

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 251–264, 2011.
© Springer-Verlag Berlin Heidelberg 2011

UDeploy: A Unified Deployment Environment

Mariam Dibo and Noureddine Belkhatir

Laboratoire d’Informatique de Grenoble
681, Rue de la Passerelle, BP 72, 38402, St. Martin d'Hères, France
{Mariam.Dibo,Noureddine.Belkhatir}@imag.fr

Abstract. In the software life cycle we have mainly three activities: (1) the
pre-development (requirements, specification and design), (2) the development
(implementation, prototyping, testing) and (3) the post-development
(deployment). Software deployment encompasses all post-development activities
that make an application operational. These activities, identified as deployment
life cycle, include: i) software packaging, ii) loading and installation of software
on client sites, iii) instance creation, iv) configuration and v) updating. The
development of system-based components made it possible in order to highlight
this part of the global software lifecycle, as illustrated by numerous industrial
and academic studies. However these are generally developed ad hoc, and
consequently platform-dependent. Deployment systems, such as supported by
middleware environments (CCM, .Net and EJB), specifically develop
mechanisms and tools related to pre-specified deployment strategies. Our work,
related to the topic of distributed component-based software applications, aims at
specifying a generic deployment framework independent of the target
environments. Driven by the meta-model approach, we first describe the
abstractions used to characterize the deployed software. Then, we specify the
deployment infrastructure and processes, highlighting the activities to be carried
out and the support for their execution.

Keywords: Deployment, Meta model, Model, Software component, MDA.

1 Introduction

Component-based software approach [25] is intended to improve the reuse of
component enabling the development of new applications by assembling pre-existing
components. A software component can be deployed independently and may be
composed by third parties [25].

Nowadays, the component approach and distribution make deployment a very
complex process. Many deployment tools exist, we identified three types of systems:
1) those developed by the industry and integrated into a middleware environment like
EJB [8], CCM [21] and .Net [26, 27]; 2) those projected by the OMG (industry) [22]
[9] based on more generic models and; 3) the more formal systems projected by
academic works in current component models like Open Service Gateway Initiative
(OSGI) [1], Web Services [11], SOFA [3], Architecture Description Languages
(ADL) [4] and UML 2.0 [24].

252 M. Dibo and N. Belkhatir

Generally, deployment tools are often built in an ad hoc way; i.e. specific to a
technology or an architecture and covering partially the deployment life cycle (using
generally the installation scripts).

Hence, deployment is seen as the post development activities that make software
usable. It covers the description of the application to deploy, the description of the
physical infrastructure, the description of the deployment strategies, the planning
activities and the plan execution.

The deployment issue deals with aspects as diverse as satisfying software and
hardware constraints of the components concerning the resources of the machines that
support them, the resolution of inter-component dependency, the installation and
“instantiation” of components via the middleware and the container, the
interconnection of components, their activation and the management of dynamic
updates. Thus, the challenge [5] is to develop a generic framework encompassing a
specific approach and supporting the whole deployment process. [6] presents the
conceptual framework of this approach and [7] presents the different models based on
the MDA approach [23].

This paper focuses on the implementation part fulfilled by UDeploy (models
transformation) and the presentation of a case study to illustrate our approach. The
rest of this paper is organized as follows: part 2 presents the related works. Part 3
presents the architecture of our deployment tool. Part 4 presents the model
transformation. Finally in part 5, we present the perspectives of this work.

2 Related Works

We identified several works on the deployment that have been classified into two
broad categories.

In the first category, there are mainly all the more classic works developed for the
monolithic software systems and that emphasize on the setup activity.

In the second category, there are all the systems of deployment developed recently
for the software based-components. We identified two types of systems in this
category:

• those developed by industry on an ad 'hoc way and integrated into a middleware
type of environments;

• those of a higher level of abstraction based on explicit model proposed by the
OMG on one hand and on the other hand by the academic world.

2.1 Deployment in Middleware

The pros of deployment in application based-component like EJB [8], CCM [21] and
.Net [26, 27] relay in the fact that the technologies are effective thus answers specific
needs. The cons are that the abstraction level is very low therefore it is necessary to
make each activity manually. In such contexts and with these facts, it is easy to deduce
that there is a real need to standardize the deployment of distributed applications. The
middleware does not support the description of the domain. They contain less semantics
to describe applications; for example, the needs of an application may be a specific
version of software, and a memory size greater than 10 GB. Since none of these

 UDeploy: A Unified Deployment Environment 253

constraints will be checked during installation, this corresponds to a single copy
component assembly. The deployment descriptor expresses the same mechanism for
each middleware but described them in different ways.

