x2048 pixels, 50000 maximum iterations for each pixel, and
blocks of 128x128 pixels (256 tasks). We spawn a single process per node and pro-
vide results for the cyclic task distribution scheme, having the inter-node steal-
ing mechanism disabled (termed ‘Static Scheduling’) or enabled (termed ‘Work
Stealing’). In addition, we evaluate the central-queue approach, where workers
access the queue of the master process to get a task to execute. We observe that
as the number of cores increases, the application manages to scale efficiently
only if task stealing has been activated. For instance, the speedup of the appli-
cation on 64 cores is approximately 24 and 45 for the static and work stealing
approach respectively. The attained performance of the cyclic distribution and
central queue are almost identical because, for this particular experiment, the
latter does not suffer from bottlenecks as the server thread manages to handle
the stealing requests efficiently. The scalability of the application declines with
the number of processors, mostly because of the overhead for storing the results
through the callback routine.

Table 1 studies the behavior of Mandelbrot for the (16 nodes, 1 process per
node, 4 workers per node) configuration for smaller block sizes and thus a larger
number of spawned tasks. It is apparent that better load balancing is achieved if
the work stealing mechanism is enabled and thus the scalability of Mandelbrot
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is further improved. As the number of tasks of finer granularity increases, the
cyclic distribution scheme with work stealing begins to outperform the central
queue approach.

Our last experiment demonstrates the effectiveness of hybrid programming
for the Mandelbrot application. Specifically, a single process is spawned on each
cluster node and the loop-level intra-task parallelism is expressed with OpenMP.
The performance results are depicted in table 2. We observe that the attained
performance of the hybrid programming approach is higher than that of the
corresponding configurations in the previously presented experiments. This is
attributed to better load balancing, as the 256 tasks are distributed to a smaller
number of processes, and the full utilization of OpenMP threads as the serial
fraction of the task function in this particular application is negligible.

6 Conclusion

This paper presents hompi, a directive-based programming and runtime envi-
ronment for task-parallel applications on clusters of multiprocessor/multi-core
nodes. The framework consists of a source-to-source C compiler that understands
a small number of #pragma-based directives which allow for rather straightfor-
ward task creation and scheduling across the cluster. The output of the com-
piler contains calls to torc, a sophisticated runtime library that handles all
the task execution details, providing transparent load balancing and resulting
in significant performance figures. The hompi infrastructure integrates features
of several parallel programming models, from threads and OpenMP to mpi and
remote procedure calls and in addition it is fully interoperable with them. As
such, we believe its applicability will be quite general. We are currently extend-
ing our infrastructure on heterogeneous platforms and computational grids and
introducing fault tolerance mechanisms.
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1996. LNCS, vol. 1124, Springer, Heidelberg (1996)

9. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM
Trans. on Computer Systems 7(4), 321–359 (1989)

10. Hadjidoukas, P.E., Dimakopoulos, V.V.: TORC: a tasking library for multicore
clusters. Tech. Report TR-2011-6, CS Dept., University of Ioannina, Greece (2011)

11. Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested parallelism in the OMPi OpenMP
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Abstract. The distributed computing scenario is rapidly evolving for integrating
self-organizing and dynamic wireless networks. Unreliable failure detectors are
classical mechanisms which provide information about process failures and can
help systems to cope with the high dynamism of these networks. A number of
failure detection algorithms has been proposed so far; nonetheless, most of them
assume a global knowledge about the membership as well as a fully communi-
cation connectivity; additionally, they are timer-based, requiring that eventually
some bound on the message transmission will hold. These assumptions are no
longer appropriate to the new scenario. This paper presents a new failure detector
protocol which implements a new class of detectors, namely ♦SM, which adapts
the properties of the ♦S class to a dynamic network with an unknown member-
ship. It has the interesting feature to be time-free, so that it does not rely on timers
to detect failures; moreover, it tolerates mobility of nodes and message losses.

Keywords: Unreliable failure detector, dynamic distributed systems, wireless
mobile networks, asynchronous systems.

1 Introduction

The distributed computing scenario is rapidly evolving for integrating unstructured,
self-organizing and dynamic systems, like MANETs (mobile ad-hoc networks) [1].
Nonetheless, the issue of designing reliable services which can cope with the high dy-
namism of these systems is a challenge. Failure detector is a fundamental service, able
to help in the development of fault-tolerant distributed systems. Unreliable failure de-
tectors, namely FD, can informally be seen as a per process oracle, which periodically
provides a list of processes suspected of having crashed [2]. In this paper, we are in-
terested in the class of eventually strong FDs, denoted ♦S. Those FDs can make an
arbitrary number of mistakes; yet, there is a time after which some correct process is
never suspected (eventual weak accuracy property). Moreover, eventually, every pro-
cess that crashes is permanently suspected by every correct process (strong complete-
ness property). ♦S is the weakest class allowing to solve consensus in an asynchronous
system (with the additional assumption that a majority of processes are correct) and
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consensus is as the heart of important middleware, e.g., group communication services,
transactions and replication servers.

The nature of wireless mobile networks creates important challenges for the devel-
opment of failure detection protocols. The inherent dynamism of these environments
prevents processes from gathering a global knowledge of the system’s properties. The
network topology is constantly changing and the best that a process can have is a lo-
cal perception of these changes. Global assumptions, such as the knowledge about the
whole membership, the maximum number of crashes, full connectivity or reliable com-
munication, are no more realistic.

This paper proposes a FD algorithm that implements the class ♦SM of failure de-
tectors. This class adapts the properties of the ♦S class to a dynamic system with an
unknown membership. It is suitable for wireless mobile networks and has the following
innovative features that allow for scalability and adaptability: (i) it is conceived for a
network whose membership is unknown and whose communication graph is not com-
plete; (ii) it tolerates node mobility, beyond arbitrary joins and leaves; (iii) the failure
detection uses local information (for the membership of the neighborhood), instead of
traditional global information, such as n (the total number of nodes) and f (the max-
imum number of faults); (iv) the failure detection is time-free, thus the satisfaction of
the properties of the FD does not rely on traditional synchrony assumptions, but on a
message exchange pattern followed by the nodes; (v) the message exchange pattern is
based on local exchanged information among neighbors and not on global exchanges
among nodes in the system. As far as we are aware of, this is the first time-free FD
algorithm for networks with unknown membership that tolerates mobility of nodes.

1.1 Related Work

A number of failure detection algorithms has been proposed so far. Nonetheless, most
of current implementations of FDs are based on an all-to-all communication approach
where each process periodically sends “I am alive” messages to all processes [3]. As
they usually consider a fully connected set of known nodes, these implementations are
not adequate for dynamic environments. Furthermore, they are usually timer-based, as-
suming that eventually some bound of the transmission will permanently hold. Such
an assumption is not suitable for dynamic environments where communication delays
between two nodes can vary due to mobility of nodes. In [4], Mostefaoui et al. have
proposed an asynchronous implementation of FDs which is time-free. It is based on an
exchange of messages which just uses the values of f and n. However, their computa-
tion model consists of a set of fully connected initially known nodes. Some works [5–7]
focus on the heartbeat FD for sparsely connected networks with unknown membership.
The heartbeat FD is a special class of FD which is time-free and is able to implement
quiescent reliable communication. But, instead of lists of suspects, it outputs a vector
of unbounded counters; if a process crashes, its counter eventually stops increasing. It
is worth remarking that none of these works tolerate mobility of nodes.

Few implementations of unreliable FDs focus on wireless mobile networks [8–10].
The fundamental difference between these works and ours is the fact that all of them
are timer-based. Friedman and Tcharny [8] propose a simple gossiping protocol which
exploits the natural broadcast range of wireless networks to delimit the local member-
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ship of a node in a mobile network. Contrarily to our approach, this work assumes a
known number of nodes and provides probabilistic guarantees for the FD properties.
Tai et al. [9] exploit a cluster-based communication architecture to propose a hierarchi-
cal gossiping FD protocol for a network of non-mobile nodes. The FD is implemented
both via intra-cluster heartbeat diffusion and failure report diffusion across clusters, i.e.,
if a failure is detected in a local cluster, it will be further forwarded across the clusters.
Unlike our solution, this work considers a cluster-based communication architecture
and provides probabilistic guarantees for the accuracy and completeness properties;
moreover, it does not consider mobility. Sridhar [10] adopts a hierarchical design to
propose a deterministic local FD. He introduces the notion of local failure detection
and restraints the scope of detection to the neighborhood of a node and not to the whole
system. While our approach allows the implementation of a ♦SM FD, this work im-
plements an eventually perfect local failure detector of the class ♦P , i.e., it provides
perfect failure detection, but with regard to a node’s neighborhood. As soon as we are
aware of, the only work to follow a time-free detection strategy has been proposed
by [11] in order to implement a leader FD of the Ω class. This class ensures that, each
process will be provided by a unique leader, elected among the set of correct processes,
in spite of crashes. Differently from ours, this work is for a specific infra-structured
network composed of mobile and static nodes. We believe that our FD of class ♦SM

may be successful adopted to implement coordination protocols in a dynamic set, such
as the one proposed by Greve et al.[12], who present a solution for the fault-tolerant
consensus in a network of unknown participants with minimal synchrony assumptions.

The rest of the paper is organized as follows. Section 2 defines the model and speci-
fies the ♦SM FD class. Section 3 identifies assumptions to implement those FDs. Sec-
tion 4 presents a time-free FD of the ♦SM class. Section 5 concludes the paper. In an
extended report [13], one can find complete correctness proofs, a thorough related work
section and performance experiments showing that the proposed FD exhibits a good re-
activity to detect failures and revoke false suspicions, even in presence of mobility.

2 Model and Problem Definition

The wireless mobile network is a dynamic system composed of infinitely many pro-
cesses; but each run consists of a finite set Π of n > 1 mobile nodes, namely, Π =
{p1, . . . , pn}. Contrarily to a static network, the membership is unknown, thus pro-
cesses are not aware about Π and n, because, moreover, these values can vary from run
to run; this coincides with the finite arrival model [14]. This model is suitable for long-
lived or unmanaged applications, as for example, sensor networks deployed to support
crises management or help on dealing with natural disasters. There is one process per
node; each process knows its own identity, but it does not necessarily knows the identi-
ties of the others. Nonetheless, nodes communicate by sending and receiving messages
via a packet radio network and may make use of the broadcast facility of this commu-
nication medium to know one another. There are no assumptions on the relative speed
of processes or on message transfer delays, thus the system is asynchronous; there is no
global clock, but to simplify the presentation, we take the range T of the clock’s tick to
be the set of natural numbers. A process may fail by crashing, i.e., by prematurely or
by deliberately halting (switched off); a crashed process does not recover.
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The network is represented by a communication graph G = (V, E) in which V = Π
represents the set of mobile nodes and E represents the set of logical links. The topol-
ogy of G is dynamic due to arbitrary joins, leaves, crashes and moves. A bidirectional
link between nodes pi and pj means that pi is within the wireless transmission range
of pj and vice-versa. If this assumption appears to be inappropriate for a mobile envi-
ronment, one can use the strategy proposed in [15] for allowing a protocol originally
designed for bidirectional links to work with unidirectional links. Let Ri be the trans-
mission range of pi, then all the nodes that are at distance at most Ri from pi in the
network are considered 1-hop neighbors, belonging to the same neighborhood. We de-
note Ni to be the set of 1-hop neighbors from pi; thus, (pi, pj) ∈ E iff (pi, pj) ∈ Ni.
Local broadcast between 1-hop neighbors is fair-lossy. This means that messages may
be lost, but, if pi broadcasts m to processes in its neighborhood an infinite number of
times, then every pj in the neighborhood receives m from pi an infinite number of times,
or pj is faulty. This condition is attained if the MAC layer of the underlying wireless
network provides a protocol that reliably delivers broadcast data, even in presence of
unpredictable behaviors, such as fading, collisions, and interference; solutions in this
sense have been proposed in [16–18]. Nodes in Π may be mobile and they can keep
continuously moving and pausing in the system. When a node pm moves, its neighbor-
hood may change. We consider a passive mobility model, i.e., the node that is moving
does not know that it is moving. Hence, the mobile node pm cannot notify its neighbors
about its moving. Then, for the viewpoint of a neighbor, it is not possible to distinguish
between a moving, a leave or a crash of pm. During the neighborhood changing, pm

keeps its state, that is, the values of its variables.

2.1 Stability Assumptions

In order to implement unreliable failure detectors with an unknown membership, pro-
cesses should interact with some others to be known. If there is some process in the
system such that the rest of processes have no knowledge whatsoever of its identity,
there is no algorithm that implements a failure detector with weak completeness, even
if links are reliable and the system is synchronous [19]. In this sense, the characteriza-
tion of the actual membership of the system, that is, the set of processes which might
be considered for the computation is of utmost importance for our study. We consider
then that after have joined the system for some point in time, a mobile process pi must
communicate somehow with the others in order to be known. Afterwards, if pi leaves,
it can re-enter the system with a new identity, thus, it is considered as a new process.
Processes may join and leave the system as they wish, but the number of re-entries is
bounded, due to the finite arrival assumption. One important aspect concerns the time
period and conditions in which processes are connected to the system. During unstable
periods, certain situations, as for example, connections for very short periods, the rapid
movement of nodes, or numerous joins or leaves along the execution (characterizing a
churn) could block the application and prevent any useful computation. Thus, the sys-
tem should present some stability conditions that when satisfied for longtime enough
will be sufficient for the computation to progress and terminate.

Definition 1. Membership Let t, t′ ∈ T . Let UP(t) ⊂ Π be the set of mobile processes
that are in the system at time t, that is, after have joined the system before t, they neither
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leave it nor crash before t. Let pi, pj be mobile nodes. Let the knownj set denotes the
partial knowledge of pj about the system’s membership. The membership of the system
is the KNOWN set.

STABLE
def
= {pi : ∃t, t′, s.t. ∀t′ ≥ t, pi ∈ UP(t′)}.

FAULTY
def
= {pi : ∃t, t′, t < t′, pi ∈ UP(t) ∧ pi 	∈ UP(t′)}.

KNOWN
def
= {pi : (pi ∈ STABLE ∪ FAULTY) ∧ (pi ∈ knownj , pj ∈ STABLE)}.

The actual membership is in fact defined by the KNOWN set. A process is known if,
after have joined the system, it has been identified by some stable process. A stable
process is thus a mobile process that, after had entered the system for some point in
time, never departs (due to a crash or a leave); otherwise, it is faulty. A process is faulty
after time t, when, after had entered the system at t, it departs at t′ > t. The STABLE

set corresponds to the set of correct processes in the classical model of static systems.

Assumption 1. Connectivity Let G(KNOWN ∩ STABLE) = G(S) ⊆ G be the graph
obtained from the stable known processes. Then, ∃t ∈ T , s.t., in G(S) there is a path
between every pair of processes pi, pj ∈ G(S).

This connectivity assumption states that, in spite of changes in the topology of G, from
some point in time t, the set of known stables forms a strongly connected component in
G. This condition is frequently present in the classical model of static networks and is
indeed mandatory to ensure dissemination of messages to all stable processes and thus
to ensure the global properties of the failure detector [2, 19–21].

2.2 A Failure Detector of Class ♦SM

Unreliable failure detectors provide information about the liveness of processes in the
system [2]. Each process has access to a local failure detector which outputs a list of
processes that it currently suspects of being faulty. The failure detector is unreliable in
the sense that it may erroneously add to its list a process which is actually correct. But
if the detector later believes that suspecting this process is a mistake, it then removes
the process from its list. Failure detectors are formally characterized by two properties:
(i) Completeness characterizes its capability of suspecting every faulty process perma-
nently; (ii) Accuracy characterizes its capability of not suspecting correct processes.
Our work is focused on the class of Eventually Strong detectors, also known as ♦S.
Nonetheless, we adapt the properties of this class in order to implement a FD in a
dynamic set. Then, we define the class of Eventually Strong Failure Detectors with Un-
known Membership, namely ♦SM . This class keeps the same properties of ♦S, except
that they are now valid to known processes, that are stable and faulty.

Definition 2. Eventually Strong FD with Unknown Membership (♦SM ) Let t, t′ ∈
T . Let pi, pj be mobile nodes. Let suspj be the list of processes that pj currently sus-
pects of being faulty. The ♦SM class contains all the failure detectors that satisfy:

Strong completeness
def
= {∃t, t′, s.t. ∀t′ ≥ t, ∀pi ∈ KNOWN ∩ FAULTY ⇒ pi ∈

suspj , ∀pj ∈ KNOWN ∩ STABLE}.
Eventual weak accuracy

def
= {∃t, t′, s.t. ∀t′ ≥ t, ∃pi ∈ KNOWN ∩ STABLE ⇒ pi 
∈

suspj , ∀pj ∈ KNOWN ∩ STABLE}.
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3 Towards a Time-Free Failure Detector for the ♦SM Class

None of the failure detector classes can be implemented in a purely asynchronous sys-
tem [2]. Indeed, while completeness can be realized by using “I am alive” messages and
timeouts, accuracy cannot be safely implemented for all system executions. Thus, some
additional assumptions on the underlying system should be made in order to implement
them. With this aim, two orthogonal approaches can be distinguished: the timer-based
and the time-free failure detection [22]. The timer-based model is the traditional ap-
proach and supposes that channels in the system are eventually timely; this means that,
for every execution, there are bounds on process speeds and on message transmission
delays. However, these bounds are not known and they hold only after some unknown
time [2]. An alternative approach suggested by [4] and developed so far by [11, 20]
considers that the system satisfies a message exchange pattern on the execution of a
query-based communication and is time-free. While the timer-based approach imposes
a constraint on the physical time (to satisfy message transfer delays), the time-free ap-
proach imposes a constraint on the logical time (to satisfy a message delivery order).
These approaches are orthogonal and cannot be compared, but, they can be combined at
the link level in order to implement hybrid protocols with combined assumptions [22].

3.1 Stable Query-Response Communication Mechanism

Our failure detector is time-free and based on a local QUERY-RESPONSE communica-
tion mechanism [20] adapted to a network with unknown membership. At each query-
response round, a node systematically broadcasts a QUERY message to the nodes in
its neighborhood until it possibly crashes or leaves the system. The time between two
consecutive queries is finite but arbitrary. Each couple of QUERY-RESPONSE messages
are uniquely identified in the system. A process pi launches the primitive by sending a
QUERY(m) with a message m. When a process pj delivers this query, it updates its local
state and systematically answers by sending back a RESPONSE() to pi. Then, when pi

has received at least αi responses from different processes, including a stable one, the
current QUERY-RESPONSE terminates. Without loss of generality, the response for pi

itself is among the αi responses. An implementation of a QUERY-RESPONSE communi-
cation over fair-lossy local channels can be done by the repeated broadcast of the query
by the sender pi until it has received at least αi responses from its neighbors. Formally,
the stable QUERY–RESPONSE primitive has the following properties:

(i) QR-Validity: If a QUERY(m) is delivered by process pj , it has been sent by pi;
(ii) QR-Uniformity: A QUERY(m) is delivered at most once by a process;
(iii) QR-Stable-Termination: If a process pi is not faulty (it does not crash nor leave the
system) while it is issuing a query, that query generates at least αi responses.

The value associated to αi should correspond to the expected number of processes
with whom pi can communicate, in spite of moves and faults. Since communication
is local, αi is a local parameter and can be defined as the value of the neighborhood
density of pi (i.e., |Ni|) minus the maximum number of faulty processes in its neigh-
borhood; let fi be this number; that is, αi = |Ni| − fi. This local choice for αi changes
from previous works which consider a global value either proportional to the number
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of correct processes [4] or the number of stable processes [20] or the global number of
faults [11]. Moreover, it follows recent works on fault tolerant communication in radio
networks which propose a “local” fault model, instead of a “global” fault model, as an
adequate strategy to deal with the dynamism and unreliability of wireless channels in
spite of failures [17]. To reliably delivery data in spite of crashes, the maximum num-
ber of local failures should be fi < |Ni|/2 [23]. From Assumption 1 about the network
connectivity over time, at least one stable known node pj will receive the QUERY and
send a RESPONSE to pi, since moreover channels are fair-lossy. Thus, the following
property holds:

Property 1. Stable Termination Property (SatP). Let pi be a node which issues a
QUERY. Let Xi be the set of processes that issued a RESPONSE to that query. Thus,
∃pj ∈ Xi, pj ∈ KNOWN ∩ STABLE, pj 	= pi.

For the failure detection problem, the stable termination is important for the diffusion
of the information to the whole network and consequent satisfaction of the accuracy and
completeness properties. Moreover, it ensures that the first QUERY issued by pi, when
it joins the network, will be delivered by at least one stable process in such a way that
pi may take part to the membership of the system.

3.2 Behavioral Properties

Node pi can keep continuously moving and pausing, but, infinitively often, pi should
stay within its neighborhood for a sufficient period of time in order to be able to update
its state with recent information regarding suspicions and mistakes; otherwise, it would
not update its state properly and thus completeness and accuracy properties would not
be ensured. Recent information is gathered by pi from its neighbors via the delivery
of a QUERY message. Hence, the following mobility property, namely MobiP , has
been defined and should be satisfied by all nodes. It ensures that, after reaching a new
neighborhood at t′, there will be a time t > t′ at which pi should have received QUERY

messages from at least one stable neighbor pj , beyond itself. Since channels are fair-
lossy, the QUERY sent by pj will be received by pi, except if pi is faulty.

Property 2. Mobility Property (MobiP). Let t′, t ∈ T , t′ < t. Let pi be a node.
Let t′ be the time after which pi has changed of neighborhood. Let SQt

i be the set of
processes from which pi has received a QUERY message after t′ and before or at t.
Process pi satisfies MobiP at time t if:

MobiPt(pi)
def
= ∃pj,j �=i ∈ SQt

i, t > t′ : pj ∈ KNOWN ∩ STABLE ∨ pi is faulty
after t′.

Instead of synchrony assumptions, to ensure the accuracy of the detection, the time-
free model establishes conditions on the logical time the messages are delivered by
processes. These are unified in the stabilized responsiveness property, namely SRP .
Thus, SRP(pi) states that eventually, for any process pj (which had received a response
from piin the past), the set of responses received by pj to its last QUERY always includes
a response from pi, that is, the response of pi is always a winning response [22].



34 F. Greve et al.

Property 3. Stabilized Responsiveness Property (SRP). Let t′′, t′, t ∈ T . Let pi be
a stable known node. Let rec fromt′

j (rec fromt′′

j ) be the set of processes from which
pj has received responses to its last QUERY that terminated at or before t′(t′′). Process
pi satisfies SRP at time t if:

SRP t(pi)
def
= ∀t′ ≥ t, ∀t′′ > t′, pi ∈ rec fromt′

j ⇒ pi ∈ rec fromt′′

j ∨
pj is faulty after t.

This property denotes the ability of a stable known node pi to reply, among the first αi

nodes, to a QUERY sent by a node pj , who had received responses from pi before. It
should hold for at least one stable known node pi; thus preventing pi to be permanently
suspected. As a matter of comparison, in the timer-based model, this property would
approximate the following: there is a time t after which the output channels from a
stable process pi to every other process pj that knows pi are eventually timely.

In order to implement a ♦SM FD, the following behaviors should be satisfied:
1) ∀pi ∈ KNOWN : MobiPt(pi) holds after pi moves and changes of neighborhood;
2) ∃pi ∈ KNOWN ∩ STABLE : SRPt(pi) eventually holds.

A discussion about how to satisfy in practice the properties and assumptions of the
model is done in Section 4.2 after the protocol’s explanation.

4 A Failure Detector Algorithm for the ♦SM Class

4.1 Algorithm Description

Algorithm 1 describes our protocol for implementing a FD of class ♦SM for a network
of KNOWN mobile nodes that satisfies the model stated in Sections 2 and 3.

Notations. We use the following notations:
• suspi: denotes the current set of processes suspected of being faulty by pi. Each el-

ement of this set is a tuple of the form 〈id, ct〉, where id is the identifier of the suspected
node and ct is the tag associated to this information.

• misti: denotes the set of nodes which were previously suspected of being faulty
but such suspicions are currently considered to be a mistake. Similar to the suspi set,
the misti is composed of tuples of the form 〈id, ct〉.

• rec fromi: denotes the set of nodes from which pi has received responses to its
last QUERY message.

• knowni: denotes the partial knowledge of pi about the system’s membership, i.e.,
it denotes the current knowledge of pi about its neighborhood.

• Add(set, 〈id, ct〉): is a function that includes 〈id, ct〉 in set. If an 〈id,−〉 already
exists in set, it is replaced by 〈id, ct〉.

Description. The algorithm is composed of two tasks T 1 and T 2.
Task T 1: Generating suspicions. This task is made up of an infinite loop. At each

round, a QUERY(suspi, misti) message is sent to all nodes of pi’s neighborhood (line
5). Node pi waits for at least αi responses, which includes pi’s own response (line
6). Then, pi detects new suspicions (lines 8-13). It starts suspecting each node pj , not
previously suspected (pj 	∈ suspi), which it knows (pj ∈ knowni), but from which



A Failure Detector for Wireless Networks with Unknown Membership 35

it does not receive a RESPONSE to its last QUERY. If a previous mistake information
related to this new suspected node exists in the mistake set misti, it is removed from
it (line 11) and the suspicion information is then included in suspi with a tag which is
greater than the previous mistake tag (line 10). If pj is not in the mist set (i.e., it is the
first time pj is suspected), pi suspected information is tagged with 0 (line 13).

Algorithm 1. Time-Free Implementation of a ♦SM Failure Detector

1 init:
2 suspi ← ∅; misti ← ∅ ; knowni ← ∅

3 Task T1:
4 Repeat forever
5 broadcast QUERY(suspi, misti)
6 wait until RESPONSE received from ≥ αi processes
7 rec fromi ← all pj, a RESPONSE is received in line 6
8 For all pj ∈ knowni \ rec fromi | 〈pj ,−〉 
∈ suspi do
9 If 〈pj , ct〉 ∈ misti

10 Add(suspi, 〈pj , ct + 1〉)
11 misti = misti \ {〈pj ,−〉}
12 Else
13 Add(suspi, 〈pj , 0〉)
14 End repeat
15

16 Task T2:
17 Upon reception of QUERY (suspj,mistj) from pj do
18 knowni ← knowni ∪ {pj}
19 For all 〈px, ctx〉 ∈ suspj do
20 If 〈px,−〉 
∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx)
21 If px = pi

22 Add(misti, 〈pi, ctx + 1〉)
23 Else
24 Add(suspi, 〈px, ctx〉)
25 misti = misti \ {〈px,−〉}
26 For all 〈px, ctx〉 ∈ mistj do
27 If 〈px,−〉 
∈ suspi ∪ misti or (〈px, ct〉 ∈ suspi ∪ misti and ct < ctx)
28 Add(misti, 〈px, ctx〉)
29 suspi = suspi \ {〈px,−〉}
30 If (px 
= pj)
31 knowni ← knowni \ {px}
32 send RESPONSE to pj

Task T 2: Propagating suspicions and mistakes. This task allows a node to handle
the reception of a QUERY message. A QUERY message contains the information about
suspected nodes and mistakes kept by the sending node. However, based on the tag
associated to each piece of information, the receiving node only takes into account the
ones that are more recent than those it already knows or the ones that it does not know
at all. The two loops of task T 2 respectively handle the information received about
suspected nodes (lines 19–25) and about mistaken nodes (lines 26–31). Thus, for each
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node px included in the suspected (respectively, mistake) set of the QUERY message, pi

includes the node px in its suspi (respectively, misti) set only if the following condition
is satisfied: pi received a more recent information about px status (failed or mistaken)
than the one it has in its suspi and misti sets. Furthermore, in the first loop of task T 2,
a new mistake is detected if the receiving node pi is included in the suspected set of the
QUERY message (line 21) with a greater tag. At the end of the task (line 32), pi sends
to the querying node a RESPONSE message.

Dealing with mobility and generating mistakes. When a node pm moves to another
destination, the nodes of its old destination will start suspecting it, since pm is in their
known set and it cannot reply to QUERY messages from the latter anymore. Hence,
QUERY messages that include pm as a suspected node will be propagated to nodes of
the network. Eventually, when pm reaches its new neighborhood, it will receive such
suspicion messages. Upon receiving them, pm will correct such a mistake by including
itself (pm) in the mistake set of its corresponding QUERY messages with a greater tag
(lines 21-22). Such information will be propagated over the network. On the other hand,
pm will start suspecting the nodes of its old neighborhood since they are in its knownm

set. It then will broadcast this suspicion in its next QUERY message. Eventually, this in-
formation will be corrected by the nodes of its old neighborhood and the corresponding
generated mistakes will spread over the network, following the same principle.

In order to avoid a “ping-pong” effect between information about suspicions and
mistakes, lines 30–31 allow the updating of the known sets of both the node pm and
of those nodes that belong to the original destination of pm. Then, for each mistake
〈px, ctx〉 received from pj , such that pi keeps an old information about px, pi verifies
whether px is the sending node pj (line 30). If they are different, px should belong to
a remote neighborhood, because otherwise, pi would have received the mistake by px

itself. Notice that only the node can generate a new mistake about itself (line 21). Thus,
px is removed from the knowni set (line 31). Notice, however, that this condition is
not sufficient to detect the mobility, because px can be a neighbor of pi and due to an
asynchronous race, the QUERY sent by px with the mistake has not yet arrived at pi. In
fact, the propagated mistake sent by pj has arrived at pi firstly. If that is the case, px has
been unduly removed from knowni. Fortunately, since local broadcast is fair-lossy, the
QUERY from px is going to eventually arrive at pi, if pi is stable, and, as soon as the
QUERY arrives, pi will once again add px to knowi (lines 17–18).

4.2 Practical Issues

The stable termination of the QUERY-RESPONSE primitive and the MobiP property
may be satisfied if the time of pause, between changes in direction and/or speed, is
defined to be greater than the time to transmit the QUERY and receive the RESPONSE

messages. This condition is attained when for example, the most widely used Random
Waypoint Mobility Model [24] is considered. In practice, the value of αi (the number
of responses that a process pi should wait in order to implement a QUERY-RESPONSE)
relates not only with the application density and the expected number of local faults,
but also with the type of network considered (either WMN, WSN, etc.) and the current
topology of the network during execution. Thus, it can be defined on the fly, based on
the current behavior of the network. Wireless Mesh Network (WMN), Wireless Sensor
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Network (WSN), and infra-structured mobile networks [11, 25] are a good examples
of platforms who would satisfy the assumptions of our model, specially the SRP . In a
WMN, the nodes move around a fixed set of nodes (the core of the network) and each
mobile node eventually connects to a fix node. A WSN is composed of stationary nodes
and can be organized in clusters, so that communication overhead can be reduced; one
node in each cluster is designated the cluster head (CH) and the other nodes, cluster
members (CMs). Communication inter-clusters is always routed through the respective
CHs which act as gateway nodes and are responsible for maintaining the connectivity
among neighboring CHs. An infra-structured mobile network is composed of mobile
hosts (MH) and mobile support stations (MSS). A MH is connected to a MSS if it is
located in its transmission range and two MHs can only communicate through MSSs,
but, due to mobility, an MH can leave and enter the area covered by other MSSs. The
system is composed of N MSSs but infinitely many MHs. However, in each run the
protocol has only finitely many MHs. There are some works to implement a leader
oracle [11] and to solve consensus in this type of network [25].

For all these platforms, special nodes (the fixed node for WMN, CHs for WSN or
MSSs for infra-structured networks) eventually form a strongly connected component
of stable nodes; additionally, they can be regarded as fast, so that they will always an-
swer to a QUERY faster than the other nodes, considered as slow nodes (the mobile
node for WMN, CMs for WSN or MHs for infra-structured networks). Thus, one of
these fast nodes may satisfy the SRP property. The SRP may seem strong, but in
practice it should just hold during the time the application needs the strong complete-
ness and eventual weak accuracy properties of FDs of class ♦SM , as for instance, the
time to execute a consensus algorithm.

5 Conclusion

This paper has presented a new algorithm for an unreliable failure detector suitable for
mobile wireless networks, such as WMNs or WSNs. It implements failure detectors of
class ♦SM (eventually strong with unknown membership) when the exchanged pattern
of messages satisfies some behavioral properties. As a future work, we plan to adapt the
algorithm and properties to implement other classes of failure detectors.
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Abstract. MapReduce is a useful and popular programming model for
data-intensive distributed parallel computing. But it is still a challenge
to develop parallel programs with MapReduce systematically, since it is
usually not easy to derive a proper divide-and-conquer algorithm that
matches MapReduce. In this paper, we propose a homomorphism-based
framework named Screwdriver for systematic parallel programming with
MapReduce, making use of the program calculation theory of list ho-
momorphisms. Screwdriver is implemented as a Java library on top of
Hadoop. For any problem which can be resolved by two sequential func-
tions that satisfy the requirements of the third homomorphism theorem,
Screwdriver can automatically derive a parallel algorithm as a list homo-
morphism and transform the initial sequential programs to an efficient
MapReduce program. Users need neither to care about parallelism nor to
have deep knowledge of MapReduce. In addition to the simplicity of the
programming model of our framework, such a calculational approach en-
ables us to resolve many problems that it would be nontrivial to resolve
directly with MapReduce.

1 Introduction

Google’s MapReduce [5] is a programming model for data-intensive distributed
parallel computing. It is the de facto standard for large scale data analysis,
and has emerged as one of the most widely used platforms for data-intensive
distributed parallel computing.

Despite the simplicity of MapReduce, it is still a challenge for a programmer
to systematically solve his or her (nontrivial) problems. Consider the maximum
prefix sum problem of a sequence. For instance, if the input sequence is

3,−1, 4, 1,−5, 9, 2,−6, 5

the maximum of the prefix sums should be 13 to which the underlined prefix
corresponds. It is not obvious how to solve this problem efficiently with MapRe-
duce (and we encourage the reader to pause to think how to solve this). Such
problems widely exist in the real world, e.g, financial time series analysis.
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Our basic idea to resolve such problems is to wrap MapReduce with list ho-
momorphisms (or homomorphisms for short) [2]. We propose a simpler pro-
gramming model based on the theory of list homomorphisms, and implement an
associated framework called Screwdriver1 for systematic parallel programming
over MapReduce. Screwdriver provides users with an easy-to-use programming
interface, where users just need to write two sequential programs: one for solving
the problem itself and the other for solving the inverse problem. By building an
algorithmic parallelization layer upon MapReduce, Screwdriver automatically
generates homomorphisms from user-specific programs and efficiently executes
them with MapReduce. We implemented this homomorphism-based framework
efficiently in Java on top of an open source MapReduce framework Hadoop2.

The rest of the paper is organized as follows. In Section 2 we review the con-
cept of MapReduce and the theory of homomorphisms. The design and imple-
mentation of the homomorphism-based algorithmic layer on top of MapReduce
are illustrated in Section 3. Then, we demonstrate the usefulness of our system
with the maximum prefix sum problem above in Section 4, and report some
experiment results in Section 5. The conclusion and highlight of future work are
summarized in Section 6.

2 MapReduce and List Homomorphisms

The notations are mainly based on the functional language Haskell [1]. Function
application is denoted with a space with its argument without parentheses, i.e.,
f a equals to f(a). Functions are curried and bound to the left, and thus f a b
equals to (f a) b. Function application has higher precedence than using oper-
ators, so f a ⊕ b = (f a) ⊕ b. We use two operators ◦ and � over functions:
by definition, (f ◦ g) x = f (g x) and (f � g) x = (f x, g x). Function id is the
identity function.

Tuples are written like (a, b) or (a, b, c). Function fst (snd) extracts the first
(the second) element of the input tuple.

We denote lists with square brackets. We use [ ] to denote an empty list, and
++ to denote the list concatenation: [3, 1, 4] ++ [1, 5] = [3, 1, 4, 1, 5]. A list that
has only one element is called a singleton. Operator [·] takes a value and returns
a singleton list with it.

2.1 MapReduce and MapReduce Programming Model

Figure 1 depicts the MapReduce computation model. The input and output data
of MapReduce are managed as a set of key-value pairs and stored in distributed
file system over a cluster. MapReduce computation mainly consists of three
phases: the MAP phase, SHUFFLE & SORT phase, and the REDUCE phase3.
1 It is available online http://code.google.com/p/screwdriver/
2 http://hadoop.apache.org/
3 For readability, we use MAP and REDUCE to denote the phases in MapReduce,

and fMAP and fREDUCE for the parameter functions used in the MAP and REDUCE
phases. When unqualified, map and reduce refer to the functions of Haskell.
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Fig. 1. MapReduce Computation

In the MAP phase, each input key-value pair is processed independently and a
list of key-value pairs will be produced. Then in the SHUFFLE & SORT phase,
the key-value pairs are grouped based on the key. Finally, in the REDUCE phase,
the key-value pairs of the same key are processed to generate a result.

To make the discussion precise, we introduce a specification of the MapRe-
duce programming model in a functional programming manner. Note that the
specification in this paper is based on that in [11] but is more detailed. In this
model, users need to provide four functions to develop a MapReduce application.
Among them, the fMAP and fREDUCE functions performs main computation.

– Function fMAP.
fMAP :: (k1, v1) → [(k2, v2)]

This function is invoked during the MAP phase, and it takes a key-value
pair and returns a list of intermediate key-value pairs.

– Function fSHUFFLE.
fSHUFFLE :: k2 → k3

This function is invoked during the SHUFFLE&SORT phase, takes a key of
an intermediate key-value pair, and generate a key with which the key-value
pairs are grouped.

– Function fSORT.
fSORT :: k2 → k2 → {−1, 0, 1}

This function is invoked during the SHUFFLE&SORT phase, and compares
two keys in sorting the values.

– Function fREDUCE.

fREDUCE :: (k3, [v2]) → (k3, v3)

This function is invoked during the REDUCE phase, and it takes a key and
a list of values associated to the key and merges the values.
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Now a functional specification of the MapReduce framework can be given as
follows, which accepts four functions fMAP, fSHUFFLE, fSORT, and fREDUCE and
transforms a set of key-value pairs to another set of key-value pairs.

MapReduce :: ((k1, v1) → [(k2, v2)]) → (k2 → k3) → (k2 → k2 → {−1, 0, 1})
→ ((k3, [v2]) → (k3, v3)) → {(k1, v1)} → {(k3, v3)}

MapReduce fMAP fSHUFFLE fSORT fREDUCE input
= let sub1 = mapS fMAP input

sub2 = mapS (λ(k′, kvs). (k′,map snd (sortByKey fSORT kvs)))
(shuffleByKey fSHUFFLE sub1 )

in mapS fREDUCE sub2

Function mapS is a set version of the map function: i.e., it applies the input
function to each element in the set. Function shuffleByKey takes a function
fSHUFFLE and a set of a list of key-value pairs, flattens the set, and groups
the key-value pairs based on the new keys computed by fSHUFFLE. The result
type after shuffleByKey is {(k3, {k2, v2})}. Function sortByKey takes a function
fSORT and a set of key-value pairs, and sorts the set into a list based on the
relation computed by fSORT.

2.2 List Homomorphism and Homomorphism Theorems

List homomorphisms are a class of recursive functions on lists, which match very
well the divide-and-conquer paradigm [2, 4, 5, 12, 15, 16]. They are attractive in
parallel programming, not only because they are suitable for parallel implemen-
tation, but also because they enjoy many nice algebraic properties, among which,
the three well-known homomorphism theorems form the basis of systematic de-
velopment of parallel programs [4, 6, 7, 9, 10]. Recently, it has been shown [8, 14]
that homomorphisms can be automatically developed for solving various kinds
of problems. All these have indeed motivated us to see how to apply these results
to parallel programming with MapReduce.

Definition 1 (List homomorphism). Function h is said to be a list homo-
morphism, if and only if there is a function f and an associative operator �
such that the function h is defined as follows.

h [a] = f a
h (x ++ y) = h x � h y

Since h is uniquely determined by f and �, we write h = ([f,�]).

For instance, the function that sums up the elements in a list can be described
as a list homomorphism ([id, +]):

sum [a] = a
sum (x ++ y) = sum x + sum y.

Below is the well-known theorem for homomorphisms [6]. It provides a neces-
sary and sufficient condition for the existence of a list homomorphism.
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Fig. 2. System Overview

Theorem 1 (The third homomorphism theorem). Let h be a given func-
tion and � and � be binary operators. If and only if the following two equations
hold for any element a and list y

h ([a] ++ y) = a � h y
h (y ++ [a]) = h y � a

then the function h is a homomorphism.

In order to show how to automatically derive a list homomorphism, firstly, we
introduce the concept of function’s right inverse.

Definition 2 (Right inverse). For a function h, its right inverse h◦ is a func-
tion that satisfies h ◦ h◦ ◦ h = h.

By taking use of right inverse, we can obtain the list-homomorphic definition as
follows.

h = ([f,�]) where f a = h [a]
l � r = h (h◦ l ++ h◦ r)

With this property, the third homomorphism theorem is also an important and
useful theorem for automatic derivation of list homomorphisms [14]. Our paral-
lelization algorithm is mainly based on the third homomorphism theorem.

3 A Homomorphism-Based Framework for Parallel
Programming with MapReduce

The main contribution of our work is a novel programming model and its frame-
work for systematic programming over MapReduce, based on theorems of list
homomorphisms [8, 14]. Our framework Screwdriver is built on top of Hadoop,
purely in Java.

As shown in Fig. 2, Screwdriver consists of three layers: the interface layer
for easy parallel programming, the homomorphism layer for implementing ho-
momorphism, and the base layer of the MapReduce engine (Hadoop).
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Listing 1.1. Programming Interface

1 public abstract class ThirdHomomorphismTheorem<T1,T2> {

2 ...

3 public abstract T2 fold(ArrayList <T1> values );

4 public abstract ArrayList <T1> unfold(T2 value );

5 ...

6 }

3.1 Programming Interface and Homomorphism Derivation

The first layer of Screwdriver provides a simple programming interface and gen-
erates a homomorphism based on the third homomorphism theorem.

Users specify a pair of sequential functions instead of specifying a homomor-
phism directly: one for solving the problem itself and the other for a right inverse
of the problem. Consider the summing-up example again. A right inverse sum◦

of the function sum takes a value (the result of sum) and yields a singleton
list whose element is the input value itself. The functional definition of sum◦ is:
sum◦ s = [s].

Listing 1.1 shows the programming interface provided in Screwdriver, where
users should write a program by inheriting the ThirdHomomorphismTheorem
class. The function fold corresponds to the sequential function that solves the
problem, and the function unfold corresponds to the sequential function that
computes a right inverse. In a functional specification, the types of the two func-
tions are fold :: [t1] → t2 and unfold :: t2 → [t1]. The concrete Java source code
with Screwdriver for the summing-up example can be found on our project’s
site.

To utilize the third homomorphism theorem, users are requested to confirm
that the two functions satisfy the following conditions. Firstly, the function
unfold should be a right inverse of the function fold . In other words, the equation
fold ◦unfold ◦fold = fold should hold. Secondly, for the fold function there should
exist two operators � and ⊕ as stated in Theorem 1. A sufficient condition for
this second requirement is that the following two equations hold respectively for
any a and x.

fold([a] ++ x) = fold([a] ++ unfold(fold(x))) (1)

fold(x ++ [a]) = fold(unfold(fold x) ++ [a]) (2)

Note that we can use some tools (such as QuickCheck [3]) in practice to verify
whether Equations (1) and (2) hold or not.

Under these conditions, Screwdriver automatically derives a list homomor-
phism from the pair of fold and unfold functions. A list homomorphism ([f,⊕])
that computes fold can be obtained by composing user’s input programs, where
the parameter functions f and ⊕ are defined as follows.

f a = fold([a])
x ⊕ y = fold(unfold x ++ unfold y).
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3.2 Homomorphism Implementation on MapReduce

In the second layer, Screwdriver provides an efficient implementation of list ho-
momorphisms over MapReduce. In particular, the implementation consists of
two passes of MapReduce.

Manipulation of Ordered Data

The computation of a list homomorphism obeys the order of elements in the
input list, while the input data of MapReduce is given as a set stored on the
distributed file system. This means we need to represent a list as a set.

On Screwdriver, we represent each element of a list as an (index , value) pair
where index is an integer indicating the position of the element. For example,
a list [a, b, c, d, e] may be represented as a set {(3, d), (1, b), (2, c), (0, a), (4, e)}.
Note that the list can be restored from this set representation by sorting the
elements in terms of their indices. Such indexed pairs permit storing data in
arbitrary order on the distributed file systems

Implementing Homomorphism by two Passes of MapReduce

For the input data stored as a set on the distributed file system, Screwdriver
computes a list homomorphism in parallel by two passes of MapReduce compu-
tation. Here, the key idea of the implementation is that we group the elements
consecutive in the list into some number of sublists and then apply the list
homomorphism in parallel to those sublists.

In the following, we summarize our two-pass implementation of homomor-
phism ([f,⊕]). Here, hom f (⊕) denotes a sequential version of ([f,⊕]), comp is
a comparing function defined over the Int type, and const is a constant value
defined by the framework.

homMR :: (α → β) → (β → β → β) → {(Int , α)} → β
homMR f (⊕) = getValue ◦ MapReduce ([·]) gSHUFFLE comp gREDUCE

◦ MapReduce ([·]) fSHUFFLE comp fREDUCE

where
fSHUFFLE :: Int → Int
fSHUFFLE k = k/const
fREDUCE :: (Int , [α]) → (Int , β)
fREDUCE (k, as) = (k, hom f (⊕) as)
gSHUFFLE :: Int → Int
gSHUFFLE k = 1
gREDUCE :: (Int , [β]) → (Int , β)
gREDUCE (1, bs) = (1, hom id (⊕) bs)
getValue :: {(Int , β)} → β
getValue {(1, b)} = b
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First pass of MapReduce: The first pass of MapReduce divides the list into
some sublists, and computes the result of the homomorphism for each sublist.
Firstly in the MAP phase, we do no computation (except for wrapping the key-
value pair into a singleton list). Then in the SHUFFLE&SORT phase, we group
the pairs so that the set-represented list is partitioned into some number of
sublists and sort each grouped elements by their indices. Finally, we apply the
homomorphism to each sublist in the REDUCE phase.

Second pass of MapReduce: The second pass of MapReduce computes the result
of the whole list from the results of sublists given by the first pass of MapReduce.
Firstly in the MAP phase, we do no computation as in the first pass. Then in
the SHUFFLE&SORT phase, we collect the subresults into a single set and sort
them by the their indices. Finally, we reduce the subresults using the associative
operator of the homomorphism.

Finally, by the getValue function, we picked the result of the homomorphism
out from the set (of single value).

Implementation Issues

In terms of the parallelism, the number of the MAP tasks in the first pass is
decided by the data splitting mechanism of Hadoop. For one split data of the
input, Hadoop spawns one MAP task which applies fMAP to each record. The
number of the REDUCE tasks in the first pass of MapReduce should be chosen
properly with respect to the total number of the task-trackers inside the cluster.
By this number of REDUCE task, the parameter const in the program above
is decided. In the REDUCE phase in the second pass of MapReduce, only one
REDUCE task is invoked because all the subresults are grouped into a single
set.

4 A Programming Example

In this section we demonstrate how to develop parallel programs with our frame-
work, by using the maximum prefix sum problem in the introduction as our ex-
ample. As discussed in Section 3, users need to define a Java class that inherits
the Java class shown in Listing 1.1 and implement the two abstract methods
fold and unfold .

Recall the maximum prefix sum problem in the introduction. It is not difficult
to develop a sequential program for computing the maximum prefix sum:

mps [1,−2, 3, ...] = 0 ↑ 1 ↑ (1 + (−2)) ↑ (1 + (−2) + 3) ↑ (1 + (−2) + 3 + ...)

where a ↑ b returns a if a > b otherwise returns b.
Although the mps function cannot be represented by a homomorphism in the

sense that it cannot be described at the same time, it is not difficult to see, as
discussed in [14], that the tupled function mps � sum can be described leftwards
and rightwards.
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Listing 1.2. Our Parallel Program for Solving MPS Problem

1 import ...

2
3 public class Mps extends ThirdHomomorphismTheorem <LongWritable , LongPair > {

4
5 // Computing mps and sum at a time .

6 public LongPair fold (ArrayList <LongWritable > values) {

7 long mps = 0;

8 long sum = 0;

9 for (LongWritable v : values) {

10 sum += v.get ();

11 if (sum > mps) mps = sum;

12 }

13
14 return new LongPair (mps , sum);

15 }

16
17 // A right inverse of fold .

18 public ArrayList <LongWritable > unfold(LongPair value ) {

19 long m = value .getFirst ();

20 long s = value .getSecond ();

21
22 ArrayList <LongWritable > rst = new ArrayList <LongWritable >();

23 rst.add(new LongWritable (m));

24 rst.add(new LongWritable (s-m));

25 return rst;

26 }

27 }

What we need to do now is to develop an efficient sequential program for
computing mps � sum and an efficient sequential program for computing a right
inverse of mps � sum. These two sequential programs are not difficult to obtain.
A simple sequential program for computing the tupled function (mps � sum)
can be defined by

(mps � sum) [a] = (a ↑ 0, a)
(mps � sum) (x ++ [a]) = let (m, s) = (mps � sum) x in (m ↑ (s + a), s + a)

and a right inverse of (mps � sum) can be defined as follows.

(mps � sum)◦ (m, s) = [m, s − m].

That is all for our development. We can now use (mps � sum) as the fold
function and (mps � sum)◦ as unfold function. Listing 1.2 gives the concrete
Java program for solving the maximum prefix sum problem using Screwdriver.

5 Experiments

In this section, we report experiment results that evaluate the performance of
our framework on PC clusters. We evaluated the scalability of programs on our
framework, the overhead of our framework compared with the direct Hadoop
program, and the overhead of the non-trivial parallel program compared with
sequential program.
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We configured clusters with 2, 4, 8, 16, and 32 virtual machines (VM) in-
side the EdubaseCloud system in National Institute of Informatics. Each VM
has one CPU (Xeon E5530@2.4GHz, 1 core), 3 GB memory, and 5 GB disk
space. We installed Hadoop (version 0.20.2.203) on each VM. Three sets of
programs are used for the evaluation: SUM computes the sum of 64-bit inte-
gers; VAR computes the variance of 32-bit floating-point numbers; MPS solves
the maximum-prefix-sum problem for a list of 64bit-integers. We both imple-
mented the programs with the Hadoop APIs directly (SUM -MR, VAR-MR,
MPS -MR), and with our Screwdriver (SUM -LH , VAR-LH , MPS -LH ). Also a
sequential program is implemented (MPS -Seq). The input for SUM and MPS
was a list of 108 64bit-integer elements (593 MB), and the input for VAR is
a list of 108 32bit-floating-point numbers (800 MB). Note that the elements
of lists are indexed as in Section 3.2 with the type information (each element
has a 64bit-integer index), stored in the Avro data format, and put in the
HDFS.

The experiment results are summarized in Fig. 3 and Table 1. Note that the
relative speedup is calculated with respect to the result of 2 nodes. The execution
of the parallel programs on our framework and on Hadoop failed on 1 node, due
to the limitation of disk space for the intermediate data.

All the programs achieved good scalability with respect to the number of
nodes: the speedup ratios for 32 nodes against 2 nodes are more than 10 times.
This shows that our framework does not spoil the strong advantage of MapRe-
duce framework, namely scalable data processing. For the summation problem,
the SUM-LH program on our framework cannot use combiner due to the limita-
tion of Hadoop’s implementation, so SUM-MR which uses combiner doing local
reductionism can run almost twice faster. for almost all MapReduce programs
combiners usually can increase performance very much. So we will work on to
let our framework taking full use of data-locality. And we think it will bring no-
table performance improvement. Besides this, two-passes MapReduce processing
and sorting with respect to the keys, which are unnecessary for the summation
problem. In other words, with these overheads we can extend the MapReduce
framework to support computations on ordered lists.

Finally we discuss the execution times for the maximum-prefix-sum problem.
Although the parallel program on our framework MPS-LH shows good scal-
ability (as well as MPS-MR), it ran slower on 32 nodes than the sequential
program MPS-Seq. We consider this is a reasonable result: first, in this case of
the maximum-prefix-sum problem, the parallel algorithm becomes more complex
than that of sequential one, and in particular we produced (large) intermediate
data when doing parallel processing on our framework but it is not the case for
sequential processing. Second, the test data is not big enough, so the sequential
program can still handle it. Because the limitation of our cloud, we cannot test
big enough data. An important work to improve the performance in future is to
make use of data locality to optimize the parallel execution.
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Fig. 3. Time Consuming

Table 1. Execution Time (second) and Relative Speedup w.r.t. 2 Nodes

Program 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

SUM-MR NA (NA) 304 (1.00) 156 (1.95) 75 (4.05) 50 (6.08) 26 (11.69)
SUM-LH NA (NA) 628 (1.00) 309 (2.03) 166 (3.78) 93 (6.75) 61 (10.30)
VAR-LH NA (NA) 723 (1.00) 321 (2.25) 189 (3.82) 111 (6.50) 69 (10.45)
MPS-LH NA (NA) 635 (1.00) 311 (2.04) 169 (3.76) 93 (6.78) 62 (10.24)
MPS-MR NA (NA) 621 (1.00) 304 (2.04) 163 (3.81) 91 (6.82) 61 (10.22)
MPS-Seq 37 NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)

6 Concluding Remarks

The research on list homomorphisms and the third homomorphism theorem indi-
cate a systematic and constructive way to parallelization, by which this work was
inspired. List homomorphisms and the theory related to them are very suitable
for providing a method of developing MapReduce programs systematically.

In this paper, we presented a new approach to systematic parallel program-
ming over MapReduce based on program calculation, and gave a concrete imple-
mentation to verify the approach. We believe that the calculation theorems for
list homomorphisms can provide a higher abstraction over MapReduce, and such
abstraction brings good algebraic properties of list homomorphisms to parallel
programming with MapReduce.

We introduced a novel parallel programming approach based on list homo-
morphism to wrapping MapReduce. And we believe such approach is not limited
to wrapping MapReduce, but also can be adopted to other parallel programming
environments to provide higher-level programming interfaces.

As a future work, we plan to extend this framework for resolving parallel
programming problems on trees and graphs. It will enlarge the computation
capability of Screwdriver.
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Abstract. Based on our current expectation for the exascale systems,
composed of hundred of thousands of many-core nodes, the mean time
between failures will become small, even under the most optimistic as-
sumptions. One of the most scalable checkpoint restart techniques, the
message logging approach, is the most challenged when the number of
cores per node increases, due to the high overhead of saving the message
payload. Fortunately, for two processes on the same node, the failure
probability is correlated, meaning that coordinated recovery is free. In
this paper, we propose an intermediate approach that uses coordination
between correlated processes, but retains the scalability advantage of
message logging between independent ones. The algorithm still belongs
to the family of event logging protocols, but eliminates the need for costly
payload logging between coordinated processes.

1 Introduction

High Performance Computing, as observed by the Top 500 ranking1, has ex-
hibited a constant progression of the computing power by a factor of two every
18 months for the last 15 years. Following this trend, the exaflops milestone
should be reached as soon as 2019. The International Exascale Software Project
(IESP) [7] proposes an outline of the characteristics of an exascale machine, based
on the foreseeable limits of the hardware and maintenance costs. A machine in
this performance range is expected to be built from gigahertz processing cores,
with thousands of cores per computing node (up to 1012 flops per node), thus
requiring millions of computing nodes to reach the exascale. Software will face
the challenges of complex hierarchies and unprecedented levels of parallelism.

One of the major concerns is reliability. If we consider that failures of com-
puting nodes are independent, the reliability probability of the whole system
(i.e. the probability that all components will be up and running during the next
time unit) is the product of the reliability probability of each of the components.
A conservative assumption of a ten years mean time to failure translates into a

1 http://www.top500.org/

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 51–64, 2011.
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probability of 0.99998 that a node will still be running in the next hour. If the
system consists of a million of nodes, the probability that at least one unit will be
subject to a failure during the next hour jumps to 1−0.99998106

> 0.99998. This
probability being disruptively close to 1, one can conclude that many computing
nodes will inevitably fail during the execution of an exascale application.

Automatic fault tolerant algorithms, which can be provided either by the
operating system or the middleware, remove some of the complexity in the de-
velopment of applications by masking failures and the ensuing recovery process.
The most common approaches to automatic fault tolerance are replication, which
consumes a high number of computing resources, and rollback recovery. Rollback
recovery stores system-level checkpoints of the processes, enabling rollback to a
saved state when failures happen. Consistent sets of checkpoints must be com-
puted, using either coordinated checkpointing or some variant of uncoordinated
checkpointing with message logging (for brevity, in this article, we use indiffer-
ently message logging or uncoordinated checkpointing). Coordinated checkpoint-
ing minimizes the overhead of failure-free operations, at the expense of a costly
recovery procedure involving the rollback of all processes. Conversely, message
logging requires every communication to be tracked to ensure consistency, but its
uncoordinated recovery procedure demonstrates unparalleled efficiency in failure
prone environments.

Although the low mean time to failure of exascale machines calls for prefer-
ring an uncoordinated checkpoint approach, the overhead on communication of
message logging is bound to increase with the advent of many-core nodes. Unco-
ordinated checkpointing has been designed with the idea that failures are mostly
independent, which is not the case in many-core systems where multiple cores
crash when the node is struck by a failure. Not only do simultaneous failures
negate the advantage of uncoordinated recovery, but the logging of messages
between cores is also a major performance issue. All interactions between two
uncoordinated processes have to be logged, and a copy of the transaction must
be kept for future replay. Since making a copy has the same cost as doing the
transaction itself (as the processes are on the same node we consider the cost of
communications equal to the cost of memory copies), the overhead is unaccept-
able. It is disconcerting that the most resilient fault tolerant method is also the
most bound to suffer, in terms of performance, on expected future systems.

In this paper, we consider the case of correlated failures: we say that two
processes are correlated or co-dependent if they are likely to be subject to a si-
multaneous failure. We propose a hybrid approach between coordinated and
non coordinated checkpointing, that prevents the overhead of keeping mes-
sage copies for communications between correlated processes, but retains the
more scalable uncoordinated recovery of message logging for processes whose
failure probability is independent. The coordination protocol we present is a
split protocol, which takes into account the fragmentation of messages, to avoid
long waiting cycles, while still implementing a transactional semantic for whole
messages.
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2 Rollback Recovery Background

2.1 Execution Model

Events and States: Each computational or communication step of a process is
an event. An execution is an alternate sequence of events and process states, with
the effect of an event on the preceding state leading the process to the new state.
As the system is basically asynchronous, there is no direct time relationship
between events occurring on different processes. However, Lamport defines a
causal partial ordering between events with the happened before relationship [14].

Events can be classified into two categories. An event is deterministic when,
from the current state, all executions lead to the same outcome state. On the
contrary, if in different executions, the same event happening on a particular
state can result in several different outcome states, then it is nondeterministic.
Examples of nondeterministic events are message receptions, which depend on
external influences like network jitter.
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Fig. 1. Recovery line based on rollback recovery of a failed process

Recovery Line: Rollback recovery addresses mostly fail-stop errors: a failure
is the loss of the complete state and actions of a process. A checkpoint is a copy
of a past state of a particular process stored on some persistent memory (remote
node, disk, ...), and used to restore the process in case of failure. The recovery
line is the configuration of the entire application after some processes have been
reloaded from checkpoints. If the checkpoints can happen at arbitrary dates,
some messages can cross the recovery line. Consider the example execution of
Figure 1. When the process P1 fails, it rolls back to checkpoint C1

1 . If no other
process rolls back, messages m3, m4, m5 are crossing the recovery line. A recovery
set is the union of the saved states (checkpoint, messages, events) and a recovery
line.

In-transit Messages: Messages m3 and m4 are crossing the recovery line from
the past, they are called in-transit messages. The in-transit messages are neces-
sary for the progression of the recovered processes, but are not available anymore,
as the corresponding send operation is in the past of the recovery line. For a re-
covery line to form a complete recovery set, every in-transit message must be
added to the recovery line.
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Orphan Messages: Message m5 is crossing the recovery line from the future
to the past; such messages are referred to as orphan messages. By following the
happened-before relationship, the current state of P0 depends on the reception
of m5; by transitivity, it also depends on events e3, e4, e5 that occurred on P1

since C1
1 . Since the channels are asynchronous, the reception of m3 and m4,

from different senders, can occur in any order during re-execution, leading to a
recovered state of P1 that can diverge from the initial execution. As a result,
the current state of P0 depends on a state that P1 might never reach after
recovery. Checkpoints leading to such inconsistent states are useless and must
be discarded; in the worst case, a domino effect can force all checkpoints to be
discarded.

2.2 Building a Consistent Recovery Set

Two different strategies can be used to create consistent recovery sets. The first
one is to create checkpoints at a moment in the history of the application where
no orphan messages exist, usually through coordination of checkpoints. The
second approach avoids coordination, but instead saves all in-transit messages
to be able to replay those without rollback, and keep track of nondeterministic
events, so that orphan messages can be regenerated identically. We focus our
work on this second approach, deemed more scalable.

Coordinated Checkpoint: Checkpoint coordination aims at eliminating in-
transit and orphan messages from the recovery set. Several algorithms have
been proposed to coordinate checkpoints, the most usual being the Chandy-
Lamport algorithm [6] and the blocking coordinated checkpointing, [5,17], which
silences the network. In these algorithms, waves of tokens are exchanged to form
a recovery line that eliminates orphan messages and detects in-transit messages.
Coordinated algorithms have the advantage of having almost no overhead outside
of checkpointing periods, but require that every process, even if unaffected by
failures, rolls back to its last checkpoint, as this is the only recovery line that is
guaranteed to be consistent.

Message Logging: Message Logging is a family of algorithms that attempt to
provide a consistent recovery set from checkpoints taken at independent dates. As
the recovery line is arbitrary, every message is potentially in-transit or orphan.
Event Logging is the mechanism used to correct the inconsistencies induced
by orphan messages, and nondeterministic events, while Payload Copy is the
mechanism used to keep the history of in-transit messages. While introducing
some overhead on every exchanged message, this scheme can sustain a much
more adverse failure pattern, which translates to better efficiency on systems
where failures are frequent [15].

Event Logging: In event logging, processes are considered Piecewise determinis-
tic: only sparse nondeterministic events occur, separating large parts of deter-
ministic computation. Event logging suppresses future nondeterministic events
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by adding the outcome of nondeterministic events to the recovery set, so that
it can be forced to a deterministic outcome (identical to the initial execution)
during recovery. The network, more precisely the order of reception, is consid-
ered the unique source of nondeterminism. The relative ordering of messages
from different senders (e3, e4 in fig. 1), is the only information necessary to be
logged. For a recovery set to be consistent, no unlogged nondeterministic event
can precede an orphan message.

Payload Copy: When a process is recovering, it needs to replay any reception
that happened between the last checkpoint and the failure. Consequently, it
requires the payload of in-transit messages (m3, m4 in fig.1). Several approaches
have been investigated for payload copy, the most efficient one being the sender-
based copy [18]. During normal operation, every outgoing message is saved in
the sender’s volatile memory. The surviving processes can serve past messages
to recovering processes on demand, without rolling back. Unlike events, sender-
based data do not require stable or synchronous storage (although this data is
also part of the checkpoint). Should a process holding useful sender-based data
crash, the recovery procedure of this process replays every outgoing send and
thus rebuilds the missing messages.

3 Group-Coordinated Message Logging

3.1 Shared Memory and Message Logging

Problem Statement: In uncoordinated checkpoint schemes, the ordering be-
tween checkpoint and message events is arbitrary. As a consequence, every mes-
sage is potentially in-transit , and must be copied. Although the cost of the
sender-based mechanism involved to perform this necessary copy is not negligi-
ble, the cost of a memory copy is often one order of magnitude lower than the
cost of the network transfer. Furthermore, the copy and the network operation
can overlap. As a result, proper optimization greatly mitigates the performance
penalty suffered by network communications (typically to less than 10%, [2,3]).
One can hope that future engineering advances will further reduce this overhead.

Unlike a network communication, a shared memory communication is a
strongly memory-bound operation. In the worst case, memory copy induced by
message logging doubles the volume of memory transfers. Because it competes
for the same scarce resource - memory bandwidth - the cost of this extra copy
cannot be overlapped, hence the time to send a message is irremediably doubled.

A message is in-transit (and needs to be copied) if it crosses the recovery line
from the past to the future. The emission and reception dates of messages are
beyond the control of the fault tolerant algorithm: one could delay the emission
or reception dates to match some arbitrary ordering with checkpoint events, but
these delays would obviously defeat the goal of improving communication per-
formance. The only events that the fault tolerant algorithm can alter, to enforce
an ordering between message events and checkpoint events, are checkpoint dates.
Said otherwise, the only way to suppress in-transit messages is to synchronize
checkpoints.
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Correlated Failures: Fortunately, although many-core machines put a strain
on message logging performance, a new opportunity opens, thanks to the side ef-
fect that failures do not have an independent probability on such an environment.
All the processes hosted by a single many-core node are prone to fail simulta-
neously: they are located on the same piece of silicon, share the same memory
bus, network interface, cooling fans, power supplies, operating system, and are
subject to the same physical interferences (rays, heat, vibrations, ...). One of
the motivating properties of message logging is that it tolerates a large number
of independent failures very well. If failures are correlated, the fault tolerant
algorithm can be more synchronous without decreasing its effective efficiency.

The leading idea of our approach is to propose a partially coordinated fault
tolerant algorithm, that retains message logging between sets of processes ex-
periencing independent failure probability, but synchronize the checkpoints of
processes that have a strong probability of simultaneous failures, what we call
a correlated set. It leverages the correlated failures property to avoid message
copies that have a high chance of being useless.

3.2 Correlated Set Coordinated Message Logging

Whenever a process of a correlated set needs to take a checkpoint, it forces a
synchronization with all other processes of the set. If a failure hits a process, all
processes of that set have to roll back to their last checkpoint (see the recovery
line in example execution depicted in figure 2). Considering a particular corre-
lated set, every message can be categorized as either ingoing (m1, m2), outgoing
(m5), or internal (m3, m4). Between sets, no coordination is enforced. A process
failing in another correlated set does not trigger a rollback, but messages between
sets have no guaranteed properties with respect to the recovery line, and can still
be orphan or in-transit . Therefore, regular message logging, including payload
copy and event logging must continue for outgoing and ingoing messages.

As checkpoints are coordinated, all orphan and in-transit messages are elim-
inated between processes of the correlated set. However, as the total recovery
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Fig. 2. An execution of the Correlated Set Coordinated Message Logging Algorithm
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set does contain in-transit and orphan messages, the consistency proof of coor-
dinated checkpoint does not hold for the recovery set formed by the union of
the coordinated sets. In an uncoordinated protocol, a recovery set is consistent
if all in-transit messages are available, and no orphan message depends on the
outcome of a non-deterministic event. In the next paragraphs, we demonstrate
that payload copy can be disabled for internal messages, but that event logging
must apply to all types of messages.

Intra-set Payload Copy: By the direct application of the coordination algo-
rithm, no message is in-transit between any pair of synchronized processes at
the time of checkpoint (in the case of the Chandy/Lamport algorithm, occa-
sional in-transit messages are integrated inside the checkpoint, hence they are
not in-transit anymore). Because an internal message cannot be in-transit , it
is never sent before the recovery line and received after. Therefore, the payload
copy mechanism, used to recover past sent messages during the recovery phase,
is unnecessary for internal messages.

Intra-set Event Logging:

Theorem 1. In a fault tolerant protocol creating recovery sets with at least two
distinct correlated sets, if the nondeterministic outcome of any internal messages
preceding an outgoing message is omitted from the recovery set, there exists an
execution that reaches an inconsistent state.

Outgoing messages are crossing a non-coordinated portion of the recovery line,
hence the execution follows an arbitrary ordering between checkpoint events
and message events. Therefore, for any outgoing message there is an execution
in which it is orphan. Consider the case of the execution depicted in figure 2.
In this execution, the message m5, between the sets S1 and S2 is orphan in the
recovery line produced by a rollback of the processes of S1.

Let’s suppose that Event logging of internal messages is unnecessary for build-
ing a consistent recovery set. The order between the internal receptions and any
other reception of the same process on another channel is nondeterministic. By
transitivity of the Lamport relationship, this nondeterminism is propagated to
the dependent outgoing message. Because an execution in which this outgoing
message is orphan exists, the recovery line in this execution is inconsistent. The
receptions of messages m3, m4 are an example: the nondeterministic outcome
created by the unknown ordering of messages in asynchronous channels is prop-
agated to P4 through m5. The state of the correlated set S2 depends on future
nondeterministic events of the correlated set S1, therefore the recovery set is in-
consistent. One can also remark that the same proof holds for ingoing messages
(as illustrated by m1 and m2).

As a consequence of this theorem, it is necessary to log all message receptions,
even if the emitter is located in the same correlated set as the receiver. Only the
payload of this message can be spared.
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3.3 Implementation

We have implemented the correlated set coordinated message logging algorithm
inside the Open MPI library. Open MPI [9] is one of the leading Message Passing
Interface standard implementations [19]. In Open MPI, the PML-V framework
enables researchers to express their fault tolerant policies. The Vprotocol Pes-
simist is such an implementation of a pessimistic message logging protocol [3].
In order to evaluate the performance of our new approach, we have extended
this fault tolerant component with the capabilities listed below.

Construction of the Correlated Set, Based on Hardware Proximity:
Open MPI enables the end user to select a very precise mapping of his application
on the physical resources, up to pinning a particular MPI rank to a particular
core. As a consequence, the Open MPI’s runtime instantiates a process map
detailing node hierarchies and ranks allocations. The detection of correlated sets
parses this map and extracts the groups of processes hosted on the same node.

Internal Messages Detection: In Open MPI, the couple formed by the rank
and the communicator is translated into a list of endpoints, each one representing
a channel to the destination (eth0, ib0, shared memory, ...). During the construc-
tion of the correlated set, all endpoints pertaining to a correlated process are
marked. When the fault tolerant protocol considers making a sender-based copy,
the endpoint is checked to determine if the message payload has to be copied.

Checkpoint Coordination in a Correlated Set: The general idea of a
network-silence based coordination is simple: processes send a marker in their
communication channels to notify other processes that no other message will
be sent before the end of the phase. When all output channels and input chan-
nels have been notified, the network is silenced, and the processes can start
communicating again. However, MPI communications do not exactly match the
theoretical model, which assumes message emissions or receptions are atomic
events. In practice, an MPI message is split into several distinct events. The
most important include the emission of the first fragment (also called eager frag-
ment), the matching of an incoming fragment with a receive request, and the
delivery of the last fragment. Most of those events are unordered, in particular,
a fragment can overtake another fragment, even from the same message (espe-
cially with channel bonding). Fortunately, because the MPI matching has to be
FIFO, in Open MPI, eager fragments are FIFO, an advantageous property that
our algorithm leverages. Our coordination algorithm has three phases: it silences
eager fragments so that all posted sends are matched; it completes any matched
receives; it checkpoints processes in the correlated set.

Eager silence: When a process enters the checkpoint synchronization, it sends a
token to all correlated opened endpoints. Any send targeting a correlated end-
point, if posted afterwards, is stalled upon completion of the algorithm. When
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a process not yet synchronizing receives a token, it enters the synchronization
immediately. The eager silence phase is complete for a process when it has re-
ceived a token from every opened endpoint. Because no new message can inject
an eager fragment after the token, and eager fragments are FIFO, at the end of
this phase, all posted sends of processes in the correlated set have been matched.

Rendez-vous Silence: Unlike eager fragments, the remainder fragments of a mes-
sage can come in any order. Instead of a complex non-FIFO token algorithm, the
property that any fragment left in the channel belongs to an already matched
message can be leveraged to drain remaining fragments. In the rendez-vous si-
lence phase, every receive request is considered in turn. If a request has matched
an eager fragment from a process of the correlated set, the progress engine of
Open MPI is called repeatedly until it is detected that this particular request
completed. When all such requests have completed, all fragments of internal
messages to this process have been drained.

Checkpoint phase: When a process has locally silenced its internal inbound chan-
nels, it enters a local barrier. After the barrier, all channels are guaranteed to
be empty. Each process then takes a checkpoint. A second barrier denotes that
all processes finished checkpointing and that subsequent sends can be resumed.

4 Experimental Evaluation

4.1 Experimental Conditions

The Pluto platform features 48 cores, and is our main testbed for large shared
memory performance evaluations. Pluto is based on four 12-core AMD opteron
6172 processors with 128GB of memory. The operating system is Red Hat 4.1.2
with the Linux 2.6.35.7 kernel. Despite the NUMA hierarchies, in this machine,
the bandwidth is almost equal between all pairs of cores. The Dancer cluster is
an 8 node cluster, where each node has two quad-core Intel Xeon E5520 CPUs,
with 4GB of memory. The operating system is Caos NSA with the 2.6.32.6 Linux
kernel. Nodes are connected through an Infiniband 20G network.

All protocols are implemented in Open MPI devel r20284. Vanilla Open MPI
means that no fault tolerant protocol is enabled, regular message logging means
that the pessimistic algorithm is used, and coordinated message logging denotes
that cores of the same node belong to a correlated set. The evaluation includes
synthetic benchmarks, such as NetPIPE 3.7 and IMB 3.3, and application bench-
marks, such as the NAS 3.3 and HPL (with MKL BLAS10.2). The different
benchmarks of the NAS suite accept a constrained number of processes (some
expect a square number of processes, others a power of two). In all cases, we
ran the largest possible experiment, for a given benchmark and a given parallel
machine.
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Fig. 3. Time to synchronize a correlated set (Pluto platform, log/log scale)

4.2 Shared Memory Performance

Coordination Cost: The cost of coordinating a growing number of cores is
presented in the figure 3. The first token exchange is a complete all-to-all, that
cannot rely on a spanning tree algorithm. Although, all other synchronizations
are simple barriers, the token exchange dominates the execution time, which
grows quadratically with the number of processes. Note, however, that this syn-
chronization happens only during a checkpoint, and that its average cost is com-
parable to sending a 10KB message. Clearly, the cost of transmitting a checkpoint
to the I/O nodes overshadows the cost of this synchronization.

Ping Pong: Figure 4 presents the results of the NetPIPE benchmark on shared
memory with a logarithmic scale. Processes are pinned to two cores sharing
an L2 cache, a worst case scenario for regular message logging. The maximum
bandwidth reaches 53Gb/s, because communication cost is mostly related to
accessing the L2 cache. The sender-based algorithm decreases the bandwidth to
11Gb/s, because it copies data to a buffer that is never in the cache. When the
coordination algorithm allows for disabling the sender-based mechanism, event
logging obtains the same bandwidth as the non fault tolerant execution.

NAS Benchmarks: Figure 5 presents the performance of the NAS benchmarks
on the shared memory Pluto platform. BT and SP run on 36 cores, all others run
on 32. One can see that avoiding payload copy enables the coordinated message
logging algorithm to experience at most a 7% slowdown, and often no overhead,
while the regular message logging suffers from up to 17% slowdown.
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4.3 Cluster of Multicore Performance

Figure 6 presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging suffers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the
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reduction on the amount of logged messages enables the coordinated message
logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-
transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that aims
at constructing a consistent recovery set without coordination. The CIC algo-
rithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint traffic, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines coor-
dinated and uncoordinated checkpointing, similar to the technique we use in this
paper, to reduce the cost of message logging in uncoordinated checkpointing. Their
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work, however, focuses on communication patterns of the application, to reduce
the amount of message logging. Similarly, in the context of Charm++ [13], and
AMPI[16], Meneses, Mendes and Kalé have proposed in [8] a team-based approach
to reduce the overhead of message logging. The Charm++ model advocates a high
level of oversubscription,with a ratio of user-level thread per core much larger than
one. In their work, teams are of fixed, predetermined sizes. The paper does not ex-
plicitly explain how teams are built, but an emphasis on communication patterns
seems preferred. In contrast, our work takes advantage of hardware properties of
the computing resources, proposing to build correlated groups based on likeliness
of failures, and relative efficiency of the communication medium.

6 Concluding Remarks

In this paper, we proposed a novel approach combining the best features of coor-
dinated and uncoordinated checkpointing. The resulting fault tolerant protocol,
belonging to the event logging protocol family, spares the payload logging for
messages belonging to a correlated set, but retains uncoordinated recovery scal-
ability. The benefit on shared memory point-to-point performance is significant,
which translates into an observable improvement of many application types.
Even though inter-node communications are not modified by this approach, the
shared memory speedup translates into a reduced overhead on cluster of mul-
ticore type platforms. Last, the memory required to hold message payload is
greatly reduced; our algorithm provides a flexible control of the tradeoff between
synchronization and memory consumption. Overall, this work greatly improves
the applicability of message logging in the context of distributed systems based
on a large number of many-core nodes.

Acknowledgement. This work was partially supported by the DOE Coopera-
tive Agreement DE-FC02-06ER25748, and the INRIA-Illinois Joint Laboratory
for Petascale Computing and the ANR RESCUE project.
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Introduction
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Topic chairs

The solution of Computational Science problems relies on the availability of
accurate and efficient numerical algorithms and software capable of harnessing
the processing power of modern parallel and distributed computers. Such algo-
rithms and software allow to prototype and develop new large-scale applications,
as well as to improve existing ones, by including up-to-date numerical methods,
or well-assessed ones re-designed in the light of the new architectures.

This conference topic is aimed at discussing new developments in the de-
sign and implementation of numerical algorithms for modern parallel architec-
tures, including multi-core systems, multi-GPU based computers, clusters and
the Grid. Different aspects, ranging from fundamental algorithmic concepts to
software design techniques and performance analysis, are considered.

The papers submitted to this topic came from Austria, Australia, the Czech
Republic, France, India, Italy, Japan, the Netherlands, Russia, Spain, and the
USA. Each paper received at least three reviews and, finally, we selected three
regular papers, all related to numerical linear algebra. E. Solomonik and J. Dem-
mel describe and analyze a class of 2.5D linear algebra algorithms for matrix-
matrix multiplication and LU factorization, that use extra memory to reduce
bandwidth and latency costs. X. Dong and G. Cooperman present a paral-
lel version of the ILU(k) preconditioner, that preserves stability properties.
L. Bergamaschi and A. Martinez describe a parallel implementation of an inexact
constraint preconditioner, based on sparse approximate inverse, for generalized
saddle-point linear systems. We think that these papers provide a significant
contribution to the scientific programme of Euro-Par 2011 and will contribute
to the success of the conference.

Finally, we would like to thank all the authors for their submissions, the
referees for helping us to select high-quality papers, and the Euro-Par Organizing
Committee for the coordination of all the conference topics.
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Abstract. ILU(k) is a commonly used preconditioner for iterative lin-
ear solvers for sparse, non-symmetric systems. It is often preferred for
the sake of its stability. We present TPILU(k), the first efficiently par-
allelized ILU(k) preconditioner that maintains this important stability
property. Even better, TPILU(k) preconditioning produces an answer
that is bit-compatible with the sequential ILU(k) preconditioning. In
terms of performance, the TPILU(k) preconditioning is shown to run
faster whenever more cores are made available to it — while continu-
ing to be as stable as sequential ILU(k). This is in contrast to some
competing methods that may become unstable if the degree of thread
parallelism is raised too far. Where Block Jacobi ILU(k) fails in an ap-
plication, it can be replaced by TPILU(k) in order to maintain good
performance, while also achieving full stability. As a further optimiza-
tion, TPILU(k) offers an optional level-based incomplete inverse method
as a fast approximation for the original ILU(k) preconditioned matrix.
Although this enhancement is not bit-compatible with classical ILU(k),
it is bit-compatible with the output from the single-threaded version of
the same algorithm. In experiments on a 16-core computer, the enhanced
TPILU(k)-based iterative linear solver performed up to 9 times faster.
As we approach an era of many-core computing, the ability to efficiently
take advantage of many cores will become ever more important.

1 Introduction

This work introduces a parallel preconditioner, TPILU(k), with good stability
and performance across a range of sparse, non-symmetric linear systems. For a
large sparse linear system Ax = b, parallel iterative solvers based on ILU(k) [1,2]
often suffer from instability or performance degradation. In particular, most of
today’s commonly used algorithms are domain decomposition preconditioners,
which become slow or unstable with greater parallelism. This happens as they
attempt to approximate a linear system by more and smaller subdomains to
provide the parallel work for an increasing number of threads. The restriction to
subdomains of ever smaller dimension must either ignore more of the off-diagonal
� This work was partially supported by the National Science Foundation under Grant

CCF 09-16133.
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matrix elements, or must raise the complexity by including off-diagonals into the
computation for an optimal decomposition. The former tends to create instability
for large numbers of threads (i.e., for small subdomains), and the latter is slow.

Consider the parallel preconditioner PILU [3,4] as an example. PILU would
experience performance degradation unless the matrix A is well-partitionable
into subdomains. This condition is violated by linear systems generating many
fill-ins (as occurs with higher initial density or higher level k) or by linear solvers
employing many threads. Another parallel preconditioner BJILU [5] (Block Ja-
cobi ILU(k)), would fail to converge as the number of threads w grows. This is
especially true for linear systems that are not diagonally dominant, in which the
solver might become invalid by ignoring significant off-diagonal entries. This kind
of performance degradation or instability is inconsistent with the widespread ac-
ceptance of parallel ILU(k) for varying k to provide efficient preconditioners.

In contrast, TPILU(k) is as stable as sequential ILU(k) and its performance
increases with the number of cores. TPILU(k) can capture both properties si-
multaneously — precisely because it is not based on domain decomposition. In
the rest of this paper, we will simply write that TPILU(k) is stable as a short-
ened version of the statement that TPILU(k) is stable for any number of threads
whenever sequential ILU(k) is stable.

TPILU(k) uses a task-oriented parallel ILU(k) preconditioner for the base
algorithm. However, it optionally first tries a different, level-based incomplete
inverse submethod (TPIILU(k)). The term level-based incomplete inverse is used
to distinguish it from previous methods such as “threshold-based” incomplete
inverses [6]. The level-based submethod either succeeds or else it fails to converge.
If it doesn’t converge fast, TPILU(k) quickly reverts to the stable, base task-
oriented parallel ILU(k) algorithm.

A central point of novelty of this work concerns bit-compatibility. The base
task-oriented parallel component of TPILU(k) is bit-compatible with classical
sequential ILU(k), and the level-based optimization produces a new algorithm
that is also bit-compatible with the single-threaded version of that same al-
gorithm. Few numerical parallel implementations can guarantee this stringent
standard. The order of operations is precisely maintained so that the low order
bits due to round-off do not change under parallelization. Further, the output
remains bit-compatible as the number of threads increases — thus eliminating
worries whether scaling a computation will bring increased round-off error.

In practice, bit-compatible algorithms are well-received in the workplace. A
new bit-compatible version of code may be substituted with little discussion. In
contrast, new versions of code that result in output with modified low-order bits
must be validated by a numerical analyst. New versions of code that claim to
produce more accurate output must be validated by a domain expert.

A prerequisite for an efficient implementation in this work was the use of
thread-private memory allocation arenas. The implementation derives from [7],
where we first noted the issue. The essence of the issue is that any implementa-
tion of POSIX-standard “malloc” libraries must be prepared for the case that a
second thread frees memory originally allocated by a first thread. This requires
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a centralized data structure, which is slow in many-core architectures. Where it
is known that memory allocated by a thread will be freed by that same thread,
one can use a thread-private (per-thread) memory allocation arena. The issue
arises in the memory allocations for “fill-ins” for symbolic factorization. In LU-
factorization based algorithms, the issue is still more serious than incomplete LU,
since symbolic factorization is a relatively larger part of the overall algorithm.

The rest of this paper is organized as follows. Section 2 reviews LU factor-
ization and sequential ILU(k) algorithm. Section 3 presents task-oriented paral-
lel TPILU(k), including the base algorithm (Sections 3.1 through 3.2) and the
level-based incomplete inverse submethod (Section 3.3). Section 4 analyzes the
experimental results. We review related work in Section 5.

2 Review of the Sequential ILU(k) Algorithm

A brief sketch is provided. See [8] for a detailed review of ILU(k). LU factorization
decomposes a matrix A into the product of a lower triangular matrix L and an
upper triangular matrix U . From L and U , one efficiently computes A−1 as
U−1L−1. While computation of L and U requires O(n3) steps, once done, the
computation of the inverse of the triangular matrices proceeds in O(n2) steps.

For sparse matrices, one contents oneself with solving x in Ax = b for vectors
x and b, since A−1, L and U would all be hopelessly dense. Iterative solvers are
often used for this purpose. An ILU(k) algorithm finds sparse approximations,
L̃ ≈ L and Ũ ≈ U . The preconditioned iterative solver then implicitly solves
AŨ−1L̃−1, which is close to the identity. For this purpose, triangular solve op-
erations are integrated into each iteration to obtain a solution y such that

L̃Ũy = p (1)

where p varies for each iteration. This has faster convergence and better nu-
merical stability. Here, the level limit k controls how many elements should be
computed in the process of incomplete LU factorization. A level limit of k = ∞
yields full LU-factorization.

Similarly to LU factorization, ILU(k) factorization can be implemented by the
same procedure as Gaussian elimination. Moreover, it also records the elements
of a lower triangular matrix L̃. Because the diagonal elements of L̃ are defined
to be 1, we do not need to store them. Therefore, a single filled matrix F is
sufficient to store both L̃ and Ũ .

2.1 Terminology for ILU(k)

For a huge sparse matrix, a standard dense format would be wasteful. Instead,
we just store the position and the value of non-zero elements. Similarly, incom-
plete LU factorization does not insert all elements that are generated in the
process of factorization. Instead, it employs some mechanisms to control how
many elements are stored. ILU(k) [1,2] uses the level limit k as the parameter
to implement a more flexible mechanism. We next review some definitions.
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Definition 2.1. A fill entry, or entry for short, is an element stored in memory.
(Elements that are not stored are called zero elements.)

Definition 2.2. Fill-in: Consider Figure 1a. If there exists h such that i, j > h
and both fih and fhj are fill entries, then the ILU(k) factorization algorithm may
fill in a non-zero value when considering rows i and j. Hence, this element fij

is called a fill-in; i.e., an entry candidate. We say the fill-in fij is caused by the
existence of the two entries fih and fhj. The entries fih and fhj are the causative
entries of fij . The causality will be made clearer in the next subsection.

Definition 2.3. Level: Each entry fij is associated with a level, denoted as
level (i, j) and defined recursively by

level (i, j) =

{
0, if aij 	= 0
min1≤h<min (i,j) level (i, h) + level (h, j) + 1, otherwise

The level limit k is used to control how many fill-ins should be inserted into the
filled matrix during ILU(k) factorization. Those fill-ins with a level smaller than
or equal to k are inserted into the filled matrix F . Other fill-ins are ignored. By
limiting fill-ins to level k or less, ILU(k) maintains a sparse filled matrix.

2.2 ILU(k) Algorithm and Its Parallelization

For LU factorization, the defining equation A = LU is expanded into aij =∑min(i,j)
h=1 lihuhj , since lih = 0 for i > j and uhj = 0 for i < j. When i > j,

fij = lij and we can write aij =
∑j−1

h=1 lihuhj + fijujj . When i ≤ j, fij = uij

and we can write aij =
(∑i−1

h=1 lihuhj

)
+ liifij =

(∑i−1
h=1 lihuhj

)
+fij . Rewriting

them yields the equations for LU factorization.

fij =

{(
aij −

∑j−1
h=1 lihuhj

)
/ujj, i > j

aij −
∑i−1

h=1 lihuhj , i ≤ j
(2)

The equations for ILU(k) factorization are similar except that an entry fij is
computed only if level(i, j) ≤ k. Hence, ILU(k) factorization is separated into
two passes: symbolic factorization and numeric factorization. Symbolic factor-
ization computes the levels of all entries less than or equal to k. Numeric factor-
ization computes the numerical values in the filled matrix of all fill entries with
level less than or equal to k. While the remaining description considers numeric
factorization, the algorithm applies equally to symbolic factorization.

The ILU(k) algorithm reorganizes the above Equations (2) for efficient use
of memory. The filled matrix F is initialized to A. As the algorithm proceeds,
additional terms of the form −lihuhj are added to fij . Figure 1a illustrates fij

accumulating an incremental value based on the previously computed values of
fih (i.e., lih) and fhj (i.e., uhj).

The algorithmic flow of control is to factor the rows in order from first to last.
In the factorization of row i, h varies from 1 to i in an outer loop, while j varies
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Column 0 3 6 9

Four bands of 3 rows. After band 0 is reduced,
first block of 3 further bands is reduced in parallel.

(b) View of Matrix as Bands

Fig. 1. Parallel Incomplete LU Factorization

from h to n in an inner loop. In the example of Figure 1a, fhj has clearly already
been fully completed. Before the inner loop, fih is divided by uhh following the
case i > j of Equations (2) since i > h. This is valid because fih depends on
terms of the form ligugh only for the case g < h, and those terms have already
been accumulated into fih by previous inner loops. Inside the inner loop, we just
subtract lihuhj from fij as indicated by Equations (2).

The algorithm has some of the same spirit as Gaussian elimination if one
thinks of ILU(k) as using the earlier row h to reduce the later row i. This is the
crucial insight in the parallel ILU(k) algorithm of this paper. One splits the rows
of F into bands, and reduces the rows of a later band by the rows of an earlier
band. Distinct threads can reduce distinct bands simultaneously, as illustrated
in Figure 1b.

3 TPILU(k): Task-Oriented Parallel ILU(k) Algorithm

3.1 Parallel Tasks and Static Load Balancing

To describe a general parallel model valid for Gaussian elimination as well as
ILU(k) and ILUT, we introduce the definition frontier: the maximum number
of rows that are currently factored completely. The frontier i is the limit up to
which the remaining rows can be partially factored except for the (i + 1)th row.
The (i + 1)th row can be factored completely. That changes the frontier to i + 1.

Threads synchronize on the frontier. To balance and overlap computation and
synchronization, the matrix is organized as bands to make the granularity of the
computation adjustable, as demonstrated in Figure 1b. A task is associated to
a band and is defined as the computation to partially factor the band to the
current frontier.
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For each band, the program must remember up to what column this band has
been partially factored. We call this column the current position, which is the
start point of factorization for the next task attached to this band. In addition,
it is important to use a variable to remember the first band that has not been
factored completely. After the first unfinished band is completely factored, the
frontier global value is increased by the number of rows in the band.

The smaller the band size, the larger the number of synchronization points.
However, TPILU(k) prefers a smaller band size, that leads to more parallel
tasks. Moreover, the lower bound of the factorization time is the time to factor
the last band, which should not be very large. Luckily, shared memory allows
for a smaller band size because the synchronization here is to read/write the
frontier, which has a small cost.

While the strategy of bands is well known to be efficient for dense matrices
(e.g., see [9]), researchers hesitate to use this strategy for sparse matrices be-
cause they may find only a small number of relatively dense bands, while all
other bands are close to trivial. The TPILU(k) algorithm works well on sparse
matrices because successive factoring of bands produces many somewhat dense
bands (with more fill-ins) near the end of the matrix. TPILU(k) uses static load
balancing whereby each worker is assigned a fixed group of bands chosen round
robin so that each thread will also be responsible for some of the denser bands.

3.2 Optimized Symbolic Factorization

Static Load Balancing and TPMalloc. Simultaneous memory allocation
for fill-ins is a performance bottleneck for shared-memory parallel computing.
TPILU(k) takes advantage of a thread-private malloc library to solve this issue
as discussed in [7]. TPMalloc is a non-standard extension to a standard allocator
implementation, which associates a thread-private memory allocation arena to
each thread. A thread-local global variable is also provided, so that the modified
behavior can be turned on or off on a per-thread basis. By default, threads
use thread-private memory allocation arenas. The static load balancing strategy
guarantees that if a thread allocates memory, then the same thread will free it,
which is consistent with the use of a thread-private allocation arena.

Optimization for the Case k = 1. When k = 1, it is possible to symbolically
factor the bands and the rows within each band in any desired order. This is
because if either fih or fhj is an entry of level 1, the resulting fill-in fij must be
an element of level 2 or level 3. So fij is not inserted into the filled matrix F . As
a first observation, the symbolic factorization now becomes pleasingly parallel
since the processing of each band is independent of that of any other.

Second, since the order can be arbitrary, even the purely sequential process-
ing within one band by a single thread can be made more efficient. Processing
rows in reverse order from last to first is the most efficient, while the more nat-
ural first-to-last order is the least efficient. First-to-last is inefficient, because we
add level 1 fill-ins to the sparse representation of earlier rows, and we must then
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skip over those earlier level 1 fill-ins in determining level 1 fill-ins of later rows.
Processing from last to first avoids this inefficiency.

3.3 Optional Level-Based Incomplete Inverse Method

The goal of this section is to describe the level-based incomplete inverse method

for solving L̃x = p by matrix-vector multiplication: x = ˜̃
L−1p. This avoids the

sequential bottleneck of using forward substitution on L̃x = p. We produce

incomplete inverses ˜̃
L−1 and ˜̃

U−1 so that the triangular solve stage of the linear
solver (i.e., solving for y in L̃Ũy = p as described in Equation (1) of Section 2) can

be trivially parallelized (y = ˜̃
U−1 ˜̃L−1p) while also enforcing bit compatibility.

Although details are omitted here, the same ideas are then used in a second
stage: using the solution x to solve for y in Ũy = x.

Below, denote the matrix (−βit)t≤i to be the lower triangular matrix L̃−1.
Recall that βii = 1, just as for L̃. First, we have Equation (3a), i.e., x = L̃−1p.
Second, we have Equation (3b), i.e., the equation for solving L̃x = p by forward
substitution. Obviously, Equation (3a) and Equation (3b) define the same x.

xi =
∑
t<i

(−βit)pt + pi (3a) xi = pi −
∑
h<i

fihxh (3b)

Substituting Equation (3a) into Equation (3b), one has Equation (4).

xi = pi −
∑
h<i

fih

(∑
t<h

(−βht)pt + ph

)
=

∑
t<i

(
−
(

fit −
∑

t<h<i

fihβht

))
pt + pi

(4)

Combining the right hand sides of equations (3a) and (4) yields Equation (5),
the defining equation for βit.

βit = fit −
∑

t<h<i

fihβht (5)

Equation (5) is the basis for computing L̃−1 (a.k.a. (−βit)t≤i). Recall that fij

was initialized to the matrix A. In algorithm steps (6a) and (6b) below, row i

is factored using ILU(k) factorization, which computes L̃ and Ũ as part of a
single matrix. These steps are reminiscent of Gaussian elimination using pivoting
element fhh. Steps (6a) and (6b) are used in steps (6c) and (6d) to compute L̃−1.

fih ← fihf−1
hh (6a) ∀j > h, fij ← fij − fihfhj (6b)

∀t < h, fit ← fit − fihfht (6c) ∀t < i, fit ← −fit (6d)

The matrix L̃−1 is in danger of becoming dense. To maintain the sparsity,

we compute the level-based incomplete inverse matrix ˜̃
L−1 following the same

non-zero pattern as L̃−1. The computation for ˜̃
L−1 can be combined with the

original numeric factorization phase. A further factorization phase is added to
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compute ˜̃
U−1 by computing matrix entries in reverse order from last row to first

and from right to left within a given row.

Given the above algorithm for ˜̃
L−1 and a similar algorithm for ˜̃

U−1, the tri-
angular solve stage is reduced to matrix-vector multiplication, which can be
trivially parallelized. Inner product operations are not parallelized for two rea-
sons: first, even when sequential, they are fast; second, parallelization of inner
products would violate bit-compatibility by changing the order of operations.

4 Experimental Results

We evaluate the performance of the bit-compatible parallel ILU(k) algorithm,
TPILU(k), by comparing with two commonly used parallel preconditioners,
PILU [3] and BJILU [5] (Block Jacobi ILU(k)). Both PILU and BJILU are based
on domain decomposition. Under the framework of Euclid [10, Section 6.12], both
preconditioners appear in Hypre [10], a popular linear solver package under de-
velopment at Lawrence Livermore National Laboratory since 2001.

The primary test platform is a computer with four Intel Xeon E5520 quad-
core CPUs (16 cores total). Figure 3 demonstrates the scalability of TPILU(k)
both on this primary platform and a cluster including two nodes connected by
Infiniband. Each node has a single Quad-Core AMD Opteron 2378 CPU. The
operating system is CentOS 5.3 (Linux 2.6.18) and the compiler is gcc-4.1.2 with
the “-O2” option. The MPI library is OpenMPI 1.4. Within Hypre, the same
choice of iterative solver is used to test both Euclid (PILU and BJILU) and
TPILU(k). The chosen iterative solver is preconditioned stabilized bi-conjugate
gradients with the default tolerance rtol = 10−8. Note that the Euclid frame-
work employs multiple MPI processes communicating via MPI’s shared-memory
architecture, instead of directly implementing a single multi-threaded process.

Driven Cavity Problem. This set of test cases [11] consists of some diffi-
cult problems from the modeling of the incompressible Navier-Stokes equations.
These test cases are considered here for the sake of comparability. They had pre-
viously been chosen to demonstrate the features of PILU by [4]. Here, we test
on three representatives: e20r3000, e30r3000 and e40r3000. Figure 2 shows that
both Euclid PILU and Euclid BJILU are influenced by the number of processes
and the level k when solving driven cavity problems. With more processes or
larger k, both the PILU and BJILU preconditioners tend to slow down, break
down or diverge.

Euclid registers its best solution time for e20r3000 by using PILU(2) with
1 process, for e30r3000 by using BJILU with 2 processes, and for e40r3000 by
using PILU(1) with 2 processes. The reason that Euclid PILU obtains only a
small speedup for these problems is that PILU requires the matrix to be well-
partitionable, which is violated when using a larger level k or when employing
more processes. Similarly, Euclid BJILU must approximate the original matrix
by a number of subdomains equal to the number of processes. Therefore, higher
parallelism forces BJILU to ignore even more off-diagonal matrix entries with
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Fig. 2. Euclid PILU and BJILU for Driven Cavity Problem using a Single AMD
Opteron (4 Cores). “X” means fail, and the time is arbitrarily shown to be an in-
terpolated value or the same as for the preceding number of threads. Note that in
Figure 2(a), PILU(k) actually breaks down for 3 threads, while then succeeding for
4 threads.

Total. Cores on 2 nodes.
Symbolic. Cores on 2 nodes.
Numeric. Cores on 2 nodes.
Total. Cores on 1 node.
Symbolic. Cores on 1 node.
Numeric. Cores on 1 node.

1 2 3 4 5 6
Number of Cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TPILU(4)

So
lu

tio
n 

T
im

e 
(s

)

(a) Matrix e20r3000

1 2 3 4 5 6
Number of Cores

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

TPILU(3)
Total. Cores on 2 nodes.

Numeric. Cores on 2 nodes.
Symbolic. Cores on 2 nodes.

Total. Cores on 1 node.
Symbolic. Cores on 1 node.
Numeric. Cores on 1 node.

So
lu

tio
n 

T
im

e 
(s

)

(b) Matrix e30r3000

TPILU(3)

1 2 3 4 5 6
Number of Cores

0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0
Total. Cores on 2 nodes.
Symbolic. Cores on 2 nodes.
Numeric. Cores on 2 nodes.
Total. Cores on 1 node.
Symbolic. Cores on 1 node.
Numeric. Cores on 1 node.

So
lu

tio
n 

T
im

e 
(s

)

(c) Matrix e40r3000

Fig. 3. TPILU(k) for the Driven Cavity Problem Using 2 AMD Opteron (2×4 Cores).
The experimental runs for 1,2,3,4 threads are all for a 4-core shared memory CPU.
The experimental runs for 2,4,6 threads are all for two nodes with 4-cores per node,
while an additional thread per node is reserved for communication between nodes in
order to replicate bands.

more blocks of smaller block dimension, and eventually the BJILU computation
just breaks down.

In contrast, TPILU(k) is bit-compatible. Greater parallelization only acceler-
ates the computation, while also never introducing instabilities or other negative
side effects. Figure 3a illustrates that for the e20r3000 case, TPILU with level
k = 4 and 4 threads leads to a better performance (0.55 s) than Euclid’s 0.78 s
(Figure 2a). For the e30r3000 case, TPILU(k) finishes in 1.16 s (Figure 3b), as
compared to 1.47 s for BJILU and 1.64 s for PILU (Figure 2b). For the e40r3000
case, TPILU(k) with k = 3 finishes in 2.14 s (Figure 3c), as compared to 3.15 s
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for PILU and 3.52 s for BJILU (Figure 2c). Figure 3c demonstrates the potential
of TPILU(k) for further performance improvements when a hybrid architecture
is used to provide additional cores: the hybrid architecture with 6 CPU cores
over two nodes connected by Infiniband is even better (2.14 s) than the shared-
memory model with a single quad-core CPU (2.20 s).
3D 27-point Central Differencing. As pointed out in [4], ILU(k) precondi-
tioning is amenable to performance analysis since the non-zero patterns of the
resulting ILU(k) preconditioned matrices are identical for any partial differen-
tial equation (PDE) that has been discretized on a grid with a given stencil.
However, a parallelization based on domain decomposition may eradicate this
feature since it generally relies on re-ordering to maximize the independence
among subdomains. The re-ordering is required for domain decomposition since
it would otherwise face a higher cost dominated by the resulting denser matrix.
As Figure 4a shows, Euclid PILU degrades with more processes when solving a
linear system generated by 3D 27-point central differencing for Poisson’s equa-
tion. The performance degradation also increases rapidly as the level k grows.
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Fig. 4. Solving Linear System from 3D 27-point Central Differencing on Grid using
a Single AMD Quad-Core Opteron. Focusing on the algorithm only, the comparison
ignores reusing the domain decomposition over multiple linear system solutions.

This performance degradation is not an accident. The domain-decomposition
computation dominates when the number of non-zeros per row is larger (about 27
in this case). Therefore, the sequential algorithm with the level k = 0 wins over
the parallelized PILU in the contest for the best solution time. This observation
holds true for all grid sizes tested: from 50× 50× 50 to 90× 90× 90. In contrast,
for all of these test cases, TPIILU (the level-based incomplete inverse submethod
of TPILU(k)) leads to improved performance using 4 cores, as seen in Figure 4b.

Model for DNA Electrophoresis: cage15. The cage model of DNA elec-
trophoresis [12] describes the drift, induced by a constant electric field, of ho-
mogeneously charged polymers through a gel. We test on the largest case in this



76 X. Dong and G. Cooperman

problem set: cage15. For cage15, TPIILU(0) obtains a speedup of 2.93 using
8 threads (Figure 5a). The ratio of the number of FLoating point arithmetic
OPerations (FLOPs) to the number of non-zero entries is less than 5. This im-
plies that ILU(k) preconditioning just passes through matrices with few FLOPs.
In other words, the computation is too “easy” to be further sped up.
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Fig. 5. TPIILU(k)/TPILU(k) using 4 Intel Xeon E5520 (4 × 4 Cores)

Computational Fluid Dynamics Problem: ns3Da. The problem ns3Da [12]
is used as a test case in FEMLAB, developed by Comsol, Inc. Because there are
zero diagonal elements in the matrix, we use TPIILU with level k = 1 as the
preconditioner. Figure 5b shows a speedup of 8.93 with 16 threads since the
preconditioning is floating-point intensive.

TPMalloc Performance. For a large level k, the symbolic factorization time
will dominate. To squeeze greater performance from this first phase, glibc’s stan-
dard malloc is replaced with a thread-private malloc (TPMalloc). Figure 5c
demonstrates that the improvement provided by TPMalloc is significant when-
ever the number of cores is greater than 2.

