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Abstract. Recent concerns about the effects of feedback delays on solution 
quality in case-based reasoning (CBR) have prompted research interest in feed-
back propagation as an approach to addressing the problem. We argue in this 
paper that the ability of CBR systems to learn from experience in the absence of 
immediate feedback is limited by eager commitment to the adaptation paths 
used to solve previous problems. Moreover, it is this departure from lazy learn-
ing in CBR that creates the need for maintenance interventions such as feed-
back propagation. We also show that adaptation path length has no direct effect 
on solution quality in many adaptation methods and examine the implications 
for problem solving and learning in CBR. For such “path invariant” adaptation 
methods, we demonstrate the effectiveness of a “lazier” approach to learn-
ing/problem solving in CBR that avoids commitment to previous adaptation 
paths and hence the need for feedback propagation.   
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1   Introduction 

In case-based reasoning (CBR), a target problem is solved by adapting the solution 
from the most similar case, or simply by reusing the solution from the most similar 
case without adaptation [1,2]. It is this lazy approach to learning/problem solving that 
distinguishes CBR from eager learning algorithms that create abstractions such as 
decision trees from training data [3]. Another important feature of CBR is the ability 
to learn from experience as new cases are added to the case base. However, there is 
increasing awareness of the effects of feedback delays on solution quality in CBR, 
and maintenance strategies for addressing this problem have been proposed by several 
authors [4–6].  

For example, Leake and Whitehead [4] investigate several approaches to propagat-
ing feedback, when received for a given case, to related and/or similar cases. In one 
such algorithm, feedback is propagated to all descendants of the reference case (de-
fined as those cases that were generated from the reference case by a series of adapta-
tions). Feedback propagation is guided by case provenance information captured by 
the system as each new case is added to the case base (i.e., the set of cases that con-
tributed, directly or indirectly, to the new case’s solution). The aim of feedback 
propagation is to reduce the effects of feedback delays on solution quality. Another 
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problem associated with lack of feedback in CBR is that the solution for a given prob-
lem may depend on the order in which previous cases were added to the case base [4].    

In this paper, we examine in depth some of the issues brought to light by recent 
work on case provenance and feedback propagation. The aim of our analysis is to 
provide a better understanding of the CBR process in the absence of immediate (or 
any) feedback and its susceptibility to the problems noted by Leake and his co-
workers [4–6]. We argue that the ability of CBR systems to learn from experience in 
the absence of immediate feedback is limited by eager commitment to adaptation 
paths that determine case provenance but may prove to be sub-optimal in future prob-
lem solving. Moreover, it is this departure from lazy learning in CBR that creates the 
need for maintenance interventions such as feedback propagation. It is also a primary 
cause of the “order dependence” problem noted by Leake and Whitehead [4].   

In previous work, we proposed a “lazier” approach to learning/problem solving in 
CBR, called Lazier CBR, which uses breadth-first search to discover the shortest pos-
sible adaptation path from a seed case (or other case whose solution is known to be 
correct) to a given problem [7]. The discovered adaptation path is then used to solve 
the target problem, a process that may involve generating new solutions for some of 
the cases in the path. In this way, Lazier CBR avoids commitment to previous adapta-
tion paths, and hence the need for feedback propagation. An underlying hypothesis in 
the approach is that using the shortest available adaptation path may provide more 
accurate solutions in situations where solution quality tends to deteriorate as the 
lengths of adaptation paths increase.  

However, we show in this paper that many adaptation methods are “path invari-
ant”, in the sense that any adaptation path from a given seed case to a target problem 
gives the same solution as adapting the seed case directly to solve the target problem. 
An important consequence is that adaptation path length has no direct effect on solu-
tion quality for path invariant adaptation methods. Moreover, a common feature of the 
path invariant adaptation methods we identify is that any case can be adapted to solve 
a given problem. In this situation, any seed case C provides an adaptation path C →  
P of the shortest possible length that can be used to solve a given problem P.   

