

Communications
in Computer and Information Science 230

Leszek A. Maciaszek
Pericles Loucopoulos (Eds.)

Evaluation of
Novel Approaches to
Software Engineering

5th International Conference, ENASE 2010
Athens, Greece, July 22-24, 2010
Revised Selected Papers

13

Volume Editors

Leszek A. Maciaszek
Wrocław University of Economics, Institute of Business Informatics
53-345 Wrocław, Poland, and
Macquarie University, Department of Computing
Sydney, NSW 2109, Australia
E-mail: leszek@science.mq.edu.au

Pericles Loucopoulos
Loughborough University, The Business School
Loughborough, Leicestershire, LE11 3TU, UK
E-mail: p.loucopoulos@lboro.ac.uk

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-23390-6 e-ISBN 978-3-642-23391-3
DOI 10.1007/978-3-642-23391-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941861

CR Subject Classification (1998): D.2, F.3, D.3, C.2, H.4, K.6

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Software systems are complex and difficult to build, maintain and evolve. They
need to integrate with systems already in existence and to conform to changing
social contexts, information technology and business conditions. Accordingly,
software engineering is unlike traditional engineering, such as mechanical, elec-
trical or building engineering.

Many principles of software engineering cannot be formalized in mathemat-
ical models, but this does not free the software engineer from rigor. Software
engineering processes and practices have to be rigorous. They also need to
be novel, while not disregarding proven traditional approaches. By merging
novel approaches with established traditional practices and by evaluating
them against software quality criteria, software researchers and practitioners
advance knowledge and practice, identify the most hopeful trends and pro-
pose new directions for consideration in large-scale software development and
integration.

This observation epitomizes the mission of the ENASE (Evaluation of Novel
Approaches to Software Engineering (ref. http://www.enase.org/)) conference
series in its desire to be a prime international forum to discuss and publish
research findings and IT industry experiences with relation to evaluation of novel
approaches to software engineering. This book contains revised and extended
versions of full papers of the 5th edition of ENASE held in Athens, Greece.
The previous four conferences took place in Erfurt, Germany (2006), Barcelona,
Spain (2007), Madeira, Portugal (2008), and Milan, Italy (2009). The next 2011
ENASE conference will take place in Beijing, China.

More than 70 papers were submitted to ENASE 2010. A few of these papers
were rejected on formal grounds and all other papers were sent to at least three
PC members for review. After the careful consideration of research contributions,
19 papers were accepted as full papers and 11 as short papers. The acceptance
rate confirms the desire of the ENASE Steering Committee to ensure the high
quality of the conferences. All five ENASE conferences had the acceptance rate
for full papers at or below 30%.

At the conference in Athens, the papers were presented in the following
eight categories. In this volume we have dispensed with this categorization,
but the reader may find it useful to evaluate the breadth and depth of the
coverage.

VI Preface

1. Quality and Metrics
2. Service and Web Engineering
3. Process Engineering
4. Patterns, Reuse and Open Source
5. Process Improvement
6. Aspect-Oriented Engineering
7. Service and Web Engineering
8. Requirements Engineering

December 2010 Leszek A. Maciaszek
Pericles Loucopoulos

Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal / INSTICC,
Portugal

Program Co-chairs

Pericles Loucopoulos Loughborough University, UK
Leszek Maciaszek Macquarie University, Australia

Organizing Committee

Patŕıcia Alves INSTICC, Portugal
Sérgio Brissos INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Patricia Duarte INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Mauro Graça INSTICC, Portugal
Liliana Medina INSTICC, Portugal
Elton Mendes INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Daniel Pereira INSTICC, Portugal
Filipa Rosa INSTICC, Portugal
Mónica Saramago INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Colin Atkinson,Germany
Franck Barbier, France
Giuseppe Berio, France
Maria Bielikova, Slovak Republic
Nieves R. Brisaboa, Spain
Dumitru Burdescu, Romania

Ismael Caballero, Spain
Wojciech Cellary, Poland
Panagiotis Chountas, UK
Rebeca Cortazar, Spain
Massimo Cossentino, Italy
Schahram Dustdar, Austria

VIII Organization

Ulrich Eisenecker, Germany
Angelina Espinoza, Spain
Maria João Ferreira, Portugal
Ulrich Frank, Germany
Tudor Girba, Switzerland
Cesar Gonzalez-Perez, Spain
Hans-Gerhard Gross, The Netherlands
Ignacio Garćıa Rodŕıguez De Guzmán,

Spain
Jo Hannay, Norway
Brian Henderson-Sellers, Australia
Charlotte Hug, France
Zbigniew Huzar, Poland
Stefan Jablonski, Germany
Slinger Jansen, The Netherlands
Wan Kadir, Malaysia
Robert S. Laramee, UK
George Lepouras, Greece
Cuauhtemoc Lopez-Martin, Mexico
Graham Low, Australia
André Ludwig, Germany
Leszek Maciaszek, Australia
Cristiano Maciel, Brazil
Lech Madeyski, Poland
Tom McBride, Australia
Stephen Mellor, Azerbaijan
Sascha Mueller-Feuerstein, Germany
Johannes Müller, Germany

Andrzej Niesler, Poland
Janis Osis, Latvia
Mieczyslaw Owoc, Poland
Eleutherios Papathanassiou, Greece
Marcin Paprzycki, Poland
David Parsons, New Zealand
Oscar Pastor, Spain
Juan Pavon, Spain
Naveen Prakash, India
Lutz Prechelt, Germany
Elke Pulvermueller, Germany
Gil Regev, Switzerland
Félix Garćıa Rubio, Spain
Francisco Ruiz, Spain
Krzysztof Sacha, Poland
Motoshi Saeki, Japan
Heiko Schuldt, Switzerland
Manuel Serrano, Spain
Jan Seruga, Australia
Andreas Speck, Germany
Stephanie Teufel, Switzerland
Rainer Unland, Germany
Antonio Vallecillo, Spain
Jean Vanderdonckt, Belgium
Olegas Vasilecas, Lithuania
Benkt Wangler, Sweden
Igor Wojnicki, Poland
Kang Zhang, USA

Auxiliary Reviewer

Valeria Seidita, Italy

Invited Speakers

Pericles Loucopoulos University of Loughborough, UK
Stephen Mellor Freeter, UK
Cesar Gonzalez-Perez LaPa - CSIC, Spain
David Marca University of Phoenix, USA
Nikolaos Bourbakis Wright State University, USA

Table of Contents

Pluggable Programming Language Features for Incremental Code
Quality Enhancement . 1

Bernhard G. Humm and Ralf S. Engelschall

A Survey on How to Manage Specific Data Quality Requirements
during Information System Development . 16

César Guerra-Garćıa, Ismael Caballero, and Mario Piattini Velthius

Constructing a Catalogue of Conflicts among Non-functional
Requirements . 31

Dewi Mairiza and Didar Zowghi

Applying AspectJ to Solve Problems with Persistence Frameworks 45
Uwe Hohenstein and Michael C. Jaeger

Trends in Harmonization of Multiple Reference Models 61
César Pardo, Francisco J. Pino, Félix Garćıa,
Mario Piattini Velthius, and Maria Teresa Baldassarre

Prioritization of Stakeholder Value Using Metrics . 74
Lindsey Brodie and Mark Woodman

ProMISE: A Process Metamodelling Method for Information Systems
Engineering . 89

Charlotte Hug, Agnès Front, and Dominique Rieu

Investigating the Use of Object-Oriented Design Patterns in
Open-Source Software: A Case Study . 106

Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stamelos

Requirements Engineering via Non-monotonic Logics and State
Diagrams . 121

David Billington, Vladimir Estivill-Castro, René Hexel, and
Andrew Rock

Towards a Better Change Impact Analysis in Architecture Description
Languages . 136

Mohamed Oussama Hassan, Laurent Deruelle, Adeel Ahmad, and
Henri Basson

Common Languages for Web Semantics . 148
Seiji Koide and Hideaki Takeda

X Table of Contents

Generating Code for Associations Supporting Operations on Multiple
Instances . 163

Mayer Goldberg and Guy Wiener

Know How and Know What for Software Processes 178
Jan Kožusznik, Svatopluk Štolfa, Marie Duž́ı, Michal Košinár, and
Martina Čı́halová

A Model Based Testing Approach for Model-Driven Development and
Software Product Lines . 193

Beatriz Pérez Lamancha, Macario Polo Usaola, and
Mario Piattini Velthius

Large-Scale Agile Software Development at SAP AG 209
Joachim Schnitter and Olaf Mackert

Systems Evolution and Software Reuse in OOP and AOP 221
Adam Przyby�lek

Automatic Assignment of Work Items . 236
Jonas Helming, Holger Arndt, Zardosht Hodaie,
Maximilian Koegel, and Nitesh Narayan

UDeploy: A Unified Deployment Environment . 251
Mariam Dibo and Noureddine Belkhatir

Author Index . 265

Pluggable Programming Language Features
for Incremental Code Quality Enhancement

Bernhard G. Humm and Ralf S. Engelschall

Darmstadt University of Applied Sciences, Darmstadt, Germany
Capgemini, CSD Research, Munich, Germany

bernhard.humm@h-da.de, ralf.engelschall@capgemini.com

Abstract. Evolutionary prototyping is an incremental software development
method in which a proof of concept is, step by step, extended towards the fi-
nal product. This article pleads for a programming approach termed “incremental
code quality enhancement” when developing software incrementally. However,
current programming languages are not well suited for incremental code qual-
ity enhancement. They are inflexible regarding their use of language features
like typing, access control, contracts, etc. In some languages, the programmer
is forced to use them, in others he may not. This article introduces pluggable
programming language features, a concept that allows greater flexibility for ap-
plication programmers without losing control over the use of those features. The
approach is demonstrated exemplary by interface specifications for a business in-
formation system.

Keywords: Programming language features, Aspects, Flexibility, Evolutionary
prototyping, Plug-in.

1 Introduction

Flexibility is one of the most basic and important design goals in software engineering
[8] [21]. Flexibility allows for adaptation of applications to different and possibly vary-
ing needs. This not only applies to the resulting application, but also to the tools for
creating them.

However, when analyzing current programming languages and their features con-
cerning their flexibility of use, the result is rather disappointing. Consider just the fol-
lowing two examples.

– Current mainstream programming languages like C/C++, Java, and C# are all stat-
ically typed. Static typing is mandatory there and the programmer has no flexibil-
ity as to omit type specifications where sensible. Contrarily, dynamic languages
like Smalltalk, Scheme, Python and PHP are all dynamically typed and the pro-
grammer has no option whatsoever to explicitly specify type declarations statically
where sensible.

– Access control in Java is mandatory. For all classes, interfaces and members, ac-
cessibility must be declared (public, protected, private or package local as default).
The programmer has no option of omitting access control specifications where sen-
sible. On the other hand, declaring access control for packages is not possible at

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 B.G. Humm and R.S. Engelschall

all in Java. Also, in dynamic languages like Smalltalk, explicit access control on
class and method level is not possible. The programmer has no option of specifying
access control where sensible.

This inflexibility causes a number of problems:

Coding Overhead. In many industrial software projects, the implementation technol-
ogy is pre-defined, e.g., Java. Implementing application parts like scripts, code
generators, or data migration routines — for which scripting languages are most
suitable — in Java result in unnecessary coding overhead due to mandatory lan-
guage features, whose use is not necessary in this context.

Poor Quality. Contrarily, implementing critical application parts in a dynamic lan-
guage like Smalltalk may reduce quality — in this case safety — due to missing
compile-time checks [18].

One might argue that in such a case, the language choice is simply wrong and an
industrial strength language like Java should have been used. This leads us to the
next problem.

Incremental Development Impeded. In many project situations it is sensible to de-
velop software incrementally [16], e.g., with evolutionary prototyping [6,2,9,10].
This means that an application or a part of it is quickly prototyped first and then,
incrementally, the code quality is being enhanced. If the target application is crit-
ical and an industry-scale language like Java is chosen, then quick prototyping is
impeded due to many mandatory language features.

The overall picture, today, is that programming languages define a fixed set of features
that are to be used. The programmer has no flexibility as to use less strict features where
acceptable or even to specify more advanced features where necessary, e.g., access con-
trol on package level in Java.

To alleviate those problems, we plead for a concept that we call “pluggable pro-
gramming language features” and argue from the application programmer’s point of
view, i.e., from the view of the user of a programming language. Pluggable program-
ming language features are particularly useful for a development method which we call
“incremental code quality enhancement”.

The article is structured as follows. Sect. 2 motivates for the topic with a discus-
sion on typing. In Sect. 3 we present the concept of pluggable programming language
features. Sect. 4 and 5 present a sample application and a research prototype of the
concept. Sect. 6 introcudes incremental code quality enhancement and how this can be
achieved via pluggable programming language features. Sect. 7 discusses the results.
Sect. 8 concludes this article.

2 Static versus Dynamic Typing

In statically typed programming languages, variables and operation parameters are as-
signed a type which is checked at compile type. In contrast, in dynamically typed
languages type checks are performed at run-time. While typing is only one of many

Pluggable Programming Language Features 3

programming language features, there is, currently, a strong correlation between dy-
namically typed and RAD languages and statically typed and mainstream application
development languages, respectively. Languages that allow static as well as dynamic
typing are rare. Examples are VisualBasic, Perl6, Common Lisp (in part), and, recently,
C# 4.0.

The differences between statically and dynamically typed languages are sometimes
exaggerated as “language war”. Advocates of static typing claim:

– Earlier detection of programming mistakes, e.g. preventing adding an integer to a
boolean

– Better documentation in the form of type signatures, e.g. incorporating types of
arguments when resolving operation names)

– More opportunities for compiler optimizations, e.g. replacing virtual calls by direct
calls when the exact type of the receiver is known statically

– A better design time developer experience, e.g. via auto-completion by the devel-
opment environment

Advocates of dynamic typing claim:

– Higher coding efficiency since the resulting code is less verbose
– Higher expressiveness via language features like closures, typically found in dy-

namically typed languages
– Better reusability since variables and operations are not (unnecessarily) restricted

in use by types

Language wars are not at all necessary – we fully agree with Meiyer and Drayton in
their article “Static Typing Where Possible, Dynamic Typing When Needed: The End
of the Cold War Between Programming Languages” [18].

Typing is only one aspect of a whole spectrum of contracts [19] between providers
and users of components – all with the purpose of reducing errors and, therefore, in-
creasing quality. But why stop with typing? We claim that every intrinsic aspect of an
operation should be expressed explicitly as part of the contract and should be checked
as early as possible: value restrictions, pre- postconditions, invariants, exceptions, usage
protocol, etc.

In contrast, statically typed languages allow – and even require – to specify the types
of all parameters but do not provide language features to specify more1. Static typing
alone seems like an arbitrary point in the whole spectrum – for some interfaces it may
be adequate to specify constraints more strictly, for others less.

While the adequate degree of contract specification relates to the application in its fi-
nal, production-ready state, we add another dimension to the argument: the development
time. In early development stages, particularly during prototyping, it is not necessary
to specify full-featured contracts. The demand for precise contracts increases gradually
during the development process.

1 Eiffel does allow for specifying pre- and postconditions but Eiffel is, currently, not in
widespread use.

4 B.G. Humm and R.S. Engelschall

3 Pluggable Programming Language Features

Before introducing the concept of pluggable programming language features, we need
to distinguish two kinds of programming language features.

Core programming language features are essential for implementing applications at
all. Examples are objects, classes, operations, variables, and control constructs like
loops.

Additional programming language features specify aspects of core language fea-
tures. Examples are access control for classes, type declaration of variables, and
pre- and postconditions of operations. Additional language features are not essen-
tial in the sense that it is possible to implement applications without using addi-
tional programming language features.

Only additional programming language features may be pluggable. For a program-
ming language to adhere to the concept of pluggable programming language features
we postulate the following requirements.

Optional Language Features. The language must allow for implementing applica-
tions without using any additional programming language features at all. In par-
ticular, static typing must not be mandatory.

Independent Language Features. The language must allow for specifying additional
programming language features independently and to check for their conformance
at an adequate point in time. In particular, static type checking must be possible.

Extensible Language Features. The programming language must be extensible to al-
low for the implementation of new additional language features.

Language Feature Configuration. The programming language must allow for con-
figuring the use of additional language features in an application or parts of them.
The use may be enabled mandatory or optionally, or disabled. Enabled language
features will be checked, e.g., by the compiler.

In total, the concept allows for plugging in additional language features, either pre-
defined ones or new ones. Arbitrary use of language features is avoided via language
feature configuration.

We see two major use cases for pluggable programming language features.

Customizing Features According to Requirements. Pluggable programming lan-
guage features allows system architects to customize a programming language with
respect to the quality requirements of an application to be developed. Depending on
the criticality, more language features may be plugged in — even additional ones
that have not been pre-defined in the programming language. The configuration
enforces the use of those language features by the programmers.

Customizing Features per Development Stage. Pluggable programming language
features allows for efficient incremental software development, particularly with
evolutionary prototyping. In an early stage of development, additional language
features may be omitted completely by programmers. This allows for rapid proto-
typing. Such a rapid prototype may be used to get user feedback quickly, as well as

Pluggable Programming Language Features 5

checking for architectural integrity of the application. Gradually, the code quality
of the application may be enhanced by plugging in additional language features.
Language feature configuration gives control over this process. For different stages
in the development process, e.g., “Proof of Concept”, “Alpha Release”, “Beta Re-
lease”, and “Final Product”, specific language features may be enforced.

We now demonstrate the concept via a research prototype and its use via a sample
application that focuses on the second use case, namely customizing features per devel-
opment stage.

4 Example Domain: Customer Management Component
Interfaces

4.1 Customer Management

We demonstrate pluggable programming language features exemplary via interfaces
for a customer management component of a business information system. We use the
term component as a functionally coherent unit of software with specified interfaces
(provided and required). An interface represents the external view of a component.
It consists of operations. An operation provides functionality of a component. It is
specified via syntax (signature) and semantics (behavior). See, e.g., [22].

Our example is the create-customer operation with parameters name, address,
and date-of-birth for adding a new customer object to a customer management data
store. The example seems trivial but may be quite complex in practice. For instance,
address may be checked for validity syntactically as well as semantically via city map
data.

4.2 Interface Specification Aspects

An interface is specified by a name and its operations. An operation’s signature is min-
imally specified by its name and the parameter names. Additionally, the following as-
pects may be specified:

– Access control, e.g., public, private
– Parameter mode: input, output, input/output
– Parameter obligation: mandatory, optional (e.g., expressed by null values)
– Parameter types, e.g., primitive types like Integer and complex types like
Customer

– Type restrictions, e.g., only positive Integer values for a bank transfer. Note: Type
restrictions may be implemented as separate types, e.g., Positive-Integer

– Pre- and postconditions: constraints before and after operation execution, respec-
tively — e.g., date-of-birth < now. Note: parameter modes, obligations, types
and type restrictions may all be specified as pre- and postconditions

– Exceptions: specification of exceptional situations that are externally visible, e.g.,
duplicate customer

– Side effects specification, e.g., read-only, modifying

6 B.G. Humm and R.S. Engelschall

Fig. 1. Language Feature Configuration

– Semantics documentation: specification of the operation’s behavior and documen-
tation of its parameters, usually informally in prose. Note: pre- and postconditions
are part of the semantic specification, too

– Parameter Documentation: describing the meaning of the operation parameters
– Non-functional characteristics: specifying (formally or informally) performance

and other non-functional characteristics

Generally speaking, for a production-grade business information system, the more com-
plete the interface specification, i.e., the more intrinsic information is specified explic-
itly, the better.

4.3 Language Feature Configuration

Consider, for instance, the development stages “Proof of Concept”, “Alpha Release”,
“Beta Release”, and “Final Product”. Then, language features may be assigned to the
development stages as shown in Fig. 1. For the proof of concept, operation names and
parameter names are sufficient. For Alpha Release and Beta Release, the architect de-
mands additional language features like parameter typing, visibility, and exceptions.
For the final product, full documentation is mandatory.

In the following section, we describe language features for specifying some of the
interface specification aspects exemplary.

5 Language Features for Interface Specification

5.1 Research Prototype in Lisp

We have chosen Lisp2 [17] as the implementation language for our research prototype
to demonstrate pluggable programming language features.

The following features make Lisp ideal for experimenting with language extensions:

Typing. Lisp is dynamically typed yet provides a powerful type system as well as fea-
tures for object-oriented programming.

2 More specifically: Allegro Common Lisp, a professional implementation of the ANSI Com-
mon Lisp standard.

Pluggable Programming Language Features 7

Code is Data. Lisp has a minimalistic syntax with the list as the basic data structure.
Lists are not only used to express application data but also to express Lisp code
itself. This makes it particularly convenient to transform Lisp programs via Lisp
programs.

Macro Processor. The built-in macro processor allows introducing new language fea-
tures efficiently and with limited effort.

Unlike Java and C#, Lisp does not provide an explicit language feature for interfaces.
But as in other languages like C++, the concept may be emulated.

We have implemented a custom macro define-function that extends the basic
built-in defun macro for defining an operation. define-function is a real extension
of defun in the sense that it accepts all declarations of defun but, additionally, optional
aspects.

In the next sections, we show some of the language features exemplary step by step
by means of the example create-customer, thereby incrementally enhancing code
quality by the use of pluggable language features.

5.2 Operation and Parameter Naming

In the simplest form (development stage “Proof of Concept”), the name of an operation
and its parameter names are specified only.

(define-function create-customer (name address date-of-birth))

This expression declares the operation create-customerwith input parameters name,
address, and date-of-birth. No additional language features need to be specified
at this stage.

5.3 Parameter Typing

The type of an input parameter (necessary for development stage “Alpha Release”) is
specified via the keyword :type in a list per parameter. The type of the operation result
(out parameter) is specified via the keyword :result-type in an options list following
the parameter list.

(define-function create-customer
((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))

(:result-type Customer))

The parameter name is of type Structured-Name, the parameter address of type
Structured-Address, etc.

8 B.G. Humm and R.S. Engelschall

5.4 Pre- and Postconditions

Pre- and postconditions (necessary for development stages “Beta Release” and “Final
Product”) are specified via the keywords :pre and :post in the options list, followed
by a Lisp boolean expression that can be evaluated at run-time.

(define-function create-customer
((name :type Structured-Name)
(address :type Structured-Address)
(date-of-birth :type Date))

(:result-type Customer
:pre (is-valid? address)
:pre (lies-in-past? date-of-birth)
:pre "No duplicate of previously created customer"
:post (get-id result)))

The first precondition is satisfied if the operation is-valid? with the actual parameter
address evaluates to true. This checks for valid addresses. lies-in-past? checks
whether the birth date is plausible. The third pre-condition regarding duplicate check-
ing is treated as an informal comment. The postcondition specifies that the resulting
Customer object contains a non-nil identifier.

5.5 Documentation of Semantics

To document the semantics of the operation and the input and output parameters, the
keywords :documentation and :result-documentation are used in the options
list and the parameters lists.

(define-function create-customer
((name :type Structured-Name

:documentation "Customer name consists of ...")
(address :type Structured-Address

:documentation "Postal address consists of ...")
(date-of-birth :type Date

:documentation "Customer birth date"))
(:result-type Customer

:result-documentation "New Customer object"
:pre (is-valid? address)
:pre (lies-in-past? date-of-birth)
:pre "No duplicate of previously created customer object"
:post (get-id result)

:documentation "Creates a new Customer object"))

5.6 Additional Language Features

Analogously, we have implemented the following additional language features: access
control, modes, obligations, exception specification, and non-functional characteristics.
None of those are natively provided in the core language feature set of Lisp. With our
extensions, application programmers may optionally and independently use all of those
additional programming language features.

Pluggable Programming Language Features 9

5.7 Conformance Checking

It is not enough to provide language features for specifying interface aspects — the
specification conformance has to be checked, too. Therefore, we have implemented the
macro define-function to generate conformance checks. Type specifications are, if
possible, checked at compile time. Pre- and postconditions are checked at runtime. All
specification aspects are compiled into the built-in function documentation of Lisp.

But checking the specified aspects is only one kind of conformance check. The macro
also checks the conformance of the application code with the language feature config-
uration during compilation. In case of violations, warnings are being generated. For
example, static parameter type checking is enforced from development stage “Beta Re-
lease” on as in any statically typed language like Java.

Note: not all all conformance checks can be fully automated. For example, a confor-
mance checker can not decide whether or not there are meaningful preconditions for an
operation.

The architect can configure the conformance levels per application or per application
parts, e.g., components, and adapt the configuration over development time. Developers
get direct feedback whether their code complies to the current conformance level.

6 Incremental Code Quality Enhancement

6.1 Code Quality

Software engineering [8,5], in essence, aims at developing high-quality software at rea-
sonable cost. Software quality [15] can be assessed via quality models like ISO 9126
[11] and has internal and external aspects. Internal aspects address the application de-
veloper via ease of development and maintenance. Code quality is an important internal
aspect which is produced during programming.

In a software development project, the implementation usually is based on an upfront
design of a particular architecture. Unfortunately, during implementation one often has
to discover deficiencies in this architecture the first time: insufficient separation of con-
cerns, cyclic dependencies, inconsistent interfaces, unsuitable couplings, violated lay-
ering, etc. To really fix these kinds of deficiencies, an extensive refactoring [7] would
be required. Due to time and budget constraints this is either refused and the resulting
software is shipped in time but with lower quality, or it is performed and the result-
ing high-quality software causes the the project to suffer from time and budget overrun.
High-quality results and reasonable costs are two contrary goals which are hard to bring
into balance.

6.2 Incremental Software Development

One can tackle the problem in advance in two ways: either by investigating more into the
design discipline to avoid expensive refactorings at all, or by following an incremental
software development approach where “merciless refactoring” [1] results in small and
less expensive steps all the time. The latter approach is a central aspect in agile soft-
ware engineering methods [16,12]. One variant is evolutionary prototyping [6]. In evo-
lutionary prototyping, an application is implemented prototypically first as a proof of

10 B.G. Humm and R.S. Engelschall

Code quality in-breadth (architecture, consistency)

in
-d
ep
th
(d
et
ai
l,
pr
ec
is
io
n)

Target code quality

Inc
rem
ent
s

ove
r de
velo

pm
ent
tim
e

A

B

C

Component A
Interface A.1
Operation A.1.1 (in1,

in2..)
begin
….
end

Operation A.1.2 (in1,
in2, ..)

begin
….

low high

lo
w

hi
gh

I1

In

I3I2
...

Fig. 2. Code Quality Dimensions

concept which is then, incrementally, refined towards the final product, thus constantly
enhancing code quality. Evolutionary prototyping may reduce development time and
costs while improving user involvement. While evolutionary prototyping is not suitable
for all kinds of software projects, its benefits have been proven in numerous projects of
different sizes [2,9,14,10].

But how to incrementally enhance code quality in evolutionary prototyping effec-
tively and efficiently during implementation? To answer this question, we distinguish
two dimensions (see Fig. 2) of internal code quality [11].

In-breadth code quality concerns the structural consistency of the entire application,
i.e., the application architecture. Example: conformance of application components
to a layer concept.

In-depth code quality concerns correctness and precision of code in detail. Example:
specification and validation of an operation’s pre-condition.

We plead for optimizing in-breadth internal code quality before in-depth internal
code quality during incremental development (see Fig. 2). This allows for effective and
efficient quality enhancement – for the following reasons.

Efficiency. Optimizing in-breadth quality of relatively small code reduces the costs for
refactoring [7] compared to refactoring voluminous code with all details imple-
mented and documented already. For example, splitting a component that does not
conform to a layering concept may induce a a lot of refactoring if all operations
have already been implemented in detail.

Pluggable Programming Language Features 11

Effectiveness. In-breadth code quality can be optimized largely independently of de-
tails. E.g., conformance to a layering concept is independent of individual pre-
conditions. Thus, the effectiveness is not compromised by optimizing in-breadth
quality before in-depth quality.

6.3 A Method for Incremental Code Quality Enhancement

When developing incrementally, particularly via evolutionary prototyping, then the ar-
chitect and the programmers should proceed according to the following method.

1. Select a programming language and programming environment that fulfills the re-
quirements from Sect. 3.

2. Define a language feature configuration according to the quality requirements of
the final product. Provide automatic conformance validators where feasible and
economically worthwhile.

3. Define language feature configurations for development stages and possibly per ap-
plication part (e.g., component). Provide automatic conformance validators where
feasible and economically worthwhile.

4. Develop the application incrementally. Develop a prototype quickly and with as
little effort as possible. Spend sufficient time for optimizing in-breadth code quality
and this way improve the architecture.

5. Continue incrementally implementing the application, optimizing in-depth code
quality. Control the quality of the increments via conformance checks.

6. Put the application into operation only after the conformance checks for the final
product have passed.

6.4 Pluggable Programming Langauge Features and Incremental Code Quality
Enhancement

In a way, incremental code quality enhancement “happens” implicitly in most software
development projects, today. However, it is not explicitly and as vigorously pursued in
a controlled manner as described in the method above. Pluggable programming lan-
guage features ideally support incremental code quality enhancement. This is because
language features can be added optionally and independently during development and,
at the same time, there is full control via language feature configurations.

7 Discussion

7.1 Evaluation

This article is a plea for pluggable programming language features. We cannot empir-
ically prove the usefulness of the approach. However, our confidence stems from our
long-time experience in developing large-scale business information systems and the
promising results of our research prototype and sample implementation. Furthermore,
we qualitatively justify our approach by evaluating it and the sample implementation
against the problems identified in Sect. 1.

12 B.G. Humm and R.S. Engelschall

Coding Overhead. Pluggable programming language features allow to reduce coding
overhead by omitting unnecessary language features in certain application contexts,
like scripts, code generators, or data migration routines. A language switch towards
a scripting language is not necessary since the programming language itself offers
the necessary flexibility.

Poor Quality. Pluggable programming language features allow critical applications to
be implemented in a strict manner thus improving code quality. Not only language
features common in industrial-strength programming languages can be used. Addi-
tionally, even more strict language features may be plugged in. Examples are pre-
and postconditions or advanced access control which extends towards packages and
components.

Incremental Development Impeded. Pluggable programming language features par-
ticularly boost incremental application development, e.g., with evolutionary proto-
typing. An application or a part of it may be quickly prototyped first and then, in-
crementally, the code quality may be enhanced (incremental code quality enhance-
ment). Language feature configuration prevents arbitrary use of language features
at the programmers’ goodwill. Certain quality levels at certain development stages
can be enforced.

7.2 Language Support Today

Current programming languages, both in industry and academia, only poorly support
pluggable programming language features. Today, there is a strict demarcation of lan-
guages focusing either on rapid application development (RAD) or on industry scale
development.

Industry Scale Languages, Statically Typed. Languages like Java and C# are cur-
rently in mainstream use for developing large-scale, high-quality applications. They
are all statically typed and are not well suitable for rapid application development
(RAD). More advanced features like pre- and postconditions are not directly pro-
vided and may only indirectly be provided, e.g.,via byte-code injection.

RAD Supporting Languages, Dynamically Typed. RAD supporting languages like
Perl, Smalltalk, Python, Ruby, Groovy, Scala and F#, conversely, are currently not
in mainstream use for developing industry-scale applications. They are either used
for throw-away prototyping or for developing special-purpose applications like web
sites. Most of them are dynamically typed and do not allow for static typing. Lan-
guage features may possibly be added – e.g., with Lisp macros as demonstrated in
this article – but this is not commonly done.

Hybrid Typing Languages. A few languages like VisualBasic, Perl 6 and Lisp (par-
tially) exist that allow for static as well as dynamic typing. They also allow, in
limited ways, for extending the language by new quality features. Neither is in
mainstream use. However, with C# 4.0, the first mainstream programming language
has recently incorporated dynamic typing optionally — one important step towards
pluggable programming language features.

Pluggable Programming Language Features 13

7.3 Related Work

In [18], Meijer and Drayton plead for typing as a pluggable programming language
feature. We extend their point of view in three ways. Firstly, we regard typing as one
language feature only. Although most important, it represents only one point in a whole
spectrum between flexible prototype development and extremely strict development of
critical applications. Secondly, we allow for true plugging of programming language
features in the sense that new features may be added to the language. Finally, we add the
concept of language feature configuration which gives control over the use of language
features.

The comparison with Bracha’s article “Pluggable Type Systems” [3] is similar. His
implementation of Strongtalk [4] on the basis of Smalltalk is an example of a pluggable
language feature, namely typing.

With the Scala programming language [20], Odersky targets at scalability and flex-
ibility, too. He tries to reduce the set of language features as much as possible and,
instead, provides features in libraries. However, on the level of additional language fea-
tures like typing and access control, Scala is still inflexible. Scala uses type inference
to ease the programmer from the burden of specifying types unnecessarily often but is
still statically typed at any time.

Finally, we see a strong relationship between Aspect-Oriented Programming (AOP)
[13] and pluggable programming language features. While not inherently tied to it, AOP
in practice is used for implementing functionality for the end-user like, e.g., logging.
On the other hand, pluggable programming language features target the application pro-
grammer by addressing internal code quality like maintainability, stability, reliability,
etc. Hence, our approach follows the tradition of AOP, but with a different focus.

8 Conclusions and Future Work

In this article, we plead for pluggable programming language features, a concept that
adds flexibility to programming languages. It allows for using or omitting programming
language features with full control via language feature configurations. It is particularly
suited for incremental code quality enhancement, a development method in which in-
breadth code quality is optimized before in-depth code quality.

We demonstrated the concept via a research prototype and a sample application in
Lisp. While the concept has obvious benefits, it is not well supported by current pro-
gramming languages. Furthermore, we agree with Meijer and Drayton, who identify
a “huge cultural gap” between the communities of statically and dynamically typed
languages [18].

However, we see a new trend towards dynamic programming languages in the last
decade that are implemented on top of mainstream platforms. Examples are implemen-
tations of Python, Ruby, Groovy, and Scala on the Java Platform or F# and C# 4.0 on
the .NET platform. Furthermore, there are a number of Lisp implementations on the
Java platform, e.g., ABCL, Clojure, Jatha, and CLForJava.

This may allow for pluggable language features and incremental code quality en-
hancement to eventually break through — for two reasons. Firstly, the technical inte-
gration of languages of different styles eases the implementation of pluggable language

14 B.G. Humm and R.S. Engelschall

features. Optional typing in C# 4.0 is a perfect example for that. Secondly, a grow-
ing community of programmers who are proficient in both language styles will help
closing the cultural gap. Additionally, if mainstream languages already had real sup-
port for pluggable programming language features, the necessity for numerous special
languages would be reduced.

Our plea for pluggable programming language features and incremental code quality
enhancement is from the application programmers’ point of view. We see future work in
the following areas. Pluggable programming language features need to be implemented
in programming languages on top of mainstream platforms. Integrated development
environments need to support pluggable programming language features, particularly
their configuration. Experience needs to be gained in industrial projects of different
sizes.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison
Wesley, Reading (2005)

2. Berger, H., Beynon-Davies, P., Cleary, P.: The Utility of a Rapid Application Development
(RAD) approach for a large complex Information Systems Development. In: Proceedings of
the 13th European Conference on Information Systems (ECIS 2004), Turku, Finland (2004)

3. Bracha, G.: Pluggable type systems. In: OOPSLA Workshop on Revival of Dynamic Lan-
guages (2004)

4. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a production environment.
In: Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Languages and Ap-
plications, OOPSLA 1993 (1993)

5. Broy, M., Jarke, M., Nagl, M., Rombach, H.D.: Dagstuhl-Manifest zur Strategischen Bedeu-
tung des Software Engineering in Deutschland. In: Perspectives Workshop Dagstuhl, Ger-
many (2006)

6. Floyd, C.: A systematic look at prototyping. In: Approaches to Prototyping, pp. 1–18 (1984)
7. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Longman

Publishing Co., Inc., Boston (1999)
8. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice

Hall PTR, Upper Saddle River (2002)
9. Gordon, V.S., Bieman, J.M.: Reported Effects of Rapid Prototyping on Industrial Software

Quality (1993)
10. Hekmatpour, S.: Experience with evolutionary prototyping in a large software project. SIG-

SOFT Softw. Eng. Notes 12(1), 38–41 (1987)
11. ISO. TR 9126-4: Software Quality (2004),

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752
12. Kelter, U., Monecke, M., Schild, M.: Do we need ’agile’ Software Development Tools? In:

NetObjectDays (2002)
13. Kiczales, G., Lamping, J., Mendhekar, Videira Lopes, C., Loingtier, J.-M., Irwin, J.: Aspect-

Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997. LNCS, vol. 1241,
Springer, Heidelberg (1997)

14. Lichter, H., Schneider-Hufschmidt, M., Züllighoven, H.: Prototyping in industrial software
projects—bridging the gap between theory and practice. In: ICSE 1993: Proceedings of the
15th International Conference on Software Engineering, pp. 221–229. IEEE Computer Soci-
ety Press, Los Alamitos (1993)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752

Pluggable Programming Language Features 15

15. Liggesmeyer, P.: Software-Qualität. Testen, Analysieren und Verifizieren von Software.
Spektrum Akademischer Verlag (2002)

16. Martin, R.C.: Agile Software Development, Principles, Patterns, and Practices. Prentice Hall,
Englewood Cliffs (2002)

17. McCarthy, J.: Recursive Functions of Symbolic Expressions and Their Computation by Ma-
chine, Part I. Communications of the ACM 3(4), 184–195 (1960)

18. Meijer, E., Drayton, P.: Static Typing Where Possible, Dynamic Typing When Needed. In:
Workshop on Revival of Dynamic Languages (2005)

19. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall, Inc., Upper Sad-
dle River (1988)

20. Odersky, M.: An Overview of the Scala Programming Language: EPFL Technical Report
IC/2004/64 (2004)

21. Sommerville, I.: Software Engineering, 7th edn. International Computer Science Series. Ad-
dison Wesley, Reading (2004)

22. Szyperski, C.: Component software. Addison-Wesley, Harlow (1998)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 16–30, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Survey on How to Manage Specific Data Quality
Requirements during Information System Development

César Guerra-García, Ismael Caballero, and Mario Piattini Velthius

Alarcos Research Group, Department of Information Technologies and Systems,
University of Castilla-La Mancha, Paseo de la Universidad 4, Ciudad Real, Spain

CesarArturo.Guerra@alu.uclm.es
{Ismael.Caballero,Mario.Piattini}@uclm.es

Abstract. More and more companies and organizations currently consider that
supporting the data in their Information Systems (IS) with an appropriate level
of quality is a critical factor for making sound decisions. This has motivated the
inclusion of specific mechanisms during IS development, which allow the data
to be managed and ensure acceptable levels of quality. These mechanisms
should be implemented to satisfy specific data quality requirements which are
defined by a user at the moment of using an IS functionality. Since our ultimate
research goal is to establish that these mechanisms are necessary for the
management of data quality in IS development, we first decided to conduct a
survey on related methodological and technical issues in order to determine the
current state-of-the-art in this field. This was achieved through the use of a
systematic review technique. This paper presents the principal results obtained
after conducting the survey, in addition to the principal conclusions reached.

Keywords: Data quality, Requirements specification, Systematic literature
review.

1 Introduction

Several authors have reported problems caused by inadequate levels of data quality
(DQ) in the use of IS [1]. These problems may negatively affect an organization’s
performance and additionally involve, among other things, certain types of damage,
manifested as an increasingly higher cost in economical terms [2-7]. Once
organizations become aware of this situation, they are willing to eradicate these kinds
of problems in order to avoid losses.

As an approach towards obtaining data with adequate levels of quality, and
consequently reducing the chance of losses, Karel et al. stated that it is necessary to
implement mechanisms by means of specific Data Quality Software [8]. The
capabilities of Data Quality Software include data cleansing, standardization,
matching, merging, enrichment and data profiling. However, these solutions are
“post-mortem”, and although widely used, they are costly to buy and to implement. In
addition, they are not focused on specific users’ data quality requirements, which
could embrace different data quality dimensions, such as those proposed by Strong et
al. in [9] or those that appear in ISO/IEC 25012 [10]. However, they are solely

 A Survey on How to Manage Specific Data Quality Requirements 17

focused on what are commonly called intrinsic requirements such as completeness, or
accuracy. The latter are necessary but are not sufficient for a broader kind of related
data quality problems, in which data quality requirements go beyond these intrinsic
data quality dimensions, as Wang et al. demonstrate in [11].

We propose that, if possible, these kinds of problems require preventive action
(such as avoiding storing data which are not reliable or believable) rather than
corrective actions (such as the use of data cleansing tools). We agree that corrective
actions are necessary [12], but they imply greater costs to organizations (e.g. the time
and money needed to execute cleansing processes on data that could already be used
within a business process), in which unproductive and out-of-time costs might be
incurred for nothing.

The goal of our research is, therefore, to discover how to identify and introduce the
appropriate mechanisms by implementing preventive actions at the point-of-entry of
organizational IS software. These mechanisms might make it possible to attain a
trade-off between preventive and “post-mortem” corrective action, thus minimizing
investment or unnecessary costs.

We are conscious that preventive mechanisms must exist as part of the IS
development, which requires bringing together specific software requirements with
specific data quality requirements for the software being developed: it is important to
delimit how software can be enhanced in order to satisfy new data quality
requirements. To achieve this goal, we must first identify existing proposals (both
methodological and technological) that have dealt with some kind of solution for the
introduction of DQ requirements management as part of IS software development.

In order to conduct a rigorous and complete survey, we decided to use Systematic
Review (SR) techniques to attain a strict view of the relevant literature. More
precisely, we decided to follow the formal Systematic Review protocol template
proposed by Biolchini et al. in [13], since it is one of the most widely used techniques
in the field of Software Engineering.

An SR focuses on integrating empirical research with the aim of creating
generalizations. This integration challenge involves specific objectives which allow
the researcher to critically analyze the data found, thus resolving conflicts in the
literary material involved and identifying aspects which need to be researched in the
future. The descriptions of the different phases of Biolchini et al.’s protocol are:

1. Planning, which primarily focuses on defining the research objectives, the
selection of information sources, and the definition of the inclusion and
exclusion criteria of studies.

2. The Execution phase, which focuses on the selection and evaluation of the
studies found, along with extracting information from the selected studies.

3. The results analysis phase, which is responsible for analyzing and presenting
the results according to the different criteria and perspectives defined above
that will facilitate their understanding and subsequent use.

Fig. 1 shows the principal phases of this protocol.

18 C. Guerra-García, I. Caballero, and M. Piattini Velthius

Fig. 1. Main phases of Biolchini et al.’s protocol

In summary, it could be said that the principal contribution of this paper is, on one
hand, to show the results of the execution of an instance of this protocol for dealing
with the specification and modeling of DQ requirements; and on the other hand, the
consequent conclusions reached after analysing these results.

We have structured the paper into several sections, each of which corresponds with
the steps in the different phases of Biolchini et al.’s protocol. . The paper concludes
with a section presenting our conclusions, and with an Appendix containing
information about the most important works found.

2 Planning the Systematic Review

The expected outcome of the SR is a presentation of the state-of-the-art of existing
research proposals for the specification and modelling of DQ requirements, published
in the resources available. Once the results have been obtained, the principal
beneficiaries of this work will be those people related to software development, such
as: systems analysts, designers, programmers and project managers, in addition to
academics and researchers related to the data quality area, and other relative areas
such as quality in Information Systems and Requirements Engineering.

2.1 Question Formularization

The research question which has motivated the SR is: “Are there any works that
propose mechanisms (both methodological and technological) for the specification,
representation and incorporation of data quality requirements during the process of
developing an Information System?”

According to Biolchini et al.’s protocol, and in order to seek a response to our
research question, we elaborated a list with keywords, which could be used when
querying the different search engines of the bibliographic resources in hand. These
keywords are shown in Table 1.

 A Survey on How to Manage Specific Data Quality Requirements 19

Table 1. Keywords

Data Quality Dimension Data Quality Metadata
Data Quality Requirement Data Quality Framework
Data Quality Metamodel Data Quality Methodology
Data Quality Modeling Data Quality Dimension
Data Quality Representation

2.2 Resource Selection

In this section, we show the set of criteria for the selection of resources, the search
methods and the specification of the search strings (based on the aforementioned
keywords) used in the SR protocol. According to the recommendations of experts in
the SR field, the searches should be conducted by using the search engines in the
electronic databases of leading publishers. We have also added several specialized
resources to the set of these databases: on the one hand, since it is the most important
conference in the field, we have included the conference proceedings of the
“International Conference on Information Quality” (ICIQ, http://mitiq.mit.edu/) since
it is the most important international event in the DQ area; and on the other hand we
have included the contents of the only two journals dealing with this area:
International Journal of Information Quality “IJIQ” and Journal of Data and
Information Quality “JDIQ” (note that the search in both journals was carried out
manually). All of these resources contain works of great importance, and most of
them offer search engines. The complete list of resources is presented in Table 2.

Table 2. List of resources

ACM Digital Library
IEEE Computer Society
International Conference on Information Quality (ICIQ)
Science Direct
Wiley InterScience
International Journal of Information Quality (IJIQ)
Journal of Data and Information Quality (JDIQ)

Upon considering the list of keywords mentioned above (see Table 1), and

combining them through the logical connectors “AND” and “OR” we decided to coin
the following search string: (“Data Quality”) AND (“requirements” OR
“dimensions” OR “Metamodel” OR “Modeling” OR “Model” OR “metadata” OR
“framework” OR “Methodology” OR “Modelling” OR “representation” OR
“accuracy” OR “completeness” OR “consistency” OR “credibility” OR
“currentness” OR “accessibility” OR “compliance” OR “confidentiality” OR
“efficiency” OR “precision” OR “traceability” OR “understandability” OR
“availability” OR “portability” OR “recoverability”).

Please note that the syntax of the search string may differ according to the specific
requirements of the different search engines of the available resources. It is worth
noting that it was decided incorporate each of the different DQ dimensions defined in

20 C. Guerra-García, I. Caballero, and M. Piattini Velthius

ISO/IEC 25012 standard in a particular way, with the aim of broadening the range of
the search. Table 3 describes each of the data quality dimensions proposed by this
standard.

Table 3. Data Quality dimensions proposed by standard ISO/IEC 25012

Dimension Description
Inherent

Accuracy
The degree to which data have attributes that correctly represent the true value of the
intended attribute of a concept or event in a specific context of use.

Completeness
The degree to which subject data associated with an entity have values for all
expected attributes and related entity instances in a specific context or use.

Consistency
The degree to which data have attributes that are free from contradiction and are
coherent with other data in a specific context of use.

Credibility
The degree to which data have attributes that are regarded as true and believable by
users in a specific context of use.

Currentness
The degree to which data have attributes that are of the right age in a specific
context of use.

Inherent and system dependent

Accessibility
The degree to which data can be accessed in a specific context of use, particularly
by people who need supporting technology or a special configuration owing to a
disability.

Compliance
The degree to which data have attributes that adhere to standards, conventions or
regulations in force and similar rules relating to data quality in a specific context of
use.

Confidentiality
The degree to which data have attributes that ensure that they are only accessible
and interpretable by authorized users in a specific context of use.

Efficiency
The degree to which data have attributes that can be processed and provide the
expected levels of performance by using the appropriate amounts and types of
resources in a specific context of use.

Precision
The degree to which data have attributes that are exact or that provide discrimination
in a specific context of use.

Traceability
The degree to which data have attributes that provide an audit trail of access to the
data and of any changes made to the data in a specific context of use.

Understanda-
bility

The degree to which data have attributes that enable them to be read and interpreted
by users, and are expressed in appropriate languages, symbols and units in a specific
context of use.

System dependent

Availability
The degree to which data have attributes that enable them to be retrieved by
authorized users and/or applications in a specific context.

Portability
The degree to which data have attributes that enable them to be installed, replaced or
moved from one system to another, thus preserving the existing quality in a specific
context of use.

Recoverability
The degree to which data have attributes that enable them to maintain and preserve a
specified level of operations and quality, even in the event of failure, in a specific
context of use.

2.3 Studies Selection

Once the resources in which we intended to carry out the searches had been selected,
we defined the procedure for selecting the studies, which also included criteria for the
inclusion and exclusion of the studies (works) found during the SR.

The procedure used to select studies was basically as follows: initially a researcher
read only the title and the abstract of the set of papers found in each of the searches in

 A Survey on How to Manage Specific Data Quality Requirements 21

order to select the most relevant studies from each set. After an initial coarse-grained
filtering, the researcher analyzed the complete article, deciding which works she or he
judged to be unsuitable since they did not make a particularly notable contribution to
the DQ requirement field. A list of those studies that were considered to be very
important (typically named primary studies) was then made. Once this list was
considered to be complete, other researchers with a higher expertise in the field were
encouraged to verify that the studies actually did provide important knowledge with
regard to that area.

The procedure for the selection of primary studies consists of an iterative and
incremental process. It is said to be iterative because some of the main activities such
as searching, reading and information extraction are carried out for each of the
selected resources. What is more, if a search does not produce a minimal set of
results, it is possible that the search string must be progressively refined to obtain
more accurate results. It is said to be incremental, because we perform the searches to
extract information from a set of potential studies that grows from scratch until the
completion of the Systematic Review. In our case, the first author of the paper
presented here acted as a researcher, and the remaining authors were those who had
greater expertise in the area of DQ.

The inclusion and exclusion criteria defined for this work are explained below. We
considered that a work could be included in the results of the SR (namely Inclusion
criteria) if, and only if:

- The articles described proposals or strategies for the specification and/or
modelling of data quality requirements as a software specification.

- The articles were written in English.
- There was an analysis of the title, keywords and summary of each of the

studies found.
- There were no restrictions with regard to the date of publication.

On the contrary, we considered that works should not be included in the results of
the SR (namely Exclusion criteria), if:

- They did not propose any methodology, strategy or model (or metamodel) with
which to specify data quality requirements.

As a result of the application of these criteria, we were able to decide which studies
found by the searchers could be considered as primary studies.

3 Execution of the Selection

After executing the search procedure on the different resources, a total of 820 studies
were found (once different versions of the same works had been eliminated). After
applying the inclusion and exclusion criteria, only 42 were considered to be
important, while only 8 were eventually considered as primary studies by the
experimental researchers. Table 4 summarizes a report of our findings.

22 C. Guerra-García, I. Caballero, and M. Piattini Velthius

Table 4. Distribution of studies by resource

 Studies
Resources Search Date Found Relevant Primary
ACM Digital Library Sept ´10 164 6 4
IEEE Computer Society Sept ´10 169 9 1
ICIQ Oct ´10 44 7 2
JDIQ Oct ´10 12 0 0
IJIQ Oct ´10 34 0 0
Science Direct Nov ´10 100 16 1
Wiley InterScience Nov ´10 297 4 0
 Total 820 42 8

Of all the studies reviewed, only the following were considered as primary studies:

1. Toward quality data: An attribute-based approach [14].
2. Data Quality Requirements Analysis and Modeling [15].
3. A flexible and generic data quality metamodel [16].
4. IP-UML: Towards a Methodology for Quality Improvement Based on the IP-MAP

Framework [17].
5. A Product Perspective on Total Data Quality Management [18].
6. DQRDFS: Towards a Semantic Web Enhanced with Data Quality [19].
7. Quality Views: Capturing and Exploiting the User Perspective on Data Quality

[20].
8. A Data Quality Metamodel Extension to CWM [21].

Once the primary studies had been identified, the next step was to extract the relevant
information (e.g. technology used, model representation or a proposed methodology)
from each one of them. A form with which to better guide this process of extracting
relevant information was designed. All the information from the studies is shown in
Tables 6 to 13, in the Appendix.

4 Analysis of Obtained Results

Once the information had been extracted from all the primary studies, our principal
aim was to address the usability of the primary studies identified in accordance with
our interest in discovering proposals dealing with methodological and technological
issues. In this section, we show the results of the corresponding analysis. It is worth
highlighting that the number of proposals is significantly poor in comparison to the
degree of interest that data quality and the information quality field has motivated in
recent years. Our concern about this led us to enquire of various DQ researchers and
practitioners from different countries and organizations why we had not found more
works. Most of them agreed that since data quality is dealt with as a specific issue
rather than an organizational issue, many organizations are not yet aware of the
possible benefits of our research topic. Most of the researchers interviewed also
agreed that the topic is quite relevant because the results could help organizations that
develop software to improve the usability of their products at a relatively low cost.

 A Survey on How to Manage Specific Data Quality Requirements 23

Table 5 summarizes the information extracted from each proposal: the technology
or data model used, the existence of a tool or prototype supporting it, the
methodology proposed, the inclusion of an example or study case, and reports
concerning whether the proposed results have already been tested in a real
environment.

Table 5. Relevant information from selected studies

Studies Model Tool Methodology Example Tested
Data Quality Requirements Analysis
and Modeling [15]

Relational No No Yes No

Toward quality data: An attribute-
based approach [14]

Relational No No Yes No

A Product Perspective on Total Data
Quality Management [18]

Relational Yes No Yes No

IP-UML: Towards a Methodology
for Quality Improvement Based on
the IP-MAP Framework [17]

Object
Oriented

Yes No Yes No

Quality Views: Capturing and
Exploiting the User Perspective on
Data Quality [20]

XML No No Yes No

A flexible and generic data quality
metamodel [16]

Relational No No Yes No

A Data Quality Metamodel
Extension to CWM [21]

Object
Oriented

No No No Yes

DQRDFS: Towards a Semantic Web
Enhanced with Data Quality [19]

XML No No Yes No

Upon studying the analysis in greater depth, we noted that none of the existing

works provide a methodology for obtaining and managing DQ requirements. We had
hoped to find a methodology that could, at some point, lead analysts and developers
to implement a correct management of data quality requirements from the earliest
stages, and throughout the process of developing an Information System. This lack of
works addressing methodological and technological issues consequently motivates the
challenging research goal of depicting a methodology with which to manage data
quality software requirements and combine them with other requirements. On the
other hand, and with regard to the technology used, we concluded that since many
different kinds of applications could be developed by using different kinds of
technologies, some sort of generalization should be used in order to make different
kinds of developments possible. This generalization can be achieved by working with
models and metamodels. Our most important conclusion in relation to this issue is,
therefore, that we should consider the foundations of Model Driven Engineering,
MDE [22] and Model Driven Architecture, MDA [23]. The greatest motivation for
this is to better generalize our findings so that they will be valid for any kind of
possible development by using the same concepts concerning data quality
requirements.

It is also worth highlighting that once all the studies found had been analyzed, we
discovered that none of them showed a clear and specific definition of the term “DQ
Requirement”. This concept is only mentioned by Wang et al. in [15]. However, its
definition is focused on specifying certain indicators of quality that should be related

24 C. Guerra-García, I. Caballero, and M. Piattini Velthius

to certain data at the moment of modeling. The definition of this term is, therefore,
mandatory if we are to gain a better understanding of it and its subsequent
applicability.

In order to coin this concept, we first considered the definition of “software
requirement” published in the IEEE 610.12-1990 standard [24]:

1. A condition or capability needed by a user to solve a problem or achieve an
objective.

2. A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally
imposed documents.

3. A documented representation of a condition or capability as in 1 or 2.

These definitions cover the points of view of both users and developers. The ISO/IEC
25012 standard is also focused on data quality as part of a computational system and
it defines quality characteristics for the data used by users and others software
systems [10].

After analyzing the above definitions, we thus propose to define a “DQ
requirement” as follow: “the specification of a set of dimensions or characteristics of
DQ that a set of data should meet for a specific task performed by a determined user”.

At present, our principal purpose is to define a DQ software requirement which
satisfies the specific needs of quality in the data that each user requires at a specific
moment to carry out his/hers tasks or functionalities with an Information System.

5 Conclusions

Conducting an SR is a highly intensive task in comparison to that of a conventional
literature search. However, if the complete protocol of an SR is followed step by step,
then a better validation of the results is generated, and the efforts are worthwhile. The
principal goal of this paper is to show the results obtained after the application of the
protocol, along with the conclusions reached after carrying out an SR to discover how
well the management of data quality requirements (at both the methodological and
technological levels) is dealt with in specialized literature. After analyzing the results,
it is evident that there is a need for new proposals dealing with methodological issues,
owing to the scarcity of existing initiatives aimed at this particular area.
Technological issues must be also dealt with. To do this, we can conclude that MDA
foundations might be the best environment in which to carry out research into this
area.

In this respect, we are currently working on a proposal for a methodology and a
metamodel in order to specify, analyze and model DQ-specific requirements. We are
considering the incorporation of elements for the management of DQ requirements
from the early stage, and their propagation throughout the entire development cycle of
any kind of software.

Acknowledgements. This research is part of the PEGASO-MAGO (TIN2009-13718-
C02-01), and IQMNet (TIN2010-09809-E (subprogram TIN)) projects, both of which
are supported by the Spanish Ministerio de Educación y Ciencia, ENGLOBAS

 A Survey on How to Manage Specific Data Quality Requirements 25

(PII2I09-0147-8235), and TALES (HITO-2009-14), both supported by the Consejería
de Educación y Ciencia of Junta de Comunidades de Castilla-La Mancha.

References

1. Caballero, I., et al.: IQM3: Information Quality Maturity Model. Journal of Universal
Computer Science 14, 1–29 (2008)

2. Eppler, M., Helfert, M.: A Classification and Analysis of Data Quality Costs. In:
International Conference on Information Quality. MIT, Cambridge (2004)

3. Laudon, K.C.: Data Quality and Due Process in Large Interorganizational Record System.
Communications of the ACM 29(1), 4–11 (1986)

4. Mehmood, K., Si-Said, S., Comyn-Wattiau, I.: Data Quality Through Conceptual Model
Quality - Reconciling Researchers and Practitioners through a Customizable Quality
Model. In: International Conferece on Information Quality, ICIQ 2009, Potsdam, Germany
(2009)

5. Thi, T.T.P., et al.: InfoGuard: A Process-Centric Rule-Based Approach for Managing
Information Quality. In: European Research Consortium for Informatics and Mathematics
ERCIM, pp. 55–56 (2010)

6. Reuters, T., Lepus: Thomson Reuters And Lepus Survey Reveals Data Quality and
Consistency Key to Risk Management And Transparency (2010)

7. Wang, R., Storey, V., Firth, C.: A Framework for Analysis of Data Quality Research.
IEEE Transactions on Knowledge and Data Engineering 7(4) (1995)

8. Karel, R., Moore, C., Coit, C.: Forrester’s report for Business Process and Application
Professionals on Trends 2009: Master Data Management, Forrester (2009)

9. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data Quality in Context. Communications of the
ACM 40(5), 103–110 (1997)

10. ISO-25012, ISO/IEC 25012: Software Engineering-Software product Quality
Requirements and Evaluation (SQuaRE)-Data Quality Model (2008)

11. Wang, R., Strong, D.: Beyond accuracy: What data quality means to data consumers.
Journal of Management Information Systems 12(4), 5–33 (1996)

12. Bertino, E., Dai, C., Kantarcioglu, M.: The Challenge of Assuring Data Trustworthiness.
In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp.
22–33. Springer, Heidelberg (2009)

13. Biolchini, J.C.D.A., et al.: Scientific research ontology to support systematic review in
software engineering. Advanced Engineering Informatics 21(2), 133–151 (2007)

14. Wang, R.Y., Reddy, M., Kon, H.: Towards quality data: An attribute-based approach.
Journal of Decision Support Systems 13(3-4), 349–372 (1995)

15. Wang, R.Y., Madnick, S.: Data Quality Requirements: Analysis and Modelling. In: Ninth
International Conference on Data Engineering (ICDE 1993). IEEE Computer Society,
Vienna (1993)

16. Becker, D., McMullen, W., Hetherington-Young, K.: A Flexible and Generic Data Quality
Metamodel. In: International Conference on Information Quality (2007)

17. Scannapieco, M., Pernici, B., Pierce, E.: IP-UML: Towards a Methodology for Quality
Improvement Based on the IP-MAP Framework. In: International Conference on
Information Quality, ICIQ 2002 (2002)

18. Wang, R.Y.: A Product Perspective on Total Data Quality Management. Communications
of the ACM 41(2), 58–65 (1998)

26 C. Guerra-García, I. Caballero, and M. Piattini Velthius

19. Caballero, I., et al.: DQRDFS:Towards a Semantic Web Enhanced with Data Quality. In:
Web Information Systems and Technologies, Funchal, Madeira, Portugal (2008)

20. Missier, P., et al.: Quality views: capturing and exploiting the user perspective on data
quality. In: Proceedings of the 32nd International Conference on Very Large Data Bases,
vol. 32 (2006)

21. Gomes, P., Farinha, J., Trigueiros, M.J.: A data quality metamodel extension to CWM. In:
Proceedings of the Fourth Asia-Pacific Conference on Comceptual Modelling, vol. 67, pp.
17–26. Australian Computer Society, Inc., Ballarat (2007)

22. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering. UPGRADE 2(2),
21–24 (2004)

23. OMG, MDA Guide Version 1.0.1., Object Management Group, p. 62 (2003)
24. IEEE, IEEE Std 610.12-1990 IEEE Standard Glossary of Software Engineering

Terminology -Description (1990)
25. Shankaranarayan, G., Wang, R.Y., Ziad, M.: IP-MAP: Representing the Manufacture of an

Information Product. In: Fifth International Conference on Information Quality (ICIQ
2000). MIT, Cambridge (2000)

26. Ballou, D.P., Wang, R.Y., Pazer, H.: Modelling Information Manufacturing Systems to
Determine Information Product Quality. Management Science 44(4), 462–484 (1998)

27. Bernes-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
Singapore (2001)

28. OMG. Common Warehouse Metamodel (CWM) Specification v1.1. (2003), (cited October
2008) http://www.omg.org/docs/formal/03-03-02.pdf (Consulted: 29-09-
2008)

Appendix

Table 6. Primary study by Wang et al. [15]

Data Extraction of the Study

Publication
Richard Wang, Henry Kon, and Stuart Madnick. April, 1993. Data Quality
Requirements Analysis and Modeling. In: Proceedings of the Ninth International
Conference of Data Engineering. Austria.

Objective Results of the Study

Proposal

The article is focused on: (1) establishing a set of premises, terms and definitions for
the management of DQ, and (2) developing a step by step methodology for defining
and documenting DQ parameters for users. The requirements analysis methodology
proposed by the authors is based on two principal approaches:

- Specification of labels needed for users with the objective of assessing, determining
or improving data quality.

- Obtaining, from the user viewpoint, the general aspects of DQ non-sensitive to
labeling, for example, the features of completeness and response time.

A series of views (view of application, view of parameters and quality view) is also
proposed which should be included as part of the documentation of quality
requirements specification, the authors jointly refer to a list of possible data quality
candidates.

Results Methodology for collecting and documenting data quality requirements.
Model It uses a “Relational” type of model.
Used
methodology

None.

Difficulties There is no definition and standardization of quality dimensions.

 A Survey on How to Manage Specific Data Quality Requirements 27

Table 7. Primary study by Becker et al. [16]

Data Extraction of the Study

Publication
David Becker, William McMullen y Kevin Hetherington-Young. November, 2007. A
flexible and generic data quality metamodel. In: Proceedings of the 12th. International
Conference on Information Quality, ICIQ 2007. U.S.A.

Objective Results of the Study

Proposal

Analyze and describe three generic metamodels mentioning some of their most
important capabilities: Common Warehouse Metamodel (CWM), Data Warehouse
Quality (DWQ) and Universal Meta Data Model.
The authors propose an architecture and a basic metamodel for DQ, which meets the
objectives of adequately providing flexibility, generality and ease of use of the
requirements in situations of potential use. This metamodel adequately represents the
information products (IP), data objects, and metrics, measurements, requirements,
evaluations and actions of DQ.

Results Proposal for architecture and a generic metamodel for DQ.
Model It uses a “Relational” type of model.
Used
methodology

None.

Difficulties No mention of any.

Table 8. Primary study by Wang et al. [14]

Data Extraction of the Study

Publication
Richard Wang, Reddy, M., Kon, H.. March, 1995. Toward quality data: An attribute-
based approach. In: Journal of Decision Support Systems. U.S.A.

Objective Results of the Study

Proposal

The authors propose a quality perspective using labeled data in a cell level with
quality indicators, which are objective characteristics of the data and its
manufacturing process. Based on these indicators, the user can evaluate the quality of
data for a specific application. The authors additionally investigate how these quality
indicators can be specified, stored, retrieved and processed. They propose a data
model based on attributes, query algebra and integrity rules that facilitate cell-level
tagging, along with data processing of the application that is augmented with quality
indicators.

Results
A methodology for analyzing data quality requirements based on an entity-
relationship model, for the specification of the types of quality indicators to be
modelled.

Model It uses a “Relational” type of model.
Used
methodology

None.

Difficulties

Study and research object-oriented approach, since the relational model that
represents the schema of quality may be restrictive. An object-oriented approach
seems simpler to model the data and its quality indicators, because many of the
quality control mechanisms are oriented towards procedures and this approach could
manage them without any problem.

28 C. Guerra-García, I. Caballero, and M. Piattini Velthius

Table 9. Primary study by Wang [18]

Data Extraction of the Study

Publication
Richard Wang. February, 1998. A Product Perspective on Total Data Quality
Management. In: Communications of the ACM. U.S.A.

Objective Results of the Study

Proposal

This article presents the Total Data Quality Management (TDQM) methodology,
whose main purpose is to deliver High quality information products (IP) to information
consumers, along with introducing the concepts of TDQM cycle and information
products. It explains the stages of the TDQM related to the information products:
Definition, Measurement, Analysis and Improvement, with particular emphasis on
defining the characteristics of information products and quality requirements of the
information. The author also shows a software tool with which to conduct surveys to
assess the quality of information, with which it may be possible to evaluate a list of
quality dimensions defined by the author.

Results
It shows the TDQM methodology and illustrates how it can be put into practice in a
wide range of organizations.

Model It uses a “Relational” type of model.
Used
methodology

None.

Difficulties None.

Table 10. Primary study by Caballero et al. [19]

Data Extraction of the Study

Publication

Ismael Caballero, Eugenio Verbo, Coral Calero y Mario Piattini . May, 2008.
DQRDFS: Towards a Semantic Web Enhanced with Data Quality. In: 4th.
International Conference on Web Information Systems and Technologies, WEBIST
´08. Portugal.

Objective Results of the Study

Proposal

This article introduces a new view of the Semantic Web, based on the concept of
quantity of data quality (QDQ), in which DQ aspects are used as a base to enable
machines to process documents from the Semantic Web for different activities such as
information retrieval or document filtering. The Semantic Web is an extension of the
current Web in which the information is provided with a well-defined meaning, thus
enabling computers and people to cooperate [27]. This article has a twofold goal: (1)
it shows the readers a brief introduction to DQ, and (2) it shows how the DQ
fundamentals have been applied with the aim of highlighting the quality of Web
documents for the Semantic Web. The first step in order to permit DQ in the semantic
web is to identify the set of elements that need to be studied from the User
Requirements Specification for the DQ (DQ-URS). The second step is to identify the
DQ dimensions and their related metadata. The third step is to obtain and record the
values for the metadata. This information is represented by using XML-type
documents.

Results It shows a proposal of the concept of QDQ oriented towards the Semantic Web.
Model It uses the XML language (Extensible Markup Language) for its representation.
Used
methodology

None.

Difficulties None.

 A Survey on How to Manage Specific Data Quality Requirements 29

Table 11. Primary study by Missier et al. [20]

Data Extraction of the Study

Publication

Paolo Missier, Suzanne Embury, Mark Greenwood, Alun Preece y Binling Jin.
September, 2006. Quality Views: Capturing and Exploiting the User Perspective on
Data Quality. In: International Conference on Very large databases, VLDB ´06.
Korea.

Objective Results of the Study

Proposal

This article presents a quality user-centered model and a software environment, which
domain experts can use to easily and rapidly code and test their own heuristics quality
criteria. As a core of the model, they propose the concept of "quality view", similar to
customized "lenses”, through which the data can be observed. The main contributions
of this work are: (1) An extensible semantic model for the user for concepts of quality
information in e-science. (2) A process model and a declarative language with which
to specify abstract views of quality in terms of a few logical operators. (3) An
architecture for implementing quality views within many data processing
environments.

Results
It proposes a framework for specifying requirements for quality processing by the
user, called "quality views".

Model It uses the XML language (Extensible Markup Language) for its representation.
Used
methodology

None.

Difficulties None.

Table 12. Primary study by Gomes et al. [21]

Data Extraction of the Study

Publication
Pedro Gomes, José Farinha, Maria José Trigueiros. February, 2007. A Data Quality
Metamodel Extension to CWM. In: 4th. Asia-Pacific Conference on Conceptual
Modelling, APCCM 2007. Australia.

Objective Results of the Study

Proposal

This paper proposes a metamodel for data quality and data cleaning, both concepts
being applicable to the context of data warehouses. This metamodel is integrated with
the “Common Warehouse Metamodel” [28],thus providing an extension of this
standard towards data quality. It also provides a set of modelling guidelines for the
storage of formal specifications of DQ rules. The main purpose of the metamodel is to
provide support to profiling and data cleaning activities, with rules that can be
established with the aim of detecting data quality problems. It also establishes data
cleaning solutions. In relation to data cleaning, a “metadata” holder is provided, with
the objective of enabling the ultimate goal of achieving the highest possible level of
automation. However, a metadata support is also provided when the user’s
participation is required in the cleaning process.

Results
It displays a metamodel for quality and data cleaning, both concepts being applied to
the context of data warehouses.

Model It uses an “Object Oriented” type of model.
Used
methodology

None.

Difficulties None.

30 C. Guerra-García, I. Caballero, and M. Piattini Velthius

Table 13. Primary study by Scannapieco et al. [17]

Data Extraction of the Study

Publication

Monica Scannapieco, Barbara Pernici y Elizabeth Pierce. November, 2002. IP-UML:
Towards a Methodology for Quality Improvement Based on the IP-MAP Framework.
In: Proceedings of the Seventh International Conference on Information Quality,
ICIQ´02. U.S.A.

Objective Results of the Study

Proposal

It proposes a UML profile for data quality in order to sustain the quality improvement
within an organization. This profile is based on the IP-MAP Framework [25], but
differs from it, mainly because: (1) it specifies the artifacts for production during the
improvement process in terms of diagrams drawn using UML elements defined in the
data quality profile, (2) it uses the IP-MAP not only to evaluate the quality and think
about the improving actions, but also as a schematic means to design and implement
improving actions. The IP-MAP is an extension of a Information Manufacturing
System (IMS) proposed by [26]. This Framework has the advantage of combining
both data analysis and process analysis, with the aim of assessing the quality of the
data. The data quality profile consists of three different models: Data Analysis Model,
Quality Analysis Model and Quality Design Model. The data analysis model specifies
which data are important to consumers because their quality is critical to
organizations’ success. The quality analysis model consists of modelling the elements
that permit the representation of the data quality requirements, a quality requirement
can be related to a dimension of quality or features that are typically defined for data
quality. The quality design model incorporates the perspective of IP-MAP, which
helps in understanding the details associated with the manufacturing process of the
information products.

