
Recommending Case Bases: Applications in

Social Web Search

Zurina Saaya, Barry Smyth, Maurice Coyle, and Peter Briggs

CLARITY: Centre for Sensor Web Technologies,
School of Computer Science and Informatics,

University College Dublin, Ireland
firstname.lastname@ucd.ie

http://www.clarity-centre.org

Abstract. For the main part, when it comes to questions of retrieval,
the focus of CBR research has been on the retrieval of cases from a repos-
itory of experience knowledge or case base. In this paper we consider a
complementary retrieval issue, namely the retrieval of case bases them-
selves in scenarios where experience may be distributed across multiple
case repositories. We motivate this problem with reference to a deployed
social web search service called HeyStaks, which is based on the availabil-
ity of multiple repositories of shared search knowledge, known as staks,
and which is fully integrated into mainstream search engines in order
to provide a more collaborative search experience. We describe the case
base retrieval problem in the context of HeyStaks, propose a number
of case base retrieval strategies, and evaluate them using real-user data
from recent deployments.

Keywords: Social search, context recommendation.

1 Introduction

This paper is about social search and the use of case-based reasoning (CBR)
techniques to develop social search technologies that work in tandem with main-
stream web search engines. Case-based reasoning is well suited to this problem
because CBR methods provide us with a framework for reasoning with experi-
ences and, at its heart, social search is about harnessing the search experiences
of others in order to improve web search. To this end we will focus on the
HeyStaks social search system, which has been described and evaluated in some
detail previously [15,16]. Briefly, HeyStaks provides for a range of search engine
enhancements to support collaborating searchers, as well as deeper algorithmic
components in order to identify relevant search experiences from a community
of collaborators. In short, HeyStaks makes result recommendations to searchers
at search time, based on the past searches of their social network. It assumes
asynchronous, remote collaboration: searchers do not need to be co-located and
collaboration can occur overtime as recent searchers benefit from recommenda-
tions that originate from earlier search sessions.

A. Ram and N. Wiratunga (Eds.): ICCBR 2011, LNAI 6880, pp. 274–288, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.clarity-centre.org

Recommending Case Bases: Applications in Social Web Search 275

The HeyStaks recommendation engine borrows many ideas from case-based
reasoning work and in this paper we focus on a particular challenge for HeyStaks
and its users. Specifically, the central concept in HeyStaks is the notion of a
search stak, which acts like a folder for our search experiences. Briefly, a user
can create a search stak on a topic of their choosing and they can opt to share
this stak with other users. As they search (using HeyStaks in combination with
their favourite mainstream search engine) the results that they select (or tag or
share) will be associated with their active stak. These results can be subsequently
recommended to other stak members in the future when appropriate. In this way,
stak members can benefit from the past searches of friends or colleagues who
share their staks.

Search staks are effectively case bases of search knowledge. As described in
[15] each stak is made up of a set of search cases that reflect the history of
search on a particular page. HeyStaks reuses these cases at search time as a
source of recommendations, by suggesting pages that match their queries and
that are contained within staks that they have joined or created. In addition,
as users locate pages of interest as they search, HeyStaks adds this information
to relevant staks and so search experience grows through usage. And thus the
relevance to case-based reasoning is that HeyStaks is a multi-case-base CBR
system and the stak selection problem outline above amounts to a case base
selection problem.

A key problem for HeyStaks is to ensure that the right stak is chosen for a
given search session. One way to address this is to ask users to pick their stak
at the start of their search session, but since many users forget to do this, this is
not a practical solution in reality. The alternative is to use information about the
user’s current search session as the basis for automatically selecting and/or rec-
ommending an appropriate stak at search time, which if successful provides for
a much more reliable solution. In this paper then we focus on this stak selection
(or case base selection) problem and in what follows we describe and evaluate a
recommendation-based strategy that works well enough in practice to automat-
ically suggest relevant staks to the user at search time, or even automatically
switch users into a likely stak without their intervention.

