

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 45–60, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Applying AspectJ to Solve Problems
with Persistence Frameworks

Uwe Hohenstein and Michael C. Jaeger

Siemens AG, CT T DE IT 1, Otto-Hahn-Ring 6, D-81730, Munich, Germany
{Uwe.Hohenstein,Michael.C.Jaeger}@siemens.com

Abstract. This work reports on problems we had with persistence frameworks in
an industrial project. Most problems occurred when replacing the persistence
framework Hibernate with OpenJPA. Such a substitution basically means
exchanging API calls and dealing with functional differences. But the replacement
involved challenging problems since some important Hibernate functionality was
missing in OpenJPA and could not be emulated, and other functionality did not
work appropriately in OpenJPA. Conventional techniques such as wrapping code
are not sufficient to tackle those points. However, we found powerful mechanisms
in the aspect-oriented programming language AspectJ to solve problems fast,
easily, and in a straightforward manner. All the problems are well-motivated and
the aspect-oriented solutions are explained in detail.

1 Introduction

Whenever Java and relational database systems (DBS) are used, object-relational
(O/R) persistence frameworks or tools such as Hibernate, Java Data Objects (JDO) or
Java Persistence API (JPA) come into play: Application programmers can store and
retrieve Java objects in relational tables without knowing about the underlying table
structure and/or how to formulate SQL queries. Programming can be done at an
object-oriented level, i.e., by storing and retrieving Java objects. The O/R framework
translates those object-oriented operations into SQL.

We were involved in an industrial project with Siemens Enterprise Communications
(SEN), where the Hibernate persistence framework was used. The project develops a
Java-based service-oriented telecommunication middleware which serves as an open
service platform for the deployment and provision of communication services [1].
Examples for such services are the capturing of user presence, the management of
calling domains, administration functionality for the underlying switch technology, and
so forth. The technical basis is OSGi.

Hibernate was used for managing persistent data in a relational DBS. Hibernate is a
widely used and popular O/R framework. It is open-source software and provides
only a thin layer upon the Java Database Connectivity API (JDBC), offering
developers much control on performance-relevant settings. Hibernate was used for
two reasons: First, to be independent of various DBSs to be supported in the product,
namely solidDB, MySQL, and PostgreSQL. And second, to benefit from the higher,
object-oriented level of database programming.

46 U. Hohenstein and M.C. Jaeger

Some time ago, the owner of Hibernate was accused of violating a patent on O/R
frameworks in the United States. This patent infringement claim seemed to be a
problem of Hibernate at a first glance. However, every software product that is
shipped to the United States with Hibernate inside is affected as well; any redistribu-
tion of Hibernate implies the role of a supplier. To avoid the risk of a patent in-
fringement, the project management decided to replace Hibernate with another O/R
framework. An additional business issue was the GNU Lesser General Public License
(LGPL) used by Hibernate. LGPL was not fully compatible with agreements that SEN
has with its business partners. As a consequence, the project management decided to
replace such LGPL software in general.

The Hibernate replacement started with a first brief evaluation, where several
substitute candidates were roughly assessed: Proprietary frameworks such as iBATIS
and tools conforming to the JDO or JPA standards. As a quick result, the OpenJPA
framework was chosen because it is open-source and implements the JPA
specification. The JPA standard seems to be appropriate because it is part of the EJB
3.0 specification and is more recent than JDO. Thus, OpenJPA could easily be
replaced with other JPA-conforming tools if OpenJPA would also be gripped by the
patent. Moreover, OpenJPA is provided with the more convenient Apache software
license.

Migrating from Hibernate to OpenJPA is merely straightforward at a first glance: It
is possible to wrap OpenJPA by still offering Hibernate interfaces; changes are thus
minimal. However, during the replacement effort, severe problems raised that were
difficult to detect in an OpenJPA evaluation. Those issues occurred lately and
endangered the success of replacement. In order to cope with them, we found and
applied solutions using Aspect-Orientation (AO).

AO has been proposed for developing software to eliminate crosscutting concerns,
i.e., functionalities that are typically spread over several classes. Those lead to code
tangling and scattering [2] in conventional programming [3]. Research has shown its
usefulness: Hannemann and Kiczales [4] identify several crosscutting concerns in the
GoF patterns [5] and extract them into aspects. [3,6] use aspects for designing and
building flexible middleware. Rashid [7] discusses several facets of AO in the context
of databases, in particular implementing DBSs in a more modular manner and an AO-
based persistence framework [8]. Others use AO to maintain database statistics [9] or
to implement ACID properties [10]. It turns out in all these studies that aspect-
orientation increases programming productivity, quality and traceability, degree of
code reuse, software modularity, and is better supporting evolution [11].

In this paper, we discuss another application of AO, to apply aspects to existing 3rd
party software libraries in order to add missing functionality or to change internal
behavior. Our intent is to show that AO provides a straightforward solution being
suitable for software migrations in enterprise settings. The essential and novel value of
our AO approach is a method to address the challenges of integrating 3rd party software,
keeping the original software untouched and being able to manage the concerns of
replacement in a maintainable manner.