An alternative to Lazier CBR that we propose in light of this analysis, and show to 
be effective for a variety of estimation and classification tasks, is an even lazier ap-
proach called Lazier+ CBR. In Lazier+ CBR, a target problem is solved by adapting 
the most similar seed case (or other case whose solution is known to be correct). For 
path invariant adaptation methods, Lazier+ CBR avoids the computational effort re-
quired for adaptation path discovery in Lazier CBR. It is also more efficient than tra-
ditional CBR in that cases with unconfirmed solutions play no part in the solution of 
new problems, and so do not contribute to retrieval effort. 

In Sections 2 and 3, we highlight the issues that Lazier+ CBR aims to address, such 
as the limited ability of CBR systems to learn from experience in the absence of  im-
mediate (or any) feedback. In Section 4, we show that path invariance is a property 
shared by many common adaptation methods, and examine the implications for CBR 
problem solving and learning in estimation and classification tasks. In Section 5, we 
examine the hypothesis that for path invariant adaptation methods, a Lazier+ CBR 
system learns more effectively from experience, in the absence of feedback, than a 
traditional CBR system. Our conclusions are presented in Section 6. 
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2    Adaptation Paths in CBR   

In this section, we introduce the basic concepts in our analysis and examine the role 
of adaptation paths in a traditional CBR system. To simplify the discussion, we do not 
consider CBR approaches in which two or more retrieved cases may contribute di-
rectly to the solution of a target problem, for example as in CBR approaches to esti-
mation based on adaptation triples [8]. 

Seed and Non-Seed Cases. Before a CBR system can begin to solve new problems, it 
must first be provided with one or more “seed” cases with solutions that are known to 
be correct. Seed cases are typically provided by a domain expert or imported as leg-
acy cases. We will refer to cases created by the system (i.e., by adapting an existing 
case to solve a new problem and retaining the problem and its solution as a new case) 
as “non-seed” cases.   

Case = Problem + Solution.  For any case C, we will denote by problem(C) the prob-
lem represented by C. We will denote by solution(C) the solution for C that is stored 
in the case base, whether or not the stored solution is correct.  

Adapted Solution.  For any problem P and case C that can be adapted to solve P, we 
will denote by adapted-solution(C, P) the solution for P obtained by adapting C to 
solve P.  

Adaptation Path.  A sequence of cases C1, …, Cn provides an adaptation path C1 
→…→ Cn → P from a seed case C1 to a given problem P if Ci can be adapted to 
solve problem(Ci+1) for 1 ≤ i ≤ n – 1 and Cn can be adapted to solve P. Note that the 
solution for a given case in an adaptation path that results from previous adaptations 
in the path may differ from its solution in the case base, which may have originated 
from a different adaptation path.     

A traditional CBR system does not consider all possible adaptation paths that could be 
used to solve a given problem P. Instead, it retrieves the most similar case C that can 
be adapted to solve P and uses it to solve the problem. However, if C is a non-seed 
case then as we show in Theorem 1 there exists a seed case C1 and adaptation path C1 
→…→ Cn →  problem(C) that was used to solve problem(C). By adapting C to solve 
P, the system extends the adaptation path that it used to solve problem(C) to create a 
new adaptation path C1 →…→ Cn →  C → P that now determines the solution for P.  

In the proof of Theorem 1, we assume there is no deletion of cases, for example for 
maintenance purposes [9,10]. 

Theorem 1. For any non-seed case C, there exists a seed case Cn and adaptation path 
Cn →…→ C1 →  problem(C) that determines the solution for C. 

Proof. If C is a non-seed case, then problem(C) must have been solved by adapting 
another case C1, namely the adaptable case that was most similar to problem(C)  
when that problem was presented to the system. If C1 is a seed case, then the required 
adaptation path is C1 → problem(C).  If C1 is not a seed case, then problem(C1) must 
have been solved by adapting another case C2. If C2 is a seed case, then the required 
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adaptation path is C2 → C1 → problem(C). If C2 is not a seed case, then we can con-
tinue as long as necessary to build a sequence of cases C1, …, Cn such that for 1 ≤ i ≤ 
n – 1, Ci+1 is the case that was adapted to solve problem(Ci). Moreover, C1 was al-
ready in the case base before C was created, and Ci+1 was already in the case base be-
fore Ci was created for 1 ≤ i ≤ n – 1. It follows that C, C1, …, Cn must all be distinct 
cases. We also know that there can only be a finite number of cases in the case base, 
and at least one of them must be a seed case. So as we continue to extend our se-
quence of cases, it must eventually be true that the last case in the sequence (Cn) is a 
seed case. We have now established as required the existence of a seed case Cn and 
adaptation path Cn →…→ C1 → problem(C) that determines the solution for C.        

