

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 31–44, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Constructing a Catalogue of Conflicts among
Non-functional Requirements

Dewi Mairiza and Didar Zowghi

School of Software, Faculty of Engineering and Information Technology,
University of Technology, Sydney (UTS), Australia

{Dewi.Mairiza,Didar.Zowghi}@uts.edu.au

Abstract. Non-Functional Requirements (NFRs) are recognized as a critical
factor to the success of software projects because they address the essential
issue of software quality. NFRs tend to interfere, conflict, and contradict with
one another and this conflict is widely acknowledged as one of the key
characteristics of NFRs. Several models of NFRs conflicts have been proposed
and the interacting nature of NFRs has been characterized as either positive or
negative inter-relationships among NFRs. Positive relationship represents a pair
of NFRs that are supporting each other while negative relationship represents
those NFRs that are conflicting with one another. Furthermore, as NFRs are
also relative, the interpretation of NFRs may vary depending on many factors
such as the context of the system being developed and the extent of
stakeholders’ involvement. The multiple interpretations of NFRs may lead to
positive or negative inter-relationships that are not always obvious. These
relationships may change depending on the meaning of NFRs in the system
being developed. Hence, the existing potential conflicts models remain in
disagreement with one other. This paper presents the result of an extensive and
systematic investigation of the extant literature over the notion of NFRs and the
conflicts among them. Rigorous synthesis of the carefully reviewed literature
has resulted in the construction of a catalogue of NFRs conflicts with respect to
NFRs relative characteristic. The relativity of conflicts is characterized by three
categories: absolute conflict; relative conflict; and never conflict. This
comprehensive catalogue could assist software developers with identifying the
NFRs conflicts, performing conflicts analysis, and suggesting potential
strategies to resolve these conflicts.

Keywords: Non-functional requirements, Relationship, Conflict, Relative,
Catalogue.

1 Introduction

In the early eighties, the term Non-Functional Requirements (NFRs) was introduced
as those requirements that restrict the type of solutions that a software system might
consider [1]. However, although this term has been in use for almost three decades,
studies to date indicate that currently there is no general consensus in the software or
systems engineering community regarding the notion of NFRs. In the literature, the

32 D. Mairiza and D. Zowghi

term NFRs is considered within two different perspectives: (1) NFRs as the
requirements that describe the properties, characteristics or constraints that a software
system must exhibit; and (2) NFRs as the requirements that describe the quality
attributes that the software product must have [2].

In software development, NFRs are recognized as a critical factor to the success of
software projects. NFRs address the essential issue of the quality of the system [3-5].
Without well-defined NFRs, a number of potential problems may occur, such as a
software which is inconsistent and of poor quality; dissatisfaction of clients, end-
users, and developers toward the software; and causing time and cost overrun for
fixing the software [5]. NFRs are also considered as the constraints or qualifications
of the operations [6]. They place restrictions on the product being developed,
development process, and specify external constraints that the product must exhibit
[7]. Charette [8] claims that NFRs are often more critical than individual Functional
Requirements (FRs) in the determination of a system's perceived success or failure [9,
10]. Neglecting NFRs has led to a series of software failures. For example systemic
failure in London Ambulance System [11, 12], performance and scalability failure in
the New Jersey Department of Motor Vehicles Licensing System [13], failure in the
initial design of the ARPANet Interface Message Processor Software [14], and some
other examples as described in [11, 13-15].

Although NFRs are widely recognized to be very significant in the software
development, a number of empirical studies reveal that NFRs are often neglected,
poorly understood and not considered adequately in developing the software
applications. In the development of software systems, users naturally focus on
specifying their functional or behavioral requirements, i.e. the things the product must
do [5, 9]. NFRs are often overlooked in the software development process [3, 16]. A
number of studies investigating practices of dealing with NFRs in the software
industry also reported that commonly software developers do not pay sufficient
attention to NFRs [3, 16-18]. NFRs are not elicited at the same time and the same
level of details as the FRs and they are often poorly articulated in the requirements
documents [17, 18]. Furthermore, in the requirements engineering literature, NFRs
have received less attention and not as well understood as FRs [5]. Majority of
software engineering research, particularly within requirements engineering area only
deal with FRs, i.e. ensuring that the necessary functionality of the system is delivered
to the user [19]. Consequently, capturing, specifying, and managing NFRs are still
difficult to perform due to most of software developers do not have adequate
knowledge about NFRs and little help is available in the literature [20].