In Section 2, we summarize the general strategy for replacing Hibernate and
outline a selection of replacement issues that we solved by applying conventional
methods. Section 3 presents some critical problems that occurred during the
replacement, for which conventional solutions are hard to find and apply. After

 Applying AspectJ to Solve Problems with Persistence Frameworks 47

having introduced the fundamentals of AO and AspectJ [12], Section 4 explains our
solutions using AO. Our lessons learned during the replacement are summarized in
Section 5. The paper ends with Section 6 that gives a summary on our experiences
and our conclusions.

2 Replacement Strategy

In order to perform the Hibernate replacement, a master plan was established in the
beginning. This plan consists of the following steps:

1. The goal was to start a practical replacement as early as possible. A selection
and brief assessment of potential Hibernate substitutes leads to an early
decision for the JPA standard with OpenJPA as implementation, because
obvious similarities exist between OpenJPA and Hibernate.

2. A checklist was established for those Hibernate concepts that were seen
specific or critical. A short evaluation of the checklist let appear OpenJPA
appropriate.

3. We transformed the project’s central persistence infrastructure to OpenJPA,
particularly its configuration and deployment.

4. As a proof of concept, the most complicated software project was migrated
first in a sandbox environment. By this step, we expected to identify as many
problems as early as possible.

5. The real replacement on the affected software projects was scheduled and
planned.

6. Finally, we performed the replacement in coordination with the affected
development teams. Training and coaching was also necessary.

The short theoretic evaluation of Step 2 was successful, and no major problems have
been detected at that time. Of course, several differences between Hibernate and
OpenJPA APIs exist. For instance, we have to use an EntityManager instead of a
Session.EntityManager.persist() instead of Session.save(), etc. But since
most concepts of Hibernate seemed to have an equivalent counterpart in OpenJPA, we
got an optimistic impression about the replacement. This first impression was also
confirmed by [13] who state that it is no problem to migrate from Hibernate to
OpenJPA.

It became clear that obvious differences are easy to cope with a wrapper approach.
Implementing the Hibernate interface on top of OpenJPA has the advantage that the
old Hibernate interface in use can still be retained. Only import statements have to be
changed. Even the change of import packages is not really mandatory, but useful
since Hibernate and OpenJPA could thus run in parallel in an OSGi container during
the replacement phase. This allows for a step by step replacement of services.
Ongoing development work on the middleware is not really affected.

Despite several conceptual similarities, the practical evaluation of Step 4 brought
up some differences which we would like to mention briefly (see also [13] for further
topics).

48 U. Hohenstein and M.C. Jaeger

One problem is that JPQL delete-by-queries do not work correctly because
OpenJPA generates an SQL query with a self-reference which cannot be executed by
most DBSs:

DELETE FROM Tab
WHERE key IN (SELECT key FROM Tab WHERE <condition>)

A solution is to omit delete-by-queries by implementing the functionality manually,
i.e., by querying the objects to be deleted first and then deleting each object one by
one. This poses a performance problem due to lots of DELETE operations. A sus-
tainable solution is to correct the query generation by avoiding the unnecessary
subquery. The relevant translation is part of so-called Dictionary classes. Hence,
the change can simply be done by defining a dictionary class MyMySQLDictionary
that extends the predefined MySQLDictionary in such a way.

Furthermore, the life cycle of the persistent objects is different. For example, it is
possible in Hibernate to overwrite an existing persistent object in the database by
creating a new object having the same key values; saving that object overwrites the
existing one. However, OpenJPA treats the (temporary) object as a new one, which let
the database system complain about duplicates.

Hibernate’s Criteria interface for queries is not supported in OpenJPA release
1.1.0. Thus, Criteria queries must be re-formulated in the JPQL language.

Smaller differences exist between the query languages HQL and JPQL, e.g., an
explicit alias t has to be used at any place, as in SELECT t FROM Type t WHERE
t.attr=1 instead of Hibernate’s short form FROM Type WHERE attr=1. This affects
conditions that could be composed as attr=1 in the GUI and now need to be
extended with an alias t.

Hibernate has a special delete-orphan cascade option: While the ordinary delete-
cascade removes with a father object all depending son objects, delete-orphan
removes son objects in addition when the association with the father object is
destroyed; a son object cannot exist without a father. Despite being not supported by
the JPA standard, OpenJPA provides such a feature by means of an extended mapping
annotation. If one stays with XML mapping files, those cascades must be resolved
and implemented manually.

OpenJPA comes with an easy integration of the Apache DBCP connection pool,
while we used Hibernate with the C3P0 pool. DBCP behaves differently and
performance tests brought up different connection pool settings for DBCP.

Although those issues represent a very individual effort, such a correction did not
pose any problems to the progress of the replacement.

3 Harder Problems

The differences between Hibernate and OpenJPA explained in the previous section
are easy to solve. However, some problems – being detected in later phases of the
replacement unfortunately – endangered the success of the overall replacement and
were hard to solve with conventional programming techniques. This section discusses
those problems in detail. Corresponding AO solutions are presented in Section 4.

 Applying AspectJ to Solve Problems with Persistence Frameworks 49

3.1 Lack of Key Generation

An O/R framework requires mapping information on how to map classes onto
database tables, attributes to table columns, associations to foreign keys etc. This can
either be done by means of XML mapping files or by Java-5 annotations in the entity
classes. Our project used XML mapping files. The following Hibernate mapping
example relates a class MyClass (<class>) to a table MyTable (table=…), fields id
and p2 to table columns pk and c2, respectively.

