
L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 106–120, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Investigating the Use of Object-Oriented Design Patterns
in Open-Source Software: A Case Study*

Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stamelos

Aristotle University of Thessaloniki, Thessaloniki, Greece
{apamp,stamelos}@csd.auth.gr

Abstract. During the last decade open source software communities are
thriving. Nowadays, several open source projects are so popular that are
considered as a standard in their domain. Additionally, the amount of source
code that is freely available to developers, offer great reuse opportunities. One
of the main concerns of the reuser is the quality of the code that is being reused.
Design patterns are well known solutions that are expected to enhance software
quality. In this paper we investigate the extent to which object-oriented design
patterns are used in open-source software, across domains.

Keywords: Open source software, Design patterns, Empirical study.

1 Introduction

Open source software (OSS), a term introduced in 1998 [9], has been expanding
rapidly in recent years. There exist several successful projects developed as open
source software, such as Linux, Mozila Firefox and Apache Server.

Collaboration is the basis of the development of an open source project. A first
version of the project is developed by a single developer or a group of developers and
is released over the internet, freely available, so that the members of the open source
community can extend and maintain the project. In open source software
development, there are both advantages and disadvantages. One disadvantage of open
source software is that there is no documentation and technical support. On the other
hand, the advantages of this software development type are its low cost, its reliability
and the availability of the source code in order to customize the project according to
once special needs [18].

Moreover, another feature of open source software is the potential reuse of the
source code, which is freely available to the open source developers. A code segment
should have certain characteristics, such as understandability, maintainability and
flexibility, in order to be easily and successfully reused in another project.

Gamma et.al have introduced, in 1995, design patterns as common solutions to
common design problems [10]. The main incentive to introduce patterns was the
creation of a common vocabulary for developers, which provide flexible, reusable and

* This paper is an extended and revised version of the paper entitled “An Empirical Study on

Design Pattern Usage on Open-Source Software”, published in ENASE 2010.

 Investigating the Use of Object-Oriented Design Patterns in OSS 107

maintainable design solutions. Furthermore, Meyer et.al explains how object-oriented
design patterns can be transformed to reusable components [16].

In literature, many empirical studies have attempted to examine how design pattern
application affects software quality. The main conclusion of these studies is that
object oriented design patterns can not be considered as universally good or bad. In
section 2, we provide a more detailed presentation of the current state of the art,
discussing the effect of design pattern use on software quality.

This paper is an extended and revised version on authors’ previous work [1] that
aims at examining the application of object-oriented design patterns in open source
software. More specifically, an empirical study has been performed, in order to
investigate which patterns are more frequently used in open source software, which
differences exist within software domains and the size of design patterns. The main
extension and revision points are concluded below:

• The number of case study subjects is increased
• Added two software categories and revised two others by exploring broader

software categories (i.e. replaced e-commerce applications with business
applications)

• One more research question dealing with design pattern size has been added.

In the next section of the paper, a literature review on design patterns influence on
software quality is provided, In section 3 we present the methodology of our work,
i.e. research questions, case study process and data analysis methods. In section 4, the
findings of our empirical study are presented, while in section 5 we provide a
discussion on the results, categorized according to the research question they address
to. Finally, at the end of the paper, possible threats to validity, future work and
conclusions are presented.

2 Design Patterns

In this section of the paper we present the findings of a literature review on the
influence of design pattern application on software quality. A common division of
software quality is between internal and external quality [4]. Software internal quality
is measurable and estimates software features such as complexity, cohesion, coupling,
inheritance etc. that are not easy to understand for the end-user or the developer.
External software quality can not be easily measured, but it is closer to the end-user’s
and the developer’s sense. Functionality, reliability, usability, efficiency,
maintainability and portability, are the best known external quality characteristics, as
described in ISO/IEC 9126.