3    Why Lazier+ CBR? 

Fig. 1 shows an example case base and a target problem (P) that we use in this section 
to highlight the issues that Lazier+ CBR aims to address. There are just two attributes 
in the description of a case with integer values in the range from 0 to 6. Existing cases 
are numbered in the order in which they were added to the case base and seed cases 
(C1, C7, C8) are shown as black circles. The adaptation paths used to generate the non-
seed cases C3, C6, and C12 are also shown. For example, the adaptation path that de-
termines the solution for C6 is C1 → C4 → C5 → problem(C6).  

 

Fig. 1. An example case base in which 3 cases (C3, C6, C12) are equally similar to a target  
problem P 

In a traditional CBR system that adapts the most similar case, C3, C6, and C12  
are equally good candidates to be used to solve P. It might be considered that C3 
would be the best choice because it was generated from a seed case by the shortest 
adaptation path (2 steps). Adapting C3 to solve P amounts to extending the adaptation 
path C1 → C2 →  problem(C3) that was used to solve problem(C3) to create a new 
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adaptation path C1 → C2 → C3  → P. There are only 3 steps in the resulting adapta-
tion path as opposed to an adaptation path length of 4 if C6 is used to solve P or 5 if 
C12 is used to solve P. So using C3 to solve P can be expected to give better results 
than C6 or C12 if solution quality is known to deteriorate as the lengths of adaptation 
paths increase.  

However, we show in Section 4 that for many adaptation methods used in estima-
tion and classification tasks, the length of the adaptation path that determines the solu-
tion for a given problem has no bearing on solution quality except insofar as problems 
with longer adaptation paths tend to be less similar to the seed cases from which they 
were generated. For such “path invariant” adaptation methods, it does not matter 
whether C3 or C6 is adapted to solve P, as both cases will give the same solution. 
What matters in path invariant adaptation is not the length of the adaptation path, but 
how similar the target problem is to the seed case that determines its solution. In this 
context, adapting C12 to solve P is likely to give better results than C3 or C6 because 
the seed case from which C12 was generated (C8) is more similar to P than the one 
from which C3 and C6 were generated (C1).   

A traditional CBR system will simply make some arbitrary choice between the 
equally similar cases C3, C6, and C12. It will also ignore the fact that the seed case C7 is 
much closer to the target problem than either of the seed cases from which C3, C6, and 
C12 were generated. A related issue that CBR researchers have recently begun to con-
sider in the context of delayed/absent feedback is that the solution for a given problem 
may depend on the order in which previous cases were added to the case base [4].   

Definition 1. The solution that a CBR system provides for a given problem is order 
dependent if it depends on the order in which cases in existence at the time when the 
problem is solved were added to the case base. 

For example, if C7 had been added to the example case base in Fig. 1 before prob-
lem(C3) was solved, then the system would have used C7 instead of C2 to solve prob-
lem(C3). As a result, the adaptation path that determines the solution of C3 would now 
be C7 → problem(C3), which is likely to result in a more accurate solution than C1 → 
C2 →  problem(C3). Moreover, if the system chooses to solve P by adapting C3, the 
adaptation path now used to determine the solution for P would be C7 → C3 → P, 
which is likely to result in a more accurate solution than C1 → C2 → C3 → P. With 
the original ordering of cases, what prevents the system from benefiting from the ad-
dition of C7 as a new seed case is its eager commitment to the adaptation path that it 
used to solve problem(C3). 