2.2 Deployment in OMG Specification

The industry felt the necessity to join their efforts. They anticipated an approach
which capitalizes on their experiences in deployment (OMG’s approach). This
specification has inspired many academics. OMG’s Deployment and Configuration
(D&C) [22] specification is based on the use of models, meta-models and their
transformation. This specification standardizes many aspects of deployment for
component-based distributed systems, including component assembly, component
packaging, package configuration, and target domain resource management. These
aspects are handled via a data model and a runtime model. The data model can be
used to define/generate XML schemas for storing and interchanging metadata that
describes component assemblies and their configuration and deployment
characteristics. The runtime model defines a set of managers that process the metadata
described in the data model during system deployment. An implementation of this
specification is DAnCE (Deployment And Configuration Engine) [9].

2.3 Deployment in Academic Approaches

In current component models like, Open Service Gateway Initiative (OSGI) [1], Web
Services [11], SOFA [3], Architecture Description Languages (ADL) [4] and UML
2.0 [24], components are defined in the form of architectural units [15]. The ADL
[19] such as Acme, AADL, Darwin and Wright allow modeling components, to
model connectors and to model architecture configurations; however deployment
process in ADL is not specified. UML2.0 allows describing system hardware. But
deployment diagram in UML2.0 is a static view of the run-time configuration of
processing nodes and the components that run on those nodes. Other approaches such
as SOFA do not address the processing part. The plan containing the information on
the application is directly executed from a centralized server, assuming that remote
sites can instantiate remote components from this server.

Tables 1, 2, 3 and 4 presented in annex, present an assessment related to three main
notions occurring in the constitution of a deployment system which are the
application, the domain, the deployment strategies and the deployment plan.

• The domain notion covers all machines connected to a network where a software
system is deployed. This infrastructure is seen as a set of distributed and
interconnected sites. Each site is associated with the meta-information of the site
characteristics descriptions.

• The application notion covers all the application components and the meta-
information for their descriptions.

• The deployment strategies guide the creation of the deployment plan. The
deployment strategies allow expressing the actions to be led to deploy a component
by assuring success and safety properties.

• The deployment plan for an application A consists of components C1 to Ci where
i>= 1 and for a domain D consisting of Sites S1 to Sj where j> = 1 is all valid

254 M. Dibo and N. Belkhatir

placements (Ci, Sj). It is calculated from a planner engine. This engine operates on
a static process which allow visualizing a state of the system and the information
remains motionless during the computing plan or following a dynamic process
which allows visualizing the forecasts and to supervise their realization; the
information used is variable during the computing plan.

3 UDeploy Architecture

Concerning to the assessment obtained from the state of the art practice of the related
works, we think that a good solution to automate component based systems
deployment owes to [6]:

• cover all deployment activities,
• be independent from technologies,
• be independent from any philosophy of components based approach,
• offer a distributed deployment engine,
• propose specific language strategies in order to make the deployment flexible and
to support existing strategies in the deployment environments.

The analysis of a deployment system highlights activities independent from
technologies and what we could factor as the:

• modeling of the application to deploy,
• modeling of the components execution environment,
• creation of the deployment plan.

Therefore, we propose a deployment architecture [7] based on MDA (Model-Driven
Architecture) approach [23] with the use of models, meta-models and their
transformation (MDA approach is described in the section 4.1). MDA approach
allows offering a unified framework based on deployment activities using generic
descriptors that may subsequently be customized for specific platforms.

Deployment study in enterprise business practices allowed us to understand that
the deployment must be flexible according to the needs of the company and according
to the technical specifications of the application. Hence, we propose a fourth meta-
model related to deployment strategies in addition to the three common meta-models.

Figure 1 illustrates this deployment process comprising the following six main
activities:

• The application modeling which describes the application to be deployed; in other
words, it specifies all the components that compose the application and, the
resource constraints of these components.

• The domain modeling which describes the deployment environment, meaning
which specifies all sites that compose it and the available resources.

• The deployment strategies modeling which allow describing the policies to be
implemented in order to make the deployment plan flexible according to specific
needs.

• The creation of the deployment plan which from an application model, a domain
model and a deployment strategies model produce a deployment plan.