Results
Shows a profile and a methodology for producing UML artifacts designed by the data
quality profile.

Model It uses an “Object Oriented” type of model.
Used
methodology

None.

Difficulties None.

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 31–44, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Constructing a Catalogue of Conflicts among
Non-functional Requirements

Dewi Mairiza and Didar Zowghi

School of Software, Faculty of Engineering and Information Technology,
University of Technology, Sydney (UTS), Australia

{Dewi.Mairiza,Didar.Zowghi}@uts.edu.au

Abstract. Non-Functional Requirements (NFRs) are recognized as a critical
factor to the success of software projects because they address the essential
issue of software quality. NFRs tend to interfere, conflict, and contradict with
one another and this conflict is widely acknowledged as one of the key
characteristics of NFRs. Several models of NFRs conflicts have been proposed
and the interacting nature of NFRs has been characterized as either positive or
negative inter-relationships among NFRs. Positive relationship represents a pair
of NFRs that are supporting each other while negative relationship represents
those NFRs that are conflicting with one another. Furthermore, as NFRs are
also relative, the interpretation of NFRs may vary depending on many factors
such as the context of the system being developed and the extent of
stakeholders’ involvement. The multiple interpretations of NFRs may lead to
positive or negative inter-relationships that are not always obvious. These
relationships may change depending on the meaning of NFRs in the system
being developed. Hence, the existing potential conflicts models remain in
disagreement with one other. This paper presents the result of an extensive and
systematic investigation of the extant literature over the notion of NFRs and the
conflicts among them. Rigorous synthesis of the carefully reviewed literature
has resulted in the construction of a catalogue of NFRs conflicts with respect to
NFRs relative characteristic. The relativity of conflicts is characterized by three
categories: absolute conflict; relative conflict; and never conflict. This
comprehensive catalogue could assist software developers with identifying the
NFRs conflicts, performing conflicts analysis, and suggesting potential
strategies to resolve these conflicts.

Keywords: Non-functional requirements, Relationship, Conflict, Relative,
Catalogue.

1 Introduction

In the early eighties, the term Non-Functional Requirements (NFRs) was introduced
as those requirements that restrict the type of solutions that a software system might
consider [1]. However, although this term has been in use for almost three decades,
studies to date indicate that currently there is no general consensus in the software or
systems engineering community regarding the notion of NFRs. In the literature, the

32 D. Mairiza and D. Zowghi

term NFRs is considered within two different perspectives: (1) NFRs as the
requirements that describe the properties, characteristics or constraints that a software
system must exhibit; and (2) NFRs as the requirements that describe the quality
attributes that the software product must have [2].

In software development, NFRs are recognized as a critical factor to the success of
software projects. NFRs address the essential issue of the quality of the system [3-5].
Without well-defined NFRs, a number of potential problems may occur, such as a
software which is inconsistent and of poor quality; dissatisfaction of clients, end-
users, and developers toward the software; and causing time and cost overrun for
fixing the software [5]. NFRs are also considered as the constraints or qualifications
of the operations [6]. They place restrictions on the product being developed,
development process, and specify external constraints that the product must exhibit
[7]. Charette [8] claims that NFRs are often more critical than individual Functional
Requirements (FRs) in the determination of a system's perceived success or failure [9,
10]. Neglecting NFRs has led to a series of software failures. For example systemic
failure in London Ambulance System [11, 12], performance and scalability failure in
the New Jersey Department of Motor Vehicles Licensing System [13], failure in the
initial design of the ARPANet Interface Message Processor Software [14], and some
other examples as described in [11, 13-15].

Although NFRs are widely recognized to be very significant in the software
development, a number of empirical studies reveal that NFRs are often neglected,
poorly understood and not considered adequately in developing the software
applications. In the development of software systems, users naturally focus on
specifying their functional or behavioral requirements, i.e. the things the product must
do [5, 9]. NFRs are often overlooked in the software development process [3, 16]. A
number of studies investigating practices of dealing with NFRs in the software
industry also reported that commonly software developers do not pay sufficient
attention to NFRs [3, 16-18]. NFRs are not elicited at the same time and the same
level of details as the FRs and they are often poorly articulated in the requirements
documents [17, 18]. Furthermore, in the requirements engineering literature, NFRs
have received less attention and not as well understood as FRs [5]. Majority of
software engineering research, particularly within requirements engineering area only
deal with FRs, i.e. ensuring that the necessary functionality of the system is delivered
to the user [19]. Consequently, capturing, specifying, and managing NFRs are still
difficult to perform due to most of software developers do not have adequate
knowledge about NFRs and little help is available in the literature [20].

NFRs tend to interfere, conflict, and contradict with one another. Unlike FRs, this
inevitable conflict arises as a result of inherent contradiction among various types of
NFRs [3, 5]. Certain combinations of NFRs in the software system may affect the
inescapable trade offs [3, 9, 13]. Achieving a particular type of NFRs can hurt the
achievement of the other type(s) of NFRs. Hence, this conflict is widely
acknowledged as one of many characteristics of NFRs [5].

Prior studies reveal that dealing with NFRs conflicts is essential due to several
reasons [2]. First of all, conflicts among software requirements are inevitable [5, 21-
23]. Conflicting requirements are one of the three main problems in software
development in term of the additional effort or mistakes attributed to them [23]. A
study of two-year multiple-project analysis conducted by Egyed & Boehm [24, 25]

 Constructing a Catalogue of Conflicts among Non-functional Requirements 33

reports that between 40% and 60% of requirements involved are in conflict, and
among them, NFRs involved the greatest conflict, which was nearly half of
requirements conflicts [26]. Lessons learnt from industrial practices also confirm that
one of the essential aspects during NFRs specification is management of conflicts
among interacting NFRs [3]. Experience shows most systems suffer with severe
tradeoffs among the major groups of NFRs. For example: the tradeoffs between
security and performance requirements; or between security and usability
requirements. In fact, conflicts resolutions for handling NFRs conflicts often result in
changing overall design guidelines, not by simply changing one module [3].
Therefore, since conflicts among NFRs have also been widely acknowledged as one
of NFRs characteristics, managing these conflicts as well as making them explicit is
essential [19]. NFRs conflicts management is important for finding the right balance
of attributes satisfaction, in achieving successful software products [9, 13].

A review of various techniques to manage the conflicts among NFRs have been
presented in the literature [2]. Majority of these techniques provide a documentation,
catalogue, or list of potential conflicts. These catalogues represent the
interrelationships among various types of NFRs. Apart from strength and weaknesses
of each technique, however, NFRs are also relative [5]. This means that the
interpretation and importance of NFRs may vary depending on many factors, such as
the particular system being developed as well as the extent of stakeholder
involvement. NFRs can be viewed, interpreted, and evaluated differently by different
people and different contexts within which the system is being developed.
Consequently, the positive or negative relationships among them are not always
obvious. These relationships might change depending on the meaning of NFRs in the
context of the system being developed. Due to this relative characteristic of NFRs,
existing potential conflicts models that represent the relationship among NFRs are
often in disagreement with each other. For example, according to Wiegers [9]
efficiency requirements have negative relationship (conflict) with usability
requirements, but according to Egyed & Grünbacher [27] these two types of NFRs
have positive relationship (support). Given that none of the existing conflicts
catalogues deal with the relative characteristics of NFRs, we are motivated to pose the
following research question:

“Can a catalogue of conflicts among NFRs be developed with respect
to the relative characteristic of NFRs?”

The catalogue of conflicts with respect to the NFRs relative characteristic that has
been developed from a rigorous synthesis of the literature from several disciplines is
presented as the novel contribution of this paper. This catalogue is built as a two-
dimensional matrix that represents the conflict-relationships between various types of
NFRs, i.e. how each type of NFRs is associated with the other types of NFRs
considering the NFRs relative characteristic. The conflict-relationships are
represented in three categories: absolute conflict; relative conflict; and never conflict.

This article is organized in six sections. The first section is the introduction to
NFRs and conflicts among them. The second section describes the research
framework and source of information used in this study. The superset list of NFRs is
presented in section three continued by presenting the catalogue of NFRs conflicts in
section four. Section five describes the benefits and potential applications of the

34 D. Mairiza and D. Zowghi

conflicts catalogue in the software development projects. Then, section six concludes
this paper by highlighting some open issues that are acquired from the investigation.

2 Catalogue Framework

To get a significant and comprehensive snapshot of the NFRs conflicts model, an
extensive investigation of the literature over the last three decades has been
performed. This investigation was conducted by exploring the articles from academic
resources and documents from software development industry. Four general types of
sources of information have been identified: (1) journal papers; (2) conference
proceedings; (3) books; and (4) documents from software industry. Selection of those
sources is made in order to confirm the completeness of the information by obtaining
the academics and practitioners perspectives related to the notion of NFRs and
conflicts among them. The study conducted by Chung et al. [5] was used as the
starting point for selection of the papers to be reviewed.

Fig. 1. NFRs Types in the Literature

Our study has examined 182 sources of information. All of them are literatures
within the discipline of software engineering. They cover various issues of NFRs and
conflicts among them. The research articles reviewed are published in key journals
and conference proceedings of the software engineering literature, such as the Journal
of Systems and Software; IEEE Transaction on Software Engineering; IEEE
Software; Lecture Notes in Computer Science; Journal of Information and Software
Technology; Requirements Engineering Journal; Requirements Engineering
Conference, International Conference on Software Engineering, and Requirements
Engineering Foundations of Software Quality Workshop.

 Constructing a Catalogue of Conflicts among Non-functional Requirements 35

Each source was then systematically analyzed using content analysis technique.
Content analysis is a research technique that uses a set of procedures to make valid
inferences from texts or other meaningful matter [28, 29]. This technique is well
founded and has been in used for over sixty years. The analysis covers three essential
issues: the NFRs types, the definition and attributes1 of each type, and the conflict
interdependencies among them. Content analysis technique was selected because it
enables researchers to identify trends and patterns in the literature through the
frequency of keywords, and by coding and categorizing the data into a group of words
with similar meaning or connotations [29, 30]. Furthermore, this technique is also
applicable to all domain contexts [28, 31].

To develop a catalogue of NFRs conflicts, a research framework was followed.
This framework consists of three research stages:

(1) to create a comprehensive catalogue of NFRs types, their definition and
attributes characterization

(2) to identify the interdependencies among NFRs
(3) to perform a normalization process to standardize the NFRs in the conflicts

catalogue

Since there is no standard catalogue of NFRs types available in the literature and
previous studies [32-34] also claimed that many types of NFRs were introduced
without definition or attributes characterization, the first stage of the research was
creating a comprehensive catalogue of NFRs types. Each type of NFRs discussed in
the literature was recorded. The definitions and attributes correspond to each of NFRs
type were also documented. Conflicting terminologies and definitions were handled
through the frequency analysis technique and keywords identification.

Table 1. NFRs Types in the Initial Catalogue

NFRs Types

Accuracy Interoperability Reliability

Analyzability Legibility Reusability

Availability Maintainability Robustness

Compatibility Performance Safety

Confidentiality Portability Security

Dependability Privacy Testability

Expresiveness Provability Understandability

Flexibility Recoverability Usability

Functionality Verifiability

The second stage of the research was creating an initial catalogue of the conflicts

among NFRs. In this stage, NFRs conflict relationships were used as the criteria to
develop the catalogue. This stage was initiated by identifying the interdependencies

1 In this paper, the term attribute is considered as the major components of each NFRs type. In

the literature, attribute is also referred as NFRs subtype [5] or quality sub factors [4].

36 D. Mairiza and D. Zowghi

among various types of NFRs. These interdependencies represent the typical
interrelationships of a particular type of NFRs towards another type of NFRs (e.g.
positive, negative, or neutral interrelationships). This investigation produced the
initial catalogue that presents the conflict relationships among 26 types of NFRs.
These NFRs types are listed in Table 1.

Table 2. NFRs Definition and Attributes [34]

NFRs Definition Attributes

Performance

requirements that specify the
capability of software product to
provide appropriate performance
relative to the amount of resources
needed to perform full functionality
under stated conditions

response time, space, capacity,
latency, throughput, computation,
execution speed, transit delay,
workload, resource utilization,
memory usage, accuracy,
efficiency compliance, modes,
delay, miss rates, data loss,
concurrent transaction processing

Reliability

requirements that specify the
capability of software product to
operates without failure and
maintains a specified level of
performance when used under
specified normal conditions during a
given time period

completeness, accuracy,
consistency, availability, integrity,
correctness, maturity, fault
tolerance, recoverability,
reliability, compliance, failure
rate/critical failure

Usability

requirements that specify the end-
user-interactions with the system
and the effort required to learn,
operate, prepare input, and interpret
the output of the system

learnability, understandability,
operability, attractiveness, usability
compliance, ease of use, human
engineering, user friendliness,
memorability, efficiency, user
productivity, usefulness,
likeability, user reaction time

Security
requirements that concern about
preventing unauthorized access to
the system, programs, and data

confidentiality, integrity,
availability, access control,
authentication

Maintainability

requirements that describe the
capability of the software product to
be modified that may include
correcting a defect or make an
improvement or change in the
software

testability, understandability,
modifiability, analyzability,
changeability, stability,
maintainability compliance

The next stage was performing a normalization process against 26 types of NFRs

that have been identified in the initial catalogue. This normalization was conducted in
order to standardize the data obtained in the previous stage. Normalization is the
process of removing the irrelevant NFRs, i.e. the types of NFRs that do not have
definition and/or attributes, from the initial catalogue. The objective is to produce a
conflicts catalogue of the well-defined NFRs types. In this normalization, the
catalogue of NFRs types, their definitions, and their attributes are utilized as the basis

 Constructing a Catalogue of Conflicts among Non-functional Requirements 37

of removing those irrelevant NFRs. This process has removed six NFRs from the
initial catalogue. They are compatibility, expressiveness, legibility, provability,
verifiability and analyzability. Therefore, the final conflicts catalogue is a two-
dimensional matrix that represents the conflict interrelationships among 20 types of
“normalized” NFRs.

3 NFRs Types

Various authors (e.g. [5, 35, 36]) define the term NFRs as the requirements that
specify the desired quality attributes of the system. According to this definition, our
analysis of NFRs types in the literature has resulted in identification of 114 types of
NFRs. The superset list of these 114 NFRs types can be found in our previous
publication [34].

Legend:

1 Accuracy
2 Availability
3 Communicativeness
4 Compatibility
5 Completeness
6 Confidentiality
7 Conformance
8 Dependability
9 Extensibility

10 Installability
11 Integrity
12 Interoperability
13 Maintainability
14 Performance
15 Privacy
16 Portability
17 Provability
18 Reliability

19 Reusability
20 Safety
21 Scalability
22 Security
23 Standardizability
24 Traceability
25 Usability
26 Verifiability
27 Viability

Fig. 2. Mapping of Concerned NFRs and Types of Systems [34]

Further investigation to the superset list indicates that 23 NFRs types (20.18%)
have definition and attributes, 30 types (26.32%) only have definition, and the rest 61
types (53.50%) were introduced without definition or attributes. Since this finding
indicates that more than 50% of NFRs listed in the literature do not have any
definitions and attributes characterization, therefore, it confirms the previous claim

38 D. Mairiza and D. Zowghi

made by Glinz [32, 33] that stated that “in the literature, many NFRs were introduced
without definition or clarifying examples”. The detailed list of this classification is
presented in Fig. 1. In addition, the top five of the most frequently discussed NFRs
types in the literature are presented in Table 2 and the concerned NFRs in various
types of systems are presented in Fig. 2.

4 Catalogue of Conflicts

The catalogue of conflicts is a two-dimensional matrix that represents the typical
interrelationships among 20 types of normalized NFRs, in term of the conflicts
emerge among them. In this catalogue, the relativity of NFRs conflicts is presented in
three categories: absolute conflict; relative conflict; and never conflict (as presented
in Fig. 3).

• absolute conflict. this relationship represents a pair of NFRs types that are
always in conflict. In the catalogue, this conflict relationship is labeled as ‘X’.

• relative conflict. this relationship represents a pair of NFRs types that are
sometimes in conflict. It consists of all pairs of NFRs that are claimed to be in
conflict in a certain case but they are also claimed as not being in conflict in the
other cases. This disagreement occurs due to several factors, such as the
different interpretation/meaning of NFRs in the system being developed, the
context of the system, the stakeholders’ involvement, and the architectural
design strategy implemented in that system. In the conflicts catalogue, this type
of conflict relationship is labeled as ‘*’.

• never conflict. this relationship represents a pair of NFRs types that in the
software development projects are never in conflict. It consists of all pairs of
NFRs who have never been declared as being in conflict with each other. They
may contribute either positively (e.g. support [37] or cooperative [27]) or
indifferent to one another (e.g. low or very little impact on the other [9]).

Further analysis of the conflicts catalogue indicates that 36 pairs of NFRs are absolute
conflict (e.g. accuracy and performance; security and performance; and usability and
reusability); 19 pairs are relative conflict (e.g. reliability and performance; usability
and security; and performance and usability); and 50 pairs are never conflict (e.g.
accuracy and maintainability; security and accuracy; and usability and recoverability).
The rest of relationships are not known due to there is no information available in the
literature about how those pairs of NFRs contribute to each other. In the conflicts
catalogue, this unknown conflict is presented as “the blank spaces”.

Furthermore, this catalogue shows that NFRs with the most conflict with other
NFRs is performance. Performance has absolute conflict with accuracy, availability,
confidentiality, dependability, interoperability, maintainability, portability,
reusability, safety, security, and understandability, and it has relative conflict with
functionality, recoverability, reliability, and usability.

The investigation also indicates that certain attributes of a particular type of NFR
can be in conflict with each other. This conflict points to the self-conflicting
relationships for a particular type of NFR. Self-conflicting relationship is defined as a

 Constructing a Catalogue of Conflicts among Non-functional Requirements 39

situation where the attributes of a single type of NFRs are in conflict. One of the
examples is the relative conflict between performance and performance requirements.
Performance requirements can be characterized among others by “response time” and
“capacity”. In many systems, these two attributes are in conflict. For example in a
road traffic pricing system [38, 39], multi-user attribute2 has negative contribution to
the response time of the system. This means that increasing the number of concurrent
users in the system may diminish the response time of the system.

Fig. 3. Catalogue of Conflicts Among NFRs

Table 3. Conflicting NFRs in Literature

Conflicting NFRs Nature of Conflict %
Security and Performance absolute 33%

Security and Usability relative 23%

Availability and Performance absolute 20%

Performance and Portability absolute 17%

Reusability and Performance absolute 17%

Interoperability and Performance absolute 10%

Maintainability and Performance absolute 10%

Reliability and Performance relative 10%

Usability and Performance relative 10%

Usability and Reusability absolute 3%

2 In these papers [38, 39], the term “attribute” is considered as “concern”.

40 D. Mairiza and D. Zowghi

The investigation by using frequency analysis technique also indicates that conflict
between security and performance requirements are the most frequently conflicts
discussed in the literature. 33.33% of the reviewed articles talk about this conflict,
followed by conflict between security and usability requirements (23.33%) and conflict
between availability and performance requirements (20%). This result indicates that
those three types of conflicts (i.e. conflict between security and performance, between
security and usability, and between availability and performance) are the three most
frequent conflicts in the software projects and the most considered and essential to deal
with in the software development process. The top ten conflicting NFRs that are often
discussed in the literature are presented in Table 3.

5 Using the Catalogue

The catalogue of conflicts among NFRs, as presented in Fig. 3, extends and
complements previously published NFRs conflicts models. Our work focuses on the
extent and relativity of NFRs conflicts, that is, on negative links between NFRs and
their corresponding-levels. Most of the existing conflicts models in the literature,
however, concentrate on both positive and negative interrelationships. For example,
Wiegers [9] has developed a matrix that represents the positive and negative
relationships between particular type of NFRs; Egyed & Grünbacher [27] created a
model of potential conflicts and cooperations among NFRs; and Sadana & Liu [37]
have also defined conflict and support as the two types of contribution of a particular
type of NFRs on the other types of NFRs.

Utilizing our NFRs catalogue of conflicts in conjunction with the existing conflicts
models extends the overall understanding of how NFRs associate with each other
(positive or negative) and how this negative association can be characterized in term
of the relative characteristic of NFRs.

Software developers can use the conflicts catalogue to deal with various aspects of
managing the conflicts among NFRs. For example, the conflicts catalogue can be
used to identify which NFRs of the system that are really in conflict, including how
relative the conflict is. If the identified conflict is an “absolute conflict”, then software
developers may need to identify the potential strategies to resolve this conflict, such
as prioritization strategy. On the other hand, if it is a “relative conflict”, then software
developers need to understand and evaluate this particular NFRs in term of numerous
factors involve in the development project (e.g. the meaning of particular type of
NFRs in the context of the system being developed; the stakeholder involvement; or
system development methodology used in the project) in order to further investigate
whether those NFRs are really in conflict.

Furthermore, this catalogue can also be used to perform the NFRs conflicts
analysis. By using this catalogue in conjunction with the framework presented by
Sadana & Liu [37], software developers would be able to develop a structural
hierarchy of functional and non-functional requirements affected by each conflict
type. Therefore, this catalogue could further assist in the analysis of NFRs conflicts
from the perspective of functional requirements. By utilizing this catalogue in
conjunction with the “NFR Prioritizer” method presented by Mala & Uma [40], this
catalogue could assist software developers to analyze the tradeoffs among NFRs and

 Constructing a Catalogue of Conflicts among Non-functional Requirements 41

prioritize the NFRs. In term of analyzing the NFRs tradeoff, this catalogue can be
used as the basis to develop the “NFR Taxonomy” that will be used to identify the
type of relationships among NFRs. The NFR Taxonomy represents the conflicting or
dependable association between each NFRs type. The example of NFR taxonomy is
presented as follow [40]:

Usability#Accessibility+#Installability+#Operability+#Maintainability-

The above taxonomy represents that usability contributes positively to accessibility,
installability, operability while it also contributes negatively to maintainability. Then,
by combining the weight of user preference on each NFR type and the level of NFRs
tradeoff derived from the NFR Taxonomy, software developers would be able to
prioritize the NFRs of the system in term of the existence of conflicts among them.

Furthermore, this catalogue can also be used in conjunction with the “Trace
Analyzer” technique developed by Egyed & Grünbacher [27]. The aim of this
technique is to identify the true conflicts among NFRs of the system. By tracing the
relationships between the system test cases and the software program codes, trace
analyzer can characterize whether the conflicts listed in the NFRs conflicts catalogue
are “really in conflict” in the developed system.

In term of conflicts resolution, the proposed catalogue of conflicts can also be used
as the basis to execute a conflicts resolution technique. For example, by using this
catalogue in conjunction with the “Non-Functional Decomposition (NFD)”
framework developed by Poort & de With [41], software developers would be able to
decompose the NFRs of the system when the NFRs conflicts identified.

6 Conclusions

Majority of techniques to manage the conflicts among NFRs present the
documentation, catalogue, or list of potential conflicts. None of them deal with
relative characteristic of NFRs. This relative characteristic means that the
interpretation and importance of NFRs may vary depending on the particular system
being developed as well as the extent of stakeholders’ involvement. NFRs can be
viewed, interpreted, and evaluated differently by different people and different
contexts within which the system is being developed. Consequently, the positive or
negative interrelationships among them are not always obvious.

In this paper we presented a catalogue of conflicts among NFRs by considering
this relative characteristic. We presented the relativity of conflicts based on three
categories: absolute conflict; relative conflict; and never conflict. This distinction
would assist developers to perform further analysis of the identified conflicts and
investigate the potential strategy to resolve the conflicts.

Furthermore, this catalogue can also be used to identify the NFRs conflicts in
various phases of software development projects. For example, in the requirements
engineering phase, during the elicitation process, system analysts would be able to
identify which NFRs of the system will be in conflict and how relative this conflict is.
This analysis would allow developers to identify the conflicts among NFRs early, so
they would be able to discuss the potential conflicts with the system’s stakeholder
before specifying the software requirements. As another example, during the

42 D. Mairiza and D. Zowghi

architecture design process, system designers could be able to use this catalogue to
analyze the potential conflicts in term of the architectural decisions (e.g. layering,
clustering, and modularity). The relativity of conflict relationships presented in the
catalogue, would allow system designers to investigate the potential architecture
strategies to get the best solution based on the type of conflicts among NFRs.
Furthermore, by using this catalogue as the basis of conflicts identification, we can
adopt numerous existing conflicts analysis and conflicts resolution techniques
presented in the literature, such as [27, 37, 40, 41] to further investigate and evaluate
the NFRs conflicts. Some examples of the existing techniques and the potential
utilization of the catalogue in each technique have been described in Section 5 –
“Using the Catalogue”.

In the process of investigating conflicts and developing the conflicts catalogue, we
also identified 114 NFRs types listed in the literature. Among these 114 types, more
than 50% of the NFRs were introduced without any definition or attributes
characterization while only 20% were provided with definition and attributes. This
statistic and the list of NFRs types without definitions and attributes presented in this
paper are expected to encourage software engineering community, particularly
requirements engineering researchers to further investigate the unclear NFRs types
and establish the a clear concept of them.

Further research will focus on collecting data from software practitioners to
complete the catalogue. Those NFRs that have been removed from the initial
catalogue due to lack of definitions and/or attributes will also be further investigated
to improve the completeness of the catalogue. Also, the catalogue from industry can
be compared with the one developed from the content analysis.

Moreover, besides collecting data to improve the conflicts catalogue, we would
also perform further research on investigating the relative conflicts among NFRs. This
study would not only investigate how those NFRs dynamically generate conflicts with
each other in term of the system context, but also to develop a framework to assist
developers in identifying in which situations those NFRs are in conflict and in which
situations are not. The self-conflicting relationships will be covered in this study.

This study is conducted as part of a long term project of investigating conflicts
among NFRs. Findings of this investigation, especially the conflicts catalogue, will be
used as the basis to select those NFRs that are known to be frequently in conflict. The
ultimate goal is to develop an integrated framework to effectively manage the
conflicts between a pair of NFRs by considering the NFRs relative characteristic. This
framework should be able not only to identify the existence and the extent of
conflicts, but also to characterize and find the potential strategies to resolve the
conflicts.

In this study, we do not claim that the catalogue of conflicts presented is an
exhaustive and complete list. However, this catalogue represents what could be found
in the current literature. We propose to conduct further research to compare and
contrast our findings from the comprehensive review of research literature and the
state of the practice.

Acknowledgements. This paper is an extended version of [42]. We would like to
thank The International Schlumberger Foundation Paris for funding this research
through Faculty for the Future Award Program.

 Constructing a Catalogue of Conflicts among Non-functional Requirements 43

References

1. Yeh, R.T.: Requirements analysis - a management perspective. In: IEEE Computer
Software and Applications Conference (COMPSAC 1982), Los Alamitos, pp. 410–416
(1982)

2. Mairiza, D., et al.: Managing conflicts among non-functional requirements. In: 12th
Australian Workshop on Requirements Engineering (AWRE 2009), Sydney, Australia
(2009)

3. Ebert, C.: Putting requirement management into praxis: dealing with nonfunctional
requirements. Information and Software Technology 40, 175–185 (1998)

4. Firesmith, D.: Using quality models to engineer quality requirements. Journal of Object
Technology 2, 67–75 (2003)

5. Chung, L., et al.: Non-functional requirements in software engineering. Kluwer Academic
Publishers, Massachusetts (2000)

6. Mittermeir, R.T., et al.: Modern software engineering, foundations and current
perspectives. Van Nostrand Reinhold Co, New York (1989)

7. Kotonya, G., Sommerville, I.: Non-functional requirements (1998)
8. Charette, R.N.: Applications strategies for risk analysis. McGraw-Hill, New York (1990)
9. Wiegers, K.E.: Software requirements, 2nd edn. Microsoft Press, Washington (2003)

10. Sommerville, I.: Software Engineering, 7th edn. Pearson Education Limited, Essex (2004)
11. Breitman, K.K., et al.: The world’s a stage: a survey on requirements engineering using a

real-life case study. Journal of the Brazilian Computer Society 6, 1–57 (1999)
12. Finkelstein, A., Dowell, J.: A comedy of errors: the London ambulance service case study.

In: Eigth International Workshop Software Specification and Design, pp. 2–5 (1996)
13. Boehm, B., In, H.: Identifying quality-requirements conflict. IEEE Software 13, 25–35

(1996)
14. Boehm, B., In, H.: Aids for identifying conflicts among quality requirements. IEEE

Software (March 1996)
15. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE

Computer 26, 18–41 (1993)
16. Grimshaw, D.J., Draper, G.W.: Non-functional requirements analysis: deficiencies in

structured methods. Information and Software Technology 43, 629–634 (2001)
17. Heumesser, N., et al.: Essential and requisites for the management of evolution -

requirements and incremental validation. Information Technology for European
Advancement, ITEA-EMPRESS Consortium (2003)

18. Yusop, N., et al.: The impacts of non-functional requirements in web system projects.
International Journal of Value Chain Management 2, 18–32 (2008)

19. Paech, B., Kerkow, D.: Non-functional requirements engineering - quality is essential. In:
10th International Workshop on Requirements Engineering: Foundation for Software
Quality, pp. 27–40 (2004)

20. Lauesen, S.: Software requirements: styles and techniques. Addison-Wesley, Reading
(2002)

21. Chung, L., et al.: Using non-functional requirements to systematically support change. In:
The Second International Symposium on Requirements Engineering, York, pp. 132–139
(1995)

22. Chung, L., et al.: Dealing with change: an approach using non-functional requirements.
Requirements Engineering 1, 238–260 (1996)

23. Curtis, B., et al.: A field study of the software design process for large systems.
Communication of the ACM 31, 1268–1287 (1988)

44 D. Mairiza and D. Zowghi

24. Boehm, B., Egyed, A.: WinWin requirements negotiation processes: a multi-project
analysis. In: 5th International Conference on Software Processes (1998)

25. Egyed, A., Boehm, B.: A comparison study in software requirements negotiation. In: 8th
Annual International Symposium on Systems Engineering, INCOSE 1998 (1998)

26. Robinson, W.N., et al.: Requirements interaction management. ACM Computing
Surveys 35, 132–190 (2003)

27. Egyed, A., Grünbacher, P.: Identifying requirements conflicts and cooperation: how
quality attributes and automated traceability can help. IEEE Software 21, 50–58 (2004)

28. Krippendorff, K.: Content analysis: and introduction to its methodology, 2nd edn. Sage
Publications, Inc., Thousand Oaks (2004)

29. Weber, R.P.: Basic content analysis. Sage Publications, Inc., Thousand Oaks (1989)
30. Stemler, S.: An overview of content analysis. Practical Assessment, Research &

Evaluation 7 (2001)
31. Neuendorf, K.A.: The content analysis guidebook, 1st edn. Sage Publications, Inc.,

Thousand Oaks (2001)
32. Glinz, M.: Rethinking the notion of non-functional requirements. In: Third World

Congress for Software Quality, Munich, Germany, pp. 55–64 (2005)
33. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements

Engineering Conference (RE 2007), pp. 21–26 (2007)
34. Mairiza, D., et al.: An investigation into the notion of non-functional requirements. In:

25th ACM Symposium On Applied Computing, Switzerland (2010)
35. Alexander, I., Maiden, N.: Scenarios, stories, use cases: through the systems development

life-cycle. John Wiley & Sons, Ltd., Chichester (2004)
36. Robertson, S., Robertson, J.: Mastering the requirements process, 2nd edn. Addison-

Wesley, Boston (2006)
37. Sadana, V., Liu, X.F.: Analysis of conflict among non-functional requirements using

integrated analysis of functional and non-functional requirements. In: 31st International
Computer Software and Applications Conference, COMPSAC 2007 (2007)

38. Brito, I., Moreira, A.: Integrating the NFR framework in a RE model. Presented at the
Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design,
Lancaster, UK (2004)

39. Moreira, A., et al.: Crosscutting quality attributes for requirements engineering. In: 14th
International Conference on Software Engineering and Knowledge Engineering, Ischia,
Italy (2002)

40. Mala, G.S.A., Uma, G.V.: Elicitation of non-functional requirements preference for actors
of usecase from domain model. In: Hoffmann, A., Kang, B.-h., Richards, D., Tsumoto, S.
(eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 238–243. Springer, Heidelberg (2006)

41. Poort, E.R., de With, P.H.N.: Resolving requirement conflicts through non-functional
decomposition. In: Fourth Working IEEE/IFIP Conference on Software Architecture,
WICSA 2004 (2004)

42. Mairiza, D., et al.: Towards a catalogue of conflicts among non-functional requirements.
In: Maciaszek, L.A., Loucopoulos, P. (eds.) ENASE 2010. CCIS, vol. 230, pp. 33–46.
Springer, Heidelberg (2011)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 45–60, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Applying AspectJ to Solve Problems
with Persistence Frameworks

Uwe Hohenstein and Michael C. Jaeger

Siemens AG, CT T DE IT 1, Otto-Hahn-Ring 6, D-81730, Munich, Germany
{Uwe.Hohenstein,Michael.C.Jaeger}@siemens.com

Abstract. This work reports on problems we had with persistence frameworks in
an industrial project. Most problems occurred when replacing the persistence
framework Hibernate with OpenJPA. Such a substitution basically means
exchanging API calls and dealing with functional differences. But the replacement
involved challenging problems since some important Hibernate functionality was
missing in OpenJPA and could not be emulated, and other functionality did not
work appropriately in OpenJPA. Conventional techniques such as wrapping code
are not sufficient to tackle those points. However, we found powerful mechanisms
in the aspect-oriented programming language AspectJ to solve problems fast,
easily, and in a straightforward manner. All the problems are well-motivated and
the aspect-oriented solutions are explained in detail.

1 Introduction

Whenever Java and relational database systems (DBS) are used, object-relational
(O/R) persistence frameworks or tools such as Hibernate, Java Data Objects (JDO) or
Java Persistence API (JPA) come into play: Application programmers can store and
retrieve Java objects in relational tables without knowing about the underlying table
structure and/or how to formulate SQL queries. Programming can be done at an
object-oriented level, i.e., by storing and retrieving Java objects. The O/R framework
translates those object-oriented operations into SQL.

We were involved in an industrial project with Siemens Enterprise Communications
(SEN), where the Hibernate persistence framework was used. The project develops a
Java-based service-oriented telecommunication middleware which serves as an open
service platform for the deployment and provision of communication services [1].
Examples for such services are the capturing of user presence, the management of
calling domains, administration functionality for the underlying switch technology, and
so forth. The technical basis is OSGi.

Hibernate was used for managing persistent data in a relational DBS. Hibernate is a
widely used and popular O/R framework. It is open-source software and provides
only a thin layer upon the Java Database Connectivity API (JDBC), offering
developers much control on performance-relevant settings. Hibernate was used for
two reasons: First, to be independent of various DBSs to be supported in the product,
namely solidDB, MySQL, and PostgreSQL. And second, to benefit from the higher,
object-oriented level of database programming.

46 U. Hohenstein and M.C. Jaeger

Some time ago, the owner of Hibernate was accused of violating a patent on O/R
frameworks in the United States. This patent infringement claim seemed to be a
problem of Hibernate at a first glance. However, every software product that is
shipped to the United States with Hibernate inside is affected as well; any redistribu-
tion of Hibernate implies the role of a supplier. To avoid the risk of a patent in-
fringement, the project management decided to replace Hibernate with another O/R
framework. An additional business issue was the GNU Lesser General Public License
(LGPL) used by Hibernate. LGPL was not fully compatible with agreements that SEN
has with its business partners. As a consequence, the project management decided to
replace such LGPL software in general.

The Hibernate replacement started with a first brief evaluation, where several
substitute candidates were roughly assessed: Proprietary frameworks such as iBATIS
and tools conforming to the JDO or JPA standards. As a quick result, the OpenJPA
framework was chosen because it is open-source and implements the JPA
specification. The JPA standard seems to be appropriate because it is part of the EJB
3.0 specification and is more recent than JDO. Thus, OpenJPA could easily be
replaced with other JPA-conforming tools if OpenJPA would also be gripped by the
patent. Moreover, OpenJPA is provided with the more convenient Apache software
license.

Migrating from Hibernate to OpenJPA is merely straightforward at a first glance: It
is possible to wrap OpenJPA by still offering Hibernate interfaces; changes are thus
minimal. However, during the replacement effort, severe problems raised that were
difficult to detect in an OpenJPA evaluation. Those issues occurred lately and
endangered the success of replacement. In order to cope with them, we found and
applied solutions using Aspect-Orientation (AO).

AO has been proposed for developing software to eliminate crosscutting concerns,
i.e., functionalities that are typically spread over several classes. Those lead to code
tangling and scattering [2] in conventional programming [3]. Research has shown its
usefulness: Hannemann and Kiczales [4] identify several crosscutting concerns in the
GoF patterns [5] and extract them into aspects. [3,6] use aspects for designing and
building flexible middleware. Rashid [7] discusses several facets of AO in the context
of databases, in particular implementing DBSs in a more modular manner and an AO-
based persistence framework [8]. Others use AO to maintain database statistics [9] or
to implement ACID properties [10]. It turns out in all these studies that aspect-
orientation increases programming productivity, quality and traceability, degree of
code reuse, software modularity, and is better supporting evolution [11].

In this paper, we discuss another application of AO, to apply aspects to existing 3rd
party software libraries in order to add missing functionality or to change internal
behavior. Our intent is to show that AO provides a straightforward solution being
suitable for software migrations in enterprise settings. The essential and novel value of
our AO approach is a method to address the challenges of integrating 3rd party software,
keeping the original software untouched and being able to manage the concerns of
replacement in a maintainable manner.

In Section 2, we summarize the general strategy for replacing Hibernate and
outline a selection of replacement issues that we solved by applying conventional
methods. Section 3 presents some critical problems that occurred during the
replacement, for which conventional solutions are hard to find and apply. After

 Applying AspectJ to Solve Problems with Persistence Frameworks 47

having introduced the fundamentals of AO and AspectJ [12], Section 4 explains our
solutions using AO. Our lessons learned during the replacement are summarized in
Section 5. The paper ends with Section 6 that gives a summary on our experiences
and our conclusions.

2 Replacement Strategy

In order to perform the Hibernate replacement, a master plan was established in the
beginning. This plan consists of the following steps:

1. The goal was to start a practical replacement as early as possible. A selection
and brief assessment of potential Hibernate substitutes leads to an early
decision for the JPA standard with OpenJPA as implementation, because
obvious similarities exist between OpenJPA and Hibernate.

2. A checklist was established for those Hibernate concepts that were seen
specific or critical. A short evaluation of the checklist let appear OpenJPA
appropriate.

3. We transformed the project’s central persistence infrastructure to OpenJPA,
particularly its configuration and deployment.

4. As a proof of concept, the most complicated software project was migrated
first in a sandbox environment. By this step, we expected to identify as many
problems as early as possible.

5. The real replacement on the affected software projects was scheduled and
planned.

6. Finally, we performed the replacement in coordination with the affected
development teams. Training and coaching was also necessary.

The short theoretic evaluation of Step 2 was successful, and no major problems have
been detected at that time. Of course, several differences between Hibernate and
OpenJPA APIs exist. For instance, we have to use an EntityManager instead of a
Session.EntityManager.persist() instead of Session.save(), etc. But since
most concepts of Hibernate seemed to have an equivalent counterpart in OpenJPA, we
got an optimistic impression about the replacement. This first impression was also
confirmed by [13] who state that it is no problem to migrate from Hibernate to
OpenJPA.

It became clear that obvious differences are easy to cope with a wrapper approach.
Implementing the Hibernate interface on top of OpenJPA has the advantage that the
old Hibernate interface in use can still be retained. Only import statements have to be
changed. Even the change of import packages is not really mandatory, but useful
since Hibernate and OpenJPA could thus run in parallel in an OSGi container during
the replacement phase. This allows for a step by step replacement of services.
Ongoing development work on the middleware is not really affected.

Despite several conceptual similarities, the practical evaluation of Step 4 brought
up some differences which we would like to mention briefly (see also [13] for further
topics).

48 U. Hohenstein and M.C. Jaeger

One problem is that JPQL delete-by-queries do not work correctly because
OpenJPA generates an SQL query with a self-reference which cannot be executed by
most DBSs:

DELETE FROM Tab
WHERE key IN (SELECT key FROM Tab WHERE <condition>)

A solution is to omit delete-by-queries by implementing the functionality manually,
i.e., by querying the objects to be deleted first and then deleting each object one by
one. This poses a performance problem due to lots of DELETE operations. A sus-
tainable solution is to correct the query generation by avoiding the unnecessary
subquery. The relevant translation is part of so-called Dictionary classes. Hence,
the change can simply be done by defining a dictionary class MyMySQLDictionary
that extends the predefined MySQLDictionary in such a way.

Furthermore, the life cycle of the persistent objects is different. For example, it is
possible in Hibernate to overwrite an existing persistent object in the database by
creating a new object having the same key values; saving that object overwrites the
existing one. However, OpenJPA treats the (temporary) object as a new one, which let
the database system complain about duplicates.

Hibernate’s Criteria interface for queries is not supported in OpenJPA release
1.1.0. Thus, Criteria queries must be re-formulated in the JPQL language.

Smaller differences exist between the query languages HQL and JPQL, e.g., an
explicit alias t has to be used at any place, as in SELECT t FROM Type t WHERE
t.attr=1 instead of Hibernate’s short form FROM Type WHERE attr=1. This affects
conditions that could be composed as attr=1 in the GUI and now need to be
extended with an alias t.

Hibernate has a special delete-orphan cascade option: While the ordinary delete-
cascade removes with a father object all depending son objects, delete-orphan
removes son objects in addition when the association with the father object is
destroyed; a son object cannot exist without a father. Despite being not supported by
the JPA standard, OpenJPA provides such a feature by means of an extended mapping
annotation. If one stays with XML mapping files, those cascades must be resolved
and implemented manually.

OpenJPA comes with an easy integration of the Apache DBCP connection pool,
while we used Hibernate with the C3P0 pool. DBCP behaves differently and
performance tests brought up different connection pool settings for DBCP.

Although those issues represent a very individual effort, such a correction did not
pose any problems to the progress of the replacement.

3 Harder Problems

The differences between Hibernate and OpenJPA explained in the previous section
are easy to solve. However, some problems – being detected in later phases of the
replacement unfortunately – endangered the success of the overall replacement and
were hard to solve with conventional programming techniques. This section discusses
those problems in detail. Corresponding AO solutions are presented in Section 4.

 Applying AspectJ to Solve Problems with Persistence Frameworks 49

3.1 Lack of Key Generation

An O/R framework requires mapping information on how to map classes onto
database tables, attributes to table columns, associations to foreign keys etc. This can
either be done by means of XML mapping files or by Java-5 annotations in the entity
classes. Our project used XML mapping files. The following Hibernate mapping
example relates a class MyClass (<class>) to a table MyTable (table=…), fields id
and p2 to table columns pk and c2, respectively.

<class name=”MyClass” table=”MyTab”>
 <id name=”id” column=”pk”>
 <generator class=”sequence”/> </id>
 <property name=”p2” column=”c2”/> ...
</class>

Thereby, <id> defines a key field that uniquely identifies objects in a class; the
corresponding column pk is used as a database primary key.

Indeed, the mapping specification in OpenJPA is different; a file orm.xml specifies
mappings with a different syntax. The transformation of Hibernate mapping files into
OpenJPA syntax is straightforward and can be achieved by an XSLT script for most
differences. However, some differences are fundamental. For example, there are
various alternatives for providing <id> values in Hibernate, e.g., to let the application
be responsible for providing the key values and ensuring their uniqueness
(<generator class= ″assigned″/>), to let Hibernate generate an id by means of
creating a globally unique identifier, or to use mechanisms that DBSs offer such as
sequence generators (in solidDB) or auto-increment columns (in MySQL). These
strategies are supported by OpenJPA, too. But Hibernate also offers a more abstract
native key generation: Depending on what the underlying DBS supports, either
sequence or identity (for auto-increment columns) is used. Since the project must
support several DBSs, especially solidDB, MySQL, and PostgreSQL, and since the
type of DBS should be invisible, such an abstract strategy is required.

OpenJPA has a similar auto strategy that lets OpenJPA decide what to do, but it
uses a table for maintaining highest values instead of taking auto-increment columns
or sequences. This is not appropriate as database installations already exist at
customers, containing keys generated by either sequences or auto-increment columns.
For these, the probability is high that auto generates already existing values. Hence,
value clashes are most likely when upgrading to an OpenJPA-based implementation.

One solution is certainly to maintain three XML mapping files, one for each DBS
with the supported strategy. A simple model-driven approach that generates DBS-
specific variants with sequence or identity, respectively, could help here. This was
regarded as an inappropriate solution as it causes a problem for deployment. OpenJPA
expects the mapping file in a JAR. The overall project strategy is to have one
unchangeable deployment JAR: All parameters that might vary from one installation
to another, such as the database URL, its port, user and password, must be placed
outside the deployed JAR file. This is because only parts of the JDK are installed on
target machines and unzip/zipping of JAR files is not available to exchange parts such
as mapping files. Hence, the resulting installation procedure would now need to
handle several JAR files for deployment, one for each DBS.

50 U. Hohenstein and M.C. Jaeger

The issue with providing different mappings becomes even worse, since we were
forced to use mapping annotations in some cases. Some OpenJPA features are only
available as annotations, but not in XML mappings, e.g., a “delete-orphan” cascade
(cf. Section 2): This is a special option that removes son objects when their
association with the father object is destroyed. On the one hand, using the delete-
orphan option with annotations means that also several code variants have to be
maintained, since the mapping is part of the source code. On the other hand,
implementing delete-orphan behavior manually, i.e., deleting objects explicitly
whenever they become parentless can be very cumbersome since cascades go over
several levels in the object model.

Any of both proposals would require massive changes in the implementation and
deployment infrastructure.

3.2 Failover Problem

The main DBS to be supported in our project is solidDB. solidDB is not as popular as
other DBSs. However, it is often used in telecommunication projects. One reason is
its hot-standby failover concept: It is possible to install two DBSs, one primary and
one secondary, the databases of both being synchronized. If the primary solidDB
server crashes, the secondary becomes the new primary and silently takes over the
work immediately. To apply failover, applications have to use a specific dual-node
URL of the form jdbc:solid://h1:1315,h2:1315/usr/pw. This URL specifies
two database servers on host h1 and host h2.

The failover concept is important for our project and certainly one of the first
priority requirements. We knew that Hibernate and the solidDB JDBC driver can
handle the dual-node URL. Since, the O/R framework is supposed to pass this URL
through to the JDBC driver, no particular problems were expected. But since the setup
and accomplishment of failover test scenarios involves many steps, the final check
has been postponed in the first assessment of OpenJPA.

When it came to test deployments, the failover feature of the solidDB DBS did not
work for OpenJPA; connections to the database could not be established at all with
the given URL. The first problem occurred: How can we find out why no connections
are possible? Debugging was very tedious as the problem occurred in the depth of
OpenJPA and the JDBC driver. As we are describing later, AO helped us to detect the
cause for the problem.

It turned out that the dual-node URL was damaged by OpenJPA: Only the first part
jdbc:solid://h1:1315 arrived at the solidDB server. The reason is that a string is
used to set several facets of connection properties in one openjpa.ConnectionPro-
perties, the URL, the driver class name etc.:

String str = "Url=jdbc:solid://h1:1315,h2:1315/usr/pw,
 DriverClassName=solid.jdbc.SolidDriver,
 ...";
props.setProperty("openjpa.ConnectionProperties",str);
EntityManagerFactory emf

 = persProvider.createEntityManagerFactory("mydb",props);

 Applying AspectJ to Solve Problems with Persistence Frameworks 51

A deeper investigation brought up that OpenJPA takes the comma as a separator
during the analysis of openjpa.ConnectionProperties and thus derives the
following units from the properties:

Url=jdbc:solid://h1:1315
h2:1315/usr/pw
DriverClassName=solid.jdbc.SolidDriver
…

That is, h2:1315/usr/pw is taken as a unit of its own, and since it does not satisfy the
form property=value, it is simply ignored; and the URL degrades to
jdbc:solid://h1:1315.

To solve the problem and to leave the dual-node URL intact, we obviously have to
change the internal behavior of OpenJPA.

3.3 Missing Connection Property

Unfortunately, the previous solution solves only half of the failover problem: It allows
establishing connections to solidDB, but no failover occurs. Indeed, the solidDB
JDBC driver requires a special failover property solid_tf_level to be set for any
database connection. OpenJPA allows passing additional properties, but only Open-
JPA properties starting with “openjpa.”, are analyzed and passed to the JDBC
driver; others are ignored.

A solution must somehow change the behavior of the solidDB driver, the source
code of which is unavailable.

3.4 Possible Solutions

What are possible solutions to solve the above problems? There is no easy work-
around such as wrapping OpenJPA or JDBC methods because we have to intervene in
the internal behavior.

We can certainly ask the vendor of solidDB to change its JDBC driver. This is in
general expensive and must be done again and again when a new version is launched.
For patches of OpenJPA, the open source community could provide solutions.
However, the problem affects the interplay between OpenJPA and the rather specific
solidDB DBS. We require solidDB-specific patches to the OpenJPA source code, but
solidDB is not officially supported by OpenJPA. We reported those solidDB specific
issues to the OpenJPA project, but we could not wait for a solution because this
would have caused a significant delay.

Patching source code is possible, if the code is available. This is not always the
case, e.g., the sources of the solidDB JDBC driver are unavailable. In case of
OpenJPA, a deeper understanding of the complete source code is necessary because
several logical parts are involved: The XML parser for mapping files, the handling of
annotations, storing and using meta-data, interpreting the meta-data to perform
database operations etc. One technical difficulty is then to patch the code in such a
way that changes apply only for solidDB, but not for other DBSs. OpenJPA knows
the JDBC driver and can derive the used DBS. However, this information is needed in

52 U. Hohenstein and M.C. Jaeger

a different class. Hence, we have to let unrelated classes exchange this kind of
information, which means the change cannot be done locally.

Moreover, the build process must be understood in order to produce a new
OpenJPA JAR file. This could also cause trouble with integrating two different build
approaches such as Ant and Maven.

Aspect-orientation provides simpler solutions.

4 AspectJ Solutions

Aspect-orientation is a solution for our problems, especially if 3rd party tools behave
in a wrong manner and if no source code is available. We applied AO to change the
internal behavior of OpenJPA and JDBC drivers in order to achieve in OpenJPA some
missing Hibernate functionality.

The most popular AO language is certainly AspectJ [14]. Special extensions to
Java enable separating the definition of crosscutting concerns. Programming with
AspectJ is essentially done by Java and by new aspects. The main purpose of aspects
is to change the program flow. An aspect can intercept certain points of the program
flow, called join points. Examples of join points are method calls or executions, and
attribute accesses.

Join points are syntactically specified by means of pointcuts. Pointcuts identify join
points in the program flow by means of a signature expression. For example, a
specification can determine exactly one method. Or it can use wildcards to select
several methods of several classes by * MyClass*.get*(..,String). A star “*” in
names denotes any character sequence, hence, get* means any method that starts
with “get”. A type “*” denotes any type. Parameter types can be fixed or left open
(..). Interception of methods can be done at the caller or callee side. An
execution(...) pointcut intercepts at the callee side, i.e., any caller is affected. In
contrast, call(...) intercepts at the caller side.

Once join points are captured, advices specify weaving rules involving those joint
points, such as taking a certain action before or after the join points. Pointcuts can be
specified in such a way that they expose the context at the matched join point, i.e., the
object on which the intercepted method is invoked. Parameter values can be accessed
in advices as well.

The AspectJ language requires a compiler of its own. Usually, the AJDT plug-in
will be installed in Eclipse. However, a new compiler requires changes in the build
process, which is often not desired, so for us. Then, using Java-5 annotations such as
@Aspect is an alternative: Aspects can be written in pure Java. This was important for
us, because we could rely on standard Eclipse with an ordinary Java compiler, without
AJDT. In order to use annotations, the AspectJ runtime JAR is required in the
classpath. To make the aspect active, we also have to start the JVM (e.g., in Eclipse)
with a -javaagent argument referring to the AspectJ weaver. Annotations are then
evaluated and become really active, because load-time weaving takes place: Aspects
are woven whenever a matching class is loaded.

We now show AspectJ examples that solve our problems.

 Applying AspectJ to Solve Problems with Persistence Frameworks 53

4.1 Solving the Lack of Key Generation

The basic idea to remedy the lack of key generation is to accept both strategies
sequence and identity, but to change the internal OpenJPA behavior in such a way
that it uses the strategy available in the DBS. Hence, if identity has been chosen,
but if the DBS does not supply auto-increment columns, then let OpenJPA internally
switch to the sequence strategy. This is much easier than adding a new native
strategy for mapping specifications and/or annotations, which requires a
corresponding modification of the XML parser, the analysis of annotations, the use of
this kind of meta-data to derive SQL operations adequately etc.

Changing the OpenJPA behavior to handle identity appropriately according to
the type of DBS can easily be done by the following aspect.

@Aspect
public class KeyGenerationAspect {
 private String db = null;
 @Before("execution(*org.apache.openjpa.persistence
 .PersistenceProviderImpl.createEntityManagerFactory(..))
 && args(.., p)")
 public void determineDBS(Properties p) {
 String str = p.getProperty("openjpa.ConnectionProperties");
 if (str != null) {
 if (str.contains("Solid"))
 db = "SOLID";
 else if (str.contains("mysql"))
 db = "MYSQL";
 else if (str.contains("postgresql"))
 db = "POSTGRES";
 }
 @Around("call(* org.apache.openjpa.meta.FieldMetaData
 .getValueStrategy(..)) && !within(com.siemens.ct.aspects.*)")
 public Object changeStrategy(JoinPoint jp) {
 FieldMetaData fmd = (FieldMetaData) jp.getTarget();
 int strat = fmd.getValueStrategy();
 if (db.equals("SOLID") && strat == STRATEGY_IDENTITY) {
 fmd.setValueSequenceName("system");
 return STRATEGY_SEQUENCE;
 } ... // similar for other DBSs
 return strat;
} }

A @Aspect annotation lets the Java class KeyGenerationAspect become an aspect.
Annotations are used instead of the AspectJ language. This was important for us
because we could rely on a standard Eclipse setup with an ordinary Java compiler.

There are two advices: The first one determineDBS determines the DBS and the
second one changeStrategy changes the strategy if necessary. Both advices
exchange information about the DBS in use by means of an aspect-local variable db.

Since the method determineDBS is annotated with @Around, it defines an advice
to be executed around those join points that are specified by the pointcut string: Any
execution of the method PersistenceProviderImpl.createEntityManager-

Factory with a Properties parameter. The args(..,p) clause requires at least a
Properties parameter and binds a variable p to that parameter. The variable also

54 U. Hohenstein and M.C. Jaeger

occurs in the method signature and allows the advice to access the value. Thus,
p.getProperty("openjpa.ConnectionProperties") yields the connection
properties, i.e., the comma-separated list we are interested in so that we can extract
the type of DBS. The result is stored in an internal variable db.

The changeStrategy advice uses this information about the DBS to switch from
strategy identity to sequence in case of solidDB. Hence, the aspect can simply be
used to share and exchange information even if different parts of code, even of
different JARs, are intercepted. The technical problem how to determine the type of
DBS is solved in an easy way.

The @Around advice changeStrategy intercepts any call of FieldMetaData
.getValueStrategy, which returns the strategy. Due to @Around, the original logic
is replaced in such a way that we decide when to switch the strategy in the advice.

Please note that !within(com.siemens.ct.aspects.*) is necessary: Whenever
getValueStrategy is called, the call is implicitly changed to calling the @Around
method, which performs strat = fmd.getValueStrategy() inside. This means this
call is again intercepted, resulting in an infinite recursion. !within excludes any call
within the aspect from being intercepted.

The parameter JoinPoint jp gives access to context information about the join
point, especially the target object on which the method is invoked
(jp.getTarget()). This is a FieldMetaData object in this case, which allows
determining the current strategy by means of getValueStrategy(). Instead of
returning the original strategy, e.g., identity, we can switch for solidDB to
sequence and set the sequence name to the system sequence.

4.2 Solving the Failover Problem

As explained in Section 3.2, OpenJPA is unable to connect to the solidDB DBS with a
dual-node URL jdbc:solid://h1:1315,h2:1315/usr/pw. Our first problem was
to detect the reason why.

Refining the log4j level especially for OpenJPA produces an overwhelming but
useless output of OpenJPA activities such as initialization activities, analyzing
mapping specifications, named queries etc.

Debugging works only, if the source code is available. Even with IDE support, the
problem is hard to detect with debugging, especially since several dynamic method
invocations interrupt the execution flow: OpenJPA has a pluggable connection pool
and loads dynamically the one chosen. And the connection pool dynamically invokes
the JDBC driver for the selected DBS.

According to Laddad [14], one myth about AOP is to be good only for logging and
tracing. AOP is indeed useful for tracing (but we disagree with the word “only”). We
want to show how AO allows for a better and spontaneous controlling of tracing that
is more dedicated to the problem to solve; overwhelming and useless trace output can
be avoided. Thanks to load-time weaving in Eclipse, tracing can be done in a few
minutes: Add the aspectjrt JAR-file to the classpath, provide an aop.xml file
specifying relevant packages, use –javaagent in Eclipse, and implement the
following advice:

 Applying AspectJ to Solve Problems with Persistence Frameworks 55

@Before("execution(* *.*(..,String,..))")
public void myTrace(final JoinPoint jp) {
 Object[] args = jp.getArgs();
 for (Object a : args) {
 if (a instanceof String && arg!=null
 && ((String)a).contains("jdbc:solid:"))
 System.out.println("* In: " + jp.getSignature() + "->"
 + a.toString());
} } }

This @Before advice intercepts any execution of any method (execution(* *.*))
with a String parameter ((..,String,..)) and checks whether the string contains
a solidDB URL. If it does, it prints out that URL. The parameter JoinPoint jp gives
access to context information about the join point. For instance, jp.getSignature()
can be used to print out the intercepted method signature, and jp.getArgs() returns
the passed parameter values.

These simple changes are done in a few minutes and lead to the following clear
output:

* In: void org.apache.openjpa.lib.conf.Value setString(String)
-> DriverClassName=solid.jdbc.SolidDriver ,Url=jdbc:solid://h1:
 1315,h2:1315/usr/pw,defaultAutoCommit=false,initialSize=35
...
* In: Options org.apache.openjpa.lib.conf.Configurations.parse
 Properties(String)
-> DriverClassName=solid.jdbc.SolidDriver,Url=jdbc:solid://h1:
 1315,h2:1315/usr/pw,defaultAutoCommit=false,initialSize=35
* In: boolean solid.jdbc.SolidDriver.acceptsURL(String)
-> jdbc:solid://h1:1315
* In: Connection solid.jdbc.SolidDriver.connect(String,
 Properties)
-> jdbc:solid://h1:1315
...

The bold parts are important: They show the transition from a good to a bad URL.
Hence, the problem lies in the method Configurations.parseProperties(): The
URL is correct before execution, but truncated afterwards. To detect this problem, AO
tracing is much more effective than debugging. Thanks to a problem-specific tracing,
the reason for problems can be detected immediately.

Since the problematic method is now known, we can fix the problem in a second
step. Looking at the OpenJPA code, we see what goes wrong in method parse-
Properties. As already explained in Section 3.2, the code separates the units by
using a comma. Then, if no “=” is found in a unit, the unit is ignored, what exactly
happened to the second part of the dual-node URL.

An aspect can correct the URL. Having a pointcut trapped the execution of this
parseProperties method, an @Around advice can implement an instead-of
behavior: Instead of executing the original method, we use our “corrected”
implementation without touching the original source code directly:

@Around("execution(public static Options org.apache.openjpa.lib
 .conf.Configurations.parseProperties(String)) && args(s)")
public Object parseProperties(String s) {

56 U. Hohenstein and M.C. Jaeger

 Options opts;
 parse properties string s correctly and set the return value
opts;
 return opts;
}

4.3 Missing Connection Property

Similarly, we can add the solid_tf_level connection property by modifying the
JDBC driver: The following advice intercepts the execution of
SolidDriver.connect(...) and adds the required solid_tf_level property to
the Properties parameter:

@Before("execution(* solid.jdbc.SolidDriver.connect
 (..,String,..,Properties,..)) && args(url, pr)")
public void addSolidTfLevel(String url, Properties pr) {
 if (url != null && url.contains("solid"))
 pr.setProperty("solid_tf_level","1");
}

The part (..,String,..,Properties,..) specifies the parameters of interest.
The args clause binds variables url and pr to them. The variable url is used to
determine the DBS platform and pr to set the solid_tf_level property. Again, the
JDBC driver, an external JAR file, is modified.

4.4 Further Problems

We applied AspectJ in a similar manner to solve other deficits of OpenJPA. We are
not going into technical details, because the techniques are similar.

One problem occurred with class loading in OpenJPA. In some use cases, we ran
into out-of-memory exceptions sporadically. Our analysis showed that thousands of
class loader objects are created by OpenJPA. Unfortunately, the garbage collector
places those objects in the system space, which means that the objects are destroyed
too seldom. Using AspectJ, we detected the places where the class loaders are created
and where they are used. The result was surprising: OpenJPA effectively uses only
one of those class loaders. To solve the useless creation of class loaders, we defined
an aspect that intercepts any constructor call. Instead of calling the original
constructor, an around advice creates a class loader object only for the first time. Any
further call returns that singleton.

Another memory problem is concerned with OpenJPA’s query compilation cache.
This cache is indispensable for achieving an acceptable performance since it relieves
OpenJPA from analyzing and transforming JPQL queries again and again. Its size is
configurable. If the cache is exceeded, an old query is dropped, however, this query is
still kept in a second hidden cache with a fixed upper size of 1000. Since we have
several database projects, each obtaining such a cache with hundreds of old queries,
we again ran into high memory consumption. An aspect helped us to reduce the
second cache to 0.

Furthermore, we also had some performance problems due to wrong connection
pool settings. An aspect helped us to monitor whenever a JDBC connection is

 Applying AspectJ to Solve Problems with Persistence Frameworks 57

requested and released; the difference determines the number of currently active
connections. Moreover, the aspect detects whenever a connection is requested directly
via JDBC, thus bypassing OpenJPA; there is a danger of not having closed the
connection. This monitoring is done for all databases in the system. Hence, we get
detailed statistics of connection usage.

5 Experiences

5.1 General Experiences

The first lesson we learned is not really an experience, but rather a confirmation of
our approach: The recommendation is to start doing as early as possible, not spending
too much time on product selection. We decided to quickly choose a Hibernate
substitute because the real problems are anyway hard to detect even with an extensive
evaluation of products. The problems are occurring when starting the doing – and
they will certainly arise. In our case, we checked the most important issues carefully
and early. However, the severe problems came up quite late during the replacement. It
is nearly impossible, in our opinion, to check all problems for several candidates.

Anyway, there is no need to worry about potential or suddenly arising problems.
Even if hard problems occur unexpectedly, AO is a very powerful mechanism to
overcome them.

The wrapping approach, i.e., implementing the “old” Hibernate interface on top of
OpenJPA turned out to be very helpful and reduced the replacement time drastically.
But there is a difference between syntactic and semantic success. It is quite easy to get
the replacement compile-clean. The harder problems occur at runtime during the
testing, e.g., the different behavior in Hibernate and OpenJPA when storing new
objects with an existing key. And performance is not portable anyway.

Especially for achieving the same semantic behavior, testing turned out to be
important. Without a huge test suite with several thousands of JUnit test cases, the
replacement would presumably have failed. Thanks to the test suite, we could
immediately check the correct behavior after replacement. We can remember only
very few errors that came up after finishing and testing the replacement.

5.2 Convincing Project Management

Unfortunately, our project managers are not keen on using AO or having AspectJ in
their projects: There is always the fear of having uncontrollable behavior if several
developers use AOP. Our experiences go along with a recent study of AO adoption
[15] within non-academic projects, which indicates that the majority of the
interviewed developers are “early adopters” (according to [16]) of this technology.
The current stage of adoption is that occasionally developers learn the AO concepts
and try to apply them in non-critical phases of development projects, e.g., for
architectural checks or performance monitoring, as in [17). Very rarely the project
management deliberately decides to use AO technologies in a project. This keeps the
obstinate myths living: “AO is good only for logging/tracing” [14].

Well, we were able to convince our project management of using our AspectJ-
based solution. Since we represented a focused team, we did not use the approach of

58 U. Hohenstein and M.C. Jaeger

[18] and other authors who describe several stages for the adoption of AOP in order to
guide single developers getting familiar with AO. This approach suits well, if a
critical mass of developers can be convinced, which then in turn influence decisions
of their management. We acknowledge the practical benefit of this approach, but it
did not apply for our case. Even the approach we proposed in [19] could not be
applied, because the advantages of AO we showed are not relevant in this project.

Rather, we faced the lucky situation that we had to tackle critical problems which
imposed a lot of pressure: The replacement must have been successful in a short time,
switching to yet another candidate than OpenJPA was not feasible because it could
pose again uncertainties. Moreover, there was a lack of adequate alternative solutions
to overcome the explained problems. The only alternative seemed to patch source
code: This implies that the sources are available and that building the 3rd party library
is feasible. This could go for a single version of OpenJPA, but did not work with the
solidDB JDBC driver. Hence, our project management was slightly forced to accept
AO.

However, AspectJ in its “originally intended” form is still unacceptable, because
the infrastructure would require a lot of significant changes: As a new language,
AspectJ requires a special compiler, for instance given by the Eclipse AJDT plug-in.
Nonetheless, we have used AspectJ, but it is important that we have used aspects that
are implemented as ordinary Java classes. All the AspectJ concepts such as aspects,
pointcuts and advices are specified as annotations. Instead of using load-time weaving
(cf. Section 4), which caused some problems with the class loading of the underlying
OSGi container, we preferred an explicit instrumentation. The aspect classes are
compiled with the Java compiler and then applied to existing JAR files in a separate
step, particularly to 3rd party JAR files such as OpenJPA or JDBC drivers. Both steps
require the predefined iajc taskdef to invoke the AspectJ compiler in Ant build
scripts. The result is a new JAR, e.g., myopenjpa.jar, which must be used instead of
the original one. Please note building the new JAR file requires only a single build
file and a single additional build step. As a consequence, no source code and no
knowledge about the build process is required for modifications to a 3rd party tool’s
JAR file. Integration into an external build process, for example by using a tool like
Cruise Control with daily builds and overnight test reports, does not pose any
problems and can be done by exchanging the JAR files. And finally, scaling problems
with AspectJ for large projects such as long compile-times, as reported by [17], are
avoided.

6 Conclusions

This paper reports on problems that occurred in a concrete replacement scenario in an
industrial telecommunication project where the object-relational persistence
framework Hibernate has been replaced with OpenJPA due to licensing and patent
problems.

At a first glance, the Hibernate replacement has appeared as a straightforward task,
because there are only syntactic differences in the APIs and in the mapping
specifications of both frameworks. In fact, putting the Hibernate interface on top of
OpenJPA reduced code changes to simply exchanging packages. This kept the

 Applying AspectJ to Solve Problems with Persistence Frameworks 59

replacement effort low. However, harder problems occurred and endangered the
success of the replacement. For example, OpenJPA does not offer Hibernate’s native
key generation strategy and OpenJPA prevents a failover between two solidDB
database servers. This functionality is important for the telecommunication
middleware, and hence, solutions are indispensable!

For these harder problems, we have presented the successful adoption of aspect-
orientation (AO), especially AO programming with AspectJ [12]. Particularly, with
this approach we bridged the gap of functionality and handled deficits of internal
functionality. The key to success was not only AspectJ, but the special capability to
apply aspects to external JAR files the source code of which is unavailable. By this
technique, we were able to correct the behavior of OpenJPA and JDBC drivers.
Aspects can change the behavior, however, leave the source code and original JARs
intact. Thus, the essential and novel value of our AO approach is a method to address
the challenges of integrating 3rd party software, keeping the original software untouched
and being able to manage the concerns of replacement in a maintainable manner.

It is AspectJ that let the replacement succeed with simple solutions in short time. In
contrast to [20], we were satisfied with the power of the AspectJ language. Indeed,
AspectJ is a powerful language and we are simply using this power to easily solve
critical problems quickly. Moreover, there is a lack of adequate alternative solutions.
The only alternative seems to patch the source code explicitly – if available at all. The
effort for changing the source code, adding data exchange between unrelated classes,
and building the JAR leads to more complexity, error proneness, and effort than our
AO-based approach. Moreover, we are unsure whether the problems could be solved
with conventional techniques since the source code of JDBC drivers is usually not
available.

Another advantage becomes obvious. Although we exchanged the solidDB JDBC
driver twice and switched from OpenJPA version 0.9.7 to 1.1.0 during the effort, we
did not touch the aspects, they are stable and still work correctly with the newer
versions.

In future work, we want to apply AO for other purposes in the project. For
example, we currently use a model-driven approach to generate code from XML
specifications, i.e., several Java classes are generated by XSL-T transformations. We
want to investigate whether AspectJ could be an alternative, although others decline
appropriateness [21]. We hope that such a solution could be easier to use, better
understandable, and evolvable.

