

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 89–105, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ProMISE: A Process Metamodelling Method
for Information Systems Engineering

Charlotte Hug1, Agnès Front2, and Dominique Rieu2

1 Centre de Recherche en Informatique,
Université Paris 1 Panthéon-Sorbonne

2 Laboratoire d’Informatique de Grenoble, Grenoble University
220 rue de la Chimie, 38041 Grenoble cedex 9, France

Charlotte.Hug@univ-paris1.fr
{Agnes.Front,Dominique.Rieu}@imag.fr

Abstract. Processes play a great part in information systems engineering
projects success. There are a lot of process models and metamodels; however,
the “one size fits all” motto has to be moderated: models have to be adapted to
the specificities of the organizations or the projects. In order to help method
engineers building adapted process models, we propose a method to build
process metamodels and to instantiate them according to the organizations
context. Our method consists of selecting the concepts needed from a
conceptual graph, gathering the current knowledge of metamodelling concepts
for information systems engineering processes, and integrating them in a new
process metamodel that will be instantiated for any project in an organization.
This method is supported by a tool.

Keywords: Process engineering, Information systems engineering, Metamodelling,
Graph, Tool.

1 Introduction

To design and produce information systems, project managers focus on the quality of
the deliverables or on the intermediary support documents produced all along the
project life (analysis models, test procedures, for example); as such, they focus on the
quality of their definition, formalization, level of detail and completeness. The quality of
the products highly depends on the processes followed [1], as the processes define the
way products have to be created. A development process can be roughly defined as a
sequence of activities that create and update products. The objective for an organization
is to properly define the processes, formalize them, adjust them to the different projects
and reproduce the optimized processes. The Capability Maturity Model Integration [2]
specifies different degrees of maturity of the development processes in an organization,
the supreme goal being following repeatable and optimized processes. The information
systems engineering (ISE) processes quality is then essential.

Many information systems/software engineering processes or methods have been
defined. They appeared in the 1970’s with the Waterfall model [3], the Spiral Model

90 C. Hug, A. Front, and D. Rieu

[4], then the RUP [5] and more recently Agile methods as XP [6] and SCRUM [7].
They are based on different process models: they propose different lifecycles and
activities, specify distinct kinds of deliverables and assign roles differently. Thus,
each method proposes its own way to build IS: each method is based on a different
process metamodel that uses different concepts.

In order to produce information systems, process models have to be efficient and
fitted to the organizations specific constraints. An unsuitable method or process
model will not be followed by the development teams, create tensions between team
members and generate delay or bad IS design. Existing methods or process models
have then to be adapted, customized to the organizations context; this is the method
engineer’s role.

As the process models flexibility depends on their process metamodel flexibility,
we state that the key to build adapted process models lies in adapted process
metamodels. However, existing process metamodels are hardly adaptable and are
defined independently of one another [8], [9], [10]. Upon modelling the process
models of their organizations, method engineers have to use those already predefined
process models or to instantiate process metamodels without adaptation possibilities;
the resulting models might be partially inadequate to the organizations specificities
and constraints and to their business activities.

In this paper, we present the ProMISE method (Process Metamodelling for
Information Systems Engineering) that allows method engineers building their own
process metamodels according to their organization specificities and technologies.
The method consists of selecting the needed concepts from a conceptual graph and
integrating them in a new adapted process metamodel. The construction of the process
metamodel is hidden to the method engineers: they use a conceptual graph that builds
the process metamodel and checks its consistency. The produce process metamodels
are multi-points of view as they integrate various points of view of the existing
process metamodels, they are adapted to the constraints and specificities of the
organization as only the needed concepts are integrated and the process metamodel is
federated as all the knowledge of ISE processes is defined in one metamodel.

The paper is organized as follows. In the next section, we present the conceptual
graph, base of our adaptive method to build process metamodels for ISE. We
introduce the method in Section 3. Section 4 presents an example of the Grenoble’s
University Hospital. Section 5 is devoted to discussion and Section 6 presents the tool
that supports our method. Section 7 concludes this paper.

