

Lecture Notes in Computer Science 6916
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antonio Cerone Pekka Pihlajasaari (Eds.)

Theoretical Aspects
of Computing –
ICTAC 2011
8th International Colloquium
Johannesburg, South Africa
August 31 – September 2, 2011
Proceedings

13

Volume Editors

Antonio Cerone
The United Nations University
International Institute for Software Technology
Casa Silva Mendes, Est. do Engenheiro Trigo No. 4
Macau, China
E-mail: antonio@iist.unu.edu

Pekka Pihlajasaari
Data Abstraction (Pty) Ltd
7 Saint David’s Park, Saint David’s Place
Parktown, Johannesburg, South Africa
E-mail: pekka@data.co.za

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-23282-4 e-ISBN 978-3-642-23283-1
DOI 10.1007/978-3-642-23283-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934503

CR Subject Classification (1998): F.1, F.3, F.4, F.2, D.2.4, D.2-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International Colloquia on Theoretical Aspects of Computing (ICTAC)
bring together practitioners and researchers from academia, industry and
government to present research results and exchange experience and ideas. An
important aim of the colloquia is to promote cooperation in research and educa-
tion between participants and their institutions, from developing and industrial
countries, in accordance with the mandate of the United Nations University.

Research on theoretical aspects of computing has a direct impact on the
practice of computer systems development as well as on the technologies as-
sociated with many disciplines other than computer science. The definition of
effective theoretical frameworks for modelling and analyzing complex systems
has resulted in the development of tools and methodologies for the verifications
of software and hardware systems, before their actual construction, and for the
simulation and analysis of natural systems, such as biological and ecological sys-
tems, supporting important predictions which otherwise would require expensive
and difficult laboratory and field experiments, and the prevention of natural dis-
asters. Moreover, research on theoretical aspects of computing has enabled the
development of sophisticated techniques for mining and analyzing large amounts
of data and support knowledge management in various application domains, such
as education, health, economy and governance.

This volume contains the papers presented at the 8th International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2011), which was held
from August 31 to September 2, at Mabalingwe Nature Reserve, in the Water-
berg mountains, two hours’ travel from the center of Johannesburg, South Africa.
There were 44 submissions by authors from 21 countries. Each submission was
reviewed by at least two, and mostly three, Program Committee members and
external reviewers. After extensive discussions, the Program Committee decided
to accept the 14 papers included in this volume, with an acceptance rate of 32%.
Authors of a selection of these papers will be invited to submit an extended
version of their work to a special issue of the Theoretical Computer Science jour-
nal. The colloquium program also included three keynote talks. Jayadev Misra,
from the University of Texas at Austin, USA, was the FME lecturer and pre-
sented a talk on “Virtual Time and Timeout in Client-Server Networks.” David
Lorge Parnas, Professor Emeritus at McMaster University, Canada, presented
a talk on “The Use of Mathematics In Software Development.” Willem Visser,
from Stellenbosch University, South Africa, presented a talk on “Infinitely Often
Testing.”

Tutorials associated with ICTAC 2011 were held on August 29 and 30 at
Mabalingwe Nature Reserve. During August 22–26 an International School on
Software Engineering associated with ICTAC 2011 was hosted by the University
of the Witwatersrand, Johannesburg, at its Braamfontein campus.

VI Preface

ICTAC 2011 and its associated events were organized jointly by the Univer-
sity of the Witwatersrand, Johannesburg, South Africa, and the International In-
stitute for Software Technology of the United Nations University (UNU-IIST),
Macau SAR China. Additional support was provided by Mircosoft Research,
Formal Methods Europe (FME) and Data Abstraction (Pty) Ltd EasyChair
was used to manage submissions, reviewing process and proceedings production.
We are grateful to all members of the Program, Organizing and Steering Com-
mittees, and to all referees for their timely hard work. We are also grateful to
Kyle Au and Kitty Chan, who contributed to the maintenance of the conference
website, to the administrative staff at the School of Computational and Applied
Mathematics of the University of the Witwatersrand, Johannesburg, and Data
Abstraction for facilitating the event. Finally, we would like to thank all authors
and all participants of the conference.

September 2011 Antonio Cerone
Pekka Pihlajasaari

Organization

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Junia Anacleto Federal University of Sao Carlos, Brazil
Jonathan P. Bowen Museophile Limited, UK
Christiano Braga Universidade Federal Fluminense, Brazil
Vasco Brattka University of Cape Town, South Africa
Andrew Butterfield Trinity College Dublin, Ireland
Ana Cavalcanti University of York, UK
Antonio Cerone United Nations University, UNU-IIST, Macau

SAR China
Van Hung Dang Vietnam National University, Vietnam
Jim Davies University of Oxford, UK
David Deharbe Universidade Federal do Rio Grande do

Norte, Brazil
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Pascal Fontaine Loria, INRIA, University of Nancy, France
Marcelo Frias Universidad de Buenos Aires, Argentina
Lindsay Groves Victoria University of Wellington, New Zealand
Stefan Gruner University of Pretoria, South Africa
Michael R. Hansen Technical University of Denmark, Denmark
Rob Hierons Brunel University, UK
Lynne Hunt University of Southern Queensland, Australia
Moonzoo Kim KAIST, South Korea
Coenraad Labuschagne University of the Witwatersrand, Johannesburg,

South Africa
Martin Leucker TU Munich, Germany
Zhiming Liu United Nations University, UNU-IIST, Macau

SAR China
Patricia Machado Federal University of Campina Grande, Brazil
Mieke Massink CNR-ISTI, Italy
Ali Mili New Jersey Institute of Technology, USA
Marius Minea “Politehnica” University of Timisoara, Romania
Tobias Nipkow TU Munich, Germany
Odejobi Odetunji Obafemi Awolowo University Ile-Ife, Nigeria
Mizuhito Ogawa Japan Advanced Institute of Science and

Technology, Japan
Jose Oliveira Universidade do Minho, Portugal
Ekow Otoo University of the Witwatersrand, Johannesburg,

South Africa
Pekka Pihlajasaari Data Abstraction (Pty) Ltd, South Africa

VIII Organization

Francesca Pozzi Istituto Tecnologie Didattiche - CNR, Italy
Anders Ravn Aalborg University, Denmark
Markus Roggenbach Swansea University, UK
Augusto Sampaio Federal University of Pernambuco, Brazil
Bernhard Schaetz TU Munich, Germany
Gerardo Schneider Chalmers and University of Gothenburg, Sweden
Natarajan Shankar SRI International, USA
Marjan Sirjani Reykjavik University, Iceland
Fausto Spoto University of Verona, Italy
Clint Van Alten University of the Witwatersrand, Johannesburg,

South Africa
Franck Van Breugel York University, Canada
Govert van Drimmelen University of Johannesburg, South Africa
Daniel Varro Budapest University of Technology and

Economics, Hungary
Herbert Wiklicky Imperial College London, UK

Additional Reviewers

Andrade, Wilkerson L.
Bauer, Andreas
Bernardo, Marco
Beyer, Dirk
Bollig, Benedikt
Breuer, Peter
Carvalho, Gustavo
Chen, Chunqing
Chen, Haiming
Conradie, Willem
Damasceno, Adriana
De Wolf, Ronald
Ghassemi, Fatemeh
Hansen, Rene Rydhof
Holzer, Markus
Hong, Shin
Ishihara, Hajime
Khedri, Ridha
Kim, Youngjoo

Kim, Yunho
Kourie, Derrick
Liu, Wanwei
Mardare, Radu
Minamide, Yasuhiko
Mousavi, Mohammadreza
Nyman, Ulrik
Oliveira, Bruno
Phillips, Iain
Schäf, Martin
Shkatov, Dmitry
Silva, Paulo F.
Steedman, Mark
Steffen, Martin
Stoelinga, Marielle
Thomsen, Bent
Tiu, Alwen
Truong, Hoang
Van Raamsdonk, Femke

Table of Contents

Virtual Time and Timeout in Client-Server Networks
(Extended Abstract) . 1

Jayadev Misra

The Use of Mathematics in Software Development
(Extended Abstract) . 4

David Lorge Parnas

Infinitely Often Testing (Extended Abstract) . 6
Willem Visser

Axiomatizing Weak Ready Simulation Semantics over BCCSP 7
Luca Aceto, David de Frutos Escrig, Carlos Gregorio-Rodŕıguez, and
Anna Ingolfsdottir

Symbolic Worst Case Execution Times . 25
Ernst Althaus, Sebastian Altmeyer, and Rouven Naujoks

Selecting Good a Priori Sequences for Vehicle Routing Problem with
Stochastic Demand . 45

Ei Ando, Binay Bhattacharya, Yuzhuang Hu,
Tsunehiko Kameda, and Qiaosheng Shi

On Characterization, Definability and ω-Saturated Models 62
Facundo Carreiro

On the Complexity of Szilard Languages of Regulated Grammars 77
Liliana Cojocaru and Erkki Mäkinen

Energy Games in Multiweighted Automata . 95
Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jǐŕı Srba

Intersection Types for the Resource Control Lambda Calculi 116
Silvia Ghilezan, Jelena Ivetić, Pierre Lescanne, and Silvia Likavec

Modal Interface Theories for Communication-Safe Component
Assemblies . 135

Rolf Hennicker and Alexander Knapp

WP Semantics and Behavioral Subtyping . 154
Yijing Liu, Zongyan Qiu, and Quan Long

X Table of Contents

Computing Preconditions and Postconditions of While Loops 173
Olfa Mraihi, Wided Ghardallou, Asma Louhichi, Lamia Labed Jilani,
Khaled Bsaies, and Ali Mili

A Framework for Instantiating Pedagogic mLearning Objects
Applications . 194

Paul Birevu Muyinda, Jude T. Lubega, Kathy Lynch, and
Theo van der Weide

Emulating Primality with Multiset Representations of Natural
Numbers . 218

Paul Tarau

Formal Verification of a Lock-Free Stack with Hazard Pointers 239
Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif

Ambiguity of Unary Symmetric Difference NFAs . 256
Brink van der Merwe, Lynette van Zijl, and Jaco Geldenhuys

Author Index . 267

Virtual Time and Timeout in Client-Server

Networks
(Extended Abstract)

Jayadev Misra

The University of Texas at Austin, Austin, Texas, USA
misra@cs.utexas.edu

1 Introduction

This paper proposes that virtual time and virtual time-outs should be available
as tools for programming distributed systems. Virtual time is already used for
event ordering in distributed systems [4,3,5,1,9], though the numeric value of
virtual time is irrelevant in this context (see Section 2). Virtual time-out has not
been used in distributed systems. Virtual clock, i.e., virtual time and time-outs,
is used in discrete event simulation applications though such applications are
usually implemented on single machines using a single virtual clock, rather than
on distributed systems.

Our proposal combines and extends both notions so that virtual clock may
be used in full generality over a distributed set of machines. We argue that the
benefits extend beyond mere ordering of events or simulations. We can show a
solution to a combinatorial example, computing shortest path in a graph, that
can be structured as a set of concurrent threads operating with virtual time-outs.

These concepts have been implemented in a concurrent programming lan-
guage, Orc [7], designed by the author and his co-workers. We have used virtual
clock for simplifying routine concurrent programming applications. A subset of
distributed simulation [2,6] problems can be structured in this style. We expect
virtual clock to simplify programming and remove a number of book-keeping
operations from explicit consideration by the programmer.

2 Background

2.1 Causal Model of Virtual Time

In a classic paper [4], Lamport introduced the clock synchronization problem
across a set of machines. Lamport argued that real-time clocks of different ma-
chines can not be perfectly synchronized; therefore, determining the order of
events across machines is not a well-defined problem. However, it is possible to
implement virtual clocks at different machines and synchronize them so that if
an event at one machine causes an event at another machine (perhaps through a
chain of intermediate events) then the preceding event happens earlier in virtual

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 J. Misra

time1. The synchronization algorithm time-stamps each event with a natural
number, its virtual time, so that an event that causally precedes another will
be assigned a lower virtual time. Lamport’s algorithm and some of its varia-
tions [3,5,1,9] have become fundamental in designs of practical distributed sys-
tems. Morgan [8] shows how to design several distributed algorithms using virtual
clock.

The exact value of virtual time is irrelevant in the causal model because the
time-stamps of different events are merely compared. Therefore, doubling all
virtual times or increasing all by a fixed amount would not affect these compar-
isons.

2.2 Simulation Model of Virtual Time

Discrete event simulations of physical systems employ virtual time to mimic real
time in the physical system. The numeric value of virtual time is important
because entities in a physical system, e.g. persons waiting in a queue for service,
wait for specific lengths of time. The computational steps in simulations consume
no virtual time at all, and the passage of virtual time is dictated only by virtual
time-outs.

Unlike the causal model, simulations are typically implemented on single pro-
cessors; so, there is a single virtual clock under consideration in a simulation.

2.3 Contributions of This Work

We propose a general model that combines the causal and simulation models
and generalizes them. We regard a distributed system as a client-server network;
clients communicate with each other through the servers. Each client has a vir-
tual clock. Each step of a client consumes an amount of virtual time between
a lower and upper bound, as specified for that step. A client can request the
current value of the virtual time (thus, obtaining the time-stamp for an event),
and also wait for a certain amount of virtual time before starting its next step
(thus, using virtual time-out). Causally dependent events obey the appropriate
conditions on virtual times assigned to them.

Example. Consider a small example where the use of virtual time simplifies
program design. A set of independent concurrent threads, numbered from 0
through n, are to be executed. It is required to start the threads sequentially,
thread i+1 after thread i, 0 ≤ i < n. Since the threads are independent, there is
no causal order among them. If each thread is executed on a separate machine,
a causal order among their start events has to be imposed. One possibility is
to have thread i send a token to thread i + 1 after it starts, 0 ≤ i < n, and
thread i + 1 starts only after receiving the token. If all threads are executed on
a single machine, a simpler strategy is applicable. Thread i waits for i units of
time (real or virtual) before starting. Waiting for virtual time has the advantage

1 Lamport used the term “logical time”. We use “virtual time” to denote logical time
whose magnitude is also relevant.

Virtual Time and Timeout in Client-Server Networks 3

over waiting for real time in that (1) no real time is wasted, and (2) sequencing is
guaranteed by the conditions imposed on virtual time, whereas threads may start
out-of-order if the unit of real time is too small and the time-out mechanism is
inexact. If the threads are implemented on two machines, say threads 0 through
k−1 on machine 1 and k through n on machine 2, we can combine both strategies:
thread i in machine 1, 0 ≤ i < k, waits for i units of virtual time and then starts,
machine 2 starts only after receiving a token from (thread k − 1 in) machine 1,
and then thread j, k ≤ j ≤ n, waits for j−k units of virtual time before starting.

We have exploited virtual time-out in this example, though not the exact
values of the time outs. As a longer example, we can show how the single source
shortest path problem in a weighted directed graph can be solved using virtual
time; in that example, the lengths of edges determine values for the virtual
time-outs.

In the full paper, we propose a set of conditions that the time-stamps must
satisfy, and the machinery needed for synchronization of virtual clocks and time-
stamping of events in a client-server network. The algorithm requires each client
to maintain a virtual clock and the servers to help synchronize the virtual clocks
of the clients.

References

1. Almeida, P.S., Baquero, C., Fonte, V.: Interval tree clocks. In: Baker, T.P., Bui, A.,
Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 259–274. Springer, Heidelberg
(2008)

2. Bagrodia, R., Mani Chandy, K., Misra, J.: A message based approach to discrete
event simulation. IEEE Transactions on Software Engineering SE-13(6) (1987)

3. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial or-
dering. In: Raymond, K. (ed.) Proc. of the 11th Australian Computer Science Con-
ference (ACSC 1988), pp. 56–66 (February 1988)

4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM 21(7), 558–565 (1978)

5. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard, M.
(ed.) Proc. Workshop on Parallel and Distributed Algorithms, Chateau de Bonas,
France, pp. 215–226. Elsevier, Amsterdam (1988)

6. Misra, J.: Distributed discrete event simulation. Computing Surveys 18(1), 39–65
(1986)

7. Misra, J., Cook, W.: Computation orchestration: A basis for wide-area computing.
Software and Systems Modeling (SoSyM) 6(1), 83–110 (2007)

8. Morgan, C.: Global and logical time in distributed algorithms. Information Process-
ing Letters 20(4), 189–194 (1985)

9. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: Constant size logical clocks for
distributed systems (1996)

The Use of Mathematics in Software

Development
(Extended Abstract)

David Lorge Parnas

Middle Road Software, Ottawa, Ontario, Canada
parnas@mcmaster.ca

For many decades, computer science researchers have predicted that the ”For-
mal Methods” that they develop and advocate would bring about a drastic
improvement in the quality and cost of software. That improvement has never
materialized. This talk explain the difference between the methods and notations
that constitute ”Formal Methods” and the mathematical methods and notation
that are used successfully in other areas of Engineering. It discusses the reasons
for the failure of Formal Methods to effect the desired changes in the practise of
software. In traditional Engineering, mathematics plays three important roles:

– It is used in documentation of design decisions and product properties.
– It is used to compute the values of design parameters.
– It is used to verify that a proposed design has the properties required of it.

Mathematics can be used in the same way in software development. We can use
mathematics to document system requirements and component interfaces [1],
and to confirm important properties of documents and designs [2]. It has long
been used to calculate parameters for numerical software. However, outside of
numerical software, most programmers still consider mathematics to be irrele-
vant. One key to applying mathematics in software development is finding better
representations for the piecewise-continuous mathematical functions that are ap-
proximated by software. Mathematical expressions in tabular form (also called
tabular expressions or tables) have repeatedly been demonstrated to be useful
for documenting and analyzing software systems. They are usually easier to read
than conventional mathematical expressions but are no less precise. They can be
used wherever mathematical expressions are used. To avoid misunderstandings,
and to support users with trustworthy tools, the meaning of these expressions
must be fully defined.The talk describes a new method for defining the meaning
of tabular expressions. Each definition maps a well-formed tabular expression to
a mathematical expression of a previously defined type. Since the meaning of
conventional mathematical expressions is well known, describing an equivalent
conventional expression fully defines the meaning of a tabular expression Math-
ematical definition of the meaning of software documentation makes it possible
to develop a number of tools that can be of real help to software developers. The
talk closes with a brief description of such tools.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 4–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Use of Mathematics in Software Development 5

References

1. Liu, Z., Parnas, D.L., Trancón y Widemann, B.: Documenting and verifying systems
assembled from components. Frontiers of Computer Science in China 4(2), 151–161
(2010)

2. Parnas, D.L.: Precise documentation: The key to better software. In: Nanz, S. (ed.)
The Future of Software Engineering, pp. 125–148. Springer, Heidelberg (2011)

Infinitely Often Testing

(Extended Abstract)

Willem Visser

Department of Computer Science, Stellenbosch University, South Africa
visserw@sun.ac.za

From the perspective of industry, formal methods over-promise and under-deliver.
Theoretical computer scientists love the notion of proving programs correct,
but have slowly come round to the realization that promises in grant proposals
aren’t the same as delivering in the real world. Essentially we started seeing
a slow erosion of the importance of the notion of soundness; completeness was
dropped long before. The ideal of showing that programs behave according to
their specification, became the reality of finding situations where they don’t.
This maps perfectly onto an expensive activity well known to industry, namely
software testing. This presentation looks at the happy marriage of techniques
from formal methods and software testing. Software testing is expensive since
it is time-consuming to derive tests to adequately cover the software’s behav-
ior. Techniques from formal methods allow one to generate tests automatically
(hence reducing costs) and systematically (hence increasing the likelihood of dis-
covering errors). We look at the use of software model checking to find errors in
complex code, and specifically, consider the evolution of one of the world’s most
popular model checkers, JavaPathFinder (JPF). One of the core techniques in
JPF is symbolic execution that, although introduced in the early seventies, has
recently made a big comeback in the testing world. We discuss the reasons why
it took this long for such a powerful technique to become popular (again) and
how it is used within JPF. In addition we discuss some of the new advances
in symbolic execution and how it is used for bug finding and test generation.
Finally, we consider some of the new challenges facing the automated testing
field and how formal techniques can be applied to address them.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, p. 6, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Axiomatizing Weak Ready Simulation Semantics
over BCCSP�

Luca Aceto1,3, David de Frutos Escrig2,3,
Carlos Gregorio-Rodríguez2,3, and Anna Ingolfsdottir1,3

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
2 Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid, Spain
3 Abel Extraordinary Chair, Universidad Complutense-Reykjavik University

Abstract. Ready simulation has proven to be one of the most signifi-
cant semantics in process theory. It is at the heart of a number of gen-
eral results that pave the way to a comprehensive understanding of the
spectrum of process semantics. Since its original definition by Bloom,
Istrail and Meyer in 1995, several authors have proposed generalizations
of ready simulation to deal with internal actions. However, a thorough
study of the (non-)existence of finite (in)equational bases for weak ready
simulation semantics is still missing in the literature. This paper presents
a complete account of positive and negative results on the axiomatiz-
ability of weak ready simulation semantics over the language BCCSP.
In addition, this study offers a thorough analysis of the axiomatizability
properties of weak simulation semantics.

1 Introduction

Process algebras, such as ACP [9,11], CCS [34] and CSP [29], are prototype
specification languages for reactive systems. Such languages offer a small, but
expressive, collection of operators that can be combined to form terms that
describe the behaviour of reactive systems.