NFRs tend to interfere, conflict, and contradict with one another. Unlike FRs, this
inevitable conflict arises as a result of inherent contradiction among various types of
NFRs [3, 5]. Certain combinations of NFRs in the software system may affect the
inescapable trade offs [3, 9, 13]. Achieving a particular type of NFRs can hurt the
achievement of the other type(s) of NFRs. Hence, this conflict is widely
acknowledged as one of many characteristics of NFRs [5].

Prior studies reveal that dealing with NFRs conflicts is essential due to several
reasons [2]. First of all, conflicts among software requirements are inevitable [5, 21-
23]. Conflicting requirements are one of the three main problems in software
development in term of the additional effort or mistakes attributed to them [23]. A
study of two-year multiple-project analysis conducted by Egyed & Boehm [24, 25]

 Constructing a Catalogue of Conflicts among Non-functional Requirements 33

reports that between 40% and 60% of requirements involved are in conflict, and
among them, NFRs involved the greatest conflict, which was nearly half of
requirements conflicts [26]. Lessons learnt from industrial practices also confirm that
one of the essential aspects during NFRs specification is management of conflicts
among interacting NFRs [3]. Experience shows most systems suffer with severe
tradeoffs among the major groups of NFRs. For example: the tradeoffs between
security and performance requirements; or between security and usability
requirements. In fact, conflicts resolutions for handling NFRs conflicts often result in
changing overall design guidelines, not by simply changing one module [3].
Therefore, since conflicts among NFRs have also been widely acknowledged as one
of NFRs characteristics, managing these conflicts as well as making them explicit is
essential [19]. NFRs conflicts management is important for finding the right balance
of attributes satisfaction, in achieving successful software products [9, 13].

A review of various techniques to manage the conflicts among NFRs have been
presented in the literature [2]. Majority of these techniques provide a documentation,
catalogue, or list of potential conflicts. These catalogues represent the
interrelationships among various types of NFRs. Apart from strength and weaknesses
of each technique, however, NFRs are also relative [5]. This means that the
interpretation and importance of NFRs may vary depending on many factors, such as
the particular system being developed as well as the extent of stakeholder
involvement. NFRs can be viewed, interpreted, and evaluated differently by different
people and different contexts within which the system is being developed.
Consequently, the positive or negative relationships among them are not always
obvious. These relationships might change depending on the meaning of NFRs in the
context of the system being developed. Due to this relative characteristic of NFRs,
existing potential conflicts models that represent the relationship among NFRs are
often in disagreement with each other. For example, according to Wiegers [9]
efficiency requirements have negative relationship (conflict) with usability
requirements, but according to Egyed & Grünbacher [27] these two types of NFRs
have positive relationship (support). Given that none of the existing conflicts
catalogues deal with the relative characteristics of NFRs, we are motivated to pose the
following research question:

“Can a catalogue of conflicts among NFRs be developed with respect
to the relative characteristic of NFRs?”

The catalogue of conflicts with respect to the NFRs relative characteristic that has
been developed from a rigorous synthesis of the literature from several disciplines is
presented as the novel contribution of this paper. This catalogue is built as a two-
dimensional matrix that represents the conflict-relationships between various types of
NFRs, i.e. how each type of NFRs is associated with the other types of NFRs
considering the NFRs relative characteristic. The conflict-relationships are
represented in three categories: absolute conflict; relative conflict; and never conflict.

This article is organized in six sections. The first section is the introduction to
NFRs and conflicts among them. The second section describes the research
framework and source of information used in this study. The superset list of NFRs is
presented in section three continued by presenting the catalogue of NFRs conflicts in
section four. Section five describes the benefits and potential applications of the

34 D. Mairiza and D. Zowghi

conflicts catalogue in the software development projects. Then, section six concludes
this paper by highlighting some open issues that are acquired from the investigation.