4.1 Experimental Analysis

Given a denser matrix, or a higher level k or more CPU cores, the time for
domain-decomposition based parallel preconditioning using Euclid’s PILU(k)
can dominate over the time for the iterative solving phase. This degrades the
overall performance, as seen both in Figure 4a and in Figures 2(a,b,c). A second
domain-decomposition based parallel preconditioner, Euclid’s BJILU, generally
produces a preconditioned matrix of lower quality than ILU(k) in Figure 2(a,b,c).
This happens because it ignores off-diagonal non-zero elements. Therefore, where
Euclid PILU(k) degrades the performance, it is not reasonable to resort to Euclid
BJILU. Figures 2a and 2c show that the lower quality of BJILU-based solvers of-
ten performed worse than PILU(k). Figure 3 shows TPILU(k) to perform better
than either while maintaining the good scalability expected of a bit-compatible
algorithm. TPILU(k) is also robust enough to perform reasonably even in a
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configuration with two quad-core nodes. Additionally, Figures 4b and 5 demon-
strate very good scalability on a variety of applications when using the optional
level-based incomplete inverse optimization.

5 Related Work

ILU(k) [1] was formalized to solve the system of linear equations arising from
finite difference discretizations in 1978. In 1981, ILU(k) was extended to ap-
ply to more general problems [2]. Some previous parallel ILU(k) precondition-
ers include [3,13,14]. The latter two methods, whose parallelism comes from
level/backward scheduling, are stable and were studied in the 1980’s and achieved
a speedup of about 4 or 5 on an Alliant FX-8 [5, 1st edition, page 351] and a
speedup of 2 or 3 on a Cray Y-MP. The more recent work [3] is directly compared
with in the current work, and is not stable.
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Abstract. In this paper we propose a parallel implementation of the
FSAI preconditioner to accelerate the PCG method in the solution of
symmetric positive definite linear systems of very large size. This pre-
conditioner is used as building block for the construction of an indefinite
Inexact Constraint Preconditioner (ICP) for saddle point-type linear sys-
tems arising from Finite Element (FE) discretization of 3D coupled con-
solidation problems. The FSAI-ICP preconditioner, based on an efficient
approximation of the inverse of the (1, 1) block proves very effective in
the acceleration of the BiCGSTAB iterative solver in parallel environ-
ments. Numerical results on a number of realistic test cases of size up to
6×106 unknowns and 3×108 nonzeros show the almost perfect scalability
of the overall code up to 512 processors.

Keywords: Parallel computing Preconditioning Krylov subspace meth-
ods coupled consolidation.

1 Introduction

The time-dependent displacements and fluid pore pressure in porous media are
controlled by the consolidation theory. This was first mathematically described
by Biot [8], who coupled the elastic equilibrium equations with a continuity or
mass balance equation to be solved under appropriate boundary and initial flow
and loading conditions.

The coupled consolidation equations are typically solved numerically using
FE in space, thus giving rise to a system of first-order differential equations
whose solution is addressed by an appropriate time marching scheme. A major
computational issue is the repeated solution in time of the resulting discretized
indefinite equations, which can be generally written as

Ax = b, where A =
[

K BT

B −C

]
. (1)

The sub-matrices K and C are both symmetric and positive definite (SPD).
Denoting with m the number of FE nodes, C ∈ R

m×m, B ∈ R
m×n, and K ∈

R
n×n, where n is equal to 2m or 3m according to the spatial dimension of the

problem.
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Matrix A in (1) is a classical example of saddle point problem, which is encoun-
tered in other fields as well including constrained optimization, least squares, and
Navier-Stokes equations. Because of the large size of realistic three-dimensional
(3D) consolidation models (and particularly so in problems related to fluid with-
drawal/injection from/into geological formations) the use of iterative solvers is
strongly recommended against direct factorization methods. However, well es-
tablished iterative methods such as Krylov subspace methods are very slow or
even fail to converge if not conveniently preconditioned. The constraint precon-
ditioners for Krylov solvers in the solution of saddle point problems have been
studied by a number of authors [1,4,5,11,14]. In this work we propose a fully
explicit parallel ICP based on the FSAI preconditioner [16] of the matrices K
and S where S is an approximate Schur complement of a block matrix M re-
sembling A. The FSAI preconditioner is based on prefiltration and postfiltration
techniques and allows to choose nonzeros in the preconditioner factors in the
same position as those of ÃdK , where Ã is an sparse approximation of A ob-
tained by eliminating the small entries below a given threshold and dK = 1, 2, 4.

We have developed parallel codes which implement both the FSAI-PCG solver
for solution of Kx = b and the BiCGSTAB solver preconditioned with the
parallel FSAI-ICP preconditioner described above. We show numerical results
obtained in the solution of a number of problems of large size arising from 3D
FE discretization of realistic engineering problems.

The paper is organized as follows. Section 2 gives a brief description of the
consolidation equations. In Section 3 we describe the Inexact Constraint Pre-
conditioner and recall the main spectral properties of the block preconditioned
matrices. Section 4 describes the parallel preconditioner used in this work and
explains in detail how it is implemented and applied during the BiCGSTAB it-
eration. Section 5 contains the numerical results obtained with PCG accelerated
with FSAI preconditioner on seven test cases arising from realistic engineering
applications as well as the results of the FSAI-ICP code on a difficult problem
arising from a Coupled Consolidation model. We include also a scalability study
of the parallel solution of system (1). Finally, some conclusions are stated in
Section 6.

2 Finite Element Coupled Consolidation Equations

The system of partial differential equations governing the 3D coupled consolida-
tion process in fully saturated porous media is derived from the classical Biot’s
formulation [8] and successive modifications as:

(λ + μ)
∂ε

∂i
+ μ∇2ui = α

∂p

∂i
i = x, y, z (2)

1
γ
∇(k∇p) = [φβ + cbr(α − φ)]

∂p

∂t
+ α

∂ε

∂t
(3)

where cbr and β are the volumetric compressibility of solid grains and water, re-
spectively, φ is the porosity, k the medium hydraulic conductivity, ε the medium



80 L. Bergamaschi and A. Martinez

volumetric dilatation, α the Biot coefficient, λ and μ are the Lamé constant and
the shear modulus of the porous medium, respectively, γ is the specific weight
of water, t is time, and p and ui are the incremental pore pressure and the
components of incremental displacement along the i−direction, respectively.

Use of standard linear Galerkin FE in space yields a system of first order
differential equations which can be integrated by the Crank-Nicolson scheme.
The resulting linear system has to be repeatedly solved to obtain the transient
displacements and pore pressures. The nonsymmetric matrix controlling the so-
lution scheme reads:

A =

⎡
⎣K/2 −Q/2

QT

Δt
H/2 +

P

Δt

⎤
⎦ (4)

where K, H , P and Q are the elastic stiffness, flow stiffness, flow capacity and
flow-stress coupling matrices, respectively. Matrix A can be readily symmetrized
by multiplying the upper set of equations by 2 and the lower set by −Δt, thus
obtaining the sparse 2×2 block symmetric indefinite matrix (1) where B = −QT

and C = ΔtH/2 + P .

3 Inexact Constraint Preconditioners

To solve system (1) we look for a preconditioner M−1 where

M =
[
G1 BT

B −C

]
,

with G1 an SPD approximation of the 1 × 1 block K. Its inverse, G−1
1 , which

can be viewed as a preconditioner for K, is assumed to be explicitly known. To
fulfill such a requirement we compute G−1

1 using FSAI [15,16] which is readily
available in the factorized form K−1 � G−1

1 = WT
1 W1. The Inexact Constraint

Preconditioner (ICP) is written as MI−1 where:

M−1
I =

[
In −G−1

1 BT

0 Im

] [
G−1

1 0
0 −G−1

S

] [
In 0

−BG−1
1 Im

]
. (5)

Ii begin i × i identity matrix and G−1
S an approximation of the inverse of the

Schur complement matrix S relative to M: S = BG−1
1 BT + C.

A further approximation can be used by simply neglecting the right matrix
in the above expression thus obtaining a Triangular ICP preconditioner:

M−1
T =

[
In −G−1

1 BT

0 Im

] [
G−1

1 0
0 −G−1

S

]
. (6)

Following the approach in [3], we construct an approximate Schur complement
Ŝ = BG−1

2 BT + C, with the aim of reducing its fill-in. G−1
2 is computed as a

further (sparser) FSAI approximation for the inverse of the structural block. A
third FSAI preconditioner is used to approximate the inverse of Ŝ, G−1

S ≈ Ŝ−1.
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3.1 Eigenvalue Distribution of the Preconditioned Matrices

Let G1 and GS be SPD approximations of K and S = C + BG−1
1 B�, respec-

tively. G−1
1 and G−1

S can also be viewed as preconditioners for the corresponding
matrices, so that we can define the following SPD preconditioned matrices:

KP = G
−1/2
1 KG

−1/2
1 and SP = G

−1/2
S SG

−1/2
S

Let us assume that

0 < αK = λmin(KP ) < 1 < λmax(KP ) = βK ,

0 < αS = λmin(SP ) < 1 < λmax(SP ) = βS . (7)

The conditions 1 ∈ [αK , βK ] and 1 ∈ [αS , βS ] are very often fulfilled in practice
since preconditioners G1 and GS are expected to cluster eigenvalues around unit.

The following two theorems give bounds on the eigenvalues of the precon-
ditioned matrix using ICP and TICP. They show that the eigenvalues of the
preconditioned matrix are clustered around one if those of the preconditioned K
and the preconditioned Schur complement are so. An exhaustive spectral analysis
can be found in [2]. We denote a generally complex eigenvalue λ as λR + iλI .

Theorem 1
If βK < 2 then the real eigenvalues of the ICP preconditioned matrix satisfy:

min
{

αK ,
αS

βK

}
≤ λ ≤ max{(2 − αK)βS , βK}.

If λI 	= 0 then

αK + αS(2 − βK)

2
≤ λR ≤ βK + βS(2 − αK)

2
|λI | ≤

√
βS max{1 − αK , βK − 1}.

Proof. See proof of Theorem 3 in [2].

Theorem 2
The eigenvalues of M−1

T A satisfy the following bounds. If λI 	= 0 then

|λ − 1| ≤
√

1 − αK , and
αK

2
≤ λR ≤ min

{
1 + βS

2
, 2
}

.

The real eigenvalues satisfy:

min
{

αK ,
αS

βK + αS

}
≤ λR ≤ βS + βK .

Proof. See proof of Theorem 5 in [2].



82 L. Bergamaschi and A. Martinez

4 FSAI-Based ICP

The FSAI preconditioner, initially proposed in [15] and [16], has been later de-
veloped and implemented in parallel by Bergamaschi et al. in [6]. Here, we only
shortly recall the main features of this preconditioner. Given and SPD matrix
K the FSAI preconditioner approximately factorize its inverse as a product of
two sparse triangular matrices as

K−1 ≈ G−1 = WT W.

The choice of nonzeros in W are based on a sparsity pattern which in our work
may be the same as K̃k where K̃ is the result of prefiltration [7] of K i.e. dropping
of all elements below of a threshold parameter δ. In the present paper we allow
the power k to be equal to 1, 2 or 4. The entries of W are computed by minimizing
the Frobenius norm of I − WL where L is the exact Cholesky factor of K. The
computed W is then sparsified by dropping all the elements which are below
a second tolerance parameter (ε). The final FSAI preconditioner is therefore
related to the following three parameters: δ, prefiltration threshold; dK = 1, 2, 4,
power of K generating the sparsity pattern; ε, postfiltration threshold.

Recalling equation (5), the full ICP can be written as:

M−1
I =

[
In −WT

1 W1B
T

0 Im

] [
WT

1 W1 0
0 −WT

S WS

] [
In 0

−BWT
1 W1 Im

]

=
[
WT

1 −WT
1 W1B

T WT
S

0 WT
S

] [
W1 0

WSBWT
1 W1 −WS

]
(8)

where G−1
1 = WT

1 W1 and WS is the FSAI factor of the approximate Schur com-
plement matrix S̃, S̃−1 = WT

S WS . The Schur complement matrix S is evaluated
as S = BWT

2 W2B
T + C = S0 + C, W2 being the triangular factor of a sparser

FSAI approximation of K−1, obtained from W1 by a further postfiltration.
Analogously the Triangular ICP can be written as

M−1
T =

[
WT

1 −WT
1 W1B

T WT
S

0 WT
S

] [
W1 0
0 −WS

]
. (9)

The application of M−1 requires the explicit computation of the Schur com-
plement matrix S whose construction may be time and memory consuming,
However, it should be noted that the evaluation of S0 = BWT

2 W2B
T , which

involves the main computational burden in building S, is independent of the
time step Δt, and therefore can be done just once at the beginning of the simu-
lation. The construction of the preconditioner is therefore based on the following
parameters:

1. δ1, dK and ε1, for the 1st FSAI preconditioner (W1).
2. ε2, postfiltration threshold for W2

3. δS , dS and εS, for the FSAI preconditioner applied to the Schur complement
matrix (WS).
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4.1 Parallel Implementation

Our code is written in FORTRAN 90 and exploits the MPI library for exchanging
data among the processors. We used a block row distribution of all matrices, that
is, with complete rows assigned to different processors. All these matrices are
stored in static data structures in CSR format.

Any row i of matrix W of FSAI preconditioner is computed independently
of each other, by solving a small SPD dense linear system of size ni equal to
the number of nonzeros allowed in row i of W . Some of the rows which con-
tribute to form this linear system may be non local to processor i and should
be received from other processors. To this aim we implemented a routine called
get extra rows which carries out all the row exchanges among the processors,
before starting the computation of W , which proceed afterwards entirely in par-
allel. Since the number of non local rows needed by each processor is relatively
small we chose to temporarily replicate these rows on auxiliary data structures.
Once W is obtained a parallel transposition routine provides every processor
with its part of WT .

The FSAI and the FSAI-ICP preconditioners will be used to accelerate the
PCG and the BiCGSTAB Krylov subspace methods. These iterative solvers
are essentially based on matrix-vector products. We made use of an optimized
parallel matrix-vector product which has been developed in [17] showing its
effectiveness up to 1024 processors.

5 Numerical Results

5.1 Solution of Kx = b.

Since the key of the success of ICP is related to the goodness of the precon-
ditioner for matrix K (numerical experience shows that the Schur complement
matrix is instead well-conditioned), we analyze the performance of our FSAI pre-
conditioner when used within the PCG method to solve a linear system Kx = b.

The test cases are all realistic examples of large size arising from 2D and 3D
FE discretization of geomechanical problems. In detail:

1. FAULT-639: arises from the numerical solution by a linear FE of the inequality-
constrained minimization problem governing the mechanical equilibrium of a
3D body with contact surfaces [12]. The contact is solved with the aid of a
penalty formulation that gives rise to an SPD ill-conditioned linear system.

2. STOCF-729: arises from the FE integration of the diffusion partial differen-
tial equation governing the 3D transient flow of groundwater in saturated
porous media. The problem is solved assuming a stochastic distribution of
the hydraulic conductivity tensor with a large permeability contrast in ad-
jacent elements.

3. GEO-1438: arises from a regional geomechanical model of the sedimentary
basin underlying the Venice lagoon discretized by a linear FE with randomly
heterogeneous properties [18].
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4. FLAN-1565: arises from the mechanical equilibrium of a steel flange dis-
cretized by a 3D 8-node brick FE [13].

5. HOOK-1498: arises from the mechanical equilibrium of a steel hook dis-
cretized by 3D 4-node tetrahedral FE [13].

6. PO-878: arises in the simulation of the consolidation of a real gas reservoir of
the Po Valley, Italy, used for underground gas storage purposes (for details,
see [9]).

7. CUBE-6536: simulates the compaction of a shallow confined aquifer due
to groundwater withdrawal in a representative 3D sedimentary basin at a
regional scale. The discretization employes 1 171140 grid nodes, giving raise
to a very large problem of more than 6 million unknowns.

The size and number of nonzero terms
for each matrix is provided in Table 1.
The linear system is solved by PCG us-
ing the exact solution as a vector of
all ones. The exit test for the itera-

tive solver is
‖rk‖
‖b‖ ≤ 10−10, rk being

the relative residual at iteration k. Each
matrix has been preliminarily reordered
by a Reverse Cuthill McKee (RCM) al-
gorithm [10].

Table 1. Size n and number of
nonzeros nnz of the test matrices

name n nnz

FAULT-639 638 812 14 626 683
STOCF-729 729 400 10 765 586
GEO-1438 1 437 960 63 156 690
FLAN-1565 1 564 794 117 406 044
HOOK-1498 1 498 023 60 917 445
PO-878 878 355 38 896 749
CUBE-6353 6 353 100 282 438 234

All tests are performed on the IBM SP6/5376 cluster at the CINECA Cen-
tre for HCP, equipped with IBM Power6 processors at 4.7 GHz with 168 nodes,
5376 computing cores, and 21 Tbytes of internal network RAM. The code is writ-
ten in Fortran 90 and compiled with -O4 -q64 -qarch=pwr6 -qtune=pwr6 -qnoipa

-qstrict -bmaxdata:0x70000000 options.
In Table 2 we report the results of the PCG runs for the seven test cases

and a number of combination of the FSAI parameters. In particular we provide
the number of iteration (iter) the density of the FSAI preconditioner computed

as ρ =
nnz(G−1

1 )
nnz(K)

as well as three CPU times referring to the cost of FSAI

computation (TP ), the cost of iterative solver (Tsol) and the total time (Ttot =
TP + Tsol).) For a fixed test case all the runs have been performed using a fixed
number of processors.

Inspection of Table 2 reveals that the choice of dK = 4 produces in all tests the
smallest number of iterations and (with the only exception of Problem FLAN-
1565) the smallest Tsol CPU time. However, in some instances the large cost to
compute the FSAI preconditioner may greatly influence the total CPU time.

5.2 Parallel Results and Scalability

We will use a strong scaling measure to see how the CPU times vary with the
number of processors for a fixed total problem size. We will denote with Tp
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Table 2. Iteration number, iter, density ρ of the preconditioner, CPU times obtained
using a fixed number of processors for each combination of parameters. Best iteration
number, smallest Tsol and Ttot for each test are printed in boldface.

name p dK δ ε iter ρ TP Tsol Ttot

FLAN-1565 64 4 0.1 0.1 4546 0.12 12.60 67.62 80.22
4 0.1 0.01 2785 1.17 11.79 82.06 93.85
4 0.1 0.05 3909 0.29 12.47 63.44 75.91
2 0.1 0.1 5414 0.10 0.81 62.49 63.30
1 0.01 0.1 6064 0.09 0.72 75.55 76.27

FAULT-639 16 4 0.1 0.01 674 1.32 5.90 21.92 27.82
4 0.2 0.01 986 0.18 0.35 13.54 13.89
2 0.2 0.01 1667 0.10 0.23 26.35 26.58
2 0 0.01 938 1.41 8.03 29.64 37.67
1 0 0.01 1745 0.56 0.83 38.25 39.08

HOOK-1498 16 4 0.1 0.1 3511 0.28 49.29 142.05 191.34
4 0.1 0.01 2362 2.76 46.38 267.64 314.02
2 0.2 0.01 5195 0.10 0.49 215.56 216.05
1 0.01 0.1 4164 0.18 1.12 149.00 150.12
1 0.01 0.01 3416 0.66 0.96 168.83 169.79

GEO-1438 16 4 0.1 0.1 585 0.34 20.12 20.34 40.46
4 0.1 0.01 405 2.13 26.77 42.93 69.70
2 0.1 0.1 766 0.21 1.24 34.06 35.30
2 0.1 0.01 671 0.58 1.42 38.65 40.07
1 0.0 0.01 818 0.65 1.13 45.03 46.16

STOCF-729 16 4 0.1 0.05 755 1.61 1.96 17.06 19.02
4 0.1 0.1 881 0.95 1.51 9.96 11.47
2 0.1 0.01 1230 1.11 0.30 11.75 12.05
2 0.2 0.1 2030 0.24 0.17 11.00 11.17
1 0.01 0.01 1699 0.77 0.20 15.67 15.87

PO-878 64 4 0.2 0.1 844 0.14 0.27 4.47 4.74
4 0.1 0.1 728 0.26 2.99 3.55 6.54
4 0.1 0.01 698 1.42 2.75 7.30 10.05
2 0.1 0.1 1414 0.17 0.34 6.27 6.61
1 0.01 0.1 2297 0.13 0.22 8.31 8.53

CUBE-6353 256 4 0.1 0.01 459 1.13 5.24 12.29 17.53
4 0.1 0.1 649 0.20 5.76 8.56 14.32
2 0.01 0.01 511 1.09 3.68 16.02 19.70

the total CPU elapsed times expressed in seconds on p processors. As relative
measures of the parallel efficiency achieved by the code we denote as S

(p̄)
p the

pseudo speedup computed with respect to the smallest number of processors (p̄)
used to solve a given problem and E

(p̄)
p the corresponding efficiency:

S(p̄)
p =

Tp̄p̄

Tp
, E(p̄)

p =
S

(p̄)
p

p
=

Tp̄p̄

Tpp
.
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Scalability of FSAI-PCG. In Table 3 we report number of iterations and
timings in solving problems GEO-1438 and CUBE-6536 by FSAI-PCG with
varying number of processors. The parameters used are: dK = 4, δ = 0.1 and
ε = 0.1 for both cases. We also report the scaled speedups and efficiencies for the
total CPU time. Speedups larger than p and efficiencies larger than 1 are printed
in boldface. They can be put in connection both with cache effects and with the
not optimal use of the memory for small number of processors which slow down
the performance the code. We note from the table that our code scales almost
perfectly up to 128 processors for problem GEO-1438 and up to p = 512 for
problem CUBE-6536 which is roughly 4 times larger. This is also accounted by
the results of Figure 1 where pseudo-speedups vs processor number are displayed
in a log-log plot.

Table 3. Number of iterations and timings of FSAI-PCG in the solution of problems
GEO-1438 (left) and CUBE-6536 (right)

p iter TP Tsol Ttot S
(2)
p E

(2)
p

2 585 195.0 175.4 370.4
4 585 83.5 95.5 179.0 4.1 1.03
8 585 45.1 40.7 85.8 8.6 1.08

16 585 20.1 20.3 41.4 17.9 1.12
32 585 11.0 10.4 21.4 34.6 1.08
64 585 5.9 5.2 11.1 66.7 1.04

128 585 3.1 2.7 5.9 125.6 0.98
256 585 2.0 1.8 3.8 195.0 0.76
512 585 1.0 1.4 2.4 308.7 0.60

p iter TP Tsol Ttot S
(16)
p E

(16)
p

16 459 76.9 198.4 275.3
32 459 43.6 88.2 131.8 33.6 1.05
64 459 22.3 45.4 67.7 65.3 1.02

128 459 10.0 24.1 34.1 129.8 1.01
256 459 5.2 12.3 17.5 252.2 0.99
512 459 3.2 6.7 9.9 444.8 0.87

2 4 8 16 32 64 128 256 512
Number of processors

2

4

8

16

32

64

128

256

512
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eu

do
 s
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up

Problem: GEO-1438
Perfect scalability
Problem: CUBE-6536

Fig. 1. Speedups vs number of processors. Problems GEO-1438 and CUBE-6536
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Scalability of ICP preconditioner. We report in this Section the results
obtained in the solution of our saddle point problem with PO-878 as the test
example whose main features are summarized as follows.

m n N nnz(K) nnz(B) nnz(C) nnz(A)
292785 878355 1 171 140 38 896 749 12 965 583 4 321 861 69 039 776

We choose this problem among the seven presented in Section 5.1 since it is
the most challenging one due to the complexity and the heterogeneity of the
geological domain which give raise to a large number of distorted tetrahedra.
This produces a very ill-conditioned matrix A, especially for small timesteps.
Moreover, the bandwidth is very large and this forces a large amount of in-
terprocessor communication. We solved symmetrized system (4) using Δt = 1
after an intensive testing to tune the parameters. We choose BiCGSTAB as the
iterative solver with the same exit test of Section 5.1.

Table 4. Combinations of parameters and results for problem PO-878 on 128
processors

Run δ1 dK ε1 ε2 δS dS εS ρ iter TP1 TP2 Tsol Ttot

ICP 1 0 1 0 0.01 0.01 1 0 1.23 > 10000 1.4 0.2 > 200.0 > 200.0
ICP 2 0.01 2 0.01 0.1 0.01 1 10−3 1.36 4945 2.9 1.4 127.8 129.2
ICP 3 0.1 4 0.1 0.1 0.01 1 10−3 0.72 1254 2.3 2.2 24.3 26.6

TICP 0.1 4 0.1 0.1 0.01 1 10−3 0.72 3669 3.6 2.3 66.1 68.4

In Table 4 we report for each run the parameters related to the three FSAI
approximations as described in the previous sections. We also provide a measure
ρ of the density of the preconditioner matrices as:

ρ = ρ1 + ρ2 =
nnz(G−1

1 )
nnz(A)

+
nnz(G−1

S )
nnz(A)

Parameter ρ gives an indication of the additional core memory needed for com-
puting and storing the preconditioner. We present the following timings, all given
in seconds: TP1 is the preprocessing time needed to construct G−1

1 , G−1
2 and S0,

TP2 refers to the construction of G−1
S and Tsol to the CPU time required by the

iterative solver. Finally, Ttot = TP2 + Tsol is the total CPU time.
We report in Table 4 the results of three ICP and one TICP runs employing

the three different patterns for the FSAI preconditioner in the approximation
of K (with p = 128). Using dK = 1 no convergence is attained within 10000
iterations, dK = 2 yields 4945 iterations while with dK = 4 the iterative method
obtains convergence after 1254 iterations. From the table we see that only a
sparsity pattern for the block K which uses nonzeros far away from the diagonal
(dK = 4) allows for a (relatively) fast convergence. We note on passing that the
TICP with the same parameters as the third ICP run yields more than twice
the ICP iterations and roughly twice CPU time. This is again a consequence of
the ill conditioning of this problem.
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Table 5. Parallel performance of FSAI-ICP (TICP) code for problem PO-878

run p TP1 S
(2)
P iter TP2 Tsol Ttot S

(2)
p E

(2)
p

2 99.7 1409 83.1 1667.4 1750.5
4 42.8 4.7 1521 32.3 693.0 725.3 4.8 1.21
8 23.6 8.5 1518 17.6 350.5 368.1 9.5 1.19

ICP 3 16 13.6 14.7 1407 10.1 171.8 181.9 19.3 1.20
32 7.9 25.2 1397 5.7 92.9 98.6 35.5 1.11
64 4.3 46.7 1521 3.4 55.3 58.7 59.7 0.93

128 2.3 86.4 1254 2.2 24.3 26.6 131.8 1.03

2 86.5 3726 67.9 2998.5 3066.4
4 42.3 4.1 3916 32.2 1523.7 1556.0 3.9 0.99
8 23.6 7.3 3754 17.5 767.6 783.1 7.8 0.98

TICP 16 13.6 12.7 3842 10.0 397.1 407.1 15.1 0.94
32 7.9 21.9 3737 5.7 206.8 212.5 28.9 0.90
64 4.2 41.2 3834 3.4 115.5 118.9 51.6 0.81

128 2.3 75.2 3669 2.2 57.5 59.7 102.7 0.80

We present in the sequel the results of the scalability study carried out with
the FSAI–ICP code when used to solve the PO-878 test problem. We show in
Table 5 the results obtained running our FSAI-ICP code using p = 2 to p = 128,
regarding the two preconditioners ICP3 and TICP of Table 4. These results show
that our code exhibits almost perfect scalability both on the preprocessing stage
and the iterative part. As before, superspeedups can occur due to cache effects
and also to the variable number of iterations with different processor number p.

Acknowledgments. We acknowledge the CINECA Iscra Award PARPSEA
(2010) for the availability of HPC resources and support. We also thank the four
anonymous reviewers who helped improve the overall quality of the paper.

6 Conclusions

This paper describes a parallel block preconditioner for saddle point type linear
systems based on an FSAI preconditioner with variable sparsity pattern. We
first show that our FSAI-PCG code is efficient and scalable for the solution
of Kx = b. Then the FSAI preconditioner is used to develop a parallel fully
explicit ICP within the BiCGSTAB Krylov subspace solver. We have presented
a portable parallel code implemented in Fortran 90 using MPI for interprocessor
communications. This ensures portability on a whole range of supercomputers.
The efficiency of our code is evaluated on realistic engineering applications arising
from 3D FE discretization of a coupled consolidation problem exhibiting almost
perfect scalability both on the preprocessing stage and the iterative part as well
as satisfactory computational efficiency.
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Abstract. Extra memory allows parallel matrix multiplication to be
done with asymptotically less communication than Cannon’s algorithm
and be faster in practice. “3D” algorithms arrange the p processors in
a 3D array, and store redundant copies of the matrices on each of p1/3

layers. ‘2D” algorithms such as Cannon’s algorithm store a single copy of
the matrices on a 2D array of processors. We generalize these 2D and 3D
algorithms by introducing a new class of “2.5D algorithms”. For matrix
multiplication, we can take advantage of any amount of extra memory
to store c copies of the data, for any c ∈ {1, 2, ..., �p1/3�}, to reduce
the bandwidth cost of Cannon’s algorithm by a factor of c1/2 and the
latency cost by a factor c3/2. We also show that these costs reach the
lower bounds, modulo polylog(p) factors. We introduce a novel algorithm
for 2.5D LU decomposition. To the best of our knowledge, this LU algo-
rithm is the first to minimize communication along the critical path of
execution in the 3D case. Our 2.5D LU algorithm uses communication-
avoiding pivoting, a stable alternative to partial-pivoting. We prove a
novel lower bound on the latency cost of 2.5D and 3D LU factorization,
showing that while c copies of the data can also reduce the bandwidth
by a factor of c1/2, the latency must increase by a factor of c1/2, so
that the 2D LU algorithm (c = 1) in fact minimizes latency. We provide
implementations and performance results for 2D and 2.5D versions of
all the new algorithms. Our results demonstrate that 2.5D matrix mul-
tiplication and LU algorithms strongly scale more efficiently than 2D
algorithms. Each of our 2.5D algorithms performs over 2X faster than
the corresponding 2D algorithm for certain problem sizes on 65,536 cores
of a BG/P supercomputer.

1 Introduction

Goals of parallelization include minimizing communication, balancing the work
load, and reducing the memory footprint. In practice, there are tradeoffs among
these goals. For example, some problems can be made embarrassingly parallel
by replicating the entire input on each processor. However, this approach may
use much more memory than necessary and require significant redundant com-
putation. At the other extreme, one stores exactly one copy of the data spread
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evenly across the processors, tries to balance the load, and minimize communi-
cation subject to this constraint.

However, some parallel algorithms do successfully take advantage of limited
extra memory to increase parallelism or decrease communication. In this paper,
we examine the trade-off between memory usage and communication cost in
linear algebra algorithms. We introduce 2.5D algorithms (the name is explained
below), which have the property that they can utilize any available amount of
extra memory beyond the memory needed to store one distributed copy of the
input and output. 2.5D algorithms use this extra memory to provably reduce
the amount of communication they perform to a theoretical minimum.

We measure costs along the critical path to make sure our algorithms are well
load balanced as well as communication efficient. In particular, we measure the
following quantities along the critical path of our algorithms (which determines
the running time):

– F , the computational cost, is the number of flops done along the critical
path.

– W , the bandwidth cost, is the number of words sent/received along the
critical path.

– S, the latency cost, is the number of messages sent/received along the critical
path.

– M , the memory footprint, is the maximum amount of memory, in words,
utilized by any processor at any point during algorithm execution.

Our communication model does not account for network topology. However, it
does assume that all communication has to be synchronous. So, a processor can-
not send multiple messages at the cost of a single message. Under this model a
reduction or broadcast among p processors costs O(log p) messages but a one-
to-one permutation requires only O(1) messages. This model aims to capture
the behavior of low-dimensional mesh or torus network topologies. Our LU com-
munication lower-bound is independent of the above collective communication
assumptions, however, it does leverage the idea of the critical path.

Our starting point is n-by-n dense matrix multiplication, for which there are
known algorithms that minimize both bandwidth and latency costs in two special
cases:

1. Most algorithms assume that the amount of available memory, M , is enough
for one copy of the input/output matrices to be evenly spread across all p
processors (so M ≈ 3n2/p). If this is the case, it is known that Cannon’s
Algorithm [7] simultaneously balances the load (so F = Θ(n3/p)), minimizes
the bandwidth cost (so W = Θ(n2/p1/2)), and minimizes the latency cost (so
S = Θ(p1/2)) [15,5]. We call Cannon’s algorithm a “2D algorithm” because
it is naturally expressed by laying out the matrices across a p1/2-by-p1/2 grid
of processors.

2. “3D algorithms” assume the amount of available memory, M , is enough
for p1/3 copies of the input/output matrices to be evenly spread across all
p processors (so M ≈ 3n2/p2/3). Given this much memory, it is known
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that algorithms presented in [8,1,2,16] simultaneously balance the load (so
F = Θ(n3/p)), minimize the bandwidth cost (so W = Θ(n2/p2/3)), and
minimize the latency cost (so S = Θ(log p)) [15,5]. These algorithms are
called “3D” because they are naturally expressed by laying out the matrices
across a p1/3-by-p1/3-by-p1/3 grid of processors.

The contributions of this paper are as follows.

1. We present a new matrix multiplication algorithm that uses M ≈ 3cn2/p
memory for c ∈ {1, 2, ...,  p1/3!}, sends c1/2 times fewer words than the 2D
(Cannon’s) algorithm, and sends c3/2 times fewer messages than Cannon’s
algorithm. We call the new algorithm 2.5D matrix multiplication, because it
has the 2D and 3D algorithms as special cases, and effectively interpolates
between them, by using a processor grid of shape (p/c)1/2-by-(p/c)1/2-by-
c. Our 2.5D matrix multiplication algorithm attains lower bounds (modulo
polylog(p) factors) on the number of words and messages communicated.

Our implementation of 2.5D matrix multiplication achieves better
strong scaling and efficiency than Cannon’s algorithm and ScaLAPACK’s
PDGEMM [6]. On 2048 nodes of BG/P, our 2.5D algorithm multiplies square
matrices of size n = 65, 536 5.3X faster than PDGEMM and 1.2X faster than
Cannon’s algorithm. On 16,384 nodes of BG/P, our 2.5D algorithm multi-
plies a small square matrix (n = 8192), 2.6X faster than Cannon’s algorithm.

2. We present a 2.5D LU algorithm that also reduces the number of words
moved by a factor of c1/2 in comparison with standard 2D LU algorithms.
2.5D LU attains the same lower bound on the number of words moved as 2.5D
matrix multiplication Our 2.5D LU algorithm uses tournament pivoting as
opposed to partial pivoting [9,12]. Tournament pivoting is a stable alternative
to partial pivoting that was used to minimize communication (both number
of words and messages) in the case of 2D LU. We will refer to tournament
pivoting as communication-avoiding pivoting (CA-pivoting) to emphasize
the fact that this type of pivoting attains the communication lower-bounds.

We present 2.5D LU implementations without pivoting and with CA-
pivoting. Our results demonstrate that 2.5D LU reduces communication and
runs more efficiently than 2D LU or ScaLAPACK’s PDGETRF [6]. For an
LU factorization of a square matrix of size n = 65, 536, on 2048 nodes of
BG/P, 2.5D LU with CA-pivoting is 3.4X faster than PDGETRF with par-
tial pivoting. Further, on 16384 nodes of BG/P, 2.5D LU without pivoting
and with CA-pivoting are over 2X faster than their 2D counterparts.

3. 2.5D LU does not, however, send fewer messages than 2D LU; instead it sends
a factor of c1/2 more messages. Under minor assumptions on the algorithm,
we demonstrate an inverse relationship among the latency and bandwidth
costs of any LU algorithms. This relation yields a lower bound on the latency
cost of an LU algorithm with a given bandwidth cost. We show that 2.5D
LU attains this new lower bound. Further, we show that using extra memory
cannot reduce the latency cost of LU below the 2D algorithm, which sends
Ω(p1/2) messages. These results hold for LU with CA-pivoting and without
pivoting.
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2 Previous Work

In this section, we detail the motivating work for our algorithms. First, we recall
linear algebra communication lower bounds that are parameterized by memory
size. We also detail the main motivating algorithm for this work, 3D matrix
multiplication, which uses extra memory but performs less communication. The
communication complexity of this algorithm serves as a matching upper-bound
for our general lower bound.

2.1 Communication Lower Bounds for Linear Algebra

Recently, a generalized communication lower bound for linear algebra has been
shown to apply for a large class of matrix-multiplication-like problems [5]. The
lower bound applies to either sequential or parallel distributed memory, and
either dense or sparse algorithms. The distributed memory lower bound is for-
mulated under a communication model identical to that which we use in this
paper. This lower bound states that for a fast memory of size M (e.g. cache size
or size of memory space local to processor) the lower bound on communication
bandwidth is

W = Ω

(
#arithmetic operations√

M

)

words, and the lower bound on latency is

S = Ω

(
#arithmetic operations

M3/2

)

messages. On a parallel machine with p processors and a local processor memory
of size M , this yields the following lower bounds for communication costs of
matrix multiplication of two dense n-by-n matrices as well as LU factorization
of a dense n-by-n matrix:

W = Ω

(
n3/p√

M

)
, S = Ω

(
n3/p

M3/2

)

These lower bounds are valid for n2

p < M < n2

p2/3 and suggest that algorithms

can reduce their communication cost by utilizing more memory. If M < n2

p , the
entire matrix won’t fit in memory. As explained in [5], conventional algorithms,
for example those in ScaLAPACK [6], mostly do not attain both these lower
bounds, so it is of interest to find new algorithms that do.

2.2 3D Linear Algebra Algorithms

Consider we have p processors arranged into a 3D grid as in Figure 1(a), with
each individual processor indexed as Pi,j,k. We replicate input matrices on 2D
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layers of this 3D grid so that each processor uses M = Ω
(

n2

p2/3

)
words of memory.

In this decomposition, the lower bound on bandwidth is

W3d = Ω
(
n2/p2/3

)
.

According to the general lower bound the lower bound on latency is trivial: Ω (1)
messages. However, for any blocked 2D or 3D layout,

S3d = Ω (log p) .

This cost arises from the row and column dependencies of dense matrix-
multiplication-like problems. Information from a block row or block column of
can only be propagated to one processor with Ω(log p) messages.

Algorithm 1. [C] = 3D-matrix-multiply(A,B,n,p)
Input: n-by-n matrix A distributed so that Pij0 owns n

p1/3 -by- n

p1/3 block Aij for each i, j

Input: n-by-n matrix B distributed so that P0jk owns n

p1/3 -by- n

p1/3 block Bjk for each j, k

Output: n-by-n matrix C = A · B distributed so that Pi0k owns n

p1/3 -by- n

p1/3 block Cik for each i, k

// do in parallel with all processors

forall i, j, k ∈ {0, 1, ..., p1/3 − 1} do

Pij0 broadcasts Aij to all Pijk /* replicate A on each ij layer */

P0jk broadcasts Bjk to all Pijk /* replicate B on each jk layer */

Cijk := Aij · Bjk

Pijk contributes Cijk to a sum-reduction to Pi0k

end

3D matrix multiplication. For matrix multiplication, Algorithm 1 [8,1,2,16]
achieves the 3D bandwidth and latency lower bounds. The amount of mem-
ory used in this 3D matrix multiplication algorithm is M = Θ

(
n2

p2/3

)
so the

3D communication lower bounds apply. The only communication performed is
the reduction of C and, if necessary, a broadcast to spread the input. So the
bandwidth cost is W = O

(
n2

p2/3

)
, which is optimal, and the latency cost is

S = O (log p), which is a optimal for a blocked layout.

Memory efficient matrix multiplication. McColl and Tiskin [18] present
a memory efficient variation on the 3D matrix multiplication algorithm for a
PRAM-style model. They partition the 3D computation graph to pipeline the
work and therefore reduce memory in a tunable fashion. However, their theo-
retical model is not reflective of modern supercomputer architectures, and we
see no clear way to reformulate their algorithm to be communication optimal.
Nevertheless, their research is in very similar spirit to and serves as a motivating
work for the new 2.5D algorithms we present in later sections.
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Previous work on 3D LU factorization. Irony and Toledo [14] introduced
a 3D LU factorization algorithm that minimizes total communication volume
(sum of the number of words moved over all processors), but does not minimize
either bandwidth or latency along the critical path. This algorithm distributes
A and B cyclically on each processor layer and recursively calls 3D LU and 3D
TRSM routines on sub-matrices.

Neither the 3D TRSM nor the 3D LU base-case algorithms given by Irony
and Toledo minimize communication along the critical path which, in practice,
is the bounding cost. We define a different 2.5D LU factorization algorithm that
does minimize communication along its critical path.

Ashcraft [4,3] suggested that total communication volume can be reduced for
LU and Cholesky via the use of aggregate data. Aggregate data is a partial sum
of updates, rather than simply the matrix entries. Our 2.5D LU algorithm uses
aggregate data to reduce communication by the amount Ashcraft predicted.

3 2.5D Lower and Upper Bounds

The general communication lower bounds are valid for a range of M in which
2D and 3D algorithms hit the extremes. 2.5D algorithms are parameterized
to be able to achieve the communication lower bounds for any valid M . Let
c ∈ {1, 2, . . . ,  p1/3!} be the number of replicated copies of the input matrix.
Consider the processor grid in Figure 1(b) (indexed as Pi,j,k) where each proces-

sor has local memory size M = Ω
(

cn2

p

)
. The lower bounds on communication

are

W2.5d = Ω

(
n2

√
cp

)
S2.5d = Ω

(
p1/2

c3/2

)
.

The lower bound in Section 6 of [5] is valid while c <= p1/3. When c = p1/3, the
latency lower bound is trivial, Ω(1) messages, and the bandwidth lower bound is
Ω(n2/p2/3) words. If the initial data is not replicated, we claim the Ω(n2/p2/3)
bandwidth lower bound also holds for c > p1/3. A total of Ω(cn2 −n2) = Ω(cn2)
words must be communicated to produce the replicated copies without local
entry duplicates. Therefore, some processor must communicate Ω(cn2/p) words.
When c > p1/3, this replication bandwidth cost is bound from below by cn2/p =
Ω(n2/p2/3) words.

From a performance-tuning perspective, by formulating 2.5D linear algebra
algorithms, we are essentially adding an extra tuning parameter to the algorithm.
Also, as a sanity check for our 2.5D algorithms, we made sure they reduced
to practical 2D algorithms when c = 1 and to practical 3D algorithms when
c = p1/3.

3.1 2.5D Matrix Multiplication

For matrix multiplication, Algorithm 2 achieves the 2.5D bandwidth lower bound
and gets within a factor of O(log p) of the 2.5D latency lower bound (likely
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(a) 3D processor grid of dimension p1/3-
by-p1/3-by-p1/3.

(b) 2.5D processor grid of dimen-
sion (p/c)1/2-by-(p/c)1/2-by-c (replica-
tion factor c).

Fig. 1.

optimal). Algorithm 2 generalizes Cannon’s algorithm (set c = 1). At a high
level, our 2.5D algorithm does a portion of Cannon’s algorithm on each set of
copies of matrices A and B, then combines the results. To make this possible,
we adjust the initial shift done by Cannon’s algorithm to be different for each
set of copies of matrices A and B.

Our 2.5D algorithm doesn’t quite generalize Algorithm 1 since C is reduced
in a different dimension and shifted initially. However, in terms of complexity,
only two extra matrix shift operations are required by the 3D version of our 2.5D
algorithm. Further, the 2.5D algorithm has the nice property that C ends up
spread over the same processor layer that both A and B started on. The algo-
rithm moves W = O

(
n2√
cp

)
words and sends S = O

(√
p/c3 + log c

)
messages.

This cost is optimal according to the general communication lower bound. The
derivations of these costs are in Appendix A in [19].

We also note that if the latency cost is dominated by the intra-layer
communication S = O(

√
p/c3), our 2.5D matrix multiplication algorithm can

achieve perfect strong scaling in certain regimes. Suppose we want to multiply
n × n matrices, and the maximum memory available per processor is Mmax.
Then we need to use at least pmin = Θ(n2/Mmax) processors to store one
copy of the matrices. The 2D algorithm uses only one copy of the matrix and
has a bandwidth cost of Wpmin = O(n2/

√
pmin) words and latency cost of

Spmin = O(
√

pmin) messages. If we use p = c · pmin processors, with a total
available memory of p · Mmax = c · pmin · Mmax, we can afford to have c copies
of the matrices. The 2.5D algorithm can store a matrix copy on each of c
layers of the p processors. Utilizing c copies reduces the bandwidth cost to
Wp = O(n2/

√
cp) = O(n2/(c

√
pmin)) = O(Wpmin/c) words, and the latency cost

to Sp = O(
√

p/c3) = O(
√

pmin/c) = O(Spmin/c) messages. This strong scaling is
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Algorithm 2. [C] = 2.5D-matrix-multiply(A,B,n,p,c)
Input: square n-by-n matrices A, B distributed so that Pij0 owns n√

p/c
-by- n√

p/c
blocks Aij and Bij

for each i, j

Output: square n-by-n matrix C = A · B distributed so that Pij0 owns n√
p/c

-by- n√
p/c

block Cij

for each i, j

/* do in parallel with all processors */

forall i, j ∈ {0, 1, ...,
√

p/c − 1}, k ∈ {0, 1, ..., c − 1} do

Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

s := mod (j − i + k
√

p/c3,
√

p/c) /* initial circular shift on A */

Pijk sends Aij to Alocal on Pisk

s′ := mod (i − j + k
√

p/c3,
√

p/c) /* initial circular shift on B */

Pijk sends Bij to Blocal on Ps′jk

Cijk := Alocal · Blocal

s := mod (j + 1,
√

p/c)

s′ := mod (i + 1,
√

p/c)

for t = 1 to
√

p/c3 − 1 do

Pijk sends Alocal to Pisk /* rightwards circular shift on A */

Pijk sends Blocal to Ps′jk /* downwards circular shift on B */

Cijk := Cijk + Alocal · Blocal

end

Pijk contributes Cijk to a sum-reduction to Pij0

end

Fig. 2. LU diagonal block dependency path. These blocks must be factorized in order
and communication is required between each block factorization.

perfect because all three costs (flops, bandwidth and latency) fall by a factor of
c. (up to a factor of c = p1/3, and ignoring the log(c) latency term).

4 2.5D LU Communication Lower Bound

We argue that for Gaussian-elimination style LU algorithms that achieve the
bandwidth lower bound, the latency lower bound is actually much higher, namely
Slu = Ω

(√
cp
)
.
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Given a parallel LU factorization algorithm, we assume the algorithm must
uphold the following properties

1. Consider the largest k-by-k matrix A00 factorized sequentially such that

A =
[
A00 A01

A10 A11

]
(we can always pick some A00 since at least the top left

element of A is factorized sequentially), the following conditions must hold,
(a) Ω(k3) flops must be done before A11 can be factorized (it can be updated

but Gaussian elimination cannot start).
(b) Ω(k2) words must be communication before A11 can be factorized.
(c) Ω(1) messages must be sent before A11 can be factorized.

2. The above condition holds recursively (for factorization of A11 in place of
A).

We now lower bound the communication cost for any algorithm that follows
the above restrictions. Any such algorithm must compute a sequence of di-
agonal blocks {A00, A11, . . . , Ad−1,d−1}. Let the dimensions of the blocks be
{k0, k1, . . . , kd−1}. As done in Gaussian Elimination and as required by our con-
ditions, the factorizations of these blocks are on the critical path and must be
done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the
complexity of the algorithm by counting the complexity along this path. The
latency cost is Ω(d) messages, the bandwidth cost is

∑d−1
i=0 Ω(k2

i ) words and the
computational cost is

∑d−1
i=0 Ω(k3

i ) flops. Due to the constraint,
∑d−1

i=0 ki = n,
it is best to pick all ki = k, for some k (we now get d = n/k), to minimize
bandwidth and flop costs. Now we see that the algorithmic costs are

Flu = Ω(nk2) Slu = Ω(n/k) Wlu = Ω(nk).

Evidently, if we want to do O(n3/p) flops we need k = O
(

n√
p

)
, which would

necessitate S = Ω(
√

p). Further, the cost of sacrificing flops for latency is large.

Namely, if S = O
(√

p

r

)
, the computational cost is F = Ω

(
r2n3

p

)
, a factor of

r2 worse than optimal. Since we are very unlikely to want to sacrifice so much
computational cost to lower the latency cost, we will not attempt to design
algorithms that achieve a latency smaller than Ω(

√
p).

If we want to achieve the bandwidth lower bound we need,

Wlu = O
(
n2/

√
cp
)

k = O (n/
√

cp) Slu = Ω(
√

cp).

A latency cost of O(
√

cp/r), would necessitate a factor of r larger bandwidth
cost. So, an LU algorithm can do minimal flops, bandwidth, and latency as
defined in the general lower bound, only when c = 1. For c > 1, we can achieve
optimal bandwidth and flops but not latency.

It is also worth noting that the larger c is, the higher the latency cost for LU
will be (assuming bandwidth is prioritized). This insight is the opposite of that
of the general lower bound, which lower bounds the latency as Ω(1) messages for
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3D (c = p1/3). However, if a 3D LU algorithm minimizes the number of words
communicated, it must send Ω(p2/3) messages. This tradeoff suggests that c
should be tuned to balance the bandwidth cost and the latency cost.

5 2.5D Communication Optimal LU

In order to write down a 2.5D LU algorithm, it is necessary to find a way to
meaningfully exploit extra memory. A 2D parallelization of LU typically factor-
izes a vertical and a top panel of the matrix and updates the remainder (the
Schur complement). The dominant cost in a typical parallel LU algorithm is the
update to the Schur complement. Our 2.5D algorithm exploits this by accumu-
lating the update over layers. However, in order to factorize each next panel we
must reduce the contributions to the Schur complement. We note that only the
panel we are working on needs to be reduced and the remainder can be further
accumulated. Even so, to do the reductions efficiently, a block-cyclic layout is
required. This layout allows more processors to participate in the reductions and
pushes the bandwidth cost down to the lower bound.

Algorithm 3. [L, U ] = 2.5D-LU-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each l, m, (n/c)-by-(n/c) block Alm is spread over Pij0 in

(n/
√

pc)-by-(n/
√

pc) blocks.

Output: triangular n-by-n matrices L, U such that A = L · U and for each l, m, (n/c)-by-(n/c) blocks

Llm, Ulm are spread over Pij0 .

Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c − 1 do

[Ltt, Utt] = 2D-LU(Att) /* redundantly factorize top right (n/c)-by-(n/c) block */

[LT
t+k+1,t] = 2D-TRSM(UT

tt ,A
T
t+k+1,t) /* perform TRSMs on (n/c)-by-(n/c) blocks */

[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1)

Pijk broadcasts its portions of Lt+k+1,t and Ut,t+k+1 to Pijk′ for all k′ /* all-gather panels */

if �k
√

p/c3� ≤ j < �(k + 1)
√

p/c3� then /* broadcast sub-panels of L */

Pijk broadcasts its portion of Lt+1:c−1,t to each Pij′k for all j′

end

if �k
√

p/c3� ≤ i < �(k + 1)
√

p/c3� then /* broadcast sub-panels of U */

Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi′jk for all i′

end

Pijk computes and accumulates its portion of the Schur complement

update S /* multiply sub-panels */

All-reduce (sum and subtract from A) St+1:c−1,t+1, St+1,t+2:c−1 /* reduce next big block panels */

end

Algorithm 3 (work-flow diagram in Figure 3) is a communication optimal LU
factorization algorithm for the entire range of c ∈ {1, 2, . . . ,  p1/3!}. The algo-
rithm replicates the matrix A on each layer and partitions it block cyclically
across processors with block size (n/

√
pc)-by-(n/

√
pc). Note that this block di-

mension corresponds to the lower bound derivations in the previous section.
Every processor owns one such block within each bigger block of size n/c-by-
n/c. We will sometimes refer to big blocks (block dimension n/c) and small
blocks (block dimension n/

√
pc) for brevity.
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Fig. 3. 2.5D LU algorithm work-flow

Algorithm 3 has a bandwidth cost of W = O
(

n2√
cp

)
words and a latency cost

of S = O
(√

cp log(p)
)

messages. Therefore, it is asymptotically communication
optimal for any choice of c (modulo a log(p) factor for latency). Further, it is
also always asymptotically computationally optimal (the redundant work is a
low order cost). These costs are derived in Appendix B in [19].

6 2.5D Communication Optimal LU with Pivoting

Regular partial pivoting is not latency optimal because it requires Ω(n)
messages if the matrix is in a 2D blocked layout. Ω(n) messages are required by
partial pivoting since a pivot needs to be determined for each matrix column
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Algorithm 4. [V, L, U ] = 2.5D-TSLU-pivot-factorization(A,n,m,p,c)
Let [V ] = CA-Pivotl (Al,n,b) be a function that performs CA-pivoting with block size b on A of size n-by-b

and outputs the pivot matrix V to all processors.

Input: n-by-m matrix A distributed so that for each i, j, Pijk owns m√
p/c

-by- m√
p/c

blocks Alij for

li ∈ {i, i +
√

p/c, i + 2
√

p/c, . . . , i + (n/m − 1)
√

p/c}.
Output: n-by-n permutation matrix V and triangular matrices L, U such that V · A = L · U and for each

i, j, Pijk owns n√
pc

-by- n√
pc

blocks Llij and Uij for each i, li, and j.

for s = 0 to
√

p/c − 1 do
Pisk compute [Vs] = CA-Pivot

k
√

p/c+i
(A

k
√

p/c+i,s
,n,m)

Pijk pivots rows between A
k
√

p/c+i,j
and each copy of Asj stored on each Psjk according to Vs

Ass := V ′T
s LssUss /* factorize top left small block redundantly using GEPP */

Usj := L−1
ss V ′

s Asj for j > s /* do TRSMs on top small block row redundantly */

LT
is := U−T

ss AT
is for i > s /* do TRSMs on the top part of a small block column redundantly */

LT
k
√

p/c+i,s
:= U−T

ss AT
k
√

p/c+i,s
/* do TRSMs on rest of small block column */

Pisk broadcasts Lis and L
k
√

p/c+i,s
to all Pijk

Psjk broadcasts Usj to all Pijk

Aij := Aij − Lis · Usj for i, j > s /* update top big block redundantly */

A
k
√

p/c+i,j
:= A

k
√

p/c+i,j
− L

k
√

p/c+i,s
· Usj for j > s /* update remaining big blocks */

Update V with Vs

end

Pijk broadcasts L
k
√

p/c+i,j
to Pijk′ for all k′

which always requires communication unless the entire column is owned by one
processor. However, tournament pivoting (CA-pivoting) [9], is a new LU pivot-
ing strategy that can satisfy the general communication lower bound. We will
incorporate this strategy into our 2.5D LU algorithm.

CA-pivoting simultaneously determines b pivots by forming a tree of factor-
izations as follows,

1. Factorize each 2b-by-b block [A0,2k, A0,2k+1]T = PT
k LkUk for k ∈ [0, n

2b − 1]
using GEPP.

2. Write Bk = Pk[A0,2k, A0,2k+1]T , and Bk = [B′
k, B′′

k ]T . Each B′
k represents

the ’best rows’ of each sub-panel of A.
3. Now recursively perform steps 1-3 on [B′

0, B
′
1, ..., B

′
n/(2b)−1]

T until the num-
ber of total best pivot rows is b.

For a more detailed and precise description of the algorithm and stability analysis
see [9,12].

To incorporate CA-pivoting into our LU algorithm, we would like to do piv-
oting with block size b = n/

√
pc. The following modifications need to be made

to accomplish this,

1. Previously, we did the big-block side panel Tall-Skinny LU (TSLU) via
a redundant top block LU-factorization and TRSMs on lower blocks. To
do pivoting, the TSLU factorization needs to be done as a whole rather
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Algorithm 5. [V, L, U ] = 2.5D-LU-pivot-factorization(A,n,p,c)
Input: n-by-n matrix A distributed so that for each l, m, (n/c)-by-(n/c) block Alm is spread over Pij0 in

(n/
√

pc)-by-(n/
√

pc) blocks.

Output: n-by-n matrices V and triangular L, U such that V · A = L · U and for each l, m, (n/c)-by-(n/c)

blocks Llm, Ulm are spread over Pij0 .

S1:n,1:n := 0 /* S will hold the accumulated Schur complemented updates to A */

Pij0 broadcasts its portion of A to each Pijk

for t = 0 to c − 1 do
[Vt, Lt:n/c−1,t, Utt] = 2.5D-TSLU-pivot-factorization(At:c−1,t ,n − tn/c,n/c,p,c)

Update V with Vt

Swaps any rows as required by Vt to (A, S)t,1:c−1 /* pivot remainder of matrix redundantly */

All-reduce (sum and subtract from A) St,t+1:c−1 /* reduce big block top panel */

[Ut,t+k+1] = 2D-TRSM(Ltt,At,t+k+1) /* perform TRSMs on (n/c)-by-(n/c) blocks */

Pijk broadcasts its portion of Ut,t+k+1 to each Pijk′ for all k′ /* all-gather top panel */

if �k
√

p/c3� ≤ j < �(k + 1)
√

p/c3� then /* broadcast sub-panels of L */

Pijk broadcasts its portion of Lt+1:c−1,t to each Pij′k for all j′

end

if �k
√

p/c3� ≤ i < �(k + 1)
√

p/c3� then /* broadcast sub-panels of U */

Pijk broadcasts its portion of Ut,t+1:c−1 to each Pi′jk for all i′

end

Pijk computes and accumulates its portion the Schur complement update S /* multiply sub-panels */

All-reduce (sum and subtract from A) St+1:c−1,t+1 /* reduce next big block vertical panel */

end

than in blocks. We can still have each processor layer compute a different
’TRSM block’ but we need to interleave this computation with the top block
LU factorization and communicate between layers to determine each set of
pivots as follows (Algorithm 4 gives the full TSLU algorithm),
(a) For every small block column, we perform CA-pivoting over all layers to

determine the best rows.
(b) We pivot the rows within the panel on each layer. Interlayer communi-

cation is required, since the best rows are spread over the layers (each
layer updates a subset of the rows).

(c) Each ij processor layer redundantly performs small TRSMs and the
Schur complement updates in the top big block.

(d) Each ij processor layer performs TRSMs and updates on a unique big-
block of the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this
redundantly on each layer, since each layer will have to contribute to the
update of the entire Schur complement.

3. We still reduce the side panel (the one we do TSLU on) at the beginning
of each step but we postpone the reduction of the top panel until pivoting
is complete. Basically, we need to reduce the ’correct’ rows which we know
only after the TSLU.
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Fig. 4. 2.5D LU with pivoting panel factorization (step A in Figure 3)

Algorithm 5 details the entire 2.5D LU with CA-pivoting algorithm and Figure 4
demonstrates the workflow of the new TSLU with CA-pivoting. Asymptotically,
2.5D LU with CA-pivoting has almost the same communication and computa-
tional cost as the original algorithm. Both the flops and bandwidth costs gain an
extra asymptotic log p factor (which can be remedied by using a smaller block
size and sacrificing some latency). Also, the bandwidth cost derivation requires
a probabilistic argument about the locations of the pivot rows, however, the
argument should hold up very well in practice. For the full cost derivations of
this algorithm see Appendix C in [19].



104 E. Solomonik and J. Demmel

7 Performance Results

We implemented 2.5D matrix multiplication and LU factorization using MPI [13]
for inter-processor communication. We perform most of the sequential work us-
ing BLAS routines: DGEMM for matrix multiplication, DGETRF, DTRSM,
DGEMM, for LU. We found it was fastest to use provided multi-threaded BLAS
libraries rather than our own threading. All the results presented in this paper
use threaded ESSL routines.

We benchmarked our implementations on a Blue Gene/P (BG/P) machine lo-
cated at Argonne National Laboratory (Intrepid). We chose BG/P as our target
platform because it uses few cores per node (four 850 MHz PowerPC proces-
sors) and relies heavily on its interconnect (a bidirectional 3D torus with 375
MB/sec of achievable bandwidth per link). On this platform, reducing inter-node
communication is vital for performance.

BG/P also provides topology-aware partitions, which 2.5D algorithms are able
to exploit. For node counts larger than 16, BG/P allocates 3D cuboid partitions.
Since 2.5D algorithms have a parameterized 3D virtual topology, a careful choice
of c allows them to map precisely to the allocated partitions (provided enough
memory).

Topology-aware mapping can be very beneficial since all communication hap-
pens along the three dimensions of the 2.5D virtual topology. Therefore, net-
work contention is minimized or, in certain scenarios, completely eliminated.
Topology-aware mapping also allows 2.5D algorithms to utilize optimized line
multicast and line reduction collectives provided by the DCMF communication
layer [11,17].

We study the strong scaling performance of 2.5D algorithms on a 2048 node
partition (Figures 5(a), 6(a), 7(a)). The 2048 node partition is arranged in a 8-by-
8-by-32 torus. In order to form square layers, our implementation uses 4 processes
per node (1 process per core) and folds these processes into the X dimension.
Now, each XZ virtual plane is 32-by-32. We strongly scale 2.5D algorithms from
256 nodes c = Y = 1 to 2048 nodes c = Y = 8. For ScaLAPACK we use smp or
dual mode on these partitions, since it is not topology-aware.

We also compare performance of 2.5D and 2D algorithms on 16,384 nodes
(65,536 cores) of BG/P. The 16,384 node partition is a 16-by-32-by-32 torus. We
run both 2D and 2.5D algorithms in SMP mode. For 2.5D algorithms, we use
c = 16 YZ processor layers.

7.1 2.5D Matrix Multiplication Performance

Our 2.5D matrix multiplication implementation is a straight-forward adjustment
of Cannon’s algorithm. We assume square and correctly padded matrices, as
does Cannon’s algorithm. A more general 2.5D matrix multiplication algorithm
ought to be built on top of a more general 2D algorithm (e.g. the SUMMA
algorithm [20]). However, our algorithm and implementation provide an idealistic
and easily reproducible proof of concept.
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Fig. 5. Performance of 2.5D MM on BG/P

Figure 5(a) demonstrates that 2.5D matrix multiplication achieves better
strong scaling than its 2D counter-part. However, both run at high efficiency
(over 50%) for this problem size, so the benefit is minimal. The performance of
the more general ScaLAPACK implementation lags behind the performance of
our code by a large factor.

Figure 5(b) shows that 2.5D matrix multiplication outperforms 2D matrix
multiplication significantly for small matrices on large partitions. The network
latency and bandwidth costs are reduced, allowing small problems to execute
much faster (up to 2.6X for the smallest problem size).

7.2 2.5D LU Performance

We implemented a version of 2.5D LU without pivoting. While this algorithm
is not stable for general dense matrices, it provides a good upper-bound on the
performance of 2.5D LU with pivoting. The performance of 2.5D LU is also
indicative of how well a 2.5D Cholesky implementation might perform.

Our 2.5D LU implementation has a structure closer to that of Algorithm 5
rather than Algorithm 3. Processor layers perform updates on different big-block
subpanels of the matrix as each corner small block gets factorized.

Our 2.5D LU implementation made heavy use of subset broadcasts (multi-
casts). All communication is done in the form of broadcasts or reductions along
axis of the 3D virtual topology. This design allowed our code to utilize efficient
line broadcasts on the BG/P supercomputer.

Figure 6(a) shows that 2.5D LU achieves more efficient strong scaling than
2D LU. 2D LU maps well to the 2D processor grid on 256 nodes. However, the
efficiency of 2D LU suffers when we use more nodes, since the network parti-
tion becomes 3D. On 3D partitions, the broadcasts within 2D LU are done via
topology-oblivious binomial trees and suffer from contention. For this problem
configuration, 2.5D LU achieves a 2.2X speed-up over the 2D algorithm on 2048
nodes.
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Fig. 7. Performance of 2.5D LU with pivoting on BG/P

Figure 6(b) demonstrates that 2.5D LU is also efficient and beneficial at a
larger scale. However, the efficiency of both 2D and 2.5D LU falls off for small
problem sizes. The best efficiency and relative benefits are seen for the largest
problem size (n = 131, 072). We did not test larger problem sizes, since execution
becomes too time consuming. However, we expect better performance and speed-
ups for larger matrices.

7.3 2.5D LU with CA-Pivoting Performance

2.5D LU performs pivoting in two stages. First, pivoting is performed only in
the big-block panel. Then the rest of the matrix is pivoted according to a larger,
accumulated pivot matrix. We found it most efficient to perform the subpanel
pivoting via a broadcast and a reduction, which minimize latency. For the rest of
the matrix, we performed scatter and gather operations to pivot, which minimize
bandwidth. We found that this optimization can also be used to improve the
performance of 2D LU and used it accordingly.
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Figure 7(a) shows that 2.5D LU with CA-pivoting strongly scales with
higher efficiency than its 2D counter-part. It also outperforms the ScaLAPACK
PDGETRF implementation. Though, we note that ScaLAPACK uses partial
pivoting rather than CA-pivoting and therefore computes a different answer.

On 16,384 nodes, 2D and 2.5D LU run efficiently only for larger problem
sizes (see Figure 7(b)). The latency costs of pivoting heavily deteriorate the
performance of the algorithms when the matrices are small. Since, 2.5D LU
does not reduce latency cost, not much improvement is achieved for very small
matrix sizes. However, for medium sized matrices (n = 131, 072) over 2X gains
in efficiency are achieved. We expect similar trends and better efficiency for even
larger matrices.

The absolute efficiency achieved by our 2.5D LU with CA-pivoting algorithm is
better than ScaLAPACK and can be improved even further. Our implementation
does not exploit overlap between communication and computation and does
not use prioritized scheduling. We observed that, especially at larger scales,
processors spent most of their time idle (waiting to synchronize). Communication
time, on the other hand, was heavily reduced by our techniques and was no longer
a major bottleneck.

8 Future Work

Preliminary analysis suggests that a 2.5D algorithm for TRSM can be written
using a very similar parallel decomposition to what we present in this paper for
LU. We will formalize this analysis.

Our 2.5D LU algorithm can also be modified to do Cholesky. Thus, using
Cholesky-QR we plan to formulate many other numerical linear algebra opera-
tions with minimal communication. As an alternative, we are also looking into
adjusting the algorithms for computing QR, eigenvalue decompositions, and the
SVD which use Strassen’s algorithm [10] to using our 2.5D matrix multiplica-
tion algorithm instead. Further, we plan to look for the most efficient and stable
2.5D QR factorization algorithms. In particular, the 2D parallel Householder al-
gorithm for QR has a very similar structure to LU, however, we have not found
a way to accumulate Householder updates across layers. The Schur complement
updates are subtractions and therefore commute, however, each step of House-
holder QR orthogonalizes the remainder of the matrix with the newly computed
panel of Q. This orthogonalization is dependent on the matrix remainder and is
a multiplication, which means the updates do not commute. Therefore it seems
to be difficult to accumulate Housholder updates onto multiple buffers.

We plan to implement a more general 2.5D MM algorithm based on
SUMMA [20]. We also plan to further tune our 2.5D LU algorithms. Incorporat-
ing better scheduling and overlap should improve the absolute efficiency of our
implementation. We hope to apply these implementations to accelerate scientific
simulations that solve distributed dense linear algebra problems. Our motivat-
ing scientific domain has been quantum chemistry applications, which spend a
significant fraction of execution time performing small distributed dense matrix
multiplications and factorizations.
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Herbert Cornelius, and Jacob Barhen

Topic chairs

Modern multicore and manycore systems offer impressive performance for var-
ious applications. However, achieving this performance is a challenging task.
While multicore and manycore processors alleviate several problems that are
related to single-core processors – known as memory wall, power wall, or
instruction-level parallelism wall – they raise the issue of the programmability
wall. The multicore and manycore programmability wall calls for new parallel
programming methods and tools. Therefore, this topic focuses on novel solutions
for efficient programming of multicore and manycore processors in the context
of general-purpose and embedded systems.

The quality of submissions was very high. Papers have been selected based
on the recommendations of at least four reviewers. The nine accepted papers
address a representative set of issues related to the multicore and manycore
programming.

The paper – ”Hardware and Software Tradeoffs for Task Synchronization on
Manycore Architectures” by Yonghong Yan, Sanjay Chatterjee, Daniel Orozco,
Elkin Garcia, Zoran Budimlic, Jun Shirako, Robert Pavel, Guang R. Gao, and
Vivek Sarkar – describes an implementation of the ”phasers” synchronization
construct on the IBM Cyclops64 manycore processor.

In the paper – ”OpenMPspy: Leveraging Quality Assurance for Parallel Soft-
ware” by Victor Pankratius, Fabian Knittel, Leonard Masing, and Martin Walser
– authors describe OpenMPspy. This tool may be used for detecting mistakes
that occur while the code is typed in Eclipse and for collecting statistics on the
use of OpenMP language constructs.

The paper – ”A Generic Parallel Collection Framework” by Aleksandar
Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky – describes an ap-
proach for development of parallel containers such as parallel arrays or hash
maps.

In the paper – ”Progress Guarantees when Composing Lock-free Objects” by
Nhan Nguyen Dang and Philippas Tsigas – authors describe a novel synchroniza-
tion mechanism for composing lock-free data objects that guarantees lock-free
progress.

The paper – ”Engineering a multicore Radix Sort” by Jan Wassenberg and
Peter Sanders – describes a novel variant of radix sorting algorithm that is based
on a micro-architecture-aware variant of counting sort.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 110–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In the paper – ”Accelerating code on multicores with FastFlow” by Marco
Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Mas-
simo Torquati – authors describe an approach for parallelization of sequential
codes via thread-offloading. Basically, a thread uses other threads as software
accelerators.

The paper – ”A Novel Shared-Memory Thread-Pool Implementation for Hy-
brid Parallel CFD Solvers” by Jens Jgerskpper and Christian Simmendinger
– describes an approach for shared-memory parallelization of grid-based CFD
solvers.

In the paper – ”A Fully Empirical Autotuned Dense QR Factorization for
Multicore Architectures” by Emmanuel Agullo, Jack Dongarra, Rajib Nath, and
Stanimire Tomov – authors describe an empirical approach for tuning dense
linear algebra libraries on multicore architectures.

The paper – ”Parallelizing a Real-Time Physics Engine Using Transactional
Memory” by Jaswanth Sreeram and Santosh Pande – describes experiences of
authors in parallelizing the ODE physics engine that is used in computer games.

We are grateful to all authors for submitting their high-quality papers to this
topic and to reviewers for their efforts to evaluate submitted papers. Further-
more, we would like to acknowledge the encouragement and support of conference
chairs Emmanuel Jeannot, Raymond Namyst, and Jean Roman.
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Abstract. Manycore architectures – hundreds to thousands of cores per
processor – are seen by many as a natural evolution of multicore proces-
sors. To take advantage of this massive parallelism in practice requires
a productive parallel programming model, and an efficient runtime for
the scheduling and coordination of concurrent tasks. A critical prerequi-
site for an efficient runtime is a scalable synchronization mechanism to
support task coordination at different levels of granularity.

This paper describes the implementation of a high-level synchroniza-
tion construct called phasers on the IBM Cyclops64 manycore processor,
and compares phasers to lower-level synchronization primitives currently
available to Cyclops64 programmers. Phasers support synchronization of
dynamic tasks by allowing tasks to register and deregister with a phaser
object. It provides a general unification of point-to-point and collective
synchronizations with easy-to-use interfaces, thereby offering productiv-
ity advantages over hardware primitives when used on manycores. We
have experimented with several approaches to phaser implementation
using software, hardware and a combination of both to explore their
portability and performance. The results show that a highly-optimized
phaser implementation delivered comparable performance to that ob-
tained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

1 Introduction

Manycore architectures, with hundreds to thousands of cores per processor, are
seen by many as a natural evolution of multicore processors. In practice, a pro-
ductive parallel programming model, and an efficient runtime for thread execu-
tion and coordination, are essential to take advantage of this massive parallelism.
Programming models using dynamic task parallelism, such as the ones intro-
duced in the programming languages of the DARPA HPCS program (X10 [1] and
Chapel [2]), present a promising approach to productive parallel programming
on manycore processors. However, the overhead of communication and synchro-
nization between concurrent tasks typically presents one of the greatest obstacles

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 112–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to achieving high performance and scalability on parallel systems. To support
diverse workloads on manycore architectures, synchronization mechanisms that
provide high-level operations such as barrier using different granularity levels,
would be highly desirable.

Phasers, first introduced in the Habanero-Java multicore programming sys-
tem [3], are synchronization constructs for task parallel programs. Phasers unify
barrier operation and point-to-point synchronization in a single interface, and
feature deadlock-freedom and phase-ordering. The current Habanero-Java phaser
implemented on a Java virtual machine does not leverage hardware support for
synchronization and only works on top of a work-sharing runtime, a much less
scalable choice for task parallel runtime than workstealing [4]. In this paper,
we present the evaluations of phaser implementations in a workstealing runtime
using a C-based Habanero-C parallel programming language. Using the IBM
Cyclops64 (C64) manycore architecture [5], we have experimented with several
approaches to phaser implementations using software, hardware, and a combina-
tion of both to explore their portability and performance. The results show that
a highly-optimized phaser implementation delivered comparable performance to
that obtained with lower-level synchronization primitives. We also demonstrate
the success of the hardware optimizations proposed for phasers.

The contributions of this work includes the following. First, we have provided
a highly-optimized spin-based implementation of phasers. It is software-based
and portable across POSIX-compliant systems. Secondly, we have optimized a
phaser implementation that leverages hardware support for synchronization to
deliver superior performance over the software approach while maintaining the
same interfaces and features. Finally, we have provided a runtime that is able to
switch between software and hardware based implementations to better leverage
hardware support, if available.

In the rest of the paper, Section 2 presents the Habanero-C task parallel
programming language, and the portable software implementation of phasers.
Section 3 describes the phaser implementations on Cyclops64, taking advantage
of its hardware features. Section 4 presents the experimental results. Finally,
Section 5 discusses related work and Section 6 concludes the paper.

2 Asynchronous Task Parallelism and Software Phasers

Phasers were implemented in the Habanero-C research language developed at
Rice University. Habanero-C language has two basic primitives, borrowed from
X10 [1], for asynchronous task parallel programming: async and finish. The async
statement, async 〈stmt〉, causes the parent task to fork a new child task that may
execute 〈stmt〉 in parallel with the parent task. Execution of the async statement
returns immediately, i.e. the parent task does not wait for the child task to
complete. The finish statement, finish 〈stmt〉, performs a join operation on all
the tasks created within 〈stmt〉, including transitively spawned tasks.

The async and finish constructs are simpler than the conventional pthread create
and pthread join APIs, and more flexible than the Cilk spawn and sync key-
words [6] and OpenMP task and taskwait directives. For example, the sync or
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1:   finish { 
2:      new_phaser(SIGNAL_WAIT); 
3:      for (int j=0;  j<ntasks;  j++)  
4:         async phased IN(j) { 
5:             for (int i=0; i<innerreps; i++) { 
6:                delay(delaylength); 
7:                printf("Task %d at step %d!\n", j, i); 
8:                next; } 
9:   }     } 

(b) Barrier Example Using Phasers

Fig. 1. Phaser Mode Lattice and Barrier Example

taskwait constructs can only synchronize tasks that are created within the same
function scope. Using async and finish as a foundation, we were able to easily
experiment with different choices of task parallelism and target platforms.

2.1 Asynchronous Task Synchronization Using Phasers

There are several nice features to use phasers as synchronization constructs with
the async and finish task parallel programming model. First, phasers unify collec-
tive and point-to-point synchronization in a single set of programming interfaces.
The interfaces are ease of use, improving programmer productivity in paral-
lel programming and debugging. Secondly, phasers have two safety properties:
deadlock-freedom and phase-ordering [3]. These properties, along with the gener-
ality of its use for dynamic parallelism, distinguish phasers from other synchro-
nization constructs in past works including barriers, counting semaphores [7],
and X10 clocks [1]. Thirdly, in implementation, phasers have been integrated
with a workstealing scheduler that was used in Habanero-C runtime. As a new
contribution of this paper, the implementation provided reference solutions to
how to map asynchronous tasks with hardware threads when performing syn-
chronization operations. The details of these solutions are discussed in Section 3.

Figure 1(b) shows an example of using phasers to implement a barrier among
multiple asynchronously created tasks. The async statement in line 4 and the
j-for loop create ntasks child tasks, each registering with the phaser created in
line 2 in the same mode as in the master task. The next statement in line 8 is
the actual barrier wait; each task waits until all tasks arrive at this point in each
iteration of the i-for loop. The first next operation of each task causes itself to
wait for the master task to do next operation or to deregister. When the master
task reaches the end of the finish scope, it deregisters from the phaser so all child
tasks continue and synchronize by themselves in each iteration.

2.2 Software Phasers in Habanero-C

As a synchronization object for dynamic tasks, a phaser has two phases, the
signal phase and wait phase, each represented by a counter. Given the mode a
task registers with a phaser, a phaser operation could be either or both of a
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signal and a wait operation, which advances the corresponding phase counter. A
task registration is represented by a unique synchronization object, named sync,
which contains the registration mode and the current signal and wait phase.
In order to guarantee deadlock freedom, a child task can only register in a
mode that is the same as or below the mode in the parent task according to
the phaser mode lattice shown in Figure 1(a). When signaling on a phaser, a
task simply increments the signal phase in the sync object. The next operation
has the effect of advancing each phaser with which a task registers to its next
phase, thereby synchronizing all tasks registering with the same phaser. Details
operation semantics are described in [3].

Hierarchical Phaser Implementation: The phaser implementation discussed
above has used a single master task to advance to its next phase. While the single
master approach provides an effective solution for modest levels of parallelism, it
quickly becomes a scalability bottleneck as the number of tasks increases. To ad-
dress this limitation, we have used an approach based on hierarchical phasers [8]
for scalable synchronization.

The hierarchical phaser employs a tree of sub-masters, instead of a single
master, as in the case of a flat phaser. Tree-based barriers have the advantage
that gather operations in the same level (tier) can be executed in parallel by sub-
masters. Also, in cases when the hierarchy of sub-masters follows the natural
hierarchy in the hardware, each sub-master will leverage data locality among
workers in its sub-group. Although the initialization overhead of building a tree
is greater than the flat phasers, the runtime of hierarchical phasers outperform
the flat phasers heavily on higher number of tasks, as discussed soon in Section 4.

3 Hardware Support in Phasers

The counter-based phaser implementation is a spin-based software approach, also
referred to as busy-wait. It consumes both CPU cycles and memory bandwidth,
and may quickly become a scalability bottleneck when a large number of tasks
are involved in a phaser operations, as in manycores. Recent trends in manycore
processor design use tiled architectures to reduce the dependency on the memory
bus [9] and to localize synchronizations. In this Section, we explore a phaser
implementation that leverages hardware support for synchronization using the
IBM Cyclops64 (C64) manycore chip [5] as our evaluation platform.

3.1 Cyclops64 Manycore Architecture

The IBM Cyclops64 is a massively parallel architecture initially developed by
IBM as part of the Blue Gene project. As shown in Figure 2, a C64 processor
features 80 processing cores on a chip, with two hardware thread units per core
that share one 64-bit floating point unit. Each core can issue one double precision
floating point Multiply Add instruction per cycle, for a peak performance of 80
GFLOPS per chip when running at 500MHz. The processor chip includes a high-
bandwidth on-chip crossbar network with a total bandwidth of 384 GB/s. C64
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(a) C64 Chip Architecture (b) C64 Memory Hierarchy

Fig. 2. Cyclops64 Architecture Details

employs three-levels of software-managed memory hierarchy, with the Scratch-
Pad (SP) currently used to hold thread-specific data. Each hardware thread unit
has a high-speed on-chip SRAM of 32KB that can be used as a cache.

C64 utilizes a dedicated signal bus (SIGB) that allows thread synchronization
without any memory bus interference. The SIGB connecting all threads on a chip
can be used for broadcast operations taking less than 10 clock cycles, enabling
efficient barrier operations and mutual exclusion synchronization. Fast point-to-
point signal/wait operations are directly supported by hardware interrupts, with
costs on the order of tens of cycles.

The C64 tool chain includes a highly efficient threading library, named TiNy-
Threads (TNT) [5], which uses the C64 hardware support to implement thread-
ing primitives. Additionally, TNT provides APIs that can be used to access
the hardware synchronization primitives to allow for suspension of threads, and
including and excluding specific threads from barriers, as shown in Table 1.

Table 1. Cyclops64 TNT APIs for Hardware Synchronization Primitives

Name Description

tnt suspend() Suspend current thread

tnt awake (const tnt desc t) Awaken a suspended thread

tnt barrier include (tnt barrier t *) Join in the next barrier wait operation

tnt barrier exclude (tnt barrier t *) Withdraw from the next barrier wait operation

tnt barrier wait (tnt barrier t *) Wait until all threads arrive this point

3.2 Optimization Using Hardware Barriers

Barrier operations using phasers can be optimized in manycore architectures
that offer direct hardware support for barriers, such as C64. The phaser runtime
is able to detect if a phaser operation specified by the user program is equiv-
alent to a barrier operation by checking whether all phasers are registered in
SIGNAL WAIT mode. If so, the underlying hardware support is used directly
to perform the barrier operation.
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Implementing a hardware barrier in a phaser requires threads to include them-
selves in the barrier by calling tnt barrier include. This requirement is particularly
interesting in a workstealing environment due to the fact that the worker that
executes the task which is participating in the barrier, has to include itself in
the hardware barrier. In workstealing, we cannot include the worker a priori in
the barrier. The Habanero-C runtime only includes a worker in the hardware
barrier when it is ready to execute a task.

3.3 Optimization Using Thread Suspend and Awake

The TNT API provides functions to suspend a thread and to awake a sleeping
thread. A suspend instruction temporarily stops execution in a non-preemptive
way, and a signal instruction awakes the sleeping task. Using thread suspend and
awake mechanism in place of the busy-wait approach reduces memory bandwidth
pressure because all waiting tasks can suspend themselves instead of spinning.
The master can collect all the signals from waiting tasks and finally signals the
suspended tasks to resume the execution.

The C64 chip provides an interesting hardware feature called the “wake-up
bit”. When a thread tries to wake up another thread, it sets the “wake-up bit” for
that thread. This enables a thread to store a wake-up signal. Hence, if a thread
tries to suspend itself after a wake-up signal is sent, it wakes up immediately and
the suspend effectively becomes a no-op. This feature is fully utilized by phasers
to easily move from phase to phase without worrying about a thread that can
execute a suspend after a wake up signal.

3.4 Adaptive Phasers

Adaptability is one of the main features of our phaser implementation. As ex-
plained before, the runtime can directly detect the synchronization operation be-
ing performed and make a reasonable decision as to how to execute it. A phaser
operation can switch to the optimized versions that utilize hardware primitives.
These details of how a phaser operation is executed are hidden from the user.

Phaser operations can be implemented in a number of ways to take advan-
tage of the particular characteristics of the underlying hardware. Even when a
phaser has all tasks registered in SIGNAL WAIT mode, it is not guaranteed that
a hardware barrier will be used. A task that is registered to support split-phase
or fuzzy barriers may signal ahead of its next operation. When a task registers
as SIGNAL ONLY or WAIT ONLY on a phaser that has been using a hardware
barrier, our runtime detects such a scenario and switches to software mode.

The runtime chooses the best mode of operation, depending on the current
program state and available features. Each implementation alternately exhibits
particular traits: maximum portability and reasonable performance is achieved
with a busy-wait implementation; low bandwidth and low power usage are fea-
tured in the suspend-awake implementation.
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3.5 Memory Optimizations

Phaser and sync objects contain volatile phase counters, and phaser operations
involve frequent read and write of those counters in both software based busy-
wait approach and hardware-optimized implementations. So low latency and
high bandwidth of the memory system are key to the performance of phasers.

The C64’s memory hierarchy, as seen in Figure 2, is similar to hardware
cache in regular commodity CPUs. The power of using it comes from program
manageability as our runtime itself can decide which synchronization objects
need to reside on or move to the high-speed SRAM. Yet there is a tradeoff in
this software-managed caching approach because the DRAM is limited in its
sizes and shared with stack in C64. For a simple DRAM-optimization, the run-
time allocates on SRAM, synchronization objects that contain spinning counters.
More complex optimizations use heuristic or historical information to identify
frequently-accessed data and move them to SRAM. Further memory manage-
ment by the Habanero-C runtime, such as allocating a list of synchronization
objects in a dense array, provide another level of memory optimizations on C64.

4 Implementation and Experiments

Habanero-C includes a workstealing runtime and a compiler for the async and
finish task parallel programming constructs. The C64 manycore processor de-
scribed in Section 3.1 was used as experimental platform for this study. This
work is the result of a joint research effort between Rice University and Univer-
sity of Delaware (UDel). Figure 3 shows a description of the infrastructure used
for this project as well as the contributions of each institution.

Generated
C ProgramHabanero-C

Applications
Habanero-C 

Compiler
C64 Toolchain

and TNT Runtime

Habanero-C
Runtime ETIRiceUDel and Rice

Rice and UDel

C64 Program

Experiments run on C64 Simulator 
and C64 Machine by UDel

Conventions: Software 
Tool Source Code Executable

Fig. 3. Collaboration and Software Infrastructure

4.1 Implementation and Experimental Benchmarks

Habanero-C compiler was implemented on top of the ROSE source-to-source
compiler framework [10]. The compiler transforms async and finish statements to
appropriate library and runtime calls that create and enqueue tasks, and calls
to ensure proper task termination within each finish scope.

Habanero-C runtime contains a number of worker threads; each worker thread
maintains a double-ended queue (deque). A worker enqueues and dequeues tasks
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from the tail end of its deque when creating and executing local tasks, respec-
tively. Other workers steal tasks from the head of the deque, when they do not
have local tasks to work on. While this approach to the workstealing runtime
is similar to the Cilk runtime [6], task creation and enqueuing policy when en-
countering an async is different from Cilk. In Cilk’s “work-first” policy, the code
after the async task body (the continuation) is pushed onto the deque while the
current worker continues the execution of the async body. In our policy, which
is referred to as “help first” [4], the async task itself is pushed onto the deque
while the current worker continues the execution of the continuation.

The evaluation was conducted using microbenchmarks and common appli-
cations. The microbenchmarks include barrier and threadring for evaluating
phaser barrier and point-to-point synchronizations. The applications include
two-dimensional finite difference time domain (FDTD2D), and Successive Over
Relaxation (SOR), to study the performance impact of synchronization overhead
using software and hardware approaches, and their tradeoffs.

4.2 Hierarchical Phasers and Memory Optimizations

In Figure 4, we show the barrier overhead of using software flat phasers versus
hierarchical phasers, and phasers residing on SRAM versus on DRAM. The dra-
matic scalability improvements of using hierarchical phasers (4-degree fan-out
hierarchy) as compared to flat phasers are obvious. Placing phasers in SRAM
results in large (one to two orders of magnitude) overhead reduction for both flat
phaser and hierarchical phasers. While this performance does not imply superi-
ority of SRAM over DRAM implementation in general (spin-based solutions may
have adverse effects as well), we use the SRAM hierarchical phasers as baseline
to compare with other hardware-based implementations in later sections.

2 4 8 16 32 64 128
SRAM-flat 1.882 2.343 3.204 4.877 8.122 14.836 29.178
DRAM-flat 3.73 5.19 8.66 26.14 113.56 416.82 1681.59
SRAM-tree 2.164 2.651 3.469 3.808 4.465 4.734 5.678
DRAM-tree 4.06 7.1 10.37 14.35 21.33 41.2 89.85
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4.3 Barrier and Point-to-Point Microbenchmarks

The barrier microbenchmark was based on the EPCC OpenMP syncbench bench-
mark that was developed for evaluating OpenMP barrier overhead. When using
phasers as barriers, barrier wait operations are performed by phaser next op-
erations. A task can dynamically join and leave a barrier wait operation by
registering and deregistering with the phaser that is created (with at least SIG-
NAL WAIT capability) for this operation. This is different from OpenMP barrier
that only allows a fixed number of threads involved in a barrier from the begin-
ning to the end of a parallel region. OpenMP does not permit the use of barriers
within parallel loops, either.
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Fig. 5. Barrier and Point-to-Point Microbenchmarks

Figure 5(a) shows the barrier overheads using four phaser implementations
on C64. The implementation that leverages the C64 hardware barrier incurs
much lower overhead than that of the software barrier. The reason behind this
is the phaser implementation switches to hardware barriers whenever the tasks
registering with the phaser are actually perform the barrier wait operations.
The implementation that uses suspend/awake performs worse than software
phasers because of the sequentially accumulated cost of hardware interrupt in
suspend/awake implementation. For software hierarchical phasers, both signal
gathering and wait operations are performed in parallel, thus reducing overhead.

The threadring microbenchmark evaluates point-to-point signal-wait opera-
tion of two tasks. In this program, a group of tasks form a signal ring; each task
waits on the signal from the previous task and signals the next task after receiv-
ing the signal. As shown in Figure 5(b), the memory consumption of the software
busy-wait approach has little impact on the time required to complete a round
of the ring. In fact, the implementation using software phasers performs slightly
better than the one using hardware interrupts. These imply the effectiveness of
using the portable software-based solution for point-to-point synchronizations.

The high performance obtained using the busy-wait implementation is due in
part to the high bandwidth and low latency of the local on-chip memory in C64.
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Although the other techniques in our experiments use hardware support, they
still suffer from overhead in the supporting software required to use the hardware
primitives. In contrast, busy-wait uses a very simple polling mechanism that does
not require complex software support.

4.4 Applications

A simulation of propagation of electromagnetic waves that uses the two-
dimensional finite difference time domain (FDTD2D) algorithm was used to
test the effectiveness of phasers for commonly used scientific applications. The
FDTD algorithm used [11] is an excellent choice to study synchronization and
parallelization techniques for manycore architectures; the algorithm has abun-
dant parallelism and its complexity depends on the physical phenomena that it
models, ranging from a simple read-modify-write of an array to numerical in-
tegration of physical variables. The experiments simulate the propagation of a
wave in two dimensions, with an implementation that results in a two dimen-
sional array where each element is updated several times using data from the
array elements that surround it. A full description of the FDTD algorithm used
here can be found in [12].

The case presented in Figure 6(a) is characterized by a constant amount of
computation per array element. Barriers have been successfully used to synchro-
nize multiple threads executing the program, since all threads share approxi-
mately the same amount of workload.
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Fig. 6. Applications Performance Using Different Implementations

Figure 6(a) shows FDTD2D performance using following implementations:

1. async/finish: use finish to join tasks as barrier operations; tasks are recreated
via async and joined in each iteration. This approach is commonly used in
task parallel programming language, such as Cilk.

2. async/finish+phaser: use phaser to perform barrier wait; tasks are created
once, and then coordinated via phasers in each iteration. Tasks are termi-
nated when the computation completes.
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3. async/finish+hardware barrier: similar to async/finish+phaser, but using
hardware barrier to perform barrier wait.

The implementation using phasers doubles the performance of the one using fin-
ish for synchronization. The reason behind this is that finish is a coarse-grained
synchronization approach, and it suffers from the runtime overhead for creating
and scheduling tasks. Thus algorithms that require fine grained synchronization
with large number of iterations should use lower-overhead, finer-grained task co-
ordination mechanism such as phasers. The similar performance between the one
using phasers and the one using hardware barriers is because phasers adaptively
switch to hardware barrier when it detects a barrier wait should be performed.

Another application we used for the evaluation is Red-Black Successive Over-
Relaxation (SOR). SOR is a method of solving partial differential equations using
a variant of Gauss Seidel method. Task synchronization patterns are similar to
FDTD2D, requiring barrier operations to synchronize each iteration. Figure 6(b)
shows similar executions time for phasers and hardware barriers, demonstrating
the adaptivity of our phaser implementation to the underlying hardware.

5 Related Work

Cilk [6], Cilk++, and OpenMP 3.0 introduced task parallelism at the program-
ming language level. The Cilk’s sync and OpenMP’s taskwait constructs, related
to finish in Habanero-C, are global barrier synchronization points indicating that
the execution of current task cannot proceed until all previously spawned tasks
have completed. Using this style of synchronization, the runtime efficiency de-
pends heavily on the granularity of parallelism built into the program.

X10 [1] and Chapel [2] provide constructs for dynamic task creation and con-
structs for task synchronization. X10 allows for the barrier-style phase advancing
among all participating tasks using the next operation but it lacks of the point-
to-point signal-wait style coordination capability that is available in phasers.
Chapel introduce sync variables for programming producer-consumer coordina-
tion among tasks. Chapel does not provide direct language construct for barrier
operations, or phase-ordered synchronization.

The JUC CyclicBarrier class [13] supports periodic barrier synchronization
among a set of threads. Unlike phasers, however, CyclicBarrier does not sup-
port the dynamic addition or removal of threads; nor do they support one-way
synchronization or split-phase operations.

6 Conclusions and Future Work

In this paper, we present the design and implementation of phasers, a high-
level synchronization construct for asynchronous tasks on manycore Cyclops64
processors in the Habanero-C workstealing runtime. We have designed and im-
plemented different techniques for phaser synchronization on C64 that use a
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combination of software-based busy-wait approach, hardware barriers, and hard-
ware support for thread suspend/awake. Our experiments show that phasers are
able to take advantage of hardware primitives on manycore architectures and
optimizations for their memory subsystems to provide superior performance to
portable software approaches.

In the future, we will experiment with more bandwidth-limited applications on
C64 to evaluate the limitations of our busy-wait phaser implementation. We will
also investigate more applications for other phasers operations, such as broadcast
and reduction.
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Abstract. OpenMP is widely used in practice to create parallel soft-
ware, however, software quality assurance tool support is still imma-
ture. OpenMPspy introduces a new approach, with a short-term and
a long-term perspective, to aid software engineers write better paral-
lel programs in OpenMP. On the one hand, OpenMPspy acts like an
online-debugger that statically detects problems with incorrect construct
usage and which reports problems while programmers are typing code in
Eclipse. We detect simple slips as well as more complex anti-patterns that
can lead to correctness problems and performance problems. In addition,
OpenMPspy can aggregate statistics about OpenMP language usage and
bug patterns from many projects. Insights generated from such data help
OpenMP language designers improve the usability of constructs and re-
duce error potential, thus enhancing parallel software quality in the long
run. Using OpenMPspy, this paper presents one of the first detailed em-
pirical studies of over 40 programs with more than 4 million lines of code,
which shows how OpenMP constructs are actually used in practice. Our
results reveal that constructs believed to be frequently used are actually
rarely used. Our insights give OpenMP language and compiler designers
a clearer picture on where to focus the efforts for future improvements.

1 Introduction

Multicore processors are everywhere. Many programmers now use OpenMP [3,4]
to write parallel software that exploits the hardware capabilities. Programming
with OpenMP does not require programmers to deal with low-level parallelism
details; instead, higher-level #pragma statements are used to introduce paral-
lelization, e.g., in Fortran and C.

While programming with OpenMP appears to be simple, its approach still
has its pitfalls. It is possible to slip and forget important pragma declarations,
introduce data races, or use constructs in a way that harms parallel performance.
Error feedback from compilers and tools might come too late and thus require
significant effort to fix follow-up problems that could have been avoided ear-
lier. In addition, the design of language constructs influences how programmers
use those constructs and what kind of mistakes they make. Consequently, infor-
mation about how OpenMP constructs are used in practice helps assess their
usability and make future improvements that reduce error potential.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 124–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper takes a new position with a broader view on parallel software
quality assurance. Parallel code has good quality if it is correct, easy to under-
stand, performs within defined parameters, and if the potential of introducing
errors during extensions is low. Our quality assurance process thus introduces
two systematic feedback loops: (1) In a short-term approach, programmers re-
ceive feedback on errors in an instant while they are programming. (2) In a
long-term approach, we aim to improve parallel language design. To achieve
this, we need to learn from individual programmers and projects. Our approach
thus establishes the second feedback loop that provides such empirical data back
to language designers, so they can improve future versions of OpenMP. In con-
trast to the status quo where this kind feedback might be sporadically posted
on the Web in an unstructured fashion, we are among the first to collect and use
it in a structured and systematic way.

In particular, our paper makes the following novel contributions. We present
OpenMPspy, a tool that demonstrates the feasibility of our approach. OpenMPspy
acts as an online-debugger in the Eclipse environment and gives developers in-
stant feedback. The tool uses static analysis and reports errors affecting correct-
ness (e.g., that might lead to race conditions) and hints on how to improve
parallel performance. Furthermore, it collects statistics on matching bug patterns,
performance-harming patterns, and construct usage patterns. OpenMPspy can
operate in different modes to aggregate such empirical data from many projects.
Language designers and compiler writers are provided with a big picture on the
usability of OpenMP, so they can make better decisions. We conduct one of the
first empirical studies on 46 projects with over 4 million lines of code to determine:
(1) what are the most frequently used constructs are and where it makes sense
to spend most effort; (2) where to improve syntax and semantics to reduce paral-
lel programming error potential; (3) detect and deal with unused or rarely used
language constructs. Generally speaking, such an empirically grounded approach
– as opposed to subjective expectations – not only improves parallel software
quality, but tailors programming languages to real market needs.

The paper is organized as follows. Section 2 introduces OpenMPspy and ex-
plains how it works. Section 3 shows how OpenMPspy works on real projects.
We illustrate that OpenMPspy detects previously unreported bugs and discuss
how OpenMP language constructs are used in practice on 46 projects. Section 4
presents insights and lessons learned on how to improve OpenMP. Section 5
contrasts related work. Section 6 provides a conclusion.

2 Overview of OpenMPspy

This section introduces OpenMPspy’s mode of operations, its code analysis
framework, and its analysis features.

2.1 Modes of Operation

OpenMPspy has three modes of operation. In mode (1), it works as a stand-alone
online debugger in Eclipse. It provides OpenMP programmers with interactive
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feedback directly in the IDE. Mode (2) is a batch mode that allows execut-
ing OpenMPspy from the command line to analyze a collection of individual
projects. OpenMPspy creates aggregate statistics on patterns matching errors,
performance problems, and language construct usage. Mode (3) is a client-server
mode that implements the data collection in a distributed environment (e.g., over
the Internet). In this mode, OpenMPspy locally collects statistics while program-
mers use the tool during regular program development. Statistics are sent to a
server that creates overviews from data of potentially hundreds of thousands of
programmers.

2.2 The Code Analysis Framework

OpenMPspy integrates into the Eclipse CDT framework. In particular, it draws
upon the abstract syntax tree (AST) generated by Eclipse CDT. However,
Eclipse’s OpenMP support is incomplete; OpenMP statements are not part of
the Eclipse AST and provided separately as a list with preprocessor symbols and
code locations. We thus extended the AST data structure to include new nodes
for all OpenMP statements, as exemplified below:

ASTPragma (OpenMP pragma: omp parallel for)

CPPASTForStatement

...

CPPASTDeclarationStatement
CPPASTSimpleDeclaration

#pragma omp parallel for

for(int i = 2;i<10;i++)

{

}

We use extensions based on the CODAN framework [1] for static OpenMP
code analysis. CODAN and CDT provide functionality to walk our AST and use
visitor patterns [6] to perform individual analyses. In the implementation, we
define a checker for each issue or problem that we want to analyze. Each checker
has one or more associated patterns. A checker is represented by a single class
that extends a base checker class from the framework, as outlined below:

public class MyChecker extends AbstractIndexExtendedAstChecker { ...

class CheckStmpVisitor extends ExtendedASTVisitor { ...

public int visit(...) {...}

}

}

It is possible to employ several visitors at the same time; for example, an outer
visitor might visit OpenMP directives and start a nested specialized visitor to
work on certain nodes. When a pattern specified within a visitor matches on
the AST, results can be displayed in the Eclipse IDE (e.g., as hints, warnings,
errors) and provide direct feedback to developers. A pattern detection is usually
triggered after each source code modification. This way, we realize an online
OpenMP debugger that reports problems while programmers are typing code
(see Figure 1).

Our program design based on checkers makes OpenMPspy extensible. For
example, it is easy to add an extension and enhance the race detection with
additional patterns. The detection capabilities of our tool can be updated by
exchanging checker patterns (e.g., by ones downloaded from the Web).
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Fig. 1. Instant IDE feedback from OpenMPspy’s online debugger

2.3 Analysis Features for OpenMP

OpenMPspy implements three types of code checkers: (1) checkers for error pat-
terns; (2) checkers for performance-harming patterns; (3) checkers for statistics
collection of OpenMP construct usage. We describe each category in brief.

(1) Checkers for error patterns. Several checkers are implemented to
detect various kinds of parallel programming errors. One of the most complex
checkers is the race checker. Using multiple AST visitors, it searches for code
patterns that can lead to races. As the entire analysis is static, it can report false
positives, however, we use several techniques with specific focus on OpenMP
to reduce the number of warnings. For example, the race checker analyzes for
each parallel region which variables are private or shared. Then, it looks for
unsynchronized variable accesses that can be potentially performed by several
threads. In contrast to other tools, our checker pays attention to a variety of
special cases that do not lead to races, e.g., for constructs such as threadprivate,
firstprivate, lastprivate, and variables declared within parallel regions. To avoid
unnecessary warnings, the race checker performs analyses on the specific error
potential of the most frequently used constructs, such as omp parallel for.
Further unnecessary warnings are avoided for variables in reduction clauses
whose write accesses are handled implicitly by OpenMP. Other special cases are
considered for section blocks that perform parallel work. In parallel regions,
the checker performs additional analyses on function calls to determine whether
variables are copied or passed on by reference. It ensures for referenced variables
that no update operations are performed without synchronization.

Another checker controls the wrong usage of the nowait clause in work sharing
constructs. This clause removes implicit barriers to increase performance, but
might introduce data races. The checker analyzes all constructs that have an
implicit barrier that is overridden by nowait. It statically follows the control
flow until it reaches the next barrier. Along the path so far, it checks all variable
read and write accesses for potential races. In particular, it pays attention to
special cases such as using nowait together with lastprivate; this situation
might lead to unsynchronized updates on loop variables.

Other checkers detect slips in OpenMP construct usage. For example, they
identify inconsistent usage of omp for with no associated parallel. In addition,
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warnings are issued for orphaned work sharing constructs, e.g., work sharing
declarations with sections that don’t have a section actually defining work.
As another example, checkers detect if an ordered directive is not within the
extent of a for or parallel for with an ordered clause.

OpenMPspy also addresses problems encountered with new constructs from
the OpenMP 3 standard, such as untied tasks. These tasks can be executed by
one thread, halted, and be resumed by another thread. This implicit assumption
can cause problems, for example when threadprivate variables are accessed in
untied tasks. A particular checker reports this kind of problem.

Loop variables are another common source of errors. OpenMPspy detects if
code within a parallel for loop attempts to modify loop variables and termi-
nation conditions, which is not allowed by the OpenMP standard [3].

Other checkers ensure that calls to the OpenMP runtime are used correctly,
thus avoiding run-time errors and crashes. For example, specific checks are done
to ensure that calls to set num threads are only done in appropriate locations.

(2) Checkers for performance-harming patterns. Static analysis can
detect code that may cause performance problems and provide developers with
suggestions for improvement. One of our checkers analyzes critical sections and
generates hints if an atomic construct could be used instead of a critical
construct. The atomic construct allows more parallelism in certain situations
than the critical construct. Our tool relieves the programmers from the burden
of looking up the language specification about the syntactical details of operators
and the data types where atomic applies to.