2 The Base of the Method: The Conceptual Graph

In this section, we present the base of our approach that is a conceptual graph. It was
built from a Process Domain Metamodel and a 3D Space [8], [9], [10]. A study [10],
[11] of the different existing process metamodels (activity oriented [12]; [13]; [14];
[15]; [16]) such as SPEM, product oriented [17]; [18];[19]; [1] such as Statechart and
State Machines, decision oriented [20]; [21]; [22]; [23] like Ibis and Daida, context
oriented [24] such as NATURE and strategy oriented [25] like MAP), allowed us to
define a Process Domain Metamodel which only contains the main classes of existing
process metamodels and the associations between the concepts. In order to facilitate

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 91

the classes’ selection from the Process Domain Metamodel, we propose the use of a
conceptual graph that allows method engineers to easily navigate between the
concepts. The concepts are organized according to a 3D space.

Fig. 1. The Completeness – Precision – Abstraction 3D space

2.1 The 3D Space

The 3D space represented in Figure 1 guides method engineers through a
methodological frame to build process metamodels for ISE. The three axes [26] help
method engineers in the selection of the concepts: completeness, precision and
abstraction. Completeness is the coverage of the metamodel of one or more points of
view (activity, product, decision, context and strategy). Precision is the level of detail
of the metamodel and abstraction is the intentional and/or operational level of concern
of the metamodel. The intentional level represents the objectives of the ISE process
while the operational level represents the actions required to concretize these
objectives. Method engineers will build their process metamodels depending on these
three axes: each engineering activity has for objective to: extend the Process
Metamodel Under Construction (PMUC) (completeness axis), precise the PMUC
(precision axis) or abstract (inv. concretize) the PMUC (abstraction axis).

2.2 The Conceptual Graph

The conceptual graph (Figure 2) is the base of our method. It organizes the recognized
concepts for ISE process metamodelling, representing the actual knowledge base of
the domain. The purpose of such conceptual graph is to guide method engineers in the
Completeness – Precision – Abstraction 3D space while selecting the concepts they
need to represent in their metamodels. The conceptual graph defines the set of
possibilities: it restrains method engineers in the selection and the use of the defined
concepts only, in order to maintain the consistency of the PMUC.

2.2.1 The Concepts
The concepts of the conceptual graph are used in ISE processes and are usually
represented in process metamodels. The concepts of the graph represent two types of
elements:
- Classes that represent the main concepts (concepts in bold in Figure 2) defined in
the Process Domain Metamodel and are linked to each other by the completeness and
abstraction relations. Those concepts are Work Unit, Condition and Role (activity
point of view) [12]; [13]; [14]; [15]; [16], Work Product (product point of view) [17];

92 C. Hug, A. Front, and D. Rieu

[18]; [19];[1], Issue, Alternative, Argument (decision point of view) [20]; [21]; [22];
[23], Situation, Context, Intention (context point of view) [24] and Strategy (strategy
point of view) [25]. Figure 3 presents a close-up on a few of those. A Work Unit
represents an action that is executed during the ISE process. A Work Product is
something that is produced, used or modified during the ISE process and a Role is
someone/thing that carries out an action during the ISE process. A Strategy represents
how an intention is achieved.

Fig. 2. The conceptual graph

- Classes that decompose the previous classes, linked by the precision relation
(secondary concepts). For example, in Figure 3, the Work Unit Category concept
refines the Work Unit concept to express the fact that there are different categories of
work unit, as activity or task for example. The Work Unit Composition concept
refines the Work Unit concept to represent a Work Unit class with a reflexive
composition, to express that the “Design components” activity is composed of the
tasks “Class design” and “Subsystem design” [5], for example.

2.2.2 The Relations
The relations represent conceptual links between concepts in the Completeness –
Precision – Abstraction 3D space as presented in section 2.1.

