
Combining Expert Knowledge and Learning from
Demonstration in Real-Time Strategy Games�

Ricardo Palma, Antonio A. Sánchez-Ruiz, Marco Antonio Gómez-Martín,
Pedro Pablo Gómez-Martín, and Pedro Antonio González-Calero

Dep. Ingeniería del Software e Inteligencia Artificial,
Universidad Complutense de Madrid, Spain

rjpalma@estumail.ucm.es, {antsanch,marcoa,pedrop,pedro}@fdi.ucm.es

Abstract. Case-based planning (CBP) is usually considered a good so-
lution to solve the knowledge acquisition problem that arises when devel-
oping AIs for real-time strategy games. Unlike more classical approaches,
such as state machines or rule-based systems, CBP allows experts to train
AIs directly from games recorded by expert players. Unfortunately, this
simple approach has also some drawbacks, for example it is not easy to
refine an existing case base to learn specific strategies when a long game
session is needed to create a new trace. Furthermore, CBP may be too
reactive to small changes in the game state and, at the same time, do not
respond fast enough to important changes in the opponent’s strategy. We
propose to alleviate these problems by letting experts to inject decision
making knowledge into the system in the form of behavior trees, and we
show promising results in some experiments using Starcraft.

1 Introduction

Real-time strategy (RTS) games are very demanding in terms of AI complex-
ity. They require fast pathfinding algorithms for moving large numbers of units
through extensive levels, which need to be manually or procedurally annotated
with tactical information. Regarding decision making, RTS require a multi-tiered
AI approach, with decisions made at a low level for individual characters, at an
intermediate level for a formation of characters, and at the high level of a whole
side in the game. Usually simple techniques, such as state machines, are used
for low level decision making, while some form of rule-based system is the most
common approach for decision making at higher levels [8] .

Building a rule-based system for decision making at the tactical and strategic
level of an RTS game is a complex task for game designers, who are not used
to deal with knowledge representation. In order to alleviate this authoring ef-
fort, there is an open line of research on the automatic acquisition of decision
making knowledge from recorded traces of human experts playing the game.
Such approaches, through the application of machine learning techniques, seek
� Supported by the Spanish Ministry of Science and Education (TIN2009-13692-

C03-03).

A. Ram and N. Wiratunga (Eds.): ICCBR 2011, LNAI 6880, pp. 181–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



182 R. Palma et al.

to make possible a form of programming by demonstration, where the human
author shows to the game AI how to play.

We propose to bring the game designer back into the loop, by allowing him
to explicitly inject decision making knowledge in the form of behavior trees to
complement the knowledge obtained from the traces. Behavior trees are the
technology of choice for representing decision making knowledge in commercial
videogames. They can be built by both programmers and designers, and provide
the ability to react to urgent goals or a fine-grained control over alternative
courses of action.

The work presented in this paper seeks to extend the techniques demonstrated
in the Darmok and Darmok 2 (D2) systems [10,11], which are mature and well-
tested systems within this line of research. We show through an experimental
evaluation in the Starcraft game, how we can easily increase the efficacy of a
case-based planner significantly. Moreover, we show that very simple behavior
trees can make a big difference in terms of the AI quality.

The rest of the paper runs as follows. Sections 2 and 3 briefly describe the two
technologies we propose to integrate: learning from demonstration and behavior
trees. Section 4 discusses the integration of both technologies into a single archi-
tecture, which is empirically evaluated by means of some experiments described
in Section 5. Last section presents related work and concludes the paper.

2 Learning from Demonstration in Real-Time Strategy
Games

Learning from demonstration tries to replace the time-consuming and hand-
made task of programming behaviors by an automatic process in which an ex-
pert shows the system how to achieve some goal. Afterwards, a learning system
analyses the actions performed by the expert and tries to extract useful knowl-
edge. This type of techniques has traditionally been applied to build behaviors in
robots, but the complexity of current video games makes them perfect candidates
to apply these techniques as well.