References

1. Strunk, W.: The Symphonia Product-Line. In: Java and Object-Oriented (JAOO)
Conference (2007)

2. Elrad, T., Filman, R., Bader, A.: Theme Section on Aspect-Oriented Programming.
CACM 44(10) (2001)

3. Murphy, G., Walker, A.R., Robillard, M.: Separating Features in Source Code: An
Exploratory Study. In: Proc. of 23rd Int. Conf. on Software Engineering (2001)

4. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In: Proc.
of the 17th Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2002 (2002)

60 U. Hohenstein and M.C. Jaeger

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Burke, B.: Implementing Middleware Using AOP. In: Proc. 4th Conf. on Aspect-Oriented
Software Development (AOSD), Chicago (2005)

7. Laddad, R.: Aspect-Oriented Database Systems. Springer, Heidelberg (2004)
8. Rashid, A.: Persistence as an Aspect. In: [22]
9. Hohenstein U.: Using Aspect-Orientation to Manage Database Statistics. In: [23]

10. Kienzle, J., Gélineau, S.: AO Challenge – Implementing the ACID Properties for
Transactional Attributes. In: Proc. of 5th Int. Conf. on Aspect-Oriented Software
Development, Bonn, Germany (2006)

11. Coady, Y., Kiczales, G.: Back to the Future: A Retrospective Study of Aspect Evolution in
Operating System Code. In: [22]

12. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming, 2nd edn.
Manning, Greenwich (2008)

13. Vines, D., Sutter, K.: Migrating Legacy Hibernate Applications to OpenJPA and EJB 3.0.,
http://www.ibm.com/developerworks/websphere/techjournal/0708
_vines/0708_vines.html

14. Laddad, R.: AOP@Work: Myths about AOP,
http://www-128.ibm.com/developerworks/java/library/
j-aopwork15

15. Duck, A.: Implementation of AOP in Non-Academic Projects. In: [23]
16. Joosen, W., Sanen, F., Truyen, E.: Dissemination of AOSD expertise support

documentation. AOSD-Europe Deliverable No.: AOSD-Europe-KUL-8
17. Wiese, D., Meunier, R.: Large Scale Application of AOP in the Healthcare Domain: A

Case Study. In: Industry Track of 7th Int. Conf. on Aspect-Oriented Software
Development (AOSD), Brussels (2008)

18. Kiczales, G.: Adopting AOP. In: Proc. 4th Conf. on Aspect-Oriented Software
Development; AOSD 2005, Chicago. ACM Press, New York (2005)

19. Wiese, D., Hohenstein, U., Meunier, R.: How to Convince Industry of Aspect-Orientation?
In: Industry Track of 6th Int. Conf. on Aspect-Oriented Software Development, AOSD
2007, Vancouver (2007)

20. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Modularity.
In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer, Heidelberg
(2005)

21. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ. In:
Proc. Int. Software Product Line Conference (SPLC), Kyoto. IEEE Computer Society, Los
Alamitos (2007)

22. Aksit, M.: Proc. of 2nd Int. Conf. on Aspect-Oriented Software Development. In: AOSD
2003 (2003)

23. Chapman, M., Vasseur, A., Kniesel, G.: Proc. of Industry Track of 3rd Conf. on Aspect-
Oriented Software Development (AOSD), Bonn (2006)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 61–73, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Trends in Harmonization of Multiple Reference Models

César Pardo1, Francisco J. Pino1, Félix García2
Mario Piattini Velthius2, and Maria Teresa Baldassarre3

1 IDIS Research Group, Electronic and Telecommunications Engineering Faculty
University of Cauca, Calle 5 No. 4 – 70, Kybele Consulting Colombia (Spinoff)

Popayán, Cauca, Colombia
2 Alarcos Research Group, Institute of Information Technologies & Systems

University of Castilla-La Mancha, Paseo de la Universidad 4, Ciudad Real, Spain
3 Department of Informatics, University of Bari

SER & Practices, SPINOFF, Via E. Orabona 4, 70126, Bari, Italy
{cpardo,fjpino}@unicauca.edu.co

{Felix.Garcia,Mario.Piattini}@uclm.es
baldassarre@di.uniba.it

Abstract. Diverse models currently exist in the field of Software Engineering
which help organizations to apply recommended practices in order to support
ther multiple needs in the areas of software development, maintenance and
operation, security, IT government, etc. Examples of such models are CMMI,
ISO 9001, ISO 12207, ISO 27001, COBIT, ITIL. Nevertheless, many
differences exist between these models, since each model defines its own
structure, terminology, definitions and quality systems, amongst other aspects.
This issue increases the complexity when an organization is required to apply
two or more models in order to satisfy its needs. Organizations must, therefore,
define the most appropriate means of choosing and implementing multi-models,
and harmonization may be one solution. This paper presents a systematic
literature review with the aim of analyzing the state of the art with regard to
inititatives concerning the harmonization of multiple reference models. As a
result, it has been concluded that there is currently a lack of guidelines with
which to help organizations to implement the harmonization of multiple
models, and of a unified terminology with which to homogenize the diversity of
the structure of the different models and the harmonization techniques which
can be applied. In order to address these issues, a framework to support the
harmonization of multiple models is outlined.

Keywords: Multi-model, Multiple, Reference models, Harmonization,
Software process improvement, Systematic review.

1 Introduction

There is currently a wide range of models that can be taken as references for the
improvement of an organization’s processes, e.g. models to improve quality
management such as ISO 9001, models for software quality management such as
CMMI, ISO 12207 and ISO 90003, models for IT governance such as ITIL, PMBOK

62 C. Pardo et al.

and COBIT, models for security management systems such as 27000, models for IT
Service Management such as ISO 20000 and Bodies of Knowledge such as
SWEBOK, amongst others. According to [1], it would be imprudent to think that any
of the models defined at present provides a total solution for process management in
the context of: Information Security Management System (ISMS), Information
Technology Governance Processes (IT Governance), or processes of development,
software maintenance and operation.

The great diversity and heterogeneity of available reference models, together with
the need to solve problems from many dimensions and organizational hierarchies,
provides organizations with a positive environment which enables them to choose
different solutions to various problems and needs [2]. However, each of these
approaches defines its own structure of process entities, definitions and quality
systems, which increases the complexity in the implementation of multi-models in a
single organization. Organizations must, therefore, define the most appropriate means
of choosing and implementing multi-models in the face of this huge quantity.
Harmonization may be one solution towards working simultaneously with multiple
models [2]. The multi-model environments in software process improvement are
present when an organization decides or needs to integrate into its processes different
practices or characteristics that are present not in one, but in several models [3].

At present, although the number of related works on the harmonization of multiple
models is small, in the last 4 years there is within the software engineering
community an ever-increasing interest in defining solutions for this type of
environments. This is evidenced by the initiatives and projects performed or being
carried out, such as: the PrIME project of the SEI [4], ARMONÍAS project of the
research group ALARCOS [5], Enterprise SPICE [6], among other publications and
works analyzed in this paper.

In this article, we present a systematic review of the literature which deals with the
proposals that exist to support the harmonization of reference models for process
improvement. In accordance with the general goals of systematic reviews, our aim is
to provide an up-to-date state of the art which synthesizes the work in this area of
knowledge and which can be used to identify gaps from which to formulate
innovative research activities. The works found are classified and analyzed taking into
account the trends of publication, the models used and the methods and techniques
proposed. Some factors that influence the work with multiple models, as identified
from the studies analyzed, are set out.

This paper proceeds as follows. The systematic review itself is presented is
presented in Section 2. Section 3 presents the results obtained along with a discussion
of them. Section 4 outlines a framework with which to address the principal issues
identified with regard to the harmonization of multiple models, and finally, our
conclusions and future work are described.

2 Systematic Review on the Harmonization of Reference Models

To carry out the systematic review on the harmonization of reference models we
followed the guidelines presented in [7], the protocol template defined in [8] and the
field procedure proposed in [9].

 Trends in Harmonization of Multiple Reference Models 63

The research question is: What works and initiatives related to the harmonization
and integration of reference models have been carried out? The list of keywords used
to find an answer to the research question is shown in the basic search string
presented in Table 1.

Table 1. Basic search strings

(integration OR integrating OR integrated OR unification OR unifying OR unified OR
combination OR combining OR combined OR mapping OR mapped OR harmonization
OR harmonizing OR harmonized OR) AND (standards OR models OR frameworks OR

technologies) AND ("process improvement" OR "software process")

The planned list of sources with which the systematic review was carried out is:

 Science@Direct, on the subject of Computer Science,
 Wiley InterScience, on the subject of Computer Science,
 IEEE Digital Library,
 ACM Digital Library, and
 As grey literature, the reports of the PRIME project from the SEI were reviewed.

In addition, some papers and works delivered by experts were reviewed.

The inclusion criterion of the primary studies obtained focused on the analysis of the
title, abstract and keywords. This allowed us to determine whether the articles found
were related to software process improvement, and moreover whether they perform or
propose a strategy for carrying out the harmonization of multiple-models.

The exclusion criterion focused on the reading and detailed analysis of the abstract
and conclusions. In certain cases where this was not enough, it was necessary to
extend the analysis to other parts of the document.

The selection of studies followed an iterative and incremental procedure. This
procedure was implemented by searching, extracting and visualizing results from each
search source iteratively. In this way the revision report grew and evolved more and
more until it was complete, thereby obtaining the final revision report.

3 Results and Discussion

On the basis of information extracted from the studies found, a statistical analysis to
show relevant findings of the systematic review was performed. Below are the results
from different points of view.

3.1 Trends of the Publications Multi-model Environments in Software Process
Improvement

As shown in Figure 1, we may note that there has been increasing interest in recent
years on the part of the software engineering community with regard to process
improvement environments where multiple models are involved.

64 C. Pardo et al.

Figure 1 shows an increase of the publications found in the last years. From the
analysis of the 32 studies found (see all references of the studies selected in references
section), it is possible to classify them into six categories. Figure 2 illustrates a sum-
mary of the categorized studies.

A brief summary of the studies categorized is presented below:

a. Studies where only two process reference models are harmonized. These models
can be from the same organization, or different. It is possible to see that 38% (12) of
the works found harmonize only two models. In these proposals models are
harmonized based on internationally recognized standards, e.g. ISO 9001 and CMM
[10-12], and ISO 9001 and CMMI [13-16]. These proposals seek to integrate the
processes of the models from ones that have been previously institutionalized. Other
studies attempt to integrate CMM or CMMI with other models different and apart
from ISO 9001. These are: CMM and Cleanroom model [17], CMMI and SWEBOK
model [18], CMMI and Six-Sigma model [19], CMMI and ITIL [20] and CMMI and
ISO 12207 [21].

b. Studies that harmonize more than two process reference models. 9% (3) of the
works found harmonize more than two models, e.g. the high-level comparison
between EIA IS 731, the CMMISM and SECM [22], the analysis performed to identify
the problems of interoperability and harmonization of the models ISO/IEC 15288,
EIA 632, IEEE 1220 and other related ISO standards [23], and the aligning of Cobit
4.1, ITIL V3 and ISO/IEC 27002 for Business Benefit [24].

c. Studies that harmonize two or more process reference models and assessment
models. 22% (7) of the studies analyze the integration of the assessment models and
their implementation in different process reference models. Some of the related
studies include: analysis of compatibility between SPICE and CMM [25], analysis of
the compatibility of CMMI as Process Assessment Model, ISO 12207 as Process
Reference Model and ISO 15504-2 as Measurement Framework [21, 26], integration
of ISO/IEC 15504 and CMMI-SE/SW [26, 27], defining support structures and
comparison between CMMI and SPICE [28, 29], among others.

d. Studies that propose unique and/or universal models. 3% (1) of the works found
correspond to a study that proposes a unique and/or universal model, but which does not
describe the solutions used, e.g. steps, activities or process performed carried out. The
study found presents the lessons learnt from the definition of the Capability Maturity
Model (iCMM), as a new approach that integrates multiple approaches, including: ISO
9001, Malcolm Baldridge National Quality Award criteria, International lifecycle and
assessment standards and processes, and several CMMs [30].

e. Studies that provide a solution for supporting multi-model harmonization. 25% (8)
of the works proposed provide solutions (methodology, process, framework,
activities, tasks, steps, amongst other elements) for supporting the harmonization of
multiple models, these being the following: the VM XT project, which is applied as
the standard in harmonizing the different approaches and projects of Information
technology (IT) under a specific model [31], an ontology for the integration of quality

 Trends in Harmonization of Multiple Reference Models 65

standards in ISO 9001:2000 and CMMI is taken for collaborative projects [32]. The
PRIME project presents the value of harmonization process improvement in
organizations when different models are in use [3, 33, 34] and Infosys Project defines
a path for the transition from ISO 9001 to SW-CMM level 4, based on the experience
of an organization [35]. Enterprise SPICE is an initiative to establish an Enterprise
Integrated Standards-Based model for use with international standard ISO/IEC 15504
(SPICE) [6]. In [36] a work is presented that identifies principles and process
characteristics for designing a system of processes at the architectural level and in
[37] we can discover research that defines a method for process-based unification of
different approaches to multiple process-oriented software quality.

f. Studies that provide analysis of multiple models or related concepts. 3% (1) of the
works found correspond to a study that recognizes the value of having processes that
are drawn from widely accepted and proven quality models e.g. CMMI-DEV, ISO
9000, ISO 20000, eSCMSP, ITIL, Lean Six Sigma and ISO 27001 [38].

Fig. 1. Trends of the publications on Multi-Model environments in Software Process
Improvement

3.2 Models Used

On the basis of the analysis and classification performed above, it is significant to
highlight that in the harmonization of models, different types of models are involved.
In Table 2 the process reference models and reference models for assessment used in
the studies are shown in alphabetical order. As can be seen in the Table, the models
for assessment that are most frequently used in the integration with other models are
the ISO/IEC 15504 or SPICE, at 11%. Likewise, it can be seen that the process
reference models which are most frequently used are CMM (13%), CMMI (25%) and
ISO 9001 (18%). On the other hand, models such as ITIL and ISO 27000 (Part 1 or 2)
are used in a lesser percentage; 5% each one, respectively. The ISO 12207 and Sigma
and Lean Six-Sigma have 4% use compared to other models such as CSE, COBIT,

66 C. Pardo et al.

EIA IS 731, eSCMSP, ISO 20000, SECM, SWEBOK, V-Modell XT, Six- and other
ISO standards have a 2% usage each.

With regard to process reference models, those which are most widely used are the
ISO models at 41%, of which ISO 9001 is the most frequently used, at 18%, and the
SEI models at 39%, of the which the CMMI is the most frequently used at 25%. Other
models are used in smaller percentage (20%); see Figure 3(a). Likewise, we can
observe that in most of the studies that involve these models, the way of achieving
CMM or CMMI is analyzed starting from ISO 9001. Although the major aim is to
reuse parts of the ISO standards in a CMM or CMMI environment, it is difficult for
an ISO-certified organization to implement CMMI easily because of the differences in
the language, structure, and details of the two sets of documents; see [14].

Fig. 2. Classification of the works found

Table 2. Models used

Models Total %
Cleanroom Software Engineering (CSE) 1 2
CMM 7 13
CMMI 14 25
COBIT 1 2
EIA IS 731 1 2
eSCMSP 1 2
ISO 12207 2 4
SPICE or ISO 15504 6 11
ISO 20000 1 2
ISO 9001 10 18
ISO/IEC 15288, EIA 632, EEE 1220 and
other related ISO standards

1 2

ISO 27000 Part 1 and Part 2 3 5
ITIL 3 5
SECM 1 2
Six-Sigma or Lean Six-Sigma 2 4
SWEBOK 1 2
V-Modell XT 1 2
TOTAL 56 100%

 Trends in Harmonization of Multiple Reference Models 67

Fig. 3. Reference model for the assessment and process reference models involved

With regard to process reference models and reference model for assessment,
Figure 3(b) shows that: (i) 22% of the studies involve the harmonization of reference
models for assessment and process reference models and (ii) 78% only involve the
study of process reference models. This suggests that there is a special interest in
analyzing the compatibility and the relationships between two approaches, e.g. the
relationships established between CMMI, as a candidate conformant Process
Assessment Model, relative to the Measurement Framework defined in ISO/IEC
15504-2, and the Process Reference Model described in ISO/IEC 12207, e.g. [26].

3.3 Methods and Techniques Proposed

With regard to the analyses carried out above, this section provides a brief summary
of some of the methods and techniques used in works found. Table 3 shows those
techniques used. Likewise, it shows that several attempts have been made to define
solutions for the harmonization of multi-models. These works propose various
techniques with solutions to support harmonization. The techniques used are
classified in different ways, e.g. the activity used to discover related elements in
several models may be called comparison or mapping. Other works use terms such as
synergy or compatibility to identify the level of relationship between models.
However, most related comparison techniques do not use a comparison scale that

Table 3. Models used

Technique, term or concept used Studies Quantity %
Integration, Unification [3, 33, 34], [6], [13, 39],

[35], [31], [32]
10 31

Comparison, Mapping, Align [31], [10-12], [15, 18],
[25, 26], [22], [24], [17],
[16], [21], [22], [27],
[28]

17 50

Combine, Combination, Merger,
Single model, Universal model

[19], [20], [40]

3 9

Harmonization [23], 1 3
Neither [36], [37] 2 6

68 C. Pardo et al.

allows a range for the relations identified among the models compared to be
established. This would allow the subjectivity in the comparison to be minimized.
Similarly, combining and merger are used to refer to several integrated or unified
models, but with the difference that the steps followed for their integration are not
shown. Some works use the term single model or universal model. Likewise,
complementarily is used to refer to models that take elements of other models to
maximize their qualities.

It may be seen that of the techniques used in 50% of the studies analyzed, some
kind of comparison, alignment or mapping is used as a technique leading to the
harmonization of multiple models. Only some of the studies propose different
harmonization techniques. However, we believe that the techniques or terms used in
the other studies correspond to general or related concepts. In that sense, we believe
that the terms found can be classified into methods and techniques. The methods are
general procedures and the techniques are specific procedures applied to the definition
or framework of a method. That is, a method is a procedure which is generally
oriented towards a specific purpose, while the techniques are different ways of
applying the method. Based on the techniques found, in Table 4 we have ordered the
techniques, terms or concepts used in the studies analyzed into a general concept
called harmonization, along with methods, techniques and the possible objective or
result.

Table 4. Methods and techniques

Methods Techniques Objective
Comparison Align,

Mapping [21], [15, 18], [31],
Complement
Homogenization
Single model,
Universal model

Integration
or Unification

Combine,
Merger [35], [13, 39], [31],

3.4 Factors That Influence the Work with Multiple Models

The primary studies were also used to search for and extract the information that
reported the factors that may influence an organization in needing to work with more
than one assessment or process reference model. The following can be highlighted as
some of these:

 Market niches with specific models. It is possible that in some market niches the
groups of organizations prefer certain models or fact standards, e.g. according to
the literature analyzed, CMMI or ISO 9001, respectively.

 Improvement of practices from legacy process models. It is possible that is
necessary to carry out the complementarily of the process and practices which have
been institutionalized from specialized models or more detailed ones, e.g. to obtain
a certification in CMMI from an ISO certification obtained previously, see [14].

 Business positioning. Although certification on a specific model does not entail
an increase in sales for an organization, at a commercial level it increases
confidence among its customers, allowing a better business positioning.

 Leveraged or merger corporate. It is possible that in a corporate merger the
organizations do not use the same model. Taking into account that in a merger

 Trends in Harmonization of Multiple Reference Models 69

an organization can be absorbed by other, it is necessary to identify and define
rules to lead the merger adequately.

 Systematic search of the capability of the processes. For the organizations
interested in performing a continual and ever–more-complete improvement of
their processes, it is possible that the harmonization of multiple models may
allow them to carry out substantial growth in the capacity of their processes
from other models.

 Business growth. Business growth involves more mature and complex
processes. At any specific time in their business growth, organizations can
require integration of models and practices that support the performing of
activities and the process of management and/or development.

4 A Framework to Harmonize Multiple Models

In order to address the principal issues identified in this systematic review, a
framework to support the harmonization of multiple models has been developed,
which is composed of the following elements:

• A set of support guidelines for the determination of the harmonization goals,
along with criteria for the selection and configuration of the harmonization
strategy.

• An ontology for the harmonization of multiple reference models called
H2mO [44], which presents a set of terms, concepts and relationships to
support the harmonization and integration of models. This is also related to
another ontology, which is an extension of the above, and establishes and
clarifies the key elements with which to express process-based approaches of
any reference model. This ontology is called Ontology of Process-reference
Models (OPrM). A Common Schema or Common Structure of Process
Entities (CSPE) has been was developed, which is used along with a
harmonization technique to facilitate the harmonization of different models.
A detailed summary of the CSPE template and homogenization technique is
presented in [2].

• A set of techniques and methods to support the identification and definition
of the harmonization strategies to be implemented in the harmonization
process. This is comprised of three different techniques: harmonization,
comparison and integration, see [2] and [41] respectively. The integration
technique is currently being developed from the results obtained from the
integration of six models to support the improvement procedures and
Information Technology (IT) Government in the banking sector. The
integrated models are: COBIT 4.1, BASEL II, RISK IT, ITIL V.3, VAL IT
and ISO/IEC 27002, and a detailed summary of the model obtained, called IT
Government to the Banking Sector Model (ITGSM), the harmonization
strategy defined is presented in [45], [42].

• A Process for driving harmonization of multi-models. This process describes
a set of activities, tasks and roles, which permit the configuration of a

70 C. Pardo et al.

suitable harmonization strategy needed to drive the harmonization of
multiple reference models [43].

Figure 4 shows a summary and the relationships between the elements described
above.

Fig. 4. Framework to support the harmonization of multiple reference models

5 Conclusions

Undoubtedly, the effort required in systematic reviews is considerably greater than for
a conventional review of the literature. The way systematic reviews are performed
allows us to summarize the evidence found on a specific topic. In this article a
systematic review of the literature on the harmonization of multi-models for software
process improvement has been presented, which has allowed us to obtain a view of
the initiatives and related works.

From the results obtained in the current review, the first observation from the study
that was carried out is that in the last 4 years there has been an ever-increasing interest
on the part of the software engineering community in harmonizing multiple models.
Currently, software development organizations may need more than one model to

 Trends in Harmonization of Multiple Reference Models 71

support and achieve the organization’s strategic goals. Nevertheless, there is a lack of
proposals, so for the organizations it is no easy task to carry out the implementation
and management of the different situations which must be taken into account in order
to harmonize more than two approaches or models as references for software process
improvement.

With regard to the most frequently used models, it can be seen that the CMMI as
process reference model is the one most used by the SEI. We note that the models
defined by the ISO are the ISO 9001 as reference model and the ISO 15504 as process
assessment method, while a smaller percentage of studies involve other models.

Another relevant fact is that the systematic review carried out has allowed us to
identify that various techniques have been defined to support the harmonization of
multiple models, e.g. comparison, mapping, integration, unification, merger, amongst
others. However, some of them may be similar despite having different names, or
they may be different although they have the same name. There is no formal
consensus or a single glossary with which to identify the techniques identified.

Another fact to highlight is that there are significant differences between the
structures, terminology and approaches; these hinder the harmonization of multiple
models. Likewise, it has been possible to identify several factors which influence the
work with multi-model environments. These factors or needs we have identified can
influence the approach to implementation or selection of the models when carrying
out a multi-model project.

Bearing in mind the shortcomings found in this current research stream, we have
presented a detailed summary of our research proposal, which defines a set of
elements with which to facilitate the harmonization of multiple reference models.

Acknowledgements. This work has been funded by the projects: ARMONÍAS
(JCCM of Spain, PII2I09-0223-7948), PEGASO/MAGO (MICINN and FEDER of
Spain, TIN2009-13718-C02-01) and ARCA (CEC – JCCM of Spain - and FEDER,
HITO-2009-06).

References

1. Piattini, M., Vidal, F.H.: Gobierno de las tecnologías y los sistemas de información, Ra-
Ma, Madrid, España (2007)

2. Pardo, C., Pino, F., García, F., Piattini, M.: Homogenization of Models to Support multi-
model processes in Improvement Environments. In: 4th International Conference on
Software and Data Technologies, Sofía, pp. 151–156 (2009)

3. Siviy, J., Kirwan, P., Morley, J., Marino, L.: Maximizing your Process Improvement ROI
through Harmonization. Technical report, Software Engineering Institute (SEI). Carnegie
Mellon University (2008)

4. SEI: The PrIME Project (2010),
http://www.sei.cmu.edu/process/research/prime-details.cfm

5. ARMONÍAS: A Process for Driving Multi-models Harmonization, ARMONÍAS Project
(2009), http://alarcos.esi.uclm.es/armonias/

6. SPICE: Enterprise SPICE. An enterprise integrated standards-base model (2008),
http://www.enterprisespice.com/

7. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering: Version 2.3. EBSE Technical Report (2007)

72 C. Pardo et al.

8. Biolchini, J., Gomes, P., Cruz, A., Travassos, G.: Systematic Review in Software
Engineering. Technical report, Systems Engineering and Computer Science Department,
UFRJ (2005)

9. Pino, F., Garcia, F., Piattini, M.: Software Process Improvement in Small and Medium
Software Enterprises: A Systematic Review. Software Quality Journal 16, 237–261 (2008)

10. Paulk, M.C.: Comparing ISO 9001 and the Capability Maturity Model for Software.
Software Quality Journal 2, 245–256 (1993)

11. Paulk, M.C.: A Comparison of ISO 9001 and the capability maturity model for software.
Technical report, Software Engineering Institute (1994)

12. Paulk, M.C.: How ISO 9001 compares with the CMM. IEEE Software 12, 74–83 (1995)
13. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: An integrated model of ISO

9001:2000 and CMMI for ISO registered organizations. In: Proceedings - Asia-Pacific
Software Engineering Conference (APSEC), Busan, pp. 150–157 (2004)

14. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: A unified model for the
implementation of both ISO 9001:2000 and CMMI by ISO-certified organizations. Journal
of Systems and Software 79, 954–961 (2006)

15. Mutafelija, B., Stromber, H.: ISO 9001:2000 - CMMI V1.1 Mappings. Technical report,
Software Engineering Institute (2003)

16. Kitson, D.H., Vickroy, R., Walz, J., Wynn, D.: An Initial Comparative Analysis of the
CMMI Version 1.2 Development Constellation and the ISO 9000 Family. Technical
report, Software Engineering Institute. Carnegie Mellon (2009)

17. Oshana, R.S., Linger, R.C.: Capability maturity model software development using
cleanroom software engineering principles - results of an industry project. In: Hawaii
International Conference on System Sciences, Maui, p. 260 (1999)

18. Mutafelija, B., Stromber, H.: Architecting Standard Processes with SWEBOK and CMMI.
In: SEPG 2006 Conference on Systems and Software Consortium, Nashville, p. 38 (2006)

19. Lin, L.-C., Li, T.-S., Kiang, J.P.: A continual improvement framework with integration of
CMMI and six-sigma model for auto industry. Quality and Reliability Engineering
International 25, 551–569 (2009)

20. CITIL: CMMI+ITIL (2010), http://www.wibas.de/publikationen/refer
enzmodelle/was_ist_cmmi/index_de.html

21. Pino, F., Balssarre, M.T., Piattini, M., Visaggio, G.: Harmonizing maturity levels from
CMMI-DEV and ISO/IEC 15504. Software Process: Improvement and Practice (2009) (in
press)

22. Minnich, I.: EIA IS 731 compared to CMMISM-SE/SW. Systems Engineering 5, 62–72
(2002)

23. Croll, P.R.: Interoperability of Systems Engineering Standards-Harmonizing World and
National Perspectives. In: 5th Annual Systems Engineering Conference, Tampa, p. 30
(2002)

24. ITGI: Aligning Cobit 4.1, ITIL V3 and ISO/IEC 27002 for Business Benefit. Technical
report, IT Governance Institute (ITGI) and Office of Government Commerce (OGC)
(2008)

25. Rout, T.P.: SPICE and the CMM: is the CMM compatible with ISO/IEC 15504? AquIS,
Venice, Italy 12 (1998)

26. Rout, T.P., Tuffley, A.: Harmonizing ISO/IEC 15504 and CMMI. Software Process:
Improvement and Practice 12, 361–371 (2007)

27. Wangenheim, C.G.v., Thiry, M.: Analyzing the Integration of ISO/IEC 15504 and CMMI-
SE/SW. Technical report, LQPS - Laboratorio de Qualidade e Productividade de Software.
Universidad do Vale do Itajaí - UNIVALI (2005)

 Trends in Harmonization of Multiple Reference Models 73

28. Lepasaar, M., Mäkinen, T., Varkoi, T.: Structural comparison of SPICE and continuos
CMMI. In: The Proceedings of SPICE 2002, Venice, Italy, pp. 223–234 (2002)

29. Foegen, M., Richter, J.: CMM, CMMI and ISO 15504 (SPICE). Technical report, IT
Maturity Services (2003)

30. Ibrahim, L., Pyster, A.: A Single Model for Process Improvement. IT Professional 6, 43–
49 (2004)

31. Biffl, S., Winkler, D., Höhn, R., Wetzel, H.: Software process improvement in Europe:
potential of the new V-modell XT and research issues. Software Process: Improvement
and Practice 11, 229–238 (2006)

32. Ferchichi, A., Bigand, M., Lefebvre, H.: An Ontology for Quality Standards Integration in
Software Collaborative Projects. In: First International Workshop on Model Driven
Interoperability for Sustainable Information Systems, Montpellier, pp. 17–30 (2008)

33. Siviy, J., Kirwan, P., Marino, L., Morley, J.: The Value of Harmonization Multiple
Improvement Technologies: A Process Improvement Professional’s View. Technical
report, Software Engineering Institute, Carnegie Mellon (2008)

34. Siviy, J., Kirwan, P., Renato, V., Peter, K., Gerhard, G.: SEPG Europe 2008. In:
Multimodel Improvement in Practice, Munich, p. 23 (2008)

35. Jalote, P.: CMM in Practice: Processes for Executing Software Projects at Infosys, vol. 1.
Addison-Wesley Professional, Massachusetts (1999)

36. Ferreira, A., Machado, R.J.: Software Process Improvement in Multimodel Environments.
In: Fourth International Conference on Software Engineering Advances (ICSEA 2009),
Porto, pp. 512–517 (2009)

37. Kelemen, Z.D.: A Process Based Unification of Process-Oriented Software Quality
Approaches. In: Proceedings of the 2009 Fourth IEEE International Conference on Global
Software Engineering (2009)

38. Heston, K.M., Phifer, W.: The Multiple Quality Models Paradox: How Much ‘Best
practice’ is Just Enough? Software Process: Improvement and Practice (2009) (in press)

39. Yoo, C., Yoon, J., Lee, B., Lee, C., Lee, J., Hyun, S., Wu, C.: A unified model for the
implementation of both ISO 9001:2000 and CMMI by ISO-certified organizations. Journal
of Systems and Software 79, 954–961 (2006)

40. Ibrahim, L., Pyster, A.: A Single Model for Process Improvement. IT Professional 6, 43–
49 (2004)

41. Pino, F., Balssarre, M.T., Piattini, M., Visaggio, G.: Harmonizing maturity levels from
CMMI-DEV and ISO/IEC 15504. Software Process: Improvement and Practice (2009)
doi:10.1002/spip.443

42. Lemus, S.M., Pino, F.J., Piattini, M.: Towards a Model for Information Technology
Governance applicable to the Banking Sector. In: V International Congress on IT
Governance and Service Management (ITGSM 2010), Alcalá de Henares, pp. 1–6 (2010)

43. Pardo, C., Pino, F.J., García, F., Piattini, M., Baldassarre, M.T.: A Process for Driving the
Harmonization of Models. In: The 11th International Conference on Product Focused
Software Development and Process Improvement (PROFES 2010), Second Proceeding:
Short Papers, Doctoral Symposium and Workshps, Limerick, pp. 53–56 (2010)

44. Pardo, C., Pino, F.J., García, F., Piattini, M., Baldassarre, M.T.: An ontology for the
harmonization of multiple standards and models. Computer Standards & Interfaces (in
press, accepted manuscript, 2011), doi: 10.1016/j.csi.2011.05.005

45. Pardo, C., Pino, F.J., García, F., Piattini, M., Baldassarre, M.T., Lemus, S.:
Homogenization, Comparison and Integration: A Harmonizing Strategy for the Unification
of Multi-Models in the Banking Sector. In: Caivano, D., Oivo, M., Baldassarre, M.T.,
Visaggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp. 59–72. Springer, Heidelberg
(2011)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 74–88, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Prioritization of Stakeholder Value Using Metrics

Lindsey Brodie and Mark Woodman

School of Engineering and Information Sciences, Middlesex University
The Burroughs, Hendon, London, NW4 4BT, U.K.

{L.Brodie,M.Woodman}@mdx.ac.uk

Abstract. Given the reality of resource constraints, software development
always involves prioritization to establish what to implement. Iterative and
incremental development methods increase the need to support dynamic
prioritization to identify high stakeholder value. In this paper we argue that the
current prioritization methods fail to appropriately structure the data for
stakeholder value. This problem is often compounded by a failure to handle
multiple stakeholder viewpoints. We propose an extension to an existing
prioritization method, impact estimation, to move towards better capture of
explicit stakeholder value and to cater for multiple stakeholders. A key feature
is the use of absolute scale data for stakeholder value. We use a small industry
case study to evaluate this new approach. Our findings argue that it provides a
better basis for supporting priority decision-making over the implementation
choices for requirements and designs.

Keywords: Stakeholder value, Impact estimation, Requirements prioritization,
Design prioritization, Metrics, Value-based software engineering.

1 Introduction

Research into prioritization has increased in recent years with many new prioritization
methods and variants being put forward. Much has been achieved in identifying the
prioritization factors and the issues of concern when structuring prioritization data.
However, existing prioritization methods and the prioritization data they utilize (in
content and structure) continues to be insufficient to support the type of prioritization
process that ideally needs to be adopted. Specifically, progress in improving the
prioritization process seems hampered by inadequate conceptualizations of
stakeholder value, in particular by the use of implicit notions of value. This is often
compounded by an additional failure to support multiple stakeholder viewpoints. Note
the term “stakeholder” is used here to mean any group of people with an interest in
the system, and they can be identified by role and/or location.

In this paper, to move towards addressing the problems identified above, we propose
capturing stakeholder value by stakeholder role, and using absolute scale data (as
opposed to using, for example, ordinal scale data) for stakeholder value. We consider
the explicit “real world” data captured by using absolute scales normally provides a
better basis for supporting priority decision-making. For example, as we shall discuss
later, it supports arithmetic calculations such as return on investment (ROI).

 Prioritization of Stakeholder Value Using Metrics 75

To present the argument for our proposals for stakeholder value, this paper is
structured in the following way. Section 2 outlines the need for prioritization
explaining why the prioritization process is important. Section 3 provides an overview
of the existing research on prioritization and analyses how it relates to the problems
we perceive impacting the prioritization of stakeholder value. Section 4 then
investigates in detail how stakeholder value is currently expressed within the
prioritization data and explains some of the resulting weaknesses. Finally, Section 5
briefly describes initial validation of using explicit absolute scale data for stakeholder
value: a case study using value impact estimation (VIE). We have developed VIE as a
simple extension to an existing method, impact estimation (IE). IE [1] uses absolute
scale data and captures the impact of each of the potential designs on each of the
requirements. VIE extends this to additionally capture explicit stakeholder value by
stakeholder role. Our initial findings are that use of absolute scales is indeed
beneficial for capturing stakeholder value, and that capturing stakeholder value by
stakeholder role is helpful for decision-making. However, there remains considerable
future work to develop adequate theory on stakeholder value and stakeholder
viewpoints, and improve understanding of the prioritization process.

2 The Need for Prioritization

2.1 Lack of Guidance

Prioritization can be considered something of a “gap” in current software engineering.
Certainly within the most commonly used system development methods, it has had far
too low a profile in the past. Also industry standards such as the Integrated Capability
Maturity Model (CMMI) [2] and SWEBOK (Software Engineering Book of
Knowledge) [3] fail to offer specific guidance on the prioritization process. This lack
of attention matters because of the “bigger picture”: the main purpose of prioritization
is to help ensure projects are implementing the “right thing” at the “right time”, while
making good use of the always limited human, monetary and time resources.
Opportunities to assist project planning, and so improve project delivery, are being
lost if prioritization is not intelligently executed.

In addition, the demand to move towards value-based software engineering
(VBSE) [4] raises the need for greater attention to be paid to the delivery of
stakeholder value. Indeed, Sullivan [5] reports on a lack of “formal, testable and
tested theories, methods, and tools to support economic-based analysis and decision-
making (and value-based analysis more broadly)”.

2.2 Changing Needs for Prioritization

Moreover, recent developments in software development mean that prioritization can
be seen today as having a more central, on-going role to play throughout systems
development. In Waterfall methods, prioritization only has to be carried out once,
early on in the systems development process, and involves deciding what
requirements are to be in the system and what are not. However, prioritization
processes now have to support iterative and incremental development [6]. Such
development requires on-going communication to capture data from the external

76 L. Brodie and M. Woodman

environment, accept changing requirements, and receive feedback from each
incremental delivery, in order to then establish what the stakeholders agree is of high
value and should be in the next increment. This means the prioritization process has to
cater for reuse of data while also accommodating changing data. Moreover, dynamic
prioritization has to occur with each increment to determine what to implement next.
Also that on-going identification of high stakeholder value is essential.

An additional demand comes from the recognition of the need for improved
stakeholder understanding, especially the handling of multiple stakeholder viewpoints
[7]. There is a need to not only capture and present the different viewpoints, but also
to enable stakeholder negotiation and tradeoffs, and to help achieve stakeholder
consensus and buy-in [8]. The prioritization process has a major part to play in
providing better support to the system/product owners, who decide what shall be
implemented.

3 Existing Research on Prioritization

Research in the area of prioritization has increased in recent years. In 1997, Karlsson
and Ryan [9] wrote an influential paper describing their Cost-Value Approach based
on the Analytic Hierarchy Process (AHP) [10], which acted as a springboard for much
subsequent research. In this section, we briefly review the existing literature on
prioritization: listing the existing prioritization methods, the identified prioritization
factors and some of the identified issues with structuring prioritization data.
Concurrently, we analyse how this existing research relates to the problems we
perceive in prioritizing stakeholder value.

3.1 Positioning of Prioritization

Aspects of prioritization are discussed in the IT literature under several subject areas
including requirements prioritization [11], [12], [13], release planning [14],
architecture selection [15], COTS (Commercial Off-The-Self) selection [16], financial
management [17], [18], and decision-making and negotiation methods [7]. There
appears to be compartmentalization in the literature, which we argue needs
questioning. While specialist areas for prioritization exist, it is essential that an overall
view be considered because any given system encompasses many of these subject
areas: there has to be interaction and integration at the system level. Accordingly, the
stance taken by this research is that a holistic view should be taken: any overall
prioritization process must include consideration of a wide range of prioritization
data, which includes the fundamental software engineering concepts that we have
termed here as “objective”, “requirement”, “design” and “increment”. All these four
concepts impact on the concept of stakeholder value. For example, carrying out a
prioritization process using just the requirements without consideration of, say, the
potential designs and the operational impacts, both of which affect the costs, needs to
be questioned. See Figure 1, which shows an increment delivery cycle with iteration
around these concepts as software development progresses.

 Prioritization of Stakeholder Value Using Metrics 77

Fig. 1. Increment delivery cycle based on Deming’s Plan-Do-Study-Act (PDSA) Cycle

Despite the previous argument, responsibility for the prioritization process and data
model probably should reside within requirements engineering because it interfaces
with the majority, if not all, of the stakeholders, and because the system requirements
form the primary (but not sole) data for prioritization. However, care needs to be
taken that there is adequate consideration of the wider aspects of the prioritization
process that fall within other viewpoints, such as strategy management and operations
management.

3.2 Existing Prioritization Methods

To date, we have identified over 60 different prioritization methods in the literature.
For brevity, full discussion of these is not given. A selection of those found
categorized by subject area is as follows:

Requirements Prioritization: MoSCoW [19], the Hundred-Dollar Test [20] and
Requirements Prioritization Tool (RPT) [12].

Requirements (and Effort) Prioritization: Cost-Value Approach [9] and Wiegers’
Method [21].

Requirements (and Design) Prioritization: Analytic Hierarchy Process (AHP) [10],
Quality Function Deployment (QFD) [22], [23] and Impact Estimation (IE) [1].

Architecture (Design) Prioritization: Cost Benefit Analysis Method (CBAM) [15]
and Reasoning Frameworks [24].

COTS (Design) Prioritization: Procurement-Orientated Requirements Engineering
(PORE) [16] and Mismatch Handling for COTS Selection (MiHOS) [25].

Release Planning: Planning Game [26], EVOLVE/EVOLVE* [14], [27] and
Requirements Triage [8].

Financial Prioritization: Business Case Analysis/ROI [28], Incremental Funding
Method (IFM) [29] and Real Options Analysis [17].

78 L. Brodie and M. Woodman

Negotiation Prioritization: Quantitative WinWin [30] and Distributed Collaborative
Prioritization Tool (DCPT) [7].

Others: Conjoint Analysis [31].

The prioritization methods given most coverage in the literature include AHP, QFD
the Cost–Value Approach, and more recently, the Planning Game.

However, it is not clear to what extent all these methods are used by software
development in industry, or indeed how successful they have been [32]. Indeed, there
appear to be some problems with the take-up and continued use of the well-known
prioritization methods, such as QFD [33] and AHP [21].

3.3 Prioritization Factors

There are many prioritization factors (also sometimes called “criteria” [34], [35] or
“aspects” [20], [32]) that can be considered in the prioritization process. We have
identified a list of over 50 prioritization factors from the literature; the main sources
include [12], [13], [14], [21], [35], [36], [37]. See Table 1, in which we chose to sub-
divide the factors into three categories by stakeholder viewpoint and note the
similarity to the choices of Lehtola [32] and Barney, et al. [35].

For brevity here, we have limited discussion of our work to just three stakeholder
viewpoints that are representative of the mandatory viewpoints in any systems
development prioritization process: strategy management, systems development and
operations management. (Clearly there are many more stakeholder roles than these in
a system.) We added a further sub-division under the four software engineering
concepts used earlier in Figure 1. We decided that strategy management has
responsibility for the objectives, systems development is primarily responsible for the
requirements and designs, and operations management has responsibility for
accepting the planned and delivered increments. In other words, the data associated
with the selected system concepts would be of prime interest to the stakeholder
viewpoint when establishing priorities. Furthermore, we introduced grouping of the
prioritization factors by concept area, for example, strategy, cost and risk. Several of
these groups are also identified by Berander [20] as “aspects”. Note that, due to space
limitations, any explanations of individual prioritization factors and relevant
references have been omitted. Note also that these prioritization factors are not
complete; this table only reflects the main prioritization factors found in the literature.
The following observations can be made:

A general set of prioritization factors that could be proposed as “a starter” for a
prioritization process emerges from the table. The prioritization factors span all the
four software engineering concepts. This argues for a prioritization process that offers
support for all these concepts. If more narrowly focused, specialized, prioritization
methods are to exist then they need to integrate into an overarching prioritization
process/method. The table provides support for the existence of different stakeholder
viewpoints in the mappings between the stakeholder viewpoints and the prioritization
factors: different stakeholder viewpoints are interested in and knowledgeable about
different prioritization factors. This means any prioritization process or prioritization
method must cater for different stakeholder viewpoints.

 Prioritization of Stakeholder Value Using Metrics 79

Table 1. Prioritization factors by stakeholder viewpoint and software engineering concept

80 L. Brodie and M. Woodman

A tentative observation can be made that the prioritization factor groupings (for
example, strategy, legal, cost and risk), map across to the dimensions for stakeholder
value.

3.4 Known Issues in Structuring Prioritization Data

A list of issues encountered when structuring the prioritization data to support the
prioritization process was identified by extrapolating from discussions in the
literature, for example from [8], [11], [12], [21], [36], [37], [38], [39]. The issues
considered relevant to expressing prioritization data include:

Explicit Stakeholder Value: This is the often the expression of stakeholder priority
to reflect the stakeholder value as well as the capture of explicit value.

Multiple Stakeholder Viewpoints: There is a need to handle different areas of
interest/expertise and capture the different viewpoints together with their associated
stakeholder value.

Requirements Abstraction: This is the ability to handle requirements captured at
different levels of refinement.

Interdependencies: The ability to express interdependencies among the requirements
and also the designs. This becomes increasingly important with iterative and
incremental development.

Dynamic Prioritization: The priority data must be captured in order that it can be
reused in subsequent prioritizations (future increments) without needing further inputs
from stakeholders (unless something significant has changed in the system and/or its
environment that they need to provide additional data on).

Scaling-up: This is the ability to scale up to cope with large numbers of items. Some
existing prioritization methods become impractical when the number of requirements
begins to grow to sizes typical of modern systems. In fact, for most large-scale
projects, prioritization can tend to be carried out at a fairly high level of abstraction.

4 Analysis of Existing Prioritization Data

4.1 Expressing Prioritization Data

How prioritization data is expressed is a key factor in a prioritization process. We
argue in this section that the prioritization data that the prioritization methods
currently utilize (in content and structure) is insufficient to support the type of
enhanced prioritization process that ideally needs to be adopted. Specifically, the lack
of use of quantified data captured on absolute scale types is hindering progress.

The type of scale being used to capture the data is specifically important as it
identifies the extent to which arithmetic calculations can validly be carried out. Only
the ordinal and ratio scale types are commonly used in existing prioritization methods.
The absolute scale type is only occasionally used at present, but we propose it should
be much more widely used and in fact, that it should replace much of the use of the
ordinal and ratio scale types.

 Prioritization of Stakeholder Value Using Metrics 81

Table 2. Mapping of prioritization technique(s) and scale type(s) to prioritization methods

4.2 Prioritization Techniques

Several different ways (sometimes termed “prioritization techniques” [20]) of
expressing prioritization data can be identified [13], [37]. We have reduced the
number of different categories to four main ones as follows:

Grouping: The individual items are each categorized into one of a set of priority
groups, for example the MoSCoW prioritization method demands each requirement is
categorized as either “must have”, “should have”, “could have” or “would like, but
wouldn’t have this time” [19]. The results are on an ordinal scale.

Ranking: Requirements are ranked in order of preference. Ranking is carried out by
bubble sort or by binary search tree [11]. This is an ordinal scale of measure as there
is no information about the differentials amongst the ranked items.

Weighting: Stakeholders assign their preferences and relative weightings are
calculated. The results are on a ratio scale. One means of obtaining the weightings is
by using voting [13]: stakeholders are requested to distribute some fixed number of
votes (say 100 or 1000 dollars) amongst the different items being prioritized. Another
means is by using pair-wise comparison: priorities are calculated by creating a
hierarchy with branches of up to seven comparable items and then the items within
each branch are pair-wise compared using a scale of 1 to 9 where 1 equates to
“equally important” and 9 equates to “extremely more important” [12]. The scales are
then converted to normalized weightings, which are then carried up the hierarchy. In
AHP, pair-wise comparison is used to first weight the requirements, and then the
designs.

Metrics: Absolute scales of measure are used to express certain attributes and these
metrics form the basis for selection, for example by enabling calculation of ROI
figures [37]. ROI calculation needs data on the amount of benefit (stakeholder value)
that would be achieved by implementing a given design and the implementation cost
associated with it. Only absolute scale data enables such ROI estimates to be
calculated, as explicit stakeholder value data such as “a cost saving over the next year
of 220,000 monetary units” would be captured. This contrasts to the ordinal scale data
of say, the MoSCoW method, which simply captures requirements identified as of

 Prioritization
Method

Prioritization
Technique(s)

Scale
Type(s)

 QFD Weighting and
Grouping

Ratio
Ordinal

 AHP Weighting
(Pair-wise comparison)

Ratio

 IE Metrics Absolute
 Cost-Value

Approach
Weighting
(Pair-wise comparison)

Ratio

 MoSCoW Grouping Ordinal
 Planning Game Grouping Ordinal
 Requirements

Triage
Grouping and
Weighting

Ordinal
Ratio

82 L. Brodie and M. Woodman

high stakeholder value into a “must have” priority group. In this paper, we are using
Planguage [40] to express metrics, which captures the performance and resource
requirements, as required levels on scales of measure.

See Table 2, which gives some examples of how the scale types and prioritization
techniques map to a selection of prioritization methods.

See also Table 3, which shows how the prioritization techniques cope with a
selection of prioritization data issues. Some example data has been inserted in the top
row. From this row, it can be seen that use of metrics with absolute scale types results
in real data that is much easier to understand and say, discuss with another
stakeholder. It is less ambiguous than trying to work out what “Medium” should be
interpreted to mean. An observation can be made that all the techniques, apart from
metrics, are generating additional data that captures some indirect notion of
stakeholder value (such as “must have”), but not any explicit value (such as 220,000
monetary units).

Table 3. How prioritization techniques cope with a selection of data structuring issues

 Prioritization of Stakeholder Value Using Metrics 83

Fig. 2. VIE table for bank case study. The shaded area represents the extensions to IE.

5 Some Examples from a Case Study

5.1 Choice of Prioritization Method

By comparing how prioritization methods handled the prioritization factors and the
data structure issues [41], and by considering the usage of software engineering
concepts and scale types, we determined that IE offered an initial sound basis for this
research: it spans the concepts of requirement, design and increment, and uses
absolute scale data [1]. However, the IE method lacks consideration of explicit
stakeholder value and stakeholder viewpoint, so we extended it to cater for
stakeholder value by stakeholder role. We chose to link stakeholder value to
requirement. See Figure 2 for an example of an extended IE table, which we term a
value impact estimation (VIE) table. The non-shaded area is a basic IE table and the
shaded area represents the extensions to IE.

5.2 Case Study Description

The case study examples are from a customer business rules “decisioning” system for
a bank. The bank’s objectives are customer satisfaction and, more efficient and
effective internal processes. The main problems perceived by the bank are the time,
effort and accuracy of updating and using the business rules, and the elapse time taken
and the accuracy of dealing with customer requests. Of course, having up-to-date
business rules in place impacts the accuracy of the handling of the customer requests.
As the intention is to demonstrate that absolute scale data helps prioritization
reasoning, a detailed discussion of all the requirements is not given here. We also

84 L. Brodie and M. Woodman

limit our comments here about the use of performance requirements (also known as
non-functional requirements) apart from recognizing that this is an additional reason
why IE merits attention (given very few prioritization methods handle performance
requirements [37]).

For brevity, a very restricted, cut down sample of the system specification is
presented below. Note the data highlighted in bold in this specification is captured in
the VIE table in Figure 2.

Stakeholders: Regulator, IT Department, Customer, Rules
Administration, Business Units, Back Office.

Requirements:
Function: Submit request.
Performance requirement: Reduce time for customer to submit
request.
Scale: Average time taken for defined [request type: Default
= Loan].
Past: 30 minutes.
Goal: 10 minutes.

Function: Enter customer request details.
Performance requirement: Reduce time for Back Office to enter
request.
Past: 30 minutes.
Goal: 10 minutes.

Function: Process a customer request.
Performance requirement: Reduce time to process customer
request.
Past: 5 days.
Goal: 20 seconds.
Performance requirement: Reduce number of complaints.
Scale: Average number of complaints in defined [Time] from
defined [Stakeholder].
Past [Back Office]: 10 per week.
Goal: 0 per week.
Past [Customer]: 25 per week.
Goal: 5 per week.

Function: Update the business rules.
Performance requirement: Reduce time to update rules.
Scale: Average time taken for defined [request type].
Past: 1 month.
Goal: 1 day.

Function: Distribute business rules.
Performance requirement: Reduce time taken. Scale: Average
time taken.
Past: 2 weeks.
Goal: 1 day.

Designs:
APTM: Automate the rules & test manually.
Rationale: Speed up the distribution to Back Office staff.

BD: Back Office loan decisioning system.
Rationale: Automating applying the rules will save time.
Dependency: APTM.

WSS: Web self-service.
Rationale: Customers can get a rapid response.
Dependency: BD, APTM.

 Prioritization of Stakeholder Value Using Metrics 85

APAT: Automate the rules & test automatically.
Rationale: Speed up the distribution to Back Office staff.
Dependency: APTM.

5.3 Description of a Basic IE Table

To create a basic IE table, the performance requirements are placed down the left-
hand column. Each performance requirement shows its current baseline (Past) level
and the required target (Goal) level. Beneath the performance requirements, the
resource requirements are listed. Next, the designs are placed on the top row, and the
estimated impact of each of the designs on each of the performance and resource
impacts can be filled in as a level on the scale of measure. As discussed earlier, this
involves estimating the level on the scale of measure that will result for a requirement
if the design is implemented. If the baseline level is taken as 0% and the target level is
taken as 100%, then the estimated percentage impact of the design on achieving the
requirement can be calculated and the percentage change can be determined.

By looking down a column for a given design, you can see which requirements it is
contributing towards meeting. By summing the estimated percentage changes in the
performance requirements down a column for a given design, and then dividing by
the estimated development cost of the design, an estimated cumulative performance to
cost ratio for each design can be calculated. The performance to cost ratios for the
potential designs within an IE table can be compared to determine which design offers
the most impact given its cost. In this case study, the designs are complementary so
the aim is to sequence the implementation order to deliver the highest value as early
as possible. Looking at Figure 2, it can be seen that the designs are in the right order
regarding the figures for the estimated cumulative performance to (development) cost
ratios. Note the totals for the performance impacts are calculated based on the
estimated additional percentage impact over the estimated percentage impact
achieved after the last design was implemented. So design BD contributes an
additional 40% (90% - 50%) over the 50% estimated for APTM, so its total estimated
percentage impact is 80% + 40% + 50% = 170%. A further refinement was to cap any
percentage impact at 100% for the calculations. As implementation proceeds and
increments are completed, the actual results can be measured and captured in the IE
table alongside the estimates. This allows deviations from the planned levels to be
identified and future plans adjusted as appropriate.

5.4 Extending IE to Cater for Multiple Stakeholders and Stakeholder Value

To address the problems with multiple stakeholders and stakeholder value, as already
outlined earlier, we extended the basic IE table to capture on its left-hand side the
different stakeholders of interest and their associated stakeholder value, see the
shaded areas of Figure 2. The figures for stakeholder value given in the stakeholder
columns represent the stakeholder value of achieving 100% of each requirement. In
this VIE table stakeholder value was estimated on the financial value of the estimated
time saving and the estimated additional sales. Note the actual financial values are not
given here due to the commercial sensitivity of this information. Instead the financial
figures for stakeholder value were all divided by the lowest figure and then rounded
to the nearest integer.

86 L. Brodie and M. Woodman

In turn, the extension of adding explicit stakeholder value enables cumulative
stakeholder value to development cost ratios to be calculated for the different designs
as shown in the shaded bottom row of Figure 2. The calculation is worked out on the
basis that an estimated percentage impact of a design on a requirement will result in
the same percentage of the stakeholder value of the requirement being achieved. In
other words, an assumption that the utility curve [42] is linear. From the results for the
value to cost ratios, it appears that maybe the implementation order of the designs,
WSS and APAT should be reversed.

6 Conclusions

Despite much research in the last decade on prioritization in software engineering
projects, progress is being hampered by inadequate representation of stakeholder
value. The issue is becoming more urgent because dynamic prioritization of
stakeholder value is increasingly needed as iterative and incremental development
methods become more widely used. We have argued in this paper that the use of
absolute scale data is essential to address the problems with the current prioritization
processes: specifically, to provide unambiguous prioritization data that stakeholders
can understand and relate to, and to support arithmetic calculations.

This paper has briefly reviewed existing research on prioritization. Our findings
include:

• By categorizing and analysing the existing prioritization methods, that many
(but not all of) the existing prioritization methods are restricted in their scope
(for example, some methods are just considering the requirements).

• By investigation of the prioritization factors discussed in the literature, we have
shown that the scope of the prioritization process spans system-wide data from
organizational objectives to increment delivery. An additional finding from this
data is that different stakeholders have different viewpoints on the prioritization
factors, and that therefore, multiple stakeholder viewpoints need to be
supported.

• By identifying the known issues with structuring prioritization data and
analyzing how the prioritization techniques and scale types used in prioritization
methods tackle these issues, we determine that the techniques of grouping,
ranking and weighting are weaker than metrics in addressing the issues.
Specifically, expression of stakeholder value is implicit in the prioritization data,
and that arithmetic calculations are often impossible or problematic, apart from
when metrics are used.

Further, we demonstrate the validity of the use of absolute scale data in prioritization
by using VIE, an extended version of the IE prioritization method with some
examples from a case study. We specifically extended IE to cater for stakeholder
value for multiple stakeholders. We show the ability to carry out calculations to
investigate requirement and design priorities.

Work is underway to investigate further extending the IE method to represent
additional aspects of stakeholder value. Future work plans to make the detailed deci-
sion-making of a rational prioritization process explicit.

 Prioritization of Stakeholder Value Using Metrics 87

References

1. Gilb, T.: Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage. In: Brodie, L. (ed.).
Butterworth-Heinemann, London (2005) ISBN 0750665076

2. Boehm, B., Port, D., Basili, V.R.: Realizing the Benefits of the CMMI with the CeBASE
Method. Systems Engineering (2002)

3. Bourque, P., Dupuis, R. (eds.): SWEBOK: Guide to the Software Engineering Body of
Knowledge 2004 Version. IEEE Computer Society, Los Alamitos (2004)

4. Boehm, B.: Value-Based Software Engineering. Software Engineering Notes 28(2) (2003)
5. Sullivan, K.: Introduction to the First Workshop on the Economics of Software and

Computation. In: Companion to the Procs. of the 29th International Conf. on Software
Engineering. IEEE, Los Alamitos (2007)

6. Larman, C., Basili, V.R.: Iterative and Incremental Development: a Brief History. IEEE
Computer 36(6) (2003)

7. Park, J., Port, D., Boehm, B.: Supporting Distributed Collaborative Prioritization for Win-
Win Requirements Capture and Negotiation. In: Procs. of the International Third World
Multi-Conference on Systemics, Cybernetics and Informatics (SCI 1999). International
Institute of Informatics and Systemics (1999)

8. Davis, A.: The Art of Requirements Triage. IEEE Computer 36(3), 42–49 (2003)
9. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE

Software (1997)
10. Saaty, T.L.: How to Make a Decision: The Analytic Hierarchy Process. European Journal

of Operational Research 48, 9–26 (1990)
11. Karlsson, J., Wohlin, C., Regnell, B.: An Evaluation of Methods for Prioritizing Software

Requirements. Information and Software Technology (1998)
12. Moisiadis, F.: The Fundamentals of Prioritising Requirements. In: Procs. of the Systems

Engineering, Test and Evaluation Conference (2002)
13. Berander, P., Andrews, A.: Requirements Prioritization (ch. 4). In: Aurum, A., Wohlin, C.

(eds.) Engineering and Managing Software Requirements. Springer, Heidelberg (2005)
ISBN 3540250433

14. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach.
Information and Software Technology 46(4), 243–253 (2004)

15. Kazman, R., Asundi, J., Klein, M.: Quantifying the Costs and Benefits of Architectural
Decisions. In: Procs. of the 23rd International Conference on Software Engineering (ICSE
2001). IEEE, Los Alamitos (2001)

16. Mohamed, A., Ruhe, G., Eberlein, A.: COTS Selection: Past, Present, and Future. In:
Procs. of the IEEE Intl. Conf. and Workshops on the Engineering of Computer-Based
Systems (ECBS 2007). IEEE, Los Alamitos (2007)

17. Favaro, J.: Managing Requirements for Business Value. IEEE Software (March/April
2002)

18. Sivzattian, S.V.: Requirements as Economic Artifacts: A Portfolio-Based Approach, Ph.D.
Thesis. Department of Computing, Imperial College of Science, Technology and
Medicine, London (2003)

19. Stapleton, J. (ed.): DSDM: Business Focused Development, 2nd edn. Addison Wesley,
Reading (2003)

20. Berander, P.: Evolving Prioritization for Software Product Management. Blekinge Institute
of Technology. Doctoral Dissertation Series (2007)

88 L. Brodie and M. Woodman

21. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for
Market-driven Software Product Development. In: Software Process Improvement and
Practice. Wiley, Chichester (2006)

22. Cohen, L.: Quality Function Deployment: How to Make QFD Work for You. Addison
Wesley, Reading (1995)

23. Akao, Y.: QFD: Past, Present, and Future. In: Procs. of the International Symposium on
QFD 1997, Linkoping (1997)

24. Bass, L., Ivers, J., Klein, M., Merson, P.: Reasoning Frameworks (CMU/SEI-2005-TR-
007). Software Engineering Institute, CMU (2005)

25. Mohamed, A., Ruhe, G., Eberlein, A.: Decision Support for Handling Mismatches between
COTS Products and System Requirements. In: Procs. of the COTS-Based Software
Systems (ICCBSS 2007) Conf. (2007)

26. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(2000)

27. Saliu, O., Ruhe, G.: Supporting Software Release Planning Decisions for Evolving
Systems. In: Procs. of the 2005 29th Annual IEEE/NASA Software Engineering Workshop
(SEW 2005). IEEE, Los Alamitos (2005)

28. Favaro, J.: Value-Based Management and Agile Methods. In: Marchesi, M., Succi, G.
(eds.) XP 2003. LNCS, vol. 2675. Springer, Heidelberg (2003)

29. Denne, M., Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return
Development, 190 pages. Prentice-Hall, Englewood Cliffs (2004) ISBN 0131407287

30. Ruhe, G., Eberlein, A., Pfahl, D.: Trade-off Analysis for Requirements Selection.
International Journal of Software Engineering and Knowledge Engineering 13(4), 345–366
(2003)

31. Green, P.E., Wind, Y.: New Way to Measure Consumers Judgments. Harvard Business
Review (1975)

32. Lehtola, L.: Providing value by prioritizing requirements throughout software product
development: State of practice and suitability of prioritization methods. Licentiate thesis,
Helsinki University of Technology (2006)

33. Martins, A., Aspinwall, E.: Quality Function Deployment: an empirical study in the UK.
Total Quality Management (August 2001)

34. Wohlin, C., Aurum, A.: Criteria for Selecting Software Requirements to Create Product
Value: An Industrial Empirical Study. In: Biffl, S., Aurum, A., Boehm, B., Erdogmus, H.,
Grunbacher, P. (eds.) Value-Based Software Engineering. Springer, Heidelberg (2005)

35. Barney, S., Aurum, A., Wohlin, C.: A product management challenge: Creating software
product value through requirements selection. Journal of Systems Architecture (2008)

36. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In:
Procs. of the 5th IEEE International Symposium on RE (2001)

37. Firesmith, D.: Prioritizing Requirements. Journal of Object Technology (2004)
38. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements

Engineering 11, 79–101 (2006)
39. Mead, N.: Requirements Prioritization Introduction. Software Engineering Institute (SEI),

Carnegie Mellon University (CMU) (2006)
40. Gilb, T.: Principles of Software Engineering Management. Addison Wesley, Reading

(1988) ISBN 0201192462
41. Brodie, L., Woodman, M.: Towards a Rational Prioritization Process for Incremental and

Iterative Systems Engineering. In: Procs. of the 1st International Workshop on
Requirements Analysis. Pearson, London (2008)

42. Daniels, J., Werner, P.W., Bahill, A.T.: Quantitative Methods for Tradeoff Analyses.
Systems Engineering 4(3) (2001)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 89–105, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ProMISE: A Process Metamodelling Method
for Information Systems Engineering

Charlotte Hug1, Agnès Front2, and Dominique Rieu2

1 Centre de Recherche en Informatique,
Université Paris 1 Panthéon-Sorbonne

2 Laboratoire d’Informatique de Grenoble, Grenoble University
220 rue de la Chimie, 38041 Grenoble cedex 9, France

Charlotte.Hug@univ-paris1.fr
{Agnes.Front,Dominique.Rieu}@imag.fr

Abstract. Processes play a great part in information systems engineering
projects success. There are a lot of process models and metamodels; however,
the “one size fits all” motto has to be moderated: models have to be adapted to
the specificities of the organizations or the projects. In order to help method
engineers building adapted process models, we propose a method to build
process metamodels and to instantiate them according to the organizations
context. Our method consists of selecting the concepts needed from a
conceptual graph, gathering the current knowledge of metamodelling concepts
for information systems engineering processes, and integrating them in a new
process metamodel that will be instantiated for any project in an organization.
This method is supported by a tool.

Keywords: Process engineering, Information systems engineering, Metamodelling,
Graph, Tool.

1 Introduction

To design and produce information systems, project managers focus on the quality of
the deliverables or on the intermediary support documents produced all along the
project life (analysis models, test procedures, for example); as such, they focus on the
quality of their definition, formalization, level of detail and completeness. The quality of
the products highly depends on the processes followed [1], as the processes define the
way products have to be created. A development process can be roughly defined as a
sequence of activities that create and update products. The objective for an organization
is to properly define the processes, formalize them, adjust them to the different projects
and reproduce the optimized processes. The Capability Maturity Model Integration [2]
specifies different degrees of maturity of the development processes in an organization,
the supreme goal being following repeatable and optimized processes. The information
systems engineering (ISE) processes quality is then essential.

Many information systems/software engineering processes or methods have been
defined. They appeared in the 1970’s with the Waterfall model [3], the Spiral Model

90 C. Hug, A. Front, and D. Rieu

[4], then the RUP [5] and more recently Agile methods as XP [6] and SCRUM [7].
They are based on different process models: they propose different lifecycles and
activities, specify distinct kinds of deliverables and assign roles differently. Thus,
each method proposes its own way to build IS: each method is based on a different
process metamodel that uses different concepts.

In order to produce information systems, process models have to be efficient and
fitted to the organizations specific constraints. An unsuitable method or process
model will not be followed by the development teams, create tensions between team
members and generate delay or bad IS design. Existing methods or process models
have then to be adapted, customized to the organizations context; this is the method
engineer’s role.

As the process models flexibility depends on their process metamodel flexibility,
we state that the key to build adapted process models lies in adapted process
metamodels. However, existing process metamodels are hardly adaptable and are
defined independently of one another [8], [9], [10]. Upon modelling the process
models of their organizations, method engineers have to use those already predefined
process models or to instantiate process metamodels without adaptation possibilities;
the resulting models might be partially inadequate to the organizations specificities
and constraints and to their business activities.

In this paper, we present the ProMISE method (Process Metamodelling for
Information Systems Engineering) that allows method engineers building their own
process metamodels according to their organization specificities and technologies.
The method consists of selecting the needed concepts from a conceptual graph and
integrating them in a new adapted process metamodel. The construction of the process
metamodel is hidden to the method engineers: they use a conceptual graph that builds
the process metamodel and checks its consistency. The produce process metamodels
are multi-points of view as they integrate various points of view of the existing
process metamodels, they are adapted to the constraints and specificities of the
organization as only the needed concepts are integrated and the process metamodel is
federated as all the knowledge of ISE processes is defined in one metamodel.

The paper is organized as follows. In the next section, we present the conceptual
graph, base of our adaptive method to build process metamodels for ISE. We
introduce the method in Section 3. Section 4 presents an example of the Grenoble’s
University Hospital. Section 5 is devoted to discussion and Section 6 presents the tool
that supports our method. Section 7 concludes this paper.

2 The Base of the Method: The Conceptual Graph

In this section, we present the base of our approach that is a conceptual graph. It was
built from a Process Domain Metamodel and a 3D Space [8], [9], [10]. A study [10],
[11] of the different existing process metamodels (activity oriented [12]; [13]; [14];
[15]; [16]) such as SPEM, product oriented [17]; [18];[19]; [1] such as Statechart and
State Machines, decision oriented [20]; [21]; [22]; [23] like Ibis and Daida, context
oriented [24] such as NATURE and strategy oriented [25] like MAP), allowed us to
define a Process Domain Metamodel which only contains the main classes of existing
process metamodels and the associations between the concepts. In order to facilitate

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 91

the classes’ selection from the Process Domain Metamodel, we propose the use of a
conceptual graph that allows method engineers to easily navigate between the
concepts. The concepts are organized according to a 3D space.

Fig. 1. The Completeness – Precision – Abstraction 3D space

2.1 The 3D Space

The 3D space represented in Figure 1 guides method engineers through a
methodological frame to build process metamodels for ISE. The three axes [26] help
method engineers in the selection of the concepts: completeness, precision and
abstraction. Completeness is the coverage of the metamodel of one or more points of
view (activity, product, decision, context and strategy). Precision is the level of detail
of the metamodel and abstraction is the intentional and/or operational level of concern
of the metamodel. The intentional level represents the objectives of the ISE process
while the operational level represents the actions required to concretize these
objectives. Method engineers will build their process metamodels depending on these
three axes: each engineering activity has for objective to: extend the Process
Metamodel Under Construction (PMUC) (completeness axis), precise the PMUC
(precision axis) or abstract (inv. concretize) the PMUC (abstraction axis).

2.2 The Conceptual Graph

The conceptual graph (Figure 2) is the base of our method. It organizes the recognized
concepts for ISE process metamodelling, representing the actual knowledge base of
the domain. The purpose of such conceptual graph is to guide method engineers in the
Completeness – Precision – Abstraction 3D space while selecting the concepts they
need to represent in their metamodels. The conceptual graph defines the set of
possibilities: it restrains method engineers in the selection and the use of the defined
concepts only, in order to maintain the consistency of the PMUC.

2.2.1 The Concepts
The concepts of the conceptual graph are used in ISE processes and are usually
represented in process metamodels. The concepts of the graph represent two types of
elements:
- Classes that represent the main concepts (concepts in bold in Figure 2) defined in
the Process Domain Metamodel and are linked to each other by the completeness and
abstraction relations. Those concepts are Work Unit, Condition and Role (activity
point of view) [12]; [13]; [14]; [15]; [16], Work Product (product point of view) [17];

92 C. Hug, A. Front, and D. Rieu

[18]; [19];[1], Issue, Alternative, Argument (decision point of view) [20]; [21]; [22];
[23], Situation, Context, Intention (context point of view) [24] and Strategy (strategy
point of view) [25]. Figure 3 presents a close-up on a few of those. A Work Unit
represents an action that is executed during the ISE process. A Work Product is
something that is produced, used or modified during the ISE process and a Role is
someone/thing that carries out an action during the ISE process. A Strategy represents
how an intention is achieved.

Fig. 2. The conceptual graph

- Classes that decompose the previous classes, linked by the precision relation
(secondary concepts). For example, in Figure 3, the Work Unit Category concept
refines the Work Unit concept to express the fact that there are different categories of
work unit, as activity or task for example. The Work Unit Composition concept
refines the Work Unit concept to represent a Work Unit class with a reflexive
composition, to express that the “Design components” activity is composed of the
tasks “Class design” and “Subsystem design” [5], for example.

2.2.2 The Relations
The relations represent conceptual links between concepts in the Completeness –
Precision – Abstraction 3D space as presented in section 2.1.

The completeness relation links one concept to another that extends it. This
relation is symmetric, non-transitive and non-reflexive. For example, in Figure 3 (on
the left), the Work Unit concept can be completed by the Work Product and Role
concepts. As the Work Product concept can also be completed by the Work Unit
concept (symmetry), the represented link is bidirectional.

The precision relation specifies that a concept can be refined by another concept.
Such relation is non-symmetric, non-reflexive and non-transitive. For example, the

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 93

Work Unit concept can be refined using the Work Unit Category or Work Unit
Composition concepts (but the Work Unit concept does not refine the Work Unit
Category concept – non symmetry) (cf. Figure 3 in the centre).

Fig. 3. Examples of the Completeness, Precision and Abstraction relations

The abstraction relation specifies that one concept can be abstracted by another
concept; it is non-symmetric, non-reflexive and non-transitive. For example, the Work
Unit concept is abstracted by the Strategy concept (cf. Figure 3 on the right). The
inverse relation of Abstraction is Concretization. We can say that the Work Unit
concept is the concretization of the Strategy concept.

On the one hand, the relations help method engineers selecting the concepts in the
conceptual graph and on the other hand, they assure the coherency of the selected
concepts. For example, the Work Unit Category Composition concept can not be
selected before the Work Unit Category concept (Figure 2). The consistency of the
process metamodels produced is then ensured, as the conceptual graph was designed
in such a way as the concepts were coherently linked to each others.

2.2.3 Example
The conceptual graph in the Completeness – Precision – Abstraction 3D space is
dynamically built: the perspective evolves depending on the node the method
engineer is considering. Figure 4 shows a part of the 3D perspective that method
engineers would see from the Work Unit concept.