The completeness relation links one concept to another that extends it. This
relation is symmetric, non-transitive and non-reflexive. For example, in Figure 3 (on
the left), the Work Unit concept can be completed by the Work Product and Role
concepts. As the Work Product concept can also be completed by the Work Unit
concept (symmetry), the represented link is bidirectional.

The precision relation specifies that a concept can be refined by another concept.
Such relation is non-symmetric, non-reflexive and non-transitive. For example, the

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 93

Work Unit concept can be refined using the Work Unit Category or Work Unit
Composition concepts (but the Work Unit concept does not refine the Work Unit
Category concept – non symmetry) (cf. Figure 3 in the centre).

Fig. 3. Examples of the Completeness, Precision and Abstraction relations

The abstraction relation specifies that one concept can be abstracted by another
concept; it is non-symmetric, non-reflexive and non-transitive. For example, the Work
Unit concept is abstracted by the Strategy concept (cf. Figure 3 on the right). The
inverse relation of Abstraction is Concretization. We can say that the Work Unit
concept is the concretization of the Strategy concept.

On the one hand, the relations help method engineers selecting the concepts in the
conceptual graph and on the other hand, they assure the coherency of the selected
concepts. For example, the Work Unit Category Composition concept can not be
selected before the Work Unit Category concept (Figure 2). The consistency of the
process metamodels produced is then ensured, as the conceptual graph was designed
in such a way as the concepts were coherently linked to each others.

2.2.3 Example
The conceptual graph in the Completeness – Precision – Abstraction 3D space is
dynamically built: the perspective evolves depending on the node the method
engineer is considering. Figure 4 shows a part of the 3D perspective that method
engineers would see from the Work Unit concept.

Fig. 4. Part of the perspective from the Work Unit concept in the conceptual graph

94 C. Hug, A. Front, and D. Rieu

If method engineers want to extend their PMUC, it will lead to the Work Product
and Role concepts thanks to the completeness relation defined in the conceptual
graph. If they want to precise their PMUC, it will lead to the Work Unit Category and
Work Unit Composition concepts, using the precision relation and if they want to
abstract it, it will lead to the Strategy concept thanks to the abstraction relation.

We now describe the method that uses the conceptual graph to build process
metamodels for ISE.

3 The Method

In this section, we present the method based on the conceptual graph to build process
metamodels for ISE. The two-step method consists of: (i) concepts selection within
the conceptual graph, (ii) concepts integration in the PMUC, according to the Process
Domain Metamodel. These two steps are iterated until method engineers obtain the
complete process metamodel they need.

3.1 Concept Selection

The first action of the Concept selection activity is the Definition selection that will
lead to get a Concept (left part of Figure 5). A definition is composed of a short
description, synonyms of the concept and examples (Table 1). It enables method
engineers to select definitions from the Concepts dictionary corresponding to their
needs. Each definition is associated to a concept appearing as a node in the conceptual
graph. The next step is the Concept integration (section 3.2).

Fig. 5. The Concept selection

After the first loop, method engineers go back to the Concept selection. They may
refine the PMUC in terms of concepts attainable through relations with the previously
integrated concept (completeness, precision and abstraction relations) or in terms of
integration of classes thanks to the definitions. The Relation selection activity consists
of selecting one of the relations that starts from the integrated concepts. For example,
if the method engineer just integrated the Work Unit concept to his/her PMUC and if
he/she wants to extend it, he/she could select Role, Work product and all the concepts
linked through the completeness relation to the Work Unit concept in the conceptual
graph. It works in the same way through the precision and abstraction relations.