Since the seminal work by Bergstra and Klop [11], and Hennessy and Mil-
ner [28], the search for (in)equational axiomatizations of notions of behavioural
semantics for fragments of process algebras has been one of the classic top-
ics of investigation within concurrency theory. A complete axiomatization of a

� Luca Aceto and Anna Ingolfsdottir have been partially supported by the projects
‘New Developments in Operational Semantics’ (nr. 080039021) and ‘Meta-theory of
Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research Fund. David de
Frutos Escrig and Carlos Gregorio-Rodríguez have been partially supported by the
Spanish projects TESIS (TIN2009-14312-C02-01), DESAFIOS10 (TIN2009-14599-
C03-01) and PROMETIDOS S2009/TIC-1465. The paper was begun when David
de Frutos Escrig and Carlos Gregorio-Rodríguez held Abel Extraordinary Chair po-
sitions at Reykjavik University, and finalized while Luca Aceto and Anna Ingolfsdot-
tir held Abel Extraordinary Chairs at Universidad Complutense de Madrid, Spain,
supported by the NILS Mobility Project.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 7–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

8 L. Aceto et al.

behavioural semantics yields a purely syntactic and model-independent char-
acterization of the semantics of a process algebra, and paves the way to the
application of theorem-proving techniques in establishing whether two process
descriptions exhibit related behaviours.

There are three types of ‘complete’ axiomatizations that one meets in the
literature on process algebras. An (in)equational axiomatization is called ground-
complete if it can prove all the valid (in)equivalences relating closed terms, i.e.
terms with no occurrences of variables, in the process algebra of interest. It is
complete when it can be used to derive all the valid (in)equivalences. (A complete
axiom system is also referred to as a basis for the algebra it axiomatizes.) These
two notions of completeness relate the semantic notion of process, namely an
equivalence class of terms, with the proof-theoretic notion of provability from
an (in)equational axiom system. An axiomatization E is ω-complete when an
inequation can be derived from E if, and only if, all of its closed instantiations can
be derived from E. The notion of ω-completeness is therefore a proof-theoretic
one. Its connections with completeness are well known, and are discussed in,
e.g., [4].

In [23], van Glabbeek studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which is sufficiently powerful to express all finite
synchronization trees [34]. In the aforementioned reference, van Glabbeek gave,
amongst a wealth of other results, (in)equational ground-complete axiomatiza-
tions for the preorders and equivalences in the spectrum. In [17], two of the
authors of this paper presented a unification of the axiomatizations of all the se-
mantics in the linear time-branching time spectrum. This unification is achieved
by means of conditional axioms that provide a simple and clear picture of the
similarities and differences between all the semantics. In [26], Groote obtained
ω-completeness results for most of the axiomatizations presented in [23], in case
the alphabet of actions is infinite. The article [4] surveys results on the existence
of finite, complete equational axiomatizations of equivalences over fragments of
process algebras up to 2005. Some of the recent results on this topic may be
found in [5,6,8].

In the setting of BCCSP, in a seminal journal paper that collects and unifies
the results in a series of conference articles, Chen, Fokkink, Luttik and Nain have
offered in [15] a definitive classification of the status of the finite basis problem—
that is, the problem of determining whether a behavioural equivalence has a
finite, complete, equational axiomatization over the chosen process algebra—
for all the semantics in van Glabbeek’s spectrum. Notable later results by Chen
and Fokkink presented in [14] give the first example of a semantics—the so-called
impossible future semantics from [40]—where the preorder defining the semantics
can be finitely axiomatized over BCCSP, but its induced equivalence cannot. The
authors of this paper have recently shown in [2] that complete simulation and
ready simulation semantics do not afford a finite (in)equational axiomatization
even when the set of actions is a singleton.

The collection of results mentioned in the previous paragraph gives a com-
plete picture of the axiomatizability of behavioural semantics in van Glabbeek’s

Axiomatizing Weak Ready Simulation Semantics over BCCSP 9

spectrum over BCCSP. However, such notions of behavioural semantics are con-
crete, in the sense that they consider each action processes perform as being
observable by their environment. Despite the fundamental role they play in the
development of a theory of reactive systems, concrete semantics are not very
useful from the point of view of applications. For this reason, notions of be-
havioural semantics that, in some well-defined way, abstract from externally
unobservable steps of computation that processes perform have been proposed
in the literature—see, e.g., the classic references [21,25,28], which offer, amongst
many other results, ground-complete axiomatizations of the studied notion of
behavioural semantics. Following Milner, such notions of behavioural semantics
are usually called ‘weak semantics’ and the symbol τ is used to describe an un-
observable action. However, to the best of our knowledge, no systematic study
of the axiomatizability properties of variations on the classic notion of simula-
tion semantics [32] that abstract away from internal steps of computation in the
behaviour of processes has been presented in the literature. This is all the more
surprising since simulation semantics is very natural and plays an important role
in applications.

The aim of this paper is to offer a detailed study of the axiomatizability
properties of the largest (pre)congruences over the language BCCSP induced by
variations on the classic simulation preorder and equivalence that abstract from
internal steps in process behaviours. We focus on the (pre)congruences associated
with the weak simulation and the weak ready simulation [12,30] preorders. For
each of these behavioural semantics, we present results on the (non)existence
of finite (ground-)complete (in)equational axiomatizations. Following [17], we
also discuss the axiomatization of those semantics using conditional equations
in some detail.

We begin our study of the weak simulation semantics over BCCSP in Section 3
by focusing on the natural extension of the classic simulation preorder to a
setting with the internal action τ . We show how to lift all the known results on
the (non)existence of finite (ground-)complete axiomatizations from the setting
of the classic simulation semantics to its weak counterpart using, for instance,
the approach developed in [6].

In Section 4, we study the notion of weak ready simulation, namely a weak
simulation that can only relate states that afford the same sets of observable
actions. The finite axiomatizability of this semantics depends crucially on the
presence of an infinite set of observable actions. Indeed, if the set of actions is
infinite, we offer finite (un)conditional (ground-)complete axiomatizations for the
weak ready simulation precongruence. In sharp contrast to this positive result,
we prove that, when the set of observable actions A is finite and non-empty, the
(in)equational theory of the weak ready simulation precongruence over BCCSP
does not have a finite (in)equational basis.

2 Preliminaries

To set the stage for the developments offered in the rest of the paper, we
present the syntax and the operational semantics for the language BCCSP, some

10 L. Aceto et al.

background on (in)equational logic, and classic axiom systems for strong bisim-
ulation equivalence and observational congruence [34].

Syntax of BCCSP. BCCSP(Aτ) is a basic process algebra for expressing finite
process behaviour. Its syntax consists of closed (process) terms p, q, r that are
constructed from a constant 0, a binary operator _ + _ called alternative com-
position, or choice, and unary prefix operators α_, where α ranges over some
set Aτ of actions of the form A ∪ {τ}, where τ is a distinguished action symbol
that is not contained in A. Following Milner, we use τ to denote an internal, un-
observable action of a reactive system, and we let a, b, c denote typical elements
of A and α range over Aτ . The set of closed terms is named T(BCCSP(Aτ)), in
short T(Aτ). We write |A| for the cardinality of the set of observable actions.

Open terms t, u, v can moreover contain occurrences of variables from a
countably infinite set V (with typical elements x, y, z). We use T(BCCSP(Aτ)),
in short T(Aτ), to denote the set of open terms. The depth of a term t is the
maximum nesting of prefix operators in t.

In what follows, for each non-negative integer n and term t, we use ant to stand
for t when n = 0, and for a(an−1t) otherwise. As usual, trailing occurrences of
0 are omitted; for example, we shall usually write α in lieu of α0.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of
a variable x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution.

Transitions and Their Defining Rules. Intuitively, closed BCCSP(Aτ) terms
represent finite process behaviours, where 0 does not exhibit any behaviour,
p + q is the nondeterministic choice between the behaviours of p and q, and αp
executes action α to transform into p. This intuition is captured, in the style of
Plotkin [37], by the simple transition rules below, which give rise to Aτ -labelled
transitions between closed terms.

αx
α−→ x

x
α−→ x′

x + y
α−→ x′

y
α−→ y′

x + y
α−→ y′

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour.

The so-called weak transition relations α=⇒ (α ∈ Aτ) are defined over T(Aτ)
in the standard fashion as follows.

– We use τ=⇒ for the reflexive and transitive closure of τ−→.
– For each a ∈ A and for all terms t, u ∈ T(Aτ), we have that t

a=⇒ u if, and
only if, there are t1, t2 ∈ T(Aτ) such that t

τ=⇒ t1
a−→ t2

τ=⇒ u.

For each term t, we define I∗(t) = {a | a ∈ A and t
a=⇒ t′ for some t′}.

Preorders and Their Kernels. We recall that a preorder � is a reflexive and
transitive relation. In what follows, any preorder � we consider will first be

Axiomatizing Weak Ready Simulation Semantics over BCCSP 11

defined over the set of closed terms T(Aτ). For terms t, u ∈ T(Aτ), we define
t � u if, and only if, σ(t) � σ(u) for each closed substitution σ.

The kernel ≈ of a preorder ≈ is the equivalence relation it induces, and is
defined thus: t ≈ u if, and only if, (t � u and u � t). It is easy to see that the
kernel of a preorder � is the largest symmetric relation included in �.

Inequational Logic. An inequation (respectively, an equation) over the language
BCCSP(Aτ) is a formula of the form t ≤ u (respectively, t = u), where t and u
are terms in T(Aτ). An (in)equational axiom system is a set of (in)equations over
the language BCCSP(Aτ). An equation t = u is derivable from an equational
axiom system E, written E � t = u, if it can be proven from the axioms in
E using the rules of equational logic (viz. reflexivity, symmetry, transitivity,
substitution and closure under BCCSP(Aτ) contexts).

t = t
t = u

u = t

t = u u = v

t = v

t = u

σ(t) = σ(u)
t = u

αt = αu

t = u t′ = u′

t + t′ = u + u′

For the derivation of an inequation t ≤ u from an inequational axiom system
E, the rule for symmetry—that is, the second rule above—is omitted. We write
E � t ≤ u if the inequation t ≤ u can be derived from E.

It is well known that, without loss of generality, one may assume that substitu-
tions happen first in (in)equational proofs, i.e., that the fourth rule may only be
used when its premise is one of the (in)equations in E. Moreover, by postulating
that for each equation in E also its symmetric counterpart is present in E, one
may assume that applications of symmetry happen first in equational proofs, i.e.,
that the second rule is never used in equational proofs. (See, e.g., [15, page 497]
for a thorough discussion of this notion of ‘normalized equational proof.’) In the
remainder of this paper, we shall always tacitly assume that equational axiom
systems are closed with respect to symmetry. Note that, with this assumption,
there is no difference between the rules of inference of equational and inequa-
tional logic. In what follows, we shall consider an equation t = u as a shorthand
for the pair of inequations t ≤ u and u ≤ t.

The depth of t ≤ u and t = u is the maximum of the depths of t and u.
The depth of a collection of (in)equations is the supremum of the depths of its
elements. So, the depth of a finite axiom system E is zero, if E is empty, and it
is the largest depth of its (in)equations otherwise.

An inequation t ≤ u is sound with respect to a given preorder relation � if
t � u holds. An (in)equational axiom system E is sound with respect to � if so
is each (in)equation in E.

Classic Axiomatizations for Notions of Bisimilarity. The well-known axioms
B1–B4 for BCCSP(Aτ) given below stem from [28]. They are ω-complete [36],
and sound and ground-complete [28,34], over BCCSP(Aτ) (over any nonempty
set of actions) modulo bisimulation equivalence, which is the finest semantics in
van Glabbeek’s spectrum [23].

12 L. Aceto et al.

B1 x + y = y + x
B2 (x + y) + z = x + (y + z)
B3 x + x = x
B4 x + 0 = x

In what follows, for notational convenience, we consider terms up to the least
congruence generated by axioms B1–B4, that is, up to bisimulation equivalence.
We use summation

∑n
i=1 ti (with n ≥ 0) to denote t1 + · · ·+ tn, where the empty

sum denotes 0. Modulo the equations B1–B4 each term t ∈ T(Aτ) can be written
in the form

∑n
i=1 ti, where each ti is either a variable or is of the form αt′, for

some action α and term t′.
In a setting with internal transitions, the classic work of Hennessy and Milner

on weak bisimulation equivalence and on the largest congruence included in it, ob-
servational congruence, shows that the axioms B1–B4 together with the axioms
W1–W3 below are sound and complete over BCCSP(Aτ) modulo observational
equivalence. (See [28,34,35].)

W1 αx = ατx
W2 τx = τx + x
W3 α(τx + y) = α(τx + y) + αy

The above axioms are often referred to as the τ-laws. For ease of reference, we
write

BW = {B1, B2, B3, B4, W1, W2, W3}.

3 Weak Simulation

We begin our study of the equational theory of weak simulation semantics by con-
sidering the natural, τ -abstracting version of the classic simulation preorder [32].
We start by defining the notion of weak simulation preorder and the equivalence
relation it induces. We then argue that all the known positive and negative re-
sults on the existence of (ground-)complete (in)equational axiomatizations for
the concrete simulation semantics over the language BCCSP(Aτ) can be lifted
to the corresponding weak semantics.

Definition 1. The weak simulation preorder, denoted by �S, is the largest re-
lation over terms in T(Aτ) satisfying the following condition whenever p �S q
and α ∈ Aτ :

– if p
α−→ p′ then there exists some q′ such that q

α=⇒ q′ and p′ �S q′.

We say that p, q ∈ T(Aτ) are weak simulation equivalent, written p ≈S q, iff p
and q are related by the kernel of �S, that is when both p �S q and q �S p hold.

Unlike many other notions of behavioural relations that abstract away from
internal steps in the behaviour of processes, see [25,34] for classic examples, the
weak simulation preorder is a precongruence over the language we consider in
this study.

Axiomatizing Weak Ready Simulation Semantics over BCCSP 13

Proposition 1. The preorder �S is a precongruence over T(Aτ). Hence ≈S is
a congruence over T(Aτ). Moreover, the axiom

(τe) τx = x

holds over T(Aτ) modulo ≈S.

The soundness of equation τe is the key to all the results on the equational
theory of the weak simulation semantics we present in the remainder of this
section. In establishing the negative results, we shall make use of the reduction
technique from the paper [6].

3.1 Ground-Completeness for Weak Simulation

Besides the equation τe previously stated in Proposition 1, there will be another
important equation to consider in order to achieve an axiomatic characterization
of the weak simulation preorder, namely

(S) x ≤ x + y.

This equation also plays an essential role in the axiomatization of the simu-
lation preorder in the concrete case [18,23].

Proposition 2. The set of equations

ES≤ = {B1, B2, B3, B4, S, τe}

is sound and ground-complete for BCCSP(Aτ) modulo �S.1

Note that the equations W1–W3, even if sound for �S , are not needed in or-
der to obtain a ground-complete axiomatization of �S over BCCSP(Aτ). Those
equations can easily be derived from the axiom system in Proposition 2.

To obtain an axiomatization for the weak simulation equivalence, we need the
equation

(SE) a(x + y) = a(x + y) + ay (a ∈ A).

This equation is well known from the setting of standard simulation equiva-
lence, where it is known to be the key to a ground-complete axiomatization [23].

Proposition 3. The set of equations

ES= = {B1, B2, B3, B4, SE, τe}

is sound and ground-complete for BCCSP(Aτ) modulo ≈S.

1 This completeness result was announced in [24] by van Glabbeek.

14 L. Aceto et al.

3.2 ω-Completeness for Weak Simulation

Propositions 2 and 3 offer ground-complete axiomatizations for the weak simula-
tion preorder and its kernel over BCCSP(Aτ). The inequational axiomatization
of the weak simulation preorder is finite, and so is the one for its kernel if the
set of actions A is finite. In the presence of an infinite collection of actions, the
axiom system in Proposition 3 is finite if we consider a to be an action vari-
able. It is natural to wonder whether the weak simulation semantics afford finite
(in)equational axiomatizations that are complete over T(Aτ). The following re-
sults answer this question.

Proposition 4. If the set of actions is infinite, then the axiom system

ES≤ = {B1, B2, B3, B4, S, τe}

is both ω-complete and complete over BCCSP(Aτ) modulo �S.

So the weak simulation preorder can be finitely axiomatized over T(Aτ) when A
is infinite. This state of affairs changes dramatically when A is a finite collection
of actions of cardinality at least two.

Theorem 1. If 1 < |A| < ∞, then the weak simulation equivalence does not
afford a finite equational axiomatization over T(Aτ). In particular, no finite
axiom system over T(Aτ) that is sound modulo weak simulation equivalence can
prove all the (valid) equations in the family on page 511 of [15].

Table 1. Axiomatizations for the weak simulation semantics

Weak Simulation Ground-complete Complete

Finite Equations Order Equiv. Order Equiv.

|A| = ∞ ES≤ ES= ES≤ ES=

1 < |A| < ∞ ES≤ ES= Do not exist

|A| = 1 E
S
≤
1

ES=
1

E
S
≤
1

ES=
1

Table 2. Axioms for the weak simulation semantics

ES≤ = {B1–B4, τe, S}
ES= = {B1–B4, τe, SE}
E

S
≤
1

= {B1–B4, τe, S, TE,Sg≤}
ES=

1
= {B1–B4, τe, TE,Sg}

(τe) τx = x

(S) x ≤ x + y

(Sg≤) x ≤ ax

(SE) a(x + y) =

a(x + y) + ay

(TE) a(x + y) = ax + ay

(Sg) ax = ax + x

Axiomatizing Weak Ready Simulation Semantics over BCCSP 15

Corollary 1. If 1 < |A| < ∞, then the weak simulation preorder does not afford
a finite inequational axiomatization over T(Aτ).

Remark 1. If A is a singleton then the simulation preorder coincides with trace
inclusion. In that case, the simulation preorder is finitely based over T(A), as
is simulation equivalence —see, e.g., [4]. Those axiomatizations can be lifted to
the setting of weak simulation semantics simply by adding the equation τe to
any complete axiomatization of the simulation preorder or equivalence.

Tables 1 and 2 summarize the positive and negative results on the existence
of finite axiomatizations for weak simulation semantics. On Table 1, and in
subsequent ones, ‘Do not exist’ indicates that there is no finite (in)equational
axiomatization for the corresponding semantic relation.

4 Weak Ready Simulation

In this section, we shall study the equational theory of the largest precongruence
included in the weak ready simulation preorder. We first define the notion of weak
ready simulation that will be the cornerstone in subsequent developments. We
then proceed to study its induced precongruence, first in the case in which the
set of actions A is infinite and then in case that A is finite.

In order to define the weak ready simulation semantics we recall the definition
of the function I∗, presented in Section 2, that returns the set of initial visible
actions of a term: I∗(t) = {a | a ∈ A and t

a=⇒ t′ for some t′}.

Definition 2. The weak ready simulation preorder, which we denote by �RS,
is the largest relation over terms in T(Aτ) satisfying the following conditions
whenever p �RS q and α ∈ Aτ :

– if p
α−→ p′ then there exists some term q′ such that q

α=⇒ q′ and p′ �RS q′,
and

– I∗(p) = I∗(q).

We say that p, q ∈ T(Aτ) are weak ready simulation equivalent, written p ≈RS q,
iff p and q are related by the kernel of �RS, that is when both p �RS q and
q �RS p hold.

Remark 2. �RS is not a precongruence with respect to the choice operator of
BCCSP(Aτ). It is immediate to show that τa �RS a. However, τa+b ��RS a+b.

There are many possible ways to define a weak ready simulation semantics (see,
for instance, [22]). The preorder defined above is based on a natural ‘weak coun-
terpart’ of the constraint used in capturing ready simulation as a constrained
simulation [18]. This design criterion was important for us, because we aim at ex-
tending the general and natural results we obtained for this family of semantics
from the strong to the weak setting.

There are, of course, other guiding principles that could lead to alternative
definitions. For instance, the inequation αx ≤ αx+αy (α ∈ Aτ) appears in [16]

16 L. Aceto et al.

as a benchmark for characterizing weak preorders. Although the authors of [16]
do not claim to define weak ready simulation semantics, from an algebraic view-
point it would be appealing to have a weak ready simulation preorder satisfying
this inequation. Unfortunately, so far we have failed to obtain a simple opera-
tional characterization of a weak simulation satisfying the previous inequation,
even allowing for the addition of some other (simple and reasonable) axioms.
Another reasonable requirement one might want to impose on a notion of weak
ready simulation preorder is that it be preserved by hiding. As our readers can
easily check, the preorder in Definition 2 does not meet this requirement. The
study of the (in)equational theory of the largest precongruence with respect
to hiding included in the weak ready simulation preorder defined above is an
interesting topic for future research.

Summing up, we do not claim that our weak ready simulation is ‘the right
one’, but, after a thorough study of the question, we postulate that it is the
simplest notion of weak ready simulation that affords both a simple operational
definition, as we have seen above, and good algebraic properties over BCCSP,
as we will see below. Much more on the subject can be found in the extended
version of the paper.

Definition 3. We denote by �RS the largest precongruence included in �RS.
Formally, p �RS q iff

– p �RS q,
– p �RS q ⇒ ∀α ∈ Aτ αp �RS αq, and
– p �RS q ⇒ ∀r ∈ T(Aτ) p + r �RS q + r.

The behavioural characterization of the relation �RS and its axiomatic prop-
erties will depend crucially on whether the set of visible actions A is finite or
infinite.

4.1 Axiomatizing �RS When A Is Infinite

If the set of actions A is infinite, then we can obtain a behavioural characteriza-
tion of the largest precongruence included in the weak ready simulation preorder
using a standard construction due to Milner.

Definition 4. The preorder relation �RS between processes is defined as follows:
We say that p �RS q iff

– for any α ∈ Aτ such that p
α−→ p′, there exists some q′ such that q

τ=⇒ α−→ τ=⇒
q′ with p′ �RS q′, and

– I∗(p) = I∗(q).

We denote the kernel of �RS by �RS.