There are many different approaches to extract decision making knowledge
from the traces of expert players, for example to consider sequences of actions
as reusable plans. In case based planning (CBP) these plans are stored in a plan
base for later reuse, and the planner retrieves and adapts the most promising
one according to the current goal and state of the problem. In our context, the
goal is usually something like win and the state of the problem is the state of
the game.

Being games dynamic, static CBP suffers in this context from lack of reactiv-
ity. In order to respond properly to the continuous changes in the game state,
CBP systems usually include an on-line component that supervises the execu-
tion of the proposed plan. This way, instead of just considering the planning
problem as a single-shot process where execution and problem solving are de-
coupled, on-line case-based planning (OLCBP) systems are also partly in charge
of the plan execution. Note that OLCBP systems can discover low level aspects



Combining Expert Knowledge and Learning from Demonstration 183

at the plan expansion stage that were not considered originally and which might
require to perform some changes in order to prevent failure.

Although planning in OLCBP is performed in real-time, planning decisions
are based on an expensive learning process that is made previously off-line from
game traces produced by human expert players. Depending on the CBP engine,
the learning phase might require the assistance of a human expert to label the
traces in order to enrich them with extra knowledge about, for example, pursued
goals or important game state variables. The other option is to make the system
intelligent enough to perform the labelling task automatically and thereby avoid
that tedious task to the expert. Unfortunately, there is no magic bullet here;
OLCBP systems using this last approach usually require a more detailed domain
description in order to extract useful plans from plain traces.

Once the plan base has been fed with plans (cases) extracted (automatically
or not) from traces, it is time for the on-line component of the system to take
control. The game will be launched as normal and connected with an external
AI that, in our architecture, is implemented using an OLCBP system. The game
engine will broadcast its state using a game-dependent protocol, and, on the
other way, the OLCBP system will inject the primitive actions that should be
executed in the game environment.

One of such OLCBP systems is Darmok, presented in [11]. It has been used
for playing real-time strategy games like Wargus (an open source clone of War-
craft II) and other games. As we will see in a later section, the combination of
domain knowledge automatically extracted from game traces with hand-made
expert knowledge is an effective solution to some of the problems identified in
this type of OLCBP.

3 Expert Knowledge in Games

Regarding how to create behaviors for the non-player characters that appear in
videogames, many techniques have been used. The goal here is to translate the
knowledge that game experts have (those who know the best way to defeat the
other player) into instructions to be executed by the machine. The approach is
different depending on the level of abstraction and game genre but when focusing
on low level decision making for controlling units on strategy games the most
commonly used techniques have been finite state machines (FSMs) and more
recently behavior trees (BTs).

Though BTs were initially proposed as a tool for programmers, they have been
proved to be useful also for professional game designers to create the behaviors
of the entities from scratch [4,5]. One of the key points is that, just like FSMs,
BTs open up the possibility of developing tools to create and edit behaviors by
means of a graphical user interface, something that cannot be done in other
techniques like scripts.

A BT is a hierarchical and declarative representation of a behavior where every
node (and its subtree) can be seen as a simpler behavior. Therefore, BTs promote
reuse and allow designers to define complex behaviors in an incremental way.



184 R. Palma et al.

Using visual tools, game designers and game programmers create the BTs
that eventually will define the behavior of the game AIs. The available toolset
for this authoring process depends on the actual AI engine implementation and
every game studio has its own set of tree nodes that can be combined to encode
complex behaviors from simpler ones. There are, therefore, many types of BT
nodes but we will only cover those we have used in our experiments.

During the execution of the game, the behavior trees are loaded into mem-
ory and a module known as the BT interpreter controls its execution. The BT
interpreter manages which branch of the current BT is active (complex systems
may allow BTs to have more than one branch in execution) and how much CPU
quantum should be assigned to each node. In addition, when a node complete
its execution either successfully or failed, the BT interpreter decides, according
to the semantics of its parent node in the tree, which branch should be
expanded next.

In pure systems all the decisions are performed based on BTs, while mixed
systems may have a higher level AI module to select the best BT for each entity
according to some global policy or strategy. This high level module must receive
continuous notifications to properly manage the behavior of the different entities
in a coordinated manner. In turn, the BT execution model might rest either on
a single global BT interpreter or there might be several BT interpreters, one for
each entity. As we will see in Section 4, our system has been implemented using
a mixed architecture and a single BT manager.