2 Catalogue Framework

To get a significant and comprehensive snapshot of the NFRs conflicts model, an
extensive investigation of the literature over the last three decades has been
performed. This investigation was conducted by exploring the articles from academic
resources and documents from software development industry. Four general types of
sources of information have been identified: (1) journal papers; (2) conference
proceedings; (3) books; and (4) documents from software industry. Selection of those
sources is made in order to confirm the completeness of the information by obtaining
the academics and practitioners perspectives related to the notion of NFRs and
conflicts among them. The study conducted by Chung et al. [5] was used as the
starting point for selection of the papers to be reviewed.

Fig. 1. NFRs Types in the Literature

Our study has examined 182 sources of information. All of them are literatures
within the discipline of software engineering. They cover various issues of NFRs and
conflicts among them. The research articles reviewed are published in key journals
and conference proceedings of the software engineering literature, such as the Journal
of Systems and Software; IEEE Transaction on Software Engineering; IEEE
Software; Lecture Notes in Computer Science; Journal of Information and Software
Technology; Requirements Engineering Journal; Requirements Engineering
Conference, International Conference on Software Engineering, and Requirements
Engineering Foundations of Software Quality Workshop.

 Constructing a Catalogue of Conflicts among Non-functional Requirements 35

Each source was then systematically analyzed using content analysis technique.
Content analysis is a research technique that uses a set of procedures to make valid
inferences from texts or other meaningful matter [28, 29]. This technique is well
founded and has been in used for over sixty years. The analysis covers three essential
issues: the NFRs types, the definition and attributes1 of each type, and the conflict
interdependencies among them. Content analysis technique was selected because it
enables researchers to identify trends and patterns in the literature through the
frequency of keywords, and by coding and categorizing the data into a group of words
with similar meaning or connotations [29, 30]. Furthermore, this technique is also
applicable to all domain contexts [28, 31].

To develop a catalogue of NFRs conflicts, a research framework was followed.
This framework consists of three research stages:

(1) to create a comprehensive catalogue of NFRs types, their definition and
attributes characterization

(2) to identify the interdependencies among NFRs
(3) to perform a normalization process to standardize the NFRs in the conflicts

catalogue

Since there is no standard catalogue of NFRs types available in the literature and
previous studies [32-34] also claimed that many types of NFRs were introduced
without definition or attributes characterization, the first stage of the research was
creating a comprehensive catalogue of NFRs types. Each type of NFRs discussed in
the literature was recorded. The definitions and attributes correspond to each of NFRs
type were also documented. Conflicting terminologies and definitions were handled
through the frequency analysis technique and keywords identification.

Table 1. NFRs Types in the Initial Catalogue

NFRs Types

Accuracy Interoperability Reliability

Analyzability Legibility Reusability

Availability Maintainability Robustness

Compatibility Performance Safety

Confidentiality Portability Security

Dependability Privacy Testability

Expresiveness Provability Understandability

Flexibility Recoverability Usability

Functionality Verifiability

The second stage of the research was creating an initial catalogue of the conflicts

among NFRs. In this stage, NFRs conflict relationships were used as the criteria to
develop the catalogue. This stage was initiated by identifying the interdependencies

1 In this paper, the term attribute is considered as the major components of each NFRs type. In

the literature, attribute is also referred as NFRs subtype [5] or quality sub factors [4].

36 D. Mairiza and D. Zowghi

among various types of NFRs. These interdependencies represent the typical
interrelationships of a particular type of NFRs towards another type of NFRs (e.g.
positive, negative, or neutral interrelationships). This investigation produced the
initial catalogue that presents the conflict relationships among 26 types of NFRs.
These NFRs types are listed in Table 1.

Table 2. NFRs Definition and Attributes [34]

NFRs Definition Attributes

Performance

requirements that specify the
capability of software product to
provide appropriate performance
relative to the amount of resources
needed to perform full functionality
under stated conditions

response time, space, capacity,
latency, throughput, computation,
execution speed, transit delay,
workload, resource utilization,
memory usage, accuracy,
efficiency compliance, modes,
delay, miss rates, data loss,
concurrent transaction processing

Reliability

requirements that specify the
capability of software product to
operates without failure and
maintains a specified level of
performance when used under
specified normal conditions during a
given time period

completeness, accuracy,
consistency, availability, integrity,
correctness, maturity, fault
tolerance, recoverability,
reliability, compliance, failure
rate/critical failure

