
Pluggable Programming Language Features
for Incremental Code Quality Enhancement

Bernhard G. Humm and Ralf S. Engelschall

Darmstadt University of Applied Sciences, Darmstadt, Germany
Capgemini, CSD Research, Munich, Germany

bernhard.humm@h-da.de, ralf.engelschall@capgemini.com

Abstract. Evolutionary prototyping is an incremental software development
method in which a proof of concept is, step by step, extended towards the fi-
nal product. This article pleads for a programming approach termed “incremental
code quality enhancement” when developing software incrementally. However,
current programming languages are not well suited for incremental code qual-
ity enhancement. They are inflexible regarding their use of language features
like typing, access control, contracts, etc. In some languages, the programmer
is forced to use them, in others he may not. This article introduces pluggable
programming language features, a concept that allows greater flexibility for ap-
plication programmers without losing control over the use of those features. The
approach is demonstrated exemplary by interface specifications for a business in-
formation system.

Keywords: Programming language features, Aspects, Flexibility, Evolutionary
prototyping, Plug-in.

1 Introduction

Flexibility is one of the most basic and important design goals in software engineering
[8] [21]. Flexibility allows for adaptation of applications to different and possibly vary-
ing needs. This not only applies to the resulting application, but also to the tools for
creating them.

However, when analyzing current programming languages and their features con-
cerning their flexibility of use, the result is rather disappointing. Consider just the fol-
lowing two examples.

– Current mainstream programming languages like C/C++, Java, and C# are all stat-
ically typed. Static typing is mandatory there and the programmer has no flexibil-
ity as to omit type specifications where sensible. Contrarily, dynamic languages
like Smalltalk, Scheme, Python and PHP are all dynamically typed and the pro-
grammer has no option whatsoever to explicitly specify type declarations statically
where sensible.

– Access control in Java is mandatory. For all classes, interfaces and members, ac-
cessibility must be declared (public, protected, private or package local as default).
The programmer has no option of omitting access control specifications where sen-
sible. On the other hand, declaring access control for packages is not possible at

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 B.G. Humm and R.S. Engelschall

all in Java. Also, in dynamic languages like Smalltalk, explicit access control on
class and method level is not possible. The programmer has no option of specifying
access control where sensible.

This inflexibility causes a number of problems:

Coding Overhead. In many industrial software projects, the implementation technol-
ogy is pre-defined, e.g., Java. Implementing application parts like scripts, code
generators, or data migration routines — for which scripting languages are most
suitable — in Java result in unnecessary coding overhead due to mandatory lan-
guage features, whose use is not necessary in this context.

Poor Quality. Contrarily, implementing critical application parts in a dynamic lan-
guage like Smalltalk may reduce quality — in this case safety — due to missing
compile-time checks [18].

One might argue that in such a case, the language choice is simply wrong and an
industrial strength language like Java should have been used. This leads us to the
next problem.

Incremental Development Impeded. In many project situations it is sensible to de-
velop software incrementally [16], e.g., with evolutionary prototyping [6,2,9,10].
This means that an application or a part of it is quickly prototyped first and then,
incrementally, the code quality is being enhanced. If the target application is crit-
ical and an industry-scale language like Java is chosen, then quick prototyping is
impeded due to many mandatory language features.

The overall picture, today, is that programming languages define a fixed set of features
that are to be used. The programmer has no flexibility as to use less strict features where
acceptable or even to specify more advanced features where necessary, e.g., access con-
trol on package level in Java.

To alleviate those problems, we plead for a concept that we call “pluggable pro-
gramming language features” and argue from the application programmer’s point of
view, i.e., from the view of the user of a programming language. Pluggable program-
ming language features are particularly useful for a development method which we call
“incremental code quality enhancement”.

The article is structured as follows. Sect. 2 motivates for the topic with a discus-
sion on typing. In Sect. 3 we present the concept of pluggable programming language
features. Sect. 4 and 5 present a sample application and a research prototype of the
concept. Sect. 6 introcudes incremental code quality enhancement and how this can be
achieved via pluggable programming language features. Sect. 7 discusses the results.
Sect. 8 concludes this article.

2 Static versus Dynamic Typing

In statically typed programming languages, variables and operation parameters are as-
signed a type which is checked at compile type. In contrast, in dynamically typed
languages type checks are performed at run-time. While typing is only one of many



Pluggable Programming Language Features 3

programming language features, there is, currently, a strong correlation between dy-
namically typed and RAD languages and statically typed and mainstream application
development languages, respectively. Languages that allow static as well as dynamic
typing are rare. Examples are VisualBasic, Perl6, Common Lisp (in part), and, recently,
C# 4.0.