Regarding the types of behavior a BT may encode, its expressiveness and ver-
satility depends on the amount and types of nodes available at design time. The
simplest BT is compound by just one node representing a primitive action, that
is, a game action to be executed by one character. These primitive actions may
have parameters whose values are either hard-coded on the BT itself or com-
puted at run time depending on the context. When the BT interpreter decides to
execute one of these nodes, the primitive action is sent to the game engine and
the interpreter must wait until its execution ends either with success or failure.
Note that although from the point of view of the AI system the action is atomic,
in a real-time game its execution might take several seconds. Besides, the action
can fail if something happens during that time that prevents its execution.

The simplest way of combining behaviors is using sequential nodes, inner nodes
whose child nodes (or subtrees) are executed sequentially. When all of them finish
successfully their execution, the behavior succeeds, failing otherwise. Sequential
nodes are usually represented as a node with an arrow inside.

Dynamic priority lists bring more expressive power to BTs, adding the idea
of conditions. Every child node has not only a behavior but also a guard or
condition that checks some aspect of the game state that is relevant for the sub-
behavior. When the interpreter reaches a dynamic priority list, evaluates the
guards of the children nodes from left to right and starts the execution of the
first behavior whose guard is met. If no condition is met, the entire behavior
fails. Once a child node is active, the interpreter keeps evaluating the conditions
of the left siblings and whenever one of them becomes true, the current behavior



Combining Expert Knowledge and Learning from Demonstration 185

is aborted and the child with the higher priority takes control. In the figures
shown later in the paper guards appears as nodes in dotted lines with one child
representing the behavior that must be executed when the guard becomes true.

The last node we consider is the query node [3] that promotes even further
reusability. All the nodes described so far are hard-coded in the BT, but this
new node allows to dynamically attach BTs as subtrees of other BTs at run time.
This way, BTs can delegate to achieve a particular goal to other BTs without
having to specify to which one in particular. The idea is that different BTs are
created independently during the game design phase and stored in a behaviors
base and, at run time, the query nodes serve as joint points to combine behaviors
like assembly parts.

The technology behind query nodes is borrowed from case-based reasoning.
The behavior base may be seen as a case base storing different solutions to
achieve a goal. These BTs are described using a semantic label from a behavior
ontology, a set of variables and constraints which encode the game states where
the BT is optimal, and the entities the BT is meant to (this is needed because
a soldier may have a different behavior to protect/cover itself than a tortoise).

The query node in turn contains the CBR query which describes the desired
behavior along with a number of variables and constraints using the same vo-
cabulary that was used to index the behavior base.

At run time the query is extended with the current game state and the current
entity executing the BT and, using similarity measures similar to those used on
CBR, it retrieves the best BT for the current situation. Interested reader may
refer to [3] for more details. As we will see later, we have used these nodes in
different experiments. In the rest of the paper, this kind of nodes is drawn using
thick lines.

4 Extending Case-Based Planning with Behavior Trees

Three main flaws [12] have been identified in on-line case based planning when
used with plan extraction from expert traces:

– Poor reactivity at the plan level: when a plan is chosen, it will not be aban-
doned until it is completely performed or a low level action fails. World
changes that should fire a new replanning phase are usually ignored because
they are not recognized as a failure condition for the current action in the
working plan.

– Excessive reactivity at the action level: when a small low level action fails, a
big plan could be entirely discarded because the planner would assume that
also the complete plan has failed and cannot be fixed. A new planning phase
would be fired, which could end up with a complete opposite approach for the
current goal. In other words, small local problems could have unreasonable
big responses.

– Learning by demonstration is hard to fine-tune: When an expert identifies
behaviors that should be improved, the nature of learning by demonstration



186 R. Palma et al.

Fig. 1. Low level tactical layer

and the fact that he has to provide new traces to have the new behavior
learnt, makes the process really hard. This is due to the complexity and
randomness inherent in strategy games, where it is difficult to get a suitable
scenario where the expert’s actions are relevant enough for being incorpo-
rated as a plan in the plan base.