The effect of design pattern application on software internal quality has been
examined by Ampatzoglou et.al [2] and Huston [12]. According to Huston, the
application of the Mediator pattern reduces coupling, the Bridge pattern reduces size
and inheritance metrics and finally the use of the Visitor pattern reduces the project’s
complexity with respect to number of methods [12]. Ampatzoglou et.al suggests that
the application of the State and the Bridge pattern reduces coupling and complexity,
with respect to cyclomatic complexity and increases cohesion among methods. As a
side-effect, the project size concerning the number of classes increases [2].

108 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Furthermore, the effect of design patterns on external quality has been investigated
in several studies. The influence of design patterns i.e. Abstract Factory, Observer,
Decorator, Composite and Visitor to software maintainability has been investigated
by Vokac et.al and Prechelt et.al [17 and 21], by conducting controlled experiments.
According to the results of the experiment, the employment of a design pattern is
usually more useful than the simpler solution. The software engineer has to choose
between applying a design pattern or a simple solution in line with common sense.
Besides, Hsueh et.al investigate how design patterns impact on one quality attribute,
which is the most obvious attribute that the pattern affects [11]. The selection of the
quality attribute is made according to the pattern’s non functional requirements,
whereas the metric is selected according to [4].

Wendorff presents an industrial case study, where inappropriate pattern use has
caused severe maintainability problems. The reasons of inappropriate design pattern
use is classified into two categories (1) software engineers have not understood the
reasoning behind the patterns that they have employed (2) the patterns that they have
applied have not fulfilled the project’s requirements. Moreover, the paper emphasizes
the need for documenting design pattern application and that pattern removal leads to
extreme cost [22]. In [13], an analysis on software maintenance, with professional
engineers, is performed. According to the empirical study, design patterns do not
always have positive impact on software quality. In particular, it is concluded that
when patterns are applied, the simplicity, the learnability and the understandability are
negatively affected.

In [6], an industrial case study is conducted, in order to examine the correlation
among code changes, reusability, design patterns, and class size. On the report of the
results of the study, the number of changes is highly correlated to class size.
Additionally, classes that play roles in design patterns or that are reused through
inheritance are more change prone than others. Despite the study’s good structure and
validation, it investigates an individual maintainability aspect, change proneness, and
does not mention maintainability issues such as change effort and design quality.

In [8], the authors present the investigation of correlations among class change
proneness, the role that a class holds in a pattern and the kind of change that occurs.
They use three open source projects in order to perform the empirical study.
Concerning the majority of design patterns, the results of the study comply with
common sense. However, in some cases, the conclusions differ from those expected.

3 Methodology

Wholin et.al suggests that there are three major empirical investigation approaches,
surveys, case studies and experiments [23]. In this paper we have conducted a case
study, exploiting the plethora of open source. On the contrary, surveys are not suitable
for our research because in this case we would miss the patterns that were employed
without intention by programmers. Finally, an experiment with open-source
programmers would decrease the number of subjects in our research. In this section of
the paper we describe the methodology of our case study. The case study of our
research was based on the guidelines described in [14], and consisted of the following
steps:

 Investigating the Use of Object-Oriented Design Patterns in OSS 109

(a) Define hypothesis
(b) Select projects
(c) Method of comparison selection
(d) Minimization of confounding factors
(e) Planning the case study
(f) Monitoring the case study and
(g) Analyze and report the results

The hypotheses, i.e. step (a), are defined in section 3.1. Steps (b) and (d) which deal
with project selection protocol and minimizing confounding factors are presented in
section 3.2, accompanied with step (e). The methods used in analyzing the data, i.e.
step (c), is presented in section 3.3, step (f), described in [14], is discussed in section
6. Finally, concerning step (g), we report the results on section 4 and discuss them in
section 5.

3.1 Research Questions

In this section of the paper we state the research questions that are investigated in our
study.

RQ1: Which is the frequency of design pattern application?
RQ2: Are there any differences in pattern application within the software categories
under study?
RQ3: Are there any differences in the number of pattern participant classes across
pattern types and software categories?