The differences between statically and dynamically typed languages are sometimes
exaggerated as “language war”. Advocates of static typing claim:

– Earlier detection of programming mistakes, e.g. preventing adding an integer to a
boolean

– Better documentation in the form of type signatures, e.g. incorporating types of
arguments when resolving operation names)

– More opportunities for compiler optimizations, e.g. replacing virtual calls by direct
calls when the exact type of the receiver is known statically

– A better design time developer experience, e.g. via auto-completion by the devel-
opment environment

Advocates of dynamic typing claim:

– Higher coding efficiency since the resulting code is less verbose
– Higher expressiveness via language features like closures, typically found in dy-

namically typed languages
– Better reusability since variables and operations are not (unnecessarily) restricted

in use by types

Language wars are not at all necessary – we fully agree with Meiyer and Drayton in
their article “Static Typing Where Possible, Dynamic Typing When Needed: The End
of the Cold War Between Programming Languages” [18].

Typing is only one aspect of a whole spectrum of contracts [19] between providers
and users of components – all with the purpose of reducing errors and, therefore, in-
creasing quality. But why stop with typing? We claim that every intrinsic aspect of an
operation should be expressed explicitly as part of the contract and should be checked
as early as possible: value restrictions, pre- postconditions, invariants, exceptions, usage
protocol, etc.

In contrast, statically typed languages allow – and even require – to specify the types
of all parameters but do not provide language features to specify more1. Static typing
alone seems like an arbitrary point in the whole spectrum – for some interfaces it may
be adequate to specify constraints more strictly, for others less.

While the adequate degree of contract specification relates to the application in its fi-
nal, production-ready state, we add another dimension to the argument: the development
time. In early development stages, particularly during prototyping, it is not necessary
to specify full-featured contracts. The demand for precise contracts increases gradually
during the development process.

1 Eiffel does allow for specifying pre- and postconditions but Eiffel is, currently, not in
widespread use.



4 B.G. Humm and R.S. Engelschall

3 Pluggable Programming Language Features

Before introducing the concept of pluggable programming language features, we need
to distinguish two kinds of programming language features.

Core programming language features are essential for implementing applications at
all. Examples are objects, classes, operations, variables, and control constructs like
loops.

Additional programming language features specify aspects of core language fea-
tures. Examples are access control for classes, type declaration of variables, and
pre- and postconditions of operations. Additional language features are not essen-
tial in the sense that it is possible to implement applications without using addi-
tional programming language features.

Only additional programming language features may be pluggable. For a program-
ming language to adhere to the concept of pluggable programming language features
we postulate the following requirements.

Optional Language Features. The language must allow for implementing applica-
tions without using any additional programming language features at all. In par-
ticular, static typing must not be mandatory.

Independent Language Features. The language must allow for specifying additional
programming language features independently and to check for their conformance
at an adequate point in time. In particular, static type checking must be possible.

Extensible Language Features. The programming language must be extensible to al-
low for the implementation of new additional language features.

Language Feature Configuration. The programming language must allow for con-
figuring the use of additional language features in an application or parts of them.
The use may be enabled mandatory or optionally, or disabled. Enabled language
features will be checked, e.g., by the compiler.

In total, the concept allows for plugging in additional language features, either pre-
defined ones or new ones. Arbitrary use of language features is avoided via language
feature configuration.

We see two major use cases for pluggable programming language features.

Customizing Features According to Requirements. Pluggable programming lan-
guage features allows system architects to customize a programming language with
respect to the quality requirements of an application to be developed. Depending on
the criticality, more language features may be plugged in — even additional ones
that have not been pre-defined in the programming language. The configuration
enforces the use of those language features by the programmers.

Customizing Features per Development Stage. Pluggable programming language
features allows for efficient incremental software development, particularly with
evolutionary prototyping. In an early stage of development, additional language
features may be omitted completely by programmers. This allows for rapid proto-
typing. Such a rapid prototype may be used to get user feedback quickly, as well as



Pluggable Programming Language Features 5

checking for architectural integrity of the application. Gradually, the code quality
of the application may be enhanced by plugging in additional language features.
Language feature configuration gives control over this process. For different stages
in the development process, e.g., “Proof of Concept”, “Alpha Release”, “Beta Re-
lease”, and “Final Product”, specific language features may be enforced.