(3) Checkers for language usage patterns. Language usage statistics
are collected by special checkers that do not display information in the IDE. For
example, these checkers count the number of times a particular construct is used,
or the level of nesting. The checkers distinguish between all specific options of
a construct. OpenMPspy is able to create statistics showing which syntactical
construct variants are actually used.

3 Analyzing with OpenMPspy: A Study of Real Projects

This Section presents results on using OpenMPspy on 46 projects. We sketch
the projects, the effectiveness of OpenMPspy to find previously unreported er-
rors, and the statistics collected on OpenMP language construct usage that are
relevant to software quality assurance.

3.1 Applications

We study a total 46 OpenMP programs, divided in two categories: real-world
programs and OpenMP benchmark programs. As later data will show (Tables 1,
2, and 3), this categorization reveals that real-world programs employ OpenMP
differently than benchmark programs.

The benchmark programs are collected from well-known OpenMP benchmarks
as presented in Table 1. The real-world projects are collected from the Debian
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Repository. We selected all programs that have a dependency to OpenMP lib-
gomp. Each program was manually checked to ensure it uses OpenMP constructs;
a few programs that did not satisfy this condition were pruned. We added to the
program set a few more OpenMP programs that were not part of the Debian
Repository, and ensured that we used the latest stable version of every programs.
Our final set is listed in Table 2.

Tables 1 and 2 include the total number of uncommented lines of code (LOC)
for each project and illustrate how many lines contain OpenMP constructs (LOC
OpenMP). It is worth noting that on average, OpenMP makes up less than 1% of
all lines of code. In particular, benchmarks have a higher percentage of OpenMP
(0.21% of LOC) compared to real-world projects (0.022% of LOC).

3.2 Finding Unreported Errors in Real Projects

We illustrate in depth several problems that OpenMPspy was able to detect
in real projects, which were not reported so far. The races described next are
related to OpenMP language design and suggest that it favors slips and misun-
derstandings in certain situations.

Error 1: The problem is a race in a video subtitle editor, aegiSub-2.1.8, au-
dio spectrum.cpp, line 186. A variable “sample” is declared globally and implic-
itly shared, and the programmer might have forgotten about this assumption.
Inside a pragma omp for, the “sample” variable is updated by potentially sev-
eral threads without synchronization, which can cause a race. This is an error
has not been reported so far. It is worth noting that this project has a total of
just 2 lines of OpenMP, and the programmer already introduced a race!

Error 2: The problem is a race in a fluid flow tracking application, libgpiv-
0.6.1, valid.c, line 494. Initially, two variables i and j are declared outside a
parallel region. Then, a pragma omp for is inserted before a nested loop, where
the first loop iterates over i and the second over j (without re-declaration inside
the for parenthesis). No constructs are used to define visibility for i and j, so
implicitly i is treated as private and j as shared. The programmer might have
wrongly assumed that j is private as well. This can lead to races when the second
loop is executed by different threads that each update their counter variable j.
This incorrect pattern is used in several places in the code. This problem is
serious considering that the project has a total of 25 lines of OpenMP code.

Error 3: The problem is a race in an artificial life simulation application,
critterding-1.0-beta12.1, roundworld.cpp, line 100. In a pragma omp parallel
for ordered shared(freeEnergyc, lmax), the programmer includes the or-
dered clause, with the intention to execute loop iterations in the same order
as if they were executed on a sequential processor. However, he or she forgets
to include a pragma omp ordered directive within the loop, which should ac-
tually specify what is to be ordered. This causes potentially racy accesses to
freeEnergyc+=... within the loop, which has no synchronization. This is again
an error in a project with just 15 lines of OpenMP code.
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Table 1. Programs from OpenMP benchmarks

LOC LOC % LOC
No. Project name Description total OpenMP OpenMP

B1 EPCC Microbench 2.0 OpenMP Microbenchmark 886 41 4,63%
B2 NPB3.3 OMP NASA Parallel Benchmark 4.920 23 0,47%
B3 OmpSCR 2.0 Various OpenMP sources 4.291 126 2,94%
B4 OpenMP Validation Suite Validates OMP implement. 6.562 799 12,18%

Parsec 2.1 PARSEC benchmark suite
B5 /blackscholes Option pricing 1.262 4 0,16%
B6 /bodytrack Computer vision app 7.696 6 0,08%
B7 /ferret Search engine app 10.765 13 0,12%
B8 /freqmine Data mining app 2.164 18 0,83%
B9 /tbblib Intel TBB lib 38.319 3 0,01%

IPP 7.0.1.041 Intel IPP code samples
B10 /audio video codecs Codecs samples 371.749 4 0,001%
B11 /data compression Data compression samples 7.520 4 0,001%
B12 /image codecs Image codecs samples 112.123 66 0,06%
B13 /realistic rendering Rendering samples 19.565 85 0,43%

specomp2001 SPEC OMP benchmarks
B14 /L2001/321.equake l Finite element simulation 1.128 28 2,48%
B15 /L2001/331.art l Neural network simulation 1.594 15 0,94%
B16 /M2001/320.equake m Finite element simulation 1.102 16 1,45%
B17 /M2001/330.art m Neural network simulation 1.594 15 0,94%
B18 /M2001/332.ammp m Computational chemistry 9.785 33 0,34%

603.025 1.299 0,21%

Table 2. Real projects using OpenMP

LOC LOC % LOC
No. Project name Description Total OpenMP OpenMP

1 3depict 0.0.3 Point cloud visual./analysis 30.816 75 0,24%
2 AegiSub 2.1.8 Video subtitle editor 133.987 2 0,002%
3 aaphoto 0.41 Photo adjusting 3.614 38 1,05%
4 blender 2.49.2 3D content creation 973.291 10 0,001%
5 ccbuild 2.0.1 C++ Source build utility 7.305 9 0,12%
6 coin-or csdp 6.1.1 Operations research 6.875 17 0,25%
7 critterding 1.0 b12.1 Artificial life simulation 81.839 15 0,02%
8 enblend enfuse 4.0 Image blending 17.551 49 0,28%
9 gettext 0.18.1.1 Localization of software 506.366 2 0,0004%
10 gmsh 2.5.0 3D meshing 296.876 9 0,003%
11 gpivtools 0.6.0 Fluid flow tracking 6.804 3 0,04%
12 graphicsmagick 1.3.12 Image processing 233.960 174 0,07%
13 gretl 1.9.3 Econometric analysis 287.215 9 0,003%
14 imagemagick 6.6.7 Image manipulation 299.304 345 0,12%
15 inkscape 0.48.0 Vector graphics editor 396.756 4 0,001%
16 kdegraphics 4.4.5 Gfx apps and libs for KDE 175.507 9 0,01%
17 kipi plugins 1.7.0 KDE Image Plugin Interface 150.388 3 0,002%
18 libcomplearn 1.1.7 Machine learning compressor 2.935 3 0,10%
19 libgpiv 0.6.1 Fluid flow tracking 17.801 25 0,14%
20 libqsearch 1.0.8 Tree search library 2.597 4 0,15%
21 opencv 2.2.0 Computer vision library 426.339 14 0,003%
22 pdf2djvu 0.7.4 Document conversion 5.869 3 0,05%
23 pfstmo 1.4 HDR tone mapping 6.235 27 0,43%
24 projectm 2.0.1 Music visualizer 64.370 41 0,06%
25 sox 14.3.1 Audio file conversion 41.597 7 0,02%
26 tintii 2.4.0 Selective image coloring 4.619 15 0,32%
27 ufraw 0.17 Raw image format importer 34.799 31 0,09%
28 yamas 0.8.5 Genome meta-analysis 2.500 12 0,48%

4.218.115 955 0,022%
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Table 3. OpenMP language usage in real-world and benchmark projects
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Real Projects
OpenMP Bench-
mark Projects

(A) Synchronization Constructs
1. critical 246 94.6 25,8 98 49,2 7,5
2. ordered 3 1.2 0,3 9 4,5 0,7
3. atomic 1 0.4 0,1 26 13,1 2,0
4. taskwait 1 0.4 0,1 0 0,0 0,0
5. barrier 0 0 0,0 11 5,5 0,8
6. omp set lock 6 2.3 0,6 32 16,1 2,5
7. omp init lock 3 1.1 0,3 20 10,1 1,5
8. omp set nest lock 0 0 0,0 1 0,5 0,1
9. omp test lock 0 0 0,0 1 0,5 0,1
10. omp test nest lock 0 0 0,0 1 0,5 0,1

R: Reference for col. b & e: sum A1..A10 260 100 27,2 199 100 15,3
(B) Variable Visibility Constructs
1. shared 279 76.0 29 59 24.1 4,5
2. private 87 23.7 9 175 71.4 13,5
3. threadprivate 1 0.3 0 11 4.5 0,8

R: Reference for col. b & e: sum B1..B3 367 100 38 245 100 18,9
(C) Variable Initialization Constructs
1. firstprivate 8 100 0,8 10 62.5 0,8
2. lastprivate 0 0 0,0 4 25 0,3
3. copyin 0 0 0,0 2 12.5 0,2

R: Reference for col. b & e: sum C1..C3 8 100 0,8 16 100 1,2
(D) Parallel For Loop Constructs
(D1)#pragma omp parallel for
1. sum of for 491 100 51,4 110 100 8,5
2. schedule dynamic 235 48 24,6 34 31 2,6
3. schedule static 88 18 9,2 11 10 0,8
4. schedule guided 1 0 0,1 7 6 0,5
5. schedule runtime 1 0 0,1 0 0 0,0
6. no schedule option 166 34 17,4 58 53 4,5
7. reduction in for 17 3 1,8 26 24 2,0

R: Reference for col. b & e: D1 1 491 100 51,4 110 100 8,5
(D2)#pragma omp parallel{... #pragma omp for
1. sum of for 26 100 2,7 118 100 9,1
2. schedule dynamic 9 35 0,9 35 30 2,7
3. schedule static 1 4 0,1 12 10 0,9
4. schedule guided 4 15 0,4 3 3 0,2
5. schedule runtime 1 4 0,0 0 0 0,0
6. no schedule option 11 42 1 68 58 5
7. reduction in for 0 0 0,0 17 14 1,3

R: Reference for col. b & e: D2 1 26 100 2,7 118 100 9,1
(E) Tasking Constructs
1. task 3 75 0,3 0 - 0
2. taskwait 1 25 0,1 0 - 0

R: Reference for col. b & e: sum E1..E2 4 100 0,4 0 - 0
(F) Feedback and Control of Parallelism
1. get thread num 31 74 3,2 102 63 7,9
2. get num threads 8 19 0,8 27 17 2,1
3. master 2 5 0,2 15 9 1,2
4. single 1 2 0,1 17 11 1,3

R: Reference for col. b & e: sum F1..F4 42 100 4,4 161 100 12,4
(G) Parallel Section Constructs
1. section 16 100 1,7 218 100 16,8
2. sections 5 31 0,5 73 33 5,6

R: Reference for col. b & e: G1 16 100 1,7 218 100 16,8
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Error 4: The problem is a race in a visual analysis applications, 3depict-0.0.3,
rdf.cpp, line 720. The programmer defines a variable warnBiasCount outside
a parallel region. Within a parallel for, the visibility of warnBiasCount is
not defined explicitly, which means that it is implicitly shared. Incrementing
warnBiasCount within the loop without synchronization can lead to races. This
project has 75 lines of OpenMP code.

OpenMPspy also reports performance issues, which are technically not an er-
ror, but which should be fixed to improve performance. Such patterns indeed oc-
cur in practice. For example, OpenMPspy reports a CriticalInsteadOfAtomic pat-
tern in graphicsmagick-1.3.12, file pnm.c, line 621. There, a variable status up-
date could be done with pragma omp atomic instead of pragma omp critical.

Insights. These empirical examples illustrate that even when programmers
use just a few lines of OpenMP they still inadvertently introduce races. Im-
plicit assumptions about shared and private variable visibility seem to favor
error-proneness. Error potential could have been reduced in the aforementioned
examples with explicit visibility declarations for all variables.

3.3 How OpenMP Constructs Are Used in Practice

Table 3 shows OpenMPspy’s quantitative results on how OpenMP language
constructs are used in all projects. There are seven categories of constructs that
are discussed in this Section. The table partitions results by real projects and
benchmark projects. Columns (a),(d) show how many lines of code contain a
certain construct; columns (b),(e) show the percentage of LOC in relation to
the reference value defined for each construct category; columns (c),(f) show the
percentage of LOC with a certain construct to the total lines of OpenMP code
(see bottom of Tables 1 and 2).

(A) Synchronization constructs. In real projects, critical is the most
frequently used synchronization construct, which makes up 95.6% of all syn-
chronization constructs. Other constructs such as atomic, explicit barrier,
and explicit locks are almost never used. By contrast, in OpenMP benchmarks,
critical makes up 49.2% of all synchronization constructs usage. Atomic and
locks are used more often in benchmarks to optimize performance.

(B) Variable visibility constructs. In real projects, the shared declaration
is used in 76% of all visibility declarations and private in 23.7%, which is an
interesting observation. As OpenMP defines most variables as shared by default,
one would expect that private occurs more frequently as programmers rely on
implicit shared declarations. It appears that the shared declaration is often used
for documentation purposes. The situation is reversed in benchmark projects,
where shared is used in 24.1% of all visibility declarations, and private in
71.4%.

(C) Variable initialization constructs. Constructs such as firstprivate,
lastprivate, copyin, handle input and output to parallel sections. Real projects,
however, hardly use any of these clauses and exchange data mostly over shared
variables. In benchmark projects, these clauses are also rarely used.



OpenMPspy: Leveraging Quality Assurance for Parallel Software 133

(D) Parallel for loop constructs. The #pragma omp parallel for (D1)
is the flagship of OpenMP and the most frequently used directive in real projects
(used in about half of all OpenMP lines). It has several options to guide schedul-
ing and improve performance. Looking at all #pragma omp parallel for, the
most frequently employed option is dynamic (48%), followed by no option (34%),
and static (18%). The slightly different syntax (D2) with #pragma omp for
within a parallel region is rarely used (in less than 3% of all OpenMP lines).
In the benchmark projects, both syntactical forms (D1) and (D2) have similar
frequency of occurrence, but are not too dominant in relation to the total lines
of OpenMP benchmark code. The benchmark projects use no schedule option
most frequently, followed by dynamic and static. Surprisingly, reduction isn’t
used a lot – both in real projects and in benchmark projects.

(E) Tasking constructs. Tasking is almost never used in real projects. This
is surprising, as tasks were expected to make OpenMP parallel programming
easier. It is well possible that programmer don’t use tasks because the language
standard is too new and the tool chain is immature.

(F) Feedback and control of parallelism constructs. A few real projects
use constructs helping with feedback and manual parallelism control, such as
get thread num and get max threads, master, and single. About 3% of all
OpenMP lines include get thread num. The other constructs are almost never
used. These observations suggest that OpenMP programmers in real projects
did not control parallelization too deeply. In the benchmark projects, these con-
structs are more frequently used (7.9%), which matches the more frequent usage
of locks.

(G) Parallel sections constructs. The section construct, in combination
with the nested sections constructs, give programmers more control over what
can be run in parallel. Obviously this functionality is almost never used in real
programs. By contrast, these constructs are more frequently employed in bench-
mark projects.

4 Insights for Parallel Software Quality Improvement

OpenMPspy’s empirical results teach us important lessons on how OpenMP can
be enhanced. In the long run, a better match of OpenMP’s syntax and seman-
tics to programmer’s intuitions helps improve software quality by: (1) reducing
the potential for parallel programming errors and (2) making code easier to un-
derstand. Results also show where developers of real-world projects might need
more training.

As shown in Section 3.3, programmers specify shared variable visibility of-
ten, even though it might not be necessary. This can be explained by a need
to document the parallel program and make its understanding easier. However,
the errors described in Section 3.2 provide evidence that programmers misunder-
stand when variables are implicitly shared and when they are private, which is
a fertile ground for races. We therefore recommend that each OpenMP variable
has a mandatory visibility declaration. In addition, races could be easier to avoid
if variables are implicitly private by default.
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The atomic keyword is almost never used. Perhaps most users don’t under-
stand how it can improve performance. As critical is used for most critical
sections, it would make sense to invest in compiler optimizations that replace,
where appropriate, critical by atomic behind the scenes. Locks are also rarely
used, which suggests that OpenMP programmers actually want a higher level of
parallel programming. This is also supported by the fact that none of the real
projects use explicit barriers, which implies that OpenMP’s implicit barriers
suffice.

Our real program set hardly uses any constructs that give programmers more
control over parallelization, such as sections, master, single, get thread num.
This observation is yet another indication that OpenMP programmers are risk-
averse in practice and do not want to get involved in low-level parallelism details.

The #pragma omp parallel for is OpenMP’s most frequently used con-
struct. Results show that programmers typically chose scheduling options that
delegate performance management to the run-time environment. Future run-time
environments should therefore emphasize more sophisticated ways to optimize
loop performance behind the scenes. Debuggers and race detectors, on the other
hand, can refine and perform more detailed analyses to account for the increased
error probabilities due to more frequent usage of parallel loop constructs.

The empirical evidence suggests that OpenMP programmers prefer higher-
level parallel programming constructs and that there is a clear preference on
which constructs are used in practice. Language designers must therefore focus
on these issues in the future. Removing unused constructs is another point for
discussion in the standardization committee, so compiler and tool developers
don’t have to invest in unnecessary features.

5 Related Work
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for loop / loop var. modification x x x
for loop / loop-test var. modification x x x x x
performance: critical instead atomic x
’omp set num threads()’ in par. region x x x x x
data dependency / bad ’nowait’ use x x
ordered clause / no ordered directive x x x
empty “#pragma omp ordered” region x
empty “#pragma omp sections” region x x x x
directly nested parallels x x x
orphaned “#pragma omp for” x x x
orphaned “#pragma omp section” x x x x
no data-sharing attr. set reminder x x x x x
races / modified shared variables x x x
threadprivate vars in “task untied” x

An empirical study of parallel
programming errors has been pre-
sented in [9], but it does not
address OpenMP. Recent work-
shops [2] have begun to tackle us-
ability aspects for programming
language design; however, Open-
MPspy is the first to present an
automated usability checking ap-
proach for OpenMP. Debugging
parallel programs has been ex-
plored in various contexts; [7]
presents a taxonomy of race detection algorithms and shows the general problem
is equivalent to the halting problem, which is why no universal detector exists.
Static race detectors such as [8] analyze code without execution; OpenMPspy’s
static approach detects a larger variety of different patterns, which also include
races and performance-harming patterns (see Table). OpenMPspy specializes its
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code checkers on the particular characteristics of OpenMP constructs to reduce
the number of false warnings. In addition, our tool is among the first to also col-
lect and aggregate language usage statistics to enhance language design. Most
on-the-fly race detectors require program executions [11] or specialized hardware
[10]. Dynamic race detectors such as [5] introduce large run-time overhead, which
makes them inappropriate to execute while programmers are typing code.

6 Conclusion

OpenMPspy presents a novel approach to enhance OpenMP software quality.
OpenMPspy’s online debugger instantly alerts developers to correctness and
performance problems. In the long run, OpenMPspy helps language designers
improve OpenMP syntax and semantics. Decisions can be based on statistical
data from many projects, such as typical errors, performance problems, and lan-
guage construct usage. The evidence in this paper shows that OpenMP can be
adapted in many ways to better match programmer intuitions. Closing this cog-
nitive gap will reduce parallel programming error potential and lead to better
code quality.

Acknowledgements. We thank the Excellence Inititative and the Landess-
tiftung Baden-Württemberg for their support.
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A Generic Parallel Collection Framework
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Abstract. Most applications manipulate structured data. Modern lan-
guages and platforms provide collection frameworks with basic data
structures like lists, hashtables and trees. These data structures have a
range of predefined operations which include mapping, filtering or finding
elements. Such bulk operations traverse the collection and process the
elements sequentially. Their implementation relies on iterators, which are
not applicable to parallel operations due to their sequential nature.

We present an approach to parallelizing collection operations in a
generic way, used to factor out common parallel operations in collection
libraries. Our framework is easy to use and straightforward to extend to
new collections. We show how to implement concrete parallel collections
such as parallel arrays and parallel hash maps, proposing an efficient
solution to parallel hash map construction. Finally, we give benchmarks
showing the performance of parallel collection operations.

1 Introduction

With the arrival of multicore architectures, parallel programming is becoming
more widespread. One programming approach is to implement existing program-
ming abstractions using parallel algorithms under the hood. This omits low-level
details such as synchronization and load-balancing from the program. Most pro-
gramming languages have libraries which provide data structures such as arrays,
trees, hashtables or priority queues. The challenge is to use them in parallel.

Collections come with bulk operations like mapping or traversing elements.
Functional programming encourages the use of predefined combinators, which is
beneficial to parallel computations – a set of well chosen collection operations can
serve as a programming model. These operations are common to all collections,
making extensions difficult. In sequential programming common functionality
is abstracted in terms of iterators or a generalized foreach. But, due to their
sequential nature, these are not applicable to parallel computations which split
data and assemble results [18]. This paper describes how parallel operations can
be implemented with two abstractions – splitting and combining.

Our parallel collection framework is generic and can be applied to different
data structures. It enhances collections with operations executed in parallel,
giving direct support for programming patterns such as map/reduce or parallel
looping. Some of these operations produce new collections. Unlike other frame-
works proposed so far, our solution adresses parallel construction without the
aid of concurrent data structures. While data structures with concurrent access

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 136–147, 2011.
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are crucial for many areas, we show an approach that avoids synchronization
when constructing data structures in parallel from large datasets.

Our contributions are the following:

1. Our framework is generic in terms of splitter and combiner abstractions,
used to implement a variety of parallel operations, allowing extensions to
new collections with the least amount of boilerplate.

2. We apply our approach to specific collections like parallel hash tables. We do
not use concurrent data structures. Instead, we structure the intermediate
results and merge them in parallel. Specialized data structures with efficient
merge operations exist, but pay a price in cache-locality and memory usage
[20] [17]. We show how to merge existing data structures, allowing parallel
construction and retaining the efficiency of the sequential access.

3. Our framework has both mutable and immutable (persistent) versions of
each collection with efficient update operations.

4. We present benchmark results which compare parallel collections to their se-
quential variants and existing frameworks. We give benchmark results which
justify the decision of not using concurrent data structures.

5. Our framework relieves the programmer of the burden of synchronization
and load-balancing. It is implemented as an extension of the Scala collec-
tion framework. Due to the backwards compatibility with regular collections,
existing applications can improve performance on multicore architectures.

The paper is organized as follows. Sect. 2 gives an overview of the Scala collection
framework. Sect. 3 describes adaptive work stealing. Sect. 4 describes the design
and several concrete parallel collections. Sect. 5 presents experimental results.
Sect. 6 shows related work.

2 Scala Collection Framework

Scala is a modern general purpose statically typed programming language for
the JVM which fuses object-oriented and functional programming [3]. Readers
interested to learn more are referred to textbooks on Scala [4].

Its features of interest for this paper are higher-order functions and traits.
These language features are not a prerequisite for parallel collections – they
serve as a convenience. Our approach can be applied to other general purpose
languages as well. Functions are first-class objects – they can be assigned to
variables or specified as arguments to other functions. For instance, to find the
first even number in the list of integers lst, we write: lst.find(_ % 2 == 0). In
languages like Java without first-class functions, anonymous classes can achieve
the same effect. Traits are similar to Java interfaces and may contain abstract
methods. They also allow defining concrete methods.

Collections form a class hierarchy with the most general collection type
Traversable, which is subclassed by Iterable, and further subclassed by Set,
Seq and Map, representing sets, sequences and maps, respectively [5]. Some oper-
ations (filter, take or map) produce collections as results. They use objects of
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type Builder. Builder declares a method += for adding elements to the builder.
Its method result is called after all the desired elements have been added and
it returns the collection. Each collection provides a specific builder.

We give a short example program (Fig. 1). Assume we have two sequences
names and surnames. We want to group names starting with ’A’ which have same
surnames and print all such names and surnames for which there exists at most
one other name with the same surname. The example uses for-comprehensions
[4] to iterate the sequence of pairs of names and surnames obtained by zip and
filter those which start with ’A’. They are grouped according to the surname
(second pair element) with groupBy. Surname groups with 2 or less names are
printed. The sugared code on the left is translated to a sequence of method
calls similar to the one shown on the right. PLINQ uses a similar approach of
translating a query-based DSL into method calls.

We want to run such programs in parallel, but new operations have to be in-
tegrated with the existing collections. Data Parallel Haskell defines a new set of
names for parallel operations [14]. Method calls in existing programs have to be
modified to use corresponding parallel operations. A different approach is imple-
menting parallel operations in separate classes. We add a method par to regular
collections which returns a parallel version of the collection pointing to the same
underlying data. We also add a method seq to parallel collections to switch back.
Furthermore, we define a separate hierarchy of parallel sequences, maps and sets
which inherit corresponding general collection traits GenSeq, GenMap and GenSet.

val withA = for {
(n, s) <- names zip surnames
i f n startsWith "A"

} yield (n, s)
val groups = withA.groupBy(_._2)
for {
(surname, pairs) <- groups
i f pairs.size < 3
(name, surname) <- pairs

} println(name, surname)

val groups = names.zip(surnames)
.filter(_._1.startsWith("A"))
.groupBy(_._2)

groups.filter(_._2.size < 3)
.flatMap(_._2)
.foreach(p => println(p))

Fig. 1. Example program

3 Adaptive Work Stealing

When using multiple processors load-balancing techniques are required. Work
is divided to tasks and distributed among processors. Each processor maintains
a task queue. Once a processor completes a task, it dequeues the next one. If
the queue is empty, it tries to steal a task from another processor’s queue. This
technique is known as work stealing [8] [2]. We use the Java fork-join framework
to schedule tasks [1]. For effectiveness, work must be partitioned into tasks that
are small enough, which leads to overheads if there are too many tasks.
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Fig. 2. Fine-grained and exponential task splitting

Assuming uniform amount of work per element, equally sized tasks guarantee
that the longest idle time is equal to the time to process one task. This happens
if all the processors complete when there is one more task remaining. If the
number of processors is P , the work time for P = 1 is T and the number of tasks
is N , then equation 1 denotes the theoretical speedup in the worst case.

speedup =
T

(T − T/N)/P + T/N
→

P→∞
N (1)

In practice, there is an overhead with each created task – fewer tasks can lead
to better performance. But this can also lead to worse load-balancing. This is
why we’ve used exponential task splitting [9]. If a worker thread completes its
work with more tasks in its queue that means other workers are preoccupied
with work of their own, so the worker thread does more work with the next task.
The heuristic is to double the amount of work (Fig. 2). If the worker thread
hasn’t got more tasks in its queue, then it steals tasks. The stolen task is always
the biggest task on a queue. Stolen tasks are split until reaching threshold size
– the need to steal indicates that other workers may be short on tasks too.

The worst case scenario is a worker being assigned the biggest task it processed
so far when that task is the last remaining. We know this task came from the
processor’s own queue (otherwise it would have been split, enabling the other
processors to steal and not be idle). At this point the processor will continue
working for some time TL. We assume input data is uniform, so TL must be equal
to the time spent up to that moment. If the task size is fine-grained enough to
be divided among P processors, work up to that moment took (T − TL)/P , so
TL = T/(P + 1). Total time for P processors is then TP = 2TL. The equation 2
gives a bound on the worst case speedup, assuming P " N :

speedup =
T

TP
=

P + 1
2

(2)

This estimate says that the execution time is never more than twice as great
as the lower limit, given that the biggest number of tasks generated is N # P .
To ensure this, we define the minimum task size as threshold = max(1, n/8P ),
where n is the number of elements to process.
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4 Design and Implementation

4.1 Splitters and Combiners

For the benefits of easy extension and maintenance we want to define most
operations (such as filter or flatMap from Fig. 1) in terms of a few abstractions.
We define splitters – iterators which have operations next and hasNext used to
traverse. In addition, a splitter has a method split which returns a sequence of
splitters iterating over disjunct subsets of elements. This allows parallel traversal.

trait Splitter[T] extends Iterator[T] {
def split: Seq[Splitter[T]]

}

trait Combiner[T, Coll] extends Builder[T, Coll] {
def combine(other: Combiner[T, Coll]): Combiner[T, Coll]

}

Some operations produce collections (e.g. filter). Collection parts produced
by different workers must be combined into the final result and combiners ab-
stract this. Type parameter T is the element type, and Coll is the collection
type. Parallel collections provide combiners, just as regular collections provide
builders. Method combine takes another combiner and produces a combiner con-
taining the union of their elements. Combining results from different tasks occurs
more than once during a parallel operation in a tree-like manner (Fig. 2).

The parallel collection base trait ParIterable extends the GenIterable trait.
It defines operations splitter and newCombiner which return a new splitter
and a new combiner, respectively. Subtraits ParSeq, ParMap and ParSet define
parallel sequences, maps and sets.

class Map[S](f: T => S, s: Splitter[T]) extends Task {
var cb = newCombiner
def split = s.split.map(subspl => new Map[S](f, subspl))
def leaf() = while (s.hasNext) cb += f(s.next)
def merge(that: Map[S]) = cb = cb.combine(that.cb)

}

Parallel operations are implemented within tasks, corresponding to those de-
scribed previously. Tasks define split, merge and leaf. For example, the Map task
is given a mapping function f of type T => S and a splitter s. Tasks are split
to achieve better load balancing – the split typically calls split on the splitter
and maps subsplitters into subtasks. Once the threshold size is reached, leaf is
called, mapping the elements and adding them into a combiner. Results from
different processors are merged hierarchically using the merge method, which
merges combiners. In the computation root cb is evaluated into a collection.
More than 40 collection operations were parallelized and some tasks are more
complex – they handle exceptions, can abort or communicate with other tasks,
splitting and merging them is often more involved, but they follow this pattern.
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4.2 Parallel Array

Arrays are mutable sequences – class ParArray stores the elements in an array.
Splitters. A splitter contains a reference to the array, and two indices for

iteration bounds. Method split divides the iteration range in 2 equal parts, the
second splitter starting where the first ends. This makes split an O(1) method.

Combiners do not know the final array size (e.g. flatMap), so they construct
the array lazily. They keep a linked list of buffers holding elements. A buffer is
either a dynamic array1 or an unrolled linked list. Method += adds the element
to the last buffer and combine concatenates the linked lists (an O(1) operation).
Method result allocates the array and executes the Copy task which copies the
chunks into the target array (we omit the complete code here). When the size
is not known a priori, evaluation is a two-step process. Intermediate results are
stored in chunks, an array is allocated and elements copied in parallel.

class ArrayCombiner[T] extends Combiner[T, ParArray[T]] {
val chunks = LinkedList[Buffer[T]]() += Buffer[T]()
def +=(elem: T) = chunks.last += elem
def combine(that: ArrayCombiner[T]) = chunks append that.chunks
def result = exec(new Copy(chunks, new Array[T](chunks.fold(0)(_+_.size))))

}

4.3 Parallel Rope

To avoid the copying step altogether, a data structure such as a rope is used to
provide efficient splitting and concatenation [10]. Ropes are binary trees whose
leaves are arrays of elements. They are used as an immutable sequence which is
a counterpart to the ParArray. Indexing an element, appending or splitting the
rope is O(log n), while concatenation is O(1). However, iterative concatenations
leave the tree unbalanced. Rebalancing can be called selectively.

Splitters are implemented similarly to ParArray splitters.
Combiners may use the append operation for +=, but this results in unbalanced

ropes [10]. Instead, combiners internally maintain a concatenable list of array
chunks. Method += adds to the last chunk. The rope is constructed at the end
from the chunks using the rebalancing procedure [10].

4.4 Parallel Hash Table

Associative containers implemented as hash tables guarantee O(1) access with
high probability. There is plenty of literature available on concurrent hash tables
[13]. We describe a technique that constructs array-based hash tables in parallel
by assigning non-overlapping element subsets to workers, avoiding the need for
synchronization. This technique is applicable both to chained hash tables (used
for ParHashMap) and linear hashing (used for ParHashSet).
1 In Scala, this collection is available in the standard library and called ArrayBuffer.

In Java, for example, it is called an ArrayList.
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Splitters maintain a reference to the hash table and two indices for iteration
range. Splitting divides the range in 2 equal parts. For chained hash tables, a
splitter additionally contains a pointer into the bucket. Since buckets have a
probabilistic bound on lengths, splitting a bucket remains an O(1) operation.

Combiners. Given a set of elements, we want to construct a hash table using
multiple processors. Subsets of elements are assigned to different processors and
must occupy a contiguous block of memory to avoid false sharing. To achieve this,
elements are partitioned by their hashcode prefixes, which divide the table into
logical blocks. This will ensure that they end up in different blocks, independently
of the final table size. The resulting table is filled in parallel.

class TableCombiner[K](ttk: Int = 32) extends Combiner[K, ParHashTable[K]] {
val buckets = new Array[Unrolled[K]](ttk)
def +=(elem: K) = buckets(elem.hashCode & (ttk - 1)) += elem
def combine(that: TableCombiner[K]) = for (i <- 0 until ttk)

buckets(i) append that.buckets(i)
private def total = buckets.fold(0)(_ + _.size)
def result = exec(new Fill(buckets, new Array[K](nextPower2(total / lf)))

}

Combiners keep an array of 2k buckets, where k is a constant such that 2k is
greater than the number of processors to ensure good load balancing (from exper-
iments, k = 5 works well for up to 8 processors). Buckets are unrolled linked lists.
Method += computes the element hashcode and adds it to the bucket indexed by
the k-bit hashcode prefix. Unrolled list tail insertion amounts to incrementing an
index and storing an element into an array in most cases, occasionally allocating
a new node. We used n = 32 for the node size. Method combine concatenates all
the unrolled lists – for a fixed 2k, this is an O(1) operation.

Method result is called in the computation root – the total number of ele-
ments total is obtained from bucket sizes. The required table size is computed
by dividing total with the load factor lf and rounding to the next power of 2.
The table is allocated and the Fill task is run, which can be split in up to 2k

subtasks, each responsible for one bucket. It stores the elements from different
buckets into the hash table. Assume table size is sz = 2m. The position in the
table corresponds to the first m bits of the hashcode. The first k bits denote
the index of the table block, and the remaining m − k bits denote the position
within that block (Fig. 3). Elements of a bucket have their first k bits the same
and are all added to the same block – writes to different blocks are not synchro-
nized. With linear hashing, elements occasionally “spill” to the next block. The
Fill task records and inserts them into the next block in the merging step. The
average number of spills is equal to average collision lengths – a few elements.

4.5 Parallel Hash Trie

A hash trie is an immutable map or set implementation with efficient element
lookups and updates (O(log32 n)) [11]. Updates do not modify existing tries, but
create new versions which share parts of the data structure. Hash tries consist
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of a root table of 2k elements. Adding an element computes the hash code and
takes the first k bits for the table index i. In the case of a collision a new array is
allocated and stored into entry i. Colliding elements are stored in the new array
using the next k bits. This is repeated as long as there are collisions. To ensure
low space consumption, each node has a 2k bitmap to index its table (typically
k = 5) [11]. Hash tries have low space overheads and good cache-locality.

Splitters maintain a reference to the hash trie data structure. Method split
divides the root table into 2 new root tables, assigning each to a new splitter.

Combiners can contain hash tries. Method combine could merge the hash tries
(figure 4). The elements in the root table are copied from either of the root tables,
unless there is a collision, as with subtries B and E which are recursively merged.
This technique turns out to be more efficient than sequentially building a trie –
we observed speedups of up to 6 times. We compare the performance recursive
merging against hash table merging and sequentially building tries in figure 5.
Although it requires less work, recursive merging scales linearly with the trie size.
This is why we use the two-step approach shown for hash tables, which results
in better performance. Combiners maintain 2k unrolled lists, holding elements
with the same k-bit hashcode prefixes (k = 5). The difference is in the method
result, which evaluates root subtries instead of filling table blocks.
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4.6 Parallel Views

Assume we increment numbers in a collection c, take one half and sum positives:

c.map(_ + 1).take(c.size / 2).filter(_ > 0).reduce(_ + _)

Each operation produces an intermediate collection. To avoid this we provide
views. For example, a Filtered view traverses elements satisfying a predicate,
while a Mapped view maps elements before traversing them. Views can be stacked
– each view points to its parent. Method force evaluates the view stack to a
collection. In the example, calling view and the other methods on c stacks views
until calling reduce. Reducing traverses the view to produce a concrete result.
Splitters call split on their parents and wrap the subsplitters. The framework
provides a way to switch between strict and lazy on one axis (view and force),
and sequential and parallel on the other (par and seq).

5 Experimental Results

To measure performance, we follow established measurement methodologies [19].
Tests were done on a 2.8 GHz 4 Dual-core AMD Opteron and a 2.66 GHz Quad-
core Intel i7. We first compare two JVM concurrent maps – ConcurrentHashMap
and ConcurrentSkipListMap (both from the standard library) to justify our de-
cision of avoiding concurrent containers. A total of n elements are inserted. In-
sertion is divided between p processors. This process is repeated over a sequence
of 2000 runs on a single JVM invocation and the average time is recorded. We
compare against sequentially inserting n elements into a java.util.HashMap.

Fig. 6 shows a performance drop due to contention. Concurrent data struc-
tures are general purpose and pay a performance penalty for this generality. Par-
allel hash tables are compared against java.util.HashMap in figure 7 I (mapping
with a few arithmetic operations) and L (the identity function) – when no time
is spent processing an element and entire time spent creating the table (L), hash
maps are faster for 1 processor. For 2 or more, the parallel construction is faster.

Microbenchmarks A-L shown in Fig. 7 use inexpensive operators (e.g foreach
writes to an array, map does a few arithmetic operations and the find predicate
does a comparison). Good performance for fine-grained operators compared to
which processing overhead is high means they work well for computationally ex-
pensive operators (shown in larger benchmarks M-O). Parallel array is compared
against Doug Lea’s extra166y.ParallelArray for Java.

Larger benchmarks2 are shown at the end. The Coder benchmark brute-force
searches a set of all sentences of english words for a given sequence of digits,
where each digit corresponds to letters on a phone keypad (e.g. ’2’ represents
’A’, ’B’ and ’C’; ’43’ can be decoded as ’if’ or ’he’). It was run on a 29 digit
sequence and around 80 thousand words. The Grouping benchmark loads the
words of the dictionary and groups words which have the same digit sequence.
2 Complete source code is available at:
http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/

http://lampsvn.epfl.ch/svn-repos/scala/scala/trunk/
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Fig. 6. Concurrent insertion, total elements: (A) 50k; (B) 100k; (C) 150k; (D) 200k

6 Related Work

General purpose programming languages and platforms provide various forms
of parallel programming support. Most have multithreading support. However,
starting a thread can be computationally expensive and high-level primitives for
parallel computing are desired. We give a short overview of the related work in
the area of data parallel frameworks, which is by no means comprehensive.

There exists a body of work on data structures which allow access from several
threads, either through locking or wait-free synchronization primitives [13]. They
provide atomic operations such as insertion or lookup. Operations are guaranteed
to be ordered, paying a price in performance – ordering is not always required
for bulk parallel executions [18].

.NET langugages support patterns such as parallel looping, aggregations and
the map/reduce pattern [6]. .NET Parallel LINQ provides parallelized imple-
mentations query operators. On the JVM, one example of a data structure with
parallel operations is the Java ParallelArray [7], an efficient parallel array im-
plementation. Its operations rely on the underlying array representation, which
makes them efficient, but also inapplicable to other data representations. Data
Parallel Haskell has a parallel array implementation with bulk operations [14].

Some languages recognized the need for catenable data structures. Fortress in-
troduces conc-lists, tree-like lists with efficient concatenation [17]. We generalize
them to maps and sets, and both mutable and immutable data structures.

Intel TBB for C++ bases parallel traversal on iterators with splitting and
uses concurrent containers. Operations on concurrent containers are slower than
their sequential counterparts [15]. STAPL for C++ has a similar approach –
they provide thread-safe concurrent objects and iterators that can be split [16].
The STAPL project also implements distributed containers. Data structure con-
struction is achieved by concurrent insertion, which requires synchronization.
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7 Conclusion
We provided parallel implementations for a wide range of operations found in
the Scala collection library. We did so by introducing two divide and conquer ab-
stractions called splitters and combiners needed to implement most operations.

In the future, we plan to implement bulk operations on concurrent containers.
Currently, parallel arrays hold boxed objects instead of primitive integers and
floats, which causes boxing overheads and keeps objects distributed throughout
the heap, leading to cache misses. We plan to apply specialization to array-based
data structures in order to achieve better performance for primitive types [12].
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Abstract. Highly concurrent and reliable data objects are vital for parallel pro-
gramming. Lock-free shared data objects are highly concurrent and guarantee
that at least one operation, from a set of concurrently executed operations, fin-
ishes after a finite number of steps regardless of the state of the other operations.
Lock-free data objects provide progress guarantees on the object level. In this pa-
per, we first examine the progress guarantees provided by lock-free shared data
objects that have been constructed by composing other lock-free data objects. We
observe that although lock-free data objects are composable when it comes to lin-
earizability, when it comes to progress guarantees they are not. More specifically
we show that when a lock-free data object is used as a component (is shared)
by two or more lock-free data objects concurrently, these objects can no longer
guarantee lock-free progress. This makes it impossible for programmers to di-
rectly compose lock-free data objects and guarantee lock-freedom. To help pro-
grammability in concurrent settings, this paper presents a new synchronization
mechanism for composing lock-free data objects. The proposed synchronization
mechanism provides an interface to be used when calling a lock-free object from
other lock-free objects, and guarantees lock-free progress for every object con-
structed. An experimental evaluation of the performance cost that the new mecha-
nism introduces, as expected, for providing progress guarantees is also presented.

1 Introduction

A concurrent data object is lock-free if it guarantees that at least one, among all con-
current operations, finishes after a finite number of steps. Lock-free data objects are
immune to deadlocks and livelocks, and typically provide high scalability and perfor-
mance [12] [11] [20] [22], especially in shared memory multiprocessor architectures.
Several lock-free implementations of fundamental data structures have been
introduced in the literature, such as queues [15] [21] [9], priority queues [18], linked-
lists [23] [19] [18] [10], and hashtables [7] [17] [4]. Moreover, the problem of compos-
ing lock-free data objects has been considered recently in an effort to support the use
of lock-free objects in the context of complex software development. Composite data
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structures, which are built by nesting multiple basic data structures, were first studied
by Cohen and Campell [5]. Recently, Gidenstam et al. [8] and Cederman and Tsigas [3]
studied the problem of composing two operations from two different lock-free objects
into one compound atomic operation. These results made it possible to perform com-
plex atomic operations such as moves that could move an item from one lock-free data
object to another lock-free data object in a lock-free way.

Petrank and Steensgaard [16] also studied the problem of composing lock-free pro-
grams and services. They provided new formal definitions of lock-freedom, the bounded
and unbounded lock-freedom and they extended them to programs and services. These
new definitions allowed the authors to formally state and prove the composition theo-
rem. The theorem guarantees lock-free progress for a lock-free program when compos-
ing with a service supporting lock-freedom, using the new definitions. This contribution
is a step towards formally studying lock-freedom. However, the paper did not consider
the case when multiple programs share a service and compete with each other to use it.
This way of composing programs and services can affect their progress guarantees.

In this work, we address the lock-free composition problem but from the perspective
of object-oriented programming and we do not consider changing the definition of lock-
freedom in order to guarantee composition. In object-oriented programs, one lock-free
object can be concurrently shared by other lock-free objects. In this setting, composition
of several lock-free objects in one object is possible. When examining progress guaran-
tees provided by these objects, we found that they can not provide the lock-free progress
guarantee offered by the shared objects that compose them. To help solve this problem,
a synchronization mechanism is proposed for a lock-freedom progress guarantee. By
applying this mechanism when composing lock-free objects, we can compose as many
objects as possible without fear of losing lock-freedom of the individual participants.

The rest of this paper is organized as follows. Section 2 examines the progress guar-
antees for lock-free objects in a composition. Then, the new synchronization mecha-
nism for composing lock-free objects is proposed in section 3. Section 4 presents a set
of experiments to evaluate our synchronization mechanism in practice. A conclusion of
our work and discussions about future improvements come last in the section 5.

2 Progress Guarantee When Composing Lock-Free Data Objects

This section examines progress guarantees by lock-free objects used in an object-oriented
program. The program can also contain blocking objects. However, since we are consid-
ering composing lock-free objects, blocking objects can be taken away without degra-
dation of generality. In the remainder of this paper, all objects mentioned are lock-free.

2.1 Lock-Free Data Objects

Lock-free objects are objects that provide lock-free progress guarantee for their op-
eration executions. The guarantee ensures that some among its concurrent operations
succeed after a finite number of steps of their own execution. To provide such a guar-
antee, lock-free objects usually use non-blocking synchronization primitives to syn-
chronize concurrent accesses to shared memory among the concurrent operations. Two
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Algorithm 1. A template of a lock-free object

1 class LF
2 word *ptr
3 public op(args)
4 while (1)
5 oldVal ← *ptr
6 newVal ← calculate(args)
7 if (CAS(ptr, oldVal, newVal))
8 return

Algorithm 2. Operation Descriptor

9 struct OpDesc
10 void *oper(void *args)
11 void *args
12 bool done
13 Object src

16

synchronization primitives that are commonly used are Compare-And-Swap (CAS),
Load-Link/Store-Conditional (LL/SC). CAS [12] takes three arguments: an address, an
expected value, and an update value. If the value at the address is equal to the expected
value, it is replaced by the update value; otherwise the value is left unchanged. LL/SC is
a pair of instructions. The LL instruction reads from an address. A later SC instruction
attempts to store a new value at the address. The instruction succeeds if content of the
address are unchanged since that thread issued the earlier LL instruction to it. The in-
struction fails if the content has changed in the interval. These instructions are equally
powerful since they both have an infinitive consensus number [12].

By observing several lock-free implementation of fundamental data structures such
as queues [15] [21], linked-lists [23], and memory allocators [14], we found a common
template that most of these implementations followed presented in Algorithm 1. The
template object LF offers one operation op, which takes generalized arguments args.
This operation computes a newVal (line 6) and updates it to ptr variable. In a multi-
threaded environment, several threads can try to update ptr concurrently. Therefore,
the CAS primitive is used to keep each update atomic. Examples of an LF object and
an operation op that it supports are a lock-free Queue [15] and its enqueue operation,
respectively. The enqueue operation creates a new node containing the new value and
inserts it to the head of the queue (by a CAS) to become the new head node.

2.2 Examining Lock-Free Progress Guarantee in Object-Oriented Program

An object-oriented program comprised by three lock-free objects is examined as an
example. Among the objects, one, O21, is concurrently shared by the other objects: O11

and O12. All are assumed to be implemented by using the above template.
During the executions of O11 and O12’s operations, they invoke operations in O21

and wait for the returned results. Object O21 is lock-free and therefore, always has some
executed operations, invoked by O11 or O12, finish and return after a finite number of
executed steps. But, O21 provides no mechanism to ensure fairness among the execu-
tions invoked by different objects. As a result, that only executed operations called by
one object (e.g O11) succeed while those called by the other object fail to succeed is
possible. Consequently, the former object progresses while the latter does not and fails
to provide lock-freedom. So, composition causes a lock-free conflict point at O21 for
O11 and O12. When it is the case, lock-freedom of objects that conflict can be violated.
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This lock-free conflict concept can be generalized. There can be several objects shar-
ing another object. An object sharing another object can also be shared by other objects
and become itself a conflict point. This sharing scenario creates a hierarchy of sharing
lock-free objects together with the respective hierarchy of lock-free conflicts.

Our objective is to introduce a new synchronization mechanism enhancing the shared
object so that it supports the lock-free property of the sharing objects.

3 A Synchronization Mechanism for Composing Lock-Free
Objects

3.1 Our Approach

A new synchronization mechanism for sharing lock-free objects is proposed. Applica-
tion of this mechanism enhances objects with the capability to maintain fairness among
all the objects that invoke its operations. This fairness ensures that any invoking object
has at least one operation returned after a finite number of steps. In other words, no
object starves because of performing operations at the shared object.

In detail, the proposed synchronization mechanism keeps track of all invocations by
sharing objects to the shared object’s operations. When those by an object are unsuc-
cessful to execute the instruction(s) at the linearization point many times, the mecha-
nism will announce one of the operations. When such an announcement is made, later
invocations help finish the announced operation before performing their expected oper-
ations. Completion of the announced operation allows the sharing object to progress.

The description of the proposed synchronization mechanism are introduced in the
two next subsections. A correctness proof for the mechanism is also presented.

3.2 The Operation Descriptor

The new synchronization mechanism is introduced so that an unfinished operation can
be helped to finish. The operation can be executed by more than one thread but the
mechanism guarantees that only at most one execution can successfully complete. To
make this helping scheme possible, a description of the operation and its execution sta-
tus is needed. Any thread can read the description and execute the operation it describes.

The data structure OpDesc illustrated in Algorithm 2 is such an operation descriptor.
OpDesc contains a function pointer *oper to the operation, along with arguments for
the operation; a boolean variable done records the status of the operation (finished or
unfinished); src is a unique identity of the object that invokes this operation.

An OpDesc object encapsulates an operation (e.g enqueue operation) provided by
shared lock-free object. The mechanism introduces a special kind of operation which
can help executing other operations. In other words, operations that can read OpDesc
and execute the operation it described. We call them “super-operations”. The term “op-
eration”, from this point, refer to an operation representing functionality that other ob-
jects want to perform at the shared object, which is described as an OpDesc object.
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3.3 The Synchronization Mechanism

The implementation of our synchronization mechanism for the lock-free object LF is
presented in Algorithm 3. The new object CLF provides the same interface as that LF
does to other objects. However each method in the interface is associated with a super-
operation instead of an operation.

Any operation op in LF is re-written into a pair of one public method op (a super-
operation) and one private one op m (an operation). The operation CLF.op m executes
steps to make changes to the CLF object similar to that LF.op does to the LF ob-
ject. The difference between CLF.op m and LF.op is additional steps required by the

Algorithm 3. A lock-free object employing the proposed synchronization mechanism

17 class CLF
18 word *ptr
19 OpDesc hlps[M], EMPTY; //EMPTY.done=true

21 public op(src, args)
22 OpDesc me(src,&op m,(void*)args), hlp

24 for(int i ← 0; i < M; i++) {
25 hlp ← hlps[i];
26 hp_x ← hlp; //protect hlp with hazard pointer
27 if (hlp != hlps[i]) continue;
28 if (!hlp.done) *hlp.oper(me, hlp)

30 if (¬me.done) op m(me, me)

32 private op m(OpDesc me, OpDesc hlp)
33 while (¬hlp.done)
34 for (tries=0; tries< TMAX ∧¬hlp.done; tries++)
35 oldVal ← *ptr
36 newVal ← calculate(hlp.args)
37 tmp ← hlps[hlp.src]
38 if (DCAS(ptr, oldVal, newVal, &hlp.done, false, true))
39 counter[hlp.src] ← 0;
40 CAS(hlps[hlp.src], tmp, EMPTY);
41 break;

43 if (¬hlp.done)
44 if (++counter[me.src]≥OMAX)
45 announce(me)

47 void announce(OpDesc me)
48 curr ← hlps[me.src]
49 if(curr.done)
50 CAS(hlps[me.src], curr, me)
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synchronization mechanism that will be discussed later. CLF.op, is to provide the same
interface as that LF but the content is totally new. When CLF.op is invoked, it is ex-
pected to perform modifications on CLF similar to functionality of operation LF.op.
The functionality is now implemented in CLF.op m. In addition, CLF.op can help fin-
ish other CLF.op m operations that other objects want to perform.

When CLF.op is invoked (assuming by object Oi) to perform the operation
CLF.op m, it does not perform the operation immediately. Instead, it first creates an
OpDesc describing the operation (line 22) which it can perform by itself (line 30) or
any thread can help finishing the operation. Then it checks if there are operations of any
object needing help to finish (line 24). If there are such operations, the super-operation
will execute these operations (line 28). The checking for any object that needs help is
performed through a newly introduced array hlps[]. When one among the objects needs
help, one of the concurrent operations the object performs will be placed in hlps[] at
a dedicated position for the object. Other concurrent super-operation executions then
can help to finish that one. We assume that there are M objects sharing CLF object.
Therefore, hlps[] can have M elements that one is assigned to an object.

The operation CLF.op m introduces two main changes compared to LF.op. The first
change is that a Double-Compare-And-Swap (DCAS) is used instead of a CAS in LF.op
(line 7). DCAS atomically compares and exchanges values at two separate memory
locations. Lock-free implementations of DCAS have been introduced in [6] and [3]. In
CLF.op m, the DCAS performs modification of *ptr and a status variable atomically.
The former is similar to CAS in LF.op. The latter is to set the execution status variable
of OpDesc. This status variable, which is allowed to be changed only once, makes sure
that an OpDesc only succeeds once even when multiple threads are executing it.

The second change in CLF.op m is the introduction of a counter array counter[] to
record the numbers of times invocations by sharing objects try (but fail) to commit the
changes to the shared object CLF. The counter at position i is increased after a failed
DCAS execution (line 38) in an operation invoked by object Oi. When this number
reaches a threshold, an executed operation invoked by Oi will be announced in hlps[]
to be helped.

Due to this change, the loop inside this operation is also modified. Our algorithm
could have followed the idea of increasing the counter after every failed DCAS. In
this case, the counter at any position would be shared among several threads and need
synchronization for every update which decreases the performance. To avoid this high
overhead, in our design, this counter was split into two counters. One local counter tries
for each operation execution and a shared one (counter[]) to record number of tries the
executions invoked by the object have made. When tries reach a threshold TMAX , an
update to counter[me.src] is made. And if this counter reaches its threshold OMAX ,
one of the operation executions whose src is the same as me.src is announced.

In addition to those changes, a CAS is added to remove the reference from the an-
nouncement array hlps[] to a successful operation hlp. This avoids any unsafe reference
to hlp in the future when its hazard-pointer protection (line 26) is removed. The mem-
ory used by hlp can safely be reclaimed later by a memory reclamation scheme.

In short, the synchronization mechanism guarantees that new invocations of CLF’s
operations helps finish on-going executed operations that need help. Then they executes
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the operation they are supposed to perform. With this mechanism, objects invoking
operations of CLF always has one of the invocations finish after a finite number of
steps. Therefore, these objects make progress.

3.4 ABA Problem

Similar to other lock-free objects, our mechanism also encounters the ABA problem.
The ABA problem happens when the content at an address changes from A to B, and
then changes back to A. CAS cannot distinguish this case and the case where the content
is unchanged. A number of methods have been introduced to tackle with ABA problem
such as tagging [1], hazard pointers [13]. In addition, memory words used by lock-free
objects must be protected from deletion by concurrent threads when they are in use and
reclaimed when they are no more used. Safe Memory Reclamation with hazard pointers
introduced in [13] is used for these purposes.

3.5 Linearizability

This section states the lemmas for the linearizability and lock-freedom property of CLF.
Due to the space limitation, the proofs for these lemmas are not included in this version
of the paper.

Lemma 1. Regardless of the number of threads executing an operation op m with the
same value of hlp argument, only one can succeed.

Lemma 2. CLF is linearizable with the linearization point at line 38.

Lemma 3. The presented object CLF is lock-free.

3.6 How Does the Proposed Synchronization Mechanism Resolve Lock-Free
Conflicts?

When a lock-free object is concurrently used by other lock-free objects O1 . . . OM , it
can become a lock-free conflict and block the progress of those objects. This section
will prove that when there is such a conflict point at CLF, our mechanism can resolve
the conflict. Therefore, CLF does not block lock-free progress of the objects using it.

A scenario of using CLF is a program containing M lock-free objects O1. . . OM and
one CLF object. An object Oi can have at most n concurrent invocations (executed by
n threads) to CLF.op to perform an intended CLF.op m (referred to as me). Each in-
vocation creates an execution of operation CLF.op. We seek a bound of the maximum
number of steps (a step is one execution of DCAS) performed by these executions be-
tween any two successful operations. If this bound is finite, it guarantees that any object
that uses CLF progresses. The lemmas and theorem below figure out this bound.

Lemma 4. An object Oi can make at most n concurrent invocations to super-operation
CLF.op. Starting from when the last invocation returns (or when the program starts, if
there is no such invocation), if any of these invocations has executed:

U BOUND = TMAX .OMAX (1)

steps, one of the following condition must hold:
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– at least one invocation finished. Or
– one of these concurrent CLF.op m operations has been announced.

Lemma 5. When an operation me is announced in hlps, either me or another opera-
tion that has the same src as me.src finishes after it has executed at most

HELP BOUND = n(M − 1) + 1

steps since when the announcement is made.

Theorem 1. When CLF is shared by several objects by invoking to CLF’s super-
operation op, there is always one, among all invocations by one object, finishing after
executing a finite number of steps.

Proof. From lemma 4, there must be one among the invocations from O which finishes
before any of them has executed U BOUND steps. Otherwise, one of the invocations
has its operation me announced.

If me is announced, lemma 5 stated that one of the operations whose src is the same
as me.src (including me) finishes after it has executed at most HELP BOUND steps
since the announcement is made. Therefore, one of the invocations from one object
returns after executing at most:

U BOUND + HELP BOUND = n(M − 1) + TMAX .OMAX + 1

steps; where:

– TMAX is the number of steps executed by an operation before it checks if it should
announce itself.

– OMAX is the number of times TMAX was reached by all invocations from one
object.

– n is the maximum number of concurrent operations of CLF that can be executed.
– M is the number of objects that are sharing CLF.

4 Experimental Evaluation

For our experimental evaluation we considered the composition scenario where a pro-
gram containing a number of pseudo objects sharing one queue. The queue is an imple-
mentation of the Michael-Scott Queue [15] enhanced with the proposed synchroniza-
tion mechanism. A set of experiments to evaluate the effectiveness and performance
cost of our synchronization mechanism was performed and the results are presented.

In our experiments, the program was executed to perform queue’s operations at three
contention levels. In high contention, each thread performed one operation right after
another. In medium contention, “other work” with a ratio following the normal dis-
tribution between 0 and 1 was performed between two consecutive operations. The
“other work” was a fixed-times spin loop of a simple calculation. In low contention,
“other work” was always performed between two consecutive operations. An exponen-
tial back-off was also used after any failed DCAS. The program can be run by one to 8
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Fig. 1. Measurement results in high contention level

threads and each thread performs 1 000 000 queue operations. Each experiment is the
program configured to one contention level and with or without back-off, and set up
with a specific number of threads. Each experiment ran five times on a platform with
two Intel Core i7 quad-core processors and the average result of the runs was reported.
When running the experiments, no other users were using the system.

Three measurements were recorded. The first two were the maximum and average
number of attempts between two consecutive successful operations invoked by one ob-
ject. The maximum number of attempts is an indicator to know whether the proposed
synchronization mechanism helped the sharing objects before they starved. The lower
this number, the more likely an object is to be helped. On the other hand, the aver-
age number of attempts, helps answer a question: does the synchronization mechanism
cause the total number of attempts to perform the set of operations increasing? The third
measurement was the time it took to finish a run.

Fig. 1 presents the experimental results for the case of high contention. Fig. 1a shows
that our synchronization mechanism (w/ SM) significantly reduced the maximum num-
ber of attempts to finish one operation when there was no back-off. In the case where
no synchronization mechanism was used (w/o SM), the maximum number of attempts
when back-off is used (w/ backoff) is much lower than when it is not (w/o backoff). The
reason is that back-off reduces the contention among threads and, therefore, lowers the
number of attempts. Even though, in this case, there is no lock-free progress guarantee
for the sharing objects. The average number of attempts in Fig. 1b shows that when our
synchronization mechanism is used, one queue operation needs, on average, about only
two thirds of the number of attempts compared to when it is not used. Similar improve-
ments when the synchronization mechanism was used are also observed in medium and
low contention levels as shown in Figs. 2a, 2b, 3a, and 3b.

Fig. 1c shows the time to finish all operations at high contention level. Either with or
without back-off, the execution time of the runs where our synchronization mechanism
was used took about 1.7 of those where the original queue is used. This degradation
in performance is because of the overhead cost when applying our synchronization
mechanism to achieve the lock-freedom property. In medium and low contention levels,
our synchronization performed better which reduced the ratios to 1.5 (Fig. 2c) and 1.2
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Fig. 2. Measurement results in medium contention level
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Fig. 3. Measurement results in low contention level

(Fig. 3c) respectively. Especially, in low contention level with back-off, the performance
of the queue where our synchronization was used is closer to that when it was not used.
Our synchronization mechanism performed better in these contention levels than in
high contention levels. This is consistent with the previous result that fewer attempts
were performed to finish one queue operation in lower contention level. In addition,
when the number of attempts were fewer, the number of cases that the synchronization
mechanism was activated to help “unlucky object” were fewer too.

We performed additional experiments to analyze the overhead cost by measuring the
performance of DCAS comparing to that of CAS. The experimental setup was similar
to the one described in previous experiments. The only difference was that the queue
operations were replaced by an operation containing a simple mathematical calculation
and a DCAS (or CAS). The performance result in Fig. 4 shows that DCAS is much more
expensive than CAS especially in high and medium contention levels. In low contention
level, execution time of a DCAS operations is quite comparable to that of a CAS. These
results support a claim that DCAS contributes a big portion to the overhead cost of our
synchronization mechanism.
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Fig. 4. Performance of DCAS and CAS

In brief, the experimental results demonstrate that our synchronization mechanism
reduces the maximum number of attempts in all the contention level cases. The pre-
sented experimental results support the theoretical proofs. The results also show, as
expected, that there is a performance overhead cost in order to achieve lock-freedom
when composing. The software-implemented DCAS mainly contributes to this cost. We
expect that with the use of a hardware-supported DCAS such as the Advanced Synchro-
nization Facility by Advanced Micro Devices [2], this cost will be reduced significantly.

5 Conclusion

This paper presents our observation on progress guarantees provided by lock-free ob-
jects that concurrently share other lock-free objects. We found that these sharing ob-
jects can not provide lock-free progress guarantee as expected. A new synchronization
mechanism for composing lock-free objects is proposed in order to provide lock-free
progress guarantees for each individual. The experimental results show the effective-
ness of the new mechanism. A preliminary study for the performance cost introduced
by the new mechanism is also presented.

The assumption of the fixed number M of sharing objects should be studied further
and if possible removed. Additional experiments can be performed to investigate the
influence of choosing TMAX and OMAX on the performance of the mechanism. In
addition, an implementation of the mechanism that uses a hardware-supported DCAS
such as Advanced Synchronization Facility by Advanced Micro Devices is expected to
reduce the performance cost.
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Abstract. We present a fast radix sorting algorithm that builds upon
a microarchitecture-aware variant of counting sort. Taking advantage of
virtual memory and making use of write-combining yields a per-pass
throughput corresponding to at least 89% of the system’s peak memory
bandwidth. Our implementation outperforms Intel’s recently published
radix sort by a factor of 1.64. It also compares favorably to the reported
performance of an algorithm for Fermi GPUs when data-transfer over-
head is included. These results indicate that scalar, bandwidth-sensitive
sorting algorithms remain competitive on current architectures. Various
other memory-intensive applications can benefit from the techniques de-
scribed herein.

1 Introduction

Sorting is a fundamental operation that is a time-critical component of various
applications such as databases and search engines. The well-known lower bound
of Ω(N · log N) for comparison-based algorithms no longer applies when special
properties of the keys can be assumed. In this work, we focus on 32-bit integer
keys, optionally paired with a 32-bit (or larger) value. This simplifies the imple-
mentation without loss of generality, since applications can often replace large
records with a pointer or index [1]. The radix sort algorithm is commonly used
in such cases due to its O(n) complexity. In this report, we show a 1.64-fold
performance increase over results recently published by Intel [2].

The remaining sections are organized in a bottom-up fashion, with Section 2
dedicated to the basic realities of current and future microarchitectures that af-
fect memory-intensive programs and motivate our approach. We build upon this
foundation in Section 3, showing how to speed up counting sort by taking ad-
vantage of virtual memory and write-combining. Section 4 applies this technique
towards a novel variant of radix sort. The performance of our implementation is
evaluated in Section 5. Bandwidth measurements indicate the per-pass through-
put is nearly optimal for the given hardware. Its two CPUs outperform a Fermi
GPU when accounting for data-transfer overhead.
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2 Software Write-Combining

We begin with a description of basic microarchitectural realities that are likely to
have a serious impact on applications with numerous memory accesses, and show
how to avoid performance penalties by means of Software Write-Combining.
These topics are not new, but we believe they are often not adequately addressed.

The first problem arises when writing items to multiple streams. An ideal
cache with at least as many lines could exploit the writes’ spatial locality and
entirely avoid noncompulsory misses. However, perfect hit rates are not achiev-
able in practice due to limited ways of associativity a [3]. Since only a lines
can be mapped to a cache set, any further allocations from that set result in
the eviction of one of the previous lines. If possible, applications should avoid
writing to many different streams. Otherwise, the various write positions should
map to different sets to avoid thrashing and conflict misses. For current L1
caches with a = 8 ways, size C = 32 KiB and lines of B = 64 bytes, there are
S = C

a·B = 64 sets, and bits [lg B, lg B + lg S) of the destination addresses should
differ (e.g. by ensuring the write positions are not a multiple of S · B = 4 KiB
apart).

A second issue is provoked by a large number of write-only accesses. Even if
an entire cache line is to be written, the previous destination memory must first
be read into the cache. While the corresponding latency may be partially hidden
via prefetching, the cache line allocations remain problematic due to capacity
constraints and eviction policy. Instead of displacing write-only lines that are
not accessed after having been filled, the widespread (pseudo-)Least-Recently-
Used strategy displaces previously cached data due to their older timestamp.
An attempt to avoid these evictions by explicitly invalidating cache lines (e.g.
with the IA-32 CLFLUSH instruction) did not yield meaningful improvements.
Instead, applications should use non-temporal streaming store instructions that
write directly to memory. These are guaranteed to avoid cache pollution since
they circumvent the cache.

This leads directly to the next concern: single memory accesses involve sig-
nificant bus overhead. The architecture therefore combines neighboring non-
temporal writes into a single burst transfer. However, currently microarchitec-
tures only provide four to ten write-combine (WC) buffers [4]. Non-temporal
writes to multiple streams may force these buffers to be flushed to memory via
‘partial writes’ before they are full. The application can prevent this by making
use of Software Write-Combining [5]. The data to be written is first placed into
temporary buffers, which almost certainly reside in the cache because they are
frequently accessed. When full, a buffer is copied to the actual destination via
consecutive non-temporal writes, which are guaranteed to be combined into a
single burst transfer.

This scheme avoids reading the destination memory, which may incur rela-
tively expensive Read-For-Ownership transactions and would only pollute the
cache. It works around the limited number of WC buffers by using L1 cache lines
for that purpose. Interestingly, this is tantamount to direct software control of
the transparently managed cache.
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We recommend the use of such Software Write-Combining whenever a core’s
active write destinations outnumber its write-combine buffers. Fortunately, this
can be done at a fairly high level, since only the buffer copying requires special
vector loads and non-temporal stores (which are best expressed by the SSE2
intrinsics built into the major compilers).

3 Virtual-Memory Counting Sort

We now review Counting Sort of N elements with keys in [0, M) and describe
an improved variant that makes use of virtual memory and write-combining.

The näıve algorithm first generates a histogram of the N keys. After comput-
ing the prefix sum to yield the starting output location for each key, each value
is written at its key’s output position, which is subsequently incremented.

Our first optimization goal is to avoid the initial counting pass. We could
instead insert each value into a per-key container, e.g. a list of data blocks.
However, this incurs some overhead for checking whether the current bucket is
full. Preallocating space for M arrays of size N is more efficient, because items
can simply be written to the next free position (c.f. Algorithm 1, introduced in
[6]). This algorithm only writes and reads each item once, a feat that comes at

Algorithm 1: Single-pass counting sort
storage := ReserveAddressSpace(N · M);
for i := 0 to M − 1 do next [i] := i · N ;
foreach key,value do

storage [next [key]] := value;
next [key] := next [key] + 1;

the price of N ·M space. While this appears problematic in the Random-Access-
Machine model, it is easily handled by 64-bit CPUs with paged virtual memory.
Physical memory is only mapped to pages when they are first accessed,1 thus
reducing the actual memory requirements to O(N+M ·pageSize). The remainder
of the initial allocation only occupies address space, of which multiple terabytes
are available on 64-bit systems.

Having avoided the initial counting pass, we now show how to efficiently write
values to storage using the write-combining technique described in Section 2. Our
implementation initializes the next pointers to consecutive, naturally aligned,
cache-line-sized buffers. A buffer is full when its (post-incremented) position is
evenly divisible by its size. When that happens, an unrolled loop of non-temporal
writes copies the buffer to its key’s current output position within storage. These
output positions are also stored in an array of pointers.
1 Accesses to non-present pages result in a page fault exception. The application re-

ceives such events via signals (POSIX) or Vectored Exception Handling (Microsoft
Windows) and reacts by committing memory, after which the faulting instruction is
repeated.
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4 Radix Sort

After a brief review of radix sorting, we introduce a new variant based on the
virtual-memory counting sort described in Section 3.

A radix sort successively examines D-bit ‘digits’ of the K-bit keys. They are
characterized by the order in which digits are processed: starting at the Least
Significant Digit (LSD), or Most Significant Digit (MSD).

An MSD radix sort partitions the items according to the current digit, then
recursively sorts the resulting buckets. While it no longer needs to move items
whose previously seen key digits are unique, this is not especially helpful when
the number of passes K/D is small. In fact, the overhead of managing numerous
(nearly empty) buckets makes MSD radix sort less suited for relatively small N .

By contrast, each iteration of the LSD variant partitions all items into buckets
by the current key digit. This amortizes the bucket setup cost over the number
of elements and avoids the possibility of load imbalance for parallelization at the
price of increased data copying.

To reduce this overhead and also parallel communication, we make use of
“reverse sorting” [7], in which one or more MSD passes partition the data into
buckets, which are then locally sorted via LSD. This turns out to be even more
advantageous for Non-Uniform Memory Access (NUMA) systems because each
processor is responsible for writing a contiguous range of outputs, thus ensuring
the OS allocates those pages from the processor’s NUMA node [8].

Let us now examine the pseudocode of the radix sort (Algorithm 2), choosing
K = 32 for brevity and D = 8 to allow extracting key digits without masking.
Each Processing Element (PE) first uses counting sort to partition its items into
local buckets by the MSD (digit = 3). Note that items consist of a key and
value, which are adjacent in memory (ideally within a native 64-bit word, but
larger combinations are possible in our implementation via larger user-defined
types). After all are finished, the output index of the first item of a given MSD
is computed via prefix sum. Each PE is assigned a range of MSD values, sorting
the buckets from all PEs for each value. Skewed MSD distributions can cause
load imbalance. However, this could be resolved via special treatment of large
buckets2. The local sort entails K/D−1 iterations in LSD order. The first copies
all other PEs’ buckets into local memory. The second to last pass also computes
the last digit’s histogram, thus allowing writing directly to the output positions
in the final pass. Note that three sets of buckets are required, which makes heavy
use of virtual memory (3 · 2D · |PE| = 6144 times the input size). While 64-bit
Linux grants each process 128 TiB address space, Windows limits this to 8 TiB,
which means only about 1.4 GiB of inputs can be sorted3.

We briefly discuss additional system-specific considerations. The radix 2D

was motivated by easy access to each digit, but is also limited by the cache

2 Sorting buckets larger than N/|PE| using multiple PEs.
3 This limitation could be circumvented by estimating bounds for bucket sizes via

sampling. In the unlikely case that they are exceeded, a new sample would be drawn
and the process repeated.
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Algorithm 2: Parallel Radix Sort
parallel foreach item do

d := Digit(item, 3);
buckets3 [d] := buckets3 [d] ∪ {item};

Barrier;

foreach i ∈ [
0, 2D

)
do

bucketSizes [i] :=
∑

PE |buckets3 [i]|;
outputIndices := PrefixSum(bucketSizes);
parallel foreach bucket3 ∈ buckets3 do

foreach item ∈ bucket3∀PE do
d := Digit(item, 0);
buckets0 [d] := buckets0 [d] ∪ {item};

foreach bucket0 ∈ buckets0 do
foreach item ∈ bucket0 do

d := Digit(item, 1);
buckets1 [d] := buckets1 [d] ∪ {item};
d := Digit(item, 2);
histogram2 [d] := histogram2 [d] + 1;

foreach bucket1 ∈ buckets1 do
foreach item ∈ bucket1 do

d := Digit(item, 2);
i := outputIndices [d] + histogram2 [d];
histogram2 [d] := histogram2 [d] + 1;
output [i] := item;

and TLB size. Because of the many required TLB entries, we map the buckets
with small pages, for which the Intel i7 microarchitecture has 512 second-level
TLB entries. To increase TLB coverage, we use large pages for the inputs. The
working set consists of 2D buffers, buffer pointers, output positions, and 32-bit
histogram counters. This fits in a 32 KiB L1 data cache if the software write-
combine buffers are limited to a single 64-byte cache line. To avoid associativity
and aliasing conflicts, these arrays are contiguous in memory. Interestingly, these
optimizations do not detract from the readability of the source code. Knowledge
of the microarchitecture can also be applied towards middle-level languages and
enables principled design decisions.

5 Performance Evaluation

We characterize the performance of our sorting implementation by its through-
put, defined as N

t1−t0
, where N is the number of items and t0 and t1 are the ear-

liest and latest start and finish times reported by any thread. The test platform
consists of dual W5580 CPUs (3.2 GHz, 48 GiB DDR3-1066 memory) running
Windows XP x64. Our implementation is compiled with ICC 11.1.082 /Ox /Og

/Oi /Ot /Qipo /GA /GR- /GS- /EHsc /Qopenmp /QaxSSE4.2. When sorting 350 M
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uniformly distributed 32-bit keys generated by the WELL512 algorithm [9], the
basic algorithm (‘VM only’) reaches a throughput of 391 M items/s, as shown
in the second column of Table 1. After enabling write-combining (‘VM+WC’),
performance nearly doubles to 657 M/s.

Intel has reported 240 M/s for the same task and a single but identical CPU
[2]. For a fair comparison with our dual-CPU system, we double their through-
put, which optimistically assumes their algorithm is NUMA-aware, scales per-
fectly and is not running at a lower memory clock (since our DDR3-1066 is at
the lower end of currently available frequencies). We must also divide by the
given speedup of 1.2 due to hyperthreads, since those are disabled on our ma-
chine. This (‘Intel x2’) yields 400 M/s; the proposed algorithm is therefore 1.64
times as fast. A separate publication has also presented results [10] for the Many
Integrated Cores architecture. The Knights Ferry processor provides 32 cores,
each with 4 threads and 16-wide SIMD. The simulation (‘KNF MIC’) shows a
throughput of 560 M/s. Our scalar implementation is currently 1.17 times as
fast when running on 8 cores.

Recently, a throughput of 1005 M/s was reported on a GTX 480 (Fermi) GPU
[11]. However, this excludes driver and data-transfer overhead. For applications
in which the data is generated and consumed by the CPU, we must include at
least the time required to read and write data over the PCIe 2.0 bus. Assuming
the peak per-direction bandwidth of 8 GB/s is reached, the aggregate throughput
(‘GPU+PCIe’) is 501 M/s. Our implementation, running on two CPUs, therefore
outperforms this algorithm on a current top-of-the-line GPU by a factor of 1.31
despite lower transistor counts (2 · 731 M vs. 3000 M) and thermal design power
(2 · 130 W vs. 275 − 300 W).

Table 1. Throughputs [million items per second] for 32-bit keys and optional 32-bit
values

Algorithm K=32,V=0 K=32,V=32

VM only 391 238
Intel x2 400 307
GPU+PCIe 501 303
KNF MIC 560 (?)
VM+WC 657 452

Similar measurements and extrapolations for the case of 32-bit keys associated
with V = 32-bit values are given in the third column of Table 1. Since the
slowdown is less than a factor of two, the implementations are at least partially
limited by computation instead of bandwidth. Intel’s algorithm is more efficient
in this regard, with only a 1.3-fold decrease vs. our factor of 1.45. The additional
data transfers over PCIe render the GPU algorithm uncompetitive.
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Fig. 1. Linear scalability on two quad-core CPUs with a NUMA factor of 1.5

Since radix sort is bandwidth-sensitive, it is also interesting to examine per-
formance for a varying number of processors. We manually distribute OpenMP
threads across CPU packages and cores (in that order) to make use of all avail-
able memory controllers. Our NUMA-aware implementation scales linearly with
the number of threads, as shown by Figure 1.

To explain the 95% parallel efficiency, we measured the total traffic at each
socket’s memory controller. Since this information is not available from current
profilers such as VTune (which use per-core performance counters), we have
developed a small kernel-mode driver to provide access to the model-specific
performance counters in the Intel i7 uncore4. Uncached writes constitute the bulk
of the write combiners’ memory traffic and are therefore of particular interest.
They are apparently reported as Invalid-To-Exclusive transitions and can thus
be counted as the total number of reads minus ‘normal’ reads [12]. We find that
2041 MiB are written, which corresponds to 64 Mi items · 8 bytes per item ·
4 passes (slightly less because our final pass cannot use non-temporal writes
when the output position is not aligned). Surprisingly, 2272 MiB are read –
about 10% more than expected. This amount seems to be influenced by the
number of threads. Possible causes may include coherency traffic or page walks
and will be investigated in future work. However, we can provide a conservative
estimate of the bandwidth utilization. Given the pure read and write bandwidths
(38687 MB/s and 28200 MB/s) measured by RightMark [13], the minimum
time required for 4 reads and writes of 175 M 8-byte items is 343 ms, which
is 89% of the total measured time. This calculation does not include write-to-
read turnaround [14, p. 486], so there is even less room for improvement than
indicated.

4 The part of the socket not associated with a particular core.
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Fig. 2. Time per item for various input sizes and distributions

The previous measurements concern large numbers of items. We now study
performance over a wider range of input sizes. The elapsed time per item, shown
in Figure 2, varies inversely with the number of items N due to amortization of
thread-startup overhead. Performance is within 10% of the best measurement
when N ≥ 26 · 220, or N ≥ 21 · 220 in the case of the approximated Gaussian
distribution [15]. It is initially surprising that this distribution does not require
more time to sort than uniformly distributed numbers. However, interleaving
buckets in the LSD passes (successive buckets are assigned to different threads)
avoids load imbalance, and increased occupancy of the central buckets improves
locality at the memory page level.

6 Conclusion

We have introduced improvements to counting sort and a novel variant of radix
sort for integer key/value pairs. Bandwidth measurements indicate our algo-
rithm’s throughput is within 11% of the theoretical optimum for the given hard-
ware. It outperforms the recently published results of Intel’s radix sort by a factor
of 1.64 and also outpaces a Fermi GPU when data transfer overhead is included.



168 J. Wassenberg and P. Sanders

These results indicate that scalar, bandwidth-sensitive sorting algorithms still
have their place on current architectures. However, achieving this level of perfor-
mance requires awareness of the underlying microarchitecture and some degree
of tuning. Our implementation encompasses 5700 lines of C++ (including tests),
plus 40,000 lines of shared infrastructure. A demo executable [16] capable of gen-
erating or reading 32-bit integers, sorting and efficiently writing them to disk is
being made available so that our measurements may be reproduced.

Future Work: While carefully engineered, our implementation is not yet a general
solution for all possible sorting applications. Radix sort is limited to relatively
small integer keys, and we also assume at least one of the key digits (the MSB) is
reasonably equally distributed. Skewed (e.g. constant) distributions currently re-
sult in load imbalance. This could be avoided by sorting extremely large buckets
from the MSD phase using multiple processors.

We are also interested in testing on larger multi-socket machines with higher
NUMA factors and investigating details of the memory subsystem that reduce
effective bandwidth. Finally, we believe the general software write-combining
technique can provide similar speedups for other memory-intensive applications.
In particular, comparison-based sample sort is also expected to benefit from our
implementation techniques.
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Abstract. FastFlow is a programming framework specifically target-
ing cache-coherent shared-memory multi-cores. It is implemented as a
stack of C++ template libraries built on top of lock-free (and mem-
ory fence free) synchronization mechanisms. Its philosophy is to combine
programmability with performance. In this paper a new FastFlow pro-
gramming methodology aimed at supporting parallelization of existing
sequential code via offloading onto a dynamically created software accel-
erator is presented. The new methodology has been validated using a set
of simple micro-benchmarks and some real applications.

Keywords: offload, patterns, multi-core, lock-free synchronization, C++.

1 Introduction

Parallel programming is becoming more and more a must with the advent of
multi-core architectures. While up to few years ago faster and faster execution
of programs was mainly the result of increased clock speed and of improvements
in single processor architecture, from now on improvements may only come from
better and more scalable parallel programs.

Here we discuss a semi-automatic parallelization methodology for existing
code which is based on streamization, i.e. on the introduction and exploitation
in the user application of stream parallelism. The methodology is based on the
identification of suitable stream parallel patterns within the user application.
Once these patterns have been recognized the computation of a stream of tasks
according to the patterns is delegated to a structured parallel library–FastFlow–
targeting in a very efficient way common cache coherent multi-core architectures.

The proposed methodology is semi-automatic as i) the programmer is still in
charge of identifying the appropriate stream parallel patterns, but ii) the stream
parallel pattern implementation is completely and efficiently delegated to the
FastFlow runtime system. This happens by way of offloading onto a software
device behaving as an accelerator (FastFlow software accelerator) which realizes
a parallel pattern (skeleton).

Stream parallelism is the well-known programming paradigm supporting the
parallel execution of a stream of tasks by using a series of sequential or parallel

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 170–181, 2011.
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stages [1]. A stream program can be naturally represented as a graph of indepen-
dent stages (kernels or filters) that communicate explicitly over data channels.
Parallelism is achieved by running each stage simultaneously on subsequent or
independent data.

As with all kinds of parallel program, stream programs can be expressed as a
graph of concurrent activities, and directly programmed using a low-level shared
memory or message passing programming framework. Although this is still a
common approach, writing a correct, efficient and portable program in this way
is a non-trivial activity. Attempts to reduce the programming effort by raising the
level of abstraction through the provision of parallel programming frameworks
date back at least three decades with a number of significant contributions.

Notable among these is the skeletal approach [2] (a.k.a. pattern-based parallel
programming), which is becoming increasingly popular after being revamped by
several successful parallel programming frameworks [3,4,5,6]. Parallel patterns
capture common parallel programming paradigms (e.g. MapReduce, ForAll, Di-
vide&Conquer, etc.) and make them available to the programmer as high-level
constructs equipped with well-defined functional and parallel semantics. Some
of these attempts explicitly include stream parallelism as a major source of con-
currency exploitation, such as pipeline (running each stage simultaneously on
subsequent stream items), farm (running multiple independent stages in paral-
lel, each operating on a different task), and loop (providing a way to generate
cycles in a stream graph). The loop skeleton together with the farm skeleton can
be effectively used to model recursive and Divide&Conquer computations.

The stream paradigm perfectly suits the need for reducing inter-core synchro-
nization overheads in parallel programs for shared cache multi-cores. Therefore,
it can be used to build an efficient run-time support for a high-level programming
model aimed at the effective design of parallel applications.

The rest of paper discusses the idea of streamization (Sec. 2), outlines the
main FastFlow features (Sec. 3), describes the stream acceleration methodol-
ogy (Sec. 4) and gives experimental results (Sec. 5). Related work (Sec. 6) and
Conclusions are then presented.

2 Code Acceleration through Streamization

The parallelization of a sequential code is typically tackled via data dependence
analysis [7]. Having fixed a reference grain for the parallelization, the tasks to
compute are released from strict sequential order in such a way that the program
semantics is preserved. As a result, these objects are organized in a static or
dynamically evolving graph of communicating tasks.

Instruction level parallelism is typically exploited at the hardware level within
the single core, while coarser grain parallelism is expressed among cores at soft-
ware level. In the latter case, the primary sources of parallelism exploitation are
iterative and recursive tasks since they often model heavy kernels that can be
unfolded into fully or partially independent tasks.

Also, if the parallel code is derived from existing sequential code, variable
privatization and scalar/array expansion are often applied to further relax false
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dependencies [8,7]. These techniques consist in various levels of duplication of
some memory area. Variable privatization nicely couples with stream parallelism
making possible dynamic privatization. Privatized variables can be copied into a
dynamically created data structure (e.g. the stream task type task t in Fig. 2,
right, lines 44–46) and offloaded in a non-blocking fashion to an accelerator.

Computation offloading, which is typically used to feed hardware accelera-
tors (e.g. via OpenCL or CUDA), naturally creates a stream of tasks for the
accelerator, provided it is realized via non-blocking mechanisms. As with GPUs,
streamization techniques may offer significant opportunities on shared-cache
multi-cores.

We classify stream sources in two broad categories: exo- and endo-streams.

Exo-streams. A stream parallel approach naturally matches the parallelization
of applications that manage externally produced (exo) streams of input and
output data. These applications are increasingly found in many domains, e.g.
multimedia and networking. In many cases, the whole dataset is large and has to
be processed online. Moreover, there may be few or no sources of data parallelism
to allow use of classical data parallel techniques.

Endo-streams. A stream parallel approach also matches those computations
that internally (endo) generate streams. We recognize three distinct sources
of endo-streams: recursive computations and iterative computations, with and
without dependencies. Recursion (Recursive kernels) appears as a natural pro-
gramming technique in many algorithms working with dynamic data structures
such as graphs and trees. In many cases they are data intensive algorithms and
require significant computational power. Recursion could be easily modeled as a
streaming network using a cyclic graph, whereas it can not readily be modeled by
way of a data parallel approach. In this case, stream items are generated on-the-
fly and represent different invocations of the recursive kernel. Iterative kernels
with independent iterations represent the simplest case of endo-stream sources
and are typically parallelized using a data-parallel approach. Streamization can
also be applied in this case (e.g. generating and then processing a stream of
items representing the different iterations) and is particularly useful when dy-
namic loops (i.e. while) or for loops with conditional jumps in the body (i.e. break
or goto statements) are used. In fact, in all cases when flag variables are used in
the code to skip the next code section, classical data parallel techniques are diffi-
cult to apply and may lead to poor performance. In the presence of loop-carried
dependencies (Iterative kernels with dependencies), streamization may lead to
more efficient synchronization patterns because it reduces the synchronization
overhead due to data sharing in shared memory systems and thus shortens the
critical path of execution. In doAcross task scheduling, the dependencies across
threads are typically cross-iteration dependencies, which means that the under-
ling memory location cannot be privatized. The synchronization overhead must
be paid at least once for each iteration of a loop. On the contrary, in a pipeline
schedule, loop-carried dependencies can be mapped onto the same thread. The
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remaining dependencies will still have the same overhead, but privatization will
better tolerate the latency.

3 The FastFlow Parallel Programming Framework

FastFlow is a C++ parallel programming framework aimed at simplifying the
development of efficient applications for multi-core platforms. The key vision of
FastFlow is that ease-of-development and runtime efficiency can both be achieved
by raising the abstraction level of the design phase, thus providing developers
with a suitable set of parallel programming patterns that can be efficiently com-
piled onto the target platforms.

FastFlow is conceptually designed as a stack of layers that progressively ab-
stract the shared memory parallelism at the level of cores up to the definition of
useful programming constructs supporting structured parallel programming on
cache-coherent shared memory multi- and many-core architectures [9].

FastFlow’s core is based on efficient Single-Producer-Single-Consumer (SPSC)
and Multiple-Producer-Multiple-Consumer (MPMC) FIFO queues, which are
implemented in a lock-free and wait-free fashion. On top of its core, FastFlow
provides programmers with a set of patterns implemented as C++ templates:
farm, farm-with-feedback (i.e. Divide&Conquer) and pipeline patterns, as well as
their arbitrary nesting and composition. A FastFlow farm is logically built out
of three entities: emitter, workers, collector. The emitter dispatches stream items
to a set of workers which compute the output data. Results are then gathered
by the collector back into a single stream.

Thanks to the lock-free implementation that significantly reduces cache inval-
idations in core-to-core synchronizations, FastFlow typically demonstrates in-
creased speedup for fine-grained computations over other programming tools
such as POSIX, Cilk, OpenMP, and Intel TBB [10]. For more information about
the FastFlow implementation and features see [9].
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Fig. 1. 1(a) FastFlow accelerator architecture with usage examples. 1(b). Flow charts
of sequential and a FastFlow accelerated real case algorithm: two-step denoising.
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20 // FastFlow accelerated code
21 #define N 1024
22 long A[N][N],B[N][N],C[N][N];
23 int main() {
24 // < init A,B,C>
25

26 ff ::ff farm<> farm(true /∗ accel ∗/);
27 std :: vector<ff :: ff node ∗> w;
28 for(int i=0;i<PAR DEGREE;++i)
29 w.push back(new Worker);
30 farm.add workers(w);
31 farm.run then freeze();
32

33 for (int i=0;i<N;i++) {
34 for(int j=0;j<N;++j) {
35 task t ∗ task = new task t(i,j);
36 farm.offload(task);
37 }
38 }
39 farm.offload((void ∗)ff ::FF EOS);
40 farm.wait(); // Here join
41 }
42

43 // Includes
44 struct task t {
45 task t(int i ,int j) : i ( i ) , j(j) {}
46 int i ; int j ;};
47

48 class Worker: public ff:: ff node {
49 public: // Offload target service
50 void ∗ svc(void ∗task) {
51 task t ∗ t = (task t ∗)task;
52 int C=0;
53 for(int k=0;k<N;++k)
54 C += A[t−>i][k]∗B[k][t−>j];
55 C[t−>i][t−>j] = C;
56 delete t;
57 return GO ON;
58 }
59 };

1 // Original code
2 #define N 1024
3 long A[N][N],B[N][N],C[N][N];
4 int main() {
5 // < init A,B,C>
6

7 for(int i=0;i<N;++i) {
8 for(int j=0;j<N;++j) {
9

10 int C=0;
11 for(int k=0;k<N;++k)
12 C += A[i][k]∗B[k][j ];
13 C[i ][ j]= C;
14

15 }
16 }
17 }

Regions marked with white circled fig-
ures ①,②,④,⑤ are copy-pasted.
The region marked with the black circled
figure (❸) has been selected to be ac-
celerated with a farm. It is copied with
renaming of variables that are concur-
rently changed, e.g. automatic variables
in a loop. A stream of task t variables is
used to keep all different values of these
variables.
Grey boxes create and run the acceler-
ator; they are pre-determined according
to the accelerator type.
The code marked with ➽ executes the
offloading onto the accelerator; the tar-
get of the offloading is the svc method
●➽ of the Worker class.

Fig. 2. Derivation of FastFlow accelerated code from a simple sequential C++ appli-
cation (matrix multiplication)

4 Self-offloading on the FastFlow Accelerator

A FastFlow accelerator is a software device that extends the FastFlow framework
with a functional self -offloading feature, i.e. offloading from a thread running
on the main CPU to other threads running on the main (multi-core) CPUs. The
architecture of the accelerator is sketched in Fig. 1(a).

The main aim of self-offloading is to give the programmer an easy and semi-
automatic way to introduce parallelism into a C/C++ sequential code by moving
parts of the original code into the body of C++ methods, which will be executed
in parallel according to the selected FastFlow skeleton (or skeleton composition).
As shown in Fig. 2, this requires limited programming effort and may signifi-
cantly speed up the original code by exploiting efficient stream parallelism.

An accelerator is a collection of threads and has a global life-cycle with two
stable states: running and frozen, plus several transient states. In a running
state, all threads of an accelerator are logically able to run (either running or
actively waiting on a non-blocking synchronization), whereas in a frozen state
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they are suspended (at the O.S. level). At any given time, due to non-blocking
synchronizations, the total number of threads in running accelerators should
typically be smaller (or equal) than core count for performance reasons. This kind
of configuration typically benefits from O.S. affinity scheduling. In the case of a
higher thread count, running threads will share available cores according to O.S.
scheduling policies. The thread-to-core pinning is possible via FastFlow utility
functions; automatic thread pinning/mapping are planned for future work.

The accelerator provides the programmer with one (untyped) streaming input
channel and one (untyped) streaming output channel that can be dynamically
created (and destroyed) from C++ code (either sequential or multi-threaded)
as a C++ object (Fig. 2, right, lines 10–13). Thanks to the underlying shared
memory architecture, messages flowing into these channels may carry both values
and pointers to data structures.

When an accelerator is created (Fig. 2 lines 26–30), it can be switched on
(Fig. 2 line 31): the accelerator threads are created and bound to system cores.
A thread of a user can wait for an accelerator, i.e. suspend until the accelerator
completes its input tasks, and then can put the accelerator into the frozen state.
It is also possible to activate the accelerator asynchronously and pop output
tasks from the accelerator’s output channel using the load result method.

A FastFlow accelerator is defined by a FastFlow skeletal composition aug-
mented with an input stream and an output stream that can be, respectively,
pushed and popped from outside the accelerator. Both the functional and extra-
functional behaviour of the accelerator are fully determined by the chosen skele-
tal composition. For example, the farm skeleton provides the parallel execu-
tion of the same code (within a worker object) on independent items of the
input stream. The pipeline skeleton provides the parallel execution of filters
(or stages) exhibiting a direct data dependency. More complex behaviours can
be defined by creating compositions of skeletons whose behaviour could be de-
scribed using a (cyclic or acyclic) graph of tasks with well-defined functional and
extra-functional semantics. Clear understanding of accelerator behaviour makes
it possible to correctly parallelize segments of code.

The use of a farm accelerator is illustrated in Fig. 2. The code in Fig. 2 (left)
shows a sequential program including three loops: simple matrix multiplication.
Its accelerated version, shown in Fig. 2 (right), can be semi-automatically derived
from the sequential by copy-pasting pieces of code into placeholders on a code
template (parts in white background in the left column): for example, code
marked with ①,②,④, and ⑤ are copied from left to right. The code that has
been selected for offloading, in this case the body of a loop marked with ❸, is
copied into the worker body after a suitable renaming of variables.

The accelerator shares the memory with its caller. As is well-known, trans-
forming a sequential program into a parallel one requires regulation of possibly
concurrent memory accesses. In low-level programming models this is usually
done by using critical sections and monitors under the responsibility of the pro-
grammer. FastFlow does not prohibit these mechanisms, but promotes a method-
ology to avoid them. In very general terms, the sequential code statement can be
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correctly accelerated with FastFlow only mechanisms if the offloaded code and
the offloading code (e.g. main thread) instances do not break any data depen-
dency [7]. FastFlow helps the programmer in enforcing these conditions in two
ways: skeletons and streams.

The skeletal structure of the accelerator induces a well-defined partial order-
ing among offloaded parts of code. For example, no-order for farm, a chain of
dependencies for pipeline, a directed acyclic graph for farm-pipeline nesting/-
composition, and a graph for a farm-with-feedback. The synchronization among
threads is enforced by streams along the paths of the particular skeleton com-
position, as in a data-flow graph. True dependencies (read-after-write) are ad-
missible only along these paths. Streams can carry values or pointers, which act
as synchronization tokens for indirect access to the shared memory.

Pragmatically, streams couple quite well with the needs of sequential code
parallelization. In fact the creation of a stream to be offloaded on the accelerator
can be effectively used to resolve anti-dependency (write-after-read) on variables
since the stream can carry a copy of the values. For example, this happens when
an iteration variable of an accelerated loop is updated after the (asynchronous)
offload. This case naturally generalizes to all variables exhibiting a larger scope
with respect to the accelerated code. The same argument can be used for output
dependency (write-after-write). FastFlow accelerator templates accommodate all
variables of this kind in one or more structs or C++ classes (e.g. task t, lines
44–46) representing the input, and, if present, the output stream data type. All
other data accesses can be resolved by just relying on the underlying shared
memory (e.g. read-only, as with A in line 54, and single assignment as with C
in line 55).

It is worth pointing out that the FastFlow acceleration methodology may not
be fully automated. It has been conceived to ease the task of parallelization by
providing the programmer with a methodology that helps in dealing with several
common cases. However, many tasks require the programmer to make decisions,
e.g. the selection of the code to be accelerated. In the example code in Fig. 2
there are several choices with different computation granularity: offload only the
computations relative to index i, to both i and j, or to all three indices.

The programmer can control the communications among threads at higher
level, and in particular can control when the thread reads from the input chan-
nel and writes to the output channel, the thread state (running and frozen) at
different abstraction levels, the thread termination conditions, and the schedul-
ing and the collection policies in the farm skeleton. In addition, as FastFlow
equips the standard OS threads (e.g. POSIX threads) with additional synchro-
nization mechanisms, the user retains the possibility to exploit thread native
synchronization mechanisms (e.g. locks) and exploit thread library specific fea-
tures (e.g. defining and using thread-specific storage). Also, almost any possible
nesting of farm and pipeline skeletons is possible.

The low overhead added by the run-time support, together with the flexibility
of the framework, widens the parallelization possibilities to a broader class of
applications, and especially to programs performing frequent synchronizations.
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5 Experimental Evaluation

The proposed self-offloading methodology has been validated on a set of three
micro-benchmarks and two novel real-world applications. Several other complex
applications —not presented here— have been parallelized using the FastFlow
accelerator technique, such as a C.4.5 data classifier, a Gillespie simulator for
biological systems and the Smith-Waterman string alignment. We refer back to
[9] for an extensive listing.

Two platforms are used in the evaluation: 8-core) Intel workstation with 2 x
quad-core Xeon E5520 Nehalem (16 HyperThreads) @2.26GHz; 48-core) AMD
Magny-Cours 4 x twelve-core Opteron 6174 @2.2GHz. Both run Linux x86 64.

5.1 Micro-benchmarks

We present the results obtained from the parallelization of three simple and well-
known algorithms: dense square matrix multiplication, the Quicksort sorting
algorithm, and the recursive computation of the n-th Fibonacci number.

The matrix multiplication consists in the parallelization of the “näıve” algo-
rithm; the code is shown fully in Fig. 2; the parallel version achieves a speedup
of 7.6 on the 8-core platform (1024x1024 integer matrices). In this case, a stream
of submatrix multiplication tasks is created to feed the FastFlow accelerator.

The Quicksort benchmark has been parallelized using a Divide&Conquer par-
allel pattern (i.e. farm plus loop patterns). A worker receives a task with two
indices describing a partition of a shared array from the emitter and executes
a step of the Quicksort algorithm producing two tasks that return to the emit-
ter, which in turn dispatches received tasks to workers. The workers switch to
sequential processing at a given partition size threshold. The Fibonacci bench-
mark behaves similarly; the emitter also accumulates partial results. In both
these micro-benchmarks the streams processed through the FastFlow accelera-
tor are generated on-the-fly and composed of tasks corresponding to recursive
calls to the main procedure. The Quicksort on a 50M integer array and Fi-
bonacci(50) achieve speedups of 6.8 and 9.21, respectively, on the 8-core platform
over-provisioned with 16 worker threads. The super-linear speedup achieved by
Fibonacci is due to the HyperThreading technology, which, in contrast, brings
no benefit to the Quicksort application.

5.2 Applications

We discuss the results achieved when accelerating two applications with Fast-
Flow. The applications are representative of two large and significant applica-
tions classes: the first performs classical data-parallel (with dependencies) com-
putations and its acceleration is endo-stream parallel, while the second is a clas-
sical exo-stream parallel application. In both cases excellent results are achieved
on state-of-the-art multi-core architectures.



178 M. Aldinucci et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  5  10  15  20  25  30  35  40  45  50

S
pe

ed
up

 fo
r 

Le
na

N. of worker threads (parallelism degree)

Ideal
10% noise
30% noise
50% noise
70% noise
90% noise

Lena - 30% noise Lena - 50% noise Lena - 90% noise

Lena 30% - Restored
PSNR=35.1 MAE=1.2 

Lena 50% - Restored
PSNR=31.9 MAE=2.3 

Lena 90% - Restored
PSNR=22.5 MAE=11.3 

Fig. 3. Left) Speedup for the Lena image on the 48-core platform. Right) Restoration
result with PSNR (Peak Signal-to-Noise Ratio) and MAE (Mean Absolute Error).

Edge-Preserving Denoiser. The edge-preserving denoiser is a two-step filter for
removing salt-and-pepper noise (see Fig. 3 right). In the first step, an adap-
tive median filter is used to identify the set of noisy pixels; in the second step,
these pixels are restored according to an iterative variational approach up to
convergence. The detailed description of the sequential algorithm is beyond the
scope of this paper; it ensures state-of-the-art restoration quality and execution
time, and it is able to restore also very noisy images (e.g. 90% random noisy
pixels) [11]. To ensure a high quality of restoration the algorithm features cross-
dependencies among the noisy pixels, which induce a logical data-dependency
pattern that cannot be solved with an a priori partitioning of the data set, as
typically happens in data-parallelism. The idea behind the parallel porting of the
proposed algorithm consists in clustering the noisy pixels into independent sets
in such a way that cross-dependencies are respected. Following this, independent
clusters, which can exhibit very different cardinalities, can be processed in par-
allel according to a farm paradigm. In particular, the clusters can be streamed
(via offloading) to a FastFlow farm accelerator. The porting process, which is
sketched in Fig. 1(b), required just a few hours development time. The clustering
process, which is not present in the sequential version, has been designed from
scratch as sequential code, and thus does not require concurrency skills.

Figure 3 reports the speedup achieved on the 48-core platform for the Lena
256x256 standard test image. The completion time of sequential processing grows
linearly with noise ratio: from 9 to 180 seconds with 10% to 90% noise ratio. The
parallel version speeds them up to a range of 0.4 to 4 seconds, respectively. Note
that restoration quality metrics (PSNR and MAE) are comparable to or better
than the best results in the area (e.g. Chan’s method [11], while execution time
for parallel execution is better than results in the literature [11,9].

Stream File Compressor. This application is a further development of an al-
ready parallel application: pbzip2 [12], i.e. a parallel version of the widely used
bzip2 block-sorting file compressor. It uses pthreads and achieves very good
speedup on SMP machines for large files. Small files (less then 1MB) are sequen-
tially compressed. We extend it to manage streams of small files which can be
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compressed in parallel. In this case, in contrast with previous examples, the
stream of data is not created within the application but exists independently of
the application (e.g. comes from a POSIX stream, find shell command, etc.).

The original pbzip2 application is structured as a farm: the generic input file
is read and split into independent parts (blocks) by a splitter thread; then each
block is sent to a pool of worker threads which compress the blocks. The pool
is hand-coded using pthread synchronizations and extensively hand-tuned. The
FastFlow port of pbzip2 (pbzip2 ff ) was developed by taking the original code
of the workers and including it in a FastFlow farm pattern. Then, a second Fast-
Flow farm whose workers execute the file compression sequentially was added.
The two farms are run as two accelerators and fed by the main thread which
selectively dispatches files to the two accelerators depending on the file size. The
porting of the pbzip2 application to FastFlow has highlighted two aspects of
the approach: (1) by using FastFlow it is possible to parallelize the algorithm
using high-level parallel patterns rather than a hand-tuned mutex-based imple-
mentation without any performance penalty and with an actual performance
improvement; (2) FastFlow non-blocking synchronizations exhibit good perfor-
mance in comparison to traditional blocking synchronizations based on mutexes,
even in worst-case scenarios such as coarse grained CPU-intensive elaborations
where non-blocking behaviour might waste CPU cycles.

Table 1 compares the execution times of sequential bzip2, pbzip2 and pbzip2 ff
on two different data sets: on the left, on large files shows that pbzip2 ff exhibits
no significant slowdown against hand-tuned pbzip2; on the right, on files of
various sizes shows the improved speedup of pbzip2 ff against pbzip2.