2 Related Work

Ultimately this work is focused on the application of case-based reasoning con-
cepts and techniques to support web search. Of course CBR researchers have
already recognised the opportunity for case-based techniques to improve infor-
mation retrieval and web search. For example, the work of Rissland [13] looks
at the application of CBR to legal information retrieval, and [4] describe a case-
based approach to question-answering tasks. Similarly, in recent years there has
been considerable research looking at how CBR techniques can deal with less
structured textual cases. This has led to a range of so-called textual CBR tech-
niques [10]. In the context of Web search, one particularly relevant piece of
work is the Broadway recommender system [7], and specifically the Broadway-
QR query refinement technique, which uses case-based techniques to reuse past

276 Z. Saaya et al.

query refinements in order to recommend new refinements to searchers. The work
of [5] applies CBR techniques to Web search in a different way, by combining
user profiling and textual case-based reasoning to dynamically filter Web docu-
ments according to a user’s learned preferences. This paper focuses on how CBR
techniques can be applied to conventional Web search, as opposed to related
information retrieval tasks. It builds on previous work [1,2,3] which has already
demonstrated the benefits of reusing search experiences within community-based
search case bases; each case base representing the prior search experiences of a
community of like-minded searchers.

An interesting feature of this work is the fundamental role that multiple case
bases play in search support. Conventionally, most CBR systems have assumed
the availability of a single case base, focusing on issues of case representation,
retrieval, adaptation, and learning with respect to this single case base. However,
some researchers have considered the potential and challenges for the use of mul-
tiple case bases during problem solving. For example the work of [17] introduced
the idea of multi-case-base reasoning (MCBR) and proposed a novel distributed
case-based reasoning architecture to supplement local case base knowledge, by
drawing on the case bases of other CBR systems. Building on this concept, [9]
explore, in detail, the issues arising out of MCBR, summarizing key component
processes, the dimensions along which these processes may differ, and some of
the key research issues that must be addressed for successful MCBR systems.
The work of [8] goes on to explore varies strategies for implementing MCBR
techniques and specifically proposes methods for automatically tuning MCBR
systems by selecting effective dispatching criteria and cross-case-base adaptation
strategies. The methods require no advance knowledge of the task and domain:
they perform tests on an initial set of problems and use the results to select
strategies reflecting the characteristics of the local and external case-bases.

In the present paper we are also concerned with a form of multi-case base rea-
soning. As per the introduction our case base are repositories of search knowledge
(search staks), which a particular user has subscribed to, and the specific task
that we focus on is the selection of the right case base (stak) for a given query,
which of course represents just one of the many processes involved in multi-case-
base reasoning. In the case of our work, however, it is a vital process since the
lack of an effective case base recommendation technique seriously limits the ef-
fectiveness of the HeyStaks system and can lead to a contamination effect across
search staks since off-topic content may be added to staks if recommendation
failures occur.

3 A Review of HeyStaks

In designing HeyStaks our primary goal has been to provide social Web search
enhancements, while at the same time allowing searchers to continue to use their
favourite search engine. HeyStaks adds two basic features to any mainstream
search engine. First, it allows users to create search staks, as a type of folder
for their search experiences at search time, and the creator can invite members

Recommending Case Bases: Applications in Social Web Search 277

Fig. 1. The HeyStaks system architecture and outline recommendation model

directly. Staks can be configured to be public (anyone can join) or private (invi-
tation only). Second, HeyStaks uses staks to generate recommendations that are
added to the search results that come from the underlying mainstream search
engine. These recommendations are results that stak members have previously
found to be relevant for similar queries and help the searcher to discover re-
sults that friends or colleagues have found to be interesting, results that may
otherwise be buried deep within Google’s default result-list.

As shown in Figure 1, HeyStaks takes the form of two basic components: a
client-side browser toolbar and a back-end server. The toolbar (see Figure 2)
allows users to create and share staks and provides a range of ancillary services,
such as the ability to tag or vote for pages. The toolbar also captures search re-
sult click-thrus and manages the integration of HeyStaks recommendations with
the default result-list. The back-end server manages the individual stak indexes
(indexing individual pages against query/tag terms and positive/negative votes),
the stak database (stak titles, members, descriptions, status, etc.), the HeyStaks
social networking service and, of course, the recommendation engine. In the
following sections we review how HeyStaks captures search activities within
search staks and how this search knowledge is used to generate and filter result
recommendations at search time; more detailed technical details can be found
in [16].