We now demonstrate the concept via a research prototype and its use via a sample
application that focuses on the second use case, namely customizing features per devel-
opment stage.

4 Example Domain: Customer Management Component
Interfaces

4.1 Customer Management

We demonstrate pluggable programming language features exemplary via interfaces
for a customer management component of a business information system. We use the
term component as a functionally coherent unit of software with specified interfaces
(provided and required). An interface represents the external view of a component.
It consists of operations. An operation provides functionality of a component. It is
specified via syntax (signature) and semantics (behavior). See, e.g., [22].

Our example is the create-customer operation with parameters name, address,
and date-of-birth for adding a new customer object to a customer management data
store. The example seems trivial but may be quite complex in practice. For instance,
address may be checked for validity syntactically as well as semantically via city map
data.

4.2 Interface Specification Aspects

An interface is specified by a name and its operations. An operation’s signature is min-
imally specified by its name and the parameter names. Additionally, the following as-
pects may be specified:

– Access control, e.g., public, private
– Parameter mode: input, output, input/output
– Parameter obligation: mandatory, optional (e.g., expressed by null values)
– Parameter types, e.g., primitive types like Integer and complex types like
Customer

– Type restrictions, e.g., only positive Integer values for a bank transfer. Note: Type
restrictions may be implemented as separate types, e.g., Positive-Integer

– Pre- and postconditions: constraints before and after operation execution, respec-
tively — e.g., date-of-birth < now. Note: parameter modes, obligations, types
and type restrictions may all be specified as pre- and postconditions

– Exceptions: specification of exceptional situations that are externally visible, e.g.,
duplicate customer

– Side effects specification, e.g., read-only, modifying



6 B.G. Humm and R.S. Engelschall

Fig. 1. Language Feature Configuration

– Semantics documentation: specification of the operation’s behavior and documen-
tation of its parameters, usually informally in prose. Note: pre- and postconditions
are part of the semantic specification, too

– Parameter Documentation: describing the meaning of the operation parameters
– Non-functional characteristics: specifying (formally or informally) performance

and other non-functional characteristics

Generally speaking, for a production-grade business information system, the more com-
plete the interface specification, i.e., the more intrinsic information is specified explic-
itly, the better.

4.3 Language Feature Configuration

Consider, for instance, the development stages “Proof of Concept”, “Alpha Release”,
“Beta Release”, and “Final Product”. Then, language features may be assigned to the
development stages as shown in Fig. 1. For the proof of concept, operation names and
parameter names are sufficient. For Alpha Release and Beta Release, the architect de-
mands additional language features like parameter typing, visibility, and exceptions.
For the final product, full documentation is mandatory.

In the following section, we describe language features for specifying some of the
interface specification aspects exemplary.

5 Language Features for Interface Specification

5.1 Research Prototype in Lisp

We have chosen Lisp2 [17] as the implementation language for our research prototype
to demonstrate pluggable programming language features.

The following features make Lisp ideal for experimenting with language extensions:

Typing. Lisp is dynamically typed yet provides a powerful type system as well as fea-
tures for object-oriented programming.

2 More specifically: Allegro Common Lisp, a professional implementation of the ANSI Com-
mon Lisp standard.



Pluggable Programming Language Features 7

Code is Data. Lisp has a minimalistic syntax with the list as the basic data structure.
Lists are not only used to express application data but also to express Lisp code
itself. This makes it particularly convenient to transform Lisp programs via Lisp
programs.

Macro Processor. The built-in macro processor allows introducing new language fea-
tures efficiently and with limited effort.

Unlike Java and C#, Lisp does not provide an explicit language feature for interfaces.
But as in other languages like C++, the concept may be emulated.

We have implemented a custom macro define-function that extends the basic
built-in defun macro for defining an operation. define-function is a real extension
of defun in the sense that it accepts all declarations of defun but, additionally, optional
aspects.

In the next sections, we show some of the language features exemplary step by step
by means of the example create-customer, thereby incrementally enhancing code
quality by the use of pluggable language features.

5.2 Operation and Parameter Naming

In the simplest form (development stage “Proof of Concept”), the name of an operation
and its parameter names are specified only.

(define-function create-customer (name address date-of-birth))

This expression declares the operation create-customerwith input parameters name,
address, and date-of-birth. No additional language features need to be specified
at this stage.