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 95

Table 1. Some definitions examples

Description Synonyms, AKA, examples Concept

Represents how an intention is achieved Tactics, approach, manner Strategy

Objective of the ISE process Goal Intention

Task that is executed during the ISE process Activity, task, work definition Work Unit

Work Unit that is composed of other work units Activity composed of tasks
Work Unit

composition
Something that is produced, used or modified by a
work unit during the ISE process

Product, document, model,
program

Work
Product

Someone/thing that carries out a work unit during
the ISE process

Actor, developer, analyst,
system

Role

3.2 Concept Integration

Once the concept is selected, it has to be integrated in the PMUC. The integration
activity is rather complex (Figure 6): it has to take into account the different types of
concepts (main or secondary).

Fig. 6. The Concept integration

The main concepts of the Conceptual Graph correspond to classes in the Process
Domain Metamodel. These classes have then to be integrated in the PMUC with the
associations between the integrated classes. The secondary concepts correspond to
design or business patterns that are applied on the classes of the PMUC. The patterns
that can be used are stored in a Pattern Repository. According to the selected concept,
one of the patterns is applied on the PMUC. The PMUC is thus built by adding
classes and applying patterns. The integration process is fully described in [27].

Method engineers can then choose either to continue the process or to stop it if the
PMUC is complete. If the PMUC is not complete, they go back to the Concept
selection activity.

The ProMISE method allows method engineers to build process metamodels
according to the constraints and specificities of their organization as they only select
the needed concepts from the conceptual graph. The conceptual graph allows guiding

96 C. Hug, A. Front, and D. Rieu

method engineers in the construction and checking the consistency of their PMUC.
The guiding is done thanks to the relations defined between the concepts that method
engineers will select according to their intention (abstract, complete, precise a
concept). The consistency of the produced PMUC is continuously checked as method
engineers can only select concepts according to the conceptual graph which have been
built in order to verify the consistency at any time. Some concepts cannot be selected
until other concepts have been integrated. Moreover, the construction of the process
metamodel itself is hidden to the method engineers as they only manipulate the
conceptual graph and the concepts definition.

We will now present an example of the ProMISE method use.

4 Grenoble’s University Hospital Example

This section describes an example of the information system centre of Grenoble’s
University Hospital (http://www.chu-grenoble.fr/). This example has not a purpose of
validating our method but illustrating it. We specifically conducted qualitative
evaluations to validate the method with an academic focus group and semi-structured
interviews with industrialists [28].

4.1 Requirements

The information system centre (ISC) manages approximately forty different
applications that need to be regularly updated to meet new users’ requirements
(medical assistants, hospital doctors and administration staff).

The ISC managers want to model the ISE processes to achieve a more rigorous
project management, defining a unified and optimal way to manage projects
regardless of the development team. They also want to collect and reuse knowledge
for a more efficient production in terms of resources and time use and therefore costs.
A method engineer is in charge of the study of the ISE processes and their modeling.
The method engineer in this example is one of the project managers of the ISC.

We have worked with this project manager who determined the various aspects of
the ISE processes (this example only presents an extract of the problem):

- A part of the process is defined in terms of goals and sub-goals; this part is
intended primarily for hospital services managers (services are for example
the surgical unit or the accounting department) who are more interested in the
results and impacts of new system functionalities on their service (intentional
part),

- The second part of the process is defined by phases, activities and products
produced during these activities (operational part).

The problems met by the method engineer are the following: how can he represent
these concepts? What are the existing models? Which models meet these
requirements? At the present time, these representation choices are made difficult
because of the numerous existing process models and metamodels, their lack of
mutual complementarity and the complexity to adapt them to specific needs of
organizations.

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 97

Our method enables the method engineer to model the process metamodel that
corresponds to the information system centre ISE processes. The method guides him
through the selection of concepts he needs to represent and through their assembly in
order to create a specific process metamodel including all the concepts at the
intentional level concerning the services managers and at the operational level
concerning the activities and the products.