Fig. 4. Part of the perspective from the Work Unit concept in the conceptual graph

94 C. Hug, A. Front, and D. Rieu

If method engineers want to extend their PMUC, it will lead to the Work Product
and Role concepts thanks to the completeness relation defined in the conceptual
graph. If they want to precise their PMUC, it will lead to the Work Unit Category and
Work Unit Composition concepts, using the precision relation and if they want to
abstract it, it will lead to the Strategy concept thanks to the abstraction relation.

We now describe the method that uses the conceptual graph to build process
metamodels for ISE.

3 The Method

In this section, we present the method based on the conceptual graph to build process
metamodels for ISE. The two-step method consists of: (i) concepts selection within
the conceptual graph, (ii) concepts integration in the PMUC, according to the Process
Domain Metamodel. These two steps are iterated until method engineers obtain the
complete process metamodel they need.

3.1 Concept Selection

The first action of the Concept selection activity is the Definition selection that will
lead to get a Concept (left part of Figure 5). A definition is composed of a short
description, synonyms of the concept and examples (Table 1). It enables method
engineers to select definitions from the Concepts dictionary corresponding to their
needs. Each definition is associated to a concept appearing as a node in the conceptual
graph. The next step is the Concept integration (section 3.2).

Fig. 5. The Concept selection

After the first loop, method engineers go back to the Concept selection. They may
refine the PMUC in terms of concepts attainable through relations with the previously
integrated concept (completeness, precision and abstraction relations) or in terms of
integration of classes thanks to the definitions. The Relation selection activity consists
of selecting one of the relations that starts from the integrated concepts. For example,
if the method engineer just integrated the Work Unit concept to his/her PMUC and if
he/she wants to extend it, he/she could select Role, Work product and all the concepts
linked through the completeness relation to the Work Unit concept in the conceptual
graph. It works in the same way through the precision and abstraction relations.

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 95

Table 1. Some definitions examples

Description Synonyms, AKA, examples Concept

Represents how an intention is achieved Tactics, approach, manner Strategy

Objective of the ISE process Goal Intention

Task that is executed during the ISE process Activity, task, work definition Work Unit

Work Unit that is composed of other work units Activity composed of tasks
Work Unit

composition
Something that is produced, used or modified by a
work unit during the ISE process

Product, document, model,
program

Work
Product

Someone/thing that carries out a work unit during
the ISE process

Actor, developer, analyst,
system

Role

3.2 Concept Integration

Once the concept is selected, it has to be integrated in the PMUC. The integration
activity is rather complex (Figure 6): it has to take into account the different types of
concepts (main or secondary).

Fig. 6. The Concept integration

The main concepts of the Conceptual Graph correspond to classes in the Process
Domain Metamodel. These classes have then to be integrated in the PMUC with the
associations between the integrated classes. The secondary concepts correspond to
design or business patterns that are applied on the classes of the PMUC. The patterns
that can be used are stored in a Pattern Repository. According to the selected concept,
one of the patterns is applied on the PMUC. The PMUC is thus built by adding
classes and applying patterns. The integration process is fully described in [27].

Method engineers can then choose either to continue the process or to stop it if the
PMUC is complete. If the PMUC is not complete, they go back to the Concept
selection activity.

The ProMISE method allows method engineers to build process metamodels
according to the constraints and specificities of their organization as they only select
the needed concepts from the conceptual graph. The conceptual graph allows guiding

96 C. Hug, A. Front, and D. Rieu

method engineers in the construction and checking the consistency of their PMUC.
The guiding is done thanks to the relations defined between the concepts that method
engineers will select according to their intention (abstract, complete, precise a
concept). The consistency of the produced PMUC is continuously checked as method
engineers can only select concepts according to the conceptual graph which have been
built in order to verify the consistency at any time. Some concepts cannot be selected
until other concepts have been integrated. Moreover, the construction of the process
metamodel itself is hidden to the method engineers as they only manipulate the
conceptual graph and the concepts definition.

We will now present an example of the ProMISE method use.

4 Grenoble’s University Hospital Example

This section describes an example of the information system centre of Grenoble’s
University Hospital (http://www.chu-grenoble.fr/). This example has not a purpose of
validating our method but illustrating it. We specifically conducted qualitative
evaluations to validate the method with an academic focus group and semi-structured
interviews with industrialists [28].

4.1 Requirements

The information system centre (ISC) manages approximately forty different
applications that need to be regularly updated to meet new users’ requirements
(medical assistants, hospital doctors and administration staff).

The ISC managers want to model the ISE processes to achieve a more rigorous
project management, defining a unified and optimal way to manage projects
regardless of the development team. They also want to collect and reuse knowledge
for a more efficient production in terms of resources and time use and therefore costs.
A method engineer is in charge of the study of the ISE processes and their modeling.
The method engineer in this example is one of the project managers of the ISC.

We have worked with this project manager who determined the various aspects of
the ISE processes (this example only presents an extract of the problem):

- A part of the process is defined in terms of goals and sub-goals; this part is
intended primarily for hospital services managers (services are for example
the surgical unit or the accounting department) who are more interested in the
results and impacts of new system functionalities on their service (intentional
part),

- The second part of the process is defined by phases, activities and products
produced during these activities (operational part).

The problems met by the method engineer are the following: how can he represent
these concepts? What are the existing models? Which models meet these
requirements? At the present time, these representation choices are made difficult
because of the numerous existing process models and metamodels, their lack of
mutual complementarity and the complexity to adapt them to specific needs of
organizations.

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 97

Our method enables the method engineer to model the process metamodel that
corresponds to the information system centre ISE processes. The method guides him
through the selection of concepts he needs to represent and through their assembly in
order to create a specific process metamodel including all the concepts at the
intentional level concerning the services managers and at the operational level
concerning the activities and the products.

4.2 Method Use

The first step of our method is the Concept selection. The method engineer must
select one of the definitions that correspond to the concepts he wants to model. The
definition “Goal or objective of the ISE process” corresponds to the part of the
process defined in terms of goals. The engineer chooses this definition and the
corresponding Intention class from the Process Domain Metamodel is integrated in
the new PMUC. The method engineer examines then the relations of the Intention
concept in the conceptual graph; the precision relation permits him to select the
Intention Composition concept that will allow him to decompose the goals into sub-
goals. This concept is integrated in the PMUC as a reflexive composition on the
Intention class, which corresponds to the use of the Composition pattern on the
Intention class. Figure 7 presents this part of the path in the conceptual graph and the
corresponding PMUC.

Fig. 7. First part of the path in the conceptual graph and the PMUC

Then, the relation concretization starting from the Intention concept in the
conceptual graph allows the method engineer to get the Work Product concept that
will represent the products produced during the ISE process. The corresponding class
is integrated in the PMUC, as well as the “concretizes” dependency linked to the
Intention class. In order to model the fact that a work product can be composed of
other work products (for example, “Functional specifications” is composed of
“Simplified requirements” and “Actors diagram”), the method engineer refines the
Work Product concept thanks to the Work Product Composition concept. To specify
that work products are of different types (for example, “Functional specifications” is a
document and “Actor diagram” is a UML diagram), the method engineer refines the
Work Product concept by the Work Product Category concept. The Work Product
Category class is added into the PMUC. Similarly to what was done with the Work
Product, the method engineer wants to specify that a document is composed of UML
diagrams, texts and graphics. He refines the Work Product Category concept by the
Work Product Category Composition concept. Figure 8 presents the corresponding
part of the path in the conceptual graph and the corresponding PMUC.

Thanks to the completeness relation, the method engineer can extend the PMUC
with the Work Unit concept to represent activities and steps. The Work Unit class and

98 C. Hug, A. Front, and D. Rieu

its associations “In” and “Out” defined in the Process Domain Metamodel are
integrated to the PMUC. By using the precision relation, the method engineer can
refine the Work Unit concept to represent the sequence and the composition of work
units, the work unit categories and the composition of work unit categories. Figure 9
presents the complete path carried out in the conceptual graph.

Fig. 8. Second part of the path in the conceptual graph and the PMUC

Fig. 9. Complete path in the conceptual graph

Fig. 10. The final process metamodel

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 99

Figure 10 presents the final process metamodel obtained. It represents the classes
defined in the requirements and the associations between them. The link between the
classes of intentional and operational level is represented by the dependency link
stereotyped as “concretizes”. The abstraction level of each class is represented as an
attribute level. The process metamodel is multi-points of view as it focuses on the
activity, product and strategy points of view. The complementarity and the connection
between the points of view are modeled by the “concretizes” dependency and the
associations.

The method engineer can then instantiate the metamodel to represent the various
ISE process models of the ISC. Figure 11 is a partial instantiation of the final process
metamodel to represent the ISE processes. The method engineer wants to model the
intentions and sub-intentions of service managers. One of the intentions of the service
managers is to know the level of impact of a new functionality and the changes on the
services organization. This can be represented as the object “Define the level of
impact of the change in the service”, instance of the Intention class. This intention can
be decomposed into two sub-intentions. Service managers want to define the impact
of the change in the service organization and the persons that will be impacted by the
change. These estimations will be useful to define the costs of the IS change, as costs
of business process modifications.

Fig. 11. The process model represented as an object diagram

The operational abstraction level of the process model represents the detail of the
“Pre-functional study” activity composed of three steps. First, “Simplified
requirements specifications” produces the “Simplified requirements” work product
that is a text. Second, the “Constitution of business terms glossary” step produces a
glossary and finally, “Actors modeling” produces a UML diagram “Actors diagram”.
All the work products produced during the Pre-functional study form a document
called “Functional specifications” (not represented in Figure 11). The two sub-
intentions “Define the impact on the service organization” and “Define the persons
who are impacted by the change” are concretized by the “Simplified requirements”
and “Actors Diagram” work products.

The process model represented as an object diagram is not easily and quickly
understandable. Our method proposes a graphical representation (formalism)
depending on the concepts in the PMUC. For example, if concepts of the operational

100 C. Hug, A. Front, and D. Rieu

level as work unit and work product are defined in the metamodel, the method will
propose to use activity diagrams [18]. If intentions and strategies are used, the method
will propose the MAP formalism [25], if there are only intentions, the KAOS
formalism [29] will be proposed.

The top part of Figure 12 shows how the intentions and sub-intentions of the
intentional level defined in Figure 11 can be modeled using the KAOS formalism.
They are represented as parallelograms. The composition is modeled thanks to a
circle. Figure 12 also presents the concepts of the operational level defined in Figure
11 as an activity diagram. The activities and steps are represented with rounded
rectangles. All the work products are represented by rectangles. Stereotypes are used
to specify their category. The “concretizes” dependencies are defined between the
different work products and intentions of the models: the method engineer, the service
managers and project managers can switch from the intentional level to the
operational level.

Fig. 12. Intentions and sub-intentions defined at the intentional level and their concretization at
the operational level in the ISE process

5 Discussion

Our proposition offers method engineers to build process metamodels for ISE
depending on the specificities, the context of the projects or organizations. Our
purpose differs from Situational Method Engineering, as its aim is to define IS
development methods by reusing and assembling different existing method fragments
[30], but it is set in the same trend of situational engineering. We may name our
domain SPME (Situational Process Metamodelling Engineering).

Let us note that we do not reconsider the existing process metamodels. They all
play a part in ISE processes and have their legitimacy. However, they do not define
their concepts complementarity in respect to the other process metamodels. Our
proposition does not consist of yet another process metamodel, but it proposes a
method allowing method engineers to build process metamodels including

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 101

complementarity between the concepts. Our method uses some part of the existing
process metamodels. Therefore, method engineers can reuse knowledge they acquired
from their experience in ISE process metamodelling. There lies the real contrast
between our proposal and currently available process models, such as RUP [5] or
SCRUM [7], process models that are hardly adaptable. Applying these, method
engineers must follow them as described and have a little or no mean of
customization. Our method, on the other hand, proposes method engineers to
instantiate process models according to their needs from process metamodels they
have defined themselves but still using widely accepted concepts and formalism of
ISE process models.

The existing process metamodels are also fixed [10]. They do not allow method
engineers to extend them or customize them. Their use is therefore limited as they do
not provide all needed concepts. For example, adding the intention concept to the
RUP model would be difficult as it is not defined in the RUP metamodel. Using it
without defining it in the metamodel could lead to misuses and the relations with the
other concepts would not be defined.

Finally, new process metamodels as ISO/IEC 24744 [16] are more flexible and
provide more concepts than previous process metamodels thanks to metamodelling
mechanisms as the Powertype. However, the strategy, intention and decision concepts
are not taken into account here.

To conclude, we can say that our method allows more flexibility, more
personalized adaptation and allows building process metamodels with less limitation
than the existing one.

6 The ProMISE Tool

In this section, we present the ProMISE tool that supports our method. It has been
built using Java. The two main supports of the method, the conceptual graph and the
Process Domain Metamodel are defined independently from the tool in XMI files.
XMI [31] is a standard format that allows storing UML models as structured text files.
The main benefit of having the supports outside the tool is to permit more flexibility
and scalability as the guiding will be generated thanks to the conceptual graph file and
not the tool it-self. The guiding evolves as the conceptual graph evolves. Method
engineers can interact with a visual conceptual graph, thanks to Prefuse [32]. Prefuse
is a powerful toolkit for creating rich interactive data visualizations, such as graphs.
The PMUC is displayed as a class diagram using the API UMLJGraph [33] that
allows displaying UML diagrams in Java. The PMUC can be exported as an XMI file.
This allows method engineers importing their process metamodels in any CASE tool,
to instantiate them for example. The imports and exports are done thanks to JDom
[34], a Java API able to read and write both XML and XMI files.

The tool allows method engineers to build process metamodels through the use of
the concepts definition and the relations. Figure 13 presents a global view of the
interface. It is composed of three tabs:

– The first tab (here called “Process-Metamodel-Hospital) allows method
engineers to build their PMUC for a particular organization or project through
the use of the definitions and the conceptual graph.

102 C. Hug, A. Front, and D. Rieu

– The second tab, “Process Metamodel Under Construction”, allows method
engineers to view their PMUC as a UML class diagram.

– The third tab, “Attributes”, allows method engineers to add attributes to their
PMUC classes, we will not detail this functionality here.

The first tab that allows the construction of the PMUC is decomposed in two parts:

– The top part of the interface permits to select concepts by definition or by
relation. Concepts are displayed according to their abstraction level which
facilitates their selection. The definition, examples and synonyms of each
concept can be seen by mouse over. Each relation (completeness, precision,
abstraction) is represented by a tab. By selecting one tab, the concepts that can
be integrated through the corresponding relation are displayed in the lists. For
example, in Figure 13, the Precision tab is selected. Work Unit Category is a
concept that can be refined; this allows selecting the Work Unit Category
Composition concept.

Fig. 13. Interface of the ProMISE tool

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 103

– The lower part of the interface shows the conceptual graph with the already
integrated concepts in the PMUC and the concepts that can be reached by the
relations and that can be integrated in the PMUC (Work Unit Category
Composition in Figure 13). By selecting a relation tab, the conceptual graph is
updated with the concepts that can be integrated.

The construction of the process metamodel itself is done by the tool that uses the
Process Domain Metamodel, the patterns to add new classes to the PMUC. Method
engineers do not see the “dirty” part of the process metamodel construction and only
interact with the conceptual graph.

7 Conclusions

In this paper, we present a method that allows method engineers to build process
metamodels for ISE. The method is based on two steps: (i) the selection of concepts
meeting the specificities and constraints of the projects or organizations, using a
conceptual graph to help the concepts selection in a completeness – precision –
abstraction 3D space; (ii) the integration of the concepts to build an adapted process
metamodel called PMUC. The produced process metamodels are multi-points of view
as they integrate different points of view (activity, product, decision, context and
strategy). The metamodels are also adapted to the context of the organizations as only
the needed concepts were selected. At last, all the knowledge of ISE processes of the
project or the organization is modeled in only one process metamodel and related
process models. There is a better consistency of the manipulated concepts and a better
understanding of the links between intentional and operational levels in the projects.

The ProMISE tool has been implemented to allow method engineers building
process metamodels according to our method. The construction of the process
metamodel itself is hidden to the method engineers as they only “play” with the
conceptual graph: the process metamodel is built automatically by the tool.

Further step is to allow the instantiation of the process metamodels until the
monitoring of particular information systems engineering projects. Another part of
perspectives concerns the formalism that method engineers should use to represent the
process models instantiated from the metamodels produced by this method. It would
be useful to guide method engineers in the use of such or such formalism, depending
on the concepts selected in their PMUC.

The Process Domain Metamodel may evolve, with the publications by the
community of new process models and metamodels for ISE. The conceptual graph
will also evolve, in order to propose method engineers the largest choice of
possibilities taking into account the latest evolutions in terms of ISE process
metamodelling.

References

1. Humphrey, W.S., Kellner, M.I.: Software process modeling: principles of entity process
models. In: ICSE 1989, pp. 331–342. ACM, New York (1989)

2. Software Engineering Institute: CMMI for Development, Version 1.2 (2006)

104 C. Hug, A. Front, and D. Rieu

3. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: ICSE 1987, pp. 328–338. IEEE Computer Society Press, Los Alamitos
(1987)

4. Boehm, B.: A spiral model of software development and enhancement. SIGSOFT
Software Engineering Notes 11(4), 14–24 (1986)

5. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Longman
Publishing, Co., Inc., Boston (2000)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Longman Publishing Co., Inc., Boston (1999)

7. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall,
Upper Saddle River (2001)

8. Hug, C., Front, A., Rieu, D.: A Process Engineering Method Based on a Process domain
Model and Patterns. In: MoDISE International Workshop, pp. 126–137 (2008)

9. Hug, C., Front, A., Rieu, D.: Process Engineering Method Based on Ontology and
Patterns. In: ICSOFT 2008, pp. 29–36 (2008)

10. Hug, C., Front, A., Rieu, D., Henderson-Sellers, B.: A Method to build Information
Systems Engineering Process Metamodels. J. of Sys. & Soft. 82(10), 1730–1742 (2009)

11. Hug, C., Front, A., Rieu, D.: Ingénierie des processus. Une approche à base de patrons.
Revue RSTI. Série ISI 13(4), 11–34 (2008)

12. OMG: Software Process Engineering Meta-Model. Version 2.0 (2008)
13. Open Process Framework, http://www.opfro.org
14. OOSPICE, Software Process Improvement and Capability Determination for Object-

Oriented/ Component-Based Software Development, http://www.oospice.com
15. Australian Standard: Standard Metamodel for Software Development Methodologies. AS,

4651–2004 (2004)
16. ISO/IEC: 24744 Software Engineering - Metamodel for Development Methodologies

(2007)
17. Harel, D.: Statecharts: A Visual Formulation for Complex Systems. Science of Computer

Programming 8(3), 231–274 (1987)
18. OMG: Unified Modeling Language: Superstructure. Version 2.2 (2009)
19. Finkelstein, A., Kramer, J., Goedicke, M.: ViewPoint oriented software development.

Third International Workshop on Software Engineering and Its Applications, pp. 374–384
(1990)

20. Kunz, W., Rittel, H.W.J.: Issues as elements of information systems. WP 131, Heidelberg,
Berkeley (1970)

21. Potts, C., Bruns, G.: Recording the Reasons for Design Decisions. In: ICSE 1988, pp. 418–
427. IEEE Computer Society Press, Los Alamitos (1988)

22. Potts, C.: A generic model for representing design methods. In: ICSE 1989, pp. 217–226.
IEEE Computer Society/ ACM Press (1989)

23. Jarke, M., Mylopoulos, J., Schmidt, J.W., Vassiliou, Y.: DAIDA: An Environment for
Evolving Information Systems. ACM Trans. on Inf. Sys. 10(1), 1–50 (1992)

24. Rolland, C., Souveyet, C., Moreno, M.: An Approach for defining ways-of-working.
Information System Journal 20(4), 337–359 (1995)

25. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling.
Requirements Engineering 4(4), 169–187 (1999)

26. Panet, G., Letouche, R.: Merise/2 Modèles et techniques Merise Avancés. Les Editions
d’Organisation, Paris (1994)

27. Hug, C.: Méthode, modèles et outil pour la méta-modélisation des processus d’ingénierie
de systèmes d’information. PhD Thesis, Grenoble I University (2009)

 ProMISE: A Process Metamodelling Method for Information Systems Engineering 105

28. Hug, C., Mandran, N., Front, A., Rieu, D.: Qualitative Evaluation of a Method for
Information Systems Engineering Processes. In: RCIS 2010, pp 257–268 (2010)

29. Objectiver: A KAOS tutorial. Respect-It (2007)
30. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,

K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

31. OMG.: MOF 2.0 / XMI Mapping Specification. Version 2.1.1 (2007)
32. Prefuse, http://prefuse.org/
33. UMLJGraph, http://umljgraph.sourceforge.net/
34. JDOM, http://www.jdom.org/

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 106–120, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Investigating the Use of Object-Oriented Design Patterns
in Open-Source Software: A Case Study*

Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stamelos

Aristotle University of Thessaloniki, Thessaloniki, Greece
{apamp,stamelos}@csd.auth.gr

Abstract. During the last decade open source software communities are
thriving. Nowadays, several open source projects are so popular that are
considered as a standard in their domain. Additionally, the amount of source
code that is freely available to developers, offer great reuse opportunities. One
of the main concerns of the reuser is the quality of the code that is being reused.
Design patterns are well known solutions that are expected to enhance software
quality. In this paper we investigate the extent to which object-oriented design
patterns are used in open-source software, across domains.

Keywords: Open source software, Design patterns, Empirical study.

1 Introduction

Open source software (OSS), a term introduced in 1998 [9], has been expanding
rapidly in recent years. There exist several successful projects developed as open
source software, such as Linux, Mozila Firefox and Apache Server.

Collaboration is the basis of the development of an open source project. A first
version of the project is developed by a single developer or a group of developers and
is released over the internet, freely available, so that the members of the open source
community can extend and maintain the project. In open source software
development, there are both advantages and disadvantages. One disadvantage of open
source software is that there is no documentation and technical support. On the other
hand, the advantages of this software development type are its low cost, its reliability
and the availability of the source code in order to customize the project according to
once special needs [18].

Moreover, another feature of open source software is the potential reuse of the
source code, which is freely available to the open source developers. A code segment
should have certain characteristics, such as understandability, maintainability and
flexibility, in order to be easily and successfully reused in another project.

Gamma et.al have introduced, in 1995, design patterns as common solutions to
common design problems [10]. The main incentive to introduce patterns was the
creation of a common vocabulary for developers, which provide flexible, reusable and

* This paper is an extended and revised version of the paper entitled “An Empirical Study on

Design Pattern Usage on Open-Source Software”, published in ENASE 2010.

 Investigating the Use of Object-Oriented Design Patterns in OSS 107

maintainable design solutions. Furthermore, Meyer et.al explains how object-oriented
design patterns can be transformed to reusable components [16].

In literature, many empirical studies have attempted to examine how design pattern
application affects software quality. The main conclusion of these studies is that
object oriented design patterns can not be considered as universally good or bad. In
section 2, we provide a more detailed presentation of the current state of the art,
discussing the effect of design pattern use on software quality.

This paper is an extended and revised version on authors’ previous work [1] that
aims at examining the application of object-oriented design patterns in open source
software. More specifically, an empirical study has been performed, in order to
investigate which patterns are more frequently used in open source software, which
differences exist within software domains and the size of design patterns. The main
extension and revision points are concluded below:

• The number of case study subjects is increased
• Added two software categories and revised two others by exploring broader

software categories (i.e. replaced e-commerce applications with business
applications)

• One more research question dealing with design pattern size has been added.

In the next section of the paper, a literature review on design patterns influence on
software quality is provided, In section 3 we present the methodology of our work,
i.e. research questions, case study process and data analysis methods. In section 4, the
findings of our empirical study are presented, while in section 5 we provide a
discussion on the results, categorized according to the research question they address
to. Finally, at the end of the paper, possible threats to validity, future work and
conclusions are presented.

2 Design Patterns

In this section of the paper we present the findings of a literature review on the
influence of design pattern application on software quality. A common division of
software quality is between internal and external quality [4]. Software internal quality
is measurable and estimates software features such as complexity, cohesion, coupling,
inheritance etc. that are not easy to understand for the end-user or the developer.
External software quality can not be easily measured, but it is closer to the end-user’s
and the developer’s sense. Functionality, reliability, usability, efficiency,
maintainability and portability, are the best known external quality characteristics, as
described in ISO/IEC 9126.

The effect of design pattern application on software internal quality has been
examined by Ampatzoglou et.al [2] and Huston [12]. According to Huston, the
application of the Mediator pattern reduces coupling, the Bridge pattern reduces size
and inheritance metrics and finally the use of the Visitor pattern reduces the project’s
complexity with respect to number of methods [12]. Ampatzoglou et.al suggests that
the application of the State and the Bridge pattern reduces coupling and complexity,
with respect to cyclomatic complexity and increases cohesion among methods. As a
side-effect, the project size concerning the number of classes increases [2].

108 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Furthermore, the effect of design patterns on external quality has been investigated
in several studies. The influence of design patterns i.e. Abstract Factory, Observer,
Decorator, Composite and Visitor to software maintainability has been investigated
by Vokac et.al and Prechelt et.al [17 and 21], by conducting controlled experiments.
According to the results of the experiment, the employment of a design pattern is
usually more useful than the simpler solution. The software engineer has to choose
between applying a design pattern or a simple solution in line with common sense.
Besides, Hsueh et.al investigate how design patterns impact on one quality attribute,
which is the most obvious attribute that the pattern affects [11]. The selection of the
quality attribute is made according to the pattern’s non functional requirements,
whereas the metric is selected according to [4].

Wendorff presents an industrial case study, where inappropriate pattern use has
caused severe maintainability problems. The reasons of inappropriate design pattern
use is classified into two categories (1) software engineers have not understood the
reasoning behind the patterns that they have employed (2) the patterns that they have
applied have not fulfilled the project’s requirements. Moreover, the paper emphasizes
the need for documenting design pattern application and that pattern removal leads to
extreme cost [22]. In [13], an analysis on software maintenance, with professional
engineers, is performed. According to the empirical study, design patterns do not
always have positive impact on software quality. In particular, it is concluded that
when patterns are applied, the simplicity, the learnability and the understandability are
negatively affected.

In [6], an industrial case study is conducted, in order to examine the correlation
among code changes, reusability, design patterns, and class size. On the report of the
results of the study, the number of changes is highly correlated to class size.
Additionally, classes that play roles in design patterns or that are reused through
inheritance are more change prone than others. Despite the study’s good structure and
validation, it investigates an individual maintainability aspect, change proneness, and
does not mention maintainability issues such as change effort and design quality.

In [8], the authors present the investigation of correlations among class change
proneness, the role that a class holds in a pattern and the kind of change that occurs.
They use three open source projects in order to perform the empirical study.
Concerning the majority of design patterns, the results of the study comply with
common sense. However, in some cases, the conclusions differ from those expected.

3 Methodology

Wholin et.al suggests that there are three major empirical investigation approaches,
surveys, case studies and experiments [23]. In this paper we have conducted a case
study, exploiting the plethora of open source. On the contrary, surveys are not suitable
for our research because in this case we would miss the patterns that were employed
without intention by programmers. Finally, an experiment with open-source
programmers would decrease the number of subjects in our research. In this section of
the paper we describe the methodology of our case study. The case study of our
research was based on the guidelines described in [14], and consisted of the following
steps:

 Investigating the Use of Object-Oriented Design Patterns in OSS 109

(a) Define hypothesis
(b) Select projects
(c) Method of comparison selection
(d) Minimization of confounding factors
(e) Planning the case study
(f) Monitoring the case study and
(g) Analyze and report the results

The hypotheses, i.e. step (a), are defined in section 3.1. Steps (b) and (d) which deal
with project selection protocol and minimizing confounding factors are presented in
section 3.2, accompanied with step (e). The methods used in analyzing the data, i.e.
step (c), is presented in section 3.3, step (f), described in [14], is discussed in section
6. Finally, concerning step (g), we report the results on section 4 and discuss them in
section 5.

3.1 Research Questions

In this section of the paper we state the research questions that are investigated in our
study.

RQ1: Which is the frequency of design pattern application?
RQ2: Are there any differences in pattern application within the software categories
under study?
RQ3: Are there any differences in the number of pattern participant classes across
pattern types and software categories?

3.2 Case Study Plan

In this section of the paper we present the case study plan. According to [5] planning
a case study is an important step for the validity of the study. Our plan involved a five
step procedure described below:

(a) choose open source project categories
(b) identify a number of projects that fulfil certain selection criteria, for each a

category
(c) perform pattern detection for every selected project. The pattern detection was

conducted with an automated tool [20] that identifies instances of eleven (11)
patterns of all GoF pattern categories (i.e. Creational, Behavioural and
Structural)

(d) tabulate data
(e) analyze data with respect to the research questions

In this study the OSS project categories that have been considered are development
tools, office/business applications, internet application, databases and computer
games. These categories have been selected as highly active topics in open source
communities [19]. From these categories we have selected projects that fulfilled the
following criteria:

110 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

(a) Software written in java, due to limitations of pattern detection tool [20].
However, java is probably the most widely used programming language.

(b) software that provides binary code, due to limitations of pattern detection tool.
(c) software should be ranked in the fifty most successful projects of their

category, according to sourceforge.net rating.
(d) software binary size should be larger than 100KB, in order not to be

considered trivial.

In case studies, factors, other than the independent variables, which influence the
value of the dependent variable, are considered confounding factors. The most
important confounding factors in our research are considered to be the experience of
the developer on design patterns and object-oriented programming in general. In our
study we limit our analysis to automatically collected data. On the other hand, it is
expected that in a random developer sample of a large developers’ community, the
distribution of skill and experience are closely near to the distribution of the
population.

3.3 Data Analysis Methods

The dataset that has been created after design pattern detection consisted mainly of
numerical data. On the completion of the pre-processing phase each project was
characterized by 28 variables:

• name

• category

• number of downloads

• number of factory method instances

• number of prototype instances

• number of singleton instances

• number of creational pattern instances

• number of adapter instances

• number of composite instances

• number of decorator instances

• number of proxy instances

• number of structural pattern instances

• number of observer instances

• number of state-strategy instances

• number of template method instances

• number of visitor instances

• number of behavioural pattern instances

• average number of pattern participants per pattern (11 variables)

The analysis phase of our study has employed descriptive statistics, independent
sample t-test and paired sample t-test. Concerning RQ1, we have employed

 Investigating the Use of Object-Oriented Design Patterns in OSS 111

descriptive statistics and paired sample t-tests so as to compare the mean number of
instances for each design pattern. In the investigation of RQ2 and RQ3, for similar
reasons we have used descriptive statistics and independent sample t-tests. The statis-
tical analysis has been performed with SPSS©.

According to [23], one of the first steps during statistical analysis of the dataset is
the elimination of outliers. In our study we identified and erased seventeen outliers. In
most cases the observed extreme values where identified as maximum values, that is
software that exhibit a very large number of pattern instances.

4 Results

In Table 1, the mean number of design pattern instances is presented. The data refer to
the whole data set without discrimination across software categories. In addition to
that, standard deviation of each variable is presented.

Table 1. Average Number of Pattern Instances

 Mean Std. Deviation

Factory 3.21 7.21

Prototype 5.80 18.98

Singleton 13.99 19.16

Creational 23.01 36.55

Adapter 34.71 53.66

Composite 0.48 2.22

Decorator 2.53 6.50

Proxy 1.58 4.50

Structural 39.30 61.17

Observer 1.44 2.55

State 37.70 58.96

Template 5.93 8.52

Visitor 0.50 2.50

Behavioural 45.65 66.19

The results of Table 1 provide indications on the employment rate of each pattern

in OSS. In order to be able to compare the mean values of each variable in a more
elaborate way, we have performed 55 paired sample t-tests, i.e. one test for every
possible pair of design patterns. The results of a t-test between two variables are
interpreted by two numbers, the mean difference (diff) and the t-test significance
(sig). The diff variable represents the difference of subtracting the mean value of the
second variable, from the mean value of the first. Whereas, sig represents the
possibility, that diff is not statistically significant. In Table 2, we present the
statistically significant differences in pattern application.

112 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Table 2. Significant paired sample t-tests on pattern employment difference

 diff sig diff sig

Factory – Singleton -10.78 0.00 Decorator – Template -3.40 0.00

Factory – Adapter -31.50 0.00 Decorator – Visitor 2.03 0.00

Factory – Composite 2.74 0.00 Proxy – State -36.10 0.00

Factory - Proxy 1.64 0.03 Proxy – Template -4.36 0.00

Factory - Observer 1.78 0.01 Proxy - Visitor 1.08 0.04

Factory – State -34.45 0.00 Observer – State -36.25 0.00

Factory - Template -2.72 0.00 Observer – Template -4.50 0.00

Factory – Visitor 2.71 0.00 Observer - Visitor 0.94 0.01

Prototype – Singleton -8.19 0.00 State – Template 31.71 0.00

Prototype – Adapter -28.91 0.00 State – Visitor 37.19 0.00

Prototype – Composite 5.33 0.00 Template – Visitor 5.43 0.00

Prototype - Decorator 3.27 0.04 Adapter – Composite 34.23 0.00

Prototype - Proxy 4.22 0.01 Adapter – Decorator 32.18 0.00

Prototype – Observer 4.36 0.02 Adapter – Proxy 33.13 0.00

Prototype – State -31.84 0.00 Adapter – Observer 33.27 0.00

Prototype – Visitor 5.30 0.01 Adapter - State -2.66 0.00

Singleton – Adapter -20.72 0.00 Adapter – Template 28.77 0.00

Singleton – Composite 13.51 0.00 Adapter – Visitor 34.21 0.00

Singleton – Decorator 11.46 0.00 Composite – Decorator -2.06 0.00

Singleton – Proxy 12.41 0.00 Composite - Proxy -1.10 0.01

Singleton – Observer 12.55 0.00 Composite – Observer -0.96 0.00

Singleton – State -23.58 0.00 Composite – State -37.22 0.00

Singleton – Template 8.06 0.00 Composite – Template -5.46 0.00

Singleton – Visitor 13.49 0.00 Decorator – State -35.14 0.00

In Table 3, the mean numbers of instances of each design patterns within the
software categories under study are presented.

In order to statistically validate the results of the above table, we performed 42
independent sample t-tests, i.e. one test for each pattern for all the possible pairs of
software categories. In Table 4, we provide the statistically significant results on
comparing pattern application between software categories. The results are presented
similarly to those of Table 2.

 Investigating the Use of Object-Oriented Design Patterns in OSS 113

Table 3. Average Number of Pattern Instances among Software Categories

 Office / Business Internet Development Tools Database Games

Factory 9.24 3.00 1.00 2.64 0.50

Prototype 20.05 1.85 2.45 3.45 1.58

Singleton 29.43 13.55 8.30 7.36 11.67

Creational 58.71 18.40 11.75 13.45 13.75

Adapter 91.95 18.30 19.80 24.77 19.83

Composite 1.52 0.15 0.10 0.32 0.29

Decorator 6.95 1.50 1.50 2.14 0.75

Proxy 4.95 0.25 0.20 0.73 1.67

Structural 105.38 20.20 21.60 27.95 22.54

Observer 2.57 1.20 1.35 0.77 1.33

State 94.57 29.25 23.84 27.14 15.63

Template 11.71 5.80 4.10 6.05 2.42

Visitor 0.00 1.70 0.25 0.27 0.37

Behavioral 108.86 37.95 29.84 34.23 19.75

Table 4. Significant independent sample t-tests

 Pattern diff sig

Office/Business - Internet Factory 6.24 0.05

Office/Business - Internet Prototype 18.20 0.04

Office/Business - Internet Singleton 15.88 0.03

Office/Business - Internet Adapter 73.65 0.00

Office/Business - Internet Decorator 5.45 0.06

Office/Business - Internet Proxy 4.70 0.02

Office/Business - Internet State 65.32 0.01

Office/Business - Internet Template 5.91 0.08

Office/Business – Development Tools Factory 8.24 0.01

Office/Business – Development Tools Prototype 17.60 0.05

Office/Business – Development Tools Singleton 21.13 0.01

Office/Business – Development Tools Adapter 72.15 0.00

Office/Business – Development Tools Decorator 5.45 0.06

Office/Business – Development Tools Proxy 4.75 0.02

Office/Business – Development Tools State 70.73 0.01

Office/Business – Development Tools Template 7.61 0.01

Office/Business – Database Factory 6.60 0.04

Office/Business – Database Prototype 16.59 0.07

Office/Business – Database Singleton 22.07 0.00

Office/Business – Database Adapter 67.18 0.00

Office/Business – Database Proxy 4.23 0.03

Office/Business – Database Observer 1.80 0.05

Office/Business – Database State 67.44 0.01

114 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

Table 4. (Continued)

 Pattern diff sig

Office/Business – Database Template 5.67 0.08

Office/Business – Games Factory 8.74 0.01

Office/Business – Games Prototype 18.46 0.04

Office/Business – Games Singleton 17.76 0.02

Office/Business – Games Adapter 72.12 0.00

Office/Business – Games Decorator 6.20 0.03

Office/Business – Games State 78.95 0.02

Office/Business – Games Template 9.30 0.00

Internet – Development Tools Factory 2.00 0.09

Internet - Database Singleton 6.19 0.09

Internet – Games Factory 2.50 0.03

Internet – Games State 13.63 0.09

Database – Games Factory 2.14 0.07

Database – Games Template 3.63 0.07

In Table 5, we present the mean numbers of classes that participate in each design
patterns within the software categories under study. Additionally, Table 6 presents the
statistically significant differences between the mean values of number of classes that
participate in design patterns, among software categories.

Table 5. Average Number of Pattern Participating Classes among Software Categories

 Office /
Business Internet

Development
Tools Database Games Overall

Factory 6.35 5.93 6.77 6.93 6.21 6.46

Prototype 7.84 7.69 10.80 7.23 8.74 8.16

Singleton 1.00 1.00 1.00 1.00 1.00 1.00

Adapter 2.00 2.00 2.00 2.00 2.00 2.00

Composite 7.42 20.50 12.00 6.20 9.33 9.84

Decorator 11.77 17.12 10.33 11.93 17.23 13.46

Proxy 2.20 2.29 2.07 3.20 2.11 2.32

Observer 10.39 11.90 11.00 6.65 10.67 10.33

State 7.15 9.04 6.92 6.40 8.68 7.47

Template 6.83 5.79 5.82 6.35 7.88 6.45

Visitor 0.00 7.15 3.24 4.72 2.00 5.21

 Investigating the Use of Object-Oriented Design Patterns in OSS 115

Table 6. Significant independent sample t-tests

 Pattern diff sig

Office/Business – Development Tools Prototype -2.96 0.00

Internet – Development Tools Prototype -3.11 0.00

 Pattern diff sig

Databases – Development Tools Prototype -3.57 0.00

Office/Business – Internet Composite -13.08 0.01

Databases – Development Tools Composite -5.8 0.00

Databases – Internet Composite -14.3 0.02

Internet – Games Composite 11.17 0.03

Office/Business – Internet Decorator -5.35 0.00

Office/Business – Games Decorator -5.46 0.00

Internet – Development Tools Decorator 6.79 0.00

Internet – Databases Decorator 5.19 0.00

Games – Development Tools Decorator 6.9 0.00

Games – Databases Decorator 5.3 0.00

Internet – Development Tools Proxy 0.22 0.04

Databases – Office/Business Observer -3.74 0.01

Databases – Internet Observer -5.25 0.00

Databases – Development Tools Observer -4.35 0.00

Databases – Games Observer -4.02 0.00

Office/Business – Internet State -1.89 0.00

Internet – Development Tools State 2.12 0.00

Databases – Office/Business State -0.75 0.00

Databases – Internet State -2.64 0.00

Databases – Development Tools State -0.52 0.01

Office/Business – Games State -1.53 0.00

Games – Development Tools State 1.76 0.00

Games – Databases State 2.28 0.00

Games – Development Tools Template 2.06 0.01

Games – Databases Template 1.53 0.01

Internet – Games Visitor 5.15 0.00

Games – Databases Visitor -2.72 0.00

Games – Development Tools Visitor -1.24 0.00

Databases – Internet Visitor -2.53 0.00

Databases – Development Tools Visitor 1.03 0.00

Internet – Development Tools Visitor 3.91 0.00

116 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

5 Discussion

This section of the paper discusses the results of our case study. The discussion is
organized in subsections according to the research questions that have been
introduced in the beginning of the paper. Thus, section 5.1 discusses which design
patterns are more frequently used in open source software development, section 5.2
discusses the usage of each design pattern on three software categories and section 5.3
discusses the size of the design patterns used in open source software in general.

5.1 Design Pattern Application

The results of Table 1, clearly suggest that some patterns are more frequently applied
in open source than others. In addition to that, Table 2 suggests that pattern usage
intensity classifies patterns in seven categories as shown in Figure 1. Patterns on the
top of Figure 1 are statistically significantly employed more times in open source
software projects than those closer to the bottom of Figure 1.

Some of the results that are presented in Figure 1 are reasonable, whereas some
findings are surprising. As one would expect, the Adapter pattern is frequently used,
because reusing classes of others is a common practice in open source software
communities. In such cases, adapter provides a mechanism for adopting the new class in
the existing system without modifying the existing code. In addition to that, the
Adapter’s rationale is akin to the basic concepts of object - oriented programming and
thus it might be explicitly used by the developers. Furthermore, the State pattern as
expected ranks high, because its background requires just the proper use of inheritance.
Finally, more difficult to understand patterns, according to authors’ opinion, such as
Visitor and Observer, are not often employed by open source developers.

Fig. 1. Design Pattern Usage Levels

 Investigating the Use of Object-Oriented Design Patterns in OSS 117

On the contrary, although the Singleton pattern is quite complex in its structure [7]
and it was expected not to be as popular, it is ranked as the 3rd most used pattern. A
possible reason for this is the limitation of the case study subject to the Java
languages, where Singleton is implemented by a simple instantiation mechanism.
Another bizarre observation is that the Decorator pattern is more frequently used than
the Composite pattern. The Composite pattern is the base of the Decorator pattern and
therefore it was expected to be more frequently employed. Summing up the above,
open source developers employ easy to understand patterns more than more elaborate
ones. A possible reason for this is that typically there are no detailed formal design
activities before programming in open source.

5.2 Design Patterns and Software Categories

As it is observed in Table 3, design pattern usage within every category follows
similar distribution as in open source software development in general. However,
comparing pattern application across software categories, the results suggest that
some patterns are more frequently applied in one category, than another. From Tables
3 and 4, we observe that Office/Business applications employ statistically significantly
more patterns than any other category. Furthermore, rather surprising is the fact that
in general Development Tools employ a relative limited number of pattern instances
w.r.t the other software categories. One would expect that developers of this category
would be familiar with patterns and use them. Figure 2 presents the ranking of pattern
usage among software categories.

Fig. 2. Design Pattern Usage Levels across Categories

From Figures 1 and 2, it is suggested that Decorator and Observer patterns are
more highly ranked in Development Tools than in the other categories. This fact can
be justified by the expectation that developers of this category are more likely to be

118 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

aware of the pattern, which is not easily applied by chance. In addition to that, the
Adapter pattern is the most frequently employed pattern in the Games category. This
fact suggests that game developers might perform more “as is” reuse activities than
other programmers. This observation is interesting and deserves further investigation.

Additionally, the Visitor pattern appears to be more applicable in Internet
application and the Proxy pattern more applicable in Games. Thus, we can assume
that domain specific requirements (functional or non-functional) of this category
might be implemented with the use of these patterns.

5.3 Design Pattern Size among Software Categories

This section of the paper discusses the most important findings on the variation of the
size of deign patterns among software categories. The “largest” patterns, with respect
to number of classes appear to be Decorator and Observer, whereas the pattern with
the least pattern, apart from Singleton and Adapter that employ a standard number of
classes, appears to be Visitor.

Within software categories, we found that when the Prototype pattern is applied in
Development Tools, it appears to employ statistically significant more classes than
when applied in any other software category. Similarly, the Composite pattern
instances in Internet applications are larger than the Composite instances in other
software categories. Concerning Decorator, we identified that the larger pattern
instances can be found in Games and Internet applications. Finally, the smallest
Observer instances can be identified in Database applications.

These findings can be used in studies that investigate pattern effect on software
quality, with respect to their size, the role that each class plays in a pattern and for
case study construction.

6 Threats to Validity

This section of the paper presents the internal and external threats to the validity of
our case study. Firstly, since the subjects have been open-source projects, the results
may not apply to closed source software. Concerning the empirical study internal
validity, the existence of confounding factors is analyzed in section 3.4. The most
confounding factor is that the study cannot take into account the knowledge of
developer’s on design patterns, but it can be reasonably assumed that the familiarity
degree with pattern knowledge across different application domains, corresponds to
the distribution of the population.

In addition to that, the sample size is quite small with respect to the total number of
open source software and generalizing the results from the sample to the population is
risky. In addition, the dataset consisted only from Java projects, since the tool we used
was able to detect design patterns only in binary java files. Moreover, only one
repository, namely Sourceforge, has been mined.

7 Conclusions

This study is an extension of a previous work of the authors. It empirically
investigates the usage of object oriented design patterns in open source software

 Investigating the Use of Object-Oriented Design Patterns in OSS 119

development. For this reason the authors have explored 129 open source software
from five categories, i.e. development tools, business/office application, internet
applications, database applications and computer games.

The results of the study confirm that “easy to use” design patterns, such as
Adapter, State and Singleton are more frequently applied in open source. More
elaborate patterns such as Visitor and Observer are more frequently employed by
development tool programmers, most probably due to their better understanding and
knowledge on software engineering issues. Additionally, the frequent application of
the Adapter pattern in computer games might indicate higher reuse levels in this type
of software applications. Finally, the results suggested that among software
categories, Office/Business application employ statistically significantly more design
patterns than other categories and that the size of design patterns vary among software
genres.

As future work we are about to create a web repository on the findings of the
design pattern detection process, so as to enhance design pattern reuse opportunities.
In addition to that, we are going to explore projects written in other programming
languages, such as C++. More software categories and open source projects are going
to be investigated. Finally, the most important findings of the study, such as the reuse
increased reuse opportunities in games, the limited number of pattern instances in
development tools and the factors that influence design pattern usage are going to be
investigated.

References

1. Ampatzoglou, A., Charalampidou, S., Savva, K., Stamelos, I.: An empirical study on
design pattern employment in open-source software. In: 5th Working Conference on the
Evaluation of Novel Approaches in Software Engineering, pp. 275–284. INSTICC, Athens
(2010)

2. Ampatzoglou, A., Chatzigeorgiou, A.: Evaluation of object-oriented design patterns in
game development. Information and Software Technology 49(5), 445–454 (2007)

3. Arnout, K., Meyer, B.: Pattern componentization: the factory example. Innovations in
Systems and Software Technology 2(2), 65–79 (2006)

4. Bansiya, J., Davis, C.: A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Transaction on Software Engineering 28(1), 4–17 (2002)

5. Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in Software Engineering.
IEEE Transactions on Software Engineering 12(7), 733–743 (1986)

6. Bieman, J.M., Jain, D., Yang, H.J.: OO design patterns, design structure, and program
changes: an industrial case study. In: 17th International Conference on Software
Maintenance, ICSM 2001, pp. 580–591. IEEE Computer Society, Florence (2001)

7. Chatzigeorgiou, A.: Object-Oriented Design: UML, Principles, Patterns and Heuristics, 1st
edn. Kleidarithmos, Athens (2005)

8. Di Penta, M., Cerulo, L., Gueheneuc, Y.G., Antoniol, G.: An Empirical Study of
Relationships between Design Pattern Roles and Class Change Proneness. In: 24th
International Conference on Software Maintenance, ICSM 2008, pp. 217–226. IEEE
Computer Society, Beijing (2008)

9. Feller, J., Fitzgerald, B.: Understanding open source software development, 1st edn.
Addison-Wesley Longman, Boston (2002)

120 A. Ampatzoglou, S. Charalampidou, and I. Stamelos

10. Gamma, E., Helms, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, 1st edn. Addison-Wesley Professional, Reading (1995)

11. Hsueh, N.L., Chu, P.H., Chu, W.: A quantitative approach for evaluating the quality of
design patterns. Journal of Systems and Software 81(8), 1430–1439 (2008)

12. Huston, B.: The effects of design pattern application on metric scores. Journal of Systems
and Software 58(3), 261–269 (2001)

13. Khomh, F., Gueheneuc, Y.G.: Do design patterns impact software quality positively? In:
12th European Conference on Software Maintenance and Reengineering, CSMR 2008, pp.
274–278. IEEE Computer Society, Athens (2008)

14. Kitchenham, B., Pickard, L., Pfleeger, S.L.: Case Studies for Method and Tool Evaluation.
IEEE Software 12(4), 52–62 (1995)

15. McShaffry, M.: Game Coding Complete. Paraglyph Press, Arizona (2003)
16. Meyer, B., Arnout, K.: Componentization: The Visitor Example. IEEE Computer 39(7),

23–30 (2006)
17. Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., Votta, L.G.: A controlled experiment in

maintenance comparing design patterns to simpler solutions. IEEE Transactions on
Software Engineering 27(12), 1134–1144 (2001)

18. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open source software
development should strive for even greater code maintainability. Communications of the
ACM 47(12), 83–87 (2004)

19. Sowe, S.K., Angelis, L., Stamelos, I., Manolopoulos, Y.: Using Repository of Repositories
(RoRs) to Study the Growth of F/OSS Projects: A Meta-Analysis Research Approach. In:
OSS 2007, Open Source Software Conference, pp. 147–160. Springer, Limerick (2007)

20. Tsantalis, N., Chatzigeorgiou, V., Stephanides, G., Halkidis, S.T.: Design Pattern
Detection using Similarity Scoring. IEEE Transaction on Software Engineering 32(11),
896–909 (2006)

21. Vokác, M., Tichy, W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M.: A Controlled Experiment
Comparing the Maintainability of Programs Designed with and without Design Patterns -
A Replication in a Real Programming Environment. Empirical Software Engineering 9(3),
149–195 (2003)

22. Wendorff, P.: Assessment of Design Patterns during Software Reengineering: Lessons
Learned from a Large Commercial Project. In: 5th European Conference on Software
Maintenance and Reengineering, CSMR 2001, pp. 77–84. IEEE Computer Society, Lisbon
(2001)

23. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering, 1st edn. Kluwer Academic Publishers, Boston
(2000)

Requirements Engineering via Non-monotonic Logics
and State Diagrams

David Billington1, Vladimir Estivill-Castro2, René Hexel1, and Andrew Rock1

1 ICT/IIIS, Griffith University, Nathan, QLD, 4111, Australia
2 Visiting Scholar, Universitat Popeu Fabra, Barcelona, Spain

{d.billington,v.estivill-castro,r.hexel,a.rock}@griffith.edu.au
www.mipal.net.au

Abstract. We propose to model the behaviour of embedded systems by finite
state machines whose transitions are modelled by predicates of non-monotonic
logics. We argue that this enables modelling the behaviour in close parallelism to
the requirements. Such requirements engineering also results in direct and auto-
matic translation to implementation, minimising software faults. We present our
method and illustrated with a classical example. We also compare our approach
with other state diagram methods, as well as Petri nets and Behavior Trees.

Keywords: Requirements engineering, Non-monotonic logics, Automatic code
generation, Finite state machines, Behaviour modelling.

1 Introduction

We extend state transition diagrams in that we allow transitions to be labelled by state-
ments of a non-monotonic logic, in particular Plausible Logic. We show that this has
several benefits. First, it facilitates requirements engineering. Namely, we show this ap-
proach can be more transparent, clear, and succinct than other alternatives. Therefore,
it enables better capture of requirements and this leads to much more effective system
development. Furthermore, we show that such diagrams can be directly, and automat-
ically translated into executable code, i.e. no introduction of failures in the software
development process.

Finite automata have a long history of modelling dynamic systems and consequently
have been a strong influence in the modelling of the behaviour of computer systems [25,
Bibliographical notes, p. 113-114]. System analysis and design uses diagrams that rep-
resent behaviour of components or classes. State diagrams (or state machines) constitute
the core behaviour modelling tool of object-oriented methodologies. In the early 90s
state machines became the instrument of choice to model the behaviour of all the ob-
jects of a class. The Object-Modeling Methodology (OMT) [25, chapter 5] established
state diagrams as the primary dynamic model. The Shlaer-Mellor approach established
state models to capture the life cycle of objects of a given class [28]. Class diagrams
capture the static information of all objects of the same class (what they know, what
they store), but behaviour is essentially described in models using states and transi-
tions. The prominence of OMT and Shlaer-Mellor has permeated into the most popu-
lar modelling language for object-orientation, the Unified Modeling Language (UML).

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 121–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

122 D. Billington et al.

“A state diagram describes the behaviour of a single class of objects” [25, p. 90]. Al-
though the state diagrams for each class do not describe the interactions and behaviour
of several objects of diverse classes in action (for this, UML has collaboration dia-
grams and sequence diagrams), they constitute a central modelling tool for software
engineering.

Although UML and its variants have different levels of formality, in the sense of hav-
ing a very clear syntax and semantics, they aim for the highest formality possible. This
is because their aim is to remove ambiguity and be the communication vehicle between
requesters, stakeholders, designers, implementors, testers, and users of a software sys-
tem. In particular Executabel UML [21] suggest the formal semantics enables models
that are testable, and can be compiled into a less abstract programming language to
target a specific implementation. Thus, they offer constraints very similar to the formal
finite state machine models. For example, in a deterministic finite state machine, no two
transitions out of the same state can be labelled with the same symbol. This is because
formally, a deterministic finite state machine consists of a finite set of states, an input
language (for events), and a transition function. The transition function indicates what
the new state will be, given an input and the current state. Other adornments include
signalling some states as initial and some as final. However, a fundamental aspect of fi-
nite state machines is that the transition function is just that, a function (mathematically,
a function provides only one value of the codomain for each value in the domain).

Granted that the model can be extended to a non-deterministic machine, where given
an input and a state, a set of possible states is the outcome of the transition. In this case,
the semantics of the behaviour has several interpretations. For example, in the theory
of computation, the so-called power set construction shows that non-deterministic and
deterministic finite state machines are equivalent. However, other semantics are possi-
ble, such as multi-threaded behaviour. Therefore, as a modelling instrument in software
engineering, it is typically expected that the conditions emanating from a state are mu-
tually exclusive and exhaustive. “All the transitions leaving a state must correspond to
different events” [25, p. 89]. Namely, if the symbol ci is a Boolean expression repre-
senting the guard of the transition, then

∨n
i=1 ci = true (the exhaustive condition), and

ci ∧ cj = false, ∀ i �= j (the exclusivity condition). In fact, Shlaer-Mellor also suggest
the analysis should make use of the State Transition Table (STT) [28] “to prevent one
from making inconsistent statements” [28, p. 52] and they provide an illustration where
two transitions out of the same state and labelled by the same event are corrected using
the table.

Recently, the software engineering community has been pushing for Requirements
Engineering (RE) [16], concerned with identifying and communicating the objectives
of a software system, and the context in which it will be used [23]. Hence, RE identifies
and elicits the needs of users, customers, and other stakeholders in the domain of a
software system. RE demands a careful systematic approach. Significant effort is to
be placed on rigorous analysis and documented specification, especially for security or
safety critical systems. RE is important because a requirement not captured early may
result in a very large effort to re-engineer a deployed system.

Requirements Engineering via Non-monotonic Logics and State Diagrams 123

2 Declarative Requirements

An ambition of both artificial intelligence (AI) and software engineering is to be able to
only specify what we want, without having to detail how to achieve this. The motivation
for our approach has a similar origin. We aim at producing a vehicle of communica-
tion that would enable the specification of behaviour without the need for imperative
programming tools. Therefore, we want to use a declarative formalism (a similar am-
bition has lead to the introduction of logic programming and functional programming).
Non-monotonic logic is regarded as quite compatible with the way humans reason and
express the conditions and circumstances that lead to outcomes, as well as a way to
express the refinements and even exceptions that polish a definition for a given con-
cept. In fact, non-monotonic reasoning is regarded as one of the approaches to emulate
common-sense reasoning [26]. We illustrate that the addition of this declarative capa-
bility to state transition diagrams for capturing requirements is beneficial because the
models obtained are much simpler (a fact necessary to ensure that the natural language
description has indeed been captured). This way, we only need to specify the what and
can have all of the how within an embedded system generated automatically.

With our approach, modelling with state-diagrams is sufficient to develop and code
behaviours. The semantics of a state is that it is lasting in time, while a transition is
assumed to be instantaneous. The state-diagram corresponds closely to the formalism
of finite state machines (defined by a set S of states, a transition function t : S×Υ → S,
where Υ denotes a possible alphabet of input symbols). In our case, we can specify
the behaviour by the table that specifies the transition function t (analogously to an
STT [28]).

We still use the notion of an initial state s0, because, in our infrastructure that im-
plements these ideas [3], in some external-state transition, behaviours must be able to
reset themselves to the initial state. A final state is not required, but behaviours should
be able to indicate completion of a task to other modules. Now, current practice for
modelling with finite state machines assumes that transitions are labelled by events.
In both the Shlaer-Mellor approach and OMT [25], transitions are labelled by events
only. For example, in Fig. 1, a transition is labelled by the event ball visible (e.g.
a sensor has detected a ball). A slight extension is to allow labels to be a decidable
Boolean condition (or expression) in a logic with values true or false (that is, it will
always be possible to find the value of the condition guarding the transition). This eas-
ily captures the earlier model because rather than labelling by event e, we label by the
Boolean expression e HAS OCCURRED. Our extension to behaviour modelling extends
this further with the transition labels being any sentence in the non-monotonic logic.
Replacing the guarding conditions with statements in the non-monotonic logic incor-
porates reasoning into the reactive1 nature of state machines. Since our logics model
reasoning (and beliefs like “in this frame vision believes there is no ball”), they are bet-
ter suited to model these transitions (they may even fuse contradicting beliefs reported
by many sensors and modules in a deterministic way), and gracefully handle situations

1 In the agent model reactive systems are seen as an alternative to logic-based systems that
perform planning and reasoning [37].

124 D. Billington et al.

Fig. 1. Simple Finite State Diagram

with incomplete (or superfluous) information without increasing the cognitive load of
the behaviour designer.

The designer can separate the logic model from the state-transition model. More-
over, the designer would not be required to ensure the exhaustive nature of the transi-
tions leading out from a state; as priorities can indicate a default transition if conditions
guarding other transitions cannot be decided.

“State diagrams have often been criticized because they allegedly lack expressive
power and are impractical for large problems” [25, p. 95]. However, several techniques
such as nesting state diagrams, state generalisation, and event generalisation were used
in OMT to resolve this issue. We have shown elsewhere [4] (1) how the technique of
nested state diagrams (e.g. team automata [29,10]) handle complexity, and (2) that there
is an equivalence between Behavior Trees and state machines, mitigating the problem
of expressive power of state diagrams for larger systems. In fact our approach follows
the very successful modelling by finite state machines [30] that has resulted in state-
WORKS, a product used for over a decade in the engineering of embedded systems soft-
ware [31]. In stateWORKS, transitions are labelled by a small subset of propositional
logic, namely positive logic algebra [31], which has no implication, and no negation
(only OR and AND). Thus our use of a non-monotonic logic is a significant variation.

3 Plausible Logic

Non-monotonic reasoning [1] is the capacity to make inferences from a database of
beliefs and to correct those as new information arrives that makes previous conclu-
sions invalid. Although several non-monotonic formalisms have been proposed [1], the
family of non-monotonic logics called Defeasible Logics has the advantage of being de-
signed to be implementable. Billington [2] compared the main members of this family,
including Plausible Logic (PL), indicating their uses and desirable properties. Although
the most recent member of this family, CDL [2], has some advantages over PL [5], the
differences are not significant for the purposes this paper. We shall therefore use PL
as its corresponding programming language, DPL, is more advanced. If only factual
information is used, PL essentially becomes classical propositional logic. But when de-
termining the provability2 of a formula, the proving algorithms in PL can deliver three

2 Provability here means determining if the formula can be verified or proved.

Requirements Engineering via Non-monotonic Logics and State Diagrams 125

values (that is, it is a three-valued logic), +1 for a formula that has been proved, −1
for a formula that has been disproved, and 0 when the formula cannot be proved and at-
tempting so would cause an infinite loop. Another very important aspect of PL is that it
distinguishes between formulas proved using only factual information and those using
plausible information. PL allows formulas to be proved using a variety of algorithms,
each providing a certain degree of trust in the conclusion.

In PL all information is represented by three kinds of rules and a priority relation be-
tween those rules. The first type of rules are strict rules, denoted by the strict arrow →
and used to model facts that are certain. For a rule A → l we should understand that if all
literals in A are proved then we can deduce l (this is simply ordinary implication). A sit-
uation such as Humans are mammals will be encoded as human(x) → mammal(x).
Plausible rules A ⇒ l use the plausible arrow ⇒ to represent a plausible situation. If we
have no evidence against l, then A is sufficient evidence for concluding l. For example,
we write Birds usually fly as bird(x) ⇒ fly(x). This records that when we find a bird
we may conclude that it flies unless there is evidence that it may not fly (e.g. if it is a
penguin). Defeater rules A ⇀ ¬l say if A is not disproved, then it is too risky to con-
clude l. An example is Sick birds might not fly which is encoded as {sick(x), bird(x)}
⇀ ¬fly(x). Defeater rules prevent conclusions that would otherwise be too risky (e.g.
from a chain of plausible conclusions).

Finally, a priority relation > between plausible rules R1 > R2 indicates that R1

should be used instead of R2. The following example demonstrates the expressive
power of this particular aspect of the formalism:

{} → quail(Quin) Quin is a quail
quail(x) → bird(x) Quails are birds

R1 : bird(x) ⇒ fly(x) Birds usually fly

From the rule R1 above, one would logically accept that Quin flies (since Quin is a
bird).

{} → quail(Quin) Quin is a quail
quail(x) → bird(x) Quails are birds

R2 : quail(x) ⇒ ¬fly(x) Quails usually do not fly

However, from R2, we would reach the (correct) conclusion that Quin usually does
not fly. But what if both knowledge bases are correct (both R1 and R2 are valid)?
We perhaps can say that R2 is more informative as it is more specific and so we add
R2 > R1 to a knowledge base unifying both. Then PL allows the agent to reach the
proper conclusion that Quin usually does not fly, while if it finds another bird that is not
a quail, the agent would accept that it flies. What is important to note here is that if the
strict rules are consistent, all proofs within PL will also be consistent. I.e. it will never
be possible to prove both a literal l and its negation ¬l at the same time.

Note that Asimov’s famous Three Laws of Robotics are a good example of how hu-
mans describe a model. They define a general rule, and the next rule is a refinement.
Further rules down the list continue to polish the description. This style of development
is not only natural, but allows incremental refinement. Indeed, the knowledge elicitation
mechanism known as Ripple Down Rules [8] extracts knowledge from human experts

126 D. Billington et al.

Table 1. One-Minute Microwave Oven Requirements

Req. Description

R1
There is a single control button available for the use of the oven. If the oven is closed and you push the button, the oven will start cooking (that is, energise
the power-tube) for one minute.

R2 If the button is pushed while the oven is cooking, it will cause the oven to cook for an extra minute.

R3 Pushing the button when the door is open has no effect.

R4 Whenever the oven is cooking or the door is open, the light in the oven will be on.

R5 Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal idle state, prior to cooking when the user has placed food in the oven.

R7 If the oven times out, the light and the power-tube are turned off and then a beeper emits a warning beep to indicate that the cooking has finished.

by refining a previous model by identifying the rule that needs to be expanded by de-
tailing it more.

4 A Classical Example

We proceed here to illustrate our approach with an example that has been repeatedly
used by the software engineering community, e.g. [9,22,28,33,20]. This is the so called
one-minute microwave oven [28]. Table 1 shows the requirements as presented by My-
ers and Dromey [22, p. 27, Table 1]. Although this is in fact not exactly the same as
the original by Shlaer and Mellor [28, p. 36], we have chosen the former rather than
the latter because we will later compare with Behavior Trees regarding model size and
direct code generation.

4.1 Microwave in Plausible Logic

Because we have a software architecture that handles communication between modules
through a decoupling mechanism named the whiteboard [3], we can proceed at a very
high level. We assume that sensors, such as the microwave button, are hardware instru-
ments that deposit a message on the whiteboard with the signature of the depositing
module and a time stamp. Thus, events like a button push or actions such as energising
the microwave tube are communicated by simply placing a message on the whiteboard3.
Thus, knowledge of an event like a button push simply exists because a corresponding
message has appeared on the whiteboard. Similarly, an action like energising the mi-
crowave tube is triggered by placing a different message on the whiteboard. The driver
for the corresponding actuator then performs an action for this particular message as
soon as it appears on the whiteboard.

However, here the label cook for the transition of the state NOT COOKING to the
state COOKING and the label ˜cook from COOKING to NOT COOKING are not neces-
sarily events. They are consequents in a logic model. For example, ˜cook is an output
of such a model that acts as the cue to halt the cooking. The logic model will specify

3 Matters are a bit more complex, as messages on the whiteboard expire or are consumed,
and for actuators, they could have a priority and thus actuators can be organised with
“subsumption” [7].

Requirements Engineering via Non-monotonic Logics and State Diagrams 127

% MicrowaveCook.d

name{MICROWAVECOOK}.

input{timeLeft}.
input{doorOpen}.

C0: {} => ˜cook.
C1: timeLeft => cook. C1 > C0.
C2: doorOpen => ˜cook. C2 > C1.

output{b cook, "cook"}.
%

% MicrowaveLight.d

name{MICROWAVELIGHT}.

input{timeLeft}.
input{doorOpen}.

L0: {} => ˜lightOn.
L1: timeLeft => lightOn. L1 > L0.
L2: doorOpen => lightOn. L2 > L0.

output{b lightOn, "lightOn"}.
output{b ˜lightOn, "lightOff"}.

(a) DPL for 2-state machine controlling tube, fan, (b) DPL for 2-state machine controlling the light.

and plate.

Fig. 2. Simple theories for 2-state machines

(a) A 2-state machine for controlling tube, fan, (b) A 2-state machine for controlling the light.

and plate.

Fig. 3. Simple 2-state machines control most of the microwave

the conditions by which this cue is issued. Fig. 2a shows the logic model in the logic
programming language DPL that implements PL. In the case of the microwave oven
requirements, for the purposes of building a model, a system analyst or software engi-
neer would first identify that there are two states for various actuators. When the oven
is cooking, the fan is operating, the tube is energised and the plate is rotating. When
the oven is not cooking, all these actuators are off. The approach can be likened to
arranging the score for an orchestra: all these actuators will need the same cues from
the conductor (the control) and, in this example, all switch together from the state of
COOKING to the state of NOT COOKING and vice versa. They will all synchronously
consume the message to be off or to be on. Thus, we have a simple state diagram to
model this (Fig. 3a). By default, we do not have the conditions to cook. This is Rule C0
in the logic model (called a theory) relevant to the cooking actuators. However, if there
is time left for cooking, then we have the conditions to cook (Rule C1) and this rule
takes priority over C0. However, when the door opens, then we do not cook: C2 takes
priority over C1.

The light in the microwave is on when the door is open as well as when the mi-
crowave is cooking. So, the cues for the light are not the same as those for energising
the tube. However, the light is in only one of two states LIGHT OFF or LIGHT ON.
The default state is that the light is off. This is Rule L0 in the theory for the light (see
Fig. 2b). However, when cooking the light is on. So Rule L1 has priority over L0. There
is a further condition that overwrites the state of the light being off, and that is when
the door is open (Rule L2). Note that in this model, the two rules L1 and L2 override
the default Rule L0, while in the model for cooking the priorities caused each new rule

128 D. Billington et al.

% MicrowaveButton.d

name{MICROWAVEBUTTON}.

input{doorOpen}.
input{buttonPushed}.

CB0: {} => ˜add.
CB1: buttonPushed => add. CB1 > CB0.
CB2: doorOpen => ˜add. CB2 > CB1.

output{b add, "add"}.

(a) State machine (b) DPL theory

Fig. 4. The modelling of the button’s capability to add to the timer

% MicrowaveBell.d

name{MicrowaveBell}.

input{timeLeft}.

(a) Bell state machine (b) DPL theory for the bell.

Fig. 5. The modelling of the bell’s capability to ring when the time expires

to refine the previous rule. The control button (Fig. 4) also has two states. In one state,
CB ADD, the time left can be incremented, while in the other state, pushing the button
has no effect. Again, between these two states we place transitions labelled by an ex-
pression of PL (in all cases, simple outputs of a theory). The control button does not add
time unless the button is pushed. This is reflected by Rule CB0 and Rule CB1 below
and the priority that CB1 has over CB0. When the door is open, pushing the button has
no effect; this is Requirement R3 and expressed by Rule CB2 and its preference over
CB1. Because we already have defined that a push of a button adds time to the timer
(except for the conditions already captured), if the button is not pushed, then we do not
add time. This is a strict rule that in DPL is expressed by a disjunction.

The final requirement to model is the bell, which is armed while cooking, and rings
when there is no time left. This is the transition ˜timeLeft from BELL ARMED to
BELL RINGING in Fig. 5. After ringing, the bell is off, and when cooking time is added
to the timer, it becomes armed. The logical model is extremely simple, because the
condition that departs from BELL ARMED to BELL RINGING is the negation of the
one that moves from to BELL OFF to BELL ARMED. Moreover, we always move from
BELL RINGING to BELL OFF. The most important aspect of this approach is that this
is all the software analysis required in order to obtain the working program.

4.2 Translation into Code

Once the high level model has been established in DPL, translation into code is straight-
forward. A Haskell proof engine implementation of DPL allows the interpretation and
formal verification of the developed rule sets [5]. This implementation was extended to
include a translator that generates code that can be used in C, C++, Objective-C, C# and

Requirements Engineering via Non-monotonic Logics and State Diagrams 129

#define dontCook (\
doorOpen \

|| !timeLeft \
)

#define cook (\
!doorOpen && timeLeft \

)

(a) Tube, fan and plate

#define lightOff (\
!doorOpen && !timeLeft \

)

#define lightOn (\
doorOpen \

|| timeLeft \
)

(b) The light

#define add (\
buttonPushed && !doorOpen \

)

#define wait (\
!buttonPushed \

)

(c) Button and timer

#define noTimeLeft (\
!timeLeft \

)

(d) The bell

Fig. 6. Translated C expressions for transitions

Java. The Haskell translator creates optimised Boolean expressions through the truth ta-
bles generated from the DPL rules. These Boolean expressions are then written out as
C code that can directly be compiled and linked with libraries and application code.
Incidentially, the syntax for Boolean expressions is not only the same in supersets of
C (such as C++ and Objective-C), but also in modern, related programming languages
such as Java (at this stage, expressions are generated using the #define preprocessor
syntax, that is not supported directly in Java, but the actual expression can easily be
extracted using a script or even copy and paste). This code can then directly be used
as a header file for a generic embedded system state machine to test the transition con-
ditions. Subsequent refinements of the rules do not require any changes to the generic
state machine code. A simple recompilation against the updated, generated header files
is sufficient to update the behaviour of the state machine. Moreover, the compiled rules
table can be dumped into a simple text file that can be loaded into the running proof en-
gine via a dynamic CDL whiteboard bridge. This way, the logic or any of its rules can
be changed at run time, without interrupting the current behaviour. Figure 6 shows the
DPL theories for the state diagram transitions translated into C by the Haskell parser.