3.2 Case Study Plan

In this section of the paper we present the case study plan. According to [5] planning
a case study is an important step for the validity of the study. Our plan involved a five
step procedure described below:

(a) choose open source project categories
(b) identify a number of projects that fulfil certain selection criteria, for each a

category
(c) perform pattern detection for every selected project. The pattern detection was

conducted with an automated tool [20] that identifies instances of eleven (11)
patterns of all GoF pattern categories (i.e. Creational, Behavioural and
Structural)

(d) tabulate data
(e) analyze data with respect to the research questions

In this study the OSS project categories that have been considered are development
tools, office/business applications, internet application, databases and computer
games. These categories have been selected as highly active topics in open source
communities [19]. From these categories we have selected projects that fulfilled the
following criteria:

110 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

(a) Software written in java, due to limitations of pattern detection tool [20].
However, java is probably the most widely used programming language.

(b) software that provides binary code, due to limitations of pattern detection tool.
(c) software should be ranked in the fifty most successful projects of their

category, according to sourceforge.net rating.
(d) software binary size should be larger than 100KB, in order not to be

considered trivial.

In case studies, factors, other than the independent variables, which influence the
value of the dependent variable, are considered confounding factors. The most
important confounding factors in our research are considered to be the experience of
the developer on design patterns and object-oriented programming in general. In our
study we limit our analysis to automatically collected data. On the other hand, it is
expected that in a random developer sample of a large developers’ community, the
distribution of skill and experience are closely near to the distribution of the
population.

3.3 Data Analysis Methods

The dataset that has been created after design pattern detection consisted mainly of
numerical data. On the completion of the pre-processing phase each project was
characterized by 28 variables:

• name

• category

• number of downloads

• number of factory method instances

• number of prototype instances

• number of singleton instances

• number of creational pattern instances

• number of adapter instances

• number of composite instances

• number of decorator instances

• number of proxy instances

• number of structural pattern instances

• number of observer instances

• number of state-strategy instances

• number of template method instances

• number of visitor instances

• number of behavioural pattern instances

• average number of pattern participants per pattern (11 variables)

The analysis phase of our study has employed descriptive statistics, independent
sample t-test and paired sample t-test. Concerning RQ1, we have employed

 Investigating the Use of Object-Oriented Design Patterns in OSS 111

descriptive statistics and paired sample t-tests so as to compare the mean number of
instances for each design pattern. In the investigation of RQ2 and RQ3, for similar
reasons we have used descriptive statistics and independent sample t-tests. The statis-
tical analysis has been performed with SPSS©.

According to [23], one of the first steps during statistical analysis of the dataset is
the elimination of outliers. In our study we identified and erased seventeen outliers. In
most cases the observed extreme values where identified as maximum values, that is
software that exhibit a very large number of pattern instances.

4 Results

In Table 1, the mean number of design pattern instances is presented. The data refer to
the whole data set without discrimination across software categories. In addition to
that, standard deviation of each variable is presented.

Table 1. Average Number of Pattern Instances

 Mean Std. Deviation

Factory 3.21 7.21

Prototype 5.80 18.98

Singleton 13.99 19.16

Creational 23.01 36.55

Adapter 34.71 53.66

Composite 0.48 2.22

Decorator 2.53 6.50

Proxy 1.58 4.50

Structural 39.30 61.17

Observer 1.44 2.55

State 37.70 58.96

Template 5.93 8.52

Visitor 0.50 2.50

Behavioural 45.65 66.19

The results of Table 1 provide indications on the employment rate of each pattern

in OSS. In order to be able to compare the mean values of each variable in a more
elaborate way, we have performed 55 paired sample t-tests, i.e. one test for every
possible pair of design patterns. The results of a t-test between two variables are
interpreted by two numbers, the mean difference (diff) and the t-test significance
(sig). The diff variable represents the difference of subtracting the mean value of the
second variable, from the mean value of the first. Whereas, sig represents the
possibility, that diff is not statistically significant. In Table 2, we present the
statistically significant differences in pattern application.

