
A. Ram and N. Wiratunga (Eds.): ICCBR 2011, LNAI 6880, pp. 6–10, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Structure Mapping for Jeopardy! Clues

J. William Murdock

IBM T.J. Watson Research Center,
P.O. Box 704,

Yorktown Heights, NY 10598
murdockj@us.ibm.com

Abstract. The Jeopardy! television quiz show asks natural-language questions
and requires natural-language answers. One useful source of information for
answering Jeopardy! questions is text from written sources such as encyclope-
dias or news articles. A text passage may partially or fully indicate that some
candidate answer is the correct answer to the question. Recognizing whether it
does requires determining the extent to which what the passage is saying about
the candidate answer is similar to what the question is saying about the desired
answer. This paper describes how structure mapping [1] (an algorithm original-
ly developed for analogical reasoning) is applied to determine similarity be-
tween content in questions and passages. That algorithm is one of many used in
the Watson question answering system [2]. It contributes a significant amount
to Watson’s effectiveness.

1 Introduction

Watson is a question answering system built on a set of technologies known as
DeepQA [2]. Watson has been customized and configured to compete at Jeopardy!,
an American television quiz show. Watson takes in a question and produces a ranked
list of answers with confidence scores attached to each of these answers.

One of the stages in the DeepQA question answering pipeline is deep evidence
scoring. This stage receives as input a question and a candidate answer in the context
of some supporting evidence (typically a passage containing that answer). Questions
typically have a focus identified for them (i.e., the term in the question indicating the
answer being sought). For example, a deep evidence scorer could be given a question
like “He was the first U.S. President” and a passage like “George Washington was the
first U.S. President.” “He” in the question will be marked as the focus. If the candi-
date answer is “George Washington,” each of the deep evidence scorers will attempt
to determine the extent to which what the passage says about the “George Washing-
ton” addresses what the question asks about the “He”. In this example, there is a
perfect match, and all of Watson’s deep evidence scoring mechanisms will conclude
that this passage strongly supports the specified answer. However, other passages
may answer the question less directly, or provide evidence for only a portion of what
the question is asking for (e.g., that Washington was a president).

The examples above do not require any explicit analogy. One could envision pas-
sages that say (for example) that (a) Charles de Gaul was a great French general who
fought for the liberation of France, (b) that Charles de Gaulle was the first president

 Structure Mapping for Jeopardy! Clues 7

of the fifth republic of France, and (c) that George Washington was a great American
general who fought for the liberation of the U.S.; by analogy, one might suspect that
George Washington was the first president of the U.S. DeepQA does not explicitly do
reasoning of this sort, but may in future work.

This paper provides a detailed description of one of Watson’s deep evidence scor-
ing algorithms: the Logical Form Answer Candidate Scorer (LFACS). LFACS uses a
logical form of a question (e.g., a Jeopardy! clue) containing a specified focus term
and the logical form of a passage containing a specified candidate. LFACS employs a
structure mapping algorithm similar to the one described in [1]. LFACS embodies a
variety of specializations of structure mapping that are driven by the nature of its task.
For example, LFACS is pragmatic in the sense described in [3], because it has a spe-
cific inference it is intended to draw: the extent to which the candidate answer in the
passage corresponds to the answer in the clue.

2 Role in the Architecture

The DeepQA architecture is described in [2]; this section provides a minimal
description of the architecture to explain the context in which LFACS is used.
DeepQA begins with question analysis, which applies a variety of natural-language
processing algorithms to the question text. These algorithms include general purpose
text processing such as parsing and semantic relation detection. They also include
processing that is specific to analyzing questions, e.g., determining the focus. In
Jeopardy! a question focus is often denoted by a pronoun with no anaphor or a
common noun with the word “this” as a determiner. For example, in the question
“Ambrose Bierce penned this sardonic reference work in 1906,” the focus is “work.”
The focus is defined to be the term in the question that would correspond to the an-
swer in a corresponding assertion.

Question analysis in DeepQA is followed by primary search and candidate gen-
eration, which finds candidate answers in variety of sources. Some of those sources
are natural-language text while others are structured sources such as knowledge bases.
Answers are subjected to preliminary scoring (including answer typing, etc.), and
those answers that seem poor (i.e., have a confidence score below a fixed threshold,
according to a statistical model) are filtered out.