5 Evaluation

The original approaches to modelling behaviour with finite state diagrams [25,28] had
little expectation that the models would directly translate to implementations without
the involvement of programmers using imperative object-oriented programming lan-
guages. However, the software development V-model [35] has moved the focus to re-
quirements modelling, and then directly obtaining a working implementation, because
this collapses the requirements analysis phase with the verification phase. There are
typically two approaches. First, emulating or simulating the model, which has the ad-
vantage that software analysts can validate the model and implementation by running
as many scenarios as possible. The disadvantage is the overhead incurred through the
interpretation of the model, rather than its compilation. The second approach consists
of generating code directly from the model [31,30]. This removes the overhead of in-
terpreting at run-time the modelling constructs. Approaches to the automatic execution

130 D. Billington et al.

Fig. 7. The execution of the example model provided in the demo version of stateWorks for a
microwave oven

or translation of models for the behaviour of software have included the use of UML
state diagrams for generating code [20], the automatic emulation or code generation
from Petri nets [13], and the automatic emulation or code generation from Behavior
Trees [33,34,32]. A more recent trend is models@run.time, where “there is a clear pres-
sure arising for mirroring the problem space for more declarative models” [6].

5.1 Contrast with State Diagrams

Simulation and direct generation of code from a state diagram is clearly possible, since
one only needs to produce generic code that reads the transition table (encoded in some
standard form), then deploy and interpret that repeatedly by analysing the events re-
ceived as well as the current state, and moving to the proper subsequent state. This has
been suggested for UML [20] and is the basis of the design pattern state [18, p. 406].
However, while Finite State Machines continue to enjoy tremendous success [31],
“there is no authoritative source for the formal semantics of dynamic behavior in
UML” [36]. The best example for the success of Finite State Machines is stateWorks
(www.stateworks.com) and its methodology [30]. We have downloaded the 60-day free
license of stateWorks Studio and the SWLab simulator (Fig. 7). Note that this finite state
machine has only 5 states (the documentation of this example with stateWorks admits
the model has issues, e.g. “to reset the system for the next start, we have to open and
then close the door” and “the control system always starts even when the timeout value
is 0”). These issues can be fixed but additional infrastructure is necessary, including
‘counters’ and ‘switch points’ as well as usage of the ‘real time database (RTDN)’.
The stateWorks example describes generic microwave behaviour and needs some more
polishing to capture more detailed requirements e.g. those outlined in Table 1. Since
we argue in favour of using finite state machines for modelling behaviour, this tool

Requirements Engineering via Non-monotonic Logics and State Diagrams 131

Fig. 8. Capturing the requirements in Table 1 as a Petri Net, grouped by the various components
of the microwave

concurs with that approach. However, our evaluation confirms that using PL is more
powerful and closer to the original specification than the “positive-logic” transitions in
stateWorks.

5.2 Contrast with Petri Nets

Petri Nets [24,15] provide a formal model for concurrency and synchronisation that is
not readily available in state diagrams. Thus, they offer the possibility of modelling
multi-threaded systems that support requirements for concurrency. Early in the mod-
elling effort Petri Nets were dismissed: “Although they succeed well as an abstract con-
ceptual model, they are too low level and inexpressive to be useful to specify large sys-
tems” [25, p. 144]. However, because it is quite possible to simulate or interpret a Petri
Net (or to generate code directly from it), they continue to be suggested as an approach
to directly obtain implementations from the coding of the requirements [14,19,17,27].

We used PIPE 2.5 (pipe2.sf.net) to construct a model of the microwave as per
the requirements in Table 1 (see Fig. 8). It becomes rapidly apparent that the synchro-
nisation of states between components of the system forces the display of connectors
among many parts in the layout, making the model hard to grasp. Even if we consider
incremental development, each new requirement adds at least one place and several
transitions from/to existing places. Thus, we tend to agree that even for this small case
of the one-minute microwave, the Petri Net approach seems too low level, and the mod-
els do not provide a level of abstraction to assist in the behaviour engineering of the

132 D. Billington et al.

system. One advantage of Petri Net models is that there are many tools and algorithms
for different aspects of their validation. For example, once a network is built with PIPE,
this software has algorithms to perform GSPN Analysis, FSM analysis, and Invariant
Analysis. However, even for this simple, illustrative example, the model is not a suitable
input for any of the verification analysis in PIPE. On a positive note, some first-order
logics have been included in transitions to create Predicate/Transition Nets [12,11].
Hence, we believe our approach to use a non-monotonic logic can be applied to Petri
Nets.

5.3 Contrast with Behavior Trees

Behavior Trees [32] is another powerful visual approach for Behaviour Engineering
(the systematic progression from requirements to the software of embedded systems).
The approach provides a modelling tool that constructs acyclic graphs (usually dis-
played as rooted tree diagrams) as well as a Behavior Modelling Process [9,22] to
transform natural language requirements into a formal set of requirements. The Em-
bedded Behavior Runtime Environment (eBRE) [22] executes Behavior Tree models by
applying transformations and generating C source code. The tool Behavior Engineering
Component Integration Environment (BECIE) allows Behavior Trees to be drawn and
simulated. Proponents of Behavior Trees argue that these diagrams enable requirements
to be developed incrementally and that specifications of requirements can be captured
incrementally [34,33]. The classic example of the one-minute microwave has also been
extensively used by the Behavior Tree community [33,9,22]. Unfortunately, for this
example, Behavior Trees by comparison are disappointing. In the initial phase of the
method, requirements R1, R2, R5, R6 in Table 1 use five boxes [33,9], while R3 and
R4 demand four. Six boxes are needed for requirement R7 [33,9]. Then, the Integration
Design Behavior Tree (DBT) demands 30 nodes (see [9, p. 9] and [33, Fig. 5]). By the
time it becomes a model for eBRE the microwave has 60 nodes and 59 links! [22, Fig. 6]
and the Design Behavior Tree [22, Fig. 8] does not fit legibly on an A4 page. Sadly, the
approach seems to defeat its purpose, because on consideration of the system bound-
aries [22, Fig. 7], outputs to the alarm are overlooked. Moreover, the language for logic
tests in the tools for Behavior Trees is far more limited than even the ‘positive-logic’
of stateWORKS. The equivalence between finite state machines and Behavior Trees [4]
is based on the observation that Behavior Trees correspond to the depth-first search
through the sequence of the states of the system behaviour control. It is not surprising
that the notion needs far more nodes and connections than the corresponding finite state
machine.

6 Final Remarks

We stress two more aspects of the comparison. First, the approaches above attempt, in
one way or another, to construct the control unit of the embedded system, and from it the
behaviour of all of its components. This implies that the control unit has a state space
that is a subset of the Cartesian product of the states of the components. Our approach is
more succinct not only because of a more powerful logic to describe state transition, but

Requirements Engineering via Non-monotonic Logics and State Diagrams 133

Fig. 9. Hardware running Java generated code

because our software architecture decouples control into descriptions for the behaviour
of components. Second, our experience with this approach and the development of non-
monotonic models show that capturing requirements is structured and incremental, en-
abling iterative refinement. That is, one can proceed from the most general case, and
produce rules and conditions for more special cases. We ensured that our method de-
livers executable embedded systems directly from the modelling by implementing an
oven where the hardware is constructed from LEGO Mindstorm pieces, sensors, and
actuators (see Fig. 9). As with eBRE, we output Java source code but execute a finite
state machine. The execution then is verified because of the clear connection between
the model and the source code (as well as testing it on the hardware)4.

References

1. Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge (1997)
2. Billington, D.: Propositional clausal defeasible logic. In: Hölldobler, S., Lutz, C., Wansing,

H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 34–47. Springer, Heidelberg (2008)
3. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Architecture for hybrid robotic be-

havior. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS,
vol. 5572, pp. 145–156. Springer, Heidelberg (2009)

4. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Plausible logic facilitates engineering
the behaviour of autonomous robots. In: Proceedings of the IASTED International Confer-
ence on Software Engineering, Innsbruck, Austria, The International Association of Science
and Technology for Development (February 2010)

5. Billington, D., Rock, A.: Propositional plausible logic: Introduction and implementation.
Studia Logica 67, 243–269 (2001)

4 See www.youtube.com/watch?v=iEkCHqSfMco for the system in operation. The correspond-
ing Java sources and incremental Petri net stages for Fig. 8 are at vladestivill-castro.net/ addi-
tions.tar.gz as well as material from [4].

134 D. Billington et al.

6. Blair, G., Bencomo, N., Frnce, R.B.: Models@run.time. IEEE Computer 42(10), 22–27
(2009)

7. Brooks, R.A.: Intelligence without reason. In: Myopoulos, R., Reiter, R. (eds.) Proceedings
of the 12th International Joint Conference on Artificial Intelligence, ICJAI 1991, San Mateo,
CA, pp. 569–595. Morgan Kaufmann Publishers, Sydney (1991) ISBN 1-55860-160-0

8. Compton, P.J., Jansen, R.: A philosophical basis for knowledge acquisition. Knowledge Ac-
quisition 2(3), 241–257 (1990)

9. Dromey, R.G., Powell, D.: Early requirements defect detection. TickIT Journal 4Q05, 3–13
(2005)

10. Ellis, C.: Team automata for groupware systems. In: GROUP 1997: Proceedings of the In-
ternational ACM SIGGROUP Conference on Supporting Group Work, pp. 415–424. ACM,
New York (1997)

11. Genrich, H.J.: Predicate/transition nets. In: Jensen, K., Rozenberg, G. (eds.) High-level Petri
Nets, Theory and Applications, pp. 3–43. Springer, Heidelberg (1991)

12. Genrich, H.J., Lautenbach, K.: The analysis of distributed systems by means of
predicate/transition-nets. In: Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS,
vol. 70, pp. 123–147. Springer, Heidelberg (1979)

13. Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling, Verification,
and Applications. Springer-Verlag New York, Inc., Secaucus (2001)

14. Gold, R.: Petri nets in software engineering. Arbeitsberichte Working Papers, Fach-
hochschule Ingolstadt, University of Applied Sciences (June 2004)

15. Holloway, L.E., Kroch, B.H., Giua, A.: A survey of Petri net methods for controlled dis-
crete event systems. Discrete Event Dynamic Systems: Theory and Applications 7, 151–190
(1997)

16. Hull, E., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer, USA (2005)
17. Lakos, C.: Object oriented modelling with object petri nets. In: Agha, G., De Cindio, F.,

Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 1–37. Springer, Heidelberg (2001)
18. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development. Prentice-Hall, Inc., Englewood Cliffs (1995)
19. Lian, J., Hu, Z., Shatz, S.M.: Simulation-based analysis of UML statechart diagrams: Meth-

ods and case studies. The Software Quality Journal 16(1), 45–78 (2008)
20. Mellor, S.J.: Embedded systems in UML. OMG White paper (2007),

http://www.omg.org/news/whitepapers/, label: We can generate Systems To-
day

21. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven architecture.
Addison-Wesley Publishing Co., Reading (2002)

22. Myers, T., Dromey, R.G.: From requirements to embedded software - formalising the key
steps. In: 20th Australian Software Engineering Conference (ASWEC), Gold Cost, Australia,
April 14-17, pp. 23–33. IEEE Computer Society, Los Alamitos (2009)

23. Nuseibeh, B., Easterbrook, S.M.: Requirements engineering: a roadmap. In: ICSE - Future
of SE Track, pp. 35–46 (2000)

24. Peterson, J.L.: Petri nets. Computer Surveys 9(3), 223–252 (1977)
25. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-Oriented Mod-

elling and Design. Prentice-Hall, Inc., Englewood Cliffs (1991)
26. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,

Inc., Englewood Cliffs (2002)
27. Saldhana, J.A., Shatz, S.M.: Uml diagrams to object petri net models: An approach for mod-

eling and analysis. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE), Chicago, pp. 103–110 (July 2000)

28. Shlaer, S., Mellor, S.J.: Object lifecycles: modeling the world in states. Yourdon Press, En-
glewood Cliffs (1992)

http://www.omg.org/news/whitepapers/

Requirements Engineering via Non-monotonic Logics and State Diagrams 135

29. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team automata for
groupware systems. Computer Supported Cooperative Work (CSCW) 12(1), 21–69 (2003)

30. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with Finite State
Machines: A Practical Approach. CRC Press, NY (2006)

31. Wagner, F., Wolstenholme, P.: Modeling and building reliable, re-useable software. In: IEEE
International Conference on the Engineering of Computer-Based Systems (ECBS 2003), pp.
277–286. IEEE Computer Society, Los Alamitos (2003)

32. Wen, L., Colvin, R., Lin, K., Seagrott, J., Yatapanage, N., Dromey, R.G.: “Integrare”, a col-
laborative environment for behavior-oriented design. In: Luo, Y. (ed.) CDVE 2007. LNCS,
vol. 4674, pp. 122–131. Springer, Heidelberg (2007)

33. Wen, L., Dromey, R.G.: From requirements change to design change: A formal path. In: 2nd
International Conference on Software Engineering and Formal Methods (SEFM 2004), Bei-
jing, China, September 28-30, pp. 104–113. IEEE Computer Society, Los Alamitos (2004)

34. Wen, L., Kirk, D., Dromey, R.G.: A tool to visualize behavior and design evolution. In: Di
Penta, M., Lanza, M. (eds.) 9th International Workshop on Principles of Software Evolution
(IWPSE 2007), in conjunction with the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia,
September 3-4, pp. 114–115. ACM, New York (2007)

35. Wiegers, K.E.: Software Requirements, 2nd edn. Microsoft Press, Redmond (2003)
36. Winter, K., Colvin, R., Dromey, R.G.: Dynamic relational behaviour for large-scale systems.

In: 20th Australian Software Engineering Conference (ASWEC 2009), Gold Cost, Australia,
April 14-17, pp. 173–182. IEEE Computer Society, Los Alamitos (2009)

37. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons, NY (2002)

Towards a Better Change Impact Analysis in
Architecture Description Languages

Mohamed Oussama Hassan, Laurent Deruelle, Adeel Ahmad, and Henri Basson

Université Lille Nord de France, Laboratoire d’Informatique Signal et Image de la Côte d’Opale
50, rue Ferdinand Buisson BP 719, 62228 Calais Cedex, France

{ahmad,deruelle,hassan,basson}@lisic.univ-littoral.fr
http://www-lisic.univ-littoral.fr/

Abstract. This chapter proposes a multi-modeling approach destined to better
control the software evolution. The presented approach follows formal models
on software architecture and source code level. It formalizes the elements of soft-
ware architecture, their interdependent relationships and their source codes to
analyze the impact propagation of an intended change. The constituents of these
models are evaluated with a reasoning based expert system. The expert system
is validated as a platform based on eclipse plug-ins to analyze the architecture
description languages. The software architecture and source codes are parsed to
generate the facts of the distributed knowledge-based system, which executes
change propagation rules to evaluate the impact of a change performed on dis-
tributed components.

Keywords: Distributed software Architecture analysis, Change propagation,
Knowledge-based system, Software evolution, Change impact analysis.

1 Introduction

The practices of software engineering are expected to respond the development or evo-
lution of distributed applications on heterogeneous platforms with less delay, lower
cost, and better quality. The applications are continuously growing in size and com-
plexity making the change more difficult to control and to manage. Moreover, the
software development nowadays is distributed using heterogenous multiple languages.
Hence, it makes software more vulnerable to changes and evolve. It is largely admitted
that the quality of large applications can be improved using formalized architectural
models at the earlier phases of requirements specifications and design. Therefore, over
the past decade software architecture has received increasing attention as an important
subfield of software engineering aiming to face the growing size and complexity of
software [12].

It is inevitable that a software undergoes some changes in its lifetime. A change in-
troduced to one component of an application has often effects on several others parts.
If this process is uncontrolled, changes may have unexpected side effects or complex
implications on the behavior of the whole system. The cost to fix an error or an inco-
herence, resulting from changes during requirements, or early design phases, is largely

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 136–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards a Better Change Impact Analysis in Architecture Description Languages 137

lower than the cost of correcting the same error found during system testing or in pro-
duction [4]. Use of software tools is increasing estimate the effort required to incor-
porate a change in developed software. The change impact analysis refers to track the
effects of a change by providing visibility of the potential effects of the proposed change
before it is implemented. The traditional change impact analysis tools trace the changes
in a limited part of distributed software. The targeted part is often developed in one
programming language. The software change impact analysis and tracing its propaga-
tion in distributed software are difficult activities of successful change incorporation
process. These two activities have become most difficult with the emergence of new
processes (including iterative development, egile development, and software evolution)
in classical software development and maintenance process.

We focus mainly on the incremental changes to support impact analysis and trace
its propagation in distributed software applications. It can greatly help maintainers to
determine appropriate actions to take with respect to change in decisions, schedule
plans, cost and resource estimations. Our approach, primarily, describes the architec-
tural organization of software constituents on high level. Later, this description becomes
primordial to trace the change impact propagation in the whole software and support
evolution.

Software research community is doing substantial study of the evolution mechanism
in the software. We note that the specification of the evolution can be realized by the
semi-automatic tools that serve for the provision of meta-information of related soft-
ware artifacts concerning a change. In this work, we propose a model, called Architec-
ture Software Components Model (ASCM), to represent and to unify the major con-
cepts defined in a large number of existing architecture description languages (ADL).
The ASCM is coupled to another model called Source Code Structural Model (SCSM)
[7,6,1] in order to represent relationships between components from the architecture
level and those of the source code level. The two models represent the architecture
and the source codes as graphs, in which the nodes are components and the edges are
relationships. The graphs are distributed according to the location of the architecture
specification and the relevant source codes. The main purpose of our models is to pro-
vide a basis to track the change propagation process using adequate graphs on which
we define formal propagation rules.

The rest of the chapter is organized as follows: Section 2 presents related works
for distributed software architecture evolution. Section 3 describes our formal model
ASCM to represent the common concepts defined in the major ADLs. Section 4 pro-
poses a typology of formalized change operations applied on software architecture,
which permits the change impact analysis. Section 5 discusses the formal process to
deal with the change propagation in distributed software. Section 6 presents our inte-
grated platform that implements the formal models and a knowledge-based system to
support the change propagation process. Section 7 gives a scenario of a change impact
analysis performed on a distributed software architecture. Finally, section 8 provides
some conclusions and perspectives.

138 M.O. Hassan et al.

2 Related Works

Software architecture has emerged as an area of intense research over the last decade.
Many approaches have been proposed to deal with architectural specification and anal-
ysis [10,3,5]. In these approaches, a large number of ADLs have been developed to
represent different aspects of distributed software architectures based on the middle-
wares. The ADLs do not provide features to deal with the evolution management of
architecture description in a distributed environment.

Models are cost-effective mediums for the representation of actual applications. Use
of models for change impact analysis is a widely applied approach in the domain of
software evolution. A lot of work has been done for studying the evolution mechanism
in the ADLs. We note that the specification of the evolution is realized by the ADL
that serves for the architecture description. Therefore, the evolution management is
included in the architectural specification, and so it will be difficult to be distinguished.
Moreover, it is almost impossible to identify all possible evolution operations that may
occur when specifying architecture.

It is hard to deal with the non planned evolution, considering the difficulty to study
and analyze automatically the changes impact without incoherence. The number of
propositions dealing with architecture change impact analysis is very restricted.

3 Distributed Software Architecture Modeling: ASCM

A lot of research work has been focussing to provide architectural modeling [8], in
which the following common high-level elements are prominent:

1. The Components are units of computation or data stores. For example, a component
can be a Thread, a Procedure or a whole application. An instance of a component
may be distributed on many sites and may interoperate with other distributed com-
ponents.

2. The Connectors are architectural building blocks used to represent the interactions
between local and distributed components. For example, a Thread deployed on
one site can be connected to another Thread deployed on another site to send
messages. The second component may treat messages using local components.

3. The Configurations are connected graphs of local and distributed components and
connectors that describe the structure of the distributed architecture.

Although these concepts define a high-level common structure for the distributed soft-
ware architecture, we need to refine them in a more accurate model to describe more
precisely the structure of a distributed architecture.

The model ASCM leads to represent the distributed software architecture, based on
architecture specifications described using different ADLs. We attempt to represent in
a model the common high-level concepts defined in the major ADLs. This allows us to
analyze various architectural description documents, which specify distributed software
architectures, in order to extract the elements and to represent them using ASCM.

By comparing in more detail, the definition of the ADLs, we can refine these ele-
ments to provide a more precise model. Let us describe the ASCM model presented in
figure 1:

Towards a Better Change Impact Analysis in Architecture Description Languages 139

Fig. 1. ASCM: UML-based representation of Architecture Description Languages

– The interface defines the services that other components wants to invoke. An inter-
face may define ports used by a connection. A port can be used by several connec-
tors. In the ADLs, an interface is mandatory to describe a distributed component in
the architecture.

– The implementation reflects the source codes of the services defined in the inter-
face. For example, the implementation can describe how a component calls sub-
programs to realize the services.

– The connection provides a link mechanism between distributed components to ex-
change information. The link is usually managed using a middleware that allows a
component deployed on one system to access programs and data on another one.

– The middleware is a set of services that allows interactions between multiple com-
ponents running on many sites. It helps to resolve the complex situations created
by heterogeneity, interoperability and distributed computed problems.

– The instance represents a sub-component belonging to a component. The sub-
component is instantiated from the interface or the implementation of another
component.

– The site is the element on which the instances of a component will be deployed. It
defines the hardware and software requirements for the instances running.

– The properties can specify constraints on the interface or the implementation of a
component. The constraints may be functional or not, such as related source code
of a component, performance, reliability, and availability.

We coupled ASCM with SCSM, by formalizing a generic relationship that may exist
between their respective elements. The relationship will be used for propagating the im-
pact of a change done on the architectural description to its corresponding source code
and reciprocally. The models SCSM and ASCM are coupled by a projection relation-
ship. When a projection relationship exists, the software modeling is more precise and
the change impact analysis is performed on the architectural level and the source codes.

140 M.O. Hassan et al.

Table 1. Typology of change operations applied on Software Architecture

Name Operation Pre-condition Post-condition Invariant

Component interface
adding

add int comp(c, t) −c
+t

+c −edge(∗, c)

Component implementa-
tion adding

add imp comp(cimp, c) −cimp +cimp
+edge(∗, c, cimp)

+c

Port adding add port(a, p) −p +p
+type(p, port)
+edge(hasP ort∗,
a, p)

+a

Subcomponent adding add sub comp(a, s, t) −s ∨
(+s ∧ −edge(e, a, s))

+s
+edge(e, a, s)
+type(e,
hasSubComp)

+a
+t

Component interface
deletion

del comp int(a) +a −a
−impl(∗, a)
−edge(∗, a)

−subComp(∗, a)
(−subComp(∗, ai),
+ impl(ai, a))

Component implementa-
tion deletion

del comp imp(c, cimp) +cimp −cimp
−edge(∗, cimp)

+c
−subComp(∗, cimp)
−source(hasSubComp∗,

cimp)
Connector deletion del conn(cn, c, a, b) +cn

+edge(hasConn∗,
c, r)
+edge
(useP ortSrc∗, cn, a)
+edge
(useP ortDst∗, cn, b)

−cn
−edge(∗, cn)

+a
+b
+c

Port deletion del port(a, p) +p
+type(p, port)
+edge(e, a, p)

−p
−edge(∗, p)

+a
−dest(useP ortSrc∗, p)
−dest(useP ortDst∗, p)

Subcomponent deletion del subcomp(a, s) +s
+edge
(hasSubComp∗, a, s)

−s
−edge(∗, s)

+a
−connSubComp(∗, s)

Hereafter, we propose a typology of formalized change operations applied on the
distributed architecture, which are represented by ASCM model instances.

4 Typology of Change Operations

A typology of change operations is presented in the table 1, using the assertion formal-
ism. Assertions are widely used in the software community to formalize the programs
behavior [11]. For each operation, we specify a pre-condition to be checked in order to
allow the execution of the operation. The post-condition indicates the operation results.
The invariants represent the propositions to be verified before and after the operation
execution.

We describe here, a change operation to illustrate the assertion formalism. The change
operation propagates its impact in the distributed architecture and in the source codes.

Let us consider the operation del comp imp(c, cimp), which intends to delete the
implementation cimp associated to the component interface c. To allow the operation,
the implementation of the component had to exist in the architecture and therefore a cor-
responding node must be present in the ASCM graph. The invariant stipulates that the
existence of the interface component c must be verified before and after the operation
is performed. No instance of cimp should be defined in the architecture (−subComp(∗,
cimp)). cimp should not contain any subcomponents (−source(hasSubComp∗,
cimp)). The result of the operation is the deletion of the component implementation and
all of its input and output edges. In the case of at least one invariant is not respected, an
impact is propagated locally to the linked nodes (components) in the ASCM graph.

Towards a Better Change Impact Analysis in Architecture Description Languages 141

In the case of the component implementation is not instantiated and does not con-
tain any subcomponents, its deletion has no effect on the architecture. Regarding the
source code, the statements associated to this implementation have to be deleted. But
when the component implementation contains one or more subcomponents, this leads
to propagate the impact by marking them and all connectors that use their ports. If there
is a subcomponent of type cimp, this also leads to an a priori marking of these sub-
components. In fact, when one of the operation invariants is not satisfied, this launch
the change impact propagation process and consequently the marking of the nodes and
edges that could be affected by the operation.

Considering the distributed environment, and during software analysis, the graphs
are constructed on each site and are interconnected. Then, the implementation deletion
may have an impact on other nodes belonging to an ASCM graph which is distributed
on a remote site. This is done by the distributed knowledge-based system.

5 Change Impact Propagation in Architectural Description
Languages

The change impact propagation process refers to the process of actually carrying out
a set of initial modifications to the software components, and to re-establish the sys-
tem consistency, by making a set of estimated consequent changes. This process would
involve advising the user the software components to be changed and the types of the
changes.

Our approach is based on the ECA formalism (Event - Condition - Action) to de-
scribe the change impact propagation rules [9]. It consists of analyzing the impact on
the distributed architecture by defining generic rules. These could be applied, indepen-
dent of ADLs, to propagate the impact locally from the architecture to its corresponding
source codes and then to the distributed ones.

5.1 Knowledge-Based System for Software Evolution

The change impact analysis is based on a knowledge-based system to manage evolution
rules for distributed architecture and source codes. These rules estimate the impact of
a change performed on any component belonging to the architecture or to the source
codes.

The knowledge-based system consists of three main components : the facts base,
the rules base and the inference engine. The facts base constitutes the working mem-
ory and the dynamic part of the knowledge-based system (KBS). It contains the set
of facts that allows firing change propagation rules. A Fact represents a graph node or
edge representing the elements of ASCM or SCSM model. These are added to the facts
base during the analysis phase of the architecture specification and related source codes.
Applying a change on a node is reflected in the facts base. It may cause the inference
engine to fire rules to perform change impact analysis [2].

The knowledge-based system is distributed according the repartition of the architec-
ture specifications and the source codes on multiple sites. Distributed knowledge-based

142 M.O. Hassan et al.

Table 2. Assertions list for the graph marking

Assertion Signification
mark(el) ∀el ∈ E ∨ el ∈ N, state(el) = affected
mark(v, op) ∀e ∈ E, v1 ∈ N : ((+edge(e, v, v1) ∨ +edge(e, v1v)) ∧

+conductivity(op, e, v, v1))
−→ mark(e) ∧ mark(v1)

mark(source(t∗, v), op) ∀e ∈ E, v1 ∈ N : (type(e) = t ∧ +edge(e, v, v1) ∧
+conductivity(op, e, v, v1))

−→ mark(e) ∧ mark(v1)
mark(target(t∗, v), op) ∀e ∈ E, v1 ∈ N : (type(e) = t ∧ +edge(e, v1, v) ∧

+conductivity(op, e, v, v1))
−→ mark(e) ∧ mark(v1)

systems are interconnected in order to accumulate the results of the change impact pro-
cess. This means that a change, which is performed on some architecture part, will in-
duce a change impact analysis locally by identifying the affected set of nodes and edges
by the change. The result set will be then propagated among interconnected knowledge-
based systems. These will perform a local change impact analysis to further insert the
result set in their local fact base. The distributed propagation process is repeated until
all affected nodes and edges are identified by firing all the evolution rules.

5.2 Change Propagation Rules Definition

The change propagation rules describe formally the impact of the change operations
performed on the elements of the ASCM model. The fact corresponding to the changed
node or edge is updated in the knowledge-based system. This starts the change propaga-
tion process by selecting the set of rules having the updated fact in their pre-condition.

The table 2 shows the formalization of the marking assertions, which consists of
identifying the components and the relationships affected by a change operation. The
impact propagation to the neighborhood of a marked component is defined following
the nature of incoming and outgoing relationships.

This refers to the impact conductivity of each relationship. The assertion
+conductivity(op, e, A, B) formalizes the impact conductivity of a relationship e:
A −→ B, with A is the source component of e, B the destination component of e
and op is the change operation applied on A. The marking assertions are defined as
follows:

– The assertion mark(el) consists to change the state of components and relation-
ships as affected, in the facts base.

– The assertion mark(v, op) indicates for an operation op applied on v, that the edges
of v are marked as affected, according to the conductivity of the relationship.

– The assertions mark(source(t∗, v, op)) and mark(target(t∗, v, op)) consists to
mark the relationships e of type t having v as a source node or target node and
to mark the related target node or source node of each relationship e following its
conductivity for the operation op.

The process of marking nodes and propagating the impact stops when all rules are fired
and there is no more candidate facts.

Towards a Better Change Impact Analysis in Architecture Description Languages 143

We define three generic rules to deal with the change impact propagation:
Rule Execute Operation(Op, el){

TRUE(Op.Pre − Condition) ∧ TRUE(Op.Invariant)

−→ Op.Post − Condition

}
The rule Rule Execute Operation(Op, el) consists to perform the change opera-

tion op on an architectural element el when the pre-conditions and invariants of op are
satisfied. There is no impact on the distributed architecture.
Rule Impact Operation(Op, el){

TRUE(Op.Pre − Condition) ∧ FALSE(Op.Invariant)

−→ mark(el)

}
The rule Rule Impact Operation(Op, el) changes the state of el to affected in

order to identify the impact of op when at least one invariant is not respected for op.
Rule Propagate Impact(Op, el){

+ state(el,′ affected′)
−→ mark(el, op)}

}
The rule Rule Propagate Impact(Op, el) propagates the impact to the neighbor-

hood of an affected element el. The propagation is based on the marking assertions in
order to change the state of the edges and of the linked nodes.

6 Prototype of Validation

For the purpose of demonstration, the presented approach is implemented in context
of Eclipse integrated development environment. Our platform, named as Architect is a
change impact analysis tool for distributed software applications. An Eclipse project
manages a set of resources that can be source code files, libraries and architecture de-
scription files (which are described using an ADL). Architect analyzes these heteroge-
nous sources and parses their elements to represent as the instantiations of ASCM and
SCSM models. The elements of each model are presented as a graph on which change
operations can be performed. The figure 2 presents the global architecture of our plat-
form based on Eclipse which is extended for the change impact analysis. Architect as a
prototype to validate the presented models is divided into four main components:

The multi-languages analyzer allows analyzing the source codes and the architec-
tural description of a software. The analysis is based on the grammar of each language
used to write a project file. The multi-languages analyzer is based on parsers which are
generated through the Java Compiler Compiler (JavaCC). The multi-languages analysis
result consists of producing XML descriptions that are used for the graph construction
by the second plugin.

The software modeler is the second Eclipse plug-in that contains the implementation
of both SCSM and ASCM models. It provides an XML flow analyzer that matches
the components or relationships defined in our model with the XML tags provided by
the multi-language analyzer. The two models are instantiated as graph where nodes
represent the components and edges their relationships. The software modeler performs

144 M.O. Hassan et al.

Fig. 2. The architecture of the eclipse-based platform

fact assertions in the knowledge-based system, which is the central component of our
implementation and provides the change impact propagation mechanism.

The expert system engine is the third plugin and represents the implementation of
the knowledge-based system. It allows implementing the change impact propagation
process and manages the change propagation rules.

The user interface is the forth Eclipse plugin that allows the graph visualization and
the execution of change operations on it. It allows maintainer to manage interactively
the evolution and the maintenance of a software system.

Hereafter, we propose a scenario to illustrate the graph representation of a software
architecture and the change propagation process.

7 Change Propagation Scenario

The proposed scenario illustrates the change impact analysis on a distributed and multi-
threaded application. The application defines client threads that send messages using
Remote Procedure Call protocol (RPC). The messages are consumed by threads de-
ployed on a server. This application architecture is specified using the AADL language,
presented in the listings on Figure 3. Following are the major elements are involved in
this scenario:

– AADL Client is the client thread type definition, noted a client defines an output
port out msg. The port allows to send data using Remote Procedure Call. The
implementation a client.impl defines a property for the periodical sending of data.

– AADL Server consists of the server thread type definition, noted a server provides
an input port in msg for receiving data sent by the client thread. The Server imple-
mentation a server.impl may define a subprogram to consume data.

Towards a Better Change Impact Analysis in Architecture Description Languages 145

Fig. 3. Distributed Architecture evolution and related graphs resulting from the port deletion
operation

– AADL middleware is the middleware process definition, noted middleware rpc
is implemented by middleware rpc.impl. The implementation defines two sub-
components: client stub of type a client.impl which represents the RPC calls
performed by the client, and server skel of type a server.impl which represents
the server skeleton to manage the received RPC calls. These subcomponents com-
municate using a RPC connection C1 which allows sending message from client to
server. The RPC connection is specified in RPC Language in file appli.x.

The architecture specification files and related source codes are distributed over two
Eclipse environments, which are interconnected to exchange facts in the distributed
knowledge-based system. For instance, one of the Eclipse environment creates graph
nodes (facts) and triggers the second one to update the graph and the fact base.

The presented scenario consists to delete the server port in msg using the change
operations called del port(a, p). Regarding the operation invariants and the ASCM
graph, an edge exists between the node EDPname = in msg and the node
EDCname = C1. This edge provides conductivity of the change impact on the port
component. The impact of the operation is calculated and propagated by firing the prop-
agation rules introduced into the knowledge-based system. The rule ImpactDeletePort,
described below, changes the state of the node (port) as affected. This fires the second
rule, called PropagateImpactDeletePort to mark the edges entering in the port and
the related target nodes. These marked nodes are sent to the Eclipse client to be inserted
in the distributed fact base, which will fire the rules for the local propagation of the
impact. The propagation is done through relationships according to theirs conductivity.

146 M.O. Hassan et al.

The result of the change propagation process can be shown in figure 3. The nodes and
the edges, which have been marked by our expert system, are shown with the affected
label. The result shows the projection relationship which leads the impact to the source
codes.

rule "ImpactDeletePort"
when
n : ArchitectNode(

stateNode==ArchitectNode.STATE_DELETED,
typeNode=="EDP"
)

n1: ArchitectNode()
e : ArchitectEdge()
eval((e.getNodeDest()==n && e.getNodeSrc()==n1)

||
(e.getNodeSrc()==n && e.getNodeDest()==n1)

)
then
n.setLabel("AFFECTED "+n.getLabel());
n.setStateNode(ArchitectNode.STATE_IMPACTED);

end

rule "PropagateImpactDeletePort"
when
n : ArchitectNode (

stateNode==ArchitectNode.STATE_IMPACTED,
typeNode=="EDP"
)

n1: ArchitectNode()
e : ArchitectEdge()
eval((e.getNodeDest()==n && e.getNodeSrc()==n1)

||
(e.getNodeSrc()==n && e.getNodeDest()==n1)

)
then
e.setState(ArchitectEdge.STATE_IMPACTED);
n1.setStateNode(ArchitectNode.STATE_IMPACTED);

end

8 Conclusions and Future Works

In this chapter, we have presented an ASCM model and a knowledge-based system ap-
proach to deal with the change impact analysis on distributed software architecture. Our
model represents the information extracted from distributed architectural descriptions,
independent of the ADLs. It helps a progressive and detailed elaboration of change op-
eration. The change operations are specified by the invariants, pre and post conditions.
The extracted facts from software applications are stored in a knowledge-based oper-
ation. These are used to fire the change propagation rules to identify the impact of a

Towards a Better Change Impact Analysis in Architecture Description Languages 147

change and to propagate it to linked nodes. The validation of this modeling approach is
implemented as plug-ins in Eclipse Environment.

Perspectives of this work are to further enhance the change impact analysis approach
to deal with structural and qualitative aspects of software. We are currently specifying a
profiling model and an instrumentation mechanism, to allow us, to identify the change
impact on the quality of software services.

References

1. Ahmad, A., Basson, H., Deruelle, L., Bouneffa, M.: Towards a better control of change im-
pact propagation. In: INMIC 2008: 12th IEEE International Multitopic Conference, pp. 398–
404. IEEE Computer Society, Los Alamitos (December 2008)

2. Ahmad, A., Basson, H., Deruelle, L., Bouneffa, M.: A knowledge-based framework for soft-
ware evolution control. In: INFORSID 2009: Actes du XXVIIème Congrès Informatique des
organisation et systèmes d’information et de décision, pp. 111–126. IRIT Press, Toulouse
(May 2009), www.irit.fr

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley,
Reading (1998)

4. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case
Studies. Addison Wesley, Reading (2002)

5. Clements, P., Shaw, M.: “The golden age of software architecture” revisited. IEEE Soft-
ware 26, 70–72 (2009)

6. Deruelle, L., Basson, H., Bouneffa, M., Hattat, J.: An eclipse platform extension for analysis
and manipulation of multi-language software code, pp. 174–179 (2007)

7. Deruelle, L., Bouneffa, M., Melab, N., Basson, H.: A change propagation model and plat-
form for multi-database applications. In: IEEE International Conference on Software Main-
tenance, pp. 42–51 (2001)

8. Garlan, D., Monroe, R., Wile, D.: Acme: An architecture description interchange language.
In: Proceedings of CASCON 1997, pp. 169–183 (1997)

9. Hassan, M.O., Deruelle, L., Basson, H.: Towards a change propagation process in software
architecture. In: 18th International Conference on Software Engineering and Data Engineer-
ing (SEDE 2009), Las Vegas, Nevada, USA, pp. 85–90 (June 2009)

10. Medvidovic, N., Taylor, R.: A classification and comparison framework for software archi-
tecture description languages. IEEE Transactions on Software Engineering 26, 70–93 (2000)

11. Mens, T.: Transformational software evolution by assertions. In: Workshop on Formal Foun-
dations of Software Evolution, CSRM 2001 (2001)

12. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory,
and Practice. Wiley Publishing, Chichester (2009)

www.irit.fr

Common Languages for Web Semantics

Seiji Koide1 and Hideaki Takeda1,2

1 Information Technology, The Graduate University for Advanced Studies (SOKENDAI)
2 National Institute of Informatics

2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
{koide,takeda}@nii.ac.jp

http://www-kasm.nii.ac.jp/

Abstract. RDF is a language to express propositions on the WWW and OWL
is a language for defining Web ontologies. It seems that RDF and OWL have
established themselves as a standard in Semantic Webs. However, endeavors to
describe ontology in OWL are revealing the extent of the language capability in
practical views. In this paper, firstly we give an overview of basic assumptions as
knowledge representation languages for Semantic Webs, and then point out sev-
eral basic and problematic issues of OWL mainly arose from the difference of the
foundation among languages. They are captured by our own experience of devel-
oping an object oriented language for Semantic Webs and its applications. They
are solved in our language by means of i) explicit descriptions of role concepts,
ii) auto-epistemic local closed world assumption, iii) ternary truth values, and iv)
unique name assumption for atomic objects. Finally, we envision the direction of
language development for web semantics with reviewing Common Logic.

Keywords: Semantic Web, RDF, OWL, KIF, Common logic, Common lisp,
SWCLOS.

1 Introduction

Resource Description Framework (RDF) is an assertional language intended to be used
to express propositions on the WWW[1]. The OWL Web Ontology Language is a lan-
guage for defining and instantiating Web ontologies[2]. Today, it seems that RDF and
OWL have successfully established themselves as a de facto standard of ontology de-
scription language not only in the Semantic Web community. Especially, OWL has been
spread over diverse disciplines and engineering fields, e.g., ontology, linguistics, UML
modeling in software engineering, enterprise business patterns, etc. However, along
with spreading of OWL, the extent of the modeling capability of OWL has become
well known.

We had also developed an object oriented semantic language called SWCLOS[3]1

on top of Common Lisp Object System (CLOS), and attempted to apply it in several
applications. SWCLOS is an amalgamation of object oriented language in Lisp and
OWL, and then we saw how an ontology description language that is firmly underpinned

1 Source codes and documents are available on the web site http://www-kasm.nii.ac.jp/∼koide/
SWCLOS2-en.files/Page408.htm

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 148–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Common Languages for Web Semantics 149

by a formal logic and denotational semantics is useful to software engineering so as to
assure formal descriptions of system specification.

In the process of developing SWCLOS we, however, encountered a few basic and
nice problems of semantic disparity to be coped with that arose from the difference of
language foundation on RDF, OWL, logics, and object oriented language. For example,
ordinary programming languages and predicate calculus stand on Unique Name As-
sumption (UNA), but OWL is not regarded to stand on UNA. Ordinary software mod-
els and predicate calculus are based on Closed World Assumption (CWA), but OWL
and Description Logics (DLs) are regarded as on Open World Assumption (OWA). In
case that we had set such full setting as non-UNA and OWA for Semantic Webs into
SWCLOS, it amounted to the result of either very few viable interpretations with less
common knowledge or excessive need of common knowledge for models on class dis-
jointness and individual differentiation in several Semantic Web applications. Hence,
we performed refactoring SWCLOS with introducing new moderate settings in order to
unify RDF and OWL on top of CLOS. They are i) context dependent role and disjoint-
ness of substance classes, ii) auto-epistemic local closed world assumption, iii) ternary
truth values that allow unknown value, and iv) UNA for atomic objects in non-UNA
environment. Such experience of refactoring SWCLOS and the subsequent applications
brought us deeper understanding on the theory and relations of RDF(S)/OWL, logics,
and object oriented language semantics. In this paper, we describe the basic and nice
semantic gap among those languages and present our solutions.

Table 1 summarize basic computational foundations underlying Common Lisp, De-
scription Logic, RDF, OWL, and Common Logic.

Table 1. Basic Computational Foundations of Languages

UNA/nonUNA CWA/OWA Truth Value arity
Common Lisp UNA CWA Ternary n
Description Logic UNA OWA Binery 2
RDF UNA (CWA) Binery 2
OWL nonUNA OWA Binery 2
Common Logic nonUNA OWA Ternary? n

This paper is structured as follows. In Section 2, we give an overview of RDF, RDF
Schema, OWL, Common Lisp, and Common Logic. Section 3 describes problematic
non-UNA and OWA, and also discusses the equality of entities in universe of discourse.
In Section 4, we propose a new framework that involves role concepts based on dis-
cussion upon several top ontologies. The auto-epistemic local closed world assumption
and ternary truth value are explained at Section 5. Finally, we envision the direction of
languages for web semantics at Section 6.

2 Semantics in RDF, OWL, Common Lisp, and Common Logic

2.1 Denotational Semantics in RDF

Every scientific theory is a system of sentences which are accepted as true and which
may be called asserted statements [4]. To deduce the truth value of asserted sentences,

150 S. Koide and H. Takeda

words in sentences are distinguished from things denoted by words (denotations), and
then the relations between words and denotations and among denotations themselves
are interpreted according to axioms and rules in a given formal way. Such systematic
denotational semantics is called “Tarskian” [5]. A set of all entities as denotation is
called a domain or universe of discourse [4]. Axioms and rules for interpretation must
enable the structure of the universe of discourse so as to reflect the structure of the real
world. Entailment in logic with axioms must follow rules in the real world, see Figure
7.6 in Russell and Norvig [6].

RDF is applicable to WWWs with the components such as URI references, liter-
als (with/without a language tag), and XML schema typed literals [1]. RDF captures
WWWs as labeled directed graphs. The semantics of RDF graph is specified and for-
malized as follows by set-theoretical denotational semantics based on the Tarskian
model theory.

In the RDF simple interpretation I of vocabulary V ,

1. A non-empty set RI of entities, called the domain or universe of I.
2. A set P I , called the set of properties of I.
3. EXTI : P I → P(RI × RI), namely a mapping from P I into the powerset of

the set RI × RI , i.e., the set of sets of pairs 〈xI , yI〉 with xI and yI in RI .
4. A mapping SI from URI references in V into RI ∪ P I .
5. A mapping LI from typed literals in V into RI .
6. A distinguished subset LV of RI , called the set of literal values, which contains

all the plain literals in V .

Here, EXT I(pI) is called the property extension of pI , and it represents a set of pairs
which identify the arguments for which the property is true, that is, a binary relational
extension 〈xI , yI〉, where xI and yI are entities in the universe of discourse. In other
words, a property makes a set of the binary relation between entities in the universe of
discourse.

A particular pair of 〈xI , yI〉 for property pI is called a triple in infix notation in
text or x p y. In this expression, x is called subject, y is called object, and p is called
predicate. A set of triples composes and represents an RDF graph in Semantic Webs. If
all triples denotes true, then the RDF graph denotes true. An RDF graph may include
blank nodes. A blank node has no URI reference and may be designated by a nodeID
in triples instead of a URI reference. An RDF graph that does not include blank nodes
is called a ground graph. The denotation of a ground RDF graph (truth value) in I is
given by recursively applying the above interpretation and axioms for ground triples.
The semantics of ungrounded graphs is extended from the ground graphs, see Section
1.4 and 1.5 in [1] for the details.

The notion of property is redefined with two terms, rdf:Property and rdf:type, in rdf
vocabulary as follows.

Axiom 1. If an entity is a member of the set of properties of I, then the entity makes
a pair with rdf :PropertyI = SI(rdf :Property)2 and then the pair is a member of
property extension of rdf :typeI = SI(rdf :type), and vice versa:

2 rdf:Property is a QName in XML Namespace for URI reference http://www.w3.org/1999/02/
22-rdf-syntax-ns#Property.

Common Languages for Web Semantics 151

x ∈ P I ⇔ 〈x, rdf :PropertyI〉 ∈ EXTI(rdf :typeI)

Next two subsections describe the semantic extensions of interpretation for RDF
Schema (RDFS) and OWL.

2.2 Semantics of Class in RDF Schema

RDF Schema (RDFS) is a semantic extension of RDF that provides a device using rdfs
vocabulary for describing ontology as the minimal type system. The notion of class-
instance is introduced as an rdfs-extension of the universe of discourse using the notion
of class extension, see below.

Axiom 2. If an entity is a member of class extension of another entity, then a pair of
both becomes a member of property extension of rdf :typeI , and vice versa.

xI ∈ CEXT I(yI) ⇔ 〈xI , yI〉 ∈ EXTI(rdf :typeI)

Here, CEXT I : CI → P(RI) represents CI a mapping from a set of all classes in
the universe to the set of subsets of RI . CEXT I(yI) is called the class extension of
yI , and it denotes a set of instances of yI , and yI is called a class.

It is obvious that every property in the universe turns out to be an instance of rdf :
PropertyI . Here, RI , which is initially defined as the universe itself in the rdf sim-
ple interpretation, is named with a term rdfs:Resource as a class extension of rdfs :
ResourceI . In addition, using the notion of class extension, the set of all classes in the
universe C is also named with a new term rdfs:Class. Datatypes and literals are also
named as follows.

P I = CEXT I(rdf :PropertyI)
RI = CEXT I(rdfs :ResourceI)
CI = CEXT I(rdfs :ClassI)

DCI = CEXT I(rdfs :DatatypeI)
LV = CEXT I(rdfs :LiteralI)

For these rdfs vocabulary, rdfs-interpretation satisfies the extra conditions for RDFS,
see [1].

The class-superclass relation in the universe is specified with a term rdfs:subClassOf
as the inclusiveness of the class extensions of class/superclass as follows.

Axiom 3. If a pair of two entities is a member of property extensions of
rdfs:subClassOf I , then the both entities are instances of rdfs:ClassI and the class ex-
tension of the predecessor in the pair is included by the class extension of the successor.

〈xI , yI〉 ∈ EXT I(rdfs :subClassOf I) ⇒
x, y ∈ CI ∧ CEXT I(x) ⊆ CEXT I(y)

Note that this axiom in RDFS is not a if and only if construct. Thus, this condition is
called weak subsumption.

152 S. Koide and H. Takeda

2.3 Semantics in OWL

The OWL Web Ontology Language is a language for defining and instantiating Web
ontologies. The OWL language provides three increasingly expressive sublanguages
designed for use by specific communities of implementers and users. OWL Lite is the
simplest sublanguage and it supports those users primarily needing a classification hi-
erarchy and simple constraint features. OWL DL supports those users who want the
maximum expressiveness without losing computational completeness (all entailments
are guaranteed to be computed) and decidability (all computations will finish in finite
time) of reasoning systems. OWL DL was designed to support the existing Descrip-
tion Logic business segment and has desirable computational properties for reasoning
systems [2]. However, OWL Lite and OWL DL do not support RDF semantics. OWL
Full is meant for users who want maximum expressiveness and the syntactic freedom of
RDF. In OWL Full a class can be treated simultaneously as a collection of individuals3

and as an individual in its own right (metamodeling).
The OWL specifications include many features and capabilities that are useful to

describe Web ontologies, and OWL Lite and DL specifications and its semantics are
described in the bunch of specifications [2,7,8]. OWL Full specification is, however,
removed from them, and not yet developed as well.

OWL Compatibility to RDF. The compatibility between OWL and RDF is discussed
in [9]. Although OWL is regarded to be constructed on top of RDF, it was actually
not so easy by the semantic disparity between Description Logics and RDF and the
historical reasons. The specification [9] that specifies the universe of OWL is included
in the universe of RDF on one hand, see below.

OCI = CEXT I(owl :ClassI) ⊂ CI

OT I = CEXT I(owl :ThingI) ⊂ RI

On the other hand, it simultaneously states in the document that OCI = CI and
OT I = RI for OWL Full. As a matter of fact, the OWL definition file4 contains
the definition of the first inclusiveness between OWL classes and RDF classes, and the
second one can be entailed within the RDF universe by the rdfs entailment rule rdfs4a5.
Thus, SWCLOS realized the OWL universe in the RDF universe naturally by loading
the file in RDF subsystem of SWCLOS.

In addition, we introduced the following axiom in order to include OWL classes in
the OWL universe, and to make the OWL universe OWL Full. See details in [3] and
SWCLOS documents6.

Axiom 4. The extension of the denotation of URI reference of owl:Class is included
by the extension of the denotation of URI reference of owl:Thing.

OCI ⊂ OT I (1)
3 “individual” is a term in Description Logic and synonymous with “instance”.
4 http://www.w3.org/2002/07/owl.rdf
5 http://www.w3.org/TR/rdf-mt/#rulerdfs4
6 SWCLOS documents are available at http://www-kasm.nii.ac.jp/∼koide/SWCLOS2.files/

Page408.htm

Common Languages for Web Semantics 153

Note that this inclusiveness between OC and OT is similar to the inclusiveness be-
tween C and R in RDF universe. OC ⊂ OT implies the system is ‘higher-order’ as
well as C ⊂ R.

This axiom enables every class in the OWL universe to have roles (properties) for
individuals such as owl:sameAs, owl:differentFrom, etc.

Metamodeling Capability in OWL Full. SWCLOS is the first full-fledged language
as OWL Full processor, in which the capability of metamodeling objects is borrowed
from the dynamic and reflective features of Lisp and metaclassing capability of CLOS.
We had implemented many OWL axioms into CLOS using Meta-Object Protocol

(MOP) [10] of CLOS. Whereas unrestricted freedom of metamodeling certainly re-
sults in undecidability, examples demonstrated by the OWL DL camp in Semantic Web
community as OWL Full undecidability are always unreasonably extreme and make no
sense from the view of engineering. We had showed several metamodeling examples
of SWCLOS in [3] within the understandable rationale of engineering from our prac-
tical experience, and in [11], we addressed a set of metamodeling criteria that enables
SWCLOS to perform ontology metamodeling.

2.4 Semantics in Common Lisp

Common Lisp as a dialect of lisp is produced by the activity of ANSI standardization
on lisps during 1981 through 1997 in U.S., and many systems are running on Common
Lisp today in academia and industry. However, the semantics embraces some ambigui-
ties specifically from the viewpoint of denotational and extensional semantics like RDF
semantics. The problem of subclassing and metaclassing in Common Lisp is discussed
in [11]. In this section, we attempt to categorize computer languages with emphasiz-
ing the specialty of lisp as computer language, and discuss the relation among them
according to the semantics that is addressed by [12] on the reflective language 3-Lisp.

In a lisp system like early lisp system Lisp 1.5, which is equipped with symbol,
function, and list, and without any other structural devices like object in object oriented
programming, a syntactic lisp expression (S-expression) is reduced to a nominal form
that is equivalent to the original one in the sense of λ-calculus. For example, an expres-
sion “(+ 1 2)” is reduced to “3”. However, we can quote an expression to inhibit
the reduction, and then we can change expressions and construct another form, such
as “(cons (quote *) (cdr (quote (+ 1 2))))” turns out “(* 1 2)”.
This specific feature of lisp family languages is recently called homoiconic. In this first
computational model, lexical expressions are not discriminated from the denotations.

Second computational model in this section discriminates symbols from the deno-
tations. A lexical expression “3” denotes number 3, and a lexical expression “t” and
“nil”, which are reduced to “t” and “nil”, denote true and falsity, respectively, in the
universe of discourse. However, no symbol but “t” and “nil” denotes anything until
it is defined so. This mapping from a lexical expression to the denotation is analogous
to that in RDF semantics.

In the third computational model, a symbol refers a complex structure as internal
realization in a modern computer language. In this case, a symbol can be used to refer
a referent that denotes an entity in the universe. Figure 1 shows the framework in this
third computational semantic model [12].

154 S. Koide and H. Takeda

Notation N1 Notation N2

Structure S1 Structure S2

Denotation D1 Denotation D2

O O-1

Ѱ

Ф Ф

Fig. 1. The Framework for Computational Semantics by Smith

Smith called the mapping O internalization, and the inverse operation O−1 external-
ization. He also noted that O (and O−1) is usually ignored in logic. The φ is the inter-
pretation function, which is analogous to the interpretation in denotational semantics,
and the reduction ψ, which is, Smith says, the relationship among symbols, corresponds
entailment rules and rule application in logic. Smith pointed out that the lisp evaluator
crosses semantical levels, and therefore obscures the difference between the simplifi-
cation ψ and the interpretation φ. Smith called this lisp specific nature de-reference
(φ = ψ). It has become the theoretic base of his work on the reflective language 3-Lisp.

Assumptions and axioms in domain knowledge can be syntactically represented by
a set of symbols and structures expressed among the symbols. Those expressions of
assumptions are reduced to entailed assertions by a prover ψ.

2.5 Semantics in Common Logic

Common Logic7 is an abstract language of ISO standard of a logic framework intended
for information exchange and transmission. The framework allows a variety of differ-
ent syntactic forms, called dialects. The dialects, which have different syntax but inter-
changeable from one to another, include Common Logic Interchange Format (CLIF)8,
Conceptual Graph Interchange Format (CGIF)9, XML Common Logic (XCL)10, and
Common Logic Controlled English (CLCE)11. CLIF may be conceived to be a modern-
ized version of Knowledge Interchange Format (KIF)12[13].

Common Logic has some novel features syntactically and semantically. It allows
a syntax which is signature-free. The abstract syntax model is analogous to polymor-
phism in object oriented programming languages and no fixed arity like Common Lisp
(polyadic). As shown in Table 1, the arity of RDF and OWL is strictly constrained to
2. Not only Common Logic allows n-ary, but also the arity is not fixed for a predicate
or property. Guha and Hayes initially proposed such features as the RDF syntax for a
common base language of Semantic Web languages [15]. In their proposal for the can-
didate of RDF, they expected it would be a base language for Semantic Web languages,
and claimed the basic language, called Lbase, that would support basic inference and

7 http://common-logic.org/
8 http://www.ihmc.us/users/phayes/CLIF.html
9 http://conceptualgraphs.org/

10 http://www.altheim.com/specs/xcl/1.0/
11 http://www.jfsowa.com/clce/specs.htm
12 http://www-ksl.stanford.edu/knowledge-sharing/kif/

Common Languages for Web Semantics 155

semantics, and then would allow RDF and extending different semantics at the upper
layers in the Semantic Web stack. They imagined that Lbase would provide Li language
in i-th layer of Semantic Web language stack.

Common Logic permits ‘higher-order’ constructions such as quantification over
classes or relations while preserving a first-order model theory. The semantics allows
theories to describe intensional entities such as classes and properties. The first solution
of this ‘higher-order’ constructions will be metamodeling in Common Logic.

It seems that the modernized features of Common Logic is a reflection of the
progress of modern computer languages. For example, the semantics of Common Logic
introduced a new term, universe of reference13, in addition to the universe of discourse
in denotational semantics. The universe of reference include the universe of discourse.
In case that there are names such that they denote entities in the universe of reference
but not in the universe of discourse in an interpretation, the language is called segre-
gated dialect. All names in a non-segregated dialect are discourse names. “Segregated
dialects are commonly described to have a universe of discourse, without mentioning
the universe of reference; and for non-segregated dialects the universes of discourse
and of reference are identical. The distinction makes it possible to provide a single
semantics which can cover both styles of dialect”. The motivation of introducing the
universe of reference and non-discourse names is likely to be for the provision against
people who do not want to concern some terminologies out of concerning ontologies.14

However, this notion is very akin to Smith’s framework in the previous section. This
language model will support to develop logic systems using objects in imperative com-
puter languages which may include variable names for individual objects, class objects,
property objects, function objects, etc.

3 Non-unique Name Assumption and Equality

3.1 Equality of Individuals

Unique Name Assumption, that is, different names always denote different entities,
which is usually adopted into computer languages, is not adopted in Semantic Webs.
In RDF, different URI references denotes different graph nodes. However, in OWL
language, owl:sameAs property may be applied to different URIs to indicate that two
different URI references denote the same entity as individual in the OWL universe.
Oppositely, the owl:differentFrom property (and the combination of owl:AllDifferent
and owl:distinctMembers, too) may be used to indicate two different URI references
denote different entities. Thus, in case of no information on the individual equality in
OWL, the equality of two entities is not determined15, then, the decision of the equality
of entity must be performed in the RDF universe. To discuss the equality of entities in
RDF semantics, it is appropriate to discuss the equality of two subgraphs that the two
entities are in position of subject.

13 http://standards.iso.org/ittf/licence.html
14 from the discussion on [14] at the conference.
15 Instance properties of owl:FunctionalProperty and owl:InverseFunctionalProperty also affect

the equality as individual.

156 S. Koide and H. Takeda

The algorithm for the equality computation in the RDF universe is explained as
follows16.

Two RDF graphs G and G′ are equivalent if there is a bijection M between the sets
of triples for the two graphs, such that:

1. M maps blank nodes to blank nodes.
2. M(lit) = lit for all RDF literals lit which are nodes of G.
3. M(uri) = uri for all RDF URI references uri which are nodes of G.
4. The triple s/p/o is in G if and only if the triple M(s)/p/M(o) is in G′.

Note that these are not described in denotational semantics. RDF is property-centric
but OWL is object-centric (it means a subject node and linked nodes with one hop
predicates are regarded as an object like object-oriented language). Then, we modify
the above algorithm to meet OWL object-centric paradigm.

For each subgraph composed of a subject node and one-hop linked nodes in G and
G′,

1. M maps blank nodes to blank nodes.
2. M(lit) = lit for all RDF literals lit which are nodes of G.
3. M(uriI) = uriI for all RDF URI references uri which denote nodes of G.
4. For every s of triple s/p/o for G, 〈sI , oI〉 ∈ EXT I(pI) if and only if 〈M(sI),

M(oI)〉 ∈ EXT I(M(pI)) is in G′.

For the discussion of equality under the non-UNA condition, we superimpose
owl:sameAs and owl:differentFrom properties onto the above algorithm. In case that
sI in G and s′I in G′ are blank nodes in a bijection M, 〈sI , oI〉 ∈ EXT I(pI) is
equivalent to 〈M(sI),M(oI)〉 ∈ EXT I(M(pI)), if oI = M(o′I) in OWL seman-
tics. Namely two blank nodes sI and s′I are equivalent in OWL. We apply the same
algorithm for non-blank node in non-UNA condition. In case that sI and s′I are named
with different names and we cannot determine the equality by the names, our approach
determines the equality between sI and s′

I
through the subgraphs of the both. Namely,

we check pI and the equality of oI and o′I . This algorithm traverses two graphs, until
the decision is obtained. Note that RDF graph is a directed graph. In this graph equality
checking, if two nodes have sub-trees, the corresponding sub-trees on both graphs are
recursively checked for the equality. Thus, if we reach at terminal nodes (atomic nodes
that do not have edges any more) but no information is obtained, we fall into a trou-
blesome situation. For example, in comparison of ex:Y/ex:p/ex:A and ex:Z/ex:p/ex:B,
if ex:A and ex:B are both atomic, the non-UNA computation cannot conclude whether
or not ex:Y is equivalent to ex:Z. In such condition, in order to derive useful computa-
tional results, we must define the equality or difference among every atomic individuals.
It is very laborious work to describe common knowledge such as Bill is different from
George, Barack, Al, and so on.

Therefore, we devised a flag for non-UNA and set up falsity to the flag as default.
Note that the equality of two blank nodes is checked both in UNA and in non-UNA.
In the default condition, we stand in UNA as well as for ordinary computer languages,
then two nodes that have different URI references are different, and then two blank

16 http://www.w3.org/TR/rdf-concepts/#section-graph-equality

Common Languages for Web Semantics 157

node trees are distinct if we cannot find the corresponding edges of graphs or we find
the lexically different URI references at the corresponding positions in the trees. In
non-UNA condition with the flag setting, the graph equality checking is performed
even though two URIs at the corresponding positions are different, until we find either
the difference of graph structures or the difference of nodes that are explicitly stated in
OWL statements. In our approach, two atomic nodes with different names are regarded
as different in the equality checking, even though the flag indicates non-UNA. Thus,
this algorithm is paraphrased UNA for atomic objects in the non-UNA condition.

3.2 Equivalency and Disjointness of Classes

Complete Relation for Class Equivalency. In OWL, owl:equivalentClass is appli-
cable to indicate the equivalency of two objects as class. For example, food:Wine in
Food Ontology17 is equivalent to vin:Wine in Wine Ontology with the statement of
owl:equivalentClass. In addition, the other three complete relations,18 i.e.,
owl:intersectionOf, owl:unionOf, and owl:oneOf also decide the equivalency of classes.
If two concepts (classes) have equivalent values for these complete relational properties,
the two concepts must be conceived to be equivalent. For example, vin:DryWine and
vin:TableWine in Wine Ontology are equivalent as class in OWL semantics (they share
the same class extensions), because the both have the same value for owl:intersectionOf
property.

Explicit and Implicit Disjointness of Classes. Meanwhile, owl:disjointWith can be
applied to classes to state disjoint classes. This and owl:complementOf property ex-
plicitly state that two concepts are definitely different as class. Thus, in case of no
declaration of equivalency and disjointness of classes, we cannot conclude the equal-
ity as classes immediately. However, the complete relations except owl:equivalentClass
decide not only the equality but also the difference of classes. For example, even though
we have no direct statement of disjointness for vin:RedWine and vin:WhiteWine, the
disjointness is deduced through property owl:intersectionOf and owl:hasValue restric-
tion vin:Red of vin:RedWine and vin:White of vin:WhiteWine, because it is explic-
itly stated that vin:Red is different from vin:White. Furthermore, we can also conclude
some useful results by resorting to the rdf graph checking mentioned above. For ex-
ample, we can find that vin:CaliforniaWine is not equal to vin:ItalianWine in spite of
no explicit information of disjointness, because the graph equality checking deduces
that vin:CaliforniaRegion, in which vin:CaliforniaWine is located, is different from
vin:ItalianRegion, in which vin:ItalianWine is located, even if we are in non-UNA.

However, for atomic concepts that have no edges except being pointed as superclass,
we cannot conclude that Man is disjoint to Woman, if those concepts are atomic in non-
UNA. Thus, we are forced to do very laborious work to describe common knowledge
such as Man and Woman are disjoint, Plant and Animal are disjoint, Ape and Monkey
are disjoint, Virus and Bacteria are disjoint, and so on19.

17 http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf
18 http://www.w3.org/TR/owl-ref/#DescriptionAxiom
19 Actually, 58% is for class disjointness in lines of pizza.owl for only 23 pizza and 29 pizza

toppings. The number of lines for disjointness will explode with the number of classes.

158 S. Koide and H. Takeda

ANSI Common Lisp specifies that CLOS classes are pairwise disjoint if they have
no common subclass and one class is not a subclass of the other. Namely, each class
is disjoint to the others as default until we connect them in superclass relation or set a
common subclass. This agreement is supported by the premise that an object in CLOS
is typed to only one class. In the RDF universe, an entity may be typed to more than one
class. So, the nature of disjointness in CLOS is not applicable in the RDF universe in
theory. However, in SWCLOS, the pseudo multiple-classing machinery is implemented
using the CLOS class and multiple-inheritance mechanism. Therefore, from the view-
point of CLOS, the algorithm of disjointness for CLOS is still valid in the RDF universe
in virtue of CLOS. In the next section, we introduce an idea of role concept that is di-
vided from substantial concept with the premise of pairwise disjointness.

4 Substantial Concepts and Role Concepts

4.1 Ontological Categories and Disjointness

OWL provided the description of class disjointness and forced us labor-intensive work
as described above. W3C new recommendation for OWL, OWL 2 specification [16,17],
attempts to solve the disjointness problems without ontological consideration in depth.
Person may be described as owl:disjointUnionOf Man and Woman in OWL 2. However,
we are still forced to describe explicitly disjointness for all disjoint classes, or basic
atomic concepts. We strongly claim that the approach to describe disjointness must be
more well-founded on ontological consideration.

Sowa [18,19] showed a lattice of the top-level ontological categories of things. Each
of the twelve elemental concepts in the top ontology has different characteristics and
those combinations, i.e., independent, physical, relative, abstract, and mediating. The
concepts of the independent exist itself and they show the firstness. The concepts of the
relative or role only live with the firstness and they show the secondness. The mediating
describes concepts that mediate the firstness and the secondness.

Guarino [20] parted ontology into two catagories, i.e., particular that represents sub-
stantial entities and universal that is the category of entities required to describe the
particulars. Physical objects, abstract processes, phenomena, quality, and materials fall
into the particular, and attributes, relations are categorized into the universal.

Mizoguchi, et al., developed an ontology building tool called Hozo [21,22] based on
ontological deep discussion and have utilized Hozo for many application field of ontol-
ogy building. Using Hozo, ontology builders can easily construct complex concepts that
are composed of substantial sorts and non-substantial roles. For example, Wife is a part
of Family and composed of Woman and Wife-role. The concept Woman is a substantial
and may have slots of gender, age, etc. The role concept Wife-role is not a substan-
tial, in other words, it always requires substantial concepts to work, but may have its
own slots such as married-year, spouse, etc. In a sense, it is regarded that the concept
Family represents the context in which the concept Wife is activated from Woman with
Wife-role.

We also proposed Aspect Theory of ontology in the study of Knowledgeable Commu-
nity [23], which is a framework of knowledge sharing and reuse based on a multi-agent
architecture. In this framework, while ontologies are the minimum requirement for each

Common Languages for Web Semantics 159

agent to join the community, each of heterogeneous ontologies describes an aspect of an
entity and knowledge. A mediator agent that embodied knowledge for mediation helps
other agents to communicate each other. In this theory, the aspect may be rephrased as
a context on which an agent focused for discourse. For example, a concept Temple is an
aggregation of concepts in aspect of religion, cultural asset, building architecture, cor-
porate body, and so on. In most case without communication, we usually focus on one
aspect of entity and do not need to take care of the other aspects in a particular context.
However, for agents in a particular discourse, the mediator translates heterogeneous on-
tologies from one to another and mediates agent’s speech acts that are broad-casted in
the community.

4.2 Introduction of Role Concepts

In order to solve the labor-intensive disjointness problem, we propose two ontological
categories according to [22], i.e., substantial concepts and role concepts, and realize them
on top of RDF and extended OWL semantics. The substantial concepts are described in
OWL, but we adopt the assumption of implicit disjointness for substantial concepts in the
same way as CLOS described above. On the other hand, a role concept is an extension of
owl:Restriction. Neither owl:disjointUnionOf nor owl:AllDisjointClasses in OWL 2 are
introduced. Instead, we extend owl:Restriction, which has property-value restrictions but
usually no name and no super restrictions in OWL, to the role concept that is able to have
a name and supers. The instance of role is attached to an instance of substantial classes
in the same way as owl:Restriction provides the definition of predicate/object at subject
or an instance of substantial class. A complex concept is composed of a substantial class
and role concepts. For example, a complex concept Husband is composed of Man and
Husband-Role that has spouse and marriage-date properties, and Teacher is composed
of Person and Teacher-Role that has subject and classInCharge property. The discussion
of disjointness on role concept is meaningless, because the role concept cannot have any
instance by itself as well as owl:Restriction. Husband and Teacher can share individuals,
but those individuals should be interpreted as instances of Man in Husband and Person
in Teacher.

5 Open World Assumption and Ternary Truth Value

5.1 Auto-epistemic Local Closed World Assumption

Negation as Failure (NaF) is a well-known convention for inference in Closed World
Assumption (CWA). This convention is, however, not applicable in World Wide Webs.
Therefore, two queries are usually issued as “P ?” and “not P ?” for query-answer sys-
tems. In case that we cannot obtained any results with two queries, it may be called
unknown. As we see so far, rigorous non-UNA and full Open World Assumption in
Semantic Webs turn out to be shortcomings in practical ontology building. The implicit
disjointness principle adopted in SWCLOS is very useful all over the life-cycle of on-
tology engineering. This principle can be rephrased such that we assume classes are
pairwise disjoint until the equality or disjointness are explicitly axiomatized. In some
sense, it is a kind of default reasoning. A reasoner replies that the concept A is disjoint

160 S. Koide and H. Takeda

with the concept B because of no evidence that supports it. After the statement that the
concept A and B has a subclass C, the same agent replies the concept A and B are not
disjoint. However, even so, note that SWCLOS signals an alarm if a user attempts to
make an instance of class A and B that is explicitly stated as disjoint, and also note that
SWCLOS implicitly makes a shadowed-class as a subclass in CLOS of class A and B,
if A and B are not explicitly disjoint and it is required by users [3].