Proposition 5 (Behavioural Characterization of �RS). If A is infinite
then p �RS q if, and only if, p �RS q, for all p, q ∈ T(Aτ). Therefore, �RS

coincides with the kernel of the preorder �RS.

Axiomatizing Weak Ready Simulation Semantics over BCCSP 17

Ground-completeness. We shall now provide ground-complete (conditional)
axiomatizations of the relations �RS and �RS .

To axiomatize �RS using conditional inequations, the key axiom is

(RSτ) I∗(x) = I∗(y)⇒ x ≤ x + y.

This axiom mirrors the one used in the concrete setting in [17,23].

Proposition 6. The set of equations

Ec
RS≤ = BW ∪ {RSτ},

in which RSτ is conditional, is sound and ground-complete for �RS over the
language BCCSP(Aτ).

We now give a ground-complete and unconditional axiomatization for the weak
ready simulation preorder. For that we will consider the equations

(RS) ax ≤ ax + ay
(τg) x ≤ τx.

Equation RS is a well known and important one in the study of process seman-
tics. RS appears as a necessary condition for process semantics in many general
results in process theory—see, e.g. [3,19,20,31].

As for equation τg, this is indeed a simple and natural one that is satisfied
by any ‘natural’ precongruence on processes with silent moves.

Theorem 2. The set of non-conditional equations defined by

ERS≤ = BW ∪ {RS, τg}

is sound and ground-complete for BCCSP(Aτ) modulo �RS.

To obtain a ground-complete axiomatization of the largest congruence included
in weak ready simulation equivalence, it would be desirable to use a general
‘ready-to-preorder result’ [3,20] as the one we have for the concrete case. There is
indeed a similar result for weak semantics by Chen, Fokkink and van
Glabbeek, see [16], but unfortunately it is not general enough to cover the case
of the weak ready simulation congruence in Definition 4.

We now provide a ground-completeness result in which a key role is played
by the equation

(RSEτ) I∗(x) = I∗(y)⇒ α(x + y) = α(x + y) + αy,

which is quite similar to the equation needed for the concrete case.

Proposition 7. The set of equations

Ec
RS= = BW ∪ {RSEτ},

in which RSEτ is conditional, is sound and ground-complete for �RS over the
language BCCSP(Aτ).

18 L. Aceto et al.

In order to give an unconditional axiomatization of �RS , we consider the
following equations:

(RSE) α(bx + z + by) = α(bx + z + by) + α(bx + z)
(RSEτe) α(x + τy) = α(x + τy) + α(x + y).

Theorem 3. The set of equations

ERS= = BW ∪ {RSE, RSEτe}
is sound and ground-complete for BCCSP(Aτ) modulo �RS.

ω-Completeness. We shall now provide an axiomatization for the relation �RS

that is (ω-)complete.
Theorem 4. If the set of actions A is infinite, then the axiom system

ERS≤ = BW ∪ {RS, τg}
is both ω-complete and complete for BCCSP(Aτ) modulo �RS.

4.2 Axiomatizing �RS When A Is Finite

Proposition 5 gives an explicit characterization of the largest precongruence in-
cluded in the weak ready simulation preorder when the collection of actions is
infinite. In this section, we shall study the (in)equational theory of �RS when
the set of observable actions A is finite and non-empty.

First of all, note that if A is finite then the relation �RS defined in Definition 4
is not the largest precongruence included in the weak ready simulation preorder.
To see this, consider the terms

p = τ
∑
a∈A

a and q =
∑
a∈A

a. (1)

Observe that, for each r ∈ BCCSP(Aτ), the following statements hold:
1. p �RS q + r and
2. p + r �RS q + r.

From these statements if follows that p ≤ q is valid modulo the largest precon-
gruence included in �RS .

Definition 5. The relation �F
RS is defined as follows: We say that p �F

RS q iff

– for each a ∈ A and p′ such that p
a−→ p′, there exists some q′ such that

q
a=⇒ q′ with p′ �RS q′;

– for each p′ such that p
τ−→ p′,

• either there exists some q′ such that q(τ−→)+q′ with p′ �RS q′,
• or I∗(p′) = A and p′ �RS q; and

– I∗(q) ⊆ I∗(p).

Note that p �F
RS q, for the processes p and q defined in (1). Indeed, since I∗(q) =

A, process q can match the initial τ -labelled transition from p by remaining idle.

Proposition 8 (Behavioural Characterization of �RS). If A is finite then
p �F

RS q if, and only if, p �RS q, for all p, q ∈ T(Aτ).

Axiomatizing Weak Ready Simulation Semantics over BCCSP 19

Ground-completeness. In order to give a ground-complete axiomatization of
the relation �F

RS , we consider the equation

(RSΣ) τ(
∑
a∈A

axa + y) =
∑
a∈A

axa + y

Proposition 9. The set of equations EFc
RS≤ = BW ∪ {RSτ , RSΣ}, in which

RSτ is conditional, is sound and ground-complete for �F
RS over the language

BCCSP(Aτ).
Theorem 5. The set of equations

EF
RS≤ = BW ∪ {RS, τg, RSΣ}

is sound and ground-complete for BCCSP(Aτ) modulo �F
RS.

We now proceed to offer (un)conditional axiomatizations of �
F
RS , the kernel of

the preorder �F
RS.

Proposition 10. The set of equations EFc
RS= = BW ∪ {RSEτ , RSΣ}, in which

RSEτ is conditional, is sound and ground-complete for BCCSP(Aτ) modulo
�

F
RS.

Theorem 6. The set of equations

EF
RS= = BW ∪ {RSE, RSτe, RSΣ}

is sound and ground-complete for BCCSP(Aτ) modulo �
F
RS.

Remark 3. Since, in the case |A| < ∞, the preorder �F
RS is the largest pre-

congruence included in �RS , all the axiomatizations above are also sound and
ground-complete for �RS and its kernel, in this case.
Nonexistence of Finite Complete Axiomatizations. We shall now prove
that, if the set of actions A is finite, then neither �F

RS nor its kernel afford a finite
(in)equational axiomatization. The following proposition was shown in [15].

Proposition 11. For each n ≥ 0, the equation

anx + an0 +
∑
b∈A

an(x + b) = an0 +
∑
b∈A

an(x + b) (2)

is sound modulo ready simulation equivalence, and therefore modulo the kernel
of �F

RS.

The family of equations (2) plays a crucial role in the proof of Theorem 36 in [15],
to the effect that the equational theory of ready simulation equivalence is not
finitely based over BCCSP(Aτ) when the set of actions is finite and contains
at least two distinct actions. (In fact, as we showed in [2], ready simulation
semantics is not finitely based, even when the set of actions is a singleton.)

Theorem 7. If |A| ≥ 1 then the (in)equational theory of �F
RS over BCCSP(Aτ)

does not have a finite (in)equational basis. In particular, the following statements
hold true.

20 L. Aceto et al.

Table 3. Axiomatizations for the largest (pre)congruence included in the weak ready
simulation semantics

Weak Ready Simulation Ground-complete Complete

Finite Equations Order Equiv. Order Equiv.

|A| = ∞ ERS≤ ERS= ERS≤ ERS=

1 ≤ |A| < ∞ EF
RS≤ EF

RS= Do not exist

Table 4. Axioms for the largest (pre)congruence included in the weak ready simulation
semantics

Unconditional

ERS≤ = BW ∪ {RS, τg}
ERS= = BW ∪ {RSE, RSτe}
EF

RS≤ = BW ∪ {RS, τg,RSΣ}
EF

RS= = BW ∪
{RSE, RSτe, RSΣ}

(RS) ax ≤ ax + ay

(τg) x ≤ τx

(RSE) α(bx + z + by) =

α(bx + z + by) + α(bx + z)

(RSτe) α(x + τy) =

α(x + τy) + α(x + y)

(RSΣ) τ (
∑

A axa + y) =
∑

A axa + y

Conditional

Ec
RS≤ = BW ∪ {RSτ}

Ec
CS= = BW ∪ {RSEτ}

(RSτ) (I∗(x) ⇔ I∗(y)) ⇒
x ≤ x + y

(RSEτ) (I∗(x) ⇔ I∗(y)) ⇒
α(x + y) = α(x + y) + αx

1. No finite set of sound inequations over BCCSP(Aτ) modulo �F
RS can prove

all of the sound inequations in the family

anx ≤ an0 +
∑
b∈A

an(x + b) (n ≥ 1).

2. No finite set of sound (in)equations over BCCSP(Aτ) modulo �F
RS can prove

all of the sound equations in the family (2).

Theorem 7 is a corollary of the following result. As usual, we consider processes
up to strong bisimilarity.

Proposition 12. Assume that |A| ≥ 1. Let E be a collection of inequations
whose elements are sound modulo �F

RS and have depth smaller than n. Suppose
furthermore that the inequation t ≤ u is derivable from E and that u �F

RS

an0 +
∑

b∈A an(x + b). Then t
an

=⇒ x implies u
an

=⇒ x.

Axiomatizing Weak Ready Simulation Semantics over BCCSP 21

Corollary 2. If 1 ≤ |A| < ∞ then the collection of (in)equations in at most
one variable that hold over BCCSP(Aτ) modulo �F

RS does not have a finite
(in)equational basis. Moreover, for each n, the collection of all sound (in)equations
of depth at most n cannot prove all the valid (in)equations in at most one variable
that hold in weak ready simulation semantics over BCCSP(Aτ).

Tables 3 and 4 summarize the positive and negative results on the existence of
finite axiomatizations for weak ready simulation semantics.

5 Conclusion

In this paper, we have offered a detailed study of the axiomatizability properties
of the largest (pre)congruences over the language BCCSP induced by the ‘weak’
versions of the classic simulation and ready simulation preorders and equiva-
lences. For each of these notions of behavioural semantics, we have presented
results related to the (non)existence of finite (ground-)complete (in)equational
axiomatizations. As in [15], the finite axiomatizability of the studied notions of
semantics depends crucially on the cardinality of the set of observable actions.
Following [17], we have also discussed ground-complete axiomatizations of those
semantics using conditional (in)equations in some detail. In particular, we have
shown how to prove ground-completeness results for (in)equational axiom sys-
tems from similar results for conditional axiomatizations in a fairly systematic
fashion.

The results presented in this article paint a rather complete picture of the
axiomatic properties of the above-mentioned weak simulation semantics over
BCCSP. We have also obtained similar results for the intermediate case of the
weak complete simulation semantics, to be presented in a forthcoming paper.
Moreover, in the cases in which the studied notions of semantics do not afford
finite complete axiomatizations, it would be interesting to obtain infinite, but
finitely described, complete axiomatizations. This is a topic that we leave for
future research.

The results presented in this study complement those offered in, e.g.,
[7,38,39,41], where notions of divergence-sensitive preorders based on variations
on prebisimilarity [27,33] or on the refusal simulation preorder have been given
ground-complete inequational axiomatizations. They are just a first step in the
study of the equational logic for notions of behavioural semantics in the exten-
sion of van Glabbeek’s spectrum to behavioural semantics that abstract from
internal steps in computation [22].

A natural avenue for future research is to investigate the equational logic of
weak versions of semantics in van Glabbeek’s spectrum that are based on notions
of decorated traces. We have already started working on this topic and we plan
to report on our results in a forthcoming article.

Following the developments in [1,10,38], it would also be interesting to study
rule formats for operational semantics that provide congruence formats for the
semantics considered in this paper, and to give procedures for generating ground-
complete axiomatizations for them for process languages in the given formats.

22 L. Aceto et al.

In [16], Chen, Fokkink and van Glabbeek have provided an extension to weak
process semantics of the ‘ready to preorder’ procedure for generating axioma-
tizations of process equivalences from those of their underlying preorders, first
studied in [3,20]. It would be worthwhile to study whether the scope of the al-
gorithm presented in [16] can be extended to cover the case of the weak ready
simulation congruence in Definition 4 and related semantics. The doctoral dis-
sertation [13] also presents an algorithm to turn an axiomatization of a semantics
for concrete processes into one for ‘its induced weak semantics.’ An extension
of the scope of applicability of that algorithm would also be a significant ad-
vance on the state of the art in the study of axiomatizability results for process
semantics over process algebras.

References

1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Infor-
mation and Compututation 111(1), 1–52 (1994)

2. Aceto, L., de Frutos Escrig, D., Gregorio-Rodríguez, C., Ingólfsdóttir, A.: Complete
and ready simulation semantics are not finitely based over BCCSP, even with a
singleton alphabet. Information Processing Letters 111(9), 408–413 (2011)

3. Aceto, L., Fokkink, W.J., Ingólfsdóttir, A.: Ready to preorder: Get your BCCSP
axiomatization for free! In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.)
CALCO 2007. LNCS, vol. 4624, pp. 65–79. Springer, Heidelberg (2007)

4. Aceto, L., Fokkink, W.J., Ingólfsdóttir, A., Luttik, B.: Finite equational bases in
process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V.,
van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the
Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)

5. Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: A finite equational base for
CCS with left merge and communication merge. ACM Trans. Comput. Log. 10(1)
(2009)

6. Aceto, L., Fokkink, W., Ingólfsdóttir, A., Mousavi, M.R.: Lifting non-finite axioma-
tizability results to extensions of process algebras. Acta Informatica 47(3), 147–177
(2010)

7. Aceto, L., Hennessy, M.: Termination, deadlock and divergence. Journal of the
ACM 39(1), 147–187 (1992)

8. Aceto, L., Ingolfsdottir, A., Luttik, B., van Tilburg, P.: Finite equational bases
for fragments of CCS with restriction and relabelling. In: 5th IFIP International
Conference on Theoretical Computer Science. IFIP, vol. 273, pp. 317–332. Springer,
Heidelberg (2008)

9. Baeten, J., Basten, T., Reniers, M.: Process Algebra: Equational Theories of Com-
municating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50.
Cambridge University Press, Cambridge (2009)

10. Baeten, J.C.M., de Vink, E.P.: Axiomatizing GSOS with termination. Journal of
Logic and Algebraic Programming 60-61, 323–351 (2004)

11. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109–137 (1984)

12. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the
ACM 42(1), 232–268 (1995)

Axiomatizing Weak Ready Simulation Semantics over BCCSP 23

13. Chen, T.: Clocks, Dice and Processes. PhD thesis, Centrum voor Wiskunde en
Informatica (CWI), Vrije Universiteit, Amsterdam (2009)

14. Chen, T., Fokkink, W.: On the axiomatizability of impossible futures: Preorder
versus equivalence. In: LICS, pp. 156–165. IEEE Computer Society, Los Alamitos
(2008)

15. Chen, T., Fokkink, W., Luttik, B., Nain, S.: On finite alphabets and infinite bases.
Information and Computation 206(5), 492–519 (2008)

16. Chen, T., Fokkink, W., van Glabbeek, R.J.: Ready to preorder: The case of weak
process semantics. Information Processing Letters 109(2), 104–111 (2008)

17. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of
process semantics: Equational semantics. Electronic Notes in Theoretical Computer
Science 249, 243–267 (2009)

18. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: Universal coinductive characteriza-
tions of process semantics. In: 5th IFIP International Conference on Theoretical
Computer Science. IFIP, vol. 273, pp. 397–412. Springer, Heidelberg (2008)

19. de Frutos-Escrig, D., Gregorio-Rodríguez, C.: (Bi)simulations up-to characterise
process semantics. Information and Computation 207(2), 146–170 (2009)

20. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: Ready to preorder: an
algebraic and general proof. Journal of Logic and Algebraic Programming 78(7),
539–551 (2009)

21. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

22. van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

23. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra, ch. 1, pp. 3–99.
Elsevier, Amsterdam (2001)

24. van Glabbeek, R.J.: A characterisation of weak bisimulation congruence. In: Mid-
deldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes,
Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 26–39.
Springer, Heidelberg (2005)

25. van Glabbeek, R.J., Weijland, P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3), 555–600 (1996)

26. Groote, J.F.: A new strategy for proving omega-completeness applied to process
algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458,
pp. 314–331. Springer, Heidelberg (1990)

27. Hennessy, M.: A term model for synchronous processes. Informationa and Con-
trol 51(1), 58–75 (1981)

28. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32, 137–161 (1985)

29. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

30. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28 (1991)

31. Lüttgen, G., Vogler, W.: Ready simulation for concurrency: It’s logical! Information
and Computation 208(7), 845–867 (2010)

32. Milner, R.: An algebraic definition of simulation between programs. In: Proceed-
ings 2nd Joint Conference on Artificial Intelligence, pp. 481–489. BCS (1971);
Also available as Report No. CS-205, Computer Science Department, Stanford
University

24 L. Aceto et al.

33. Milner, R.: A modal characterisation of observable machine behaviour. In: Aste-
siano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Hei-
delberg (1981)

34. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

35. Milner, R.: A complete axiomatisation for observational congruence of finite-state
behaviors. Information and Computation 81(2), 227–247 (1989)

36. Moller, F.: Axioms for Concurrency. PhD thesis, Report CST-59-89, Department
of Computer Science, University of Edinburgh (1989)

37. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

38. Ulidowski, I.: Axiomatisations of weak equivalences for De Simone languages. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 219–233. Springer,
Heidelberg (1995)

39. Ulidowski, I.: Refusal simulation and interactive games. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 208–222. Springer, Heidelberg
(2002)

40. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Information Pro-
cessing Letters 80(1), 51–58 (2001)

41. Walker, D.: Bisimulation and divergence. Information and Computation 85(2),
202–241 (1990)

Symbolic Worst Case Execution Times�

Ernst Althaus1, Sebastian Altmeyer2, and Rouven Naujoks3

1 Johannes-Gutenberg-Universität Mainz and Max-Planck-Institut für Informatik
ernst.althaus@uni-mainz.de

2 Saarland University
altmeyer@cs.uni-saarland.de

3 Max-Planck-Institut für Informatik
naujoks@mpi-inf.mpg.de

Abstract. In immediate or hard real-time systems the correctness of an opera-
tion depends not only upon its logical correctness, but also on the time in which
it is computed. In such systems, it is imperative that operations are performed
within a given deadline because missing this deadline constitutes the failure of
the complete system. Such systems include medical systems, flight control sys-
tems and other systems whose failure in responding punctually results in a high
economical loss or even in the loss of human lives.

These systems are usually analyzed in a sequence of steps in which first, a so-
called control flow graph (CFG) is constructed that represents possible program
flows. Furthermore, bounds on the time necessary to execute small code blocks
are computed along with bounds on the number of possible executions of the
program loops. Depending on the type of the analysis, these loop bounds can
either be numerical values or symbolic variables, corresponding to inputs given
for instance by a user or by sensors. In the last step, in such a CFG the weight of
a longest path with respect to the loop bounds is computed, reflecting a bound on
the worst case execution time.

In this paper, we will show how to compute such symbolic longest path weights
in CFGs of software with a rather regular structure like software developed for
hard real-time systems. We will present the first algorithm that is capable of com-
puting such paths in time polynomial in the size of both the input and the output.
Our approach replaces the application of integer linear programming solvers in
the case of purely numerical loop bounds. Furthermore, it improves upon the
speed and accuracy of existing approaches in the case of symbolic bounds.

1 Introduction

Immediate real-time systems require tasks to finish in time. To guarantee the timeliness
of such systems, upper bounds on the worst case execution times of the their tasks have
to be computed. To be useful in practice, such an analysis must be sound to ensure the
reliability of the guarantee, precise to increase the chance of proving the satisfiability
of the timing requirements, and efficient, to make them useful in industrial practice.

� This work was partly supported by the German Research Council (DFG) as part of the Tran-
sregional Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS, www.avacs.org).

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 25–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.avacs.org

26 E. Althaus, S. Altmeyer, and R. Naujoks

The high complexity of modern processors and modern embedded software ham-
pers the analysis to achieve all three properties at once. Exhaustive measurement, for
instance, may be sound and precise but is infeasible for realistically sized programs.
Simple end-to-end measurements are easy to derive, but are possibly unsound. We refer
to [12] for a general overview of methods for the worst-case execution-time problem
and to [10],[7] presenting the results of challenges in which state-of-the-art tools are
compared. A general approach to achieve all three properties is to represent a program
P that has to be analyzed as a so-called control flow graph in which a node corresponds
to a basic code block B of P , i.e. to a maximal sequence of consecutive operations of
P such that only B’s first operation is the target of a jump operation in P and such
that the last operation in B is a jump directive. The edges in such a graph represent the
source/target relationship of the jumps in P . In a set of analyses, upper bounds on the
running times of the basic blocks and upper bounds on the number of loop iterations are
determined. The execution time bound of the program is then given by the weight of a
longest path P in the CFG that respects the given loop bounds. The step of the timing
analysis that computes such a path is usually referred to as path analysis.

Timing analyses treating bounds on the maximal number of loop iterations as numer-
ical values are referred to as numeric or traditional timing analyses. The drawback of
such an analysis is that bounds on loop iterations must be known statically, i.e. during
design time. Some systems need guarantees for timely reactions which are not abso-
lute, but dependent on inputs of for example a user or a sensor. In such cases, tradi-
tional timing analysis offers only two possibilities. Either one provides constant bounds
for the unknown variables or one starts a new analysis each time the task is used with
different inputs. While the first option endangers precision, the second may be an un-
acceptable increase in the analysis time. Parametric timing analyses circumvents this
problem. Instead of computing numeric bounds valid for specific variable assignments
only, parametric analysis derives symbolic formulas representing upper bounds on the
task’s execution times.

Traditionally, the computation of a longest path in a CFG is done by formulating
the problem as an integer program. While in the case of numeric timing analyses, the
corresponding integer program is linear and can be solved by an ILP-solver, the integer
program in the presence of symbolic bounds on the loop iterations is in general non-
linear, which makes it necessary to relax the non-linear constraints, leading to a loss of
accuracy (see 2.2 for a more detailed discussion).