5.3 Parameter Typing

The type of an input parameter (necessary for development stage “Alpha Release”) is
specified via the keyword :type in a list per parameter. The type of the operation result
(out parameter) is specified via the keyword :result-type in an options list following
the parameter list.

(define-function create-customer
((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))

(:result-type Customer))

The parameter name is of type Structured-Name, the parameter address of type
Structured-Address, etc.



8 B.G. Humm and R.S. Engelschall

5.4 Pre- and Postconditions

Pre- and postconditions (necessary for development stages “Beta Release” and “Final
Product”) are specified via the keywords :pre and :post in the options list, followed
by a Lisp boolean expression that can be evaluated at run-time.

(define-function create-customer
((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))

(:result-type Customer
:pre (is-valid? address)
:pre (lies-in-past? date-of-birth)
:pre "No duplicate of previously created customer"
:post (get-id result)))

The first precondition is satisfied if the operation is-valid? with the actual parameter
address evaluates to true. This checks for valid addresses. lies-in-past? checks
whether the birth date is plausible. The third pre-condition regarding duplicate check-
ing is treated as an informal comment. The postcondition specifies that the resulting
Customer object contains a non-nil identifier.

5.5 Documentation of Semantics

To document the semantics of the operation and the input and output parameters, the
keywords :documentation and :result-documentation are used in the options
list and the parameters lists.

(define-function create-customer
((name :type Structured-Name

:documentation "Customer name consists of ...")
(address :type Structured-Address

:documentation "Postal address consists of ...")
(date-of-birth :type Date

:documentation "Customer birth date"))
(:result-type Customer

:result-documentation "New Customer object"
:pre (is-valid? address)
:pre (lies-in-past? date-of-birth)
:pre "No duplicate of previously created customer object"
:post (get-id result)

:documentation "Creates a new Customer object"))

5.6 Additional Language Features

Analogously, we have implemented the following additional language features: access
control, modes, obligations, exception specification, and non-functional characteristics.
None of those are natively provided in the core language feature set of Lisp. With our
extensions, application programmers may optionally and independently use all of those
additional programming language features.



Pluggable Programming Language Features 9

5.7 Conformance Checking

It is not enough to provide language features for specifying interface aspects — the
specification conformance has to be checked, too. Therefore, we have implemented the
macro define-function to generate conformance checks. Type specifications are, if
possible, checked at compile time. Pre- and postconditions are checked at runtime. All
specification aspects are compiled into the built-in function documentation of Lisp.

But checking the specified aspects is only one kind of conformance check. The macro
also checks the conformance of the application code with the language feature config-
uration during compilation. In case of violations, warnings are being generated. For
example, static parameter type checking is enforced from development stage “Beta Re-
lease” on as in any statically typed language like Java.

Note: not all all conformance checks can be fully automated. For example, a confor-
mance checker can not decide whether or not there are meaningful preconditions for an
operation.

The architect can configure the conformance levels per application or per application
parts, e.g., components, and adapt the configuration over development time. Developers
get direct feedback whether their code complies to the current conformance level.

6 Incremental Code Quality Enhancement

6.1 Code Quality

Software engineering [8,5], in essence, aims at developing high-quality software at rea-
sonable cost. Software quality [15] can be assessed via quality models like ISO 9126
[11] and has internal and external aspects. Internal aspects address the application de-
veloper via ease of development and maintenance. Code quality is an important internal
aspect which is produced during programming.

In a software development project, the implementation usually is based on an upfront
design of a particular architecture. Unfortunately, during implementation one often has
to discover deficiencies in this architecture the first time: insufficient separation of con-
cerns, cyclic dependencies, inconsistent interfaces, unsuitable couplings, violated lay-
ering, etc. To really fix these kinds of deficiencies, an extensive refactoring [7] would
be required. Due to time and budget constraints this is either refused and the resulting
software is shipped in time but with lower quality, or it is performed and the result-
ing high-quality software causes the the project to suffer from time and budget overrun.
High-quality results and reasonable costs are two contrary goals which are hard to bring
into balance.