<class name=”MyClass” table=”MyTab”>
 <id name=”id” column=”pk”>
 <generator class=”sequence”/> </id>
 <property name=”p2” column=”c2”/> ...
</class>

Thereby, <id> defines a key field that uniquely identifies objects in a class; the
corresponding column pk is used as a database primary key.

Indeed, the mapping specification in OpenJPA is different; a file orm.xml specifies
mappings with a different syntax. The transformation of Hibernate mapping files into
OpenJPA syntax is straightforward and can be achieved by an XSLT script for most
differences. However, some differences are fundamental. For example, there are
various alternatives for providing <id> values in Hibernate, e.g., to let the application
be responsible for providing the key values and ensuring their uniqueness
(<generator class= ″assigned″/>), to let Hibernate generate an id by means of
creating a globally unique identifier, or to use mechanisms that DBSs offer such as
sequence generators (in solidDB) or auto-increment columns (in MySQL). These
strategies are supported by OpenJPA, too. But Hibernate also offers a more abstract
native key generation: Depending on what the underlying DBS supports, either
sequence or identity (for auto-increment columns) is used. Since the project must
support several DBSs, especially solidDB, MySQL, and PostgreSQL, and since the
type of DBS should be invisible, such an abstract strategy is required.

OpenJPA has a similar auto strategy that lets OpenJPA decide what to do, but it
uses a table for maintaining highest values instead of taking auto-increment columns
or sequences. This is not appropriate as database installations already exist at
customers, containing keys generated by either sequences or auto-increment columns.
For these, the probability is high that auto generates already existing values. Hence,
value clashes are most likely when upgrading to an OpenJPA-based implementation.

One solution is certainly to maintain three XML mapping files, one for each DBS
with the supported strategy. A simple model-driven approach that generates DBS-
specific variants with sequence or identity, respectively, could help here. This was
regarded as an inappropriate solution as it causes a problem for deployment. OpenJPA
expects the mapping file in a JAR. The overall project strategy is to have one
unchangeable deployment JAR: All parameters that might vary from one installation
to another, such as the database URL, its port, user and password, must be placed
outside the deployed JAR file. This is because only parts of the JDK are installed on
target machines and unzip/zipping of JAR files is not available to exchange parts such
as mapping files. Hence, the resulting installation procedure would now need to
handle several JAR files for deployment, one for each DBS.

50 U. Hohenstein and M.C. Jaeger

The issue with providing different mappings becomes even worse, since we were
forced to use mapping annotations in some cases. Some OpenJPA features are only
available as annotations, but not in XML mappings, e.g., a “delete-orphan” cascade
(cf. Section 2): This is a special option that removes son objects when their
association with the father object is destroyed. On the one hand, using the delete-
orphan option with annotations means that also several code variants have to be
maintained, since the mapping is part of the source code. On the other hand,
implementing delete-orphan behavior manually, i.e., deleting objects explicitly
whenever they become parentless can be very cumbersome since cascades go over
several levels in the object model.

Any of both proposals would require massive changes in the implementation and
deployment infrastructure.

3.2 Failover Problem

The main DBS to be supported in our project is solidDB. solidDB is not as popular as
other DBSs. However, it is often used in telecommunication projects. One reason is
its hot-standby failover concept: It is possible to install two DBSs, one primary and
one secondary, the databases of both being synchronized. If the primary solidDB
server crashes, the secondary becomes the new primary and silently takes over the
work immediately. To apply failover, applications have to use a specific dual-node
URL of the form jdbc:solid://h1:1315,h2:1315/usr/pw. This URL specifies
two database servers on host h1 and host h2.

The failover concept is important for our project and certainly one of the first
priority requirements. We knew that Hibernate and the solidDB JDBC driver can
handle the dual-node URL. Since, the O/R framework is supposed to pass this URL
through to the JDBC driver, no particular problems were expected. But since the setup
and accomplishment of failover test scenarios involves many steps, the final check
has been postponed in the first assessment of OpenJPA.

When it came to test deployments, the failover feature of the solidDB DBS did not
work for OpenJPA; connections to the database could not be established at all with
the given URL. The first problem occurred: How can we find out why no connections
are possible? Debugging was very tedious as the problem occurred in the depth of
OpenJPA and the JDBC driver. As we are describing later, AO helped us to detect the
cause for the problem.

It turned out that the dual-node URL was damaged by OpenJPA: Only the first part
jdbc:solid://h1:1315 arrived at the solidDB server. The reason is that a string is
used to set several facets of connection properties in one openjpa.ConnectionPro-
perties, the URL, the driver class name etc.:

String str = "Url=jdbc:solid://h1:1315,h2:1315/usr/pw,
 DriverClassName=solid.jdbc.SolidDriver,
 ...";
props.setProperty("openjpa.ConnectionProperties",str);
EntityManagerFactory emf

 = persProvider.createEntityManagerFactory("mydb",props);

 Applying AspectJ to Solve Problems with Persistence Frameworks 51

A deeper investigation brought up that OpenJPA takes the comma as a separator
during the analysis of openjpa.ConnectionProperties and thus derives the
following units from the properties:

Url=jdbc:solid://h1:1315
h2:1315/usr/pw
DriverClassName=solid.jdbc.SolidDriver
…

That is, h2:1315/usr/pw is taken as a unit of its own, and since it does not satisfy the
form property=value, it is simply ignored; and the URL degrades to
jdbc:solid://h1:1315.