Even the traditional path analysis is NP-hard since by setting all loop bounds to one,
the problem reduces to the longest path problem in graphs. In this paper, we discuss
a new and purely combinatorial approach for the symbolic path analysis and for arbi-
trary loop bounds, exploiting the rather regular structure of software written for such
time critical systems. Such software must be clearly structured, avoiding for instance
constructs like gotos, to make the code verifiable. For CFGs arising from such code,
we present an approach for the path analysis, which solves two major problems of the
previous approaches: in stark contrast to the exponential running time of the ILP ap-
proach, our algorithm has a running time that is polynomial in the size of both the input
and the output. Note that in case of numeric path analysis, only one path is reported.
Furthermore, in the case of symbolic analyses, our algorithm avoids any relaxation of

Symbolic Worst Case Execution Times 27

non-linear constraints, leading to potentially better bounds. We also show that for a
certain type of CFGs the size of the output is minimal.

2 Related Work

In this section we briefly discuss two state-of-the-art approaches for path analysis which
make use of an ILP formulation. For a detailed discussion we refer to [3,8,11]. Note, that
in some cases it is convenient to assign the runtime of a basic blocks to the outgoing
edges of the corresponding node in the CFG. We also restrict the discussion to the
computation of a longest path from a source node s with in-degree 0 to some sink node
t with out-degree 0.

2.1 Numeric Path Analysis

For the longest path computation usually a technique called implicit path enumeration
(see [8,11]) is used. Each edge ei is assigned a variable ni called the traversal count
denoting how often ei is traversed by a control flow. Since a control flow enters a nodes
v exactly as often as it leaves it, the sum of the traversal counts of edges entering v must
equal the sum of the counts of the edges leaving v. For the source node and the target
node we have the special rule, that the sum of traversal counts of incident edges must
equal 1 since each program flow enters s and leaves t exactly once. In a third class of
inequalities, the number of times a loop is traversed is limited to the number of times
it is entered multiplied by its loop bound. The objective function of this ILP is then to
maximize the sum over the costs of the basic blocks times the traversal counts of edges
entering them (see 1 for an example).

12
n1

3

n2

4
n4

n5

5

n6

n3

n1 = 1;

n1 = n2 + n3;

n2 + n5 = n4 + n6;

n4 = n5;

n4 ≤ b · n2;

n3 + n6 = 1;

max :
∑

i

(∑
j: nj enters i cinj

)

Fig. 1. A control flow graph and the corresponding ILP formulation. The running time of the
basic block i is denoted as ci. It is transfered to the incoming edges of i. b denotes the loop bound
of the loop {3, 4}. Equalities ensure the flow-balance, i.e. a node is entered exactly as many times
as it is left. The inequality n4 ≤ b ·n2 ensures that the loop is traversed (i.e. edge n4 is used) only
b times the number of times it is entered (i.e. edge n2 is used). In case of numberic loop bounds,
the inequality is linear. If the loop bound is symbolic, i.e. b is a variable and we are seeking for
all paths which are longest of at least one b, the inequality is non-linear and has to be relaxed by
finding an upper bound on n2.

28 E. Althaus, S. Altmeyer, and R. Naujoks

2.2 Parametric Path Analysis

In the approach given in [9] and [3] for the parametric path analysis basically the same
ILP construction as in the previous discussion is used. The difference is now that the
loop bounds used in this formulation are now variables, yielding non-linear constraints
– in the example 1, there is for instance the non-linear constraint n4 ≤ b ·n2 if the loop
bound b is symbolic. In order to solve such an integer program, these non-linearities
must be relaxed by bounding the variables in the ILP by constants. For instance, is it
easy to verify that in our example, the constraint n4 ≤ b · n2 can be replaced by the
constraint n4 ≤ b, since n2 ≤ 1. Once, all non-linear constraints are relaxed we are
left with a parametric ILP, i.e. with an ILP containing symbolic constants, which can be
solved by a parametric ILP-solver as proposed by Feautrier [5] using symbolic versions
of the simplex [4] and the cutting plane algorithm [6]. The two big disadvantages of
this approach are that such parametric ILP-solvers are much slower than existing ILP
solvers and that the method yields a loss in accuracy by the relaxation of the constraints.

3 Longest Paths in Singleton-Loop-Graphs

So far we have treated the concept of a program loop as given. But to discuss our
algorithm we have to formally define what a program loop corresponds to in the CFG.
Considering nested loops in a piece of code, one can observe, that any two points can
be reached from each other by a possible control flow, leading to the definition that a
loop is a strongly connected component in the CFG. The sub-loops of a loop L are then
just the strongly connected components of L after removing the node over which L is
entered. Note that this also means that the sub-loops of a loop depend on the node over
which L is entered.

Assuming wlog. that such a program was written in a high level language like c, the
constructs causing the control flow to branch are for, repeat-until, and while-do loops
with continue and break statements, if-then-else constructs, function calls and goto di-
rectives. Recall that we want to compute upper bounds on the worst case execution times
of programs developed for immediate real-time systems. As discussed before such pro-
grams typically have a rather regular structure. That is, usually the use of directives like
goto, break and continue is avoided. If a program now does not contain goto directives,
our definition of a loop coincides with the intutive concept of a loop. Moreover, there is
a unique node over which the loop is entered, which we call the entry node of the loop,
and thus, each loop must have uniquely defined sub-loops. The same holds recursively
for all sub-loops. We call graphs with this property singleton-loop graphs. Beside a CFG
and upper bounds for the runtime of the basic blocks, we assume that we are given loop
bounds for all induced sub-loops of the CFG, which can either be explicit numerical
values or symbols. In this section we will first describe the algorithm for singleton-loop
graphs, achieving a polynomial running time in the size of the input and the output. In
the following section, we will describe a slight variation of this algorithm for certain
graphs, which we call while-loop-graphs in which we additionally disallow break state-
ments. For this type of graph, we will show that we can even guarantee, that the output
is of minimal size.

Symbolic Worst Case Execution Times 29

3.1 Preliminaries

Definition 1 (Loop). Given a directed graph G = (V, E), we call a strongly connected
component S = (VS , ES) in G with |ES | > 0, a loop of G. We denote by loops(G), the
set of all loops of G.

Definition 2 (Entry Node). Given a directed graph G = (V, E) and a loop L =
(VL, EL) of G, we call e ∈ VL such that there exists an edge (u, e) in δ+

G(V \ VL) an
entry node of L.

Definition 3 (Singleton-Loop). A loop L in a graph G is called a singleton-loop if L
has exactly one entry node e. For the unique entry node of a singleton loop L, we write
E (L).

Definition 4 (Sub-loops). Given a loop L = (VL, EL), we define

sloops(L) :=
⋃

v is entry node of VL

loops(Gv)

where Gv is the subgraph induced by VL \ {v}.

Definition 5 (Induced Sub-loops). Given a loop L = (V, E), we call the recursively
defined set

iloops(L) := {L} ∪
(⋃

Ls∈sloops(L)

iloops(Ls)
)

the set of induced sub-loops of L. For a graph G, we extend the definition of iloops to
graphs:

iloops(G) :=
⋃

Ls∈loops(G)

iloops(Ls)

We call a graph G a singleton-loop graph if each induced sub-loop of G is a singleton-
loop. For such a graph, we write E (G) := {E (L) | L ∈ iloops(G)} to denote the set
of entry nodes of all induced sub-loops in G.

Definition 6 (Portal Nodes, Transit Edges). Given a directed graph G = (V, E) and
a loop L = (VL, EL) in G, we call T (L) := δ+

G(VL) the set of transit edges of L,
i.e. the edges, leaving the loop L, and P(L) := {p ∈ VL | ∃ (p, v) ∈ T (L)} the set of
portal nodes of L. A portal node is thus a source node of a transit edge.

Note that there is a one-to-one correspondence between singleton-loops and their entry
nodes, which justifies the following definition.

Definition 7 (Loop-Bound Function). Given a singleton-loop graph G = (V, E), we
call a function b: E (G) → N ∪ {+∞} a loop-bound function for G.

Now we have to classify the valid paths, i.e. the paths that respect the loop-bound con-
ditions. If for a loop L, a loop-bound of b(E (L)) is given, we say that an execution
path is not allowed to enter L and iterate on L more than b(E (L)) times, before the
path leaves L again.

30 E. Althaus, S. Altmeyer, and R. Naujoks

Definition 8 (Valid Path). Given a singleton-loop graph G = (V, E), two nodes s, t ∈
V and a loop-bound function b for G, we call a path P := s � t a valid path if for
all L := (VL, EL) ∈ iloops(G) and for all sub-paths (E (L), v0, v1, . . . , vk) of P with
vi ∈ VL, the sub-path (E (L), v0, v1, . . . , vk−1) contains at most b(E (L)) times the
node E (L).

In the following, we write lps(G, s, t) for a longest valid path from a node s to a node
t and for a lps(G, s, t) to denote the longest valid path from s to t, that contains t
exactly once. Most of the times, we will limit the discussion to the task of computing
just the path weights for sake of simplicity. Note, that this is not a real limitation, as
the algorithm can easily be extended to also cope with the problem of reporting the
paths as well. Furthermore, we will assume that for each v ∈ V there is a path from
s to t containing v. All other nodes can be removed by a preprocessing step in time
O(|V |+ |E|). Note that the resulting graph has at least |V | − 1 edges.

3.2 The Algorithm

Let us recall that a problem instance is given by a singleton-loop graph G = (V, E),
a source node s ∈ V , an edge weight function w : E �→ N and a loop-bound function
b: E (G) → N ∪ {+∞}. As we implicitly compute the single source all destination
problem we do not specify t in the algorithm. Since from now on, we will only talk
about singleton-loop graphs, we will only write loops instead of singleton-loops.

The algorithm uses the following observation. Assume the longest path traverses a
loop L. It does so by traversing the longest cycle starting at the entry node in L for
b(E (L)) − 1 times and then traversing via a longest path to one of its portal nodes.
Hence, our algorithm first computes for each loop L its longest loop and the longest
paths to its portals in a recursive manner. This is done by splitting the entry node into
one having the outgoing edge, the other having the incoming edges. The longest paths
to the portal nodes do not change and the longest cycle is the longest path from the copy
of the entry node with the outgoing edges to the one with the incoming edges. Then we
contract the loops to single nodes where the transit edges (v, w) over portal node v, are
assigned the weight that corresponds to the longest path that cycles through the entry
node b(E (L))− 1 times, then goes to v and uses the transit edge (v, w). Finally, notice
that in order to return the path itself, we have to store the path that we used to reach the
entry node, denoted by lps(G, s, E (L)), which is not the longest path to E (L) as this is
allowed to traverse a cycle in L b(E (L))−1 times. In pseudo-code our algorithm looks
as follows.

LPS(G, s) :=

1. Identify the loops (Lj)j∈{1,...,l} of G by computing the strongly connected com-
ponents.

2. For each Lj = (VLj , ELj):
(a) modify Lj by replacing E (Lj) by two nodes Eout and Ein and by replacing all

incoming edges (v, E (Lj)) by edges (v, Ein) and all outgoing edges (E (L), v)
by edges (Eout, v)

(b) call LPS(Lj, Eout)

Symbolic Worst Case Execution Times 31

(c) For all v ∈ VLj we set

lps(G, E (Lj), v) := (b(E (Lj))− 1) · lps(Lj , Eout, Ein) + lps(Lj , Eout, v),

(d) replace Lj in G by a single node rj and add an edge (rj , x) for each (p, x) ∈
T (Lj) with appropriate weights, namely: w(rj , x) := lps(G, E (Lj), p) +
w(p, x)). Add an edge (v, rj) for each (v, E (Lj)) ∈ E and set w(v, rj) :=
w(v, E (Lj))

3. We call the altered graph the condensed graph G′. It is a DAG, thus we can easily
determine the longest paths.

4. Compute the longest path weights to nodes within the loops: Replace the nodes
rj again by the corresponding loops and set for each Lj = (VLj , EVj) and for all
v ∈ VLj :

lps(G, s, v) := lps(G, s, E (Lj)) + lps(Lj, E (Lj), v)

So far, we haven’t discussed, how the lps(G, s, E (Lj)) in step 4 are computed. Note,
that E (Lj) corresponds to a contraction node c in the condensed graph G′. When we
compute the longest path weight from s to c, we set lps(G′, s, c) := maxv∈inc(c)

lps(G′, s, v) + w(v, c), where inc(c) denotes the set of nodes v such that there is an
edge (v, c) from v to c.

Running Time - Numeric Bounds. Let us first analyze the algorithm’s running time
T (|V |, |E|) for the case in which all loop-bounds are numeric values. In step 1), the
strongly connected components of G are computed, which can be done in O(|V |+ |E|)
time by depth-first search. Step 2a) can be computed in O(deg(E (Lj))) time. In step
2b), the algorithm is called recursively which takes T (|VLj |+1, |ELj |) time. The weight
updates in 2c) can be performed in O(|VLj |) and the updates in 2d) in O(|T (Lj)|)
time. It is folklore, that the computation of longest path weights in a DAG, as done in
step 3), takes no more than O(|V | + |E|) time. Finally, step 4 can be done in O(|V |).
Thus, without the recursive calls, we have a linear running time of O(|V |+ |E|). Note
that the recursion depth of our algorithm is bounded by |V |, as each node is split at
most once. Furthermore, the edge sets of the sub-loops are disjoint. Although nodes
are split, we can argue that the total number of nodes in a certain recursion depth is
bounded by 2|V | as follows: Let V out = {v ∈ V | v has at least 1 outgoing edge} and
V in = {v ∈ V | v has at least 1 incoming edge}. Then

∑
L∈sloops(G) |V out

L̄
| ≤ |V out|

and
∑

L∈sloops(G) |V in
L̄
| ≤ |V in|, where VL̄ is the set of nodes of L after splitting the

entry node. Thus, in total we have

T (|V |, |E|) = O(|V | · (|V out|+ |V in|+ |E|)) = O(|V | · |E|)

Running Time - Symbolic Bounds. In the presence of symbolic loop-bounds we have
to change our algorithm slightly. Notice, that an ordinary longest path algorithm starts
with a lower bound on the length of the longest path and iteratively increases the path
length if a longer path is found. In the presence of symbolic loop bounds, paths may
become incomparable, i.e. if one path has length 4, the other 2 · b for a symbolic loop

32 E. Althaus, S. Altmeyer, and R. Naujoks

bound b. Hence, instead of a unique longest path, we now have to consider for each
target node a set of paths to that node, that may be longest for a particular choice of the
symbolic loop bounds (see Figure 2 for an example). When concatenating two paths
we now have to concatenate all pairs of paths. Since the operations on the path weights
include multiplications and additions, they can be represented as polynomials over the
symbolic loop-bounds. Clearly, we aim at getting all possible path weights that are
maximal for at least one choice for the symbolic loop-bound parameters. On the down
side, testing whether a path weight is maximum for some choice (or instantiation) of
the parameters seems to be non trivial. A compromise is to keep all paths with weights
that are not dominated by another weight (i.e. all coefficients in the weight polynomial
are at least as big as the coefficients in the other weight polynomial) to keep the solution
set sparse in practice, which can be implemented very efficiently. Furthermore, as we
will see later, for a some certain class of CFGs this step is necessary and sufficient to
compute a minimal number of paths. For a problem instance I = (G, s, t), consisting
of a graph, a source node s and a destination node t, we denote by D(I) (or short
D(s, t), if G can be deduced from the context) the set of longest path weights from s
to t computed by our algorithm. The property of D(I), that its elements are pairwise
non-dominating can be achieved by eliminating dominated elements after the execution
of step 2c. We write slbs(I) for the number of symbolic loop-bounds of a problem
instance I = (G, s, t) and lbs(I) := lbs(G) := |iloops(G)| for the number of induced
loops of G.

Theorem 1. The algorithm’s running time is polynomial in the input size and in the
size of the output.

Proof. First note that the running time only changes for the parts of the algorithm in
which calculations on path weights are performed, namely the parts 2c), 2d) and 4).
We will restrict this proof to the operations involved in step 2c), since the number of
operations involved in 2c) is certainly not smaller than the ones in 2d) and 4).

Let us first count the number of operations on weight polynomials. Consider a longest
path P from the source node s to the destination node t. Let lps(u, v) denote the longest
path weights, computed by the algorithm for the longest paths from node u to node
v, then for each loop L = (VL, EL) ∈ loops(G) that is traversed by P , we have
|lps(E (L), pL)| ≤ |lps(s, pL)| for pL ∈ P(L) over which P leaves L again. Further-
more, for each pL ∈ portals(L) we have O(|lps(E (L), E (L))|·|lps(E (L), pL)|) opera-
tions, since the addition involves the addition of all pairs of weights in lps(E (L), E (L))
and in lps(E (L), pL). Since L is strongly connected, |lps(E (L), E (L))| ≤ |lps(E (L),
pL)|. Thus the number of operations is bounded by |lps(E (L), pL)|2 ≤ |lps(s, pL)|2.
Since each node in VL can be a portal node of L, the total number of operations on
polynomials occurring on the first recursion level is bounded by

∑
v∈V |lps(s, v)|2 ≤(∑

v∈V |lps(s, v)|
)2

. But, since
∑

v∈V |lps(s, v)| is just the number of path weights,
reported by the algorithm, the number of operations on polynomials is polynomial in
the number of reported path weights. Note that each weight has a unique representation
and that all operations on the weight polynomials can be carried out in time polynomial
in the size of these polynomials.

What is left to show is, that the weight polynomials computed for the nodes in the
input graph have a size polynomially bounded by the size of the weight polynomials

Symbolic Worst Case Execution Times 33

that are reported by our algorithm, that is the weight polynomials of the longest paths
from the source node s to the sink node t. We will use a structural induction over the
input graph G to prove so. If G contains no loops, the claim is true since G must be
a DAG and therefore, all computed longest path weights are just constants. So, let us
assume that G contains loops. By induction hypothesis, the claim holds now for each
problem instance (L, Eout, p) where L is a loop of G, where the entry node of L is split
into the nodes Eout and Ein and where p is an arbitrary portal node of L. But then the
claim is also true for (L, E (L), p) what can be seen as follows: Recall that a longest
path weight from E (L) to p is given by the equation

lps(G, E (L), p) = (b(E (L))− 1) · lps(L, Eout, Ein) + lps(L, Eout, p)

for some path weights lps(L, Eout, Ein) and lps(L, Eout, p). But then, lps(G, E (L), p) is
as least as large as the maximum of the sizes of lps(L, Eout, Ein) and of lps(L, Eout, p)
as each term in lps(L, Eout, Ein) appears with a multiple of b(E (L)), lps(L, Eout, p)
does not contain b(E (L)) and each term in lps(L, Eout, p) can eliminate only terms
that are not multiplied with b(E (L)). The last thing we have to show now is, that the
claim holds for (G′, s, t), where again G′ denotes the condensed graph. We compute the
longest path weights in the directed acyclic graph G′ by the recurrence lps(G, s, u) =
maxv∈inc(u) (lps(G, s, v) + w(v, u)) starting with u := t. Consider now a weight poly-
nomial P = lps(G, s, v)+w(v, u). Since we consider the condensed graph G′, w(v, u)
is a polynomial containing only variables associated with the loop that in turn is asso-
ciated with the node v (in the case that v is not a condensed node, w(v, u) is just a
constant). Thus, except for the constant terms, P contains at least as many terms as
there are in lps(G, s, v) or in w(v, u), which completes the proof.

v0 s0
0

1

v1

2

0
s1

0

1

v2

2

0

Fig. 2. The different weights for the longest paths from v0 to v2 are 4, 2 + b(s0), 2 + b(s1) and
b(s0) + b(s1)

Correctness. Now, we will show, that our algorithm indeed computes the weight of
a longest valid path lps(G, s, t) from a source vertex s to a destination vertex t. In the
following, when talking about paths we always mean valid paths. Again we will assume
that G is a singleton-loop graph with weight function w : E �→ N and that we are given
a loop-bound function b: E (G) → N ∪ {+∞}. We will show the claim by induction
over the recursion-level of the algorithm. If we assume that G contains no loops, G
must be a directed acyclic graph and thus, our algorithm is correct. So, now assume that
G contains loops. The induction hypothesis tells us now that for all recursive calls of
our algorithm, we obtain correct results. Let p := s � t be a longest path in G. Let
us assume w.l.o.g. that p shares at least one node with a sub-loop of G, i.e. for some

34 E. Althaus, S. Altmeyer, and R. Naujoks

L := (VL, EL) ∈ sloops(G) : E (L) ∈ VL. Thus p can be written as p = s � p′ � t
with p′ = (E (L) = v0, v1, . . . , vk) such that vi ∈ VL and k is maximal. Since any sub-
path of a longest path must be again a longest path between its starting- and end-node
(with respect to the validity), we have that w(p′) = lps(G, E (L), vk). Consider now
the condensed graph G′ obtained by replacing loop L by a node r as described in the
algorithm. Then the path s � r → vk � t is valid and has weight w(p). Therefore,
w(lps(G, s, t)) ≤ w(lps(G′, s, t)). On the other hand, w(lps(G, s, t)) cannot be strictly
less than w(lps(G′, s, t)), because otherwise there would be a path in G′ with weight
strictly greater than a longest path in G, which also would not traverse L, since the
weights of these paths are unequal. But this would mean, that there is also a path in G
– just bypassing L – with the weight w(lps(G′, s, t)), which leads to a contradiction.

