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Abstract. The Jeopardy! television quiz show asks natural-language questions 
and requires natural-language answers.  One useful source of information for 
answering Jeopardy! questions is text from written sources such as encyclope-
dias or news articles.  A text passage may partially or fully indicate that some 
candidate answer is the correct answer to the question. Recognizing whether it 
does requires determining the extent to which what the passage is saying about 
the candidate answer is similar to what the question is saying about the desired 
answer.  This paper describes how structure mapping [1] (an algorithm original-
ly developed for analogical reasoning) is applied to determine similarity be-
tween content in questions and passages. That algorithm is one of many used in 
the Watson question answering system [2]. It contributes a significant amount 
to Watson’s effectiveness. 

1   Introduction 

Watson is a question answering system built on a set of technologies known as 
DeepQA [2].  Watson has been customized and configured to compete at Jeopardy!, 
an American television quiz show.  Watson takes in a question and produces a ranked 
list of answers with confidence scores attached to each of these answers. 

One of the stages in the DeepQA question answering pipeline is deep evidence 
scoring.  This stage receives as input a question and a candidate answer in the context 
of some supporting evidence (typically a passage containing that answer).  Questions 
typically have a focus identified for them (i.e., the term in the question indicating the 
answer being sought).  For example, a deep evidence scorer could be given a question 
like “He was the first U.S. President” and a passage like “George Washington was the 
first U.S. President.”  “He” in the question will be marked as the focus.  If the candi-
date answer is “George Washington,” each of the deep evidence scorers will attempt 
to determine the extent to which what the passage says about the “George Washing-
ton” addresses what the question asks about the “He”.  In this example, there is a 
perfect match, and all of Watson’s deep evidence scoring mechanisms will conclude 
that this passage strongly supports the specified answer.  However, other passages 
may answer the question less directly, or provide evidence for only a portion of what 
the question is asking for (e.g., that Washington was a president). 

The examples above do not require any explicit analogy.  One could envision pas-
sages that say (for example) that (a) Charles de Gaul was a great French general who 
fought for the liberation of France, (b) that Charles de Gaulle was the first president 
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of the fifth republic of France, and (c) that George Washington was a great American 
general who fought for the liberation of the U.S.; by analogy, one might suspect that 
George Washington was the first president of the U.S. DeepQA does not explicitly do 
reasoning of this sort, but may in future work.  

This paper provides a detailed description of one of Watson’s deep evidence scor-
ing algorithms: the Logical Form Answer Candidate Scorer (LFACS).  LFACS uses a 
logical form of a question (e.g., a Jeopardy! clue) containing a specified focus term 
and the logical form of a passage containing a specified candidate.  LFACS employs a 
structure mapping algorithm similar to the one described in [1].  LFACS embodies a 
variety of specializations of structure mapping that are driven by the nature of its task.  
For example, LFACS is pragmatic in the sense described in [3], because it has a spe-
cific inference it is intended to draw: the extent to which the candidate answer in the 
passage corresponds to the answer in the clue. 

2   Role in the Architecture 

The DeepQA architecture is described in [2]; this section provides a minimal 
description of the architecture to explain the context in which LFACS is used.  
DeepQA begins with question analysis, which applies a variety of natural-language 
processing algorithms to the question text.  These algorithms include general purpose 
text processing such as parsing and semantic relation detection.  They also include 
processing that is specific to analyzing questions, e.g., determining the focus.  In 
Jeopardy! a question focus is often denoted by a pronoun with no anaphor or a 
common noun with the word “this” as a determiner.  For example, in the question 
“Ambrose Bierce penned this sardonic reference work in 1906,” the focus is “work.”  
The focus is defined to be the term in the question that would correspond to the an-
swer in a corresponding assertion. 

Question analysis in DeepQA is followed by primary search and candidate gen-
eration, which finds candidate answers in variety of sources.  Some of those sources 
are natural-language text while others are structured sources such as knowledge bases.  
Answers are subjected to preliminary scoring (including answer typing, etc.), and 
those answers that seem poor (i.e., have a confidence score below a fixed threshold, 
according to a statistical model) are filtered out. 