To solve the problem and to leave the dual-node URL intact, we obviously have to
change the internal behavior of OpenJPA.

3.3 Missing Connection Property

Unfortunately, the previous solution solves only half of the failover problem: It allows
establishing connections to solidDB, but no failover occurs. Indeed, the solidDB
JDBC driver requires a special failover property solid_tf_level to be set for any
database connection. OpenJPA allows passing additional properties, but only Open-
JPA properties starting with “openjpa.”, are analyzed and passed to the JDBC
driver; others are ignored.

A solution must somehow change the behavior of the solidDB driver, the source
code of which is unavailable.

3.4 Possible Solutions

What are possible solutions to solve the above problems? There is no easy work-
around such as wrapping OpenJPA or JDBC methods because we have to intervene in
the internal behavior.

We can certainly ask the vendor of solidDB to change its JDBC driver. This is in
general expensive and must be done again and again when a new version is launched.
For patches of OpenJPA, the open source community could provide solutions.
However, the problem affects the interplay between OpenJPA and the rather specific
solidDB DBS. We require solidDB-specific patches to the OpenJPA source code, but
solidDB is not officially supported by OpenJPA. We reported those solidDB specific
issues to the OpenJPA project, but we could not wait for a solution because this
would have caused a significant delay.

Patching source code is possible, if the code is available. This is not always the
case, e.g., the sources of the solidDB JDBC driver are unavailable. In case of
OpenJPA, a deeper understanding of the complete source code is necessary because
several logical parts are involved: The XML parser for mapping files, the handling of
annotations, storing and using meta-data, interpreting the meta-data to perform
database operations etc. One technical difficulty is then to patch the code in such a
way that changes apply only for solidDB, but not for other DBSs. OpenJPA knows
the JDBC driver and can derive the used DBS. However, this information is needed in

52 U. Hohenstein and M.C. Jaeger

a different class. Hence, we have to let unrelated classes exchange this kind of
information, which means the change cannot be done locally.

Moreover, the build process must be understood in order to produce a new
OpenJPA JAR file. This could also cause trouble with integrating two different build
approaches such as Ant and Maven.

Aspect-orientation provides simpler solutions.

4 AspectJ Solutions

Aspect-orientation is a solution for our problems, especially if 3rd party tools behave
in a wrong manner and if no source code is available. We applied AO to change the
internal behavior of OpenJPA and JDBC drivers in order to achieve in OpenJPA some
missing Hibernate functionality.

The most popular AO language is certainly AspectJ [14]. Special extensions to
Java enable separating the definition of crosscutting concerns. Programming with
AspectJ is essentially done by Java and by new aspects. The main purpose of aspects
is to change the program flow. An aspect can intercept certain points of the program
flow, called join points. Examples of join points are method calls or executions, and
attribute accesses.

Join points are syntactically specified by means of pointcuts. Pointcuts identify join
points in the program flow by means of a signature expression. For example, a
specification can determine exactly one method. Or it can use wildcards to select
several methods of several classes by * MyClass*.get*(..,String). A star “*” in
names denotes any character sequence, hence, get* means any method that starts
with “get”. A type “*” denotes any type. Parameter types can be fixed or left open
(..). Interception of methods can be done at the caller or callee side. An
execution(...) pointcut intercepts at the callee side, i.e., any caller is affected. In
contrast, call(...) intercepts at the caller side.

Once join points are captured, advices specify weaving rules involving those joint
points, such as taking a certain action before or after the join points. Pointcuts can be
specified in such a way that they expose the context at the matched join point, i.e., the
object on which the intercepted method is invoked. Parameter values can be accessed
in advices as well.

The AspectJ language requires a compiler of its own. Usually, the AJDT plug-in
will be installed in Eclipse. However, a new compiler requires changes in the build
process, which is often not desired, so for us. Then, using Java-5 annotations such as
@Aspect is an alternative: Aspects can be written in pure Java. This was important for
us, because we could rely on standard Eclipse with an ordinary Java compiler, without
AJDT. In order to use annotations, the AspectJ runtime JAR is required in the
classpath. To make the aspect active, we also have to start the JVM (e.g., in Eclipse)
with a -javaagent argument referring to the AspectJ weaver. Annotations are then
evaluated and become really active, because load-time weaving takes place: Aspects
are woven whenever a matching class is loaded.

We now show AspectJ examples that solve our problems.

 Applying AspectJ to Solve Problems with Persistence Frameworks 53

4.1 Solving the Lack of Key Generation

The basic idea to remedy the lack of key generation is to accept both strategies
sequence and identity, but to change the internal OpenJPA behavior in such a way
that it uses the strategy available in the DBS. Hence, if identity has been chosen,
but if the DBS does not supply auto-increment columns, then let OpenJPA internally
switch to the sequence strategy. This is much easier than adding a new native
strategy for mapping specifications and/or annotations, which requires a
corresponding modification of the XML parser, the analysis of annotations, the use of
this kind of meta-data to derive SQL operations adequately etc.

