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Abstract. Biologically inspired design is an increasingly popular design 
paradigm. Biologically inspired design differs from many traditional case-based 
reasoning tasks because it employs cross-domain analogies. The wide 
differences in biological source cases and technological target problems present 
challenges for determining what would make good or useful schemes for case 
representation, indexing, and adaptation. In this paper, we provide an 
information-processing analysis of biologically inspired design, a scheme for 
representing knowledge of designs of biological systems, and a computational 
technique for automatic indexing and retrieval of biological analogues of 
engineering problems. Our results highlight some important issues that a case-
based reasoning system must overcome to succeed in supporting biologically 
inspired design.  
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1   Introduction 

Biologically inspired design, sometimes also called biomimicry or bionics, uses 
analogies to biological systems to generate ideas for the conceptual (or the 
preliminary, qualitative) phase of design. Although nature has long inspired designers 
(e.g., Leonardo da Vinci, the Wright brothers), biologically inspired design recently 
has become an important and widespread movement, pulled by the growing need for 
environmentally sustainable designs and pushed by its promise to generate creative 
designs [1-4]. The design of windmill turbine blades based on the tubercles on a 
humpback whale’s flippers [5-7] illustrates the power of biologically inspired design.  
By taking inspiration from whale flippers, designers were able to improve the shape 
of wind turbine blades to improve lift and reduce drag, increasing their efficiency.   

Biologically inspired design differs from many traditional case-based reasoning 
tasks because it employs cross-domain analogies. In classical case-based reasoning 
(CBR) [8,9], the new, input or target problem is so closely related and similar to 
familiar, known source cases stored in memory that the case memory supplies an 
almost correct answer to a given problem and the retrieved case need only be 
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“tweaked” to fit the problem. In contrast, biologically inspired design by definition 
entails “far” analogies from biology to architecture, engineering, computing, and 
other design domains, e.g., the design of turbine blades based on the shape of whale 
flippers or the design of a self-cleaning catheter based on the surface of lotus leaves.   
Thus, biologically inspired design is an excellent context for studying case-based 
analogies well as case-based creativity.   

In this paper we focus on biologically inspired engineering design that engages 
transfer of the results of biological evolution to engineering problems. Biology and 
engineering, however, occur at many different scales in both time and space. Further, 
biologists and engineers use different languages and methods, and generally share 
little cultural and disciplinary common ground. This presents an interesting set of 
challenges for research on case-based reasoning.   How does one represent, retrieve, 
and adapt knowledge from a source domain that is as fundamentally different than the 
target domain as biology is to engineering? 

In this paper, first we briefly describe an information-processing account of 
biologically inspired design processes. Next, we describe a scheme for representing 
knowledge of designs of biological systems. Then, we apply the technique of 
redundant discrimination networks for automatic indexing and retrieval of biological 
designs.  We conclude with a discussion on the results of our application, highlighting 
identified issues and speculating on how to overcome those difficulties. 

2   Case-Based Design 

Research on case-based has a long and rich history in which many researchers have 
not only used CBR theories and techniques in design, but also used insights from 
design to drive research into CBR. Early examples of development of CBR in design 
include CYCLOPS [10,11], STRUPLES [12,13] ARGO [14] and KRITIK [15-17]. 
For example, ARGO used rule-based reasoning to transform design plans for 
designing VLSI circuits to meet functional specifications of new circuits. In contrast, 
KRITIK integrated case-based and model-based reasoning to produce conceptual 
designs for engineering devices such as heat exchange devices and electric circuits.  If 
a designer specified a function, F, KRITIK generated a qualitative specification of a 
structure S, which could accomplish that function.  To do so, it stored an inverse 
mapping (from structure S, to behavior B, to function F) in the form of a structure–
behavior–function (SBF) model for each past case. Thus, SBF model provided a 
functional vocabulary for indexing past design cases so that they could be stored and 
later retrieved, adapted, or verified. Maher & Gomez [18] provide a survey of some of 
the early case-based design systems; Maher & Pu [19] provide an anthology of 
several early papers. 

The last two decades saw an explosion of interest in case-based design. Briefly, we 
identify four major trends in this period. The first trend was to develop interactive 
CBR design systems that provided access to libraries of design cases but left the task 
of design adaptation to the user [20,21]. A second trend was to integrate CBR with a 
wide variety of reasoning methods such as rule-based reasoning and model-based 
reasoning [22,23], constraint satisfaction [24,25] and genetic algorithms [26,27] in 
order to create or evolve emergent new designs from the original case base. A third 
trend was the development of hierarchical case-based reasoning in which design cases 
were decomposed into sub cases at storage time and recomposed at problem-solving 
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time [28,29]. A fourth major trend in research on CBR in the nineteen nineties was to 
develop CBR for a variety of design tasks, such as assembly planning [30], in a wide 
variety of design domains such as software design [29,31] and design of human-
machine interfaces [32]. Goel & Craw [33] survey some of the above developments in 
case-based design. 