6.2 Incremental Software Development

One can tackle the problem in advance in two ways: either by investigating more into the
design discipline to avoid expensive refactorings at all, or by following an incremental
software development approach where “merciless refactoring” [1] results in small and
less expensive steps all the time. The latter approach is a central aspect in agile soft-
ware engineering methods [16,12]. One variant is evolutionary prototyping [6]. In evo-
lutionary prototyping, an application is implemented prototypically first as a proof of



10 B.G. Humm and R.S. Engelschall

Code quality in-breadth (architecture, consistency)

in
-d
ep
th
(d
et
ai
l,
pr
ec
is
io
n)

Target code quality

Inc
rem
ent
s

ove
r de
velo

pm
ent
tim
e

A

B

C

Component A
Interface A.1
Operation A.1.1 (in1,

in2..)
begin
….
end

Operation A.1.2 (in1,
in2, ..)

begin
….

low high

lo
w

hi
gh

I1

In

I3I2
...

Fig. 2. Code Quality Dimensions

concept which is then, incrementally, refined towards the final product, thus constantly
enhancing code quality. Evolutionary prototyping may reduce development time and
costs while improving user involvement. While evolutionary prototyping is not suitable
for all kinds of software projects, its benefits have been proven in numerous projects of
different sizes [2,9,14,10].

But how to incrementally enhance code quality in evolutionary prototyping effec-
tively and efficiently during implementation? To answer this question, we distinguish
two dimensions (see Fig. 2) of internal code quality [11].

In-breadth code quality concerns the structural consistency of the entire application,
i.e., the application architecture. Example: conformance of application components
to a layer concept.

In-depth code quality concerns correctness and precision of code in detail. Example:
specification and validation of an operation’s pre-condition.

We plead for optimizing in-breadth internal code quality before in-depth internal
code quality during incremental development (see Fig. 2). This allows for effective and
efficient quality enhancement – for the following reasons.

Efficiency. Optimizing in-breadth quality of relatively small code reduces the costs for
refactoring [7] compared to refactoring voluminous code with all details imple-
mented and documented already. For example, splitting a component that does not
conform to a layering concept may induce a a lot of refactoring if all operations
have already been implemented in detail.



Pluggable Programming Language Features 11

Effectiveness. In-breadth code quality can be optimized largely independently of de-
tails. E.g., conformance to a layering concept is independent of individual pre-
conditions. Thus, the effectiveness is not compromised by optimizing in-breadth
quality before in-depth quality.

6.3 A Method for Incremental Code Quality Enhancement

When developing incrementally, particularly via evolutionary prototyping, then the ar-
chitect and the programmers should proceed according to the following method.

1. Select a programming language and programming environment that fulfills the re-
quirements from Sect. 3.

2. Define a language feature configuration according to the quality requirements of
the final product. Provide automatic conformance validators where feasible and
economically worthwhile.

3. Define language feature configurations for development stages and possibly per ap-
plication part (e.g., component). Provide automatic conformance validators where
feasible and economically worthwhile.

4. Develop the application incrementally. Develop a prototype quickly and with as
little effort as possible. Spend sufficient time for optimizing in-breadth code quality
and this way improve the architecture.

5. Continue incrementally implementing the application, optimizing in-depth code
quality. Control the quality of the increments via conformance checks.

6. Put the application into operation only after the conformance checks for the final
product have passed.

6.4 Pluggable Programming Langauge Features and Incremental Code Quality
Enhancement

In a way, incremental code quality enhancement “happens” implicitly in most software
development projects, today. However, it is not explicitly and as vigorously pursued in
a controlled manner as described in the method above. Pluggable programming lan-
guage features ideally support incremental code quality enhancement. This is because
language features can be added optionally and independently during development and,
at the same time, there is full control via language feature configurations.

7 Discussion

7.1 Evaluation

This article is a plea for pluggable programming language features. We cannot empir-
ically prove the usefulness of the approach. However, our confidence stems from our
long-time experience in developing large-scale business information systems and the
promising results of our research prototype and sample implementation. Furthermore,
we qualitatively justify our approach by evaluating it and the sample implementation
against the problems identified in Sect. 1.



12 B.G. Humm and R.S. Engelschall

Coding Overhead. Pluggable programming language features allow to reduce coding
overhead by omitting unnecessary language features in certain application contexts,
like scripts, code generators, or data migration routines. A language switch towards
a scripting language is not necessary since the programming language itself offers
the necessary flexibility.

Poor Quality. Pluggable programming language features allow critical applications to
be implemented in a strict manner thus improving code quality. Not only language
features common in industrial-strength programming languages can be used. Addi-
tionally, even more strict language features may be plugged in. Examples are pre-
and postconditions or advanced access control which extends towards packages and
components.