Usability

requirements that specify the end-
user-interactions with the system
and the effort required to learn,
operate, prepare input, and interpret
the output of the system

learnability, understandability,
operability, attractiveness, usability
compliance, ease of use, human
engineering, user friendliness,
memorability, efficiency, user
productivity, usefulness,
likeability, user reaction time

Security
requirements that concern about
preventing unauthorized access to
the system, programs, and data

confidentiality, integrity,
availability, access control,
authentication

Maintainability

requirements that describe the
capability of the software product to
be modified that may include
correcting a defect or make an
improvement or change in the
software

testability, understandability,
modifiability, analyzability,
changeability, stability,
maintainability compliance

The next stage was performing a normalization process against 26 types of NFRs

that have been identified in the initial catalogue. This normalization was conducted in
order to standardize the data obtained in the previous stage. Normalization is the
process of removing the irrelevant NFRs, i.e. the types of NFRs that do not have
definition and/or attributes, from the initial catalogue. The objective is to produce a
conflicts catalogue of the well-defined NFRs types. In this normalization, the
catalogue of NFRs types, their definitions, and their attributes are utilized as the basis

 Constructing a Catalogue of Conflicts among Non-functional Requirements 37

of removing those irrelevant NFRs. This process has removed six NFRs from the
initial catalogue. They are compatibility, expressiveness, legibility, provability,
verifiability and analyzability. Therefore, the final conflicts catalogue is a two-
dimensional matrix that represents the conflict interrelationships among 20 types of
“normalized” NFRs.

3 NFRs Types

Various authors (e.g. [5, 35, 36]) define the term NFRs as the requirements that
specify the desired quality attributes of the system. According to this definition, our
analysis of NFRs types in the literature has resulted in identification of 114 types of
NFRs. The superset list of these 114 NFRs types can be found in our previous
publication [34].

Legend:

1 Accuracy
2 Availability
3 Communicativeness
4 Compatibility
5 Completeness
6 Confidentiality
7 Conformance
8 Dependability
9 Extensibility

10 Installability
11 Integrity
12 Interoperability
13 Maintainability
14 Performance
15 Privacy
16 Portability
17 Provability
18 Reliability

19 Reusability
20 Safety
21 Scalability
22 Security
23 Standardizability
24 Traceability
25 Usability
26 Verifiability
27 Viability

Fig. 2. Mapping of Concerned NFRs and Types of Systems [34]

Further investigation to the superset list indicates that 23 NFRs types (20.18%)
have definition and attributes, 30 types (26.32%) only have definition, and the rest 61
types (53.50%) were introduced without definition or attributes. Since this finding
indicates that more than 50% of NFRs listed in the literature do not have any
definitions and attributes characterization, therefore, it confirms the previous claim

38 D. Mairiza and D. Zowghi

made by Glinz [32, 33] that stated that “in the literature, many NFRs were introduced
without definition or clarifying examples”. The detailed list of this classification is
presented in Fig. 1. In addition, the top five of the most frequently discussed NFRs
types in the literature are presented in Table 2 and the concerned NFRs in various
types of systems are presented in Fig. 2.

4 Catalogue of Conflicts

The catalogue of conflicts is a two-dimensional matrix that represents the typical
interrelationships among 20 types of normalized NFRs, in term of the conflicts
emerge among them. In this catalogue, the relativity of NFRs conflicts is presented in
three categories: absolute conflict; relative conflict; and never conflict (as presented
in Fig. 3).

• absolute conflict. this relationship represents a pair of NFRs types that are
always in conflict. In the catalogue, this conflict relationship is labeled as ‘X’.

• relative conflict. this relationship represents a pair of NFRs types that are
sometimes in conflict. It consists of all pairs of NFRs that are claimed to be in
conflict in a certain case but they are also claimed as not being in conflict in the
other cases. This disagreement occurs due to several factors, such as the
different interpretation/meaning of NFRs in the system being developed, the
context of the system, the stakeholders’ involvement, and the architectural
design strategy implemented in that system. In the conflicts catalogue, this type
of conflict relationship is labeled as ‘*’.

• never conflict. this relationship represents a pair of NFRs types that in the
software development projects are never in conflict. It consists of all pairs of
NFRs who have never been declared as being in conflict with each other. They
may contribute either positively (e.g. support [37] or cooperative [27]) or
indifferent to one another (e.g. low or very little impact on the other [9]).