Concerned with the existential restriction of property or owl:someValuesFrom, the
full OWA is also meaningless from the viewpoint of ontology building, since the ex-
istential restriction under the OWA means the possibility that a satisfiable value may
be defined somewhere in WWW or someone in the team members may add a proper
constraint tomorrow or after. The full OWA implies that ontology builders cannot know
all for target ontologies. However, this assumption is not enjoyable in actual fact in per-
sonal and collaborative ontology building process. It is natural to distinguish the local
world for target ontologies and the given general WWW. Hence, we have introduced
the notion of auto-epistemic local closed world assumption. In this idea, agents can
introspectively check their knowledge within their extent of capabilities. An agent sits
in locally closed world as environments around it. The flag for auto-epistemic local
closed world assumption is set true as default in SWCLOS, and the satisfiability for
slot value is aggressively checked even in case of the existential restriction. Namely, if
an existential restriction is not satisfied, then the interpretation is not satisfied. Setting
the flag false means the completely full OWA. In this case, no alarm is signaled for the
existential restrictions.

5.2 cl:Subtypep

cl:subtypep in ANSI Common Lisp returns two values, say, value1 and value2.
Table 2 is taken from ANSI Common Lisp specs20.

Table 2. Two Return Values on cl:subtypep(type1, type2)

value1 value2 meaning
true true type1 is definitely a subtype of type2.
false true type1 is definitely not a subtype of

type2.
false false subtypep could not determine the

relation ship, so type1 might or might
not be a subtype of type2.

If value1 is true, then value2 is definitely true. So, a return value of pair 〈t, nil〉 never
happens in ANSI Common Lisp.

We extended this semantics and applied it for subtype (subclass) predicates in RDFS
gx:subtypep and OWL gx:subsumed-p in addition to type predicate gx:typep.
Namely, we see that 〈t, t〉 is true value, 〈nil, t〉 is false value, and 〈nil, nil〉 is unknown

20 http://www.franz.com/support/documentation/8.1/ansicl/dictentr/subtypep.htm

Common Languages for Web Semantics 161

value in RDF(S) and OWL semantics. The ternary truth table are used for the subsump-
tion computation and elsewhere in SWCLOS, see the details in [3].

6 Conclusions and Future Work

In this paper, we described an overview of several knowledge representation languages
around World Wide Webs, focusing on semantics of languages. We claimed that today’s
OWL, including OWL 2, embraces some drawbacks for the practical usage. It seems to
lead people into a blind alley without thinking what ontology is and how it should be
reflected in the OWL specification. Common Logic intends to be a common framework
of concrete knowledge representation languages including RDF and OWL. Although
actual dialect implementation of Common Logic is not emerging and no one can foresee
the future of Common Logic, we are sure that our experience for SWCLOS suggests
the future of something else than today’s OWL.

References

1. Hayes, McBride, P.B.: RDF Semantics. W3C Recommendation (2004),
http://www.w3.org/TR/rdf-mt/

2. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C
Recommendation (2004), http://www.w3.org/TR/owl-guide/

3. Koide, S., Takeda, H.: OWL-Full reasoning from an object oriented perspective. In: Mi-
zoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 263–277.
Springer, Heidelberg (2006)

4. Tarski, A.: Introduction to Logic. Dover, New York (1946/1995); This book is an extended
edition of the book of title “On Mathematical Logic and Deductive Method,” which appeared
at 1936 in Polish

5. McDermott, D.: Tarskian semantics, or no notation without denotation! Cognitive Science 2,
277–282 (1978)

6. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall,
Englewood Cliffs (2003)

7. McGuinness, D.L., van Harmelen. F.: OWL Web Ontology Language Overview, W3C Rec-
ommendation (2004), http://www.w3.org/TR/owl-features/

8. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax, W3C Recommendation (2004),
http://www.w3.org/TR/owl-semantics/

9. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax section 5 rdf-compatible model-theoretic semantics, W3C Recommendation
(2004), http://www.w3.org/TR/owl-semantics/rdfs.html

10. Kiczales, G., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol. MIT Press,
Cambridge (1991)

11. Koide, S., Takeda, H.: Meta-circularity and mop in common lisp for owl full. In: The 6th
European Lisp Workshop ELW 2009, pp. 28–34. ACM, New York (2009)

12. Smith, B.C.: Reflection and Semantics in Lisp. In: 11th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 1984, pp. 23–35. ACM, New York
(1984)

13. Hayes, P., Menzel, C.: A Semantics for the Knowledge Interchange Format. In: IJCAI 2001
Workshop on the IEEE Standard Upper Ontology (2001)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/rdfs.html

162 S. Koide and H. Takeda

14. Neuhaus, F.: The Semantics of Modules in Common Logic. In: Smith, B., Mizoguchi, R.,
Nakagawa, S. (eds.) Interdisciplinary Ontology, Open Research Centre for Logic and Formal
Ontology, Keio University, vol. 3, pp. 107–117 (2010)

15. Guha, R.V., Hayes, P.: Lbase: Semantics for Languages of the Semantic Web, Note, W3C
(2003)

16. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 Web Ontology Language Direct Seman-
tics, W3C Recommendation (2009),
http://www.w3.org/TR/owl2-direct-semantics/

17. Carroll, J., Herman, I., Patel-Schneider, P.F.: OWL 2 Web Ontology Language RDF-based
Semantics, W3C Recommendation (2009),
http://www.w3.org/TR/owl2-rdf-based-semantics/

18. Sowa, J.F.: Top-level Ontological Categories. Int. J. Hum.-Comput. Stud. 43(5-6), 669–685
(1995)

19. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions. Brooks Cole Publishing, Monterey (1999)

20. Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical Resources. In:
Rubio, N., Castro, T. (eds.) 1st Int. Conf. Lexical Resources and Evaluation, pp. 527–534
(1998)

21. Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: The Model of Roles within an On-
tology Development Tool: Hozo. Appl. Ontol. 2(2), 159–179 (2007)

22. Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: Role Representation Model Using
OWL and SWRL. In: 2nd Workshop on Roles and Relationships in Object Oriented Pro-
gramming, Multiagent Systems, and Ontologies (2007)

23. Takeda, H., Iino, K., Nishida, T.: Agent Organization and Communication with Multiple
Ontologies. Int. J. Cooperative Inf. Syst. 4(4), 321–338 (1995)

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

Generating Code for Associations Supporting
Operations on Multiple Instances

Mayer Goldberg and Guy Wiener

Ben-Gurion University, Beersheba, Israel
{gmayer,gwiener}@cs.bgu.ac.il

Abstract. Associations between objects are one of the most fundamental con-
cepts in object-oriented design. The choices of how to implement associations
determine how operations on the associated instances are performed: Sequentially
or in parallel, with or without cached results, and with a transient or persistent ef-
fect. In this work, we propose a scheme that allows for generated code to support
different methods of operating on associated instances, without requiring changes
to the client code. These methods include using indices, traversing the associa-
tion in parallel, or using a database. Instead of the sequential iterator interface, we
propose to use an interface that include operations over multiple instances: Fore-
ach, Filter, Map and Fold. This interface allows for realizing designs that involve
sending messages to multiple associated instances, such as UML sequence and
communication diagrams. The realization does not depend on the implementation
details of the associations.

1 Introduction

Generating code from UML diagrams requires translating the high-level UML specifi-
cations into concrete statements in some programming language. UML specifications
differ from statements in Object-Oriented Programming Languages (OOPL) in the fol-
lowing aspects. First, UML statements have a richer semantics then their OOPL coun-
terparts: Not every element in a UML diagram can be expressed as a single statement
in an OOPL. Second, UML is more abstract then OOP code: It specifies the expected
structure and behavior of software components, not how to implement it.

Associations between classes and between objects are a basic part of UML class
and object diagrams. They also affect sequence and communication1 diagrams, since
that object can send messages to other associated objects. The gap between the se-
mantics of associations in these diagrams and OOPL has been discussed extensively
in the UML literature. The full semantics of associations, as described in UML ref-
erence manual [1], includes bi-directionality and multiplicity constraints, as well as
advanced features that have no direct equivalence in OOPLs: Relations between asso-
ciations (subset, re-definition, etc.), association classes, and general OCL constraints2.
In their seminal work on Object-Oriented Analysis and Design (OOAD), Martin and
Odell discuss this problem [4]. They suggest to implement bi-directional associations

1 UML 2 Communication diagrams were called collaboration diagrams in UML 1.
2 For details on OCL, see [2,3].

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 163–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 M. Goldberg and G. Wiener

by using either pairs of references or association objects. Craig Larman suggests refin-
ing bi-directional associations to uni-directional ones [5]. Several works [6,7,8] offer
different implementations to associations that preserve more of their original seman-
tics. It is clear from these works that implementing associations requires several code
statements. This fact suggests that code generation would be useful.

The second aspect, namely that UML is more abstract then OOP code, is commonly
overlooked in the literature. The gap between the specification and the code is inten-
tional. Harrison et al., in their detailed work on mapping UML specifications to Java,
explain that a model expressed independently of a specific implementation provides
greater flexibility [9]. This flexibility is required: According to [10], the cost of main-
tenance is 90% from its development cost, and [11] show that 80% of the maintenance
cost are dedicated to perfective activities3 and adaptive activities4. Therefore, any re-
use of the model that is independent of a platform or performance constraints can lower
the cost of maintenance.

The semantics of UML associations only specifies the relations that the system should
maintain. The details of how to implement and use them are left out. Specifically, the UML
standard does not specify how to loop over multiple instances, or how to send a message
to associated instances. All of the works mentioned above focus on providing a single im-
plementation to associations, based on standard collections frameworks — For example,
Java collections5. This approach provides the richer semantics of associations in code, but
does not allow for replacing the implementation without re-writing the code. For exam-
ple, most standard collections frameworks provide only sequential traversal over an entire
collection. This limitation neither appears nor is implied by the UML standard. We would
like to allow the developer to choose between sequential and parallel traversal by chang-
ing a property of the association, without re-writing the code. Fast access to elements in
a collection with specific values requires in most frameworks adding a supporting data
structure explicitly (E.g., a map from integers to persons in a collection that are of a given
age). We would like to allow for adding such indices as a property of the association, or
even let a smart code-generator decides which indices should be used.

In thisworkwepresentacodegenerationschemethatallowsfor replacingthegenerated
implementation of associations without requiring changes to the rest of the code.Section 2
describes the interfacesforaccessing,updating,andtraversingoverassociations.Section3
describesdifferent schemesforgenerating implementations for those interfaces.Section4
describes implementing dynamic designs (sequence and communication diagrams) using
these interfaces. Section 5 provides an example of implementing and using this scheme to
improve the implementation of associated classes. Section 6 concludes.

2 Interfaces

To replace the implementation of associations independently of the client code6, we
must provide uniform interfaces for the following operations over associations:

3 Activities that improve the software.
4 Activities that adapt the software to new platforms.
5 http://java.sun.com/docs/books/tutorial/collections
6 “Client code” here refers to the code that uses the associations, as opposed to the code that

implements the associations.

Generating Code for Associations Supporting Operations on Multiple Instances 165

1. Adding and removing pairs of associated instances from the relation.
2. Traversing over the instances associated with a given object.

We ignore the case of changing the set of instances that are associated with a given
object, since it can be implemented by adding and removing pairs from the relation.
Operating on pairs instead of unrelated collections allows the implementation to enforce
bi-directionality and multiplicity constraints. This approach is common to many of the
works mentioned above.

The second kind of operations, traversing associated instances, requires special at-
tention. Most work on associations propose to use a variation of the Iterator pattern
[12]. This pattern provides a way to perform a sequential traversal over a data structure
without exposing its implementation. This approach, however, has several drawbacks:

1. It forces the traversal to be sequential and does not enable parallel traversal, even
when there are no data dependencies between the iterations.

2. It does not encapsulate the selection of elements. Therefore, optimizations like us-
ing hash-tables or caching must be a part of the client code.

3. Iterators, together with loop commands (for, while, etc.) often serve for imple-
menting operations over a range of elements. The body of the loop represents an
operation over a single element and is dependent on its internal structure. The it-
erator pattern encapsulates the traversal, but exposes the structure of the traversed
elements. Moving this implicit operation to a method in the class of the element
and explicitly applying this method on all associated instances would provide bet-
ter encapsulation.

To overcome these drawbacks, we propose to use different set of interfaces, similar
to the one outlined in [4]:

– The Association interface represents the relation between two types.
– The AssocEnd interface represents the collection of instances that are associated

with a given object.
– The Foreach, Map, Filter, and Fold interfaces represent operations over a collection

of instances. They are called aggregator interfaces.

The aggregator interfaces are generated and include sub-sets of the messages from
the associated type. The implementations of these interfaces are also generated and in-
clude the concrete operations over the collection. The Association and AssocEnd inter-
faces are not generated, since that their operations signature are constant. However, the
implementations of AssocEnd are parametrized by the concrete type of aggregators that
they returns. Therefore the implementations of AssocEnd are either generated, or take
AssocEnd factories as parameters (See the factory design pattern at [12]). Similarly, the
implementation of Association is also parametrized by the concrete type of AssocEnds
that it returns. Figure 1 shows these interfaces. Figure 2 shows a loop that breaks encap-
sulation. Figure 3 shows our approach: Accessing attributes is moved to methods and
the loop is replaced with using the above interfaces. The following sections describe
these interfaces in greater detail.

166 M. Goldberg and G. Wiener

Fig. 1. The interfaces for associations

� �

for (Person p: getEmployees()) {
if (p.geName().getSalary() > limit) p.setSalary(p.getSalary()*1.2);

}
� �

Fig. 2. An example of the body of the loop that breaks encapsulation

� �

public class Person {
public boolean earnsMoreThan(int x) { return getSalary() > x; }
public void giveRaise(double d) { setSalary(getSalary() * d); }

}
getEmployees().filter().earnsMoreThan(limit).foreach().giveRaise(1.2);

� �

Fig. 3. An encapsulation-preserving approach to associations

2.1 The Association Interface

The Association〈A,B〉 interface represents the relation itself. It contains the opera-
tions for adding and removing pair from the association. The get operations return an
AssocEnd. The getter methods of the participating classes, A and B, delegate to the
get operations in the association. Figure 4 shows a simple association. Figure 5 shows
the Association interface and its relations with the participating classes, where get
operations are implemented as return f.get(this). As mentioned above, the
implementation of Association requires a decision which concrete AssocEnds to return.
This decision can be taken either at design time, by hard-coding it or generating code
for it, or at run-time, by using a factory.

2.2 The Association End Interface

The AssocEnd〈X〉 interface represent one end of the association. The get operation
in Association returns an instance of this interface. This instance represents all the
instances of the opposite type that are associated with the given object. The interface
has two kinds of operations:

Generating Code for Associations Supporting Operations on Multiple Instances 167

A Ba b
j..k

f
l..m

Fig. 4. A minimalistic example of an association Fig. 5. The association interface and
participating classes

– The operation all returns the associated objects as a platform-specific collection.
For example, in our Python implementation from Sect. 5, it returns a list of all
associated objects.

– The operations foreach, map, filter, and fold return an aggregator. The aggregator
represents operations over the collection of associated instances, without exposing
the implementation details. The aggregation interfaces are described below.

As mentioned above, the implementation of AssocEnd requires a decision which
concrete instances of foreach, map, filter and fold to return. These decisions can be
taken either at design time, by hard-coding it or generating code for it, or at run-time,
by using a factory per aggregator type.

2.3 Aggregation Interfaces

Foreach, Map, Filter, and Fold are aggregation interfaces. They are named after higher-
order functions from functional programming languages. They represent operations
over a set of associated instances. The operations in each aggregation interfaces derive
from the type of the instances that it wraps. Therefore, these interfaces are generated
for each type that participates in an association. Figure 6 shows an example of a type
and the aggregation interfaces that are derived from it. The details for each interface
follow.

Foreach. The Foreach aggregator represents sending a message mi to all the associated
instances, where mi returns no value. The implementation is not required to wait for
the return value, so it can be parallel or asynchronous. Figure 7 shows a sequential
generated code of a single method in an Foreach aggregator. Applying a message m
on the associated instances of a is coded as a.getB().foreach().m().

Map. The Map aggregator is similar to Foreach, but for messages that has a return
value. The map higher-order function is described in “Anatomy of LISP” [13], and was
even a part of the APL programming language [14]. It is similar to the OCL collection
operation collect, see [2] for details. The collection of return values is returned as
an aggregator interface itself. Again, the decision which concrete AssocEnd to use can
be taken at design-time or run-time. Figure 8 shows a sequential generated code of a
single method in a Map aggregator. Since that Map requires the return values, it can
run in parallel or send asynchronous messages, but must wait for all the responses to
arrive. Getting the mapped values of a message m on the associated instances of a is
coded as a.getB().map().m(). Aggregated operations can be concatenated. For
example, a.getB().map().m().foreach().f().

168 M. Goldberg and G. Wiener

Fig. 6. The type Person and generated aggregation interfaces

� �

public class ForeachPerson implements Foreach<Person> {
public void giveRaise(double d) {

for (Person p: associatedPersons)
p.giveRaise(d);

}
}

� �

Fig. 7. A sequential implementation of the method giveRaise in Foreach〈Person〉
� �

public class MapPerson implements Map<Person> {
public AssocEnd<Car> getCar() {

AssocEnd<Car> ret = (select a concrete AssocEnd);
for (Person p: associatedPersons)

ret.add(p.getCar());
return ret;

}
}

� �

Fig. 8. A sequential implementation of the method getCar in Map〈Person〉

Filter. The Filter aggregator filters associated instances that return true in response
to a boolean method mi. It is similar to the OCL collection operation select, see
[2] for details. Similarly to Map, the selected instances are returned as an instance of
AssocEnd, whose concrete type is chosen either at design- or run-time. The parametric
type of the returned association end is the same as the one of the Filter aggregator.
Figure 9 shows a sequential generated code of a single method in a Filter aggregator.
Like Map, Filter can have a parallel or asynchronous implementation, but it returns
only after receiving all the responses. Getting the selected associated instances of a by
a boolean message m is coded as a.getB().filter().m().

Fold. The Fold aggregator performs an operation over the associated instances where
each step depends on the result of the previous one7 It is similar to the OCL collection
operation iterate, see [2] for details. The signature of a method that performs such
operation is such that it takes as a parameter a value of the same type as it returns:

7 The fold operation here is from the first elements to the last. The opposite fold can be imple-
mented in the same way.

Generating Code for Associations Supporting Operations on Multiple Instances 169

� �

public class FilterPerson implements Filter<Person> {
public AssocEnd<Person> earnsMoreThan(double d) {

AssocEnd<Person> ret = (select a concrete AssocEnd);
for (Person p: associatedPersons)

if (p.earnsMoreThan(d))
ret.add(p);

return ret;
}

}
� �

Fig. 9. A sequential implementation of the method earnsMoreThan in Filter〈Person〉
� �

public class FoldPerson implements Fold<Person> {
public double sumSalaries(double d) {

double ret = d;
for (Person p: associatedPersons)

ret = p.sumSalaries(ret);
return ret;

}
}

� �

Fig. 10. A sequential implementation of the method sumSalaries in Fold〈Person〉

mi(r : R) : R. The folded operation returns the result of the last operation in this
chain. The implementation of Fold must be sequential. Figure 10 shows an example of
a generated code of a single method in a Fold aggregator. Getting the final folded result
r2 of message m over the associated instances of a with initial value r1 is coded as R
r2 = a.getB().fold().m(r1).

3 Implementation

The Association, AssocEnd, and the aggregator interfaces only specify what are the
operations over the association, and not how to implement them. The concrete imple-
mentation may vary in the following aspects:

1. Where to store the relation itself.
2. How to implement the traversal operations of the Foreach and Map aggregators:

Sequentially or in parallel.
3. How to implement the selection operations of the Filter aggregator: By traversing

the association or using auxiliary data structures.

3.1 Storing the Relation

There are two options for storing the data of the relation:

Internal. The relation is stored in the main memory.
External. The relation is handled by an external component, such as a database or a

storage service.

170 M. Goldberg and G. Wiener

Internal Storage. Storing the relation in main memory, as a part of an OOPL class hier-
archy, has been discussed thoroughly in the works mentioned above. Figure 11 shows a
design example for implementing an association using classes (in an OOPL). Figure 12
outlines the code for this implementation.

External Storage. The interfaces discussed in Sect. 2 can act as a uniform façade
for persistency components, such as databases or files. As is, the proposed interfaces
can not bridge the gap between the object-oriented design and relational databases or
sequential files. However, it can provide a common interface for external persistency
solutions. For example:

– Object-to-Relational Mapping (ORM) systems, e.g. Hibernate8

– Object-Oriented Databases (OODB), e.g. DB4O9

– Files — See [15] for Object-to-File serialization techniques
Having a common interface to different solutions allows the developer to switch be-
tween solutions seamlessly, thus removing a potential vendor lock. Figure 13 shows an
example of hiding the persistency details by using the Association interface: It includes
extra code to update a DB4O database.

3.2 Traversal Operations

The iteration over an association does not have to be sequential, as in the examples in
Sect. 2.3. Unlike Fold operations, Foreach, Map, and Filter operations do not imply a
specific order in which the aggregated message is sent to the associated instances. Fore-
ach operations can be sent asynchronously, without waiting for a reply. Figure 14(a)
shows a sequence diagram of performing an Foreach operation asynchronously. Map
and Filter operations must wait for returned values, but can still be performed in par-
allel. Figure 14(b) shows a sequence diagram of performing a Map operation using
several threads.

The parallel implementation of traversal operations in similar to the implementation
of parallel iterators, as described in [16]. However, parallel iterators and parallel oper-
ations differ in several points. First, parallel iterators require changes to the client code.
They implements the standard iterator interface, but the programmer still has to add
threads to the code. Second, in the cases of map, filter and fold, the programmer has to
add a reduce method to collect the results. Finally, parallel iterators encourage exposing
the structure of the traversed elements, just as sequential ones (see Sect. 2).

3.3 Selecting Instances

A common scenario of traversing over associated instances is finding an instance, or a
set of instances, that satisfies a condition — E.g., has a given name. The operations in
the Filter interface (Sect. 2.3) represent this scenario. Figure 9 shows the most naı̈ve
implementation of this scenario.

A common optimization of this scenario is to keep a cache — E.g., a hash-table
mapping names to instances with that name. This optimization reduces the run-time

8 http://www.hibernate.org
9 http://www.db4o.com

Generating Code for Associations Supporting Operations on Multiple Instances 171

Fig. 11. Storing a relation in main memory

� �

public class F

implements Association<A, B> {

public void add(A a, B b) {

a.b.add(b);

b.a.add(a);

}

public void remove(A a, B b) {

a.b.remove(b);

b.a.remove(a);

}

public AssociationEnd get(A a) {

// return an AssocEnd of a.b
}

public AssociationEnd<A> get(B b) {

// return an Assocnd of b.a
}

}
� �

Fig. 12. Implementing an association using the
fields approach

� �

public class F

implements Association<A, B> {

public void add(A a, B b) {

a.b.add(b);

b.a.add(a);

⇒ db.set(a);

⇒ db.set(b);

⇒ db.commit();

}

public void remove(A a, B b) {

a.b.remove(b);

b.a.remove(a);

⇒ db.set(a);

⇒ db.set(b);

⇒ db.commit();

}

}
� �

Fig. 13. Implementing add and remove
using DB4O. Marked lines are DB4O-
specific.

in an order of magnitude. Another possible form of cache is to query a database, as
discussed in Sect. 3.1.

Caching requires adding code to the add and remove operation and change specific
Filter operations. Implementing it as a part of the client code makes the client code
dependent of the specific association implementation. A better solution is to generate
this code as a part of the implementations of the Association and Filter interfaces, thus
de-coupling the client code from the optimization code. Figures 15 and 16 shows the
modifications to Association and Filter when caching a property. Figure 17 outlines a
similar method using an external database.

4 Implementing Behavioral Designs

Associations are declared in UML class diagrams, and may appear in all diagrams that
specify the interaction between instances, including sequence and communication di-
agrams. In behavioral designs, an object can send a message to other visible objects:
Either associated objects or references returned by a previous message. When the asso-
ciation is between two objects, sending a message is implemented as a method call10.

10 Assuming that both objects are within a single process.

172 M. Goldberg and G. Wiener

(a) Asynchronous Foreach (b) Buffered Map using K threads over N instances

Fig. 14. Sequence diagrams for parallel variations of traversal operations. Asynchronous opera-
tions are marked with a non-filled arrow-head.

� �

public class F

implements Association<A, B> {

public void add(A a, B b) {

a.b.add(b);

b.a.add(a);

a.cache.put(b.key, b);

}

public void remove(A a, B b) {

a.b.remove(b);

b.a.remove(a);

a.cache.remove(b.key, b);

}

}
� �

Fig. 15. Caching the property B.key

� �

public class FilterB

implements Filter {

public AssocEnd isKey(Key k) {

AssocEnd ret =

(select a concrete AssocEnd);
ret.add(a.cache.get(key));

return ret;

}

}
� �

Fig. 16. Selecting an instance of B by B.key
using the cache

The same solution does not apply when the message is sent to multiple associated in-
stances. The textbook solution, appearing in all the works cited above, is to use a se-
quential iterator or a for loop. In some cases this choice is hard-coded into the design
itself as a loop block in a sequence diagram. This approach may appear to be straight-
forward, but has two drawbacks: It is inherently sequential, and makes the client code
dependent on the exact implementation of the association.

Our work suggests a different approach. Instead of translating the design specifica-
tion of sending a message to multiple instances into a loop, the developer can code it
directly using a Foreach, Map, Filter or Fold aggregator. This approach allows for op-
timizations, such as parallelism and caching, and removes the dependency between the
association and client code.

Figure 18 demonstrates the possible mappings from specifications in communication
diagrams to implementations based on association aggregators. Figure 18(a) shows the
simple case when the message does not return a value. Figure 18(b) show the case when
the returned value is assigned to a local variable for future use. Figure 18(c) shows the

Generating Code for Associations Supporting Operations on Multiple Instances 173

� �

public class FilterB implements Filter {
public AssocEnd keyed(Key k) {
AssocEnd ret = (select a concrete AssocEnd);

⇒ Query q = objectContainer.query();
⇒ q.constrain(Class.B);
⇒ q.descend("key").constrain(key);
⇒ ret.add(q.execute());
return ret;

}
}

� �

Fig. 17. Selecting an instance of B by B.key using DB4O. Marked lines are DB4O-specific.

* b: Ba: A
m()

a.getB().foreach().m()

(a) Message to multiple instances

* b: Ba: A
r := m()

r = a.getB().map().m()

(b) Same, with returned values

c(b)

* b: Ba: A
m()

a.getB().filter().c().m()

(c) Same, with a condition on receivers

Fig. 18. Mapping communication diagrams to code

case when there receivers must fulfill the condition c. The Fold aggregators, not shown
here, is the default option for more general cases, such as loops.

4.1 Sample Design and Implementation

This example demonstrates how behavioral designs are mapped to code. Figure 19 spec-
ifies how a request handles several resources. First, the request asks its associated re-
source managers to obtain missing locks, if any. The resource managers lock any un-
locked lock. Each call to a resource manager returns a resource, and the request starts
all the resources. Figures 20 and 21 outlines the relevant methods. Notice that handling
the returned values from obtain is done by appending the foreach operation.

Manager
Resourcemgr:req: Request l: Lock

unlocked
r: Resource

*

1 r := obtain()

<<local>>

1.1 lock()

2 start()

*

Fig. 19. A communication diagram for Request.run()

5 Implementation Example

To demonstrate our scheme and its usage, we provide the Python module assoc and
code examples. The module includes functions that generates code for associations,
using the classes described above.

174 M. Goldberg and G. Wiener

� �

getMgr().map().obtain()
.foreach().start();

� �

Fig. 20. Request.run()

� �

r = getLocks().filter().unlocked();
r.foreach().lock();
return r;

� �

Fig. 21. ResourceManager.obtain()

We decided to use Python in order to avoid the need to generate source code as
text. We make use of Python classes being first-class objects that can be created and
manipulated to create classes for the association and its ends, and add methods to the
participating classes.

5.1 Implementation Details

The assoc module works as follows:

1. The class Assoc n n represent an association. It constructor arguments are the
participating classes, the names of the association ends, and factory functions for
AssocEnd objects. Factory function may take additional factory functions for ag-
gregators as arguments.

2. When created, the association class adds code to the participating classes that im-
plements the association as a pair of list fields. The added code in each class in-
cludes: (a) A wrapper to the constructor that initialize the relation data and the
AssocEnd object. (b) A getter for the association end.

3. The association object uses the factory functions to return association ends and
aggregators.

4. The AssocEnd and aggregator objects are initialized with a reference to a list of
associated instances.

5. Each AssocEnd object has onAdd and onRemove methods, to handle special
cases, such as caching (see Sect. 3.3).

The module supports the following aggregators: Serial traversal, parallel traversal with
K threads, and a cache for filtering instances.

� �

class Dept(object): pass

class Employee(object):

def __init__(self, id, name):

self.id = id

self.name = name

def getId(self): return self.id

def hasId(self, id):

return self.id == id

def getName(self): return self.name
� �

Fig. 22. Associated classes (Python)

� �

Emps = Assoc_n_n(

cls1 = Dept,

cls2 = Employee,

name1 = ’workers’,

name2 = ’worksIn’,

factory1 =

ListAssocEndFactory(Employee),

factory2 =

ListAssocEndFactory(Dept))
� �

Fig. 23. Association object (Python)

Generating Code for Associations Supporting Operations on Multiple Instances 175

5.2 Usage Example

Figure 22 shows Python classes representing workers in a department. We would like
to implement an association between the department and its employees, so that each
department will hold a set of its workers. Figure 23 shows the code for creating the
association object with default factory function. The command Emps.add(dept,
emp) will associate the given department and employee.

When the association object is created, it creates getter methods for the association
ends — E.g., the method getWorkers() to the class Dept, and getWorksIn() to
Employee. The AssocEnd objects provide the aggregator operations. Figure 24 shows
how to find a worker in a department by id.

� �

def deptWorkerById(dept, id):
return dept.getWorkers().filter().hasId(id)[0]

� �

Fig. 24. Getting a worker in a department by id

The association in Fig. 22 uses the default settings: Aggregator operations are
performed by iterating over the list of associated objects sequentially. Finding an em-
ployee with a given id by scanning the entire list takes a long time if a department has
many employees. We solve this problem by replacing the default filter factory function.
The association shown in Fig. 25 uses a Filter operation with caching. As expected, our
measurements shows that the function from Fig. 24 runs faster by an order of magnitude
with these settings. Note that no change in this function or in the above classes is re-
quired to achieve this boost in performance. Similarly, Fig. 26 shows an association that
uses multiple threads for some aggregator operations. These settings can speed up batch
I/O operations (for example, if employees writes something to a file), without chang-
ing any client code. This module is available from http://www.cs.bgu.ac.il/˜gwiener/
software/associations.

� �

Emps = Assoc_n_n(

cls1=Dept, cls2=Employee,

name1=’workers’, name2=’worksIn’,

factory1=ListAssocEndFactory(

Employee,

filterImpl=makeListQualFilter(

Employee.getId, Employee.hasId)),

factory2=ListAssocEndFactory(Dept))
� �

Fig. 25. Association with caching for em-
ployee ids

� �

Emps = Assoc_n_n(

cls1=Dept, cls2=Employee,

name1=’workers’, name2=’worksIn’,

factory1=ListAssocEndFactory(

Employee,

foreachImpl=

makeListSpawnForeach(5),

mapImpl=makeListSpawnMap(5)),

factory2=ListAssocEndFactory(Dept))
� �

Fig. 26. Association with 5 threads for Fore-
ach and Map operations

176 M. Goldberg and G. Wiener

6 Conclusions and Future Work

In this work we present a novel approach for generating code for associations. Rather
than focusing on a single, sequential, in-memory implementation, we presented a flexi-
ble and open approach. Our approach is based on a set of interfaces that provide oper-
ations over the entire relation. These operations include managing the relation through
the Association interface, and traversing it using Foreach, Map, Filter, and Fold. Traver-
sals, excluding Fold, can be implemented by a multi-threaded code. The Association
and Filter interfaces encapsulate optional optimizations, such as caching or using a
database. This encapsulation de-couples the client code from the implementation de-
tails of the association.

The use of a closed set of interfaces for operations on associations might seem as
a limitation. However, these interfaces and their combinations cover a wide range of
common scenarios. For an object associated with many peers, they cover the range
of operations on the whole relation, similarly to sequential access methods (BSAM,
ISAM, QSAM, etc) used in record-based data processing on IBM mainframes [17].
When composed together, they provide an implementation scheme for behavioral de-
signs in UML, as demonstrated in Sect. 4.1. In the cases that are not covered by this
scheme, the Fold aggregator provides a fallback to sequential processing, still without
exposing the implementation details.

Our current work covers the basic functionality of associations, i.e., to operate on the
set of associated objects. It does not handle properties of associations, such as associa-
tion classes, and set, ordered, subset and override annotations. We plan to include these
topics our future work.

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd
edn. Pearson Higher Education, London (2004)

2. Object Management Group: OCL 2.0 Specification. Formal specification (2005)
3. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models Ready for

MDA. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)
4. Martin, J., Odell, J.J.: Object-oriented analysis and design. Prentice-Hall, Inc., Upper Saddle

River (1992)
5. Larman, C.: Applying UML and patterns: an introduction to object-oriented analysis and

design and iterative development. Prentice Hall PTR, Upper Saddle River (2004)
6. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Longman Publishing Co., Inc., Boston (2003)
7. Gessenharter, D.: Mapping the UML2 semantics of associations to a Java code generation

model. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 813–827. Springer, Heidelberg (2008)

8. Akehurst, D., Howells, G., McDonald-Maier, K.: Implementing associations: UML 2.0 to
Java 5. Software and Systems Modeling 6(1), 3–35 (2007)

9. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML designs to Java. ACM SIGPLAN
Notices 35(10), 178–187 (2000)

10. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your Software
Investment. John Wiley & Sons, Inc., New York (1996)

Generating Code for Associations Supporting Operations on Multiple Instances 177

11. Martin, J., McClure, C.: Software Maintenance: The Problems and Its Solutions. Prentice
Hall Professional Technical Reference (1983)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

13. Allen, J.: Anatomy of LISP. McGraw-Hill Book Company, New York (1978)
14. Iverson, K.E.: A Programming Language. John Wiley & Sons, Inc., Chichester (1962)
15. Blaha, M., Premerlani, W.: Object-oriented modeling and design for database applications.

Prentice-Hall, Inc., Upper Saddle River (1997)
16. Giacaman, N., Sinnen, O.: Parallel iterator for parallelising object-oriented applications.

Technical Report 669, University of Auckland (November 2008)
17. Rogers, P., Janssen, R., Otto, A., Pleus, R., Salla, A., Sokal, V.: Storage management software

and hardware. ABCs of z/OS System Programming, vol. 3. IBM Redbooks (2010)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 178–192, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Know How and Know What for Software Processes

Jan Kožusznik, Svatopluk Štolfa, Marie Duží, Michal Košinár and Martina Číhalová

Department of Computer Science, VŠB - Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

708 33, Ostrava - Poruba, Czech Republic
{jan.kozusznik,svatopluk.stolfa,marie.duzi,

michal.kosinar,martina.cihalova}@vsb.cz

Abstract. Formal specification of a software process, as well as its optimal
design, is a fundamental landmark and tenet that any successful software
company must follow. Recent trends can be characterized as a knowledge-base
support of the software-process development, standardization and improvement.
To this end we create semantic annotations (ontologies) of processes which
should serve as a stable unifying core of the software-process development.
However, when doing so, we meet the problem how to transform various forms of
tacit, implicit knowledge into an explicit knowledge specification that is logically
tractable and machine readable. In this paper we focus on the transformation of
informal tacit knowledge about a software process (or any part of the process) to
the formal knowledge specification that can be used for building machine
readable knowledge bases. In particular, we aim at optimizing and improving
software-process development using knowledge bases which are created to the
purpose of a formal description of the software-process development.

Keywords: Software process improvement, Knowledge, Rules, Facts,
Knowledge base, Software process.

1 Introduction

The main goal of every software company is to develop a high-quality software, and
at the same time to minimalize expenses and resources needed for the development.
One way to meet such a goal is to follow good practices as they are described in
software-processes standards. These software development standards are currently
broadly used by numerous software companies. Every software company uses some
type of software process. Even if this process is undocumented and/or unknown, it is
still there[1,2]. Describing and maturing software processes is a key element of a
company’s strategy, because a more mature software process means higher quality
and less expenses [3,4].

In order to be able to improve the software-process development, it is desirable to
specify common practices and software company culture so that each member of the
company knows what to do. True, almost every company has some type of a human
readable knowledge base (HRKB) that describes a variety of practices in the company.
There are even such human readable knowledge bases that describe reference software
processes and/or good company practices [1]. Yet, such a HRKB is usually not

 Know How and Know What for Software Processes 179

computationally tractable and cannot serve as a generator for computer-aided software
design and development. We need to upgrade a HRKB to a machine readable
knowledge base (MRKB) in order to achieve an automated knowledge management.

This paper is a proposal how to fill this gap. We are going to describe the method
of creating a MRKB that provides a facility to support basic assessment of software
processes. We also discuss the problem of exploiting such a MRKB in the current
approach to the assessment and enhancement of software processes.

The paper is organized as follows: Section 2 discusses the pros and cons of the
various approaches including knowledge-based approach; Section 3 describes the
fundamental tenets of the software-process development; Section 4 introduces the
concept of creating, sharing and comparing knowledge bases. In Section 5 we propose
a method of semi-automated assessments and evaluation of the similarity between a
software process and a reference process; the focus is on the creation of a MRKB.
Finally, concluding Section 6 provides a summary and discusses future research.

2 Knowledge-Based Approach to Software Engineering

Knowledge-based approach to software engineering has been dealt with already in [5-
7]. The authors describe a well-defined meta-model of a software process. Benefits of
the knowledge-based approach to modelling and simulation compared to a Discrete-
Event Simulation (DES - [8]) and System Dynamics (SD - [9]) are discussed in [10].
Each kind of an activity as defined by the process life-cycle is examined here from the
knowledge-base point of view.

Now we provide a brief summary of the comparison between Knowledge-Based
Systems (KBS) in contrast to the System Dynamics (SD) and Discrete-event
Simulation (DES) models.1

Meta-modelling: A knowledge-based software process meta-model was developed for
the purpose of constructing and refining process ontology and behaviour logic (rules
and computational methods). Thus the KBS meta-model and modelling ontology can
be extended as needed, whereas prevailing modelling approaches (DES, SD) use a
fixed vocabulary.

Modelling: The knowledge-based approaches support an incremental model
development. On the other hand, DES and SD approaches require that a significant
portion of the model must be fully specified prior to its evaluation.

Analysis: Knowledge-based approach supports the evaluation of both static and
dynamic properties of the model such as consistency, completeness, internal
correctness, traceability and other semantic checking. This concerns also the
feasibility assessment and optimization. Some DES approaches provide similar
facilities like Petri nets, see [11]), but in the SD model these features are not of a
primary interest.

Simulation: Knowledge-based approach supports an incremental simulation,
persistence of simulation execution traces, reversible simulation computation, query-

1 Portions of this section draw on material presented in [10].

180 J. Kožusznik et al.

driven simulation and reconfigurable simulation space in the run time. In contrast,
common DES and SD models support only a monolithic simulation and do not
provide these desirable facilities.

Redesign: Knowledge-based process redesign can support automated reorganization
and optimization of the process structure. No explicit support is provided by DES or
SD models for automated process redesign; thus within DES or SD models these
activities must be performed manually.

Visualization: DES and SD approaches provide mature facilities for creating and
displaying graphic or animated views of software processes. Knowledge-based
approach is rather restricted in this respect; only relations between the pre-defined
knowledge rules are supported by the visualization interface.

Prototyping, Walk-through and Performance Support: The knowledge-based process
engineering model provides this facility due to its open environment. None of the
DES or SD packages that have been used for software processes readily support
prototyping.

Administration: Assigning and scheduling specified resources to the modelled user
roles is (to some degree) supported by all the above mentioned systems.

Integration: Knowledge-based approach used in [10] provides a computational work-
space that makes it possible to link together particular components of the system like
roles, tasks and resources. None of the DES or SD packages readily support process-
based integration.

Environment Generation: KBS supports automatic transformations of a process model
into a process-based computing environment in order to present a prototype of system
to end-users. None of the DES or SD packages readily support this capability.

Instantiation and enactment: KBS model supports performing the modelled process
using a process instance interpreter. None of the DES or SD packages that have been
used for software processes readily support prototype execution.

Monitoring, Recording and Auditing: All the above mentioned systems support
monitoring and similar facilities to a certain extent.

History Capture and Replay: Knowledge-based model used in [10] supports these
facilities. The SD and DES environments can most probably be easily extended in
order to support the history records as well.

Articulation: Here we deal with the problem of a process failure due to an unexpected
event like missing resources. In such a situation the process-management should be
able to diagnose the failure and cure the malfunctioning process. While this problem-
solving capability has been developed and demonstrated within a knowledge-based
approach in [12], it appears that it is beyond the meta-model underlying DES and SD
capacities to support this function in a systematic way.

 Know How and Know What for Software Processes 181

Evolution: A well-designed process should be flexible in order to meet newly
emerging user requirements. Thus the process model should be easy to tune and open
to reengineering and restructuring in accordance with the evolution of users demands.
KBS, DES and SD models support these capabilities to a certain extent; yet the
knowledge-based approach seems to be more promising in this respect due to its
support of automated transformations.

Process Asset Management: Since a software process development comprises many
different activities and tools, the problem of organisation these resources arises. We
need to deal with collections of meta-models, models, simulation tools, instances of
models, documents, human and material resources, etc. etc. Thus the process
management becomes crucial for a successful process development. While the
knowledge-based approach has proved to be apt for managing these activities, these
capabilities appear to be beyond of the capacities of popular DES and SD packages.
KBS makes it possible to easily support a tight integration of modelling, analysis and
simulation [13,6]. To this end a knowledge-based process meta-model has been
developed, see [6,12].

2.1 Benefits of the Knowledge-Based Approach

Summarising, we now list the activities supported by particular models. Yet when
comparing different approaches, we must distinguish between their capabilities in
general and those that were really supported during their testing and checking. Thus
we identify those activities that are readily supported by KBS, DES or SD, or that can
be easily supplemented. They are Administration, Monitoring, recording and
auditing, History capture and replay.

The following activities are supported by all the addressed models, but the
knowledge-based approach appears to be more appropriate: Meta-modeling (the
meta-model and model ontology can be easily managed by KBS); Modeling (KBS
supports an incremental development of a model); Analysis (this is supported only by
few implementations of DES like Petri nets [11]); Simulation (DES and SD support
only the monolithic simulation); Redesign, Evolution (the KBS approach supports an
automatic transformation).

The following activities are supported only by the KBS approach: Prototyping,
walk-through and performance support; Integration; Environment generation;
Instantiation and enactment; Process asset management. Yet, in our opinion, this
restriction is due to the framework used for the model development rather than due to
the SED or SD methodology in general.

Concerning the Articulation activity it seems that the DES and SD models will
most probably never support this facility; or, if they will, then only in an ad hoc way.
Thus it appears that only the Visualization facility is supported in a much better way
by the DES and SD models than by the KBS approach.

3 Software Process

Software process is a business process of a company specialised in the Information
Technologies (IT). For a definition of a business process, we refer to[14], and quote:

182 J. Kožusznik et al.

“Business process is a set of one or more linked procedures or activities which
collectively realize a business objective or policy goal, normally within the structure
defining functional roles and relationships.” Thus we can speak about a software
process using the same notions as applied in the business process technology.

3.1 Basic Definitions

Referring again to [14], we recapitulate: Process definition is the representation of a
business process in a form which supports automatic manipulation: modelling, or
enactment by a workflow management system. Activity is a description of a piece of
work that forms one logical step within a process. Activity instance (task) is the
representation of an activity within a (single) enactment of a process. Actor (work
performer) performs the work represented by a workflow activity instance. Work
item is the representation of the work to be processed (by an actor) in the context of
an activity within a process instance.

4 Knowledge Base

Knowledge base serves as an artificial memory [15]. The content of a knowledge base
should comprise general rules and facts (the state of the system and its environment).
As stated at the outset of this paper, we aim at using and exploiting knowledge bases
and ontologies as basic building blocks of a software-process development and
evaluation. In this section we introduce our basic tenets and summarise our approach
to knowledge management. For details see, e.g., [16,17].

4.1 Human Readable Knowledge Base

Human readable knowledge bases (HRDB) can be found in every organization. They
are used to document, share and evaluate knowledge on the company behaviour, goals
and culture. However, as the acronym HRDB reveals, there are some shortcomings
connected with their application.

First, such a knowledge base comprises tacit knowledge created and used by
humans. Though it is easy to understand and also easily sharable by the humans who
create it, its content is often vague and contains much implicitly hidden information
so that its computer-aided application is almost impossible.

Documentation. The most commonly used tools to document knowledge in
organizations are Wikis, project portals and also FAQs. Typical examples are
applications like web documentation of RUP, portals like MSDN and Wikipedia.

Sharing. Sharing human readable knowledge typically consists in a personal
communication (meetings, brainstorming, conferences etc.), possibly both in the
personal and electronic form (video calls, conference calls etc.), or in a purely
electronic form (e-mail client, Exchange, Lotus, intranet etc.).

Evaluation. The assessment of a HRKB is problematic, indeed. The HRKB-based
evaluation of a software process can be executed only manually, which means a tough
comparison of particular documents and tacit knowledge with a real process.

 Know How and Know What for Software Processes 183

4.2 Machine Readable Knowledge Base

The main difference between a HRKB and a machine readable knowledge base
(MRKB) is this. While HRKB contains an implicit or tacit knowledge, MRKB makes
this knowledge explicit and logically tractable. Moreover, a MRKB is, or should
usually be, equipped with an inference machine that makes it possible to infer
consequences of the explicitly recorded facts and thus to increase our knowledge.
Hence we can use smart algorithms instead of a manual comparison.

However, in order to be able to make use of a MRKB, we must specify a domain
ontology prior to MRKB using. Such an ontology consists of two parts; base ontology
describing a general software process (that is concepts like request, use case, change,
sequence diagram, class etc. and basic relations between them) and a specialized
ontology which is an extension of the base ontology. The specialized ontology serves
as a domain ontology of a particular software process; it is a formal semantic
description of the process that makes it possible to build a knowledge base for the
process assessment. We will deal with this problem in more details in Section 5.

Creation and Storage. Unlike the case of using a HRDB, when we only
spontaneously record company know-how, in case of creating MRKB we must
carefully fill the base with exact rules and facts in a systematic way. To this end we
use a domain ontology that should be specified in a formal language (for instance
Prolog, OWL DL, TIL-Script).

Yet similarly as in case of HRKB, the role of a domain expert is indispensable in
building up a MRKB as well. More details on formal languages used in knowledge
bases can be found in [16-18] .

Sharing. There are many ways of using and sharing a MRKB. First, such a
knowledge base is an indispensable part of a multi-agent system of autonomous,
intelligent agents who communicate with each other via a MRKB. Second, it is often
useful to transform the content of a MRKB into natural language so that the humans
can easily understand the facts and rules contained in the base. To this end we must
use an expressive specification language such as TIL-Script or a semantic web like
WordNet. Third, there is also the possibility to read the content of the base in its plain
form; however, this is possible only if the specification language is close to natural
language and thus comprehensible to the users.

Evaluation. Once a MRKB is at our disposal, we can benefit from it in particular in
the process of software evaluation. Thus we can execute a machine-aided comparison
of two (or more) knowledge bases, which in turn is much easier than a manual
comparison of two human readable knowledge bases.

4.3 Knowledge Base Comparison

Comparing the content of two or more machine readable knowledge bases is easy if
every piece of knowledge is specified in the same formal language and thus
comparable to the others. In other words, we aim at using a homogenous data model
to store knowledge. Thus each piece of knowledge can be stored as a text information
comparable to the other pieces of knowledge by simple set-theoretical operations like
union, intersection and difference of sets.

184 J. Kožusznik et al.

If the above condition on homogeneous formal specification were not satisfied, we
would need to build up translation and transformation routines. This is possible, of
course, but such a transformation comes down with many problems which are out of
the scope of this paper.

Thus for now we suppose that one and the same formal language has been used to
specify particular knowledge bases. Then a simple relation to compare two
knowledge bases can be defined. Let A and B be two knowledge bases viewed as sets
of character strings, and let |A ∩ B|, |A ∪ B| be cardinality of their intersection and
union, respectively. Then the degree of similarity of A and B is defined as the ratio of
the cardinality of their intersection and union, respectively:

Similarity(A, B) = |A ∩ B| / |A ∪ B| (1)

This function returns a number within the interval <0, 1>. We can deal with this
number as with the fuzzy value of knowledge bases similarity.

5 Knowledge Support for Software Processes

The idea of knowledge support for the assessment and evaluation of software
processes is based on the fact, that in our opinion the assessment, enhancement and
monitoring can be supported by the creation and usage of machine readable
knowledge bases. A lot of manual procedures can be automated. The goal is to create
a more effective environment for the assessment, enhancement and monitoring of
software processes.

One of the many tasks of this domain area is the comparison between the reference
software process and real software process that is used in the company. The issue is to
find the similarity between the real software process and the reference software
process and to provide an evaluation of the current state. Typically, the real process is
assessed and human readable knowledge bases are searched for similarities.
Everything is performed manually. Our proposal is to improve these procedures by
using a machine readable knowledge base for the automatic evaluation of the
similarity between the real and reference processes.

Our approach can be basically described as follows:

1. The first step is the creation of the particular reference knowledge base –
Knowledge base transformation.

Documented software processes that are described in the human readable knowledge
bases are analysed and ontology for each software process is created. Next, the
ontology and knowledge obtained from the HRKB are transformed into the machine
readable knowledge base. A new MRKB is created for every type of the reference
software process.

2. The second step is the study and creation of the real knowledge base and the
comparison of the reference and real knowledge base that is enhancing software
processes with knowledge management.

A real software process is modelled and the ontology for this process is created. The
obtained ontology is then mapped into the reference software process ontology. The

 Know How and Know What for Software Processes 185

mapped ontology set and the knowledge base obtained from the model are then
transformed into the machine readable knowledge base.

Afterwards, both knowledge bases are automatically compared and the result is a
number that shows the degree of similarity of real and reference software processes.

It is obvious that the first step can be performed only once for every reference
software process. The result is then applied for every real software process that we
want to evaluate.

5.1 Knowledge Base Transformation

We have already sketched a basic idea of how to transform a human readable knowledge
base into its machine readable clone. Now, we are ready to describe the details.

At first, we should explain the basic reason for transforming the human readable
KB into the machine readable KB. The answer is simple. If we want to evaluate a
process that is based on some reference software process we would have to manually
compare it with the reference model process described in its human readable
knowledge base. With knowledge enhancements and basic approaches described
above, we can sort this problem automatically, that is by transforming the reference
knowledge base into the machine readable knowledge base (see Fig.1).

This can be done by building an ontology for a concrete domain (i.e. a software
process) using the human readable reference documentation. Then, the knowledge
base is defined by such ontology’s content. We can see particular transformation in
greater detail in Fig. 2.

An ontology builder has to describe the domain in the ontology data file (using
tools like Protégé as shows[19] etc.) and then fill the reference knowledge base with
rules and facts (using some content language like OWL-DL, TIL-Script or PROLOG)
describing the reference domain (using terms and relations from domain ontology).

Fig. 1. Scheme of the machine readable knowledge base creation - RUP example

186 J. Kožusznik et al.

Fig. 2. Knowledge base transformation

5.2 Building Process Definition with Ontology Background - Example

The following example defines “Change request management” process that is part of
RUP – Rational Unified Process. Simplified version of this process is shown in figure
3. Detailed description can be found in [20].

Fig. 3. Simplified version of the “Change request management” process

 Know How and Know What for Software Processes 187

Ontology Background of Process Definition. To create semantic annotations for
process, we have to find right and exact terms for ontology interpretations.

Software process ontology design proceeds in three levels of abstraction – Process
itself, Activities (tasks) of process and Steps of activities. Therefore we define
following base terms for software process domain:

Table 1. Mapping process elements

Term Description Examples Level
Process Designed Process itself Change request management 0
Activities/Task
s

Most simple activities in
process

Submit Change Request activity in
Change Request Management process

1

Artefacts One of many kinds of tangible
byproduct produced during the
development of software

Change Request of Change Request
Management

1

Roles A definition of the behaviour
and responsibilities of an
individual

Programmer in Change Request
Management

1

Steps Steps are simplest items of
Activities.

Turn on PC. Rethink problem. 2

All other terms used in RUP Software Process documentation are specializations of

the base terms defined in Table 1.
Now we can create an example ontology of Change Request Management from

RUP. All defined terms are inheriting from their base classes in the above mentioned
table.

Process: Change Management
Artefact: Change Request (CR)

Roles Activities

• Submitter

• Change Control Manager (CCB)

• CCB Delegate

• Test Manager

• Project Manager

• Team member

• Tester

• Submit CR

• Update CR

• Review CR

• Confirm CR reject

• Assign CR

• Make Changes

• Verify Changes

To this end we are using TIL-Script and OWL content languages. We are able to
transform any OWL ontology to the TIL-Script ontology [21]. However, only a
selected subset of the TIL-Script ontologies can be transformed into the OWL
ontologies. This restriction arises from the fact that the TIL-Script language is based
on a higher-order logic than the OWL language.

TIL-Script Ontology Example: Ontology rules are in a uniform form:

ProcessElement/(who (role), Input (artifacts) output (artifact))

188 J. Kožusznik et al.

This rule specifies who is responsible for a given Process element (process, activity or
steps) and what input or output artifacts flow in and out. We can say that the set of
these rules represents a formal functional view of the process.

Process ontology design defines three levels of abstraction:

- level 0 – the specification of a process
- level 1 – activities for individual process are specified
- level 2 – steps for elementary activities are described

Example of the defined rules follows:

Level 0 (Process: Change Management)
Change / (CCB, CR submitted CR Closed)

Level 1 (Process: Change Management: Activities)

- Submit CR / (Submitter, CR New CR submitted)
- Update CR / (Submitter, CR more info CR submitted)
- Review CR (CCB, CR submitted CR opened; CR postponed; CR rejected-

duplicate)
- Assign CR (Project Manager, CR opened CR assigned)
- Review CR PP / (CCB, CR postponed CR opened; CR postponed; CR rejected-

dupl)
- Confirm CR reject / (CCB Delegate, CR rejected-duplicate CR closed, CR

more info)
- Make Changes / (Team member, CR assigned CR resolved)
- Activity steps as in normal development process
- Make Changes Failed / (Team member, CR test failed CR resolved)
- Verify Changes Test / (Tester, CR resolved CR verified; CR test failed)
- Verify Changes Release / (CCB delegate, CR verified CR closed; CR test

failed)

Example of Level 2:

Level 2 (Process: Change Management: Activity: Make Changes: Steps)

Thinking
 Conduct review
 Create Integration Workspaces
 Develop Development Case
 Develop Iteration Plan
Performing
 Launch development Process
Reviewing
 Organize review and testing

As shown above, rules define also the states for input and output artefacts. This fact
can be used for an automatic generation of a process behaviour [22].

OWL Example: To analyse, design and build the semantic annotation of a software
process we follow the W3C recommendations on OWL/DLW3C, see [23]. From the

 Know How and Know What for Software Processes 189

point of view of using OWL language for the description of a software process
domain we are interested in the following aspects.

1. ISA relations among classes (inheritance)
2. Whole–part relations
3. Attributes (properties)
4. Integrity constraints

Applying the above described advanced procedure we can build an effective but
simple methodology for ontology designers and process modellers.

This example is only a selected part of the OWL ontology description of our
example to prove the mapping of TIL-Script ontologies to OWL ontologies (and vice
versa).

Change request class is defined as a subclass of Artefact class. It has properties
described by restrictions of the class. These restrictions declare that Change request
artefact has its State property (ChangeRequestState data type) and some other
properties (i.e. pertinence to Change Request management Process – higher
abstraction level).

<owl:Class rdf:about="#Change_Request">
 <rdfs:subClassOf rdf:resource="#Artifact" />
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_State"/>
 <owl:onClass rdf:resource="#Change_Request_State"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardin
ality>

 </owl:Restriction>
 </owl:equivalentClass>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has"/>
 <owl:onClass rdf:resource="#Change_Request_Management"/>
 <owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:qualifiedCardin
ality>
</owl:Restriction>
 </owl:equivalentClass>
</owl:Class>

This statement declares the ChangeRequestState – class for Change Request State
interpretation.

<owl:Class rdf:about="#Change_Request_State"/>

Examples of interested individuals (roles):
Submitter is an element of Role class.

<owl:Thing rdf:about="#Submitter">
 <rdf:type rdf:resource="#Role"/>
</owl:Thing>

Submitted is a state of Change request artifact and is declared as an element of
ChangerequestState class.

190 J. Kožusznik et al.

<Change_Request_State rdf:about="#Submitted">
 <rdf:type rdf:resource="&owl;Thing"/>
</Change_Request_State>

To define the function New CR between Change Request and Submitter, we would
have to define new class that will describe such function.

5.3 Enhancing Software Processes with Knowledge Management

The ability of transforming human readable knowledge bases of documented software
processes into machine readable knowledge bases means that we have a tool for the
automatic assessment of software processes.

To this end we create two knowledge bases.

1. Knowledge base that contains data on the optimal software process transformed
from human readable base containing the process’ documentation (RUP
documentation on the Web). Let us call this knowledge base a “Template”.

2. The second knowledge base that contains data on the actual software process that
is used in an organization. This knowledge base must be filled by an ontology
expert in processing and consulting services using the same ontology dictionary
as is contained in the “Template”. The name of this set will be the “Actual”.

Now, when we have two knowledge bases whose contents are documented and the
real software processes we can use the comparison function as defined by (1) to
evaluate the similarity of these knowledge bases.

The content comparison can be performed as an add-on to the assessment. We can
directly search for differences between individual members of both sets. However,
this means basically a brute-force comparison of the two sets, which is not optimal.
Thus the main task of our future research is an optimization of the comparison in
order to find the gaps in the “Actual” knowledge base of a process compared to the
“Template”.

6 Conclusions and Future Work

This paper described an approach to knowledge transformation in the domain of
software (business) processes. Our methodology is driven by the fact that there are
many benefits of knowledge-based support that can be used for the software process
improvement. However, this is only the first step to the comprehensive approach to
the assessment, evaluation and improvement of software processes and practices in
software companies. The next step will consists in the creation of a complex
modelling tool for formalized software processes (a simple modelling tool is already
implemented and used) and the implementation of a knowledge base capable to store
complex organizational “know-how“ and “know what“. Only then can we apply such
sources for the automated search, evaluation and improvement suggestions that make
use of the template software process models. We also rely on the experience that is
gained from practical experimental applications of this approach in real software
companies.

 Know How and Know What for Software Processes 191

Acknowledgements. This research has been supported by the internal grant agency of
VSB-TU of Ostrava - SP/2010214 Modeling, simulation and verification of software
processes II and by the Grant Agency of the Czech Republic, project No 401/10/0792,
"Temporal aspects of knowledge and information". Michal Košinár is also grand
aided student of Ostrava City Authority, Czech Republic.

References

1. Humphrey, W.S.: A Discipline for Software Engineering. Addison-Wesley Professional,
Reading (1995)

2. Thayer, R.H.: Software System Engineering: A Tutorial. Computer 35(4), 68–73 (2002),
doi:10.1109/mc.2002.993773

3. Makinen, T., Varkoi, T.: Assessment driven process modeling for software process
improvement. In: International Conference on Management of Engineering & Technology,
PICMET 2008, Portland, July 27-31, pp. 1570–1575 (2008)

4. Software Engineering Institute: CMMI staged-version 1.1. (2002)
5. Garg, P.K., Scacchi, W.: ISHYS: Designing an Intelligent Software Hypertext System.

IEEE Expert: Intelligent Systems and Their Applications 4(3), 52–63 (1989)
6. Mi, P., Scacchi, W.: A Knowledge-Based Environment for Modeling and Simulating

Software Engineering Processes. IEEE Trans. on Knowl. and Data Eng. 2(3), 283–294
(1990), doi:10.1109/69.60792

7. Mi, P., Scacchi, W.: A meta-model for formulating knowledge-based models of software
development. Decis. Support. Syst. 17(4), 313–330 (1996), http://dx.doi.org/,
doi:10.1016/0167-9236(96)00007-3

8. Raffo, D.M.: Modeling software processes quantitatively and assessing the impact of
potential process changes on process performance. Ph.D. thesis, Carnegie Mellon
University (1996)

9. Madachy, R.J.: Software Process Dynamics, 2nd edn. Wiley-IEEE Press (2008)
10. Scacchi, W.: Experience with software process simulation and modeling. J. Syst.

Softw. 46(2-3), 183–192 (1999)
11. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood

Cliffs (1981)
12. Mi, P., Scacchi, W.: Articulation: an integrated approach to the diagnosis, replanning, and

rescheduling of software process failures. In: Proceedings of Eighth Knowledge-Based
Software Engineering Conference, pp. 77–84 (1993)

13. Garg, P.K., Mi, P.W., Thuan, P., Scacchi, W., Thunquest, G.: The Smart Approach for
Software Process Engineering. In: Proc. Int. Conf. Softw., pp. 341–350 (1994)

14. Workflow Management Coalition: Terminology & Glossary (1999)
15. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan

Kaufmann, San Francisco (2004)
16. Frydrych, T., Kohut, O., Košinár, M.: Transparent Intensional Logic in Knowledge Based

Multiagent Systems. In: Sojka, P., Horák, A. (eds.) RASLAN 2008. Masaryk University,
Brno (2008)

17. Ciprich, N., Duží, M., Košinár, M.: The TIL-Script Language. In: Kiyoki, Y., Tokuda, T.,
Jaakola, H., Chen, X., Yoshida, N. (eds.) Information Modelling and Knowledge Bases
XX, pp. 166–179. IOS Press, Amsterdam (2009)

192 J. Kožusznik et al.

18. Ciprich, N., Duží, M., Košinár, M.: TIL-Script: Functional Programming Based on
Transparent Intensional Logic. In: Sojka, P., Horák, A. (eds.) RASLAN 2007, pp. 37–42.
Masaryk University, Brno (2007)

19. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson R.W., Musen M.A.: Creating
Semantic Web Contents with Protégé-2000, vol. 16 (2001)

20. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
Professional, Reading (2003)

21. Karkoška, T.: Vytvoření nástroje pro podporu tvorby ontologií v multi-agentním prostředí.
Master thesis, VŠB-TUO, Ostrava, Czech Republic (2008)

22. Jezek, D., Vondrak, I.: HDA and resources modeling in business process. In: Baake, U.F.,
Herbst, J., VanLandeghem, R. (eds.) 11th European Concurrent Engineering Conference
2004 - Worldwide Partnerships and Mergers, pp. 27–29 (2004)

23. W3C: OWL 2 Web Ontology Language (2009), http://www.w3.org/TR/owl2-
overview/

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 193–208, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Model Based Testing Approach for Model-Driven
Development and Software Product Lines

Beatriz Pérez Lamancha1, Macario Polo Usaola2, and Mario Piattini Velthius2

1 Software Testing Center, Republic University, Montevideo, Uruguay
2 ALARCOS Research Group, Castilla – La Mancha University, Ciudad Real, Spain
bperez@fing.edu.uy, {macario.polo,mario.piattini}@uclm.es

Abstract. This work presents a model based testing approach to be used in
Model Driven Development and Software Product Lines projects. The approach
uses OMG standards and defines model transformations from design models to
test models. The approach was implemented as a framework using existing
modelling tools in the market and QVT transformations.

Keywords: Software product lines, Model driven engineering, Model driven
testing, UML Testing profile, QVT, MOFScript.

1 Introduction

Model-based Testing (MBT) provides a technique for the automatic generation of test
cases using models extracted from software artefacts [1]. Model-Driven Engineering
(MDE) and Software Product Lines (SPL) are new software development paradigms. In
MDE, models are transformed to obtain the product code, while in SPL, several products
share the same base structure. In both approaches, automation is one of the main
characteristics; in MDE the code generation is automated from models while in SPL each
product is automatically generated from a base structure, also typically described with
models. In addition, there are many works that merge MDE and SPL [2-4].

The aim is to maximize reuse and minimize time to market, without losing the final
product quality. In SPL, the products in the line share common functionalities and
differ in a set of variabilities. If a defect is present in one of the common parts, that
defect is propagated to each product in the SPL. The final product quality directly
depends on the quality of each of the parts.

In this context, the goal is to reduce the test time without affecting the product
quality. In the case of MDE, a change in one model involves rebuilding the models
and code automatically, and it takes little time to generate the new code. However,
from the testing point of view, ensuring that this change does not introduce defects
entails to retest almost everything again. If the tests are manually executed, the cost of
testing increases. The same applies to SPL. Testing the common functionalities is not
sufficient; the integration of each product must also be tested. For this reason, the
automation of tests from models in these two paradigms is essential.

This work presents an automated framework for model-driven testing that can be
applied in MDE and SPL development. The main characteristics of the framework are:

194 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

 Standardized: The framework is based on Object Management Group (OMG)
standards, where possible. The standards used are UML, UML Testing Profile as
metamodels, and Query/View/Transformation (QVT) and MOF2Text as
transformation languages.

 Model-driven Test Case Scenarios Generation: The framework generates the
test cases at the functional testing level (which can be extended to other testing
levels); the test case scenarios are automatically generated from design models and
evolve with the product until test code generation. Design models represent the
system behaviour using UML sequence diagrams.

 Framework Implementation using Existing Tools: No tools have been
developed to support the framework: existing market tools that conform to the
standards can be used. The requisite is that the modelling tool can be integrated with
the tools that produce the transformations.

This paper is organized as follows: Section 2 introduces the main concepts used in the
article and outlines a Lottery SPL, which is used as the running example. Section 3
outlines the entire model-driven testing framework. Section 4 describes the activities
for the framework in MDE development and, once these ones have been presented,
the corresponding activities for SPL are described in Section 5. Section 6 summarizes
related works. Finally, Section 7 draws some conclusions and presents future lines of
work.

2 Background

Model-Driven Engineering (MDE) considers models as first-order citizens for
software development, maintenance and evolution through model transformation [5].
In addition to independence between models, Model-Driven Architecture
(MDA,[6]) clearly separates business complexity from implementation details by
defining several software models at different abstraction levels. MDA defines three
viewpoints of a system: (i) the Computation Independent Model (CIM), which
focuses on the context and requirements of the system without considering its
structure or processing, (ii) the Platform Independent Model (PIM), which focuses on
the operational capabilities of a system outside the context of a specific platform, and
(iii) the Platform Specific Model (PSM), which includes details related to the system
for a specific platform.

The UML 2.0 Testing Profile (UML-TP) defines a language for designing,
visualizing, specifying, analyzing, constructing and documenting test artefacts. It
extends UML 2.0 with test specific concepts for testing, grouping them into test
architecture, test data, test behaviour and test time. As a profile, UML-TP seamlessly
integrates into UML. It is based on the UML 2.0 specification and is defined using the
metamodeling approach of UML [7]. The test architecture in UML-TP is the set of
concepts to specify the structural aspects of a test situation [8]. It includes
TestContext, which contains the test cases (as operations) and whose composite
structure defines the test configuration. The test behaviour specifies the actions and
evaluations necessary to evaluate the test objective, which describes what should be
tested. The test case behaviour is described using the Behavior concept and can be

 A Model Based Testing Approach for Model-Driven Development 195

shown using UML interaction diagrams, state machines and activity diagrams. The
TestCase specifies one case to test the system, including what to test it with, the
required input, result and initial conditions. It is a complete technical specification of
how a set of TestComponents interacts with an SUT to realize a TestObjective and
return a Verdict value [7]. This work focuses on test cases, whose behavior is
represented by UML sequence diagrams.

Software Product Lines (SPL) are suitable for development with Model Driven
principles: an SPL is a set of software-intensive systems sharing a common, managed
set of features which satisfy the specific needs of a particular market segment or
mission and which are developed from a common set of core assets in a prescribed
way [9]. Therefore, products in a line share a set of characteristics (commonalities)
and differ in a number of variation points, which represent the variabilities of the
products. Software construction in SPL contexts involves two levels: (1) Domain
Engineering, referred to the development of the common features and to the
identification of the variation points; (2) Product Engineering, where each concrete
product is built, what leads to the inclusion of the commonalities in the products, and
the corresponding adaptation of the variation points. Thus, the preservation of
traceability among software artefacts is an essential task, both from Domain to
Product engineering, as well as among the different abstraction levels of each
engineering level.

Fig. 1. OVM model for Lottery SPL

The way in which variability is managed in SPL is critical in SPL development. In
this work, the proposal by Pohl et al. [10] is used to manage the variability, defined in
their Orthogonal Variability Model (OVM). In OVM, variability information is
saved in a separate model containing data about variation points and variants (a
variation point may involve several variants in, for example, several products). OVM
allows the representation of dependencies between variation points and variable
elements, as well as associations among variation point and variants with other
software development models (i.e., design artefacts, components, etc.). Associations
between variants may be requires_V_V and excludes_V_V, depending on whether
they denote that a variation requires or excludes another variation. In the same way,

196 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

associations between a variation and a variation point may be requires_V_VP or
excludes_V_VP, also to denote whether a variation requires or excludes the
corresponding variation point. The variants may be related to artefacts of an arbitrary
granularity. Since variants may be related to any type of software artefact (and in the
proposal the software artefacts are described using a UML metamodel), to obtain the
best fit in this integration, OVM was translated into an UML Profile. With this
solution, OVM is managed and manipulated as a part (actually, an extension) of UML
2.0. More details about the defined OVM profile can be found in [11]. Fig. 1 shows
the OVM model for the Lottery SPL used as an example in this paper. Lottery SPL
manages the bets and payments for different lottery-type games. The types of games
considered are: Lotto: played by selecting a predetermined quantity of numbers in a
range: depending on the right numbers, the prize is greater or lower. For example, one
chooses six numbers from 1 to 49; Keno: basically played in the same manner,
although it differs from “Lotto” games in that (i) the population of playing game
pieces is even larger, e. g., integers from 1 to 80; (ii) participants can choose the
quantity of numbers that they want to match; and (iii) the number of winning game
numbers, e. g., twenty, is larger than the number of a participant's playing numbers, e.
g. two to ten. One example of the Keno type is Bingo.