112 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Table 2. Significant paired sample t-tests on pattern employment difference

 diff sig diff sig

Factory – Singleton -10.78 0.00 Decorator – Template -3.40 0.00

Factory – Adapter -31.50 0.00 Decorator – Visitor 2.03 0.00

Factory – Composite 2.74 0.00 Proxy – State -36.10 0.00

Factory - Proxy 1.64 0.03 Proxy – Template -4.36 0.00

Factory - Observer 1.78 0.01 Proxy - Visitor 1.08 0.04

Factory – State -34.45 0.00 Observer – State -36.25 0.00

Factory - Template -2.72 0.00 Observer – Template -4.50 0.00

Factory – Visitor 2.71 0.00 Observer - Visitor 0.94 0.01

Prototype – Singleton -8.19 0.00 State – Template 31.71 0.00

Prototype – Adapter -28.91 0.00 State – Visitor 37.19 0.00

Prototype – Composite 5.33 0.00 Template – Visitor 5.43 0.00

Prototype - Decorator 3.27 0.04 Adapter – Composite 34.23 0.00

Prototype - Proxy 4.22 0.01 Adapter – Decorator 32.18 0.00

Prototype – Observer 4.36 0.02 Adapter – Proxy 33.13 0.00

Prototype – State -31.84 0.00 Adapter – Observer 33.27 0.00

Prototype – Visitor 5.30 0.01 Adapter - State -2.66 0.00

Singleton – Adapter -20.72 0.00 Adapter – Template 28.77 0.00

Singleton – Composite 13.51 0.00 Adapter – Visitor 34.21 0.00

Singleton – Decorator 11.46 0.00 Composite – Decorator -2.06 0.00

Singleton – Proxy 12.41 0.00 Composite - Proxy -1.10 0.01

Singleton – Observer 12.55 0.00 Composite – Observer -0.96 0.00

Singleton – State -23.58 0.00 Composite – State -37.22 0.00

Singleton – Template 8.06 0.00 Composite – Template -5.46 0.00

Singleton – Visitor 13.49 0.00 Decorator – State -35.14 0.00

In Table 3, the mean numbers of instances of each design patterns within the
software categories under study are presented.

In order to statistically validate the results of the above table, we performed 42
independent sample t-tests, i.e. one test for each pattern for all the possible pairs of
software categories. In Table 4, we provide the statistically significant results on
comparing pattern application between software categories. The results are presented
similarly to those of Table 2.