6 Related Work

The word accelerator is often used in the context of hardware accelerators. Usu-
ally accelerators feature a different architecture with respect to standard CPUs
and thus, in order to ease exploitation of their computational power, specific li-
braries are developed. In the case of GPGPUs those (low-level) libraries include
Brook [13], NVidia CUDA, and OpenCL. At a higher-level, Offload [14] enables
offloading of parts of a C++ application, which are wrapped in offload blocks,
onto hardware accelerators for asynchronous execution; OMPSs [15] enables the

Table 1. On the left, compression and decompression time (S) on a single 1 GBytes file
(528 MBytes compressed). On the right, execution time (S) and speedup over bzip2 in
the case of a stream of 1078 files: 86% small (0–1 MBytes), 9% medium (1–10 MBytes),
4% large (10–50 MBytes), and 1% very large (50–100 MBytes). pbzip2 uses 16 threads.
pbzip2 ff uses 16 threads for each accelerator.

bzip2 pbzip2 pbzip2 ff

# threads 1 4 8 16 4 8 16

compres 231 58.8 32.9 26.0 59.3 33.0 25.7
decompres 69 18.0 11.1 8.9 18.5 11.0 8.9

bzip2 pbzip2 pbzip2 ff

Time (S) Time (S) Speedup Time (S) Speedup

comp. 538 97 5.5 72 7.5
decomp. 126 33 3.8 21 6.0
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offloading of OpenCL and CUDA kernels as an OpenMP extension [16]. Fast-
Flow, in contrast with these frameworks, does not target specific (hardware)
accelerators but realizes a virtual accelerator running on the main CPUs and
thus does not require the development of specific code.

Recent work [17] using the Charm++ programming model has demonstrated
that accelerator extensions are able to achieve both code portability and speedup.
However, in order to exploit the accelerator features, in contrast with FastFlow,
the application has to be entirely rewritten using the Charm++ framework.

Streaming applications and patterns are also targeted by StreamIt [18], Intel
Concurrent Collections (CnC) [19], and Intel TBB [5]. TBB, in particular, can be
used to accelerate C/C++ programs in specific portions of code via parallel pat-
terns (a.k.a. “algorithms”) and thread-safe data containers. The only streaming
pattern is the pipeline which, however, does not support non-linear streaming
networks, which therefore have to be embedded in a pipeline with significant
programming drawbacks. Farm and Divide&Conquer patterns are not natively
provided, even if they can be simulated with lower-level features.

OpenMP [16] supports parallelization of sequential programs via pragmas
that are, however, mainly designed to exploit loop-level data parallelism (e.g.
do independent) whereas the exploitation of other patterns of parallelism (e.g.
farm and Divide&Conquer) may require substantial re-factoring of the code.

A comparative performance study of FastFlow, OpenMP, and TBB on micro-
benchmarks and the Smith-Waterman application is reported in [10].

7 Conclusions

In this paper the FastFlow accelerator, which represents an extension of the
FastFlow framework specifically designed to support the easy porting of existing
sequential C/C++ applications onto multi-cores using stream parallelism, is in-
troduced. We identified exo- and endo-streams, showing that stream parallelism
is applicable to a wide range of types of algorithm. The FastFlow accelerator
exhibits well-defined functional and extra-functional behaviour represented by
a skeleton composition; this helps in ensuring the correctness of the paralleliza-
tion process. The main vehicle of parallelization is offloading of code kernels
onto a number of additional threads running on the same CPU; we call this
technique self-offloading. Code acceleration is supported by a methodology and
by the unique ability of FastFlow to support very fine grain tasks on standard
multi-cores.

The effectiveness of the proposed methodology has been demonstrated by a
set of codes ranging from very simple kernels to real applications.
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R.M., Ayguadé, E., Labarta, J.: Optimizing the exploitation of multicore processors
and gPUs with openMP and openCL. In: Cooper, K., Mellor-Crummey, J., Sarkar,
V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 215–229. Springer, Heidelberg (2011)

16. Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9, 143–161 (2001)
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Abstract. The Computational Fluid Dynamics (CFD) solver TAU for
unstructured grids is widely used in the European aerospace industry.
TAU runs on High-Performance Computing (HPC) clusters with several
thousands of cores using MPI-based domain decomposition. In order to
make more efficient use of current multi-core CPUs and to prepare TAU
for the many-core era, a shared-memory parallelization has been added
to one of TAU’s solver to obtain a hybrid parallelization: MPI-based
domain decomposition plus multi-threaded processing of a domain.

For the edge-based solver considered, a simple loop-based approach via
OpenMP FOR directives would – due to the Amdahl trap – not deliver
the required speed-up. A more sophisticated, thread-pool-based shared-
memory parallelization has been developed which allows for a relaxed
thread synchronization with automatic and dynamic load balancing.

In this paper we describe the concept behind this shared-memory par-
allelization, we explain how the multi-threaded computation of a domain
works. Some details of its implementation in TAU as well as some first
performance results are presented. We emphasize that the concept is not
TAU-specific. Actually, this design pattern appears to be very generic
and may well be applied to other grid/mesh/graph-based codes.

1 Intro

The TAU code, which is developed at the Institute of Aerodynamics and Flow
Technology of the German Aerospace Center (DLR), is widely used in the Euro-
pean aerospace industry for Computational Fluid Dynamics (CFD), c. f. e. g. [6].
The solver is designed for unstructured grids, yet it may also be used with
(block) structured grids. MPI-based domain decomposition allows TAU to be
run on HPC clusters withseveral thousands of cores. To make more efficient use
of current multi-core CPUs and to prepare TAU for the many-core era a shared-
memory parallelization has been implemented for one of the TAU solvers. That
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solver implements an explicit Runge/Kutta scheme with geometric multigrid
acceleration for unstructured grids.

Several approaches for a shared-memory parallelization for TAU have been
evaluated, and finally, a novel solution following the thread-pool model has
been developed. This thread-pool model allows the concurrent processing of
tasks subject to dependencies among the tasks. In addition to temporal data
dependencies and the concept of mutual completion of processed data, this so-
lution incorporates also mutual exclusion among tasks to prevent data races.
The concept allows for a significantly relaxed thread synchronization compared
to bulk-synchronous models. It features an automatic load balancing and allows
to implement a straightforward overlap of communication and computation in
TAU. The implementation shows a very good performance for the TAU solver.
However, the used methodology is not specific to the TAU solver and should be
applicable to a wide range of programs that work on unstructured or structured
grids/meshes/graphs.

1.1 Motivation

Due to the electric capacity of a CPU chip, the higher the clock frequency, the
higher the voltage needs to be – and the higher the thermal power to be dealt
with. Since an effective solution of this problem is not available, clock rates no
longer increase. Moore’s law, however, is still valid: the number of transistors per
chip doubles roughly every one and a half years. The CPU manufacturer’s policy
to further increase the theoretical peak performance of their chips: multi-core
chips. Though we see an exponential growth in explicit parallelism, this change
in the hardware is not at all reflected in HPC software: With a moderate number
of cores per socket there has been simply no need to adapt the parallelization.
Due to the large number of cores per socket in modern CPU designs, however,
the picture is changing: One MPI process per core has become a problem. For
CFD, the more MPI processes are used, the smaller the average computational
load per MPI process and the more MPI communication is needed to synchronize
the flow variables across the processes. The time for this synchronization is to be
considered serial. Hence, simply by Amdahl’s law, there is a maximum number
of MPI processes (and hence cores) that can be reasonably used.

Shared-memory parallel (multi-threaded) computation of the domains sug-
gests itself as a possible way to increase the scalability. When all cores of a CPU
are used to process one domain, the number of domains drops from the number
of cores to the corresponding number of sockets. Even though the idea of such
a hybrid (2-level) parallelization is straightforward, this approach requires the
shared-memory parallel computation of the domains to be sufficiently efficient.
It turns out that this is quite a challenge for CFD on unstructured grids.

1.2 Outline

In the following sections we describe how the proposed shared-memory parallel
computation of the (MPI-) domains works and give some implementation details
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and first performance results. We start with a brief introduction to the TAU code
in Sec. 2. In particular, the original MPI parallelization of TAU via domain de-
composition is explained. In Sec. 3 we describe the concept of the shared-memory
implementation. As the tasks to be processed by the threads show not only tem-
poral dependencies, but also data dependencies, a simple loop-based paralleliza-
tion via OpenMP is precluded. The tasks hence are processed asynchronously
using mutual exclusion to prevent data races (asynchronous subject to the de-
pendencies between the tasks). To efficiently handle temporal dependencies we
employ the concept of mutual completion.

The relaxed synchronization of the threads improves the scaling considerably:
The accumulation of load imbalances, which occur at every synchronization point
in the multi-threaded program flow, is drastically reduced since global synchro-
nization is replaced by dynamic local synchronization.

We think that our approach would be applicable to many other numerical
codes which use a multi-threaded task parallel approach. Details of how this
concept has been actually implemented in the TAU code are given in Sec. 4 and
first performance results are presented in Sec. 5. Finally, we conclude in Sec. 6
and give an outlook how to further improve the performance of the shared-
memory parallelization presented.

2 The DLR TAU Code

The TAU code is a 3D-flow solver that simulates compressible external flows
(steady or time-accurate) on unstructured grids using finite-volume discretiza-
tion via the Reynolds-averaged Navier-Stokes equations (RANS). TAU features
several turbulence models (Spalart/Allmaras, SST, RSM, etc.) as well as hy-
brid RANS/LES capabilities. It supports central spatial discretization (namely
JST) as well as several upwind schemes. Moreover, the user may choose be-
tween cell-vertex and cell-centered metric. The most frequently used TAU solvers
are Runge/Kutta and LU-SGS. Here we focus on the explicit Runge/Kutta
solver with geometric multigrid, cell-vertex metric, central discretization, and
a Spalart/Allmaras turbulence model, which requires one equation for the eddy
viscosity in addition to the five equations for mass, impulse and energy. As a
consequence, the number of degrees of freedom (DoF) is given by 6 times the
number of grid points. Each edge in the grid corresponds one-to-one to a face in
the so-called dual grid. This dual grid comprises control volumes around the grid
points. The calculation of the fluxes between these control volumes, which are
also called dual cells, is the main computational task in the scenario considered
here. To integrate the fluxes for all dual cells, we could loop over all points and
for each point we would loop over the faces of its surrounding dual cell. Recall
however that each face in the dual corresponds one-to-one to an edge in the
original grid. Thus, in this hypothetical implementation we would touch each
edge twice: Once for each of the two end points of the edge.

For a more efficient access to main memory, the current implementation of
TAU loops over the edges instead (c. f. [2]): For each edge, i.e., for each face in
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the dual grid, the respective value for the two points are updated. Using this
“edge-based” scheme, the number of point-data loads is halved compared to a
loop over the dual cells. Though TAU is edge-based, naturally, there are also
point loops. The main computational load, however, is caused by edge loops.

MPI Parallelization via Domain Decomposition

TAU’s parallelization is based on a domain decomposition: the grid is cut into
several pieces (domains) by means of a partition of the point set, which may
be obtained using a graph partitioning software like Chaco ([4]), Zoltan ([3]),
(Par)Metis ([5]), etc. Each edge connecting two points in different domains has
to be doubled, so that an edge as well as the two incident points exist in both
domains (overlap). This adds a number of points to each domain, which are called
“ghost points”. Furthermore, the total number of edges in all domains equals the
number of edges in the original grid plus the number of edges cut during domain
decomposition. The flow values at a ghost point must be kept in sync with the
corresponding data at the original point. This is done using message passing,
namely MPI. MPI-based domain decomposition can be considered the standard
parallelization concept for grid-based numerical codes that are run on modern
HPC architectures, c. f. [8].

Obviously, the more edges are cut for domain decomposition, the more data
has to be passed around via MPI to keep the domains, namely the evolving flow
solution at the discretization points, synchronized. The time for this (usually
bulk-synchronous) synchronization via MPI plus the inherent load imbalance
due to an imperfect partitioning can be considered a serial part of the algorithm
(→Amdahl’s law). Nevertheless, TAU’s MPI parallelization scales well, c. f. [1].

As a consequence, for any fixed size CFD problem, there is a maximum number
of domains that can be effectively used to compute this problem. A further
increase of the number of domains eventually results in the parallel efficiency to
drop until increasing the number of domains no longer speeds up the calculation
at all (limit of scalability). If the number of domains is increased even further, the
wall-clock time to solve this problem actually starts to increase. The scalability
limit does not only depend on the CFD problem, but also on the cluster used –
and on the application, of course.

MPI-synchronized domains + multi-threaded processing of domains

To increase the number of usable compute cores without increasing the number
of domains, each domain must be computed on multiple cores. For the shared-
memory parallel computation of a single domain with multiple threads, however,
data parallelism becomes an issue: If, in an edge loop, two edges incident to a
common point are processed concurrently (to update their two points, respec-
tively), the update of the shared point may result in a data race: One of the two
updates for this point can get lost. We hence not only need an efficient multi-
threaded processing of edges, but also the prevention of data races. We need
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mutual exclusion among the updates of the same point. In principle this can be
achieved in several different ways as we will detail now.

3 The Shared-Memory Parallelization – Generic Concept

We consider a given grid/mesh/graph consisting of a number of points and edges.
Each edge connects two points. The number of edges incident to a point may
vary, i. e., the connectivity may be regular (like for structured grids), yet it
may also be irregular (unstructured girds). Note that whether this is an original
graph or one obtained by domain decomposition makes no difference. Usually,
the graph is very sparse as there may be several millions of points, yet each point
has a very limited number of neighbors, say in the range of tens. Let us consider
an algorithm that contains a large number of loops over both, edges as well as
points: When passing over the edges, data associated with each edge’s two points
may be read and also updated. As a consequence, data races are possible when
two edges incident to a common point are processed concurrently. Such data
races must be prevented to ensure a correct behavior of the program. There are
several obvious approaches to do so.

A critical section per point to ensure mutual exclusion of access to data as-
sociated with a point. This requires one mutex/lock variable per point, which
has to be aquired whenever the point’s data is read or written. Pthreads,
OpenMP, or system libraries provide adequate functionality. Intrinsic func-
tions for locked memory accesses provided by compilers may be used for a
custom implementation.

Atomic updates of point data so that each read-update-write sequence
touching a value associated with a point is atomic. For x86 architectures,
“lock cmpxchg8b” may be used for an atomic update of a double-precision
floating-point value (as it is done by most compilers for “omp atomic” direc-
tives).

Obviously, both approaches result in a huge number of locked memory accesses.
Nevertheless, these two simple approaches were prototypically implemented in
TAU. As expected, the very frequent use of locked memory access turns out
a severe performance problem. If all edges incident to a point are exclusively
processed by the same thread, no data races are possible for this point. Conse-
quently, one may consider the following approach

Partition of the edge set into as many subsets as threads are concurrently
running. Each edge is mapped to a particular thread. For points exclusively
touched by edges processed by a single thread, no data races are possible.
So mutual exclusion of point data accesses must be provided only for points
that are incident to edges processed by two or more different threads.

We call a point “critical” if it is incident to edges processed by different threads
so that mutex is necessary. The partition of the edges should be such that the
total number of critical points is minimized. In addition, the number of edges
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processed by each threads should be as balanced as possible to obtain a good
load balance. Moreover, the number of critical points touched by each thread
should be as balanced as possible. As one might notice, these are quite a number
of constraints on the partition of the edge set. In addition to the imbalances
due to the edge partition not being perfect, also varying waiting times for locked
memory access result in a load imbalance among the n threads when they process
the n edge sets in parallel. Despite these load-balancing issues, whenever a point
is to be updated within a parallelized edge loop we must know whether this point
is critical or not. A prototype implementation in TAU showed that, even though
this additional information may be stored without additional memory space (for
instance by using signed integers for the point indices and taking the sign bit as
an indicator) so that the memory access pattern is not changed, the branching
between critical and non-critical points leads to a considerable overhead.

Each edge set spans/induces a subgraph. Note that critical points belong to
two or more subgraphs. Assume for a moment that two of the n edge sets are
such that the corresponding subgraphs are disjoint. Then these two edge sets
can be concurrently processed by two threads without the need to prevent data
races. In general, no data races can occur as long as only disjoint subgraphs
are concurrently processed. Then each point – in particular the formerly critical
ones – is accessed by at most one thread at a time. We thus finally refine the
above model towards the following approach:

Asynchronous dependencies-driven parallel processing of a large num-
ber of small subgraphs. This model enables a dynamic load-balancing among
threads. Moreover, by ensuring mutual exclusion among subgraphs sharing
(a) common point(s), no data races can occur. So there is no need to tell
between critical points and non-critical ones, which drastically reduces the
number of locked memory accesses as well as the overhead of branching.

Assume, just as an example, that there are 10n subgraphs so that on aver-
age each of the n threads processes 10 dynamically allocated subgraphs per
point/edge loop. Consider the processing of a subgraph s in a loop a task. Then
we have task dependencies like “subgraph s must have been processed in the
ith loop before s is processed in loop i+1”. With this, we actually implemented
a thread-pool pattern: In each loop the threads process tasks, i. e. subgraphs,
that need to be processed at that stage of the program, i. e. for which the
temporal data dependencies are met.1 Furthermore, our task-dispatching logic
incorporates the mutual exclusion of tasks for neighboring subgraphs to prevent
data races.2 In other words, the neighborhood structure of the subgraphs in-
duce “mutex dependencies” among the tasks. No explicit thread synchronization
is necessary since the threads synchronize automatically via the dispatching of

1 This is somewhat similar to what the “SMP Superscalar” (“SMPSs”) programming
model/environment provides [7,9], yet in a bottom-up, loop-based approach, rather
than the top-down function annotation in SMPSs.

2 This is dissimilar to SMPSs, as (to our knowledge) SMPSs does not provide explicit
locking of neighbouring data segments.
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tasks subject to the temporal/mutex dependencies. Finally note that balanced
sizes of the subgraphs are no longer that crucial. Instead, the processing of a sub-
graph should exclude as few as possible other subgraphs from being processed in
parallel. So, the neighborhood structure of the subgraphs is most crucial here.

4 The Shared-Memory Parallelization – Implementation
Details for TAU

In the TAU solver to be modified, a partitioning of the edge set, namely a col-
oring of the edges, already exists – yet for a different reason than described
in the preceding section. Originally, the edge coloring was introduced to pre-
vent data races when a long sequence of edges is processed concurrently on a
vector processor. When vector-processor-based supercomputers were superseded
by commodity clusters based on the omnipresent x86 architecture, this coloring
was repurposed to maximize cache utilization. Even with the memory controller
integrated into the CPU this cache optimization is absolutely critical to TAU’s
(serial) performance.

4.1 Cache Blocking in TAU

The TAU solver considered in this paper is memory-bound on current x86 ar-
chitectures. To lower the number of loads from main memory per flop, the data
layout is optimized with respect to cache utilization: The edges are sorted such
that edges incident to the same point follow as closely as possible (temporal
blocking of point-data access). Essentially we use space-filling Hilbert curves in
this approach. In addition, the points are sorted such that, when accessing the
points indirectly while looping over the edges, data associated with subsequently
accessed points are close in the memory (spatial blocking). The temporal block-
ing is supposed to minimize the number of loads from main memory, whereas
the spatial blocking is supposed to make use of the prefetching mechanisms of
the hardware’s memory/cache subsystem. With this strategy, TAU shows very
good cache utilization. TAU is still memory-bound, though.

To enable a TAU programmer to split up a large edge loop into several routines
(to improve code structure, readability, maintenance, expandability), so-called
“colors” exist in TAU. Each color consists of a number of subsequent edges (in
optimized order, c. f. the temporal blocking above) such that all the point data
touched by these edges (which are spatially blocked, c. f. above) fit into the
L2 cache. Note that this coloring is actually a partition of the edge set. A loop
over the edges is equivalent to a nested loop over the colors followed by a loop
over each color’s edges. Code in the body of an edge loop may be split up into
several routines on a per-color basis. Then only in the first routine the point
data touched by the current color are loaded from main memory. For subsequent
routines called for the color, this data is already cached. For commonplace x86
systems, the cache coloring in TAU enables L2-cache-local processing of an edge
loop despite the code being split across several routines, possibly in different
compilation units.
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4.2 Modification of the Colors in TAU to Suite the Hybrid
Parallelization Concept

Recall that the coloring in TAU is based on space-filling curves. Unfortunately,
this results in a bad neighborhood structure among the subgraphs induced by
the colors: there are too many colors with too many neighbors. As our concept
for the shared-memory parallel processing of subgraphs described in Sec. 3 re-
quires mutual exclusion among neighboring subgraphs, the coloring needs to be
adjusted appropriately – without changing cache performance to the worse.

Recall that the subgraphs should be such that each subgraph touches as few as
possible other subgraphs. Furthermore, the subgraphs should be balanced w. r. t.
the number of points, whereas the number of edges per subgraph is of minor
importance. These requirements perfectly fit graph-partitioning algorithms; for
instance Sandia’s “Chaco” (cf. [4]) may be used to obtain the colors.

Actually, there are different types of colors since there are three types of points
in TAU: points that lie in the physical boundaries of the computational domain,
ghost points (forming the halo of a domain obtained by domain decomposition
for MPI parallelization), and the rest of the points, which we call “inner points”.
Correspondingly, there are four color types: inner colors, boundary-touching col-
ors, halo-touching colors, and boundary+halo-touching colors. This enables us
to overlap the processing of physical boundaries and the synchronization of ghost
points via MPI with the processing of inner colors – subject to mutex and tem-
poral data dependencies, of course. This integrates nicely with the thread-pool
model since the processing of domain/physical boundaries at a particular stage
in the program can be considered tasks just as well.

4.3 Minimally Invasive Implementation of the Task Dispatching

As TAU is a production code (validated by/for its customers), the numerics
cannot be easily changed just to better suite TAU’s parallelization. The shared-
memory parallelization that has been added (cf. above) is designed such that
it would yield exactly the same results as the originally serial code if floating-
point arithmetic was exact. With the thread-pool-based parallel processing of
the colors, the order in which the edges/points are processed may change from
loop to loop. As a consequence, the limited precision of floating-point operations
can – at least in principle – result in numerical differences. For the TAU solver
considered, however, merely negligible differences are observed, if any.

Besides the consistency of the numerical behavior, the following aspect of
software development/engineering has been very important: The shared-memory
parallelization was supposed to change the code as little as possible, preferably
transparent to the programmers. The proposed model indeed allows for an almost
transparent implementation: As a loop over the edges was already split, namely
done by a nested loop over the colors and the color’s edges, respectively, the task
dispatching was easily integrated (using C-code-like syntax): In

for(color= colorhead ; color != NULL ; color=color ->next )
for(eidx=color ->start; eidx < color ->stop; eidx ++)

{ /* process edge with index eidx */ };
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merely the first line must be changed into

for(color= get_color (grid ); color!=NULL ; color=get_color (grid ))

The task dispatching logic is completely encapsulated in the newly introduced
get_color() function, which returns an appropriate color as long as there are
colors left to be processed at that stage, else NULL. Note that get_color()may
block if, at a given stage, for all colors left at that stage a neighboring color is
being processed. To loop over the points, an additional while loop is introduced:

for(pidx=0; pidx < grid ->npoints; pidx++)
{ /* process point with index pidx */ };

must be replaced by

while(get_point_range(grid , &pidx , &pstop))
for( ; pidx < pstop; pidx++)

{ /* process point with index pidx */ };

The newly introduced get_point_range() function simply uses get_color()
to obtain a color to be processed and with it a point range (each point is asso-
ciated with exactly one color). The really nice thing with this implementation
is that there is no need to change the bodies of point/edge loops – at least in
principle. Naturally, when porting a loop, care has to be taken that no data is
unintentionally shared. Thread-local storage (TLS) may be necessary. When, for
instance, a maximum of a given value at the points is to be computed, TLS is
only the half way: The maximum is to be determined as the maximum of the
threads’ local maxima, necessitating an explicit change in the code. Nonetheless,
with this implementation of the concept, only a limited number of changes in
the code are necessary to enable multi-threading.

In order to overlap the MPI communication (to synchronize the ghost points)
with computation, this_thread_syncs_halo() is introduced. This function re-
turns TRUE for exactly one of the threads. In case TRUE is returned, this
function may block until no halo-touching color is processed and then keeps
tasks for halo-touching colors from being dispatched until the domains’ halos
are synchronized. Meanwhile the other threads continue to process tasks for non-
halo-touching colors. A similar mechanism is used to overlap the single-threaded
processing of physical boundaries with the processing of inner colors.

5 First Performance Results

The TAU RANS-solver considered is an explicit 3-stage Runge/Kutta scheme
with multigrid acceleration; cell-vertex metric, central discretization (JST), scalar
dissipation, Spalart/Allmaras turbulence model are used. We get right to the
point: How does the pure shared-memory parallelization face against the pure
MPI parallelization. This test was run on a single-CPU machine running SLES 11
with an Intel 6-core Westmere EP X5670 with 2-way SMT enabled. Unfortu-
nately, no Intel compiler was available, so gcc 4.3.3 with full optimization was
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Fig. 1. Pure shared-memory parallelization (green) vs. pure MPI parallelization (blue)
for an Intel Westmere 6-core CPU with 2-way SMT (X5670). Wall-clock time for 50
iterations vs. #threads or #domains, respectively; “speed-up” referes to “threaded”.

used. Pinning of threads/MPI-processes to physical (logical) cores was applied
when running 1 to 6 (12) threads/MPI-processes. The grid has 100,592 points
(95,344 tetras and 163,625 prisms), i. e. about 17,000 points per physical core.

As Fig. 1 shows, the modified coloring slightly affects the serial performance
(no multigrid). The wall-clock time increases by 5–6 % when comparing the
shared-memory version (actually, the hybrid one) running single-threaded vs.
the base-line/MPI-only TAU with a single domain. Performance measurements
using LIKWID [11] indicate that cache utilization might be the reason. When
comparing 6 threads for one domain vs. 6 domains (MPI processes), the shared-
memory version is neck and neck with the original MPI version, it is off by less
than 1%. As expected, the MPI version fails to utilize the 2-way SMT when
running with 12 domains. For the shared-memory version, however, a speed-up
of 1.117 is observed when using 12 threads (pinned to the 12 logical cores, re-
spectively). The reason might be a better pipeline utilization and latency-hiding
effects. Thus, the shared-memory version outperforms the base-line MPI version
by about 10% for this particular setting. This clearly demonstrates the potential
of the concept proposed (as well as of its implementation in TAU). According
to measurements using LIKWID, the shared-memory parallelized TAU using
12 hardware threads obtains a sustained performance of 8.5 GFlop/s (double
precision) for the X5670 (recall that CFD on unstructured grids is considered).

The main reason to add shared-memory parallel processing of domains to
TAU, however, was to extend TAU’s scalability, i. e., to use more cores more
effectively. And indeed, the shared-memory parallelization enables us to effec-
tively utilize more cores. The test depicted in Fig. 2 was run on the C2A2S2E
cluster located at the Braunschweig site of the German Aerospace Center, which
comprises 648 compute nodes, each with two Intel X5670, connected via QDR
Infiniband. The grid used has 13 mio points. Unfortunately, the 2-way SMT of
the CPUs is disabled, affecting the performance of the multi-threading, cf. above.
The hybrid version of TAU uses one domain (MPI process) per socket, whereas



192 J. Jägersküpper and C. Simmendinger

2

3

4

5

6

7
8
9

10

15

20

50 100 200

W
al

lc
lo

ck
 S

ec
on

ds
 / 

50
 It

er
at

io
ns

#Nodes of C2A2S2E II

reference 4W
hybrid 4W

reference 2V
hybrid 2V

linear
reference w/o MG

hybrid w/o MG
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SMT disabled) system with QDR Infiniband interconnect (50% blocking). Wall-clock
time for 50 iterations vs. #nodes used. 3-stage explict Runge/Kutta with 4W multigrid
(top), 2V (middle), and no multigrid (bottom).

for the base-line TAU we have one domain per core, i. e. 12 domains per node. As
Fig. 2 shows, the hybrid parallelization significantly increases TAU’s scalability
– at least when using 4W multigrid, which is preferable practice to do. (The
improved scalability can be noticed already for 2V.) For the base-line TAU, for
4W multigrid scalability flattens off at 100 nodes (1200 cores): Using 200 nodes
(2400 cores) instead does not result in a noticeable speed-up. In contrast, the
hybrid parallel version scales well: The speed-up obtained when using 200 nodes
instead of 100 nodes is almost as large as for 50 nodes to 100 nodes. In short
words, the hybrid can run 50 iterations in 5.5 seconds, whereas the MPI-only
version needs 8.9 seconds – a speed-up of over 1.6 in wall-clock time. Unfortu-
nately, 2-way SMT is disabled, and besides that, more than 200 nodes of the
HPC cluster could not be acquired to max out the speed-up attainable for this
real-world CFD problem. Nevertheless, this test clearly proves that the hybrid-
parallel TAU scales significantly better than its base-line using MPI only.

6 Conclusion and Outlook

As shown by the first, preliminary results described in the preceding section, the
concept proposed for shared-memory parallelization of grid-based CFD solvers
works well – at least its implementation in the TAU solver considered. Naturally,
further tests are needed, in particular for other CPUs. We plan tests on AMD’s
Magny Cours and on IBM’s Power7. It will be interesting to see how these relate
to Intel’s Westmere considered in the tests presented here.
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Even though the implementation here was done for the TAU CFD solver, the
concept is not TAU-specific, but rather can be applied to a large number of appli-
cations. For example for a stencil based code A[i] = B[i−1]+B[i+1], the concept
of dependencies among subgraphs translates to dependencies of thread chunks
in OpenMP-parallel FOR loops. Whether or not A[i] of the thread chunk can
be calculated, for example, simply depends on whether or not the neighbouring
index elements B[i−1] and B[i+1] have already been computed (temporal data
dependency). We are currently porting this thread-pool-based parallelization for
a stencil-based block-structured CFD turbo machinery code, c. f. [10].
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Abstract. Tuning numerical libraries has become more difficult over
time, as systems get more sophisticated. In particular, modern multicore
machines make the behaviour of algorithms hard to forecast and model.
In this paper, we tackle the issue of tuning a dense QR factorization on
multicore architectures using a fully empirical approach. We exhibit a few
strong empirical properties that enable us to efficiently prune the search
space. Our method is automatic, fast and reliable. The tuning process is
indeed fully performed at install time in less than one hour and ten min-
utes on five out of seven platforms. We achieve an average performance
varying from 97% to 100% of the optimum performance depending on
the platform. This work is a basis for autotuning the PLASMA library
and enabling easy performance portability across hardware systems.

1 Introduction

The hardware trends have dramatically changed in the last few years. The fre-
quency of the processors has been stabilized or even sometimes slightly decreased
whereas the degree of parallelism has increased at an exponential scale. This new
hardware paradigm implies that applications must be able to exploit parallelism
at that same exponential pace. Applications must also be able to exploit a re-
duced bandwidth (per core) and a smaller amount of memory (available per
core). Numerical libraries, which are a critical component in the stack of high-
performance applications, must in particular take advantage of the potential
of these new architectures. So long as library developers could depend on ever
increasing clock speeds and instruction level parallelism, they could also settle
for incremental improvements in the scalability of their algorithms. But to de-
liver on the promise of tomorrow’s petascale systems, library designers must find
methods and algorithms that can effectively exploit levels of parallelism that are
orders of magnitude greater than most of today’s systems offer. Autotuning is
therefore a major concern for the whole HPC community and there exist many
successful or on-going efforts. The FFTW library [1] uses autotuning techniques
to generate optimized libraries for FFT, one of the most important techniques
for digital signal processing. Another successful example is the OSKI library [2]
for sparse matrix vector products. The PetaBricks [3] library is a general pur-
pose tuning method providing a language to describe the problem to tune. It has
several applications ranging from efficient sorting to multigrid optimization. In
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the dense linear algebra community, several projects have tackled this challenge
on different hardware architectures. The Automatically Tuned Linear Algebra
Software (ATLAS) library [4] aims at achieving high performance on a large
range of CPU platforms thanks to empirical tuning techniques performed at in-
stall time. On graphic processing units (GPUs), among others, [5] and [6] have
proposed efficient approaches. FLAME [7] and PLASMA [8] have been designed
to achieve high performance on multicore architectures thanks to tile algorithms
(see Section 2.1). The common characteristics of all these approaches are that
they need intensive tuning to fully benefit from the potential of the hardware.

Tuning a library consists of finding the parameters that maximize a certain
metric (most of the time the performance) on a given environment. In general,
the term parameter has to be considered in its broad meaning, possibly includ-
ing a variant of an algorithm. The search space, corresponding to the possible
set of values of the tunable parameters can be very large in practice. Depend-
ing on the context, on the purpose and on the complexity of the search space,
different approaches may be employed. Vendors can afford dedicated machines
for delivering highly tuned libraries and have thus limited constraints in terms
of time spent in exploring the search space. On the other side of the spectrum,
some libraries such as ATLAS aim at being portable and efficient on a wider
range of architectures and cannot afford a virtually unlimited time for tuning.
Indeed, empirical tuning is performed at install time and there is thus a trade-off
between the time the user accepts to afford to install the library and the qual-
ity of the tuning. In that case, the main difficulty consists of efficiently pruning
the search space. Of course, once a platform has been tuned, the information
can be shared with the community so that it is not necessary to tune again
the library, but this is an orthogonal problem which we do not address here.
Model-driven tuning may allow one to efficiently prune the search space. Such
approaches have been successfully designed on GPU architectures, in the case
of matrix vector products [2] or dense linear algebra kernels [5,6]. However, in
practice, the robustness of the assumptions on the model strongly depends both
on the algorithm to be tuned and on the target architecture. There is no clearly
identified trend yet but model-driven approaches seem to be less robust on CPU
architectures. For instance, even in the single-core CPU case, basic linear algebra
algorithms tend to need more empirical search [4]. Indeed, on CPU-based archi-
tectures, there are many parameters that are not under user control and difficult
to model (different levels of cache, different cache policies at each level, possible
memory contention, impact of translation lookaside buffers (TLB) misses, . . . )
whereas the current generations of GPU provide more control to the user.

In a previous work, we had tackled the issue of maximizing PLASMA per-
formance in order to compare it against other libraries [9]. We first manually
pre-selected a combination of parameters based on the performance of the most
compute-intensive kernel. We then tried all these combinations for each con-
sidered size of matrix to be factorized. This basic tuning approach achieved
high performance but required human intervention to pre-select the parameters
and days of run to find optimum performance. In the present paper, not only
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we now tackle the issue of automatically performing the tuning process but we
also present new heuristics that efficiently prune the search space so that the
whole tuning process is reduced to one hour or so. We illustrate our discussion
with the QR factorization implemented in the PLASMA library, which is repre-
sentative [9] of all three one-sided factorizations (QR, LU, Cholesky) currently
available in PLASMA. Because of the trends expose above, we do not rely on
a model to tune our library (a detailed motivation based on a cased study can
be found in Section 2.3 of our corresponding technical report [10]). Instead, we
employ a fully empirical approach and we exhibit few empirical properties that
enable us to efficiently prune the search space.

The rest of the paper is organized as follows. Section 2 presents the problem
and motivates the outline of our two-step empirical approach (Section 3). Sec-
tion 4 presents the wide range of hardware platforms used in the experiments to
validate our approach. Section 5 describes the first empirical step, consisting of
benchmarking the most compute-intensive serial kernels. We propose three new
heuristics that automatically pre-select (PS) candidate values for the tunable
parameters. Section 6 presents the second empirical step, consisting of bench-
marking effective multicore QR factorizations. We propose a new pruning ap-
proach, which we call “prune as you go” (PAYG), that enables to further prune
the search space and to drastically reduce the whole tuning process. We conclude
and present future work directions in Section 7.

2 Problem Description

2.1 Tile QR Factorization

The development of programming models that enforce asynchronous, out of or-
der scheduling of operations is the concept used as the basis for the definition
of a scalable yet highly efficient software framework for computational linear
algebra applications. In PLASMA, parallelism is no longer hidden inside Basic
Linear Algebra Subprograms (BLAS) but is brought to the fore to yield much
better performance. We do not present tile algorithms in details (more details
can be found [8]) but their principles. The basic idea is to split the initial matrix
of order N into NT × NT smaller square pieces of order NB, called tiles. As-
suming that NB divides N , the equality N = NT ×NB stands. The algorithms
are then represented as a Directed Acyclic Graph (DAG) where nodes represent
tasks performed on tiles, either panel factorization or update of a block-column,
and edges represent data dependencies among them. More details on tile algo-
rithms can be found [8]. PLASMA currently implements three one-sided (QR,
LU, Cholesky) tile factorizations. The DAG of the Cholesky factorization is the
least difficult to schedule since there is relatively little work required on the crit-
ical path. LU and QR factorizations have exactly the same dependency pattern
between the nodes of the DAG, exhibiting much more severe scheduling and
numerical (only for LU) constraints than the Cholesky factorization. Therefore,
tuning the QR factorization is somehow representative of the work to be done
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(a) Panel factorization and corresponding
updates.

(b) DAG when the matrix is split
in 5 × 5 tiles.

Fig. 1. Tile QR Factorization

for tuning the whole library. In the following, we focus on the QR factorization
of square matrices in double precision statically scheduled in PLASMA.

Similarly to LAPACK which was built using a set of basic subroutines (BLAS),
PLASMA QR factorization is built on top of four serial kernels. Each kernel
indeed aims at being executed sequentially (by a single core) and corresponds
to an operation performed on one or a few tiles. For instance, assuming a 3 ×
3 tile matrix, Figure 1(a) represents the first panel factorization (DGEQRT
and DTSQRT serial kernels [8]) and its corresponding updates (DLARFB and
DSSRFB serial kernels [8]). The corresponding DAG (assuming this time that
the matrix is split in 5 × 5 tiles) is presented in Figure 1(b).

2.2 Tunable Parameters and Objective

The shape of the DAG depends on the number of tiles (NT ×NT ). For a given
matrix of order N , choosing the tile size NB is equivalent to choosing the number
of tiles (since N = NB × NT ). Therefore, NB is a first tunable parameter. A
small value of NB induces a large number of tasks in the DAG and subsequently
enables the parallel processing of many tasks. On the other hand, the serial kernel
applied to the tiles needs a large enough granularity in order to achieve a decent
performance. The choice of NB thus trades off the degree of parallelism with
the efficiency of the serial kernels applied to the tiles. There is a second tunable
parameter, called inner block size (IB). It trades off memory load with extra-flops
due to redundant calculations. With a value IB = 1, there are 4

3N3 operations
as in standard LAPACK algorithm. On the other hand, if no inner blocking
occurs (IB = NB), the resulting extra-flops overhead may represent 25% of the
whole QR factorization (see [8] for more details). The general objective of the
paper is to address the following problem.
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Problem 1. Given a matrix size N and a number of cores ncores, which tile size
and internal blocking size (NB-IB combination) do maximize the performance of
the tile QR factorization?

Of course, the performance P we aim at maximizing shall not depend on extra-
flops. Therefore, independently of the value of IB, we define P = 4

3 × N3/t,
where t is the elapsed time of the QR factorization. Note also that we want the
decision to be instantaneous when the user requests to factorize a matrix so that
the tuning process is to be performed at install time.
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Fig. 2. Performance of the PLASMA QR factorization

In a parallel execution of PLASMA, the optimum tile size depends on the
matrix size as shown on a 16 cores execution in Figure 2(a). Indeed, if the
matrix is small, it needs to be cut in even smaller pieces to provide work to
all the 16 cores even if this induces that the serial kernels individually achieve
a lower performance. When the matrix size increases, all the cores may evenly
share the work using a larger tile size and thus achieving a higher performance.
In a nutshell, the optimum tile size both depends on the number of cores and
the matrix size, and its choice is critical for performance. Figure 2(b) shows
that the impact is even stronger on a 32 cores IBM Power6 machine. The 80-40
combination is optimum on a matrix of order 500 but only achieves 6.3% of the
optimum (20.6 Gflop/s against 325.9 Gflop/s) on a matrix of order 12, 000.

3 Two-Step Empirical Method

Given the considerations discussed in introduction and further developed in [10],
we do not propose a model-driven tuning approach. Instead we use a fully empir-
ical method that effectively executes the factorizations on the target platform.
However, not all NB-IB combinations can be explored. Indeed, an exhaustive
search is cumbersome since the search space is huge. For instance, there are
more than 1000 possible NB-IB combinations even if we constrain NB to be an
even integer lower than 512 (size where the single core compute-intensive kernel
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reaches its asymptotic performance) and if we impose IB to divide NB. Exploring
this search space on a matrix of order N = 10, 000 with 8 cores on the Intel Core
Tigerton machine (described in Section 4) would take several days. Therefore,
we need to prune the search space. We propose a two-step approach. In Step 1
(Section 5), we benchmark the most compute-intensive serial kernel. This step
is fast since the serial kernels operate on tiles, which are of small granularity
(NB < 512) compared to the matrices to be factorized (500 ≤ N ≤ 10000
in our study). Thanks to this collected data set and a few well chosen empiri-
cal properties, we pre-select (PS) a subset of NB-IB combinations. We propose
three heuristics for performing that preliminary pruning automatically. In step 2
(Section 6) we benchmark the effective multicore QR factorizations on the pre-
selected set of NB-IB combinations. We furthermore show that further pruning
(PAYG) can be performed during this step, drastically reducing the whole tuning
process.

4 Experimental Environments

To assess the portability and reliability of our method, we consider seven plat-
forms based Intel EM64T processors, IBM Power and AMD x86 64. Intel Core
Tigerton. This 16 cores machine is a quad-socket quad-core Xeon E7340 (co-
dename Tigerton) processor, an Intel Core micro-architecture. The processor
operates at 2.39 GHz. Intel Core Clovertown. This 8 cores server is another
machine based on an Intel Core micro-architecture. The machine is composed
of two quad-core Xeon X5355 (codename Clovertown) processors, operating at
2.66 GHz. Intel Core Yorkfield. This 4 cores desktop is also based on an
Intel Core micro-architecture. The machine is composed of one Core 2 Quad
Q9300 (codename Yorkfield) processor, operating at 2.5 GHz. Intel Core Con-
roe. This 2 cores desktop is based on an Intel Core micro-architecture too. The
machine is composed of one Core 2 Duo E6550 (codename Conroe) processors,
operating at 2.33 GHz. Intel Nehalem. This 8 cores machine is based on an
Intel Nehalem micro-architecture. Instead of having one bank of memory for all
processors as in the case of the Intel Core’s architecture, each Nehalem processor
has its own memory. Nehalem is thus a cache coherent Non Uniform Memory
Access (ccNUMA) architecture. Our machine is a dual-socket quad-core Xeon
X5570 (codename Gainestown) running at 2.93GHz and up to 3.33 GHz in cer-
tain conditions (Intel Turbo Boost technology). The Turbo Boost was activated
during our experiments. AMD Istanbul. This 48 cores machine is composed
of eight hexa-core Opteron 8439 SE (codename Istanbul) processors running at
2.8 GHz. Like the Intel Nehalem, the Istanbul micro-architecture is a ccNUMA
architecture. IBM Power6. This 32 cores machine is composed of sixteen dual-
core IBM Power6 processors running at 4.7 GHz. More details on these platforms
can be found in [10]. Note that we do not discuss here the mapping of the tasks
onto the cores; this is an orthogonal problem.
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5 Step 1: Benchmarking the Most Compute-Intensive
Serial Kernel

We explained in Section 2.1 that the tile QR factorization consists of four serial
kernels. However, the number of calls to DSSRFB is proportional to NT 3 while
the number of calls to the other kernels is only proportional to NT (DGEQRT)
or to NT 2 (DTSQRT and DLARFB). Even on small DAGS (see Figure 1(b)),
calls to DSSRFB are predominant. Therefore, the performance of this compute-
intensive kernel is crucial. DSSRFB’s performance also depends on NB-IB. It is
thus natural to pre-select NB-IB pairs that allow a good performance of DSS-
RFB before benchmarking the QR factorization itself. The practical advantage
is that a kernel is applied at the granularity of a tile, which we assume to be
bounded by 512 (NB ≤ 512). Consequently, preliminary benchmarking this se-
rial kernel can be done exhaustively in a reasonable time. Step 1 thus consists of
performing an exhaustive benchmarking of the DSSRFB kernel on all possible
NB-IB combinations and then to decide which of these will be kept for further
testing in Step 2. Column “Step 1” of Table 1 shows that the total elapsed time
for step 1 is acceptable on all the considered architectures (between 16 and 35
minutes). Figure 3(a) shows the resulting set of empirical data collected dur-
ing step 1 on the Intel Core Tigerton machine. This data set can be pruned a

Table 1. Elapsed time (hh:mm:ss) for Step 1 and Step 2

Machine Step 1 Step 2
Architecture # cores Heuristic PS PSPAYG

0 14:46:37 03:05:41
Conroe 2 00:24:33 1 09:01:08 00:01:58

2 07:30:53 00:34:47

0 17:40:00 04:48:13
Yorkfield 4 00:20:57 1 09:30:30 00:05:10

2 08:01:05 02:58:37

0 20:08:43 02:56:25
Clovertown 8 00:21:44 1 11:06:18 00:13:09

2 08:52:24 01:10:53

0 06:20:16 01:51:30
Nehalem 8 00:16:29 1 06:20:16 01:51:30

2 06:20:16 01:51:30

0 23:29:35 03:15:41
Tigerton 16 00:34:18 1 12:22:06 00:08:57

2 09:54:59 01:01:06

0 21:09:27 02:53:38
Istanbul 48 00:24:23 1 12:25:30 00:11:01

2 10:04:46 00:54:51

0 03:06:05 00:25:07
Power6 32 00:15:23 1 03:06:05 00:25:07

2 03:06:05 00:25:07
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Fig. 3. Performance of the DSSRFB serial kernel depending on the NB-IB combination

first time. Indeed, contrary to NB, which trades off parallelism for kernel per-
formance, IB only affects kernel performance but not parallelism. We can thus
perform the following orthogonal optimization:

Property 1 (Orthogonal pruning). For a given NB value, we can safely
pre-select the value of IB that maximizes the kernel performance.

Applying Property 1 to the data set of Figure 3(a) results in discarding all NB-IB
pairs except the ones matching “Max IB”, which still represents a large number
of combinations. We thus propose and assess three heuristics to further prune
the search space. The first considered heuristic is based on the fact that intensive
experiments (not reported here) showed the following property.

Property 2 (Convex Hull). There is consistently an optimum combination
on the convex hull of the data set.

Therefore, Heuristic 0 consists of pre-selecting the points from the convex hull
of the data set (see Figure 3(b)). In general, this approach may still provide too
many combinations. Because NB trades off kernel efficiency with parallelism, the
gains observed on kernel efficiency shall be considered relatively to the increase
of NB itself. Therefore, we implemented Heuristic 1 that pre-selects the points
of the convex hull with a high steepness (or more accurately a point after a
segment with a high steepness). The drawback is that all these points tend to be
located in the same area as shown in Figure 3(b) corresponding to small values
of NB. To correct this deficiency, we consider Heuristic 2 which first divides the
x-axis into iso-segments and pick up the point of maximum steepness on each of
these segments (see Figure 3(b) again). Heuristics 1 and 2 are paremetrized to
select a maximum of 8 combinations. All three heuristics perform a pre-selection
(PS) that will be used as test cases for the second step.
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6 Step 2: Benchmarking the Whole QR Factorization

6.1 Discretization and Interpolation

We recall that our objective is to immediately retrieve at execution time the
optimum NB-IB combination for the matrix size N and number of cores ncores
that the user requests. Of course, N and ncores are not known yet at install
time. Therefore, the (N ,ncores) space to be benchmarked has to be discretized.
We decided to benchmark all the powers of two cores (1, 2, 4, 8, . . . ) plus the
maximum number of cores in case it is not a power of two such as on the AMD
Istanbul machine. The motivation comes from empirical observation. Indeed,
Figures 4(a) and 4(b) show that the optimum NB-IB combination can be finely
interpolated with such a distribution. We discretized more regularly the space
on N because the choice of the optimum pair is much more sensible to that
dimension (see figures 2(a) and 2(b)). We benchmarked N=500, 1000, 2000,
4000, 6000, 8000, 100001. Each run is performed 6 times to attenuate potential
perturbations. When the user requests the factorization of parameters that have
not been tuned (for instance N=1800 and ncores=5) we simply interpolate by
selecting the parameters of the closest configuration benchmarked at install time
(N=2000 and ncores=4 in that case).
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Fig. 4. Strong scalability - N = 6000

6.2 Impact of the Pre-selection on the Elapsed Time of Step 2

Column PS (pre-selection) in Table 1 shows the impact of the heuristics on the
time required for benchmarking step 2. Clearly Heuristic 0 induces a very long
step 2 (up to 1 day). Heuristic 1 and 2 induce a lower time for step 2 (about 10
hours) but that may be still not acceptable for many users.

1 Except on the IBM Power6 machine where N=10000 was not benchmarked.



A Fully Empirical Autotuned Dense QR Factorization 203

6.3 Prune as You Go (PSPAYG)

To further shorten step 2, we can perform complementary pruning on the fly.
Indeed, Figures 2(a) and 2(b) show the following property.

Property 3 (Monotony). Let us denote by P (NB1, N) and P (NB2, N) the
performances obtained on a matrix of order N with tile sizes NB1 and NB2,
respectively. If P (NB1, N) > P (NB2, N) and NB1 > NB2, then P (NB1, N

′) >
P (NB2, N

′) for any N ′ > N .

We perform step 2 in increasing order of N . After having benchmarked the
current set of NB-IB combinations on a matrix of order N , we identify all the
couples (NB1, NB2) that satisfy Property 3 and we remove from the current
subset the NB-IB pair in which NB2 is involved. Indeed, according to Property 3,
it would lead to a lower performance than NB1 on larger values of N which are
going to be explored next. We denote this strategy by “PSPAYG” (pre-selection
and prune as you go). Column PSPAYG in Table 1 shows that the time for
step 2 is dramatically improved with this technique. Indeed, the number of pairs
to explore decreases when N increases, that is, when benchmark is costly. For
heuristic 2 (values in bold in Table 1), the time required for step 2 is reduced
by a factor greater than 10 in two cases (Intel Core Conroe and AMD Istanbul
machines).

6.4 Reliability

We employed the following methodology to assess the reliability of the different
tuning approaches. We first executed all the discussed approaches on all the
platforms with the discretization of the (N ,ncores) space proposed in Section 6.1.
We then picked up between 8 and 16 (N ,ncores) combinations such that half of
them were part of the discretized space (for instance N = 6000 and ncores = 32)
and the other half were not part of it (for instance N = 4200 and ncores =
30) so that the reliability of the interpolation is also taken into account. For
each combination we performed an (almost) exhaustive search for reference.
Table 2 provides a synthesis of the results. Heuristic 2 coupled with the PSPAYG
approach is very efficient since it achieves a high proportion of the performance
that would be obtained with an exhaustive search (values in bold). The worst
case occurs on the Istanbul machine, with an average relative performance of
97.1% (Column “avg”). However, even on that platform, the optimum NB-IB
combination was found in seven cases out of sixteen tests (Column “optimum”).

Column PSAY G
PS allows to specifically assess the impact of the “prune as you

go” method since they compare the average performance obtained with PS-
PAYG (where pairs can be discarded during step 2 according to Property 3)
compared to PS (where no pair is discarded during step 2). The result is
clear: pruning during step 2 according to Property 3 does not hurt performance
( |PS−PSPAY G|

PS < 0.3%), showing that Property 3 is strongly reliable. Finally,
note that on (N ,ncores) combinations part of the discretized space, PSPAYG
cannot achieve a higher performance than PS since all NB-IB combinations
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Table 2. Average performance achieved with a “pre-selection” (PS) method or a “pre-
selection and prune as you go” (PSPAYG) method, based on different heuristics (H)
applied at step 1. The performance is presented as a proportion of the exhaustive search
(ES) or of the prunes search (PS). The column “optimum” indicates the number of
times the optimum combination (with respect to the reference method) was found
among the number of tests performed.

PS
ES

(%) PSPAY G
ES

(%) PSPAY G
PS

(%)

Machine H avg optimum avg optimum avg optimum

0 99.67 6/8 99.67 6/8 100 8/8
Conroe 1 95.28 0/8 95.28 0/8 100 8/8

2 99.54 5/8 99.54 5/8 100 8/8

0 98.63 6/12 98.63 6/12 100 12/12
Yorkfield 1 91.53 0/12 91.59 0/12 100.07 10/12

2 98.63 6/12 98.63 6/12 100 12/12

0 98.59 8/16 98.35 7/16 99.76 15/16
Clovertown 1 91.83 0/16 91.83 0/16 100 16/16

2 98.49 9/16 98.25 8/16 99.76 15/16

0 98.6 8/16 98.9 8/16 100.33 16/16
Nehalem 1 98.6 8/16 98.9 8/16 100.33 16/16

2 98.6 8/16 98.9 8/16 100.33 16/16

0 97.36 8/16 97.54 5/16 100.21 12/16
Tigerton 1 91.61 0/16 91.61 0/16 100 16/16

2 97.51 8/16 97.79 7/16 100.31 15/16

0 97.17 7/16 97.17 7/16 100 16/16
Istanbul 1 94.12 2/16 94.12 2/16 100 16/16

2 97.23 7/16 97.1 7/16 99.87 15/16

0 100 16/16 100 16/16 100 16/16
Power 6 1 100 16/16 100 16/16 100 16/16

2 100 16/16 100 16/16 100 16/16

tested with PSPAYG are also tested with PS. However, PSPAYG can achieve a
higher performance if (N ,ncores) was not part of the discretized space because
of the interpolation. This is why cases where PSPAY G

PS > 100% may be observed.

7 Conclusion and Future Work

We have presented a new fully empirical autotuned method for tuning dense
linear algebra libraries on multicore architectures. Thanks to three strong em-
pirical properties, we showed that the search space can be efficiently pruned.
Our tuning process is automatic, fast (less than one hour and ten minutes on
five out of seven platforms) and reliable (average performance varying from 97%
to 100% of the optimum). We plan to extend our work to the case of non square
matrices and to other factorizations. We will then extend our work to the case of
hybrid multicore platforms enhanced with multiple GPU accelerators for which
heterogeneity will have to be taken into account.
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Abstract. The simulation of the dynamics and kinematics of solid bod-
ies is an important problem in a wide variety of fields in computing
ranging from animation and interactive environments to scientific simu-
lations. While rigid body simulation has a significant amount of poten-
tial parallelism, efficiently synchronizing irregular accesses to the large
amount of mutable shared data in such programs remains a hurdle. There
has been a significant amount of interest in transactional memory sys-
tems for their potential to alleviate some of the problems associated with
fine-grained locking and more broadly for writing correct and efficient
parallel programs. While results so far are promising, the effectiveness
of TM systems has so far been predominantly evaluated on small bench-
marks and kernels.

In this paper we present our experiences in parallelizing ODE, a real-
time physics engine that is widely used in commercial and open source
games. Rigid body simulation in ODE consists of two main phases that
are amenable to effective coarse-grained parallelization and which are
also suitable for using transactions to orchestrate shared data synchro-
nization. We found ODE to be a good candidate for applying parallelism
and transactions to - it is a large real world application, there is a large
amount of potential parallelism, it exhibits irregular access patterns and
the amount of contention may vary at runtime. We present an exper-
imental evaluation of our implementation of the parallel transactional
ODE engine that shows speedups of up to 1.27x relative to the sequen-
tial version.

1 Introduction

The trend towards multi-core and many core processors is pushing more and
more applications towards parallelism and is spurring extensive research in con-
current programming models and languages. The potential performance benefits
of extracting parallelism and the complexity of specifying efficient concurrent
programs are both significant.

Applications that simulate the dynamics and kinematics of rigid bodies or
physics engines are examples of applications that are known to have significant
amount of parallelism but it this parallelism is often difficult to exploit owing to
their complexity. Physics engines that support real-time interactive applications
such as games are growing rapidly in sophistication both in their feature-set as
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well as their design. The popular Unreal 3 game engine is known to consist of
over 300,000 lines of code and as described in [12], parallelizing parts of it was
a challenging endeavour. Traditional approaches to efficient shared data syn-
chronization such as fine-grained locking are often impractical owing to the size
and complexity of the application and the large amounts of hierarchical muta-
ble shared state. On the other hand coarse-grained locking has been found to
be too inefficient for maintaining the highly interactive nature of these applica-
tions. Further, using fine-grained locks in such applications extracts a significant
price in terms of programmer productivity - a factor that deeply affects their
commercial development cycle.

Researchers have suggested developing parallel programs in this domain us-
ing transactional memory to manage accesses to shared state [12]. Software or
Hardware Transactional memory has been proposed as a relatively programmer-
friendly way to achieve atomicity and orchestrate concurrent accesses to shared
data. In this model programmers annotate their programs by demarcating atomic
sections (using a keyword such as “atomic” in a language-based TM implemen-
tation or specific function calls to a library based TM). The programmer also an-
notates accesses to shared data within these sections. At run time, these atomic
sections are executed speculatively and the TM system continuously keeps track
of the set of memory locations each transaction accesses and detects conflicts.
This conflict detection step involves checking if a value speculatively read or
written has been updated by another concurrent transaction. If so then one of
the two speculatively executed transactions is aborted.

Software Transactional Memory systems reduce the burden of writing correct
parallel programs by allowing the programmer to focus simply on specifying
where atomicity is needed instead of how it is achieved. Further, the benefits of
TMs are most apparent when a) the rate of real data sharing conflicts at run time
is quite low i.e., most of the concurrent accesses to shared data are disjoint and
b) using fine grain locking is difficult either due to the irregularity of the access
patterns or the data structures. There has been a substantial amount of interest
in hardware and software transactional memory systems recently. However in
spite of this recent interest and the significant amount of research most of the
studies investigating the use and optimization of these systems have been limited
to smaller benchmarks and suites containing small to moderate sized programs
[3,4,8,9,6]. Previous studies [18,7] have noted the lack of large real-world appli-
cations that use transactional memory without which an effective evaluation of
the effectiveness of TM systems in realistic settings becomes difficult.

In this paper we present our experiences in parallelizing and using transactions
in the Open Dynamics Engine (ODE), a single-threaded real-time rigid body
physics engine [2]. It consists of roughly 71000 lines of C/C++ code with an
additional 3000 lines of code for drawing/rendering. In [7] the authors outline a
set of characteristics that are desirable in an application using TM. Briefly they
are:
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1. Large amounts of potential parallelism: As we show in the Section 3, there
is a significant amount of data parallelism in the two principal stages in an
ODE simulation.

2. Difficult to fine-grain parallelize: ODE exhibits irregular access patterns
many structures that can be accessed concurrently.

3. Based on a real-world application: ODE is used in hundreds of open-source
and commercial games [2].

4. Several types of transactions: The parallel version of ODE we describe in the
rest of this paper has critical sections that access varying amount of shared
data, have sizes that vary widely and the amount of contention between
them changes during execution.

We started with the single-threaded implementation of ODE and found that the
two longest running stages in a time step could be parallelized effectively. While
we found many opportunities for fine-grained parallelization at the level of loops
in constraint solvers, we choose to focus on a coarser-grained work offloading in
order to amortize the runtime overheads. We then modified this parallel program
by annotating critical sections and accesses to shared data with calls to an STM
library. Our modifications added roughly 4000 lines of code in the ODE.

The rest of this paper is organized as follows: Section 2 presents an overview
of collision detection and dynamics simulation in ODE. Section 3 describes the
parallelization scheme for ODE and the usage of transactions for atomicity. Sec-
tion 4 briefly discusses a few issues pertaining to the parallelization. Section 5
presents our experimental evaluation of the application. Related work is pre-
sented in Section 6 and Section 7 concludes the paper.

Algorithm 1. Overview of a time step in ODE
1: Create world; add bodies

2: Add joints; set parameters

3: Create collision geometry objects

4: Create joint group for contact points

5: // Simloop
6: while (!pause && time < MAX TIME) do
7: Detect collisions; create joints

8: Step world

9: Clear joint group

10: time++

11: end while

2 ODE Overview

At a high level ODE consists of two main components: a collision detection
engine and a dynamics simulation engine. Any simulation involving multiple
bodies typically uses both these engines. The sequence of events in a typical time
step is shown in Algorithm 1. The goal is typically to simulate the movement
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of one or more bodies in a world. Before simulation begins the world and the
bodies in it are created and any initial joints are attached. A contact group is
created for storing the contact joints produced during each collision. During each
time step in the simulation loop in line 6, collision detection is first carried out
which creates contact points/joints which are used in “stepping” or dynamics
simulation for each body in the world (line 8). After this step all the contact
joints are removed from the contact group and the simulation proceeds to the
next time step.

2.1 Collision Detection

The collision detection (CD) engine is responsible for finding which bodies in
the simulation touch each other and computing the contact points for them
given the shape and the current orientation of each body in the scene. A simple
algorithm would simply test whether each of the “n” bodies collides with any
other body in the scene but for large scenes this O(n2) algorithm does not scale.
One solution to this problem is to divide the scene into a number of spaces and
assign each body to a space. Additionally, the spaces may be hierarchical - a
space may contain other spaces. Now, collision detection proceeds in two phases
called broadphase and narrowphase which are as follows:

1. Broadphase: In this phase each space S1(∈ S) is tested for collision with
each of the other spaces. If S1 is found to be potentially colliding with space
S2 ∈ S then S1 is tested for collision with each of the spaces or bodies inside
S2.

2. Narrowphase: In this phase individual bodies that have found to be po-
tentially colliding in the broadphase are tested to check if they are actually
colliding.

This approach is similar to the hierarchical bounding box approach used for fast
ray tracing and many other problems. If a pair of bodies are found to be colliding
the collision detection algorithm finds the points where these bodies touch each
other. Each of these contact points specifies a position in space, a surface normal
vector and a penetration depth. The contact points are then used to create a
joint between these two bodies which imposes constraints on how the bodies
may move with respect to each other. In addition to links to the bodies each of
these contact joints connect, they also have attributes like surface friction and
softness which are used in simulating motion in the next step.

By the end of the collision detection step all the contact points in the scene
have been identified and the appropriate joints between bodies made. In the
dynamics simulation step below, the new positions and orientations of all the
bodies in the scene are computed.

2.2 Dynamics Simulation

The joint information computed in the CD step above represents constraints
on the movement of the bodies in the scene (for example due to another body
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in way or due to a hinge). The Dynamics Simulation (DS) engine takes this
joint information and the force vectors and computes the new orientation and
position for all the active bodies in the scene. It does this by solving a Linear
Complementarity Problem (LCP) using a successive over-relaxation (SOR) form
of the Gauss-Seidel method. The main output produced in the DS stage are the
linear and angular velocities of each body in the scene. These velocities are then
used to update the position and orientation of the bodies.

Worker threads
Control flow
Waiting

Main thread

Time Step

Collision detection Dynamic sim

Islands
Spaces

(a) Overview of parallel ODE
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Fig. 1. ODE overview

3 Parallel Transactional ODE

The broad approach to parallelizing ODE is illustrated in Figure 1a. At a high-
level parallelism is achieved by offloading coarse-grained tasks in the CD and DS
stages on the main thread onto concurrent worker threads that use transactions
to synchronize shared data accesses.

3.1 Global Thread Pool

In order to avoid the overheads of creating and destroying threads, before the
simulation begins the main thread creates a global thread pool consisting of t
POSIX threads that are initialized to be in a conditional wait state. Additionally
the pool contains a t -wide status vector that describes each thread’s status, a
set CM of t mutexes and a set CV of t condition variables. During the course
of the simulation the main thread offloads work to a worker thread by scanning
the pool for an idle thread, marshalling the arguments and setting the condition
variable for the thread to start execution.

3.2 Parallel Collision Detection Using Spatial Decomposition

Detecting collisions between bodies in the world is inherently parallel and in-
deed the naive O(n2) algorithm described above can be parallelized by simply
performing collision detection for each pair of bodies in a separate thread. How-
ever a better scheme would involve a more coarse-grained distribution of work



Parallelizing a Real-Time Physics Engine Using Transactional Memory 211

in which a space or a pair of spaces in the world is handled by a separate thread.
Before the parallel CD stage starts each of the bodies in the world is assigned to a
space Si. Let S represent the set of spaces in the world i.e., S =

⋃
i Si. Detecting

collisions among bodies contained in the same space can be done independently
of (and in parallel with) other spaces. Additionally, detecting collisions between
each distinct pair of spaces can be done in parallel. The broadphase stage of
parallel CD proceeds as follows.

1. The main thread picks an unprocessed pair of spaces S1 and S2 and sig-
nals an idle thread t1,2 in the thread pool to perform collision detection on
them. Additionally the main thread signals idle threads t1 and t2 to perform
collision detection on bodies contained withing S1 and S2 respectively.

2. Thread t1,2 first checks if spaces S1 and S2 can potentially be touching.
It does this by checking if there is an overlap between their axis aligned
bounding boxes (AABBs). As described above, the AABB for a space infor-
mally is simply the smallest axis aligned box that can completely contain
all the bodies in that space. If there is overlap between the AABBs of the
two spaces then t1,2 has to check if there exist bodies b1 and b2 such that
b1 ∈ S1, b2 ∈ S2 and the AABBs of b1 and b2 overlap. If they do, b1 and
b2 are potentially colliding and the narrowphase later on checks if they are
actually colliding. After this step thread t1,2 marks the space pair (1, 2) as
processed.

3. Thread t1 finds bodies in S1 that are potentially colliding. This is done again
by analyzing the AABBs of bodies in S1. Thread t2 does the same for bodies
in S2. Spaces S1 and S2 are then marked as processed by their respective
threads.

4. All the potentially colliding bodies found above are checked to find actual
collisions in the narrowphase. If a pair of bodies do actually collide the appro-
priate thread computes contact points for the collision (using the positions
and orientations of the bodies). These contact points are used by the thread
to create contact joints between the pair of bodies.

This approach to assigning collision spaces to threads makes (
(
n
2

)
+ n) thread

offloads where n is the number of spaces. An alternate approach is to assign a
single thread ti to each space Si. This thread computes the collisions for objects
within Si and then performs broadphase and narrowphase collision checking be-
tween Si and all Sj such that i < j ≤ n. This approach activates only n threads
but is likely to be more efficient than the former only if the spaces are well bal-
anced. That is all the spaces at each level in the containment-hierarchy contain
approximately the same number of subspaces or bodies. Consider a deep space
hierarchy with space Sroot as the root space that contains all other spaces Si and
bodies. In the alternate approach the thread troot has to process collisions be-
tween Sroot and all other spaces/bodies. By definition, Sroot would collide with
every other contained body or space. Thus in general this approach would result
in a schedule where threads processing spaces that are high-up in the hierarchy
are heavily loaded while threads assigned to spaces that are lower are lightly
loaded. However in the former approach, each space-space pair can be processed
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in parallel - each pair {Sroot, Sj} for 1 < j ≤ n can be processed in parallel
thereby reducing the overall imbalance.

Shared data
Although the collision detection stage described above is quite parallel the par-
ticipating threads make concurrent accesses to several shared data structures
that must be synchronized. The important data structures that are accessed
concurrently are the Global Memory buffer that is used to satifsy allocation re-
quests, the joint, contacts and body lists and attributes pertaining to the state
of the world and its parameters including the number of active bodies and joints.

We use an STM library to orchestrate calls to these shared data. STM enables
efficient disjoint access parallelism - two concurrent threads that do not access
the same memory word can execute in parallel. This is in contrast to using more
pessimistic coarse-grained locking in which a thread that could access/modify
shared data (being accessed by some other thread) has to wait to acquire the
appropriate lock regardless of whether an actual access takes place or not. The
STM library we used is based on the well-known TL2 system described in [1].
In other works such as [18] the authors used an automated compiler-based STM
system in which the programmer simply annotates atomic sections and the com-
piler automatically annotates accesses occurring inside them with calls to the
TM runtime. Instead we used the TL2 library based system which means the
programmer has to manually identify atomic sections and accesses occurring
within them. This choice is because of two reasons. Firstly the TL2 STM has
been shown to have lower overheads than other comparable STM systems in
several studies [1]. This is especially important since we are using it in the con-
text of a real-time interactive application. Secondly using a library STM offers
better flexibility and we are in some cases able to reduce TM overheads by using
domain knowledge to elide TM tracking of specific shared data.

3.3 Parallel Island Processing

Island Formation
After the joints in the world have been determined in the CD step the next stage
is dynamics simulation or simulating the motion of the bodies under the con-
straints specified by their shapes and the joints found. This uses the SOR-LCP
formulation mentioned above and finding solutions to this problem involves sev-
eral nested loops that are compute-intensive. However, parallelizing these loops
with the work-loading model would result in a very fine-grained parallel system
(which is unlikely to scale well [11] and the overheads of synchronization and
thread control would likely eliminate any speedups gained. Therefore we choose
a more coarse-grained approach in which several connected bodies are processed
independently and in parallel with other bodies. All the bodies in the world
are assigned to ”islands”. An island is simply a group of bodies in which each
body is connected to one or more bodies in the same island through one or more
joints. These islands therefore represent sets of connected bodies that can be
processed separately since simulating a body (with some number of joints) does
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not require accesses to bodies in other islands. In parallel dynamics simulation
the main thread first forms islands. The algorithm iterates over all the bodies
in the world adding bodies to islands if they haven not already been added. A
body is said to be tagged when it has been added to some island. Given a body
b, the algorithm first finds the untagged neighbors of b and adds adds them to
a stack. The algorithm then pops and examines each body in this stack, adding
their untagged neighbors. The joints between all these neighbors are collected
in a joint list. When the stack is empty, the joint and body lists represent an
island of connected bodies that can be processed. The main thread then moves
on to the next untagged body in the world in the outermost loop.

Island Processing
While island formation is sequential, processing the bodies in each island can be
performed independently of other islands. Immediately after an island is formed,
the main thread uses heuristics to check whether the island is suitable to be of-
floaded to a worker thread. If so, the main thread marshals pointers to body
and joint lists for that island, finds an idle thread in the global thread pool and
signals it to start processing that island. The main thread then resumes with
finding the next island. If the island formed is deemed to be not suitable for
offloading, the main thread can process that island itself before continuing with
further island formation. A variety of heuristics can be used to decide whether
a particular island should be processed in a worker thread or if it should be
processed in the main thread. Our system uses a threshold on the number of
bodies and number of joints in the island. Because of the overhead of offloading
computation to worker threads, if there are very few bodies or joints in the is-
lands then it may be more efficient to process them in the main thread instead.
Additionally, if an island is found to have fewer bodies than needed to offload
processing to a worker thread, the main thread checks whether the next island
in combination with the previous one meets the threshold. If so both these is-
lands are offloaded together to a single worker thread. The main thread chooses
and signals a thread from the global thread pool to start island processing. The
worker thread uses the body and joint lists and the force vectors to set up a
system of equations representing the constraints on the set of bodies and finds.
We refer the reader to [2] for details of the constraint solver that is used for find-
ing solutions. The island processing step finishes after computing new values for
linear and angular velocity, position and orientation quaternion for each body
in the island and atomically updating body with these values.

3.4 Phase Separation

During body simulation in ODE, all the contact joints are typically computed
first before dynamics simulation can start since the latter needs these joints to
be able to solve the constraint satisfaction problem. In the sequential case this
was guaranteed since the dynamics simulation is always preceded by collision
detection in each time step. However in the parallel case, the main thread can
simply offload the collision detection to worker threads and enter the dynamics
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simulation step while some of the worker threads are still computing the joints.
Therefore there needs to be a thread barrier between the collision detection and
dynamics simulation in simulating each time step. The control flow for the main
thread is very different from that of the worker threads in our parallelization
scheme. Therefore instead of a normal thread barrier that is released when all
threads reach a certain program point, in our scheme we use a thread join point in
the main thread. A join point is simply a program point at which the main thread
waits for all the active worker threads to finish executing. When the main thread
enters the join point, it repeatedly polls the status vector and yields its processor
if there is at least one worker thread performing collision detection. Note that no
lock acquisition is necessary for this polling as the worker thread only ever writes
one type of value into its slot in the status vector - the value representing its IDLE
state. After all worker threads have finished collision detection and have entered
the IDLE state, the join point is met and the main thread is released. Although
it limits parallelism, this join is necessary due to the producer-consumer relation
between the stages for joints - the island formation algorithm requires contact
joints for all bodies in the world to have been computed.

After island processing has generated new positions and orientations for all
the bodies in the world, these new values are used in the collision detection step
in the next stage. But after the main thread offloads island processing to worker
threads, it could enter the collision detection stage in the next time step while
the new body attributes are being computed. This could result in the collision
detection stage reading stale position/orientation values for some bodies - the
bodies which island processing has not yet updated. Therefore in addition to the
dependence between the collision and dynamics simulation steps within a time
step there is also a dependence between the dynamics simulation in one time
step and the collision detection in the next. We therefore enforce a join point
at the end of each time step to make sure that all bodies have been updated.
This join point is implemented like the one described above - the main thread
simply polls the status vector until all the island processing worker threads have
finished.

To see why this join point is needed consider the case of a worker thread with
transaction Tx1 updating the position quaternion Rb of a body b during island
processing in time step n. Assume the main thread is allowed to enter the next
time step where it offloads collision detection to a worker thread and transaction
Tx1 is reading Rb. If Tx1 commits after Tx2 starts but before it finishes then Tx2

is aborted when the conflict for Rb is detected and the join point would not have
been necessary. However if Tx2 commits before Tx1 does, then Tx1 is aborted
and retried. Thus Tx1 eventually produces the new value for Rb but Tx2 ends
up using the older value and this phenomenon can adversely affect simulation
integrity. Now lets say add a “last updated” field to each body which is updated
in Tx1. So if Tx2 finds this field for b to be n then Tx1 is guaranteed to have
committed and Tx2 can read the latest Rb. However if this value is n − 1 then
Tx2 can be forced to abort to until Tx1 commit. It may therefore be possible
to eliminate the join point at the end of each time step by forcing transactions
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reading stale values in the next time step to abort. This could potentially allow
more parallelism by allowing the threads with transactions that only read already
updated bodies to proceed instead of waiting for the other threads.

3.5 Feedback between Phases

A critical factor influencing the amount of effective parallelism achieved during
the CD phase is the assignment of bodies to spaces. Spatial (in the geometric
sense) assignment methods are popularly used in many dynamics simulation
algorithms. In such methods, objects that are geometrically proximal to each
other are assigned to the same space in the containment hierarchy. An important
concern with this approach is that the scene being modelled may evolve to a state
where most of the objects are contained in one or a few spaces. This may in
turn result in the thread imbalance problem discussed in Section 3.2. To address
this such methods usually propose a space reassignment step that is invoked
occasionally and reassigns objects such that the threads are once again balanced.
We use a novel method to perform space assignment that reduces imbalance.
Our method is based in the observation that the DS phase in a timestep already
computes entities (islands) of geometrically close bodies - in fact the bodies in
each of these islands are touching each other! After the dynamics simulation
step, the bodies in these islands have been moved so they may not be touching
anymore. However if the simulation timestep is small then in the CD phase in
next iteration these bodies are either still touching each other or are close to
each other. Hence the CD phase bootstraps spaces with clusters of such islands
before performing broadphase checks on these spaces with the result that there
are fewer narrowphase checks to be performed on the contained bodies.

4 Issues

In this section we will discuss a few issues pertaining to using transactions for
synchronization in parallel ODE.

4.1 Conditional Synchronization

Our implementation of parallel ODE makes extensive use of conditional
synchronization for signalling between threads. Indeed constructs such as
pthread cond wait and pthread cond signal enable efficient waiting, signalling
and other communication between threads. However these constructs require the
communicating threads to acquire/release locks during doing so. Moreover there
is no direct way to transform these critical sections into transactional atomic
sections. Consider the case of a worker thread tw waiting for the main thread
tM to offload work. The thread tw first acquires a lock on the waiting mutex l
and calls pthread cond wait(..,l). This call atomically unlocks the mutex and
starts the conditional wait. To signal thread tw to start execution, the thread tM
in turn acquires a lock on l, calls pthread cond signal() and releases the lock
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on l. If the critical section protected by the lock acquisition/release in tM were to
be transformed into an atomic section using transactions, then if there is a con-
flict in the transaction in tM the transaction cannot roll back since the signal has
been set and it is irrevocable. Most STM systems including the TL2 system we
used and the compiler-based STM in [10] do no provide transactional methods
for conditional synchronization and signalling. Consequently our implementation
uses traditional mutex based methods for conditional synchronization.

4.2 Memory Management and Application Controlled
alloc/de-alloc.

Dynamic memory allocation is another important programmatic concern for
STMs. Most STM systems provide methods for allocating and deallocating mem-
ory efficiently from within transactions. Additionally they often implement a
large memory buffer from which allocations are made and of course memory
that is allocated in a failed transaction is restored back to the buffer. Many of
the important classes of objects in ODE are allocated dynamically on the heap.
This includes bodies, joints, joint lists, and other shared data. However, ODE
implements its own memory allocation/deallocation algorithms that purport to
improve locality and to allow objects to be be efficiently garbage collected in
addition to implementing its own large stack-shaped buffer from which allo-
cation requests are met. Requests for memory allocations are made using the
ODE Alloc() which simply returns a pointer to the first location in memory
that has not previously been allocated. If concurrent transactions in two dif-
ferent threads call ODE Alloc at the same time, both may receive the address
of the same location in memory. And as with all transactional writes to shared
data, the modifications they make to this newly allocated memory region will be
buffered in their respective private write-buffers. Suppose one of them finishes
and commits successfully. At this point its modifications to the heap will actually
be written to memory. When a conflict is detected when the second transaction
tries to commit it will be aborted. As the TM runtime rolls this transaction back,
the memory allocated within it will be freed thereby freeing memory that the
first transaction is using. Therefore the memory allocation/deallocation library
should be modified to be aware of the revocable nature of allocations. For pro-
grams that may make use of such routines from one or more of several external
libraries this is a significant problem.

5 Experimental Evaluation

We used the parallel ODE library in to drive an application simulating a scene
with approximately 200 colliding rigid bodies (a modified version of the crash
program in the ODE distribution). The maximum number of worker threads in
the global thread pool was varied from t = 1 to 32 in powers of 2. The number of
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(a) (b)

Fig. 2. Scene used in evaluating parallel ODE

threads in the results below therefore represents the maximum number of worker
threads available to for offloading and the maximum number of active threads
at any instant is (t+1) including the main thread.

We used the TL2 (v0.9.6) STM [1] API and library to provide support for
transactions in the ODE library as well as in the driver application program.
This version of TL2 is a word-based write-buffering STM that uses lazy version
checking for detecting conflicts and commit-time locking. All experiments were
carried out on a machine with an Intel Xeon dual processor with two cores per
processor and with hyperthreading turned on on all cores (for a total of 8 thread
contexts). This in our opinion represents an average platform that may be used
to run interactive simulations in ODE. Machines with higher core counts such
as (8 or 16) are less common (although they are available) and servers with core
counts of 32 and more are less frequently used in running these predominantly
desktop oriented simulations. Each core on this machine had a private 32K L1-D
cache, 32K L1-I cache, a shared 256KB L2 per processor and a shared 8MB L3
cache and the machine was equipped with 6GB of physical memory. Each thread
in our experiments was bound to exactly one core. We compiled all libraries and
the driver application with g++-4.3.3 using the default flags and all experiments
were run on Ubuntu Linux 2.6.28. All running times were gathered using the
gettimeofday() call.
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5.1 Execution Time

The graph in Figure 3a shows the improvement in execution time as speedup
over the single-threaded execution time. The X-axis is the maximum number
of threads available for offloading. The speedup scales until 8 threads at which
point it is roughly 1.27x. At 16 and 32 threads it drops to roughly 1.22x and
1.18x approximately. This means that the heuristics may be too aggressive in
offloading work when idle threads are available. This hurts performance since
there may not be enough work for a worker thread (not enough joints or bodies
in island processing for example) to justify the overhead of offloading. Moreover,
at 16 and 32 threads each core is utilized by 2 and 4 threads respectively which
means increased contention may also be responsible.
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5.2 Frame Rate

Figure 3b shows the number of frames processed per second (FPS) against the
number of threads in the thread pool. In our experiments each time step corre-
sponds to one frame. The frame rate scales in a trend similar to that of execution
time speedup. The improvement in frame rate peaks at 1.36x and drops to 1.27x
for 32 threads. At more than 8 threads more than one thread is mapped to a
processor and contention for shared data also increases reducing the per frame
completion time.

5.3 Abort Rate

The abort rate for different number of threads is shown in Figure 4a. The abort
rate is defined as the ratio of the number of aborts to the total number of
transactions started. Therefore if a, c represent number of aborts and commits,
the abort ratio is given by a/(a + c). The abort ratio increases steeply up to 4
threads and continues to rise beyond. The average amount of contention between
threads increases as the number of threads increases and the amount of shared
data being accessed by these threads remains the same. The abort rate does not
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Table 1. Read/Write set sizes

Reads (bytes) Writes(bytes)

Threads Min Max Avg Total Min Max Avg Total

1 4 112 112 3094332 4 96 48 1325062
2 4 224 211 5886756 0 192 90 2520386
4 4 2536 596 16620560 0 2036 240 6791206
8 4 2868 1300 36245344 0 2328 530 14775982
16 4 3552 1393 38823380 0 2936 570 15868776
32 4 5184 1504 41912768 0 4196 614 17133684

rise as significantly going from 16 to 32 threads. This is because the average
number of concurrent threads does not necessarily rise proportionally to the
number of threads in the thread pool and therefore the number of aborts increase
less steeply.

5.4 Thread Utilization

In contrast to parallelization techniques that purely depend on static decompo-
sition of work, in the scheme for parallel dynamics simulation (DS) described
above, only the maximum number of threads in the thread pool is fixed and
heuristics are used to dynamically gauge whether to offload island(s) processing
to worker threads. The amount of parallelism in the collision detection (CD)
stage however remains relatively uniform. The plot in Figure 4b shows the av-
erage number of computation offloads occurring in each time-step (or frame)
when there are a maximum of 32 threads in the global thread pool. Specifically,
the plot shows the number of offloads to worker threads for the first 100 frames
of simulation for the scene shown in Figure 2. The number of offloads in the
CD stage remain stable and in this stage, a worker thread can be invoked on
average roughly 2 times until the point in the simulation noted as (a) in the
plot. Also, the number of offloads in the DS stage remains low and is also sta-
ble until point (a). This is the time step where the stack of bodies in Figure 2
begins to disintegrate as shown in Figure 2(b). While in earlier time steps there
was only one island to process, after point a there are many smaller islands and
therefore there is more parallelism. This is reflected in Figure 4b by the sharp
increase in number of offloads in the DS stage after point (a). As mentioned
above, the heuristics we used have a relatively low threshold on island count for
offloading the work of processing an island to a worker thread. This results in
the main thread aggressively offloading work which explains the high number
of DS offloads after point (a). The number of offloads in the CD stage remain
relatively stable since there the data distribution is based on abstract spaces and
not physical artifacts such as joints and islands. Additionally, after point (a) the
number of offloads in the CD stage are reduced due to contention with the DS
stage for worker threads.
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5.5 Transaction Read/Write Sets

There are three main types of transactions during execution. The first is the
transaction to add a contact joint to the system for a pair of colliding bodies.
The second transaction executed during island processing for atomically updat-
ing a body’s attributes. The third type consists of short transactions to access
various shared values such as the number of joints. Table 1 summarizes the
characteristics of the read/write sets of all the transactions executed. The av-
erage read set sizes are significantly larger than the sizes of the write sets in
all cases. This is in line with the average mix of read/write operations in many
other transactional programs. Many of the transactions in parallel ODE per-
form several reads before performing their first write. One commonly occurring
transaction for example is atomic insertion into a sorted object list. Here the list
is traversed and each element examined to find the right position for insertion
before pointer values for the neighboring list elements are updated. The aver-
age read and write set sizes remain relatively small for most transactions which
shows that hardware transactional memory implementations may also be able
to support parallel ODE.

5.6 Scalability Optimizations

Based on the results of the experiments described above, the following observa-
tions can be made pertaining to improving scalablity.

1. DS phase offloading: The work offloading algorithm in the island processing
phase may be too aggressive in our experimental system. This stems partly
from the static threshold used to decide whether processing for a particular
island is to be offloaded, inlined or whether it should be combined with an-
other island and then offloaded. The size of the islands changes substantially
over the course of the simulation (for example, the one shown in Figure
2a), which results in the threshold becoming too low at several points. A
low threshold results in aggressive offloading which in turn results in poor
scalability. The processing step for a single island cannot be offloaded to
more than one thread in our system. This is because the forces and torques
acting on a body are determined by the joints connecting the body to its
neighboring bodies and if these bodies were being processed by two sepa-
rate threads the system of constraints imposed by these joints would have to
be communicated between them which we believe would increase the level
of synchronization drastically. During the early timesteps of simulating the
scene shown above, there are only two islands with one of them containing
all the bodies in the world and this large island is then offloaded to a single
thread. This restriction therefore has the effect of severely serializing island
processing until more islands are formed as a result of collisions.

2. Speculative island formation: The algorithm for discovering islands discussed
earlier is sequential - the main thread discovers an island and offloads (or
inlines) it before proceeding to discover the next island. This substantially
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limits the amount of effective parallelism especially for very large scenes.
An algorithm for speculatively discovering islands in parallel and processing
them in the worker threads after the speculation has been verified would im-
prove parallel performance greatly (in spite of the additional synchronization
costs which are relatively small). Briefly, in this algorithm worker threads
speculate on a “seed” body for an island and then “grow” the island. This
seed body is picked from a cache of likely candidates built during the island
discovery phase in the previous timestep. The worker threads then attempt
to verify if the island is valid and was previously undiscovered and if so,
continue to the island processing step.

3. Performance of Locks: Coarse-grained locking can be used instead of transac-
tions to protect accesses to shared state and we believe that the performance
in both cases would be comparable. Fine-grained locking would be harder to
implement given the diversity of both the data structures and the accesses to
them. Nevertheless we are in the process of implementing our parallel ODE
system with support both coarse-grained and fine-grained locking.

6 Related Work

Several researchers have studied various aspects of parallelizing physics computa-
tions for applications from domains ranging from robotics, virtual environments
and scientific simulations, to animation [16,13,19,14]. In [19] the authors describe
a voxel based parallel collision detection algorithm for distributed memory ma-
chines. This algorithm is similar to the abstract space based collision detection
scheme discussed in this paper. ParFUM [15] is a framework based on Charm++
for developing parallel applications that manipulate unstructured meshes and
supports efficient collision detection. In [6] the authors study the performance
of a parallel implementation of the Barnes-Hut algorithm for n-body simula-
tion that uses octree based subdivision for computing particle interactions. In
[17] the authors present an algorithm for continuous collision detection between
deformable bodies that can be executed at interactive rates on present day multi-
core machines.

Lee-TM [7] is an implementation of Lee’s routing algorithm using transac-
tional memory. While the algorithm exhibits large amount potential parallelism
the transactional implementation has been shown to have modest scalability.
AtomicQuake [18] is an implementation of a parallel Quake game server using
transactions. The parallelization is at the level of clients connected to the server
- operations for a client are performed on the server by the worker thread that
the client is mapped to. Support for transactions is provided by the compiler [10]
instead of a library based TM. The programs in STAMP [3] consist of a variety
of parallel transactional workloads that represent pieces of larger applications
and which can be executed with one of several STM or HTM systems. TMunit
[9] is a framework for developing unit tests for evaluating STM systems. RMS-
TM [8] is a TM benchmark suite consisting of programs and application kernels.
STMBench [5] is a synthetic benchmark that that contains transactions with
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widely varying characteristics and which operate on non-trivial data structures.
Thus while it is very useful for finding problems with specific implementations
and stretching the limits of TM designs, it is not representative of any real-world
program.

7 Conclusion

In this paper we presented a parallel transactional physics engine for rigid body
simulation based on the popular Open Dynamics Engine (ODE). We were able to
parallelize the two principal components of ODE - the collision detection engine
and the dynamics simulation engine to make use of worker threads from a global
thread pool for executing work offloaded from the main thread. We used a soft-
ware transactional memory for orchestrating concurrent accesses to all shared
data. Our approach of coarse-grained parallelization was not only relatively pro-
grammer friendly but also helped amortize the cost of the work-offloading. The
parallel version of ODE showed speedups of up to 1.27x (for 8 threads) compared
to the sequential version. As a continuation of this work we plan to investigate
better cost heuristics for making offloading decisions and to investigate tech-
niques for incorporating domain knowledge in optimizing memory transactions
in addition to comparing the performance of the transactional implementation
with that of versions that use fine-grained and coarse-grained locking.
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Introduction

Kunal Agarwal, Panagiota Fatourou, Arnold L. Rosenberg, and Frédéric Vivien

Topic chairs

Parallelism permeates all levels of current computing systems. It can be observed
in systems as varied as multiple single-CPU machines, large server farms, and
geographically dispersed “volunteers” who collaborate over the Internet. The
effective use of parallelism depends crucially on the availability of faithful, yet
tractable, models of computation for algorithm design and analysis and of effi-
cient strategies for solving key computational problems on prominent classes of
computing platforms. No less important are good models of the way the different
components/subsystems of a platform are interconnected. With the development
of new genres of computing platforms, such as multicore parallel machines, desk-
top grids, and hybrid GPU/CPU-based systems, new models and paradigms are
needed, that will allow parallel programming to advance into mainstream com-
puting. Specific areas of interest within this Topic include, but are not limited
to:

– Foundations, models, and emerging paradigms for parallel, distributed, mul-
tiprocessor and network computation

– Deterministic and randomized parallel algorithms
– Lower bounds for key computational problems
– Models and algorithms for parallelism in memory hierarchies
– Models and algorithms for real networks (e.g., scale-free, small world, wireless

networks)
– Theoretical aspects of routing within networks

This Topic solicited high-quality original papers that contribute new results on
foundational issues regarding parallelism in computing and/or propose improved
approaches to the solution of specific algorithmic problems. After carefully re-
viewing each submission, we were able to accept three papers that deal with
interesting aspects of the issues outlined above.

“A Bi-Objective Scheduling Algorithm for Desktop Grids with Uncertain
Resource Availabilities,” by L.-C. Canon, A. Essafi, G. Mounié, and D. Trys-
tram, presents a sophisticated contribution to the theory of scheduling paral-
lel/distributed machines. The paper focuses on scheduling batches of work on a
desktop grid in a way that accommodates possible unpredicted lapses in availabil-
ity of resources on such a platform. The authors provide a scheduling algorithm
that prevents unexpected lapses from excessively degrading the makespan of
the scheduled job. The quality of the algorithm is demonstrated via simulations
based on realistic workflows.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 224–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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“New Multithreaded Ordering and Coloring Algorithms for Multicore Archi-
tectures,” by M.A. Patwary, A.H. Gebremedhin, and A. Pothen, presents mul-
tithreaded vertex ordering and distance-k graph coloring algorithms that are
tailored for multicore architectures. The basic challenge here is to overcome the
apparent inherent sequentiality of the underlying problems. The authors ad-
dress this challenge via novel algorithmic devices whose value is demonstrated
by experiments on input graphs representing both artificial and real applications,
performed on a variety of multicore machines.

“Petri-nets as an Intermediate Representation for Heterogeneous Architec-
tures,” by P. Calvert and A. Mycroft, develops a model that allows one to expose
what the authors term “performance nondeterminism” in heterogeneous parallel
systems. This form of “nondeterminism” is observed when portable programs
make implementation decisions (concerning, e.g., resource allocation and algo-
rithmics) in response to the exigencies of different target machines and run-time
environments. The authors exemplify and discuss potential uses of the model.

We thank—and acknowledge the efforts of—all of the authors who submitted
contributions to this Topic and all of the reviewers who provided useful, insightful
comments. Their combined efforts have made this Conference and this Topic
possible.
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Abstract. Many modern systems provide heterogeneous parallelism,
for example NUMA multi-core processors and CPU-GPU combinations.
Placement, scheduling and indeed algorithm choices affect the overall
execution time and, for portable programs, must adapt to the target
machine at either load-time or run-time. We see these choices as pre-
serving I/O determinism but exposing performance non-determinism.
We use Petri-nets as an intermediate representation for programs to give
a unified view of all forms of performance non-determinism. This includes
some scenarios which other models cannot support. Whilst NP-hard, ef-
ficient heuristics for approximating optimum executions in these nets
would lead to performant portable execution across arbitrary heteroge-
neous architectures.

Keywords: Petri-nets, parallelism, heterogeneous architectures,
scheduling.

1 Introduction

It is becoming clear that modern systems are not only increasingly parallel but
also heterogeneous. Common examples include IBM’s Cell Broadband Engine
and also CPU-GPU combinations. As well as different processing capabilities,
the different cores have access to separate memories, with data transfers needing
to be managed explicitly. Our research is focused on offering portability for these
systems.

On such architectures, achieving optimal performance depends on careful
placement of computation and management of the required data transfers. If
we want programs to have portable performance, this placement must be done
automatically. This is an example of performance non-determinism, where run-
time or load-time decisions affect the overall execution time. A choice between
algorithms also causes this (e.g. the fastest sequential algorithm compared to one
well suited to parallelisation). We distinguish this from I/O non-determinism,
where run-time decisions might alter the result of the program.

Other work on heterogeneous architectures tends to treat every task as a single
unit that must be completed, just giving it a different cost for each processor

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 226–237, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[14]. However, this does not allow scenarios such as either perform A once at
cost 5 or perform B ten times (possibly in parallel) at cost 1 each. We wish to
encode these possibilities.

In this paper, we use coloured Petri-nets as an intermediate representation
for parallel programs, and investigate the placement and scheduling problems.
In particular, we consider:

– A Petri-net intermediate representation that expresses both parallelism and
performance non-determinism, and some example programs (Section 3).

– A simple model of heterogeneous architectures and how this provides a uni-
fied model of existing hardware (Section 4).

– How these Petri-nets map onto such hardware, including a cost model and
the problem of minimising execution time (Section 5).

– Existing work from both mathematics and computer science that addresses
issues that we identify in this minimisation problem (Section 6).

– How compiler optimisations can be applied to these Petri-nets (Section 7).

We also discuss other parallel models and their relation to this work.

2 Notation

Throughout this paper, we make frequent use of sets, multisets and ordered lists.
The notation that we will use is as follows:

– N0 gives the set of non-negative integers—i.e. {0, 1, 2, . . .}.
– X∞ gives the set X ∪ {∞}.
– R+ gives the set of non-negative real numbers.
– A multiset m over a set X is a function X → N0 giving the number of

appearances m(x) of x ∈ X in m. The set of all multisets is written mX .
The operations ∪, \ and ⊆ are defined as liftings of +, saturating subtraction
and ≤ respectively.

– A list l over a set X is a tuple Xn. We will write li for the ith element
of l (for i = 1 . . . n) and |l| for its length n. The set of all lists is written
�X =

⋃
n∈N0

Xn. Note that we can treat lists as multisets, but not vice-versa.

We also use a very simple type system:

τ ::= int | bool | unit | τ × τ | τ [n] for n ∈ N

It is important that each type is of fixed size, given by sizeof(τ). Therefore, arrays
of different lengths are distinct types. The set of values that a type τ can take
is denoted �τ�. We do not have higher order types but will refer to transitions
of type τ → τ ′, and write for functions:

f : τ → τ ′ ⇐⇒ ∀v ∈ �τ� : (f(v) defined =⇒ f(v) ∈ �τ ′�)

Later, we will abuse � � to give the operation associated with a transition. When
referring to the cost of operations, we will generally use the notation 〈 〉.
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Fig. 1. Petri-net for merge-sort of a 4-element list

unit

lock

lock

critical region

unlock

unlock

Fig. 2. Petri-net for a critical region using a mutual exclusion lock

3 Petri-net Intermediate Representation

Any intermediate representation for modern architectures must express paral-
lelism, and, we argue, performance non-determinism. The current common for-
mats are data-flow graphs (DFGs) and control-flow graphs (CFGs).

Data-flow graphs express parallelism, but not non-determinism. Every com-
putation node in the graph will be performed at some point, and the edges give
the dependencies between them. On the other hand, control-flow graphs express
no parallelism at all, but branching is often treated as non-determinism (e.g. in
static analysis).

Petri-nets are the obvious combination of these two, offering both parallelism
and non-determinism. We consider a variant of Jensen’s coloured Petri-nets or
CP-nets [8]. Tokens (drawn •) containing values are stored at places (drawn
©) which have a type. Execution proceeds by the firing of transitions (drawn
�). When a transition fires, it removes tokens from its pre-places, applies a
function to them, and adds the results to its post-places. Later, we will allow
such transitions to take a period of time. For example, a simple merge-sort of a
4-element list can be represented as shown in Figure 1 (the ‘2’s in the diagram
show multiplicities where multiple tokens are taken from, or given to, a single
place in a firing). Petri-nets also express concurrency primitives well, for example
mutual exclusion (Figure 2).

In our nets, the effect of a transition is defined using an existing representa-
tion for sequential programs (e.g. functions in LLVM’s IR [1] or even individual
virtual machine instructions). However, for this work, the exact choice is not
important, we simply refer to the set F of such partial functions1.

1 We elide the difference between intensional and extensional representations of a
function, so for f1, f2 ∈ F : (∀x : f1(x) = f2(x)) �⇒ f1 = f2 since f1 and f2 may
compute the result in different ways.
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The partiality of these functions provides for conditional transitions. If a tran-
sition is not defined for a given input, it will not fire. For example, the following
transition cond of type bool → unit will generate a token (with unit value) only
when provided with a token containing the value true:

�cond�(b) =

{
() if b = true
undefined if b = false

We can now define our version of coloured Petri-nets more formally:

Definition 1. A coloured Petri-net is a tuple N = (S, T, Γ, • , •, � �) con-
sisting of:

1. A set of places S.
2. A set of transitions T .
3. A type environment Γ , associating a type τ to every s ∈ S.
4. A pre-place function • : T → �S.
5. A post-place function • : T → �S.
6. A labelling function � � : T → F such that transitions are well typed—i.e.

For all t ∈ T, �t� : Γ (•t) → Γ (t•)

where Γ ([s1, . . . , sn]) = Γ (s1) × · · · × Γ (sn).

Note that we have defined the pre- and post-places of transitions as lists rather
than multisets to give direct association with argument and result tuples of
functions in F.

The state of a coloured Petri-net describes the tokens, and their values, present
at each place. This is called a marking (although Jensen [8] prefers token distri-
bution when tokens carry values) and can be defined as follows:

Definition 2. A marking is a function M defined on S such that M(s) ∈
m�Γ (s)� for all s ∈ S. We denote the set of all markings as M. The operators
∪, \ and ⊆ lift to markings in the obvious manner.

Given a list of places i ∈ �S (e.g. the pre-places or post-places of a transition),
and a list of values x ∈ �Γ (i)� (i.e. which are well typed), the corresponding
marking2 will be written (i � x).

This allows us to define the firing rule M → M ′ of the Petri-net as follows:

M ∪ (•t � x) → M ∪ (t• � �t�(x)) provided that �t�(x) is defined

Traditionally, paths through Petri-nets are represented either as causal nets [12]
or by pomsets [10]. When we come to introducing a cost model in Section 5, it
will be more convenient to use pomsets.

2 For example, for A,B, C ∈ S and Γ (s) = int for s ∈ {A, B, C}, ([A, B, C, C] �
[10, 4, 5, 2]) = (A 
→ {10}; B 
→ {4}; C 
→ {5, 2}).
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Fig. 3. Petri-net without confluence (x := x + 1 ‖ x := x + 1)

Definition 3. A (pomset) path is a triple (V,≤, μ) where V is a set of oc-
curences labelled with a transition by μ : V → T . ≤ defines a partial order on V .
Two pomset paths are considered equivalent if there is an isomorphism between
them.

We will use P to give the set of all such paths. Note that for two transiton
occurences v1, v2 ∈ V , if neither v1 ≤ v2 nor v2 ≤ v1 then the occurences can
occur in parallel, whereas otherwise they must fire sequentially.

Just as with traditional flow graphs, not all of these paths are feasible, since
we cannot check whether the transitions are defined without knowing the values
of the tokens. However, any execution trace will be an instance of a path from a
distinguished initial place s0 to a final place s∞. It must not be possible to fire
any transitions from the final place (i.e. ∀t ∈ T : s∞ �∈ •t).

The firing of Petri-nets is non-deterministic, as intended. However, this al-
lows all forms of non-determinism to be expressed, not just performance non-
determinism (e.g. Figure 3). We will assume that programs are I/O deterministic,
and therefore respect confluence—i.e. for all markings M1, M2, M3 ∈ M:

(M1 →∗ M2) ∧ (M1 →∗ M3) =⇒ ∃M4 ∈ M.((M2 →∗ M4) ∧ (M3 →∗ M4))

4 Simple Hardware Model

We restrict ourselves to a very simple model of heterogeneous architectures. This
ignores fine details of the memory system such as caches. We consider a system to
consist of processors, each with a local memory, and interconnects between them.
The cost of accessing this local memory is low and included in the computation
cost of a function. Non-local data must be transferred via interconnects before
use, at a cost modelled by latency and bandwidth. This is not dissimilar from the
partitioned global address space model (PGAS) that is used elsewhere (e.g. X10).
We ignore capacity constraints of memories. Formally, a hardware architecture
is defined as follows:

Definition 4. A simple heterogeneous hardware model H is a 3-tuple
(P, m, c) consisting of:
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– A finite set of processors P .
– An interconnect descriptor function i : (P × P ) → (R+ × R+)∞. For a pair

(p1, p2) of distinct processors, i(p1, p2) = (l, b) gives the latency l and per-
byte cost b (= 1

bandwidth ) of the interconnect from p1 to p2. We will refer to
the cost of transferring n bytes of data with the notation 〈p1

n→ p2〉 = l+n ·b.
When there is no interconnect from p1 to p2, i(p1, p2) = ∞.

– A computation cost function c : (F × P ) → R
∞
+ , where ∞ indicates that the

processor cannot perform the function (e.g. no floating-point support).

An example model of a multi-core plus GPU architecture is given in Figure 4.
The inclusion of small costs, such as ε in the example, approximates the effect
of cache invalidations, when cores share a memory but have separate caches.
Memories not associated with a processor can be modelled as a ‘null’ processor
p⊥ with c(f, p⊥) = ∞ for all f ∈ F.

Core 1 Core 2
ε

GPU 1 GPU 2

Here ε is typically small, and the other costs are based on actual measurements.

Fig. 4. Example model for dual-core CPU with 2 general-purpose GPUs

We assume two sanity constraints: that the memory interconnect is strongly
connected3, and also that all functions can be executed somewhere (i.e. ∀f ∈ F :
∃p ∈ P : c(f, p) �= ∞). These properties ensure that our mapping of software
onto hardware is also confluent.

5 Mapping Software to Hardware

Given these two models, we can model all possible executions of a program on
an architecture with a single Petri-net. Each feasible path through the net gives
a possible execution trace. The intuition behind our construction comes from
considering an individual data token x. In program N = (S, T, Γ, • , •, � �), x
must be at some place s ∈ S. However, the architecture H = (P, m, c) on which
the software is run, must store x in some memory p ∈ P . Therefore, the location
of a data token in a running program is described by a pair from the set S × P .

We now consider what might happen to a token x at (s, p). There are two
options, either:

– (t, p): The token x is used by transition t ∈ T executing on processor p
(where possible), or

3 A graph is strongly connected if for every pair of vertices a and b, there is a path
both from a to b, and b to a.
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Fig. 5. Merge-sort mapped onto a dual core CPU (types are omitted for clarity, and
memory transfers are only shown for n = 1)

– (s, p, p′, n): The token x is transferred to another processor p′ ∈ P via an
interconnect (p, p′) as part of an n-token transfer.