This SPL has several variation points, but for purposes of illustration, this paper
only analyzes the variation points in Fig. 1 that includes Game (Instant Lottery, Lotto
or Keno), Bet Place (a Point of Sale, POS, or a web page) and Method of Payment
(Cash or Credit card).

3 Model Based Testing Framework

Fig. 2 shows a global overview of the framework, which is divided horizontally into
Domain Engineering and Application Engineering. In Domain Engineering, the SPL
core assets are modelled. In Application Engineering, each product is modelled; it can
be derived from the SPL or can be one single product developed following MDE
software development.

Fig. 2. Testing framework

 A Model Based Testing Approach for Model-Driven Development 197

The framework is also divided vertically into Design models (left) and Testing
models (right). In Domain Engineering, a test model is generated for SPL core assets.
In Application Engineering, the models follow the MDA levels, and are based on the
idea from Dai [12].

The arrows in Fig. 2 represent transformations between models. The objective is to
automate the generation of test models from design models using model
transformation. To develop the entire framework, the following decisions were taken:

 Tool to support the framework: This decision is crucial for the development of
the framework. We could develop a tool to support the framework or could use tools
already available on the market. The aim of our proposal is to automate model based
testing in MDE and SPL. Therefore, a tool built by us must consider modelling
elements for both development paradigms. In this case, developers and testers using
our approach must use our tool to model the line or product to obtain the test cases.
However, these models must also be used for code generation (due to the fact that the
development follows an MDE approach), for which specific tools already exist. It
seems unrealistic to think that developers will do the double job of modelling, with its
associated maintenance cost. Thus, we decided to develop the framework using
existing tools on the market, which brought about another problem: the integration of
existing tools to achieve the complete implementation of the framework.

 Design Metamodel: We can develop our own metamodels or use existing ones.
We decided to use existing metamodels and specifically use UML 2.0 [13] due to its
being the most widely used metamodel to design software products and the fact that
there are several tools to support it in the MDE environment.

 Testing Metamodel: Again, we could develop our metamodel or use an existing
one. We decided to use the UML 2.0 Testing Profile.

 Standardized approach: Since UML 2.0 is used as the design metamodel and the
UML Testing Profile as the testing metamodel, both OMG standards and those using
commercial tools are more likely to be compatible with standardized approaches. We
decided to use standards whenever possible for the construction of the framework.

 Variability metamodel: Unfortunately, there is no defined standard for defining
metamodel variability in product line development. Several metamodels to represent
variability exist. This work uses the Orthogonal variability model (OVM, [10]),
represented as a UML Profile (see Section 2).

 Model to Model Transformation language: A model transformation is the
process of converting one model to another model in the same system [6]. The most
important elements in a transformation are: (1) source model and target model, (2)
source metamodel and target metamodel and (3) the definition of the transformation.
A model transformation language is a language that takes a model as input and,
according to a set of rules, produces an output model. Using transformations between
models, arrows 1,2,3,4 and 5 in Fig. 2 can be solved. The OMG standard for model
transformation in the MDA context is the Query-View-Transformation language
(QVT, [14]), which depends on MOF (Meta-Object Facility, [15]) and OCL 2.0 [16]
specifications.

198 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

 Model to Text Transformation Language: Arrows 6 and 7 in Fig. 2 require the
transformation from model to test code (for example, this can be the JUnit test code).
The OMG standard to translate a model to text is the Model to Text standard
(MOF2Text, [17]).

3.1 Models in Domain Engineering

As discussed above, the framework uses UML as it’s metamodel. UML has several
diagrams to represent the static and dynamic aspects in software development. Fig. 3
shows the UML diagrams used in the framework. This can be extended to other UML
diagrams, but for the moment, the framework supports the models defined in Fig. 3.

In Domain Engineering, product line design models are automatically transformed
into test models following UML-TP (arrow 1). The variability is traced from the
design to the test models.

Fig. 3. Models at PIM level

In the transformation, the following models are used as source models:

 Sequence Diagrams with Variability, which describe use case scenarios. As a
metamodel, this kind of model uses extended UML interactions with stereotypes to
represent variability. The extension represents each variation point as a
CombinedFragment stereotyped with a Variation Point. Each variant is an
InteractionOperand stereotyped as a Variant (see Section 5).

 Variability Model: this model represents the variability in the SPL. The
definition of a UML profile to integrate OVM into UML is required.

These models are transformed, using the QVT language, into the following target
UML-TP elements (arrow 1 in Fig. 3):

 Test Case Behaviour: describes the test case behaviour that tests the source
sequence diagram. As a metamodel, this model uses the same variability extension for
UML interactions as the source sequence diagram (see Section 5).

 A Model Based Testing Approach for Model-Driven Development 199

 Variability Model: this is the source variability model, but in the transformation,
the variability model is augmented by traces to the test artefacts.

 Test Architecture: this model is a class diagram that uses an extension for the
UML Testing Profile as it’s metamodel. This extension applies the stereotypes
Variation Point and Variant to the variable elements in the test architecture (see
Section 5).

3.2 Models in Application Engineering

Application Engineering takes into account both the MDE and SPL development. In
the case of SPL, at this level the variability must be resolved. Thus, this level contains
both the test cases refined from the domain engineering for a product (which involves
resolving the variability corresponding to arrow 2), as well as the test cases for the
functionalities added only for that product. For the new functionalities, the test cases
are automatically generated using QVT from sequence diagrams (arrow 3). The
transformation generates the test case behaviour as another sequence diagram and a
class diagram representing the test architecture. Both models conform to the UML
Testing Profile.

3.3 Framework Implementation

The implementation of the framework requires the selection of a modelling tool from
those on the market and defining the tools that perform the transformations between
the models and from model to code. For the modelling, the selected tool was IBM
Rational Software Modeler (IRSM). This tool graphically represents the sequence
diagrams and exports them to UML2 through XMI.

Transformations between the models use QVT language, which requires having a
tool that implements the standard. medini QVT implements OMG's QVT Relations
specification in a QVT engine. We used it to develop and execute the QVT
transformations. The XMI exported by IRSM is the input for the QVT transformation,
which returns the XMI corresponding to the Test Model. This output XMI is imported
to the IRSM, which shows the graphical representation for the test cases. The models
shown in this paper were obtained using this tool.

The Eclipse IDE makes it possible to use modelling tools in an integrated way,
using extensions in the form of plug-ins. There exists a medini QVT plug-in for
Eclipse, which we use for the model transformation. Other Eclipse plug-ins are used
to perform the modelling tasks. Eclipse Modelling Framework (EMF) is a modelling
framework that allows the development of metamodels and models, from a model
specification described in XMI, provides tools and runtime support to produce a set of
Java classes for the model, along with a set of adapter classes that enable viewing and
command-based editing of the model, and a basic editor. UML2 is an EMF-based
implementation of the UML 2.0 OMG metamodel for the Eclipse platform and UML2
Tools is a Graphical Modelling Framework editor for manipulating UML models.
Using these integrated tools for transformations between models requires the input
models for transformations to be XMI (which is the default serialized form of EMF)
in Eclipse UML2 format. Therefore, the selected tool for the graphical modeling must
support the import and export of models in the UML2 format through XMI. There are

200 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

many tools available that export UML models to the UML2 format through XMI, but
few import the UM2 format. In our case, since the behavior of the test case is
automatically generated as a sequence diagram, it is crucial that the modelling tool be
able to import the transformed models and visualize them.

4 Model Based Testing Activities for MDE

The preceding sections have presented the decisions taken in the process of defining
the framework, and the metamodels and models defined for it. This section describes
the necessary activities to implement the testing framework in MDE development.
Fig. 4 shows the process for generating the test model for MDE development.

Fig. 4. Framework activities in MDE development

The activities at the PIM level are:

 P1-Add New Functionality for the Product: in this activity, the functionality for
the product is described. The result is a sequence diagram representing a use case
scenario. Fig. 5 shows the Interaction diagram for the functionality to check the
results for a bet in the Lotto game.

Fig. 5. Check results functionality

 A Model Based Testing Approach for Model-Driven Development 201

 P3-Test Model Generation for the Product: this activity consists of running the
QVT scripts which automatically generate the test models for the product. The inputs
for the transformation are the sequence diagram generated in activity P1, which were
exported to the XMI format. The outputs are the test architecture and the test case
scenario, both of which follow the UML-TP. These models are imported to the
modelling tool. Using the UML-TP, actors are represented by TestComponents,
whilst the System is represented by the SUT. In our proposal, each message between
the actor and the SUT must be tested (functional testing).

Fig. 6 shows the test case generated for the Check Results functionality in Fig. 5.
Fig. 7 summarizes the semantic of the QVT transformation to generate the test case
scenario, the following steps are necessary (more details can be found in [18]):

 Obtaining the test data: To execute the test case, according to UML-TP, the test
data are stored in a DataPool. The TestComponent asks for the test data using the
DataSelector operation in the DataPool. Fig. 6 shows the dp_checkResult()
stereotyped as DataSelector, which returns the values data1, data2 and expected. The
first two are the values to test the parameters in the operation and the third is the
expected result for the test case.

 Executing the test case in the SUT: The TestComponent simulates the actor and
stimulates the system under test (SUT). The TestComponent calls the message to test
in the SUT. For the example in Fig. 6, the operation to test is checkResult. It is tested
with the data returned by the DataPool. The operation is called in the SUT and returns
the result data.

 Obtaining the test case verdict: The TestComponent is responsible for checking
whether the value returned for the SUT is correct, and informs the Arbiter of the test
result. For the example in Fig. 6, the validation action checks if the result (actual
value) is equal to the expected (expected value) to return a verdict for the test case.

Fig. 6. Test case for Check Results

The activities at the PSM level are similar, but in this case the models are refined with
platform specific aspects. The activities at code level are:

 P6 –Code Generation for the Product: in this activity the product code is
generated following specific MDE tools. Once the executable product is obtained, it
can be tested.

 P7 – Test Code Generation for the Product: this activity consists of running the
MOF2Text scripts which automatically generate the test code from the PIT or PST

202 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

models. The inputs for the transformation are the sequence diagram that represents the
test cases generated in activities P3 or P5. The output is the test case code following
the same development language used at the PSM level. For example, if Java is used,
the test cases can be developed using JUnit.

Fig. 7. Semantic of QVT transformation for test case generation

5 Model Based Testing Activities for SPL

This section describes the activities necessary to implement the testing framework in
SPL development. The activities required for SPL are added to those existing for
MDE development. Fig. 8 shows the activities added to Fig. 4.

For Domain Engineering, the activities added are:

 D1 – Design the Variability Model: in this activity, the OVM model for the SPL
is developed. This model follows the UML Profile defined for OVM.

 D2 – Design the Functionality: in this activity, the common functionalities for
the SPL are described, including the variabilities. The result is a sequence diagram
with the extension defined to deal with variability. The defined profile for SPL
represents each variation point as a CombinedFragment stereotyped as <<Variation
Point>> and each variant is an InteractionOperand in the CombinedFragment. Fig. 9
shows the Bet Payment functionality for the Lottery SPL. In it, the player calculates
the amount of the bet and then makes the payment. As can be seen in Fig. 1, the
method of payment is a Variation Point, and the Combined Fragment is thus
stereotyped as <<Variation Point>> representing that the behaviour differs if the
payment is by credit card or with cash.

 D3 – Test Model Generation: this activity consists of running the QVT scripts
which automatically generate the test models for the SPL. The inputs for the
transformation are the OVM model and the sequence diagram with variability. The

 A Model Based Testing Approach for Model-Driven Development 203

outputs are the test architecture and the test case scenario, both of which follow the
UML Testing Profile and the extension defined for variability. Fig. 10 shows the test
case for Bet Payment, the same steps that the P3-Test model generation for the
product activity is doing, but in this case, the CombinedFragment is translated to the
test case. More about test case generation in the SPL context can be found in [19].

Fig. 8. Framework activities in SPL development

Fig. 9. Bet Payment Functionality

At Application Engineering, the variability is resolved and then the test model for
each product is generated; the activities added are:

 P1 – Add New Functionality for the Product: in this activity, the functionality
(which is specific to the product) is described. The result is a sequence diagram
representing the functionalities present only in this product. It is the same activity as
for MDE development.

204 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

 P2 – Select the Variability for the Product: To determine the test cases
corresponding to each product, it is necessary to know which variation points and
variants are included in each product.

Fig. 10. Test case for Bet Payment

In this activity, the valid variants selected for the product are stored in the
Orthogonal Variability Model of each product (OVMP). Fig. 11 shows the variants
selected for the Lotto Web product.

Fig. 11. Var. model for Lotto Web product

 P3 – Test Model Generation for the Product: Taking the test case for Bet
Payment (Fig. 9) as an example, to generate the test cases for the product Lotto Web,
the variability in the CombinedFragment must be resolved. The inputs are: (1) the
variability model for the Lotto Web (Fig. 11), and (2) the Bet Payment_Test test case
(Fig. 10). The output is the Bet Payment_Test test case for the Lotto Web product
(Fig. 12). The entire CombinedFragment is deleted in the final test case, i.e. the
variability is resolved at the product level.

 A Model Based Testing Approach for Model-Driven Development 205

The activities described in this section are added in SPL development to the
existents for MDE development (see Fig. 4). Furthermore, the activities defined for
the PSM and code level also apply to SPL development.

Fig. 12. Bet Payment test case for Lotto Web Product

Table 1 shows the pseudocode of the transformation QVT to obtain the test case
for a specific product. The input models are the Variability Model for the Line
(VML), the Variability Model for the Product (VMP) and the test model for the line
(TML). The output is the test model for the product (TMP).

Table 1. Pseudocode for the product test case generation

206 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

The CombinedFragment and the InteractionOperand disappears in the product test
case as was shown in Figures 8 and 9.

Table 2 shows the QVT transformation code for the messages included in an
IteractionOperand when the CombinedFragment is stereotyped Variation Point. This
transformation resolves the lines 12, 13, 14 and 16 in the pseudocode in Table 1.

Table 2. QVT transformation for the messages inside the InteractionOperand

top relation translateInteractionOperandForProduct{
-- For each interaction
 checkonly domain source i:uml::Interaction{
 -- For each CombinedFragment
 fragment = cf:uml::CombinedFragment{
 --For each InteractionOperand
 operand = io : uml::InteractionOperand {
 --For each message in the InteractionOperand,
 fragment = mes : uml::MessageOccurrenceSpecification{}
 }}};
-- Find the association between the InteractionOperand and the Variant in
VML
 checkonly domain source asoc:uml::Association{
 name = 'A_CF_' + io.name,
 ownedEnd = p1 : uml::Property {type = i },
 ownedEnd = p2:uml::Property{type = vp:uml::Class{} }};
-- Find the Variant in VMP
 checkonly domain ovmp var:uml::Class{name = vp.name };
-- Create the message in TMP
 enforce domain target it:uml::Interaction{
 fragment = mes:uml::MessageOccurrenceSpecification{} };
when { -- Check that the stereotype is applied in the CombinedFragment
 st = getStereotype ('Varition Point');
 cf.isStereotypeApplied(st); }
}

6 Related Works

This section reviews the most significant works in this field. Several proposals for test
case generation in SPL use UML artefacts as a basis. All of them provide traceability
between Domain and Application Engineering in SPL. However, none of them take
into account the capabilities of standard test models, such as UML-TP. Moreover,
since model-based approaches are quite suitable for SPL, using a standard
transformation language to automate the model generation is quite appropriate. A full
description of existing works on SPL can be found in a recently published systematic
review [20]. Nebut et al. [21] propose a strategy in which test cases for each of the
different products of an SPL are generated from the same SPL functional
requirements. Test cases are obtained from high level sequence diagrams. Bertolino et
al. [22] propose an abstract methodology, PLUTO (Product Line Use Case Test
Optimization), for planning and managing abstract descriptions of test scenarios,
which are described in PLUCs (Product Line Use Cases). A PLUC is a traditional use
case where scenarios are described in natural language, but which also contain
additional elements to describe variability. Each PLUC includes a set of categories
(input parameters and environment description) and test data. Then, and according to
the variability labels, categories are annotated with restrictions, to finally obtain the
test cases. Kang et al. [23] use an extended sequence diagram notation to represent

 A Model Based Testing Approach for Model-Driven Development 207

use case scenarios and variability. The sequence diagram is used as the basis for the
formal derivation of the test scenario given a test architecture. Reuys et al. [24]
present ScenTED (Scenario-based Test case Derivation) where the test model is
represented as an activity diagram from which test case scenarios are derived. Test
case scenarios are specified in sequence diagrams without providing concrete test
data. Test case scenarios can be generated automatically, but test case specifications
are developed manually.

Olimpiew and Gomma [25] describe a parametric method, PLUS (Product Line
UML-based Software engineering). Here, customizable test models are created during
software product line engineering in three phases: creation of activity diagrams from
the use cases, creation of decision tables from the activity diagrams, and creation of
test templates from the decision tables. Test data would then be generated to satisfy
the execution conditions of the test template.

There exist many proposals about model-based testing, but few of them focus on
automated test model generation using model transformation. Dai [12] describes a
series of ideas and concepts to derive UML-TP models from UML models, which are
the basis for a future model-based testing methodology. Test models can be
transformed either directly to test code or to a platform specific test design model
(PST). After each transformation step, the test design model can be refined and
enriched with specific test properties. However, to the best of our knowledge, this
interesting proposal has no practical implementation for any tool. These
transformations are carried out with Java algorithms, which results in a mixed
proposal between the two approaches described in this paper.

Baker et al. [8] define test models using UML-TP. Transformations are done
manually instead of with a transformation language. Naslavsky et al. [26] use model
transformation traceability techniques to create relationships among model-based
testing artefacts during the test generation process. They adapt a model-based control
flow model, which they use to generate test cases from sequence diagrams. They
adapt a test hierarchy model and use it to describe a hierarchy of test support creation
and persistence of relationships among these models. Although they use a sequence
diagram (as does this proposal) to derive the test cases, they do not use it to describe
test case behaviour.

Javed et al. [27] generate unit test cases based on sequence diagrams. The sequence
diagram is automatically transformed into a unit test case model, using a prototype
tool based on the Tefkat transformation tool and MOFScript for model
transformation.

7 Conclusions

A framework for model-driven testing that can be applied in MDE and SPL
development was presented. The proposal includes a methodological approach to
automate the generation of test models from design models. The paper also describes
a way to handle SPL variability in test models, which is based on OVM. Currently,
the proposal is implemented for PIM models in domain and application engineering.
Future work includes extending the proposal for PSM and code.

208 B. Pérez Lamancha, M. Polo Usaola, and M. Piattini Velthius

Acknowledgements. This research was financed by the projects: PRALIN (PAC08-
0121-1374) and MECCA (PII2I09-00758394) from the “Consejería de Ciencia y
Tecnología, JCCM” and the project PEGASO/MAGO (TIN2009-13718-C02-01) from
MICINN and FEDER. Beatriz Pérez has a grant from JCCM Orden de 13-11-2008.

References

1. Dalai, S., et al.: Model-based testing in practice. In: ICSE (1999)
2. Trujillo, S., Batory, D., Diaz, O.: Feature oriented model driven development: A case

study for portlets. In: ICSE (2007)
3. Deelstra, S., et al.: Model driven architecture as approach to manage variability in software

product families. In: MDAFA (2003)
4. Czarnecki, K., et al.: Model-driven software product lines. In: OOPLSLA (2005)
5. Mens, T., Van Corp, P.: A Taxonomy of Model Transformation. Electronic Notes in

Theoretical Computer Sciences (2006)
6. Miller, J., Mukerji, J.: MDA Guide Version 1.0. 1. In: OMG (ed.) (2003)
7. OMG, UML testing profile Version 1.0. In: OMG (ed.) (2005)
8. Baker, P., et al.: Model-Driven Testing: Using the UML Testing Profile. Springer,

Heidelberg (2007)
9. Clements, P., Northrop, L.: Software Product Lines - Practices and Patterns. Addison

Wesley, Reading (2001)
10. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
11. Pérez Lamancha, B., Polo Usaola, M., Piattini, M.: Towards an Automated Testing

Framework to Manage Variability Using the UML Testing Profile. In: AST, Canada (2009)
12. Dai, Z.: Model-Driven Testing with UML 2.0. In: EWMDA, Canterbury, England (2004)
13. OMG, Unified Modeling Language, Superestructure specification. In: OMG (ed.) (2007)
14. OMG, MOF Query/View/Transformation Specification. In: OMG (ed.) (2007)
15. OMG, Meta Object Facility Specification. In: OMG (ed.) (2002)
16. OMG, Object Constraint Language, Version 2.0. In: OMG (ed.) (2006)
17. OMG, MOF Model to Text Transformation Language. In: OMG (ed.). OMG (2008)
18. Pérez Lamancha, B., et al.: Automated Model-based Testing using the UML Testing

Profile and QVT. In: MODEVVA, USA (2009)
19. Pérez Lamancha, B., Polo Usaola, M., García Rodriguez de Guzmán, I.: Model-Driven

Testing in Software Product Lines. In: ICSM, Canadá (2009)
20. Pérez Lamancha, B., Polo Usaola, M., Piattini, M.: Software Product Line Testing, A

systematic review. In: ICSOFT, Bulgaria (2009)
21. Nebut, C., et al.: Automated requirements-based generation of test cases for product

families. In: ASE (2003)
22. Bertolino, A., Gnesi, S., di Pisa, A.: PLUTO: A Test Methodology for Product Families.

In: PFE (2004)
23. Kang, S., et al.: Towards a Formal Framework for Product Line Test Development. In:

CIT (2007)
24. Reuys, A., et al.: Model-based System Testing of Software Product Families. In: Pastor,

Ó., Falcão e Cunha, J., et al. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 519–534. Springer,
Heidelberg (2005)

25. Olimpiew, E., Gomaa, H.: Customizable Requirements-based Test Models for Software
Product Lines. In: SPLiT (2006)

26. Naslavsky, L., Ziv, H., Richardson, D.J.: Towards traceability of model-based testing
artifacts. In: A-MOST, United Kingdom (2007)

27. Javed, A., Strooper, P., Watson, G.: Automated generation of test cases using model-
driven architecture. In: AST (2007)

Large-Scale Agile Software Development
at SAP AG

Joachim Schnitter and Olaf Mackert

SAP AG, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany
{j.schnitter,olaf.mackert}@sap.com

Abstract. In an ongoing change process SAP AG has managed to move the soft-
ware development processes from a waterfall-like approach to agile methodolo-
gies. We outline how Scrum was introduced to implement a lean development
style as well as the model chosen to scale Scrum up to large product development
projects. The change affected about 18.000 developers in 12 global locations.
This paper is an extended and revised version of an earlier publication [15]. It
includes recent findings.

1 Introduction

Agile methodologies have proven to offer many benefits when developing user-centric
software. Early findings about how to optimize product development led to iterative
processes stressing prototyping and early feedback [19]. Agile project management
methods, e. g. Scrum [16,17], take into account that product development is essen-
tially a learning process. Long-term planning based on product requirements, which
appear rock-solid but are in reality merely educated guesses, is substituted by an iter-
ative approach which focuses on early delivery of partial functionality. In combination
with regular feedback from users and stakeholders a software development project con-
verges into something useful without the exact goal being known beforehand. Strict
prioritizing of all requirements ensures that risks remain low. Even a project that was
cancelled because of time and budget constraints may nevertheless have delivered a
useful result if the essential requirements were implemented by the time the project
was cancelled.

Scrum is known to work well in teams of up to around 10 people programming for
a customer on the basis of a project contract. How well can Scrum perform in a global
software company with thousands of developers in various locations working on a few
dozen highly complex software products? This paper describes some of the experiences
gained during the change process at SAP AG, the world’s leading producer of enterprise
software, transitioning from a waterfall-like overall process model to an agile develop-
ment model that incorporates the values of lean development and production.

In the following section we will outline the situation at SAP before the introducton
of agile development. The third section describes the activities during and results of
the pilot phase. The fourth section gives a brief overview of process tailoring before
introducing Scrum throughout the development organizations. In the fifth section we
describe the steps taken to introduce lean development. In the sixth section the model

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 209–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

210 J. Schnitter and O. Mackert

chosen to scale Scrum up to very large development projects is described. The final
section summarizes the results and observations.

2 SAP Before Lean Development and Scrum

SAP, founded in 1972, offers a portfolio of enterprise applications around its flagship,
the SAP Business Suite. Many of these products are aimed at large companies, although
products for small and medium businesses have been available for some time or are in
the making. With the acquisition of Business Objects SA in 2008, SAP gained access
to user-centric analytics products which have since been fully integrated into SAP’s
traditional product line. In 2010 SAP started shipping new applications and platforms
based on in-memory database technology which is also to be included in the products
of another recent acquisition of SAP, Sybase Inc.

In its first two decades SAP developed software for and together with its customers.
This close co-operation helped the company focus on business essentials, keep pace
with business and technology trends. It eventually led to the fully developed client-
server System R/3 which supported all critical business functions for every major in-
dustry. Developers had regular contact with customers and users in different roles, not
only as programmers but also as consultants, trainers, and support engineers. The suc-
cess of R/3 reshaped the market for business applications. Newer customers, though,
expected that R/3 was a finished, standardized product they could easily install, config-
ure and run. At the same time many of them expected full support of their individual
business processes. Demand shifted from more business functionality to a higher de-
gree of configurability, easier lifecycle management, and solutions covering only parts
of the R/3 application suite with more detail and specificity.

Within a few years SAP’s development organization grew from about 2,000 to over
18,000 employees in various functions. In earlier days developers were expected to be
generalists, but by the time growth started slowing most developers had become ex-
perts on a particular technology or application area. Specialization increased in parallel
with division of labour. By now there were experts working on requirements roll-in,
other experts working on detailed requirements specifications, yet others laying out the
basic functions and algorithms, programming, testing, and so on. By 2001 it had be-
come clear that issues with communication among the specialized teams, departments,
organizations were becoming a major cause of reduced product quality on many lev-
els. To overcome these problems SAP introduced a development process framework
to co-ordinate development efforts throughout all involved organizations. Involvement
and responsibilities were assigned to departments according to their primary activities
and skills overall leading to a waterfall-like process model with handover procedures
among the involved parties. This process model was traversed once per year by most
development departments which resulted in new products or major product versions
each year.

When agile methodologies gained broader public interest around 2004 some teams at
SAP started to experiment with Extreme Programming and Scrum. This approach was
not feasible for regular product development teams because they had no longer easy
access to customers and users. Therefore agile project management practices were first
used in prototype development with strong customer involvement.

Large-Scale Software Development at SAP AG 211

3 Pilot Phase

In 2006 SAP formed a small expert team of people experienced in agile development
practices. This team began to educate and support development teams interested in
Scrum. Within two and a half years it was possible to run a substantial number of
projects according to the Scrum methodology. During this time the expert team gained
important insight into applicability, limiting factors, and resistance within the organiza-
tion.

Pilot teams were chosen by organizations according to their own interest. Since some
of the early teams displayed scepticism due to personal attitude, each project team had
to approve its participation in the pilot program unanimously.

3.1 Education

Scrum education for pilot teams consisted of the following elements:

1. A two-hour introduction into motivation and practices of Scrum for development
managers.

2. A six-hour training for the development team, Scrum master, and product owner.
This included an in-depth analysis of project setup, risks, and interdependencies
with other teams.

3. A four-hour in-depth training for Scrum masters and product owners.

Each person in the expert team supported a number of pilot teams for some months as
a Scrum mentor. This support included participation in all sprint planning and review
meetings, retrospectives, help with tools, and advocating Scrum before development
management. Additionally mentors tried to track and resolve all issues the teams had
either internally or with other teams, organizations, and management.

After eight months of direct team support the Scrum expert team started offering
trainings for future Scrum mentors. Mentor training took one week and included in-
depth Scrum knowledge, team dynamics, and selected areas of software engineering,
e. g. requirements management. A prerequisite for the mentor training was experience
with Scrum either as a Scrum master or product owner. Training included Scrum master
certification by the Scrum Alliance. The teaching team consisted of the Scrum expert
team, a psychologist, and a practitioner from the Scrum Alliance.

After one year there were 25 mentors available. By September 2008 these mentors
had supported about 120 projects in 10 global development locations.

3.2 Project Management Tools

When the Scrum expert team started its work, few project management software sys-
tems were available which supported Scrum. They all lacked sub-project support, hier-
archical backlog management, and interfaces for inclusion into SAP’s toolchain, e. g.
to the requirements database, issue tracker, and test management systems. Therefore
SAP decided to extend its own product for project management, SAP cProjects, to sup-
port Scrum projects. This extension project was also a showcase for Scrum with direct
involvement of users because the system was to be used internally. A member of the
Scrum expert team took on the role of the product owner.

212 J. Schnitter and O. Mackert

3.3 Lessons Learned

A wiki was used to manage basic information and observations. For each pilot team
the following data were collected by the Scrum mentors: scope of the project, duration,
product owner, scrum master, dependencies with other teams, locality, critical decisions
and impediments, and other observations. These data were used to select and commu-
nicate best practices, create a network of Scrum masters and product owners, and set
up a round table of experienced practicioners. In-depth interviews with Scrum masters,
product owners, and team members provided valuable information and suggestions for
improvement.

Scrum gives teams more power to make decisions concerning development speed
and quality. These aspects led to wide acceptance among teams. On the other hand many
individuals felt that they were being monitored exessively as a result of the high degree
of interaction both within the team and with external individuals and organizations. The
predominant arguments against Scrum were:

1. Team member: “Scrum forces me to report to the team every failure and impedi-
ment. This puts me under pressure.”

2. Team member: “I work more effectively when working alone. Daily Scrum meet-
ings force me to interrupt my work.”

3. Team member: “My manager might get a wrong impression of my work in case
someone reports how slow my work progresses.”

4. Development manager: “I have no insight into the team’s work. Appearently no-
body monitors what is going on.”

5. Other teams: “We cannot rely on teams which do not deliver according to an agreed-
upon schedule.”

Most resistence of team members was removed by pointing out that the transparency of
activity within the team was necessary because it enabled the team to manage its work
independently. In order to be released from management’s scrutinity the team has to
monitor itself. Sceptics from management were invited to sprint planning and review
meetings. They were regularly impressed by the teams’ skills in planning all activities
with great detail, focusing on risk management and high product quality.

What could not be mitigated were issues with teams dependent on “unreliable”
Scrum teams, at least if the Scrum teams were isolated in a non-Scrum environment.
Scrum teams working jointly on a particular software product rarely had complaints
about unreliable delivery because they were familiar with the Scrum methodology and
figured out how to get their requirements added to other teams’ backlogs and with the
right priorities.

Globally distributed teams often successfully applied Scrum although we were able
to identify a number of problem areas which increased the reluctance to set up new
distributed project teams:

1. Project kick-off meetings with all team members brought together in one location
were rarely performed but were considered to be essential.

2. Neither telephone nor video conferencing systems could produce the feeling of
proximity which was necessary to maintain team spirit.

Large-Scale Software Development at SAP AG 213

3. Oral communication was burdensome because in every location English was spo-
ken with a local accent.

4. Timezone differences of more than three hours made it difficult to agree on a com-
mon time for the daily Scrum meeting.

5. Multicultural teams typically broke up within two months mainly because the role
of the Scrum master is interpreted very differently among European, Asian, and
American people. A Scrum master from one culture found it hard to meet the ex-
pections of team members from another culture.

Many issues were not directly related to Scrum usage but became visible in this context.
Teams tended to relate problems to Scrum usage, but deeper analysis showed that these
issues had existed in the same teams before or could be observed in non-Scrum teams as
well. This showed the high potential of Scrum to expose problem areas which otherwise
would have gone unidentified or had been hidden intentionally.

3.4 Other Issues

Around the same time some problems surfaced which were not connected to Scrum
usage but needed to be resolved before moving to Scrum on a large scale:

1. Communication among product management, software architects, development
teams, and quality assurance was not strong enough to ensure a common under-
standing of development goals. Product management often was unable to commu-
nicate product requirements to software engineers. Languages and notations dif-
fered significantly.

2. The role of software architecture (high-level design) was not yet well understood.
This led to increased dependencies among products and components, e. g. because
componentization was weak and code reuse was highly valued. Another result was
the lack of conceptual preparation for the development teams for whom there were
too many obstacles to harmonize on interfaces and adhere to delivery timelines.

To overcome both problems a team was formed to provide education on software archi-
tecture for developers, software architects, and product management. A simple model-
ing language was created by combining selected Unified Modeling Language (UML)
elements with diagram types from the Fundamental Modeling Concepts (FMC) notation
[6,7]. FMC block diagrams in particular have proven to be an immense help to commu-
nicate technical concepts to customers, product managers, and developers. In parallel
SAP revised its internal quality standards and added rules for component separation and
usage.

4 Development Process Reform, Round One

A major revision of the standard development process took place while the Scrum ex-
pert team was still running pilot projects. Early experiences with Scrum came to the
attention of management who ordered a reform of the development process framework
to involve customers and users more directly. The “reform” team which included the
members of the Scrum expert team defined three process models for different product
development types.

214 J. Schnitter and O. Mackert

Improvement. This process model is used to improve existing products and for mi-
nor extensions. In the context of business software this can mean e. g. adaptions to
changed legal requirements or newer technical standards. An important criteria for
this process model is that the project requirements include few changes to imple-
mented business processes, only minor changes to the user interface, and that no
newer technologies need to be added.

New Product. This model is chosen for new products or major product extensions. It
includes Scrum as the project management method. Customer and user involvement
is secured by appropriate contracts, and a minimum number of customers has to
be involved. A calculated business case must exist as a basis for a development
decision.

Research. This process model is used basically for research and prototyping projects.
These projects are mostly free to chose whatever tools and methods they wish.

An important result of this approach was that it increased awareness of the need to tailor
the process model according to certain factors, e. g. software type (infrastructure, UI,
business logic etc.), project size, product development or customer-specific develop-
ment, architecture constraints (from-scratch product development, product extensions,
major refactoring, and renovation).

5 Introducing Lean Development

From industry customers who had long-standing experience with lean production and
the Toyota production system (TPS) and from talks and publications by Mary and Tom
Poppendieck [12,13,14] SAP management learnt about the lean development approach.
This knowledge provided the business background for research into how lean develop-
ment could be applied at SAP. It turned out that Scrum is particularily well suited to
implementing lean software development:

1. Scrum’s iterative cycles, called sprints, implement takt, i. e. the cyclic, repetitive
work approach.

2. The pull principle of TPS (often discussed in conjunction with Kanban) can be
found in Scrum in two places: (i) When planning a sprint the team “pulls” only
so many requirements from the product backlog as can be fulfilled during the next
sprint. Scrum does not allow for asking for more than the team promises. (ii) Each
team member picks tasks from the sprint backlog when he or she sees fit. No man-
ager assigns tasks to a team member.

3. The Genchi Genbutsu (go and see for yourself) principle is reflected by the product
owner’s participation in sprint reviews at regular intervals.

4. The Kaizen principle of continuous improvement is put into practice by regular ret-
rospectives and the Scrum master’s role to collect and communicate impediments
and ideas for improvement to stakeholders.

In every major SAP development area (2000 to 5000 developers per area) a lean imple-
mentation team was set up to explore what had to be done to implement lean develop-
ment processes. One team took over the pilot role by implementing their process model

Large-Scale Software Development at SAP AG 215

six months earlier thereby gaining experiences to share with the other teams. These
teams applied Scrum to their own change management projects.

It is worth to note that the pull principle had been in use at SAP for software configu-
ration management for years. Change (delta) propagation from a development codeline
to a test or consolidation codeline was usually done by a responsible person pulling
the changes into the target codeline. This process was implemented for ABAP (SAP’s
proprietary application programming language) around 1990. For source code in other
programming languages implementation took place in 2007.

5.1 Academic Experiments

Before applying Scrum on a large scale some experiments were carried out by the Hasso
Plattner Institute, Potsdam (HPI). The HPI provides education for master and bachelor
degrees in software systems engineering. As part of their practical education students
have to carry out a half-year software development project with about 50 other students.
These development projects were used to experiment with various approaches to upscal-
ing Scrum, e. g. Scrum of Scrums, hierarchical backlog, hierarchy of product owners.
Many insights were gained in these projects which proved beneficial to applying Scrum
to multi-team projects at SAP [8]. Research on this topic is ongoing.

5.2 Continuous Improvement

In each development area a team was formed to collect and resolve problems the indi-
vidual teams could not resolve themselves. These teams have to deal with both technical
development problems and issues resulting from the new lean development approach.
Therefore no limits are imposed on the types of problems communicated. These con-
tinuous improvement teams are also responsible for idea management in each area and
serve as escalation contacts for Scrum masters.

5.3 Education

A one-day “lean awareness” training provided the background of the lean development
approach. This training described the basic principles of lean production and develop-
ment. To scale Scrum up fast to an entire organization Scrum mentors were trained by
the existing Scrum mentors who had at least 1.5 years experience with Scrum in various
contexts. This training was similar to the mentor trainings given earlier.

Scrum mentors held training courses for development teams, product owners, and
Scrum masters. In order to provide training for all teams in a short time, the time allo-
cated for training was reduced. Instead of training each team individually for one day
as done during the pilot phase, two teams were trained together for half a day. Focus
was put on in-depth training of Scrum masters and product owners.

People who attended the lean awareness training frequently commented that the
knowledge about lean production helped them understand customer needs better, but
the relationship between lean production and software development needed clarifica-
tion. Many teams who had participated in the shortened training struggled later with
communication and motivation issues. It turned out that in contrast to the pilot phase too

216 J. Schnitter and O. Mackert

few Scrum mentors were available to deal with the numerous team problems. To over-
come these problems team training sessions were extended to one day per team and the
“lean mentor” role was created. Lean mentors underwent in-depth training in Scrum,
lean methodologies, and communication. Scrum master and product owner training ses-
sions were extended to two days each.

6 Scaling Scrum to the Max

Scaling agile software development processes is still subject to research [1,5,10,11].
Several approaches are known to co-ordinate the work of several Scrum teams working
on one product, e.. Scrum of Scrums [9] or MetaScrum [18]. The size and complexity
of SAP’s products makes it necessary to consider these techniques. To co-ordinate the
work of multiple Scrum teams and to communicate the requirements via team product
backlogs, various approaches were combined. Special product teams were formed for
this purpose. These teams can be regarded as both a permanent Scrum of Scrums and a
supervisory product owner.

6.1 Product Teams

Product teams were introduced as a second organizational layer above the Scrum teams.
A product team is responsible for the work of up to 7 development teams. It consists
of the product owners of those teams and the same number of team members who
are specialists in particular fields. Depending on the problem area other experts may
be included. This allows for full engineering coverage of all problem areas expected,
well-organized communication among the teams, and direct communication with the
development teams to detect and mitigate risks. Typically the following expert roles
can be found in product teams:

1. Chief product owner (responsible product manager),
2. Product team Scrum master (facilitator),
3. Software architect,
4. Delivery manager,
5. Knowledge management and product documentation expert,
6. User interface designer,
7. Stakeholder representative.

These roles may be taken by dedicated people or by development team members. For a
product team to function properly, the following prerequisites have to be met:

1. Every member of the product team is also a member of one of the related Scrum
teams.

2. The product team has full responsibility for requirements scope, quality, and deliv-
ery of the product. Each product team has a budget including external and travel
costs.

3. No product team member is a line manager of another team member.
4. All product team members are collocated.

Large-Scale Software Development at SAP AG 217

The tasks of the product team include: (a) product and budget management, (b) def-
inition of the skill profiles, size, and numbers of Scrum teams, (c) assigning product
backlog items to Scrum teams, (d) collecting project status information, (e) synchroniz-
ing the work of the Scrum teams, (f) working closely with the continuous improvement
teams, (g) requesting supportive actions in case of impediments.

Three focus questions were dealt with in particular by dedicated roles: The chief
product owner who is also the product owner of the product team has to answer the
question what has to be delivered. The delivery manager decides when a particular
functionality is to be delivered. The software architects decide how this functionality is
to be implemented.

6.2 Area Product Teams

Product teams can rarely support more than seven Scrum teams. If the products or com-
ponents are be too big or too complex to be developed in this organizational setup, an
intermediate organizational layer is inserted between the product team and the Scrum
teams. These teams are called “area product teams”. Their responsibility is the same as
the product teams’ responsibility with the exception of budget and final product deci-
sions. In this three-layer organization a product team works similar to a project manage-
ment office. The complete budget and product responsibility is with the product team,
while the operational day-to-day decisions are handled by the area product teams.

6.3 Observations

The Scrum roll-out happened very fast and was based on the assumption that during the
pilot phase enough knowledge had been collected to go for a company-wide adoption.
Upscaling methods were mainly driven by theoretical considerations. Implementing
them revealed that the skills and knowledge of product managers and software architects
were often not sufficient to manage a number of Scrum teams concurrently. Product
teams had to communicate with business management, marketing, and field services
who were not fully prepared for how Scrum and the product teams’ expectations would
change their daily work. The process of software requirements engineering were found
to require a major adjustment.

Teams typically needed a full year to completely adopt Scrum. Later we could see
signs of erosion especially in teams which had no Scrum mentor to support them. Team
members often reported that they felt expected to work harder than was sustainable. Pro-
grammers complained about the pressure both from management and from within their
teams. The first explanation given by the Scrum mentors was that these teams would
pick more from the Scrum backlog than what they could implement. To counteract this
they educated the teams about effort estimation and work-life balance. A detailed anal-
ysis revealed that the real root cause for demotivation and exhaustion was competition
among the team members. They suspected that Scrum had been introduced to strive for
higher efficiency and exchangeability of programmers, and a flatter management hier-
archy with fewer career oportunities. As a result many programmers worked very hard
to be visible and distinguishable from the others in the team.

Teams who had adopted Scrum to their satisfaction started looking into other agile
methods. As of this writing many teams have adopted test-driven development [2] and

218 J. Schnitter and O. Mackert

pair-programming [3]. This has been supported by trainings aiming at combining both
methods into a team-wide, sustainable practice.

Cutural differences were not only important factors for Scrum adoption in the teams
but also in management. We observed that Scrum was very differently introduced and
implemented in various global locations, e. g. in Germany, the USA, Canada, France,
India, Israel, and China. Work and management culture sometimes distorted Scrum to
a means for additional career oportunities, more control, more documentation, more
beaurocracy, or pressure for higher development speed, in stark contrast to the agile
manifesto [4].

7 Conclusions and Outlook

The Scrum project management methodology has gained broad acceptance at SAP.
Most teams consider Scrum their method of choice despite the many serious problems
encountered. Employees who know SAP from its early days call it a dej vu although
direct customer involvement in current development projects is very limited. Scrum has
also been used for internal IT projects, change management, and marketing projects
which all have in common that the exact goals could not be defined in the first place.

Scaling Scrum to a multi-team development organization is not as easy. Scrum of
Scrums and backlog preparation for many teams can be combined by product teams
as outlined above. Looking at all known parameters of agile project management at
SAP we tend to say that not much more than 130 development employees may be
organized in that fashion. This number sums up developers in 7 teams (max. 70 people),
the product team (max. 16), development infrastructure responsibles (about 10), quality
assurance and testers (about 25), general management (about 10).

A three-level hierarchy of teams to manage requirements for product backlog gener-
ation has not yet proven to work as expected. Currently the high complexity of SAP’s
products which is reflected in the organizational structure of SAP’s development areas
makes it impossible to drop one hierarchy level of project management. This obser-
vation has triggered significant effort to rigorously break up SAP’s product lines into
separate components to ensure that no product component needs more resources than
the 130 people as calculated above.

To learn about the effects of lean development as implemented at SAP, the company
chose to participate in the DIWA-IT study about health protection in the IT industry
sponsored by the German Bundesministerium fr Bildung und Forschung and the Euro-
pean Union. An ongoing research project has been set up to examine long-term effects.

We understand lean development merely as a set of values and objectives rather than
a framework of processes and best practices. There is still a lot of misunderstanding
at SAP and in the world about lean development. Lean production processes have a
long-standing tradition in industry, while lean product development processes have only
recently started to be dicussed. It is dangerous to refer to lean production as a blueprint
for product development. Both processes of value creation are completely different,
and using terms from one process in the context of the other has often led to misinter-
pretations and confusion. We found that it is not enough to train software developers
about Scrum and lean values. Significant effort needs to be put into educating people in

Large-Scale Software Development at SAP AG 219

business administration and general management about innovation management and the
pecularities of product design and development. In this respect software development
is a very special case as the scientific management methods of Taylorism are unsuitable
for processes with artifacts mostly existing in the minds of programmers.

We expect that after each product release the maintenance effort will increase for a
couple of years when a new product gets widely adopted by customers. As discussed
in a recent case study this maintenance effort requires additional considerations when
creating the product backlog [20]. We consider the “competition” between new-product
development and old-product maintenance a challenge to the long-term acceptance of
Scrum at SAP. To counterbalance this effect organizational measures might be advis-
able.

Introducing lean development is a learning process which brings many problem areas
to light. Many observations made at SAP would not have been made in the old environ-
ment. It is still too early to assess the benefits of the ongoing change in completeness,
but the transparency of the development processes and the broad acceptance of agile
methods gained make the change a worthwile effort. In addition to Scrum SAP is in
the process of applying more and more of the developer-centered methods of Extreme
Programming, e. g. test-driven development, pair programming, project metaphor, early
code integration.

Looking back at the waterfall model that SAP used for about 10 years, the authors
found that the biggest disadvantage of that model is not that it makes it impossible to
correct errors at a later stage, but the strong impact the model has on organization and
communication. The waterfall model suppresses communication along its path. Experts
for one phase only communicate with experts for other phases through highly formal-
ized documents and status data. Informal communication is regarded as undermining
the model’s simplicity. Unfortunately this attitude destroys the only remaining risk mit-
igation strategy left: communication.

Acknowledgements. The change described in this paper could not be carried out with-
out a solid fundament of determined colleagues willing to accept delay and hardship
while moving forward. In particular we wish to name Martin Fassunge, Alexander
Gerber, Bernhard Gröne, Christiane Kuntz-Mayr, Christian Schmidkonz, and Jürgen
Staader whose contributions were outstanding. We also would like to thank Jürgen
Müller and Thomas Kowark of the Hasso Plattner Institute for their support to run the
Scrum scaling experiments.

References

1. Ambler, S.W.: Scaling agile software development through lean governance. In: SDG 2009:
Proceedings of the 2009 ICSE Workshop on Software Development Governance, pp. 1–2.
IEEE Computer Society, Washington, DC, USA (2009)

2. Beck, K.: Test-driven development: By example. Addison-Wesley Professional, Boston
(2002)

3. Beck, K.: Extreme programming explained: Embrace change, 2nd edn. Addison-Wesley Pro-
fessional, Boston (2004)

220 J. Schnitter and O. Mackert

4. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: The agile manifesto (2001),
http://agilemanifesto.org/

5. Eckstein, J., Josuttis, N.: Agile Softwareentwicklung im Großen: Ein Eintauchen in die Un-
tiefen erfolgreicher Projekte. dpunkt, Heidelberg (2004)

6. Keller, F., Wendt, S.: FMC: An approach towards architecture-centric system development.
In: ECBS, pp. 173–182. IEEE Computer Society, Los Alamitos (2003)

7. Knöpfel, A., Gröne, B., Tabeling, P.: Fundamental Modeling Concepts: Effective Communi-
cation of IT Systems. John Wiley & Sons, Chichester (2006)

8. Kowark, T., Müller, J., Müller, S., Zeier, A.: An educational testbed for the computational
analysis of collaboration in early stages of software development processes. Accepted for
HICSS 2011 (2011)

9. Larman, C., Vodde, B.: Scaling lean & agile development: Thinking and organizational tools
for large-scale Scrum. Addison-Wesley, Upper Saddle River (2009)

10. Lee, G., Xia, W.: Towards Agile: An integrated analysis of quantitative and qualitative field
data. MIS Quarterly 34(1), 87–114 (2010)

11. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. The Agile
Software Development Series. Addison-Wesley Professional, Boston (2007)

12. Poppendieck, M., Poppendieck, T.: Introduction to lean software development. In: Baumeis-
ter, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, p. 280. Springer,
Heidelberg (2005)

13. Poppendieck, M., Poppendieck, T.: Implementing lean software development: From concept
to cash. The Addison-Wesley signature series. Addison-Wesley Professional, Boston (2006)

14. Poppendieck, M., Poppendieck, T.: Leading lean software development: Results are not the
point. The Addison-Wesley signature series. Addison-Wesley Professional, Boston (2009)

15. Schnitter, J., Mackert, O.: Introducing agile software development at SAP AG — Change
procedures and observations in a global software company. In: 5th International Conference
on Evaluation of Novel Approaches to Software Engineering, Athens, Greece, July 22-24,
pp. 132–138 (2010)

16. Schwaber, K.: Agile project management with Scrum. Microsoft Press, Redmond (2004)
17. Schwaber, K.: The enterprise and Scrum. Microsoft Press, Redmond (2007)
18. Sutherland, J.: Future of scrum: Parallel pipelining of sprints in complex projects. In: ADC

2005: Proceedings of the Agile Development Conference, pp. 90–102. IEEE Computer So-
ciety, Washington, DC, USA (2005)

19. Takeuchi, H., Nonaka, I.: The new new product development game. Harvard Business Re-
view 64, 137–146 (1986)

20. Vlaanderen, K., Brinkkemper, S., Jansen, S., Jaspers, E.: The agile requirements refinery:
Applying Scrum principles to software product management. In: 3rd International Workshop
on Software Product Management, Atlanta, Georgia, USA (September 1, 2009)

http://agilemanifesto.org/

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 221–235, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Systems Evolution and Software Reuse in OOP and AOP

Adam Przybyłek

University of Gdańsk, Department of Business Informatics
Piaskowa 9, 81-824 Sopot, Poland

adam@univ.gda.pl

Abstract. New programming techniques make claims that software engineers
often want to hear. Such is the case with aspect-oriented programming (AOP).
This paper describes a quasi-controlled experiment which compares the
evolution of two functionally equivalent systems, developed in two different
paradigms. The aim of the study is to explore the claims that software
developed with aspect-oriented languages is easier to maintain and reuse than
this developed with object-oriented languages. We have found no evidence to
support these claims.

Keywords: Aspect-oriented programming, Separation of concerns, Software
evolvability, Software reusability.

1 Introduction

Object-oriented programming (OOP) aims to support software maintenance and reuse
by introducing concepts like abstraction, encapsulation, aggregation, inheritance and
polymorphism. However, years of experience have revealed that this support is not
enough. Whenever a crosscutting concern needs to be changed, a developer has to
make a lot of effort to localize the code that implements it. This may possibly require
him to inspect many different modules, since the code may be scattered across several
of them.

An essential problem with traditional programming paradigms is the tyranny of the
dominant decomposition [36]. No matter how well a software system is decomposed
into modules, there will always be concerns (typically non-functional ones) whose
code cuts across the chosen decomposition [27]. The implementations of these
crosscutting concerns will spread across different modules, which has a negative
impact on maintainability and reusability.

The need to achieve a better separation of concerns (SoC) gave rise to aspect-
oriented programming (AOP) [22]. The idea behind AOP was to implement
crosscutting concerns as separate modules, called aspects. AOP has been proven to be
effective in lexically separating different concerns of the system [33]. However, the
influence of AOP on other quality attributes is still unclear.

On the one hand, replacing code that is scattered across many modules by a single
aspect can potentially reduce the number of changes during maintenance [28]. In
addition, core modules may be easier to reuse, since they implement single concerns
and do not contain tangled code.

222 A. Przybyłek

On the other hand, constructs such as pointcuts and advices can make the ripple
effects of aspect-oriented (AO) systems far more difficult to control than in OO
systems. A change in the method signature captured by the pointcut invalidates this
pointcut definition. The reason is that core modules are oblivious of aspects that
modify their behavior. Moreover, obliviousness leads to “programs that are
unnecessarily hard to develop, understand, and change” [15]. Since not all the
dependencies between the modules in AO systems are explicit, an AO maintainer has
to perform more effort to get a mental model of the source code [35]. Creating a good
mental model is crucial to understand the structure of a system before attempting to
modify it [25]. Studies of software maintainers have shown that 30% to 50% of their
time is spent in the process of understanding the code that they are to maintain [13],
[34], [14].

Moreover, AO systems suffer from an issue called the pointcut fragility problem,
which occurs when a pointcut unintentionally captures or misses a given join point as
a consequence of seemingly harmless changes to the base code [23], [28]. Kästner et
al. [21] observed such silent changes during AO refactoring. Therefore, it appears that
the very techniques that AOP provides to solve or limit some of the evolution
problems with traditional software, actually introduce a series of new evolution
problems. This phenomenon is called the evolution paradox of AOP [37].

Furthermore, incremental modifications and code reuse are not directly supported
for the new language features of AspectJ [16]. In particular, concrete aspects cannot
be extended, advice cannot be overridden, and concrete pointcuts cannot be
overridden. Hanenberg & Unland proposed four rules of thumb [16], which allow to
build reusable and incrementally modifiable aspects. However, enormous complexity
is the price that has to be paid for it.

2 Background

When development of a software product is complete and it is released to the market,
it enters the maintenance phase of its life cycle. Software maintainability is the ease
with which a software product can be modified after delivery [19]. ISO/IEC [20]
defines four categories of maintenance: perfective, adaptive, corrective, and
preventive. As software is used, the user usually requests additional features and
capabilities. Perfective maintenance extends the software beyond its original
requirements. Over time, the original environment (terminal devices, operating
system, laws, regulations, business rules, external product characteristics) for which
the software was developed is likely to change. Adaptive maintenance accommodates
the software to its external environment. It has been estimated that 80% of the
software maintenance effort is devoted to software evolution (adaptive and perfective
maintenance) [30].

Even with the best quality assurance activities, it is likely that the delivered software
contains some latent defects that were not detected during testing. Corrective maintenance
repairs these defects. Computer software deteriorates due to change, and because of this,
preventive maintenance, often called software reengineering, must be conducted to enable
the software to operate effectively and to make subsequent maintenance easier. In essence,
preventive maintenance refers to enhancements to software modularity or

 Systems Evolution and Software Reuse in OOP and AOP 223

understandability. It may also include the study of a system to detect and correct latent
faults in the software product before they become effective faults [20].

Software maintenance has been recognized as the most costly and difficult phase in
the software life cycle. Studies and surveys over the years have indicated that
software changes typically consume 40% to 80% of overall software development
costs [14], [17]. Hewlett-Packard estimates that 60% to 80% of its R&D personnel are
involved in maintaining existing software, and that 40% to 60% of software budget
are directly related to maintenance [11], [26].

Composing systems from existing modules rather than building from scratch has
been one of the main goals of the software engineering since its beginning in the
1960s. Reusability is the ease with which existing modules can be used in new
context. Using previously written modules as building blocks allows programmers to
simplify the construction of software, since the traditional phases of development are
replaced with processes of module search and selection [1]. Such approach reduces
the development time and costs, downgrades the risk of new projects, and improves
the software quality. One of the obstacles to a massive application of software reuse
in industrial environments is that creating reusable software modules requires a huge
initial investment which is not rapidly amortized.

3 Motivations

Many unsupported claims have been made about AOP. Here are a few examples:

• AOP “can be seen as a way to overcome many of the problems related to
software evolution” [27];

• AOP “produces code that is simpler and more maintainable, as well as
increasing the flexibility, extensibility and re-usability of the separated
concerns” [4];

• AO software “is supposed to be easy to maintain, reuse, and evolution” [39];
• AOP leads to “the production of software systems that are easier to maintain and

reuse” [33];
• AOP “increases understandability and eases the maintenance burden, because

modules tend to be more cohesive and less coupled” [24].

However, every new programming technique is overpromised and begins with naive
euphoria. In our previous study [31] we compared OO and AO implementations of
the 23 GoF design patterns with regard to coupling and cohesion. The evaluation was
performed applying the CBO and LCOM metrics from the CK suite, which had been
adapted for use on AO systems. Table 1 presents the mean values of the metrics, over
all modules per pattern. The lower numbers are better. There is no pattern whose AO
implementations exhibits lower coupling. With regard to cohesion the OO
implementations were superior in 9 cases, while the AO ones in 6 cases. 8 patterns
exhibited the same cohesion in both implementations.

Since it is commonly acknowledged that designs with low coupling and high
cohesion lead to software that is both, more reusable and more maintainable (Table 2
enumerates work that documented these relationships), we intend to investigate the
claims about the impact of AOP on reusability and evolvability.

224 A. Przybyłek

Table 1. Modularity metrics computed as arithmetic means

Table 2. Impact of coupling and cohesion on reusability and maintainability

 reusability maintainability
coupling [6], [18] [6], [18], [7], [9]
cohesion [6], [5] [6], [29]

4 Measurement System

In order to define the metrics to be collected during the study, we used the G-Q-M
(Goal-Question-Metric) approach [3]. G-Q-M defines a measurement system on three
levels (Fig. 1) starting with a goal. The goal is refined in questions that break down
the issue into quantifiable components. Each question is associated with metrics that,
when measured, will provide information to answer the question.

Our goal is to compare AO and OO systems with respect to software evolvability
and reusability from the viewpoint of the developer. Evolvability and reusability are
quality characteristics that we cannot measure directly. Instead, we can perform an
experiment that involves maintenance tasks and then we can measure how much
effort is required to evolve the system and how much of the existing code can be
reused in the consecutive release.

We chose to measure reusability as simply the number of lines of code that were
added in order to extend the program's functionality in a prescribed way. The more
lines required, the lower the reusability is.

 Systems Evolution and Software Reuse in OOP and AOP 225

Fig. 1. Goal-Question-Metric

The evolution metric we used is based on previous studies performed by Zhang et
al. [38] and Ryder & Tip [32]. In their work, the difficulty of evolvability is defined in
terms of atomic changes to the modules in a program. At the core of this approach is
the ability to transform source code edits into a set of atomic changes, which captures
the semantic differences between two releases of a program. Zhang et al. [38]
presented a catalog of atomic changes for AspectJ programs. For the purpose of our
study, we slightly modified their catalog. Firstly, we consider deleting a non-empty
element as an atomic change. Secondly, we used the term “module” as a
generalization of class, interface, and aspect. Our list of atomic changes is follows:
add an empty module, delete a module, add a field, delete a field, add an empty
method, delete a method, change body of method, add an empty advice, delete an
advice, change an advice body, add a new pointcut, change a pointcut body, delete a
pointcut, introduce a new field, delete an introduced field, change an introduced field
initializer, introduce a new method, delete an introduced method, change an
introduced method body, add a hierarchy declaration, delete a hierarchy declaration,
add an aspect precedence, delete an aspect precedence, add a soften exception
declaration, delete a soften exception declaration.

5 Empirical Evaluation

We compare OOP with AOP on a classical producer-consumer problem. In a
producer-consumer dilemma two processes (or threads), one known as the “producer”
and the other called the “consumer”, run concurrently and share a fixed-size buffer.
The producer generates items and places them in the buffer. The consumer removes

226 A. Przybyłek

items from the buffer and consumes them. However, the producer must not place an
item into the buffer if the buffer is full, and the consumer cannot retrieve an item from
the buffer if the buffer is empty. Nor may the two processes access the buffer at the
same time to avoid race conditions. If the consumer needs to consume an item that the
producer has not yet produced, then the consumer must wait until it is notified that the
item has been produced. If the buffer is full, the producer will need to wait until the
consumer consumes any item.

We assume to have an implementation of a cyclic queue as shown in Fig. 2. The
put(..) method stores one object in the queue and get() removes the oldest one. The
nextToRemove attribute indicates the location of the oldest object. The location of a
new object can be computed using nextToRemove, numItems (number of items) and
buf.length (queue capacity). We also have an implementation of a producer and a
consumer.

Fig. 2. An initial implementation

The experiment encompasses five maintenance scenarios which deal with the
implementation of a new requirement.

5.1 Adding a Synchronization Concern

To use Queue in a consumer-producer system an adaptation to a concurrent
environment is required. Both put(..) and get() methods have to be executed in mutual
exclusion. In addition, a thread has to be blocked when it tries to put an element into a
full buffer or when it tries to get an element from an empty queue. In Java these
methods have to be wrapped in synchronization code (Fig. 3).

The above implementation tangles the synchronization concern with the core logic.
Moreover, the synchronization code is scattered through the accesors methods. As a
result, the put(Object) and get() contain similar fragments of code for cooperating
synchronization.

A lexical separation of synchronization concern can be achieved by using AO
constructs (Fig. 4). However, benefits of such separation are doubtful. Firstly, the
SynchronizedQueue aspect is explicitly tied to the Queue class, and so cannot be reused
in other contexts. Secondly, Queue is oblivious to the synchronization aspect.

This makes it difficult to know what changes to Queue will lead to undesired
behavior.

 Systems Evolution and Software Reuse in OOP and AOP 227

Fig. 3. A blocking queue

Fig. 4. The SynchronizedQueue aspect

228 A. Przybyłek

5.2 Adding a Timestamp Concern

After implementing the buffer a new requirement has occurred: the buffer has to save
current time associated with each stored item. Whenever an item is removed, the time
how long it was stored should be printed to standard output. A Java programmer may
use inheritance and composition as reuse techniques (Fig. 5). The problem is that
three different concerns are intertwined within put/get and so these concerns cannot
be composed separately. It means that e.g. if a programmer wants a queue with timing
he cannot reuse the timing concern from TimeBuffer; he has to reimplement the
timing concern in a new class that extends Queue. A slightly better solution seems to
be using AOP and implementing the timing as an aspect (Fig. 6).

Fig. 5. The TimeBuffer class

Unless explicitly prevented, an aspect can apply to itself and can therefore change
its own behavior. To avoid such situations, the instantiation pointcut is guarded by
!cflow(within(Timing). Moreover, the instantiation pointcut in SynchronizedQueue
has to be updated. It must be the same as in Timing. This can be done only
destructively, because AspectJ does not allow for extending concrete aspects.

5.3 Adding a Logging Concern

The buffer has to log its size after each transaction. The OO mechanisms like
inheritance and overridden allow a programmer for reusing TimeBuffer (Fig. 7a). The
only problem is that four concerns are tangled within the LogTimeBuffer class. A
module that addresses one concern can generally be used in more contexts than one
that combines multiple concerns.

The AO solution is also noninvasive and it reuses the modules from the earlier
stages. It just requires defining a new aspect (Fig. 7b). The bufferChange pointcut
enumerates all join points that need to captured, by their exact signature. Such

 Systems Evolution and Software Reuse in OOP and AOP 229

pointcut definition is particularly fragile to accidental join point misses. An evolution
of the buffer will require revising the pointcut definition to explicitly add all new
accessor methods to it.

Fig. 6. The Timing aspect

Fig. 7. a) A new class for Stage 3; b) The Logging aspect

5.4 Adding a New Getter

The buffer has to provide a method to get “N” next items. There is no efficient
solution of this problem neither using Java nor AspectJ. In both cases, the condition
for waiting on an item has to be reinforced by a lock flag. A lock flag is set when
some thread initiates the “get N” transaction by getting the first item. The flag is unset
after getting the last item. In Java (Fig. 8), not only does the synchronization concern
has to be reimplemented but also logging. The reason is that in LogTimeBuffer

230 A. Przybyłek

logging is tangled together with synchronization, so it cannot be reused separately.
The duplicate implementation might be a nightmare for maintenance.

In AspectJ, although synchronization is implemented in a separate module, it also
cannot be reused in any way because an aspect cannot extend another concrete aspect.
Thus, all code corresponding to the synchronization concerns has to be
reimplemented (Fig. 9). A new method to get N items and locking mechanism are
introduced to Queue by means of inter-type declaration. In addition, destructive
changes in the Logging::bufferChange() pointcut are required (Fig. 9). Otherwise logs
would be reported n times in response to the get(int n) method, instead of just once
after completing the transaction. This is due to that get(int n) uses get() for retrieving
every single item from the buffer.

Fig. 8. A new class for Stage 4

5.5 Removing Logging and Timestamp

A programmer needs the enhanced buffer from Stage 4, but without the logging and
timing concerns. In Java, he once again has to reimplement the get(int) method and
much of the synchronization concerns. All to do in the AO version is to remove
Logging and Timing from the compilation list.

6 Lessons Learned

In a AO system, one cannot tell whether an extension to the base code is safe simply
by examining the base program in isolation. All pointcuts referring to the base
program need to be examined as well. In addition, when writting a pointcut definition
a programmer needs global knowledge about the structure of the application. This is
due to the fact that pointcuts try to define intended conceptual properties about the
base program, based on structural properties of the program. E.g. when implementing
the Timing aspect, a programmer has to know that the synchronization concern affects
each Queue structure, while the timing concern requires a non-blocking Queue.

In most cases, aspects cannot be made generic, because pointcuts as well as advices
encompass information specific to a particular use, such as the classes involved, in the
concrete aspect. As a result, aspects are highly dependent on other modules and their
reusability is decreased. E.g. at Stage 1, the need to explicitly specify the Queue class

 Systems Evolution and Software Reuse in OOP and AOP 231

and the two synchronization conditions means that no part of the SynchronizedQueue
aspect can be made generic.

Futhermore, we have confirmed that the reusability of aspects is also hampered in
cases where “join points seem to dynamically jump around”, depending on the context
certain code is called from [8]. In addition, the variety of pointcut designators makes
pointcut expressions cumbersome (see EnhancedSynchronizedQueue::call_get()).

Fig. 9. The EnhancedSynchronizedQueue and Logging aspect (Stage 4)

232 A. Przybyłek

7 Empirical Results

The measures for our two metrics were collected manually for each of the 31 modules
across the OO implementations and 30 modules across the AO implementations.
Table 3 presents the number of atomic changes for each stage. The lower numbers are
better. In general, the data collected demonstrated that there is no winner with respect
to software evolvability. AOP manifested superiority at Stage 3 and 5, while OOP in
the rest of the cases. At Stage 3 we had to implement a logging concern which is one
of the flagship examples of AOP usage.

Table 3. Numbers of atomic changes and new LOC per stage

Table 3 also shows how many new lines of code each stage requires. Stages 3 and

5 indicate significant differences between the implementations in favor of AOP. Stage
5 shows that lexical separation of concerns allows programmers to plug-out some
concerns. The OO solution was substantial better only at Stage 4.

8 Related Work

Coady & Kiczales [10] compared the evolution of two versions (C and AspectC) of
four crosscutting concerns in FreeBSD. They refactored the implementations of the
following concerns in v2 code: page daemon activation, prefetching for mapped files,
quotas for disk usage, and tracing blocked processes in device drivers. These
implementations were then rolled forward into their subsequent incarnations in v3 and
v4 respectively. In each case they found that, with tool support, the AO
implementation better facilitated independent development and localized change. In
three cases, configuration changes mapped directly to modifications to pointcuts and
makefile options. In one case, redundancy was significantly reduced. Finally, in one
case, the implementation of a system-extension aligned with an aspect was itself
better modularized.

Bartsch & Harrison conducted an experiment [2] in which 11 students were asked
to carry out maintenance tasks on one of two versions (Java and AspectJ) of an online
shopping system. The results did seem to suggest a slight advantage for the subjects
using the OO version since in general it took the subjects less time to perform
maintenance tasks and it averagely required less line of code to implement a new
requirement. However, the results did not show a statistically significant influence of
AOP at the 5% level.

 Systems Evolution and Software Reuse in OOP and AOP 233

Sant’Anna et al. [33] conducted a quasi-controlled experiment to compare the use
of OOP and AOP to implement Portalware (about 60 modules and over 1 KLOC).
Portalware is a multi-agent system (MAS) that supports the development and
management of Internet portals. The experiment team (3 PhD candidates and 1 M.Sc.
student) developed two versions of the Portalware system: an AO version and an OO
version. Next, the same team simulated seven maintenance/reuse scenarios that are
recurrent in large-scale MAS. For each scenario, the difficulty of maintainability and
reusability was defined in terms of structural changes to the artifacts in the AO and
OO systems. The total lines of code, that were added, changed, or copied to perform
the maintenance tasks, equaled 540 for the OO approach and 482 for the AO
approach.

9 Summary

This paper presents a laboratory experiment comparing OOP and AOP with respect to
software evolvability and reusability. Although a general conclusion cannot be drawn
from only the one discussed experiment, an important outcome has been achieved in
that the advocates of AOP have to take a position on our results. We have found no
evidence to confirm the claim that AO software is easier to evolve. The experience
gathered during the maintenance tasks points out that understanding the intricate
dependencies existing between the modules of an AO system can be an arduous task.
The advantage of AOP over OOP is also doubtful from the reusability point of view.
In the current version of AspectJ aspects are holding too much information (the
crosscutting logic and target module information) to fully take advantage of a lexical
SoC. Nevertheless, since the superiority of AOP has been observed in some cases, we
suggest that more research is necessary to identify the kind of crosscutting concerns
that derive benefits from the aspect-oriented SoC.

References

1. Andrews, A., Ghosh, S., Man Choi, E.: A Model for Understanding Software Components.
In: IEEE Inter. Conf. on Software Maintenance (ICSM 2002), Montreal, Canada (2002)

2. Bartsch, M., Harrison, R.: An exploratory study of the effect of aspect-oriented
programming on maintainability. Software Quality Journal 16(1), 23–44 (2008)

3. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Approach. In:
Encyclopedia of Software Engineering, pp. 528–532. John Wiley & Sons, Inc., Chichester
(1994)

4. Beltagui, F.: Features and Aspects: Exploring feature-oriented and aspect-oriented
programming interactions. Tech. Report No: COMP-003-2003, Lancaster University
(2003)

5. Bieman, J.M., Kang, B.: Cohesion and reuse in an object-oriented system. SIGSOFT
Softw. Eng. Notes 20(SI), 259–262 (1995)

6. Bowen, T.P., Post, J.V., Tai, J., Presson, P.E., Schmidt, R.L.: Software Quality
Measurement for Distributed Systems. Guidebook for Software Quality Measurement.
Technical Report RADC-TR-83-175, vol. 2 (July 1983)

234 A. Przybyłek

7. Breivold, H.P., Crnkovic, I., Land, R., Larsson, S.: Using Dependency Model to Support
Software Architecture Evolution. In: 23rd IEEE/ACM Inter. Conf. on Automated Software
Engineering, L’Aquila, Italy (2008)

8. Brichau, J., De Meuter, W., De Volder, K.: Jumping Aspects. In: Workshop on Aspects
and Dimensions of Concerns at ECOOP 2000, Sophia Antipolis and Cannes, France
(2000)

9. Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F., Saint-Denis, G.: Design Properties
and Object-Oriented Software Changeability. In: 13th Conf. on Software Maintenance and
Reengineering, Kaiserslautern, Germany (2000)

10. Coady, Y., Kiczales, G.: Back to the future: a retroactive study of aspect evolution in
operating system code. In: 2nd Inter. Conf. on Aspect-oriented software development
(AOSD 2003), Boston, Massachusetts (2003)

11. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software system
maintainability. IEEE Computer 27(8), 44–49 (1994)

12. Figueiredo, et al.: Evolving software product lines with aspects: An empirical study on
design stability. In: 30th Inter. Conf. on Software Engineering, Leipzig, Germany (2008)

13. Fjeldstad, R., Hamlen, W.: Application program maintenance-report to to our respondents.
In: Parikh, G., Zvegintzov, N. (eds.) Tutorial on Software Maintenance, pp. 13–27. IEEE
Computer Soc. Press, Los Alamitos (1983)

14. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison Wesley, Reading
(2002)

15. Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.:
Modular Software Design with Crosscutting Interfaces. IEEE Software 23(1), 51–60
(2006)

16. Hanenberg, S., Unland, R.: Using and Reusing Aspects in AspectJ. In: Workshop on
Advanced Separation of Concerns in Object-Oriented Systems at OOPSLA 2001, Tampa
Bay, Florida (2001)

17. Hatton, L.: Does OO sync with how we think? IEEE Software 15(3), 46–54 (1998)
18. Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.