Changing the OpenJPA behavior to handle identity appropriately according to
the type of DBS can easily be done by the following aspect.

@Aspect
public class KeyGenerationAspect {
 private String db = null;
 @Before("execution(*org.apache.openjpa.persistence
 .PersistenceProviderImpl.createEntityManagerFactory(..))
 && args(.., p)")
 public void determineDBS(Properties p) {
 String str = p.getProperty("openjpa.ConnectionProperties");
 if (str != null) {
 if (str.contains("Solid"))
 db = "SOLID";
 else if (str.contains("mysql"))
 db = "MYSQL";
 else if (str.contains("postgresql"))
 db = "POSTGRES";
 }
 @Around("call(* org.apache.openjpa.meta.FieldMetaData
 .getValueStrategy(..)) && !within(com.siemens.ct.aspects.*)")
 public Object changeStrategy(JoinPoint jp) {
 FieldMetaData fmd = (FieldMetaData) jp.getTarget();
 int strat = fmd.getValueStrategy();
 if (db.equals("SOLID") && strat == STRATEGY_IDENTITY) {
 fmd.setValueSequenceName("system");
 return STRATEGY_SEQUENCE;
 } ... // similar for other DBSs
 return strat;
} }

A @Aspect annotation lets the Java class KeyGenerationAspect become an aspect.
Annotations are used instead of the AspectJ language. This was important for us
because we could rely on a standard Eclipse setup with an ordinary Java compiler.

There are two advices: The first one determineDBS determines the DBS and the
second one changeStrategy changes the strategy if necessary. Both advices
exchange information about the DBS in use by means of an aspect-local variable db.

Since the method determineDBS is annotated with @Around, it defines an advice
to be executed around those join points that are specified by the pointcut string: Any
execution of the method PersistenceProviderImpl.createEntityManager-

Factory with a Properties parameter. The args(..,p) clause requires at least a
Properties parameter and binds a variable p to that parameter. The variable also

54 U. Hohenstein and M.C. Jaeger

occurs in the method signature and allows the advice to access the value. Thus,
p.getProperty("openjpa.ConnectionProperties") yields the connection
properties, i.e., the comma-separated list we are interested in so that we can extract
the type of DBS. The result is stored in an internal variable db.

The changeStrategy advice uses this information about the DBS to switch from
strategy identity to sequence in case of solidDB. Hence, the aspect can simply be
used to share and exchange information even if different parts of code, even of
different JARs, are intercepted. The technical problem how to determine the type of
DBS is solved in an easy way.

The @Around advice changeStrategy intercepts any call of FieldMetaData
.getValueStrategy, which returns the strategy. Due to @Around, the original logic
is replaced in such a way that we decide when to switch the strategy in the advice.

Please note that !within(com.siemens.ct.aspects.*) is necessary: Whenever
getValueStrategy is called, the call is implicitly changed to calling the @Around
method, which performs strat = fmd.getValueStrategy() inside. This means this
call is again intercepted, resulting in an infinite recursion. !within excludes any call
within the aspect from being intercepted.

The parameter JoinPoint jp gives access to context information about the join
point, especially the target object on which the method is invoked
(jp.getTarget()). This is a FieldMetaData object in this case, which allows
determining the current strategy by means of getValueStrategy(). Instead of
returning the original strategy, e.g., identity, we can switch for solidDB to
sequence and set the sequence name to the system sequence.

4.2 Solving the Failover Problem

As explained in Section 3.2, OpenJPA is unable to connect to the solidDB DBS with a
dual-node URL jdbc:solid://h1:1315,h2:1315/usr/pw. Our first problem was
to detect the reason why.

Refining the log4j level especially for OpenJPA produces an overwhelming but
useless output of OpenJPA activities such as initialization activities, analyzing
mapping specifications, named queries etc.

Debugging works only, if the source code is available. Even with IDE support, the
problem is hard to detect with debugging, especially since several dynamic method
invocations interrupt the execution flow: OpenJPA has a pluggable connection pool
and loads dynamically the one chosen. And the connection pool dynamically invokes
the JDBC driver for the selected DBS.

According to Laddad [14], one myth about AOP is to be good only for logging and
tracing. AOP is indeed useful for tracing (but we disagree with the word “only”). We
want to show how AO allows for a better and spontaneous controlling of tracing that
is more dedicated to the problem to solve; overwhelming and useless trace output can
be avoided. Thanks to load-time weaving in Eclipse, tracing can be done in a few
minutes: Add the aspectjrt JAR-file to the classpath, provide an aop.xml file
specifying relevant packages, use –javaagent in Eclipse, and implement the
following advice:

 Applying AspectJ to Solve Problems with Persistence Frameworks 55

@Before("execution(* *.*(..,String,..))")
public void myTrace(final JoinPoint jp) {
 Object[] args = jp.getArgs();
 for (Object a : args) {
 if (a instanceof String && arg!=null
 && ((String)a).contains("jdbc:solid:"))
 System.out.println("* In: " + jp.getSignature() + "->"
 + a.toString());
} } }

This @Before advice intercepts any execution of any method (execution(* *.*))
with a String parameter ((..,String,..)) and checks whether the string contains
a solidDB URL. If it does, it prints out that URL. The parameter JoinPoint jp gives
access to context information about the join point. For instance, jp.getSignature()
can be used to print out the intercepted method signature, and jp.getArgs() returns
the passed parameter values.