 Investigating the Use of Object-Oriented Design Patterns in OSS 113

Table 3. Average Number of Pattern Instances among Software Categories

 Office / Business Internet Development Tools Database Games

Factory 9.24 3.00 1.00 2.64 0.50

Prototype 20.05 1.85 2.45 3.45 1.58

Singleton 29.43 13.55 8.30 7.36 11.67

Creational 58.71 18.40 11.75 13.45 13.75

Adapter 91.95 18.30 19.80 24.77 19.83

Composite 1.52 0.15 0.10 0.32 0.29

Decorator 6.95 1.50 1.50 2.14 0.75

Proxy 4.95 0.25 0.20 0.73 1.67

Structural 105.38 20.20 21.60 27.95 22.54

Observer 2.57 1.20 1.35 0.77 1.33

State 94.57 29.25 23.84 27.14 15.63

Template 11.71 5.80 4.10 6.05 2.42

Visitor 0.00 1.70 0.25 0.27 0.37

Behavioral 108.86 37.95 29.84 34.23 19.75

Table 4. Significant independent sample t-tests

 Pattern diff sig

Office/Business - Internet Factory 6.24 0.05

Office/Business - Internet Prototype 18.20 0.04

Office/Business - Internet Singleton 15.88 0.03

Office/Business - Internet Adapter 73.65 0.00

Office/Business - Internet Decorator 5.45 0.06

Office/Business - Internet Proxy 4.70 0.02

Office/Business - Internet State 65.32 0.01

Office/Business - Internet Template 5.91 0.08

Office/Business – Development Tools Factory 8.24 0.01

Office/Business – Development Tools Prototype 17.60 0.05

Office/Business – Development Tools Singleton 21.13 0.01

Office/Business – Development Tools Adapter 72.15 0.00

Office/Business – Development Tools Decorator 5.45 0.06

Office/Business – Development Tools Proxy 4.75 0.02

Office/Business – Development Tools State 70.73 0.01

Office/Business – Development Tools Template 7.61 0.01

Office/Business – Database Factory 6.60 0.04

Office/Business – Database Prototype 16.59 0.07

Office/Business – Database Singleton 22.07 0.00

Office/Business – Database Adapter 67.18 0.00

Office/Business – Database Proxy 4.23 0.03

Office/Business – Database Observer 1.80 0.05

Office/Business – Database State 67.44 0.01

114 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Table 4. (Continued)

 Pattern diff sig

Office/Business – Database Template 5.67 0.08

Office/Business – Games Factory 8.74 0.01

Office/Business – Games Prototype 18.46 0.04

Office/Business – Games Singleton 17.76 0.02

Office/Business – Games Adapter 72.12 0.00

Office/Business – Games Decorator 6.20 0.03

Office/Business – Games State 78.95 0.02

Office/Business – Games Template 9.30 0.00

Internet – Development Tools Factory 2.00 0.09

Internet - Database Singleton 6.19 0.09

Internet – Games Factory 2.50 0.03

Internet – Games State 13.63 0.09

Database – Games Factory 2.14 0.07

Database – Games Template 3.63 0.07

In Table 5, we present the mean numbers of classes that participate in each design
patterns within the software categories under study. Additionally, Table 6 presents the
statistically significant differences between the mean values of number of classes that
participate in design patterns, among software categories.

Table 5. Average Number of Pattern Participating Classes among Software Categories