 UDeploy: A Unified Deployment Environment 255

• The transformation covers two main activities:

O the customization of the deployment plan - the deployment plan produced at the
end of the deployment plan creation activity is at a pim level (platform
independent model), therefore it is independent from any technology. this
deployment plan is seen as a set of placements. this generic plan must be
customized to one or several psm level plans (platform specific model); i.e.
specific to technologies so that they can be executed by the middleware targets.
the deployment plan answers to the question “where to deploy?”.

O the generation of the deployment descriptor - the deployment descriptor is built
from information within the application model and also from other information
(application non-functional properties) produced by the deployer. the
deployment descriptor answers to the question “how the container must manage
components to deploy?”.

• The deployment plan execution - some middleware do not offer any support for the
implementation of the deployment plan. in that case, the generic plan will be
translated into an appropriate description of the target middleware (script). This
description will be carried out by our deployment tool by invoking methods of the
target middleware.

Fig. 1. UDeploy architecture

256 M. Dibo and N. Belkhatir

4 Model Transformation

4.1 MDA Approach

The MDA approach [23] has been proposed by the OMG in response to the problems
posed by the multiplicity of systems, languages and technologies. The main idea of
the MDA approach is the separation of technical concerns from trades [10]. The key
concepts inherent to the MDA approach are:

• The PIM (Platform Independent Model) - these models are independent on the
technology platforms such as EJB, CCM, COM + and, provide a high level of
abstraction.

• The PSM (Platform Specific Model) - these models are dependent on the
technology platforms and correspond to the executable code.

• The transformation - PIM to PSM or PSM to PIM passage occurs by models
transformations. A model transformation is defined from a set of rules. These rules
can be described using a QVT type transformation tool (Query View
Transformation) [20], or by implementing its own processing tool. There are
several transformations tools and languages such as QVT-core (MTF [12]), QVT-
relations (medini QVT [18]) and QVT-like ATL [14, 13], Tefkat [17] and
VIATRA [28]).

4.2 MDA Advantage

The main advantages of the MDA approach are productivity and portability [16].
Productivity is because developers can now focus on the development of the PIM
models. They will work at a level where technical details are no longer specified.
These technical details will be added to the PSM level at the time of processing. This
improves productivity in two ways. First and foremost, PIM developers will omit
specific details. Second, several PSM can be obtained for different platforms with less
effort. Portability is because a PIM may be automatically transformed into several
PSM for various platforms. Thus, everything specified at PIM level will remain
portable. The only thing needed is to make sure that the code to be generated is
conform to the technology of an execution target platform.

4.3 MDA and Deployment

Conventional deployment tools integrated into the middleware, re-develop in a
specific manner the mechanisms and the deployment processes. These tools can be
seen to be at the PSM level. So, applying MDA to deploy would define deployment
meta-models at PIM level and that can be customized for different platforms.

4.4 Transformation Language

Transformation of models [2] may be operated by a non-formal language, by a
specific QVT or by a transformation algorithm that sets the mapping between
different models. The transformation language that we propose is mixed, hence based
on the QVT ATL and on transformation algorithms (figure 2).

 UDeploy: A Unified Deployment Environment 257

Model transformation is not based on the UDeploy application model, the domain
model and the UDeploy strategies model, but covers the UDeploy deployment plan
and the UDeploy deployment descriptor model.

Transformation of the deployment plan model consists of the projection of the
UDeploy plan model from a PIM level to a PSM level plan models (EJB, CCM,
.NET, SOFA). Specific deployment plan models are executed by middleware targets
in order to implement the deployment.

Transformation of the deployment descriptor model consists of the transformation
of the UDeploy descriptor model from a PSM level to a PIM level descriptor models
(EJB, CCM). Specific deployment descriptor models are used by the middleware
targets to manage components.

Fig. 2. Transformation language (QVT ATL and algorithm)

4.5 QVT ATL

We use the QVT ATL for semantic transformation (Figure 3). Semantic
transformation corresponds to the transformation of the concepts. A concept A in a
source model might be called concept B in a target model. ATL is a model
transformation language developed on top of the Eclipse platform. It provides ways to
generate target models from source models via transformation rules. An ATL
transformation rule is written as follow:

rule R {
 from e : source-meta-model ! el-e (cond)
 to s : target-meta-model ! el-s
 (-- ex. title<- e.title, name<- e.name+ “new”)
}

258 M. Dibo and N. Belkhatir

C
on

fo
rm

 to

C
on

fo
rm

 to

C
on

fo
rm

 to

Fig. 3. Transformation QVT ATL

4.6 Transformation Algorithm

We use algorithms for syntactic transformation. An M1 model that meets a source
meta-model criteria might be written in Java while an M2 model compliant to a target
meta-model might be written in XML. The UDeploy deployment plan meta-models
and the UDeploy deployment descriptor meta-models are written in DTD (Document
Type Definition). For practical reasons, we have decided to develop our algorithms
and to manage the models’ persistence with Java. Hence, we needed to operate three
basic transformations (figure 4):

• The transformation of the DTD UDeploy meta-models to XSD UDeploy meta-
models via the XMLPad tool.