Incremental Development Impeded. Pluggable programming language features par-
ticularly boost incremental application development, e.g., with evolutionary proto-
typing. An application or a part of it may be quickly prototyped first and then, in-
crementally, the code quality may be enhanced (incremental code quality enhance-
ment). Language feature configuration prevents arbitrary use of language features
at the programmers’ goodwill. Certain quality levels at certain development stages
can be enforced.

7.2 Language Support Today

Current programming languages, both in industry and academia, only poorly support
pluggable programming language features. Today, there is a strict demarcation of lan-
guages focusing either on rapid application development (RAD) or on industry scale
development.

Industry Scale Languages, Statically Typed. Languages like Java and C# are cur-
rently in mainstream use for developing large-scale, high-quality applications. They
are all statically typed and are not well suitable for rapid application development
(RAD). More advanced features like pre- and postconditions are not directly pro-
vided and may only indirectly be provided, e.g.,via byte-code injection.

RAD Supporting Languages, Dynamically Typed. RAD supporting languages like
Perl, Smalltalk, Python, Ruby, Groovy, Scala and F#, conversely, are currently not
in mainstream use for developing industry-scale applications. They are either used
for throw-away prototyping or for developing special-purpose applications like web
sites. Most of them are dynamically typed and do not allow for static typing. Lan-
guage features may possibly be added – e.g., with Lisp macros as demonstrated in
this article – but this is not commonly done.

Hybrid Typing Languages. A few languages like VisualBasic, Perl 6 and Lisp (par-
tially) exist that allow for static as well as dynamic typing. They also allow, in
limited ways, for extending the language by new quality features. Neither is in
mainstream use. However, with C# 4.0, the first mainstream programming language
has recently incorporated dynamic typing optionally — one important step towards
pluggable programming language features.



Pluggable Programming Language Features 13

7.3 Related Work

In [18], Meijer and Drayton plead for typing as a pluggable programming language
feature. We extend their point of view in three ways. Firstly, we regard typing as one
language feature only. Although most important, it represents only one point in a whole
spectrum between flexible prototype development and extremely strict development of
critical applications. Secondly, we allow for true plugging of programming language
features in the sense that new features may be added to the language. Finally, we add the
concept of language feature configuration which gives control over the use of language
features.

The comparison with Bracha’s article “Pluggable Type Systems” [3] is similar. His
implementation of Strongtalk [4] on the basis of Smalltalk is an example of a pluggable
language feature, namely typing.

With the Scala programming language [20], Odersky targets at scalability and flex-
ibility, too. He tries to reduce the set of language features as much as possible and,
instead, provides features in libraries. However, on the level of additional language fea-
tures like typing and access control, Scala is still inflexible. Scala uses type inference
to ease the programmer from the burden of specifying types unnecessarily often but is
still statically typed at any time.

Finally, we see a strong relationship between Aspect-Oriented Programming (AOP)
[13] and pluggable programming language features. While not inherently tied to it, AOP
in practice is used for implementing functionality for the end-user like, e.g., logging.
On the other hand, pluggable programming language features target the application pro-
grammer by addressing internal code quality like maintainability, stability, reliability,
etc. Hence, our approach follows the tradition of AOP, but with a different focus.

8 Conclusions and Future Work

In this article, we plead for pluggable programming language features, a concept that
adds flexibility to programming languages. It allows for using or omitting programming
language features with full control via language feature configurations. It is particularly
suited for incremental code quality enhancement, a development method in which in-
breadth code quality is optimized before in-depth code quality.

We demonstrated the concept via a research prototype and a sample application in
Lisp. While the concept has obvious benefits, it is not well supported by current pro-
gramming languages. Furthermore, we agree with Meijer and Drayton, who identify
a “huge cultural gap” between the communities of statically and dynamically typed
languages [18].

However, we see a new trend towards dynamic programming languages in the last
decade that are implemented on top of mainstream platforms. Examples are implemen-
tations of Python, Ruby, Groovy, and Scala on the Java Platform or F# and C# 4.0 on
the .NET platform. Furthermore, there are a number of Lisp implementations on the
Java platform, e.g., ABCL, Clojure, Jatha, and CLForJava.

This may allow for pluggable language features and incremental code quality en-
hancement to eventually break through — for two reasons. Firstly, the technical inte-
gration of languages of different styles eases the implementation of pluggable language



14 B.G. Humm and R.S. Engelschall

features. Optional typing in C# 4.0 is a perfect example for that. Secondly, a grow-
ing community of programmers who are proficient in both language styles will help
closing the cultural gap. Additionally, if mainstream languages already had real sup-
port for pluggable programming language features, the necessity for numerous special
languages would be reduced.