4.2 Method Use

The first step of our method is the Concept selection. The method engineer must
select one of the definitions that correspond to the concepts he wants to model. The
definition “Goal or objective of the ISE process” corresponds to the part of the
process defined in terms of goals. The engineer chooses this definition and the
corresponding Intention class from the Process Domain Metamodel is integrated in
the new PMUC. The method engineer examines then the relations of the Intention
concept in the conceptual graph; the precision relation permits him to select the
Intention Composition concept that will allow him to decompose the goals into sub-
goals. This concept is integrated in the PMUC as a reflexive composition on the
Intention class, which corresponds to the use of the Composition pattern on the
Intention class. Figure 7 presents this part of the path in the conceptual graph and the
corresponding PMUC.

Fig. 7. First part of the path in the conceptual graph and the PMUC

Then, the relation concretization starting from the Intention concept in the
conceptual graph allows the method engineer to get the Work Product concept that
will represent the products produced during the ISE process. The corresponding class
is integrated in the PMUC, as well as the “concretizes” dependency linked to the
Intention class. In order to model the fact that a work product can be composed of
other work products (for example, “Functional specifications” is composed of
“Simplified requirements” and “Actors diagram”), the method engineer refines the
Work Product concept thanks to the Work Product Composition concept. To specify
that work products are of different types (for example, “Functional specifications” is a
document and “Actor diagram” is a UML diagram), the method engineer refines the
Work Product concept by the Work Product Category concept. The Work Product
Category class is added into the PMUC. Similarly to what was done with the Work
Product, the method engineer wants to specify that a document is composed of UML
diagrams, texts and graphics. He refines the Work Product Category concept by the
Work Product Category Composition concept. Figure 8 presents the corresponding
part of the path in the conceptual graph and the corresponding PMUC.

Thanks to the completeness relation, the method engineer can extend the PMUC
with the Work Unit concept to represent activities and steps. The Work Unit class and

98 C. Hug, A. Front, and D. Rieu

its associations “In” and “Out” defined in the Process Domain Metamodel are
integrated to the PMUC. By using the precision relation, the method engineer can
refine the Work Unit concept to represent the sequence and the composition of work
units, the work unit categories and the composition of work unit categories. Figure 9
presents the complete path carried out in the conceptual graph.

Fig. 8. Second part of the path in the conceptual graph and the PMUC

Fig. 9. Complete path in the conceptual graph

Fig. 10. The final process metamodel

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 99

Figure 10 presents the final process metamodel obtained. It represents the classes
defined in the requirements and the associations between them. The link between the
classes of intentional and operational level is represented by the dependency link
stereotyped as “concretizes”. The abstraction level of each class is represented as an
attribute level. The process metamodel is multi-points of view as it focuses on the
activity, product and strategy points of view. The complementarity and the connection
between the points of view are modeled by the “concretizes” dependency and the
associations.

The method engineer can then instantiate the metamodel to represent the various
ISE process models of the ISC. Figure 11 is a partial instantiation of the final process
metamodel to represent the ISE processes. The method engineer wants to model the
intentions and sub-intentions of service managers. One of the intentions of the service
managers is to know the level of impact of a new functionality and the changes on the
services organization. This can be represented as the object “Define the level of
impact of the change in the service”, instance of the Intention class. This intention can
be decomposed into two sub-intentions. Service managers want to define the impact
of the change in the service organization and the persons that will be impacted by the
change. These estimations will be useful to define the costs of the IS change, as costs
of business process modifications.

Fig. 11. The process model represented as an object diagram

The operational abstraction level of the process model represents the detail of the
“Pre-functional study” activity composed of three steps. First, “Simplified
requirements specifications” produces the “Simplified requirements” work product
that is a text. Second, the “Constitution of business terms glossary” step produces a
glossary and finally, “Actors modeling” produces a UML diagram “Actors diagram”.
All the work products produced during the Pre-functional study form a document
called “Functional specifications” (not represented in Figure 11). The two sub-
intentions “Define the impact on the service organization” and “Define the persons
who are impacted by the change” are concretized by the “Simplified requirements”
and “Actors Diagram” work products.