3.1 Profiling Stak Pages

Each stak in HeyStaks captures the search activities of its stak members within
the stak’s context. The basic unit of stak information is a result (URL) and
each stak (S) is associated with a set of results, S = {r1, ..., rk}. Each result
is effectively a case that is anonymously associated with a number of implicit
and explicit interest indicators including: the total number of times a result has
been selected (Sl), the query terms (q1, ..., qn) that led to its selection, the terms

278 Z. Saaya et al.

Fig. 2. The searcher is looking for information from a specialist mountain biking brand,
Hard Rock, but Google responds with results related to the restaurant/hotel chain.
HeyStaks recognises the query as relevant to the the searcher’sMountain Biking stak
and presents a set of more relevant results drawn from this stak.

contained in the snippet of the selected result (s1, ..., sj), the number of times
a result has been tagged (Tg), the terms used to tag it (t1, ..., tm), the votes it
has received (v+, v−), and the number of people it has been shared with (Sh)
as indicated by Equation 1.

rS
i = {q1...qn, s1...sj , t1...tm, v+, v−, Sl, T g, Sh} . (1)

Thus, each result page is associated with a set of term data (query terms and/or
tag terms) and a set of usage data (the selection, tag, share, and voting count).
The term data is represented as a Lucene (lucene.apache.org) index, with each
result indexed under its associated query and tag terms, and this provides the
basis for retrieving and ranking recommendation candidates. The usage data
provides an additional source of evidence that can be used to filter results and
to generate a final set of recommendations.

Recommending Case Bases: Applications in Social Web Search 279

3.2 Recommending Results: Relevance and Reputation

At search time, the searcher’s query qT and current, active stak ST are used
to generate a list of recommendations to be returned to the searcher. A set of
recommendation candidates are retrieved from ST by querying the correspond-
ing Lucene index with qT . This effectively produces a list of recommendations
based on the overlap between the query terms and the terms used to index each
recommendation (query, snippet, and tag terms). These recommendations are
then filtered and ranked. Results that do not exceed certain activity thresholds
are eliminated as candidates; e.g., results with only a single selection or results
with more negative votes than positive votes (see [16]). The remaining recom-
mendation candidates are then ranked according to two key factors: relevance
and reputation. Essentially each result is evaluated using a weighted score of its
relevance and reputation score as per Equation 2; where w is used to adjust the
relative influence of relevance and reputation and is usually set to 0.5.

score(r, qT) = w × rep(r) + (1 − w) × rel(qT , r) . (2)

The relevance of a result r with respect to a query qT is computed based on
Lucene’s standard TF*IDF metric [6] as per Equation 2. The reputation of a
result is a function of the reputation of the stak members who have added the
result to the stak. And their reputation in turn is based on the degree to which
results that they have added to staks have been subsequently recommended to,
and selected, by other users; see [11] for additional information.

4 Recognising Context and Recommending Staks

In this paper we are not concerned with recommending individual result pages
to HeyStaks users since this has been covered in [16] already. Rather, our focus is
on the aforementioned stak selection task: which of a user’s search staks (search
case bases) are appropriate for their current search query or session. The success
of HeyStaks depends critically on this. As in the example in Fig. 2, as the user
searches for mountain bike related information they need to choose Mountain
Biking as their current stak. If they do this consistently then HeyStaks will
learn to associate the right pages with the right staks, and be in a position to
make high quality recommendations for stak members. However, the need to
manually select a stak at the start of a new search session is an extra burden on
the searcher. To make this as easy as possible, HeyStaks integrates its stak-lists
as part of the mainstream search engine interface (see Fig. 2) but still many
users forget to do this, especially during the early stages, and this means that a
majority of search sessions are associated with the searcher’s default stak (My
Searches), or an incorrect stak as part of an earlier session.