In a traditional CBR system, no record is kept of the adaptation paths that deter-
mine case provenance. However, the fact remains that these adaptation paths are  
continually reused by the system to solve new problems, with no attempt to improve 
or revise them as new cases are created. As the above example illustrates, this eager 
commitment to previous adaptation paths may limit a CBR system’s ability to learn 
from experience. More generally, if the most similar case C to a target problem P is a 
seed case, then it is reasonable to expect that adapting C to solve P will provide a 
good solution for P. However, if C is not a seed case, there may now be several pos-
sible adaptation paths from seed cases to C that did not exist at the time when prob-
lem(C) was solved. Moreover, it is possible that one of these alternative adaptation 
paths, which the system does not consider, could provide a better solution for C, and 
could be extended to provide a better solution for P.   
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In contrast, Lazier+ CBR makes no commitment to adaptation paths used to solve 
previous problems (which never involve more than a single adaptation step in the 
approach). Instead, it only allows seed cases, or other cases whose solutions are 
known to be correct as a result of feedback from a reliable source, to contribute to the 
solution of new problems. In Lazier+ CBR, the target problem P in Fig. 1 would be 
solved by adapting C7, the seed case that is most similar to P. Whether or not the ad-
aptation method is path invariant, this is likely to provide a better solution for P than 
adapting C3, C6, or C12. It also avoids the order dependence problem to which tradi-
tional CBR is known to be susceptible [4]. 

4    Path Invariant Adaptation 

In this section, we show that many of the adaptation methods typically used in estima-
tion and classification tasks are path invariant according to the following definition.  

Definition 2. An adaptation method is path invariant if any adaptation path C1 
→…→ Cn → P from a seed case C1 to a target problem P gives the same solution for 
P as adapting C1 directly to solve P.  

One example of path invariant adaptation is the approach sometimes referred to as 
null adaptation [11].  In this approach, the solution for the most similar case is reused 
(i.e., applied to a target problem) without any adaptation. Its use tends to be limited to 
estimation/classification tasks where the need for adaptation is less critical than in 
design/configuration tasks [2]. In practice, the most similar case may be required to 
equal or exceed a predefined similarity threshold before its solution is applied to the 
target problem without adaptation. 

In Section 4.1, we demonstrate the path invariance of two approaches to transfor-
mational adaptation for a specific estimation task. In Section 4.2, we consider the im-
plications of path invariant adaptation in a more general context.    

4.1   Adapting Soccer Scores 

Consider the idea of using a traditional CBR system to estimate the points scored by a 
soccer team from the numbers of matches it has won and drawn in a series of 
matches. We used a similar example in previous work on intelligent case authoring 
[12]. The correct solution for any case C, though unknown to the CBR system, is: 

points(C) = 3 × wins(C) + draws(C)                                  (1)  

In addition to one or more seed cases with correct solutions, the CBR system in our 
example is provided with the following rules for adapting the solution from the most 
similar case (C) to solve a given problem P: 

 Rule 1.  If wins(P) > wins(C) then add k1 × (wins(P) – wins(C))   
 Rule 2.  If wins(P) < wins(C) then subtract k1 × (wins(C) – wins(P)) 
 Rule 3.  If draws(P) > draws(C) then add k2 × (draws(P) – draws(C))        
 Rule 4.  If draws(P) < draws(C) then subtract k2 × (draws(C) – draws(P))        
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The method used to assess the similarity of a given case C to a target problem P is not 
important in this discussion, but might for example be based on the Euclidean distance: 

(wins(P) − wins(C))2 + (draws(P) − draws(C))2                          (2) 

The CBR system solves a target problem by adapting the most similar case. It uses 
all applicable adaptation rules, with cumulative effect, to adapt the solution for the 
most similar case. The accuracy of solutions based on the adaptation rules will depend 
on the values of k1 and k2, reflecting the fact that, in practice, such rules may be based 
on imperfect domain knowledge. For example, Fig. 2 shows a target problem (P) with 
wins(P) = 2 and draws(P) = 3. The goal is to estimate points(P), the points scored by 
a team with these numbers of wins and draws. The most similar case (C) is also 
shown. Its solution (11) can be seen to be correct from Eqn. 1.  

 

adapt dadapttt

Target Problem (P) 
Wins: 2 
Draws: 3 
Points: ? 