In: 3rd Inter. Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)
19. IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software Engineering

Terminology: IEEE (1990)
20. ISO/IEC 14764-1999, Software Engineering-Software Maintenance: ISO and IEC (1999)
21. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In:

11th Inter. Conf. of Software Product Line Conf. (SPLC 2007), Kyoto, Japan (2007)
22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Cristina Lopes, C., Loingtier, J.,

Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

23. Koppen, C., Störzer, M.: PCDiff: Attacking the fragile pointcut problem. In: European
Interactive Workshop on Aspects in Software, Berlin, Germany (2004)

24. Lemos, O.A., Junqueira, D.C., Silva, M.A., Fortes, R.P., Stamey, J.: Using aspect-oriented
PHP to implement crosscutting concerns in a collaborative web system. In: 24th Annual
ACM Inter. Conf. on Design of Communication, Myrtle Beach, South Carolina (2006)

25. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using Automatic
Clustering to Produce High-Level System Organizations of Source Code. In: 6th Inter.
Workshop on Program Comprehension (IWPC 1998), Ischia, Italy (1998)

26. McKee, J.: Maintenance as a function of design. In: 1984 National Computer Conf.
AFIPS, vol. 53, pp. 187–193. AFIPS Press, Reston (1984)

 Systems Evolution and Software Reuse in OOP and AOP 235

27. Mens, T., Mens, K., Tourwé, T.: Software Evolution and Aspect-Oriented Software
Development, a cross-fertilisation. ERCIM special issue on Automated Software
Engineering, Vienna, Austria (2004)

28. Mortensen, M.: Improving Software Maintainability through Aspectualization. PhD thesis,
Department of Computer Science, Colorado State University (2009)

29. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion Metrics for Predicting
Maintainability of Service-Oriented Software. In: 7th Inter. Conf. on Quality Software
(QSIC 2007), Portland, Oregon (2007)

30. Pigoski, T.M.: Practical Software Maintenance. Wiley Computer Publishing, Chichester
(1997)

31. Przybylek, A.: An empirical assessment of the impact of AOP on software modularity. In:
5th Inter. Conf. on Evaluation of Novel Approaches to Software Engineering (ENASE
2010), Athens, Greece (2010)

32. Ryder, B.G., Tip, F.: Change impact analysis for object-oriented programs. In: 3rd ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, Snowbird, Utah (2001)

33. Sant’Anna, C., Garcia, A., Chavez, C. Lucena, C., von Staa, A.: On the Reuse and
Maintenance of Aspect-Oriented Software: An Assessment Framework. In: 17th Brazilian
Symposium on Software Engineering (SEES 2003), Manaus, Brazil (2003)

34. Standish, T.: An essay on software reuse. IEEE Transactions on Software
Engineering 10(5), 494–497 (1984)

35. Storey, M.D., Fracchia, F.D., Müller, H.A.: Cognitive design elements to support the
construction of a mental model during software exploration. J. Syst. Softw. 44(3), 171–185
(1999)

36. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N degrees of separation: multi-
dimensional separation of concerns. In: 21st Inter. Conf. on Software Engineering (ICSE
2009), Los Angeles, California (1999)

37. Tourwé, T., Brichau, J., Gybels, K.: On the Existence of the AOSD-Evolution Paradox. In:
AOSD 2003 Workshop on Software-engineering Properties of Languages for Aspect
Technologies, Boston, Massachusetts (2003)

38. Zhang, S., Gu, Z., Lin, Y., Zhao, J.: Change impact analysis for AspectJ programs. In: 24th
IEEE Inter. Conf. on Software Maintenance, Beijing, China (2008)

39. Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. In: 10th Inter. Software
Metrics Symposium, Chicago, Illinois (2004)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 236–250, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Automatic Assignment of Work Items

Jonas Helming, Holger Arndt, Zardosht Hodaie, Maximilian Koegel,
and Nitesh Narayan

Institut für Informatik, Technische Universität München, Garching, Germany
{helming,arndt,hodaie,koegel,narayan}@in.tum.de

Abstract. Many software development projects use work items such as tasks or
bug reports to describe the work to be done. Some projects allow end-users or
clients to enter new work items. New work items have to be triaged. The most
important step is to assign new work items to a responsible developer. There are
existing approaches to automatically assign bug reports based on the experience
of certain developers based on machine learning. We propose a novel model-
based approach, which considers relations from work items to the system
specification for the assignment. We compare this new approach to existing
techniques mining textual content as well as structural information. All
techniques are applied to different types of work items, including bug reports
and tasks. For our evaluation, we mine the model repository of three different
projects. We also included history data to determine how well they work in
different states.

Keywords: Machine learning, Task assignment, Bug report, UNICASE,
Unified model, UJP.

1 Introduction

Many software development projects make use of repositories, managing different
types of work items. This includes bug tracker systems like Bugzilla [1], task
repositories like Jira [2] and integrated solutions such as Jazz [3] or the Team
Foundation Server [4]. A commonality of all these repositories is the possibility to
assign a certain work item to a responsible person or team [5].

It is a trend in current software development to open these repositories to other
groups beside the project management allowing them to enter new work items. These
groups could be end-users of the system, clients or the developers themselves. This
possibility of feedback helps to identity relevant features and improves the quality by
allowing more bugs to be identified [6]. But this advantage comes with significant
cost ([7]), because every new work item has to be triaged. That means it has to be
decided whether the work item is important or maybe a duplicate and further, whom it
should be assigned to. As a part of the triage process it would be beneficial to support
the assignment of work items and automatically select those developers with
experience in the area of this work item. This developer is probably a good candidate
to work on the work item, or, if the developer will not complete the work item
himself, he probably has the experience to further triage the work item and reassign it.

 Automatic Assignment of Work Items 237

There are several approaches, which semi-automatically assign work items (mostly
bug reports) to developers. They are based on mining existing work items of a
repository. We will present an overview of existing approaches in section 2.1.

In this paper we compare different existing techniques of machine learning and
propose a new model-based approach to semi-automatically assign work items. All
approaches are applied to a unified model, implemented in a tool called UNICASE
[8]. The unified model is a repository for all different types of work items. Existing
approaches usually focus on one type of work item, for example bug reports. The use
of a unified model enables us to apply and evaluate our approach with different types
of work items, including bug reports, feature requests, issues and tasks. We will
describe UNICASE more in detail in section 3.

UNICASE does not only contain different types of work items, but also artifacts
from the system specification, i.e. the system model ([9]). Work items can be linked
to these artifacts from the system specification as illustrated in Figure 1. For example
a task or a bug report can be linked to a related functional requirement. These links
provide additional information about the context of a work item, which can be mined
for semi-automatic assignment, as we will show in section 4. Our new approach for
semi-automatic task assignment, called model-based approach, processes this
information. The results of this approach can be transferred to other systems such as
bug trackers where bug reports can be linked to affected components.

We found that existing approaches are usually evaluated in a certain project state
(state-based), which means that a snap shot of the project is taken at a certain time and
all work items have a fixed state. Then the assigned work items are classified by the
approach to be evaluated and the results are compared with the actual assignee at that
project state. We use this type of evaluation in a first step. However, state-based
evaluation has two shortcomings: (1) The approach usually gets more information
than it would have had at the time a certain work item was triaged. For example,
additional information could have been attached to a work-item, which was not
available for initial triage. (2) No conclusion can be made, how different approaches
work in different states of a project, for example depending on the number of work
items or on personal fluctuations. Therefore we evaluated our method also “history-
based” which means that we mine all states of the project history and make automatic
assignment proposals in the exact instance when a new work item was created. We
claim that this type of evaluation is more realistic than just using one later state where
possible more information is available.

We evaluate our approach by mining data from three different projects, which use
UNICASE as a repository for their work items and system model. To evaluate which
approach works best in our context as well as for a comparison of the proposed
model-based approach we apply different machine learning techniques to assign work
items automatically. These include very simple methods such as nearest neighbor, but
also more advanced methods such as support vector machines or naive Bayes.

The paper is organized as follows: Section 2 summarizes related work in the field
of automated task assignment as well as in the field of classification of software
engineering artifacts. Section 3 introduces the prerequisites, i.e. the underlying model
of work items and UNICASE, the tool this model is implemented in. Section 4 and 5
describe the model-based and the different machine learning approaches we applied in
our evaluation. Section 6 presents the results of our evaluation on the three projects,

238 J. Helming et al.

in both a state-based and a history-based mode. In section 7 we conclude and discuss
our results.

2 Related Work

In this section we give an overview over relevant existing approaches. In section 2.1
we describe approaches, which semi-automatically assign different types of work
items. In section 2.2 we describe approaches, which classify software engineering
artifacts using methods from machine learning and which are therefore also relevant
for our approach.

2.1 Task Assignment

In our approach we refer to task assignment as the problem of classifying work items
to the right developer. Determining developer expertise is the basis for the first part of
our approach. In our case this is done by mining structured project history data saved
within the UNICASE repository.

Most of the approaches for determining expertise rely on analyzing the code base
of a software project mostly with the help of version control systems. Mockus et al.
[10] treat every change from a source code repository as an experience atom and try
to determine expertise of developers by counting related changes made in particular
parts of source code. Schuler et al. [11] introduce the concept of usage expertise,
which describes expertise in the sense of using source code, e.g. a specific API. Based
on an empirical study, Fritz et al. [12] showed that these expertise measures acquired
from source code analysis effectively represent parts of the code base, which the
programmer has knowledge for. Sindhgatta [13] uses linguistic information found in
source code elements such as identifiers and comments to determine the domain
expertise of developers.

Other task classification approaches use information retrieval techniques such as
text categorization to find similar tasks. Canfora et al. [14] demonstrate how
information retrieval on software repositories can be used to create an index of
developers for the assignment of change requests. Anvik [5] investigate applying
different machine learning algorithms to an open bug repository and compare
precision of resulting task assignments. Anvik et al. [7] apply SVM text
categorization on an open bug repository for classifying new bug reports. They
achieve high precision on the Eclipse and Firefox development projects and found
their approach promising for further research. Čubranić et al. [15] employ text
categorization using a naive Bayes classifier to automatically assign bug reports to
developers. They correctly predict 30% of the assignments on a collection of 15,859
bug reports from a large open-source project. Yingbo et al. [16] apply a machine
learning algorithm to workflow event log of a workflow system to learn the different
activities of each actor and to suggest an appropriate actor to assign new tasks to.

2.2 Artifact Classification

Machine learning provides a number of classification methods, which can be used to
categorize different items and which can also be applied to software artifacts. Each

 Automatic Assignment of Work Items 239

item is characterized by a number of attributes, such as name, description or due date,
which have to be converted into numerical values to be useable for machine learning
algorithms. These algorithms require a set of labeled training data, i.e. items for which
the desired class is known (in our case the developer who an item has been assigned
to). The labeled examples are used to train a classifier, which is why this method is
called “supervised learning”. After the training phase, new items can be classified
automatically, which can serve as a recommendation for task assignment. A similar
method has been employed by Cubranic et. al. [15] who used a naive Bayes classifier
to assign bug reports to developers. In contrast to their work, our approach is not
limited to bug reports, but can rather handle different types of work items. Moreover,
we evaluate and compare different classifiers. Also Bruegge et. al. [17] have taken a
unified approach and used a modular recurrent neural network to classify status and
activity of work items.

3 Prerequisites

We implemented and evaluated our approach for semi-automated task assignment in a
unified model provided by the tool UNICASE [18]. In this section we will describe
the artifact types we consider for our approach. Furthermore we describe the features
of these artifacts, which will form the input for the different approaches. UNICASE
provides a repository, which can handle arbitrary types of software engineering
artifacts. These artifacts can either be part of the system model, i.e. the requirements
model and the system specification, or the project model, i.e. artifacts from project
management such as work items or developers ([9])

Fig. 1. Excerpt from the unified model of UNICASE (UML class diagram)

Figure 1 shows the relevant artifacts for our approach. The most important part is
the association between work item and developer. This association expresses, that a
work item is assigned to a certain developer and is therefore the association we semi-
automatically want to set. Work items in UNICASE can be issues, tasks or bug
reports. As we apply our approach to the generalization work item it is not limited to
one of the subtypes as in existing approaches. As we proposed in previous work ([9]),
work items in UNICASE can be linked to the related Functional Requirements
modeled by the association isObjectOf. This expresses that the represented work of
the work item is necessary to fulfill the requirement. This association, if already
existent adds additional context information to a work item. Modeled by the Refines
association, Functional requirements are structured in a hierarchy. We navigate this

240 J. Helming et al.

hierarchy in our model-based approach to find the most experienced developer,
described in section 4. As a first step in this approach, we have to determine all
related functional requirements of the currently inspected work item. As a
consequence this approach only works for work items, which are linked to functional
requirements.

While the model-based approach of semi-automated task assignment only relies
on model links in UNICASE, the machine learning approaches mainly rely on the
content of the artifacts. All content is stored in attributes. The following table
provides an overview of the relevant features we used to evaluate the different
approaches:

Table 1. Relevant features used to evaluate different approaches

Feature Meaning
Name A short and unique name for the represented work

item.

Description A detailed description of the work item.
ObjectOf The object of the work item, usually a Functional

Requirement.

We will show in the evaluation section, which features had a significant impact on

the accuracy of the approach.
UNICASE provides an operation-based versioning for all artifacts [19]. This means

all past project-states can be restored. Further we can retrieve a list of operations for
each state, for example when a project manager assigned a work item to a certain
developer. We will use this versioning system in the second part of our evaluation to
exactly recreate a project state where a work item was created. The goal is to evaluate
whether our approach would have chosen the same developer for an assignment as the
project manager did. This evaluation method provides a more realistic result than
evaluating the approaches only on the latest project state. With this method both
approaches, machine learning and model-based, can only mine the information, which
was present at the time of the required assignment recommendation.

4 Model-Based Approach

For the model-based assignment of work items we use the structural information
available in the unified model of UNICASE. In UNICASE every functional
requirement can have a set of linked work items. These are work items that need to be
completed in order to fulfil this requirement.

The main idea of our model-based approach is to find the relevant part of the
system for the input work item. In a second set we extract a set of existing work
items, which are dealing with this part of the system. For a given input work item and
based on this set we select a potential assignee. We will describe how this set is
created using an example in Figure 2.

 Automatic Assignment of Work Items 241

The input work item W is linked to the functional requirement B. To create the
relevant set of work items (RelevantWorkItems(W)) we first add all work items,
which are linked to functional requirement B (none in this example). Furthermore we
add all work items linked to the refined functional requirement (A) and all work items
linked to the refining requirements (C). In the example the set would consist of the
work items 1 and 2. Futhermore, we recursively collect all work items from the
refiningRequirements of A, which are neighbors of functional requirement B in the
hierarchy (not shown in the example).

Using the set RelevantWorkItems(W) we determine expertise of each developer D
regarding W (Expertisew(D)). We defined Expertisew(D) as the number of relevant
work items this developer has already completed. After determining Expertisew(D)
for all developers, the one with highest expertise value is suggested as the appropriate
assignee of the work item W.

Fig. 2. Example for the model-based approach (UML object diagram)

5 Machine Learning Approaches

We have used the Universal Java Matrix Library (UJMP) [20] to convert data from
UNICASE into a format suitable for machine learning algorithms. This matrix library
can process numerical as well as textual data and can be easily integrated into other
projects. All work items are aggregated into a two-dimensional matrix, where each
row represents a single work item and the columns contain the attributes (name,
description, ObjectOf association). Punctuation and stop words are removed and all
strings are converted to lowercase characters. After that, the data is converted into a
document-term matrix, where each row still represents a work item, while the
columns contain information about the occurrence of terms in this work item. There
are as many columns as different words in the whole text corpus of all work items.
For every term, the number of occurrences in this work item is counted. This matrix is
normalized using tf-idf (term frequency / inverse document frequency.

tfi, j =

ni, j

nk, jk

242 J. Helming et al.

where ni,j is the number of occurrences of the term ti in document dj, and the
denominator is the sum of occurrences of all terms in document dj.

idfi = log

D

d : ti ∈ d{ }

The inverse document frequency is a measure of the general importance of the term:
logarithm of total number of documents in the corpus divided by number of
documents where the term ti appears. A deeper introduction to text categorization can
be found in [21].

We have not used further preprocessing such as stemming or latent semantic
indexing (LSI) as our initial experiments suggested, that it had only a minor effect on
performance compared to the selection of algorithm or features. We have used the tf-
idf matrix as input data to the Java Data Mining Package (JDMP) [22], which
provides a common interface to numerous machine learning algorithms from various
libraries. Therefore we were able to give a comparison between different methods:

Constant Classifier. The work items are not assigned to all developers on an equal
basis. One developer may have worked on much more work items than another one.
By just predicting the developer with the most work items it is possible to make many
correct assignments. Therefore we use this classifier as a baseline, as it considers the
input features.

Nearest Neighbor Classifier. This classifier is one of the simplest classifiers in
machine learning. It uses normalized Euclidean distance to locate the item within the
training set which is closest to the given work item, and predicts the same class as the
labeled example. We use the implementation IB1 from Weka [23]. We did not use k-
nearest neighbors, which usually performs much better, because we found the runtime
of this algorithm to be too long for practical application in our scenario.

Decision Trees. Decision trees are also very simple classifiers, which break down the
classification problem into a set of simple if-then decisions which lead to the final
prediction. Since one decision tree alone is not a very good predictor, it is a common
practice to combine a number of decision trees with ensemble methods such as
boosting [24]. We use the implementation RandomCommittee from Weka.

Support Vector Machine (SVM). The support vector machine (SVM) calculates a
separating hyperplane between data points from different classes and tries to
maximize the margin between them. We use the implementation from LIBLINEAR
[25], which works extremely fast on large sparse data sets and is therefore well suited
for our task.

Naïve Bayes. This classifier is based on 'Bayes' theorem in probability theory. It
assumes that all features are independent which is not necessarily the case for a
document-term matrix. However, it scales very well to large data sets and usually
yields good results even if the independence assumption is violated. We use the
implementation NaiveBayesMultinomial from Weka [23] but also considered the
implementation in MALLET [26], which showed lower classification accuracy
(therefore we only report results from Weka).

 Automatic Assignment of Work Items 243

Neural Networks. Neural networks can learn non-linear mappings between input and
output data, which can be used to classify items into different classes (for an
introduction to neural networks see e.g. [27]). We have tried different
implementations but found that the time for training took an order of magnitudes
longer than for the other approaches considered here. Therefore we were unable to
include neural networks into our evaluation.

For the state-bases evaluation, we trained these classifiers using a cross validation
scheme: The data has been split randomly into ten subsets. Nine of these sets were
selected to train the classifier and one to assess its performance. After that, another set
was selected for prediction, and the training has been performed using the remaining
nine sets. This procedure has been performed ten times for all sets and has been
repeated ten times (10 times 10-fold cross validation). For the history-based
evaluation, the classifiers were trained on the data available at a certain project state
to predict the assignee for a newly created work item. After the actual assignment
through the project leader, the classifiers were re-trained and the next prediction could
be made.

Depending on the approach, runtime for the evaluation of one classifier on one
project ranged from a couple of minutes for LIBLINEAR SVM to almost two days
for the nearest neighbor classifier. Although a thorough comparison of all machine
learning methods would certainly have been interesting, we did not include a full
evaluation on all projects and performed feature selection using LIBLINEAR, which
was the fastest method of all. We argue that an algorithm for automatic task assigment
would have to deliver a good accuracy but at the same time the necessary
performance in terms of computing time to be useable in a productive environment.
Therefore we could also discarded the classifiers nearest neighbour and random
committee for the complete evaluation and report results only for UNICASE.

6 Evaluation

In this section we evaluate and compare the different approaches of semi-automated
task assignment. We evaluated the approaches using three different projects. All
projects have used UNICASE to manage their work items as well as their system
documentation. In section 6.1 we introduce the three projects and their specific
characteristics. In section 6.2 we evaluate the approaches „state-based“. This means
we took the last available project state and tried to classify all assignments post-
mortem. This evaluation technique was also used in approaches such as [7]. Based on
the results of the state-based evaluation we selected the best-working configurations
and approaches and evaluated them history-based. We stepped through the operation-
based history of the evaluation projects to the instant before an assignment was done.
This state is not necessarily a revision from the history but can be a state in between
two revisions. This is why we had to rely on the operation-based versioning of
UNICASE for this purpose. On the given state we tried to predict this specific
assignment post-mortem and compared the result with the assignment, which was
actually done by the user.

We claim this evaluation to be more realistic than the state-based as it measures
the accuracy of the approach as if it had been used in practice during the project.

244 J. Helming et al.

Furthermore it shows how the approaches perform in different states of the project
depending on the different size of existing data. As a general measure to assess
performance we used the accuracy, i.e. the number of correctly classified developers
divided by the total number of classified work items. This measure has the advantage
of being very intuitive and easily comparable between different approaches and data
sets. Other common measures such as precision or sensitivity are strongly dependent
on the number of classes (number of developers) and their distribution and therefore
would make it more difficult to interpret the results for our three projects.

6.1 Evaluation Projects

We have used three different projects as datasets for our evaluation. As a first dataset
we used the repository of the UNICASE project itself, which has been hosted on
UNICASE for nearly one year. The second project, DOLLI 2, was a large student
project with an industrial partner and 26 participants over 6 month. The goal of
DOLLI was the development of innovative solutions for facility management. The
third application is an industrial application of UNICASE for the development of the
browser game "Kings Tale" by Beople GmbH, where UNICASE has been used for
over 6 months now. The following table shows the number of participants and
relevant work items per project.

Table 2. Developer and work items per project

 UNICASE DOLLI Kings Tale

Developers 39 26 6

Assigned work items 1191 411 256

Linked work items 290 203 97

6.2 State-Based Evaluation

For the state-based evaluation we used the last existing project state. Based on this
state we try to classify all existing work items and compare the result with the actually
assigned person. In a first step (section 6.2.1) we evaluate the machine learning
approaches. In a second step we evaluate the model-based approach.

6.2.1 Machine Learning Approaches
We have chosen different combinations of features as input of the application and
applied the machine learning approaches described in section 4 as well as the model-
based approach described in section 5. Our goal was to determine the approaches,
configurations and feature-sets, which lead to the best results and re-evaluate those in
the history-based evaluation (section 6.3). We started to compare different feature
sets. As we expected the name of a work item to contain the most relevant
information, we started the evaluation with this feature only. In a second and third
run, we added the attribute description and the association ObjectOf. The size of
the tf-idf matrix varied depending on the project and the number of selected features,

 Automatic Assignment of Work Items 245

e.g. for the UNICASE project, from 1,408 columns with only name considered to
4,950 columns with all possible features.

Table 3 shows the results of different feature sets for the support vector machine.
In all evaluation projects, the addition of the features description and ObjectOf
increased accuracy. The combination of all three attributes leads to the best results. As
a conclusion we will use the complete feature set for further evaluation and
comparison with other approaches.

Table 3. Different sets of features as input data

Name
 UNICASE DOLLI Kings Tale

SVM
36.5%

(±0.7%)
26.5% (±0.7)

38.9
(±1.4)

Name and description
 UNICASE DOLLI Kings Tale

SVM 37.1% (±1.0) 26.9% (±1.0)
40.7%
(±0.9

Name, description and ObjectOf
 UNICASE DOLLI Kings Tale

SVM 38.0% (±0.5) 28.9% (±0.7)
43.4%
(±1.7)

In the next step we applied the described machine-learning approaches using the

best working feature set as input (Name, description and ObjectOf). As a base line we
started with a constant classifier. This classifier always suggests the developer for
assignment who has the most work items assigned. As you can see in table 4, we can
confirm the findings of [7], that SVM yields very good results. Random Committee
performed quite badly in terms of accuracy and performance so we did not further
evaluate them on all projects. The only competitive algorithm in terms of accuracy
was Naïve Bayes, which was however worse on the Kings Tale project. As there was
no significant difference between SVM and Naïve Bayes we chose SVM for further
history-based evaluation due to the much better performance.

Table 4. Different machine learning approaches state-based

 UNICASE DOLLI Kings Tale
Constant 19,7% 9,0% 37,4%

SVM (LibLinear) 38.0% (±0.5)
28.9%
(±0.7)

43.4% (±1.7)

Naïve Bayes 39.1% (±0.7)
29.7%
(±0.9)

37.8% (±1.7)

Random
Committee

23.2% (±0.2)

Nearest Neighbor
6.9%
(±0.1)

246 J. Helming et al.

6.2.2 Model-Based Approach
In the second step of the state-based evaluation we applied the model-based approach
on the same data, which yields in surprisingly good results (see Table 5). The first
row shows the accuracy of recommendations, when the model-based approach could
be applied. The approach is only applicable to work items, which were linked to
functional requirements. The number of work items the approach could be applied to
is listed in Table 2. It is worth mentioning that once we also considered the second
guess of the model-based approach and only linked work items, we achieved
accuracies of 96.2% for the UNICASE, 78.7% for DOLLI and 94.7% for the Kings
Tale project. For a fair overall comparison with the machine learning approaches,
which are able to classify every work item we calculate the accuracy for all work
items, including those without links, which could consequently not be predicted.
Table 5 shows that the accuracy classifying all work items is even worse than the
constant classifier. Therefore the model-based approach is only applicable for linked
work items or in combination with other classifiers.

Table 5. Model-based approach

 UNICASE DOLLI Kings Tale
Linked work items 82,6% 58,1% 78,4%

All work items 19,9% 20,7% 29,3%

We have shown that the model-based approach can classify linked work items

based on the ObjectOf reference. Therefore the approach basically mines, which
developer has worked on which related parts of the system in the past (see section 5).
One could claim that the machine learning approaches could also classify based on
this information. Therefore we applied the SVM only on linked work items with all
features and also only using the ObjectOf feature. The results (see Table 6) show that
linked work items are better classified than non-linked. But even a restriction to only
the feature ObjectOf did not lead to results as good as the model-based approach.
Therefore we conclude to use the model-based approach whenever it is applicable and
classify all other elements with SVM.

Table 6. Classification of linked work items

 UNICASE DOLLI Kings Tale
Constant 29,3% 18,3% 40,3%

SVM all features 53,9% 33,4% 50,2%

SVM only ObjectOf 49,7% 23,8% 49,2%

6.3 History-Based Evaluation

In the second part of our evaluation we wanted to simulate the actual use case of
assignment. The problem with the state-based evaluation is, that the system has
actually more information at hand, as it would have had at the time, a work item was
assigned. Consequently we simulated the actual assignment situation. Therefore we

 Automatic Assignment of Work Items 247

used the operation-based versioning of UNICASE in combination with an analyzer
framework provided by UNICASE. This enables us to iterate over project states
through time and exactly recreate the state before a single assignment was done. Note
that this state must not necessarily and usually also does not conform to a certain
revision from versioning but is rather an intermediate version between to revisions.
By using the operation-based versioning of UNICASE we are able to recover these
intermediate states and to apply our approaches on exactly that state. For the machine
learning approach (SVM) we trained the specific approach based on that state. For the
model-based approach we used the state to calculate the assignment recommendation.
Then, we compared the result of the recommendation with the assignment, which was
actually chosen by the user. For the history-based evaluation we selected the two best
working approaches from the state-based evaluation, SVM and the model-based
approach. We applied the model-based approach only on linked work items.

We applied SVM and the model-based approach on the UNICASE and the DOLLI
project. The Kingsthale project did not capture operation-based history data and was
therefore not part of the history-based evaluation. As expected the results for all
approaches are worse than in the state-based evaluation (see Table 7). Still all applied
approaches are better than the base line, the constant classifier. An exception is the
model-based approach applied on the DOLLI project, which shows slightly better results
in the history-based evaluation. We believe the reason for this is that the requirements
model, i.e. the functional requirements, and the related work items were added
continuously over the project runtime. Therefore at the states when the actual assignment
was done, the model-based approach could calculate its recommendation based on a
smaller, but more precise set of artifacts. Furthermore we can observe, that the results for
the UNICASE project differ largely from the state-based evaluation compared to the
DOLLI project. A possible explanation for this is the higher personal fluctuation in the
UNICASE project. This fluctuation requires the approaches to predict assignments for
developers with a sparse history in the project and is therefore much more difficult. In the
state-based evaluation the fluctuation is hidden, because the approaches can use all work
items of the specific developer no matter when he joined the project.

Table 7. History-based (aggregated accuracy) UC= UNICASE

 UC history UC state DOLLI history DOLLI state

Const. 22% 19,7% 7% 9,0%
SVM 29% 38.0% 27% 28.9%

Model-based 75% 82,6% 61% 58,1%

Figure 3 and 4 show the accuracy over time for the UNICASE project and SVM
and model-based approach, respectively. All presented charts show two lines. The
first line (black) shows the aggregated accuracy over time. The second line (dotted
black) shows the aggregated accuracy for last 50 (DOLLI) and 100 (UNICASE)
revisions and therefore reveals short time trends. In the selected time frame, both
approaches do not fluctuate significantly. This shows, that both approaches could be
applied to a continuous project, were developers join and leave the project.

248 J. Helming et al.

Fig. 3. SVM – UNICASE Fig. 4. Model-based – UNICASE

In contrast to the continuous UNICASE, we investigated the DOLLI project from
the beginning to the end (Figure 5 and 6) including project start-up and shutdown
activities. We observe that SVM lacks in accuracy at the beginning, where new
developers start to work on the project. For an efficient classification the SVM
approach has to process a reasonable set of work items per developer. Therefore a
high accuracy is only reached to the end of the project. A closer look at the accuracy
of the model-based approach shows that it decreases at the end of the project. Starting
from around revision 430 there has been a process change in the project as well as a
reorganization of the functional requirements. This clearly affects the results of the
model-based approach as it relies on functional requirements and their hierarchy. In
contrast to the model-based approach, SVM seems to be quite stable against this type
of change.

Fig. 5. SVM – DOLLI Fig. 6. Model-based – DOLLI

7 Conclusions

We applied machine learning techniques as well as a novel model-based approach to
semi-automatically assign different types of work items. We evaluated the different

 Automatic Assignment of Work Items 249

approaches on three existing projects. We could confirm the results from previous
authors that the support vector machine (SVM) is an efficient solution to this
classification task. The naïve Bayes classifier can lead to similar results, but the
implementation we have used showed a worse performance in terms of computing
time. The model-based approach is not applicable to all work items as it relies on
structural information, which is not always available. However it showed the best
results of all approaches whenever it was applicable.

The model-based approach relies on links from work items to functional
requirements and is therefore not directly applicable in other scenarios than UNICASE,
where these links do not exist. Although we believe that it can be transferred to other
systems where similar information is provided. Bug trackers often allow to link bug
reports to related components. Components on the other hand have relations to each
other, just like the functional requirements in our context. An obvious shortcoming of
the model-based approach is that it requires a triage by the affected part of the system no
matter which model is used. On the one hand we believe, that it is easier for users to
triage a work item by the affected part of the system rather than assign it, especially if
they do not know the internal structure of a project. On the other hand if a project
decides to use both, links to related system parts and links to assignees, the model-based
approach can help with the creation of the latter.

In the second part of our evaluation, we tried to simulate the use case in a realistic
assignment scenario. Therefore we applied the two best working approaches over the
project history and predicted every assignment at exactly the state, when it was
originally done. As a consequence all approaches can process less information than in
the first part of the evaluation, which was based on the last project state. As expected
the history-based evaluation leads to lower accuracies for all approaches. The model-
based approach is less affected by this scenario than the SVM. A possible reason for
that is that the model-based approach is not so much depending on the size of the
existing data but more on its quality. This assumption is underlined by the behavior of
the model-based approach during massive changes in the model, leading to lower
results. In contrast to that, the SVM was not so sensible to changes in model, but more
to fluctuations in the project staffing.

We conclude that the best solution would be a hybrid approach, i.e. a combination
of the model-based approach and SVM. This would lead to high results for linked
work items, but would also be able to deal with unlinked items.

References

1. Bugzilla, http://www.bugzilla.org/
2. Jira, http://www.atlassian.com/software/jira
3. Jazz Community Site, http://jazz.net/
4. Team Foundation Server, http://msdn.microsoft.com/
5. Anvik, J.: Automating bug report assignment. In: Proceedings of the 28th International

Conference on Software Engineering, p. S.940 (2006)
6. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12, S.23–

S.49 (1999)
7. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the 28th

International Conference on Software Engineering, pp. S.361–S.370. ACM, Shanghai
(2006)

250 J. Helming et al.

8. Bruegge, B., Creighton, O., Helming, J., Koegel, M.: Unicase – an Ecosystem for Unified
Software Engineering Research Tools. In: Workshop Distributed Software Development -
Methods and Tools for Risk Management, Bangalore, India, pp. S.12–S.17 (2008)

9. Helming, J., David, J., Koegel, M., Naughton, H.: Integrating System Modeling with
Project Management–a Case Study. In: International Computer Software and Applications
Conference, COMPSAC 2009 (2009)

10. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identifying
expertise. In: Proceedings of the 24th International Conference on Software Engineering,
pp. S.503–S.512 (2002)

11. Schuler, D., Zimmermann, T.: Mining usage expertise from version archives. In:
Proceedings of the 2008 International Working Conference on Mining Software
Repositories, pp. S.121–S.124 (2008)

12. Fritz, T., Murphy, G.C., Hill, E.: Does a programmer’s activity indicate knowledge of
code? In: Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, p. S.350 (2007)

13. Sindhgatta, R.: Identifying domain expertise of developers from source code. In:
Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. S.981–S.989 (2008)

14. Canfora, G., Cerulo, L.: How software repositories can help in resolving a new change
request. In: STEP 2005, p. S.99 (2005)

15. Čubranić, D.: Automatic bug triage using text categorization. In: SEKE 2004: Proceedings
of the Sixteenth International Conference on Software Engineering & Knowledge
Engineering, pp. S.92–S.97 (2004)

16. Yingbo, L., Jianmin, W., Jiaguang, S.: A machine learning approach to semi-automating
workflow staff assignment. In: Proceedings of the 2007 ACM symposium on Applied
computing, p. S.345 (2007)

17. Bruegge, B., David, J., Helming, J., Koegel, M.: Classification of tasks using machine
learning. In: Proceedings of the 5th International Conference on Predictor Models in
Software Engineering (2009)

18. UNICASE, http://www.unicase.org
19. Koegel, M.: Towards software configuration management for unified models. In:

Proceedings of the 2008 International Workshop on Comparison and Versioning of
Software Models, pp. S.19–S.24 (2008)

20. Arndt, H., Bundschus, M., Naegele, A.: Towards a next-generation matrix library for Java.
In: COMPSAC: International Computer Software and Applications Conference (2009)

21. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing
Surveys (CSUR) 34, S.1–S.47 (2002)

22. Holger Arndt, I.I.: The Java Data Mining Package–A Data Processing Library for Java
23. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with

Java implementations. ACM SIGMOD Record 31, S.76–S.77 (2002)
24. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
25. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for

large linear classification. The Journal of Machine Learning Research 9, S.1871–S.1874
(2008)

26. MALLET homepage, http://mallet.cs.umass.edu
27. Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall, Englewood

Cliffs (2008)

L.A. Maciaszek and P. Loucopoulos (Eds.): ENASE 2010, CCIS 230, pp. 251–264, 2011.
© Springer-Verlag Berlin Heidelberg 2011

UDeploy: A Unified Deployment Environment

Mariam Dibo and Noureddine Belkhatir

Laboratoire d’Informatique de Grenoble
681, Rue de la Passerelle, BP 72, 38402, St. Martin d'Hères, France
{Mariam.Dibo,Noureddine.Belkhatir}@imag.fr

Abstract. In the software life cycle we have mainly three activities: (1) the
pre-development (requirements, specification and design), (2) the development
(implementation, prototyping, testing) and (3) the post-development
(deployment). Software deployment encompasses all post-development activities
that make an application operational. These activities, identified as deployment
life cycle, include: i) software packaging, ii) loading and installation of software
on client sites, iii) instance creation, iv) configuration and v) updating. The
development of system-based components made it possible in order to highlight
this part of the global software lifecycle, as illustrated by numerous industrial
and academic studies. However these are generally developed ad hoc, and
consequently platform-dependent. Deployment systems, such as supported by
middleware environments (CCM, .Net and EJB), specifically develop
mechanisms and tools related to pre-specified deployment strategies. Our work,
related to the topic of distributed component-based software applications, aims at
specifying a generic deployment framework independent of the target
environments. Driven by the meta-model approach, we first describe the
abstractions used to characterize the deployed software. Then, we specify the
deployment infrastructure and processes, highlighting the activities to be carried
out and the support for their execution.

Keywords: Deployment, Meta model, Model, Software component, MDA.

1 Introduction

Component-based software approach [25] is intended to improve the reuse of
component enabling the development of new applications by assembling pre-existing
components. A software component can be deployed independently and may be
composed by third parties [25].

Nowadays, the component approach and distribution make deployment a very
complex process. Many deployment tools exist, we identified three types of systems:
1) those developed by the industry and integrated into a middleware environment like
EJB [8], CCM [21] and .Net [26, 27]; 2) those projected by the OMG (industry) [22]
[9] based on more generic models and; 3) the more formal systems projected by
academic works in current component models like Open Service Gateway Initiative
(OSGI) [1], Web Services [11], SOFA [3], Architecture Description Languages
(ADL) [4] and UML 2.0 [24].

252 M. Dibo and N. Belkhatir

Generally, deployment tools are often built in an ad hoc way; i.e. specific to a
technology or an architecture and covering partially the deployment life cycle (using
generally the installation scripts).

Hence, deployment is seen as the post development activities that make software
usable. It covers the description of the application to deploy, the description of the
physical infrastructure, the description of the deployment strategies, the planning
activities and the plan execution.

The deployment issue deals with aspects as diverse as satisfying software and
hardware constraints of the components concerning the resources of the machines that
support them, the resolution of inter-component dependency, the installation and
“instantiation” of components via the middleware and the container, the
interconnection of components, their activation and the management of dynamic
updates. Thus, the challenge [5] is to develop a generic framework encompassing a
specific approach and supporting the whole deployment process. [6] presents the
conceptual framework of this approach and [7] presents the different models based on
the MDA approach [23].

This paper focuses on the implementation part fulfilled by UDeploy (models
transformation) and the presentation of a case study to illustrate our approach. The
rest of this paper is organized as follows: part 2 presents the related works. Part 3
presents the architecture of our deployment tool. Part 4 presents the model
transformation. Finally in part 5, we present the perspectives of this work.

2 Related Works

We identified several works on the deployment that have been classified into two
broad categories.

In the first category, there are mainly all the more classic works developed for the
monolithic software systems and that emphasize on the setup activity.

In the second category, there are all the systems of deployment developed recently
for the software based-components. We identified two types of systems in this
category:

• those developed by industry on an ad 'hoc way and integrated into a middleware
type of environments;

• those of a higher level of abstraction based on explicit model proposed by the
OMG on one hand and on the other hand by the academic world.

2.1 Deployment in Middleware

The pros of deployment in application based-component like EJB [8], CCM [21] and
.Net [26, 27] relay in the fact that the technologies are effective thus answers specific
needs. The cons are that the abstraction level is very low therefore it is necessary to
make each activity manually. In such contexts and with these facts, it is easy to deduce
that there is a real need to standardize the deployment of distributed applications. The
middleware does not support the description of the domain. They contain less semantics
to describe applications; for example, the needs of an application may be a specific
version of software, and a memory size greater than 10 GB. Since none of these

 UDeploy: A Unified Deployment Environment 253

constraints will be checked during installation, this corresponds to a single copy
component assembly. The deployment descriptor expresses the same mechanism for
each middleware but described them in different ways.

2.2 Deployment in OMG Specification

The industry felt the necessity to join their efforts. They anticipated an approach
which capitalizes on their experiences in deployment (OMG’s approach). This
specification has inspired many academics. OMG’s Deployment and Configuration
(D&C) [22] specification is based on the use of models, meta-models and their
transformation. This specification standardizes many aspects of deployment for
component-based distributed systems, including component assembly, component
packaging, package configuration, and target domain resource management. These
aspects are handled via a data model and a runtime model. The data model can be
used to define/generate XML schemas for storing and interchanging metadata that
describes component assemblies and their configuration and deployment
characteristics. The runtime model defines a set of managers that process the metadata
described in the data model during system deployment. An implementation of this
specification is DAnCE (Deployment And Configuration Engine) [9].

2.3 Deployment in Academic Approaches

In current component models like, Open Service Gateway Initiative (OSGI) [1], Web
Services [11], SOFA [3], Architecture Description Languages (ADL) [4] and UML
2.0 [24], components are defined in the form of architectural units [15]. The ADL
[19] such as Acme, AADL, Darwin and Wright allow modeling components, to
model connectors and to model architecture configurations; however deployment
process in ADL is not specified. UML2.0 allows describing system hardware. But
deployment diagram in UML2.0 is a static view of the run-time configuration of
processing nodes and the components that run on those nodes. Other approaches such
as SOFA do not address the processing part. The plan containing the information on
the application is directly executed from a centralized server, assuming that remote
sites can instantiate remote components from this server.

Tables 1, 2, 3 and 4 presented in annex, present an assessment related to three main
notions occurring in the constitution of a deployment system which are the
application, the domain, the deployment strategies and the deployment plan.

• The domain notion covers all machines connected to a network where a software
system is deployed. This infrastructure is seen as a set of distributed and
interconnected sites. Each site is associated with the meta-information of the site
characteristics descriptions.

• The application notion covers all the application components and the meta-
information for their descriptions.

• The deployment strategies guide the creation of the deployment plan. The
deployment strategies allow expressing the actions to be led to deploy a component
by assuring success and safety properties.

• The deployment plan for an application A consists of components C1 to Ci where
i>= 1 and for a domain D consisting of Sites S1 to Sj where j> = 1 is all valid

254 M. Dibo and N. Belkhatir

placements (Ci, Sj). It is calculated from a planner engine. This engine operates on
a static process which allow visualizing a state of the system and the information
remains motionless during the computing plan or following a dynamic process
which allows visualizing the forecasts and to supervise their realization; the
information used is variable during the computing plan.

3 UDeploy Architecture

Concerning to the assessment obtained from the state of the art practice of the related
works, we think that a good solution to automate component based systems
deployment owes to [6]:

• cover all deployment activities,
• be independent from technologies,
• be independent from any philosophy of components based approach,
• offer a distributed deployment engine,
• propose specific language strategies in order to make the deployment flexible and
to support existing strategies in the deployment environments.

The analysis of a deployment system highlights activities independent from
technologies and what we could factor as the:

• modeling of the application to deploy,
• modeling of the components execution environment,
• creation of the deployment plan.

Therefore, we propose a deployment architecture [7] based on MDA (Model-Driven
Architecture) approach [23] with the use of models, meta-models and their
transformation (MDA approach is described in the section 4.1). MDA approach
allows offering a unified framework based on deployment activities using generic
descriptors that may subsequently be customized for specific platforms.

Deployment study in enterprise business practices allowed us to understand that
the deployment must be flexible according to the needs of the company and according
to the technical specifications of the application. Hence, we propose a fourth meta-
model related to deployment strategies in addition to the three common meta-models.

Figure 1 illustrates this deployment process comprising the following six main
activities:

• The application modeling which describes the application to be deployed; in other
words, it specifies all the components that compose the application and, the
resource constraints of these components.

• The domain modeling which describes the deployment environment, meaning
which specifies all sites that compose it and the available resources.

• The deployment strategies modeling which allow describing the policies to be
implemented in order to make the deployment plan flexible according to specific
needs.

• The creation of the deployment plan which from an application model, a domain
model and a deployment strategies model produce a deployment plan.

 UDeploy: A Unified Deployment Environment 255

• The transformation covers two main activities:

O the customization of the deployment plan - the deployment plan produced at the
end of the deployment plan creation activity is at a pim level (platform
independent model), therefore it is independent from any technology. this
deployment plan is seen as a set of placements. this generic plan must be
customized to one or several psm level plans (platform specific model); i.e.
specific to technologies so that they can be executed by the middleware targets.
the deployment plan answers to the question “where to deploy?”.

O the generation of the deployment descriptor - the deployment descriptor is built
from information within the application model and also from other information
(application non-functional properties) produced by the deployer. the
deployment descriptor answers to the question “how the container must manage
components to deploy?”.

• The deployment plan execution - some middleware do not offer any support for the
implementation of the deployment plan. in that case, the generic plan will be
translated into an appropriate description of the target middleware (script). This
description will be carried out by our deployment tool by invoking methods of the
target middleware.

Fig. 1. UDeploy architecture

256 M. Dibo and N. Belkhatir

4 Model Transformation

4.1 MDA Approach

The MDA approach [23] has been proposed by the OMG in response to the problems
posed by the multiplicity of systems, languages and technologies. The main idea of
the MDA approach is the separation of technical concerns from trades [10]. The key
concepts inherent to the MDA approach are:

• The PIM (Platform Independent Model) - these models are independent on the
technology platforms such as EJB, CCM, COM + and, provide a high level of
abstraction.

• The PSM (Platform Specific Model) - these models are dependent on the
technology platforms and correspond to the executable code.

• The transformation - PIM to PSM or PSM to PIM passage occurs by models
transformations. A model transformation is defined from a set of rules. These rules
can be described using a QVT type transformation tool (Query View
Transformation) [20], or by implementing its own processing tool. There are
several transformations tools and languages such as QVT-core (MTF [12]), QVT-
relations (medini QVT [18]) and QVT-like ATL [14, 13], Tefkat [17] and
VIATRA [28]).

4.2 MDA Advantage

The main advantages of the MDA approach are productivity and portability [16].
Productivity is because developers can now focus on the development of the PIM
models. They will work at a level where technical details are no longer specified.
These technical details will be added to the PSM level at the time of processing. This
improves productivity in two ways. First and foremost, PIM developers will omit
specific details. Second, several PSM can be obtained for different platforms with less
effort. Portability is because a PIM may be automatically transformed into several
PSM for various platforms. Thus, everything specified at PIM level will remain
portable. The only thing needed is to make sure that the code to be generated is
conform to the technology of an execution target platform.

4.3 MDA and Deployment

Conventional deployment tools integrated into the middleware, re-develop in a
specific manner the mechanisms and the deployment processes. These tools can be
seen to be at the PSM level. So, applying MDA to deploy would define deployment
meta-models at PIM level and that can be customized for different platforms.

4.4 Transformation Language

Transformation of models [2] may be operated by a non-formal language, by a
specific QVT or by a transformation algorithm that sets the mapping between
different models. The transformation language that we propose is mixed, hence based
on the QVT ATL and on transformation algorithms (figure 2).

 UDeploy: A Unified Deployment Environment 257

Model transformation is not based on the UDeploy application model, the domain
model and the UDeploy strategies model, but covers the UDeploy deployment plan
and the UDeploy deployment descriptor model.

Transformation of the deployment plan model consists of the projection of the
UDeploy plan model from a PIM level to a PSM level plan models (EJB, CCM,
.NET, SOFA). Specific deployment plan models are executed by middleware targets
in order to implement the deployment.

Transformation of the deployment descriptor model consists of the transformation
of the UDeploy descriptor model from a PSM level to a PIM level descriptor models
(EJB, CCM). Specific deployment descriptor models are used by the middleware
targets to manage components.

Fig. 2. Transformation language (QVT ATL and algorithm)

4.5 QVT ATL

We use the QVT ATL for semantic transformation (Figure 3). Semantic
transformation corresponds to the transformation of the concepts. A concept A in a
source model might be called concept B in a target model. ATL is a model
transformation language developed on top of the Eclipse platform. It provides ways to
generate target models from source models via transformation rules. An ATL
transformation rule is written as follow:

rule R {
 from e : source-meta-model ! el-e (cond)
 to s : target-meta-model ! el-s
 (-- ex. title<- e.title, name<- e.name+ “new”)
}

258 M. Dibo and N. Belkhatir

C
on

fo
rm

 to

C
on

fo
rm

 to

C
on

fo
rm

 to

Fig. 3. Transformation QVT ATL

4.6 Transformation Algorithm

We use algorithms for syntactic transformation. An M1 model that meets a source
meta-model criteria might be written in Java while an M2 model compliant to a target
meta-model might be written in XML. The UDeploy deployment plan meta-models
and the UDeploy deployment descriptor meta-models are written in DTD (Document
Type Definition). For practical reasons, we have decided to develop our algorithms
and to manage the models’ persistence with Java. Hence, we needed to operate three
basic transformations (figure 4):

• The transformation of the DTD UDeploy meta-models to XSD UDeploy meta-
models via the XMLPad tool.

• The transformation of the XSD UDeploy meta-models to Ecore UDeploy meta-
models via the EMF tool.

• The transformation of the Ecore UDeploy meta-models to Java UDeploy meta-
models via the EMF tool.

The chain of transformation from the DTD meta-model plan and the DTD meta-
model descriptor to the Java meta-model plan and the Java meta-model descriptor
does occur only once.

Once the Java classes are created, they will be instantiated by the deployment plan
data and the deployment descriptor.

We have syntactic transformation (Figure 4) for each technology such as EJB
(AlgoEJBPlan, AlgoEJBDescriptor algorithms CCM AlgoCCMDescriptor
(AlgoCCMPlan), .NET (AlgoNETPlan) and SOFA (AlgoSOFAPlan). The algorithm
allows producing a target model which will be conformed syntactically to the target
meta-model.

4.7 Examples of Model Transformation

4.7.1 EJB, NET and CCM Deployment Plan Personalization (Semantic)
At the end of the planning process, we obtain a PIM level UDeploy deployment plan
model. This deployment plan must be customized for execution target platforms.

 UDeploy: A Unified Deployment Environment 259

Meta-Model
UDeploy of Plan
and descripteur

DTD

Meta-Model
UDeploy of

Plan and
descripteur
Java Class

Meta-model UDeploy of
plan and descripteur

XSD

Meta-Model UDeploy of
Plan and descripteur

Ecore

Meta-Model
UDeploy of Plan
and descripteur

XSD

Meta-Model
UDeploy of Plan
and descripteur

Ecore

<!ELEMENT
placement
(NodeName,
ComponentName)
>

<xs:element name="placement">
<xs:complexType>

<xs:sequence>
<xs:element ref="NodeName"/>
<xs:element ref="ComponentName"/>
</xs:sequence>

</xs:complexType>
</xs:element>

public class Placement {
 protected nodeType NodeName;
 protected componentType ComponentName;

}

XMLPad

EMF

EMF

Meta-modèle/
Modèle
Outil de

transformation

Transformation
Conforme à

Fig. 4. Transformation algorithme

The example below shows the transformation process of the UDeploy deployment
plan meta-model to the EJB, .NET and CCM platforms plan meta-model.

The rule #1 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target). The
transformation concerns the DeploymentPlan class of the source meta-model and the
DeploymentPlan class of the target meta-model. The PlanId attribute of the target
meta-model will be the PlanId attribute of the source meta-model.

rule R1 {
from in : UDeployDeploymentPlanMetaModel ! DeploymentPlan
to out : EJB_NET_CCMDeploymentPlanMetaModel ! DeploymentPlan
PlanId<- in.PlanId }

Fig. 5. Semantic transformation

The rule #2 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target).

260 M. Dibo and N. Belkhatir

The transformation concerns the DeploymentPlan class of the source meta-model
and the UnitDeploymentPlan class of the target meta-model.

The SubPlanId attribute of the UnitDeploymentPlan class will be a concatenation
of the the PlanId attribute of the source model and a plan number supplied by the user
(getSubPlanNmber () method).

rule R2 {
from in : UDeployDeploymentPlanMetaModel ! DeploymentPlan
to out : EJB_NET_CCMDeploymentPlanMetaModel ! UnitDeploymentPlan
SubPlanId<- in.PlanId + getSubPlanNmber()}

The rule #3 takes as input the UDeploy deployment plan meta-model (source) and
as output an EJB, .NET and CCM deployment plan meta-model (target).

The transformation concerns the component class of the source meta-model and the
component class of the target meta-model. The ComponentName attribute of the
target meta-model will be the ComponentName attribute of the source meta-model.

rule R3 {
from in : UDeployDeploymentPlanMetaModel ! Component
to out : EJB_NET_CCMDeploymentPlanMetaModel ! Component
ComponentName<- in.ComponentName }

The rule #4 takes as input the UDeploy deployment plan meta-model (source) and

as output an EJB, .NET and CCM deployment plan meta-model (target). The
transformation concerns the Node class of the source meta-model and the the Node
class of the target meta-model. The NodeName attribute of the target meta-model will
be the NodeName attribute of the source meta-model.

rule R4 {
from in : UDeployDeploymentPlanMetaModel ! Node
to out : EJB_NET_CCMDeploymentPlanMetaModel ! Node
NodeName<- in.NodeName }

4.7.2 EJB, .NET and CCM Deployment Plan Customization (Syntactic)
Below, we will present four examples of syntactic customization (Figure 6). The
customization algorithms of the deployment plan for the EJB, CCM, .NET and SOFA
platforms are respectively AlgoEJBPlan, AlgoCCMPlan, AlgoNETPlan and
AlgoSOFAPlan.

Fig. 6. Syntactic transformation

 UDeploy: A Unified Deployment Environment 261

AlgoEJBPlan
Input: Specific deployment plan EJB mEJB
Ouput: document d
Debprog;

document d;
For each placement p in mEJB do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p);
NT=getNodeServerType(N);
if (NT== JBOOS) then d.write(‘On Node’, N , ‘is

twiddle invoke “jboss.system:service= MainDeployer“
deploy file:’,IC);

endif;

else if (NT==JONAS) then d.write(‘On Node’, N ,

‘jonas admin –a’,IC);

endelseif ;

endo;

Return d;
Finprog;

AlgoNETPlan
Input: Specific deployment plan .NET mNET
Ouput: document d
Debprog;

document d;
For each placement p in mNET do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p) ;
d.write(‘On Node’, N, ‘ is gacutil –i’,IC);

endo;
Return d;

Finprog;

AlgoCCMPlan
Input: Specific deployment plan CCM mCCM
Ouput: document d
Debprog;

document d;
For each placement p in mCCM do

C=getComponentName(p);
IC=getImplementation(C);
N=getNodeName(p);
d.write(‘On Node’, N, ‘Install(’,IC, ‘)’);

enddo;

Return d;
Finprog;

262 M. Dibo and N. Belkhatir

5 Conclusions and Perspectives

We develop UDeploy, a prototype based on the MDA approach which ensures tree
main tasks: (i) it manages the planning process from meta-information related to the
application, the infrastructure and the deployment strategies, (ii) it generates specific
deployment descriptors related to the application and the environment (i.e. the
machines connected to a network where a software system is deployed) and (iii) it
executes a deployment plan.

We have positive feedbacks with our case study and its experimentation on EJB,
.NET and CCM platforms. Our current projects include carrying out other
experiments and evaluations to show the feasibility of the approach, for example its
application to industrial systems, .NET and CCM.

References

1. Alliance, O.: OSGi 4.0 release. Specification (October 2005),
http://www.osgi.org/

2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? transformation models! In: Wang, J., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

3. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a hierarchical
component model. In: SERA, pp. 40–48. IEEE Computer Society, Los Alamitos (2006)

4. Clements, P.C.: A survey of architecture description languages. In: IWSSD 1996:
Proceedings of the 8th International Workshop on Software Specification and Design, p.
16. IEEE Computer Society, Washington, DC, USA (1996)

5. Dibo, M., Belkhatir, N.: Challenges and perspectives in the deployment of distributed
components-based software. In: ICEIS (3), pp. 403–406 (2009)

6. Dibo, M., Belkhatir, N.: Defining an unified meta modeling architecture for deployment of
distributed components-based software applications. In: 12th International Conference on
Enterprise Information Systems (ICEIS), Funchal, Madeira, Portugal (June 2010)

7. Dibo, M., Belkhatir, N.: Model-driven deployment of distributed components-based
software. In: 5th International Conference on Software and Data Technologies (ICSOFT),
Athens, Greece (July 2010)

8. Dochez, J.: Jsr 88: Java enterprise edition 5 deployment api specification (2009),
http://jcp.org/aboutJava/communityprocess/mrel/jsr088/index.
html

9. Edwards, G.T., Deng, G., Schmidt, D.C., Gokhale, A.S., Natarajan, B.: Model-driven
configuration and deployment of component middleware publish/subscribe services. In:
Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 337–360. Springer,
Heidelberg (2004)

10. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The missing
link of mda, pp. 90–105. Springer, Heidelberg (2002)

11. Gustavo, A., Fabio, C., Harumi, K., Vijay, M.: Web Services: Concepts, Architecture and
Applications (2004)

12. IBM. Mtf: Model transformation framework (2010),
http://www.alphaworks.ibm.com/tech/mtf

13. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool. Sci.
Comput. Program. 72(1-2), 31–39 (2008)

 UDeploy: A Unified Deployment Environment 263

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: a qvt-like transformation
language. In: OOPSLA Companion, pp. 719–720 (2006)

15. Kaur, K., Singh, H.: Evaluating an evolving software component: case of internal design.
SIGSOFT Softw. Eng. Notes 34(4), 1–4 (2009)

16. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

17. Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In: MoDELS
Satellite Events, pp. 139–150 (2005)

18. mediniQVT. medini qvt (2010), http://projects.ikv.de/qvt
19. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software

architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93 (2000)
20. OMG. MOF QVT Final Adopted Specification. Object Modeling Group (June 2005)
21. OMG. Corba component model 4.0. (2006), specification

http://www.omg.org/docs/formal/06-04-01.pdf
22. OMG. Deployment and configuration of component-based distributed application (2006),

specification http://www.omg.org
23. T.O.M.G. OMG. Omg model driven architecture (2005), http://www.omg.org
24. T.O.M.G. OMG. Unified modeling language (2007), http://www.omg.org
25. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented

Programming, 2nd edn. Addison-Wesley Professional, England (2002)
26. Troelsen, A.: Chapter 1: The Philosophy of .NET, vol. Pro VB 2008 and the .NET 3.5

Platform. APress (2008)
27. Troelsen, A.: Chapter 15: Introducing.NET Assemblies, vol. Pro VB 2008 and the.NET

3.5 Platform. APress (2008)
28. Varró, D., Balogh, A.: The model transformation language of the viatra2 framework. Sci.

Comput. Program. 68(3), 214–234 (2007)

Appendix

Table 1. Application meta-model comparison

Application meta-model Approach
Software
architectur
e

Software
constraints

Hardware
constraints

Descriptor Format

EJB * / / Conform to DTD ejb-jar
CCM * * * Conform to DTD

SoftwarePackageDescriptor.dtd
CORBAComponentDescriptor.dtd

.Net * * (only assembly
dependencis)

/ Manifest MSI

D&C * * * ComponentDataModel
ComponentManagementModel

Software
Dock

* * * Conform to DTD DSD

Orya * * * Product model
Fractal * * * Fractal ADL (xml)
SOFA * / / SOFA component meta-model
UML * * * Component diagram

* (supported) / (no-supported)

264 M. Dibo and N. Belkhatir

Table 2. Domain meta-model comparison

Domain meta-model Approach
Hardware
architecture

Software
resources

Hardware
resources

Descriptor Format

EJB / / / /
CCM / / / /
.Net / / /
D&C * * * TargetDataModel

TargetManagement Model
Software
Dock

* * * Fieldock
Releasedock

Orya * * * Site model
Fractal / / / /
SOFA * Docks

(remote node)
/ / Sofanode (centralized node)

UML * * * Deployment diagram
* (supported) / (no-supported)

Table 3. Deployment strategies meta-model comparison

Deployment strategies meta-model Approach
Technology Enterprise Fixed/

Flexible
Language for stratégies specification

EJB * / Fixed /
CCM * / Fixed SoftwarePackageDescriptor.dtd

CORBAComponentDescriptor.dtd
CORBAassemblyDescriptor.dtd

.Net * / Fixed *(only for application update)
D&C / / / /
Software
Dock

*(configuration) / Fixed /

Orya * (few semantic) Flexible Strategies model
Fractal * Fixed
SOFA * Fixed * (only for dynamic adaptation via

DCUP)
UML / / / /

* (supported) / (no-supported)

Table 4. Deployment plan meta-model comparison

Deployment plan meta-model Approach
Processus de
planification supporté

Plan de déploiement
complet

Plan de déploiement
exécutable

Format du plan
de déploiement

EJB / / / Script
CCM / / / Script
.Net / / / Script
D&C * * * XML document

for CCM/Dance
Software
Dock

* * / Embedded in the
tool (code)

Orya * * / Embedded in the
tool (code)

Fractal / / / /
SOFA / * * XML Document
UML / / / Deployment

Diagram
* (supported) / (no-supported)

Author Index

Ahmad, Adeel 136
Ampatzoglou, Apostolos 106
Arndt, Holger 236

Baldassarre, Maria Teresa 61
Basson, Henri 136
Belkhatir, Noureddine 251
Billington, David 121
Brodie, Lindsey 74

Caballero, Ismael 16
Charalampidou, Sofia 106
Č́ıhalová, Martina 178

Deruelle, Laurent 136
Dibo, Mariam 251
Duž́ı, Marie 178

Engelschall, Ralf S. 1
Estivill-Castro, Vladimir 121

Front, Agnès 89

Garćıa, Félix 61
Goldberg, Mayer 163
Guerra-Garćıa, César 16

Hassan, Mohamed Oussama 136
Helming, Jonas 236
Hexel, René 121
Hodaie, Zardosht 236
Hohenstein, Uwe 45
Hug, Charlotte 89
Humm, Bernhard G. 1

Jaeger, Michael C. 45

Koegel, Maximilian 236
Koide, Seiji 148
Košinár, Michal 178
Kožusznik, Jan 178

Mackert, Olaf 209
Mairiza, Dewi 31

Narayan, Nitesh 236

Pardo, César 61
Pérez Lamancha, Beatriz 193
Piattini Velthius, Mario 16, 61, 193
Pino, Francisco J. 61
Polo Usaola, Macario 193
Przyby�lek, Adam 221

Rieu, Dominique 89
Rock, Andrew 121

Schnitter, Joachim 209
Stamelos, Ioannis 106
Štolfa, Svatopluk 178

Takeda, Hideaki 148

Wiener, Guy 163
Woodman, Mark 74

Zowghi, Didar 31

	Title Page
	Preface
	Organization
	Table of Contents
	Pluggable Programming Language Features for Incremental Code Quality Enhancement
	Introduction
	Static versus Dynamic Typing
	Pluggable Programming Language Features
	Example Domain: Customer Management Component Interfaces
	Customer Management
	Interface Specification Aspects
	Language Feature Configuration

	Language Features for Interface Specification
	Research Prototype in Lisp
	Operation and Parameter Naming
	Parameter Typing
	Pre- and Postconditions
	Documentation of Semantics
	Additional Language Features
	Conformance Checking

	Incremental Code Quality Enhancement
	Code Quality
	Incremental Software Development
	A Method for Incremental Code Quality Enhancement
	Pluggable Programming Langauge Features and Incremental Code Quality Enhancement

	Discussion
	Evaluation
	Language Support Today
	Related Work

	Conclusions and Future Work
	References

	A Survey on How to Manage Specific Data Quality Requirements during Information System Development
	Introduction
	Planning the Systematic Review
	Question Formularization
	Resource Selection
	Studies Selection

	Execution of the Selection
	Analysis of Obtained Results
	Conclusions
	References

	Constructing a Catalogue of Conflicts among Non-functional Requirements
	Introduction
	Catalogue Framework
	NFRs Types
	Catalogue of Conflicts
	Using the Catalogue
	Conclusions
	References

	Applying AspectJ to Solve Problems with Persistence Frameworks
	Introduction
	Replacement Strategy
	Harder Problems
	Lack of Key Generation
	Failover Problem
	Missing Connection Property
	Possible Solutions

	AspectJ Solutions
	Solving the Lack of Key Generation
	Solving the Failover Problem
	Missing Connection Property
	Further Problems

	Experiences
	General Experiences
	Convincing Project Management

	Conclusions
	References

	Trends in Harmonization of Multiple Reference Models
	Introduction
	Systematic Review on the Harmonization of Reference Models
	Results and Discussion
	Trends of the Publications Multi-model Environments in Software Process Improvement
	Models Used
	Methods and Techniques Proposed
	Factors That Influence the Work with Multiple Models

	A Framework to Harmonize Multiple Models
	Conclusions
	References

	Prioritization of Stakeholder Value Using Metrics
	Introduction
	The Need for Prioritization
	Lack of Guidance
	Changing Needs for Prioritization

	Existing Research on Prioritization
	Positioning of Prioritization
	Existing Prioritization Methods
	Prioritization Factors
	Known Issues in Structuring Prioritization Data

	Analysis of Existing Prioritization Data
	Expressing Prioritization Data
	Prioritization Techniques

	Some Examples from a Case Study
	Choice of Prioritization Method
	Case Study Description
	Description of a Basic IE Table
	Extending IE to Cater for Multiple Stakeholders and Stakeholder Value

	Conclusions
	References

	ProMISE: A Process Metamodelling Method for Information Systems Engineering
	Introduction
	The Base of the Method: The Conceptual Graph
	The 3D Space
	The Conceptual Graph

	The Method
	Concept Selection
	Concept Integration

	Grenoble’s University Hospital Example
	Requirements
	Method Use

	Discussion
	The ProMISE Tool
	Conclusions
	References

	Investigating the Use of Object-Oriented Design Patterns in Open-Source Software: A Case Study
	Introduction
	Design Patterns
	Methodology
	Research Questions
	Case Study Plan
	Data Analysis Methods

	Results
	Discussion
	Design Pattern Application
	Design Patterns and Software Categories
	Design Pattern Size among Software Categories

	Threats to Validity
	Conclusions
	References

	Requirements Engineering via Non-monotonic Logics and State Diagrams
	Introduction
	Declarative Requirements
	Plausible Logic
	A Classical Example
	Microwave in Plausible Logic
	Translation into Code

	Evaluation
	Contrast with State Diagrams
	Contrast with Petri Nets
	Contrast with Behavior Trees

	Final Remarks
	References

	Towards a Better Change Impact Analysis in Architecture Description Languages
	Introduction
	Related Works
	Distributed Software Architecture Modeling: ASCM
	Typology of Change Operations
	Change Impact Propagation in Architectural Description Languages
	Knowledge-Based System for Software Evolution
	Change Propagation Rules Definition

	Prototype of Validation
	Change Propagation Scenario
	Conclusions and Future Works
	References

	Common Languages forWeb Semantics
	Introduction
	Semantics in RDF, OWL, Common Lisp, and Common Logic
	Denotational Semantics in RDF
	Semantics of Class in RDF Schema
	Semantics in OWL
	Semantics in Common Lisp
	Semantics in Common Logic

	Non-unique Name Assumption and Equality
	Equality of Individuals
	Equivalency and Disjointness of Classes

	Substantial Concepts and Role Concepts
	Ontological Categories and Disjointness
	Introduction of Role Concepts

	Open World Assumption and Ternary Truth Value
	Auto-epistemic Local Closed World Assumption
	cl:Subtypep

	Conclusions and Future Work
	References

	Generating Code for Associations Supporting Operations on Multiple Instances
	Introduction
	Interfaces
	The Association Interface
	The Association End Interface
	Aggregation Interfaces

	Implementation
	Storing the Relation
	Traversal Operations
	Selecting Instances

	Implementing Behavioral Designs
	Sample Design and Implementation

	Implementation Example
	Implementation Details
	Usage Example

	Conclusions and Future Work
	References

	Know How and Know What for Software Processes
	Introduction
	Knowledge-Based Approach to Software Engineering
	Benefits of the Knowledge-Based Approach

	Software Process
	Basic Definitions

	Knowledge Base
	Human Readable Knowledge Base
	Machine Readable Knowledge Base
	Knowledge Base Comparison

	Knowledge Support for Software Processes
	Knowledge Base Transformation
	Building Process Definition with Ontology Background - Example
	Enhancing Software Processes with Knowledge Management

	Conclusions and Future Work
	References

	A Model Based Testing Approach for Model-Driven Development and Software Product Lines
	Introduction
	Background
	Model Based Testing Framework
	Models in Domain Engineering
	Models in Application Engineering
	Framework Implementation

	Model Based Testing Activities for MDE
	Model Based Testing Activities for SPL
	Related Works
	Conclusions
	References

	Large-Scale Agile Software Development at SAP AG
	Introduction
	SAP Before Lean Development and Scrum
	Pilot Phase
	Education
	Project Management Tools
	Lessons Learned
	Other Issues

	Development Process Reform, Round One
	Introducing Lean Development
	Academic Experiments
	Continuous Improvement
	Education

	Scaling Scrum to the Max
	Product Teams
	Area Product Teams
	Observations

	Conclusions and Outlook
	References

	Systems Evolution and Software Reuse in OOP and AOP
	Introduction
	Background
	Motivations
	Measurement System
	Empirical Evaluation
	Adding a Synchronization Concern
	Adding a Timestamp Concern
	Adding a Logging Concern
	Adding a New Getter
	Removing Logging and Timestamp

	Lessons Learned
	Empirical Results
	Related Work
	Summary
	References

	Automatic Assignment of Work Items
	Introduction
	Related Work
	Task Assignment
	Artifact Classification

	Prerequisites
	Model-Based Approach
	Machine Learning Approaches
	Evaluation
	Evaluation Projects
	State-Based Evaluation
	History-Based Evaluation

	Conclusions
	References

	UDeploy: A Unified Deployment Environment
	Introduction
	Related Works
	Deployment in Middleware
	Deployment in OMG Specification
	Deployment in Academic Approaches

	UDeploy Architecture
	Model Transformation
	MDA Approach
	MDA Advantage
	MDA and Deployment
	Transformation Language
	QVT ATL
	Transformation Algorithm
	Examples of Model Transformation

	Conclusions and Perspectives
	References

	Author Index