The process model represented as an object diagram is not easily and quickly
understandable. Our method proposes a graphical representation (formalism)
depending on the concepts in the PMUC. For example, if concepts of the operational

100 C. Hug, A. Front, and D. Rieu

level as work unit and work product are defined in the metamodel, the method will
propose to use activity diagrams [18]. If intentions and strategies are used, the method
will propose the MAP formalism [25], if there are only intentions, the KAOS
formalism [29] will be proposed.

The top part of Figure 12 shows how the intentions and sub-intentions of the
intentional level defined in Figure 11 can be modeled using the KAOS formalism.
They are represented as parallelograms. The composition is modeled thanks to a
circle. Figure 12 also presents the concepts of the operational level defined in Figure
11 as an activity diagram. The activities and steps are represented with rounded
rectangles. All the work products are represented by rectangles. Stereotypes are used
to specify their category. The “concretizes” dependencies are defined between the
different work products and intentions of the models: the method engineer, the service
managers and project managers can switch from the intentional level to the
operational level.

Fig. 12. Intentions and sub-intentions defined at the intentional level and their concretization at
the operational level in the ISE process

5 Discussion

Our proposition offers method engineers to build process metamodels for ISE
depending on the specificities, the context of the projects or organizations. Our
purpose differs from Situational Method Engineering, as its aim is to define IS
development methods by reusing and assembling different existing method fragments
[30], but it is set in the same trend of situational engineering. We may name our
domain SPME (Situational Process Metamodelling Engineering).

Let us note that we do not reconsider the existing process metamodels. They all
play a part in ISE processes and have their legitimacy. However, they do not define
their concepts complementarity in respect to the other process metamodels. Our
proposition does not consist of yet another process metamodel, but it proposes a
method allowing method engineers to build process metamodels including

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 101

complementarity between the concepts. Our method uses some part of the existing
process metamodels. Therefore, method engineers can reuse knowledge they acquired
from their experience in ISE process metamodelling. There lies the real contrast
between our proposal and currently available process models, such as RUP [5] or
SCRUM [7], process models that are hardly adaptable. Applying these, method
engineers must follow them as described and have a little or no mean of
customization. Our method, on the other hand, proposes method engineers to
instantiate process models according to their needs from process metamodels they
have defined themselves but still using widely accepted concepts and formalism of
ISE process models.

The existing process metamodels are also fixed [10]. They do not allow method
engineers to extend them or customize them. Their use is therefore limited as they do
not provide all needed concepts. For example, adding the intention concept to the
RUP model would be difficult as it is not defined in the RUP metamodel. Using it
without defining it in the metamodel could lead to misuses and the relations with the
other concepts would not be defined.

Finally, new process metamodels as ISO/IEC 24744 [16] are more flexible and
provide more concepts than previous process metamodels thanks to metamodelling
mechanisms as the Powertype. However, the strategy, intention and decision concepts
are not taken into account here.

To conclude, we can say that our method allows more flexibility, more
personalized adaptation and allows building process metamodels with less limitation
than the existing one.

6 The ProMISE Tool

In this section, we present the ProMISE tool that supports our method. It has been
built using Java. The two main supports of the method, the conceptual graph and the
Process Domain Metamodel are defined independently from the tool in XMI files.
XMI [31] is a standard format that allows storing UML models as structured text files.
The main benefit of having the supports outside the tool is to permit more flexibility
and scalability as the guiding will be generated thanks to the conceptual graph file and
not the tool it-self. The guiding evolves as the conceptual graph evolves. Method
engineers can interact with a visual conceptual graph, thanks to Prefuse [32]. Prefuse
is a powerful toolkit for creating rich interactive data visualizations, such as graphs.
The PMUC is displayed as a class diagram using the API UMLJGraph [33] that
allows displaying UML diagrams in Java. The PMUC can be exported as an XMI file.
This allows method engineers importing their process metamodels in any CASE tool,
to instantiate them for example. The imports and exports are done thanks to JDom
[34], a Java API able to read and write both XML and XMI files.