More recently, visual CBR has been at the forefront of research. Gross & Do’s [34] 
Electronic Napkin took queries in the form of simple design sketches and retrieved 
matching design drawings from a design case library. Other work in visual CBR took 
design drawings generated by vector graphics programs as input and retrieved 
matching vector graphics design drawings from a diagrammatic case library [35], and  
used purely visual knowledge to transfer design plans from a known design case to a 
new design problem [36]. 

3   Information Processes of Biologically Inspired Design 

We study biologically inspired design in the context of an interdisciplinary, senior-
level undergraduate course our university offers on biologically inspired design 
(ME/ISyE/MSE/PTFe/BIOL 4740). Although its contents change slightly every year,  
 

 

Fig. 1. An Information Processing Model of Biologically Inspired Design (adapted from [37]) 
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it usually consists of three components: lectures, found object exercises, and a 
semester-long biologically inspired design team project. For the project, teams of 4-6 
students are formed such that each team has at least one biology student and students 
from different schools of engineering.  Each team was given a broad problem in the 
domain of dynamic, adaptable, sustainable housing such as heating or energy use. 

Our in situ observations have indicated two characteristics of analogical transfer 
from biology to engineering. First, the process of biologically inspired design can be 
either problem-driven or solution-driven. The two design processes share many steps 
but differ in their starting points. As in traditional design, problem-driven biologically 
inspired design starts with a functional specification of a design problem. In contrast, 
solution-driven design starts from a biological design looking for a problem to 
address. The work described here focuses on problem-driven biologically inspired 
design. Second, biologically inspired design entails compound analogies.  In 
compound analogy, an initial reminding of a biological analog results in a 
decomposition of the given design problem. The unsolved sub-problems then lead to 
additional reminders of biological analogues. Figure 1 (adapted from [37]), illustrates 
our preliminary, high-level information-processing model of biologically inspired 
design. Note that the ordering of the design subtasks is dependent upon a selection of 
a particular design method, either problem-driven design (top half of the figure) or 
solution-driven (bottom half). Note also that due to compound analogies, the process 
of analogical transfer is iterative and may reoccur for each open sub-problem. 

4 Representation of Knowledge of Biological Systems 

The promise of biologically inspired design has led to several efforts at developing 
computational tools for supporting the design process (e.g., [38-40]). In this section, 
we briefly describe a computational tool called DANE (for Design by Analogy to 
Nature Engine) that provides a designer with access to a knowledge base of biological 
systems [41]. To support the problem-driven design process, knowledge of a 
biological system needs to explicitly specify (1) the functions of the biological system 
because target design problems typically are specified by the desired functions, (2) the 
behaviors (or mechanisms) of the biological system that result in the achievement of a 
specific function because the designer is interested in biologically mechanisms for 
achieving desired functions, and (3) the structure of the biological system because 
mechanisms arise from the structure and because the specification of design problems 
typically contains structural constraints. 

Thus, DANE represents designs of biological systems in the SBF knowledge 
representation language (e.g., [42]). An SBF model of a complex system explicitly 
represents its structure [S] (i.e., its configuration of components and connections), its 
functions [F] (i.e., its intended output behaviors), and its behaviors [B] (i.e., its 
internal causal processes that compose the functions of the components into the 
functions of the system). The SBF language provides a vocabulary for expressing and 
organizing knowledge in an F → B → F → B … → F(S) hierarchy, which captures 
functionality and causality at multiple levels of aggregation and abstraction.  
Generally speaking, as one moves down the hierarchy, a system is described at lower 
levels of abstraction.  For example, one level of the hierarchy might describe, at a 
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Fig. 2. Partial Behavior Model for the system "Kidney Filters Waste from Blood" 

high level of abstraction, the function, structures, and behavior of the entire human 
digestive system, whereas a deeper level might narrow its focus to describe in detail 
the function, structures, and behavior of the small intestines. 