Further analysis of the conflicts catalogue indicates that 36 pairs of NFRs are absolute
conflict (e.g. accuracy and performance; security and performance; and usability and
reusability); 19 pairs are relative conflict (e.g. reliability and performance; usability
and security; and performance and usability); and 50 pairs are never conflict (e.g.
accuracy and maintainability; security and accuracy; and usability and recoverability).
The rest of relationships are not known due to there is no information available in the
literature about how those pairs of NFRs contribute to each other. In the conflicts
catalogue, this unknown conflict is presented as “the blank spaces”.

Furthermore, this catalogue shows that NFRs with the most conflict with other
NFRs is performance. Performance has absolute conflict with accuracy, availability,
confidentiality, dependability, interoperability, maintainability, portability,
reusability, safety, security, and understandability, and it has relative conflict with
functionality, recoverability, reliability, and usability.

The investigation also indicates that certain attributes of a particular type of NFR
can be in conflict with each other. This conflict points to the self-conflicting
relationships for a particular type of NFR. Self-conflicting relationship is defined as a

 Constructing a Catalogue of Conflicts among Non-functional Requirements 39

situation where the attributes of a single type of NFRs are in conflict. One of the
examples is the relative conflict between performance and performance requirements.
Performance requirements can be characterized among others by “response time” and
“capacity”. In many systems, these two attributes are in conflict. For example in a
road traffic pricing system [38, 39], multi-user attribute2 has negative contribution to
the response time of the system. This means that increasing the number of concurrent
users in the system may diminish the response time of the system.

Fig. 3. Catalogue of Conflicts Among NFRs

Table 3. Conflicting NFRs in Literature

Conflicting NFRs Nature of Conflict %
Security and Performance absolute 33%

Security and Usability relative 23%

Availability and Performance absolute 20%

Performance and Portability absolute 17%

Reusability and Performance absolute 17%

Interoperability and Performance absolute 10%

Maintainability and Performance absolute 10%

Reliability and Performance relative 10%

Usability and Performance relative 10%

Usability and Reusability absolute 3%

2 In these papers [38, 39], the term “attribute” is considered as “concern”.

40 D. Mairiza and D. Zowghi

The investigation by using frequency analysis technique also indicates that conflict
between security and performance requirements are the most frequently conflicts
discussed in the literature. 33.33% of the reviewed articles talk about this conflict,
followed by conflict between security and usability requirements (23.33%) and conflict
between availability and performance requirements (20%). This result indicates that
those three types of conflicts (i.e. conflict between security and performance, between
security and usability, and between availability and performance) are the three most
frequent conflicts in the software projects and the most considered and essential to deal
with in the software development process. The top ten conflicting NFRs that are often
discussed in the literature are presented in Table 3.

5 Using the Catalogue

The catalogue of conflicts among NFRs, as presented in Fig. 3, extends and
complements previously published NFRs conflicts models. Our work focuses on the
extent and relativity of NFRs conflicts, that is, on negative links between NFRs and
their corresponding-levels. Most of the existing conflicts models in the literature,
however, concentrate on both positive and negative interrelationships. For example,
Wiegers [9] has developed a matrix that represents the positive and negative
relationships between particular type of NFRs; Egyed & Grünbacher [27] created a
model of potential conflicts and cooperations among NFRs; and Sadana & Liu [37]
have also defined conflict and support as the two types of contribution of a particular
type of NFRs on the other types of NFRs.

Utilizing our NFRs catalogue of conflicts in conjunction with the existing conflicts
models extends the overall understanding of how NFRs associate with each other
(positive or negative) and how this negative association can be characterized in term
of the relative characteristic of NFRs.

Software developers can use the conflicts catalogue to deal with various aspects of
managing the conflicts among NFRs. For example, the conflicts catalogue can be
used to identify which NFRs of the system that are really in conflict, including how
relative the conflict is. If the identified conflict is an “absolute conflict”, then software
developers may need to identify the potential strategies to resolve this conflict, such
as prioritization strategy. On the other hand, if it is a “relative conflict”, then software
developers need to understand and evaluate this particular NFRs in term of numerous
factors involve in the development project (e.g. the meaning of particular type of
NFRs in the context of the system being developed; the stakeholder involvement; or
system development methodology used in the project) in order to further investigate
whether those NFRs are really in conflict.