All candidate answers that pass through the filter are then processed by supporting 
evidence retrieval.  That component conducts a search for passages that contain the 
candidate answer and as many other terms from the question as possible.  This re-
trieval step provides a set of potentially relevant passages for each answer, regardless 
of where it was originally found (text, knowledge bases, etc.).  Candidate answers that 
were found in text will also have one or more passages from the primary search.  Pas-
sages from both types of search are used as supporting passages. 

The supporting passages are analyzed in deep evidence scoring, in which a variety 
of algorithms assess the degree to which the passage provides evidence in support of 
some candidate answer.  LFACS, described below, is one of these deep evidence 
scoring components. 
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The final merging and ranking step combines equivalent candidate answers (e.g., 
“Richard Nixon” and “Richard M. Nixon”) and determines the confidence that each 
answer is correct.  It ranks the answers by their confidence scores.  The final merging 
and ranking component uses statistical machine learning; the features used to compute 
a confidence for each answer come from algorithms throughout the pipeline.  LFACS 
is one source of features used by this component. 

3   Syntactic-Semantic Graphs 

LFACS reasons over syntactic-semantic graphs of both the question and the passage.  
In these graphs, nodes are terms in the clue (e.g., a word or a proper name) and edges 
encode syntactic and/or semantic relations among those terms.  The syntactic portions 
of the graph are derived from an English-Slot Grammar (ESG) parse [4].  The seman-
tic portions of the graph are derived from pattern-based relation detectors.  Syntactic 
relations are useful for identifying similarity when questions and passages have a 
similar structure (e.g., “He wrote Utopia” – “Thomas More wrote Utopia”).  Semantic 
relations are useful when passages use different structures with equivalent meaning 
(e.g., “He wrote Utopia” – “Thomas More, author of Utopia”).  Relation detection is 
very challenging and the relation detection capabilities in DeepQA, while very pre-
cise, have only a moderate level of coverage.  LFACS can be effective when content 
in passages have similar structure or when they have similar semantics that fall within 
the coverage of our relation detectors.  Because syntactic and semantic relations are 
combined in a single graph, LFACS can combine insights from each.  For example, 
consider the following actual Jeopardy! clue: 

It’s believed Shakespeare wrote part of a 1595 play about this “Utopia” author. 
Some content in the clue is covered by semantic relations such as the one between 

an author and a work by that author.  However, there are other key relationships in 
this clue such as the one between a play and the person that the play is about.  Deep-
QA does not have recognizers for this relationship, but is able to parse the text.  Con-
sider the following (made-up) sample passage: 

We saw a 16th century play about Thomas More, who wrote Utopia. 
The syntactic-semantic graph for this passage a semantic (authorOf) edge between 

Thomas More and Utopia; that edge matches the corresponding semantic edge in the 
graph of the clue.  In addition, passage has syntactic edges that correspond to syntac-
tic edges in the clue. Thomas More in the passage is the object of the preposition 
about, while the focus of the clue is the object of the preposition about in the clue.  As 
a result the matching algorithm (see next section) is able to align the following terms 
in the clue to terms in the passage using semantic and/or syntactic edges: 1595, play, 
about, Utopia, author.  There are still some important terms in the clue that are not 
covered by this passage (e.g., Shakespeare).  Our algorithm assesses the quantity and 
importance of the terms that it is able to align and asserts a numerical value for how 
strong it considers the match to be; that numerical value is used by the DeepQA final 
merger as one of the features that influences the evaluation of answers. 
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4   Algorithm 

LFACS performs a form of structure mapping.  The algorithm is similar to the one 
described in [1], with customization to reflect the nature of the content (extracted 
NLP results), the fact that LFACS has a single pre-specified inference to draw: 
Specifically, LFACS is trying to judge whether the passage provides support for a 
specific, designated candidate answer.  Below are the key steps in structure mapping 
that are defined in [1], with descriptions of how those steps are realized in LFACS: 

• Local Match Construction: LFACS matches both edges and nodes.  Edges are 
matched using a formal ontology, e.g., the authorOf relation is a subrelation of the 
creatorOfWork relation.  Nodes are matched using a variety of resources for 
determining equivalent terms, e.g., WordNet [5], Wikipedia redirects, and has 
specialized logic for matching dates, numbers, etc. 