Biological systems are indexed by function name (e.g., “flamingo filter-feeds 
self”), by subject (e.g., “flamingo”), and/or by verb (e.g., “filter-feeds”). Upon 
selecting a system-function pair, users are presented with a multi-modal 
representation of the paired system-function that combines text descriptions, images, 
and an SBF model. The function sub-model is given as a structured frame-like 
representation, and the behavior and structure sub-models are represented as labeled 
directed graphs.  Figure 2 illustrates the behavior (or the mechanism) for the function 
“Kidney Filters Waste from Blood.”  

In Fall 2009, we introduced DANE into the class on biologically inspired design 
mentioned earlier. At the time, the library contained about 40 SBF models, including 22 
models of biological systems and subsystems. We discovered that some designers in the 
class found DANE’s SBF models useful for enhancing their conceptual understanding of 
biological designs. But we also found the designers did not consistently use DANE for 
generating design concepts for their problems. This probably was due to several reasons 
such as learning how to use DANE was not easy enough, DANE’s library of biological 
systems was not large enough, DANE did not provide enough design support. For 
example, in reference to the last item, while DANE allowed the user to browse the library 
of biological systems, it did not have any ability to automatically index or retrieve 
biological systems relevant to a target design problem. The interested reader may 
download DANE at http://dilab.cc.gatech.edu/dane.   

5 Automatic Indexing and Retrieval 

To help resolve this observed need, we are using analogical reasoning techniques for 
adding automated indexing and retrieval to DANE. AI techniques for analogical 
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retrieval include constraint satisfaction [43], spreading activation [44], and redundant 
discrimination networks [9,45]. Redundant discrimination networks allow a single 
case to be indexed in multiple networks.  We use this scheme for indexing biological 
designs because it is not known a priori what the most apt indexing method is for any 
given case. Additionally, the Ideal system [46,47] used this scheme with some 
success. The open question is whether this scheme works for analogical retrieval of 
biological designs and if it helps further systemize knowledge of biological designs.   

Specification of Design Problems 

To automatically retrieve biological analogues relevant to a target design problem, we 
need to first decide on a vocabulary for specifying design problems. Fortunately, the 
SBF language already provides such a vocabulary. A desired design is defined by 
three components: the initial state, the objective state, and a set of 
structural connections.  The initial state and objective state 
both contain state features, which themselves are composed of object-
property-value triples.  A state feature may also be flagged as being a 
substance, which means the object in that feature flows through the 
system. Each structural connection in the set of structural 
connections (the third primary component of a specification) links two 
objects (or optionally one object to itself) through a connection type, 
which can be any string. 

 

Fig. 3. Specification of a Filtrating Design Problem 
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As an example, Figure 3 illustrates a specification of the problem of home water 
filtration taken from a 2009 class project.  The initial state of this specification 
describes the substance (denoted with (S)) water being contaminated and located within 
home appliances.  The transition between the initial and objective states 
describes a series of structural connections that are relevant to the filtration 
process described by the 2009 design.  In the objective state, the once-
contaminated water has been transformed into grey water and moved to the gutter, and its 
contaminants are now located in black water in the sewer. In Figure 3, note that a state 
feature like “Plants : *” is used to denote an object that appears in a connection but 
does not otherwise have a property or value associated with it. 

 
Functional Discrimination Network Algorithm 
For each behavior model: 
 1: Create a node N for each substance-property pair in a by-state transition 
 2: Attach node N as a child of FUNCTIONAL-ROOT. 
 3: Create a node M for each substance-property-value triple in a by-state transition. 
 4: Attach each node M as child of N where properties are equal. 
 5: Create a node O to represent the system. 
 6: Attach node O as a child of all M nodes. 
 

 
Structural Discrimination Network Algorithm 
For each behavior model: 
 1: Create one node N for the set of all unique, non-substance structures in a by-state 

or by-structural-connection transition. 
 2: Attach node N as a child of STRUCTURAL-ROOT. 
 3: Create a node M for each by-structural-connection transition that includes at least 1 

non-substance structure. 
 4: Attach each node M as child of N. 
 5: Create a node C for each non-substance structure in an M-node. 
 6: Attach each node C as a child of M where structures are equal. 
 7: Create a node P for each structure-property pair in a by-state transition. 
 8: Attach each node P as a child of C where structures are equal. 
 9: Create a node S to represent the system. 
 10: Attach node S as a child of P. 