Furthermore, this catalogue can also be used to perform the NFRs conflicts
analysis. By using this catalogue in conjunction with the framework presented by
Sadana & Liu [37], software developers would be able to develop a structural
hierarchy of functional and non-functional requirements affected by each conflict
type. Therefore, this catalogue could further assist in the analysis of NFRs conflicts
from the perspective of functional requirements. By utilizing this catalogue in
conjunction with the “NFR Prioritizer” method presented by Mala & Uma [40], this
catalogue could assist software developers to analyze the tradeoffs among NFRs and

 Constructing a Catalogue of Conflicts among Non-functional Requirements 41

prioritize the NFRs. In term of analyzing the NFRs tradeoff, this catalogue can be
used as the basis to develop the “NFR Taxonomy” that will be used to identify the
type of relationships among NFRs. The NFR Taxonomy represents the conflicting or
dependable association between each NFRs type. The example of NFR taxonomy is
presented as follow [40]:

Usability#Accessibility+#Installability+#Operability+#Maintainability-

The above taxonomy represents that usability contributes positively to accessibility,
installability, operability while it also contributes negatively to maintainability. Then,
by combining the weight of user preference on each NFR type and the level of NFRs
tradeoff derived from the NFR Taxonomy, software developers would be able to
prioritize the NFRs of the system in term of the existence of conflicts among them.

Furthermore, this catalogue can also be used in conjunction with the “Trace
Analyzer” technique developed by Egyed & Grünbacher [27]. The aim of this
technique is to identify the true conflicts among NFRs of the system. By tracing the
relationships between the system test cases and the software program codes, trace
analyzer can characterize whether the conflicts listed in the NFRs conflicts catalogue
are “really in conflict” in the developed system.

In term of conflicts resolution, the proposed catalogue of conflicts can also be used
as the basis to execute a conflicts resolution technique. For example, by using this
catalogue in conjunction with the “Non-Functional Decomposition (NFD)”
framework developed by Poort & de With [41], software developers would be able to
decompose the NFRs of the system when the NFRs conflicts identified.

6 Conclusions

Majority of techniques to manage the conflicts among NFRs present the
documentation, catalogue, or list of potential conflicts. None of them deal with
relative characteristic of NFRs. This relative characteristic means that the
interpretation and importance of NFRs may vary depending on the particular system
being developed as well as the extent of stakeholders’ involvement. NFRs can be
viewed, interpreted, and evaluated differently by different people and different
contexts within which the system is being developed. Consequently, the positive or
negative interrelationships among them are not always obvious.

In this paper we presented a catalogue of conflicts among NFRs by considering
this relative characteristic. We presented the relativity of conflicts based on three
categories: absolute conflict; relative conflict; and never conflict. This distinction
would assist developers to perform further analysis of the identified conflicts and
investigate the potential strategy to resolve the conflicts.

Furthermore, this catalogue can also be used to identify the NFRs conflicts in
various phases of software development projects. For example, in the requirements
engineering phase, during the elicitation process, system analysts would be able to
identify which NFRs of the system will be in conflict and how relative this conflict is.
This analysis would allow developers to identify the conflicts among NFRs early, so
they would be able to discuss the potential conflicts with the system’s stakeholder
before specifying the software requirements. As another example, during the

42 D. Mairiza and D. Zowghi

architecture design process, system designers could be able to use this catalogue to
analyze the potential conflicts in term of the architectural decisions (e.g. layering,
clustering, and modularity). The relativity of conflict relationships presented in the
catalogue, would allow system designers to investigate the potential architecture
strategies to get the best solution based on the type of conflicts among NFRs.
Furthermore, by using this catalogue as the basis of conflicts identification, we can
adopt numerous existing conflicts analysis and conflicts resolution techniques
presented in the literature, such as [27, 37, 40, 41] to further investigate and evaluate
the NFRs conflicts. Some examples of the existing techniques and the potential
utilization of the catalogue in each technique have been described in Section 5 –
“Using the Catalogue”.