• Global Map Construction: Unlike [1], LFACS is only concerned with global 
matches that align the focus to the specified candidate answer.  Thus global map 
construction begins with the focus and candidate answer and search outward from 
those nodes through the space of local matches.  As in [1], the global match 
construction process ensures consistency of global maps, requiring that no single 
node in the question map to multiple nodes in the passage. 

• Candidate Inference Construction: LFACS omits this step because the inference to 
be drawn is implied by its inputs (aligning the focus to the candidate answer). 

• Match Evaluation: As in [1], the total score for a match in LFACS is the sum of the 
match scores for the local match hypotheses included in the maximal consistent 
global map.  Local match scores in LFACS are computed using inverse-document 
frequency (IDF) from our text corpus.  Terms with high IDF scores occur rarely in 
the corpus so the fact that they align with the clue is less likely to be a coincidence 
and thus more likely to imply that the answer is correct. 

 

In using this algorithm, we have encountered a wide variety of technical issues that 
are specific to natural-language.  For example, some concepts can be expressed as 
either a verb or a noun (e.g., destroy-destruction).  We address those issues through 
some combination of graph preprocessing (e.g., adding edges to indicate the logical 
subject of destruction during relation detection) and specialized logic that is internal 
to the local match construction (e.g., allowing the destroy to match destruction). 

Our approach to generating local match hypotheses mostly focuses on determining 
equivalence (or at least rough equivalence) between nodes.  This focus reflects the 
fact that we are interested in similarity, but not analogy per se.  If we were to try to 
address examples like the Charles de Gaul analogy in the introduction of this paper, 
we would need to relax those restrictions and adjust the confidence in our conclusions 
accordingly.  This may be extremely important in domains where there is less direct 
evidence involving the candidate answers. 

5   Evaluation and Conclusions 

Detailed evaluations of deep evidence scoring components will be presented in a 
future publication.  LFACS has statistically significant impact on question answering 
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accuracy when included in either a simple baseline DeepQA question answering 
system or to the complete Watson question answering system that competed with 
human grand champions.  This impact, while significant, is small: less than half of 
one percent in the full system; the full system has an enormous number of answer 
scoring components and there is a great deal of overlap in the signal they provide.  
Other deep evidence scoring components in DeepQA (e.g., counting term matches, 
comparing word order) are more aggressive in what they consider to be a match. 
These aggressive components have the disadvantage that they do not draw on the full 
richness of the syntactic and semantic structure but the advantage that they can draw 
evidence from passages that have little structural similarity to the question. 

The impact of LFACS when added to the simple baseline was smaller than that of 
the more aggressive components.  However, in the complete system (containing many 
more features), the impact of LFACS (while small in an absolute sense) is larger than 
the impact of those components.  The effect of ablating all of the deep evidence 
scoring components in the full system is much bigger than the effects of ablating any 
of them.  These results have important implications for developers of question 
answering (or similar) technology.  Simple, aggressive approaches are well-suited to 
quickly and easily attaining moderate effectiveness.  However, as a system becomes 
more sophisticated, the opportunities for components of that sort to have impact 
becomes very limitted.  In those cases, more algorithms such as LFACS that make 
effective use of syntatic and/or semantic structure can further enhance the 
effectiveness of a question answering system.  As a result, additional and improved 
algorithms of this sort that draw on the full richness of our deep syntatic and semantic 
analysis are an important area for future research. 
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