These simple changes are done in a few minutes and lead to the following clear
output:

* In: void org.apache.openjpa.lib.conf.Value setString(String)
-> DriverClassName=solid.jdbc.SolidDriver ,Url=jdbc:solid://h1:
 1315,h2:1315/usr/pw,defaultAutoCommit=false,initialSize=35
...
* In: Options org.apache.openjpa.lib.conf.Configurations.parse
 Properties(String)
-> DriverClassName=solid.jdbc.SolidDriver,Url=jdbc:solid://h1:
 1315,h2:1315/usr/pw,defaultAutoCommit=false,initialSize=35
* In: boolean solid.jdbc.SolidDriver.acceptsURL(String)
-> jdbc:solid://h1:1315
* In: Connection solid.jdbc.SolidDriver.connect(String,
 Properties)
-> jdbc:solid://h1:1315
...

The bold parts are important: They show the transition from a good to a bad URL.
Hence, the problem lies in the method Configurations.parseProperties(): The
URL is correct before execution, but truncated afterwards. To detect this problem, AO
tracing is much more effective than debugging. Thanks to a problem-specific tracing,
the reason for problems can be detected immediately.

Since the problematic method is now known, we can fix the problem in a second
step. Looking at the OpenJPA code, we see what goes wrong in method parse-
Properties. As already explained in Section 3.2, the code separates the units by
using a comma. Then, if no “=” is found in a unit, the unit is ignored, what exactly
happened to the second part of the dual-node URL.

An aspect can correct the URL. Having a pointcut trapped the execution of this
parseProperties method, an @Around advice can implement an instead-of
behavior: Instead of executing the original method, we use our “corrected”
implementation without touching the original source code directly:

@Around("execution(public static Options org.apache.openjpa.lib
 .conf.Configurations.parseProperties(String)) && args(s)")
public Object parseProperties(String s) {

56 U. Hohenstein and M.C. Jaeger

 Options opts;
 parse properties string s correctly and set the return value
opts;
 return opts;
}

4.3 Missing Connection Property

Similarly, we can add the solid_tf_level connection property by modifying the
JDBC driver: The following advice intercepts the execution of
SolidDriver.connect(...) and adds the required solid_tf_level property to
the Properties parameter:

@Before("execution(* solid.jdbc.SolidDriver.connect
 (..,String,..,Properties,..)) && args(url, pr)")
public void addSolidTfLevel(String url, Properties pr) {
 if (url != null && url.contains("solid"))
 pr.setProperty("solid_tf_level","1");
}

The part (..,String,..,Properties,..) specifies the parameters of interest.
The args clause binds variables url and pr to them. The variable url is used to
determine the DBS platform and pr to set the solid_tf_level property. Again, the
JDBC driver, an external JAR file, is modified.

4.4 Further Problems

We applied AspectJ in a similar manner to solve other deficits of OpenJPA. We are
not going into technical details, because the techniques are similar.

One problem occurred with class loading in OpenJPA. In some use cases, we ran
into out-of-memory exceptions sporadically. Our analysis showed that thousands of
class loader objects are created by OpenJPA. Unfortunately, the garbage collector
places those objects in the system space, which means that the objects are destroyed
too seldom. Using AspectJ, we detected the places where the class loaders are created
and where they are used. The result was surprising: OpenJPA effectively uses only
one of those class loaders. To solve the useless creation of class loaders, we defined
an aspect that intercepts any constructor call. Instead of calling the original
constructor, an around advice creates a class loader object only for the first time. Any
further call returns that singleton.

Another memory problem is concerned with OpenJPA’s query compilation cache.
This cache is indispensable for achieving an acceptable performance since it relieves
OpenJPA from analyzing and transforming JPQL queries again and again. Its size is
configurable. If the cache is exceeded, an old query is dropped, however, this query is
still kept in a second hidden cache with a fixed upper size of 1000. Since we have
several database projects, each obtaining such a cache with hundreds of old queries,
we again ran into high memory consumption. An aspect helped us to reduce the
second cache to 0.

Furthermore, we also had some performance problems due to wrong connection
pool settings. An aspect helped us to monitor whenever a JDBC connection is

 Applying AspectJ to Solve Problems with Persistence Frameworks 57

requested and released; the difference determines the number of currently active
connections. Moreover, the aspect detects whenever a connection is requested directly
via JDBC, thus bypassing OpenJPA; there is a danger of not having closed the
connection. This monitoring is done for all databases in the system. Hence, we get
detailed statistics of connection usage.

5 Experiences

5.1 General Experiences

The first lesson we learned is not really an experience, but rather a confirmation of
our approach: The recommendation is to start doing as early as possible, not spending
too much time on product selection. We decided to quickly choose a Hibernate
substitute because the real problems are anyway hard to detect even with an extensive
evaluation of products. The problems are occurring when starting the doing – and
they will certainly arise. In our case, we checked the most important issues carefully
and early. However, the severe problems came up quite late during the replacement. It
is nearly impossible, in our opinion, to check all problems for several candidates.