What is left to show is, that our algorithm computes correct values for lps(G, E (L),
vk). Let p = (E (L) =: v0, v1, . . . , vk) with vi ∈ VL be a longest path. We can assume
that p contains exactly b(E (L)) (respectively b(E (L))+1 if vk = E (L)) times the node
E (L), otherwise we could extend the path by the path vk � E (L) � vk without vio-
lating validity. Now each sub-path p′ of p with p′ = E (L) � E (L) must have the same
weight, since otherwise, by replacing the lower weight sub-path by the corresponding
higher weight sub-path, we could obtain a path with higher weights. Thus, we can as-

sume that there exists a longest path E (L)
p′
� E (L)

p′
� · · · p′

� E (L)
p′′
� vk with weight

(b(E (L))−1)·w(p′)+w(p′′). Since p′ and p′′ must be longest paths, we are left to show
that our algorithm computes the weights lps(G, E (L), E (L)) and lps(G, E (L), vk) cor-
rectly. But this follows directly by the way we alter the loop L, i.e. by splitting the entry
node of L into the two nodes Eout and Ein. Since L was a loop, every node in L is
reachable from Eout. by induction hypothesis the algorithm now computes recursively
the right values, where obviously w(lps(L, Eout, Ein)) = w(lps(G, e, e)).

3.3 While-Loop-Graphs

Even though our algorithm runs in time polynomial in both the input size and the output
size, we haven’t discussed so far, how large the output size can get. One can show that
there is a problem instance such that the number of paths that any correct algorithm
has to report is 2slbs(G). Unfortunately, we can only show that our algorithm produces
outputs such that the number of reported paths is not larger than 22lbs(G)

and even worse,
there is a problem instance such that the minimal output size is 2 while our algorithm
reports 22lbs(G)−1

paths. On the other hand, experiments have shown that in practice
the number of reported paths is quite small. For proofs of these claims and for some
experimental results we want to refer to Appendix A, respectively to [1]. Unfortunately,
a precise discussion of the conducted experiments goes beyond the scope of this paper.

In this section we will discuss our algorithm on a certain type of graphs with the
additional property that each induced sub-loop has exactly one portal node which coin-
cides with the entry node of the loop. The motivation for considering such CFGs is that
if additionaly to goto directives we also avoid break statements, the CFG corresponds
to a while-program. Since a while–loop is entered and left only via its loop header, we
can assume wlog. that the corresponding CFG exhibits this special property. The reason
why we haven’t considered this case before is of practical nature. Converting a program
into a while–program can change its worst case running time. On the other hand, most

Symbolic Worst Case Execution Times 35

of the CFGs that we have considered in experiments, consisted mostly of such loops.
Thus, the ideas presented in this section, can also lead to a significant reduction in the
output size in practice.

Thus, we assume for now that the CFG, has the additional property that ∀L ∈
iloops(G) : P(L) = {E (L)}. We now modify our algorithm as follows. Since the
entry node of a loop always coincides with its only portal node, we have in step 2c):
lps(G, E (Lj), E (Lj)) = b(E (Lj)) · lps(Lj, Eout, Ein) and can thus avoid the addi-
tion operation. In Lemma 1 we will show, that for this class of graphs, the reported
path weight polynomials are small. Then we will state in Lemma 2 that also the worst
case number of distinct longest paths is significantly smaller in such graphs. Finally,
we show in Theorem 2 that the modified algorithm reports a minimal number of path
weights.

Lemma 1. For any problem instance I , D(I) contains only weights with at most slbs
(G) + 1 terms with non-zero coefficients.

Proof. First observe that by the construction of our algorithm, all weights are indeed
polynomials over the symbolic loop-bounds. We will now show, that any such poly-
nomial consists of at most slbs + 1 terms, by first proving several claims about the
possible structure of such terms and by concluding from that, that there cannot be more
than slbs + 1 such terms in the polynomial. The claims to show are:

1. Any path in G enters the loops of G in a unique order, i.e. there don’t exist two paths
P1, P2 in G, such that there exist loops L1, L2 of G such that the paths P1 and P2

can be written as P1 = (. . . , E (L1), . . . , E (L2), . . .) and P2 = (. . . , E (L2), . . . ,
E (L1), . . .).

2. Any term in the weight polynomial contains only variables associated with the
induced sub-loops of one L ∈ loops(G).

3. Let L ∈ loops(G) and L′ ∈ iloops(L). Furthermore, let (Li)i=1...k be the sequence
of induced sub-loops of L such that L = L1, L′ = Lk and such that Li+1 is a sub-
loop of Li for all i ∈ {1, . . . , k− 1}. If a term T in the weight polynomial contains
the variable associated with L′, then T also contains all variables associated with
the loops Li.

We now prove the first claim, by assuming that such two paths P1 and P2 exist. This
implies that there are two paths (sub-paths of P1 and P2) from E (L1) to E (L2) and
vice versa. Since L1 and L2 are loops of G, L1 and L2 are strongly connected. But
we have just seen that the two nodes E (L1), E (L2) are also connected, which directly
implies that L1 and L2 can’t be strongly connected components of G, which leads to a
contradiction.

For the second claim, suppose there exists a term, containing variables associated
with induced sub-loops of two different loops L1 and L2 of G. By construction of our
algorithm, multiplication (and thus, addition of a variable to a term) only occurs, if
L1 ∈ iloops(L2) or if L2 ∈ iloops(L1). Thus, L1 must be a subgraph of L2 or vice
versa and hence, L1 and L2 can only be both loops of G, if L1 = L2.

For the last claim, let us assume otherwise, and let there be a j ∈ {1, . . . , k −
1} such that the associated variable of Lj is not contained in T but also such that

36 E. Althaus, S. Altmeyer, and R. Naujoks

Lj+1 contributes its variable to T . By the construction of our algorithm, the variable
associated with Lj+1 was added to T , after splitting E (Lj) and identifying Lj+1 as a
strongly connected component of this altered graph. But splitting the node E (Lj) also
involves the multiplication of the weight polynomial with the variable associated with
Lj , which contradicts the fact, that this variable is not contained in T .

Now let us count the number of possible terms in a longest path weight, that con-
tain at least one loop-bound variable. For each loop L of G we have a possible set of
terms. For each term in such a set, we know that only variables associated with induced
sub-loops of the corresponding loop of G are contained in it. Since a variable must be
contained in such a term whenever the variable of a sub-loop is contained in the term,
there are exactly slbs(L) possible terms per set. Thus in total, the number of possible
terms, that contain at least one variable is bounded by

∑
L∈loops(G) slbs(L) = slbs(G).

Together with the fact, that there is only one term, containing no variables, this com-
pletes the proof.

Lemma 2. For any problem instance I = (G, s, t), there are at most 2slbs distinct
longest path weights.

Proof. We will give only the idea of the proof and assume for sake of simplicity that
all loop bounds are symbolic. A detailed proof can be found in [1]. Basically, we prove
the claim by structural induction. If G is a DAG, we are done. Thus, assume that G
contains loops. Note that in the following we will implicitly assume that all mentioned
paths have maximal length. The main insight is, that two paths with distinct weights
must traverse the induced sub-loops of G in a different way. Consider now an s-t path
P in G. Since the condensed graph G′ is a DAG, there cannot be an s-t path, traversing
the same loops but in a different order. Thus all paths can be classified by the loops
they traverse. Applying this insight recursively to all induced sub-loops of G, a path
(respectively its weights) is uniquely defined by the set of induced sub-loops of G it
traverses, yielding in total 2slbs possible paths.

Theorem 2. The modified algorithm reports a minimal number of longest paths.

Proof. We want to prove the following claim by induction over |iloops(G)|: For all
wP ∈ D(G, s, t), there exists an instantiation I such that under I (written: wP [I]), for
all weights wQ ∈ D(G, s, t) such that wQ �= wP we have wP [I] > wQ[I].

In the base case |iloops(G)| = 0, G is a directed acyclic graph and the claim trivially
holds, since |D(G, s, t)| = 1. For the induction step, consider the condensed graph
G′ as constructed by the algorithm by replacing all loops (Li)1≤i≤|loops(G)| in G by
nodes (ci)1≤i≤|loops(G)|. We denote by C := {ci | 1 ≤ i ≤ |loops(G)|} the set of
all contraction nodes and for a path Q, we write CQ := {ci ∈ C | Q traverses Li}.
Additionally, we write wQ

ci
for the weight polynomials corresponding to the loop Li for

a path Q.
In the following we will show that the claim holds for a particular instantiation:

For all ci ∈ C \ CP and for all L ∈ iloops(Li) we set I(b(E (L))) := 0 if b(E (L)) is
symbolic. For all ci ∈ CP and for all L ∈ iloops(Li) such that b(E (L)) is symbolic we
will choose values that dependent on the weights in D(G, s, t) \ {wP }. For a moment,
we will consider these weights in D(G, s, t) independent of each other. We will show

Symbolic Worst Case Execution Times 37

at the end of the proof, that we can do so as long as we only increase symbolic loop
bounds occurring in wP .

First note, that either wP or wQ must contain symbolic loop bound variables since
otherwise both would just be constants and since wP and wQ are mutually non-
dominating, this would lead to the contradiction that both are distinct longest path
weights. If wP is now a constant and wQ not, then wP must be larger than the con-
stant term c in wQ, because otherwise wQ would dominate wP and wP would not have
been reported by our algorithm. Since all symbolic loop bounds not occurring in wP ,
i.e. all variables in this case, are set to 0, we have that wP = wP [I] > wQ[I] = c. Thus,
we can assume that wP is not a constant. If now wQ is a constant, any symbolic loop
bound occurring in a term t in wP can just be chosen such large, that t becomes larger
than wQ, which can be done, because – by construction of the weights – all coefficients
in the weight polynomials must be positive. Thus, we can assume that both paths P and
Q traverse loops of G.

Assume now, that the sets of loops traversed by P and by Q are disjoint. Because
wQ[I] is a constant – recall that all variables corresponding to loops that are not tra-
versed by P are set to 0 – and because wP contains a variable b not contained in
wQ, we can make wP [I] larger than wQ[I] by choosing b large enough. Hence, we
can assume now that there are loops that are traversed by both P and Q. Then, we
can write P and Q as paths in the condensed graph G′ in the following way. Let

Li be some loop that is traversed by P and by Q. Then P = s
P1� ci

P2� t and

Q = s
Q1� ci

Q2� t for suitable sub-paths P1 and P2 of P , and for Q1 and Q2 of
Q. Let (v1, v2, . . . , vk, ci, vk+1, vk+2, . . . , vl) (we assume here wlog. that v1 = s and
vl = t) be a topological ordering of the nodes of G′ (note that this can be done, since
G′ is directed and acyclic). Consider now the two sub-graphs G1 and G2 of G, in-
duced by the node sets {v1, v2, . . . , vk, E (Li)} and {E (Li), vk+1, vk+2, . . . , vl}. Since
any sub-path of a longest path must also be a longest path (with respect to validity),
we know that {wP1 , wQ1} ⊆ D(G1, s, E (Li)), {wP2 , wQ2} ⊆ D(G2, E (Li), t). Be-
cause G1 and G2 have less induced sub-loops than G, by induction hypothesis I can
be chosen such that wP1 [I] ≥ wQ1 [I] and wP2 [I] ≥ wQ2 [I] – note that we have to
allow equality here, since it is possible that the weights of the sub-paths are equal.
Furthermore, we know for the same reason that wP

ci
[I] ≥ wQ

ci
[I], since after split-

ting the entry node of Li, the loop also has less induced sub-loops than G. The cru-
cial observation now is that at least one of these three inequalities has to be strict,
because by induction hypothesis the inequalities can only be equalities if the corre-
sponding weight polynomials are equal. So, if all of them would be equal, this would
also mean that wP = wQ which would be a contradiction to our assumption. Thus,
wP [I] = wP1 [I] + wP

Li
[I] + wP2 [I] > wQ1 [I] + wQ

Li
[I] + wQ2 [I] = wQ. What is

left to show is that we can indeed consider the weights in D(G, s, t) independently. We
will show that given an instantiation I as constructed above for the two weights wP and
wQ, for all instantiations I ′ with the properties that I ′(s) ≥ I(s) for all symbolic loop
bounds s and I ′(s) = 0 if s is not contained in wP , we have wP [I ′] > wQ[I ′]. We will
prove the claim by structural induction over G. If G is a directed acyclic graph, noth-
ing has to be shown. Thus, we can assume that G contains loops. Consider the paths
P and Q as paths in the condensed graph G′. By the construction of I we know that

38 E. Althaus, S. Altmeyer, and R. Naujoks

wP
ci

[I] > wQ
ci

[I] for ci ∈ CP ∩ CQ if wP
ci
�= wQ

ci
and thus, by induction hypothesis,

wP
ci

[I ′] > wQ
ci

[I ′]. We now have

wP [I ′] =
∑
e∈P

w(e) +
∑

ci∈CP∩CQ

I ′(Li)wP
ci

[I ′] +
∑

ci∈CP \CQ

I ′(Li)wP
ci

[I ′]

(I)
>

∑
e∈P

w(e) +
∑

ci∈CP ∩CQ

I ′(Li)wQ
ci

[I ′] +
∑

ci∈CP \CQ

I ′(Li)wP
ci

[I ′]

(II)

≥
∑
e∈Q

w(e) +
∑

ci∈CP ∩CQ

I ′(Li)wQ
ci

[I ′] +
∑

ci∈CQ\CP

I ′(Li)wQ
ci

[I ′] = wQ[I ′]

where inequality (I) follows by induction hypothesis (to simplify the discussion we
assume wlog. that there is at least one common loop that is traversed differently by P
and Q). Inequality (II) clearly holds if∑

e∈P

w(e) +
∑

ci∈CP \CQ

I ′(Li)wP
ci

[I ′] ≥
∑
e∈Q

w(e) +
∑

ci∈CQ\CP

I ′(Li)wQ
ci

[I ′]

But this must be true, for two reasons: First,
∑

ci∈CQ\CP
I ′(Li)wQ

ci
[I ′] =

∑
ci∈CQ\CP

I(Li)wQ
ci

[I] because all variables not contained in wP are set to 0 in I and in I ′ and
second,

∑
ci∈CP \CQ

I ′(Li)wP
ci

[I ′] ≥
∑

ci∈CP \CQ
I(Li)wP

ci
[I] by induction hypothe-

sis and the property that I ′(Li) ≥ I(Li).

4 Conclusion

We presented an algorithm to compute longest path in control flow graphs. In earlier
work [2], we performed experiments that demonstrate that our algorithm is the first
algorithm that allows us to analyze the worst case execution times of programs with
several symbolic loop bounds. In this paper, we give the theoretical foundation. We
analyzed running time and the output size of our algorithm for the case of programs
avoiding goto-constructs. We tailored the analysis of the output size, if one additionally
avoids break and continue statements. This explains the observed small output sizes
that are in contrast to the worst case doubly exponential output size that is possible for
general control flow graphs.

In future work, we plan to investigate on the difference between the upper and the
lower bound on the minimal output size and the difference of the output size of our
algorithm and the minimal possible output size for programs avoiding goto-constructs
but allowing break and continue statements.

References

1. Althaus, E., Altmeyer, S., Naujoks, R.: A new combinatorial approach to parametric
path analysis. Reports of SFB/TR 14 AVACS 58, SFB/TR 14 AVACS (June 2010),
http://www.avacs.org, ISSN: 1860-9821

2. Althaus, E., Altmeyer, S., Naujoks, R.: Precise and efficient parametric path analysis. In:
Proceedings of the ACM SIGPLAN/SIGBED 2011 Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES, pp. 141–150 (2011)

http://www.avacs.org

Symbolic Worst Case Execution Times 39

3. Altmeyer, S., Hümbert, C., Lisper, B., Wilhelm, R.: Parametric timing analyis for complex
architectures. In: Procedeedings of the 14th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA 2008), Kaohsiung, Taiwan,
pp. 367–376. IEEE Computer Society, Los Alamitos (2008)

4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton
(1963)

5. Feautrier, P.: The parametric integer programming’s home, http://www.piplib.org
6. Gomory, R.E.: An algorithm for integer solutions to linear programming. In: Graves, R.L.,

Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-
Hill, New York (1969)

7. Holsti, N., Gustafsson, J., Bernat, G., Ballabriga, C., Bonenfant, A., Bourgade, R., Cassé, H.,
Cordes, D., Kadlec, A., Kirner, R., Knoop, J., Lokuciejewski, P., Merriam, N., de Michiel,
M., Prantl, A., Rieder, B., Rochange, C., Sainrat, P., Schordan, M.: Wcet 2008 – report from
the tool challenge 2008 – 8th intl. workshop on worst-case execution time (wcet) analysis.
In: Kirner, R. (ed.) 8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008);
also published in print by Austrian Computer Society (OCG) under ISBN 978-3-85403-237-3

8. Li, Y.-T.S., Malik, S.: Performance analysis of embedded software using implicit path enu-
meration. In: DAC 1995: Proceedings of the 32nd Annual ACM/IEEE Design Automation
Conference, pp. 456–461. ACM, New York (1995)

9. Lisper, B.: Fully automatic, parametric worst-case execution time analysis. In: Third Inter-
nation Workshop on Worst-Case Execution Time Analysis, pp. 77–80 (July 2003)

10. Tan, L.: The worst case execution time tool challenge 2006: Technical report for the external
test. In: Proc. 2nd International Symposium on Leveraging Applications of Formal Methods,
ISOLA 2006 (2006)

11. Theiling, H.: ILP-based Interprocedural Path Analysis. In: Proceedings of the Workshop on
Embedded Software, Grenoble, France (October 2002)

12. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,
Stenström, P.: The worst-case execution-time problem—overview of methods and survey of
tools. ACM Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)

http://www.piplib.org

40 E. Althaus, S. Altmeyer, and R. Naujoks

A Appendix

Lemma 3. For any problem instance I = (G, s, t) |D(I)| ≤ 22lbs(G)
.

Proof. Let P be a path reported by our algorithm. We recursively define the loop-
pattern L(P, G) of a path P in G as follows. If G is a DAG, the loop-pattern of any
path is empty. To define a loop-pattern in the general case, we shortly recall some facts
of the algorithm. We compute P as a longest path in the condensed graph (for which
we have contracted each loop of G into a single node), which is known to be an acyclic
graph, since the loops are the strongly connected components of G. Let L1, . . . , Lk

be the subloops of G that are entered by P . Each loop Li is entered exactly once (as
the condensed graph is a DAG). Within the loop, P traverses a unique subpath P ′

i for
bLi − 1 times and then a path P ′′

i to a portal node. The loop pattern of P is then defined
as the sequence

L(P) := (L1(L(P ′
1, L

′
1),L(P ′′

1 , L′
1)), L2(L(P ′

2, L
′
2),L(P ′′

2 , L′
2)), . . . ,

Lk(L(P ′
k, L′

k),L(P ′′
k , L′

K))),

where L′
i is the graph obtained by splitting E (Li).

We proof the following claims:

1. Any two paths with the same loop-pattern (not necessarily with same source and
target node) computed by the algorithm have the same cost up to a constant term.

2. Any two s− t-paths reported by the algorithm have different loop-patterns.
3. Let T (lbs(G)) be the maximum possible number of loop patterns of a graph G, then

T can be bounded by the recurrence T (0) = 1, T (lbs(G)) ≤ T (lbs(G)− 1)2 + 1.

We will prove the points in turn. We proof the first point by structural induction over G.
If G is a DAG, all path weights are constants (as there are no symbolic loop-bounds).
Hence, there is nothing to show. Now consider two paths P and Q in a graph G con-
structed by our algorithm with L(P, G) = L(Q, G). Let L1, . . . , Lk be the subloops of
G contained in L(P, G). Decompose P into (P̄0, (P ′

1)
bL1−1, P ′′

1 , P̄1, . . . , (P ′
k)bLk

−1,
P ′′

k , P̄k), where P̄i is the path from the portal of Li used by P (respectively from the
source of P if i = 0) to E (Li+1) (respectively to the target of P for i = k), P ′

i is the
path used for cycling within Li and P ′′

i if the path from the entering node of Li to the
portal-node used by P . Analogously decompose Q. The cost of P can then be written
as

w(P̄0) +
k∑

i=1

[(bL − 1)w(P ′
i) + w(P ′′

i) + w(P̄i)],

the cost of Q as

w(Q̄0) +
k∑

i=1

[(bL − 1)w(Q′
i) + w(Q′′

i) + w(Q̄i)].

The costs of P̄i and Q̄i are some constants. By induction hypothesis, the costs of P ′
i

and Q′
i only differ by a constant. The same holds for the cost of P ′′

i and Q′′
i . Hence the

difference of w(P) and w(Q) is a sum of constants and thus constant.

Symbolic Worst Case Execution Times 41

The second point immediately follows from the first, as our algorithm won’t report
two paths whose weights only differ in a constant.

For the third point, we argue as follows: Let L1, . . . , Lk be the subloops of G
given in topologial order. Each loop pattern can be constructed by chosing for each
subloop Li either that it is not entered, or we use some loop pattern of Li for the cy-
cling path and one loop pattern for the path to the portal. Hence, we get T (lbs(G)) ≤∏

i T (lbs(L′
i))

2 + 1. Notice that
∑

i lbs(Li) = lbs(G) and lbs(L′
i) = lbs(Li) − 1

and hence
∑

i lbs(L′
i) = lbs(G) − k. A simple calculation shows that T (lbs(G)) is

maximized, if each induced subloop of G containts exactly one subloop. Hence we get
T (lbs(G)) ≤ T (lbs(G) − 1)2 + 1.

Note that if Li as a numeric loop-bound, the length of a path that does not enter Li

and the length of a path that enteres Li but no subloop of Li differ only in a constant.
Hence, in this case we can drop the addition of one in the recursive formula. Finally
for T (lbs(G)) = T (lbs(G) − 1)2 + 1, T (0) = 1 holds T (lbs(G)) ≤ 22lbs(G)

and for
T ′(lbs(G)) = T ′(lbs(G)− 1)2, T ′(1) = 2 holds T ′(lbs(G)) ≥ 22lbs(G)−1

.