Therefore, the possible transitions for x must be a subset of (T ×P )∪ (S×P 2×
N). Additionally, when we consider the complete system, we require resource
constraints so that a processor executes only a single transition at any moment,
and similarly so that each interconnect is only used for one transfer at a time.

We can encode this as a new Petri-net. To encode the resource constraints, we
choose to use mutual exclusion locks similar to Figure 2, although they could also
be expressed as restrictions on paths. This results in a net C defined as follows4.
The Petri-net for our merge-sort example on a dual core CPU is shown in Figure
5 as an example, although we do not intend this model to be a large-scale visual
model.

C =
(

(S × P ) ∪ P ∪ P 2 , (T × P ) ∪ (S × P 2 × N) , Γ ′, • , •, � �
)Data Places

Processor Constraints

Interconnect Constraints

Computation Transitions

Memory Transfers

with5:
•(t, p) = [p, (•t1, p), . . . , (•t|•t|, p)] •(s, p1, p2, n) = [(p1, p2), (s, p1), . . . , (s, p1)]
(t, p)• = [p, (t•1, p), . . . , (t•|t•|, p)] (s, p1, p2, n)• = [(p1, p2), (s, p2), . . . , (s, p2)︸ ︷︷ ︸

n repetitions

]

4 Excluding the resource constraints, this construction is equivalent to the Cartesian
product of hypergraphs, where each Petri-net transition corresponds to a hyperedge.

5 For these definitions, we use ML-style list syntax (i.e. [a, b, c] is a list, and 1 ::
[2, 3, 4] = [1, 2, 3, 4]).
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and:

Γ ′(s′) =

{
Γ (s) if s′ = (s, p)
unit otherwise (i.e. resource constraint places)

�(t, p)� = λ(r, x1, . . . , xn) . () :: �t�(x1, . . . , xn)
�(s, p1, p2, n)� = λ(r, x1, . . . , xn) . [(), x1, . . . , xn]

In Section 4, we required that our memory be strongly connected. This ensures
that data transfers can always be ‘undone’. Similarly, since each function in F

can be done on some p ∈ P , we know that the new Petri-net is still confluent.
Therefore, the choice of which transition to fire can only affect performance, not
correctness.

Since our hardware model gives us costs, we can supplement our ‘compiled’
Petri-net with a duration function 〈 〉. This gives the time taken for each tran-
sition to fire. It can be defined as follows:

〈(t, p)〉 = c(�t�, p)

〈(s, p1, p2, n)〉 = 〈p1
n·sizeof(Γ (s))→ p2〉

Now we have durations associated with each transition, it is reasonable to ask
how long a path through C will take to execute. Given a pomset path p = (V,≤
, μ) ∈ P, this is given by 〈p〉 = maxv∈V (f(v)) where the finish time f(v) of an
occurence is given by:

f(v) =

{
max{w∈V |w≤v}(f(w)) + 〈μ(v)〉 if ∃w ∈ V : w ≤ v

〈μ(v)〉 otherwise

Candidate executions of N on H are given by any paths from an initial place to
a final place. Unfortunately, as noted in Section 3, not all paths are feasible. In
executing the Petri-net, the aim is to choose a trace with minimum duration.

6 Finding Optimal Executions

The problem of finding an optimal execution allows us to consider all perfor-
mance non-determinism choices together. This is not limited to placement and
scheduling, but also programming model specific choices, such as which thread
should get access to the lock first and how many times should we perform divide
and conquer for our algorithm to best match the available parallelism.

We can consider the problem in two stages. Firstly, we must be able to find
traces of minimum duration where no partial transitions (i.e. conditionals) are
used, and therefore all paths are trivially feasible. This corresponds to analysis
of straight-line flow graphs. Once solved, extending this to the complete problem
will require runtime analysis, since input values will affect which paths can occur.
Fortunately, as pointed out in Section 5, we cannot make any wrong choices (just
slow ones). We might therefore aim to pick transitions that appear in a number
of low duration paths.
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6.1 Complexity

Even the first part is an NP-hard problem. The proof uses a reduction from the
exact cover problem, which is very similar to the reduction from 3-dimensional
matching for AND/OR network scheduling [6]. These problems are both known
to be NP-complete [9].
Theorem 1. Checking whether a path exists between two markings is NP-hard.

Proof. Given a set X, and a set Y ⊆ ℘(X) of subsets, an exact cover is a set
Y ∗ ⊆ Y such that for each element of X it appears in exactly one element of
Y ∗. Determining whether an exact cover exists for a given X and Y is known
to be NP-complete [9].

We can encode this in a Petri-net (S, T, λs.unit, • , •, λt.(λx.[(), . . . , ()])) as
follows. For each x ∈ X, we include a place sx ∈ S. We also introduce a start
place start. Now for each subset y = {x1, . . . , xn} ∈ Y , we add a transition
ty ∈ T such that:

•ty = [start]
t•y = [start, sx1 , . . . , sxn ]

We can then determine whether an exact matching Y ∗ exists by checking whether
there is a path from {start} to {start} ∪ X.

6.2 Similar Problems and Techniques

Scheduling appears to be a similar problem, and despite being NP-complete,
effective heuristics do exist for it. This suggests there may also be approximations
for our problem. However, there are several key differences between the problems.

In typical scheduling problems, precedence constraints do not allow the con-
cept of a completed task being ‘used up’ as in Petri-nets, and cycles therefore
behave differently. This dataflow situation is seen with streaming models (e.g.
[11]), where the input and output rates of pipeline stages need to be matched.
Adaptive runtime approaches have been shown to produce good results [13] for
such pipelines.

Flows through graphs also share similarities, with the flow into and out of
each node needing to match (our program outputs a single token at s∞ so tokens
cannot build up at intermediate places). We would need to use hypergraphs6 since
transitions have multiple pre- and post-places. The minimum cost flow problem
is most relevant since we know how much data will be input and expected as
output. However, this minimises total cost rather than the critical path.

In the standard graph case, there are efficient cost-scaling algorithms [7] for
this which could be distributed. However, work on hypergraphs [4] appears to
be restricted to ‘B-hypergraphs’ where each edge has only a single head.

Unfortunately, the standard definition of ‘hyperflows’ fails to describe execu-
tion paths (for example, Figure 6). Also a flow would need to be supplemented
by an actual schedule for execution.
6 A (directed) hypergraph is here a digraph where each hyperedge e has multiple heads

and multiple tails (i.e. e ∈ ℘V × ℘V ).
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Fig. 6. A hypergraph flow that is not a valid path (A must fire twice for B or C to
fire)

t1 t2

t1; t2 t1

t2

t1 ‖ t2

Fig. 7. Fusing of Petri-net transitions

The non-deterministic choice present in Petri-nets is uncommon in scheduling.
AND/OR networks do share this characteristic. They are typically solved using
list scheduling heuristics [5]. However, it is unclear how this can be combined
with the dataflow properties defined above.

Graph flows are again similar since a flow will not necessarily use every edge.

7 Compiler Optimisations

Using the representation that we have described may make parallelism explicit,
however it does not consider compiler optimisations apart from within a single
transition. The potentially fine-grained nature of transitions means that there
will be a limited performance improvement. If we enlarge the transitions in
the original program, then some of the explicit parallelism may be lost. The
solution to this is to allow transitions to be fused at load-time or runtime (Figure
7). For two transitions t1 and t2 on a single processor p, we can hope that7

c(�t1; t2�, p) < c(�t1�, p) + c(�t2�, p) or c(�t1 ‖ t2�, p) < c(�t1�, p) + c(�t2�, p). For
example, with SIMD execution, it may be that c(�t ‖ t�, p) = c(�t�, p).

A fusing can be defined by a path in the original program Petri-net, since a
path encodes the ways in which transitions can be combined, including repeti-
tions of a single transition. Any given path is also finite, so we avoid the problem
of defining a cost for looping code. We can incorporate this into our mapping
by creating a transition for each path p ∈ P in the program rather than for each
transition t ∈ T—i.e. the set of transitions in the mapped Petri-net becomes
((P × P ) ∪ (S × P 2 × N)).

In practice, we cannot enumerate all paths (an infinite set), so heuristics for
specific core types would be used. For example, data parallel devices (e.g. GPUs)
would be most effective on paths that compose a calculation in parallel with
7 t1; t2 and t1 ‖ t2 give sequential and parallel compositions of t1 and t2 respectively.
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itself. However, even with heuristics we will generate many transitions. Again
looking at data parallel cores as an example, a device that can execute between 1
and N threads will generate a transition for each choice of n ∈ {1, . . . , N}. In the
future, we will therefore need to look at how transitions can be parameterised.

Similarly, our current representation does not support any notion of proce-
dures. This becomes impractical for large programs, and we will need to inves-
tigate ways of including this. Jensen’s hierarchical CP-nets offer one approach
[8], but we will also consider techniques from other areas such as hardware de-
scription languages (since places behave somewhat like wires).

8 Comparison with Other Models

The best-known bridging model for parallel computation is Valiant’s BSP [15].
However, this only considers homogeneous scenarios. In BSP, computation is
grouped onto processors in the program itself. Therefore, any heterogeneous
simulation of a BSP program is constrained in its placement and scheduling
choices. By choosing to express our programs as dependences, we overcome this
and allow full adaptation to the target.

There has also been considerable work on runtimes and languages for parallel
systems. StarPU [3,2] uses the HEFT scheduling algorithm [14] to choose an
implementation of a task, running it on the relevant processor. However, this
framework does not allow choices between sets of tasks.

Coordination languages are perhaps the closest in spirit to our approach. They
link together functions from another language to form a complete program. This
is similar to how transitions (which are also written in a separate language) are
linked together by data places. These include coarse-grain dataflow approaches
and are related to streaming languages such as StreamIt [11]. Our model can be
seen as a development of both of these.

9 Conclusions

This paper has given a fresh perspective to placement and scheduling on het-
erogeneous architectures, which we argued in Section 1 are important problems
in trying to achieve portable performance. Petri-nets (Section 3) have long been
known to provide elegant encodings of concurrency constructs, and we have
shown in Section 5 that as an intermediate representation they can also encode
the executions of these constructs on our hardware model (Section 4). Whilst
the resultant problem is NP-hard, it allows consideration of all performance
non-determinism, and there are likely to be efficient heuristics.

In Section 7, we moved away from theory to discuss how compiler optimisa-
tions could be performed on our representation.

We feel that the model is promising not just as a theoretical model, but also
as the basis of a virtual machine offering portability across heterogeneous archi-
tectures. Future work will need to find suitable heuristics for the optimisation
problem by further investigation of the related work discussed in Section 6, and
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also move towards an implementation that allows investigation of behaviour and
performance on real programs.
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Abstract. In this work, we consider the execution of applications on
desktop grids. Such parallel systems use idle computing resources of
desktops distributed over the Internet for running massively parallel com-
putations. The applications are composed of workflows of independent
non-preemptive sequential jobs that are submitted by successive batches.
Then, the corresponding jobs are executed on the distributed available
resources according to some scheduling policy.

However, most resources are not continuously available over time since
the users give their idle CPU time only for some time when they are not
using their desktops. Moreover, even if the dates of unavailability periods
are estimated in advance, they are subject to uncertainties. This may
drastically impact the global performances by delaying the completion
time of the applications.

The aim of this paper is to study how to schedule efficiently a set of jobs
in the presence of unavailability periods on identical machines. In the same
time, we are interested in reducing the impact of disturbances on the un-
availability periods. This is achieved by maximizing the stability that mea-
sures the distance between the makespan of the disturbed instance over
the initial one. Our main contribution is the design of a new parametrized
algorithm and the analysis of its performance through structural proper-
ties. This algorithm reduces the impact of disturbances on availability pe-
riods without worsening too much the makespan. Its interest is assessed
by running simulations based on realistic workflows. Moreover, theoretical
results are obtained under the assumption that the size of every availabil-
ity interval is at least twice the size of the largest job.

Keywords: Scheduling, Availability Constraints, Uncertainty,
Stability.

1 Introduction

1.1 Context and Motivation

Today, many kind of parallel platforms are available for running applications.
In this work, we focus on desktop grids, which gather idle computing resources
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of usual desktops distributed over the Internet for running massively parallel
computations. Such systems provide a very large computing power for many
applications issued from a wide range of scientific domains (including, protein
folding [15], gravitational physics [20], etc.).

The applications are composed of workflows of sequential jobs that are sub-
mitted by successive batches to a particular user interface machine. Then, the
corresponding jobs are transferred to be executed on the distributed available
resources according to some scheduling policy. However, usually the resources
are not continuously available over time since the users give their idle CPU time
only for some time when they are not using their desktops.

Moreover, even if the dates of unavailability periods are estimated in advance,
they are subject to uncertainties. This may drastically impact the global perfor-
mances by delaying the completion time of the application.

In this paper, we study how to schedule efficiently a set of jobs (which cor-
responds to minimize the makespan) in the presence of unavailability periods.
In the same time, we are interested in reducing the impact of disturbances on
the unavailability periods. The corresponding objective is the stability that mea-
sures the ratio between the makespan of the disturbed instance over the initial
one [3]. To the best of our knowledge, there is no work studying scheduling with
unavailability periods under uncertainties.

1.2 Contributions

The first contribution of this work is to investigate the problem of scheduling
with unavailabilities from the view point of studying the impact of uncertainties
on the availability periods. Our main contribution is the design of an algorithm
and the analysis of its performances through structural properties. It is based on
the concept of slacks placed just before the unavailability periods that prevent
jobs to be delayed. The lengths of the slacks are parametrized by the types of jobs
allocated on the available intervals. Then, the good behavior of the algorithm is
assessed by running simulations derived from actual workflows of BOINC [1].

The proposed methodology should be useful for solving other scheduling prob-
lems with various characteristics like failures or estimated energy consumption.

1.3 Organization of the Paper

The paper is organized as follows. We first recall the most significant related
works in Section 2. We distinguished between the works dealing with schedul-
ing under availability constraints and the main existing approaches for studying
scheduling in a context with uncertainties. Section 3 is devoted to the description
of the computation model and the main notations. Then, we present in Section 5
the algorithm and its worst-case analysis. Before concluding, we present exper-
iments in Section 6 based on simulations on actual workflows and availability
constraints.
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2 Related Works

In this section, we recall briefly the most significant works related to our problem.
We investigate successively each of both sides of the problem, namely scheduling
with unavailability constraints and scheduling under uncertainties.

2.1 Scheduling with Unavailabilities

First, notice that most of the approaches used to solve the problem of scheduling
with unavailabilities are based on the well-known LPT rule (Largest Processing
Times). Lee introduced the problem of scheduling independent jobs with non-
simultaneous available times in [16]. This corresponds to scheduling jobs when
all the unavailabilities are at the beginning. The main result was to establish that
the performance of LPT is bounded by 3/2. He also proposed a modified version
of LPT with an improved performance of 4/3. A more general problem was
studied in [17] for any pattern of availability. Lee showed that the problem cannot
be polynomially approximable if no restrictions are done on the availabilities.
However, the performance of LPT is bounded by m+1

2 when at least one machine
is always available and at most one unavailability period per machine is allowed.

In [10], Hwang and Chang analyzed the problem when no more than the
half of the machines are unavailable simultaneously. Under this condition, the
performance of LPT is bounded by 2. This result was generalized in [11] as
follows: if at most λ (ranging from 1 to m − 1) processors are allowed to be
unavailable simultaneously, then LPT generates a schedule whose performance
is bounded by 1 + 1

2�
m

m−λ�.
Liao et al. [19] studied the restriction of the problem on two machines where

each machine has one fixed unavailability period. They proposed an optimal
exponential-time algorithm. A variant of this particular problem was studied
in [21] where the first machine is always available whereas periodic unavailabili-
ties are scheduled on the second. All the unavailabilities have the same duration
and all the availabilities have also the same duration. In this case, the perfor-
mance of LPT is 3

2 and 2, respectively, for the offline and the online context.
The problem where one machine is always available and with an arbitrary

number of unavailabilities on the other processors was analyzed in [5]. It admits
no FPTAS, however, a Polynomial Time Approximation Scheme (PTAS) based
on the multiple knapsack was designed. A simple list strategy was also proposed.

Notice that all the above approaches are related to sequential jobs. Eyraud
et al. studied the problem of scheduling with unavailabilities for parallel rigid
jobs [7]. They proved that there is no approximation algorithm in the general
case, and they proposed an approximation algorithms for non-increasing unavail-
ability patterns. Moreover, for the problem with restricted unavailabilities, lower
and upper bounds were provided for a general list algorithm.

2.2 Scheduling under Uncertainties

Solving scheduling problems with uncertain data has received recently a great
attention. There exists a lot of possible approaches depending on the target
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problem and the desired objectives. A nice survey of scheduling problems was
compiled by Billaut et al. [3]. They discuss several complementary approaches
from pure pro-active methods (sensitivity analysis), pure on-line strategies and
semi on-line methods (flexibility). We focus on this last approach which builds
an efficient solution on estimated data and allow simple correction mechanisms
at run-time.

Numerous publications are similar to this article, proposing pro-active heuris-
tics based on slacks. In [8], the authors investigate preemption. In [13,14], the
authors explore stochastic resource breakdown.

We concentrate on a problem in which interrupted jobs are restarted from
the beginning, without migration, but the unavailability constraints can only
advance forward in time. Hence, in our case, the reaction and uncertainties are
restricted.

3 Models

We present in this section the model of execution that defines the workload and
the platform characteristics. Then, without loss of generality, the disturbances
are restricted to early shifts of the unavailability periods. Finally, we express
formally the problem and define the objectives.

3.1 Model of Execution

In the context of desktop grids, the workload consists of a set of independent
jobs. The processing time of the j-th job is pj. These jobs do not have release
or due dates and cannot be preempted.

The platform is composed of m identical machines that are indexed by i.
Each of these machines possesses a set of unavailability constraints. We define an
interval as an availability period followed by an unavailability period. As intervals
are indexed by k, the starting time of unavailability period k on processor i is
denoted sk

i and has a duration uk
i (see Figure 1). Hence, this period ends at

ek
i = sk

i + uk
i . Additionally, the duration of the availability period that precedes

unavailability k is ak
i . Finally, the first unavailability period on a processor starts

at si
1 and ei

0 = 0.
We denote by λ the number of processors that have no unavailability con-

straints that are called free processors.

3.2 Model of Disturbances

Let δk
i be the disturbance that impacts unavailability k on processor i. As we

consider that unavailability periods may come earlier, we denote the disturbed
unavailability starting time s̃k

i = sk
i + δk

i (by convention, we denote x̃ the dis-
turbed value of the variable x). Unavailability periods cannot overlap, therefore
the earliness is limited by the duration of the previous availability period (i.e.,
−ak

i ≤ δk
i ≤ 0). Moreover, as it can be seen on Figure 2, only the starting dates

are disturbed.
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aki uk
i

ek−1
i ekiski

machine i

Fig. 1. Representation of interval k on machine i, which contains an availability period
followed by an unavailability period with starting dates ek−1

i and sk
i

ski eki

δkiδki

machine i

Fig. 2. Unavailability k may start and end earlier due to the disturbance δk
i

3.3 Problem Definition

The objective is to generate a schedule given a set of jobs and a set of machines
with their unavailability constraints. A schedule is specified by an allocation
function π(i, k) that gives the set of jobs to be executed during each k-th interval
on each i-th processor (jobs are then executed by non-increasing processing times
on each interval).

In a disturbed scenario, each unavailability starting date comes early accord-
ing to our model of disturbance. Moreover, the execution of a schedule is dy-
namically adapted by using two rules:

– each interrupted job is re-executed as soon as possible without delaying the
starting dates of the jobs that follow on the same processor;

– when a processor becomes idle, it starts the execution of its next allocated
job.

Assessing the quality of a schedule is done through two objectives: the effi-
ciency and the ability to cope with uncertainties.

We evaluate the first objective by measuring the reference makespan [18] of a
schedule, i.e., the makespan when there is no disturbance. It is classically denoted
by Cmax = maxj Cj (where Cj is the end date of job j in a given schedule) and
the optimal makespan for a given instance is denoted by C∗

max.
The second objective is called the stability. It is defined as the ratio between

the highest disturbed makespan (i.e., the worst makespan among all the possible
disturbed scenarios) and the reference makespan, i.e., S = C̃max

Cmax
. This objective

represents the insensitivity of a schedule to the disturbances. A schedule is said
to be stable if S = 1.

The problem consists in finding a schedule with minimum values of makespan
and stability.
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4 Analysis of the Stability

In this section, we present the main flexibility mechanism used for coping with
uncertain availabilities. The idea is to reserve idle times before the unavailability
period to absorb the effect of the disturbances. Idle time, or slack, is used for re-
executing interrupted jobs in such a way that the reference makespan is delayed
the least possible.

Definition 1 (Slack). The amount of idle time dk
i preceding unavailability k

on processor i is called the slack.

Definition 2 (Slack rule). Each slack must be greater or equals to the max-
imum size of the jobs assigned to its interval, i.e., for each interval k on each
machine i:

dk
i ≥ max

j∈π(i,k)
pj

Proposition 1. Every schedule based on the slack rule is stable if there is no
job scheduled on the last availability period starting before the makespan on each
machine ( i.e., on the last availability period k for which ek

i is lower or equals to
the makespan).

Proof. The proof is straightforward since any schedule based on the slack rule is
stable within each interval (i.e., in the worst case, the unavailability interrupts
the longest job, which can then be absorbed by the slack on this interval).

This is no longer true for the intervals on which a job may be delayed after the
makespan. It is the case when an interval starts before the makespan and ends
after it. Notice that this condition is strong and may be relaxed in practice. ��

Note that a schedule cannot be stable when there is no free processor: if λ = 0,
the job that terminates at the same time as the makespan may be interrupted
and re-executed after the reference makespan. In this case, Proposition 1 is
violated because this job is necessarily scheduled on a machine during the last
availability that starts before the makespan.

Theorem 1 (Complexity). Finding a stable schedule with the previous mech-
anism (flexibility and slack) with minimal Cmax is an NP-Hard problem in the
strong sense.

Proof. The proof is based on a reduction from the 3-Partition problem (3-PART
in [9, SP15]). The details of the proof are available in [4]. ��

5 Bi-objective Algorithm

In this section, we describe a bi-objective algorithm and analyze theoretically its
stability. We assumed that there exists at least one free processor (with no un-
availability constraint), otherwise it is not possible to generate stable schedules.
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5.1 Description

Our bi-objective algorithm uses a compromise parameter β for providing sched-
ules resistant to disturbances (see Algorithm 1). Informally, this parameter
indicates at which degree the slack rule is respected (this is called the re-
laxed slack rule). The minimal slack of each interval is proportional to β, i.e.,
dk

i ≥ β×maxj∈π(i,k) pj . Moreover, jobs are never scheduled on the last availabil-
ity periods that start before the makespan. When β = 1, the produced schedule
is stable because of the slack rule (see Proposition 1). When β = 0, the slack
rule is ignored.

Algorithm 1. Greedy Allocation with Parametrized Slack (GAPS)
Input: a set of jobs J
Output: the allocation function π
1: Sort intervals by non-decreasing ek

i (end dates of unavailabilities)
2: Sort the set of jobs by non-increasing processing times
3: S = J {Set of unscheduled jobs}
4: for all interval (i, k) do {Consider each interval k on machine i in given order}
5: for all j ∈ S do {Consider each job in given order}
6: M =

∑
j′∈π(i,k) pj′ {Processing times of the jobs in current interval}

7: if ek
i ≤

∑
j′∈S p′

j−pj

λ
then

8: if ak
i − M − pj ≥ β maxj∈π(i,k) pj then {Relaxed slack rule}

9: π(i, k) = π(i, k) ∪ {j} {Schedule job j in the current availability}
10: S = S \ {j} {Update the set S}
11: end if
12: end if
13: end for
14: end for
15: Schedule the remaining jobs using LPT on the λ free processors

The first step is to fill greedily the availability periods without violating the
relaxed slack rule (Line 8). Note that this step can be seen as a modified version
of First Fit Decreasing algorithm for the bin packing problem. In the second
step, the λ free processors are treated at once after all the available periods have
been filled (Line 15). The transition to the second step occurs when the condition
on Line 7 fails. It consists of a lower bound on the time that would be necessary
to execute all the unscheduled jobs on the λ free processors. As no job must be
scheduled on an availability period that starts just before the makespan, this
condition guarantees that the last executed job (such that Cj = Cmax) will be
executed on one of the free processors.

The cost of GAPS is low as it only requires jobs and intervals to be sorted.
Therefore, its complexity is loglinear in the number of jobs and intervals.
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5.2 Theoretical Analysis

In order to schedule at least one job in each interval such that the execution
of the job is completed, an assumption is done on the size of the jobs relative
to the lengths of the availability periods. These lengths should be greater than
twice the maximum size of the jobs, i.e., 2 × pmax ≤ amin (with pmax = maxj pj

and amin = mini,k ak
i ).

We introduce below the unavailability ratio γ that prevents an arbitrarily
large approximation ratio for the stability. It characterizes the worst percentage
of time during which any machine will stay inactive relatively to its previous
availability period.

Definition 3. Let umax = maxi,k uk
i . The unavailability ratio γ is

γ =
umax

amin

Intuitively, the larger γ, the longer any rescheduled job will wait before its next
execution.

Theorem 2 (Stability). Under the assumption 2 × pmax ≤ amin, the stability
of the GAPS algorithm is

rS =

{
5
2 − β + γ if β �= 1
1 otherwise

Proof. For any schedule built with GAPS, we determine the amount of jobs that
are interrupted and that need to be rescheduled after the makespan in the worst
case scenario. We focus on one processor but the argument is general and can
be extended easily to any number of processors.

Let K be the number of intervals that finish before the makespan on proces-
sor i. Hence, the sum of the slacks is

∑K
k=1 β × maxj∈π(i,k) pj. In the worst

case, the K-th unavailability finishes at the same time than the makespan
(i.e., ei

K = Cmax) and the unavailability periods are arbitrarily small (i.e.,
∀k ∈ [1..K], uk

i = ε). Indeed, it maximizes both the number of jobs that are
scheduled and their sizes (which maximizes thus the amount of interrupted
work). Then, the sum of the processing times of the scheduled jobs is no more
than

Cmax −
K∑

k=1

β × max
j∈π(i,k)

pj

(by discarding the ε durations).
In the worst case, each unavailability period undergoes disturbances and come

earlier (while being still constant). Moreover, it interrupts a job of maximum
duration scheduled in its corresponding availability period just before it can
finish its execution. Thus, the sum of the jobs that need to be re-executed is∑K

k=1 maxj∈π(i,k) pj .
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As stated in Section 4, the execution is compact, namely, each job is ex-
ecuted as early as possible. Additionally, each unavailability may only inter-
rupt one job. Therefore, we consider that a fraction of the interrupted jobs
are re-executed before the makespan using the time reserved by each slack.
Hence, the amount of work that need to be re-executed after the makespan
is (1−β)

∑K
k=1 maxj∈π(i,k) pj . This amount is maximal when the minimum avail-

ability period is maximum, which occurs when each period has the same size (i.e.,
amin = Cmax

K ). Moreover, the largest job has half this size (i.e., pmax = Cmax
2K ) and

each interval has one such job. Therefore, the amount of work to be re-executed
becomes (1−β)

2 × Cmax.
We separate this amount into two parts. The first corresponds to jobs of

maximum sizes while the second corresponds to the remainder (which can also
be a job of maximum size that begins before the makespan and finishes after it).
The delays due to each of these part are denoted D1 and D2, respectively.

There are
⌊

(1−β)
2 × Cmax

pmax

⌋
= �(1 − β)K� jobs of maximum sizes that takes

each an entire interval of minimum availability period and maximum unavail-
ability to be re-executed (as it can be interrupted again on this interval). There-
fore,

D1 = �(1 − β)K� (amin + umax)

The second part of this amount (i.e., (1−β)
2 Cmax mod pmax) either belongs

to a job starting its execution before the makespan or is a smaller job. In both
cases, it takes a part of an availability period and one complete unavailability
period to re-execute it. Therefore,

D2 = (((1 − β) × K mod 1) +
1
2
)amin + �(1 − β)K mod 1�umax

Therefore, the worst disturbed maskepan is

C̃max = Cmax + D1 + D2

≤ Cmax + (1 − β)Kamin + Kumax +
amin

2

≤ Cmax + (1 − β)Cmax + γCmax +
Cmax

2

The stability rS can directly be derived from this last equation. ��

6 Experiments

Simulations are run using data gathered from projects involving BOINC [1].
Traces about availabilities are collected from the project SETI@home [2]. For
each processor, the traces provide the starting and ending dates of the availability
periods of more than 110,000 processors. These traces were analyzed in [12] and
clusters of processors with correlated availabilities were identified.

Workload traces were gathered from project Docking@Home (which was pro-
vided to us by Michela Taufer who also modeled the in-progress delay, i.e., the



A Bi-Objective Scheduling Algorithm 247

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●
●

●●

●

●●●
●
●●
●
●
●

●●

2
4

6
8

1
0

1
2

1
4

●

●

●
●

●●
●

1
.2

1
.3

1
.4

1
.5

1
.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stability
Makespan ratio

Performance of GAPS

Beta

S
ta

b
ili

ty

M
a

ke
sp

a
n

 r
a

tio

Fig. 3. Effect of the parameter β on the stability and the makespan ratio of GAPS.
Each of the 1100 measures represents a simulation with 300 processors and 3000 jobs
(GAPS is executed on 100 distinct task and machine instances with 11 values of β for
each instance)

computation time required by jobs in several desktop grid projects [6]). These
traces report the processing times of more than 150,000 jobs.

A preliminary analysis reports that the traces contain jobs with very short
effective execution times (from some seconds to few minutes). In practice, they
correspond to jobs that were interrupted during their executions. We remove 382
jobs that are shorter that 30 minutes, assuming that this is a reasonable lower
duration that a job should have1.

Each instance consists of a set of machines and a set of jobs. They are both
generated randomly from the traces using a uniform distribution law. Moreover,
20% of processors are free (i.e., with no unavailability period). Indeed, more
than 20% of the machines were characterized to be available 95% or more of the
time [12].

For each simulation, the inputs of the GAPS algorithm consists of an instance
and a parameter β. We measure a lower bound of the makespan, the reference
makespan and the disturbed makespan. The latter value is obtained by disturb-
ing the actual schedule 30 times and by getting the median disturbed makespan.
Disturbances are generated according to our model using a uniform distribution
law. The makespan ratio is obtained by dividing the reference makespan by its
lower bound, while the stability is the ratio between the disturbed makespan
and the reference makespan.

1 See the statistics reported in
http://www.boinc-wiki.info/Catalog_of_BOINC_Powered_Projects .

http://www.boinc-wiki.info/Catalog_of_BOINC_Powered_Projects
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Figure 3 depicts the effect of β on the performances of GAPS. In the boxplots,
the bold line is the median, the box shows the quartiles, the bars show the
whiskers (1.5 times the interquartile range from the box) and additional points
are outliers. For easing the reading, a line links each median. As expected, the
stability decreases with high values of β whereas the makespan ratio increases.
For low values of β, the makespan can increase by an order of magnitude in
presence of disturbances. However, increasing β leads to a far better stability for
a reasonable degradation of the makespan ratio (around 20%). Note also that
it is not necessary to select a high β in order to obtain a good stability (e.g.,
for β ≥ 0.7, the stability is close to 1).

7 Concluding Remarks

In this work, we have proposed a complete study for scheduling jobs with un-
availability periods in an uncertain context. We have introduced a new flexible
mechanism based on the concept of adaptive slacks whose sizes are parametrized
with the job durations. This leads to a bi-objective algorithm whose principle
is to fill the successive intervals by jobs according to non-increasing processing
times. The theoretical analysis was assessed by simulations based on actual data
for both jobs and availability periods from projects involving BOINC.

Future work is directed towards the implementation of our algorithm for actual
large scale applications. Moreover, we plan to extend our model and to adapt
our results to uniform machines. Finally, we will derive analogous results for the
lateness case in order to develop a more general theoretical framework.
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Abstract. We present new multithreaded vertex ordering and distance-k graph
coloring algorithms that are well-suited for multicore platforms. The vertex or-
dering techniques rely on various notions of “degree”, are known to be effective
in reducing the number of colors used by a greedy coloring algorithm, and are
generic enough to be applicable to contexts other than coloring. We employ ap-
proximate degree computation in the ordering algorithms and speculation and it-
eration in the coloring algorithms as our primary tools for breaking sequentiality
and achieving effective parallelization. The algorithms have been implemented
using OpenMP, and experiments conducted on Intel Nehalem and other multi-
core machines using various types of graphs attest that the algorithms provide
scalable runtime performance. The number of colors the algorithms use is often
close to optimal. The techniques used for computing the ordering and coloring in
parallel are applicable to other problems where there is an inherent ordering to
the computations that needs to be relaxed for increasing concurrency.

1 Introduction

Multicore platforms with support for multithreading have become commonplace and
have reinvigorated the development of shared-memory parallel algorithms. We present
new multithreaded algorithms well-suited for such platforms for two inter-related col-
lection of graph problems: vertex ordering and distance-k coloring. Distance-1 coloring
is used (among many others) in parallel scientific computing to discover tasks that can
be carried out or data elements that can be updated concurrently [7,8]. Distance-2 col-
oring is an archetypal model used in the efficient computation of sparse Jacobian and
Hessian matrices [5]. We rely on greedy algorithms that incorporate a vertex ordering
stage to solve the coloring problems. The vertex ordering techniques we consider are
formulated in a manner independent of a coloring algorithm. They are known to be ef-
fective in reducing the number of colors used by a greedy coloring algorithm, but are of
interest in their own right with applications in areas outside coloring.

The ordering and coloring algorithms we consider are challenging to parallelize as
the computation involved is inherently sequential. We overcome this fundamental chal-
lenge using approaches that potentially are useful for other problems as well. For the
ordering algorithms, we employ approximate degree computation as a mechanism for
increasing concurrency. We show that such an approach leads to a scalable performance,

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 250–262, 2011.
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whereas an approach that is faithful to the serial behavior of the ordering does not. The
approximation-based method does not only lead to scalable performance, but is also far
simpler. For the coloring algorithms, we use speculation and iteration as our primary
ingredients for achieving scalable performance. We focus in this work on distance-2
coloring, although the techniques are equally applicable to distance-1 coloring. The al-
gorithms we have developed are implemented using OpenMP. Experiments conducted
on an Intel Nehalem machine using a set of graphs designed to cover a wide spectrum
of input types show scalable runtime performance. The number of colors the algorithms
use is nearly the same as in the serial case, which in turn is often close to optimal.

Like many other graph algorithms, the algorithms we have considered are plagued by
several performance impediments besides low concurrency: poor data locality, irregular
memory access pattern, and high data access to computation ratio. Our primary focus in
this work is on algorithmic techniques and we pay almost no attention to optimization
techniques that could further enhance performance.

Preliminaries, Related Work, and Organization. A distance-k coloring of a graph
G = (V, E) is an assignment of positive integers, called colors, to vertices such that any
two vertices connected by a path consisting of at most k edges receive different colors.
The objective in the distance-k coloring problem is to minimize the number of colors
used, and the problem is known to be NP-hard for every fixed integer k ≥ 1 (see [5] for
pointers to references). Previous work has shown that a greedy coloring algorithm—an
algorithm that visits vertices sequentially in some order in each step assigning a vertex
the smallest permissible color—is quite effective in practice.

The order in which vertices are processed determines the number of colors used by
the algorithm. In an earlier work [6], we identified three ordering techniques, called
Smallest Last (SL), Dynamic Largest First (DLF), and Incidence Degree (ID) that are
particularly effective in reducing the number of colors used by a greedy coloring al-
gorithm and are generic enough to be useful in other contexts. In particular, the three
ordering techniques are characterized (in [6]) purely in terms of relative vertex degrees,
in a manner decoupled from the coloring algorithm that could use them. Such a char-
acterization makes the orderings of interest in their own right and helps to more easily
see their connections with other graph problems. For example, an SL ordering has in-
teresting relationship with such graph concepts as degeneracy, core and arboricity (see
[5] for some pointers). In this paper, we present algorithms—which are the first to the
best of our knowledge—for parallelizing the aforementioned ordering techniques on
multithreaded, shared-memory architectures. The algorithms are discussed in Sect. 2.

Using speculation and iteration as basic ingredients, a framework for effective paral-
lelization of greedy distance-1 coloring on distributed-memory architectures was devel-
oped in [2]. The framework was extended to distance-2 coloring and related problems
in [1]. Recently, a multithreaded algorithm derived from the framework in [2] and tai-
lored for shared-memory architectures has been developed for the distance-1 coloring
problem in [3]. We present in this paper a similar algorithm for distance-2 coloring on
shared memory platforms. The algorithm is described in Sect. 3. We present experimen-
tal results in Sect. 4 and conclude in Sect. 5.
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Algorithm 1. Template for serial ordering (SL, DLF, ID). Input: graph G = (V, E). Output: An
ordered list W of the vertices in V . B is a two-dimensional array used for maintaining unordered
vertices binned according to their “degrees”.

1: procedure ORDERINGTEMPLATE(G = (V, E))
2: for each vertex v ∈ V do
3: init d(v)
4: B [d (v)] ← B [d (v)] ∪ {v}
5: init i 	 i is position in W where next vertex in the order is placed
6: while check i do 	 there remain vertices to order
7: locate j∗, an appropriate extreme index j where B [j] is non-empty
8: Let v be a vertex drawn from B [j∗]
9: W [i] ← v

10: B [j∗] ← B [j∗] \{v}
11: for each vertex w ∈ adj (v) such that w is in B do
12: B [d (w)] ← B [d (w)] \{w}
13: update d (w)
14: B [d (w)] ← B [d (w)] ∪ {w}
15: update i

Table 1. Table accompanying the ordering template in Algorithm 1

SL DLF ID
L 3: init d(v) d(v) ← d(v, G) d(v) ← d(v, G) d(v) ← 0
L 5: init i i ← |V | − 1 i ← 0 i ← 0
L 6 check i i ≥ 0 i ≤ |V | − 1 i ≤ |V | − 1
L 7: locate j∗ j∗ = minj{B[j] �= ∅} j∗ = maxj{B[j] �= ∅} j∗ = maxj{B[j] �= ∅}
L 13: update d(w) d(w) ← d(w) − 1 d(w) ← d(w) − 1 d(w) ← d(w) + 1
L 15: update i i ← i − 1 i ← i + 1 i ← i + 1

2 Vertex Ordering

2.1 The Serial Framework

We give in Algorithm 1 a succinct summary of a template for the ordering techniques
SL, DLF and ID in the serial setting. Table 1 shows how the template is specialized in
the three cases. The key idea in the definition (and computation) of these orderings is
the use of a dynamically changing quantity, the back or forward degree of vertices. The
back degree of a vertex v is the number of vertices that are adjacent to v in G and appear
before v in the ordering, and the forward degree of v is the number of vertices that are
adjacent to v in G and appear after v in the ordering. In Algorithm 1 and elsewhere in
this paper, the dynamic degree (back or forward) of a vertex v is denoted by d(v), and
the static degree of the vertex in the input graph G is denoted by d(v, G).

To arrive at an efficient implementation, a two-dimensional array B is used in Algo-
rithm 1 to maintain vertices that are not yet ordered in bins according to their dynamic
degrees. Specifically B [j] stores a set of unordered vertices where each member vertex
u has a current dynamic degree d(u) equal to j. The output of Algorithm 1 is given by
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the ordered list W of the vertices where W [i] stores the ith vertex in the ordering. In
SL, the ordering W is computed right-to-left (i = |V | − 1 down to i = 0), whereas
the ordering in DLF and ID is computed left-to-right (i = 0 up to i = |V | − 1). The
ith vertex in SL ordering is a vertex with the smallest back degree among the vertices
not yet ordered, in a DLF ordering it is a vertex with the largest forward degree among
the vertices not yet ordered, and in an ID ordering it is a vertex with the largest back
degree among the vertices not yet ordered. The rationale behind each of these ordering
techniques in the context of a coloring algorithm is to bring vertices that are likely to be
highly constrained in choice of colors early in the ordering.

In Line 7 in Algorithm 1, we determine the ith vertex in the ordering in constant time
by maintaing a pointer to the last element in the smallest (or largest) index j such that
B[j] is non-empty. Once the ith vertex v in the ordering is determined (and removed
from B), each unordered vertex w adjacent to v is moved from its current bin in B
to an appropriate new bin. With suitable pointer techniques the relocation can also be
performed in constant time [6]. Thus the work involved in the ith step of Algorithm 1
is proportional to d(v, G), and the overall complexity of the algorithm is O(|E|).

We point out another interesting connection between the template in Algorithm 1
and an ordering used for an entirely different purpose: an ID ordering obtained by Al-
gorithm 1, when reversed, corresponds to an ordering obtained by the maximum cardi-
nality search algorithm [9], which arises in the context of solving sparse linear systems.

2.2 Parallel Ordering

We parallelized the three ordering techniques SL, DLF, and ID employing a common
paradigm, but we restrict the presentation in this paper to only SL ordering.

We developed two different approaches for the parallelization. The first approach
aims at parallelizing the ordering closely maintaining the serial behavior, while the
second approach settles for an approximate solution in favor of increased concurrency.
In both approaches, we assume p threads are available and utilized, and we denote by
t (v) the thread with which the vertex v is initially associated.

The First Approach—Regular. Algorithm 2 outlines the first approach. The first task
Algorithm 2 parallelizes is the population of the global bin array B. To achieve this,
with each thread Tk, 1 ≤ k ≤ p, a local two-dimensional array Bk is associated. The p
local arrays are first populated in parallel (the for-loop in Lines 2–4). Then, the contents
are gathered into the global array B, where the parallelization is now switched to run
over bins, as shown in the for-loop in Lines 5–8. There and elsewhere in this paper,
δ(G) and Δ(G) denote the minimum and maximum degree in G, respectively.

The remainder of Algorithm 2 mimics the serial algorithm (Algorithm 1). In the se-
rial algorithm, in each step of the while loop, a single vertex—a vertex with the smallest
current dynamic degree j∗—is ordered and its neighbors’ locations updated in B. How-
ever, the bin B[j∗] could contain multiple vertices. Algorithm 2 takes advantage of this
opportunity and strives to order such vertices and update their neighborhoods in paral-
lel. There are a few potential problems that need to be attended while doing so.

– Problem: A pair of vertices u and v in B[j∗] are adjacent to each other. In such a
case, a thread processing one of the vertices, say u, could try to move the vertex v to
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Algorithm 2. A parallel SL ordering algorithm using p threads (the REGULAR variant). Input:
graph G = (V, E). Output: An ordered list W of the vertices in V . The array B is as in Algo-
rithm 1, and the arrays Bt, Rt, and At are thread-private arrays; the latter two are used to remove
or add vertices from or into the global array B.

1: procedure SMALLESTLASTORDERING-REGULAR(G = (V, E))
2: for each vertex v ∈ V in parallel do
3: d(v) ← d(v, G)
4: Bt(v) [d (v)] ← Bt(v) [d (v)] ∪ {v}
5: for each bin j ∈ {δ (G) , . . . , Δ (G)} in parallel do
6: for k = 1 to p do
7: for each vertex v ∈ Bk [j] do
8: B [j] ← B [j] ∪ {v} 	 note that j = d (v)

9: i ← |V |
10: while i ≥ 0 do
11: Let j∗ denote the smallest index j such that B [j] is non-empty
12: for each vertex v ∈ B [j∗] in parallel do
13: for each vertex w ∈ adj (v) such that w is in B do
14: if w /∈ Rt(v) then
15: Rt(v) [d (w)] ← Rt(v) [d (w)] ∪ {w}
16: r (w) ← r (w) + 1 	 atomic operation

17: W [i] ← v; i ← i − 1 	 critical statements

18: for each bin j ∈ {j∗, . . . , Δ (G)} in parallel do
19: for k = 1 to p do
20: for each vertex v ∈ Rk [j] do
21: if r (v) > 0 then
22: B [j] ← B [j] \{v} 	 note that j = d (v)
23: d (v) ← d (v) − r (v); r (v) ← 0
24: At(v) [d (v)] ← At(v) [d (v)] ∪ {v}
25: for each bin j ∈ {j∗, . . . , Δ (G)} in parallel do
26: for k = 1 to p do
27: for each vertex v ∈ Ak [j] do
28: B [j] ← B [j] ∪ {v} 	 note that j = d (v)

another bin while another thread at the same time attempts to order v, making the result
inconsistent. Solution: While ordering the vertex u, we avoid updating the location of
the vertex v in B, and instead order v as well in the current step (see Lines 12–17).

– Problem: Removal of multiple vertices from the same bin, say B[j]. Suppose two
vertices u and v from B[j∗] have a common neighbor w in B[j]. In the serial case, u
and v would be ordered one after another, d(w) would be reduced by 2, and w would
be relocated twice. In the parallel case, two threads might try to remove w from B[j]
at the same time and the removal of w in constant time will make B[j] inconsistent.
Similarly, suppose two vertices u and v in B[j∗] have respective neighbors w and x
such that d(w) = d(x) = j. In the parallel case, two threads might try to remove w and
x from B[j] at the same time while processing u and v in parallel and the removals of
w and x in constant time will also make B[j] inconsistent. Solution: We let each thread



Multithreaded Ordering and Coloring Algorithms 255

Algorithm 3. A parallel SL ordering algorithm on p threads (the RELAXED variant). Input:
graph G = (V, E). Output: An ordered list W of the vertices in V .

1: procedure SMALLESTLASTORDERING-RELAXED(G = (V, E))
2: for each vertex v ∈ V in parallel do
3: d(v) ← d(v, G)
4: Bt(v) [d (v)] ← Bt(v) [d (v)] ∪ {v}
5: i ← |V |
6: for k = 1 to p in parallel do
7: while i ≥ 0 do
8: Let j∗ be the smallest index j such that Bk [j] is non-empty
9: Let v be a vertex drawn from Bk [j∗]

10: Bk [j∗] ← Bk [j∗] \{v}
11: for each vertex w ∈ adj (v) do
12: if w ∈ Bk then
13: Bk [d (w)] ← Bk [d (w)] \{w}
14: d (w) ← d (w) − 1
15: Bk [d (w)] ← Bk [d (w)] ∪ {w}
16: W [i] ← v; i ← i − 1 	 critical statements

Tk, 1 ≤ k ≤ p, maintain its own two-dimensional removal array Rk, where it stores
vertices to be removed from B while the parallel ordering of B[j∗] happens (see the
for loop in Lines 13–16). The removal from B takes place once the ordering of vertices
in B[j∗] is completed. Since for any two bins B[j] and B[j′] the removal from B[j]
is independent of the removal from B[j′], these could be done in parallel, as shown in
Lines 18–24.

– Problem: Addition of multiple vertices to the same bin, say B[j]. Solution: We address
this concern by using a similar technique as in the second bullet item. We let each thread
maintain its own two-dimensional addition array Ak. Again, the addition of vertices to
different bins in B can be done in parallel, as shown in Lines 25–28.

The Second Approach—Relaxed. Our second approach for parallelizing the SL or-
dering algorithm abandons the use of the global array B altogether, and works only with
the local arrays Bk associated with each thread Tk. In updating locations of neighbors
of a vertex, a thread Tk checks whether or not the vertex w desired to be relocated is
in the thread’s local array Bk. If w is indeed in Bk it is relocated by the same thread,
if not, it is simply ignored. In this manner, only approximate dynamic degrees are used
while computing the ordering. The approach is formalized in Algorithm 3.

3 Parallel Distance-2 Coloring

The sequential greedy distance-2 coloring algorithm we seek to parallelize iterates over
the vertex set V of the graph G, in each step assigning a vertex v the smallest color not
used by any of its distance-2 neighbors. It can be implemented such that its complexity
is O(|V | · d2), where d2 denotes the average number of distinct paths of length at most
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two edges leaving a vertex [5]. Algorithm 4 shows how we have parallelized the greedy
algorithm in this work. The algorithm has two phases, both of which are performed in
parallel, and runs in an iterative fashion. In the first phase of each round of the iteration,
threads concurrently color their respective vertices in a speculative manner (paying
attention to already available color information). In this phase, two vertices that are
distance-2 neighbors with each other and are handled by two different threads may be
colored concurrently and receive the same color, causing a conflict. In the second phase,
threads concurrently check the validity of colors assigned to their respective vertices in
the current round and identify a set of vertices that needs to be re-colored in the next
round to resolve any detected conflicts. The algorithm terminates when every vertex has
been colored correctly. In the event of a conflict, it suffices to re-color one of the two
involved vertices to resolve the conflict. In Algorithm 4 (see Lines 14 and 17), we used
the value (id) of vertices to decide the vertex to re-color. Other strategies, such as the
use of random numbers associated with vertices, are also possible [2].

Although the tentative coloring and conflict detection phases in each round iterate
over the same set U of vertices performing similar operations per vertex visit, the run-
time of the conflict detection phase can be significantly reduced by terminating the
search for a conflict in the distance-2 neighborhood of a vertex v as soon as the first
conflict impacting v is discovered. This is achieved using the break statements in Lines
15 and 18. Note that the cont boolean variable in Line 12 is used to break out of the
for-loop in Line 13 due to a condition in the for-loop in Line 16. Thanks to the use of
the early breaks, we observed that the conflict detection phase typically takes roughly
around 25% of the overall runtime of the algorithm; without the breaks the conflict
detection phase would have taken the same time as the tentative coloring phase.

Scheduling. In the parallel coloring algorithm we just described as well as the parallel
ordering algorithms discussed in Sect. 2.2, the runtime performance of the algorithms
depends on the manner in which vertices are scheduled on threads. In the results we
report in the next section, we used the dynamic scheduling option of OpenMP.

4 Experimental Results

In this section we present results on experiments performed on an Intel Nehalem ma-
chine equipped with Intel(R) Core(TM) i7 CPU 860 processors running at 2.8GHz. The
system has 4 cores with 2 threads on each. The total memory size is 16 GB, with 4×32
KB Instruction and 4 × 32 KB Data Level-1 cache, 4 × 256 KB Level-2 cache, and 8
MB shared Level-3 cache. The operating system is GNU/Linux.

Our testbed consists of 20 graphs. Five of them are real-world graphs drawn from
various scientific computing (sc) applications and are downloaded from the University
of Florida Sparse Matrix Collection. The remaining 15 are synthetically generated us-
ing the R-MAT algorithm [4]. By combining the four input parameters of the R-MAT
algorithm in various ways (the sum of the parameters needs to be equal to one), it is pos-
sible to generate graphs with varying properties. We generated three types of graphs:
(i) Erdös-Renyi random (er) graphs, using the set of parameters (0.25, 0.25, 0.25, 0.25);
(ii) small-world type 1 (g) graphs, using the set of parameters (0.45, 0.15, 0.15, 0.25);
(iii) small-world type 2 (b) graphs, using the set of parameters (0.55, 0.15, 0.15, 0.15).
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Algorithm 4. An iterative parallel algorithm for distance-2 coloring using p threads. Input:
graph G = (V, E). Output: a vertex-indexed array color [] indicating colors of vertices. The
vertex set V is assumed to be ordered.
1: procedure ITERATIVED2COLORING(G = (V, E))
2: U ← V
3: while U �= ∅ do
4: for each vertex v ∈ U in parallel do 	 Phase 1: tentative coloring
5: for each vertex w ∈ adj (v) do
6: mark color [w] as forbidden to vertex v
7: for each vertex x ∈ adj (w) and x �= v do
8: mark color [x] as forbidden to vertex v

9: Pick the smallest permissible color c for vertex v

10: R ← ∅ 	 R denotes the set of vertices to be recolored
11: for each vertex v ∈ U in parallel do 	 Phase 2: conflict detection
12: cont ← true
13: for each vertex w ∈ adj (v) and cont = true do
14: if color [v] = color [w] and v > w then
15: R ← R ∪ {v}; break

16: for each vertex x ∈ adj (w) and v �= x do
17: if color [v] = color [x] and v > x then
18: R ← R ∪ {v}; cont ← false; break

19: U ← R

These three graph types vary widely in terms of degree distribution of vertices and
density of local subgraphs and represent a wide spectrum of input types posing vary-
ing degrees of difficulty for the ordering and coloring algorithms. The er graphs have
normal degree distribution, whereas the g (for “good”) and b (“bad”) graphs contain
many dense local subgraphs (by good and bad is meant relatively “easy” and “hard”
input types). The good and bad graphs differ primarily in the magnitude of maximum
vertex degree they contain, the bad graphs have much larger maximum degree. Table 2
provides structural information on all 20 test graphs.

Figure 1 shows scalability results on the two parallel Smallest Last ordering al-
gorithms, SL-Regular (Algorithm 2) and SL-Relaxed (Algorithm 3). The plots show
runtimes for various numbers of threads normalized by the runtime when 1 thread is
used. The raw runtime numbers for the 1 thread case along with the runtime of the
pure sequential SL ordering and distance-2 coloring algorithms are provided in Ta-
ble 3. Clearly, the algorithm SL-Regular scaled poorly especially for the sc and rmat-b
graphs, whereas SL-Relaxed scaled well across all the graph types tested. We therefore
present further results using the better performing algorithm SL-Relaxed.

Figure 2 shows scalability results for the parallel distance-2 coloring algorithm (Al-
gorithm 4) while using the SL-Relaxed algorithm for parallel ordering. The left column
shows runtime results considering only the coloring stage, whereas the right column
shows results on total (ordering plus coloring) time. Since distance-2 coloring takes
substantially more time than the ordering (recall that the respective sequential com-
plexities are O(|V | · d2 and O(|V | · d1)), the scalability behavior of just the coloring
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Fig. 1. Scalability results on the two parallel SL ordering algorithms. Left column: Algorithm 2
(SL-Regular). Right column: Algorithm 3 (SL-Relaxed). The plots show runtimes normalized by
the runtime when 1 thread is used; the raw numbers for the case of 1 thread are listed in Table 3.
Also shown are data points corresponding to runtime of the pure sequential algorithm normalized
by the runtime of the parallel algorithm run on 1 thread.
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Table 2. Structural properties of the various graphs in the testbed: scientific computing (sc), rmat-
random (er), rmat-good (g), and rmat-bad (b). Δ denotes maximum degree in G

Name |V | |E| Δ Name |V | |E| Δ

sc1 (bone010) 986,703 35,339,811 80 g1 262,144 2,093,552 558
sc2 (af shell10) 1,508,065 25,582,130 34 g2 524,288 4,190,376 618
sc3 (nlpkkt120) 3,542,400 46,651,696 27 g3 1,048,576 8,382,821 802
sc4 (er1) 16,777,216 134,217,651 138 g4 2,097,152 16,767,728 1,069
sc5 (nlpkkt160) 8,345,600 110,586,256 27 g5 4,194,304 33,541,979 1,251

er1 262,144 2,097,104 98 b1 262,144 2,067,860 4,493
er2 524,288 4,194,254 94 b2 524,288 4,153,043 6,342
er3 1,048,576 8,388,540 97 b3 1,048,576 8,318,004 9,453
er4 2,097,152 16,777,139 102 b4 2,097,152 16,645,183 14,066
er5 4,194,304 33,554,349 109 b5 4,194,304 33,340,584 20,607

Table 3. Runtime in seconds of the pure sequential algorithms, and of the parallel algorithms
when run using one thread. OT shows ordering time, and CT shows distance-2 coloring time

SL-Seq. SL-Relaxed SL-Regular SL-Seq. S L-Relaxed SL-Regular
OT CT OT CT OT CT OT CT OT CT OT CT

sc1 1.11 20.66 1.18 30.45 1.73 31.18 g1 0.18 2.68 0.18 3.82 0.32 3.84
sc2 0.83 6.83 0.87 10.13 0.91 10.25 g2 0.45 6.31 0.42 8.86 0.74 9.03
sc3 2.05 11.38 1.64 16.45 6.39 28.89 g3 1.02 16.22 1.07 23.25 1.74 23.69
sc4 30.54 306.47 31.19 452.76 51.68 479.81 g4 2.49 43.16 2.54 61.98 4.18 65.64
sc5 5.15 27.51 4.29 39.86 17.68 73.91 g5 5.86 119.20 6.01 168.64 9.59 171.84

er1 0.18 1.45 0.18 2.13 0.32 2.21 b1 0.16 9.20 0.16 12.68 0.44 12.63
er2 0.43 3.30 0.45 5.02 0.71 5.23 b2 0.37 24.10 0.37 32.11 0.95 32.36
er3 1.22 9.24 1.20 12.75 1.84 13.54 b3 0.75 70.26 0.87 94.30 2.09 95.60
er4 2.77 22.48 2.86 33.62 4.54 36.07 b4 1.74 195.60 2.00 280.00 4.48 281.39
er5 6.30 57.13 6.43 83.74 10.51 88.77 b5 4.21 565.59 4.85 785.80 9.87 797.86

stage is nearly identical to that of the overall execution. It can be seen that the coloring
algorithm (including the ordering stage) scaled well across all the graphs in the testbed.

Also shown in Figures 1 and 2 is the runtime of a relevant sequential algorithm
normalized by the runtime of the corresponding parallel algorithm run on 1 thread. This
shows the performance advantage (besides functionality) gained by parallelization.

Figure 3 shows the number of colors the parallel distance-2 coloring algorithm (Al-
gorithm 4) used while employing the SL-Relaxed ordering algorithm. In each subfigure,
a bar corresponding to the maximum degree (Δ) in a graph, which is a lower bound on
the optimal number of colors needed to distance-2 color a graph, is included. It can be
seen that the number of colors the parallel algorithm used remained nearly constant as
the number of threads is increased for all except the sc graphs. Further, it can be seen
that the number in each case is either optimal or very close to optimal.
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Fig. 2. Scalability results on the parallel distance-2 coloring algorithm (Algorithm 4) while em-
ploying the parallel ordering algorithm SL-Relaxed (Algorithm 3). Left column: only distance-2
coloring time. Right column: ordering plus distance-2 coloring time. The plots show runtimes
normalized by the runtime when 1 thread is used; the raw numbers for the case of 1 thread are
listed in Table 3. Also shown are data points corresponding to runtime of the pure sequential
algorithm normalized by the runtime of the parallel algorithm run on 1 thread.
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Fig. 3. Number of colors used by the parallel distance-2 coloring algorithm (Algorithm 4) while
employing the SL-Relaxed ordering algorithm (Algorithm 3) for various thread counts. The first
bar in each subfigure shows the lower bound Δ on the optimal number of colors.

5 Conclusion and Future Work

We presented new parallel ordering and coloring algorithms and a small set of experi-
mental results demonstrating scalable performance on a multicore machine supporting
a modest number of threads. Some details and experimental results were omitted for
space consideration. In future work, we intend to conduct further studies and provide
more extensive results using machines supporting much larger number of threads. One
issue we will investigate at large thread count is runtime scalability while maintaing
quality of serial solution (to avoid increase in number of colors for some input types
as those observed in Figure 3 a). The color choice strategy (see Line 9 of Algorithm 4)
used in all of the results reported in this paper is First Fit, i.e., each thread searches for a
permissible color for a vertex starting from color 1. We intend to investigate the merits
of alternative color choice strategies (such as Staggered First Fit, Least Used, Random
etc [2]) that could reduce the likelihood of conflicts.
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Introduction

Jesper Larsson Träff, Brice Goglin, Ulrich Bruening, and Fabrizio Petrini

Topic chairs

The Euro-Par topic on high-performance networks and communications is de-
voted to communication issues in scalable compute and storage systems, such as
tightly coupled parallel computers, clusters, and networks of workstations, in-
cluding hierarchical and hybrid designs featuring several levels of possibly differ-
ent interconnects. All aspects of communication in modern compute and storage
systems are of interest, for example advances in the design, implementation, and
evaluation of interconnection networks, network interfaces, system and storage
area networks, on-chip interconnects, communication protocols and interfaces,
routing and communication algorithms, and communication aspects of parallel
and distributed algorithms.

The papers submitted for the topic were reviewed by the four chairs and their
selected subreviewers. Bar two (who had three reviews), the papers received 4,
hopefully useful reviews (that in some cases admittedly could have been more
extensive). The several submitted papers all fitted well to the call for papers as
outlined above and the specific list of themes. Based on the reviews, the quality
aspirations and the overall balance of Euro-Par, only two contributions were
accepted for presentation at the conference, making for a selective topic. The
topic chairs thank all submitting authors, the presenters, and the audience who
will be listening and participating in the discussions. High-quality submissions
to the topic also in the coming years are encouraged.

The first paper presented at the conference titled Kernel-Based Offload of Col-
lective Operations - Implementation, Evaluation and Lessons Learned by Timo
Schneider, Sven Eckelmann, Torsten Hoefler and Wolfgang Rehm deals with is-
sues in offloading collective communication algorithms to the communication
network layer. A kernel-based architecture for implementing a framework for
offloading such algorithms is described, implemented and experimentally evalu-
ated with specific microbenchmarks on a standard cluster by comparing to tra-
ditional implementations of (non-blocking) collective operations with progress in
user-space. Especially reduced CPU overhead and improvement in the capability
to overlap communication with computation are shown.

The second paper by Alexandre Denis on A High Performance Superpipeline
Protocol for InfiniBand discusses improved pipeline schemes for point-to-point
communication, and in particular gives a more detailed analysis than usual in
a LogP inspired performance model. Benchmarks show that in particular the
costs of memory registration can be eliminated, making for significantly better
performance even on “first touch” of a user-space communication buffer.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, p. 263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Abstract. Optimized implementations of blocking and nonblocking col-
lective operations are most important for scalable high-performance ap-
plications. Offloading such collective operations into the communication
layer can improve performance and asynchronous progression of the op-
erations. However, it is most important that such offloading schemes
remain flexible in order to support user-defined (sparse neighbor) col-
lective communications. In this work, we describe an operating system
kernel-based architecture for implementing an interpreter for the flexi-
ble Group Operation Assembly Language (GOAL) framework to offload
collective communications. We describe an optimized scheme to store
the schedules that define the collective operations and show an exten-
sion to profile the performance of the kernel layer. Our microbenchmarks
demonstrate the effectiveness of the approach and we show performance
improvements over traditional progression in user-space. We also discuss
complications with the design and offloading strategies in general.

1 Introduction

The Message Passing Interface (MPI) standard [12] is the de-facto standard for
implementing today’s large-scale high-performance applications. Part of MPI’s
success is it’s high portability, not only from a correctness, but also from a per-
formance perspective. This is achieved by defining several high-level collective
communication operations that specify communication primitives on groups of
processes instead of process pairs. The implementation of such collective opera-
tions can now be optimized to the particular machine architecture and network
topology. Several non-trivial algorithms have been developed to optimize those
group communications, e.g., [2, 16].

A recent addition to the MPI standard (in the upcoming MPI-3.0 standard)
builds upon this success and introduces nonblocking versions of all MPI collective
operations [7]. Nonblocking collective operations allow the application to perform
computations while the communication (and synchronization) is performed “in
the background”.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 264–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Different software implementation options have been explored for different
network architectures [6] but the major problem, how to progress the collective
algorithm efficiently, remains open. This problem exists because most advanced
collective algorithms have multiple stages where a stage can only be started if
some preconditions are satisfied. A simple example is a binary tree where an
inner node can only send the message to its children after it has received it from
its parents. Checking if a message was received and conditionally starting new
transmissions requires to transfer the program control from the application to
the collective implementation. Hoefler and Lumsdaine analyzed in [5] different
schemes to progress the communication subsystem. Their study showed that,
without loosing CPU power (cores), the application needs to progress the library
by calling it regularly (e.g., with MPI Test()). This solution is of course not
feasible in the general case due to long calls to libraries that are not MPI-aware
(e.g., Level 3 BLAS).

As systems grow larger, collective operations on the whole set of processes
might not be feasible. Even though, many collective operations scale logarithmi-
cally with the number of processes for small input sizes, frequent communication
can inhibit scalability. Thus, algorithm-design needs to address this issue and
localized communications (e.g., nearest neighbor) become most important. Nev-
ertheless, most algorithms are still written in a bulk synchronous model [17] with
iterative communication and computation phases and the computation phases
of many such applications communicate within a fixed neighborhood (e.g., each
process has four neighbors in a two-dimensional five-point stencil computation).
Such neighbor exchanges can be viewed as a localized (or sparse) collective group
communication and optimized with similar principles as traditional collective op-
erations [10]. The addition of a set of calls to support such a communications is
considered for MPI-3.0. The communication topology of such sparse collective
communications is expressed by the user at runtime and their nonblocking vari-
ants suffer from similar progression issues as traditional (we call them dense)
collective operations.

1.1 Related Work

Several communication systems offer direct (offloaded) hardware support for
some MPI collective operations [1,14]. However, such implementations often fail
to support the full spectrum of collective operations and cannot express user-
defined sparse collectives.

Several works propose to offload an abstract definition of a collective opera-
tion into the communication layer (e.g., a network interface card). Portals 4 [15]
specifies triggered operations where new messages can be sent based on arriving
messages. InfiniBand ConnectX-2 [4] specifies chained Queue Pair operations
which can trigger new messages inside the HCA. GOAL allows to specify com-
munication schedules as complete dependency graphs that can be downloaded
into the communication layer [9]. All offload techniques allow nearly fully asyn-
chronous execution of nonblocking collective operations with minimal impact
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on the running application. Akihiro and Ishikawa show a possible design for
kernel-level asynchronous operations in [13].

Open-MX [3] offers fast point-to-point communication for Ethernet networks.
It is similar to ESP (cf. Section 3.2) in that it uses the Linux skb mechanism to
transmit data. However, large parts of the protocol (for example reliability) are
handled in user-space. Thus, it is not possible to use it for reliable communication
from kernel-space yet.

In this work, we discuss a possible implementation of the flexible Group Op-
eration Assembly Language (GOAL) framework in a general purpose operating
system. GOAL allows to express arbitrary communication patterns and depen-
dencies. The operating system acts as the resource broker on each end-node,
it can immediately react to incoming messages (interrupts) from the hardware
and progress the collective communication and thus solve the progression issue.
In Section 2.1, we will discuss optimized design options for collective operation
schedules, kernel-level execution limitations, and an extension for performance
profiling of the kernel layer. In Section 3 we discuss our experimental design
of the kernel-level in detail. Results are presented in Section 4 followed by a
discussion of issues in our design and conclusions.

2 Expressing Collective Operations

GOAL allows to specify communication as a local dependency graph on each
process [9]. The basic set of supported vertex types are sends, receives, and local
operations. Dependencies (edges) can be added to enforce a certain execution
order (i.e., an edge A→B means that operation A needs to complete before oper-
ation B is started). The matching send/receive statements across processes form
a global communication graph that can be transformed during a compilation
phase. GOAL allows the specification and transparent optimization of complex
communication patterns.

Lower-level APIs, such as ConnectX-2 or Portals 4 would act as a concrete
machine language, something that abstract GOAL graphs could be compiled
into. However, both interfaces are only available on certain hardware platforms.
In this work, we define a scheme which enables the execution of GOAL graphs
within an operating system on standard hardware, such as Ethernet.

2.1 The GOAL Interpreter

The task of the GOAL interpreter is to take an optimized representation of
the dependency graph and execute the primitive operations which are defined
by it. Each primitive operation should be executed as early as possible but
without violating the specified dependencies. GOAL graphs are serialized in
traversal order and are stored as a cache-friendly binary format called schedule.
In our implementation1, the binary schedule is stored in the format described in
Figure 1.
1 http://www.tu-chemnitz.de/informatik/RA/dw/doku.php?id=en:espgoal:study

http://www.tu-chemnitz.de/informatik/RA/dw/doku.php?id=en:espgoal:study
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Fig. 1. Schedule Binary Format

This representation has the advantage that the whole dependency graph is
stored in a contiguous memory block. This enables fast copying of the graph when
transferring it from userspace to kernelland. If there is a dependency between
the two operations u and v, which would be represented as edge u → v in the
dependency graph, the dependency counter (dependencies) of the operation v
will be at least one. The offset of the operation v will be listed in the adjacency
list (num dep ops, dep offseti) of u.

When the interpreter starts to execute a schedule the indep ops count op-
erations that have no incoming dependencies are executed first. Because each
operation has a different set of arguments, the type of operation is encoded in
an eight bit value at the beginning of each operation, so that the interpreter
knows how much data has to be read. The dependencies value specifies how
many incoming edges this operation has. When this counter reaches zero the
operation will be executed. The scheduler is notified by the underlying network
protocol whenever an operation is finished. When the scheduler starts an oper-
ation it’s offset in the schedule binary is passed to network protocol layer. This
address is also present in the information the scheduler gets upon completion.
The adjacency list num dep ops, dep offseti of the finished operation will be
traversed. It contains the offsets of all operations that depend on this (now fin-
ished) operation. For each operation in that list the scheduler will decrease the
dependencies counter by one. If such a counter reaches zero, the corresponding
operation is executed.

GOAL supports three types of primitive operations: send, receive and local
operations. Each of those operations either operates on a single contiguous block
of data or on scatter/gather lists. Send and receive operations are non-blocking.
An operation completes if all specified buffers can be read and modified. That
implies that a send operation can be finished as soon as the data has been copied
into a temporary buffer in the case of eager send. The schedule execution is non-
blocking, thus, all send and receive operations are implicitly nonblocking. Local
operations are predefined arithmetic (add, sub, mult, div, max, min) and binary
operations (and, or, xor) on all signed, unsigned and floating point datatypes
from one to 64 bit width, a copy operation to copy data between local buffers, as
well as a timing operation which records a timestamp at the time it is executed
by the GOAL scheduler.
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2.2 User vs. Kernel Level Design

The GOAL API allows the user to specify arbitrary dependency graphs. Each
node in such a graph represents a single send, receive or local calculation op-
eration. Therefore nodes can be created by the user by calling, for example,
GOAL Send() or GOAL Recv(). For each input or output buffer that is given
to these functions, there is a corresponding argument which can be either
GOAL USERSPACE or GOAL SCRATCHPAD. The reason for this is that
schedules can be defined in a different place than they are executed. If one
would write a function that creates a tree based gather schedule with GOAL,
this function would have to allocate a temporary buffer. But this function can
not contain the corresponding call to free(), unless the schedule is also executed,
waited on, and destroyed in that function — which would make it impossible to
overlap the communication with computation. Therefore GOAL has a primitive
memory management functionality. For each schedule, the user specifies how
much temporary space is needed. GOAL will allocate such a scratchpad buffer
before it starts to execute the schedule. If the user wants to reference data in the
scratchpad buffer, he can do this by passing the byte offset (relative to the start of
the scratchpad) and set the memory type argument to GOAL SCRATCHPAD.

Edges t → h in the dependency graph can be created with the function
GOAL Requires(). After the graph is complete it can be compiled into the binary
representation using GOAL Compile() and run with GOAL Run. The functions
GOAL Test() and GOAL Wait() can be used to test and wait for completion of
the handle returned by GOAL Run. The GOAL API is implemented as a userspace
library, while the actual interpreter is a kernel module. The GOAL Run() func-
tion will hand over the binary schedule to the kernel module by doing an ioctl().
The complete control flow is depicted in Figure 2.

In our particular example implementation, we use the kernel-based Ethernet
Streaming Protocol (ESP) [8], but we remark that any kernel-level communi-
cation mechanism will suffice. The ESP network protocol uses MAC addresses
and device ids to identify peers. We collect this information during the definition
phase of the schedule: If the user adds a send operation to rank 7 to a depen-
dency graph on rank 8 we use MPI Isend/Irecv to exchange the MAC addresses

Fig. 2. ESPGOAL Control Flow



Kernel-Based Offload of Collective Operations 269

between both peers. To keep the amount of out of band communication low, we
cache that information in userspace. During GOAL Run we pass the schedule as
well as the list of all MAC addresses and device ids of the peers we will com-
municate with in that schedule to the GOAL interpreter. The interpreter will
update the peer list for the active communicator by opening new connections (if
they don’t exist yet) before the schedule is started. Upon completion, the GOAL
interpreter will change a memory location in the process address space, so the
GOAL Wait()/-Test() functions can poll that value to gather information about
the status of a schedule in progress.

3 Integration into the Operating System

3.1 Anatomy of the Linux Kernel Network Stack

The Linux kernel network stack consists of multiple layers, each tries to provide
a different level of abstraction. The Linux network stack is shown in Figure 3(a).

(a) Linux Kernel Network Stack (b) GOAL Network Stack

Fig. 3. Comparison of the default Linux with the GOAL network stack

A network interface card typically has a hardware buffer to temporarily store
incoming network packets. When a new packet arrives the Linux kernel is notified
with an interrupt from the network card. The device driver retrieves the newly
received packets and stores them in so called socket buffers (skbs).

Incoming packets (skbs) are handled by “receive hook” functions, registered
with dev_add_pack() in Linux. Full skbs (including all Ethernet packet data,
such as destination, ethertype, etc.) are sent with dev_queue_xmit(). This is
the lowest layer of abstraction which is offered by the Linux kernel to send
and receive data in a device independent manner. Our implementation uses this
interface to the driver layer inside the kernel. The benefit of this approach is that
the functions mentioned above do not sleep and therefore they can be called in
an irqhandler or tasklet.
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Another possibility how to implement network communication in the Linux
kernel is to use the kernel socket API. Utilizing kernel sockets is very similar
to userspace socket programming, however, in the kernel one has to employ
mutual exclusion strategies to prevent race conditions. Most network protocols
supported by the Linux kernel, such as TCP are implemented with the kernel
socket API. One disadvantage of the socket API is that certain functions, for
example, sending data via kernel_sendmsg() can not be performed in an inter-
rupt handler or tasklet. If such functionality is required it has to be implemented
in a separate kernel thread or a workqueue element. Thus, we used workqueues
to implement GOAL over ESP (ESPGOAL). Other network protocols such as
TCP do not have to use workqueues or an extra kernel thread as the problematic
socket API function which might sleep are usually called from userspace.

This raises the question if the scheduling overhead implied by using
workqueues has a negative impact on ESPGOALs performance, compared to
the other possible approaches to send and receive data in the kernel. If the
overhead required to start a new work item in a workqueue is significant it is
desirable to have an upper bound on its performance impact so that we can
decide if it would be useful to exchange the ESP protocol with something that
directly utilizes the functions offered by the device driver to send and receive
data in future work.
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Fig. 4. Microbenchmark Results

We implemented a microbenchmark to assess the overheads affiliated with
the different choices. Our benchmark consists of three different implementations
of a pingpong scheme, one using the raw socket API from userspace and the
other two run in kernelspace. The benchmark performs multiple round-trips for
each measurement to amortize the startup overheads. Figure 4(a) shows the
benchmark results for two CHiC nodes, see Section 4.1. We observe that the
overhead for inserting and scheduling a workqueue element adds about 1.6 μs of
latency to each transmission.
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3.2 The Ethernet Streaming Protocol

The Ethernet Streaming Protocol (ESP) [8] is a connection-oriented, port mul-
tiplexed and reliable protocol on top of Ethernet with optimized congestion
control for static, switched networks. It can be used through standard sockets
from kernel- and userspace. This makes it ideal to utilize it in a kernel based ver-
sion of the GOAL interpreter. As mentioned before, Open-MX cannot be used
from inside the kernel directly at this stage.

The ESP protocol is transfer based. There are special flags to signal the start
(TXS) and finish (TXF) of a transfer. After the initial TXS, the receiver requests
more data, until he receives a TXF packet. This has the advantage that the
receiver handles flow control and adapts it to the number of streams. The GOAL
scheduler is only invoked for packets with the TXF flag set.

3.3 Asynchronous Progression

The GOAL interpreter is activated (run as a kernel workqueue element) in two
conditions: Either ESP received a packet that had the TXF flag set or ESP could
not receive more data into an skb because there is not enough memory available
(memory pressure). The TXF flag indicates that a transfer is completed and the
GOAL scheduler will try to match the received message against the preposted
receive queue or put the message in the unexpected receive queue. If the message
matched, the scheduler will mark the corresponding node in the schedule as
completed and decrease the dependency counters of all nodes (operations) that
depend on it. The scheduler will then immediately start all operations where the
dependency counter reached zero.

If the scheduler was called because of memory pressure, it will also try to
process messages that are not completely transferred yet. The header that is
needed to perform message matching is transferred in the first 28 bytes of each
transfer so the interpreter can perform message matching and partially copy the
payload to the final destination for every socket that contains at least 28 bytes
of data and holds a message that belongs to a preposted receive.

A workqueue item is implemented as a function pointer that will be executed
in a special kernel thread. A modern Linux kernel (i.e., 2.6.36) will run one
workqueue execution thread per core and decide which workqueue item to run
based on a number of flags that can be set when allocating the workqueue
structure. Currently the GOAL interpreter is run as a high-priority workload,
which means that available workqueue items are to be scheduled by the kernel
as soon as possible. Also our workqueue items are marked as unbound, which
means they can be run on any core available, to maximize the chance that they
are executed immediately.

3.4 Performing Reduction Operations in Kernel Space

Performing floating point operations inside the kernel space is supported by the
macros kernel fpu begin()/end(), which save and recover the FPU state and
disables preemption.
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In order to assess the performance impact of a kernel-based reduction, we
implemented a simple benchmark that computes the maxima of two 32 bit float-
ing point vectors. We ran the benchmark in userspace and in the kernel with
a GOAL local operation. We excluded the schedule startup overhead from all
GOAL measurements. As shown in Figure 4(b) the kernel implementation is
slightly slower than the userspace implementation for small datasizes, but out-
performs the userspace implementation for larger vectors.

4 Benchmark Results

We implemented several collective operations with GOAL on top of ESP. It was
shown that test-based schemes achieve reasonable overlap for large messages
[7]. However, overlapping small-message communications remains hard due to
the high ratio between control overhead and message-sending. Thus, we focus
especially on small-message operations because they are most important at large-
scale and are hardest to overlap. We implemented several optimized collective
algorithms for small-message collectives. For all-to-all communication, we used
the scheme proposed by Bruck [2] and for barrier and allreduce we implemented
the well-known dissemination algorithm. Both schemes use log2(P ) stages in P
processes and have a relatively complex dependency structure.

4.1 Experimental Setting

We conducted all experiments on the CHiC Cluster System at the University of
Technology Chemnitz. CHiC consists of 530 compute nodes with two Opteron
2218 Dual-Core 2.6 GHz CPUs running Linux. Each node is equipped with two
Tigon3 BCM95704A6 rev 2100 network cards which are connected to an 48 port
Gigabit Ethernet Switch (SMC 8848M). We used an MTU of 1500. The NIC used
supports interrupt coalescing. With the default coalescing parameters the latency
was very high. If we disabled interrupt coalescing completely our systems became
unstable. Therefore we optimized the interrupt coalescing settings with a genetic
algorithm and the omx-pingpong tool included in the Open-MX distribution.
The coalescing settings used were:

rx-usecs rx-frames rx-usecs-irq rx-frames-irq tx-usecs tx-frames tx-usecs-irq tx-frames-irq
1 1 996 95 32 94 724 128

We used Open MPI 1.4.2 and Open-MX 1.3.4 in all experiments. We compare
LibNBC over MPI with the different transports: TCP/IP (TCP), Open-MX
(OMX), and ESP (used from user-level) with out kernel-based ESPGOAL imple-
mentation. The latency of a blocking execution (initiation call immediately fol-
lowed by a wait) of the GOAL nonblocking collective operations and the LibNBC
nonblocking collective operations is very similar. Figure 5 shows barrier as an
example. It can be seen that the latency of the ESPGOAL Barrier is between the
Open MPI implementation with the TCP and MX BTL. This can be attributed
to the well tuned Open-MX implementation, which uses a lot of optimizations



Kernel-Based Offload of Collective Operations 273

that have not been done in ESP. Also note that minimizing latency for blocking
collectives was not the goal for this work — we just want to ensure that our
implementation is not substantially slower, which could invalidate our overlap
results shown in Section 4.2. If an implementation spends a lot of time waiting
for IO it would be easy to overlap the collective and the CPU overhead would
be low.

4.2 Asynchronous Progress and Overlap
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We now analyze the ability of ESPGOAL
to asynchronously progress messages. For
this, we use NBCBench [7] without any
explicit progression. NBCBench uses a
work-loop, which is calibrated at the be-
ginning of the benchmark, to determine
the overlap. This means that all interrup-
tions by the kernel will “steal” time from
the work loop and show up as overhead,
see [5] for a detailed description.

NBCBench reports the share of the
communication that can be overlapped
with computation, a number between 0 and 1 (higher is better). Figure 4.2 shows
the results for all-to-all of size 8 bytes per process and barrier. As expected, we
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see high overlap with the ESPGOAL implementation while the unprogressed
nonblocking collective operations exhibit very low overlap due to missing asyn-
chronous progression (all but the first stage of the algorithm will be performed
during the wait call).

4.3 CPU Overheads

In this section, we assess the absolute CPU overheads, i.e., the absolute non-
overlappable time of the communication. We showed that asynchronous pro-
gression works well for the investigated operation. Reducing the absolute CPU



274 T. Schneider et al.

0 10 20 30 40 50 60 70

0
50

0
10

00
20

00

# Processes

R
un

tim
e 

[u
s]

ESPGOAL
libNBC+TCP

libNBC+OMX
libNBC+ESP

(a) All-to-all

0 10 20 30 40 50 60 70

0
10

0
30

0
50

0

# Processes

R
un

tim
e 

[u
s]

ESPGOAL
libNBC+TCP

libNBC+OMX
libNBC+ESP

(b) Barrier

Fig. 7. NBCBench CPU Overhead

overhead of the operations is most important to “free” the CPU for the user
application. Figure 4.3 shows the absolute CPU overhead for each configura-
tion. ESPGOAL causes a significantly lower CPU overhead than LibNBC in all
configurations.

5 Conclusions and Future Work

We implemented a dependency driven communication framework that offers true
asynchronous progress without an extra progression thread. We defined an API
to use such a framework that supports simple sends and receives, vector sends
and receives, and local operations. Our framework shows significant improve-
ments in terms of host overhead over existing userland implementations of non-
blocking collectives. Our work shows that it is possible to implement dependency
driven communication schemes as a Linux kernel module without placing con-
straints on the user. For example our GOAL scheduler does not require the user
to pin the memory used for communication buffers.

In future work this implementation should be tuned further so that it can
compete with state of the art low overhead Ethernet protocols such as Open-
MX. One possible way to tune ESPGOAL even further would be to replace
the ESP protocol with another low overhead Ethernet protocol that shows bet-
ter performance in point to point latency benchmarks, for example it could be
investigated if ESP can be replaced with the kernel part of Open-MX.

Another interesting optimization would be the use of the memory subsystem
on multi-core nodes. An optimized GOAL implementation could directly push
or pull the data into other processes memory similarly to kernel-level zero copy
mechanisms such as KNEM [11].

Acknowledgments. This work was supported in part by the DOE Office of
Science, Advanced Scientific Computing Research X-Stack Program.
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Abstract. InfiniBand high performance networks require that the
buffers used for sending or receiving data are registered. Since memory
registration is an expensive operation, some communication libraries use
caching (rcache) to amortize its cost, and copy data into pre-registered
buffers for small messages. In this paper, we present a software protocol
for InfiniBand that always uses a memory copy, and amortizes the cost
of this copy with a superpipeline to overlap the memory copy and the
RDMA. We propose a performance model of our protocol to study its be-
havior and optimize its parameters. We have implemented our protocol
in the NewMadeleine communication library. The results of MPI bench-
marks show a significant improvement in cache-unfriendly applications
that do not reuse the same memory blocks all over the time, without
degradation for cache-friendly applications.

1 Introduction

InfiniBand networks are nowadays the leading technology for high perfor-
mance networks in clusters. Parallel applications usually exploit this network
through an Mpi library that makes their usage seamless for the end-user. Under
the hood the Mpi implementations access the InfiniBand network cards through
an Api called verbs. Unlike Api used to program other networking technologies,
the verbs Api is very low-level. It means that a lot of things have to be done by
hand by the Mpi library programmer; on another hand, the programmer has a
lot of control on how to exploit the network interface.

Network transfers are based on RDMA and are executed by the DMA engine
on the network card. The card sees the system from the PCIe bus, thus works
with physical addresses. The application, Mpi library, and InfiniBand software
stack run in user space, with no system call involved thanks to OS bypass. Since
they run in user space, they use virtual addresses. Thus, when sending data from
user space through InfiniBand, translation has to be done from virtual address
space to physical address space. The network card can do the translation if
it has been told previously the mapping from virtual to physical space. This
process is called memory registration and in InfiniBand it has to be performed
explicitly by the user. Actually, the memory registration is comprised of both
the communication of the translation table to the network card, and memory
pinning to prevent swapping. All memory involved in sending and receiving

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 276–287, 2011.
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Fig. 1. Registration and memory copy performance comparison on cluster graphene

operations in InfiniBand must be registered. Two approaches are possible to
satisfy this constraint: (1) register memory blocks on the fly; (2) register a buffer
at application startup, then copy data into this pre-registered buffer. Memory
registration has a significant cost [1] and both approaches have an impact on the
overall network performance.

In this paper, we present a software protocol for InfiniBand that copies data
through a pre-registered buffer and amortizes the cost of the memory copy by
using a superpipeline to overlap copy and RDMA transfer. We propose a perfor-
mance model of our protocol to study its behavior and optimize its parameters.

The remainder of this paper is organized as follows. In Section 2 we analyze
the performance of memory copy and registration. In Section 3 we present an
analysis of a pipeline for memory copy. In Section 4, we describe our super-
pipeline protocol. Section 5 gives benchmark results. Section 6 compares our
work to related works. Section 7 concludes our paper.

2 Performance Analysis

In this section, we analyze the performance of memory registration, memory
copy, and network transfer, and we propose a performance model. We run our
tests on multiple InfiniBand clusters. Cluster graphene features ConnectX DDR
(MT26418) cards on quad-core nodes equiped with Intel Xeon X3440. Cluster
infini has ConnectX2 QDR (MT26428) cards on quad Intel Xeon X5570. To
visualize closely what happens, all our graphs use a 5 % increment for message
size (i.e. powers of 1.05), not only powers of 2 that hide a lot of details.

Performance of registration. Memory registration in InfiniBand is an expen-
sive operation. We have conducted benchmarks to measure the time consumed
to register memory on several InfiniBand clusters. For example, the results ob-
tained on cluster graphene are depicted in Figure 1, represented as a band-
width. Let L be the length of a given message, we model the registration time
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as a linear function in the form Treg(L) = λreg + L
Breg

with λreg the latency of
memory registration, and Breg its bandwidth. On this cluster, we have measured
λreg = 68 μs. and Breg = 20 GB/s (actually, 200 ns per 4KB page). We observe
the same order of magnitudes on other DDR and QDR InfiniBand boards.

The cost of registration may have a huge impact on actual communication per-
formance. A naive protocol to send a block of data would consist in dynamically
registering the memory region, send the data on the network, then deregister
the memory region; the receiver has to perform registration/deregistration too.
The performance of such a protocol is depicted in Figure 2 for cluster graphene.
We observe that the overhead introduced by memory registration lowers the
bandwidth by as much as 60% for packets of roughly 64KB, and is far from
negligible even for larger sizes of messages, with an apparent bandwidth con-
verging asymptotically to 1

1
Bnet

+ 1
Breg

, which is 91% of the network bandwidth

on our cluster.

Performance of memory copy. Performance of a raw memcpy is depicted in
Figure 1. The apparent bandwidth decreases when the size of data increases,
as a result of cache effects. We roughly model its behavior with four different
bandwidth figures for L1, L2 and L3 caches, and memory. It would require to
know actual cache policy and associativity to get a more precise model.

A naive copy-based protocol would copy data on the sender side into a reg-
istered memory zone, send the data, then copy the data from the registered
memory zone into its final destination in the receiver side. Since memory copies
are fast for small messages, this copy-based protocol is usually used for small
messages sent eagerly. Larger messages are usually [2] sent with a rendezvous
protocol to avoid copies that would lower the available bandwidth.

The apparent bandwidth of the naive copy-based protocol is depicted in Fig-
ure 2, converging asymptotically to 1

1
Bnet

+ 2
Bcopy

, which is 57% of the network

bandwidth on our cluster.
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Real behavior of rcache. To amortize the cost of memory registration, a pin-
down cache [3] has been proposed, or as commonly called today, a registration
cache (in short: rcache). It means that the sender does not unregister the mem-
ory zone after a message is sent, in case the same zone is sent again. However it
requires a lot of care to be correct [4]. One must use malloc hooks, libc symbol
interception through LD PRELOAD or kernel patches, to invalidate the cache (un-
register memory) when memory is deallocated. These mechanisms are not quite
portable and may break in subtle ways when interacting with various versions
of libc, Fortran or OpenMP runtimes, or any runtime that supplies its own
memory allocator.

It must be noted that rcache does not increase performance by itself. The
first send exhibits the same performance as the naive registration-based proto-
col. Only the subsequent sends of the same memory zone will be faster, at the
nominal speed of the network. The real world performance of rcache depends
on the buffer reuse scheme of the application, and obviously varies from one ap-
plication to another. For example in NAS Parallel Benchmarks, SP and CG have
99% cache hits, IS has less than 5% cache hits, and LU sends mostly small mes-
sages not covered by rcache. Our goal is to improve performance of IS without
degrading performance of other benchmarks.

3 Pipelining Memory Copy

In this section, we study an InfiniBand software protocol which manages memory
registration by copying data into a pre-registered buffer instead of dynamically
registering data in place.

Since copy and RDMA may be overlapped, we use a pipeline to amortize
the cost of the memory copy. Both operations share the same memory bus,
but experiments show that copies have a negligible impact on an overlapped
RDMA, while the copy is slowed down by no more than the bandwidth used by
the network. As depicted in Figure 3, each message is divided into chunks of a
given size. Then on the sender side, we overlap the RDMA transfer of one chunk
with the memory copy of the next chunk. Since we use RDMA write, on the
receiver side nothing has to be done to make the overlapping happen.

Cost analysis. Let L be the message length, and C the chunk size. For con-
venience, we assume L is a multiple of C. To model the network with multiple
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chunks and overlap, we use a model close to LogP [5] with the following nota-
tions. Let λnet be the network latency (the L of LogP) and Bnet the network
bandwidth, then we have Tnet(L) = λnet + L/Bnet as end-to-end transfer time
for a raw RDMA write, assuming data is already registered. Let g be the gap
between messages, then we have Tnet(L1, L2) = λnet + L1

Bnet
+ g + L2

Bnet
as trans-

fer time for two packets of length L1 and L2. Let o be the overhead for sending
messages, namely the CPU time needed to initiate the RDMA operation, that
will not be available for overlapping.

In Section 2, we have shown that memcpy bandwidth depends on message
length. Let Bcopy(L) be the copy bandwidth for a message of length L. We must
notice that since the bandwidth depends on cache effects, the length to take into
account is the whole data set, namely L, not C. We assume λcopy = 0. Then we
have Tcopy(L) = L/Bcopy(L) as time to copy data of length L.

Then the time for the full pipelined transfer is comprised of: copy of the first
chunk: C

Bcopy(L) ; steady state with L
C chunks copied and sent: L

C ×
(
g + C

Bnet

)
;

the network latency: λnet; copy of the last chunk: C
Bcopy(L) . Therefore the total

time of pipelined transfer is:

Tpipeline(L, C) =
2 × C

Bcopy(L)
+

L

C
× g + λnet +

L

Bnet
(1)

Compared to a raw RDMA write, the overhead for the pipeline is 2×C
Bcopy(L)+

L
C ×g.

It is comprised of the copy of the first chunk on the sender side, the copy of the
last chunk on the receiver side, and the gaps.

Optimal pipeline. We can find the optimal value for C the chunk size. When
we draw a graph of C → Tpipeline(L, C) for any fixed L and realistic values of
Bcopy and g, we can see this function admits a minimum. If we assume C to be
real instead of integer to make the function differentiable, the derivative with
respect to C for a given message length L is:

T ′
pipeline(C) =

2
Bcopy(L)

− L

C2
× g (2)

Let Copt be the the optimal chunk size for a given message length L. It cor-
responds to the zero of the derivative. We solve the equation and get:

Copt(L) =

√
L × g × Bcopy(L)

2
(3)

Using our performance models for network and copy, we estimate the per-
formance of the pipeline with optimal chunk size, depicted in Figure 4. The
performance increase compared to naive protocols is huge, but bandwidth is still
lower than raw InfiniBand RDMA and may still be improved. We can see that
for messages smaller than 16KB, the naive copy-based protocol is faster than
the optimal pipeline; when computing the optimal chunk size for these mes-
sages, we get an optimal with less than one chunk per message, which is wrong.
Our hypothesis of C being real instead of integer works only for messages large
enough.
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4 Optimizations beyond Pipeline: Superpipeline

In this Section, we present various mechanisms to improve the performance of
our protocol, beyond the vanilla pipeline with optimal chunk size presented in
the previous Section.

Super-pipeline to lower the number of gaps. Memory copy has a higher
bandwidth than RDMA write over the network, as measured in Section 2. There-
fore, when pipelining, for each chunk memcpy finishes earlier than the RDMA
write for the previous chunk. Thus we propose to increase the chunk size from
chunk to chunk while the pipeline is running. We call this mechanism a super-
pipeline, like superpipelines in CPU architecture. This superpipeline mechanism
is depicted in Figure 5. It is expected to have a lower number of gaps than the
plain pipeline, thus reducing the overhead of the protocol. We must define a
suitable progression rule for the chunk size. Let Ci be the chunk size at step i.
We may compute the sequence that enables a full overlap of memcpy and RDMA;
such a sequence will have the fewest gaps. It is defined as:

Ci+1

Bcopy(L)
=

Ci

Bnet
+ g − o (4)

in other words the time to copy chunk Ci+1 may be as high as the time to send
Ci on the network, including g the gap between packets, but excluding the non-
overlapable overhead o, with o and g as defined in Section 3. Since o and g are
of the same order of magnitude, g − o is at most in the order of 100 ns and may
be neglected compared to the other terms when Ci is several kilobytes. Then
Equation 4 simplifies as Ci+1 = Ci× Bcopy(L)

Bnet
. Therefore, the general term of the

sequence is:

Ci = C0 × qi with q =
Bcopy(L)

Bnet
(5)
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Fig. 5. Super-pipeline for memory copy: a pipeline with a variable chunk size

To compute the protocol overhead, we need to compute the number of gaps.
Let n be the number of gaps for a given message of length L. Then L, as the
sum of all chunks, is a finite geometric series:

L =
n−1∑
i=0

Ci = C0 ×
n−1∑
i=0

qi = C0 ×
1 − qn

1 − q
(6)

We then solve this equation to get n the number of gaps:

n = logq

(
1 +

L

C0
(q − 1)

)
(7)

Therefore the total transfer time of our superpipeline protocol is:

Tsuperpipeline(L) =
C0 + Cn

Bcopy(L)
+ n × g + λnet +

L

Bnet
(8)

It is very similar to the cost of plain pipeline given in Equation 1, except that
the number of gaps is O(L) for fixed-chunk pipeline, O(

√
L) for pipeline with the

optimal chunk size Copt as defined by Equation 3, and is lowered to O(log(L))
for superpipeline.

Sub-blocking to lower last chunk copy overhead. The transfer time for
the superpipeline given in Equation 8 includes Cn

Bcopy(L) the time needed to copy
the last chunk at the receiver side. Given the general term of the sequence given
in Equation 5, Cn is expected to be quite large.

To amortize the cost of the copy at the receiver side, we propose a sub-blocking
mechanism — namely, a pipeline in the pipeline — to overlap the RDMA and
the memcpy of the same chunk. Among the possible strategies [6] of the receiver
side to detect the arrival of RDMA data, we chose to poll a flag at a known
memory location. The receiver sets it to zero; the sender writes a 1 through
RDMA.

Our sub-blocking mechanism consists in dividing each chunk into blocks of
a given size b. Every block is comprised of data payload and a flag indicating
the presence of data. All the blocks that form a chunk are sent through a single
RDMA write. The receiver is then able to detect and consume blocks as they
arrive, only one block behind the one being written by the NIC.
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With such a method, the cost of the copy at the receiver side is at most the
copy of a block b

Bcopy(L) . This methods adds flags in every blocks, which increases
the size of packets sent on the network and must be taken into account. However,
if we take for example b = 4 KB (page size and multiple of MTU) and a flag
on a 64-bit word (to avoid atomicity issues depending on endianness), then the
overhead is less than 0.2 %.

Overlap rendezvous to lower first chunk copy overhead. The overhead
of our superpipeline protocol includes the cost of the memory copy for the first
chunk C0. We propose to overlap this copy with the rendezvous to lower its
impact on performance.

We have shown in Section 3 that the optimal number of chunks is 1 for small
messages. The fastest option to send small messages is the naive copy-based
protocol. It means that we will use pipeline (or superpipeline) protocols only
for large messages, that are sent using a rendezvous mechanism to ensure that
data is received in place. It must be noted that, although our protocol involves
a copy, the rendezvous is still relevant because our protocol copies data on the
fly and needs to know where to store data.

The cost of a rendezvous is twice the latency, namely 2 × λnet. We propose
that the sender copies C0 the first chunk of the message while the rendezvous
round-trip takes place. If C0

Bcopy
< 2 × λnet, then the copy of C0 is free. To

maximize overlap in the common case, we chose to use: C0 = Bcopy × 2λnet.
With contemporary hardware, we get values from 8 KB to 16 KB for C0.

Pipeline folding using N-buffering. In our previous descriptions of our su-
perpipeline, we have assumed that the preregistered buffer is as large as the mes-
sage. However, registered memory is a finite resource and cannot be arbitrarily
large. Therefore we fold our superpipeline to fit statically-allocated buffers. Since
at any given time, one buffer is copied while another buffer is sent (or received),
we can then make our superpipeline a double-buffering algorithm. A flow control
mechanism is needed to make sender and receiver synchronize their buffer swaps.
Since such synchronization through network has a significant latency, we loosen
the coupling between the sender and the receiver with triple-buffering. Before
it may send chunk Ci, the sender does not have to wait for the Ci−1 acknowl-
edgment — that may arrive late because of network latency — but for the Ci−2

acknowledgement. Moreover, folding the superpipeline in a smaller workspace
than the full message length improves cache reuse, although the precise impact
is hard to model and to predict.

Discussion. With all the heuristics and optimizations applied, the total transfer
time of our superpipeline protocol is:

Tsuperpipeline(L) =
b

Bcopy(L)
+ g × logq

(
1 +

L

C0
(q − 1)

)
+ λnet +

L

Bnet
(9)

The overhead for the copy of the last sub-block b is low, and the number of gaps
is O(log(L)).
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Fig. 6. Raw superpipeline protocol performance on cluster graphene (left) and infini

(right)

The plain pipeline is easy to model and we have determined analytically its
optimal chunk size, as we did in Section 3. However, the performance of super-
pipeline depends on a sequence, not a single value, which makes it difficult to
solve analytically. Optimization depends on a lot of parameters, that’s why we
used heuristics (maximize overlap) to determine q and C0.

Our model is not so precise and some behaviors are hard to predict (cache
effects depend on cache policy, associativity, data alignment). The theoretical
optimal is thus not necessarily optimal once implemented. However when we
trace C0 → Tsuperpipeline(L, C0) for a given L, variations are small around the
optimal. We conclude that not-so-precise tuning works well with superpipeline,
which is confirmed by experience. Hardwired C0=12KB and q = 1.5 gives results
almost as good as optimal values obtained through auto-tuning.

5 Benchmarks

In this Section, we present benchmarks of our superpipeline protocol and com-
pare it against other protocols and implementations.

Raw protocol benchmark. We have implemented our superpipeline protocol
in a test program to evaluate its behavior regardless of any other implementation
artefact. The results of a ping-pong bandwidth test on clusters graphene and
infini are depicted in Figure 6. We observe the superpipeline is much faster
than naive registration and memcpy-based protocols, and is very close to the
raw RDMA performance. The overhead compared to raw RDMA is 15% for
16KB messages, and less than 5 % for messages larger than 64KB. However this
test program does not implement rendezvous , thus cannot overlap C0 copy and
rendezvous ; real-life overhead is then expected to be lower.

MPI micro-benchmarks. We have then implemented our superpipeline proto-
col as a driver in our NewMadeleine [7] communication library, which already
has an rcache method for InfiniBand, and run Mpi benchmarks using its Mad-
Mpi [8] interface. NewMadeleine has a 32KB rendezvous threshold, and uses
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plain copy for small messages (no pipeline, no rcache). We compare Mad-Mpi
against OpenMPI-1.4.3 and MVAPICH2-1.6rc2. The results of a MPI ping-pong
bandwidth test on cluster graphene are depicted in Figure 7. The benchmarks
performs 100 round-trips for each message size; we draw separate graphs for the
first and for the best round-trip. We observe the superpipeline gets roughly the
same performance as Mad-Mpi rcache best time, very similar to OpenMPI and
MVAPICH2 best time. However, when we compare the performance of the first
round-trip, we observe that Mad-Mpi rcache, OpenMPI and MVAPICH2 all get
low performance because of registration, whereas Mad-Mpi superpipeline is un-
affected. The superpipeline gets its best performance already at the first send;
the others, relying on rcache, get poor performance on first send.

MPI NAS Parallel Benchmarks. We have run some benchmarks from the
NAS Parallel Benchmarks 3.3.1 on cluster graphene. On tests sp.B.8, lu.B.8
and cg.C.8, Mad-Mpi superpipeline and rcache get the same performance, 3 %
slower than OpenMPI and MVAPICH2, explained by the fact that Mad-Mpi
has a slightly higher latency. However, on is.C.8 Mad-Mpi superpipeline is 9 %
faster than Mad-Mpi rcache (respectively 3.05 s and 3.32 s), but slightly slower
than MVAPICH2 (3.01 s) and OpenMPI (2.92 s). It means that superpipeline
actually improves performance over rcache on IS which is cache-unfriendly, but
some work has to be done in Mad-Mpi to improve latency for small message to
get overall better performance.

6 Related Works

People working on Mpi implementations and other communication libraries
have already studied InfiniBand memory registration and proposed solutions
to amortize its cost. Memory registration performance has been analyzed [1]
and communication performance modeled [9] without proposing solution to im-
prove performance. Various caching strategies [3,10,4] have been proposed, as
well as protocols to overlap rendezvous and registration [11] in case of cache
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miss; however, all these solutions exhibits the pitfalls of cache-based strategies.
It has been proposed in OpenMPI [12] to pipeline registration; our model shows
that pipelining copies gives better performance than pipelining registration. For
the InfiniBand device for MPICH2 [2] and the BCopy mode of SDP [13], it has
been investigated to use a copy pipeline with fixed-size chunks. Performance was
not convincing, because at that time memory bandwidth was not significantly
higher than network bandwidth; our proposal goes further with a superpipeline
rather than a flat pipeline, and our theoretical study shows that it works because
Bcopy > Bnet, which has become the common case nowadays with contemporary
CPUs and their integrated memory controlers.

7 Conclusion and Future Works

Memory registration has a major impact on performance for InfiniBand net-
works. In this paper, we have proposed performance models for InfiniBand net-
work, copies, and registration, and used them to analyze and optimize the per-
formance of a protocol that uses pipelined copy to bring data into registered
memory. We have proposed an alternative called superpipeline that reduces the
number of gaps, and some optimization mechanisms to reduce the cost of the first
and last chunk copy. We have implemented and benchmarked our superpipeline
protocol, and observed that it gets roughly the same performance as rcache-based
protocol on cache-friendly communication patterns, and better performance on
cache-unfriendly patterns.