Anyway, there is no need to worry about potential or suddenly arising problems.
Even if hard problems occur unexpectedly, AO is a very powerful mechanism to
overcome them.

The wrapping approach, i.e., implementing the “old” Hibernate interface on top of
OpenJPA turned out to be very helpful and reduced the replacement time drastically.
But there is a difference between syntactic and semantic success. It is quite easy to get
the replacement compile-clean. The harder problems occur at runtime during the
testing, e.g., the different behavior in Hibernate and OpenJPA when storing new
objects with an existing key. And performance is not portable anyway.

Especially for achieving the same semantic behavior, testing turned out to be
important. Without a huge test suite with several thousands of JUnit test cases, the
replacement would presumably have failed. Thanks to the test suite, we could
immediately check the correct behavior after replacement. We can remember only
very few errors that came up after finishing and testing the replacement.

5.2 Convincing Project Management

Unfortunately, our project managers are not keen on using AO or having AspectJ in
their projects: There is always the fear of having uncontrollable behavior if several
developers use AOP. Our experiences go along with a recent study of AO adoption
[15] within non-academic projects, which indicates that the majority of the
interviewed developers are “early adopters” (according to [16]) of this technology.
The current stage of adoption is that occasionally developers learn the AO concepts
and try to apply them in non-critical phases of development projects, e.g., for
architectural checks or performance monitoring, as in [17). Very rarely the project
management deliberately decides to use AO technologies in a project. This keeps the
obstinate myths living: “AO is good only for logging/tracing” [14].

Well, we were able to convince our project management of using our AspectJ-
based solution. Since we represented a focused team, we did not use the approach of

58 U. Hohenstein and M.C. Jaeger

[18] and other authors who describe several stages for the adoption of AOP in order to
guide single developers getting familiar with AO. This approach suits well, if a
critical mass of developers can be convinced, which then in turn influence decisions
of their management. We acknowledge the practical benefit of this approach, but it
did not apply for our case. Even the approach we proposed in [19] could not be
applied, because the advantages of AO we showed are not relevant in this project.

Rather, we faced the lucky situation that we had to tackle critical problems which
imposed a lot of pressure: The replacement must have been successful in a short time,
switching to yet another candidate than OpenJPA was not feasible because it could
pose again uncertainties. Moreover, there was a lack of adequate alternative solutions
to overcome the explained problems. The only alternative seemed to patch source
code: This implies that the sources are available and that building the 3rd party library
is feasible. This could go for a single version of OpenJPA, but did not work with the
solidDB JDBC driver. Hence, our project management was slightly forced to accept
AO.

However, AspectJ in its “originally intended” form is still unacceptable, because
the infrastructure would require a lot of significant changes: As a new language,
AspectJ requires a special compiler, for instance given by the Eclipse AJDT plug-in.
Nonetheless, we have used AspectJ, but it is important that we have used aspects that
are implemented as ordinary Java classes. All the AspectJ concepts such as aspects,
pointcuts and advices are specified as annotations. Instead of using load-time weaving
(cf. Section 4), which caused some problems with the class loading of the underlying
OSGi container, we preferred an explicit instrumentation. The aspect classes are
compiled with the Java compiler and then applied to existing JAR files in a separate
step, particularly to 3rd party JAR files such as OpenJPA or JDBC drivers. Both steps
require the predefined iajc taskdef to invoke the AspectJ compiler in Ant build
scripts. The result is a new JAR, e.g., myopenjpa.jar, which must be used instead of
the original one. Please note building the new JAR file requires only a single build
file and a single additional build step. As a consequence, no source code and no
knowledge about the build process is required for modifications to a 3rd party tool’s
JAR file. Integration into an external build process, for example by using a tool like
Cruise Control with daily builds and overnight test reports, does not pose any
problems and can be done by exchanging the JAR files. And finally, scaling problems
with AspectJ for large projects such as long compile-times, as reported by [17], are
avoided.

6 Conclusions

This paper reports on problems that occurred in a concrete replacement scenario in an
industrial telecommunication project where the object-relational persistence
framework Hibernate has been replaced with OpenJPA due to licensing and patent
problems.

At a first glance, the Hibernate replacement has appeared as a straightforward task,
because there are only syntactic differences in the APIs and in the mapping
specifications of both frameworks. In fact, putting the Hibernate interface on top of
OpenJPA reduced code changes to simply exchanging packages. This kept the

 Applying AspectJ to Solve Problems with Persistence Frameworks 59

replacement effort low. However, harder problems occurred and endangered the
success of the replacement. For example, OpenJPA does not offer Hibernate’s native
key generation strategy and OpenJPA prevents a failover between two solidDB
database servers. This functionality is important for the telecommunication
middleware, and hence, solutions are indispensable!

For these harder problems, we have presented the successful adoption of aspect-
orientation (AO), especially AO programming with AspectJ [12]. Particularly, with
this approach we bridged the gap of functionality and handled deficits of internal
functionality. The key to success was not only AspectJ, but the special capability to
apply aspects to external JAR files the source code of which is unavailable. By this
technique, we were able to correct the behavior of OpenJPA and JDBC drivers.
Aspects can change the behavior, however, leave the source code and original JARs
intact. Thus, the essential and novel value of our AO approach is a method to address
the challenges of integrating 3rd party software, keeping the original software untouched
and being able to manage the concerns of replacement in a maintainable manner.