The tool allows method engineers to build process metamodels through the use of
the concepts definition and the relations. Figure 13 presents a global view of the
interface. It is composed of three tabs:

– The first tab (here called “Process-Metamodel-Hospital) allows method
engineers to build their PMUC for a particular organization or project through
the use of the definitions and the conceptual graph.

102 C. Hug, A. Front, and D. Rieu

– The second tab, “Process Metamodel Under Construction”, allows method
engineers to view their PMUC as a UML class diagram.

– The third tab, “Attributes”, allows method engineers to add attributes to their
PMUC classes, we will not detail this functionality here.

The first tab that allows the construction of the PMUC is decomposed in two parts:

– The top part of the interface permits to select concepts by definition or by
relation. Concepts are displayed according to their abstraction level which
facilitates their selection. The definition, examples and synonyms of each
concept can be seen by mouse over. Each relation (completeness, precision,
abstraction) is represented by a tab. By selecting one tab, the concepts that can
be integrated through the corresponding relation are displayed in the lists. For
example, in Figure 13, the Precision tab is selected. Work Unit Category is a
concept that can be refined; this allows selecting the Work Unit Category
Composition concept.

Fig. 13. Interface of the ProMISE tool

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 103

– The lower part of the interface shows the conceptual graph with the already
integrated concepts in the PMUC and the concepts that can be reached by the
relations and that can be integrated in the PMUC (Work Unit Category
Composition in Figure 13). By selecting a relation tab, the conceptual graph is
updated with the concepts that can be integrated.

The construction of the process metamodel itself is done by the tool that uses the
Process Domain Metamodel, the patterns to add new classes to the PMUC. Method
engineers do not see the “dirty” part of the process metamodel construction and only
interact with the conceptual graph.

7 Conclusions

In this paper, we present a method that allows method engineers to build process
metamodels for ISE. The method is based on two steps: (i) the selection of concepts
meeting the specificities and constraints of the projects or organizations, using a
conceptual graph to help the concepts selection in a completeness – precision –
abstraction 3D space; (ii) the integration of the concepts to build an adapted process
metamodel called PMUC. The produced process metamodels are multi-points of view
as they integrate different points of view (activity, product, decision, context and
strategy). The metamodels are also adapted to the context of the organizations as only
the needed concepts were selected. At last, all the knowledge of ISE processes of the
project or the organization is modeled in only one process metamodel and related
process models. There is a better consistency of the manipulated concepts and a better
understanding of the links between intentional and operational levels in the projects.

The ProMISE tool has been implemented to allow method engineers building
process metamodels according to our method. The construction of the process
metamodel itself is hidden to the method engineers as they only “play” with the
conceptual graph: the process metamodel is built automatically by the tool.

Further step is to allow the instantiation of the process metamodels until the
monitoring of particular information systems engineering projects. Another part of
perspectives concerns the formalism that method engineers should use to represent the
process models instantiated from the metamodels produced by this method. It would
be useful to guide method engineers in the use of such or such formalism, depending
on the concepts selected in their PMUC.

The Process Domain Metamodel may evolve, with the publications by the
community of new process models and metamodels for ISE. The conceptual graph
will also evolve, in order to propose method engineers the largest choice of
possibilities taking into account the latest evolutions in terms of ISE process
metamodelling.