All candidate answers that pass through the filter are then processed by supporting
evidence retrieval. That component conducts a search for passages that contain the
candidate answer and as many other terms from the question as possible. This re-
trieval step provides a set of potentially relevant passages for each answer, regardless
of where it was originally found (text, knowledge bases, etc.). Candidate answers that
were found in text will also have one or more passages from the primary search. Pas-
sages from both types of search are used as supporting passages.

The supporting passages are analyzed in deep evidence scoring, in which a variety
of algorithms assess the degree to which the passage provides evidence in support of
some candidate answer. LFACS, described below, is one of these deep evidence
scoring components.

8 J. William Murdock

The final merging and ranking step combines equivalent candidate answers (e.g.,
“Richard Nixon” and “Richard M. Nixon”) and determines the confidence that each
answer is correct. It ranks the answers by their confidence scores. The final merging
and ranking component uses statistical machine learning; the features used to compute
a confidence for each answer come from algorithms throughout the pipeline. LFACS
is one source of features used by this component.

3 Syntactic-Semantic Graphs

LFACS reasons over syntactic-semantic graphs of both the question and the passage.
In these graphs, nodes are terms in the clue (e.g., a word or a proper name) and edges
encode syntactic and/or semantic relations among those terms. The syntactic portions
of the graph are derived from an English-Slot Grammar (ESG) parse [4]. The seman-
tic portions of the graph are derived from pattern-based relation detectors. Syntactic
relations are useful for identifying similarity when questions and passages have a
similar structure (e.g., “He wrote Utopia” – “Thomas More wrote Utopia”). Semantic
relations are useful when passages use different structures with equivalent meaning
(e.g., “He wrote Utopia” – “Thomas More, author of Utopia”). Relation detection is
very challenging and the relation detection capabilities in DeepQA, while very pre-
cise, have only a moderate level of coverage. LFACS can be effective when content
in passages have similar structure or when they have similar semantics that fall within
the coverage of our relation detectors. Because syntactic and semantic relations are
combined in a single graph, LFACS can combine insights from each. For example,
consider the following actual Jeopardy! clue:

It’s believed Shakespeare wrote part of a 1595 play about this “Utopia” author.
Some content in the clue is covered by semantic relations such as the one between

an author and a work by that author. However, there are other key relationships in
this clue such as the one between a play and the person that the play is about. Deep-
QA does not have recognizers for this relationship, but is able to parse the text. Con-
sider the following (made-up) sample passage:

We saw a 16th century play about Thomas More, who wrote Utopia.
The syntactic-semantic graph for this passage a semantic (authorOf) edge between

Thomas More and Utopia; that edge matches the corresponding semantic edge in the
graph of the clue. In addition, passage has syntactic edges that correspond to syntac-
tic edges in the clue. Thomas More in the passage is the object of the preposition
about, while the focus of the clue is the object of the preposition about in the clue. As
a result the matching algorithm (see next section) is able to align the following terms
in the clue to terms in the passage using semantic and/or syntactic edges: 1595, play,
about, Utopia, author. There are still some important terms in the clue that are not
covered by this passage (e.g., Shakespeare). Our algorithm assesses the quantity and
importance of the terms that it is able to align and asserts a numerical value for how
strong it considers the match to be; that numerical value is used by the DeepQA final
merger as one of the features that influences the evaluation of answers.

 Structure Mapping for Jeopardy! Clues 9

4 Algorithm

LFACS performs a form of structure mapping. The algorithm is similar to the one
described in [1], with customization to reflect the nature of the content (extracted
NLP results), the fact that LFACS has a single pre-specified inference to draw:
Specifically, LFACS is trying to judge whether the passage provides support for a
specific, designated candidate answer. Below are the key steps in structure mapping
that are defined in [1], with descriptions of how those steps are realized in LFACS:

• Local Match Construction: LFACS matches both edges and nodes. Edges are
matched using a formal ontology, e.g., the authorOf relation is a subrelation of the
creatorOfWork relation. Nodes are matched using a variety of resources for
determining equivalent terms, e.g., WordNet [5], Wikipedia redirects, and has
specialized logic for matching dates, numbers, etc.