Similar Case (C) 
Wins: 3 
Draws: 2 
Points: 11 

 

Fig. 2.  Adapting the most similar case (C) to solve a target problem (P) in the soccer scores 
domain 

We also know from Eqn. 1 that the correct solution for the target problem is 3 x 2 
+ 3 = 9.  However, when Rules 1–4 are applied with k1 = 2 and  k2 = 1, the adapted 
solution for P is 11 – 2 + 1 =  10. As the solution for the most similar case is correct, 
it is only the adaptation process that contributes to the error in the solution for P. With 
k1 = 3 and k2 = 1, Rules 1–4 are guaranteed to give the correct solution for any prob-
lem provided the solution for the most similar case is correct. The adaptation rules can 
be written more concisely as an adaptation formula for adapting a case C to solve a 
given problem P:  

points(P) = points(C) + k1 × (wins(P) – wins(C)) + k2 × (draws(P) – draws(C))   (3) 

As we show in Theorem 2, adaptation based on Eqn. 3 (or the equivalent rules) is 
path invariant. 

Theorem 2. In the soccer scores domain, the adaptation formula points(P) = 
points(C) + k1 × (wins(P) – wins(C)) + k2 × (draws(P) – draws(C)) is path invariant 
for all values of k1 and k2.  

Proof. For any seed case C1, problem P, and adaptation path C1 →…→ Cn → P, the 
solution for P obtained by applying the adaptation formula at each step of the adapta-
tion path is:  

points(P)  = points(Cn) + k1 × (wins(P) – wins(Cn)) + k2 × (draws(P) – draws(Cn)) =  

points(Cn-1) + k1 × (wins(Cn) – wins(Cn-1)) + k2 × (draws(Cn) – draws(Cn-1)) + k1 × 
(wins(P) – wins(Cn)) + k2 × (draws(P) – draws(Cn)) =  
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points(C1) + k1 × (wins(C2) – wins(C1)) + k2 × (draws(C2) – draws(C1)) + k1 × 
(wins(C3) – wins(C2)) + k2 × (draws(C3) – draws(C2)) + … + k1 × (wins(Cn) –  
wins(Cn-1)) + k2 × (draws(Cn) – draws(Cn-1)) + k1 × (wins(P) – wins(Cn)) + k2 × 
(draws(P) – draws(Cn)) =  

points(C1) + k1 × (wins(P) – wins(C1)) + k2 × (draws(P) - draws(C1)).  

That is, the solution provided by any adaptation path from C1 to P is the same as 
the solution obtained by adapting C1 directly to solve P. It follows as required that the 
adaptation formula is path invariant for all values of k1 and k2.                                     

Fig. 3 shows an example of path invariant adaptation based on Eqn. 3 (or the equiva-
lent adaptation rules) in the soccer scores domain with k1 = 2 and  k2 = 1. In this ex-
ample, adapting Case 1 directly to solve the target problem gives the same solution 
(16) as adapting Case 1 to solve the problem represented by Case 2 and then adapting 
Case 2 to solve the target problem.  

adapt 

adapt adapt 

Problem 
Wins: 4 
Draws: 6 
Points: 16 

Case 1 
Wins: 2 
Draws: 5 
Points: 11 

Case 2 
Wins: 4 
Draws: 3 
Points: 13 

 

Fig. 3. Path invariant adaptation in the soccer scores domain 

Another possible adaptation formula in the soccer scores domain is the following: 

 points(P) = 
1+ wins(P)

1+ wins(C)
× points(C)                                     (4) 

Though taking no account of the draws attribute, Eqn. 4 captures the idea that 
points scored can be expected to increase as the number of wins increases. Adding 
one to wins(C) in the formula avoids the risk of division by zero, and ensures that any 
case can be adapted to solve a given problem. Also adding one to wins(P) ensures that 
no adjustment is made when wins(P) = wins(C). When Eqn. 4 is used to adapt the 

most similar case in Fig. 2, the solution for the target problem is 1+ 2

1+ 3
×11 = 8.25.  

A similar approach to adaptation, though based on attributes with non-zero values, 
was used by Leake and Whitehead [4] in experiments on the Abalone and Boston 
Housing datasets from the UCI Machine Learning Repository [13].  