• The transformation of the XSD UDeploy meta-models to Ecore UDeploy meta-
models via the EMF tool.

• The transformation of the Ecore UDeploy meta-models to Java UDeploy meta-
models via the EMF tool.

The chain of transformation from the DTD meta-model plan and the DTD meta-
model descriptor to the Java meta-model plan and the Java meta-model descriptor
does occur only once.

Once the Java classes are created, they will be instantiated by the deployment plan
data and the deployment descriptor.

We have syntactic transformation (Figure 4) for each technology such as EJB
(AlgoEJBPlan, AlgoEJBDescriptor algorithms CCM AlgoCCMDescriptor
(AlgoCCMPlan), .NET (AlgoNETPlan) and SOFA (AlgoSOFAPlan). The algorithm
allows producing a target model which will be conformed syntactically to the target
meta-model.

4.7 Examples of Model Transformation

4.7.1 EJB, NET and CCM Deployment Plan Personalization (Semantic)
At the end of the planning process, we obtain a PIM level UDeploy deployment plan
model. This deployment plan must be customized for execution target platforms.

 UDeploy: A Unified Deployment Environment 259

Meta-Model
UDeploy of Plan
and descripteur

DTD

Meta-Model
UDeploy of

Plan and
descripteur
Java Class

Meta-model UDeploy of
plan and descripteur

XSD

Meta-Model UDeploy of
Plan and descripteur

Ecore

Meta-Model
UDeploy of Plan
and descripteur

XSD

Meta-Model
UDeploy of Plan
and descripteur

Ecore

<!ELEMENT
placement
(NodeName,
ComponentName)
>

<xs:element name="placement">
<xs:complexType>

<xs:sequence>
<xs:element ref="NodeName"/>
<xs:element ref="ComponentName"/>
</xs:sequence>

</xs:complexType>
</xs:element>

public class Placement {
 protected nodeType NodeName;
 protected componentType ComponentName;

}

XMLPad

EMF

EMF

Meta-modèle/
Modèle
Outil de

transformation

Transformation
Conforme à

Fig. 4. Transformation algorithme

The example below shows the transformation process of the UDeploy deployment
plan meta-model to the EJB, .NET and CCM platforms plan meta-model.

The rule #1 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target). The
transformation concerns the DeploymentPlan class of the source meta-model and the
DeploymentPlan class of the target meta-model. The PlanId attribute of the target
meta-model will be the PlanId attribute of the source meta-model.

rule R1 {
from in : UDeployDeploymentPlanMetaModel ! DeploymentPlan
to out : EJB_NET_CCMDeploymentPlanMetaModel ! DeploymentPlan
PlanId<- in.PlanId }

Fig. 5. Semantic transformation

The rule #2 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target).

260 M. Dibo and N. Belkhatir

The transformation concerns the DeploymentPlan class of the source meta-model
and the UnitDeploymentPlan class of the target meta-model.

The SubPlanId attribute of the UnitDeploymentPlan class will be a concatenation
of the the PlanId attribute of the source model and a plan number supplied by the user
(getSubPlanNmber () method).

rule R2 {
from in : UDeployDeploymentPlanMetaModel ! DeploymentPlan
to out : EJB_NET_CCMDeploymentPlanMetaModel ! UnitDeploymentPlan
SubPlanId<- in.PlanId + getSubPlanNmber()}

The rule #3 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target).