As a future work, we will study adaptive strategies to automatically tune
the protocol parameters to the machine it is running, and to monitor rcache
misses/hits to dynamically choose between strategies depending on observed
application behavior.

Acknowledgements. This work was supported in part by the ANR-JST
project FP3C and the ANR project COOP. Experiments presented in this
paper were carried out using the Grid’5000 experimental testbed, being de-
veloped under the INRIA ALADDIN development action with support from
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The tremendous advances in wireless networks, mobile computing, sensor net-
works along with the rapid growth of small, portable and powerful computing
devices offers opportunities for pervasive computing and communications. Topic
14 deals with cutting-edge research in various aspects related to the theory or
practice of mobile computing or wireless and mobile networking, including ar-
chitectures, algorithms, networks, protocols, modeling and performance, appli-
cations, services, and data management.

The accepted papers discuss very interesting issues about wireless ad-hoc net-
works, mobile telecommunication systems and sensor networks. As a highlight,
the paper “FEW Phone File System: Proving Ubiquitous Access to the User’s
Data” by João Soares and Nuno Preguia̧ from CITI / DI/FCT univeristy of
Lisabon, deals with the use of multiple computing devices and, more concretely,
with the presentation of the FEW phone file system, that allows for the high
availability of data across multiple devices. This paper supports beautifully the
notion of ubiquitous computing and allows the use of these devices as personal,
portable servers with high availability of data and with an automatic synchro-
nization to external data sources that could be in the cloud.

We would like to take the opportunity to thank all authors who submit-
ted a contribution, the Euro-Par Organizing Committee, and all reviewers for
their hard and valuable work. Their efforts made this conference and this topic
possible.
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Abstract. With the ever increasing scale of dynamic wireless networks
(such as MANETs, WSNs, VANETs, etc.), there is a growing need for
performing aggregate computations, such as online detection of network
churn, via distributed, robust and scalable algorithms. In this paper we
introduce the ChurnDetect algorithm, a novel solution to the distributed
churn estimation problem. Our solution consists in a gossiping-based al-
gorithm, which incorporates a periodic reset mechanism (introduced as
DiffusionReset). The main difference with existing state-of-the-art is that
ChurnDetect does not require nodes to advertise their departure from
the network nor to detect neighbors leaving the network. In our solu-
tion, all the nodes are interacting with each other wirelessly, by using
a gossip-alike approach, thus keeping the message complexity to a min-
imum. We only use easy accessible information (i.e., about new nodes
joining the network) rather than presuming knowledge on nodes leaving
the system since that is highly unfeasible for most distributed applica-
tions. We provide convergence proofs for ChurnDetect, and present a
number of results based on simulations and implementation on our local
testbed. We characterize the performance of the algorithm, showcasing
its distributed light-weight characteristics. The analysis leads to the con-
clusion that ChurnDetect is an attractive alternative to existing work on
online churn estimation for dynamic wireless networks.

1 Introduction

Recent technological advances have led to a tremendous increase in the number
of embedded devices having processing and wireless communication capabilities.
Large-scale networks of resource-limited devices are already in operation: wire-
less sensor networks (WSNs), mobile ad-hoc networks (MANETs) and vehicular
networks (VANETs). Following this trend, current research projects show that
significantly larger networks could be envisaged (e.g., programmable matter -
claytronics [11], swarm robots [16], amorphous computing [1], etc.). Overall, de-
vices tend to become smaller, networks increase in size and mobility becomes
the basic assumption.

As such, there is a growing need for performing aggregate computations via
distributed, robust and scalable algorithms. For example, the online estimation
of network churn in dynamic scenarios is of crucial importance for a large number

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 289–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of applications. While the churn rate can be computed offline from network
traces, the online estimation of this quantity is a problem of increasing interest
(e.g. for MANETs and WSNs). As we show in Section 1.1, the current state of
the art presents unfortunately a quite limited set of alternatives. The particular
aspects raising the difficulty of the problem are dynamic multihop architectures
involving mobile nodes and failures at both node and communication levels.

A direct use-case for such an algorithm is the detection of traffic congestion
on a highway. The potential imbalance between the inflow and the outflow of
cars passing through a section of the road caused by an accident for instance,
translates directly into a change of the churn level. Since our approach is fully
distributed and convergences fast to a good estimate, we are able to prevent the
drivers of a potentially hazardous situation faster than a centralized technique.

We approach the problem of estimating the network churn size by means
of diffusion algorithms (also known as gossiping) [13]. This class of algorithms
allows easy dissemination of information in a network, and has been already used
to compute network aggregates such as averages, sums and aggregates, perform
random sampling, compute quartiles, etc. (see [17]).

Inspired by real-world deployments of WSNs, where periodic resets of nodes
are a known failure mode [3], we propose a new diffusion algorithm, by incorpo-
rating resets into a gossiping algorithm. We show that the new mechanism, called
DiffusionReset, retains the properties of gossiping in terms of message complex-
ity for achieving convergence exponentially fast. Although our algorithms are
derived from gossiping algorithms sensitive to mass conservation [15, 17], our
approach specifically exploits the property that total mass varies in a dynamic
network. Our algorithm is able to track churn level evolution, even when it
changes with time.

Based on DiffusionReset, we develop the ChurnDetect algorithm which we
propose as a solution for the online estimation of the network churn rate (defined
as the percentage of nodes that join/leave a network in a period of time). We
are not assuming that the nodes advertise their departure from the network nor
that nodes can detect when neighbors leave the network. In short, new nodes
joining a network need to use a different reset value than “older” nodes. The
results of the gossiping algorithm is an average aggregate value, available at all
nodes, which can be used to compute the online churn estimate. To the best of
our knowledge, this is the first work for the online estimation of churn that is
addressing an arbitrary mobile multihop topology while still offering very good
churn percentage estimates in a fully distributed manner.

We validate our work with both simulation and experiments on our wireless
testbed. For the analysis of our algorithm we considered different mobility and
network density scenarios that cannot be matched with corresponding traces
from real deployments due to their scarcity, especially for mobile ad-hoc net-
works. The paper is structured as follows: Section 1.1 describes existing state-
of-the-art. In Section 2 we introduce the underlying diffusion mechanism, while
in Section 3 we present the network churn estimation algorithm. The algorithms
are analyzed in Section 4 and we draw the conclusion in Section 5.
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1.1 Related Work

Several definitions exist for the term network churn, most of them coming from
the peer-to-peer context (see [10] for an overview). In the following, we denote
as churn the changes in the set of networked nodes due to joins, graceful leaves,
and failures. The churn is thus the percentage of the nodes in the network that
changes during a given time period.

The problem of estimating churn in large-scale networks has been mostly
studied in the context of Internet peer-to-peer systems. For these applications,
the importance of knowing how many nodes enter and exit the system at any
given time is fundamental. Due to the highly distributed nature of these systems,
gossip-based protocols [15] have emerged as one of the most used techniques for
the estimation of churn ratios. The main assumption these algorithms make is
that detection of nodes leaving a network is feasible, either by advertisement or
by nodes periodically checking their neighborhood. Unfortunately, for the case
of a MANET or WSN, these approaches are not feasible due to the difficulty of
discovering and maintaining neighborhood information within a finite amount
of time and with a reduced energy budget.

The gossip-based algorithm presented in [12], was designed for estimating
churn in arbitrary topologies (that can be represented as undirected graphs) built
on top of a peer-to-peer network. The algorithm cannot be used in the presented
form on a multihop wireless network, suffering from the shortcomings described
above. Even if assuming node departure detection is feasible, the convergence
of the algorithm is dependent on the network diameter, rapidly degrading when
the network size exceeds a certain threshold.

Aside from gossip-based methods, there are algorithms that estimate the level
of churn based on the amount of time a peer spends while being connected to
the system (online time) or while being disconnected from the system (offline
time) [4, 9]. While for some distributed applications (i.e., peer-to-peer - where
clients are not behind firewalls) it is feasible to presume that they can signal
their departures, or the peers can ping each other at regular time intervals, for
networks where most users are behind firewalls (cannot be checked by others for
availability) or have other restrictions (i.e., in our case: energy consumption and
unavailability of a cheap ping function on a multihop topology) this assumption
cannot be made. Furthermore, although these papers claim to provide a churn
estimate, they actually focus on a slightly different definition for churn, and
showcase the estimation of the online time and not specifically on the amount of
nodes that constantly enter or exit the system. We acknowledge the difference
in terminology with the peer-to-peer community, and notice that the results
presented there are not directly applicable in our case.

A large amount of work is actually targeted at reducing the effects of churn
(in all the above mentioned communities: P2P, MANETs and WSNs). Most of
them assume existence of network traces, and estimate churn offline [10,8,18]. We
believe that to be able to enable algorithms to adapt at run time to a dynamic
environment, online estimation of churn is an important building block.
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Fig. 1. Discrete time model for three nodes (φi - reset phase)

2 Diffusion Algorithms

We introduce the DiffusionReset algorithm under the same assumptions as used
in [17] for the Push-Sum algorithm: i) communication operates in discrete time;
ii) nodes do not need to have globally unique IDs (although at the lowest com-
munication layer we need to be able to distinguish between neighbors); iii) the
network does not become partitioned with time.

We make use of the discrete time assumption in order to simplify the de-
scription of the algorithm and ease the intuitive grasp of the concepts. The term
communication round is being used in the sense described in [14] - it captures the
fact that each node performs, in a given (large) time interval, an equal amount of
actions. The beginning of rounds need not be synchronized (see Figure 1), in fact
DiffusionReset is actually relying on this. Rounds are considered to be orders
of magnitudes longer than the clock drift of the devices, thus, usual communi-
cation networks can be modeled as such. The last assumption (unpartitioned
network or, equivalently, network as a single multihop cluster) should be inter-
preted from the perspective of large periods of time - it may be invalidated for
the case of mobile scenarios for short moments (as in single nodes having no
neighbors at a particular instance of time) but still holds for large time spans, so
the assumption of the network not being disconnected does hold. Nevertheless,
mobility actually helps by significantly accelerating the convergence of diffusion
algorithms [19]. When introducing the ChurnDetect algorithm in Section 3, for
the simulations we consider perfect radio communication between nodes. On the
other hand, the usage of acknowledgments for messaging is not required. The
effects of these two assumptions are addressed in Section 4.

Notations - S denotes the set of all n nodes in the network. The neighborhood
of a node i, including the node itself is defined by S+

i and has ni nodes. We use
i and j as node indexes, k to index time steps and r to index time rounds.

2.1 The DiffusionReset Algorithm

In this section we introduce the first contribution of this paper, the Diffusion-
Reset algorithm (see Algorithm 1), which is the foundation of our solution to
the churn estimation problem. We build upon a basic diffusion algorithm (lines
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Algorithm 1. DiffusionReset(μ, φi)

1: � state update step
2: mi[k] ← ∑

j∈S+
i

[k−1]
λj,i[k − 1]mj[k − 1]

3: ωi[k] ← ∑
j∈S+

i
[k−1]

λj,i[k − 1]ωj [k − 1]

4: � reset step
5: if rem (k, R) == φi then
6: {mi[k]; ωi[k]} ← {μ, 1}
7: Choose values λi,j

8: end if

9: � communication step
10: for all neighbors j do
11: Send j: {λi,jmi[k]; λi,jωi[k]}
12: end for

13: � return value
14: {mi[k]; ωi[k]}

Algorithm 2. ChurnDetect(φi)

1: � initialization step
2: if node i just entered the network then
3: Update phase: φi ← rem(k, R)
4: Reset mass value: μi ← 0
5: end if

6: if node i inside network longer than R then
7: Reset mass value: μi ← 1
8: end if

9: � diffusion step
10: {mi[k], ωi[k]} ← DiffusionReset (μi, φi)

11: � return value
12: mi[k]

ωi[k]

1–3 and 9–14 in Algorithm 1), adding the novel feature that each node period-
ically (albeit asynchronously), resets its local variables to a default value (i.e.,
the tuple {μ; 1} - lines 4–8 in Algorithm 1). The rationale for this mechanism is
that we can model churn if a large number of nodes enter and exit the network
constantly with time – actually, this is identical to having a number of nodes pe-
riodically reset (detailed in Section 3). The inspiration for this algorithm comes
from a very common failure pattern met in real-world WSNs deployments –
where nodes reset randomly [3] (see Figure 2 for the expected behavior).

Basic diffusion mechanism – DiffusionReset borrows parts of the Push-Sum
and Push-Vector, introduced in [17] (lines 1–3 and 9–14 in Algorithm 1). In
short, these work as follows: each node i holds a local state variable (given by
the tuple of values {mi[k]; ωi[k]}) at the beginning of the communication time
step k (mi is usually referred to as “mass”). During the time step, each node
splits its local variable in several shares that get distributed to its neighbors.
At the end of the time step, the node adds all the shares of received variables
and updates to the new state value. The effect of this mechanism is that, with
time, all local variables converge to the same value (the average of the original
variable set) regardless of the synchronization model [17] (allowing us to relax
the synchronous communication assumption).

Let i indicate the current node and j be the index of a neighbor j ∈ S+
i [k].

During each time step, node i defines a share vector Λi[k] of size ni[k], with
elements corresponding to the share of local variables to be distributed to each
neighbor. Let λi,j [k] be the share assigned by node i to a neighbor j in time
step k. The shares are chosen such that, at any time step k,

∑
j∈S+

i [k] λi,j [k] = 1
holds. During each time step k, each node i sends to all its neighbors a weighted
vector: {λi,j [k]mi[k]; λi,j [k]ωi[k]} and receives the sets {λj,i[k]mj [k]; λj,i[k]ωj[k]}
from its neighbors. At the time step k+1, the node updates its mi (ωi is updated
similarly) value as follows: mi[k + 1] =

∑
j∈S+

i [k] λj,i[k]mj [k].
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In matrix form, (M and Ω being column vectors with the mi and respectively
ωi elements), we have M[k + 1] = ΛT M[k], Ω[k + 1] = ΛT Ω[k]. As shown
in [17], if no errors occur and the set of nodes remains the same, the sums∑

i∈S mi[k] and
∑

i∈S ωi[k] remain constant over time. The usage of the share
vector Λi[k] allows a great flexibility in the algorithm design: if all the elements in
Λi[k] are zero, except for two entries (corresponding to i and a random neighbor
j) equal to 0.5 each, the algorithm maps onto the classic definition for gossiping
using unicasts. If all the entries in Λi[k] are taken to be 1

ni[k] then we model a
local broadcasting mechanism.

Reset mechanism – The reset mechanism (lines 4–8 in Algorithm 1) works
as follows: every R time steps, a node resets its state value to {μ; 1}. The
reset phase of each node is φi (see Figure 1). Let δ[k] be the discrete Dirac
function. The moment k when node i resets is signaled by ti[k] = 1, where
ti[k] = δ [rem (k − φi, R)] (rem(a, b) gives the remainder of the division of a to
b). Let xi[k] be the local state variable on node i (i.e., the vector [mi[k], ωi[k]]).
The state transition can be written as

xi[k + 1] = (1 − ti[k])
∑

j∈S+
i

λj,i[k]xj [k] + ti[k][μ, 1]. (1)

We define the vector X = [x1[k],x2[k], ...,xn[k]]T . Let A[k] be the adjacency
matrix and I the identity matrix. We define the square matrix Δ[k] with the
terms ti[k] on its diagonal. Let D be a n× 2 matrix with elements μ on the first
column and 1 on the second column. The algorithm can be written in matrix
form as X[k + 1] = (I − Δ[k]) (I + A[k])ΛT [k]X[k] + Δ[k]D, where the first
term on the right side maps to the basic diffusion mechanism and the second
term on the right side maps to the asynchronous resets.
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2.2 Convergence of DiffusionReset

As shown by Dimakis et. al [19] mobility enables the construction of “short”
routes between all pairs of agents, accelerating the diffusion process. If the entire
network becomes mobile, the speed of information diffusion approaches the one
of a fully connected network.

In our case, the influence of mobility and multihop topology is captured by
A[k] and Λ[k] matrices - that change at each moment in time. Since a closed form
solution for this type of equation is not available [5], we propose the following
approach: we determined the convergence values and speed for the case of a
fully connected network. Based on the results presented in [19], our convergence
results will hold for a multihop mesh network in which at least a small fraction
of nodes is mobile.

We assume that nodes use broadcast communication (λj,i = 1
n ). Each node

resets after R time steps and the reset phase for each node is random and follows
an uniform distribution. This results in an approximately constant number of
nodes resetting in a time step. The mass value to which all nodes reset is equal
to μ. The expected values are E {

∑n
i=1 ti[k]} = n

R , E
{∑n

i=1 ti[k]2
}

= n
R . where

we used the fact that ti[k] can be either 0 or 1, leading to ti[k] = ti[k]2. Let
f =

(
1 − 1

R

)
. The error on each node is defined as |mi[k]−μ|. We can prove the

following two lemmas:

Lemma 1 (Convergence of Mass for DiffusionReset). With time, the
total mass of the system converges to: limk→∞ M [k] = nμ.

Proof. The total mass in the network at time k+1 is: M [k+1] =
∑n

i=1 mi[k+1].
From Equation 1,

M [k + 1] =
n∑

i=1

(1 − ti[k])
n∑

j=1

mj [k]
n

+
nμ

R
=

=
n∑

j=1

mj [k]

(
1 − 1

n

n∑
i=1

ti[k]

)
+

nμ

R
= M [k]f +

nμ

R

M [k] = M [0]fk +
nμ

R

(
fk−1 + ... + f0

)
= M [0]fk + nμ

(
1 − fk

)
(2)

As f < 1, we obtain limk→∞ M [k] = nμ. ��

Lemma 2 (Convergence Speed of DiffusionReset). The overall error
v[k] =

∑n
i=1(mi[k]− μ)2 decreases exponentially fast in the squared norm form:

v[k + 1] = v[k]f2.

Proof. v[k + 1] = 1
n2 (M [k] − nμ)2

∑n
i=1 (1 − ti[k])2 = 1

n (M [k] − nμ)2 f.

Using Equation 2 to expand M [k] leads to v[k + 1] = 1
n (M [0] − nμ)2 f2k+1,

and then to v[k + 1] = v[k]f2. ��

For a static multihop network, standard gossiping is very expensive in terms of
message complexity, requiring O(n2 log e−1) messages [6] to compute the average
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within accuracy e. When even a small fraction of nodes are mobile, the communi-
cation complexity drops significantly to O(n log e−1) messages, the same order as
a fully connected graph [19], this being the basis of our reasoning. Our algorithm
has the same message complexity as standard gossiping and while node mobility
improves the convergence speed, ChurnDetect does not require the nodes to be
mobile. As Lemma 1 shows, the average of the distributed variable M i = mi[k]

ωi[k] ,
will converge to {μ; 1} with time, regardless of the initial values {mi[0], ωi[0]}i∈S .
Intuitively we can think of it as if the network “forgets” the initial value expo-
nentially fast - see Figure 2. This property extends also to disturbances in the
network: if a node local values become arbitrary, the system will converge back
to {μ; 1} exponentially fast.

3 Churn Detection Algorithm

In this section we introduce the ChurnDetect algorithm, as a solution to the
problem of online network churn estimation – i.e., the percentage of nodes that
are entering/leaving the network in a given amount of time (see Algorithm 2).
The main idea is that a network comprises two sets of nodes: ones that “are
fresh” (entered less than R time steps) and the ones that already “belong” to the
network (entered more than R time steps ago). The periodic reset mechanism in
DiffusionReset is used with one change: the “fresh” nodes reset to {0, 1} and the
“old” nodes reset to {1, 1}. The value to which the algorithm converges (available
readily at each node) is a function of the churn rate - thus each node can estimate
it directly. The novelty in our approach is the fact that nodes need not advertise
leaving the system. The algorithm automatically tracks their departure through
the change of the global shared variable M . This is a fundamentally different
when compared to classic approaches. The elegance of our approach comes from
the fact that we drop the assumption of nodes advertising leaving the network.

The intuitive explanation for why this works is the following: say that at each
moment in time, a number nnew nodes enter the network (initialized with the
value {0, 1}). At the same moment, a number of nold = nnew nodes leave the
network taking with them the values {mi, ωi}. This is equivalent to having a
network not changing its set of nodes, but instead having a subset of nold nodes
reset to {0, 1} at each moment in time (the subset needs not be the same at
each moment in time). This equivalence maps churn directly onto DiffusionRe-
set using two distinct reset values for the nodes. Please note that we are not
assuming that the nodes advertise their departure from the network nor that
nodes can detect when neighbors leave the network. The power of the algorithm
is that only new nodes in the network are asked to behave slightly differently.

Lemma 3. Convergence of DiffusionReset for various μi Assume that n1 nodes
reset to {μ1, 1} and n2 nodes reset to {μ2, 1} (n1+n2 = n). Then limk→∞ M [k] =
n1μ1 + n2μ2.

Proof. We rewrite Equation 1 under the current assumptions. The formula is
derived similarly to Lemma 1. ��
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Modeling-wise, the churn mechanism is equivalent to forcing each node to reset
more than once per time round, to {0, 1} instead of {1, 1}, the ratio being a func-
tion of the churn rate. Let ψ represent the churn rate, defined as the percentage
of nodes entering/exiting the network at each time step. ψ can be interpreted as
well as the probability with which a node needs to reset to {0, 1} at any given
time step.

In ChurnDetect the nodes are forced to reset more often than once per period.
The probability that a node does not reset to {0, 1} for R consecutive time
steps is: Pnoreset = (1 − ψ)R. In this case, M equals the ratio between the
number of nodes resetting to 1, and the total number of nodes (resetting to
either ({1, 1} and {0, 1} - see Lemma 3). From this definition, it follows actually
that M = Pnoreset.This leads to each node being able to estimate ψ (making
abstraction of the low-pass filter needed for a smooth estimate) as ψe = 1− R

√
M .

An important aspect of the algorithm is the selection of the reset period.
Although synchronization is not needed, there is a dependency between the
network dynamics (churn ratio) and the reset intervals.

As the shape of the graph in Figure 3 does not depend on the actual network
size, nodes could check at run time if their reset period and the computed es-
timate are “in the safe zone”, adapting otherwise. Due to size constraints this
extension is not presented in this paper.

4 Analysis of ChurnDetect Algorithm

We base our evaluation by conducting simulations on Matlab. The mobile nodes
are assumed to be deployed in a square space of 1 units2. A circular disk com-
munication model is assumed and the transmission range of the nodes is set to
0.1 units. The nodes move through space with a speed ranging from a minimum
of 0.01 units/time step to a maximum of 0.2 units/time step (using the Random
Walk [2] mobility model). Each experiment consisted of simulations running for
500 time steps. The maximum speed, the reset period and the number of nodes
were varied across simulations to achieve different characteristics for mobility.

4.1 Experimental Evaluation via Simulations

Influence of Network Density and Mobility on Accuracy - As shown
in Figure 4, the variation in network density from 5 to 25 nodes per squared
unit affects the accuracy of the estimation as expected. This is in line with the
generally agreed intuition that, for most distributed systems, increasing network
density increases the information diffusion speed. On the other hand, as predicted
in [19], even a small percentage of mobile nodes tremendously accelerates the
information diffusion. In Figure 4 the difference between the cases with high
and low mobility cannot be distinguished. One explanation for this graph is
that the effects presented in these figures are dampened by the uniform spatial
distribution of the churn nodes in the simulation. Nevertheless, Figure 4 confirms
that an increased density decreases exponentially the relative churn error.
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Influence of Network Diameter on Convergence Speed - One of the
most interesting results is the influence of the network diameter and maximum
node speed on the convergence time. As seen in Figure 5 where we showcase
the standard deviation for the convergence time, the network diameter does
show its role. The higher the diameter, the faster the algorithm converges to
90% estimation accuracy if the maximum nodes speed is non zero. Again, as
predicted, having a percentage of node mobile, increases the convergence time
even for the case of a high network diameter.

Influence of Network Diameter and Mobility on Accuracy - A trade-
off exists between the network diameter and the speed of the nodes. While the
former aspect is well understood [7], the latter is still a subject of active re-
search [19]. Given a network diameter, if the mobility of the nodes is above a
certain threshold, then the mobile multihop network becomes actually equivalent
to a single hop network from the convergence speed perspective. Intuitively, a
large network diameter increases the number of diffusion steps needed to spread
the information, while node mobility helps the nodes “mix” faster, reducing the
number of diffusion steps. The results confirm our hypothesis: as shown by the
standard deviation in Figure 6, for the largest network diameter, the algorithm
performs badly for the static case in comparison with the mobile one. The in-
creased node speed accelerates the diffusion. For networks with low diameter,
however, the increased speed of the nodes has relatively little effect. This con-
firms the results derived in Equation 1 - although derived for a fully connected
graph, it holds for determining the churn ratio in a mobile case.

Communication Costs - A point of interest for a practical implementation
of the ChurnDetect algorithm is the amount of communication that has to take
place to ensure a good churn estimate. Although gossiping has a low message
complexity, when the amount of nodes that constantly enter and exit the sys-
tem increases, we have to reduce the reset intervals and thus linearly increase
the amount of transmitted messages to fasten up the diffusion of information.
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Overall, the low complexity is maintained, making ChurnDetect an attractive
distributed protocol.

4.2 Experimental Evaluation on the Testbed

In order to validate our results, we have implemented ChurnDetect on our wire-
less sensor network, consisting of 108 GNode nodes statically deployed across the
floor of our department, using the TinyOS-2.x as the software platform. The GN-
odes are sensor nodes built around the MSP430-microcontroller combined with a
Chipcon-CC1101 transceiver. Our experimental objective was two-fold; i. e., (1)
To study the accuracy of the ChurnDetect algorithm on a real network, and (2)
To recommend guidelines or implementation practices for protocols that operate
on communication rounds. Figure 7 shows the comparison between the testbed
runs (that had a network diameter of at most 3 communication hops) and sim-
ulation results. We tested ChurnDetect for varying values of churn, namely 6%
and 10%. We implemented the network churn using a lookup table of nodeids, in-
dexed by gossiping round number. Typically, for a gossiping round, every nodeid
in the lookup table resets its value to 0. Each data point in the graph represents
the average churn estimate over all nodes for a communication round. We note
that apart from minor outliers, the testbed results are not only comparable with
simulations, but also found to be within 10% of the actual churn value.

There was one notable issue we have had to face with real world experimenta-
tion, namely communication failures. Particularly, packet acknowledgment colli-
sions early on within a gossiping round tends to increase the {mi, ωi} values on a
node. This has an effect of an overestimated value of M , which in consequence,
underestimates the churn ratio. We alleviated this issue by allowing nodes to
message randomly within a time interval (5 seconds in our experiments). We
believe that in practice, every node should follow a probabilistic approach to
messaging that adapts itself depending upon the number of channel contenders.
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5 Conclusions

Online computation of network churn, in a distributed and reliable manner, is
a common research interest for several communities such as MANET, WSN,
VANET and peer-to-peer. In this paper, we introduced ChurnDetect, an algo-
rithm for the online estimation of churn in dynamic networks. To the best of our
knowledge, this is one of the first algorithms specifically targeted at multihop,
mobile networks. The solution we proposed is derived from gossiping algorithms
and incorporates the notion of periodic asynchronous resets for being able to
provide at each node an estimation of the churn percentage. We analyze the
ChurnDetect algorithm and validate our contribution analytically, through sim-
ulations and experiments on a wireless sensor network. As future work, we plan
to address some of the shortcomings that we encountered with respect to the
implementation of the algorithm on the testbed platform.
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Abstract. Modern power grids are continuously monitored by trained
system operators equipped with sophisticated monitoring and control
systems. Despite such precautionary measures, large blackouts, that af-
fect more than a million consumers, occur quite frequently. To prevent
such blackouts, it is important to perform high-order contingency anal-
ysis in real time. However, contingency analysis is computationally very
expensive as many different combinations of power system component
failures must be analyzed. Analyzing several million such possible com-
binations can take inordinately long time and it is not be possible for
conventional systems to predict blackouts in time to take necessary cor-
rective actions.

To address this issue, we present a scalable parallel implementation of
a probabilistic contingency analysis scheme that processes only most se-
vere and most probable contingencies. We evaluate our implementation
by analyzing benchmark IEEE 300 bus and 118 bus test grids. We per-
form contingency analysis up to level eight (contingency chains of length
eight) and can correctly predict blackouts in real time to a high degree of
accuracy. To the best of our knowledge, this is the first implementation
of real time contingency analysis beyond level two.

1 Introduction

Electric power systems are prone to various kinds of faults or disturbances. To
withstand such disturbances, trained operators rely on computer simulations
to continuously monitor the system and take corrective actions. However, large
blackouts continue to occur across the globe[1]. For example, even in the US
power grid having sophisticated controls, the frequency of blackout, which was
about 7 per year until 1995, has grown to 36 per year in 2006[2]. Due to these
blackouts, both the utilities and the consumers incur massive losses. According
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to the US Department of Energy, 2003 US blackouts resulted in losses amounting
to 6 billion USD[3]. Increasing frequency of severe blackouts indicate the need
for tools that can reliably predict and prevent blackouts in real time.

One such tool is Contingency Analysis (CA), which assesses the ability of
a grid to withstand cascading component failures/contingencies. The results of
contingency analysis provide the basis for preventive and corrective operation
actions against blackouts[1]. CA uses the current state reported by SCADA1

or EMS2 to identify possible series of component failures and check for collapse
cases. The CA schemes are usually referred to as (N−x) CA, where N is the total
number of components (could be lines, generators and transformers) in the grid
under consideration and x is the level/order. (N −x) CA represents checking all
possible permutations of x or less components (out of the total N) for a collapse.
For example, a (N − 5) CA would evaluate all possible combinations of up to
five components failing together in a cascade.

As the number of components (N) and number of levels (x) increase, the num-
ber of possible combinations that need to be evaluated increases exponentially
(
∑x

i=1
NPi). Due to this computational complexity, contingency analysis has

been traditionally limited to (N − 1) CA. However, post event analysis of major
blackouts has shown that failing of a component leads to additional component
outages in its vicinity. Moreover, the current trend of operating power grids
closer to their capacity and integrating intermittent renewable energy sources
has increased the probability of multiple component failures. Therefore perform-
ing higher order (N −x) CA has become important. In fact, the North American
Electricity Reliability Corporation (NERC) has recommended higher order CA
as part of its Transmission Planning standards.

However, performing higher order CA for practical grids in real time (a few
minutes) is not feasible using conventional techniques. Typically, a practical
grid consists of a few thousands of components and even performing level 5
contingency analysis will involve a few billions of contingencies. Each contingency
analysis takes about 50-100 ms on an ordinary computer. Hence, it is obvious
that the computational workload is beyond what a single personal computer
can achieve for real-time operation. This has lead researchers to turn to high
performance computing platforms in order to accelerate power grid contingency
analysis. The contingency analysis problem involves a large number of small
independent computations. The challenge is not merely in parallelising it, but
in doing so in real time. An important aspect here is to devise a load balancing
scheme which scales to a large number of processors so that the full capabilities
of a parallel system can be realised.

Our Contribution: In this paper, a parallel implementation of a probabilistic
contingency analysis scheme, that processes only the most severe and most prob-
able contingencies, has been developed. We have adopted search space reduction
techniques to reduce the computational burden. We have also proposed a novel

1 Supervisory Control and Data Acquisition.
2 Energy Management System.
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load balancing scheme which scales to thousands of processors. To the best of
our knowledge, this is the first effort that goes beyond (N − 2) CA and scales
well up to 8k processors.

The rest of this paper is organized as follows. Section 2 discusses previous
work in this domain. Section 3 describes the risk based probabilistic approach
and the algorithm used in this paper and the search space reduction techniques
adopted. In Section 4, we introduce our novel load balancing scheme and provide
a detailed comparison with the previous schemes. In Section 5, we present the
results of our experiments. Finally in Section 6, we conclude the paper and
propose some future work.

2 Previous Work

Contingency analysis in power systems was first proposed by Ejebe et al [4] in
1979. Since then several CA methods have been developed, each varying in
methodology and complexity. However, they either employ approximate solution
techniques, or use approximate models of the grid. Moreover, these methods are
not suitable for higher order (N − x, x > 1) CA.

Recently, for higher order contingency analysis, Monte-Carlo simulation[5],
Importance Sampling[6], and Risk Index (RI)[7] have been proposed. Monte-
Carlo simulation and Importance Sampling techniques are not so efficient as they
simulate the same set of contingencies repeatedly, delaying the convergence. RI
approach, on the other hand, avoids repeated simulation and is much faster than
Monte-Carlo simulation and Importance Sampling techniques.

Researchers have proposed several schemes to improve the computational
speed of CA. Alves et al [8] proposed a parallel and distributed computing archi-
tecture for CA. For fast CA, Santos et al [9] developed a socket based client-server
model where dynamic load balancing scheme is implemented for improved per-
formance. Morante et al [10] developed a pervasive grid middleware which uses
a broker system for reserving on-demand computational resources and for auto-
matically splitting the contingency analysis task into sub-tasks and to allocate
them to reserved resources based on a master-slave computing model. However,
these and other methods focussed solely on (N − 1) analysis with a small set
of cases. For massive higher order (N − x; x ≥ 2) contingency analysis, Huang
et al [11] and Chen et al [12] proposed dynamic load balancing schemes to per-
form (N − x) CA. However, their scheme naively selects either all or, a random
subset of contingencies. Moreover, scalability remains to be an issue when more
processors are used and more cases are analyzed. Most recently, Jin et al [13][14]
proposed a CA approach using parallel betweenness centrality for contingency
selection. This method identifies the most important lines based on base case
power flow through lines and restricts higher order contingency analysis to those
lines. This approach is overly conservative because it always considers the same
set of contingencies as being critical. However, in case of multiple component
outage, sets of critical contingencies dynamically change as power flow changes
with each outage.
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3 Risk Based Algorithm

In power grids, cascading failures happen in a chronological sequence. Therefore,
it is convenient to model them with an event tree as shown in Fig. 1, where each
node represents a state of the system and the branch between any two nodes
represents a contingency. In the tree, the root node represents the pre-fault state
of the system whereas a node with no forward branch represents an end node,
i.e. a node which is either on the last level (level x), or represents a cascade
leading to a blackout in the system.

Fig. 1. Event tree

For any real grid, it is very difficult to explore the full event tree due to inor-
dinately large number of possible paths. Therefore, CA schemes try to identify
and traverse only those paths which may lead to a system collapse. In this pa-
per, an intelligent search space reduction technique based on Risk Index (RI)
is implemented. RI associated with each node is computed by multiplying the
severity and probability of any contingency. Severity of any contingency is com-
puted based on voltage instability, load loss, overload, available power margin,
and frequency deviation as proposed in[7]. During event tree exploration, less
relevant, low risk nodes are discarded at each node. This process is continued
until the desired level is reached. RI captures both local and global informa-
tion of the system, the probability part is computed based on local information
whereas the severity part is computed based on global information.

We now propose a parallelization technique to make this algorithm suitable
for execution in real-time (Algorithm 1). We compute N event trees (N being
the number of lines), one for each line. Initially, the lines are (almost) equally
divided amongst the processors. The processor responsible for an event tree
begins the computation by simulating the tripping of the corresponding line; this
corresponds to a real-life scenario wherein a natural event causes the line to trip,
thereby triggering the breakdown process. A processor, say x, then determines
the next set of elements (lines, generators, transformers) in the vicinity of this
element that are most likely to get affected by the failure of this element. These
are referred to as exposed elements. It creates a new child node in the event
tree for each of the exposed elements. The processing of these child nodes is
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Algorithm 1

Compute base case load flow for the current system state.
Select child processor, send first lines and base case matrix to it.
MPI Irecv(RI response from children)
MPI Irecv(A new contingency to evaluate)
while(1)

Check end condition (whether all jobs completed or not)
If yes, exit program.

Test if RI response received from all children for a contingency, if yes,
if(RI value is selected)

MPI Isend(go-ahead message to that child)
else if(RI value is rejected)

MPI Isend(abort message to that child)
goto beginning of while loop.

Test if a new contingency received for evaluation, if yes,
compute RI.
If there is a system collapse

report and put RI = ∞.
MPI Isend(RI value to parent)
MPI Irecv(go-ahead/abort message from parent)
MPI Irecv(A new contingency to evaluate)

Test if (go-ahead/abort) message received from any parent, if yes,
if(abort received or max level reached)

goto beginning of while loop.
else if(go-ahead received)

find exposed elements; select children processors
send new contingency and base case solution to the children.
MPI Irecv(RI response from children)
goto beginning of while loop.

distributed to new processors. If there are m exposed elements, x selects m new
processors and sends them an “RI-evaluation” request, handing over to them, the
responsibility of performing the processing for each of these nodes. It then waits
for the child nodes to compute and return the RI value for the nodes allocated
to them. Once it receives the RI values from all the nodes, it selects the most
risky elements based on a certain criteria (explained later) dependent on the RI
values. It then sends a “go-ahead” message to the processors corresponding to
nodes that are selected for further exploration and an “abort” message to the
remaining processors. This completes the processing of the current node for x.

A processor may receive four types of messages, ”RI-response”, “RI-evaluation”
request or, “abort” message or “go-ahead” message. Note that at any point of
time, a processor may have requests corresponding to multiple event-tree nodes
pending with it. These are queued by MPI; he processor receives one request
at a time from MPI and handles it as shown in Algorithm 1. The messages are
processed in the given order so as to give priority to those messages which free
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up the memory. The end condition and process of selecting the children varies
according to the load balancing scheme used and is discussed in detail in the
next section.

The decision of whether or not to further explore a node in the event tree
is based on the RI values. The objective here is to maximise the risk coverage,
defined as follows:

RCl =

∑k
i=1;i∈N RIi∑N

i=1 RIi

× 100 (1)

where RCl is the percentage risk coverage up to layer l, N is the number of
possible blackouts up to layer l, k is the number of blackouts identified by the
proposed method and RIi is the risk associated with the blackout sequence i.
RIi is calculated as follows:

RIi = SIi ∗ pfault ×
∏

j∈tripped

pcj (2)

pcj = pj ×
∏

k∈ exposed&not tripped;k 	=j

pk (3)

where SIi and Pri are severity and probability of the blackout i respectively,
pfault is the probability of the initiating fault, pcj is the conditional tripping
probability of exposed equipment j in the blackout sequence i, and pj is the
tripping probability of equipment j.

The risk coverage, and hence, the effectiveness of the entire analysis, is heavily
dependent on the choice of the number of event tree nodes to explore further.
Some strategies to determine this parameter are (i) select all the child nodes to
explore further, (ii) select a fixed percentage of the child nodes or (iii) select all
the child nodes above a certain threshold of RI value. While it is desirable to
explore all the child nodes, this leads to a significant computation load. It is also
very difficult to obtain a single RI value to use as a thumb rule for the threshold
as the RI values vary significantly depending on the specific contingency and the
test case under consideration. While the option of selecting a fixed percentage
looks promising, our experiments show that this strategy does not result in good
risk coverage.

To address this issue, we devise a new strategy that combines a novel extension
of the percentage selection strategy and the threshold based strategy. The idea
is based on the observation that as the event tree grows exponentially with
increasing levels (depth), we can afford to explore more nodes at lower levels
(towards the top of the event tree) but fewer nodes at higher levels (towards
the bottom of the tree). We therefore apply a linear function to determine the
percentage of nodes to select for exploration; this linear function is set up so
that it returns 100% at the top level and about 20% at the bottom-most level.
Along with this, we also use a threshold value to rule out contingencies with
very small RI values. This heuristic results in very good risk coverage (around
80%) and reduces the computation significantly (see Figure 2). 80% percentage
risk coverage is fairly good for our application because remaining unidentified
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Fig. 2. Comparison of different next-element selection schemes

cascades are of very low probability and consist of longer chain of events. Hence,
operator will get enough time to take preventive/corrective controls.

Another optimization is based on the observation that in most of the con-
tingency chains that lead to a collapse, there was a significant jump (at least a
15%) in the RI value before the tripping of the last element in the contingency
sequence. For instance, consider a contingency sequence L1-L2-L3-L4-L5 that
leads to a collapse. Then, there would be an at least a 15% jump in the sequence
RI1, RI2, RI3, RI4 corresponding to the risk indices for the contingencies L1,
L1-L2, L1-L2-L3, L1-L2-L3-L4, respectively. This is not surprising since the trip-
ping of the first few lines may cause some lines to become highly overloaded or
a few generators may reach their limit leading to considerable worsening of the
grid health. Therefore, at the penultimate level, we give a go-ahead to only those
sequences that exhibit such a jump in the RI values. Since more than 90% of
the contingencies are in the last level only, incorporating this optimization in
the algorithm significantly reduces the computation load.

4 Load Balancing Schemes

The ratio of communication to computation per task should be minimised for a
scheme to achieve good performance. In case of higher order CA, the number of
tasks is huge (of the order of millions) and the task granularity (relative amount
of computation per task) is very low (of the order of milliseconds). Therefore,
any good load balancing scheme for this problem should involve minimum book
keeping and communication amongst the processors, as even a small delay can
reduce the communication to computation per task considerably.

Load balancing schemes can be broadly classified into two categories: (i) cen-
tralized and (ii) decentralized schemes. While centralized schemes offer better
control over the load balance as all the information is available at a single node,
decentralized schemes, in contrast, are less prone to congestion, particularly
when the number of processors is very large.

Huang et al.[11] have implemented and compared several centralized load
balancing schemes. However, these schemes are not directly applicable to the
algorithm discussed in this paper due to the modular nature of our contingency
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analysis scheme, where contingency selection and contingency evaluation are
performed separately (Section 2). We have implemented a modification of these
schemes for our algorithm. We first discuss them and then propose a new decen-
tralized scheme. Our decentralized scheme does not require any book keeping
and scales linearly with increasing number of processors. It is thus highly suited
for contingency analysis when there are a large number of processors and the
analysis is performed for higher levels.

4.1 Centralized Load Balancing Schemes

In the centralized schemes, a processor designated as master allocates tasks
to others processors.Whenever a processor needs to spawn some tasks (corre-
sponding to the child nodes in the event tree), it sends a request to the master
indicating the number of tasks to be spawned. The master then, based on the
scheme being used, assigns a set of processors and sends a list of these proces-
sors back to the requesting node. The master keeps track of the number of jobs
spawned in the system and sends an end signal to all processors when all jobs
have completed. We now discuss some of these schemes investigated in prior
work.

Static allocation: In this scheme, the master ensures that every processor
gets equal number of tasks by doing round robin based allocation. The amount
of bookkeeping done at master is minimal. This scheme should work well for
small system sizes as shown by Huang et al[11]. For larger system sizes, this
scheme is expected to underperform as the advantages gained due to the minimal
bookkeeping diminish.

Dynamic allocation: This scheme tries to equalize the computation load across
the processors. In order to do this, the master maintains a list of active jobs
on every processor and assigns request for new tasks to processors that are
least loaded. This list is updated as tasks begin and finish on the processors.
This involves a considerable amount of bookkeeping and therefore results in an
increase in the computation time at the master. For large levels and large number
of processors, this has the affect of increasing communication delays between the
processors and the master as intermittently requests tend to get queued up at
the master. While, this scheme should outperform the static allocation scheme
on account of better load balancing, its performance deteriorates for large levels
and system sizes.

Two master allocation: Chen et al[12] proposed a variant which they referred
to as the multi counter based dynamic allocation. In this scheme, the inital task
list is divided into multiple masters which allocate processors for new tasks using
the dynamic approach. If the task list of any processor becomes empty, it steals
them from the other master(s). The observed performance of this scheme has
been found to be similar to previous scheme.

Though these schemes are expected to do well when the number of tasks is
not too large and the levels are few, they suffer from congestion issues at the
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master nodes and hence do not scale to a large number of tasks and larger levels
of analysis.

4.2 Decentralized Load Balancing Scheme

Chen et al[12] suggest that if the allocation queries can be serviced instanta-
neously by the master then ideal speedup can be achieved in the centralized
scheme with dynamic allocation. However, as number of tasks increase for larger
levels, the congestion at the master causes the network queues to build up and
the service time cannot be ignored anymore. In order to address this, we propose
a decentralized load balancing scheme that aims at reducing the service time for
new task requests while continuing to balance the computation load across all
the processors. The master performs the bookkeeping primarily for two purposes;
the first is to balance the load amongst the processors and the second is to de-
clare completion of the processing. In our new scheme, we eliminate bookkeeping
alltogether in order to enable decentralized control.

To handle the load balancing, we handle task allocation as follows. Whenever
new tasks have to be spawned corresponding to the child nodes in the event
tree, the processor handling the current (parent) node selects as many proces-
sors as the number of child nodes uniformly at random from the set of available
processing nodes. It then sends the information regarding the task to be per-
formed directly to the corresponding processors. As every processor makes local
decisions regarding the set of processors to allocate the tasks to, the queries
are serviced locally and hence instantaneously. There is no master involved in
this scheme. If all the processors start with distinct initial seeds for the random
number generation, it can be shown that when the number of tasks spawned
is very large, the tasks are distributed over the processors uniformly with very
small deviation. Hence for higher levels of contingency analysis, considering the
granularity of the tasks and the number of tasks involved, the load imbalance is
not expected to be high. This scheme is therefore expected to scale linearly with
the number of processors as well as the levels of contingency analysis performed.

To detect completion of processing, the nodes perform a collective Allreduce
operation at regular interval to determine the number of unfinished tasks. Com-
pletion is declared when all the processors report that there are no unfinished
tasks remaining. The Allreduce is performed at an interval of 100t units where t
represents the units taken to perform an Allreduce. This ensures that the over-
heads of completion detection are no more than 1% of the processing time.

5 Results

In this section, we evaluate our algorithm and compare it with previously studied
algorithms.

Hardware setup. All implementations are on Blue Gene/P - IBM’s massively
parallel supercomputer; Each node of the Blue Gene/P system consists of four
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850 MHz PowerPC 450 processor cores. Torus network handles the bulk of the
communication data from an application and offers the highest bandwidth in the
system. Each node supports 850 MBps bidirectional links to each of its nearest
neighbors for a total of 5.1GB/s bidirectional bandwidth per node.

Test Cases. We evaluate the performance using the IEEE Standard test cases[15]
comprising of 118 bus system containing 186 lines and 300 Bus System contain-
ing 411 lines.

We present the number of contingency chains generated using the RI based
selection technique for varying levels on IEEE 118 and IEEE 300 bus systems in
Figure 3(1). These results conform to the expected exponential increase in the
search space with increase in the number of levels explored. We observe a factor
10x increase in the number of contingency chains with every level (branching
factor in event tree). The number of contingency chains runs in tens of millions
for level 7 and hundreds of millions for level 8.

In Figure 3(2), results for comparative study of execution time of various
load balancing schemes with varying levels are presented. The results show that
the increase in execution time for our scheme is commensurate to increase in
problem size. In contrast, for centralized schemes the execution time increases
super-linearly for large problem sizes.

We study the scalability of our scheme with increase in system size in Fig-
ure 3(3). Our scheme outperforms both the centralized schemes for large system
sizes. The increase in system size has a negative effect on scaling of both the
centralized schemes. Our scheme, on the other hand, scales almost linearly. The
gap in performance increases as the problem size increases (from level 4 to level
5). For level 5, the performance of our scheme is an order of magnitude bet-
ter than the centralized schemes. These gains can be attributed to absence of
wait queues at the master node. However, for small system sizes, static scheme
outperforms both the dynamic scheme (due to large turnaround time) and our
scheme (due to inefficient allocation of jobs). For level 6, the centralized schemes
fail to complete successfully in certain cases; this is primarily attributed to the
requests piling up on the master causing the processor to run out of memory.

In Figure 3(4), we present strong scaling results for our scheme to show its
scalability to very large levels and very large system sizes. We report results
for level 6 and 7 for which real time analysis has been made possible by our
scheme even for medium system sizes like 512 and 1024 processors. Figure 3(4)
shows that our scheme scales nearly linearly for large levels for large systems
with up to 2k processors. It can also be seen that the scheme scales very well up
to 8k processor systems. We obtain a factor 12 speedup for 8k processor system
relative to 512 processor system. Along with the good speed up, it is worth
noticing the fact that all these runs up to level 6 and 7 can be done in real time;
in contrast, as of today no system goes beyond level 2 for online calculations.

To test the real time nature and scalability of our scheme to highest level, we
also ran the code for level 8 on IEEE 118 bus system and it took only 259 seconds
on 8k processors. The number of contingencies evaluated in this case is nearly 150
million. A serialized, or parallel centralized scheme based, contingency analysis



Real Time Contingency Analysis for Power Grids 313

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4  5  6  7  8

T
im

e 
(s

)

Number of processors

(a) IEEE 118 bus system

 18427

 160257

 1503386

 15497894

 159672382

 10000

 100000

 1e+06

 1e+07

 1e+08

 4  5  6  7

T
im

e 
(s

)

Number of processors

(b) IEEE 300 bus system

 45084

 422561

 4166327

 41560910

(1) Number of contingencies with change in levels

Level Time (s)
Static Dynamic Decentralized

3 0.070 0.074 0.092

4 0.640 0.395 0.247

5 56.970 15.837 1.199

(2) Level wise comparison of load balancing schemes on 118 bus system

 0

 0.5

 1

 1.5

 2

 2.5

 3

 128  256  512  1024  2048  4096

T
im

e 
(s

)

Number of processors

(a) Level 4

Static
Dynamic

Decentralized

 0

 10

 20

 30

 40

 50

 60

 128  256  512  1024  2048  4096

T
im

e 
(s

)

Number of processors

(b) Level 5

Static
Dynamic

Decentralized

(3) Comparison of load balancing schemes on IEEE 118 bus system

 0

 5

 10

 15

 20

 25

 30

 35

 512  1024  2048  4096  8192

T
im

e 
(s

)

Number of processors

(a) IEEE 118 bus system, Level 6

 31.603

 15.791

 10.524

 5.264
 3.225

 0

 50

 100

 150

 200

 250

 300

 512  1024  2048  4096  8192

T
im

e 
(s

)

Number of processors

(b) IEEE 118 bus system, Level 7

 290.053

 147.723

 73.867
 47.500

 26.380

 0

 50

 100

 150

 200

 512  1024  2048  4096  8192

T
im

e 
(s

)

Number of processors

(c) IEEE 300 bus system, Level 6

 179.686

 95.163

 47.630
 31.704

 15.850
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1024  2048  4096  8192

T
im

e 
(s

)

Number of processors

(d) IEEE 300 bus system, Level 7

 910.187

 466.096

 254.433

 143.113

(4) Strong scaling results

Fig. 3. Results with varying levels and system sizes



314 A. Mittal et al.

version will take several days to complete this analysis. The results indicate
that our scheme scales well for large number of processors and outperforms the
other load balancing schemes. The difference between the schemes becomes more
prominent with increasing levels, due to the increasing load on the system and
with increasing system sizes, due to the increasing difficulty in load balancing.

6 Conclusions and Future Work

We presented a parallel implementation of probabilistic real time contingency
analysis scheme which could be used for blackout prediction in power grid. We
evaluated up to 150 million contingencies and showed real time results up to level
8. We also presented a novel load balancing scheme achieving good scalability up
to 8k processors. Future work includes incorporating transient stability analysis
into this implementation and analyzing the performance on different machines.
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Abstract. Sparse Matrix-Vector multiplication (SpMV) is an important
computational kernel in scientific applications. Its performance highly
depends on the nonzero distribution of sparse matrices. In this paper,
we propose a new storage format for diagonal sparse matrices, defined
as Compressed Row Segment with Diagonal-pattern (CRSD). We design
diagonal patterns to represent the diagonal distribution. As the diagonal
distributions are similar within matrices from one application, some di-
agonal patterns remain unchanged. First, we sample one matrix to obtain
the unchanged diagonal patterns. Next, the optimal SpMV codelets are
generated automatically for those diagonal patterns. Finally, we com-
bine the generated codelets as the optimal SpMV implementation. In
addition, the information collected during auto-tuning process is also
utilized for parallel implementation to achieve load-balance. Experimen-
tal results demonstrate that the speedup reaches up to 2.37 (1.70 on
average) in comparison with DIA and 4.60 (2.10 on average) in compar-
ison with CSR under the same number of threads on two mainstream
multi-core platforms.
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universal. As far as we know, the Finite Difference Method(FDM) is widely used
to solve the numerical problems. Once the FDM is used, the coefficient matrix
of discrete Partial Differential Equations(PDEs) is usually the diagonal sparse
matrix. The numerical solution to the PDEs is an approximation to its exact
solution by using a discrete representation to the PDEs on the m × n × l mesh
points (xi, yj , zk), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l. In the finite difference
scheme, the unknown’s value Ui,j,k = U(xi, yj , zk) is related to Ui±t,j±p,k±q

(where t, p, q may normally be 1 or 2). As long as the difference scheme is fixed,
t, p and q remain unchanged. When we modify m, n and l to change the problem
size, the diagonal distribution remains similar.

The Diagonal format(DIA) [1] is designed to store the diagonal sparse matrix.
All nonzeros on the same diagonal share the same index. However, a large number
of zeros should be filled when there are many scatter points or the diagonal is
broken by a long zero section. We define the long zero section as idle section .

To address this problem, we propose a novel storage format CRSD. In order
to represent the diagonal distribution, we design the diagonal pattern, which
divides diagonals into different groups. Furthermore, the matrix is split into row
segments. In each row segment, nonzeros on the diagonals of the same group are
viewed as the unit of storage and operation. We store those nonzeros contiguously
and organize the operation on them in one loop. Simultaneously, the scatter
points are also detected in each row segment. The number of filled zero for idle
section can be controlled according to the application.

Because the diagonal distribution remains similar in one application of dif-
ferent problem sizes, most diagonal patterns remain unchanged. We define the
unchanged diagonal pattern as application specific diagonal pattern(detailed in
section 2.2). For any given application, we analyze one matrix, named the sam-
ple matrix, to obtain application specific diagonal patterns. Next, the optimal
SpMV codelets for those diagonal patterns are generated automatically. Finally,
we combine those codelets as the optimal SpMV implementation. In addition, the
information collected during auto-tuning process can also be utilized for paral-
lel implementation to achieve load-balance. As the unchanged diagonal patterns
vary across diverse applications, the optimization is application specific.

The rest of this paper is organized as follows: section 2 describes the diagonal
pattern and CRSD storage format; section 3 presents the process of automatic
performance tuning; in section 4, the experiment results are provided and ana-
lyzed; the related works are given in section 5. At last, conclusion is summarized
in section 6.

2 CRSD Storage Format

2.1 Diagonal Pattern

For any two diagonals in the matrix, if the absolute value of difference of their
offset [1] is 1, they are adjacent. We can group a sequence of diagonals by the
following steps: if two diagonals are adjacent, put them into an adjacent (AD)
group; after removing the diagonals within the adjacent groups, the original
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diagonal sequence is broken up into pieces. We assign the diagonals of each piece
into a nonadjacent(NAD) group. The diagonal pattern is defined as the
way that the AD group(s) and the NAD group(s) are organized.

When the group is represented by group type(AD or NAD) and the number
of diagonals in it, then

group = (group type, the number of diagonals)
According to the definition, the diagonal pattern is represented as follows:

diagonal-pattern = {group1, group2, . . . groupm}
If the whole matrix contains several diagonal patterns, then

matrix = {dia-pattern1, dia-pattern2, . . . dia-patternn}.

Fig. 1. Example of diagonal sparse matrix

For example, there are two diagonal patterns in the matrix shown in Fig. 1
except nonzero v55. The matrix is represented as follows:

matrix = {{(NAD,1),(AD,2),(NAD,2)}, {(AD,2), (NAD,1)}}.
With diagonal pattern, we can process idle section: if there are few zeros in

the idle section, we can fill zeros to maintain the diagonal structure; otherwise,
if a large number of zeros are needed, we believe that the diagonal is broken
and the diagonal pattern should be changed. For example, a zero is filled at v43
position to maintain the diagonal structure, while the main diagonal is broken.
The application developer can set the maximum number of filled zeros according
to the property of application and the problem size.

2.2 Application Specific Diagonal Pattern

The diagonal patterns that remain unchanged among different problem sizes are
abstracted as Application Specific Diagonal Pattern and stored into one
group with group type Application Specific (AS). As there are more than one
application specific diagonal patterns, a tag is needed to identify them. In this
way, the group is represented as (AS, tag). We analyze one matrix, named the
sample matrix, from a given application to obtain application specific diagonal
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patterns. For the matrix listed in Fig. 1, if the second diagonal pattern is viewed
as application specific diagonal pattern with tag 1, then

(AS, 1) = {(AD, 2), (NAD, 1)}
matrix = {{(NAD,1),(AD,2),(NAD,2)}, {(AS, 1)}}.

2.3 Storage Format

We have grouped the diagonals using diagonal pattern. Furthermore, the matrix
is split into row segments. The number of rows in each row segment is defined
as row segment size and represented by the token mrows. In this way, the
whole matrix is split in two dimensions, as the dotted lines show in Fig. 1. In
each row segment, nonzeros on the diagonals of the same group are the storage
unit of CRSD. Additionally, if only one nonzero is on a diagonal within one row
segment, the nonzero is viewed as scatter point, such as v55 in Fig. 1.

In CRSD storage format, the scatter points and the nonzeros in diagonal are
stored separately. In order not to change the order of floating point operations,
the whole row where the scatter point locates is stored together. The row number,
the number of nonzeros in this row and the column index of each nonzero are
used as the indices and stored in array scatter index. The nonzero values are
stored in array scatter val.

Except scatter points, the whole matrix is represented by diagonal patterns.
All nonzeros in the same diagonal pattern share the same index: the diagonal pat-
tern, the start row number of the diagonal pattern, the number of row segments,
and the column indices of diagonals. The column index of each diagonal is needed
for nonadjacent group, while only the column index of first diagonal in adjacent
group needs to be recorded. The diagonal pattern is stored in array matrix and
the remaining of index value is stored in array crsd dia index. The nonzero
values in each storage unit are stored contiguously in array crsd dia val, such
as v20, v31, v21 and v32.

The number of diagonal patterns and rows that contain the scatter point
are assigned to num dia patterns and num scatter rows respectively. An
example is shown in Fig. 2 for the matrix in Fig. 1, when row segment size is 2.

num scatter rows=1
num dia patterns=2

matrix={{(NAD,1),(AD,2),(NAD,2)}, {(AS, 1)} }

crsd dia index = {R0, 1, C0, C2, C5, C7, | R2, 2, C0, C4}
crsd dia val = {{(v00,v11),(v02,v13,v03,v14),(v05,v16,v07,v18)}, {(v20,v31,v21,v32),(v23,v24)},
{(v42,v53,0,v54),(v45,v56)} }

scatter index = {R5, 4, C3, C4, C5, C6}
scatter val = {v53, v54, v55, v56}

Fig. 2. The CRSD storage format for matrix shown in Fig. 1 when mrows=2
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2.4 SpMV Implementation for CRSD

In the SpMV implementation for CRSD, the storage unit is also the operation
unit, for the reason that all SpMV operations on the elements in each storage unit
are organized together. When we set the upper limit of the number of diagonals
in (non)adjacent group, it is practical to enumerate the SpMV operations for all
kinds of groups. Once the number of diagonals in one group exceeds the upper
limit, it will be split into many sub-groups until the number of diagonals is less
than the upper limit.

for each row-segment in diagonal pattern
for each group of the diagonal pattern in one row segment

switch group type
case (NAD, 1): operation for group (NAD, 1)
case (AD, 2) etc: operation for the enumerated groups
case (AS, 1): // for application specific diagonal pattern

for each row-segment in diagonal pattern // Loop inside
// the generated SpMV codelet for (AS, 1)={(AD,2),(NAD,1)}

done
end switch

done
done

Fig. 3. SpMV code fragment for matrix shown in Fig. 1 when mrows=2

As application specific diagonal patterns are only available after sampling
the sample matrix, a code generator is designed to generate codelets for those
diagonal patterns. Because application specific diagonal patterns are inherent to
an application, the SpMV for CRSD becomes application specific. In addition,
it is not reasonable to generate all application specific diagonal patterns, since
some patterns cover few nonzero values. A threshold is set to determine the least
number of nonzeros that an application specific diagonal pattern should cover.

A SpMV code fragment is given in Fig. 3. In processing the adjacent group,
the elements of x can be reused. For this reason, we can load the element into a
register and use it repeatedly, such as register x1. The group with type AS rep-
resents application specific diagonal pattern and describes diagonal distribution
of entire row segment. Then operations for entire row segment are organized in
one loop.

3 Application Specific Automatic Performance Tuning

In order to improve the performance as well as portability of the generated
codelets, we apply auto-tuning to select the optimal implementation. For the
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reason that the SpMV for CRSD is application specific, the auto-tuning process
is also application specific.

We optimize the generated codelets by applying SSE intrinsics and explicit
prefetching. The SSE intrinsics allow simultaneous operations on a vector of
two double precision values. Explicit prefetching is implemented via compiler
intrinsic builtin prefetch. It sets prefetch distance to determine which elements
to be preloaded. Meanwhile, it can change the temporal locality of the preloaded
elements by modifying the prefetch locality, ranging from 0 to 3. The bigger
the prefetch locality is, the higher the temporal locality is. Furthermore, we
reschedule the SpMV operation via modifying the latency between data read
and data available(LAT RD) as well as the latency between data operation and
result available(LAT OP)(as shown in Fig. 3).

For different diagonal patterns, the performance is affected by the following
parameters on different hardware platforms and the value ranges are determined
according to the experimental statistics results:

– mrows. It determines the number of nonzeros to be processed in one loop,
ranging from 2 to 8;

– prefetch distance and prefetch locality. The prefetch function is applied to
nonzeros and vector x. The range of prefetch distance is from 30 to 300.

– LAT RD and LAT OP. If the number of SSE registers is defined as
num SSE regs. Their range is from 1 to num SSE regs/3;

Fig. 4. Application specific auto-tuning

Table 1. Experimental Plat-
forms

platform # AMD Intel
CPU AMD Phe-

nomTM II
X4 940, 3.0
GHz

Intel Xeon
X5550,
2.67GHz

MEM 8GB 8GB
Sockets 1 2
Compiler GCC 4.3.3 GCC 4.4.3
Compiler
option

-msse2 -O3 -fopenmp

After obtaining the application specific diagonal patterns, the whole auto-
matic performance tuning process is described as follows (shown in Fig 4):

Step 1. Search engine reads each application specific diagonal pattern, deter-
mines value set of parameters and passes them to code generator.

Step 2. The SpMV Codelet is generated, compiled and executed. The per-
formance information is sent back to search engine and recorded until all
application specific diagonal patterns are measured.

Step 3. The optimal performance and the corresponding parameter values for
all application specific diagonal patterns are sent to the code generator to
produce the final SpMV implementation.
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The matrix, which is used to evaluate the generated codelet in step 2, is
extended according the indices of the corresponding diagonal pattern, since the
performance of SpMV is affected by the input sparse matrix.

The search engine uses orthogonal search method[6] to determine the param-
eter value set. The search order is prefetch distance, prefetch locality, LAT RD,
LAT OP and mrows. Moreover, the entire process is completed during the build-
ing phase rather than at runtime.

3.1 The Final CRSD SpMV Implementation

As the auto-tuning records show, the row segment size is not same for different
diagonal patterns when the performance of generated codelet is optimal. When
we split the matrix in row direction, we chose different row segment size for
different diagonal patterns. The SpMV codelet for each diagonal pattern should
be generated according the corresponding row segment size. Then we combine
those generated codelets to produce the final CRSD SpMV implementation.

3.2 Parallelization

When one matrix is stored in CRSD storage format, the diagonal pattern and
corresponding number of row segments are obtained. Given the performance for
processing each diagonal pattern, we can estimate the execution time. Then we
can split the matrix into sub-matrices and keep the estimated time for processing
each sub-matrix equal. The diagonal patterns may be split in the process when
necessary. The parallelization is implemented using OpenMP. specifically, we
distribute the scatter points according to the row range of each sub-matrix to
avoid write confliction of destination vector y.

4 Evaluation

In this section, we present the performance improvement of CRSD on two plat-
forms(Table 1) and 13 matrices(Table 2). Those matrices are categorized in five
classes: the first three classes come from [14]; the last two classes are from an
astrophysics application [15]. The coverage represents the percentage of number
of nonzeros in this diagonal pattern and threshold 15%, mentioned in section 2.4,
is used to identify the application specific diagonal pattern.

We choose CSR and DIA storage formats to compare with our CRSD storage
format. Owing to that SpMV is not available in ACML, we select Intel MKL,
with version 10.2.6.038, on the two x86-based architectures.

We also select OSKI-1.0.1h[7] for the comparison. When we set hint that
all the matrices are diagonal sparse matrices, it fails to tune the matrices and
return the input matrices.The same situations occur in earlier work[4][5].Thus
the performance of CSR can be viewed as the result of OSKI.
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Table 2. Matrix Set and Application Specific Diagonal patterns

#
Matrix Information Application Specific Diagonal pattern

name row nnz picture # content Coverage(%)

1 atmosmodd* 1270423 8814880
2 atmosmodj 1270423 8814880 Dp1 {(NAD, 2), (AD, 3), (NAD, 2)} 95.3
3 atmosmodm 1270423 8814880

4 cell1* 7055 30082
5 cell2 7055 30082 Dp2 {(AD, 2), (NAD, 1), (AD, 2)} 79.9

6 kim1* 38415 933195
7 kim2 456976 11330020 Dp3 {(AD,5),( AD,5), (AD, 5), (AD, 5) (AD, 5)} 98.0
8 A1 620000 4917600
9 A2 1080000 8578800 Dp4 {(NAD,2), (AD,3), (NAD,3)} 44.0

10 A3* 320000 2532800 Dp5 {(NAD,3), (AD,3), (NAD,2)} 45.9
11 B1 620000 4917600
12 B2 1080000 8578800 Dp6 {(NAD,2), (AD,5),( NAD,2)} 97.5

13 B3* 320000 2532800
* the sample matrix

4.1 The Auto-Tuning Records

The auto-tuning records on two platforms are given in Table 3. From the records
we can conclude that the parameter values are different when the performance
is optimal for the same diagonal pattern on different platforms.

Table 3. The Auto-tuning Records for Application Specific Diagonal patterns

Dp#
Segment size Locality for x Locality for

nonzeros
Prefetch dis-
tance

LAT RD LAT OP

AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel AMD Intel
Dp1 3 8 2 3 0 0 50 30 2 3 4 2
Dp2 8 8 2 3 1 0 150 30 2 4 3 4
Dp3 5 4 2 3 1 0 150 90 3 4 3 2
Dp4 3 6 3 3 0 0 50 150 2 2 2 3
Dp5 2 6 2 3 0 0 150 90 3 3 3 3
Dp6 4 4 3 3 0 0 40 90 3 3 3 3

The prefetch locality for x is almost 3, the highest temporal locality, whereas
that for nonzeros is almost 0. The effect of prefetch locality for matrix B3 on two
platforms is shown in Fig 5. The maximum difference of performance reaches up
to 44.8% and 24.0% on platform AMD and Intel respectively. The major reason
is the different access behavior of nonzeros and vector x: the elements of x may
be accessed repeatedly, which is determined by nonzero distribution, whereas
the elements in nonzeros are only accessed once.

We also collect the performance data affected by prefetch distance for matrix
B3. The maximum difference of performance is only 11.8% and 2.2% on platform
AMD and Intel respectively. This phenomenon exists for other matrices. We
can conclude that prefetch locality plays a more important role than prefetch
distance on SpMV performance for diagonal sparse matrices.

The performance improvement for the automatic performance tuning is given
in Fig 6. The final CRSD SpMV uses the variable row segment and other opti-
mization methods, such as SSE intrinsic. The performance using only variable
row segment size is viewed as the basic CRSD implementation. The performance
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(a) Platform AMD (b) Platform Intel

Fig. 5. The performance effect of prefetch locality on AMD and Intel platforms
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Fig. 6. The perfomance improvement of auto-tuning

gain differs among the matrices and the platforms. The average performance im-
provement is 36.3% and 36.6% and maximum is 65.9% and 63.1% on platform
AMD and Intel respectively.

In Fig 6, the performance range of CRSD with different identical mrows
is also given. The final CRSD SpMV outperforms those implementations for
all matrices on platform Intel. On platform AMD, the performance difference
between the final CRSD SpMV and upper range bound is less than 4%. This
verifies that the final CRSD SpMV is efficient.

4.2 Serial Performance Improvement

The performance comparison with CSR and DIA is given in Fig 7. The maximum
speedup compared with CSR reaches 3.83 and 4.38 on platform AMD and Intel
respectively. And the average of speedup reaches 2.44 and 3.05.

In comparison with DIA, we find that the performance of DIA for cell1 and
cell2 is very poor. For the reason that the number of filled zeros is almost 33
times larger than the number of nonzeros. The nonzeros distributes on 169 dis-
tinct diagonals. Therefore large number of idle sections exist. Even CSR is faster
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Fig. 7. Serial performance comparison results

than DIA by the factor of 23.50 and 11.87 on AMD and Intel respectively. How-
ever, using diagonal pattern CRSD is suitable for the two matrices, especially
application specific diagonal pattern covers 79.9% of the nonzeros. In compar-
ison with CSR, the speedups reach 3.69 and 4.34 on platform AMD and Intel
respectively. Except cell1 and cell2, the maximum speedups reach 2.37 and 2.02
on platform AMD and Intel respectively. The average reaches 1.73 and 1.74.

4.3 Parallel Performance Improvement

Since the implementation based on the DIA is not parallelized in Intel MKL, only
the CSR format is used for the comparison. The comparison results are shown
in Fig 8. CRSD outperforms CSR under different number of available threads
on two platforms. The maximum and average speedups are listed in Table 4.

Table 4. Speedup of parallel CRSD compared with parallel CSR

# of threads 2 4 8

AMD
Max 4.07 4.64 X
Average 2.51 2.32 X

Intel
Max 4.51 4.34 4.61
Average 2.42 2.16 2.17

The performance of CRSD for matrices with prefix cell and kim are relatively
high, especially for matrices whose sizes are small enough to be fitted into cache.
In those matrices, a large percent of diagonals are adjacent. Hence the elements
of x are reused frequently.

5 Related Work

Im and Yelick et al. propose register blocking, cache blocking and reordering
techniques. Register blocking[3][7][8] is based on BCSR format. BCSR is suit-
able for matrices, in which nonzeros primarily distribute in dense blocks. This
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Fig. 8. Performance comparison results between parallel CSRD and parallel CSR

property is universal for the matrices produced by Finite Element Method(FEM,
another major method for PDEs). Vuduc et al. estimate the performance bounds
for the register blocking and propose a new approach to choose the register block
size[9]. However, excessive zeros have to be filled to maintain the block format
in BCSR, which wastes the computation and memory resources. To reduce the
number of filled zero, Vuduc et al. in [2][10] exploit variable block structure
rather than identical block size; Belgin et al. explore the distribution pattern
of nonzeros in dense block and propose PBR to store matrices without zero
filling[4]. Cache blocking[3] is used to increase the temporal locality by reorder-
ing the memory access, Nishtala et al. present a new performance models, which
takes TLB misses into account, and a criteria to determine when to apply the
cache blocking [11]. Samuel Williams [5] sums up all those optimization meth-
ods on the emerging multi-core platforms. To mitigate the memory bandwidth
pressure, Willcock[12] and Kourtis et al. [13] utilize data compression to reduce
the index. Furthermore Kourtis also introduce CSR-VI to compress the nonzero
value when most of nonzero values are identical.

6 Conclusion

In this paper, we propose CRSD for the diagonal sparse matrix. We design
diagonal pattern to describe the diagonal distribution, making CRSD more suit-
able than DIA. Furthermore, as diagonal distributions are similar for different
problem sizes, we introduce the idea of application specific diagonal pattern to
optimize SpMV implementation. During the building phase, the optimal codelets
for application specific diagonal patterns are generated automatically. It differs
from OSKI, for OSKI chooses the optimal implementation at runtime. The auto-
tuning records are also utilized to achieve load-balance for parallelization.

The results from our experiments demonstrate that CRSD is efficient for pro-
cessing the diagonal sparse matrices from one application, when there are several
major diagonal patterns and diagonal distribution remains similar among the
matrices. We are transplanting the CRSD to the GPU. Our preliminary tests on
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GPU indicate a strong potential for better performance. In the future, we will
study more types of nonzero distributions and optimize the SpMV specifically
on distinct architectures.
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Abstract. Traditional radio telescopes use large, steel dishes to observe radio
sources. The LOFAR radio telescope is different, and uses tens of thousands
of fixed, non-movable antennas instead, a novel design that promises ground-
breaking research in astronomy. The antennas observe omnidirectionally, and sky
sources are observed by signal-processing techniques that combine the data from
all antennas.

Another new feature of LOFAR is the elaborate use of software to do signal
processing in real time, where traditional telescopes use custom-built hardware.
The use of software leads to an instrument that is inherently more flexible. How-
ever, the enormous data rate (198 Gb/s of input data) and processing requirements
compel the use of a supercomputer: we use an IBM Blue Gene/P.

This paper presents a collection of new processing pipelines, collectively called
the beam-forming pipelines, that greatly enhance the functionality of the tele-
scope. Where our first pipeline could only correlate data to create sky images, the
new pipelines allow the discovery of unknown pulsars, observations of known
pulsars, and (in the future), to observe cosmic rays and study transient events.
Unlike traditional telescopes, we can observe in hundreds of directions simulta-
neously. This is useful, for example, to search the sky for new pulsars. The use of
software allows us to quickly add new functionality and to adapt to new insights
that fully exploit the novel features and the power of our unique instrument. We
also describe our optimisations to use the Blue Gene/P at very high efficiencies,
maximising the effectiveness of the entire telescope. A thorough performance
study identifies the limits of our system.

1 Introduction

The LOFAR (LOw Frequency ARray) telescope is the first of a new generation of ra-
dio telescopes. Instead of using a set of large, expensive dishes, LOFAR uses many
thousands of simple antennas. Every antenna observes the full sky, and the telescope is
pointed through signal-processing techniques. LOFAR’s novel design allows the tele-
scope to perform wide-angle observations as well as to observe in multiple directions
simultaneously, neither of which are possible when using traditional dishes. In sev-
eral ways, LOFAR will be the largest telescope in the world, and will enable ground-
breaking research in several areas of astronomy and particle physics [1].

Another novelty is the elaborate use of software to process the telescope data in real
time. Previous generations of telescopes depended on custom-made hardware to com-
bine data, because of the high data rates and processing requirements. The availability
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c© Springer-Verlag Berlin Heidelberg 2011



The LOFAR Beam Former: Implementation and Performance Analysis 329

of sufficiently powerful supercomputers however, allow the use of software to combine
telescope data, creating a more flexible and reconfigurable instrument. Because LOFAR
is driven by new science, flexibility in the design is essential to explore the possibilities
and limits of our telescope.

For processing LOFAR data, we use an IBM BlueGene/P (BG/P) supercomputer.
The LOFAR antennas are grouped into stations, and each station sends its data (up to
198 Gb/s for all stations) to the BG/P. Inside the BG/P, the data are processed using both
real-time signal-processing routines as well as two all-to-all exchanges. The output data
streams are sufficiently reduced in size to be able to stream them out of the BG/P and
store them on disks in our storage cluster.

In this paper, we will present the LOFAR beam former: a collection of software
pipelines that allow the LOFAR telescope to be pointed at hundreds of sources simulta-
neously. A beam consists of a 1D stream of data representing the signal from a certain
area in the sky, and thus is different from a correlator, that creates 2D snapshot images
of the sky. Simplified, a beam former performs a weighted addition of the input signals,
while a correlator multiplies the input signals.

It is LOFAR’s unique design that allows us to point at many sources at once. Tra-
ditional telescopes use dishes that have a narrow field-of-view: they are only sensitive
to a small region around the source they are pointed at. LOFAR’s antennas are omni-
directional. Groups of antennas (stations) are sensitive to a wide field-of-view around
the source. These views, or station beams, are sent to the BG/P, that generates weighted
additions of the station input data, called tied-array beams. Each tied-array beam rep-
resents an offset pointing within the wide field-of-view of the stations.

The primary scientific use case driving the work presented in this paper is pulsar
research [2]. A pulsar is a rapidly rotating, highly magnetised neutron star, which emits
electromagnetic radiation from its poles. Similar to the behaviour of a lighthouse, the
radiation is visible to us only if one of the poles points towards the Earth, and appears
to us as a very regular series of pulses, with a period as low as 1.4 ms. Pulsars are
weak radio sources, and their individual pulses often do not rise above the background
noise that fills our universe. Our beam former can track several pulsars at LOFAR’s
full observational bandwidth. Alternatively, the beam former is capable of efficiently
performing sky surveys to discover new pulsars (or other radio sources) by covering the
sky with hundreds of tied-array beams at a reduced observational bandwidth.

The main contributions of this paper are threefold. First, we demonstrate the power
of a software telescope; its flexibility allows us to add new functionality with modest
effort and we show how the use of supercomputer technology enables new science in
astronomy and particle physics. Second, we describe the first system which allows a
telescope to be pointed in hundreds of directions. Third, we elaborately analyse the
performance of our application and the effectiveness of our optimisations.

This paper is organised as follows. First, we will describe the key characteristics
of the IBM BlueGene/P supercomputer in Sec. 2. Then, we describe LOFAR and beam
forming in more detail in Sec. 3. Section 4 describes the implementation of our pipelines,
followed by the performance analysis in Sec. 5. We briefly discuss related work in Sec.
6, and conclude in Sec. 7.
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2 IBM BlueGene/P

We use an IBM BlueGene/P (BG/P) supercomputer for the real-time processing of sta-
tion data. We will describe the key features of the BG/P; more information can be found
elsewhere [8]. Furthermore, we will describe how our BG/P is connected to its input and
output systems, and how we perform real-time processing using a BG/P.

2.1 System Description

Our system consists of 3 racks, with 12,480 processor cores that provide 42.4 TFLOPS
peak processing power. One chip contains four PowerPC 450 cores, running at a modest
850 MHz clock speed to reduce power consumption and to increase package density.
Each core has two floating-point units (FPUs) that provide support for operations on
complex numbers. The chips are organised in psets, each of which consists of 64 cores
for computation (compute cores) and one chip for communication (I/O node). Each
compute core runs a fast, simple, single-process kernel, and has access to 512 MiB
of memory. The I/O nodes consist of the same hardware as the compute nodes, but
additionally have a 10 Gb/s Ethernet interface connected. They run Linux, which allows
the I/O nodes to do full multitasking. One rack contains 64 psets, which is equal to 4096
compute cores and 64 I/O nodes.

The BG/P contains several networks. A fast 3-dimensional torus connects all com-
pute nodes and is used for point-to-point and all-to-all communications over 3.4 Gb/s
links. The torus uses DMA to offload the CPUs and allows asynchronous communica-
tion. The collective network is used for communication within a pset between an I/O
node and the compute nodes, using 6.8 Gb/s links. In both networks, data is routed
through compute nodes using a shortest path.

2.2 External I/O

We customised the I/O node software stack [9] and run a multi-threaded program on
each I/O node that is responsible for the handling of both the input and the output.
Unfortunately, the I/O nodes cannot saturate their 10 Gb/s Ethernet interfaces, because
the 850 MHz cores do not have enough computational power to handle the overhead
caused by IRQs, IP, and UDP/TCP. An I/O node can output at most 3.1 Gb/s, unless it
has to handle station input (3.1 Gb/s per station), in which case it can output at most
1.1 Gb/s. We implemented a low-overhead communication protocol called FCNP [6] to
efficiently transport data between the I/O nodes and the compute nodes. The compute
nodes perform the signal processing. The I/O nodes forward the results to our storage
cluster, which can sustain a throughput up to 80 Gb/s.

2.3 Real-Time Processing

Radio telescopes, including LOFAR, can observe for 24 hours per day: Rayleigh scat-
tering, which causes optical sun light to dominate the sky during the day, is nearly
nonexistent at radio frequencies. A LOFAR observation typically runs for several min-
utes to several days, and requires a single rack for real-time processing. Our other two
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racks are used for development, and as hot spares in case of unexpected hardware fail-
ures, which happens a few times per year. The BG/P is not a hard real-time system:
almost all variance occurs in the networks within the BG/P due to clashes caused by
scheduling intricacies, which can force our software to discard station input. To keep
post-processing tractable, a lost input sample causes all output samples that depend on
it to be discarded. We tolerate at most 0.1% of data loss, but loss is typically a lot rarer.

3 LOFAR and Beam Forming

The LOFAR antennas are grouped in stations. The stations are strategically placed, with
20 stations in the centre (the core) and 24 stations at increasing distances from the core,
spanning five nations (see Fig. 1). A core station can act as two individual stations in
some observational modes, resulting in a total of 64 stations. A station is able to produce
248 frequency subbands of 195 kHz in the 10 – 250 MHz sensitivity range. Each sample
consists of two complex 16-bit integers, representing the amplitude and phase of the X
and Y polarisations of the antennas.

Even though the antennas are omnidirectional, they can be pointed due to the fact that
the speed of electromagnetic waves is finite. Signals emitted by a source reach different
antennas at different times (see Fig. 2). A process called delay compensation delays the
signals such that they align (are coherent) for the desired source. Beam forming sub-
sequently adds the aligned signals. The stations perform delay compensation and beam
forming to combine the antenna signals into a station beam with a wide field-of-view.
The BG/P subsequently combines the signals from different stations to form tied-array
beams within the sensitive area of the station beams (see Fig. 3). In the BG/P, the sam-
ples from different stations are shifted with respect to each other to compensate delay at
a sample-level granularity. Sub-sample delay compensation is performed by a complex
multiplication per sample, which shifts the phase of each sample. The weights used
in the complex multiplication depend on the location of the stations, the observational
frequency of the sample, and the sky coordinates of the tied-array beam. The beam for-
mer thus creates tied-array beams by adding the station signals using different complex
weights for each beam.

Our beam former supports several pipelines. The complex voltages pipeline stores
the tied-array beams as is (X and Y polarisation samples). The Stokes IQUV pipeline
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transforms the complex voltages into Stokes parameters, which are a different repre-
sentation of the signal. Finally, the Stokes I pipeline stores just the signal strength for
each beam, and can be integrated in time to reduce the output data rate and to increase
the number of tied-array beams that can be formed. Finally, our software can produce
the Stokes parameters of an incoherent beam, which is an accumulation of unweighted
station signals. The incoherent beam is less sensitive than a coherent beam, but it main-
tains the wide field-of-view of the stations. The incoherent beam is typically formed in
parallel with other pipelines, and is used to detect the presence of pulsars, but does not
reveal their location within the station beams.

4 Beam Former Pipelines

In this section, we will describe in detail how the full signal-processing pipelines op-
erate, in and around the beam former. The use of a software pipeline allows us to re-
configure the components and design of our standard imaging pipeline, described else-
where [7]. Due to the flexibility of software, we can run several pipelines in parallel on
the same data, as long as resource limits are not exceeded. Figure 4 gives an overview
of our system. Our software is written in C++, with core routines ported to assembly to
obtain maximal performance.
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4.1 Input from Stations

Each station sends data to a different I/O node. The beam former, however, needs data
from all stations together to form tied-array beams. The station data thus have to be
rearranged inside the BG/P, to collect the data from different stations but also to split
it along different dimensions in order to distribute the workload. At the I/O nodes, the
station data are split into chunks of one subband and 0.25 seconds. The chunk size is
chosen such that the compute cores have enough memory to perform all of the necessary
processing. Due to the BG/P design, an I/O node sends chunks to its own compute cores
using the collective network. The compute cores then exchange these chunks over the
torus network using an all-to-all exchange, shown in Fig. 5.

Fig. 5. The data flow and data ordening in our pipelines

4.2 First All-to-All Exchange

The first all-to-all exchange allows the compute cores to distribute the chunks from a
single station, and to collect all the chunks of the same subband from all of the sta-
tions. The exchange is performed over the fast torus network, but with up to 198 Gb/s
of station data to be exchanged, special care still has to be taken to avoid network
bottlenecks. It is impossible to optimise for short network paths due to the physical dis-
tances between the different psets across a BG/P rack. Instead, we optimised the data
exchange by creating as many paths as possible between compute cores that have to
exchange data. Within each pset, we employ a virtual mapping such that the number of
possible routes between communicating cores in different psets is maximised.

The all-to-all exchange is asynchronous. Once a compute core receives a complete
chunk from a single subband, it performs a sequence of processing steps on it. The first
step is a conversion from 16-bit little-endian integers into 32-bit big-endian floats, to be
able to use the BlueGene’s powerful FPUs. Figure 4 shows which steps are performed
before the tied-array beam forming occurs. Note the Fast Fourier Transform (FFT) that
divides the 195 kHz subbands into (typically) 12 kHz channels. We use the efficient
Vienna version of FFTW [5]. The superstation beam former is a simplified version of
our beam former, used to combine multiple stations as if it were one, and is used in our
imaging pipeline to reduce the workload. Once the chunks from all stations are received
and processed asynchronously, the processed data are ready to be beam formed.
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4.3 Beam Forming

The beam former combines the chunks from all stations, producing a chunk for each
tied-array beam. Each beam is formed using different complex weights for the fre-
quency of the channel, the locations of the stations, and the beam coordinates. The
positional weights are precomputed by the I/O nodes and sent along with the data to
avoid a duplicated effort by the compute nodes. The delays are applied to the station
data through complex multiplications and additions.

All time-consuming pipeline components are written in assembly, to achieve max-
imum performance. The assembly code minimises the number of memory accesses,
minimises load delays, minimises FPU pipeline stalls, and maximises instruction-level
parallelism. We learnt that optimal performance is often achieved by combining multi-
ple iterations of a multi-dimensional loops:

FOR Channel IN 1 .. NrChannels DO
FOR Station IN 1 .. NrStations STEP 6 DO

FOR Time IN 1 .. NrTimes STEP 128 DO
FOR Beam IN 1 .. NrBeams STEP 3 DO
BeamForm6StationsAnd128TimesTo3BeamsAssembly(...)

This is much more efficient than to create all beams one at a time, due to better
reuse of data loaded from main memory. Finding the most efficient way to group work
is a combination of careful analysis and, unfortunately, trial-and-error. The coherent
beam former achieves 86% of the FPU peak performance, not as high as the 96% of the
correlator [7], but still 16 times more than the C++ reference implementation.

4.4 Channel-Level Dedispersion

Another major component in the pulsar-observation pipeline is real-time dedispersion.
Since light of a high frequency travels faster through the interstellar medium than light
of a lower frequency, the arrival time of a pulse differs for different wave lengths. To
combine data from multiple frequency channels, the channels must be aligned (shifted
in time). Otherwise, the pulse will be smeared or even overlap with the next pulse,
causing many details to be lost. This process, called dedispersion, is done by post-
processing software that runs after the observation has finished. However, to observe
at the lowest frequencies, or to observe fast-rotating millisecond pulsars, dedispersion
must also be performed within a channel, since our channels (typically 12 kHz) are too
wide to ignore dispersion.

Figure 6 shows pulses of pulsar J0034-0534 at four frequencies. The pulse period is
1.88 ms. On the left is the original dispersed signal, which results in a smeared pulse
when the frequencies are collapsed into a 12 kHz channel. On the right is the dedis-
persed signal, which results in a sharp pulse profile when collapsed.

Dedispersion is performed in the frequency domain, by doing a 4096-point FFT that
splits a channel into 3 Hz subchannels. The phases of the observed samples are cor-
rected by applying a chirp function, i.e., by multiplication with precomputed, channel-
dependent, complex weights. These multiplications are programmed in assembly, to
reduce the computational costs. A backward FFT is done to revert to 12 kHz channels.
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Figure 7 shows the observed effectiveness of channel-level dedispersion, which im-
proves the effective time resolution from 0.51 ms to 0.082 ms, revealing a more detailed
pulse and a better signal-to-noise ratio. Dedispersion contributes significantly to the data
quality, but it also comes at a large computational cost due to the two FFTs it requires.
The channel-level dedispersion demonstrates the power of using a software telescope:
the component was implemented, verified, and optimised in only one month time.

4.5 Stokes Calculations

The beams are optionally converted into Stokes IQUV or Stokes I parameters, again
using assembly routines to achieve optimal performance. The Stokes parameters are
calculated through I = XX +YY , Q = XX−YY , U = 2 ·Re(XY ), V = 2 ·Im(XY ), with X
as the complex conjugate of X . Although the formulas are simple, the Stokes parameters
are expensive to calculate. The required operations for I and Q do not map well onto
the FPU instruction set of the BG/P, even though the instruction set is extended with
support for operations on complex numbers.

4.6 Second All-to-All Exchange

Even though the beams are formed and optionally converted into Stokes parameters,
they are still distributed as chunks across the BlueGene. Because the compute nodes
cannot send their data directly to the I/O node that sends it to storage, a second all-to-all
exchange is required to rearrange the chunks for output. Only chunks that are sent to
the same I/O node can be sent to storage as a single data stream.

Unfortunately, the output bandwidth available at each I/O node can be less than the
bandwidth required by the beams. An I/O node can output 3.1 Gb/s, and only 1.1 Gb/s
if the I/O node also has to process station input at the same time. The bandwidth re-
quired for a complex voltages, Stokes IQUV, or (unintegrated) Stokes I beam however
is 6.2 Gb/s, 6.2 Gb/s, and 1.5 Gb/s, respectively. We therefore split the beams and send
the polarisations or Stokes parameters to different I/O nodes and store them in different
files in our storage cluster. In some cases, it is necessary to split the beams further.

Due to memory constrains on the compute cores, the cores that performed the beam
forming cannot be the same cores that receive the beam data after the second exchange.
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We assign a set of cores (output cores) to receive the chunks. The output cores are
chosen before an observation, and are distinct from the input cores which perform the
earlier computations in the pipeline.

The output cores receive the chunks asynchronously, which we overlap with compu-
tations. For each chunk, the data are reordered into their final ordering. Reordering is
necessary, because the data order that will be written to disk is not the same order that
can be produced by our computations without taking heavy cache penalties. Once all of
the chunks are received and reordered, they are forwarded to the I/O node.

For the distribution of the workload over the output cores, three factors are consid-
ered. First, all of the data belonging to the same beam has to be processed by output
cores in the same pset, to ensure that one I/O node can concatenate all of the 0.25 sec-
ond chunks that belong to the beam. Second, the maximum output rate per I/O node
has to be respected. Finally, the presence of the first all-to-all exchange, which uses
the same network at up to 198 Gb/s. The second exchange uses up to 81 Gb/s. Even
though each link sustains 3.4 Gb/s, it has to process the traffic from four cores, as well
as traffic routed through it between other nodes. The network links in the BG/P become
overloaded unless the output cores are scattered sufficiently.

4.7 Transport to Disks
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Once an output core has received and re-
ordered all of its data, the data are sent
to the core’s I/O node. The I/O node for-
wards the data over TCP/IP to the stor-
age cluster. To avoid any stalling in our
pipeline due to network congestion or
disk issues, the I/O node uses a best-
effort buffer which drops data in the un-
usual case that it cannot be sent.

5 Performance Analysis

We will focus our performance analysis on the most challenging cases that are of astro-
nomical interest. We present measurements for a single BG/P rack.

5.1 Overall Performance

Figure 8 shows the maximum number of beams that can be formed when using a various
number of stations, in each of the three pipelines: complex voltages, Stokes IQUV, and
Stokes I. Both the complex voltages and the Stokes IQUV pipelines are I/O bound. Each
beam is 6.2 Gb/s wide. We can form up to 13 beams without exceeding the available
81 Gb/s to our storage cluster. If 64 stations are used, the available bandwidth is 70 Gb/s
due to the fact that an I/O node can only output 1.1 Gb/s if it also has to process station
data. The granularity with which the output can be distributed over the I/O nodes, as
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Table 1. Several highlighted cases (CD = channel dedispersion, IF = integration factor)

Case Mode CD IF Stations Beams Input Output Bound Used for

�A Stokes I N 16 4 450 12 Gb/s 44 Gb/s Torus Surveys
�B Stokes I N 16 24 310 74 Gb/s 30 Gb/s CPU Surveys
�C Stokes I N 8 64 155 198 Gb/s 30 Gb/s CPU Surveys
�D Stokes IQUV Y - 24 13 74 Gb/s 81 Gb/s I/O Known sources
�E Stokes IQUV Y - 64 10 198 Gb/s 62 Gb/s I/O Known sources
�F Stokes I Y 1 64 42 198 Gb/s 65 Gb/s I/O Known sources

well as scheduling details, determine the actual number of beams that can be formed, but
in all cases, the beam former can form at least 10 beams at full observational bandwidth.

In the Stokes I pipeline, we applied several integration factors (1, 2, 4, 8, and 16) in
order to show the trade-off between beam quality and the number of beams. Integration
factors higher than 16 does not allow significantly more beams to be formed, but could
be used in order to further reduce the total output rate. For low integration factors, the
beam former is again limited by the available output bandwidth. At 8x integration, the
number of beams is limited by the virtual mapping we applied to optimise both of the
all-to-all exchanges (see Sec. 4.2): the high number of routes causes more collisions
than the compute cores have spare time for to handle. With higher integration factors,
a few more beams can be formed before the compute cores run out of computational
resources. For observations for which a high integration factor is acceptable, the beam
former is able to form 155–450 tied-array beams, depending on the number of stations
used. For observations that need a high time resolution and thus a low integration factor,
the beam former is still able to form at least 42 tied-array beams.

5.2 System Load

We analyse the workload of the compute cores by highlighting a set of cases, sum-
marised in Table 1. We will focus on case �A , which creates the highest number of
beams, and on CPU-bound cases useful for performing surveys, with either 24 stations
( �B ) or 64 stations ( �C ) as input. Cases �D and �E represent high-resolution observations
of known sources, and are I/O bound configurations with 24 and 64 stations, respec-
tively. Case �F focusses on the observations of known sources as well, using Stokes I
output, which allows more beams to be formed. Channel-level dedispersion is applied
for all cases that observe known sources.

The average workload of the compute cores for each case is shown in Fig. 9. For the
CPU-bound cases �B and �C , the average load has to be lower than 100% to recover from
small delays in the processing, that can occur since the BG/P is not a real-time system.
These fluctuations typically occur due to clashes within the BG/P torus network which
is used for both all-to-all-exchanges, and cannot be avoided in all cases.

In the cases where we create many beams ( �A �B �C ), most of the cycles are spent on
beam forming and on calculating the Stokes I parameters. The beam forming scales with
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Fig. 10. The load of the busiest I/O nodes

both the number of stations and the number of beams, while the Stokes I calculation
costs depends solely on the number of beams. Case �A has to beam form only four
stations, and thus requires most of its time calculating the Stokes I parameters. Cases
�B and �C use more stations, and thus need more time to beam form. The costs for both

all-to-all exchanges are mostly hidden due to overlaps with computation. The remaining
cost for the second exchange is proportional to the output bandwidth.

For the I/O-bound cases �D �E �F , only a few tied-array beams are formed and trans-
formed into Stokes I(QUV) parameters, which produces a lot of data but requires little
CPU time. Enough CPU time is therefore available to include channel-level dedisper-
sion, which scales with the number of beams and is an expensive operation.

Figure 10 shows the workload for the busiest I/O nodes in each case, including the
system time spent to handle IRQs. The processing of station data and the communica-
tion with the compute cores cause most of the load. In cases �A �B , the output is handled
by I/O nodes that do not process station data. In both cases, a significant amount of time
is spent computing the positional weights (see Sec. 4.3). A similar amount of time is
required in cases �C �D �E �F to process the output.

6 Related Work

The LOFAR beam former is the only beam former capable of producing hundreds of
tied-array beams. A radio dish can be extended to focus on multiple sources by placing
additional receivers in its focal point (a focal plane array) [4], but such a solution does
not scale. The Murchison Widefield Array (MWA) uses a design similar to LOFAR [3],
and has far fewer antennas but groups them into more stations. The MWA will be able
to form 16 tied-array beams, reducing 320 Gbit/s of input to 10 Gbit/s of output.

7 Conclusions

We have shown the capabilities of our beam former pipelines, running in software on an
IBM BlueGene/P supercomputer. Our system can form 13 tied-array beams at LOFAR’s
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full observational bandwidth before our output limit of 81 Gb/s is met. Alternatively, it
can form hundreds of beams at a reduced resolution, the exact number depending on the
number of stations and the pipeline used. Finally, an incoherent beam can be formed,
which retains the wide field-of-view offered by our stations. None of these feats are
possible with any other telescope.

The use of a software solution on powerful interconnected hardware is a key aspect
in the development and deployment of our pipeline. Because we use software, rapid
prototyping is cheap, allowing novel features to be tested to aid the exploration of the
design space of a new instrument. The resulting pipelines retain the flexibility that soft-
ware allows. The control flow and bookkeeping have become complex while remaining
manageable through software abstraction. We can run the same station data through
multiple pipelines in parallel, and even multiple independent observations in parallel,
as long as there are enough resources. The science which drives LOFAR, and which is
driven by it, is accelerated through the use of an easily reconfigurable instrument.

The BG/P supercomputer provides us with enough computing power and powerful
networks to be able to implement the signal processing and all-to-all-exchanges that
we require, without having to resort to a dedicated system which inevitably curbs the
design freedom that the supercomputer provides. As with any system, platform-specific
parameters nevertheless become important when maximal performance is desired. Al-
though a C reference implementation allowed us to quickly develop and test features,
we needed handcrafted assembly to keep the double FPUs of each compute core busy.
The architecture of the BG/P makes some tasks more difficult as well. We cannot freely
schedule the workload, because an I/O node can only communicate with its own com-
pute cores. Instead, we have to manually route the data using two all-to-all exchanges
to stream the data from and to the right I/O nodes. To achieve maximum performance,
we tuned the distribution of the workload over the cores to avoid network collisions.
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Abstract. Recent trends in semiconductor technology and supercomputer de-
sign predict an increasing probability of faults during an application’s execution.
Designing an application that is resilient to system failures requires careful eval-
uation of the impact of various approaches on preserving key application state.
In this paper, we present our experiences in an ongoing effort to make a large
computational chemistry application fault tolerant. We construct the data access
signatures of key application modules to evaluate alternative fault tolerance ap-
proaches. We present the instrumentation methodology, characterization of the
application modules, and evaluation of fault tolerance techniques using the infor-
mation collected. The application signatures developed capture application char-
acteristics not traditionally revealed by performance tools. We believe these can
be used in the design and evaluation of runtimes beyond fault tolerance.

Keywords: Fault tolerance, Data access characterization, NWChem.

1 Introduction

The increasing component counts in modern supercomputer designs, coupled with a de-
crease in micro-architectural feature size, and considerations of power envelope predict
a significant decrease in the mean time between failures (MTBF) of the next generation
of leadership-class machines [27]. Long-running scientific applications should expect
multiple failures, both hard and transient, during execution. This has increased the need
for applications to incorporate capabilities to identify and make forward progress in the
presence of faults.

Making a large-scale scientific application fault tolerant is an arduous task. The first
step involves evaluating different fault tolerance approaches and quantifying their im-
pact in terms of space and time overhead, the amount of work lost in the event of a fault,
and the feasibility of incorporating the fault tolerance approaches into the application.
In this paper, we present our approach to evaluating key modules of NWChem [32,17],
a large computational chemistry application consisting of close to two million lines of
code. NWChem is a widely used computational chemistry suite shown to scale on the
largest systems.

Understanding the key characteristics of such a large application through study of
the source code is a daunting task. This has long been recognized by performance tools
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researchers, who have developed several ways of characterizing applications [29,2,9].
While useful in identifying scalability bottlenecks and performance inefficiencies, per-
formance tools are not always suited for evaluating the feasibility of a particular ap-
proach to fault tolerance. In this regard, we identify critical application characteristics
and construct signatures that are valuable from a fault tolerance perspective. Rather
than characterize computation and communication behavior, we study the application
modules in terms of their constituent data structures and accesses to them. This com-
plements profiling provided by traditional performance tools.

We characterized all key NWChem modules and, due to space constraints, selectively
present our results, which arose from considering a suite of fault tolerance techniques
and evaluating feasibility for the different modules. The contributions of this paper are:

– A data-structure-oriented instrumentation methodology
– Data access characterization of key modules in a large application
– An incremental checksum approach to fault tolerance that combines the features of

incremental checkpointing and checksum-based fault tolerance
– Evaluation of a broad class of fault tolerance techniques in the context of NWChem.

This work represents an early effort in making such large applications fault tolerant. To
the best of our knowledge, we are not aware of a data access characterization approach
for studying application behavior and its use in evaluation of a suite of fault tolerance
techniques. Beyond fault tolerance, this methodology provides a means for joint under-
standing of macro-scale application behavior by both computer scientists and domain
experts. It also encourages further investigation into causes of the exhibited behavior
beyond fault tolerance, including performance optimization.

2 Related Work

Application profiling can provide useful insights into runtime behavior. This informa-
tion can be used to pinpoint performance bottlenecks, optimize algorithms and data
structures, design application-specific fault tolerance techniques, and fine-tune data ac-
cess mechanisms. The GNU gprof is a call graph execution profiler [14] that performs
dynamic program analysis and lists the frequency and duration of all function calls.
HPCToolkit [2] and TAU [29] are another set of tools used for measuring and analyzing
the performance of high-performance computing (HPC) applications. These tools are
used primarily on multicore machines and large supercomputers. While useful in cap-
turing performance-related information, they do not focus on data structures employed
by the application and the associated access patterns.

Profiling message-passing libraries such as Message Passing Interface (MPI) [3] al-
lows users to characterize the communication patterns [8] of applications. PMPI, the
standard profiling interface for MPI, allows developers to gather diagnostic data by im-
plementing custom wrappers to MPI calls. PN MPI [28] extends the PMPI interface to
include multiple, concurrent tool stacks.

Often, I/O bandwidth is considered a bottleneck for scientific applications. As such,
profiling the I/O patterns of applications can provide avenues for performance improve-
ment. Darshan [9] is an I/O characterization tool used to discern interesting patterns in
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application I/O behavior. Other studies [21,26] also have profiled the data access pat-
terns of scientific workloads for analysis and tuning purposes.

While applications typically are profiled to identify performance bottlenecks, we
characterize the data access patterns of a computational chemistry application to study
various fault tolerance techniques that would safeguard the application against failures.

3 Background

This section provides background information on the applications and programming
models presented in this paper.

3.1 NWChem

NWChem [32,17] is a massively parallel computational chemistry application devel-
oped and maintained by the Environmental Molecular Sciences Laboratory (EMSL) at
Pacific Northwest National Laboratory (PNNL). The package, consisting of nearly two
million lines of code, provides a variety of ground- and excited-state methods for quan-
tum mechanical calculations, as well as classical simulation methods. In this paper, we
provide a detailed analysis of access patterns of various data structures of the Gaus-
sian basis set-based Hartree-Fock (HF) and Coupled Cluster (CC) modules. NWChem
employs Global Arrays (GA) to manage and manipulate its key data structures.

3.2 Global Arrays

Global Arrays [20], a library-based implementation of the Partitioned Global Address
Space (PGAS) programming model, provides applications a shared-memory, multidi-
mensional view of data distributed among the physical memories of processors. Ap-
plications can create, destroy, and manipulate matrices using one-sided communication
primitives such as GA Get, GA Put, and GA Accumulate. In addition to the ease
of the shared-memory abstraction, GA, which is fully interoperable with MPI, allows
users to query locality information to further optimize their code. This programming
model has proven to be highly scalable and can simplify array-based computations in
large codes, including NWChem.