The central contribution of this paper is to provide a practical solution to this
problem, one that avoids requiring the user to manually select staks at search
time. To do this we draw on ideas from recommender systems, case based rea-
soning, and traditional information retrieval. Each stak is effectively a case base

280 Z. Saaya et al.

Heystaks Toolbar
s1

..
qT

ss11

...

qT , Su RURL, RS+T

S1-Sk

S1-Sk

stak recommendation list

Stak
Summaries

Index

ss2

ssn

HeyStaks

Fig. 3. Stak Recommendation

of search cases, each case representing a page that has been selected, tagged,
and/or shared by stak members. For the purpose of stak recommendation we
treat the combinations of the cases in each stak/case base as a type of summary
document to reflect the stak’s topic. Effectively the terms and URLs collectively
contained in the stak cases become the terms of the summary document and in
this way a collection of staks (case bases) can be represented as a collection of
documents. Using Lucene, these documents (each one representing a single case
base) can then be transformed into a stak summary index (or SSI); see Fig. 3.
Then, at search time, we can use the searcher’s query as a probe into this stak
summary index to identify those staks/case bases that are most relevant to the
query; in this work we focus only on staks that the user is currently a member of
but a similar technique could be used to recommend other third-party staks in
certain circumstances. These recommended staks can then be suggested directly
to the user as a reminder to set their appropriate stak context; or, alternatively,
we can configure HeyStaks to automatically pre-select the top ranking recom-
mendation as the current stak context, while providing the searcher with an
option to undo this if they deem the stak to be incorrect.

In the above we assume that the user’s own search query (qT) is used as the
stak query, but in fact there are a number of additional sources of information
that could be usefully harnessed for this. For example, at search time, the initial
set of search engine results represents a valuable source of additional context
information. Our approach to getting additional context information is similar
to the technique proposed by [18,12,14], as we exploit local sources of context by
using the result of a search as the basis for context assessment, extracting context
terms that can then be used to augment the user’s original query. However rather
than use the context information in query augmentation, we are using the context
to find similar staks.

Specifically we use the terms in the search engine result titles and snippets
(RS+T), and URLs (RURL) in addition to the user’s short search query. Accord-
ingly, we refer to three basic types of stak recommendation strategy – query,
snippet, URL – depending on which sources of information form the user’s stak

Recommending Case Bases: Applications in Social Web Search 281

query (SQ). We might also consider a recommendation strategy based on the
popularity of the stak for the user so that staks that they use more frequently
are more likely to be recommended.

At stak recommendation time we use Lucene’s standard TF*IDF weighting
model as the basis for scoring recommended staks as shown in Equations 3 and
4. Effectively, terms in the stak summary index (SSI) representing each case
base are scored based on the TF*IDF model, preferring terms that are frequent
within a given case base but infrequent across the user’s staks/case bases (SU)
as a whole.

RecList(SQ, SU , SSI) =
SortDesc(Score(SQ, S, SSI))
∀SεSU

(3)

Score(SU , S, SSI) =
∑

tεSU

tf(t, S) × idf(t, SSI) (4)

In this way we can generate different recommendation lists (RLURL, RLquery,
RLS+T) by using different sources of data as the stak query (SQ); for example,
we can use the terms in result titles and snippets as the stak query, which
will lead to staks being recommended because they contain lots of distinctive
title and snippet terms. Of course we can also look to combine these different
sources of terms, for example, by ranking recommended staks according to their
position across the recommendation lists produced by different sources of query
terms. For instance, we can define the rank score of a given stak, across a set of
recommendation lists, to be the sum of the positions of the stak in the different
recommendation lists with a simple penalty assigned for lists that do not contain
the stak as per Equations 5 and 6. The final recommendation list is then sorted
in ascending order of the rank scores of recommended staks.

RankScore(s, RL1 − RLn) =
∑

RLiεRL1−RLn

PositionScore(s, RLi) (5)

PositionScore(s, RL) =
{

Position(s, RL) if sεRL;
Length(RL) + 1 otherwise. (6)

In summary then, HeyStaks is based on the idea of search staks which are effec-
tively case bases of search experiences. Users can be members of many staks and
at search time we need to know which stak is most likely to match their current
search needs, without having to ask them directly. This is a case base retrieval
problem, which we address by treating the case bases themselves as cases in
their own right. Each of these ’case base’ cases is made up of the combination of
its individual search cases. The advantage of this approach is that we can now
apply a wide range of conventional retrieval techniques to help select the right
case base, and therefore search stak, at search time.

This provides for a general purpose approach to stak recommendation, which
accommodates different sources of query data, and provides for a flexible way to

282 Z. Saaya et al.

combine multiple recommendation lists to generate an ensemble recommendation
list. The intuition of course is that by combining different sources of query data
we will generate better recommendations, which we shall look at in the following
evaluation.