In the process of investigating conflicts and developing the conflicts catalogue, we
also identified 114 NFRs types listed in the literature. Among these 114 types, more
than 50% of the NFRs were introduced without any definition or attributes
characterization while only 20% were provided with definition and attributes. This
statistic and the list of NFRs types without definitions and attributes presented in this
paper are expected to encourage software engineering community, particularly
requirements engineering researchers to further investigate the unclear NFRs types
and establish the a clear concept of them.

Further research will focus on collecting data from software practitioners to
complete the catalogue. Those NFRs that have been removed from the initial
catalogue due to lack of definitions and/or attributes will also be further investigated
to improve the completeness of the catalogue. Also, the catalogue from industry can
be compared with the one developed from the content analysis.

Moreover, besides collecting data to improve the conflicts catalogue, we would
also perform further research on investigating the relative conflicts among NFRs. This
study would not only investigate how those NFRs dynamically generate conflicts with
each other in term of the system context, but also to develop a framework to assist
developers in identifying in which situations those NFRs are in conflict and in which
situations are not. The self-conflicting relationships will be covered in this study.

This study is conducted as part of a long term project of investigating conflicts
among NFRs. Findings of this investigation, especially the conflicts catalogue, will be
used as the basis to select those NFRs that are known to be frequently in conflict. The
ultimate goal is to develop an integrated framework to effectively manage the
conflicts between a pair of NFRs by considering the NFRs relative characteristic. This
framework should be able not only to identify the existence and the extent of
conflicts, but also to characterize and find the potential strategies to resolve the
conflicts.

In this study, we do not claim that the catalogue of conflicts presented is an
exhaustive and complete list. However, this catalogue represents what could be found
in the current literature. We propose to conduct further research to compare and
contrast our findings from the comprehensive review of research literature and the
state of the practice.

Acknowledgements. This paper is an extended version of [42]. We would like to
thank The International Schlumberger Foundation Paris for funding this research
through Faculty for the Future Award Program.

 Constructing a Catalogue of Conflicts among Non-functional Requirements 43

References

1. Yeh, R.T.: Requirements analysis - a management perspective. In: IEEE Computer
Software and Applications Conference (COMPSAC 1982), Los Alamitos, pp. 410–416
(1982)

2. Mairiza, D., et al.: Managing conflicts among non-functional requirements. In: 12th
Australian Workshop on Requirements Engineering (AWRE 2009), Sydney, Australia
(2009)

3. Ebert, C.: Putting requirement management into praxis: dealing with nonfunctional
requirements. Information and Software Technology 40, 175–185 (1998)

4. Firesmith, D.: Using quality models to engineer quality requirements. Journal of Object
Technology 2, 67–75 (2003)

5. Chung, L., et al.: Non-functional requirements in software engineering. Kluwer Academic
Publishers, Massachusetts (2000)

6. Mittermeir, R.T., et al.: Modern software engineering, foundations and current
perspectives. Van Nostrand Reinhold Co, New York (1989)

7. Kotonya, G., Sommerville, I.: Non-functional requirements (1998)
8. Charette, R.N.: Applications strategies for risk analysis. McGraw-Hill, New York (1990)
9. Wiegers, K.E.: Software requirements, 2nd edn. Microsoft Press, Washington (2003)

10. Sommerville, I.: Software Engineering, 7th edn. Pearson Education Limited, Essex (2004)
11. Breitman, K.K., et al.: The world’s a stage: a survey on requirements engineering using a

real-life case study. Journal of the Brazilian Computer Society 6, 1–57 (1999)
12. Finkelstein, A., Dowell, J.: A comedy of errors: the London ambulance service case study.

In: Eigth International Workshop Software Specification and Design, pp. 2–5 (1996)
13. Boehm, B., In, H.: Identifying quality-requirements conflict. IEEE Software 13, 25–35

(1996)
14. Boehm, B., In, H.: Aids for identifying conflicts among quality requirements. IEEE

Software (March 1996)
15. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE

Computer 26, 18–41 (1993)
16. Grimshaw, D.J., Draper, G.W.: Non-functional requirements analysis: deficiencies in

structured methods. Information and Software Technology 43, 629–634 (2001)
17. Heumesser, N., et al.: Essential and requisites for the management of evolution -

requirements and incremental validation. Information Technology for European
Advancement, ITEA-EMPRESS Consortium (2003)