 

Fig. 4. Pseudocode for the Indexing Algorithms 
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Automatic Indexing of Biological Designs 

For automated retrieval to work, models of the biological systems in DANE need to 
be indexed. We use two algorithms adapted from [45], and named Functional 
Indexing and Structural Indexing, both of which generate separate discrimination 
networks.  Figure 4 provides the pseudocodes for these indexing algorithms. The 
Functional Indexing algorithm discriminates on substance-flagged objects and 
their properties, whereas the Structural Indexing algorithm discriminates on 
structural connections and the properties of the objects involved in 
those connections.  These trees are traversed by matching components in the 
input specification (e.g., Figure 3) to nodes in the tree.  Note that, during the creation 
of the discrimination trees in both cases, if a node is about to be created but already 
exists in the network, the pre-existing node is used instead. This step prevents the 
network from having many duplicate nodes (e.g., multiple nodes representing the 
property of “Location”).   

 

Fig. 5. Partial snapshot for the Structural Discrimination Network 

Figure 5 shows a partial discrimination tree built by the Structural Indexing 
algorithm.  At the top level, the root connects to a node that indexes a set of 
objects.  Underneath that node is a set of nodes that index on structural 
connections, and underneath them is a set of related objects.  Finally, the 
objects themselves link to a model in the system.  Note that we don’t have 
properties in this partial network because the objects here did not have 
specified properties in their model. 

Automatic Retrieval of Biological Designs 

Once a user creates a specification and attempts retrieval, the system uses the 
contents of the specification as probes into these discrimination networks and 
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retrieves one or more results depending upon if the network allows partial matches. 
We allow partial matches in the Structural network because it is based on non-state 
specific information (i.e., it does not index on value).   

Similarity Measurement 

If multiple results are returned, the system must determine how similar each result is 
to the user’s specification in order to rank the results and recommend a best 
match. We use two similarity metrics: Structural and Functional. The Structural 
similarity measurement looks at how many structural connections and 
object-property pairs are the same between the specification and the 
returned result. The Functional similarity measurement compares the initial and 
objective states of the specification and the returned result by 
attempting to match object-property-value triples. This metric differs  
from the Structural measurement because it compares values and does not  
compare structural connections. Both similarity metrics are calculated 
using Tversky’s ratio model [48] with alpha and beta set to 1, which  
simplifies to S(specification, case) = f(specification ∩ case) 
/ f(specification ∪ case) with f comparing features relevant to the given 
similarity measurement. 

Every result returned, regardless of which discrimination network was used, gets 
measured by both similarity metrics.  The average of both scores is presented to the 
user as a percentage of total similarity and used by the system to rank the results. 

6   Evaluation 

We performed two sets of tests to evaluate automatic indexing and retrieval in DANE. 
In the first test,  our system retrieved of a target biological system from the library. In 
the second tested, our system retrieved a biological system relevant to a design 
problem. For both experiments, we developed a library of 37 models. 15 of the 37 
models in the library are technological; 22 are biological.  Technological models were 
derived from earlier CBR experiments in our lab and are related to acid coolers, 
pulleys, gyroscopes, crankshafts, and latches. Biological models were developed by 
members of our lab (including the authors) with the goal of accurately representing 
their respective topics and are related to three families of systems: transpiration, the 
human small intestines, and the human kidney. 

The functional discrimination network indexes 4 models: 3 technological and 1 
biological. The structural discrimination network indexes 19 models: 8 technological 
and 11 biological.  The Structural discrimination network contains all of the models 
indexed by the Functional discrimination network.  We found that some of 37 models 
were not indexed by either algorithm because they are legacy models developed prior 
to our building of this automated retrieval technique, and thus do not contain the 
knowledge needed by the retrieval algorithms. 
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Method of the First Test 

For the first test, we tested our system’s ability to retrieve a target biological system.  
The target was “Kidney Removes Waste from Blood,” a model that describes how the 
human kidneys filter certain materials out of our blood. 

The test involved 28 sub-tests across five phases.  For each test, we built a 
specification and asked the system to retrieve a set of related results.  The 
results and the similarity scores (average, Functional, and Structural) were then 
recorded for later analysis. The goal of each sub-test was to systematically add 
something to the specification and see how the results changed.   

In the first phase, we added an object-property pair (e.g., Blood-
Purity) to the Initial State, beginning with a single object-property pair and 
stopping when the initial state of the Specification matched that of the model 
in the database, excluding any value’s. 

The second phase was the same as the first, except object-property pairs 
were now added to the Objective State.  Note that each phase and each sub-test are 
additive, so the specification is being built up over time. 

In the third phase, we incrementally added a value to each object-property 
pair, creating an object-property-value triple (e.g., Blood-Purity-
Impure) that matched the target model. 

The fourth phase was the same as the third except that we added value’s to the 
objective state. 