• Global Map Construction: Unlike [1], LFACS is only concerned with global
matches that align the focus to the specified candidate answer. Thus global map
construction begins with the focus and candidate answer and search outward from
those nodes through the space of local matches. As in [1], the global match
construction process ensures consistency of global maps, requiring that no single
node in the question map to multiple nodes in the passage.

• Candidate Inference Construction: LFACS omits this step because the inference to
be drawn is implied by its inputs (aligning the focus to the candidate answer).

• Match Evaluation: As in [1], the total score for a match in LFACS is the sum of the
match scores for the local match hypotheses included in the maximal consistent
global map. Local match scores in LFACS are computed using inverse-document
frequency (IDF) from our text corpus. Terms with high IDF scores occur rarely in
the corpus so the fact that they align with the clue is less likely to be a coincidence
and thus more likely to imply that the answer is correct.

In using this algorithm, we have encountered a wide variety of technical issues that
are specific to natural-language. For example, some concepts can be expressed as
either a verb or a noun (e.g., destroy-destruction). We address those issues through
some combination of graph preprocessing (e.g., adding edges to indicate the logical
subject of destruction during relation detection) and specialized logic that is internal
to the local match construction (e.g., allowing the destroy to match destruction).

Our approach to generating local match hypotheses mostly focuses on determining
equivalence (or at least rough equivalence) between nodes. This focus reflects the
fact that we are interested in similarity, but not analogy per se. If we were to try to
address examples like the Charles de Gaul analogy in the introduction of this paper,
we would need to relax those restrictions and adjust the confidence in our conclusions
accordingly. This may be extremely important in domains where there is less direct
evidence involving the candidate answers.

5 Evaluation and Conclusions

Detailed evaluations of deep evidence scoring components will be presented in a
future publication. LFACS has statistically significant impact on question answering

10 J. William Murdock

accuracy when included in either a simple baseline DeepQA question answering
system or to the complete Watson question answering system that competed with
human grand champions. This impact, while significant, is small: less than half of
one percent in the full system; the full system has an enormous number of answer
scoring components and there is a great deal of overlap in the signal they provide.
Other deep evidence scoring components in DeepQA (e.g., counting term matches,
comparing word order) are more aggressive in what they consider to be a match.
These aggressive components have the disadvantage that they do not draw on the full
richness of the syntactic and semantic structure but the advantage that they can draw
evidence from passages that have little structural similarity to the question.

The impact of LFACS when added to the simple baseline was smaller than that of
the more aggressive components. However, in the complete system (containing many
more features), the impact of LFACS (while small in an absolute sense) is larger than
the impact of those components. The effect of ablating all of the deep evidence
scoring components in the full system is much bigger than the effects of ablating any
of them. These results have important implications for developers of question
answering (or similar) technology. Simple, aggressive approaches are well-suited to
quickly and easily attaining moderate effectiveness. However, as a system becomes
more sophisticated, the opportunities for components of that sort to have impact
becomes very limitted. In those cases, more algorithms such as LFACS that make
effective use of syntatic and/or semantic structure can further enhance the
effectiveness of a question answering system. As a result, additional and improved
algorithms of this sort that draw on the full richness of our deep syntatic and semantic
analysis are an important area for future research.

References

1. Falkenhainer, B., Forbus, K., Gentner, D.: The Structure Mapping Engine: Algorithm and
examples. Artificial Intelligence 41, 1–63 (1989)

2. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,
Murdock, J.W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building Watson: An
Overview of the DeepQA Project. AI Magazine 31(3), 59–79 (2010)

3. Forbus, K., Oblinger, D.: Making SME greedy and pragmatic. In: Proceedings of the Cogni-
tive Science Society (1990)

4. McCord, M.C.: Slot Grammar: A System for Simpler Construction of Practical Natural
Language Grammars. In: Studer, R. (ed.) Natural Language and Logic. LNCS, vol. 459,
pp. 118–145. Springer, Heidelberg (1990)

5. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

	Structure Mapping for Jeopardy! Clues
	Introduction
	Role in the Architecture
	Syntactic-Semantic Graphs
	Algorithm
	Evaluation and Conclusions
	References