It is AspectJ that let the replacement succeed with simple solutions in short time. In
contrast to [20], we were satisfied with the power of the AspectJ language. Indeed,
AspectJ is a powerful language and we are simply using this power to easily solve
critical problems quickly. Moreover, there is a lack of adequate alternative solutions.
The only alternative seems to patch the source code explicitly – if available at all. The
effort for changing the source code, adding data exchange between unrelated classes,
and building the JAR leads to more complexity, error proneness, and effort than our
AO-based approach. Moreover, we are unsure whether the problems could be solved
with conventional techniques since the source code of JDBC drivers is usually not
available.

Another advantage becomes obvious. Although we exchanged the solidDB JDBC
driver twice and switched from OpenJPA version 0.9.7 to 1.1.0 during the effort, we
did not touch the aspects, they are stable and still work correctly with the newer
versions.

In future work, we want to apply AO for other purposes in the project. For
example, we currently use a model-driven approach to generate code from XML
specifications, i.e., several Java classes are generated by XSL-T transformations. We
want to investigate whether AspectJ could be an alternative, although others decline
appropriateness [21]. We hope that such a solution could be easier to use, better
understandable, and evolvable.

References

1. Strunk, W.: The Symphonia Product-Line. In: Java and Object-Oriented (JAOO)
Conference (2007)

2. Elrad, T., Filman, R., Bader, A.: Theme Section on Aspect-Oriented Programming.
CACM 44(10) (2001)

3. Murphy, G., Walker, A.R., Robillard, M.: Separating Features in Source Code: An
Exploratory Study. In: Proc. of 23rd Int. Conf. on Software Engineering (2001)

4. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In: Proc.
of the 17th Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2002 (2002)

60 U. Hohenstein and M.C. Jaeger

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Burke, B.: Implementing Middleware Using AOP. In: Proc. 4th Conf. on Aspect-Oriented
Software Development (AOSD), Chicago (2005)

7. Laddad, R.: Aspect-Oriented Database Systems. Springer, Heidelberg (2004)
8. Rashid, A.: Persistence as an Aspect. In: [22]
9. Hohenstein U.: Using Aspect-Orientation to Manage Database Statistics. In: [23]

10. Kienzle, J., Gélineau, S.: AO Challenge – Implementing the ACID Properties for
Transactional Attributes. In: Proc. of 5th Int. Conf. on Aspect-Oriented Software
Development, Bonn, Germany (2006)

11. Coady, Y., Kiczales, G.: Back to the Future: A Retrospective Study of Aspect Evolution in
Operating System Code. In: [22]

12. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, 2nd edn.
Manning, Greenwich (2008)

13. Vines, D., Sutter, K.: Migrating Legacy Hibernate Applications to OpenJPA and EJB 3.0.,
http://www.ibm.com/developerworks/websphere/techjournal/0708
_vines/0708_vines.html

14. Laddad, R.: AOP@Work: Myths about AOP,
http://www-128.ibm.com/developerworks/java/library/
j-aopwork15

15. Duck, A.: Implementation of AOP in Non-Academic Projects. In: [23]
16. Joosen, W., Sanen, F., Truyen, E.: Dissemination of AOSD expertise support

documentation. AOSD-Europe Deliverable No.: AOSD-Europe-KUL-8
17. Wiese, D., Meunier, R.: Large Scale Application of AOP in the Healthcare Domain: A

Case Study. In: Industry Track of 7th Int. Conf. on Aspect-Oriented Software
Development (AOSD), Brussels (2008)

18. Kiczales, G.: Adopting AOP. In: Proc. 4th Conf. on Aspect-Oriented Software
Development; AOSD 2005, Chicago. ACM Press, New York (2005)

19. Wiese, D., Hohenstein, U., Meunier, R.: How to Convince Industry of Aspect-Orientation?
In: Industry Track of 6th Int. Conf. on Aspect-Oriented Software Development, AOSD
2007, Vancouver (2007)

20. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Modularity.
In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer, Heidelberg
(2005)

21. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ. In:
Proc. Int. Software Product Line Conference (SPLC), Kyoto. IEEE Computer Society, Los
Alamitos (2007)

22. Aksit, M.: Proc. of 2nd Int. Conf. on Aspect-Oriented Software Development. In: AOSD
2003 (2003)

23. Chapman, M., Vasseur, A., Kniesel, G.: Proc. of Industry Track of 3rd Conf. on Aspect-
Oriented Software Development (AOSD), Bonn (2006)

	Applying AspectJ to Solve Problems with Persistence Frameworks
	Introduction
	Replacement Strategy
	Harder Problems
	Lack of Key Generation
	Failover Problem
	Missing Connection Property
	Possible Solutions

	AspectJ Solutions
	Solving the Lack of Key Generation
	Solving the Failover Problem
	Missing Connection Property
	Further Problems

	Experiences
	General Experiences
	Convincing Project Management

	Conclusions
	References