5 Evaluation

In this section we evaluate the different forms of our stak recommendation ap-
proach, based on live-user search data, and focusing in particular on the overall
recommendation accuracy of the different techniques, and combinations of tech-
niques, across different stak types.

5.1 Setup

The data for this evaluation stems from HeyStaks usage logs generated during the
period October 2008 - January 2011. For the purpose of this evaluation we limit
our interest to only those activities that are associated with non-default search
staks submitted by 29 active users who submitted a minimum of 100 queries
through HeyStaks; this means that we focused on search sessions where the user
actively selected a specific stak, which we can use as the ground-truth against
which to judge our techniques. The test dataset covers 4343 individual searches.
The activity levels and stak memberships of these users is presented in Figure 4;
we can see that the average activity level per user is 150 activities (result selec-
tions, tags, shares etc) and the average user is a member of 19.6 staks. Overall
these users were members of 229 unique staks and the size of these staks (by
numbers of unique URLs) is presented in Figure 5; we further divide these staks
base on their relative size as shown. For the purpose of this study we evaluate
different recommendation strategies based on our five basic techniques, namely,

Fig. 4. Summary user data: a) a histogram of user stak membership; b) user activity
levels

Recommending Case Bases: Applications in Social Web Search 283

Fig. 5. A histogram of stak sizes. The staks are partitioned into groups based on their
size: small - 1-10 pages; medium - 11-100 pages; large - 101-500 pages; xlarge - 500+
pages.

Query, Snippet, URL, Popularity and including all combinations of these tech-
niques. In addition we also evaluate a baseline random recommendation strategy,
which suggests staks at random from the user’s stak-list, and also the popularity
strategy, which recommends the user’s most popular stak. This leads to a total
of 16 different recommendation alternatives. To evaluate these alternatives, we
generate a recommendation list for each of 4343 search instances and compute
the percentage of times that the known active stak is recommended among the
top k stak recommendations (k = 1 − 5).

5.2 Overall Recommendation Precision

To begin with we will look at the overall success rate across the different rec-
ommendation alternatives; in other words, how often do we recommend the
correct stak (case base) to the searcher given their query? Remember we know
the ground-truth from our test data since in each case the user did manually
select a stak for their search. Thus by comparing the recommended staks to the
ground-truth information we can calculate the success rate — how often one of
the recommended staks matches the ground-truth — for the various different
stak recommendation strategies and for different sizes of recommendation-lists.
This data is presented in the graphs of success rate against recommendation-list
size (k). For clarity we split the result data across two graphs show one set of
techniques in Fig. 6 and the remaining techniques in Fig. 7.

The results indicate a wide variety of success rates across the various tech-
niques. In Fig. 6 we can see that techniques such as URL, Query, and the com-
bination of URLQuery perform poorly, recommending the correct stak about
10-20% of the time regardless of the stak-list size. In other words URL and
query information does not provide a sufficiently strong signal for accurate stak
recommendation on their own. In contrast, using the snippet text of results pro-
vides a much strong signal as evidenced by the superior success rates enjoyed
by the Snippet technique in Fig. 6 , which achieves a 50% success rate when
only a single stak is recommended (k = 1), growing to about 70% for larger
recommendation-list sizes.

284 Z. Saaya et al.

Fig. 6. Recommendation success rate for Query, Snippet, URL and ensemble technique

Fig. 7. Recommendation success rate for Popularity and ensemble technique

Fig. 6 and Fig. 7 presents the combination strategies, those that combine
multiple signals during stak recommendation and we can see clear benefits across
the board, with all of the combination techniques shown delivering success rates
up to 80%. Importantly, we find that the combination of all signals (Query,
URL, Snippet, Popularity) tends to deliver the best performance across different
values of k. This is more clearly seen in Fig. 8 where we present the average
success rate (averaged across all values of k) for the different combinations of
techniques. The best performing combination combines Query, URL, Snippet,
Popularity to achieve an average success rate of almost 71%. Interestingly, it is
worth highlighting that using Popularity on its own delivers impressive success
rates (66% on average in Fig. 8). This is in part as result of the fact that many of
our test users tend to use one or two dominant staks and so a popularity-based
mechanism can often make good predictions. Over time, as users spread their
searches more evenly across more staks we can expect this technique to decline.