The transformation concerns the component class of the source meta-model and the
component class of the target meta-model. The ComponentName attribute of the
target meta-model will be the ComponentName attribute of the source meta-model.

rule R3 {
from in : UDeployDeploymentPlanMetaModel ! Component
to out : EJB_NET_CCMDeploymentPlanMetaModel ! Component
ComponentName<- in.ComponentName }

The rule #4 takes as input the UDeploy deployment plan meta-model (source) and

as output an EJB, .NET and CCM deployment plan meta-model (target). The
transformation concerns the Node class of the source meta-model and the the Node
class of the target meta-model. The NodeName attribute of the target meta-model will
be the NodeName attribute of the source meta-model.

rule R4 {
from in : UDeployDeploymentPlanMetaModel ! Node
to out : EJB_NET_CCMDeploymentPlanMetaModel ! Node
NodeName<- in.NodeName }

4.7.2 EJB, .NET and CCM Deployment Plan Customization (Syntactic)
Below, we will present four examples of syntactic customization (Figure 6). The
customization algorithms of the deployment plan for the EJB, CCM, .NET and SOFA
platforms are respectively AlgoEJBPlan, AlgoCCMPlan, AlgoNETPlan and
AlgoSOFAPlan.

Fig. 6. Syntactic transformation

 UDeploy: A Unified Deployment Environment 261

AlgoEJBPlan
Input: Specific deployment plan EJB mEJB
Ouput: document d
Debprog;

document d;
For each placement p in mEJB do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p);
NT=getNodeServerType(N);
if (NT== JBOOS) then d.write(‘On Node’, N , ‘is

twiddle invoke “jboss.system:service= MainDeployer“
deploy file:’,IC);

endif;

else if (NT==JONAS) then d.write(‘On Node’, N ,

‘jonas admin –a’,IC);

endelseif ;

endo;

Return d;
Finprog;

AlgoNETPlan
Input: Specific deployment plan .NET mNET
Ouput: document d
Debprog;

document d;
For each placement p in mNET do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p) ;
d.write(‘On Node’, N, ‘ is gacutil –i’,IC);

endo;
Return d;

Finprog;

AlgoCCMPlan
Input: Specific deployment plan CCM mCCM
Ouput: document d
Debprog;

document d;
For each placement p in mCCM do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p);
d.write(‘On Node’, N, ‘Install(’,IC, ‘)’);

enddo;

Return d;
Finprog;

262 M. Dibo and N. Belkhatir

5 Conclusions and Perspectives

We develop UDeploy, a prototype based on the MDA approach which ensures tree
main tasks: (i) it manages the planning process from meta-information related to the
application, the infrastructure and the deployment strategies, (ii) it generates specific
deployment descriptors related to the application and the environment (i.e. the
machines connected to a network where a software system is deployed) and (iii) it
executes a deployment plan.

We have positive feedbacks with our case study and its experimentation on EJB,
.NET and CCM platforms. Our current projects include carrying out other
experiments and evaluations to show the feasibility of the approach, for example its
application to industrial systems, .NET and CCM.

References

1. Alliance, O.: OSGi 4.0 release. Specification (October 2005),
http://www.osgi.org/

2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? transformation models! In: Wang, J., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

3. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a hierarchical
component model. In: SERA, pp. 40–48. IEEE Computer Society, Los Alamitos (2006)

4. Clements, P.C.: A survey of architecture description languages. In: IWSSD 1996:
Proceedings of the 8th International Workshop on Software Specification and Design, p.
16. IEEE Computer Society, Washington, DC, USA (1996)

5. Dibo, M., Belkhatir, N.: Challenges and perspectives in the deployment of distributed
components-based software. In: ICEIS (3), pp. 403–406 (2009)

6. Dibo, M., Belkhatir, N.: Defining an unified meta modeling architecture for deployment of
distributed components-based software applications. In: 12th International Conference on
Enterprise Information Systems (ICEIS), Funchal, Madeira, Portugal (June 2010)

7. Dibo, M., Belkhatir, N.: Model-driven deployment of distributed components-based
software. In: 5th International Conference on Software and Data Technologies (ICSOFT),
Athens, Greece (July 2010)

8. Dochez, J.: Jsr 88: Java enterprise edition 5 deployment api specification (2009),
http://jcp.org/aboutJava/communityprocess/mrel/jsr088/index.
html

9. Edwards, G.T., Deng, G., Schmidt, D.C., Gokhale, A.S., Natarajan, B.: Model-driven
configuration and deployment of component middleware publish/subscribe services. In:
Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 337–360. Springer,
Heidelberg (2004)

10. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The missing
link of mda, pp. 90–105. Springer, Heidelberg (2002)

11. Gustavo, A., Fabio, C., Harumi, K., Vijay, M.: Web Services: Concepts, Architecture and
Applications (2004)

12. IBM. Mtf: Model transformation framework (2010),
http://www.alphaworks.ibm.com/tech/mtf

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool. Sci.
Comput. Program. 72(1-2), 31–39 (2008)