Our solution is to incorporate expert knowledge into the process. This knowledge
takes the form of behavior trees presented in the previous section. As we will de-
scribe shortly, BTs have such an important role in our approach that the BT inter-
preter is the only one that injects primitive actions into the game. This interpreter
manages a BT pool that contains all the BTs that are currently in execution.

Between the OLCBP and this BT pool we place a tactical layer. The planner
still emits primitive actions to be executed, but instead of directing them into the
game they pass through this layer. Its functionality is based on a BT base that
is populated by behaviors built previously by the experts. When the OLCBP
wants to execute an action, the tactical layer retrieves the most suitable BT
that performs that action in the current game state and sends it to be executed
by the interpreter, adding it to the BT pool. If there is no such a BT, it builds
a small BT with just the node that executes that action.

The tactical layer and the BT base allow the expert to overwrite the execution
of primitive actions when needed. For example, there will be specific situations
where a primitive action should be enriched with a more error-safe plan that is
able to gracefully react to some small situations that would cause the primitive
action to fail. This would avoid the problem of excessive reactivity at the action
level, but, unfortunately, training (and teach) the CBP system to use these
so concrete plans is quite hard (if possible at all). This extension to the basic
architecture where only the game and OLCBP system coexist does not require
changes in any of them. Figure 1 shows a simplified view of the architecture so



Combining Expert Knowledge and Learning from Demonstration 187

far. The OLCBP system emits a primitive action to the tactical layer which tries
to get a BT through a query to the BT base. Should the query return null, the
original primitive action is packed on a BT containing a single node. In other
case the BT is inserted into the interpreter that manages its execution sending
a primitive action to the game.

A second extension of pure OLCBP systems consists on allowing experts to
overwrite complete plans. The idea is similar to that of low level actions but
requires changes on the OLCBP system. The BTs created by the expert contain
a description of the game state specifying when it is appropriate to use them.
When the OLCBP system in its plan expansion reach a new goal, instead of
just retrieving the most similar plan stored in the plan base, it performs a query
to the BT base to check if a hand-made BT has been created for that specific
situation. If such a BT exists the goal is replaced by it, proceeding through the
plan base otherwise.

Therefore, with this extension the output of the OLCBP system may be just
a primitive action (that goes through the tactical layer and it is converted to a
BT) or an entire BT that is directed to the BT interpreter.

This extension aims to solve the poor reactivity at the plan level problem,
because BT guards keep an eye on the high-level game conditions that makes
the plan suitable for running, and fires a new replanning phase when they are
not longer met, even if the primitive actions are not failing.

Figure 2 shows the detailed architecture regarding this last extension. When
the plan expansion module is processing the plan for goal 1 and detects goal 3,
instead of directly trying to use the plan library, it firstly query the BT base
looking for a BT created by the expert suitable for the current situation of the
game. In that case there is a BT that replaces the goal 3 and which eventually
will be sent to the tactical layer to be inserted in the BT interpreter.

5 Experiments

Starcraft [2] is a famous real-time strategy game that has captivated millions
of players in the last decade. Although the goal of the game is very simple
(to build an army and to defeat the other players), this game offers hundreds
of hours of fun thanks to the huge number of different strategies that can be
created combining different types of units and technologies.

Players can choose among three different races (Terran, Protoss and Zerg),
each one of them with its unique strengths and weaknesses. The chosen race
will determine the type of units and technologies that will be available during
the game. In order to win, players have to wisely manage a limited number of
resources and invest them to get more resources, to develop new technology or
to build defensive and offensive units.

A normal game goes through three different stages: to harvest raw materials,
to build and develop your base, and to attack the enemy. During the harvesting
phase, players focus on building a good number of gathering units or workers
and, that way, to ensure a good income rate of raw resources. In the second



188 R. Palma et al.

Fig. 2. High level tactical layer

phase, players use those resources to build their bases, that is, to create different
types of buildings that will allow them to train stronger units and to research new
technologies to improve their army. Finally, during the fighting phase, players try
to destroy the enemy bases using their forces. Of course, these three stages are not
really independent and players need to pay attention to the game development
in order to decide the best course of action.