Recommending Case Bases: Applications in Social Web Search 285

Fig. 8. Mean average success rate

Regardless, by adding additional signals to popularity we are able to further
improve the stak recommendation success rate as shown.

In the above it is interesting to pay special attention to the k = 1 results
because the ideal strategy for HeyStaks would be to automatically switch the
user into a correct stak, rather than present a set of stak options for the searcher
to choose from. This would require a reasonably high success rate at k = 1 to
avoid user frustration in the case of incorrect stak switches. Unfortunately, it
appears from the results in Fig. 6 and Fig. 7 that the success rates at k = 1
do not quite support such an automatic switching approach. For example, the
best performing strategy at k = 1, which combines URL, Snippet, Query and
Popularity techniques, achieves a success rate of 56%, which does not seem high
enough to support an automatic stak switching.

5.3 Success vs. Stak Size

Of course the above results refer to average success rates across all staks. But
not all staks are created equally. For example, as per Figure 5, the majority of
staks in this study (47%) contain relatively few URLs (1-10 URLs) which surely
provides a much weaker signal for their retrieval. It seems likely that this should
impact on stak recommendation effectiveness when compared to larger staks. As
HeyStaks matures we can expect users to develop more mature staks and so it
is appropriate to evaluate the relationship between recommendation success and
stak size. To test this, we present the recommendation success rate for each of
the recommendation alternatives, by stak size (comparing small, medium, large
and extra-large staks) for recommendation lists of size 1 (Fig. 9) and 3 (Fig. 10).
In these graphs, each basic recommendation technique is represented by four
separate bars showing the success rate of this technique for the four different
stak types (small, medium, large, and xlarge). For convenience we also present a
line-graph of the average success rate (drawn from Fig. 8) as a reference across
the techniques.

286 Z. Saaya et al.

Fig. 9. Success rate by stak size where k = 1

Fig. 10. Success rate by stak size where k = 3

It is clear that there are significant differences in recommendation accuracy
across the various stak sizes. As expected the larger, more mature staks bene-
fit from higher success rates across the various recommendation techniques and
combinations. Once again the combination of all techniques does marginally bet-
ter overall than any other combination. For example, looking at the combination
URL, snippet, query and popularity we see a success rate of about 82% at k = 1
for the extra-large staks and 61% for the large staks, compared to only 11% and
1% for the medium and small staks respectively. This is encouraging because,
from a engineering standpoint, it suggests that it may be practical to imple-
ment a reliable automatic stak switching policy, at least for large staks which
contain more than 100 URLs. When we look at the results for k = 3 (see Fig. 10)

Recommending Case Bases: Applications in Social Web Search 287

we see similar effects, only this time many combination techniques are achieving
success rates in excess of 95%, for a number of recommendation combinations
across the extra-large staks.

5.4 Conclusions

HeyStaks is a deployed social web search service that used ideas from case-based
reasoning to help users to search more effectively online. Users can create and join
so-called search staks, which are collaborative case bases of search knowledge,
in order to receive community recommendations at search-time. The main con-
tribution of this work has been to highlight a practical problem facing HeyStaks
— the need to automatically predict the right stak for users at search time —
and to propose and evaluate potential solutions in the form of stak recommen-
dation strategies To this end we have described a general framework for stak
recommendation, based on the indexing of staks. The approach accommodates
a variety of different recommendation alternatives, using different types of query
data at search time, such as search query terms, the titles, URLs, and snippet
terms of search results, for example. We have described the results of a compre-
hensive evaluation of a variety of recommendation strategies, based on live user
search data. The success rates achieved for the larger staks in particular speak
to the potential for a reliable automatic stak switching mechanism, and at the
very least it is possible to generate a short-list of stak recommendations that are
accurate up to nearly 95% of the time.

One important limitation of this work is that recommendations are based on a
single query (or the results of a single query), when we know that most searchers
engage in sessions that extend beyond a single query; we will often submit 2 or 3
queries variations before we find what we are looking for. Obviously, by looking at
an extended search session it may be possible to leverage more data (more queries,
more URLs, more snippets) in order to better guide stak recommendation. So, for
example, while it might not be possible to recommend the correct stak on the first
query,wemayfind that the addition of a secondquery (and its associatedURLs and
snippets) greatly improves recommendation quality. Another opportunity could
see the use of third-party services to enhance our understanding of the user’s search
context. For example, by leveraging WordNet or Wikipedia it may be possible to
elaborate a users query and to better identify context and this context information
could also be used for stak recommendation. These ideas will form the basis for the
next steps in this research.