In the fifth and final phase, structural connections were incrementally 
added to the specification (e.g., Renal Artery branches to 
Segmental Arteries).  Note that these structural connections were 
added in the order that they appear in the behavior of the target model so as to 
mimic how a user of our system might add things as he or she is thinking about the 
target process. 

Method of the Second Test 

In the second test, our goal was to evaluate our system’s ability to retrieve designs of 
biological systems based on the problem specification illustrated in Figure 3. 
This specification is based on a design project in the Fall 2009 edition of the 
biologically inspired design course described above.  This sustainable design project 
had the goal of conserving home water use by recycling greywater for use in toilets.  
The design has contaminated home water going through an elaborate filtration 
process, eventually being divided into blackwater, which contains the contaminants 
and must be sent for treatment, and greywater, which can be reused. 

Next, we deployed the same specification-building, five-phase experiment 
discussed in the first test.  In this second test, we start from scratch and eventually the 
design specification, given in Figure 3, instead of assembling something that 
already exists in the database.  For example, the first object-property pair 
added was Water-Location; the first object-property-value triple added 
was Water-Location-Home; and the first structural connection added 
was Water Contained in Home Appliances. 
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Note that there was a model already in the database called “Recycle Greywater,” 
but it used neither the same terminology nor the same structures as the design 
specification used for this test.  

Results 

For the first test, our system returned the “Intestinal Villi Absorb Water and Nutrients 
into Blood” model as a best match for the first four phases.  This model was not our 
target model.  Despite being the best match, our system only gave this model on 
average a 10% similarity score.  In the fifth phase where structural 

connections were included in the specification, the system returned “Kidney 
Removes Waste from Blood,” which was our target model, and gave it from 68% 
similarity (in the beginning of phase 5) to 98% similarity (at the end of phase 5).  The 
reason we didn’t get 100% similarity is because the Structural similarity metric 
considers objects from all the behavioral states in the model and we’ve only 
included information in our specification from the initial and objective 
states. 

For the second test, our system returned the “Transpiration” model as the best 
match for all phases, ranging from a 15% similarity score in the beginning of Phase 1 
to a 28% similarity score at the end of Phase 5.  Additionally, the “Osmosis” model 
was returned as the second best match for the first four phases and first step of the 
fifth phase (ranging from 14% similarity to 20% similarity), and the “Root Absorbs 
Water” model was returned as the second best match for the rest of the fifth phase 
(20-23% similarity). 

7 Conclusions 

Since biologically inspired design is a promising paradigm for creative and 
sustainable solutions, there is a race to develop computational techniques and build 
computational tools to support the design process. However, at present both the 
practice of biologically inspired design and the development of supporting 
computational tools are ad hoc. In this paper, we presented an information-processing 
model of biologically inspired design as well as a knowledge representation scheme 
for organizing knowledge of biological systems from a design perspective. We then 
applied a case retrieval technique that utilized redundant discrimination trees for 
automatic indexing and retrieval of biological cases in the DANE system. 

Based on the experiments described in this paper, We can conclude two things 
about automated retrieval in DANE.  The first is that the system works as advertised 
when given a model structured appropriate to the indexing and retrieval algorithms.  
The “Kidney Removes Waste from Blood” model, for example, was indexed 
correctly, was retrieved after the relevant information was added to the problem 
specification, and was ranked by our system as the best match with a very high 
similarity score.  Similarly, our second test showed that relevant models could be 
retrieved given a realistic design problem specification.  All three of cases returned as 
best match and second-best match were related to the movement of water through a 
system, and although they weren’t about filtration per se, one could speculate on how 
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learning the process by which plants move water across long distances with little 
energy (i.e., “Transpiration”) might inspire a designer to create a low-energy system 
to move water throughout the filtration process. 

However, our tests also highlight some areas for improvement. For one, our 
indexing algorithms failed to index about half of the models in our database.  Clearly, 
if an automated retrieval system is to be successful, it must also be comprehensive.  
Second, our indexing algorithm in the first test only retrieved the correct model when 
structural connections were used in the specification.  Both of these 
shortcomings highlight the need for additional systemization of biological knowledge 
for use in automated retrieval. Because our indexing scheme was designed separately 
from many of the models, the model-builders did not include aspects in their models 
that would allow them to be indexed into discrimination networks. 

In addition to improving DANE’s automatic indexing and retrieval scheme, we 
plan to expand it to the full spectrum of the biologically inspired design process 
described here..  Specifically, we will enable adaptation of retrieved biologically 
cases to fit the input specification of engineering design problems.  We are also 
investigating mechanisms for the discovery, abstraction, and application of design 
patterns to further enhance resolution of the input problem specification. 
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