Lemma 4. There exists a problem instance I = (G, s, t), such that |D(I)| = 22lbs(G)−1

and slbs(G) = 1.

Proof. We will first prove a slightly different claim, namely we proof the bound using
symbolic loop-bounds for all loops. More precisely, we show that there exists a problem
instance I such that

– a) D(I) = 22slbs(G)−1

– b) there is an element in D(I) containing a positive constant
– c) there is an element in D(I) containing the constant 0

where x is the number of symbolic loop-bounds.
We construct a graph G in the following way: we start with the left graph Gl in

Figure 3 and repeatedly replace the selfloop of G by the loop of Gl. Note, that after
k iterations, the resulting graph consists of k + 2 induced subloops. We will show the
claim by induction over the recursive structure of G, i.e. over the number slbs(G) of
induced subloops of G.

For the base case (slbs(G) = 2), in which G corresponds to the graph Gl, it is easy
to verify that

D(v0, v2) = {b(v0), b(v0)b(v1),−1 + b(v0) + b(v1), 1− b(v1) + b(v0)b(v1)}

and that one of these weight polynomials contains a positive constant.
Now let us consider the induction step. Recall that we want to compute D(v0, v2).

In the first step of our algorithm, the node v0 is split into two nodes vin and vout and
recursively the sets D(v1, v1), D(vout, vin) and D(vout, v2) are computed. Then, the
set lps(v0, v2) is computed as the set of polynomials given by (b(v0)− 1) · lee + lep for
all lee ∈ D(vout, vin) and for all lep ∈ D(vout, v2).

By the way, we have chosen the edge weights, we have that D(vout, vin) = D(vout,
v2) = D(G, v1, v1). In particular, note that the constant polynomial 1 is not in contained
in D(vout, vin), since by induction hypothesis, D(v1, v1) contains a polynomial with a
positive constant (which must be greater or equal to 1), dominating 1.

42 E. Althaus, S. Altmeyer, and R. Naujoks

v0

v11

v2

1

v0

v1

v2

1

v31

v4

1

Fig. 3. Suppose the edge weights are 0 if not stated otherwise, then the longest path weights from
v0 to v2 constructed by our algorithm for the left graph are b(v0), b(v0)b(v1), −1+b(v0)+b(v1)
and 1 − b(v1) + b(v0)b(v1). The right graph was constructed from the left one by replacing the
selfloop {v1} by the loop {v0, v1, v2}. For the right graph, the algorithm computes 16 non-
dominant longest path weights. In general, graphs obtained by repeatedly replacing the selfloop

by the loop of the left graph, yield 22slbs(G)−1
non-dominant longest path weights and further-

more, one can show that there is a longest path weight that consists of 2slbs(G) − 1 terms where
slbs(G) is the number of symbolic loop-bounds.

This in turn, means that |lps(v0, v2)| = |D(v1, v1)|2. We now have to show, that the
elements in lps(v0, v2) are pairwise non-dominating. Let l1, l2 ∈ lps(v0, v2), given as
l1 = (b(v0) − 1) · lee + lep and l2 = (b(v0) − 1) · l′ee + l′ep for weights lee, l

′
ee ∈

D(vout, vin) and lep, l
′
ep ∈ D(vout, vin), l1. We distinguish two cases. In the first one,

we assume that lee �= l′ee. Since by induction hypothesis, lee and l′ee are pairwise non-
dominant, the terms in l1 and l2 containing variable b(v0), namely b(v0)·lee and b(v0)·
l′ee - and thus also l1 and l2 - must be pairwise non-dominant. Now we assume that
lee = l′ee. In this case, the terms, not containing the variable b(v0), are lep − lee and
l′ep − lee. Since by induction hypothesis lee and l′ee are pairwise non-dominant, l1 and
l2 must also be pairwise non-dominant.

Thus, |D(v0, v2)| = |D(v1, v1)|2. Since by induction hypothesis |D(v1, v1)| =
22x−2

, |D(v0, v2)| = 22x−1
, which establishes the first part of the claim. For the sec-

ond part, note that by induction hypothesis, there is a weight in l1 ∈ D(v1, v1) with
a positive constant and there is a weight in l2 ∈ D(v1, v1) with zero constant. Thus
the weight l ∈ D(v0, v2) with l = (b(v0) − 1) · l2 + l1 = b(v0) · l2 + l1 − l2 has
again a postive constant as a term. On the other hand, the weight l ∈ D(v0, v2) with
l = (b(v0)− 1) · l2 + l2 = b(v0)− 1) · l2 has a zero as constant term.

So far, we have assumed that all loop-bounds are symbolic. Now we will examine
an instance in which all but one loop-bounds are numeric. For this, we use the same
graph G as constructed above, but we assume that only the bound for the selfloop is
symbolic. Then we can show by the very same induction as above, that by choosing the
right numeric values for the loop-bounds, |D(v0, v2)| = 22iloops(G)−1

. For the base case,
we choose b(v0) := 3 and obtainD(v0, v2) = {3, 2+b(v1), 1+2b(v1), 3b(v1)} which
clearly satisfies the induction properties.

The only difference occurs now in the induction step, when arguing, that no two
path weights l1, l2 exist, such that the first one dominates the other. Since there is just

Symbolic Worst Case Execution Times 43

one symbolic loop-bound, all path weight polynomials consist of only two terms, i.e.
D(v1, v1) consists of polynomials ci + c′i · a where a is the symbolic loop-bound in G.
It is easy to see that these polynomials are non-dominated if and only if they can be
ordered in such a way, that the constants ci are appear in increasing order while the c′i
appear in decreasing order.

The idea of proof is now to show, that the numeric bound b(v0) can recursively
be chosen in such a way, that the constructed weights in D(v0, v2) can be ordered in
the same way. To see this, suppose we are given two weights in D(v0, v2), namely
p1 := (b(v0)−1)·d1+d′1 and p2 := (b(v0)−1)·d2+d′2 for d1, d2, d

′
1, d

′
2 ∈ D(v0, v2).

Clearly by choosing b(v0) big enough, it is possible to put p1 and p2 into the same
relative order as d1 and d2. We will now show, that there is such a value for b(v0) for
all pairs of weights in D(v0, v2) that is not too big.

Consider again the pair p1, p2. Let us denote by c(p) the constant term of such a
weight p and by v(p) the coefficient of the variable term. Without loss of generality, let
us restrict our discussion to the case c(d1) ≥ c(d2). It is easy to verify that for b(v0) :=⌈
max

{
c(d′

2)−c(d′
1)

c(d1)−c(d2)
,

v(d′
1)−v(d′

2)
v(d2)−v(d1)

}⌉
+ 1 we have c(p1) ≥ c(p2) and v(p1) ≤ v(p2).

Choosing b(v0) as the maximum of all possible choices of p1,p2 ∈ D(v0, v2) we can
establish the same relative order as for the di, completing the proof.

Lemma 5. There exists a problem instance I , such that any correct algorithm must
report 2slbs(G) longest paths.

Proof. Consider the graph Gf in Figure 2. By repeated concatenation of the subgraph
of Gf induced by the nodes {v0, s1, v1}, we obtain a weighted graph G = (V, E, w)
that consists of nodes V = {v0, . . . , vslbs(G), s0, . . . sslbs(G)−1}, edges

E = {(vi, si), (si, vi), (si, si), (vi, vi+1) |
i ∈ {0, . . . , slbs(G)− 1} ∪ {(sslbs(G)−1, vslbs(G))}}

and of edge weights as given in the graph Gf .
Then there are exactly 2slbs(G) different paths from v0 to vslbs(G), namely one for

each choice of bypassing a selfloop {si} via the edge (vi, vi+1) or not. For these paths
we have the set of corresponding weights{ ∑

pi∈p

pi · b(si) + 2 ·
∑
pi∈p

(1 − pi) | p ∈ {0, 1}slbs(G)
}

The claim now is, that for each weight in this set, there is an instantiation I of its
symbolic loop-bounds, such that this weight dominates all other weights. To see this,
consider a weight w. For each loop-bound variable si contained in w, set I(b(si)) :=
2slbs(G)+ 1 and for all other bounds to 0. Now consider any other weight w′ and let n
(n′) be the number of variables in w (in w′) and k be the number of variables that w and
w′ share. Then w[I] = n(2slbs(G) + 1) + 2(slbs(G) − n) and w′[I] = k(2slbs(G) +
1)+2(slbs(G)−n′). If now k = n, then there must be a variable in w′ which is not in w,
since w �= w′. Thus, n′ > n and therefore w[I] = n(2slbs(G)+1)+2(slbs(G)−n) >
n(2slbs(G) + 1) + 2(slbs(G) − n′) = w′[I]. Since k ≤ n, let us now assume that
k < n. Then w[I]− w′[I] = (n− k)(2slbs(G) + 1) + 2(n′ − n) can only be negative

44 E. Althaus, S. Altmeyer, and R. Naujoks

if n′ < n, but on the other hand n′ − n ≥ −slbs(G), which implies that in this case
w[I]−w′[I] ≥ (n−k)(2slbs(G)+1)−2slbs(G) = 2slbs(G)(n−k−1)+n−k > 0.
Hence any algorithm has to report w.

Thus any correct algorithm must report all the 2slbs(G) paths.

Lemma 6. There exists a problem instance I , such that D(I) contains a weight with
2slbs(G) − 1 terms with non-zero coefficients.

Proof. Consider the same graph construction as in Lemma 4. We again prove a slightly
stricter claim, namely that there is

– a weight polynomial in D(G, v0, v2) such that all terms have non-zero coefficients
except the term consisting of all loop-bound variables

– a weight polynomial in D(G, v0, v2) such that all terms have zero coefficients ex-
cept the term consisting of all loop-bound variables.

We again proof the claim by induction. As stated in the proof of this lemma, in the
base case (slbs(G) = 2), the set of computed path weights is D(v0, v2) = {b(v0),
b(v0)b(v1), −1 + b(v0) + b(v1), 1 − b(v1) + b(v0)b(v1)}. Clearly the claim holds in
this case. For the induction step, consider the weights l, l′ ∈ D(v1, v1) such that l
corresponds to the weight in the first part of the claim and l′ corresponds to the weight
in the second part of the claim. Recall from the discussion in the proof of Lemma 4, that
D(v0, v2) consists of weights build by evaluating the expression (b(v0) − 1) · l1 + l2
for l1,l2 ∈ D(v1, v1). Since l ∈ D(v1, v1), (b(v0)− 1) · l + l = b(v0) · l is in D(v0, v2)
and thus the first part of the claim also holds for G. But also the weight (b(v0) − 1) ·
l + l′ = b(v0) · l + (l′ − l) is in D(v0, v2). Since l and l′ have distinct terms with non-
zero coefficients and by induction hypothesis, l has 2slbs(G)−1 − 1 terms with non-zero
coefficients, the number of terms in (b(v0)− 1) · l + l′ with non-zero coefficients must
be 2(2slbs(G)−1 − 1) + 1 = 2slbs(G) − 1, which finishes the proof.

Lemma 7. There is a problem instance I = (G, s, t), such that the minimal output size

is 2 but |D(I)| = 22lbs(G)−1
.

Proof. Reconsider again the example given in Figure 3 and the graph G as constructed
in the proof of Lemma 4. We have argued in this proof, that the set lps(v0, v2) of path
weights consists of all weights (b(v0) − 1) · lee + lep for lee, lep ∈ D(v1, v1), since
D(vout, vin) = D(vout, v2) = D(G, v1, v1). But one could do better, since it can be
assumed wlog. that a longest path from v0 to v2 just corresponds to b(v0) times a path
in D(v1, v1). Thus, instead creating a set lps(v0, v2) of cardinality |D(v1, v1)|2, we
create one of cardinality |D(v1, v1)|. But this leads by an inductive argument to a set of
weights of the base case, namely 4 path weights. You could also apply this idea to the
base case and get just the two path weights b(v0) and b(v0)b(v1), but then the induction
step in the proof of Lemma 4 would not work out in the same way, as there would be no
path weight in D(v1, v1) with a positive constant (even though, it is possible to modify
G slightly to make it work). So, we end up with four (respectivally 2) longest path
weights which still is in stark contrast to the set of 22lbs(G)−1

weights, constructed by
our algorithm.

Selecting Good a Priori Sequences for Vehicle

Routing Problem with Stochastic Demand

Ei Ando1, Binay Bhattacharya2,�, Yuzhuang Hu2,
Tsunehiko Kameda2,�, Qiaosheng Shi2

1 Sojo University, Kumamoto, Japan
ando-ei@cis.sojo-u.ac.jp

2 School of Computing Science, Simon Fraser University, Burnaby, Canada, V5A 1S6
{binay,yhu1,tiko,qshi1}@sfu.ca

Abstract. In the vehicle routing problem with stochastic demand, the
customers’ demands vary from one collection/delivery period to the next.
Under the assumption that they become known only upon arrival of the
vehicle at their sites, our objective is to find a fixed a priori sequence
that is used in every period. We present a priori sequences that achieve
2-, 2-, 3- and 5-approximation in the worst case on trees, cycles, cactus
graphs, and general graphs, respectively, in the case where the demand of
a customer must be serviced all at once. These approximation ratios are
with respect to the optimal distance computed off-line, when all demands
are non-zero and are known in advance. If the demand of a customer can
be serviced in parts, we present a linear time algorithm to find an optimal
solution for cycles.

1 Introduction

In the classical capacitated vehicle routing problem (CVRP for short), a vehicle
with a finite capacity Q (integer) is available to collect/deliver known numbers
of units from/to a set of geographically scattered customers. The vehicle starts
from a central depot, services customers, and returns to the depot if it cannot
accommodate the total demand of the current customer, before resuming service
at that customer. The objective is to find an optimal schedule, consisting of a
set of routes with the smallest total distance to service all customers in one
collection/delivery period. Each route starts from and ends at the depot, and at
most Q units of demand are collected on it [11].

In this paper we consider a stochastic variation of the classical CVRP, named
vehicle routing problem with stochastic demand (VRPSD for short) [9], where
customers’ demands fluctuate from one period to the next. Moreover, we assume
that a customer’s demand becomes known only upon arrival of the vehicle at
the customer site. This situation arises naturally in real-world collection/delivery
systems [4,11]. We concentrate on collection systems, but our results are equally

� This work was supported partially by a MITACS grant to Bhattacharya and NSERC
Discovery Grants to Bhattacharya and Kameda.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 45–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 E. Ando et al.

applicable to delivery systems. Examples include the collection of money from
bank branches [9], the delivery of some products/commodities such as petroleum
products and industrial gases [10], route design before customer demands are
known [4], and the pickup and delivery of mail [17], etc.

1.1 The a Priori Strategy for VRPSD

There are two standard strategies to deal with unpredictable, fluctuating de-
mands [4]. The re-optimization strategy computes a schedule, after all the cus-
tomer demands are known. It may not be practical due to lack of information,
time constraints or computing cost. In this paper we adopt the other strat-
egy, named the a priori strategy, which selects an a priori sequence of all the
customer nodes beforehand. The vehicle always visits customer sites in this se-
quence, returning to the depot from time to time to empty its load. A review of
the a priori strategy can be found in [5,15]. Bertsimas [4] presents both practical
and analytical evidences that the a priori strategy is a strong contender to the
re-optimization strategy.

In the non-split model of CVRP and VRPSD, the entire demand by a customer
must be serviced in one shot; therefore the maximum amount of demand at each
customer site must be at most Q (the vehicle capacity). In the split model, on
the other hand, the vehicle can load from the same customer site more than once
in the same period.1 We sometimes use the adjective split (or non-split) when
we refer to a solution or schedule of the split (or non-split) model.

1.2 Previous Results

In the literature on vehicle routing, algorithms designed for CVRP are often
used for VRPSD. The split CVRP is NP-hard for trees [13], and the non-
split CVRP is NP-hard even for paths [16]. Therefore, researchers have inves-
tigated polynomial-time approximation algorithms with performance guaran-
tees. A few approximation algorithms are known for the split CVRP. For ex-
ample, Asano et al. [2] designed a 1.35078-approximation algorithm on trees,
and Haimovich et al. [12] proposed a 2.5-approximation algorithm, called the
cyclic heuristic, on general graphs. For the non-split CVRP, Labbé et al. [16]
gave a 2-approximation algorithm on trees, and Altinkemer et al. [1] presented
a (3.5−3/Q)-approximation algorithm on general graphs.

The first practical example of VRPSD was given by Tillman in 1969 [19].
Papers on the re-optimization strategy often investigate methods of making the
decision on the next customer site to visit dynamically, and model the problem
as a Markov decision process [11]. The a priori strategy was first proposed by
Jaillet et al. [14] for the probabilistic version of the traveling salesman problem
(TSP), and by Bertsimas [4] for VRPSD. Let α be the ratio of a polynomial-time

1 If a customer is completely serviced, his/her site will not be visited again in the
current period. The customer’s demand may change between successive visits to his
site in the same period, as long as it is not reduced to 0.

Selecting Good a Priori Sequences for VRPSD 47

heuristic solution to the TSP over the optimal solution. Such a solution is called
an α-approximate TSP tour.2

Bertsimas proposed an a priori algorithm [4] for the split VRPSD, which is
based on the cyclic heuristic. If it is started with the 1.5-approximate TSP tour
in [8], it achieves a (2.5+O(1/n))-approximation in the expected distance, where
n is the number of customer nodes, under the assumption that the demand
distributions of the customer nodes are all identical. Berman et al. [3] gave a
randomized algorithm that achieves an approximation ratio of 1+α in expected
distance, and also presented an a priori sequence and an analysis showing that it
achieves a (1+2α)-approximation in the worst case for the split VRPSD on gen-
eral graphs. Viswanath [20]’s randomized algorithm achieves an approximation
ratio of 2+α in expected distances for the non-split VRPSD on general graphs.
Throughout this paper, we adopt the deterministic approach, and we conduct
the worst-case analyses.

1.3 Our Model

We represent the demands and distances by an undirected graph G = (V, E),
where V = {v0, v1, . . . , vn−1} consists of the nodes representing the customer
sites and the depot v0, which is sometimes denoted by o. Each edge e ∈ E has a
nonnegative distance (also called a cost) c(e) satisfying the triangle inequality.
For a path P , c(P) will denote the total distance of the edges on P . In an
instance I of VRPSD, each node v ∈ V is associated with a discrete, random
demand variable Xv that is distributed over the integers in the range [1, Q]. In
this paper, we do not need to know the actual distribution, other than its range.
In a realization, on the other hand, each customer node v ∈ V −{v0} has a
concrete demand d(v), satisfying 0<d(v)≤Q. We denote a VRPSD realization
by R(G, d). If we assume that function d is known in advance, then we can
consider R(G, d) as an instance of CVRP, and denote it by Icvrp(G, d).

We select an a priori sequence σ of customer nodes to be visited (with the
depot node o attached at the end), based solely on the graph topology and
the edge distances. Our collection procedure for the non-split model proceeds
according to the following very simple rule:

Procedure Non-Split(G, o, σ)
Input: graph G; depot node o in G; a priori service sequence σ.
Initialize: � = 0 (vehicle load); u = the first node in σ.

1 if u = o then dump the current load and stop
2 else visit u via the shortest path endif
3 if � + d(u) ≤ Q then service u (� ← � + d(u)); goto step 6
4 else return to the depot and dump the current load; service u (� ← d(u))
5 endif
6 set u to the next node in σ, and goto step 1 ��

2 It is known that α ≤ 1.5 [8].

48 E. Ando et al.

The distance traveled by the vehicle is clearly affected not only by σ but also
by the particular set of demands in a realization, because the vehicle’s occasional
trips (called recourses) back to the depot are dictated by the actual demands.
Our objective function is the total distance traveled by the vehicle following a
given a priori sequence for realization R(G, d), divided by the optimal solution
to Icvrp(G, d).

1.4 Our Results

We propose a priori sequences for the split and non-split VRPSD on some special
classes of graphs and general graphs, and compute the worst-case approximation
ratio in each case. The approximation ratios are relative to the optimal distances
when all demands are known in advance. However, since the optimal distance is
hard to compute, we use a lower bound on it when we compute the approximation
ratio. Therefore, the approximation ratios we compute are simply just upper
bounds, and the actual performance is likely much better.

Throughout the paper, we adopt the simple greedy collection approach given
by Non-Split(G, o, σ). We always assume that the demands at all customer
sites are non-zero in each collection period.3 Our results can be summarized as
follows:

(1) If the pre-order or post-order is used as the a priori sequence for the non-split
VRPSD on trees, then it achieves a 2-approximation. (Section 2)

(2) An a priori sequence for the non-split VRPSD on cycles that achieves a
2-approximation. (Section 3)

(3) A linear time algorithm to find an optimal solution to the split CVRP on
cycles. (Appendix)

(4) An a priori sequence for the split and non-split VRPSD on cactus graphs4

that achieves a 3-approximation. (Section 4)
(5) If an α-approximate TSP tour is used as the a priori sequence for the non-

split VRPSD on general graphs, then it achieves a (2+2α)-approximation.
(Section 5) Since α ≤ 1.5 [8], this is at worst a 5-approximation.

2 Non-split VRPSD on Trees

Consider a VRPSD realization R(T, d) on a rooted tree T , where the depot o is
located at the root. For a node u in T , we denote the subtree rooted at u by
T (u), and the parent of u by p(u), where p(u) is null if u is the root of T . Let
D(T (u)) denote the total demand of the nodes in T (u). We pay special attention
to edge e = (p(u), u) and tree T (u). For tree T , we use either the pre-order or
the post-order for the customer nodes in T as σ (with o attached at the end).
During the execution of Non-Split(T, o, σ), the vehicle in general may have a

3 In the conclusion section of the paper, we discuss the case where demand can be 0.
4 A cactus graph is one in which every edge belongs to at most one simple cycle. See

Fig. 2 for an example.