References

1. Humphrey, W.S., Kellner, M.I.: Software process modeling: principles of entity process
models. In: ICSE 1989, pp. 331–342. ACM, New York (1989)

2. Software Engineering Institute: CMMI for Development, Version 1.2 (2006)

104 C. Hug, A. Front, and D. Rieu

3. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: ICSE 1987, pp. 328–338. IEEE Computer Society Press, Los Alamitos
(1987)

4. Boehm, B.: A spiral model of software development and enhancement. SIGSOFT
Software Engineering Notes 11(4), 14–24 (1986)

5. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Longman
Publishing, Co., Inc., Boston (2000)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Longman Publishing Co., Inc., Boston (1999)

7. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall,
Upper Saddle River (2001)

8. Hug, C., Front, A., Rieu, D.: A Process Engineering Method Based on a Process domain
Model and Patterns. In: MoDISE International Workshop, pp. 126–137 (2008)

9. Hug, C., Front, A., Rieu, D.: Process Engineering Method Based on Ontology and
Patterns. In: ICSOFT 2008, pp. 29–36 (2008)

10. Hug, C., Front, A., Rieu, D., Henderson-Sellers, B.: A Method to build Information
Systems Engineering Process Metamodels. J. of Sys. & Soft. 82(10), 1730–1742 (2009)

11. Hug, C., Front, A., Rieu, D.: Ingénierie des processus. Une approche à base de patrons.
Revue RSTI. Série ISI 13(4), 11–34 (2008)

12. OMG: Software Process Engineering Meta-Model. Version 2.0 (2008)
13. Open Process Framework, http://www.opfro.org
14. OOSPICE, Software Process Improvement and Capability Determination for Object-

Oriented/ Component-Based Software Development, http://www.oospice.com
15. Australian Standard: Standard Metamodel for Software Development Methodologies. AS,

4651–2004 (2004)
16. ISO/IEC: 24744 Software Engineering - Metamodel for Development Methodologies

(2007)
17. Harel, D.: Statecharts: A Visual Formulation for Complex Systems. Science of Computer

Programming 8(3), 231–274 (1987)
18. OMG: Unified Modeling Language: Superstructure. Version 2.2 (2009)
19. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint oriented software development.

Third International Workshop on Software Engineering and Its Applications, pp. 374–384
(1990)

20. Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. WP 131, Heidelberg,
Berkeley (1970)

21. Potts, C., Bruns, G.: Recording the Reasons for Design Decisions. In: ICSE 1988, pp. 418–
427. IEEE Computer Society Press, Los Alamitos (1988)

22. Potts, C.: A generic model for representing design methods. In: ICSE 1989, pp. 217–226.
IEEE Computer Society/ ACM Press (1989)

23. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: DAIDA: An Environment for
Evolving Information Systems. ACM Trans. on Inf. Sys. 10(1), 1–50 (1992)

24. Rolland, C., Souveyet, C., Moreno, M.: An Approach for defining ways-of-working.
Information System Journal 20(4), 337–359 (1995)

25. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling.
Requirements Engineering 4(4), 169–187 (1999)

26. Panet, G., Letouche, R.: Merise/2 Modèles et techniques Merise Avancés. Les Editions
d’Organisation, Paris (1994)

27. Hug, C.: Méthode, modèles et outil pour la méta-modélisation des processus d’ingénierie
de systèmes d’information. PhD Thesis, Grenoble I University (2009)

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 105

28. Hug, C., Mandran, N., Front, A., Rieu, D.: Qualitative Evaluation of a Method for
Information Systems Engineering Processes. In: RCIS 2010, pp 257–268 (2010)

29. Objectiver: A KAOS tutorial. Respect-It (2007)
30. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,

K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

31. OMG.: MOF 2.0 / XMI Mapping Specification. Version 2.1.1 (2007)
32. Prefuse, http://prefuse.org/
33. UMLJGraph, http://umljgraph.sourceforge.net/
34. JDOM, http://www.jdom.org/

	ProMISE: A Process Metamodelling Method for Information Systems Engineering
	Introduction
	The Base of the Method: The Conceptual Graph
	The 3D Space
	The Conceptual Graph

	The Method
	Concept Selection
	Concept Integration

	Grenoble’s University Hospital Example
	Requirements
	Method Use

	Discussion
	The ProMISE Tool
	Conclusions
	References