4 Instrumentation Methodology

The typical approach to profiling an application is to trap its function invocations. A
profiling interface such as PMPI uses name-shifted weak bindings to instrument the
application code by intercepting MPI calls made by the application. Since NWChem
employs GA as its underlying data management and communication substrate, we in-
tercept the GA calls made by NWChem to collect relevant performance data.

To profile NWChem’s data access behavior, we instrumented the underlying GA
library to keep a record of the data structures and the operations being performed
on them. For example, a call to GA Create or GA Destroy stores the operation
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identifier, GA identifier, size, and timestamp of the operation to a file. GA primitives
that manipulate data using one-sided communication, such as GA Get, GA Put, and
GA Accumulate, track the matrices being operated on during a phase. At the end of
each phase (signified by a GA Sync operation), the list of GA identifiers, operation
identifier, and associated data volume are written to a file along with a timestamp of the
GA Sync operation.

Maintaining a summarized log of GA operations allows replay of the execution
for post-processing analysis without the overhead associated with conventional com-
munication tracing approaches that track each communication call. During the post-
processing phase, we can build elaborate data access models of the NWChem modules.
These models paint a detailed picture of the application’s data access patterns and pro-
vide insight into effective fault tolerance techniques tailored for the application. Sec-
tion 7 provides a detailed analysis of NWChem’s runtime behavior.

5 Fault Tolerance Techniques

In this section, we briefly describe the fault tolerance techniques evaluated and con-
siderations that led to the construction of the data access characterization. We focus
on the GA data structures throughout the application. While additional state might be
crucial to recovering from failures, the total state of the application being evaluated is
dominated by the GA matrices alive at any point in execution.

Checkpoint-restart: This widely studied approach [12,13] involves backing up the GA
matrices to stable storage periodically and restoring them in the event of a failure. As
suggested in prior work, we store redundant copies in-memory at periodic intervals.
We consider two variants of this approach. In full checkpointing, all GA matrices are
backed up at every checkpoint interval. In incremental checkpointing, we track the up-
dates to the matrices. At each checkpoint interval, only the modified arrays are backed
up. While more efficient, incremental checkpointing requires tracking all changes, in-
cluding potential out-of-band accesses to data. Checkpointing is done in a collective
fashion, at every GA Sync.

Redundant data communication: In this approach, duplicate copies of all data struc-
tures are maintained throughout execution. This is an extension of the disk-based Re-
dundant Array of Independent Disks (RAID) approach to in-memory data. We consider
the technique evaluated earlier [4], where each communication operation is repeated
on a shadow copy. This scheme minimizes the work lost at the expense of increased
communication overhead.

Checksum-based fault tolerance: This approach exploits the fact that read-only data
can be restored from checksums, which incur much lower space overhead. This is an
extension of recent efforts in fault tolerant linear algebra [10,7,5]. When a data structure
is modified, the checksums no longer help in its recovery. Therefore, each GA matrix
is duplicated before it is modified. The duplicate is discarded, and the checksums are
recomputed once the changes to the array are complete. By only requiring duplicate
storage for arrays being modified at any point, this approach improves upon the space
requirements of the aforementioned schemes.
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Incremental checksums: This approach combines the features of incremental check-
pointing and the checksum-based approach. Checksums conserve space by minimizing
duplicate storage. On the downside, checksums need to be computed repeatedly when
a data structure frequently transitions between read-only and modified states. In this
scheme, all GA matrices are periodically backed up using checksums. The first transi-
tion of an array into modified state is intercepted, and the array to be modified is dupli-
cated. When an array remains read-only between checkpoint intervals, the space over-
head is minimized. We are unaware of prior work in evaluating this approach—inspired
by copy-on-write policy in process management—in the context of fault tolerance.

6 Application Evaluation Axes

This section presents the metrics used to characterize applications. We describe the
metrics and discuss how they are plotted in the graphs presented in subsequent sections.

(a) Array creation and destruction: This metric provides a distribution of the creation
and destruction of GA matrices as a function of execution time. We identify the sizes
of arrays involved and runtime phases that could serve as bottlenecks in terms of space.
The size of each individual creation and destruction is plotted with respect to the asso-
ciated time. The y-axis represents the GA size in megabytes (MB).

(b) Number and (c) space consumed by GAs: This is a cumulative representation of the
creation and destruction of arrays. Together with the impact on total space consumed,
these axes depict trends in space utilization. This data directly relates to the space over-
head of the various checkpointing schemes. In addition to measuring the total number
and size of all GAs at any given time, we also measure those that are modified. A large
fraction of modified data implies more state to be duplicated. The y-axis represents the
number of GAs and the total GA size in gigabytes (GB), respectively.

(d) Reuse factor: Reuse factor is measured as the ratio of the total data volume asso-
ciated with an array in a particular phase to the size of the array. A large reuse factor
implies a high degree of reuse with potential improvements through locality optimiza-
tions. More importantly, a high reuse factor favors checkpointing approaches because
it increases the cost associated with redundant data communication. The reuse factor
for each array is plotted at the time of each GA Sync. The y-axis represents the reuse
factor of the GA matrices.

(e) Data liveness: This metric measures the period between creation and destruction
of arrays. Short-lived arrays often correspond to temporary data structures, while long-
lived arrays correspond to key data structures. A long checkpoint interval can avoid
storage of temporary variables, reducing the time required to perform a checkpoint.
Data liveness is presented as a cumulative distribution of the percentage (in terms of
size) of all GA matrices ever created that are alive for less than a given percentage of
the total execution time. Plots to the left of the graph correspond to temporary arrays,
while those to the right correspond to long-lived arrays. Note that short-lived arrays
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do not always correspond to a small impact on checkpointing overhead. In particular,
short-lived arrays could be spread in such a way as to always constitute a significant
overhead. This information is partly revealed by the metrics (b) and (c). Array liveness
complements these metrics by providing an additional perspective. The y-axis repre-
sents the data liveness of the GA matrices as a percentage.

(f) Read-only window: As mentioned earlier, long durations in which an array is read-
only benefit checksum-based approaches. To evaluate this metric, we measure the cu-
mulative distribution of the percentage of data that are read-only for contiguous du-
rations greater than a certain percentage of the total execution time. The total data is
measured in terms of all data alive at any point, ignoring the modification phases for
any array. In essence, the total data size is the area under the curve in metric (c). This
is plotted with reverse key along the x-axis. A computation with long read-only win-
dows will present a fast-growing graph, while several modifications will result in a
slow-growing graph. The y-axis represents the read-only window as a percentage.

7 Data Access Characterization of NWChem

This section discusses data access characterization of the different NWChem modules.
The experiments were conducted on Chinook, a 163 teraflops HP supercomputer avail-
able at EMSL. Chinook consists of 2310 HP DL185 nodes. Each node contains two
64-bit, quad-core AMD 2.2 gigahertz (GHz) Opteron processors. The nodes are also
equipped with 32 GB of main memory and 365 GB of local disk space. A single rail In-
finiBand interconnect provides high-bandwidth communication between the nodes. The
cluster runs a customized version of Red Hat Linux Advanced Server. The experiments
were conducted on 2048 processor cores using NWChem v6.0.

7.1 Hartree-Fock/Density Functional Theory

The HF method is a single-determinant theory [30] that forms the basis for higher-
level electronic structure theories, such as Møller-Plesset perturbation theory (MP),
CC theory, and other post-HF approaches. Density functional theory (DFT) also is a
single-determinant approach and affords an alternate approach to the many-electron
problem [18,22,23]. Both HF and DFT are similar in structure and are typically solved
using iterative approaches involving basis set expansions [18,16,19].

We performed a DFT calculation with pure HF exchange on the C240 molecule. Pure
HF exchange involves the calculation of two-electron integrals. This is performed via
four-center integrals and results in an overall scaling of O(N4). The calculation was
performed without symmetry using the 6-31G basis set [1] with a total of 3600 basis
functions for the whole system. All integral evaluations were performed using the direct
method, and the Fock matrix was constructed using the distributed data approach [15].

Data access characterization. Fig. 1 shows the data access characterization of a pure
HF calculation using the NWChem DFT module. The creation and destruction of arrays
are shown in Fig. 1(a). All arrays created, except at the end of the calculation, are of
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Fig. 1. NWChem HF/DFT data access signature. The y-labels are provided in the captions and
explained in Section 6

the same size and on the order of O(N2), where N is the number of basis functions.
At the end of the calculation, the computed results are analyzed via molecular orbital
processing. This is an optional analysis phase that might be omitted in certain execution
scenarios. Even more importantly, the execution time involving the largest array is a
small fraction of the total execution time. Hence, this array can effectively be ignored
in designing a fault-tolerant scheme for the HF/DFT module.

As the first plot in Fig. 1 shows, arrays are created and destroyed throughout pro-
gram execution. Fig. 1(b) shows that a batch of 10 arrays are created first, followed
by 20 more arrays. The initial batch mostly corresponds to arrays that persist through
the calculation—Fock, density, exchange correlation, eigenvector matrices, etc. The 20
subsequent arrays created correspond to the direct inversion of the iterative subspace
(DIIS) arrays, the default number chosen to ensure quick convergence. As evident from
Figs. 1(b) and 1(c), most of the matrices are read-only. A small number of GA matrices
transition between read-only and modified states at any point in time. The periodic blips
on the two curves correspond to matrices being created and destroyed.

Fig. 1(c) measures the size of the application state as a function of the wall time. The
total GA size tops at about 3.2 GB and is constant (barring the periodic blips mentioned
earlier) for the duration of the application execution. The notable trend evident from
the figures reflects an application state that consists predominantly of read-only data
structures. For this calculation, modified matrices form only about 10% of the total
state. The modified GAs correspond to matrices involved in the self-consistent field
iterative cycle (e.g., Fock, density, potentials, and eigenvector matrices).

The data reuse factor of HF/DFT varies from less than 1 to more than 20 for different
GA matrices (see Fig. 1(d)). HF is inherently a non-linear computation with O(N4)
operations being performed on O(N2) data. As such, we expect the data reuse factor to
be high for all arrays. However, the key matrices—Fock matrices—are organized into
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blocks. If a given block does not contain any element larger than the threshold (due to
Schwarz screening), its interactions with other blocks are ignored. Note that an overall
reuse factor of less than 1 does not preclude any single block of data from being reused
more than once. For data-dependent calculations, the reuse factor again relies on the
problem at hand. In general, we observed the reuse factors were typical of calculations
of chemical interest.

Almost 90% of the arrays, in terms of size, end up being live for less than 5% of the
execution time. Thus, a large part of the application state does not significantly impact
the checkpointing schemes for moderate checkpointing intervals or, through careful
design, can potentially be ignored while still tolerating faults (see Fig. 1(e)).

The read-only windows for HF/DFT are small for most of the calculation. Approx-
imately 80% of the read-only windows are shorter than 5% of the execution time, and
less than 5% have a duration of 5%–35% of the wall time.

7.2 Coupled Cluster Theory

Many aspects of computational chemistry and physics require accuracies that can only
be achieved by higher-order post-HF computational methods that account for the in-
stantaneous interactions or correlations between electrons in molecules [6]. Among the
many methods that describe correlation effects systematically, the CC formalism has
evolved into a widely used and accurate method for solving the electronic Schrödinger
equation. Compared with other wavefunction-based formalisms, the main advantage of
CC methods lies in the fact that the correlation effects are efficiently encapsulated in
the exponential form of the wavefunction. A simple consequence of this Ansatz is the
size-extensivity of the resulting energies.

In most cases, due to quickly growing numerical complexity, the cluster operator is
approximated by low-rank contribution. For example, the numerical complexity of the
most rudimentary CC approximation—the CCSD approach (CC with singles and dou-
bles) [25,11]—is O(N6), while the storage requirements are O(N4), where N refers
to the system size. Using the currently available NWChem module, we can routinely
perform CCSD calculations on systems consisting of about 1000 orbitals.

Data access characterization. Fig. 2 shows the data access characterization of the
NWChem CCSD module. The initialization phase of the CCSD module is small in
terms of time and application state. The total number of GA matrices in the system is
relatively small (∼10), although the total application state during execution is ∼35 GB,
signifying that the individual arrays are fairly large. The square wave pattern in Fig. 2(c)
represents the individual tensor contractions, where the matrices are produced and con-
sumed as part of the contraction.

The CCSD calculation consists of HF followed by the iterative part. As evident from
the various graphs shown in Fig. 2, the first 1000 seconds are spent in the HF calcula-
tion. Immediately following the HF, the wavefunctions are transformed from the atomic
to the molecular orbital basis using a procedure referred to as the four-index transform.
The iterative part of the calculation is clearly visible from the periodic features. There
also is an observable, large plateau in each iteration. This corresponds to the most ex-
pensive tensor contraction in the iterative procedure.
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Fig. 2. NWChem CCSD data access signature. The y-labels are provided in the captions and
explained in Section 6.

Fig. 2(a) shows the four-index transform, while inexpensive in terms of execution
time, involves the largest array in the calculation. In fact, Fig. 2(c) demonstrates this
phase serves as the space bottleneck for the entire CCSD calculation. This has led to
an ongoing effort to restructure the calculation to compute the array corresponding to
atomic integrals to be produced and consumed on-the-fly, without storing the entire
array at any point in time.

The intermediate in the four-index transform also exhibits the highest reuse factor
(see Fig. 2(d)). Most notably, the put/acc reuse factor for this matrix is indistinguishable
from other matrices. This is due to a parallelization scheme in which all updates to a
block are coordinated to be computed by a single process. However, the consumption
of this intermediate is not optimized in the same fashion, leading to high reuse factors.
Through the effective scheduling of work that exploits this reuse, there is promise for
further improvements in the code. The largest tensor contraction in each iteration also
involves matrices that exhibit high reuse factors. During the iterative CCSD calculation,
most update operations result in reuse factors greater than or equal to 1. However, a non-
trivial fraction of the operations result in less than 1 reuse factor for GA Get operations.

Approximately 90% of the arrays in the calculation are live only about 5% of the total
execution time (see Fig. 2(e)). In addition, almost no data are live for longer than two-
thirds of the execution time. This is due to the fact that the CCSD calculation consists
of two distinct sub-calculations. The durations of the read-only windows for CCSD are
similar to those of HF/DFT.

8 Evaluation of Various Fault Tolerance Schemes

In this section, we evaluate the fault tolerance schemes presented in Section 5 for
the two modules characterized earlier. The information collected on the creation and
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Fig. 3. Fault tolerance communication overhead as a function of the checkpoint intervals
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Fig. 4. Fault tolerance space overhead as a function of the execution time

destruction of arrays and their associated sizes was used to evaluate the checkpointing
schemes. Total volume of communication between each collective synchronization is
used to evaluate the redundant data communication approach. Any calls that modify a
GA matrix are intercepted to mark the matrix as modified. This has an impact on the
cost of the checksum-based approach to tolerating faults.

Fig. 3 depicts the total data volume overhead for the various approaches. Note that
the checkpoint interval does not affect the checksum-based and redundant communi-
cation approaches. The cost of replication-based approaches is proportional to the to-
tal data size and scales linearly with number of processors. This is especially true for
strong-scaling calculations of interest in this domain. While checksum computations
typically involve O(log p) steps in tree-based approaches, algorithms that are linear in
the message size per process exist for large message sizes [31]. Thus, the total data size
is a faithful representation of checkpoint and checksum-based approaches—both for
the runs evaluated and to compare expected behavior on larger systems. For both DFT
and CCSD modules, the checksum-based approach incurs higher overhead than other
schemes, except for full checkpointing with small checkpoint intervals. This is expected
from the small size of the read-only windows. When the read-only windows are large,
the checksum-based approach performs better because a large number of temporary
arrays transition less frequently between read-only and modification phases. The re-
dundant communication approach performs worse due to the reuse factors encountered.
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Fig. 3(b) shows the cost associated with the schemes for the CCSD module. Incre-
mental checkpointing expectedly improves upon full checkpointing. The frequent tran-
sitions in data and the associated small read-only windows (as shown in Fig. 2(f)) cause
the checksum-based approach to be the most expensive. However, unlike HF/DFT,
CCSD’s data access behavior results in high reuse factors for many arrays. This in-
creases the cost of redundant communication-based fault tolerance. Fig. 3(b) demon-
strates this approach is as expensive as the checksum-based approach.

Space overheads of the various schemes are shown in Fig. 4. Full and incremental
checkpointing and redundant data communication approaches all incur the same space
overhead and are represented as “checkpointing” in the figure. The data movement over-
head of the checksum-based approach is compensated for by the low space overhead
observed. In particular, there are large reductions in space overheads for the HF/DFT
calculation. The peak space overhead is higher for the CCSD calculation due to the
larger arrays encountered, which must be duplicated when being modified.

The incremental checksum approach combines the best features of checkpointing-
and checksum-based approaches. The data volume overhead is comparable to incre-
mental checkpointing in both calculations. The space overhead, while higher than a
pure checksum-based approach, is much lower than other schemes.

9 Conclusions

Designing fault tolerance into existing applications is a non-trivial task. We presented
our approach to evaluating various fault tolerance schemes in the context of representa-
tive modules in a large computational chemistry application. We developed a method-
ology to identify the data access characteristics of the application modules. To the best
of our knowledge, this is the first-ever characterization of its kind for applications in the
computational chemistry domain. The choice of fault tolerance scheme is influenced
not only by performance implications but also the ease with which it can be incorpo-
rated into the application. We believe such an analysis is essential in understanding the
trade-off between the implementation effort and the benefits achieved. In addition, this
characterization has spurred efforts to improve the implementation beyond fault toler-
ance and could be a benchmark for design of other runtime components. As future work,
we are investigating similar analysis of applications employing other data abstractions,
such as Portable, Extensible Toolkit for Scientific Computation (PETSc) [24].
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Abstract. This paper presents a software infrastructure for high per-
formance numerical optimization on clusters of multicore systems. At
the core, a runtime system implements a programming and execution
environment for irregular and adaptive task-based parallelism. Building
on this, we extract and exploit the parallelism of a global optimization
application at multiple levels, which include Hessian calculations and
Newton-based local optimizations. We discuss parallel implementations
details and task distribution schemes for managing nested parallelism.
Finally, we report experimental performance results for all the compo-
nents of our software system on a multicore cluster.

Keywords: task parallelism, message passing, numerical differentiation,
global optimization.

1 Introduction

Numerical optimization is a useful tool that has been widely used on many sci-
entific problems such as space trajectory calculation and computation of optimal
shapes for automobile or aircraft components. Optimization problems, especially
global ones, have high computational demands because of the substantial exe-
cution time and the possibly multiple local mimima of the objective function to
minimize. Exploitation of parallelism at several levels such as function evalua-
tions, numerical computations and the optimization algorithms themselves can
drastically reduce the time required to find a solution.

The Multistart method is a standard and widely used scheme for dealing with
global optimization problems. According to this method, a local optimization
procedure is applied to a number of randomly selected points. Local optimiza-
tion can be based on the Newton method with Hessian modification, a general
and powerful method for multidimensional non-linear optimization that makes
use of first and second derivatives of the objective function. This, in turn, in-
troduces further computational complexity as derivative estimation via finite
differentiation requires a number of function evaluations.
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Task-based parallelism, as expressed by the master-worker programming para-
digm, can be an effective approach for a cluster-aware implementation of global
optimization methods such as Multistart. Function evaluations are mapped to
tasks and assigned to the workers. The dynamic load balancing of the model
further enhances its suitability. A naive implementation of the model, however,
cannot meet all the requirements that Multistart imposes. First, the large ex-
pected number of spawned tasks (typically on the order of 106) affect the scal-
ability as the single master becomes a bottleneck. Secondly, the exploitation
of nested parallelism requires advanced runtime techniques, able to provide effi-
cient management of processing elements. Additionally, it is important to have a
hardware-independent solution that transparently uses multi-threading to fully
exploit the physically shared memory of smp/multi-core systems.

In this paper, we present a software infrastructure that deals with all the above
limitation issues that concern the parallelization of the Multistart method. At the
core of the system there is torc, a novel runtime environment for programming
and executing irregular and adaptive master-worker applications on multi-core
smps and clusters of such machines. As such, torc targets both message pass-
ing and shared memory programs by exporting an api that provides ease of
programming and transparent load balancing without requiring any interaction
with the low-level message passing primitives. Building on torc, we design a
standalone numerical differentiation software package (pndl) that provides rou-
tines for gradient and Hessian computations. We manage to extract parallelism
at all possible levels in a straightforward and seamless manner, while we present
several task distribution schemes, which are combined with the work stealing
mechanisms of torc. Finally, we present the parallelization of a Newton-based
Multistart method using both torc and pndl to execute multiple local opti-
mizations and gradient/Hessian calculations. The experimental evaluation on a
dedicated multicore cluster demonstrates the efficiency of our system.

The rest of this paper is organized as follows: Section 2 gives a brief intro-
duction to the non-linear global optimization problem. Section 3 discusses the
parallelization issues of Multistart. Sections 4 and 5 present the torc tasking
library and pndl. Experimental evaluation and related work are reported in
Sections 6 and 7 respectively. We conclude with a discussion in Section 8.

2 Numerical Optimization

The task of numerical optimization is to locate (approximate) a minimizer of
a generally multidimensional objective function. The mathematical formulation
is

min
x∈Rn

f(x) (1)

where x ∈ R
n is a real vector and f : R

n → R the objective function. There
exist a plethora of applications in physics, chemistry, engineering, and economics
that can be formulated as optimization problems. Predicting the tertiary pro-
tein structures, defining optimal sea routes, calculating bound states for few
body systems, tuning all kinds of machine learning models and identifying the
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seismic properties of a piece of the earths crust, are all examples of real world
applications that can be tackled as optimization problems.

An optimization algorithm is a sequential procedure that, beginning from a
starting point x0 ∈ S, generates a sequence of iterates {xk}∞k=0 that terminates
when the solution point is approximated with a prescribed accuracy. In deciding
how to move from one iterate xk to the next the algorithm uses information
about the function at xk (function value, first or second order derivatives). A
general class of optimization algorithms use second order derivative information
of the objective function and use it to build and minimize a quadratic model
around the current iteration. The main representative of this class is the Newton
method. At each iterate, the Newton method makes use of first and second order
derivative information to proceed to the next point. This can be achieved using
a line search algorithm which searches along a descent direction pk ∈ R

n for an
iterate with lower function value. The distance to move along pk can be found by
solving the following one-dimensional minimization problem that is to find a step
length α that minimizes f(xk + αpk). The main computational cost of a single
Newton iteration is determined by the objective function and the derivatives
calculation that are used to compute the search direction.

In many cases derivatives cannot be expressed analytically because the un-
derlying functions are represented by large and complicated computer codes. In
these cases finite differencing is an approach for calculating the first and sec-
ond order derivatives of an n−dimensional objective function at a point x by
examining the objective function behavior on small finite perturbations around
x. The number of function evaluations depends on the order of the derivative
(first or second) and on the requested accuracy (the larger accuracy the more
function evaluations). For the gradient vector at least n+1 function evaluations
are required and for the Hessian at least n(n + 1)/2. Two of the most popular
formulas for approximating gradient and Hessian, using central differences are
summarized below:

∂f(x)

∂xi
≈ f(x + εei) − f(x − εei)

2ε
(2)

∂2f(x)

∂xi∂xj
≈ f(x + εei + εej) − f(x − εei + εej)

4ε2
− f(x + εei − εej) + f(x − εei − εej)

4ε2

where ei is the i−th unit vector and ε a small positive scalar. Finite differencing
is a perfect candidate for parallel execution. All function evaluations in Eq.(2),
f(x + εei) and f(x + εei + εej), can be performed independently and in parallel.

The Newton procedure locates a minimizer efficiently with quadratic conver-
gence speed. However, there is no guarantee that this minimizer will be the one
with the lowest function value in all S, as the minimizer may stick at a local
minimum. This requirement introduces the problem of global optimization, one
of the most difficult problems in applied mathematics. Searching for the global
minimum is a quite challenging, yet extremely useful task for all applications
mentioned in the beginning of this Section. It is proven, in the multidimensional
case, that it is impossible to guarantee the globally optimal value will be found in
finite time. All that can be assured is that the probability of locating the global
minimizer approximates 1. One of the oldest and most popular schemes for
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Fig. 1. Execution task graph for Multistart using finite difference derivatives

dealing with global optimization problems is the Multistart method. According
to this method, a local search procedure L is executed for each point in a sample
generated from a uniform distribution over the search space S. Albeit simple
in principle, Multistart is the heart of more sophisticated global optimization
algorithms such as clustering methods[1,2].

3 Multistart Parallelism Issues

In the framework of global optimization based on numerical differentiation, there
exist several levels of parallelism that can be exploited in order to accelerate the
method. Fig. 1 illustrates the execution task graph of the Multistart method.
Each circle corresponds to code that spawns parallelism, which can be expressed
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and instantiated with lower-level tasks. Tasks at the innermost level are repre-
sented with squares and correspond to serial code and specifically to either single
function evaluations or sequential direct linear algebra operations. Therefore, the
paths of the graph represent operations that can be performed in parallel while
their meeting points represent the completion of all tasks in a team with the
satisfaction of all data and control dependencies.

Initially, the application runs the Multistart method and spawns first-level
(L1) tasks. These perform the Newton local search method to multiple indepen-
dent initial points (xi) and execute iterations until the convergence criterion is
met. In each iteration, the tasks first proceed with the derivative calculation,
spawning two second-level (L2) tasks that compute the gradient and Hessian re-
spectively. The gradient computation includes a number of function evaluation
(L3) tasks. The Hessian computation, however, exploits an additional level of
parallelism by assigning the numerical calculation of each partial derivative to a
(L3) task that can spawn two to nine function evaluation (L4) tasks, depending
on the desired accuracy and the bounds. Local search continues with a sequen-
tial task that performs the required matrix modification and the solution of the
linear system. The iterative line search method follows, exploiting each time a
single level of parallelism for the gradient computation. For a large number of
initial points, a gradual execution of Multistart can be performed by applying
the Newton method to bunches of points. In such case, the execution task graph
is repeated until the desired number of points has been processed.

Multistart is a highly irregular parallel application: first, the local search
method is applied concurrently to multiple points, the number of which may not
be exactly divided by the number of available processors. Secondly, the execution
time of local search exhibits significant variation as the number of iterations re-
quired for convergence depends on the randomly selected initial point. Similarly,
the line search method is performed for an unknown before number of iterations.
Irregularity is found even at the innermost level of parallelism (Hessian calcula-
tion), as the number of function evaluations for the derivative computation at a
specific point also depends on the imposed bounds on the variables. According
to the above, the execution times for finding a minimum for each initial point are
neither balanced nor known beforehand. Derivative estimation via finite differ-
encing is computationally expensive for several applications where the time for
a single function call is substantial. Therefore, the highly irregular nested paral-
lelism of Multistart must be exploited at all possible levels, without making any
assumption about the number of available processors.

4 TORC Runtime Library

torc [3] implements a task-based programming and runtime environment that
makes the development of master-worker applications almost trivial. Although
torc supports several features, due to lack of space we briefly present only those
related to the parallelization of the Multistart method.

torc assumes that a single application consists of multiple mpi processes
with private memory when running on the cluster. Furthermore, it uses



358 P.E. Hadjidoukas et al.

multi-threading to exploit the multiprocessor/multicore cluster nodes. A task
represents a work unit that is independent of its execution vehicle, i.e. the mpi
process or thread. A spawned task can be submitted for execution to any mpi
process; the programmer may specify the target process in the task creation
routine. When a parent task blocks, its underlying vehicle can proceed to the
execution of other ready-to-run tasks. This means that a torc application can
run successfully even if only a single-threaded process is used. Furthermore, each
process can have multiple worker threads. Therefore, the same application code
can run on any combination of mpi processes and threads, exploiting at runtime
the presence of physically shared memory, if available.

Due to the decoupling of tasks and execution vehicles, multiple levels of task
parallelism are inherently supported and any child task can become a master
and spawn new tasks. Therefore, torc enables the programmer to express hier-
archical and recursive task parallelism naturally, which would be otherwise quite
difficult to implement. In the task creation routine (torc task()), the user spec-
ifies the task function, the number of arguments this function receives and an
argument list. For each argument, its size and data type is required. In addition,
an intent attribute must be also supplied, similarly to the IN, OUT and INOUT
intent attributes of Fortran 90. Any data movement is performed transparently
to the user. After task creation, a master task calls the torc waitall() routine
to suspend itself until all child tasks have finished and their results have arrived.
Several master-worker applications may have global data that is initialized by
the master and then broadcast to the workers. The torc bcast() routine allows
any task to broadcast global data to all mpi processes, thus avoiding unnecessary
data transfers.

As task stealing is inherently supported by torc, the programmer has only
to decide about the task distribution scheme, by querying the execution envi-
ronment and then specifying the node or worker where each task will be initially
submitted for execution. The scheduling loop of a worker thread is activated
when its current task finishes or blocks. A worker extracts and executes the task
that is at the front of its local ready queue. If this is empty, the worker tries to
steal a task from the rest of the intra-node ready queues. If inter-node task steal-
ing is enabled, it issues requests for work to remote nodes in sequential order.
Task stealing is always performed from the back of the ready queues. The steal-
ing of a task from a remote queue includes the corresponding data movement,
unless the task returns to its parent node. Inter-node task stealing is optional
and must be explicitly enabled based on the load imbalance of the parallel ap-
plication. On the other hand, intra-node task stealing is always active. A more
detailed description of the torc library can be found in [3].

5 PNDL and Parallel Multistart Implementation

The parallel implementation of the numerical differentiation library for multi-
core clusters has been based on the tasking model that torc provides. For each
function evaluation, a task is created, with main input argument a vector x and
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! first level
subroutine pndlhf(f, x, n, iord, hes)
external f, driver
integer n, iord
double precision x(n), hes(n,n), xx(n)
common /data/ xx
...
<set xx(I) = x(I)> ! create copy of x
call torc_bcast(xx, n, MPI_DOUBLE_PRECISION)
iworker = torc_worker_id()
nworkers = torc_num_workers()
<for each derivative>

call torc_task(iworker, driver, ..)
istride1 = <# function values required>
iworker = mod(iworker+istride1,nworkers)

call torc_waitall()
end

! second level
subroutine driver(f, n, ...)
double precision xx(n)
common /data/ xx(n)
...
iworker = torc_worker_id()
nworkers = torc_num_workers()
istride2 = 1
<for each required function value>
call torc_task(iworker, f, ..)
iworker = mod(iworker+istride2,nworkers)

call torc_waitall()
<compute partial derivative h(i,j)>
end

Fig. 2. Outline of a pndl Hessian calculation with exploitation of two levels of paral-
lelism using the STRIDE distribution scheme

result the computed function value f(x). The core routine that pndl implements
for Hessian computations is: pndlhf(f,x,n,iord,hes), where f is the function
to be differentiated, x the vector containing the point of calculation, n the di-
mensionality of the function, iord the requested order of accuracy, and hes the
resulting Hessian matrix.

The parallel routines that pndl exports to mpi programs have been redesigned
for a master-worker execution mode. The calling process initializes the input pa-
rameters and receives the computed derivatives. When a pndl routine is invoked,
the primary task initially broadcasts the input vector x, through the use of a
common block. If the routine has a single level of parallelism, function evalu-
ation tasks are spawned and distributed cyclically to the workers. After task
completion, the primary task uses the gathered function values to compute the
derivatives. Although a reduction operation can be used, the adopted scheme
preserves the sequential order of calculations and, thus, avoids rounding errors.

The above scheme, however, may increase significantly the memory require-
ments of pndl for the estimation of second order derivatives of functions with
a large number of variables, which can be of the order of thousands for specific
problems. To handle this issue, we exploit nested parallelism; each element of
the Hessian is calculated by a first-level task, which issues function calls through
second-level tasks. The number of first-level tasks is equal to (n(n + 1)/2) and
each of them spawns 2 to 9 second-level tasks, according to user parameters.
Memory usage is drastically reduced because the number of active first-level
tasks, which reserve stack space for the results, never exceeds the number of
available workers. This is achieved because second-level tasks are inserted in the
front of the ready queues and thus have higher execution priority than first-level
tasks, which are inserted at the end.

The runtime architecture of torc allows for several task distribution schemes:
Fig. 2 outlines the hierarchical parallel implementation of the pndlhf routine
using the STRIDE scheme, which divides equally the number of function
evaluations among the available workers. The first argument of the task cre-
ation routine denotes the identifier of the worker thread where the task will be
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submitted to. The parent task distributes the first-level tasks using a variable
stride (istride1) that is determined by the (known beforehand) number of
second-level tasks that correspond to each task. Next, each first-level task dis-
tributes the inner tasks to consecutive workers (istride2=1), starting from the
worker where that task runs on. The STRIDE scheme is, however, suitable only
for dedicated homogeneous clusters and may result in an excessive number of
messages for high-dimensional functions. To overcome these issues we have in-
troduced a dynamic task distribution scheme, called glts, which distributes the
first-level tasks cyclically across the processors (istride1=1) and submits the
second-level tasks locally (istride2=0) with task stealing enabled. gl is another
task distribution scheme that differs from glts in that task stealing is used only
at the intra-node level, i.e. between workers that belong to the same process.
Finally, llts is a variant of the glts scheme that submits even the first-level
tasks locally and specifically in the ready queue of the worker that issued the
pndl routine (both strides are equal to zero).

The parallelization of the Newton method relies on two pndl routines that
compute the required gradient and Hessian matrices. These routines can be exe-
cuted concurrently, as an additional level of parallelism, through the spawning of
two torc tasks. This, however, requires appropriate modifications in pndl, due
to the usage of the common block for broadcasting the input vector. Therefore,
we use an array of input vectors in the common block and each pndl function
call is dynamically assigned a unique identifier that specifies an available en-
try of this array. Parallel Multistart takes advantage of the reentrancy of pndl
functions to issue multiple local searches concurrently starting from randomly
chosen initial points. As the number of points increases, the small serial fraction
of the Newton method becomes negligible and the effective utilization of parallel
hardware is further improved. For Multistart, we have followed mlts, a modified
llts distribution scheme: tasks at the first-level of parallelism, i.e. Newton opti-
mizations, are distributed cyclically across the workers. Parallelism at all inner
levels is submitted locally, with inter-node task stealing enabled. Ideally, each
local search will be performed exclusively by a single worker. Idle workers will
try to steal and execute tasks that belong to the first-level of parallelism and
will participate in the execution of remotely issued pndl routines only when the
number of remaining optimizations is less than the number of workers.

6 Performance Experiments

In this section we present experimental results from application executions on
a dedicated 16-node Sun Fire x4100 cluster with Gigabit Ethernet, each node
with 2 dual-core AMD Opteron 275 CPUs. The software setup includes Linux 2.6,
GCC 4.3 and mpich2. In all experiments we use the multithreaded configuration,
running a single process with multiple workers on each cluster node.

Our system targets mostly medium to coarse-grained tasks for remote ex-
ecution. As an indication, for the specific platform used for our experimental
evaluation, the task execution overhead is measured approximately 0.1ms for a



High-Performance Numerical Optimization on Multicore Clusters 361

zero-argument task; this overhead however decreases with the number of tasks
due to the overlap of task creation, data movement and task execution. Thus,
the overhead for the single task case depends on the latency of the intercon-
nection network, while the overall minimum overhead depends on the maximum
bandwidth. In addition, the minimum overhead for a given number of tasks is
a linear function of the argument size. In contrast, within a multi-core node we
support very fine-grained tasks efficiently.

Parallel Hessian. We present two sets of synthetic experiments that calculate
the Hessian with O(h4) precision without imposing bounds on the variables.
The first set of experiments (E1, E2) uses a test function with 20 variables and
leads to a total of 820 objective function calls. We have arranged for function
evaluation time to be 100ms and 1000ms via appropriate artificial delays. The
second set (E3, E4) uses a 100-dimensional test function with artificial delays
of 10ms and 100ms. The number of function evaluations for this set is 20200.
Both experiments are designed to cover a wide range of practical situations
and correspond to medium and large problem sizes. They are representative of
applications with many dimensions and/or substantial function execution time.

Figs. 3-4 and 5-6 present the results from the two sets of experiments with
the 4 task distribution schemes (stride, glts, gl, and llts). For the first set,
we observe that the speedup increases with the computational cost of the test
function, due to the higher computation-to-communication ratio. The slight de-
crease in performance is attributed to several factors: a small serial fraction of
code in the pndl function, the overhead for broadcasting the point and the
load imbalance when the number of function evaluations is not exactly divided
by the number of workers. Although all distribution schemes exhibit compa-
rable performance up to 32 processors, glts achieves the highest speedup on
64 processors, with llts and gl to follow. The lowest speedup corresponds to
the stride scheme because of its large number of explicit messages. For the
100-dimensional function (Figs. 5 and 6), the obtained speedup of glts almost
coincides with the ideal for both cases. In this set of experiments, the lowest
speedup values are observed for llts, due to the bottleneck at the single queue
where the 5050 first-level tasks are submitted for execution.

Parallel Multistart. In order to evaluate parallel Multistart we use a test
function with 10 variables, artificial delays that range from 1ms to 1s, and the
modified llts task distribution scheme. Fig. 7 depicts the speedup for a single
starting point, which represents a worst-case but unlikely to occur scenario in
global optimization problems. We observe that the Newton method fails to scale
as the number of workers increases, regardless of the function evaluation time.
This is mostly attributed to the small sequential task (�2%) of the Newton
method. The speedup can be further affected by the communication overheads,
especially when the computational cost of the objective function is low. For
function evaluation time equal to 1s, however, the measured speedup is very close
to the maximum theoretical speedup as defined by Amdahl’s law. Figs. 8 to 10
show the speedup of Multistart for 16, 64 and 1024 optimizations. The attained
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Fig. 3. Speedup for experiment E1 (vari-
ables=20, delay=100ms)

Fig. 4. Speedup for experiment E2 (vari-
ables=20, delay=1000ms)

Fig. 5. Speedup for experiment E3 (vari-
ables=100, delay=10ms)

Fig. 6. Speedup for experiment E4 (vari-
ables=100, delay=100ms)

speedup increases with the number of optimizations, especially if this exceeds
the number of available processing cores. For 1024 optimizations, the speedup
almost coincides with the ideal for both 10ms and 100ms evaluation time. The
performance results are in accordance with those obtained for a real application
case that deals with the protein folding problem [4].

7 Related Work

Although many parallel local and global optimization algorithms were proposed
in the last decades (e.g. [5,6], only a handful of actual systems exist. One of the
most widely used scientific software programs, MATLAB, presented its first par-
allel optimization solution in 2009 [7]. In the pioneer work of [8] an interval global
optimization method is implemented using dynamic load balancing. PGO [9] is a
general parallel computing based on the Genetic Algorithm. In PGO, the parallel
(and heterogeneous) computing framework is organized as a global master-slave
system using a central database management system for storing all the data dur-
ing optimization progress. Oriented in interoperability, the MHGrid platform [10]
exploits meta-heuristics based search methods and Grid computing to enable the
transparent sharing of heterogeneous and dynamic resources offering a versa-
tile Global optimization framework. MANGO [11] is a middleware that involves
the development of an extensible and flexible multiagent platform, in which
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Fig. 7. Speedup for 1 local search Fig. 8. Speedup for 16 local searches

Fig. 9. Speedup for 64 local searches Fig. 10. Speedup for 1024 local searches

autonomous agents can solve global optimization problems in cooperation. Fi-
nally, PaGMO[12] is a open source multi-threaded software that offers a plethora
of local and global optimization codes exploiting modern multi-core architec-
tures. In contrast to our infrastructure, none of the above supports hierarchical
and multi-level task parallelism. In addition, our system is platform-agnostic
supporting transparently both shared and distributed memory architectures.

Despite the availability of several software packages for estimating derivatives
numerically (e.g. [13,14]) their implementation is sequential. The only parallel
numerical Hessian implementations we are aware of are [15] and [16], mainly
used for computational chemistry.

8 Conclusions

We presented a system for efficient exploitation of nested and irregular paral-
lelism in non-linear optimization problems. At the core of our system is torc,
a runtime library that supports adaptive task-based parallelism on clusters of
multicores/smps. Using torc, we manage to extract and execute the multiple
levels of parallelism inherent in the Multistart optimization method, performing
thus Newton-based local searches, gradient and Hessian calculations and func-
tion evaluations in parallel.

Our ongoing work includes the integration of additional numerical
optimization techniques into our infrastructure. We also work on the efficient
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parallelization of a real application case, concerning the protein folding prob-
lem. Finally, we plan to extend the applicability of our system to computational
grids and gpgpu environments.
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Abstract. Monte-Carlo Tree Search (MCTS) is a simulation-based
search method that brought about great success to applications such
as Computer-Go in the past few years. The power of MCTS strongly
depends on the number of simulations computed per time unit and the
amount of memory available to store data gathered during simulation.
High-performance computing systems such as large compute clusters pro-
vide vast computation and memory resources and thus seem to be natural
targets for running MCTS. However, so far only few publications deal
with parallelizing MCTS for distributed memory machines. In this pa-
per, we present a novel approach for the parallelization of MCTS which
allows for an equally distributed spreading of both the work and mem-
ory load among all compute nodes within a distributed memory HPC
system. We describe our approach termed UCT-Treesplit and evaluate
its performance on the example of a state-of-the-art Go engine.

Keywords: UCT, HPC, Monte-Carlo Tree Search, distributed memory.

1 Introduction

Monte-Carlo tree search (MCTS) is a simulation-based search method that
brought about great success in the past few years regarding the evaluation of
stochastic and deterministic two-player games. MCTS learns a value function
for game states by consecutive simulation of complete games of self-play using
randomized policies to select moves for either player. Especially in the field of
Computer Go, an Asian two-player board game, MCTS highly dominates over
traditional methods such as αβ search [12]. MCTS may be classified as a se-
quential best-first search algorithm [17], where ”sequential” indicates that simu-
lations are not independent of each other, as is often the case with Monte-Carlo
algorithms. Instead, statistics about past simulation results are used to guide
future simulations along the search space’s most promising paths in a best-first
manner. This dependency and the need to store and share the statistics among
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all computation entities makes parallelization of MCTS for distributed memory
environments a highly challenging task.

Parallelization of traditional αβ search is a pretty well solved problem, e.g.,
see [6][10]. While for αβ search it is sufficient to map the actual move stack to
memory, MCTS requires us to keep a consecutively growing search tree represen-
tation in memory. On SMP machines, sharing a single search tree representation
in memory is straight-forward and has already been proven to be very effective
for MCTS parallelization [3][7]. However, sharing a search tree as the central
data structure in a distributed memory environment is rather involved and only
few approaches have been investigated so far [2].

In this paper, we present a novel approach for the parallelization of MCTS for
distributed high-performance computing (HPC) systems. Our algorithm spreads
a single search tree representation among all compute nodes (CNs) and guides
simulations across CN boundaries using message passing. We map search tree
nodes to randomized hash values, and the hash values to CNs in an equally
distributed fashion which makes spreading tree nodes a straight-forward proce-
dure [14][8]. A comparable approach used with traditional αβ search was termed
transposition driven scheduling (TDS) [15]. Computing more simulations in par-
allel than cores are available allows us to overlap communication times with
additional simulations. We evaluate the performance of our parallelization tech-
nique on a real-world application, our high-end Go engine Gomorra. Gomorra
has proven its strength at the Computer Olympiad 2010 in Kanazawa, Japan.
In summary, we make the following contributions:

– Our algorithm makes efficient use of all memory resources available in the
cluster. This is in strong contrast to formerly investigated parallelization
methods that either extensively duplicate data [3][2] or resort to using only
a fraction of a cluster’s overall memory capacity.

– We provide a flexible parallelization framework not only for MCTS but for
history-dependent simulation processes in general. Our framework is ad-
justable to light and heavy-weight simulations as well as for different kinds
of networks, targeting an optimal exploitation of available resources.

– Compared to other MCTS parallelizations for distributed memory systems,
our approach reduces the loss of information that inevitably results from
parallelizing simulations.

The reminder of the paper is structured as follows: Section 2 introduces to the
basic MCTS algorithm and reviews related work in parallelizing MCTS. Our
novel parallelization approach for MCTS is presented in Section 3. Section 4
evaluates our algorithm and details the experimental setup and results achieved.
Section 5 concludes the paper and gives an outlook to future work.

2 MCTS: Background and Related Work

In this section we provide some background of MCTS techniques and review
related work. First, we give a brief introduction to basic MCTS and then focus
on efforts to parallelize MCTS algorithms.
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2.1 Basic MCTS

We present the most basic MCTS algorithm used for two-player zero-sum games
with complete information. While we concentrate on two-player games and es-
pecially the game of Go for reasons of comparability with the work of others,
we want to note that our approach is applicable to the wider class of Markov
Decision Processes (MDP), e.g., see [13]. The so-called UCT algorithm (short
for Upper Confidence Bounds applied to trees [13]) is a modern variant of MCTS
and yields the experimentally best results for most of the current Go programs.
Algorithm UCT shows a pseudo code representation of UCT.

Algorithm UCT: Basic UCT-Algorithm for two-player zero-sum games
Data: G := (S, A, Γ, δ, r), with S being the set of all possible states (i.e. game

positions), A the set of actions (i.e. moves) that lead from one state to the
next, a function Γ : S → P(A) determining the subset of available actions
at a state, the transition function δ : S × A → {S, ∅} specifying the
follow-up state for a state-action pair where δ(s) = ∅ iff s /∈ Γ (s) and a
reward function r : St → {0, 1} assigning a binary reward to each terminal
state St := {s ∈ S|Γ (s) = ∅}. A set T ⊆ S contains all states that have a
memory representation. Counters Ns,a and Ws,a are kept in memory for all
states s ∈ T and their corresponding actions a ∈ Γ (s). We further set
Ns :=

∑
a∈Γ (s) Ns,a.

input : A state s0 ∈ S and a time limit
output: An action a ∈ Γ (s0)

T ← s0; t ← 0;
while Time available do

if st ∈ T then
// in-tree policy:

at+1 ← argmaxa∈Γ (s)actionValue(Wst,a, Nst,a, Ns);

Nst,at+1 ← Nst,at+1 + 1;
st+1 ← δ(st, at+1);
t ← t + 1;

else
T ← T ∪ s; // Expand memory representation of search tree

reward ← playout (st);
update (reward); // Update all Wsi,ai for 0 ≤ i ≤ t appropriately

t ← 0; // Start a new simulation

end

end
return argmaxa∈Γ (s0), Ns0,a;

Function actionValue (w, v, V )

return w
v

+ 2C
√

2 log(V )
v

; // With C being a constant
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UCT takes a state and a time limit as inputs and returns an action. As
long as the time limit is not exceeded, UCT computes search tree simulations
and builds up statistics about their outcomes for visited states. Being a so-called
anytime algorithm, UCT can be interrupted any time and returns the best action
found so far. As memory is generally limited, practical implementations build
up simulation statistics for near-root tree nodes only. An effective way proposed
in [4] is the generation of a memory tree T by starting with the root node and
adding the first node not already covered by T during each simulation. This
method leads to an efficient and predictable memory usage, as the memory tree
likely grows in the most interesting branches and a maximum of one tree node is
added with each additional simulation. Accordingly, simulation guidance based
on node statistics is only possible for nodes covered by T . Once a simulation
leaves T a randomized heuristic policy πH is used for action selection until a
terminal game position, i.e., a leaf of the real game tree, is reached. We call the
randomized heuristic policy playout policy and the history-dependent one used
for nodes covered by T in-tree policy.

Practical MCTS approaches may be divided into the four steps in-tree, ex-
pand, playout, and update, that form one simulation and that are repeated in
a loop as illustrated in Fig. 1. In Section 3 we will use these steps to form work
packages that can be distributed across a cluster.

(a) in-tree (b) expand (c) playout (d) update

Fig. 1. Building blocks of MCTS

UCT handles the task of selecting an action as a multi-armed-bandit problem
(MAB) and is designed following prior investigations on MAB in [1]. As shown
in Algorithm UCT, all data needed by UCT to select an action in the in-tree
phase are the simulation statistics of all possible actions available at that states.
Thus, for practical implementations it makes sense to store the statistics of all
those actions together to optimize memory access patterns. This becomes even
more important when considering the distribution of the search tree in a cluster,
where all data necessary for an action selection step should be stored on a single
CN to minimize communication overhead.

Researchers investigating the Go playout policy πH follow two principal di-
rections. While some researchers concentrate on handcrafted, computationally
light-weight policies [4][9], others advocate more heavy-weight policies learned
off-line from records of expert games or games of self-play with many sim-
ulations [5][18][11]. In either case, the computation of playouts is completely
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independent of former simulation results and therefore a perfect place to look
for work-packages that may be distributed across a cluster. For Go, the playout
step is typically dominating the simulation runtime, especially in the early stages
of a game where the depth of the search tree T remains much smaller than the
real game tree depth. The runtime dominance of the playout step is even more
pronounced when heavy-weight playout policies are being used.

2.2 Parallelization of MCTS

The most common parallelization methods presented so far are termed Tree-
Parallelization, Leaf-Parallelization and Slow-Tree-Parallelization [3], [2]. Fig. 2
illustrates these methods together with our algorithm UCT-Treesplit proposed
in this paper. Tree-Parallelization is most common on SMP machines as one
search tree representation is shared among several compute cores. Each core per-
forms one simulation and updates the shared tree representation using atomic
instructions. Leaf-Parallelization and Slow-Tree-Parallelization are suited for dis-
tributed memory machines. Leaf-Parallelization handles the in-tree part on only
one CN, and computes multiple playouts on remote CNs once a leaf of the search
tree representation T is reached. Slow-Tree-Parallelization performs rather inde-
pendent searches on all CNs but occasionally synchronizes statistics of near-root
tree nodes.

Among these methods, Slow-Tree-Parallelization is currently excelling for dis-
tributed memory systems. One drawback of this method is that no effort is made
at all to exploit the increased amount of memory available within a cluster. In-
stead, all CNs try to keep a nearly identical copy of the search tree representa-
tion. However, simply distributing the search tree across all cluster nodes would
result in very costly remote read/write operations, slowing down the simulation
dramatically. In the following section we present a novel approach that combines
both possibilities stated above resulting in an efficient parallelization of MCTS
for distributed memory systems.

3 The UCT-Treesplit Algorithm for Parallel MCTS

We concentrate on homogeneous HPC systems with a fast interconnect (e.g.,
10GBit Ethernet or Infiniband) consisting of N compute nodes (CNs), each
having C > 1 compute cores that share the CN’s entire memory, a model that
fits most common HPC systems. We use MPI for message passing and devote one
core (IO) of each CN for a thread handling message passing and work package
distribution while the remaining C − 1 cores (workers) are bound to worker
threads. Fig. 3 illustrates the setup of a CN.

The IO and worker cores communicate using thread-safe ring-buffers (Trans-
fer Buffer In/Out) that reside in shared memory. An infinite loop running on
the IO core reads available messages containing work packages from the network
link and stores them in a buffer. Afterward, a work package scheduler distributes
the received packages among the workers’ ring-buffers, balancing the work load.
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(a) Tree-Parallelization (b) Leaf-Parallelization

(c) Slow-Tree-Paralellization (d) UCT-Treesplit

Fig. 2. Overview of MCTS parallelization methods

Fig. 3. Setup of a compute node

Workers start computation once they receive a package and, if required, send re-
sponse messages back to the IO core using the corresponding buffer. In turn, the
IO core frequently collects messages from the workers’ ring-buffers and forwards
them to the network link appropriately.

During their computation, workers require access to state-action statistics. As
for some search domains it may be possible that equal states are reached through
different paths, we use a lock-free but thread-safe transposition table[7] TR ca-
pable of storing size(TR) nodes of the search “tree” representation. We assume
the existence of a hash-function hash : S → N assigning a unique and equally
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distributed hash value to any search tree node. A straight forward method for
computing an index ITR(s) into TR for a search tree node s is given by:

ITR(s) = hash(s) mod size(TR)

Distributing TR on N CNs of a cluster may be done by storing on each CN i
for 1 < i < N a transposition table TRi of size size(TR)/N . An index to this
distributed table is a tuple of a CN i and a local index ITRi to TRi. Both can
be computed as follows:

i(s) = hash(s) mod N (1)
ITRi(s) = (hash(s)/N) mod (size(TR)/N) (2)

Beside the partial transposition table, Fig. 3 also shows a cache for entries of
remote transposition tables allowing for faster access to statistics of frequently
visited states.

The key technique of our approach is the spreading of a single search tree
among all CNs while overlapping communication with the computation of addi-
tional simulations. We break simulations into small work packages that can be
computed on different cores. Moreover, cores computing work packages of one
simulation do not need to be on the same CN. Message passing is used to guide
simulations over CN boundaries.

Fig. 4. Finite state machine for our distributed simulation (Worker FSM)

Fig. 4 illustrates our distributed simulation process as a finite state machine
(FSM). During the in-tree part of a simulation, several action selection steps take
place. Each of those steps can be computed without the need to communicate
with other CNs by storing the statistics about all actions available in one state
together in memory. However, between two consecutive action selection steps
a simulation may move to another CN through a MOVE message. The dotted
arrows in Fig. 4 represent state transitions that always happen on a single CN
while solid arrows may cross CN boundaries. Those arrows are annotated with
the corresponding messages that are sent in case the CN changes. Note that the
UPDATE message is likely sent to more than one CN. In fact, it is send to all
CNs visited by the simulation as statistics need to be updated on all these CNs.
The states of the FSM are the work packages that make up the computational
load.
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Each of Spar simulations running in parallel suffers loss of information repre-
sented by the results of the Spar − 1 other simulations that would be available
in a sequential UCT version. Obviously this impairs the search quality [16] and
urges us to keep Spar as small as possible. Furthermore, we duplicate and oc-
casionally synchronize frequently visited tree nodes on all CNs to reduce the
communication overhead. In total the algorithm requires us to determine the
values of three parameters:

– Ndup: The number of simulations that must have passed a state before it
gets duplicated on all CNs.

– Nsync: The number of simulations that lead to the synchronization of a shared
state. Each time one action of a shared state s has been visited at least Nsync

times after the last synchronization, all values of actions of s are synchro-
nized.

– O: An overload factor used to compute the number of simulations Spar :=
(C − 1)NO that run in parallel on a system with N compute nodes.

Note that UCT-Treesplit may be configured to behave comparably to Slow-
Tree-Parallelization by sharing all nodes immediately and choosing an appro-
priate threshold Nsync for triggering synchronization. On the other extreme,
UCT-Treesplit behaves like Tree-Parallelization if tree nodes are never shared.

The search process begins by sharing the root node among all CNs. Then,
each CN starts Spar/N simulations. A unique identifier simID ∈ {0, Spar−1} is
assigned to each simulation. The data structure describing a simulation consists
of:

– The state stack containing all states visited and actions taken during simu-
lation. Together with each state, we store the CN where the action selection
took place.

– The simulation identifier simID.

Procedure WorkerMainLoop gives a pseudo code representation of the main
loop running on each worker core. Once a worker receives a MOVE message it
searches for the current state’s statistics in the cache and transposition table,
respectively (line 6). If no entry exists, the worker expands the search tree by
adding a new entry for the state. Immediately afterwards, a playout is computed
and an UPDATE message is sent to all CNs visited in the course of the simulation
(line 9). In case state statistics are found, an action is selected as in the
sequential algorithm (line 7) leading to a new state s′. If the statistics to s′ are
already shared or are located in the CN’s transposition table, the computation
continues on the same CN. Otherwise, a MOVE message is sent to the CN
storing the statistics of s′. Upon receipt of an UPDATE message, statistics for
all states for which an action was selected on this CN get updated (line 12).
MPI assigns a rank number CNrank ∈ {0, N} to each CN. If the CN’s rank
equals (simID mod N), the worker initiates a new simulation.
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Procedure WorkerMainLoop

//

1 while Time available do
2 if an incoming message is available then
3 Mout ← ∅;
4 msg ← inTransferQueue.dequeue();
5 if msg is a move-message then
6 if msg.stateStack.top() is already in transposition table then
7 Mout ← actionSelection(msg);
8 else
9 Mout ← expandAndPlayout(msg);

10 end

11 else// an update-message arrived

12 Mout ← update(msg);
13 end
14 outTransferQueue.enqueue(Mout);

15 end

16 end

4 Experiments

In this section, we present the experimental setup and the results achieved with
our Go engine Gomorra that incorporates the novel UCT-Treesplit algorithm.

4.1 Setup

Our computer Go engine Gomorra implements several state of the art enhance-
ments over basic UCT and proved its playing strength previously in several
games against the currently strongest computer Go programs. In our experiments
different instances of Gomorra play against each other on a 19x19 board size,
giving each player 10 minutes to make all its moves in a game. We choose the fol-
lowing values for the three UCT-Treesplit parameters: Ndup := 16, Nsync := 100
and O := 3. Note that the optimal values will depend on parameters of the com-
pute resources such as network latency and bandwidth as well as on the ratio
of processor speed to work package size. Although reducing Ndup decreases the
communication overhead for single simulations because less CN hops take place,
the overhead for synchronizing shared nodes increases because more nodes are
shared. However, few hops per simulation allow for keeping O small. Further-
more, lower values of Nsync lead to increased network traffic as more synchro-
nization messages are sent.

For our experiments we use a cluster consisting of 60 CNs, each one equipped
with 2 Intel Xeon X5650 CPUs (12 cores in total) running at 2.67 GHz and 36
GByte of main memory. The CNs are connected by a 4xSDR Infiniband network.
We use OpenMPI for message passing between the CNs.
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4.2 Results

Since UCT-Treesplit is communication intensive we first measure the average
load on the worker cores. A low load indicates that work packages cannot be
communicated fast enough and that the network is too slow in relation to the
average work package size, number of cores and the core’s clock rate. As MOVE
and UPDATE messages are rather tiny in our experiments, we identify the net-
work latency as the limiting parameter. With the given settings for Ndup, Nsync

and O, we have to restrict the number of used cores per CN to 6 to achieve
reasonable loads for higher numbers of CNs. Fig. 5a shows the measured core
loads for different numbers of CNs at different phases of the game. Considering
different phases of a game is important since a 19x19 Go game lasts for about
250-350 moves, and playouts at the end of the game require less computation.

Next, we are interested in the achievable simulation rates, measured in simu-
lations per second. The simulation rate directly influences the achievable playing
strength. Fig. 5b displays the scalability of the simulation rate over the num-
ber of compute nodes. It can be seen that UCT-Treesplit scales well for up to
32 CNs in early game phases while after move 200 the performance decreases
considerably with higher numbers of CNs.
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Fig. 5. Scalability of simulations with increasing number of CNs at different game
phases

The most important metrics, however, is the gain in playing strength achiev-
able with increasing compute resources. Table 1a presents the achieved win-
ning percentages of Gomorra playing against a copy of itself that can rely on a
doubled amount of simulations computed per move decision. To conduct these
experiments in reasonable time, we use a 4 core SMP machine except for the re-
sults marked with ∗ for which we use a 12 core SMP machine and for the results
marked with ∗∗ for which we use a 24 core SMP machine equipped with 132
GB of main memory to be able to store the vast amount of statistics. Compara-
ble experiments were done in [2](Table 1) for the Go program MoGo. Although
the absolute playing strength of MoGo is superior to Gomorra’s, our Go engine
seems to scale better with higher simulation numbers.
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Table 1. Evaluation of Gomorra’s playing strength

(a) Running on a single compute node.

Ns: Number Winrate Games
of sim/move 2Ns vs Ns played

1,000 85.8 ±1.6% 500
4,000 86.0 ±1.6% 500

16,000 79.6 ±1.8% 500
128, 400∗ 82.4 ±1.7% 500

256, 800∗∗ 83.9 ±3.0% 149

(b) Using parallel UCT-Treesplit.

N: Number Winrate Games
of CNs 2N vs N played

1∗ 53.3 ±2.0% 600
2 73.0 ±1.8% 600
4 61.3 ±2.0% 600
8 53.8 ±2.0% 600

16 46.1 ±2.3% 486

Table 1b shows the achieved winning rates of Gomorra playing against a copy
of itself using the UCT-Treesplit algorithm on a varying number of compute
nodes. In the 2 vs 1 node experiment marked with ∗, the single node version
has no additional work for building MPI messages, moving simulations between
compute cores, etc., explaining the rather small advantage of the double node
version.

5 Conclusion and Future Work

In this paper, we investigate a novel approach to parallelize MCTS on distributed
memory HPC systems. We present a way to share a single game tree represen-
tation efficiently among all compute nodes and evaluate the behavior of the new
UCT-Treesplit algorithm in a high-end Go engine. We show that, for the game
of Go, UCT-Treesplit scales up to 16 nodes.

An explanation for the diminishing gains UCT-Treesplit achieves with increas-
ing compute nodes as shown in Table 1b could be the high number of simulations
that are computed in parallel. With an overload factor of 3, we compute 480 sim-
ulations in parallel on 32 CNs. Richard B. Segal measured the scaling of the Go
program Fuego with increasing numbers of parallel simulations and different time
settings in [16]. His experiments showed a major decrease in playing strength if
more than 128 threads are used for short time settings. However, giving Fuego
more time per move yielded good results for even 512 parallel simulations. Thus,
we may expect better scalability of UCT-Treesplit by just increasing the search
time.

Another important observation and possible explanation for the scalability
limitations is the diminishing increase in simulation rate at the end of games,
i.e., when the remaining search tree and thus the work packages become too
small, as shown in Fig. 5b. As part of future work we will try to keep the
simulation rate high and reduce the communication overhead occurring during
each simulation, for example by smoothly decreasing Ndup and increasing Nsync

when it comes to the end of a game. Furthermore, we will study the influence
and optimal settings for the various parameters involved.
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13. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

14. Lorenz, U.: Parallel controlled conspiracy number search. In: Monien, B., Feld-
mann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 420–430. Springer, Heidel-
berg (2002)

15. Romein, J.W., Plaat, A., Bal, H.E., Schaeffer, J.: Transposition table driven work
scheduling in distributed search. In: National Conference on Artificial Intelligence,
pp. 725–731 (1999)

16. Segal, R.B.: On the Scalability of Parallel UCT. In: International Conference on
Computer and Games, pp. 36–47 (2010)

17. Silver, D.: Reinforcement Learning and Simulation-Based Search in Computer Go.
PhD thesis, University of Alberta (2009)

18. Silver, D., Tesauro, G.: Monte-Carlo Simulation Balancing. In: International Con-
ference on Machine Learning, pp. 945–952 (2009)



Petascale Block-Structured AMR Applications

without Distributed Meta-data

Brian Van Straalen, Phil Colella, Daniel T. Graves, and Noel Keen

Applied Numerical Algorithms Group,
Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA

Abstract. Adaptive mesh refinement (AMR) applications to solve par-
tial differential equations (PDE) are very challenging to scale efficiently
to the petascale regime.

We describe optimizations to the Chombo AMR framework that en-
able it to scale efficiently to petascale on the Cray XT5. We describe an
example of a hyperbolic solver (inviscid gas dynamics) and an matrix-
free geometric multigrid elliptic solver. Both show good weak scaling to
131K processors without any thread-level or SIMD vector parallelism.

This paper describes the algorithms used to compress the Chombo
metadata and the optimizations of the Chombo infrastructure that are
necessary for this scaling result. That we are able to achieve petascale
performance without distribution of the metadata is a significant advance
which allows for much simpler and faster AMR codes.

1 Introduction

PDE solvers using adaptive mesh refinement, AMR, on block structured grids,
e.g. [3, 4], are among the most challenging applications to adapt to massively
parallel computing environments. Because the grids can be anywhere in the
domain, metadata is required to describe where the data lives and what processor
is responsible for it. Standard Chombo metadata is not distributed- all processors
keep a redundant index of the distributed data layout. Previous results [10]
have shown that Chombo AMR with scales well to 10K processors. The size (in
memory) of the metadata in Chombo made further scaling impossible without
significant metadata redesign. Other AMR infrastructures have distributed their
metadata among the processors. PARAMESH [7] and SAMRAI [12] do this
for large problems. BoxLib [5], in the CASTRO code [1], does not distribute
metadata but extensively threads their code and uses bigger grids and were
able to scale up to 200K processors using one grid per processor. In this paper,
we use Chombo’s flat MPI method and we compress Chombo’s metadata. We
show good weak scaling to petascale with many more boxes per processor (77
in the hyperbolic case, 53 in the elliptic case). Because we do not distribute our
metadata, we avoid substantial increases in code complexity and communication
time.
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2 AMR Applications

Block-structured AMR, developed by Berger and Oliger [4,3] for computational
gas dynamics, is a multi-scale algorithm that achieves high spatial and temporal
resolution in localized regions of dynamic multidimensional numerical simula-
tions. A broad range of physical phenomena modeled by PDE exhibit multi-
scale behavior where variations in the solution occur over scales that are much
smaller than the overall problem domain. Examples include flame fronts aris-
ing in the burning of hydrocarbon fuels, nuclear burning in supernovae, effects
of localized features in orography or bathymetry on ocean currents, tracking of
tropical cyclones, localized kinetic effects for plasma physics problems, and, in
general, small scale effects due to nonlinear instabilities. In each of these prob-
lems, the fundamental mathematical description is given in terms of various com-
binations of PDE of classical type (elliptic, parabolic, hyperbolic). The Berger
and Oliger AMR algorithm organizes refined regions into rectangular structured
grids of several hundred to several thousand grid points per grid. High-resolution
structured-grid methods (typically expressed as stencils) are used to advance the
solution in time. Furthermore, the overhead of managing the irregular data is
amortized over a relatively large number of floating point operations on the rect-
angular grids. For time-dependent problems, refinement is performed in time as
well as space. Each level of spatial refinement has its own stable time step, with
the time steps on a level constrained to be integer multiples of the time steps on
all finer levels.

2.1 Chombo AMR Framework

AMR applications require a long-term sustained investment in software infras-
tructure to create scalable solvers that are capable of utilizing the full capabilities
of the largest available HPC platforms. We have created a framework for imple-
menting scalable parallel AMR calculations called Chombo [6] that provides an
environment for rapidly assembling portable, high-performance AMR applica-
tions for a broad variety of scientific disciplines.

Chombo is a fully instrumented C++ library. There are a set of timer macros
that can be used to time functions or sections of code. These timers attempt
to use native instructions on the target architecture in order to minimize the
overhead of collecting detailed performance data.

In the standard Chombo framework, there is metadata associated with each
computational region on a adaptive (called a “Box”). Each Box contains the in-
teger locations of the lower left and upper right corners of the region. A collection
of these regions along with their processor mapping (a “DisjointBoxLayout”) is
represented internally by a

Vector< pair<Box, int> >

This metadata is not distributed and therefore grows with the size of the prob-
lem. In previous scaling studies [10], the memory cost of this metadata was
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shown to become prohibitive in the 8K-32K processor range. A large part of
the current work is to compress this metadata without distributing it. This al-
lows the Chombo framework to scale to 131K processors for both elliptic and
hyperbolic benchmarks without without the large memory cost and without the
communication cost associated with distributed metadata.

3 Benchmarking Methodology

In many applications that use PDE solvers, the primary motivation for using
large numbers of processors is to achieve weak scaling. Even with AMR, many
leading scientific problems remain out of reach due to inadequate grid resolution.
In those cases, increasing the number of processors is used to increase the spatial
resolution of the grids using the minimum number of processors necessary to fit
the problem into the available memory. Therefore, we focus on a methodology for
constructing weak-scaled AMR benchmarks because this methodology models
the dominant use-case for scientific problems that employ this computational
method. We use two different examples for our benchmark, an explicit Godunov
method for gas dynamics and a multigrid solver to solve Poisson’s equation.
These two are reasonable proxies for the two components of most complete AMR
applications: explicit solvers for hyperbolic equations and implicit solvers for
elliptic and parabolic equations.

3.1 Replication Scaling Benchmarks

Following [10] we use two benchmarks based on replication scaling. We take a
grid hierarchy and data for a fixed number of processors and scale it to higher
concurrencies by making identical copies of the hierarchy and the data, see Fig-
ure 1. The full AMR code (processor assignment, problem setup, etc.) is run
without any modifications to guarantee it is not directly aware of the replicated
grid structure. Replication scaling tests most aspects of weak scalability, is sim-
ple to define, and provides results that are easy to interpret. Thus, it is a very
useful tool for understanding and correcting impediments to efficient scaling in
an AMR context.

3.2 Poisson Benchmark

We first benchmarked an AMR solver for Poisson’s equation, based on a cell-
centered multilevel discretization of Laplacian in three dimensions [8]. The solver
itself used multigrid iteration suitably modified for an AMR grid hierarchy [11,2].
The benchmark applied ten iterations of the AMR-multigrid V-cycle, which is
typical of the number of iterations required for the solver to converge, and corre-
sponds to 1700 flops/grid point. This is a very demanding application from the
standpoint of parallelism – requiring multiple communication and synchroniza-
tion steps per multigrid iteration. The algorithmic features of this benchmark
are typical of broad range of elliptic solvers arising in applications using AMR.
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(a) (b)

Fig. 1. (a) Grids at the finest AMR level used in the hyperbolic gas dynamics bench-
mark – these grids cover the shock front of a spherical explosion in 3D. (b) Replicated
grids at the finest AMR level used in the weak scaling performance study of the hy-
perbolic gas dynamics benchmark. There are 14902 boxes per processor at the finest
level before replication. Each box is size 163.

The grids used as the basis of for the Poisson replication benchmark are
shown in Figure 3.3. There are three levels of AMR with a refinement ratio of
four between each level. There is one unknown per grid point for a total of 15M
grid points in the configuration with no replication.

3.3 Hyperbolic Gas Dynamics Benchmark

We benchmarked an explicit method for unsteady inviscid gas dynamics in three
dimensions that is based on an unsplit PPM algorithm [13, 9]. This algorithm
requires approximately 6000 flops/grid point. Since it is an explicit method, com-
munication between processors is required only once per time step. We used the
implementation of this method from the Chombo software distribution without
significant modification. The grids used as the basis for the hyperbolic bench-
mark are shown in Figure 1.

The benchmark used three levels of AMR with a factor of 4 refinement between
levels and with refinement in time proportional to refinement in space. We use
fixed-sized 163 grids and and five unknowns per grid point, with 109 grid point
updates performed for the single coarse-level time step. None of the grids at any
level were changed during any of the time steps, i.e., there was no grid adaptation
in time which is sometimes called “regridding”. In the results given here, we are
only timing the cost of computing a single coarse-level time step, which includes
all intermediate and fine time steps on all AMR levels but excludes the problem
setup and initialization times.
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Fig. 2. Grids used in the Poisson benchmark before replication. The red is the level 0
grids, the green is level 1, the blue is level 2. This shows a 2x2 replication. There are
1280 boxes per processor at the finest level before replication. Each box is size 323.

4 Optimizing AMR for Scalability

To achieve our performance results for the two 3D Chombo applications dis-
cussed, several important changes were made to the standard code. A run-length
compression method was used to greatly reduce the memory overhead associ-
ated with the metadata for the grids. There were also application-specific opti-
mizations. For example, for our hyperbolic application, we optimized inter-level
coarse-fine interpolation objects to take advantage of our new metadata struc-
ture. For our elliptic solver, we carefully control the number of communication
steps necessary and greatly reduce the number of all-to-all communications in
the multigrid algorithm for AMR.

4.1 Memory Performance: Compression

Moore’s Law continued unabated for CPU design, but the gap between memory
capacity and memory latency has grown every year. In such an environment it
makes sense to work with the necessary metadata in an application in a com-
pressed format and utilize the excess of processor cycles to uncompress this
information on-the-fly as the processor needs it. This also makes better use of
processor-to-memory resources, while decompression can happen in very fast
local register storage.

Standard Chombo metadata holds the grid data for each level as explicit vec-
tors of pairs of each box and its associated processor assignment. As the number
of boxes becomes large, the memory associated with this representation of the
grids grows linearly since this description is not distributed among processors.
In [10], it was found that, for a typical Chombo application, the memory usage
becomes untenable at between 8K and 16K processors (where the total number
of boxes was between 1M and 10M).

We compress the metadata by first stipulating that every patch on a level
must be of fixed size. We then create a bitmap of the domain coarsened by the
box size and put a 1 where there is to be a box and a 0 where there is none.
This bitmap is compressed using run-length compression. The load balancing is
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done by simply dividing the patches up evenly between processors. If there are
N patches per processor, the first N in lexicographic order go to processor 0, the
next N to processor 1 and so on. For applications where the load on a patch is
more variable, a more flexible load balancing scheme may be necessary.

The results of this change in representation were striking. Figure 3 shows
the memory usage for a sample weak scaling run of a gas dynamics solver. The
problem has 77 boxes per processor at the finest level (at 196K processors, this
amounts to 15.2 million boxes). Figure 5 shows the memory usage for a sample
weak scaling run of an elliptic solver with 53 boxes per processor at the finest level
(at 98K processors this amounts to 6.55 million boxes). We track the memory
that Chombo allocates and measure the memory that the operating system is
using for the application. The amount of memory reported by the operating
system is substantially higher at high concurrencies and is largely due to MPI
memory overhead. In both cases, the metadata compression was necessary to
run at the highest concurrency, otherwise the memory of the compute nodes was
exhausted.

Figure 4 shows a line labeled “MPI overhead”. This is still a speculation on
our part, but many tools were used to eliminate and quantify the use of memory
in the benchmark applications.

4.2 Run Time Performance

To achieve better scaling of Chombo run time performance at higher concurren-
cies, optimizations were done for both the hyperbolic and elliptic solvers. For
the hyperbolic solver, changes were made to the definition of some inter-level

1000 10000 1e+05
Number of Processors

0

200

400

600

800

P
ea

k
 M

em
o

ry
 U

sa
g

e 
p

er
 M

P
I 

T
as

k
 (

M
B

)

Standard Chombo allocation tracking

Optimized Chombo allocation tracking

Fig. 3. Memory performance of Chombo 3D inviscid gas dynamics solver before and
after metadata compression. In both cases, there are three levels of refinement (factor of
4 between levels) and 77 boxes per processor at the finest level. The standard Chombo
solver was not able to run at the highest concurrencies because of memory requirements.
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Fig. 4. A closer look at memory performance of Chombo 3D inviscid gas dynamics
solver (a) before and (b) after metadata compression. In both cases, there are three
levels of refinement (factor of 4 between levels) and 77 boxes per processor at the finest
level. The original solver (a) was not able to run at the highest concurrencies because
it ran out of memory.

objects to account for the new fixed box size representation of the layouts. These
changes allowed excellent weak scaling results to 196K processors.

The standard Chombo elliptic solver required several optimizations to facil-
itate scaling to 98K. We used the fact that the equation is solved in residual-
correction form to minimize how often inhomogeneous inter-level interpolation is
done in the solve. Standard Chombo also does an extra coarse-fine interpolation
before the refluxing step. Previous to our optimizations, there were 8 inhomo-
geneous coarse-fine interpolations per multigrid v-cycle. We were able to reduce
this to only 2 inhomogeneous coarse-fine interpolations per multigrid v-cycle.
The standard Chombo Poisson solver does not do box aggregation. Once the in-
put grids are no longer coarsenable, a bottom solver is called. We introduce box
aggregation and take multigrid down to a two-cell grid. At the bottom level we
simply do two Gauss-Seidel relaxations. This saved a lot of communication time
at higher concurrencies because other bottom solvers require substantial all-to-
all communication to calculate norms. The AMR Multigrid is this case turns
into a true multigrid solve. We reduced the amount of communication at relax-
ation steps by only doing ghost cell exchanges every other relaxation step. This
did not substantially affect the multigrid convergence. The run time comparison
between standard Chombo and optimized Chombo for 10 elliptic solves (each
with 7 multigrid v-cycles) is given in figure 5. The standard Chombo solver was
not able to run at the higher concurrencies because the memory requirements
were too large for the machine.

Excellent weak scaling is observed on Jaguar (Cray XT5) to 196K processors
for the hyperbolic problem and 98K for the elliptic problem as is shown in Fig. 5.
There are 77 boxes per processor for the hyperbolic problem, and 53 boxes per
processor for the elliptic problem.
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Fig. 5. a)Memory performance of Chombo 3D elliptic solver before and after metadata
compression. In both cases, there are three levels of refinement (factor of 4 between
levels) and 53 boxes per processor at the finest level. The standard Chombo solver was
not able to run at the highest concurrencies because of memory requirements. b)Solve
time of Chombo 3D hyperbolic and elliptic solvers before and after optimization. In
both cases, there are three levels of refinement (factor of 4 between levels). The largest
hyperbolic benchmark was run at 196K cores.

As the problem size per processor remains constant for these weak scaling
experiments, we can estimate that the number of flops per processor are also
constant. For the hyperbolic solver, the number of total flops is estimated to be
7.4e10. At a concurrency 196K, with a solve time of 80.5 seconds, the aggregate
flop rate is 181 TFlops. For the multigrid elliptic solver, with the estimated
number of flops at 4.4e10, a solve time of 172.7 seconds, and 98K MPI processors,
the aggregate flop rate is 25 TFlops.

5 Summary and Conclusions

We present petascale weak scaling results for two key AMR applications. With
some modifications of the metadata representation of standard Chombo, we were
able to show good weak scaling for both hyperbolic and elliptic problems without
having to distribute metadata. Fully local metadata is maintained through the
use of compressing the metadata format and decompressing the information as
it is utilized in the calculation. The computational cost of working with loss-less
compression techniques is not measurable in these applications. This results in ef-
ficient memory usage at a slight increase in local processing cycles. This approach
involves far less complexity than distributed metadata designs that must balance
communication and local caching algorithms, which are application-specific.

In general, we feel that coding theory will become an increasingly impor-
tant aspect of HPC computing on future platforms where memory and com-
munication costs will increasingly be the science-limiting characteristic of these
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machines. Trading off excess compute cycles for more efficient memory usage
and lower communication costs will be a more common theme in future HPC
codes.

While this has been a great success, we recognize that ultimately the flat MPI
parallelism model is not extensible to the billion-way concurrency models needed
to achieve exascale performance. We consider this work to be but one part of
a larger exascale computing strategy where metadata is not distributed at the
MPI parallelism layer. Within an MPI rank there are several further levels of
parallelism to be exploited. The first level is threading the load currently handled
sequentially by each MPI rank. The next level is fine-grain parallelism within the
dimensional loops within a box. Both areas are being worked on currently. Finally
there are instruction-level parallelism models to make use of vector processing
within a larger threading model. These are all orthogonal optimization efforts
that must all succeed to meet the goal of exaflop simulations.
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tions Center project. The authors were supported by the Office of Advanced
Scientific Computing Research in the Department of Energy under Contract
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Abstract. Anisotropic mesh smoothing is used to generate optimised
meshes for Computational Fluid Dynamics (CFD). Adapting the size
and shape of elements in an unstructured mesh to a specification en-
coded in a metric tensor field is done by relocating mesh vertices. This
computationally intensive task can be accelerated by engaging nVIDIA’s
CUDA-enabled GPUs. This article describes the algorithmic background,
the design choices and the implementation details that led to a mesh-
smoothing application running in double-precision on a Tesla C2050
board. Engaging CUDA’s texturing hardware to manipulate the met-
ric tensor field accelerates execution by up to 6.2 times, leading to a
total speedup of up to 148 times over the serial CPU code and up to 15
times over the 12-threaded OpenMP code.

Keywords: anisotropic mesh adaptivity, vertex smoothing, parallel ex-
ecution, CUDA, metric tensor field, texturing hardware.

1 Introduction

Mesh adaptivity is an important numerical technology in Computational Fluid
Dynamics (CFD). CFD problems are solved numerically using unstructured
meshes, which essentially represent the discrete form of the problem. In order
for this representation to be accurate and efficient, meshes have to be adapted
according to some kind of error estimation. Furthermore, this error estimation
may also encode information about a possible spatial orientation of the prob-
lem under consideration, in which case we say that the underlying dynamics is
anisotropic and the error estimation is described using a metric tensor field.

One sophisticated adaptation technique, suitable for anisotropic problems, is
Vertex Smoothing. Adapting a mesh to an error estimation involves an enormous
amount of floating-point operations which can push even the most powerful
processing units to their limits. The CUDA platform offers great computational
power at relatively low cost. These properties make it a perfect candidate for
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accelerating mesh adaptation. We wrote a new application framework which
implements Pain’s smoothing algorithm [7] along with the proposal by Freitag
et al. [6] for its parallel execution, enabling mesh adaptation to be accelerated
on CUDA GPUs. The main objectives achieved through this project can be
summarised as follows:

– This is the first adaptive mesh algorithm implemented on CUDA as far as
the authors are aware.

– It resulted in an application running in double-precision on a Fermi-based
Tesla board up to 15 times faster than on a 12-core server.

– The key optimisation proved to be the use of texturing hardware to store
and interpolate the metric tensor field, which offered speed-ups of up to 6.2
times over the simple CUDA code.

The rest of the article is organised as follows: Section 2 contains a compre-
hensive description of the algorithmic background and Section 3 describes how
the application was designed and implemented. Section 4 presents performance
graphs comparing the serial code against OpenMP and CUDA versions. We
conclude this paper and discuss ideas for future work in Section 5.

2 Background

2.1 PDEs, Meshes and Mesh Quality

The Finite Element Method (FEM) is a common numerical approach for the
solution of PDEs, in which the problem space is discretised into smaller sub-
regions, usually of triangular (in 2D) or tetrahedral (in 3D) shape. These sub-
regions, referred to as elements, form a mesh. The equation is then discretised
and solved inside each element. Common discretisation techniques often result in
low quality meshes and this affects both convergence speed and solution accuracy
[5]. A posteriori error estimations on the PDE solution help evaluate a quality
functional [10] and determine the low-quality elements, which a mesh-improving
algorithm tries to “adapt” towards the correct solution. Unstructured meshes,
i.e. meshes in which a node can be connected to an arbitrary number of other
nodes, offer greater numerical flexibility but their more complex representation
is followed by higher computational cost [8].

2.2 Anisotropic PDEs

A problem is said to be “anisotropic” if its solution exhibits directional depen-
dencies. In other words, an anisotropic mesh contains elements which have some
(suitable) orientation, i.e. size and shape. The process of anisotropic mesh adap-
tation begins with a (usually automatically) triangulated mesh as input and
results in a new mesh, the elements of which have been adapted according to
some error estimation. This estimation is given in the form of a metric tensor
field, i.e. a tensor which, for each point in the 2-D (or 3-D) space, represents
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Fig. 1. Example of anisotropic mesh adaptation. The initial red triangle is stretched
according to the metric tensor value (green arrow).

the desired length and orientation of an edge containing this point. As was the
case with the PDE itself, the metric tensor is also discretised; more precisely, it
is discretised node-wise. The value of the error at an in-between point can be
taken by interpolating the error from nearby nodes. An example of adapting a
mesh to the requirements of an anisotropic problem is shown in Figure 1.

Adapting a mesh so that it distributes the error uniformly over the whole mesh
is, in essence, equivalent to constructing a uniform mesh consisting of equilateral
triangles with respect to the non-Euclidean metric M(x). This concept can be
more easily grasped if we give an analogous example with a distorted space like
a piece of rubber that has been stretched (see Figure 2). In this example, our
domain is the piece of rubber and we want to solve a PDE in this domain.
According to the objective functional we used, all triangles in the distorted
(stretched) piece of rubber should be equilateral with edges of unit length. When
we release the rubber and let it come back to its original shape, the triangles
will look compressed and elongated.

The metric tensor M can be decomposed as

M = QΛQT

where Λ is the diagonal matrix, the components of which are the eigenvalues of
M and Q is an orthonormal matrix consisting of eigenvectors Qi. Geometrically,
Q represents a rotation of the axis system so that the base vectors show the
direction to which the element has to be stretched and Λ represents the amount
of distortion (stretching). Each eigenvalue λi represents the squared ideal length
of an edge in the direction Qi [8].

2.3 Vertex Smoothing and the Algorithm by Pain et al.

Vertex smoothing is an adaptive algorithm which tries to improve mesh quality
by relocating existing mesh vertices. Contrary to other techniques, which we
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Fig. 2. Example of mapping of triangles between the standard Euclidean space (left
shapes) and metric space (right shapes). In case (a), the elements in the physical space
are of the desired size and shape, so they appear as equilateral triangles with edges
of unit length in the metric space. In case (b), the triangle does not have the desired
geometrical properties, so it does not map to an equilateral triangle in the metric
space.(Figure from [8])

Fig. 3. Vertex smoothing example. The vertex under consideration is the one marked
with a big black circle. The local problem area is the light-orange one. Left figure shows
the cavity before smoothing. Right figure shows the result of local smoothing. (figure
from [9])

discuss in Section 5, it leaves the mesh topology intact, i.e. connectivity between
nodes does not change. All elements affected by the relocation of one vertex
form an area called a cavity. A cavity is defined by its central, free vertex and
all incident vertices. A vertex smoothing algorithm tries to equidistribute the
quality among cavity elements by relocating the central vertex to a new position.
Optimisation takes into account only elements belonging to the cavity, which
means that only one vertex is considered for relocation at a time. An example
of optimising a cavity is shown in Figure 3 [9].

The scope of optimisation is the cavity, therefore vertex smoothing is a lo-
cal optimisation technique. The algorithm moves towards the global optimum
through a series of local optimisations. The local nature of vertex smoothing
leads to the need for optimising a cavity over and over again. After having
smoothed a vertex, smoothing an incident vertex in the scope of its cavity may
change the quality of the first cavity. Because of this property, the algorithm has
to be applied a number of times in order to bring things to an equilibrium.
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Running a smoothing algorithm in parallel can be done as dictated by the
framework proposed by Freitag et al. [6]. In a parallel execution, we cannot
smooth arbitrarily any vertices simultaneously. When a vertex is smoothed, all
adjacent vertices have to be locked at their old positions. This means that no
two adjacent vertices can be smoothed at the same time. In order to satisfy this
requirement and ensure hazard-free parallel execution, mesh vertices have to be
coloured so that no two adjacent vertices share the same colour. All vertices of
the same colour form an independent set, which means that they are completely
independent from each other and can be smoothed simultaneously. This is a
classic graph colouring problem, with the graph being the mesh, graph nodes
being mesh vertices and graph edges being mesh edges.

Pain et al. proposed a non-differential method to perform vertex smoothing
[7]. A cavity Ci consists of a central vertex Vi and all adjacent vertices Vj . Let
Li be the set of all edges connecting the central vertex to all adjacent vertices.
The aim is to equate the lengths of all edges ∈ Li (recall that the optimal cavity
is the one in which all triangles are equilateral with edges of unit length with
respect to some error metric). The length of an edge l in metric space is defined
as rl =

(
uT

l Mlul

)
, where Ml is the value of the metric tensor field in the middle

of the edge.
Let p̂i be the initial position of the central vertex and pi the new one. Then,

the length of an edge in the standard Euclidean space is ul = pi − yi
l , where

yi
l is the position of a non-central cavity vertex Vj . Also, it is important to use

relaxation of pi for consistency reasons, using xi = wpi + (1 − w)pi, w ∈ (0, 1].
In this project, w = 0.5. We define qi =

∑
l∈Li

Mly
i
l and Ai =

∑
l∈Li

Ml and
introduce a diagonal matrix Di to ensure diagonal dominance and insensitivity
to round-off error:

Di
jk =

{
maxAi

jj , (1 + σ)
∑

m=1,m 	=j | Ai
jm |, if j = k

0, if j �= k

In this project, σ = 0.01. Then, xi can be found by solving the linear system

(Di + Ai)(xi − p̂i) = w(qi − Aip̂i).

In the case of boundary vertices, i.e. vertices which are allowed to move only
along a line (the mesh boundary), a modification of the above algorithm has to
be used. The restriction that the vertex can only move along a line means that
the new position xi can be calculated using the equation

xi = ai
Cui

l + p̂i,

where ui
l is the unit vector tangential to the boundary line and ai

C is the dis-
placement along this line measured from the initial position p̂i of the vertex. ai

c

can be calculated from the equation

(Di + M̂ i)ai
c = wgi,

where M̂ i = ui
l
T ∑

l∈Li
Mlu

i
l and gi =

∑
l∈Li

ui
l
T
Ml(xi − p̂i).
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2.4 CUDA’s Texturing Hardware

Texturing hardware is an important heritage left by the graphics-processing roots
of CUDA. Reading data from texture memory can have a lot of performance
benefits, compared to global memory accesses. Texture memory is cached in a
separate texture cache (optimised for 2D spatial locality), leaving more room in
shared memory/L1 cache. If memory accesses do not follow the patterns required
to get good performance (as is the case with unstructured problems), higher
bandwidth can be achieved provided there is some locality on texture fetches.
Additionally, addressing calculations are executed automatically by dedicated
hardware outside processing elements, so that CUDA cores are not occupied by
this task and the programmer does not have to care about addressing [3,4].

The most important texturing feature is interpolation. Textures are discretised
data from a (theoretically) continuous domain. In graphics processing, a texture
value may be needed at a coordinate which falls between discretisation points, in
which case some kind of texture data filtering has to be performed. Interpolating
values from the four nearest discretisation points is the most common type of
texture filtering, called linear filtering. In two dimensions, the result tex(x, y) of
linear filtering is:

tex(x, y) = (1 − α)(1 − β)T [i, j] + α(1 − β)T [i + 1, j]+
+ (1 − α)βT [i, j + 1] + αβT [i + 1, j + 1],

where α is the horizontal distance of point (x, y) from the nearest texture sample
(discretisation point) T [i, j] and β is the vertical distance. The key point is that
this calculation can be automatically performed by dedicated texturing hardware
outside multiprocessors. Interpolation performed by this specialised hardware is
done faster than performing it in software. Apart from freeing CUDA’s multi-
processors to perform other tasks, it also decreases the size of the computational
kernel by occupying fewer registers, which is quite important for the maximum
achievable warp occupancy.

3 Design and Implementation

The application we developed targets nVIDIA’s Fermi architecture (compute
capability 2.0). Double-precision arithmetic was preferred over single-precision
in order to make the algorithm more robust to the order in which arithmetic op-
erations take place (a quite common problem in numerical analysis) and reduce
round-off errors. The application adapts 2D meshes using the vertex smoothing
scheme proposed by Pain et al. [7]. By performing vertex smoothing, node con-
nectivity remains constant and there is no need to re-colour the mesh after every
iteration. Graph colouring was implemented using a single-threaded and greedy
colouring algorithm, called First Fit Colouring [1], which runs adequately fast
and colours the mesh with satisfactorily few colours (7-8 on average).

The mesh is represented using two arrays: an array V of vertices (a vertex
is simply a pair of coordinates) and an array C of cavities. A cavity in the i-th
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Listing 1.1. Setting up texture memory.

#i f de f i n ed (USE TEXTURE MEMORY)
texture<f l oa t4 , 2 , cudaReadModeElementType> metricTex ;

cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32 , 32 , 32 , 32 , cudaChannelFormatKindFloat ) ;

cudaMallocArray(&cudaMetricFie ld , &channelDesc , textDim , textDim ) ;
cudaMemcpyToArray ( cudaMetricFie ld , 0 , 0 , hostMetr i cF ie ld ,

textDim ∗ textDim ∗ s izeof ( f l o a t 4 ) , cudaMemcpyHostToDevice ) ;

metricTex . normal ized = true ;
metricTex . f i l t e rMode = cudaFi lterModeLinear ;
metricTex . addressMode [ 0 ] = cudaAddressModeClamp;
metricTex . addressMode [ 1 ] = cudaAddressModeClamp;

cudaBindTextureToArray ( metricTex , cudaMetr icFie ld , channelDesc ) ;
#else

cudaMalloc ( ( void ∗∗) &cudaMetr icFie ld ,
metricDim ∗ metricDim ∗ 4 ∗ s izeof ( f loat ) ) ;

cudaMemcpy ( cudaMetricValues , hostMetricValues ,
metricDim ∗ metricDim ∗ 4 ∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;

#endif

position of C is the cavity defined by vertex V[i], i.e. the cavity in which V[i] is
the central vertex, and (this cavity) is in turn an array containing the indices in
array V of all vertices which are adjacent to V[i]. E.g. if vertex V[0] is connected
to vertices V[3], V[5], V[10] and V[12], then C[0] is the cavity in which V[0] is
the free vertex and C[0] = 3, 5, 10, 12. There is also a simple representation of
independent sets, each one being an array containing the indices of all vertices
belonging to that set.

As was described in Section 2, the metric tensor field is discretised vertex-
wise, so it could be represented by extending the definition of a vertex to include
the metric tensor value associated with that vertex, in addition to the vertex’s
coordinates. However, looking at the smoothing algorithm, it becomes apparent
that the middle of an edge (where the metric value is needed) will most probably
not coincide with a discretisation point, so the metric value has to be found by
interpolating the values from nearby discretisation points. If the field is stored as
a texture, interpolation can be done automatically by CUDA’s texturing units.
Linear filtering is quite suitable and yields good interpolation results, even when
the metric tensor field has a lot of discontinuities.

More insight into the role of the metric tensor field reveals that it is just
an estimation or indication about the desired orientation of an element and
we have observed that it does not have to be as accurate as possible. For this
reason, single-precision representation (double-precision is not supported for tex-
tures) is more than enough and the data structure used to store it can be a 2D
array, organised using the GPU’s blocked texture storage layout. In order to
convert the unstructured representation to an array, we super-sample the initial
field with adequate resolution and store these samples in an array. The initial,
auto-generated mesh is anyway quite uniform, i.e. elements tend to be equilateral
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Listing 1.2. Accessing a metric tensor field value.

#i f de f i n ed (USE TEXTURE MEMORY)

f l o a t 4 f l o a tMe t r i c = tex2D ( metricTex , iCoord , jCoord ) ;

#else

double i Index = jCoord ∗ metricDim , j Index = iCoord ∗ metricDim ;

int i = f l o o r ( ( ( metricDim − 1) / metricDim) ∗ i Index ) ;

int j = f l o o r ( ( ( metricDim − 1) / metricDim) ∗ j Index ) ;

i Index −= i ; j Index −= j ;

i f ( i == metricDim − 1) // top or bottom boundary

metr i c = cudaMetricValues [ metricDim∗(metricDim−1) + j ] ∗ (1− j Index ) +

cudaMetricValues [ metricDim∗(metricDim−1) + ( j +1)] ∗ j Index ;

else i f ( j == metricDim − 1) // l e f t or r i g h t boundary

metr i c = cudaMetricValues [ ( i +1)∗metricDim − 1 ] ∗ (1− i Index ) +

cudaMetricValues [ ( i +2)∗metricDim − 1 ] ∗ i Index ;

else

metr i c = cudaMetricValues [ i ∗metricDim + j ] ∗ (1− i Index)∗(1− j Index ) +

cudaMetricValues [ i ∗metricDim + ( j +1)] ∗ (1− i Index )∗ j Index +

cudaMetricValues [ ( i +1)∗metricDim + j ] ∗ i Index∗(1− j Index ) +

cudaMetricValues [ ( i +1)∗metricDim + ( j +1)] ∗ i Index∗ j Index ;

#endif

triangles and vertices are equally spaced from each other, a state which is not
very different from a 2D-array representation.

In 2D, the metric tensor field is a 2 × 2 matrix, so it can be represented as
a 4-element vector of single-precision floating-point values. Copying data from
host to device as textures is demonstrated in Listing 1.1. Retrieving the value
of the metric tensor field at any point in the mesh is just a texture fetch, as
can be seen in Listing 1.2, which also contrasts the addressing and interpolation
overhead we avoid.

Subsequent adaptation attempts will have to use the unstructured represen-
tation of the field. After adapting the mesh, we re-solve the PDE and make
new error estimations, which lead to a new metric tensor field, discretised at the
nodes of an anisotropic, non-uniform mesh. In this case, different resolution will
be needed in different areas of the mesh and we have to follow the unstructured
approach. This does not reduce the significance of using texturing hardware.
The first adaptation attempt is the one which really needs to be sped-up, as it
needs Θ(number of vertices) iterations to converge, inducing the most exten-
sive changes to the mesh. After that, the mesh will have, more or less, acquired its
final “shape”, so subsequent attempts will only need a few iterations to improve
it.

In devices of CUDA’s compute capability 2.0 and above, the on-chip mem-
ory is used both as shared memory and L1 cache. The unstructured nature of
anisotropic mesh adaptivity has not allowed us to use shared memory explicitly.
On the other hand, a hardware-managed L1 cache exploits data locality more
conveniently. Configuring the on-chip memory as 16KB of shared memory with
48KB of L1 cache can be done [3] by preceding the kernel invocation with a
statement like:

cudaFuncSetCacheConfig(optimizationKernel, cudaFuncCachePreferL1); .
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Listing 1.3. OpenMP execution

for ( int indSetNo = 0 ; indSetNo < numberOfSets ; indSetNo++) {
vertexID i S e t [ ] = indSets [ indSetNo ] ;

#pragma omp p a r a l l e l for pr i va t e ( s e t I t e r a t o r )
for ( int s e t I t e r a t o r = 0 ; s e t I t e r a t o r < v e r t i c e s I n S e t ; s e t I t e r a t o r++) {

cavityID cav i ty = i S e t [ s e t I t e r a t o r ] ;
i f ( ! meshCavit ies [ c av i ty ] . isOnBoundary ( ) )

newCoords = re l o c a t e Inne rVe r t ex ( . . . ) ;
else

newCoords = re locateOuterVertex ( . . . ) ;
}

}

Listing 1.4. CUDA execution

for ( int indSetNo = 0 ; indSetNo < numberOfSets ; indSetNo++) {
dim3 numBlocks ( c e i l ( ( double) v e r t i c e s I n S e t / threadsPerBlock ) ) ;
ke rne l<<<numBlocks , threadsPerBlock>>>(indSets [ indSetNo ] ) ;
cudaThreadSynchronize ( ) ;

}

d e v i c e void ke rne l ( IndependentSet i S e t ) {
int vertex = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f ( ve rtex < v e r t i c e s I n S e t ) {

cavityID cav i ty = i S e t [ ve r tex ] ;
i f ( ! meshCavit ies [ c av i ty ] . isOnBoundary ( ) )

newCoords = re l o c a t e Inne rVe r t ex ( . . . ) ;
else

newCoords = re locateOuterVertex ( . . . ) ;
}

}

Parallel execution is based on the independent sets. The way cavities are
assigned to OpenMP resp. CUDA threads can be seen in Listing 1.3 resp. List-
ing 1.4. Recall from the description of the vertex smoothing algorithm that
boundary vertices are smoothed using a variation of the main algorithm. In order
to avoid thread divergence, which is problematic for a CUDA kernel, boundary
vertices are put into dedicated independent sets, so that a dedicated set contains
vertices of the same “kind”.

4 Experimental Evaluation

All experiments were run on node CX1 of Imperial College’s HPC supercom-
puter, hosting two Intel “Gulftown” six-core Xeon X5650 CPUs (2.8GHz), 24GB
RAM and a nVIDIA Tesla C2050 graphics board. The operating system was Red
Hat Enterprise Linux Client release 5.5 running Linux kernel 2.6.18. CPU code
was compiled with GCC version 4.1.2 giving the -O3 flag, whereas for GPU code
we used CUDA SDK 3.1 and CUDA compilation tools, release 3.1, V0.2.1221,
with the -O2 flag. Experiments were done using the nVIDIA Forceware driver,
version 260.19.29.
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We have compared the running time between a single-threaded execution, a
12-threaded OpenMP execution and CUDA execution with and without engag-
ing texturing hardware. Timing results include the time it takes to copy data
between host and device, but no measurement includes the time it takes to
read in the unstructured grid from the disk, construct the mesh, colour it or
write back the results to the disk, because these tasks are always performed in
a single-threaded fashion on the host side. On the other hand, the time to copy
data between host and device is trivial because these transfers take place only
twice during an execution (copying the initial mesh to the device at the begin-
ning and copying the adapted mesh back to the host at the end) and when there
are thousands of iterations this time is amortised.

The optimisation kernel occupies 59 registers in the non-textured version and
51 registers in the textured one. Using the Occupancy Calculator [2] and experi-
mental measurements, it was found that the best CUDA execution configuration
is 32 threads per block, which gives an occupancy of 33.3%. In both cases, oc-
cupancy is very low, suggesting the future optimisation of breaking down the
kernel into smaller parts.

Table 1 presents the amount of time each version of the code needs to per-
form 1, 000 iterations over various meshes. Figure 4 shows the relative speedup
between these versions. The 12-threaded OpenMP version is steadily ∼ 10 times
faster than the serial code. The non-textured CUDA version runs on average
24 times faster than the serial code (peaking at 42 times) and 2.5 times faster
than the OpenMP version (peaking at 4.7 times). Enabling texturing support,
the CUDA code runs on average twice as fast as its non-textured counterpart
(peaking at 6.2 times). Compared to the host side, it runs on average 60 times
faster than the serial CPU version (peaking at 148 times) and 6 times faster
than the OpenMP version (peaking at 15 times).

The high performance divergence and the unpredictable (to some extent) be-
haviour of a CUDA implementation come as a consequence of the highly unstruc-
tured nature of the problem. We expect substantial differences from one mesh
to another in terms of achievable data locality, partitioning of data in global

Table 1. Comparison of the execution time in seconds between the serial, the 12-
threaded OpenMP, the non-textured CUDA and the textured CUDA versions, per-
forming 1,000 iterations over meshes of variable size

Number of CPU CPU CUDA CUDA
mesh vertices 1 Thread 12 Threads (no texturing) (texturing)

25,472 20.76 2.156 1.243 0.610

56,878 46.82 4.676 2.281 1.163

157,673 144.3 15.27 5.902 3.172

402,849 510.3 52.36 15.03 8.249

1,002,001 777.6 75.34 28.17 5.664

4,004,001 3,203 318.0 134.2 21.64

5,654,659 8,921 983.9 210.0 114.2
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Fig. 4. Relative speedup between the serial, the OpenMP, the non-textured CUDA
and the textured CUDA versions

memory and degree of coalescence of memory accesses. This uncertainty could be
mitigated by implementing a two-level mesh partitioning scheme: one topological
partitioning of the mesh into mini-partitions, so that the whole mini-partition
fits in the on-chip memory, and a second logical partitioning (graph colouring)
inside each mini-partition for the purpose of correct parallel execution.

5 Conclusions and Future Work

The aim of this project was to determine the extent to which a Fermi-based GPU
can still be efficient when it has to deal with unstructured problems. The experi-
mental results show that the capabilities of this architecture extend well beyond
the borders of structured applications, which are the norm in evaluating and
demonstrating processing hardware. A single Tesla C2050 board outperformed
12 Nehalem cores by many times and there is still room for improvement, as is
suggested by the low warp occupancy and the scope for improved data locality.

When it comes to texturing hardware, it was shown that it offers substantial
amounts of computational power and can more than double performance in prob-
lems with appropriate characteristics, like the metric tensor field of anisotropic
mesh adaptivity. The assistance of texturing hardware in the 3D version of the
problem (a 3D implementation is planned for future work) is expected to be even
more valuable. In a 3D metric tensor field we have to interpolate the values from
the 8 nearest points and doing so requires (compared to 2D problems) double
the data volume to be fetched from memory and three times more arithmetic.