 Office /
Business Internet

Development
Tools Database Games Overall

Factory 6.35 5.93 6.77 6.93 6.21 6.46

Prototype 7.84 7.69 10.80 7.23 8.74 8.16

Singleton 1.00 1.00 1.00 1.00 1.00 1.00

Adapter 2.00 2.00 2.00 2.00 2.00 2.00

Composite 7.42 20.50 12.00 6.20 9.33 9.84

Decorator 11.77 17.12 10.33 11.93 17.23 13.46

Proxy 2.20 2.29 2.07 3.20 2.11 2.32

Observer 10.39 11.90 11.00 6.65 10.67 10.33

State 7.15 9.04 6.92 6.40 8.68 7.47

Template 6.83 5.79 5.82 6.35 7.88 6.45

Visitor 0.00 7.15 3.24 4.72 2.00 5.21

 Investigating the Use of Object-Oriented Design Patterns in OSS 115

Table 6. Significant independent sample t-tests

 Pattern diff sig

Office/Business – Development Tools Prototype -2.96 0.00

Internet – Development Tools Prototype -3.11 0.00

 Pattern diff sig

Databases – Development Tools Prototype -3.57 0.00

Office/Business – Internet Composite -13.08 0.01

Databases – Development Tools Composite -5.8 0.00

Databases – Internet Composite -14.3 0.02

Internet – Games Composite 11.17 0.03

Office/Business – Internet Decorator -5.35 0.00

Office/Business – Games Decorator -5.46 0.00

Internet – Development Tools Decorator 6.79 0.00

Internet – Databases Decorator 5.19 0.00

Games – Development Tools Decorator 6.9 0.00

Games – Databases Decorator 5.3 0.00

Internet – Development Tools Proxy 0.22 0.04

Databases – Office/Business Observer -3.74 0.01

Databases – Internet Observer -5.25 0.00

Databases – Development Tools Observer -4.35 0.00

Databases – Games Observer -4.02 0.00

Office/Business – Internet State -1.89 0.00

Internet – Development Tools State 2.12 0.00

Databases – Office/Business State -0.75 0.00

Databases – Internet State -2.64 0.00

Databases – Development Tools State -0.52 0.01

Office/Business – Games State -1.53 0.00

Games – Development Tools State 1.76 0.00

Games – Databases State 2.28 0.00

Games – Development Tools Template 2.06 0.01

Games – Databases Template 1.53 0.01

Internet – Games Visitor 5.15 0.00

Games – Databases Visitor -2.72 0.00

Games – Development Tools Visitor -1.24 0.00

Databases – Internet Visitor -2.53 0.00

Databases – Development Tools Visitor 1.03 0.00

Internet – Development Tools Visitor 3.91 0.00

116 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

5 Discussion

This section of the paper discusses the results of our case study. The discussion is
organized in subsections according to the research questions that have been
introduced in the beginning of the paper. Thus, section 5.1 discusses which design
patterns are more frequently used in open source software development, section 5.2
discusses the usage of each design pattern on three software categories and section 5.3
discusses the size of the design patterns used in open source software in general.

5.1 Design Pattern Application

The results of Table 1, clearly suggest that some patterns are more frequently applied
in open source than others. In addition to that, Table 2 suggests that pattern usage
intensity classifies patterns in seven categories as shown in Figure 1. Patterns on the
top of Figure 1 are statistically significantly employed more times in open source
software projects than those closer to the bottom of Figure 1.

Some of the results that are presented in Figure 1 are reasonable, whereas some
findings are surprising. As one would expect, the Adapter pattern is frequently used,
because reusing classes of others is a common practice in open source software
communities. In such cases, adapter provides a mechanism for adopting the new class in
the existing system without modifying the existing code. In addition to that, the
Adapter’s rationale is akin to the basic concepts of object - oriented programming and
thus it might be explicitly used by the developers. Furthermore, the State pattern as
expected ranks high, because its background requires just the proper use of inheritance.
Finally, more difficult to understand patterns, according to authors’ opinion, such as
Visitor and Observer, are not often employed by open source developers.

Fig. 1. Design Pattern Usage Levels

 Investigating the Use of Object-Oriented Design Patterns in OSS 117

On the contrary, although the Singleton pattern is quite complex in its structure [7]
and it was expected not to be as popular, it is ranked as the 3rd most used pattern. A
possible reason for this is the limitation of the case study subject to the Java
languages, where Singleton is implemented by a simple instantiation mechanism.
Another bizarre observation is that the Decorator pattern is more frequently used than
the Composite pattern. The Composite pattern is the base of the Decorator pattern and
therefore it was expected to be more frequently employed. Summing up the above,
open source developers employ easy to understand patterns more than more elaborate
ones. A possible reason for this is that typically there are no detailed formal design
activities before programming in open source.

5.2 Design Patterns and Software Categories

As it is observed in Table 3, design pattern usage within every category follows
similar distribution as in open source software development in general. However,
comparing pattern application across software categories, the results suggest that
some patterns are more frequently applied in one category, than another. From Tables
3 and 4, we observe that Office/Business applications employ statistically significantly
more patterns than any other category. Furthermore, rather surprising is the fact that
in general Development Tools employ a relative limited number of pattern instances
w.r.t the other software categories. One would expect that developers of this category
would be familiar with patterns and use them. Figure 2 presents the ranking of pattern
usage among software categories.

Fig. 2. Design Pattern Usage Levels across Categories

From Figures 1 and 2, it is suggested that Decorator and Observer patterns are
more highly ranked in Development Tools than in the other categories. This fact can
be justified by the expectation that developers of this category are more likely to be

118 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

aware of the pattern, which is not easily applied by chance. In addition to that, the
Adapter pattern is the most frequently employed pattern in the Games category. This
fact suggests that game developers might perform more “as is” reuse activities than
other programmers. This observation is interesting and deserves further investigation.