Theorem 3. In the soccer scores domain, the adaptation formula points(P) = 
1+ wins(P)

1+ wins(C)
× points(C) is path invariant.  
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Proof. For any seed case C1, problem P, and adaptation path C1 →…→ Cn → P, the 
solution for P obtained by applying the adaptation formula at each step in the adapta-
tion path is:  

1+ wins(P)

1+ wins(Cn )
× points(Cn ) = 1+ wins(P)

1+ wins(Cn )
× 1+ wins(Cn )

1+ wins(Cn −1)
× points(Cn −1) =

1+ wins(P)

1+ wins(Cn )
× 1+ wins(Cn )

1+ wins(Cn −1)
× ... × 1+ wins(C2)

1+ wins(C1)
× points(C1) =

1+ wins(P)

1+ wins(C1)
× points(C1)

 

That is, the solution provided by any adaptation path from C1 to P is the same as 
the solution obtained by adapting C1 directly to solve P. It follows as required that the 
adaptation formula is path invariant.                                                                              

4.2   Path Invariance in General 

It might be considered that path invariance is an unusual property of the adaptation 
methods that we discussed in the soccer scores domain. However, the proof of Theo-
rem 2 can be generalized to show that adaptation is path invariant for any CBR  
estimation task, numeric attributes a1, …, ar, coefficients k1, …, kr, and adaptation 
formula: 

adapted-solution(C, P) = solution(C) + (ki × (π i (P) −
i=1

r

∑ π i (C)))

            

(5)  

where π i (P)  and π i (C)  are the values of ai in P and C respectively. 
 Adaptation is also path invariant for any CBR estimation task and adaptation 

formula: 

adapted-solution(C, P) = 
π a (P)

π a (C)
× solution(C)                             (6) 

where a is a numeric attribute with non-zero values and a direct relationship to the 
solution attribute, and πa(P) and πa(C) are the values of a in P and C respectively. As 
previously mentioned, null adaptation [11] is also path invariant. 

As discussed in Section 3, the fact that adaptation path length has no direct effect 
on solution quality for path invariant adaptation methods is one of the motivating fac-
tors in our investigation of Lazier+ CBR as an approach to addressing the problems 
caused by eager commitment to previous adaptation paths in traditional CBR. In Sec-
tion 5, we examine the hypothesis that for path invariant adaptation methods, a La-
zier+ CBR system learns more effectively from experience in the absence of feedback 
than a traditional CBR system.   

5    Empirical Study 

In the experiments reported in this section, we assess the ability of a target CBR sys-
tem to learn from experience by tracking its performance over time as new cases are 
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added to an initially empty case base. The performance measures of interest are per-
centage accuracy for classification tasks and mean absolute error (MAE) for estima-
tion tasks. We use one or other of these measures to construct a learning curve that 
shows how effectively the system learns from experience. In each experiment, we use 
a given dataset as a source of seed cases and problems to be solved by the target CBR 
system. As described in Section 5.1, the proportion of seed cases (1/r) in the case base 
is determined by an integer parameter r ≥ 2 and remains constant at each of a series of 
evaluation points. In Sections 5.2 to 5.4, we use this framework to compare the per-
formance of Lazier+ CBR and traditional CBR for a variety of estimation and classifi-
cation tasks in the absence of feedback.  

5.1   Experimental Method   

Beginning with an initially empty case base, and a given dataset of size n, we repeat 
the following steps until the size of the case base reaches k × r, where k is the largest 
integer such that k × r ≤ n.  

1. Select an example (description + solution) at random from the dataset and 
insert it as a seed case into the case base.   

2. Remove the selected example from the dataset. 
3. Select r – 1 examples at random from the dataset and present their descrip-

tions (one at a time) as problems to be solved by a target CBR system. As 
each problem is solved, add its description and the CBR system’s solution to 
the case base as a new case before the next problem is solved.  

4. Remove the examples selected in Step 3 from the dataset. 
5. Calculate the percentage accuracy or MAE of the CBR system’s (unrevised) 

solutions over all non-seed cases that are now in the case base.  

For example, the system’s solution for a non-seed case is deemed to be correct in a 
classification task if it is the same as the known solution from the dataset. At each of 
the k evaluation points (Step 5), the proportion of seed cases in the case base is 1/r. 
Fig. 4 illustrates our approach to constructing a case base from a given dataset. In this 
example, r = 3 and evaluation points are shown as double vertical lines (||). Seed cases 
are shown as dark circles. The diagram also shows the adaptation paths that determine 
the solutions for the first six non-seed cases to be added to the case base in a  
traditional CBR system. However, this provenance information is not used in our  
experiments.  