Apart from the aforementioned optimisations, this project leaves many other
topics open to further study. Perhaps, the most interesting direction is the imple-
mentation of a much heavier and of higher quality smoothing algorithm, based on
differential methods, which is called optimisation-based smoothing [5]. Addition-
ally, vertex smoothing is usually combined with other adaptive methods, such
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as regular refinement, edge flipping and edge collapsing [6,7]. The development
of a mesh improving application which manipulates all these techniques and the
assessment of its performance on CUDA (and possibly other high-performance
architectures through OpenCL) is in progress.
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Introduction

Wolfgang Karl, Samuel Thibault, Stanimire Tomov, and Taisuke Boku

Topic chairs

The recent years have seen great research interest in exploiting GPUs and accel-
erators for computations, as shown by the latest TOP500 editions, whose very
top entries are fully based on their use. Their potential computation power and
energy consumption efficiency are appealing, but programming them however re-
veals to be very challenging, as not only task offloading and data transfer issues
show up, but programming paradigms themselves appear to need reconsidera-
tion. Fully taping into this new kind of computation resource thus stands out
as an open issue, particularly when conjointly using regular CPUs and several
accelerator simultaneously. This is why we welcome this year the opening of a
new “GPU and Accelerators Computing” topic along the collection of Euro-Par
topics. The focus of this topic covers all areas related to accelerators: archi-
tecture, languages, compilers, libraries, runtime, debugging and profiling tools,
algorithms, applications, etc.

The topic attracted numerous submissions, among which 4 papers were se-
lected for publication. They cover various aspects, such as application-side
optimizations, multiple GPU data transfer management, as well as low-level
performance analysis.

In “Model-Driven Tile Size Selection for DOACROSS Loops on GPUs”, Peng
Di and Jingling Xue (from the University of New South Wales, Australia) pro-
pose a performance model for tiled and skewed SOR-loops on NVIDIA GPUs,
and provide an evaluation of the model accuracy. The model is then used to
automatically tune the tile size in a very reduced amount of time, compared to
performing measurements of actual runs.

Bertil Schmidt, Hans Aribowo and Hoang-Vu Dang (from the Nanyang Tech-
nological University, Singapore); propose a new hybrid format for sparse matrices
in “Iterative Sparse Matrix-Vector Multiplication for Integer Factorization on
GPUs”. After presenting various existing sparse formats, they analyze the shape
of the matrices derived from Number Field Sieve problems, and consequently
define a new format composed of several slices encoded in a few well-known
formats. They present a dual gpu implementation of sparse matrix-vector mul-
tiplication (SpMV) with overlapped communications.

“Lessons Learned from Exploring the Backtracking Paradigm on the GPU”,
from John Jenkins, Isha Arkatkar, John D. Owens, Alok Choudhary, and
Nagiza Samatova (from the North Carolina State University, the University of
California, Davis, and the Northwestern University, USA), describes how very
low performance can get on GPUs when implementing backtracking paradigms.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 399–400, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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It provides a detailed analysis of the reasons for this and how to optimize at
best. It thus provides interesting guidelines for such class of applications.

Last but not least, in “Automatic OpenCL Device Characterization: Guid-
ing Optimized Kernel Design”, Peter Thoman (from the University of Inns-
bruck, Austria) presents CLbench, a suite of micro-benchmarks which aims at
characterizing the performance of implementations of the OpenCL standard,
including classic arithmetic and memory performance, but also branching be-
havior and runtime overhead. The results being provided for 3 OpenCL imple-
mentations over 7 hardware/software configuration, they can be used to guide
optimizations.



Model-Driven Tile Size Selection for

DOACROSS Loops on GPUs�

Peng Di and Jingling Xue

Programming Languages and Compilers Group, School of Computer Science and
Engineering, University of New South Wales, Sydney, Australia

Abstract. DOALL loops are tiled to exploit DOALL parallelism and
data locality on GPUs. In contrast, due to loop-carried dependences,
DOACROSS loops must be skewed first in order to make tiling legal and
exploit wavefront parallelism across the tiles and within a tile. Thus, tile
size selection, which is performance-critical, becomes more complex for
DOACROSS loops than DOALL loops on GPUs. This paper presents a
model-driven approach to automating this process. Validation using 1D,
2D and 3D SOR solvers shows that our framework can find the tile sizes
for these representative DOACROSS loops to achieve performances close
to the best observed for a range of problem sizes tested.

1 Introduction

GPGPUs have become one of the most powerful and popular platforms to exploit
fine-grain parallelism in high performance computing. Recent research on devel-
oping programming and compiler techniques for GPUs focuses on (among oth-
ers) general programming principles [5,9,14], cost modeling and analysis [1,15,3],
automatic code generation [2,11], and performance tuning and optimization
[4,6,12,19]. However, these research efforts are almost exclusively limited to
DOALL loops. In practice, DOACROSS loops play an important role in many
scientific and engineering applications, including PDE solvers [13], efficient pre-
conditioners [7] and robust smoothers [8]. Presently, Pluto [2] seems to be the
only framework that can map sequential DOACROSS loops to CUDA code au-
tomatically for NVIDIA GPUs. This is done by applying loop skewing and tiling
with user-supplied tile sizes (for a user-declared grid of thread blocks of threads).

DOALL loops are tiled to exploit DOALL parallelism and data locality on
GPUs. Unlike DOALL loops, DOACROSS loops must be skewed first to en-
sure that the subsequent tiling transformation preserves the loop-carried depen-
dences. Furthermore, performing skewing and tiling allows wavefront parallelism
to be exploited both across the tiles and within a tile. Tile size selection, which is
performance-critical on GPUs, are more complex for DOACROSS than DOALL
loops due to parallelism-inhibiting loop-carried dependences and more complex
interactions among the GPU architectural constraints. Thus, it is not practical

� This research is supported by an Australian Research Council Grant DP110104628.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 401–412, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to rely on the user to pick the right tile sizes to optimize code through improv-
ing processor utilization and reducing synchronization overhead. Existing tile
size techniques proposed for caches in CPU architectures do not apply [10,20].

This paper makes the following contributions:

– We present (for the first time) a model for estimating the execution times of
tiled DOACROSS loops running on GPUs (Section 3);

– We introduce a model-driven framework to automate tile size selection for
tiled DOACROSS loops running on GPUs (Section 4);

– We evaluate the accuracy of our model using representative 1D, 2D and 3D
SOR solvers and show that the tile sizes selected lead to the performances
close to the best observed for a range of problem sizes tested (Section 5).

2 Parallelization of DOACROSS Loops on GPUs

We describe a scheme for mapping sequential DOACROSS loops to CUDA code
on GPUs. Our illustrating example is a 1D SOR-like solver. This scheme is the
same as that supported by Pluto [2] except tiles are mapped to thread blocks in
a different way in order to achieve better load balance.

for(i1=1;i1<=I1;i1++)

for(i2=1;i2<=I2;i2++)

A[i2]=(A[i2-1]+A[i2]+A[i2+1])/3;

Fig. 1. Sequential loop nest for the 1D SOR solver

Loop Transformations. In Pluto, parallelizing an n-dimensional DOACROSS
loop nest L consists of mapping it into a 2n-dimensional loop nest as follows:

ρ : Z
n �→ Z

2n, ρ(i) =
(

t
e

)
=
(
t1, . . . , tn, e1, . . . , en

)T =
(
W�T S(i)�
WS(i)

)
(1)

T =

⎡
⎢⎢⎢⎣
m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mn

⎤
⎥⎥⎥⎦
−1

n×n

, W =

⎡
⎢⎢⎢⎣
1 1 1 . . . 1 1
0 1 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 0 1

⎤
⎥⎥⎥⎦

n×n

(2)

The mapping process for the 1D SOR solver in Figure 1 is illustrated in Figure 2.
The mapping ρ [18] is realized by composing a loop skewing S, a loop tiling T
and another loop skewing W . First, the iteration space of L is skewed by a
unimodular transformation S ∈ Z

n×n. Second, the skewed iteration space is
tiled into n-dimensional rectangles of size m1 × · · · × mn by T . S is chosen to
guarantee the legality of tiling so that all loop-carried dependences in L are
preserved [18]. At this point, a 2n-dimensional loop nest is created such that the
first n loops (called tile loops) enumerate the tiles and the inner n loops (called
element loops) enumerate the iterations within a tile. Finally, another skewing
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Fig. 2. Exploiting wavefront parallelism for 1D SOR on GPUs

transformation W is applied to the iteration spaces of both sets of loop nests to
expose wavefront parallelism across the tiles and within a tile. In either loop nest,
the first loop is sequential and the remaining n − 1 loops are DOALL. We will
speak of inter-tile wavefronts and intra-tile wavefronts (as shown in Figure 2).

Mapping to GPUs. A NVIDIA GPU consists of a number of streaming mul-
tiprocessors (SMs), each of which contains a number of processor cores called
streaming processors (SPs). All SPs in one SM share a local memory and a set
of registers. GPU programming is enabled through CUDA. A kernel is executed
by a grid of threads organized as thread blocks (known as a thread organization).
A thread block is scheduled to execute on any one of the SMs (as a whole).
The threads in a block are partitioned into 32-thread warps, which are units of
execution (on the SPs of the SM to which the block is mapped). The threads
in one block can synchronize through syncthreads and communicate through
shared memory. The inter-block synchronization is not directly supported.

Figure 3 gives the CUDA code for the 1D SOR solver parallelized as shown
in Figure 2. Tiles are mapped to thread blocks and individual loop iterations
in a tile are mapped to the threads in a block. All inter-tile wavefronts are
executed sequentially to satisfy inter-tile (or inter-block) dependences. Hence,
the syncblocks macro as introduced in Pluto at 4 . In Pluto, the tiles in an
(n− 1)-dimensional inter-tile wavefront are distributed over a 2D grid of thread
blocks of size gridDim.x× gridDim.y cyclically along two of the n−1 dimensions
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// inter-tile loop nest
for(t1=Lt1;t1<=Ut1;t1++){
for(t2=Lt2(t1)+blockIdx.x;t2<=Ut2(t2);t2+=gridDim.x){
// intra-tile loop nest
Code for shared memory coalesced loads
__syncthreads(); // barrier for the loads
for(e1=Le1(t1,t2);e1<=Ue1(t1,t2);e1++){

for(e2=Le2(t1,t2,e1)+threadIdx.x;e2<=Ue2(t1,t2,e1);e2+=blockDim.x){
i2=h(t1,t2,e1,e2);
A[i2]=(A[i2-1]+A[i2]+A[i2+1])/3;

}
__syncthreads(); // barrier for each intra-tile wavefront

}
Code for shared memory coalesced stores
__syncthreads(); // barrier for the stores

}
__syncblocks(); // barrier for each inter-tile wavefront

}

1

2

3

4

DOALL

Fig. 3. CUDA code for 1D SOR on GPUs

of the wavefront. This can cause load imbalance for large tiles since a wavefront
has irregular boundaries. In this paper, the tile coordinates in such a wavefront
are ”linearized” much like how the subscripts of a multi-dimensional array are.
Then the tiles are mapped to a 1D grid of thread blocks of size gridDim.x
cyclically to achieve better load balance (with gridDim.y=1 always). As a result,
all thread blocks in an inter-tile wavefront can be potentially executed in parallel
but the tiles within a block are always executed sequentially.

The loop iterations in a tile are distributed as in Pluto to a 3D thread block
of size blockDim.x× blockDim.y × blockDim.z cyclically. To improve memory
coalescing, all data read by a tile are first loaded from device memory to shared
memory at 1 and all those written in a tile are stored back to device memory
at 3 . Like inter-tile wavefronts, all intra-tile wavefronts are executed sequen-
tially. Hence, the syncthreads instruction at 2 . The iterations in an intra-tile
wavefront that are assigned to different threads can execute in parallel.

3 Execution Time Modeling

We parameterise an execution time model for a tiled DOACROSS loop nest in
order to automate tile size selection. Initially, we assume that all tiles are full.
We consider first intra-tile execution (Section 3.1) and then inter-tile execution
(Section 3.2). In Section 3.3, we estimate the parameters used. In Section 3.4,
we discuss briefly how to mitigate the effects of border tiles on performance.
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3.1 Intra-tile Execution

This section focuses on estimating the execution time, TT ILE , for a single (full)
tile, denoted T ILE . As shown in (1) and Figures 2 and 3, the loop iterations
in a tile are indexed by (e1, . . . , en), where e1 enumerates all intra-wavefronts
within the tile. As illustrated in Figure 2, TT ILE , which can be broken down
into the time on loading the input data at 1 , the time on executing the tile,
and the time on storing the results back 3 , is approximated by:

TT ILE =
Ue1∑

e1=Le1

Te1 + Tmem + 2σthd (3)

The first term
∑Ue1

e1=Le1
Te1 is the computation cost of T ILE estimated as a sum

of the execution times Te1 of all its intra-tile wavefronts with e1 ranging over
these wavefronts starting from the smallest given by the lower bound Le1 of loop
e1 to the largest given by the upper bound Ue1 of loop e1 along dimension e1.
The second term Tmem denotes the memory latency consumed by the memory
accesses at the code before 1 and the code before 3 . The last term 2σthd denotes
the overhead of the two syncthreads at 1 and 3 , where σthd is dependent on
the number of threads used, i.e., blockDim.x × blockDim.y × blockDim.z.

The execution time Te1 of the intra-tile wavefront indexed by e1 is given by:

Te1 = α × Ge1 + β × He1 + σthd (4)

GPUs execute instructions with warps as units of execution and hide memory
latency through interleaving of thread blocks. In the scheme shown in Figure 3,
the warps are never idle when executing a wavefront as all memory accesses
happen before and after the execution of T ILE . Thus, the first term represents
the workload for computing the wavefront indexed by e1, which is estimated to be
proportional to Ge1, the number of 32-thread warps executed at the wavefront.
In addition, the first term implicitly considers the effects of bank conflicts on the
execution time of T ILE . However, the same Ge1 may result when the number
of loop iterations, He1, in the wavefront indexed by e1 varies (due to division by
32). To accommodate its impact on performance, Te1 is fine-tuned by including
the second term β × He1, which attempts to differentiate the effects of varying
He1 values on performance. Note that Ge1 and He1 may vary from wavefront to
wavefront as shown in Figure 2(d). Given an intra-tile wavefront, both can be
precisely calculated. The last term σthd is the overhead of syncthreads at 2 .

By substituting T i
e1 in (4) into (3), we obtain:

TT ILE =
Ue1∑

e1=Le1

(α × Ge1 + β × He1 + σthd) + Tmem + 2σthd (5)

which is illustrated graphically in Figure 4. As highlighted, Ge1 varies across the
wavefronts with less work being done at the beginning and end of the computa-
tion process for T ILE when its wavefronts are executed.
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Fig. 4. Execution of the Ne1 wavefronts of T ILE along dimension e1 according to (5)

The memory access latency Tmem can be estimated by:

Tmem = γ × Nmem (6)

where Nmem denotes the number of loads and stores made in T ILE . Note that
Nmem is not related to memory coalescing since that would make its estimation
dependent on the actual data layout at run time. This simple approximation
seems to be adequate as Tmem is not a dominant term in (3) for the following
reasons combined. First, DOACROSS loops are usually not bandwidth-bound.
Second, optimal tile sizes found are large in order to exploit two levels of wave-
front parallelism. Finally, the memory accesses performed by warps can overlap.
We will return to this issue briefly at the end of Section 5.

By substituting Tmem given in (6) into (5), simplifying and letting

LT ILE = m1 × · · · × mn =
Ue1∑

e1=Le1

He1 (7)

we obtain the following estimated execution time of T ILE :

TT ILE = α×
Ue1∑

e1=Le1

Ge1 + (Ue1−Le1+3) × σthd + β × LT ILE + γ × Nmem (8)
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with Ue1−Le1+1 syncthreads instructions executed at 2 inside the wavefront,
one at 1 and one at 3 , as shown in Figure 3.

3.2 Inter-tile Execution

A DOACROSS loop nest is parallelized into a CUDA kernel. The execution time,
Ttotal, for the kernel, i.e., for its inter-tile wavefronts is estimated by:

Ttotal =
Ut1∑

t1=Lt1

Tt1 + σker (9)

The first term is the computation cost of all tiles in the kernel estimated as a
sum of the execution times Tt1 of all its inter-tile wavefronts with t1 starting
from the lower bound Lt1 of loop t1 to the upper bound Ut1 of loop t1 along
dimension t1. The second term σker is the kernel startup cost.

Thus, Ut1−Lt1 +1 is the number of tiles contained in the inter-tile wavefront
indexed by t1. If all P SMs execute simultaneously up to B thread blocks each,
then the number of tiles, denoted It1, contained in a thread block is:

It1 = �Ut1 − Lt1 + 1
B × P

� = �Ut1 − Lt1 + 1
gridDim.x

� (10)

where B is decided by the GPU architectural constraints and kernel code ac-
cording to the CUDA programming guide as demonstrated in Table 1.

The execution time Tt1 is determined by the slowest among the P SMs with
the other SMs idle waiting at the syncblocks macro at 4 . As a result, we have:

Tt1 =
It1∑
i=1

T i
t1 + σblk (11)

T i
t1 =

{
B × TT ILE 1 ≤ i ≤ It1 − 1
� (Ut1−Lt1+1)%(B×P )

P � × TT ILE i = It1

(12)

where T i
t1 is the execution time of the i-th tiles in all B thread blocks by the

slowest SM and σblk is the overhead of syncblocks at 4 (to be measured below).

3.3 Parameter Estimation

We determine the six parameters used in Ttotal given in (9) for a tiled loop
nest L: σker , σthd, σblk, α, β and γ. We do so for a given thread organization
(determined by gridDim and blockDim) so that its tile size selection can be
automated (Section 4). For NVIDIA GPUs, there are at most 16Bmax different
thread organizations because (1) there are Bmax different 1D grid layouts with
gridDim.x = B×P , where B ≤ Bmax ≤ BSM = 8 as shown in Table 1, and (2)
the number of threads per block, i.e., blockDim.x × blockDim.y × blockDim.z
is one of the 16 possibilities contained in {32, 64, . . . , 512}.
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Table 1. Determining B for an NVIDIA Tesla C1060 GPU. An item in Column 1 that
depends on hardware, kernel code or both is indicated with an H, S or B appropriately.

Description Name

Warp Size (H) W = 32
Max Number of Active Warps per SM (H) WSM = 32

Max Number of Active Threads per SM (H) TSM = 1024
Max Number of Active Blocks per SM (H) BSM = 8

Shared Memory per SM (H) SSM = 16KB
Number of 32-bit Registers per SM (H) RSM = 16K

Threads per Thread Block (S) K
Register Usage per Thread Block (S) RT B

Shared Memory Usage per Thread Block (S) ST B

Warps per Thread Block (B) WT B = 
 K
W �

Thread Blocks Limited by Warps (B) BW = min(BSM , �WSM
WT B


)
Thread Blocks Limited by Registers (B) BR = �RSM

RT B



Thread Blocks Limited by Shared Memory (B) BS = �SSM
STB



Thread Blocks (B) B = min(BW , BR, BS)

Architectural Parameters: σker, σthd and σblk. These overheads are small
(relative to the execution time of a loop nest L) and are measured for a GPU
architecture as follows. First of all, σker is the startup overhead of the kernel
for L, which can be obtained through running an empty version of the ker-
nel (with the computations in L removed) for a given thread organization. In
fact, as σker � Ttotal, treating it as a small constant for all thread organiza-
tions does not affect in practical terms how the relative performances of L are
ranked for all combinations of thread organizations and tile sizes used. As for
syncthreads executed at 1 , 2 and 3 , it is lightweight on NVIDIA GPUs. Its
overhead σthd depends on the number of threads per block, i.e., blockDim.x ×
blockDim.y× blockDim.z and is measured as in [16]. There are only 16 cases to
consider as blockDim.x × blockDim.y × blockDim.z is a multiple of 32 rang-
ing from 32 to 512. Finally, the syncblocks macro is invoked at the end of each
inter-tile wavefront at 4 . Its overhead σblk, which is higher than σthd, depends
mainly on the number of thread blocks contained in an inter-tile wavefront,
i.e., gridDim.x = B × P . The effects of different blockDim.x × blockDim.y ×
blockDim.z values on σblk are negligible. As B ≤ Bmax ≤ BSM = 8, syncblocks
is measured as in [17] for a few, i.e., up to Bmax different gridDim.x values.

Program-Dependent Parameters: α, β and γ. Once the values of σker ,
σthd and σblk are determined, the given loop nest L is simplified to possess one
inter-tile wavefront with exactly B×P thread blocks consisting of only full tiles.
This ensures that all P SMs have exactly the same workload so that these three
program-dependent parameters can be accurately measured.

The three parameters are found for each of up to 16Bmax different thread
organizations as mentioned earlier (where Bmax ≤ 8). In each case, the simplified
loop nest L is executed for a total of n times, each with a different tile size. Let
Ti be the execution time corresponding to the tile size Si used. Given a tile size
Si, all parameters in Ttotal except α, β and γ are now known. We can find the
values of α, β and γ by performing a linear curve fitting using the least-square
method for Ttotal with respect to the n execution times, T1, . . . , Tn, obtained.
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1 Compute the register usage per thread, RT , using any tile size and thread organization.
2 for each tile size m = (m1, . . . , mn) that satisfies the tile size constraint
3 Let ST B (shared memory usage per block) be set as the shared memory usage per tile
4 for each t = (blockDim.x, blockDim.y, blockDim.z) that satisfies the blockDim constraint
5 Let RT B = RT × blockDim.x× blockDim.y× blockDim.z
6 Let B = min(BW , BR, BS), where BW , BR and BS are computed in Table 1.
7 Evaluate Ttotal given in (9) for the current tile size m and the current thread organization

specified by gridDim = B × P and blockDim = t
8 if Ttotal < Tbest // Tbest is initialized to ∞
9 Tbest = Ttotal

10 Record m as the best tile size so far (and set gridDim.x = B × P and blockdDim = t)

Fig. 5. An algorithm for automating tile size selection

3.4 Border Tiles

A border tile may execute faster than a full tile. If the i-th inter-tile wave-
front that induces T i

t1 in (11) contains non-full border tiles, then T i
t1 may over-

approximate the actual execution time of the wavefront. We can improve this
inaccuracy with an estimate of 0.5 × TT ILE as the execution time of a border
tile T ILE by assuming that the average size of border tiles is half of a full tile.

4 Model-Driven Tile Size Selection

Given the estimated execution time of Ttotal in (9) for a tiled loop nest L as
input, we employ an “educated” search to find automatically and efficiently an
optimal tile size m = (m1, . . . ,mn) for L and an associated thread organization,
determined by gridDim and blockDim, used for realizing the optimal tiling. In
this paper, a tile layout is determined by a tile size and a thread organization.

4.1 The Algorithm

We use two kinds of constraints to prune the search space:

Tile Size Constraint. The tile size, i.e., LT ILE = m1 × · · · × mn is bounded
from below by a data reuse rate D = LT ILE

Nmem
(where Nmem is introduced in

(6)) and from above by the size of shared memory. For DOACROSS loops,
large tile sizes lead to higher data reuse rates. Thus, D must be larger than
an empirical minimum threshold to ensure better intra-tile data locality.

blockDim Constraint. In NVIDIA GPUs, blockDim.x × blockDim.y ×
blockDim.z represents the number of threads per block. According to [16],
the SP performance usually suffers with too many or too few threads. Fur-
thermore, blockDim.x × blockDim.y × blockDim.z must be no smaller
than the number of iterations contained in the largest intra-tile wavefront to
ensure that every thread has some work to do. Thus, some small and large
values of blockDim.x × blockDim.y × blockDim.z can be ignored.

Our algorithm for automating tile size selection for L is outlined in Figure 5.
Recall that as shown in Figure 3, all tiles in a thread block are executed sequen-
tially. Thus, for every type of resource listed in Table 1, the amount consumed
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by a block is calculated on a per-tile basis. The basic idea is to perform an
“educated” search when going through all tile layouts to find the one with the
smallest execution time Ttotal. In line 1, the register usage per thread, denoted
RT , is measured independently of tile layouts used. This is because in each case
the same code as shown in Figure 3 is compiled for each thread by NVIDIA’s
nvcc compiler. Finding RT this ways speeds up the process for calculating RTB

in line 5. Similarly, in line 3, STB does not depend on blockDim. Once RTB and
STB are known, BW , BR and BS are computed in line 6 as per Table 1.

4.2 The Framework

We have implemented our tile size selection technique using a combination of
the Clan polyhedral representation extractor, Pluto’s polyhedral parallel tiling
infrastructure and CLooG code generator, as shown in Figure 6.
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Fig. 6. A model-driven tile size selection framework

Our tile size selection module is invoked in the third step in the sequence.

5 Experiments

We use three representative DOACROSS kernels, 1D (3-point), 2D (5-point) and
3D (7-point) SOR solvers, to demonstrate the accuracy and efficiency of our tile
size selection framework on an NVIDIA Tesla C1060 GPU (c.f. Table 1). Four
problem sizes are discussed for each kernel, representing 12 different optimization
problems for which best tile layouts (tile size/blockDim combinations) are solved.

Accuracy. It is impractical to measure the accuracy of our tile size selection
framework for a kernel by comparing the actual execution time of the best tile
layout found with the execution times of all tile layouts.

We have decided to evaluate this work empirically as is often done in auto-
mated performance tuning. For each of the 12 optimization problems discussed
here, we have randomly sampled 1000 different tile layouts. The largest relative
error (between the estimated execution time Ttotal and actual execution time) is
observed to be within 6.05%. To see this graphically, the relative errors of 100
sampled tile layouts for each optimization problem are plotted in Figures 7 – 9.
Let us look at the actual performance gap between the tile layout found by us
and the best-performing one in each case. Let us consider a generic optimization
problem O. Let T m

total and Rm
total be the estimated and actual execution times

of any tile layout m for O with the relative error being em. In particular, let
T opt

total and Ropt
total be the estimated and actual execution times of the the best

tile layout opt predicted for O with the relative error being eopt. The (worst)
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Fig. 7. 1D SOR: relative errors for 100 tile layouts in each of the four problem sizes

Fig. 8. 2D SOR: relative errors for 100 tile layouts in each of the four problem sizes

Fig. 9. 3D SOR: relative errors for 100 tile layouts in each of the four problem sizes

performance gap between opt and the best-performing one, m, is bounded by
( 1+em

1+eopt
− 1)× 100%, when Ropt − Rm = T opt

total/(1 + eopt) − T m
total/(1 + em), i.e.,

em is the largest, where Ropt > Rm. Based on our sampled tile layouts, the
performance gaps are found to be 5.29%, 0.51%, 2.10% and 4.92% for the four
problem sizes of 1D SOR (displayed from left to right in Figure 7), 4.33%, 1.31%,
5.14% and 2.01% for the four problem sizes of 2D SOR (Figure 8), and 0.66%,
2.28%, 6.05% and 1.30% for the four problem sizes of 3D SOR (Figure 9).

Search Time. Our algorithm is efficient in finding the best tile layout for a
loop nest (on an Intel Xeon 2.0 GHz CPU). When tiling an n-dimensional loop
nest that represents an (n− 1)-D SOR solver with a tile size m = (m1, . . . , mn),
m1 represents the time dimension and m2, . . . , mn represent the n − 1 spatial
dimensions for the underlying mesh. Due to loop skewing, the worksets of dif-
ferent time slices of a tile are also skewed [10]. Thus, the data reuse rates of a
tile for the 1D, 2D and 3D SOR solvers are expressed as a function of m and are
bounded from above by m2, m2m3

m2+m3
and m2m3m4

m2m3+m2m4+m3m4
, respectively, when

m1 → ∞. For the 1D SOR solver, the data reuse rate induces a tile size con-
straint: LT ILE

Nmem
≥ 300, where the threshold 300 is empirically set (Section 4.1).

The search time is 238 secs over a search space of 3 × 106 tile layouts. For the
2D SOR solver, the tile size constraint is LT ILE

Nmem
≥ 6. The search time is 369 secs
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over a search space of 3.2 × 106 tile layouts. For 3D SOR, the data reuse rate
imposes LT ILE

Nmem
≥ 1. The search time is 503 secs over a search space of 4.7× 106

tile layouts.
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Abstract. The Block Wiedemann (BW) and the Block Lanczos (BL)
algorithms are frequently used to solve sparse linear systems over GF(2).
Iterative sparse matrix-vector multiplication is the most time consum-
ing operation of these approaches. The necessity to accelerate this step
is motivated by the application of these algorithms to very large matri-
ces used in the linear algebra step of the Number Field Sieve (NFS) for
integer factorization. In this paper we derive an efficient CUDA imple-
mentation of this operation using a newly designed hybrid sparse matrix
format. This leads to speedups between 4 and 8 on a single GPU for
a number of tested NFS matrices compared to an optimized multi-core
implementation.

Keywords: SpMV, CUDA, Block Wiedemann, RSA, Number Field
Sieve, Factorization.

1 Introduction

The Number Field Sieve (NFS) is the current state-of-the-art integer factoriza-
tion method. It requires the solution of a large sparse linear system over GF(2)
(called the linear algebra step). Presently there are two efficient algorithms to
solve such a large sparse linear system, namely Block Wiedemann (BW) [8]
and Block Lanczos (BL) [15]. Both algorithms have a common time consuming
operation: iterative sparse matrix vector multiplication (SpMV).

Recent integer factorization efforts have been using CPU clusters to solve the
large sparse linear system [1,13]. The RSA-768 factorization [13], for example,
reported a runtime of 3 months for the linear algebra step on a cluster with 48
AMD dual hex-core CPUs. Previous works on parallelizing the linear algebra
step focused on using CPU clusters and grids [2,10,11,12]. In this paper, we
investigate how a Fermi GPU [17] and the CUDA programming model [16] can
be used to accelerate the costly iterative SpMV for matrices derived from NFS.

The memory access pattern in the SpMV operation generally consists of regu-
lar access patterns over the matrix and irregular access patterns over the vector.
The irregular access pattern over the vector is a challenge that is pronounced
more on the GPU than on the CPU, because of the smaller cache and the re-
strictive memory access pattern requirement to achieve maximum performance.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 413–424, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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However, a high-end GPU has an order-of-magnitude higher bandwidth than a
high-end CPU; e.g. a GeForce GTX 580 has 192.4 GB/s memory bandwidth,
while an Intel Core-i7 has a maximum of 25.6 GB/s memory bandwidth.

SpMV on the GPU has been explored previously in several papers [3,6,7,14]
for matrices derived from scientific computing applications. However, sparse ma-
trices derived from NFS have generally different properties, i.e. they are larger,
have a few dense rows and have many extremely sparse rows. The large size
of the matrix causes the BL and BW algorithms to require a large number of
SpMV iterations. This means that the time spent for matrix preprocessing and
matrix data transfer to the GPU memory are negligible compared to the total
runtime. Thus, approaches to the SpMV on GPUs for NFS matrices may be
different from previously published GPU SpMV approaches.

This paper is organized as follows. Section 2 describes several published sparse
matrix formats and their GPU performance when used with NFS matrices. Sec-
tion 3 presents our new formats specifically designed for NFS matrices and their
CUDA implementation for the Fermi GPU architecture. We compare our result
to an Intel Nehalem CPU with the publicly available CADO-NFS [9] software
in Section 4. Finally, Section 5 concludes the paper.

2 SpMV on GF(2) for NFS Matrices Using Existing
Formats on GPUs

In this section, we review a few relevant previously published sparse matrix
formats on GPUs and study their performance when applied to sparse matrices
over GF(2) derived from integer factorization with NFS.

We consider a sparse binary matrix A of size N × N and a dense vector X
of size N × n bit, where n is called the blocking factor. Typical blocking factors
are of the form of 64 · k, k ∈ N. Note that doubling the blocking factor roughly
halves the number of SpMV iterations required but doubles the input vector
size.

For all 0 ≤ i ≤ N − 1 let c index[i] be a column index of A[i] which contains
the indices of the non-zero entries of row i. Then, the following pseudocode shows
a single SpMV iteration of A with input vector X and result vector Y .

SPMV( Input: c_index,X; Output:Y )
for (i=0 ; i<N ; i++)
Y[i] = 0
for (j=0; j<c_index[i].size(); j++)
ind = c_index[i,j]
Y[i] = Y[i] XOR X[ind]

end

The costly operations in the SpMV pseudocode are the memory accesses for
loading c index[i, j], X [ind], Y [i] and storing Y [i]. To speed up those operations
on any architecture a common approach is to design a cache-friendly order of
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accessing the memory. The order is especially important for the vectors X and
Y , since their memory locations might be accessed multiple times.

CUDA implementations generally store both matrix and vectors in high la-
tency global memory. Memory accesses to A and Y can usually be coalesced.
Memory accesses to X are random and non-coalesced, but texture memory can
be used to take advantage of texture cache. We now briefly review the CUDA
implementation of a number of SpMV formats published in previous papers
[3,14].

Coordinate list (COO). For each non-zero, both its column and row indices
are explicitly stored. The Cusp implementation [4] stores elements in sorted or-
der of row indices ensuring that entries with the same row index are stored
contiguously. This format is well suited with respect to storage space for very
sparse matrices with many empty rows, since the storage size is strictly propor-
tional to the number of non-zero elements. Implementing SpMV on CUDA with
this storage format requires doing atomic updates to the Y vector from parallel
threads, which leads to a low performance. The Cusp implementation attempts
to solve this problem by using parallel segmented reduction on shared memory
within a warp and block before writing to Y . However, because shared memories
are only visible to threads within the same block, results from different blocks
still need to be combined in the global memory.

Compressed Sparse Row (CSR). Non-zeros are sorted by the row index, and
only their column indices are explicitly stored in a column array. Additionally,
the vector row start stores indices of the first non-zero element of each row in the
column array. The CSR Cusp implementation assigns one warp to each matrix
row. Each thread in a warp computes the result of one non-zero at a time and
then the warp moves to the next 32 elements. A parallel reduction operation is
performed within a warp to get the final result of the row.

ELLPACK (ELL). Let K be the maximum number of non-zero elements in
any row of the matrix. Then, for each row, ELL stores exactly K elements (extra
padding is required for rows that contain less than K non-zero elements). As in
the CSR format, elements are sorted by row index and only column indices
are explicitly stored. In this format, the column array is stored in transposed
manner allowing coalesced memory access. The storage size of the ELL format
is proportional to K × N . The Cusp ELL implementation assigns one thread
per row. Each thread iterates K times accumulating the sum of the respective
elements into a register. This format outperforms CSR if the number of non-
zeros per row is relatively even. When the number of non-zero elements per row
is uneven, overhead from extra padding elements increases the memory usage
and decreases performance.

Sliced ELLPACK (SLE). This format partitions the matrix into horizontal
slices of S adjacent rows [14]. Each slice is stored in ELLPACK format. The
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Fig. 1. SpMV performance comparison between sparse matrix formats for various NFS
matrices in terms of giga non-zeros per second on a Tesla C2070 GPU with 64 bit
blocking factor

Table 1. Properties of utilized NFS matrices resulting from factorizing integers with
100, 130, 140 and 170 digits, respectively

(a) Small Matrices

RSA-100 RSA-130

Size 284, 836 × 284, 996 1, 698, 881 × 1, 699, 041
Non-zeros 26,274,784 192,416,939
Max row weight 118,252 731,247
Min row weight 11 11
Average row weight 92.24 113.2

(b) Large Matrices

RSA-140 RSA-170

Size 3, 576, 848 × 3, 577, 008 10, 463, 019 × 10, 463, 197
Non-zeros 347,915,287 994,785,014
Max row weight 1,327,624 5,582,861
Min row weight 11 3
Average row weight 97.26 95.08

maximum number of non-zeros may be different for each slice. An additional
array slice start is used to index the first element in each slice. The matrix rows
are usually sorted by the number of non-zeros per row in order to move rows
with similar number of non-zeros together. Since there is to our knowledge no
open-source SLE CUDA implementation, we have developed our own code. Our
SLE CUDA implementation is similar to ELLPACK i.e. 1 thread per row. A
requirement is that the height of each slice has to be divisible by the warp size
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(32). This format adapts well to many sparse matrix types, and improves the
memory usage compared to ELLPACK. However, there is still some overhead
due to padding. The Variable-Height SLE [14] format can be used to reduce the
overhead further.

We have modified the NVIDIA Cusp library to adapt with GF(2) operation
and performed the comparison between the above formats on matrices from
RSA-100, RSA-130 and RSA-140 factorization. A summary of these matrices is
shown in Table 1. The result of our comparison in Figure 1 shows that CSR
outperforms other formats. SLE is slower because of the uneven number of non-
zeros per row in the dense part of the matrix. However, SLE performs better
than CSR on the sparse part of the matrix. Thus, using CSR for the dense part
and SLE for the sparse part improves the performance.

3 New Formats for SpMV on GPUs for NFS Matrices

As a preprocessing step, we reorder the rows of the matrix by their row weight, in
non-increasing order. The row weight of row j of A is defined as the total number
of non-zero elements in row j. We then partition the sorted matrix rows into at
most four consecutive parts. Each part uses a different format. The different
formats are optimized for the sparseness properties of each partition as shown
in Figure 2. For the densest part, we use a dense format. When the matrix gets
less dense, we switch to another format which we call Sliced COO. Sliced COO
has three variants, small, medium, and large. Our formats are now described in
more detail.

3.1 Dense Format

The dense format is used for the dense part of the matrix. This format uses 1
bit per matrix entry. Within a column, 32 matrix entries are stored as a 32 bit
integer. Thus, 32 rows are stored as N consecutive integers.

      Small Sliced COO

    Medium Sliced COO

  DenseDense

  Sparse

       Large Sliced COO

Fig. 2. Partitioning of a row-sorted NFS matrix into four formats
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Each CUDA thread works on a column. Each thread fetches one element from
the input vector in coalesced fashion. Then, each thread checks the 32 matrix
entries one by one. When the matrix entry is a non-zero, the thread performs
a XOR operation between the element from the input vector and the partial
result for the row. This means each thread only accesses the input vector once
to do work on up to 32 non-zeros. The partial result from each thread needs to
be stored and combined to get the final result for the 32 rows. These operations
are performed in CUDA shared memory.

The 32 threads in a warp share 32 shared memory entries to store the partial
results from the 32 rows. Since all threads in a warp execute a common instruc-
tion at a time, access to these 32 entries can be made exclusive. The result from
each warp in a thread block is combined using reduction on shared memory. The
result from each thread block is combined using an atomic XOR operation on
global memory.

When the blocking factor is larger than 64, access to the shared memory needs
to be reorganized to avoid bank conflicts. Each thread can read/write up to 64
bit data at a time to the shared memory. If a thread is accessing 128 bit data
for example, two read/write operations need to be performed. Thus, there will
be bank conflicts if we store 128 bit data on contiguous addresses. We can avoid
bank conflicts by having the threads in a warp first access consecutive 64 bit
elements representing the first halves of the 128 bit elements. Then, the threads
again access consecutive 64 bit elements representing the second halves of the
128 bit elements. The same modification can be applied to other formats as well.

The dense format is used for 32 to 64 dense rows of the RSA-170 matrix, which
comprises about 15-24% of the total non-zeros in the matrix. This translates to
a memory usage of at most 0.36 bytes per non-zero.

3.2 Sliced COO

The Sliced COO format is adapted from the CADO-NFS software for CPUs
[9]. The aim is to reduce irregular accesses to the input vector and increase the
texture cache hit rate. Sliced COO stores the column index and the row index
of each non-zero. A number of consecutive rows form a slice. Non-zeros within
a slice are sorted by their column index.

For each non-zero, two bytes are used to store the column index. However,
two bytes are not enough for large RSA matrices. Thus, we further divide a slice
into groups. Group i contains non-zeros with column index between i× 216 and
(i + 1) × 216 − 1. An additional array stores the starting position of each group
in the slice.

One thread block works on a slice, one group at a time. Neighboring threads
work on neighboring non-zeros in the group. Each thread works on more than
one row. Thus, each thread needs some storage to store the partial result and
combine them with the result from the other threads. Since neighboring non-
zeros may or may not come from the same row, we cannot share the entries
in shared memory among the threads in a warp with exclusive access. Thus,
shared memory is either partitioned among threads or shared using atomic XOR
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operations. Based on the way we allocate the shared memory, we further divide
the sliced COO format into three different subformats: small, medium, and large.

Small Sliced (SS) COO. In this subformat, each thread has one exclusive
entry in shared memory to store the partial result for each row. The assignment
of the shared memory is organized such that each thread in a warp accesses
only one bank and there is no bank accessed by more than one thread. Thus,
there is no bank conflict. A reduction operation on shared memory is required
to combine partial results from each thread.

The maximum number of rows per slice is calculated as size of shared memory
per SM in bits / (number of threads per block * blocking factor). In Fermi, the
size of shared memory per SM is 48 KB. We use 512 threads per block for 64
bit blocking factor which gives 12 rows, and 256 threads per block for 128 and
256 bit blocking factor, which gives 12 and 6 rows, respectively. Hence, one byte
per row index is sufficient for this subformat.

Medium Sliced (MS) COO. In this subformat, each thread in a warp gets an
entry in the shared memory to store the partial result for each row. However, this
entry is shared with the threads in other warps. Access to the shared memory
uses an atomic XOR operation. Each thread in a warp accesses only one bank,
avoiding bank conflicts. A reduction operation on shared memory is required to
combine the 32 partial results.

The maximum number of rows per slice is calculated as size of shared memory
per SM in bits / (32 * blocking factor) where 32 is the number of threads in a
warp. This translates to 192, 96, and 48 rows per slice for blocking factor of 64,
128, and 256 bit, respectively. Hence, one byte per row index is sufficient for this
format.

Large Sliced (LS) COO. In this subformat, the result for each row gets one
entry in shared memory, which is shared among all threads in the thread block.
Access to shared memory uses an atomic XOR operation. Thus, there will be
bank conflicts. However, this drawback can be compensated by a higher texture
cache hit rate.

The maximum number of rows per slice is calculated as size of shared memory
per SM in bits / blocking factor. This translates to 6144, 3072, and 1536 rows
per slice for blocking factor of 64, 128, and 256 bit, respectively. We use two
bytes for the row index.

3.3 Determining the Cut-Off Point of Each Format

To determine which format to use, we compare the performance of two consec-
utive formats in terms of giga non-zeros (gnnz ) per second, starting with the
dense format and the SS-COO format. The two formats start from the same row
(starting from the first row) and work on the minimum number of rows possi-
ble. For the dense format, the minimum number of rows is 32. For the SS-COO
format (and its variants), the minimum number of rows is the number of rows in
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a slice times the number of multiprocessors in the GPU, since one thread block
works on one slice and one thread block is assigned to one multiprocessor.

The next comparison depends on the result of the current comparison. If the
dense format performs better, we decide to use it for rows 1 to 32, and we
continue comparing the dense format and the SS-COO format starting from row
33. However, if the SS-COO format performs better, we compare its performance
with the next format, MS-COO, starting from the same row, and so on. The idea
is to stop considering the denser format once the sparser format outperforms it.
Once we get to the comparison between MS-COO and LS-COO, and LS-COO
performs better, we don’t need to do any further comparisons. LS-COO should
be used for the rest of the matrix.

For Sliced COO format, it needs to be noted that when one slice is assigned to
each multiprocessor, the load for one multiprocessor may be much higher than
the other multiprocessors. This is because the matrix rows have been reordered
by their weight in a non-increasing order, so the first slice contains more non-
zero entries than the rest. Thus, we need to further reorder the rows such that
each multiprocessor gets the same level of load.

3.4 Dual-GPU Implementation

Two GPUs are connected to PCIe slots and communicate to each other directly
using the NVIDIA GPUDirectTM v2.0. To balance the workload between the
two GPUs, we partition the matrix rows into two smaller matrices so that each
has a similar number of non-zeros. Each smaller matrix is assigned to one GPU.
Each GPU computes the multiplication with the complete input vector. The
result from each GPU is half of the result vector.

As we need to perform multiple SpMV iterations, we have to combine the
result from each GPU before moving on to the next multiplication. Our goal
is to reduce the overhead of communication by overlapping computation and
communication. We also take advantage of the fact that bi-directional PCIe data
transfer has a higher bandwidth than uni-directional. Each half-matrix is divided
further into several sub-matrices so that the computation and communication
can be interleaved. This is illustrated in Figure 3. Note that the number of rows
in each sub-matrix doesn’t have to be equal to each other. The dense sub-matrix
has fewer rows than the sparse sub-matrices.

There are two events where non-overlapping computation and communication
occur. The non-overlapping computation occurs in the multiplication of the first
sub-matrix. The non-overlapping communication occurs when the GPU sends
the result of the last sub-matrix. To reduce the time spent on non-overlapping
computation and communication, we do the multiplication in the order of the
sparseness of the sub-matrix, sparsest first. The sparse sub-matrix multiplication
is fast to compute because it has few non-zeros, so non-overlapping computation
is minimized. The dense sub-matrix takes longer to compute, but has fewer rows
than the sparse sub-matrices. Thus, the transfer size for the result is smaller,
and non-overlapping communication is minimized.
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GPU 1 GPU 2

(a) Dual-GPU Step 1

GPU 2GPU 1

(b) Dual-GPU Step 2

Fig. 3. (a) GPU1 and GPU2 perform the SpMV iteration on the first sub-matrix and
store the result in their own device memory. (b) After computing the result of the
first sub-matrix, the result is transferred to the other GPU using GPUDirectTM v2.0.
At the same time, GPU1 and GPU2 compute the next sub-matrix multiplication. In
this step, two operations are executed at the same time. Bi-directional data transfer is
utilized on each GPU.

In Figure 3, the boxes on the left and on the right side represent the two GPUs,
the horizontal bars at each side represent small sub-matrices of each half-matrix
and the vertical bars represent the result vector. The input vector is not shown
in the diagram.

The process shown in Figure 3 continues until each GPU finishes every sub-
matrix and the last result is transferred to the other GPU. At this point, both
GPUs have the same result vector, and the next SpMV iteration can be started.

If GPUDirectTM v2.0 is not available, data transfer between GPUs is per-
formed via the CPU. In this case, we can allocate a CPU vector to receive the
result from each GPU before transferring it to the other GPU. The bi-directional
data transfer can still be utilized, but the data transfer is less efficient because
of the additional communication with the CPU.

4 Results

We have evaluated our implementation on an NVIDIA Tesla C2070 with 6 GB
RAM and an NVIDIA GTX580 with 1.5 GB RAM. We have compared the GPU
performance with the open-source CADO-NFS [9] program running on Intel
Core i7-920 CPU with 12 GB DDR3-1066 memory. The RSA-140 and RSA-170
matrix (see Table 1) are used for performance evaluation. These matrices have
been created by CADO-NFS [9] and Msieve [5,18], respectively. The performance
is measured in terms of gnnz/s. CADO-NFS contains several CPU optimized
SpMV implementations using multi-threading and SSE instructions. In Table 2
and 3, we have included the performance for the basic format (based on CSR)
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Table 2. Performance in terms of gnnz per second for a single SpMV iteration with the
RSA-140 matrix on one and two GPUs. The speedups compared to the multi-threaded
CADO-NFS bucket implementation on an Intel Core i7-920 are given in brackets. The
GPU memory required to store the sparse matrix and the corresponding bytes per
non-zero (nnz) are also reported.

Blocking GTX580 C2070 2 x C2070 Core i7-920 GPU memory
factor (speedup) (speedup) (speedup) basic bucket (bytes/nnz)

8 threads 4 threads

64 7.65 (7.0) 5.20 (4.8) 10.38 (9.5) 0.32 1.09 1177 MB (3.55)
128 4.20 (6.6) 2.83 (4.4) 5.64 (8.8) 0.27 0.64 1205 MB (3.63)
256 2.80 (8.0) 1.85 (5.3) 3.60 (10.3) 0.17 0.35 1207 MB (3.64)

Table 3. Performance in terms of gnnz per second for a single SpMV iteration with the
RSA-170 matrix on one and two GPUs. The speedups compared to the multi-threaded
CADO-NFS bucket implementation on an Intel Core i7-920 are given in brackets. The
GPU memory required to store the sparse matrix and the corresponding bytes per
non-zero (nnz) are also reported.

Blocking C2070 2 x C2070 Core i7-920 GPU memory
factor (speedup) (speedup) basic, 8 threads bucket, 4 threads (bytes/nnz)

64 4.28 (4.9) 8.38 (9.5) 0.31 0.88 2748 MB (2.90)
128 2.78 (5.6) 5.37 (10.7) 0.26 0.5 2967 MB (3.13)
256 1.88 (7.0) 3.68 (13.6) 0.16 0.27 3000 MB (3.16)

and the CPU-cache optimized bucket format of CADO-NFS with the number of
threads that gives the best performance. Speedups of our GPU implementation
are given compared to the faster bucket format.

Table 2 shows the result for the RSA-140 matrix. GTX580 achieves the best
performance, with speedups between 6.6 to 8.0 over the Core i7-920 depending
on the blocking factor used. C2070 achieves speedups between 4.4 to 5.3. Note
that C2070 has the ECC (error correcting codes) memory disabled, since ECC
reduces the GPU performance. As described in [11], a checkpointing approach
could be used to replace the necessity of ECC memory. Comparing to the perfor-
mance of existing sparse matrix formats with 64 bit blocking factor in Figure 1,
our NFS optimized format is 3.25 times faster than the best performing format
at a similar memory consumption on the same hardware. The dual-GPU imple-
mentation achieves speedups between 1.94 to 1.99 compared to the single-GPU
performance.

Table 3 shows the result for the RSA-170 matrix. C2070 achieves similar
performance to the RSA-140 matrix. Since storing the RSA-170 matrix requires
almost 3 GB, the GTX580 cannot be used in this case due to lack of RAM. The
dual-GPU implementation achieves speedups between 1.93 to 1.96 compared to
the single-GPU performance.

Table 4 and 5 show that the performance in terms of gnnz per second decreases
when the matrix gets sparser. The dense format is not used in RSA-140 matrix,
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Table 4. Performance in terms of gnnz per second for each of the three sub-format
partitions of the RSA-140 matrix on a C2070. The percentage of non-zeros (nnz) per
partition is given in bracket.

Blocking factor SS-COO MS-COO LS-COO

64 13.73 (20%) 8.30 (26%) 3.72 (54%)
128 7.16 (31%) 3.46 (6%) 2.16 (63%)
256 3.95 (29%) 2.25 (7%) 1.47 (64 %)

Table 5. Performance in terms of gnnz per second for each of the four sub-format
partitions of the RSA-170 matrix on a C2070. The percentage of non-zeros (nnz) per
partition is given in bracket.

Blocking factor Dense SS-COO MS-COO LS-COO

64 13.66 (24%) 9.66 (11%) 8.13 (13%) 2.77 (52%)
128 9.66 (15%) 7.53 (24%) 3.23 (6%) 1.86 (55%)
256 7.00 (15%) 4.21 (21%) 2.34 (6%) 1.33 (58 %)

since the dense rows are not dense enough for the dense format to outperform
the SS-COO format. The MS-COO and LS-COO performance degrade when the
blocking factor is increased from 64 to 128 and 256 bit. This is caused by the
increased number of bank conflicts and serialization of atomic XOR operations
on larger blocking factors. Thus, the SS-COO format gets a higher percentage
of non-zeros with 128 and 256 bit blocking factor.

5 Conclusion and Future Work

We have presented our implementation of iterative SpMV for NFS matrices on
GPUs with the CUDA programming language. Our single and dual-GPU imple-
mentation have been described in detail and both show promising improvements
over an optimized CPU implementation. Our GPU implementation takes advan-
tage of the variety of sparseness in NFS matrices to produce suitable formats for
different parts.

Our current dual-GPU implementation on two C2070s is able to deal with NFS
matrices containing up to 3 billion non-zeros. To deal with even larger matrices
such as the RSA-768 [13] matrix (≈ 28 billion non-zeros) and the SNFS-1024
[1] matrix (≈ 10 billion non-zeros), we are currently working on extending our
approach to a GPU-cluster.

Acknowledgements. We would like to thank Martin Krone for making the
RSA-170 matrix available to us. We are also grateful to Emmanuel Thomé for
his advises that enabled us to obtain performance numbers for CADO-NFS.
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Abstract. We explore the backtracking paradigm with properties seen
as sub-optimal for GPU architectures, using as a case study the maximal
clique enumeration problem, and find that the presence of these prop-
erties limit GPU performance to approximately 1.4–2.25 times a single
CPU core. The GPU performance “lessons” we find critical to providing
this performance include a coarse-and-fine-grain parallelization of the
search space, a low-overhead load-balanced distribution of work, global
memory latency hiding through coalescence, saturation, and shared mem-
ory utilization, and the use of GPU output buffering as a solution to irreg-
ular workloads and a large solution domain. We also find a strong reliance
on an efficient global problem structure representation that bounds any
efficiencies gained from these lessons, and discuss the meanings of these
results to backtracking problems in general.

1 Introduction

The backtracking paradigm, a depth-first search method that finds solutions
in a memory efficient manner, is ubiquitous in computing. A few examples in-
clude constraint satisfaction in AI [11], frequent itemset mining in data min-
ing [6], maximal clique enumeration in graph mining [16], k-d tree traversal for
ray tracing in graphics [9], and logic programming languages such as Prolog.
Backtracking typically constructs optimal solutions from candidate solutions,
thus forming a search tree that the backtracking traverses. Backtracking is of-
tentimes at the core of the problems that are combinatorial by nature and,
therefore, compute-and-memory-intensive. For many such problems, performing
a breadth-first search of the search tree is infeasible due to memory requirements.
For instance, frequent itemset mining, as exhibited by the Apriori algorithm and
its variants [1], becomes infeasible for large input domains.
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To reduce backtracking’s computational requirements, several strategies have
been explored. Pruning the search tree by eliminating non-candidate subtrees,
such as in α-β game-tree pruning, avoids unnecessary computation. Likewise, an
efficient data model for problem representation (e.g., bitmaps) enables efficient
use of intermediate data structures. Finally, parallel implementation of back-
tracking search on HPC multi-node, multi-core architectures offers scalability
for large problem domains (e.g., parallel maximal clique enumeration (MCE) in
graphs [16]).

Recent advancements in parallel computing architectures have opened up pos-
sibilites for more computationally- and energy-efficient algorithms. In particular,
graphics processing units (GPUs) have been maturing not only for graphics ap-
plications, but also for general-purpose computations1 [14]. Some computational
motifs perform effectively on a GPU, while the effectiveness of others is still an
open issue. For instance, Lee et al. note an average speedup of 2.5× of various
algorithms on the GPU vs. optimized Nehalem implementations, and both Lee
et al. and Vuduc et al. highlight memory-bound algorithms on the GPU that
perform at the same level or worse than the corresponding CPU implementa-
tion [12,18].

Despite some of the successes of recent computational dwarfs on GPUs, the
mapping of the backtracking paradigm onto the GPU architecture has been
recognized as a notoriously difficult problem for a number of reasons. Table 1
names a number of difficulties that a mapping of a backtracking problem to the
GPU could encounter, leading to a vastly inefficient use of the GPU memory
hierarchy and SIMD-optimized GPU multi-processors.

There have, however, been algorithms successfully mapped onto the GPU,
though with major departures from the general case of backtracking. The most
visible example is in ray tracing, where k-d tree acceleration structures are used
to compute ray intersections by traversing the tree in a depth-first fashion [5,10].
The tree is computed in full before traversals, and the stack-based representation
is eliminated by explicitly computing transitions through the tree. However,
these properties cannot be assumed in many backtracking problems, much less
in the general case.

Our goal, therefore, is to investigate the parallelization of the backtracking
paradigm on the GPU. To do this, we analyze the components of difficult back-
tracking problems and propose tree-level and node-level parallelizations of search
space traversal, as well as buffer-based output. At best, given the performance
of other computational motifs and the nature of the backtracking problem, we
cannot expect an order of magnitude increase in performance. Rather, a more re-
alistic performance goal is to perform at one to two times the CPU performance,
which opens up the possibility of building future backtracking algorithms on
heterogeneous hardware (such as CPU-GPU clusters) and performing workload-
based optimizations.

1 All further discussion will be based on Nvidia’s CUDA architecture.
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2 Motivation

As mentioned, backtracking is a depth-first exploration of a problem space, where
states represent partial solutions. At each step, either the partial solution is ex-
panded to another possible solution, or it is determined that a solution cannot
possibly lie on this path, and the search backtracks to a previous state. Some
backtracking problems are harder than others, and it is the characteristics of the
harder ones that are of the most interest. Table 1 summarizes these characteris-
tics compared to optimal GPU conditions.

Table 1. Opposing algorithm and hardware characteristics

Backtracking GPU optimal

Problem Instance Irregular access Regular access with locality
Work Unit Memory, computation variable Constant size, perfectly SIMD
Output Exponential size (if enumerative), Polynomial size, apriori

hard to estimate
Search Space Tree-based, unbalanced Fixed, apriori (if applicable)

The problem instance can lend itself to irregular access patterns, making it
difficult for GPU algorithms to coalesce memory accesses. One example of this is
an adjacency list representation of graphs, where vertices may link to arbitrary
other vertices. This problem has been recognized by attempts to perform graph
algorithms such as breadth-first search on the GPU [8]. In many cases, graphs
are too large to use an adjacency matrix representation.

In many problems, the search node, or work unit, is variable in both mem-
ory and computational requirements, making load balancing, enforcing thread
convergence, and efficiently utilizing processors and storage mechanisms diffi-
cult. One example is an instance of constraint satisfaction, where solutions are
subsets of a very large set.

The output size of enumerative problems can be exponential with respect to
the problem size. For instance, finding all maximal cliques in a graph has a worst-
case exponential output size [13]. This can limit acceleration of a GPU-based
method due to overhead in CPU-GPU memory transfers.

Finally, the search tree in many backtracking problems is unpredictable, mak-
ing it difficult to divide the work evenly. For example, in the context of MCE,
current parallel methods rely on communication between compute nodes to load
balance and distribute [16], whereas on GPUs thread blocks are optimized to
perform independently of each other.

3 Backtracking Case Study: Bron-Kerbosch MCE

3.1 Algorithm Overview

A clique of a graph is a subset of the vertex set in which there is an edge con-
necting each pair of vertices in the set, and a maximal clique is a clique that is
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not contained in any other, larger clique. Maximal clique enumeration (MCE)
is ubiquitous in real world problems. Examples of the uses of MCE include
identification of common secondary structure elements of proteins [7], detection
of protein-protein interaction complexes [19], clustering of similar mass spec-
trometry spectra [17], and detection of social heirarchy from email communica-
tions [15]. Thus, efficient MCE algorithms are of high value.

The MCE algorithm by Bron and Kerbosch (BK) employs a backtracking
strategy that embodies the properties in Table 1, constructively building maxi-
mal cliques of an input graph [3]. Each subtree being traversed has a compsub
list, or a list representing the current clique, and each search node consists of
two data structures, collectively known as a candidate path:

1. candidate—the vertices connected to all vertices in compsub: these may be
added to compsub to create a new clique; and

2. not—the vertices connected to all vertices in compsub that would create a
redundant clique if added.

Procedure 1: enum(cp stack, compsub): traverse subtree(s) in cp stack,
using global compsub. Both CPU and GPU use multiple stacks and split
among compute elements to achieve coarse-grain parallelism.
1 // process-per-stack on CPU, warp-per-stack on GPU

2 while not empty(cp stack) do
3 cp ← pop(cp stack)
4 update compsub
5 if empty(not(cp)) and empty(cand(cp)) then
6 output compsub
7 else
8 spawn(cp stack, cp)

9 // CPU -- steal work from other stacks

10 // GPU -- assign stack on CPU side to split work with

11 load balance(cp stack)
12 if not empty(cp stack) then
13 goto 2

Procedures 1 and 2 show the enumeration routine. The variable cp stack is a
stack data structure, pushing and popping candidate path structures in depth-
first fashion, in lieu of a recursive representation of backtracking. The stack(s)
are initially populated with size-one cliques, that is, a vertex and its neighbors,
where the not and candidate lists are determined lexicographically by vertex
label. Until the stack is empty, a process gets the current candidate path, and
either outputs its compsub in the case of a maximal clique, or iteratively creates
new candidate paths by choosing a vertex to expand (which is added to compsub
when the new candidate path is visited) and computing new candidate and not
lists based on adjacency to the selected vertex. Search tree pruning is performed
by the addition of fixv, reducing by a large degree the number of subtrees
leading to redundant cliques.
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Procedure 2: spawn(cp stack, cp): expand candidate path cp onto stack
cp stack, the GPU splits the procedures in lines 2, 9, 10, 14 to achieve
fine-grain parallelism.
1 // finding fixv is warp-level parallel on GPU

2 fixv ← minimum disconnected vertex to vertices in cand(cp)
3 if fixv in not(cp) then
4 cv ← first vertex in cand(cp) not adjacent to fixv, or nil
5 else
6 cv ← fixv
7 while cv �= nil do
8 // filter(cond fn, list) is warp-level parallel on GPU

9 not(newcp) ← filter(adjacent to fixv, not(cp))
10 cand(newcp) ← filter(adjacent to fixv, cand(cp))
11 push(cp stack,newcp)
12 move cv to not(cp)
13 // finding next cv is warp-level parallel on GPU

14 cv ← next vertex not adjacent to fixv, or nil

15 // CPU -- service load balance requests from other processes

3.2 Algorithm Parallelization

On both the CPU and GPU variants of the algorithm, coarse-grain paralleliza-
tion is achieved by performing Procedure 1 for many stacks, partitioned among
processes. For the GPU variant of the algorithm, fine-grain parallelization is per-
formed on the warp level by performing lines 2, 9, 10, and 14 of Procedure 2 in
parallel. To find the minimum disconnected vertex fixv, each thread in the warp
takes vertices in the not and candidate list in strides, recording the minimum
non-connectivity counts, then the warp performs a prefix-sum-like operation to
retrieve the global minimum. For instance, for a not and candidate list of total
size n, thread zero computes the local minimum of vertices at offsets 0, 32, etc.
thread one computes the local minimum at offsets 1, 33, etc. until all n vertices
have been processed. To perform the filter operation, the warp steps through
the not and candidate lists in strides, testing connectivity to fixv, and uses a
prefix-sum to compute the correct offsets to output connected vertices to fixv.
To determine the next cv, each thread in the warp takes a vertex of the remaining
candidate in strides, testing connectivity, and performs a prefix-sum-like oper-
ation to return the correct vertex. Shared memory is used to store warp-wide
variables such as candidate path information as well as buffers for performing
the prefix-sum operations. All shared memory accesses utilize the broadcasting
mechanism, where each thread accesses the same memory bank, and avoid bank
conflicts for operations such as the prefix-sum. candidate paths are also loaded
into shared memory in two ways: partially and in full. The partial load method is
used when finding fixv, loading the candidate and not lists in warp-level chunks
and iteratively testing connectivity between those vertices and the thread-local
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vertex. Loading the candidate path in full allows performance of all operations
on it in shared memory, at the cost of lower occupancy from increased storage
requirements (the candidate path is size-bound by the maximum vertex degree).

Unlike CPUs, GPUs do not have the capability of outputting directly to disk,
so a more complex method of handling output data must be considered. Further-
more, in enumerative problems such as MCE, it is infeasible to store all output
solutions in GPU memory at once, so there must be some intermediate CPU-
GPU transfers. Näıvely, each stack’s compsub could be transferred after each
expansion iteration to the CPU, where the valid solutions are extracted and
output. However, such a method would suffer from low density of usable output.
The more efficient way is to use atomic operations to reserve space from a pre-
allocated output buffer and allow blocks to continue expanding states until the
buffer is full, decoupling the strict expand-then-output algorithm structure. This
allows warps to run more independently of each other, expanding multiple states
until a stopping condition is reached. If the output buffer is not large enough,
then the method reduces to the first solution, or worse. Also, the need to atom-
ically access and update a single variable across many warps (the buffer “lock”)
can incur a performance penalty, one that is offset by reducing the amount of
data sent to the CPU. For the GPU version of the BK algorithm, the size of the
output buffer is the number of concurrent subtrees times a heuristic maximum
clique size, determined using vertex degrees.

Load-balancing on the CPU is performed by adding work-stealing, requesting
work from other processes at the end of Procedure 1 and re-entering the loop if
work is recieved, and servicing work requests at the end of Procedure 2 if there is
work to give. On the GPU, a very simple method of load balancing is performed.
Each warp keeps a count of the number of nodes on its stack, stored contigu-
ously to the output buffer. At the end of each iteration (full buffer), this list is
transferred to the CPU with the buffer, sorted, and then pairs of blocks with
empty stacks and blocks with large stacks share work, moving the bottommost
half to the block with a previously empty stack. Since the number of processes
is not large (typically in the hundreds), the cost of sorting and transferring the
load-balance pairs is very small compared to the algorithm (about a single per-
cent), so benefit gained from performing the sort on the GPU would be minimal.
For completeness, we expect to move this routine to the GPU in the near future.

4 Benchmarking

4.1 Input Graphs

To benchmark the parallelized BK algorithm, a few graphs of varying charac-
teristics have been chosen (see Table 2), including a functional gene-gene as-
sociation network (ava80), climate network with Sea Level Pressure profiles
between spatial grid points (slp) over the last 60 years, and a few synthetic
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Table 2. Input graphs

Graph Origin # Vertices # Edges # Maximal Cliques

ava80 Biological 193,568 2,260,872 395,306
slp Climate 10,512 679,056 365,605
rmat1 Synthetic 8,192 723,849 5,823,741
rmat2 Synthetic 32,768 3,809,695 21,903,896

graphs (rmat-series) generated using GTgraph [2], under the Recursive Matrix
Graph Model (R-MAT) [4], a scale-free random graph generator.

4.2 GPU vs. Multi-core CPU Timing

Two differing GPU implementations are shown in Fig. 1, representing partially
and fully loading a node into shared memory, compared to single-core and quad-
core CPU implementations. While the GPU methods outperform the single-core
CPU method in all cases, relative performance is varied against the non-load-
balanced CPU version and worse than the load-balanced method. The GPU
method with partial node loading performs between 1.4× and 2.25× the single-
core CPU method, but up to 3× worse than the load-balanced quad-core CPU
method (the speedup of ava80 is disregarded due to the very short run-time). In
terms of distribution of time, the GPU transferral of cliques and load balancing
accounted for between one and two percent of enumeration time, except in ava80,
which was closer to ten percent. The time taken to transfer the cliques is about
one percent of total time, so the buffering methodology is quite efficient compared
to the enumeration process.
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ava80 slp rmat1 rmat2

CPU 1-core 3.6 15.7 24.6 108
CPU 4-core no lb 1.2 5.1 13.8 59
CPU 4-core w/ lb 1.1 3.8 8.19 33.2
GPU partial 0.9 11.5 10.9 60.5
GPU full 0.9 11.2 10.8 65.3

Fig. 1. Comparison of BK algorithm between CPU and GPU. NVIDIA Tesla C2050
for GPU and Intel Xeon X5355 Quad Core 2.66GHz for CPU. Left: speedups relative
to single-core performance. Right: actual time (in seconds).
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5 Lessons Learned

5.1 Coarse vs. Fine-Grain Parallelization

CPU parallelized backtracking methods utilize coarse-grain parallelization, where
multiple subtrees are explored in parallel, rather than parallelizing the work-unit
itself. CPU threads/processes are heavy-weight in comparison to GPU threads,
as they fully utilize the CPU when running and have higher context switch
overhead. They also have no direct hardware dependency on other threads, as
opposed to CUDA’s warp-based architecture.

Coarse-grain parallelization of backtracking algorithms on the GPU is, in a
näıve sense, simple to port. Call each unit executing a subtree a process and par-
tition the global memory of the GPU, one “stack” for each process. To saturate
the GPU hardware for a one-thread-per-process representation, a huge number
of processes would be needed, leaving little to no space per process. Since the
search tree and search nodes of many problems is non-uniform and cross-subtree
data is non-contiguous, there would be no coalescing and high divergence, both
bottlenecks to GPU performance.

For GPUs, fine-grain parallelization of the search nodes, or the performance
of lines 2, 9, 10, and 14, is essential. In fact, the fine-grain implementation of the
BK algorithm performs over 100× faster than the näıve coarse-grain method on
the GPU, due to the aforementioned divergence rate and lack of coalescing. The
fine-grain parallelization helps to prevent divergence by computing on similar
work-units and enables read/write coalescence on candidate paths.

In terms of warp-divergence, the algorithm is reasonably efficient, occuring
when candidate paths are small and when control code is run (such as thread zero
updating a warp-level variable in shared memory). When an adjacency matrix
data structure is used, the number of unique code paths for the algorithm is
at most three, but for other representations (see Sec. 5.3), the diverging paths
can be up to warp size. However, for the hash-table representation, this happens
rarely. As a raw percentage of total branches, diverging branches occur 15–20%
of the time.

A parallelization is useless if there is a poor work distribution strategy. Fig-
ure 2 shows the effect of the load-balancing strategy used in the GPU algorithm
on rmat2. The last iterations suffer from work of too small granularity to be ef-
fectively load-balanced. Also, the slp graph fails to be effectively load-balanced,
due to much larger cliques with relatively smaller branch factor than the other
graphs (that is, much of the tree consists of linear chains), explaining the poor
speedup compared to the CPU. Across all graphs, the effects of load-balancing
on the GPU are not nearly as beneficial as on the CPU.

5.2 Global Memory Latency Hiding

Global memory latency on the GPU poses a challenge for performing memory-
bound algorithms such as BK. Each CPU thread has a relatively large cache
space to work with, helping to hide memory latency. GPUs do not have this
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Fig. 2. The effect of load balancing over the algorithm, performed on rmat2. Left: GPU
load-balancing. Right: CPU load balancing by process. Bars represent number of nodes
expanded by process.

luxury, as a large number of lightweight threads leave little thread-level caching
capability, so backtracking methods on the GPU have to rely on other strategies.

Latency on GPU memory operations can be hidden through a combination
of coalescing, a large number of processes, and effective utilization of shared
memory. Having a large number of processes, and thus a high multiprocessor oc-
cupancy, allows for some to work on the same multiprocessor while others wait
for memory requests, pipelining memory operations. However, fully pipelining
requires a very large number of processes, which may not be feasible. Figure 3
shows the effect of adding more concurrent subtrees. While time is decreased,
the amount by which it is decreased is sub-linear, due to underutilization of
hardware for small numbers of processes, non-even distribution of work, ineffi-
ciencies in load-balancing and cache contention; cache misses increased roughly
proportional to the number of processes.

The coalescence rate of the algorithm is approximately 20% on average, a
very small number compared to optimal. One reason has to do with the global
graph data structure, see Sec. 5.3. Another is the nature of the algorithm. The

150 200 250 300 350 400

1
0
.0

1
1
.0

1
2
.0

1
3
.0

Number of Processors

E
n

u
m

e
ra

ti
o

n
 T

im
e

Fig. 3. The effect of adding more processes to enumeration time on the GPU



434 J. Jenkins et al.

average size of candidate path structures for the graphs tested were no more than
six. This is easy to understand, as every candidate path representing maximal
and near-maximal cliques will be small in size. In other words, opportunities
for coalescence are small. This also explains the small change in performance
of loading full candidate paths into shared memory; only a few of the search
nodes actually recieve the benefit. Finally, the low coalescence rate contributes
greatly to the poor performance of the algorithm relative to the CPU. Since the
GPU relies on coalescing to optimize memory usage, a coalescence rate that low
cannot compete with the caching capabilities of the CPU.

5.3 A Reliance on Problem Instance Representation

Backtracking algorithms have control over itermediate structures and how they
are used, such as the candidate path, but unfortunately, there is little that can
be done in a problem-independent manner to optimize global problem instances
with irregular access patterns, such as graphs. This reliance on a sub-optimal
problem structure is a major impediment to GPU-based algorithms, where the
penalty of accessing memory without locality is much higher than on the CPU.

To minimize the penalty for accessing such structures, optimizations such as
variable-packing and wide reads (such as 16 byte vs. 4 byte) can help reduce the
number of these memory operations by packing data for use in register memory,
such as loading multiple vertices from a graph’s adjacency list. Also, utilizing
the texture and constant memory of the GPU, both of which are cached, can
lead to performance improvements, though the amount of each type of memory
is limited and thus cannot be used for large problem instances.

For the BK algorithm, three graph representations are used, depending on
memory requirements, to minimize the number of memory operations. An adja-
cency list and adjacency matrix are used for large and small graphs, respectively.
For graphs of sizes too large for an adjacency matrix, a hash-table of neighbor-
ing vertices is used, using a simple bitwise operation between the vertex label
and the table size. With the hash table, often a single index into the hash table
is required to determine connectivity of two vertices, being both memory and
size efficient and reducing divergence. Vertices with small degree (< 10) use a
list rather than a hash table to reduce the memory footprint. To increase the
chances of coalescence, parallel connectivity queries by a warp always have one
vertex in common, so a similar area of the data is being accessed.

In the BK algorithm, the number of accesses to the graph are directly propor-
tional to the number of memory operations performed on search nodes, so even
with a perfect, coalesced, non-diverging algorithm on the search nodes, about
50% of the memory operations are still uncoalesced and can cause divergence,
which is a large bottleneck to GPU performance. A small experiment run test-
ing random graph connectivity queries reported a 12% coalescence rate, smaller
than that in Section 5.2. It is expected that the memory inefficiency of the graph
data structures is a primary cause for poor performance relative to the CPU’s
higher tolerance of differing access patterns.
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5.4 Generality of Backtracking Properties with Respect to
GPU-Based Algorithms

Given a backtracking problem, the properties listed and the other lessons learned
from the study of the BK algorithm can bring about meaningful insights on
the feasibility of parallelizing the problem on the GPU. Having properties such
as a problem instance supporting locality of access, a more regular work unit,
or a more regular search tree would enable methods that would otherwise be
infeasible to perform. Of course, these properties are specific to the algorithm
and it is difficult to say whether a particular work unit can be parallelized in
a fine grain manner or not, but given a “baseline,” these algorithms can be
effectively analyzed with respect to their ability to be performed on the GPU.

For example, k-d tree construction is an application in the same class as ours;
Zhou et al.’s GPU implementation has important differences from our problem
that allows it to compete successfully with state-of-the-art CPU implementa-
tions [20]. First, their problem domain has sufficient space to perform the tree
construction in breadth-first order, eliminating the need for a stack-based rep-
resentation and allowing more parallel computations. They also stress the effect
of fine-grain parallelism on aspects of their algorithm, which we also find im-
portant. Finally, their algorithm has more computational requirements that can
help hide GPU memory latency with a large enough number of threads, un-
like our algorithm which is highly memory-bound. Given these properties, their
algorithm competes quite well with CPU-based implementations.

6 Conclusions / Future Work

An attempt at parallelizing the backtracking paradigm, presuming the worst-
case attributes against GPU performance, was presented. This problem inspires
a number of future directions, despite the inability to provide good performance
of MCE against a CPU. Like the k-d tree traversal algorithm on the GPU,
parallelizing depth-first algorithms that do not follow the worst-case character-
istics highlighted is a promising research question, one that can, under the right
representation, hope to compete with or even beat their CPU-based implemen-
tations. Furthermore, other computational motifs have yet to be examined for a
massively parallel machine such as a GPU. Also, as demand for general-purpose
computing support on current and next-generation GPU architectures continues
to grow, some of the bottlenecks (such as memory latency) may be sufficiently
dealt with, leading to algorithms that could not otherwise be effectively per-
formed on the GPU. Of course, CPU architectures continue to grow to support
more throughput and parallelism, while pushing cache sizes. In either case, eval-
uating new and well-worn computational paradigms on state-of-the-art hardware
architectures is a constant need for those who rely on them.
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Guiding Optimized Kernel Design
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Abstract. The OpenCL standard allows targeting a large variety of
CPU, GPU and accelerator architectures using a single unified program-
ming interface and language. While the standard guarantees portability
of functionality for complying applications and platforms, performance
portability on such a diverse set of hardware is limited. Devices may vary
significantly in memory architecture as well as type, number and com-
plexity of computational units. To characterize and compare the OpenCL
performance of existing and future devices we propose a suite of mi-
crobenchmarks, uCLbench.

We present measurements for eight hardware architectures – four
GPUs, three CPUs and one accelerator – and illustrate how the results
accurately reflect unique characteristics of the respective platform. In ad-
dition to measuring quantities traditionally benchmarked on CPUs like
arithmetic throughput or the bandwidth and latency of various address
spaces, the suite also includes code designed to determine parameters
unique to OpenCL like the dynamic branching penalties prevalent on
GPUs. We demonstrate how our results can be used to guide algorithm
design and optimization for any given platform on an example kernel
that represents the key computation of a linear multigrid solver. Guided
manual optimization of this kernel results in an average improvement of
61% across the eight platforms tested.

1 Introduction

The search for higher sustained performance and efficiency has, over recent years,
led to increasing use of highly parallel architectures. This movement includes
GPU computing, accelerator architectures like the Cell Broadband Engine, but
also the increased thread- and core-level parallelism in classical CPUs [9]. In
order to provide a unified programming environment capable of effectively tar-
geting this variety of devices, the Khronos group proposed the OpenCL standard.
It includes a runtime API to facilitate communication with devices and a C99-
based language specification for writing device code. Currently, many hardware
vendors provide implementations of the standard, including AMD, NVIDIA and
IBM.

The platform model for OpenCL comprises a host – the main computer – and
several devices featuring individual global memory. Computation is performed
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by invoking data-parallel kernels on an N-dimensional grid of work items. Each
point in the grid is mapped to a processing element, and elements are grouped
in compute units sharing local memory. Broad acceptance of the standard leads
to the interesting situation where vastly different hardware architectures can be
targeted with essentially unchanged code. However, implementations suited well
to one platform may – because of seemingly small architectural differences – fail
to perform acceptably on other platforms. The large and increasing number of
hardware and software targets and complex relationships between code and per-
formance changes make it hard to gain an understanding of how some algorithm
will perform across the full range of platforms.

In order to enable automated in-depth characterization and comparison of
OpenCL hardware and software platforms we have created a suite of microbench-
marks – uCLbench. It provides programs measuring the following data points:

Arithmetic Throughput. Parallel and sequential throughput for all basic
mathematical operations, and many built-in functions defined by the OpenCL
standard. When available, native implementations (with reduced accuracy)
are also measured.

Memory Subsystem. Host to device, device to device and device to host copy-
ing bandwidth. Streaming bandwidth for on-device address spaces. Latency
for memory accesses to global, local and constant address spaces. Also de-
termines existence and size of caches.

Branching Penalty. Impact of divergent dynamic branching on device perfor-
mance, particularly pronounced on GPUs.

Runtime Overheads. Kernel compilation time and queuing delays incurred
when invoking kernels of various code volume.

2 Benchmark Design and Methodology

Before examining the individual benchmarks composing the uCLbench suite the
basic goals that shaped our design decisions need to be established. The primary
purpose of the suite is to characterize and compare the low-level performance of
OpenCL devices and implementations. As such, we did not employ device-specific
workarounds to ameliorate problems affecting performance on some particular
device, since the same behavior would be encountered by actual programs. An-
other concern is providing implementers with useful information that can support
them in achieving good performance over a broad range of devices. Particularly
the latency and branching penalty benchmarks are designed with this goal in
mind.

There are three main implementation challenges for uCLbench:

1. Ensure accuracy. The benchmarks need to actually measure the intended
quantity on all devices tested, and it must be possible to verify the compu-
tations performed.

2. Minimize overheads. Overheads are always a concern in microbench-
marks, but with the variety of devices available to OpenCL they can be
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hard to avoid. E.g. a simple loop that is negligible in its performance impact
on a general purpose CPU can easily dominate completion time on a GPU.

3. Prevent compiler optimization. Since kernel code is compiled at runtime
using the compiler provided by the OpenCL implementation, we have no
control over the generated code. Thus it is imperative to design the bench-
marks in a way that does not allow the compiler to perform unintended
optimizations. Such optimizations could result in the removal of operations
that should be measured.

There is an obvious area of conflict between these three goals. It is particularly
challenging to prevent compiler optimization while not creating significant over-
heads that could compromise accuracy – even more so when the same code base
is used on greatly differing hardware and compiled by different closed-source
optimizing compilers.

2.1 Arithmetic Throughput

As a central part of the suite, this benchmark measures the arithmetic capabili-
ties of a device. It includes primitive operations as well as many of the complex
functions defined in the OpenCL standard. Two distinct quantities are deter-
mined: the device-wide throughput that can be achieved by independent parallel
execution as well as the performance achieved for sequentially dependent code.
All measurements are taken for scalar and vector types, and, if available, both
native (less accurate) and default versions of complex functions are considered.

To enable result checking and prevent compiler optimization, input and out-
put are performed by means of global memory pointers, and the result of each
operation is used in subsequent ones. The loop is manually unrolled to minimize
loop overheads on all devices. Automatic unrolling can not be relied upon to
achieve repeatable results for all platforms and data/operation types.

The kernel is invoked with a local and global range of one work item to
determine the sequential time required for completion of the operation, and with
a local range of loc = CL DEVICE MAX WORK GROUP SIZE and a global range of
CL DEVICE MAX COMPUTE UNITS∗loc items to calculate device-wide throughput.

2.2 Memory Subsystem

Current GPUs and accelerator devices have a memory design that differs from
the deep cache hierarchies common in CPUs.

Bandwidth. While global GPU memory bandwidth per-chip is high, due to the
degree of hardware parallelism the memory bandwidth available per processing
element can be insufficient [13]. Another bottleneck for current GPUs is the PCIe
slot intermediating host memory and device.

Many GPUs and accelerators attempt to ameliorate these issues by providing a
manually controlled, multi-layered memory subsystem. In OpenCL, this concept
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is represented by separate address spaces: private, local, constant, global and
host memory.

For this reason, the benchmark is divided in two major parts: one for on-device
memory layers and one for memory traffic between host memory and device. To
test bandwidth for on-device memory the benchmark invokes kernels streaming
data from one layer back into the same layer. We also discern differences between
scalar and various vectorized types, as the latter might be optimized.

Host↔ device bandwidth measurement does not require any kernel, instead
it uses the runtime API for copying data from/to the device’s global memory or
inside device global memory. For device/host communication, two options are
considered: the first generates a buffer and commands the OpenCL runtime to
transfer it (clEnqueueWriteBuffer), the second maps a device buffer into the
host memory and works directly on the returned pointer.

For the streaming kernel, overheads were a major concern. This was addressed
by using fast add operations to forestall optimization, and by maximizing the
ratio of read/write memory accesses.

Latency. In addition to bandwidth, knowledge about access latency is essential
to effectively utilize the available OpenCL memory spaces. Depending on the
device used, only some or none of the accesses may be cached, and latency can
vary by two orders of magnitude, from a few cycles up to several hundreds.

1 5 6 7 8 9 1110 1312 1514 20 43

(a) Latency benchmark offset array for a
cache line size of 4 elements

0 1 b . . .

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

2 Branches, branching width 4

0 0 1 1 2 2 3 3 4 4 5 5 0 0 1 1

6 Branches, branching width 2

(b) Branch penalty measurement layout
options

Fig. 1. Patterns used for latency and branch penalty benchmark, respectively

The latency benchmark uses a specifically designed index array to perform
a large number of indirect memory accesses. The index array contains address
offsets chosen to cause jumps larger than cache line size, and end on a zero entry
after traversing the entire array, as illustrated in Fig. 1(a).

Some input-dependent computation and output has to be performed to pre-
vent optimization, which is achieved by accumulating offsets. Manual loop un-
rolling is used to minimize overheads. When measuring local memory latency a
large number of repeated traversals is required.

2.3 Branching Penalty

On some OpenCL devices divergent dynamic branching on work items leads
to some or all work being serialized. The impact can differ with the amount
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and topological layout of diverging branches on the work range. Since the ef-
fect on algorithm performance of this penalty can be severe [6] we designed a
microbenchmark to determine how devices react to various branch counts and
layouts.

The benchmark kernel is provided with an array of floating point numbers
equal in length to the amount of work items. Each item then takes a branch
depending on the number stored in its assigned location. Fig. 1(b) illustrates how
brancharray configurations can be used to test a varying number of branches
and different branch layouts.

2.4 Runtime Overheads

Compared to traditional program execution, the OpenCL model introduces two
potential sources of overhead. Firstly, it is possible to compile kernels at run-
time, and secondly there is an amount of time spent between queuing a ker-
nel invocation and the start of computation. These overheads are measured in
uCLBench using the OpenCL profiling event mechanism – we define the invoca-
tion overhead as the elapsed time between the CL PROFILING COMMAND QUEUED
and CL PROFILING COMMAND START events, and the compilation time as the time
spent in the clBuildProgram call. The actual kernel execution time is disre-
garded for this benchmark, and the accuracy of the profiling events is imple-
mentation defined (see Table 1).

3 Device Characterization – Results

To represent the broad spectrum of OpenCL-capable hardware we selected eight
devices, comprising four GPUs, three CPUs and one accelerator. Their device
characteristics as reported by OpenCL are summarized in Table 1.

NVIDIA TESLA 2050. The GF100 Fermi chip in this GPGPU device con-
tains 14 compute units with a load/store unit, a cluster of four special function
units as well as two clusters of 16 scalar processors each. The scalar processor

Table 1. OpenCL devices benchmarked

Device Tesla2050 Radeon5870 GTX460 GTX275 2x X5570 2x Opt.2435 2xCellPPE 2xCellSPE
Implementation NVIDIA AMD NVIDIA NVIDIA AMD AMD IBM IBM
Operating System CentOS5.3 CentOS5.4 CentOS5.4 Win 7 CentOS5.4 CentOS5.4 YDL 6.2 YDL 6.2
Host Connection PCIe 2.0 PCIe 2.0 PCIe 2.0 PCIe 2.0 - - - On-chip
Type GPU GPU GPU GPU CPU CPU CPU ACCEL
Compute Units 14 20 7 30 16 12 4 16
Max Workgroup 1024 256 1024 512 1024 1024 256 256
Vect.Width Float 1 1 4 1 4 4 4 4
Clock (MHz) 1147 1400 850 1404 2933 2600 3200 3200
Max.Alloc. (MB) 671 256 512 220 1024 1024 757 757
Images Yes Yes Yes Yes No No No No
Kernel Args 4352 4352 1024 4352 4096 4096 256 256
Alignment 64 128 128 16 128 128 1 1
Cache R/W None R/W None R/W R/W R/W None
Cache Line 128 - 128 - 64 64 128 -
Cache Size (KB) 224 - 112 - 64 64 32 -
Global Mem (MB) 3072 1024 2048 877 3072 3072 3072 3072
Constant (KB) 64 64 64 64 64 64 64 64
Local Type Scratch Scratch Scratch Scratch Global Global Global Scratch
Local (KB) 48 32 48 16 32 32 512 243
Timer Res. (ns) 1000 1000 1 1000 1 1 37 37
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clusters can work on different data using different threads that issue the same
instruction, a method referred to as Single Instruction Multiple Thread (SIMT).

AMD Radeon HD5870. The Cypress GPU on this card has 20 compute
units containing 16 Very Long Instruction Word (VLIW) [5] processors with
an instruction word length of five. To benefit from the VLIW architecture in
OpenCL the programmer should use a vector data type such as float4.

NVIDIA GeForce GTX460. The GTX460 contains a GF110 Fermi GPU
which comprises 7 compute units. These compute units are similar to the ones
on the TESLA 2050, with one important difference. Each compute unit consists
of 3 SIMT clusters fed by 2 superscalar scheduling units.

NVIDIA GeForce GTX275. This graphics card is based on the GT200 GPU
which has 30 compute units containing 8 scalar processors which work in SIMT
manner.

Intel Xeon X5570. The Intel Xeon X5570 features 4 physical CPU cores with
simultaneous multithreading (SMT) leading to a total of 8 logical cores. The
Xeons used in our benchmarks are mounted on an IBM HS22 Blade featuring
two CPUs with shared main memory, resulting in a single OpenCL device with
a 16 compute units.

AMD Opteron 2435. The Opteron 2435 CPUs used in this paper are mounted
on a two-socket IBM LS22 Blade. Each of them contains 6 cores leading to a
total of 12 compute units.

IBM PowerXCell 8i. The accelerator device in our benchmarks consists of
two PowerXCell 8i processors mounted on an IBM QS22 Blade. In OpenCL a
Cell processor comprises two devices: A CPU (the PPE of the Cell) and an
accelerator (all SPEs of the Cell). The two Cell PPEs, each featuring SMT,
contain four compute units, the eight SPE cores of the two Cell chips add up to
16 compute units.

3.1 Arithmetic Throughput

We have gathered well over 3000 throughput measurements using the uCLBench
arithmetic benchmark. A small subset that provides an overview of the devices
and contains some of the more significant and interesting results will be presented
in this section.

Fig. 2(a) shows the number of floating point multiplications per second mea-
sured on each device and the theoretical maximum calculated from the hard-
ware specifications. The first thing to note is the large advantage of GPUs in
this metric, which necessitates the use of separate scales to portrait all devices
meaningfully.

Looking at the effective utilization of hardware capabilities, the GPUs also
do well. The Fermi cards reach over 99% utilization. The other GPUs still go
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Fig. 2. Floating point multiplication throughput

over 80% while the two x86 CPUs fail to reach the 50% mark. IBM’s OpenCL
performs a bit better, achieving slightly over 65% of the theoretical maximum
throughput on both PPEs and SPEs.

While throughput of vectorized independent instructions is important for sci-
entific computing and many multimedia workloads, some problems are hard to
parallelize. The performance in such cases depends on the speed at which se-
quentially dependent calculations can be performed, which is summarized in
Fig. 2(b). The CPUs clearly outperform GPUs and accelerators here, providing
a solid argument for the use of heterogeneous systems.

Vectorization. Figures 3(a) and 3(b) show the relative performance impact of
manual vectorization using the floatN OpenCL datatypes. With a single work
item all devices benefit from vectorization to some extent. Since all three CPUs
deliver the same relative performance, they are consolidated.
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Fig. 3. Vectorization Impact

When the full amount of work items is used there are two clearly visible cat-
egories. The NVIDIA GPUs effectively gather individual work items into SIMD
groups and thus show no additional benefit from manual vectorization, vectors
with 16 elements even slow down execution. The GTX460 result is counter-
intuitive, but can be explained by scheduling constraints introduced by the su-
perscalar architecture.
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3.2 Memory Subsystem

The memory subsystems of the benchmarked OpenCL devices diverge in two ar-
eas – availability of dedicated global device memory and structure of the on-chip
memory. The GPU devices feature dedicated global memory while for all other
devices the global device address space resides in host memory. Furthermore,
the local memory on GPUs and Cell SPUs is a manually managed scratchpad
while on CPUs it is placed inside the cache hierarchy.
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Fig. 4. Bandwidth measurements

Bandwidth. The bandwidth measured between host and devices is shown in
Fig. 4(a). For CPUs data is simply copied within the main memory, while for
GPUs it has to be transferred over the PCIe bus. Therefore the bandwidth
measured for CPUs is higher in this benchmark,and the results of the two CPUs
using the AMD implementation correspond to their main memory bandwidth.
All NVIDIA GPUs perform similarly, whereas the Radeon is far behind them
using direct memory while it is faster when using mapped memory. The Cell
processor achieves very low bandwidth although it is equipped with fast memory,
a result that we attribute to an immature implementation of the IBM OpenCL
runtime.

A second property we measured is the bandwidth of the devices’ global mem-
ory. As shown in Fig. 4(b) the GPUs lead the benchmark due to their wide
memory interface. The GTX275 outperforms the Radeon as well as the newer
NVIDIA GPUs although the theoretical memory bandwidth of the latter ones
is slightly higher. All CPUs achieve the same bandwidth as in the host↔ device
benchmark since host and device memory are physically identical.

Looking further into the memory hierarchy we measure the bandwidth of a
single compute unit to its local memory. Since all compute units on a device
can access their local memory concurrently, the numbers provided need to be
multiplied by the compute unit count to calculate the local memory bandwidth
of the whole device. We measured the bandwidth in four ways: in the first case
only one work item accesses the memory, in the second the maximum launchable
number is used. These two variants were used on local memory that has been
statically declared inside a kernel function as well as to local memory passed as
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Fig. 5. Bandwidth of one compute unit to its local memory

an argument to the kernel function. Furthermore, all benchmarks were performed
using scalars and vector data types. Fig. 5(a) shows the result of the benchmarks
using only one work item while Fig. 5(b) displays the values for the full amount.
GPU scratchpad memories are clearly designed to be accessed by multiple work
items, and with parallel access performance increases by up to two orders of
magnitude.

In contrast to the GPUs the Cell SPE scratchpad memory can be used effi-
ciently in the sequential benchmark, parallelizing the access has only a minor
impact on the speed. On the CPU side, all systems exhibit unexpected slow-
downs with multiple work items. We believe that this is caused by superfluous
cache coherency operations due to false sharing [11]. All CPUs benefit from vec-
tor types, and all devices can utilize higher bandwidth to the local memory when
it is statically declared inside the kernel function.

Latency. One purpose of the multiple address spaces in OpenCL is allowing
access to lower latency memory pools. This is particularly important on GPUs
and accelerators, where global memory is often uncached. As shown in Fig. 6(b)
absolute access latency to global memory is almost an order of magnitude larger
on GPUs and accelerators than on CPUs. Additionally CPUs can rely on their
highly sophisticated cache hierarchies to reduce the access times even further.
The impact of caching is shown in Fig. 6(a) which shows the relative time to
access a data item of a certain size in comparison to the previously measured
latency to the global memory. This depiction clearly identifies the number of
caches featured by a device, as well as their usable size in OpenCL. Non-Fermi
GPUs as well as the Cell SPE do not feature any automated caching of data in
global memory resulting in equal access time for all tested sizes.

Local and Constant memory latency is significantly smaller on all devices.
On the CPUs it corresponds to L1 cache latency as expected. All four GPUs
show very similar results to access the local memory, while the Fermi based
chips outperform the Radeon and GTX275 in accessing the constant memory
by approximately six and three times, respectively. The accelerator’s behavior
more closely resembles a CPU than a GPU regarding local latency, resulting in
the largest difference between global and local timings. The SPEs are the only
device to achieve significantly lower latency for const than local accesses.
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3.3 Branching Penalty

We measured the time taken to process the branch penalty testing kernel with
one to 128 branches relative to the time required to complete a single branch. All
CPUs remain at the same performance level regardless of the number of divergent
branches. This is expected, as CPUs do not feature the SIMT execution model
that results in a branching penalty. The Cell SPE accelerator also does not
exhibit any penalty. The situation is more interesting for the GPUs, which show
a linear increase in runtime with the number of branches until a cutoff point. In
case of all NVIDIA GPUs, this point is reached at 32 divergent branches, and
it takes 64 branches on the Radeon. This measurement coincides perfectly with
the warp size reported for each GPU, which is the number of SIMT threads that
are grouped for SIMD execution.
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Fig. 7 summarizes the results obtained varying both branch count and topo-
logical layout of branches in the local range. A darker color indicates longer
kernel runtime, and the lower right part is black since it contains infeasible com-
binations of branching width and branch count. Generally, grouping branches to-
gether improves performance. In fact, the hardware behaves in a very predictable
way: if the condition branchingWidth ∗ branchCount ≥ warpSize is fulfilled,
further increases in the branch count will not cause performance degradation.
On NVIDIA GPUs, multiples of 8 for the branch width are particularly advan-
tageous, and the same is true for multiples of 16 on the Radeon. For GTX275
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and Radeon this value is equal to the reported SIMD width of the architecture.
This is not the case for the Fermi-based NVIDIA GPUs, where a SIMD width
of 16 is generally assumed, yet their behavior remains unchanged.

3.4 Runtime Overheads

Invocation overheads remain below 10 microseconds on the tested x86 CPUs as
well as the Fermi GPUs. The two IBM Parts and the GTX275 take around 30
and 50 microseconds, respectively. The Radeon HD5870 requires approximately
450 microseconds from enqueueing to kernel startup.

We measured compilation times below 1 second for all mature platforms,
scaling linearly with code size. The IBM platform has larger compilation times,
particularly for the SPEs, reaching 30 seconds and more for kernels beyond 200
lines of code.

4 Guiding Kernel Design

In this section we evaluate the usefulness and accuracy of the device charac-
terization provided by the uCLbench suite on a real-world kernel. Performance
portability is a main concern with OpenCL kernels, with different devices react-
ing very differently to optimization attempts. While some of these optimizations
– such as local work group dimensions – can be auto-tuned relatively easily oth-
ers require significant manual implementation effort. These latter optimizations
are the focus of this chapter. We will demonstrate that the automatic characteri-
zation provided by uCLbench reliably identifies promising optimizations for each
of the diverse set of devices tested, and that implementing these optimizations
consistently improves performance beyond the capabilities of a state-of-the-art
optimizing GPGPU compiler.

4.1 The Model Problem

As our test case we selected a simple elliptic partial differential equation, the
discrete two-dimensional Poisson equation with Dirichlet boundary conditions
in the unit square Ω = (0, 1)2. This problem is given by

−Δhuh(x, y) = fΩ
h (x, y)

uh(x, y) = fΓ
h (x, y) for ((x, y) ∈ Γh = ∂Ωh)

with boundary conditions fΓ
h (x, y) and discretization width h = 1/n, n ∈ IN

being the number of grid points in each direction.
The central component in a multigrid algorithm for this problem is the relax-

ation step, an iterative solver for the discretized version of the given equation.
Due to its good smoothing effects and parallelization properties (see [12]), we
chose an ω-Jacobi kernel.
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4.2 Optimizations

To evaluate the predictive power of our benchmark suite, we implemented six
kinds of manual optimizations belonging to one of three categories:

Vectorization. The kernel was vectorized for vector widths of 4, 8 and 16.
(designated vec4, vec8, vec16)

Branching Elimination. A straightforward implementation of the boundary
conditions fΓ

h (x, y) introduces dynamic branching. This optimization elim-
inates the branching by using oversized buffers and performing a separate
step to fix the boundary after each iterative step. (designated BE)

Manual Caching. These kernels manually load their working set into local
memory. There are two slightly different versions, dynamic and static. The
former passes the local memory buffer to the kernel as a parameter while
the latter statically allocates it inside the kernel. (designated mcDyn and
mcStat)

Combinations of these optimizations result in a total of 16 implementations, plus
one baseline version with no manual optimization. This does not include the vari-
ation introduced by easily tunable parameters like local work group dimensions –
for these, we selected the optimal values for each device by exhaustively iterating
over all possibilities. Clearly, manually implementing 16 or more versions of each
kernel is not generally viable. The following results demonstrate that automatic
characterization can be used to assess the impact of an optimization on a given
device before implementing it, thus guiding the implementation effort.

4.3 Results

Table 2 lists, for each device, the best performing version of the ω-Jacobi ker-
nel and how much that version improves upon the baseline (Improvement =
(Tbaseline/Tbest − 1) ∗ 100). If the best version combines more than one op-
timization, the Primary column contains the single optimization that has the
largest impact on the result, and the Contribution column shows the impact of
that option on its own. Finally, we present the speedup achieved by a state of
the art GPGPU optimizing compiler targeted primarily at the GTX275 architec-
ture [15]. Even when a speedup is achieved, the automatically optimized kernel
still does not reach the performance of the version arrived at by guided manual
optimization.

The results correspond to several device characteristics identified by our bench-
marks. All the devices that do not show any caching behavior in the memory
latency tests – Radeon, GTX275 and Cell SPE – benefit from manual caching,
and as determined by the local memory bandwidth results static allocation is
generally as fast or faster than the alternative (Section 3.2). Branch elimination is
most beneficial on those devices that show a high variance in the branch penalty
benchmark, while not having any impact on CPUs with their flat branching pro-
file (Section 3.3). In this regard, the minor Cell PPE speedup due to BE seems
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Table 2. Most Effective Optimizations per Device and their Speedup

Device Best Version Improvement Primary Contrib. GPGPU Compiler

Tesla 2050 vec4 14% - - slowdown
Radeon vec8 BE mcStat 63% vec8 29% crashed
GTX460 vec4 BE 10% vec4 9% slowdown
GTX275 BE mcStat 31% mcStat 19% 22%
Xeon vec8 42% - - slowdown
Opteron vec16 79% - - slowdown
Cell PPE vec16 BE 39% vec16 25% slowdown
Cell SPE vec16 BE mcStat 192% mcStat 78% 90%

counter-intuitive, but its arithmetic throughput results indicate that it suffers
penalties in branching code due to its long pipeline and in-order execution.

The impact of vectorization is well predicted by the characterization results
(Section 3.1). While the NVIDIA compiler and devices do a good job at auto-
matically vectorizing scalar code, on all other platforms the impact of manual
vectorization is large. Our vectorization benchmark results correctly indicate the
most effective vector length for each device.

5 Related Work

Microbenchmarks have a long history in the characterization of parallel archi-
tectures. The Intel MPI Benchmarks (IMB) [7] are often used to determine
the performance of basic MPI operations on clusters. For OpenMP, the EPCC
suite [2] measures the overheads incurred by synchronization, loop scheduling
and array operations. Bandwidth is widely measured using STREAM [8], and
our memory bandwidth benchmark implementation is based on its principles.

A major benefit of using OpenCL is the ability to target GPU devices. His-
torically these were mostly used for graphics rendering, and benchmarked ac-
cordingly, particularly for use in games. A popular tool for this purpose is
3DMark [10]. When GPU computing first became widespread Stanford Uni-
versity’s GPUbench suite [1] provided valuable low-level information. However,
it predates the introduction of specific GPU computing languages and plat-
forms, and therefore only measures performance using the restrictive graphics
programming interface. In depth performance analysis of one particular GPU
architecture has been performed by Wong et al. [14].

Recently the SHOC suite of benchmarks for OpenCL was introduced [4].
While it contains some microbenchmarks, it is primarily targeted at measur-
ing mid- to high-level performance. It does not try to identify the individual
characteristics of mathematical operations or measure the latency of access to
OpenCL address spaces. Conversely, our suite is aimed at determining useful
low-level characteristics of devices and includes exhaustive latency and arith-
metic performance measurements as well as a benchmark investigating dynamic
branching penalties. We also present results for a broader range of hardware,
including an accelerator device.
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The Rodinia Heterogeneous Benchmark Suite [3] predates wide availability
of OpenCL, therefore separately covering CUDA, OpenMP and other languages
with distinct benchmark codes. Also, unlike uCLbench, Rodinia focuses on de-
termining the performance of high-level patterns of parallelism.

6 Conclusion

The uCLbench suite provides tools to accurately measure important low-level de-
vice properties including: arithmetic throughput for parallel and sequential code,
memory bandwidth and latency to several OpenCL address spaces, compilation
time, kernel invocation overheads and divergent dynamic branching penalties.
We obtained results on eight compute devices which reflect important hardware
characteristics of the platforms and, in some cases, show potential for improve-
ment in the OpenCL implementations.

The automatic device characterization provided by uCLbench is useful in
quickly gaining an in-depth understanding of new hardware and software
OpenCL platforms, exposing undisclosed microarchitectural details such as dy-
namic branching penalties. We have shown that the measured characterisics can
be used to guide manual optimization by identifying the most promising op-
timizations for a given device. Applying these transformations to an ω-Jacobi
multigrid relaxation kernel results in an average improvement of 61% across the
devices tested.
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Kalé, Laxmikant V. I-567
Kalyanaraman, Shivkumar I-579
Kandemir, Mahmut I-130, I-310
Karakoy, Mustafa I-130
Karcher, Thomas I-3
Karl, Wolfgang II-399
Katta, Naga Praveen Kumar I-353
Kaxiras, Stefanos I-295
Keen, Noel II-377
Keller, Rainer I-1
Kelly, Paul H.J. II-387
Kilpatrick, Peter II-170
Klasky, Scott I-366
Knittel, Fabian II-124
Kofler, Klaus II-438
Kondo, Derrick I-77
Kowalski, Dariusz I-554
Kowalski, Karol II-340
Kramer, Bill I-52
Krishnamoorthy, Sriram II-340

Labarta, Jesús I-39, I-555
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