We focus on the battle aspects in the Starcraft game. It is consider one of
the most challenging features in the game because it requires being to combine
different units and skills in a effective way and, at the same time, to react quickly
when the enemy changes his strategy.

In this section we describe three simple experiments that will let us evaluate:
(1) the viability of the hybrid architecture presented in this paper; (2) the sig-
nificant improvement in terms of AI quality we obtain when we allow experts to
complete the case base with simple tactical knowledge; and (3), how easily we
can represent that type of knowledge using behavior trees. The experiments take
place in three battle scenarios proposed in a recent Starcraft AI competition [1],
and each one of them requires a different strategy in order to win.



Combining Expert Knowledge and Learning from Demonstration 189

Fig. 3. Starcraft game (Blizzard Entertainment)

5.1 Experiment 1: Marines Battle

This scenario involves a square battleground without obstacles in which two
teams of 12 terran marines fight against each other until one of them is extermi-
nated. The terran marine is a basic infantry unit with a medium range attack.
Each team starts in a corner of the battlefield so the main tactical decisions in
this scenario concern the movement of troops and which enemies should be the
first targets.

In this scenario we find an example of the poor reactivity at the plan level
problem. When Darmok decides to send one of its units A to kill an enemy unit
B, and another enemy unit C intercept A on the way, it is not uncommon to see
how A dies under the enemy fire without even reacting to the attack.

In order to improve this behavior we used the two BTs in figures 5 and 6.
The first one uses a priority list to detect when a travelling unit is in danger and
must defend itself. The second BT is used to attack the threat, giving priority
to the initial target over other possible enemies. Finally, the search BT node
is used to attach the second BT as a branch of the first one at run time. This
on-line mechanism give us great flexibility because the search can use knowledge
about the current state of the game in order to select the best BT to attack the
enemy (there could be different BT to describe different attack strategies).

In this experiment Darmork was trained using the traces of 3 real games
played in this scenario. Then, we made the Darmok system to play 1000 battles
against the game AI, using Darmork with and without the BT layer. In this
experiment, these two simple BTs produced an improvement of 61.94% in terms
of battles won.



190 R. Palma et al.

Fig. 4. Starcraft game

Fig. 5. BT to move troops

Fig. 6. BT to attack enemies



Combining Expert Knowledge and Learning from Demonstration 191

Darmok Darmok with BTs
victories 26.2% (262) 42.3% (432)
defeats 73.8% (738) 57.7% (577)
improvement - 61.94%

5.2 Experiment 2: Bunker Defense

The goal of the second scenario is to defend a base as long as possible, while
the enemy AI sends waves of enemies every now and then. In order to do it,
the player counts with 18 terran marines and some bunkers strategically located
in the only entrance to the base. A bunker is a defensive structure that can
accommodate up to four terran infantry units. Units inside the bunker benefit
from a longer range attack and suffer no damage until the bunker is destroyed
and the units are expelled unharmed.

Fig. 7. Bunker Defense scenario

The best strategy in this scenario is to use the bunkers in the first line and to
retreat to another bunker when the current one is destroyed. Darmok, however,
does not always protect the troops using the bunkers and, sometimes, the system
sends the marines to attack the enemy in the open field. In order to improve this
behavior, we designed an extended version of the previous attack BT (figure 8)
that takes into account the presence of near bunkers.

In this experiment Darmok was also trained using the traces of 3 real games.
Then, we used Darmok to defend the base 200 times and we counted the number
of waves that was able to resist before the base was destroyed. In order to make
the simulation more real, the defender only sees the part of the map close to the
base and, therefore, it does not know when the next wave will arrive.

In this experiment the use of a simple BT produced an improvement of 24.38%
in terms of resisted waves.