 

Fig. 4. An example case base incrementally constructed by adding cases to an initially empty 
case base in groups of r = 3 cases 
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All attributes are equally weighted for the purpose of similarity assessment in our 
experiments. We define the similarity of two values x and y of a numeric attribute a to 

be sima (x, y) = 1−
x − y

max(a) − min(a)
, where max(a) and min(a) are the maximum and 

minimum values of a in the given dataset. We define the similarity of two values of a 
nominal attribute to be 0 if one or both values are missing. Otherwise, we assign a 
similarity score of 1 for equal values or 0 for unequal values. 

5.2   Estimation in the Soccer Scores Domain 

Our first experiment is based on an artificial dataset in the soccer scores domain (Sec-
tion 4). The dataset contains 169 examples, one for each value of wins and draws 
from 0 to 12. The correct solution (points = 3 × wins + draws) is stored with each 
example description. The resulting dataset provides a source of seed cases and prob-
lems to be solved in the construction of a case base and evaluation of a target CBR 
system as described in Section 5.1. The goal of the CBR system is to estimate the 
points scored. Adaptation is based in the experiment on the following adaptation for-
mula, which we know to be path invariant from Theorem 2, and in which C is the case 
adapted to solve a target problem P. 

points(P) = points(C) + 2 × (wins(P) – wins(C)) + 1 × (draws(P) – draws(C))    (7) 

Fig. 5 shows the resulting learning curves for r = 4 in a traditional CBR system and 
Lazier+ CBR system. For this value of r, the proportion of seed cases at each evalua-
tion point is 1/4. The MAE at each evaluation point is averaged over 100 trials. In 
Lazier+ CBR, the MAE decreases rapidly to a minimum of 1.2 when the number of 
seed cases reaches 36. In contrast, it is only after 10 seed cases have been added to the 
case base that effective learning begins in traditional CBR. Moreover, the lowest 
MAE achieved by the traditional CBR system is 3.2 compared to 1.2 for the Lazier+ 
CBR system.  

 

Fig. 5. Learning curves based on mean absolute error (MAE) for traditional CBR and Lazier+ 
CBR in the soccer scores domain 
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Table 1. Lowest mean absolute error (MAE) achieved by traditional and Lazier+ CBR sys-
tems in the soccer scores domain as the proportion of seed cases increases from 1/10 to 1/2.      

Proportion of Seed Cases (1/r)  

1/10 1/5 1/4 1/3 1/2 
Traditional CBR 4.1 3.1 3.2 2.4 1.7 

Lazier+ CBR 1.7 1.2 1.2 1.0 0.9 

 

To assess the proportions of seed cases (1/r) required for effective learning in traditional 
CBR and Lazier+ CBR, we repeated the experiment with different values of r. Table 1 
shows the lowest MAE achieved by traditional CBR and Lazier+ CBR systems as the pro-
portion of seed cases increases from 1/10 to 1/2. The Lazier+ CBR system can be seen to 
require much fewer seed cases for effective learning than the traditional CBR system. For 
example, the traditional CBR system requires a proportion of seed cases 5 times greater 
than the Lazier+ CBR system to achieve a minimum MAE of 1.7.   

5.3   Estimating Housing Values 

The case base used in our second experiment is constructed from the Boston Housing 
dataset from the UCI Machine Learning Repository [13]. The dataset contains 506 
examples, each representing a residential area in the Boston suburbs described by 13 
attributes such as average number of rooms (RM) and distance to employment centers 
(DIS). The goal is to estimate the median value of owner-occupied homes (MEDV) in 
a given area. The dataset is used as a source of seed cases and problems to be solved 
by a target CBR system as described in Section 5.1. All attributes in the dataset are 
used in the experiment to assess the similarity of a given case C to a target problem P. 
Adaptation is based in the experiment on the adaptation formula: 

MEDV(P) = RM(P)

RM(C)
× MEDV(C)                                         (8) 

 

Fig. 6. Learning curves based on mean absolute error (MAE) for traditional CBR and  
Lazier+ CBR in a case base generated from the Boston Housing dataset 



 Learning More from Experience in Case-Based Reasoning 163 

Leake and Whitehead [4] used a similar approach to adaptation in experiments on 
the Boston Housing and Abalone datasets.  