Acknowledgement. This work is supported by Science Foundation Ireland
under grant 07/CE/I1147, HeyStaks Technologies Ltd, Ministry of Higher Edu-
cation Malaysia and Universiti Teknikal Malaysia Melaka.

References

1. Balfe, E., Smyth, B.: Case-based collaborative web search. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 489–503. Springer,
Heidelberg (2004)

288 Z. Saaya et al.

2. Boydell, O., Smyth, B.: Enhancing case-based, collaborative web search. In: Weber,
R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 329–343.
Springer, Heidelberg (2007)

3. Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based
web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS (LNAI), vol. 5239, pp. 89–103. Springer, Heidelberg (2008)

4. Burke, R., Hammond, K., Kulyukin, V., Tomuro, S.: Question Answering from
Frequently Asked Question Files. AI Magazine 18(2), 57–66 (1997)

5. Godoy, D., Amandi, A.: PersonalSearcher: An Intelligent Agent for Searching Web
Pages. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000.
LNCS (LNAI), vol. 1952, pp. 43–52. Springer, Heidelberg (2000)

6. Hatcher, E., Gospodnetic, O.: Lucene in action. Manning Publications (2004)
7. Kanawati, R., Jaczynski, M., Trousse, B., Andreloi, J.-M.: Applying the Broadway

Recommendation Computation Approach for Implementing a Query Refinement
Service in the CBKB Meta-search Engine. In: Conférence Française sur le Raison-
nement á Partir de Cas, RáPC’99 (1999)

8. Leake, D.B., Sooriamurthi, R.: Automatically selecting strategies for multi-case-
base reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI),
vol. 2416, pp. 204–233. Springer, Heidelberg (2002)

9. Leake, D.B., Sooriamurthi, R.: Managing multiple case bases: Dimensions and is-
sues. In: FLAIRS Conference, pp. 106–110 (2002)

10. Lenz, M., Ashley, K.: AAAI Workshop on Textual Case-Based Reasoning, AAAI
Technical Report WS-98-12 (1999)

11. McNally, K., O’Mahony, M.P., Smyth, B., Coyle, M., Briggs, P.: Towards a
reputation-based model of social web search. In: IUI 2010: Proceeding of the 14th
International Conference on Intelligent User Interfaces, pp. 179–188. ACM, New
York (2010)

12. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1998, pp. 206–214. ACM, New
York (1998)

13. Rissland, E.L., Daniels, J.J.: A hybrid CBR-IR Approach to Legal Information
Retrieval. In: Proceedings of the 5th International Conference on Artificial Intelli-
gence and Law, pp. 52–61. ACM Press, New York (1995)

14. Shen, D., Pan, R., Sun, J.-T., Pan, J.J., Wu, K., Yin, J., Yang, Q.: Query enrich-
ment for web-query classification. ACM Trans. Inf. Syst. 24, 320–352 (2006)

15. Smyth, B., Briggs, P., Coyle, M., OḾahony, M.: A case-based perspective on social
web search. In: McGinty, L., Wilson, D. (eds.) ICCBR 2009. LNCS, vol. 5650, pp.
494–508. Springer, Heidelberg (2009)

16. Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.P.: Google shared. a case-study
in social search. In: User Modeling, Adaptation and Personalization, pp. 283–294
(2009)

17. Sooriamurthi, R.: Multi-case-base reasoning. PhD thesis, Indiana University, Indi-
anapolis, IN, USA, AAI3278223 (2007)

18. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1996, pp. 4–11. ACM, New York
(1996)

	Recommending Case Bases: Applications inSocial Web Search
	Introduction
	Related Work
	A Review of HeyStaks
	Profiling Stak Pages
	Recommending Results: Relevance and Reputation

	Recognising Context and Recommending Staks
	Evaluation
	Setup
	Overall Recommendation Precision
	Success vs. Stak Size
	Conclusions

	References