192 R. Palma et al.

Fig. 8. BT to attack enemies using available bunkers

Darmok Darmok with BTs
resisted waves 402 500
μ waves / simulation 2.01 2.5
σ waves / simulation 0.5 0.7
improvement - 24.38%

5.3 Experiment 3: Vultures vs. Firebats

One essential skill to be a good Starcraft player is to know how to use the special
powers of some units to produce several casualties in the enemy army. One of
these special units is the terran vulture, an advanced motorbike and the fastest
unit in the game. Vultures produce a very small amount of damage when they
attack directly the enemy, but they have a very special weapon, the spider mines.
Vultures can hide these mines in the ground, were the mines will stay unnoticed
until some enemy passes near, producing a big explosion that will kill all the
surrounding units (allays and enemies).

In this last experiment we brought face to face 6 terran vultures and 24 firebats.
Firebats are close range terran units able to make a big amount of damage to
all the enemies that stay in front of them and close enough. A good strategy for
the player controlling the vultures is to scatter the mines on the ground in front
of the fire bats, and then to retreat to a safe position taking advantage of their
speed.

The Darmok planner was trained using the traces of 3 games also in this case.
It is interesting to realize how difficult is for Darmok to learn automatically how
to use the spider mines from some game examples and, however, how easily this



Combining Expert Knowledge and Learning from Demonstration 193

Fig. 9. BT to attack enemies using spider-mines

type of knowledge can be represented using a BT like the one in figure 9. This
BT uses a priority list to check some conditions in a certain order and respond
appropriately. First, we check if there is a mine close to the vulture so we can
move the unit away to avoid the imminent explosion. Then, we check if the
vulture has some mines left and in that case we move it closer to the enemy to
use them. Finally, if none of the above conditions are met, we use the vulture to
attack the enemy using its default (and weak) attack.

In this experiment we simulated 500 battles in which Darmok controlled the
vultures, first without BTs and then using them. We should explain that it is
very difficult for 6 vultures to defeat 24 firebats even using the mines properly,
so we decided to measure the success of the experiment in terms of the number
of firebats killed. In this experiment, just one BT produced an improvement of
34.10%.

Darmok Darmok with BTs
firebats killed 4927 6607
μ firebats killed / simulation 9.85 13.21
σ firebats killed / simulation 5.42 5.83
improvement - 34.10%



194 R. Palma et al.

6 Related Work and Conclusions

There is no, to the best of our knowledge, other work combining Case-based
planning and BTs. Nevertheless, this approach can be considered as an example
of a more general AI trend of combining domain theory and empirical data: BTs
encode a partial view of the expert’s domain theory, and cases in the plan library
are empirical data. From this point of view, multiple examples of integrations of
a domain theory, usually in the form of a set of rules, and Case-based reason-
ing (CBR) can be found in the research literature [13]. Some systems take the
output of a rule-based component as the input for a case-based one, such as the
one described in [6], a bank audit system that automatically detects abnormal,
irregular, risky, and violated transactions from the standards at the first screen-
ing stage, and then applies CBR, which scrutinizes the detected transactions
and provides the punishment levels at the second stage. Other systems take an
approach closer to the one presented here, where the output of a case-based
module feeds a rule-based one, such as the system described in [7], a medical
system for Alzheimer’s Disease patients, where the case-based module is invoked
to determine whether a neuroleptic drug should be prescribed to a patient and
if this is so, the rule-based is invoked to select one of five drugs.

Considering BTs as a kind of planning artifact that stores hand-written plans,
we can also find related work on the combination of case-based planning and
other planning approaches. The SiN system [9] uses a case-based planning algo-
rithm that combines conversational case retrieval with generative planning. SiN
can generate plans given an incomplete domain theory by using cases to extend
that domain theory, which is given in the form of a planning domain. SiN can
also reason with imperfect world-state information by incorporating preferences
into the cases. While the case-based module and the domain theory are inde-
pendently developed in SiN, we propose a more efficient approach by purposely
developing a domain theory to fill the holes in the empirical data.

Also in the Starcraft domain, [14] proposes some preliminary ideas to com-
bine expert knowledge in the form of hand-written ABL plans with knowledge
automatically extracted from traces using statistical techniques. Although this
work is very related to ours, it is at the same time in a very early stage. Besides,
using BTs instead of a planning language we facilitate the process of injecting
expert knowledge to the system because the experts, in this case game designers,
are used to them.