Fig. 6 shows the learning curves for r = 5 in a traditional CBR system and Lazier+ 
CBR system. For this value of r, the proportion of seed cases at each evaluation point 
is 1/5. The MAE at each evaluation point is averaged over 10 trials. Initially, the La-
zier+ CBR system can be seen to learn at a much faster rate than the traditional CBR 
system. However, both learning curves tend to level off soon after the halfway stage 
is reached. From this point, the MAE for Lazier+ CBR remains fairly constant at about 
two thirds of the MAE for traditional CBR. The lowest MAE achieved by the tradi-
tional CBR system is 5.9 compared to 3.8 for the Lazier+ CBR system. 

5.4   Classification with Null Adaptation 

The case base in our final experiment is constructed from the Congressional Voting 
Records dataset from the UCI Machine Learning Repository [13]. Examples in the 
dataset represent the votes of 435 US Congressmen on 16 key issues as well as their 
political affiliations (Democrat/Republican). The goal in this classification task is to 
predict political affiliation from voting behavior. The dataset is used as a source of 
seed cases and problems to be solved by a target CBR system as described in Section 
5.1. Adaptation is based in the experiment on null adaptation (i.e., the solution for the 
retrieved case is reused without adaptation) [11]. 

Fig. 7 shows the learning curves for r = 3 in a traditional CBR system and Lazier+ 
CBR system. For this value of r, the proportion of seed cases at each evaluation point 
is 1/3. Accuracy levels are shown as percentages averaged over 10 trials. The fastest 
learning rates in both traditional and Lazier+ CBR can be observed in the early stages 
of case base growth (i.e., as the number of seed cases increases from 1 to 15). There-
after, both systems continue to learn at a slower rate until the number of seed cases 
reaches 100. During this phase, the difference in classification accuracy between the 
two systems remains fairly constant at around 4% in favor of Lazier+ CBR. The 
maximum accuracy achieved by the traditional CBR system is 85% compared to 89% 
for the Lazier+ CBR system. Lazier+ CBR also exhibits a faster learning rate in the 
early stages of case-base growth than traditional CBR. 

 

Fig. 7. Learning curves based on classification accuracy for traditional CBR and Lazier+ CBR 
in a case base generated from the Congressional Voting Records dataset 
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Like the other results presented in this section, these results support our hypothesis 
that for path invariant adaptation methods, a Lazier+ CBR system learns more effec-
tively from experience in the absence of feedback than a traditional CBR system.  

6   Conclusions 

We argued in this paper that the ability of traditional CBR systems to learn from ex-
perience in the absence of immediate (or any) feedback is limited by eager commit-
ment to the adaptation paths used to solve previous problems. This departure from 
lazy learning in CBR is also a primary cause of the order dependence problem 
brought to light by recent research on case provenance and feedback propagation [4]. 
We also showed that many adaptation methods used in estimation and classification 
tasks are path invariant in the sense that any adaptation path from a given seed case to 
a target problem gives the same solution as adapting the seed case directly to solve the 
target problem. Importantly, adaptation path length has no direct effect on solution 
quality for path invariant adaptation methods.  

In light of this analysis, we investigated an alternative approach to learn-
ing/problem solving in CBR called Lazier+ CBR that avoids commitment to previous 
adaptation paths, and hence the need for feedback propagation, by allowing only seed 
cases, or other cases with confirmed solutions, to contribute to the solution of new 
problems. We also demonstrated the effectiveness of Lazier+ CBR for a variety of 
estimation and classification tasks based on path invariant adaptation methods. In the 
estimation/classification tasks that we studied, Lazier+ CBR consistently outper-
formed traditional CBR in terms of mean absolute error/percentage accuracy. Lazier+ 
CBR also exhibited faster learning rates and required fewer seed cases for effective 
learning than traditional CBR. Moreover, Lazier+ CBR is more efficient than tradi-
tional CBR because cases with unconfirmed solutions do not contribute to retrieval 
effort in Lazier+ CBR. In practice, such cases can be stored separately until such time 
as feedback on their solutions is received.  

Investigation of other CBR tasks and adaptation methods that may benefit from 
Lazier+ CBR, or variations of the basic approach, is an important direction for our 
future research in this area.   
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