Additionally, the Visitor pattern appears to be more applicable in Internet
application and the Proxy pattern more applicable in Games. Thus, we can assume
that domain specific requirements (functional or non-functional) of this category
might be implemented with the use of these patterns.

5.3 Design Pattern Size among Software Categories

This section of the paper discusses the most important findings on the variation of the
size of deign patterns among software categories. The “largest” patterns, with respect
to number of classes appear to be Decorator and Observer, whereas the pattern with
the least pattern, apart from Singleton and Adapter that employ a standard number of
classes, appears to be Visitor.

Within software categories, we found that when the Prototype pattern is applied in
Development Tools, it appears to employ statistically significant more classes than
when applied in any other software category. Similarly, the Composite pattern
instances in Internet applications are larger than the Composite instances in other
software categories. Concerning Decorator, we identified that the larger pattern
instances can be found in Games and Internet applications. Finally, the smallest
Observer instances can be identified in Database applications.

These findings can be used in studies that investigate pattern effect on software
quality, with respect to their size, the role that each class plays in a pattern and for
case study construction.

6 Threats to Validity

This section of the paper presents the internal and external threats to the validity of
our case study. Firstly, since the subjects have been open-source projects, the results
may not apply to closed source software. Concerning the empirical study internal
validity, the existence of confounding factors is analyzed in section 3.4. The most
confounding factor is that the study cannot take into account the knowledge of
developer’s on design patterns, but it can be reasonably assumed that the familiarity
degree with pattern knowledge across different application domains, corresponds to
the distribution of the population.

In addition to that, the sample size is quite small with respect to the total number of
open source software and generalizing the results from the sample to the population is
risky. In addition, the dataset consisted only from Java projects, since the tool we used
was able to detect design patterns only in binary java files. Moreover, only one
repository, namely Sourceforge, has been mined.

7 Conclusions

This study is an extension of a previous work of the authors. It empirically
investigates the usage of object oriented design patterns in open source software

 Investigating the Use of Object-Oriented Design Patterns in OSS 119

development. For this reason the authors have explored 129 open source software
from five categories, i.e. development tools, business/office application, internet
applications, database applications and computer games.

The results of the study confirm that “easy to use” design patterns, such as
Adapter, State and Singleton are more frequently applied in open source. More
elaborate patterns such as Visitor and Observer are more frequently employed by
development tool programmers, most probably due to their better understanding and
knowledge on software engineering issues. Additionally, the frequent application of
the Adapter pattern in computer games might indicate higher reuse levels in this type
of software applications. Finally, the results suggested that among software
categories, Office/Business application employ statistically significantly more design
patterns than other categories and that the size of design patterns vary among software
genres.

As future work we are about to create a web repository on the findings of the
design pattern detection process, so as to enhance design pattern reuse opportunities.
In addition to that, we are going to explore projects written in other programming
languages, such as C++. More software categories and open source projects are going
to be investigated. Finally, the most important findings of the study, such as the reuse
increased reuse opportunities in games, the limited number of pattern instances in
development tools and the factors that influence design pattern usage are going to be
investigated.

References

1. Ampatzoglou, A., Charalampidou, S., Savva, K., Stamelos, I.: An empirical study on
design pattern employment in open-source software. In: 5th Working Conference on the
Evaluation of Novel Approaches in Software Engineering, pp. 275–284. INSTICC, Athens
(2010)

2. Ampatzoglou, A., Chatzigeorgiou, A.: Evaluation of object-oriented design patterns in
game development. Information and Software Technology 49(5), 445–454 (2007)

3. Arnout, K., Meyer, B.: Pattern componentization: the factory example. Innovations in
Systems and Software Technology 2(2), 65–79 (2006)

4. Bansiya, J., Davis, C.: A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Transaction on Software Engineering 28(1), 4–17 (2002)

5. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in Software Engineering.
IEEE Transactions on Software Engineering 12(7), 733–743 (1986)

6. Bieman, J.M., Jain, D., Yang, H.J.: OO design patterns, design structure, and program
changes: an industrial case study. In: 17th International Conference on Software
Maintenance, ICSM 2001, pp. 580–591. IEEE Computer Society, Florence (2001)

7. Chatzigeorgiou, A.: Object-Oriented Design: UML, Principles, Patterns and Heuristics, 1st
edn. Kleidarithmos, Athens (2005)

8. Di Penta, M., Cerulo, L., Gueheneuc, Y.G., Antoniol, G.: An Empirical Study of
Relationships between Design Pattern Roles and Class Change Proneness. In: 24th
International Conference on Software Maintenance, ICSM 2008, pp. 217–226. IEEE
Computer Society, Beijing (2008)

9. Feller, J., Fitzgerald, B.: Understanding open source software development, 1st edn.
Addison-Wesley Longman, Boston (2002)

120 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

10. Gamma, E., Helms, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, 1st edn. Addison-Wesley Professional, Reading (1995)

11. Hsueh, N.L., Chu, P.H., Chu, W.: A quantitative approach for evaluating the quality of
design patterns. Journal of Systems and Software 81(8), 1430–1439 (2008)

12. Huston, B.: The effects of design pattern application on metric scores. Journal of Systems
and Software 58(3), 261–269 (2001)

13. Khomh, F., Gueheneuc, Y.G.: Do design patterns impact software quality positively? In:
12th European Conference on Software Maintenance and Reengineering, CSMR 2008, pp.
274–278. IEEE Computer Society, Athens (2008)

14. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case Studies for Method and Tool Evaluation.
IEEE Software 12(4), 52–62 (1995)

15. McShaffry, M.: Game Coding Complete. Paraglyph Press, Arizona (2003)
16. Meyer, B., Arnout, K.: Componentization: The Visitor Example. IEEE Computer 39(7),

23–30 (2006)
17. Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., Votta, L.G.: A controlled experiment in

maintenance comparing design patterns to simpler solutions. IEEE Transactions on
Software Engineering 27(12), 1134–1144 (2001)

18. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open source software
development should strive for even greater code maintainability. Communications of the
ACM 47(12), 83–87 (2004)

19. Sowe, S.K., Angelis, L., Stamelos, I., Manolopoulos, Y.: Using Repository of Repositories
(RoRs) to Study the Growth of F/OSS Projects: A Meta-Analysis Research Approach. In:
OSS 2007, Open Source Software Conference, pp. 147–160. Springer, Limerick (2007)

20. Tsantalis, N., Chatzigeorgiou, V., Stephanides, G., Halkidis, S.T.: Design Pattern
Detection using Similarity Scoring. IEEE Transaction on Software Engineering 32(11),
896–909 (2006)

21. Vokác, M., Tichy, W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M.: A Controlled Experiment
Comparing the Maintainability of Programs Designed with and without Design Patterns -
A Replication in a Real Programming Environment. Empirical Software Engineering 9(3),
149–195 (2003)

22. Wendorff, P.: Assessment of Design Patterns during Software Reengineering: Lessons
Learned from a Large Commercial Project. In: 5th European Conference on Software
Maintenance and Reengineering, CSMR 2001, pp. 77–84. IEEE Computer Society, Lisbon
(2001)

23. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering, 1st edn. Kluwer Academic Publishers, Boston
(2000)

	Investigating the Use of Object-Oriented Design Patterns in Open-Source Software: A Case Study
	Introduction
	Design Patterns
	Methodology
	Research Questions
	Case Study Plan
	Data Analysis Methods

	Results
	Discussion
	Design Pattern Application
	Design Patterns and Software Categories
	Design Pattern Size among Software Categories

	Threats to Validity
	Conclusions
	References