Selecting Good a Priori Sequences for VRPSD 49

load � > 0 before traversing e=(p(u), u) into T (u) for the first time. Therefore,
in the worst case the vehicle may collect no unit from T (u) on its first visit, as
we discuss in the proof of Theorem 1.

As we commented earlier, the optimal distance is hard to compute. So we
first establish a lower bound for Icvrp(T, d) as a benchmark, against which we
later compare the performance of Non-Split(T, o, σ). Let us introduce the flow
bound for edge e=(p(u), u), defined by

BT (e)=�D(T (u))/Q�. (1)

Note that BT (e)≥ 1 since D(T (u))≥ 1. It is easy to see that BT (e) is a lower
bound on the number of times e needs to be traversed in one direction in any
optimal solution to Icvrp(T, d). Similar flow bounds were used for the k-delivery
TSP [6], the Dial-a-Ride problem [7], and CVRP on trees [16].

Lemma 1. The approximation ratio of Non-Split(T, o, σ) is no more than 2
for R(T, d), where σ is the pre-order or the post-order for T .

Proof. Let r1, r2, . . . , rt be all the routes passing through edge e that are tra-
versed in this order by Non-Split(T, o, σ). We claim that t≤2BT (e). Since each
of the t routes traverses e twice, the total number of traversals, 2t, is at most
4BT (e). Clearly, the optimal schedule must traverse e at least 2BT (e) times.
Therefore, the approximation ratio 2t/2BT (e)≤2, proving the lemma. Because
the above claim is trivially true if t=1 or 2 since BT (e) ≥ 1, we assume that t≥3
in what follows. Let the vehicle have a load of � > 0 just before entering T (u)
in r1. In R(T, d), the vehicle still needs to visit the next node v in sequence σ in
T (u), even if it may turn out that � + d(v) > Q, and the vehicle may not collect
any unit from T (u) in r1. However, it is clear that, for k = 1, 2, . . . (2k+1≤ t),
Non-Split(T, o, σ) makes the vehicle carry a total of at least Q+1 units from
T (u) in any two consecutive routes, r2k and r2k+1, when crossing e from u to
p(u).

If t is even, excluding r1 and rt, we can see that the total amount carried back
across e from T (u) is at least (t−2)(Q+1)/2. If t is odd, this bound is also valid
because rt need not be excluded. Since (t−2)(Q+1)/2 ≥ (t−2)Q/2+1/2, we have

BT (e)=�D(T (u))/Q�≥(t−2)/2+1. (2)

We obtain an upper bound on t from (2): t ≤ 2BT (e). ��

Since Lemma 1 is valid for any realization R(T, d), we have

Theorem 1. The a priori sequence corresponding to the pre-order or the post-
order achieves a 2-approximation in the worst case for the non-split VRPSD on
trees. ��

3 Non-split VRPSD on Cycles

Consider a cycle C consisting of depot v0(=o) and n customer nodes, v1, . . ., vn

in the clockwise order. (See Fig. 1).

50 E. Ando et al.

vlv
l +1

P’LP’

P’’

p
L

R

P’’R

v

v

v 1

2

n

v
R v

L

Depot
o

Fig. 1. A cycle. Point p is the midpoint.

We first determine the midpoint p on C such that c(C[o, p])=c(C[p, o]), where
C[a, b] denotes the part of cycle C clockwise from point a to point b. Note that p
may not be unique if some edges have 0 cost. Let p lie on the edge el =(vl, vl+1) of
the cycle. We assume 1≤ l≤n−1.5 The main result of this section is the proof that
Non-Split(C\{el}, o, σ) with sequence σ = 〈vl, vl−1, . . . , v1, vl+1, vl+2, . . . , vn, o〉
yields a 2-approximation for any VRPSD realization R(C, d).

Define two paths, PL = C[o, vl] and PR = C[vl+1, o].6 To first find a lower
bound on the optimal solution, the following two lemmas consider split solutions
to Icvrp(C, d). Let ra and rb be two routes in a split solution to Icvrp(C, d). Routes
ra and rb are said to intersect if they share at least one edge. Route ra is said
to contain route rb, if all the edges of rb are also in ra.

Lemma 2. In an optimal split solution to Icvrp(C, d), if two routes intersect,
then they can be replaced by two routes such that one contains the other.

Proof. If both routes are contained in PL or PR then the assertion already holds.
It also holds if one of the routes is the entire cycle C. So suppose that one of the
routes crosses middle point p but returns to o across p (this can happen in an
optimal solution if some edges near p have 0 cost). Then we can make it proceed
in the same direction to return to o without increasing the total distance. ��

Lemma 3. Let route ra contain route rb in an optimal split solution to Icvrp(C, d),
in which the total demand is more than Q. Then the following hold.

(a) There exists an optimal schedule in which exactly Q units are collected from
the nodes on ra, and each node serviced on rb has a subscript that is not
larger (or not smaller) than those serviced on ra.

(b) If ra crosses the mid-edge el, then rb need not cross it. ��

Proof. (a) Let Va (Vb) denote the set of nodes serviced on ra (rb). Since they
are routes in an optimal solution, the total number of units collected on those
5 If p were on the interior of en, for example, then the optimal schedule would not

traverse el at all, and the problem would become easier. Note that p=vl is possible.
6 L(eft) and R(ight) are from the perspective of the depot node o.

Selecting Good a Priori Sequences for VRPSD 51

routes are at least Q+1. Since this is a split solution, we can assume that Q
units are collected from Va. We can now reorganize the composition of Va and
Vb, if necessary, to satisfy the conditions of the lemma.

If rb is within path PL (resp. PR), then we can make the reorganized Va

consist of the minimum number of the highest-indexed (resp. lowest-indexed)
nodes from Va ∪ Vb whose total demand is at least Q. Now suppose that both
ra and rb cross p. Then as argued in the proof of Lemma 2, we can assume that
both routes are the entire C. In this case, let Va consist of the minimum number
of either the highest-indexed or lowest-indexed nodes from Va ∪ Vb whose total
demand is at least Q.
(b) We can assume that, after the adjustment was made, Va contains vertices
from both PL and PR, since otherwise there is no need for ra to cross p. It is
clear that rb need not cross p. ��

Let r be the route, if any, that crosses el in an optimal split solution to Icvrp(C, d).
By Lemma 3(b), we may assume that at most one such route exists. If r exists,
then by Lemma 3(a), we may further assume that the vehicle collects exactly Q
units on r from nodes that are consecutive “around” midpoint p.7 We compute
the cost of r and the other routes, separately. In a (not necessarily optimal)
solution, let x (0<x<Q) be the number of units collected on r from nodes on
PL. Then Q−x units are collected on r from nodes on PR. We can compute the
flow bound on any edge e ∈ PL ∪ PR, excluding the units collected on route r,
as follows:

fL(e, x) = �{D(C[vi+1, vl])−x}/Q� for e=(vi, vi+1) ∈PL (3)
fR(e, x) = �{D(C[vl+1, vi])−(Q−x)}/Q� for e=(vi, vi+1) ∈ PR. (4)

Let us sum them for all e ∈ PL ∪ PR and add the cost of r.

F (x) =
∑

e∈PL

fL(e, x) · c(e) +
∑

e∈PR

fR(e, x) · c(e) + c(C). (5)

Setting aside the problem of minimizing F (x), which is discussed in the Ap-
pendix, suppose x = x∗ minimizes it. Then clearly F (x∗) is a lower bound on
the total cost. Let L be the largest subscript such that

∑
L≤i≤l d(vi) > x∗, and

R be the smallest subscript such that
∑

l+1≤i≤R d(vi) > Q−x∗. Define paths
P ′

L =C[o, vL], P ′
R =C[vR, o], P ′′

L =C[vL, vl], and P ′′
R =C[vl+1, vR]. If r exists, the

optimal solution collects Q units on r from the nodes on P ′′
L ∪ P ′′

R.

Theorem 2. Non-Split(C\{el}, o, σ) with σ = 〈vl, . . . , v1, vl+1, . . . , vn, o〉
achieves a 2-approximation for the non-split VRPSD on cycles.

Proof. If el is not crossed in the optimal solution, then σ = 〈vl, . . . , v1, vl+1,
. . . , vn, o〉 is the post-order for the tree C\{el}. Therefore, the theorem follows
from Theorem 1 in this case.
7 Assuming, of course, that the total demand by the customer nodes is at least Q.

52 E. Ando et al.

So assume that one route r of the optimal solution crosses it. (Lemma 3(b).)
Let r1, r2, . . . , rt be the routes used by Non-Split(C\{el}, o, σ). Since there are
at most Q units of demand from the nodes on C[vL+1, vl], Non-Split(C\{el},
o, σ) will traverse every edge on path e∈P ′′

L exactly twice in r1, once towards vl

and the second time on return from it, which is twice the optimum. Let us now
examine an edge e=(vi, vi+1)∈P ′

L. Note that the vehicle is empty when it starts
out from the depot on each of the t routes. Thus, as in the proof of Lemma 1,
the vehicle collects a total of at least Q+1 units on any pair of routes {rk, rk+1}.
Therefore, we get an upper bound on t: t ≤2BC\{el}(e)−1, where BC\{el}(e) is
the flow bound for edge e in tree BC\{el}. (See the proof of Lemma 1.) Let us
define a unified flow bound for e ∈ PL ∪ PR, excluding the x∗ (resp. Q − x∗)
units of demand from the nodes on P ′′

L (resp. P ′′
R), by

B∗
C\{el}(e) =

{
fL(e, x∗) for e ∈PL

fR(e, x∗) for e ∈ PR.
(6)

Since BC\{el}(e)−1 ≤B∗
C\{el}(e) by definition, we get t ≤ 2B∗

C\{el}(e)+1 from
t ≤2BC\{el}(e)−1. Thus the number of traversals across e is no more than

2t ≤ 2{2B∗
C\{el}(e)+1}. (7)

Note that 2B∗
C\{el}(e)+1 is a lower bound on the number of times that e is

traversed in the optimal solution, including the one traversal on route r. This
means that the right hand side of (7) is twice the lower bound on the optimum.
Similar analysis applies to each edge e = (vi, vi+1) ∈ P ′

R. This completes the
proof. ��

4 VRPSD on Cactus Graphs

A cactus graph is defined to be one in which every edge belongs to at most
one simple cycle. See Fig. 2, for an example. We shall present a node sequence
σ for a given cactus graph G such that Non-Split(τ(G), o, σ) achieves a 3-
approximation, where tree τ(G) is derived from G, as we explain below. It is
based on the observation that removing the edge on which the midpoint of each

v
10

v 2

v
3v

4
v
7

v
13

v14

v
6

v
9

v 8

v 1

v
5

p"

p

o’

p’

12
v

v11

Fig. 2. A cactus graph

Selecting Good a Priori Sequences for VRPSD 53

cycle lies (e.g., points p, p′ and p′′ in Fig. 2) results in a tree, and we can use the
pre-order or post order on it.

Our first task is to transform the original graph G into a tree G′ as follows.
Starting with G′=G, we pick a simple cycle C in G′ arbitrarily. As in Section 3,
let el be the edge on which the middle point of C lies. We now set G′=G\{el}.
We repeat this process until no cycle exists in G′, and let τ(G) be the resulting
G′. We can now invoke Non-Split(τ(G), o, σ), where σ is a depth first sequence
on τ(G) that mixes the pre-order and post-order, as we illustrate below.

Assume that the vehicle reaches node o′8 belonging to a simple cycle C in the
original graph G for the first time. We use a sequence σ that services one of the
subtrees rooted at o′ that contains one half of C in the pre-order and then the
subtree that contains the other half in the post-order. As for node o′, when it is
visited is determined by the visiting order in the cycle to which o′ belongs and
is closer to the depot o, if any, or by that for the entire tree rooted at o, if not.9

For example, in Fig. 2, T (v1) will be serviced in the pre-order and T (v6) will be
serviced in the post-order. The entire visiting sequence for the cactus graph in
Fig. 2 is

〈v1, v2, v11, v12, v13, v14, v3, v4, v7, v8, v9, v10, v5, v6〉.
We shall use the notation defined in Section 3. Let C be a simple cycle in G as
described in Section 3. Consider an edge e=(vi, vi+1) on the path PL =C[o′, vl].
We now derive a lower bound on the number of traversals on e. Consider a
maximal subtree T̂ (vi+1) of T (vi+1) such that T̂ (vi+1)∩C ={vj}, where i+1 ≤
j ≤ l. As e is on the shortest paths to the depot for the nodes in T̂ (vi+1, the most
cost effective way to service every Q units of demand from the nodes in T̂ (vi+1

is to traverse e from vi to vi+1 to gather these units, and traverse e backwards
to carry them to the depot. Therefore, there must be an optimal schedule that
works this way, and 2�D(T̂ (vi+1)/Q� is a lower bound on the number of times
e is traversed.

Let D(T̂ (vi+1))=(k−1)Q+d, where k≥1. We thus have d=D(T̂ (vi+1)) mod Q.
We make k copies of node vj , tentatively named u1, . . . , uk, such that d(uh)=Q
for h=1, . . . , k−1 and d(uk)=d, and connect uh to uh+1 by a zero-distance edge.
Remove T̂ (vi+1)−{vj} from G′ and replace vj by those k copies, and connect
u1 to vj−1 (resp. uk to vj+1) with an edge of the original cost c(vj−1, vj) (resp.
c(vj , vj+1)). After processing the rest of T (vi+1) in a similar way, we obtain a new
CVRP instance Icvrp(C′, d) defined on the modified cycle C′. In what follows,
we assume that all the nodes are renumbered and named as u1, u2, . . . , un′ along
C′ clockwise from o′. We replace node names {vi} used in Section 3 by {uj} and
redefine the mid edge el accordingly. We also redefine L, R, PL, P ′

L, P ′′
L , PR,

P ′
R, and P ′′

R, and x∗ in the new context. For example, we have PL = C′[o′, ul]
and P ′

L =C′[o′, uL].
If the middle edge el is traversed in the optimal split schedule, then to achieve

an approximation ratio of 3, we can afford to traverse the edges on P ′′
L∪P ′′

R up to
8 Node o′ may or may not be depot o.
9 There is some freedom here, but we adopt this particular sequence for the sake of

concreteness.

54 E. Ando et al.

three times. We claim that if Non-Split(τ(G), o, σ) traverses some edge e ∈ P ′′
L

in two routes (i.e., e is crossed four times), then it traverses each edge e′ ∈ P ′′
R

only in one route (i.e., e′ is crossed twice) and vice versa.

Lemma 4. (a) If Non-Split(τ(G), o, σ) traverses some edge on P ′′
L more than

twice, then the total cost for traversing the edges on P ′′
L∪P ′′

R is bounded by

4c(P ′′
L)+2c(P ′′

R).

(b) If Non-Split(τ(G), o, σ) traverses all edges on P ′′
L exactly twice, then the

total cost for traversing the edges on P ′′
L∪P ′′

R is bounded by

4c(P ′′
R)+2c(P ′′

L).

Proof. (a) If an edge e ∈ P ′′
L is traversed four times by Non-Split(τ(G), o, σ),

then the vehicle will have a load � < x∗ when the vehicle finishes servicing the
nodes in T (u1). This is because, when e is traversed for the third time (away
from u1), the vehicle will carry no load. Non-Split(τ(G), o, σ) will continue to
service the nodes in T (un′) in the post-order. As � < x∗, the vehicle will traverse
every edge e′ ∈ P ′′

R exactly twice, because the nodes on P ′′
R, excluding uR, has a

total demand of no more than Q−x∗.
(b) In this case, the vehicle may have a load � > x∗ when it finishes servicing
the nodes in T (u1). If so, it cannot service all Q−x∗ units from the nodes on
P ′′

R−{uR}, which means that some edges on P ′′
R must be traversed four times. ��

Theorem 3. Procedure Non-Split(τ(G), o, σ) achieves a 3-approximation for
any realization R(G, d) of the non-split VRPSD on cactus graphs.

Proof. Note first that the optimal solution may traverse el at most once, but
Non-Split(G′, o, σ) does not.

Case 1. [e ∈ P ′
L ∪ P ′

R]: Consider edge e ∈ P ′
L. The case e ∈ P ′

R is symmetric.
Applying the analysis in the proof of Lemma 1, we see that Non-Split(τ(G),
o, σ) traverses e at most 4BC′\{el}(e) times, where BC′\{el}(e) is the flow bound
defined on C′\{el}. We have

BC′\{el}(e)=�D(C′[ui+1, ul])/Q� ≤ B∗
C′\{el}(e)+1,

because 0<x∗<Q. In the optimal split solution, e is traversed at least 2B∗
C′\{el}(e)

+1 times. The difference between three times this amount and the cost of Non-
Split(τ(G), o, σ) is

3(2B∗
C′\{el}(e)+1)− 4BC′\{el}(e) ≥ 3(2B∗

C′\{el}(e)+1)−4(B∗
C′\{el}(e)+1)

= 2B∗
C′\{el}(e)−1 ≥ 1. (8)

This implies that every edge e ∈ P ′
L could be traversed one more time without

exceeding the upper bound of three times the optimum. Namely we have an
“excess capacity” of c(P ′

L) (and c(P ′
R)), which will be utilized in the cost analysis

for Case 2.

Case 2. [e ∈ P ′′
L ∪ P ′′

R]: By Lemma 4 the total cost for traversing the edges
on P ′′

L ∪ P ′′
R is bounded by the larger of 4c(P ′′

L)+2c(P ′′
R) and 4c(P ′′

R)+2c(P ′′
L).

Selecting Good a Priori Sequences for VRPSD 55

Summing three times the cost of traversing the path P ′′
L ∪ P ′′

R ∪{el} (in the
optimal schedule) and the “excess capacity”, we get

3[c(P ′′
L)+c(P ′′

R)+c(el)]+c(P ′
L)+c(P ′

R).

Subtracting 4c(P ′′
L)+2c(P ′′

R) from this, we get the difference,

c(P ′′
R)+ 3c(el)+c(P ′

L)+c(P ′
R)−c(P ′′

L) ≥ 2c(el)+c(C)/2+c(P ′
L)−c(P ′′

L)
≥ 2c(el)+2c(P ′

L) ≥0. (9)

If we subtract 4c(P ′′
R)+2c(P ′′

L), the difference is 2c(el)+2c(P ′
R) ≥0. We can thus

conclude that in this case the cost of the solution generated by Non-Split(τ(G),
o, σ) is no more than three times the optimum. ��

Note that the above theorem is valid for the split solution as well, since the
performance was computed relative to the optimal split solution.

5 Non-split VRPSD on General Graphs

In this section we use an α-approximate TSP tour as the a priori sequence and
analyze its performance. The following result [12] plays an important role in our
analysis.

Lemma 5. Given a VRPSD realization R(G, d) for a general graph G=(V, E),
we have ∑

v∈V

c(v, o)≤ Q

2
·OPT (Icvrp(G, d)). (10)

��

o'

v 1 v2 vd(v)

c(v,o) c(v,o)

(a)

v'1

v 1 v2

v'2

vd(v)

v'd(v')
(b)

Fig. 3. (a) A node chain in G′ corresponding to v∈V \{o}; (b) Two edges (v1, v
′
d(v′)),

(v′
1, vd(v)) ∈ E′ for each pair v, v′∈ V \{o}

To facilitate our analysis, we transform a given general VRPSD realization
R(G, d) into another VRPSD realization R(G′, d′) such that each customer node
in G′ =(V ′, E′) has exactly one unit of demand. We do this by introducing the
depot node o′∈ V ′ and a chain of d(v) nodes, v1, v2, . . . , vd(v), which are chained
by 0 cost edges, for each node v∈ V \{o}. We now introduce an edge (vi, o

′)∈ E′

56 E. Ando et al.

with cost c(v, o) for i = 1, . . . , d(v). See Fig. 3(a). Finally, for each pair of nodes
in v, v′ ∈ V \{o}, we introduce two edges (v1, v

′
d(v′)), (v′1, vd(v)) ∈ E′ with cost

c(v, v′), as shown in Fig. 3(b). If d(v) = d(v′) = 1 then only one edge with cost
c(v, v′) is introduced.

Find an α-approximate TSP tour τ (from depot o back to itself) in G, and
map it to tour τ ′ in G′. Tour τ ′ starts at o′ and when τ visits node v, τ ′ visits
v1, v2, . . . , vd(v) in this order. We clearly have c′(τ ′)=c(τ), where c′() is the cost
function for G′. We now partition τ ′, excluding its first and last edges incident on
o′, into a sequence of paths P1, P2, . . . , Pm, each consisting of exactly Q nodes,10

as shown in Fig. 4. We name the nodes along τ ′, except o′, u1, u2, . . . , u|V ′|−1, so
that Pi consists of {uk | (i−1)Q+1 ≤ k ≤ iQ}.

Fig. 4. Illustration for Pi, P ′
i , wi, etc

Lemma 6. For h=1, . . . , Q, select one node from every path Pi (i=1, . . . , m)
and put them in set Sh. Then there exists an index j (1≤j≤Q) such that∑

u∈Sj

c′(u, o′) ≤ OPT (Icvrp(G, d))/2. (11)

Proof. As S1 ∪ S2 ∪ · · · ∪ SQ contains all the customer nodes in G′(V ′, E′), we
have ∑

u∈S1∪···∪SQ

c′(u, o′)≤(Q/2)OPT (Icvrp(G, d))

from (10) . Thus there must be an Sj satisfying the lemma. ��

Theorem 4. The a priori strategy achieves a (2 + 2α)-approximation for the
non-split VRPSD on general graphs.