Our plea for pluggable programming language features and incremental code quality
enhancement is from the application programmers’ point of view. We see future work in
the following areas. Pluggable programming language features need to be implemented
in programming languages on top of mainstream platforms. Integrated development
environments need to support pluggable programming language features, particularly
their configuration. Experience needs to be gained in industrial projects of different
sizes.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison
Wesley, Reading (2005)

2. Berger, H., Beynon-Davies, P., Cleary, P.: The Utility of a Rapid Application Development
(RAD) approach for a large complex Information Systems Development. In: Proceedings of
the 13th European Conference on Information Systems (ECIS 2004), Turku, Finland (2004)

3. Bracha, G.: Pluggable type systems. In: OOPSLA Workshop on Revival of Dynamic Lan-
guages (2004)

4. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a production environment.
In: Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Languages and Ap-
plications, OOPSLA 1993 (1993)

5. Broy, M., Jarke, M., Nagl, M., Rombach, H.D.: Dagstuhl-Manifest zur Strategischen Bedeu-
tung des Software Engineering in Deutschland. In: Perspectives Workshop Dagstuhl, Ger-
many (2006)

6. Floyd, C.: A systematic look at prototyping. In: Approaches to Prototyping, pp. 1–18 (1984)
7. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Longman

Publishing Co., Inc., Boston (1999)
8. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice

Hall PTR, Upper Saddle River (2002)
9. Gordon, V.S., Bieman, J.M.: Reported Effects of Rapid Prototyping on Industrial Software

Quality (1993)
10. Hekmatpour, S.: Experience with evolutionary prototyping in a large software project. SIG-

SOFT Softw. Eng. Notes 12(1), 38–41 (1987)
11. ISO. TR 9126-4: Software Quality (2004),

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752
12. Kelter, U., Monecke, M., Schild, M.: Do we need ’agile’ Software Development Tools? In:

NetObjectDays (2002)
13. Kiczales, G., Lamping, J., Mendhekar, Videira Lopes, C., Loingtier, J.-M., Irwin, J.: Aspect-

Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241,
Springer, Heidelberg (1997)

14. Lichter, H., Schneider-Hufschmidt, M., Züllighoven, H.: Prototyping in industrial software
projects—bridging the gap between theory and practice. In: ICSE 1993: Proceedings of the
15th International Conference on Software Engineering, pp. 221–229. IEEE Computer Soci-
ety Press, Los Alamitos (1993)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752


Pluggable Programming Language Features 15

15. Liggesmeyer, P.: Software-Qualität. Testen, Analysieren und Verifizieren von Software.
Spektrum Akademischer Verlag (2002)

16. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Prentice Hall,
Englewood Cliffs (2002)

17. McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computation by Ma-
chine, Part I. Communications of the ACM 3(4), 184–195 (1960)

18. Meijer, E., Drayton, P.: Static Typing Where Possible, Dynamic Typing When Needed. In:
Workshop on Revival of Dynamic Languages (2005)

19. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall, Inc., Upper Sad-
dle River (1988)

20. Odersky, M.: An Overview of the Scala Programming Language: EPFL Technical Report
IC/2004/64 (2004)

21. Sommerville, I.: Software Engineering, 7th edn. International Computer Science Series. Ad-
dison Wesley, Reading (2004)

22. Szyperski, C.: Component software. Addison-Wesley, Harlow (1998)


	Pluggable Programming Language Features 
for Incremental Code Quality Enhancement
	Introduction
	Static versus Dynamic Typing
	Pluggable Programming Language Features
	Example Domain: Customer Management Component Interfaces
	Customer Management
	Interface Specification Aspects
	Language Feature Configuration

	Language Features for Interface Specification
	Research Prototype in Lisp
	Operation and Parameter Naming
	Parameter Typing
	Pre- and Postconditions
	Documentation of Semantics
	Additional Language Features
	Conformance Checking

	Incremental Code Quality Enhancement
	Code Quality
	Incremental Software Development
	A Method for Incremental Code Quality Enhancement
	Pluggable Programming Langauge Features and Incremental Code Quality Enhancement

	Discussion
	Evaluation
	Language Support Today
	Related Work

	Conclusions and Future Work
	References