 UDeploy: A Unified Deployment Environment 263

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: a qvt-like transformation
language. In: OOPSLA Companion, pp. 719–720 (2006)

15. Kaur, K., Singh, H.: Evaluating an evolving software component: case of internal design.
SIGSOFT Softw. Eng. Notes 34(4), 1–4 (2009)

16. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

17. Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In: MoDELS
Satellite Events, pp. 139–150 (2005)

18. mediniQVT. medini qvt (2010), http://projects.ikv.de/qvt
19. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)
20. OMG. MOF QVT Final Adopted Specification. Object Modeling Group (June 2005)
21. OMG. Corba component model 4.0. (2006), specification

http://www.omg.org/docs/formal/06-04-01.pdf
22. OMG. Deployment and configuration of component-based distributed application (2006),

specification http://www.omg.org
23. T.O.M.G. OMG. Omg model driven architecture (2005), http://www.omg.org
24. T.O.M.G. OMG. Unified modeling language (2007), http://www.omg.org
25. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented

Programming, 2nd edn. Addison-Wesley Professional, England (2002)
26. Troelsen, A.: Chapter 1: The Philosophy of .NET, vol. Pro VB 2008 and the .NET 3.5

Platform. APress (2008)
27. Troelsen, A.: Chapter 15: Introducing.NET Assemblies, vol. Pro VB 2008 and the.NET

3.5 Platform. APress (2008)
28. Varró, D., Balogh, A.: The model transformation language of the viatra2 framework. Sci.

Comput. Program. 68(3), 214–234 (2007)

Appendix

Table 1. Application meta-model comparison

Application meta-model Approach
Software
architectur
e

Software
constraints

Hardware
constraints

Descriptor Format

EJB * / / Conform to DTD ejb-jar
CCM * * * Conform to DTD

SoftwarePackageDescriptor.dtd
CORBAComponentDescriptor.dtd

.Net * * (only assembly
dependencis)

/ Manifest MSI

D&C * * * ComponentDataModel
ComponentManagementModel

Software
Dock

* * * Conform to DTD DSD

Orya * * * Product model
Fractal * * * Fractal ADL (xml)
SOFA * / / SOFA component meta-model
UML * * * Component diagram

* (supported) / (no-supported)

264 M. Dibo and N. Belkhatir

Table 2. Domain meta-model comparison

Domain meta-model Approach
Hardware
architecture

Software
resources

Hardware
resources

Descriptor Format

EJB / / / /
CCM / / / /
.Net / / /
D&C * * * TargetDataModel

TargetManagement Model
Software
Dock

* * * Fieldock
Releasedock

Orya * * * Site model
Fractal / / / /
SOFA * Docks

(remote node)
/ / Sofanode (centralized node)

UML * * * Deployment diagram
* (supported) / (no-supported)

Table 3. Deployment strategies meta-model comparison

Deployment strategies meta-model Approach
Technology Enterprise Fixed/

Flexible
Language for stratégies specification

EJB * / Fixed /
CCM * / Fixed SoftwarePackageDescriptor.dtd

CORBAComponentDescriptor.dtd
CORBAassemblyDescriptor.dtd

.Net * / Fixed *(only for application update)
D&C / / / /
Software
Dock

*(configuration) / Fixed /

Orya * (few semantic) Flexible Strategies model
Fractal * Fixed
SOFA * Fixed * (only for dynamic adaptation via

DCUP)
UML / / / /

* (supported) / (no-supported)

Table 4. Deployment plan meta-model comparison

Deployment plan meta-model Approach
Processus de
planification supporté

Plan de déploiement
complet

Plan de déploiement
exécutable

Format du plan
de déploiement

EJB / / / Script
CCM / / / Script
.Net / / / Script
D&C * * * XML document

for CCM/Dance
Software
Dock

* * / Embedded in the
tool (code)

Orya * * / Embedded in the
tool (code)

Fractal / / / /
SOFA / * * XML Document
UML / / / Deployment

Diagram
* (supported) / (no-supported)

	UDeploy: A Unified Deployment Environment
	Introduction
	Related Works
	Deployment in Middleware
	Deployment in OMG Specification
	Deployment in Academic Approaches

	UDeploy Architecture
	Model Transformation
	MDA Approach
	MDA Advantage
	MDA and Deployment
	Transformation Language
	QVT ATL
	Transformation Algorithm
	Examples of Model Transformation

	Conclusions and Perspectives
	References