Regarding future work, we intend to explore possible techniques for facilitating
the task of identifying those areas in the plan library that require the expert
intervention. At this point, a major drawback of the proposed approach is that
the expert needs to analyse the plan library in order to identify those plans,
sub-plans or basic actions that require improvement. We envision a computer-
assisted identification process, where by generating traces of the AI controlled
by the plan library the system can automatically pinpoint actions and goals that
usually fail as places for improvement.



Combining Expert Knowledge and Learning from Demonstration 195

References

1. AIIDE: StarCraft AI competition. As Part of the Program of the Artificial Intelli-
gence and Interactive Digital Entertainment Conference (2010)

2. Blizzard: Starcraft game (1998), http://us.blizzard.com/en-us/games/sc
3. Flórez-Puga, G., Llansó, D., Gómez-Martín, M.A., Gómez-Martín, P.P., Díaz-

Agudo, B., González-Calero, P.A.: Empowering Designers with Libraries of Self-
validated Query-enabled Behaviour Trees. In: Artificial Intelligence for Computer
Games, pp. 55–82. Springer, Heidelberg (2011)

4. Isla, D.: Halo 3 - building a better battle. In: Game Developers Conference (2008)
5. Krajewski, J.: Creating all humans: A data-driven AI framework for open game

worlds. Gamasutra (February 2009)
6. Lee, G.H.: Rule-based and case-based reasoning approach for internal audit of

bank. Know.-Based Syst. 21(2), 140–147 (2008)
7. Marling, C.R., Whitehouse, P.: Case-based reasoning in the care of alzheimer’s

disease patients. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI),
vol. 2080, pp. 702–715. Springer, Heidelberg (2001)

8. Millington, I., Funge, J.: Artificial Intelligence for Games, 2nd edn. Morgan Kauf-
mann, San Francisco (2009)

9. Muñoz-Avila, H., Aha, D.W., Nau, D.S., Weber, R., Breslow, L., Yamal, F.:
Sin: integrating case-based reasoning with task decomposition. In: IJCAI 2001:
Proceedings of the 17th International Joint Conference on Artificial Intelligence,
pp. 999–1004 (2001)

10. Ontañón, S., Bonnette, K., Mahindrakar, P., Gómez-Martín, M.A., Long, K., Rad-
hakrishnan, J., Shah, R., Ram, A.: Learning from human demonstrations for real-
time case-based planning. In: Kuter, U., Muñoz-Avila, H. (eds.) Proceedings of
the IJCAI 2009 Workshop on Learning Structural Knowledge From Observations
(2009), http://www.cs.umd.edu/~ukuter/struck09/index.html

11. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: On-line case-based planning. Com-
putational Intelligence 26(1), 84–119 (2010),
http://dx.doi.org/10.1111/j.1467-8640.2009.00344.x

12. Palma, R., González-Calero, P.A., Gómez-Martín, M.A., Gómez-Martín, P.P.: Ex-
tending case-based planning with behavior trees. In: 24th Florida Artificial Intel-
ligence Research Society Conference (to appear, 2011)

13. Prentzas, J., Hatzilygeroudis, I.: Categorizing approaches combining rule-based
and case-based reasoning. Expert Systems 24(2), 97–122 (2007)

14. Weber, B.: Integrating expert knowledge and experience. In: AAAI Doctoral Con-
sortium (2010)

http://us.blizzard.com/en-us/games/sc
http://www.cs.umd.edu/~ukuter/struck09/index.html
http://dx.doi.org/10.1111/j.1467-8640.2009.00344.x

	Combining Expert Knowledge and Learning from Demonstration in Real-Time Strategy Games
	Introduction
	Learning from Demonstration in Real-Time Strategy Games
	Expert Knowledge in Games
	Extending Case-Based Planning with Behavior Trees
	Experiments
	Experiment 1: Marines Battle
	Experiment 2: Bunker Defense
	Experiment 3: Vultures vs. Firebats

	Related Work and Conclusions
	References