18. Yusop, N., et al.: The impacts of non-functional requirements in web system projects.
International Journal of Value Chain Management 2, 18–32 (2008)

19. Paech, B., Kerkow, D.: Non-functional requirements engineering - quality is essential. In:
10th International Workshop on Requirements Engineering: Foundation for Software
Quality, pp. 27–40 (2004)

20. Lauesen, S.: Software requirements: styles and techniques. Addison-Wesley, Reading
(2002)

21. Chung, L., et al.: Using non-functional requirements to systematically support change. In:
The Second International Symposium on Requirements Engineering, York, pp. 132–139
(1995)

22. Chung, L., et al.: Dealing with change: an approach using non-functional requirements.
Requirements Engineering 1, 238–260 (1996)

23. Curtis, B., et al.: A field study of the software design process for large systems.
Communication of the ACM 31, 1268–1287 (1988)

44 D. Mairiza and D. Zowghi

24. Boehm, B., Egyed, A.: WinWin requirements negotiation processes: a multi-project
analysis. In: 5th International Conference on Software Processes (1998)

25. Egyed, A., Boehm, B.: A comparison study in software requirements negotiation. In: 8th
Annual International Symposium on Systems Engineering, INCOSE 1998 (1998)

26. Robinson, W.N., et al.: Requirements interaction management. ACM Computing
Surveys 35, 132–190 (2003)

27. Egyed, A., Grünbacher, P.: Identifying requirements conflicts and cooperation: how
quality attributes and automated traceability can help. IEEE Software 21, 50–58 (2004)

28. Krippendorff, K.: Content analysis: and introduction to its methodology, 2nd edn. Sage
Publications, Inc., Thousand Oaks (2004)

29. Weber, R.P.: Basic content analysis. Sage Publications, Inc., Thousand Oaks (1989)
30. Stemler, S.: An overview of content analysis. Practical Assessment, Research &

Evaluation 7 (2001)
31. Neuendorf, K.A.: The content analysis guidebook, 1st edn. Sage Publications, Inc.,

Thousand Oaks (2001)
32. Glinz, M.: Rethinking the notion of non-functional requirements. In: Third World

Congress for Software Quality, Munich, Germany, pp. 55–64 (2005)
33. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements

Engineering Conference (RE 2007), pp. 21–26 (2007)
34. Mairiza, D., et al.: An investigation into the notion of non-functional requirements. In:

25th ACM Symposium On Applied Computing, Switzerland (2010)
35. Alexander, I., Maiden, N.: Scenarios, stories, use cases: through the systems development

life-cycle. John Wiley & Sons, Ltd., Chichester (2004)
36. Robertson, S., Robertson, J.: Mastering the requirements process, 2nd edn. Addison-

Wesley, Boston (2006)
37. Sadana, V., Liu, X.F.: Analysis of conflict among non-functional requirements using

integrated analysis of functional and non-functional requirements. In: 31st International
Computer Software and Applications Conference, COMPSAC 2007 (2007)

38. Brito, I., Moreira, A.: Integrating the NFR framework in a RE model. Presented at the
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design,
Lancaster, UK (2004)

39. Moreira, A., et al.: Crosscutting quality attributes for requirements engineering. In: 14th
International Conference on Software Engineering and Knowledge Engineering, Ischia,
Italy (2002)

40. Mala, G.S.A., Uma, G.V.: Elicitation of non-functional requirements preference for actors
of usecase from domain model. In: Hoffmann, A., Kang, B.-h., Richards, D., Tsumoto, S.
(eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 238–243. Springer, Heidelberg (2006)

41. Poort, E.R., de With, P.H.N.: Resolving requirement conflicts through non-functional
decomposition. In: Fourth Working IEEE/IFIP Conference on Software Architecture,
WICSA 2004 (2004)

42. Mairiza, D., et al.: Towards a catalogue of conflicts among non-functional requirements.
In: Maciaszek, L.A., Loucopoulos, P. (eds.) ENASE 2010. CCIS, vol. 230, pp. 33–46.
Springer, Heidelberg (2011)

	Constructing a Catalogue of Conflicts among Non-functional Requirements
	Introduction
	Catalogue Framework
	NFRs Types
	Catalogue of Conflicts
	Using the Catalogue
	Conclusions
	References