Proof. In Lemma 6, for h = 1, . . . , Q, let us select the nodes to put in Sh as
follows. Let τ ′ and Pi be as defined above. From each path Pi, select one node,
u(i−1)Q+h, and put it in Sh. Thus we have |Sh| = Q and the indices of the nodes
in Sh selected from Pi and Pi+1 are Q apart. Let Sj ={w1, . . . , wm} be the set
defined in Lemma 6, where wi =u(i−1)Q+j ∈ Pi. For i=1, . . . , m−1, define path
P ′

i = τ ′[wi, wi+1], where τ ′[u, u′] denotes the subpath of τ ′ from node u to u′.

10 If Pm consists of fewer than Q nodes, then we insert the required number of fictitious
nodes just before its last node. Each of these fictitious nodes is connected with 0
cost edges to its neighbors and the depot node.

Selecting Good a Priori Sequences for VRPSD 57

Fig. 5. The nodes (of G′) of the same shade type correspond to a single node in G

See the top part of Fig. 4. We also define P ′
0 =τ ′[u1, w1] and P ′

m =τ ′[wm, un′−1].
Note that P ′

i and P ′
i+1 share one node, wi+1, in common.

For i=1, . . . , m−1, the total demand from the nodes on P ′
i is exactly Q+1 units,

and it is clear that there can be at most two recourses from within P ′
i for i =

1, . . . , m−1, and at most one recourse each from within P ′
0 and P ′

m. We consider
the worst case, where those upper bounds on the number of recourses actually
happen. In our analysis, we assume that the vehicle goes back to the same node
once more after a recourse, even if no more unserviced demand remains there.
This is done to compute the upper bound on the distance traveled more easily.
Let the first (second) recourse from P ′

i be from ui
k (ui

�) back to itself via o′, as
illustrated in Fig. 5.

They can be mapped back to two recourses in the original graph G. It is
easy to see that c′(ui

�, o
′) = c′(wi+1, o

′) holds, since ui
� and wi+1 correspond to

the same node in G. See Fig. 6, where the nodes (of G′) of the same shade
type correspond to a single node in G, just as in Fig. 5. The cost of the second
recourse is thus 2c′(ui

�, o
′)=2c′(wi+1, o

′). Using Fig. 6, let us now bound the cost
of the first recourse. By the triangle inequality, we have c′(ui

k, o′) ≤ a + c(wi, o
′)

and c′(ui
k, o′) ≤ b + c(wi+1, o

′). Adding these two inequalities, we obtain

2c′(ui
k, o′) ≤ c(wi, o

′)+c(wi+1, o
′)+c′(P ′

i). (12)

Fig. 6. Bounding c′(ui
k, o′)

58 E. Ando et al.

Therefore, the total cost of the two recourses is bounded by c′(wi, o
′)

+3c′(wi+1, o
′)+c′(P ′

i). As for paths P ′
0 and P ′

m, the cost of the very first (and only)
recourse from P ′

0 is clearly bounded by c′(u1, o
′)+c′(w1, o

′)+c′(P ′
0), and the cost of

the very last (and only) recourse from P ′
m is bounded by c′(un′−1, o

′)+c′(wm, o′)+
c′(P ′

m). Adding the costs of all other recourses from (12) for i = 1, . . . , m−1,
we find the sum is no more than 4

∑
w∈Sj

c′(w, o′)+ c′(τ ′). Finally, including
the cost of the TSP tour c′(τ ′), the total distance traveled is bounded by
4

∑
w∈Sj

c′(w, o′)+2c′(τ ′). The first term is bounded by 2OPT (Icvrp(G, d)) by
(11), and the second term is bounded by 2αOPT (Icvrp(G, d)) since c′(τ ′)=c(τ)
for TSP tour τ of G. It follows that

4
∑

w∈Sj

c′(w, o′)+2c′(τ ′) ≤ (2+2α)OPT(Icvrp(G, d)).

This completes the proof. ��

6 Discussion

It is conceivable that tighter upper bounds can be obtained by comparing our
solutions with the VRPSD optima under the a priori strategy, instead of the
VRPSD optima under re-optimization, as was done in this paper.

We made a general assumption that each node had non-zero demand and
must be visited. Suppose we discard this assumption, and adopt the policy that
the vehicle visits only the nodes with a non-zero demand. This is called Strategy
b in [4]. For this modified model to make practical sense, we need to assume
that those nodes with zero demands are known in advance. This is the case in
parcel delivery service, and we may not want to change the visiting sequence
for reasons, such as cost and predictability of the collection/delivery time. Or it
may be the case that whether a site has a non-zero demand is communicated
to the driver beforehand, but the exact demand is not known until the vehicle
reaches the site. We think this modified model is worth investigating.

7 Conclusion

We considered the a priori strategy for VRPSD. We proposed a priori sequences
for different classes of graphs, and showed that they achieve approximation ratios
of 2, 2, and 3 for trees, cycles and cacti, respectively, under the non-split con-
straint. We also demonstrated that an α-optimal TSP route achieves a (2+2α)-
approximation for general graphs under the non-split constraint. We feel that the
analysis techniques that we introduced in this paper will be useful in analyzing
other problems related to vehicle routing.

Selecting Good a Priori Sequences for VRPSD 59

References

1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Operations Research Letters 6(4), 149–158 (1987)

2. Asano, T., Katoh, N., Kawashima, K.: A new approximation algorithm for the ca-
pacitated vehicle routing problem on a tree. J. of Combinatorial Optimization 5(2),
213–231 (2004)

3. Berman, P., Das, S.K.: On the vehicle routing problem. In: Proc. Workshop on
Algorithms and Data Structures, pp. 360–371 (2005)

4. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Operations
Research 40(3), 574–585 (1992)

5. Bertsimas, D.J., Simchi-Levi, D.: A new generation of vehicle routing research: Ro-
bust algorithms, addressing uncertainty. Operations Research 44, 216–304 (1996)

6. Charikar, M., Khuller, S., Raghavachari, B.: Algorithms for capacitated vehicle
routing. SIAM J. on Computing 31(3), 665–682 (2002)

7. Charikar, M., Raghavachari, B.: The finite capacity Dial-a-Ride problem. In: Proc.
39th Annual Symp. on Foundations of Computer Science, pp. 458–467 (1998)

8. Christofides, N.: The traveling salesman problem. In: Christofides, N., Mingozzi,
A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, pp. 315–318 (1979)

9. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with stochastic demands: Prop-
erties and solution frameworks. Transportation Science 23(3), 166–176 (1989)

10. Dror, M., Ball, M., Golden, B.: A computational comparison of algorithms for the
inventory routing problem. Annals of Operations Research 6, 3–23 (1985)

11. Golden, B.L., Raghavan, S., Wasil, E.A. (eds.): The Vehicle Routing Problem:
Latest Advances and New Challenges. Operations Research Computer Science In-
terfaces Series, vol. 43. Springer, Heidelberg (2008)

12. Haimovich, A., Kan, A.R.: Bounds and heuristics for capacitated routing problems.
Mathematics of Operations Research 10, 527–542 (1985)

13. Hamaguchi, S.-y., Katoh, N.: A capacitated vehicle routing problem on a tree.
In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 397–406.
Springer, Heidelberg (1998)

14. Jaillet, P., Odoni, A.: The probabilistic vehicle routing problem. In: Golden, B.L.,
Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. North Holland, Ams-
terdam (1988)

15. Kenyon, A., Morton, D.P.: A survey on stochastic location and routing problems.
Central European J. of Operations Research 9, 277–328 (2002)

16. Labbé, M., Laporte, G., Mercure, H.: Capacitated vehicle routing on trees. Oper-
ations Research 39(4), 616–622 (1991)

17. Marković, L., Ćavar, I., Carić, T.: Using data mining to forecast uncertain demands
in stochastic vehicle routing problem. In: Proc. 13th Intn’l Symp. on Electronics
in Transport (ISEP), Slovenia, pp. 1–6 (2005)

18. Novoa, C.: Static and dynamic approaches for solving the vehicle routing problem
with stochastic demands. Ph.D. dissertation, Industrial and Systems Engineering
Dept., Lehigh University (2005)

19. Tillman, F.: The multiple terminal delivery problem with probabilistic demands.
Transportation Science 3, 192–204 (1969)

20. Viswanath, N.: Approximation Algorithms for Sequencing Problems. Ph.D. disser-
tation, Tepper School of Business, Carnegie Mellon University University (2009)

60 E. Ando et al.

Appendix: Split CVRP on Cycles

In the main body of this paper, we discussed the non-split VRPSD. Here we shall
discuss the split CVRP for cycles, using the notation developed in Section 3. The
main result is an algorithm that finds the optimal solution in linear time.

Lemma 7. For any split solution to Icvrp(C, d), the total distance is lower-
bounded by the smaller of the following two quantities:

B1 =
∑

e∈PL∪PR

2BC\{el}(e) · c(e), (13)

B2 =
∑

e∈PL∪PR

{2B∗
C\{el}(e)} · c(e) + c(C), (14)

where BC\{el}(e) and B∗
C\{el}(e) were defined for tree C\{el} by (1) and (6),

respectively.

Proof. Lemma 3 implies that at most one route crosses the mid-edge el in the
optimal solution. If no route crosses el, then we need only consider tree C\{el},
and the total cost is at least B1.

Suppose now a route r of the optimal schedule crosses el. In the proof of
Theorem 2 we saw that 2B∗

C\{el}(e) is a lower bound on the number of times
that e is traversed in the optimal solution to Icvrp(C, d), minus the one traversal
on r. Since the cost (distance) of r is c(C), the total cost is given by B2. Note
that B∗

C\{el}(e)=0 for e∈P ′′
L ∪ P ′′

R. ��

Since we are discussing the split CVRP, we can assume without loss of generality
that d(v) =1 for every v ∈ V \{o}. Let l, PL, PR be as defined in Section 3. We
now show that the bound given by Lemma 7 can be achieved in the sense that
the optimal schedule can be computed in polynomial time.

Case 1. [edge el =(vl, vl+1) is not crossed] In this case, the lower bound B1 in
Lemma 7 can be achieved using service sequence σ=〈vl, . . . , v1, vl+1, . . . , vn, o〉.
Case 2. [el is crossed] According to Lemma 3(b), in the optimal solution the
edges on the path C[vL, vR] will be traversed only once. The remaining problem
is how to compute x∗. Function fL(e, x) defined in (3) is clearly nonincreasing
in x. Note that fL(e, x) can take at most two different values for x ∈ [1, Q−1]. In
fact it decreases by 1 at x=xe=D(C[vi+1, vl]) mod Q, which we call the critical
value for e. It is a constant function over its domain [1, Q−1] when xe =0.

Recall from (5) that

FL(x)=
∑

e∈PL

fL(e, x) · c(e), (15)

is the total cost for all the edges on PL, excluding the cost of route r. We can
classify the edges on PL into Q equivalence classes, based on their critical values.
It is easy to compute FL(1)=

∑
e∈PL

fL(e, 1) · c(e) in time linear in the number

Selecting Good a Priori Sequences for VRPSD 61

of edges on PL. To compute FL(x) for x=2, 3, . . . , Q−1, we subtract 2c(e) from
FL(x−1) for every e such that xe =x. Since each edge only has one critical value
(i.e., belongs to one equivalence class), the above computation can be carried
out in linear time.

Function fR(e, x) defined in (4) is clearly nondecreasing in x, and

FR(x)=
∑

e∈PR

fR(e, x) · c(e)

is the counterpart for FL(x) in (15). We finally determine x = x∗ that minimizes
FL(x)+FR(x), i.e, the total cost excluding c(C). In route r that crosses el,
the vehicle collects x∗ (resp. Q−x∗) units from nodes of P ′′

L (resp. P ′′
R). In the

remaining routes, the vehicle uses the post-order sequence σ adopted in Case
1. If F (x∗) = FL(x∗)+FR(x∗)+c(C)≥B1 holds, then we have Case 1. See (5).
Otherwise, we have Case 2. We have proved the following theorem.

Theorem 5. The split CVRP on cycles with n customer nodes can be optimally
solved in O(n) time. ��

On Characterization, Definability

and ω-Saturated Models

Facundo Carreiro�

Dto. de Computación, FCEyN, Universidad de Buenos Aires
fcarreiro@dc.uba.ar

Abstract. Two important classic results about modal expressivity are
the Characterization and Definability theorems. We develop a general
theory for modal logics below first order (in terms of expressivity) which
exposes the following result: Characterization and Definability theorems
hold for every (reasonable) modal logic whose ω-saturated models have
the Hennessy-Milner property. The results are presented in a general
version which is relativized to classes of models.

1 Introduction

Syntactically, modal languages [1] are propositional languages extended with
modal operators. Indeed, the basic modal language is defined as the extension of
the propositional language with the unary operator �. Although these languages
have a very simple syntax, they are extremely useful to describe and reason about
relational structures.

A relational structure is a nonempty set together with a family of relations.
Given the generality of this definition it is not surprising that modal logics are
used in a wide range of disciplines: mathematics, philosophy, computer science,
computational linguistics, etc. For example, theoretical computer science uses
labeled transition systems (which are nothing but relational structures) to model
the execution of a program.

An important observation that might have gone unnoticed in the above para-
graph is that there are many different modal logics. There is, nowadays, a wide
variety of modal languages and an extensive menu of modal operators to choose
from (e.g. Since and Until [2], universal modality [3], difference modality [4],
fix-point operators [5], etc.), enabling the design of a particular logic for each
specific application.

It is in this context that the notion of bisimulation [6] becomes fundamental.
Intuitively, a bisimulation characterizes, from a structural point of view, when a
state in a model is indistinguishable from a state in another model. Bisimulations
are a crucial tool in the process of studying relational structures and they open
the way to formally analyze the exact expressive power of modal languages.

If we comprehend in detail the notion of bisimulation, we can measure and try
to balance expressiveness and complexity, and thus obtain a logic appropriate
� F. Carreiro was partially supported by a grant by CONICET Argentina.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 62–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Characterization, Definability and ω-Saturated Models 63

to the context of use with the minimum possible computational complexity.
However, deciding which is the correct notion of bisimulation for a given logic is
not an easy task.

In this paper we investigate Characterization and Definability, two model-
theoretical results intimately related with the notion of bisimulation. We pursue
a general study of these properties without referring to a particular modal logic.
In general, the validity of these theorems is a good indicator that the underlying
notion of bisimulation for a given logic is indeed the correct one.

Characterization results for modal logics identify them as fragments of a better
known logic. This type of characterizations allows for the transfer of results and
a better understanding of the modal logic. The first work in this direction was
done by van Benthem [7] who used bisimulations to characterize the basic modal
logic (BML) as the bisimulation invariant fragment of first order logic.

Theorem (J. van Benthem). A first order formula α is equivalent to the
translation of a BML formula iff α is invariant under bisimulations.

For example, as a corollary of this theorem, we know that the first order formula
ϕ(x) = R(x, x) is not expressable in BML because we can construct a model
with a reflexive element which is bisimilar to a non-reflexive element. Observe
that in this case the notion of bisimulation is that of BML. As we have said
before, every modal logic has a, potentially different, notion of bisimulation.

A theorem of this kind would identify which first order properties can be
captured with each particular modal logic. But —as the syntax, semantics of
the logic and the definition of bisimulation involved have changed— each such
theorem needs a new ad-hoc proof.

Let us now discuss definability. Given a logic L, definability results identify
the properties that a class of L-models K should satisfy in order to guarantee
the existence of an L-formula (or a set of L-formulas) safisfied exactly by the
models in K.1 This question has already been addressed for first order logic [8],
BML [1] and many others logics [9,10]. Whereas the answer for first order logic
is presented in terms of potential isomorphisms [8], in the case of modal logics,
the notion of bisimulation plays a fundamental role.

Theorem (M. de Rijke). A class of Kripke models K is definable by means of a
single BML formula iff both K and its complement are closed under bisimulations
and ultraproducts.

As a corollary of this theorem we get, for example, that the class of finite models
is not definable in BML (because it is not closed under bisimulations). As with
the characterization theorem, definability results similar to the one presented
here also hold for a vast number of modal logics. However, every logic requires
a different proof.

In this article we undertake a study of the proof techniques used for Charac-
terization and Definability results. Our objective is to find sufficient conditions
that an arbitrary logic has to fulfill to validate these theorems. Such conditions
are captured in the notion of an adequate pair (introduced in Section 2).
1 We consider definability of classes of models; we will not discuss frame definability.

64 F. Carreiro

If a given modal logic L —together with its syntax, semantics and its notion of
bisimulation— is compatible with our general theory, we guarantee the validity
of Characterization and Definability theorems for L. We prove a more general
version of these theorems were we allow a relativization to different classes of
models.

The article is organized as follows. In Section 2 we give the set of basic defini-
tions needed to state our main results. In Sections 3 and 4 we prove a generaliza-
tion of the Characterization and Definability theorems and finally in Section 5
we draw some conclusions and propose further lines of research. Most of the
proofs are presented in the main body of the article while the most technical
ones can be found in the Appendix.

2 Basic Definitions

The theorems discussed in this article deal with two logics: one less expressive
than the other. Different modal logics play the part of the former while we will
always take first order logic (with or without equality) as the latter.

Definition 1 (Languages). We denote the modal language as L and the first
order language as F. We consider languages L extending P = 〈(pi)i∈N,∧,∨,�,⊥〉
with the usual interpretations. F is a countable first order language which may
contain equality. For any language A, we call FORM(A) to the set of formulas
of the language A and FORM1(F) to the subset of FORM(F) with at most one
free variable x.

We do not impose any restrictions on the structures over which the language
L is interpreted. We only assume that every L-model M has a set of elements
(also called worlds) which is called the domain or universe of M (notated |M|).
Definition 2 (Models). We define MODS(L) to be the class of L-models un-
der study (not necessarily the class of all models of the signature of L), and
MODS(F) to be the class of all F-models. We use K to denote the complement
of the class K.

An L-pointed model is pair 〈M, w〉 where M is an L-model and w ∈ |M|.
We define the class of L-pointed models corresponding to MODS(L) as

PMODS(L) = {〈M, w〉 :M ∈ MODS(L) and w ∈ |M|}.

An F-pointed model is a pair 〈M, g〉 where M is an F-model and g : {x} → |M|.
The class of F-pointed models corresponding to MODS(F) is defined as

PMODS(F) = {〈M, g〉 :M∈ MODS(F) and g : {x} → |M|}.

Definition 3. We use M, w |= ϕ to denote that an L-formula ϕ is true in
the point w of the L-model M. Similarly, we use M, g |= ϕ to denote that a
F-formula ϕ is true in the F-model M under the assignment g.

If Γ is a set of first order formulas, we write Γ |=K β to mean that the
entailment is valid within the class K. We say that the first order formulas α
and β are K-equivalent when |=K α↔ β.

On Characterization, Definability and ω-Saturated Models 65

Let 〈M, w〉, 〈N , v〉 ∈ PMODS(L). We write M, w �L N , v to mean that for
every L-formula ϕ, if M, w |= ϕ then N , v |= ϕ. We write M, w �L N , v
when M, w �L N , v and N , v �L M, w. This notation extends analogously to
PMODS(F). We drop the subscript when the logic involved is clear from context.

During the article, we will use and adapt some classical first order notions (such
as potential isomorphism, ω-saturation and definability) to the context of our
framework; see [8] for reference on these classical definitions. We start by adapt-
ing the notion of closure under potential isomorphisms to make it relative to a
class of models.

Definition 4 (C-closure under potential isomorphisms). Let 〈M, g〉 and
〈N , h〉 ∈ PMODS(F) we write M, g ∼= N , h to mean that there exists a potential
isomorphism I between M and N such that 〈g(x)〉I〈h(x)〉.

A class K ⊆ C ⊆ PMODS(F) is C-closed under potential isomorphisms if for
every 〈M, g〉 ∈ K and 〈N , h〉 ∈ C such that M, g ∼= N , h then 〈N , h〉 ∈ K.

We can see a model as an information repository. We need to define a way to
access this information from the perspective of both the L and the F language.

Definition 5 (Truth preserving translations). A formula translation is a
function Tfx : FORM(L) → FORM1(F) such that Tfx(ϕ∧ψ) = Tfx(ϕ)∧Tfx(ψ)
and Tfx(ϕ ∨ ψ) = Tfx(ϕ) ∨ Tfx(ψ). Given a class of models K ⊆ PMODS(F), a
model translation is a bijective function T : PMODS(L) → K.

A pair of translations (Tfx, T) is truth-preserving if for all ϕ ∈ FORM(L)
and all 〈M, w〉 ∈ PMODS(L) they satisfy M, w |= ϕ iff T(M, w) |= Tfx(ϕ). As
an abuse of notation we use T(M) when we are not interested in the associated
point of evaluation.

For the rest of the article, we fix (Tfx, T) to be an arbitrary pair of truth-
preserving translations. We will also need to translate formulas from L to F and
then go back to L-formulas. A priori, as we are not requiring Tfx to be injective
this could lead to a problem but it can be easily solved.

Notice that, for any α, β such that Tfx(α) = Tfx(β) we have α |= β and
β |= α. Hence, without loss of generality, we can work with equivalence classes of
L-formulas (modulo L-equivalence) and assume that the formula translation Tfx
is injective. In the following definition we recall the classical notion of definability
adapted to the context of L-models.

Definition 6. A class M ⊆ PMODS(L) is defined by a set of L-formulas Γ
(resp. a formula ϕ) when 〈M, w〉 ∈ M iff M, w |= Γ (resp. M, w |= ϕ).

In Section 1 we talked about bisimulations. This notion is usually used in the
context of logics with negation where the relation is symmetrical. In the case of
negation-free logics the analogous notion is not symmetrical and it is called sim-
ulation. For the framework developed in this article we take a broader approach
and define an abstract notion of L-simulation which generalizes it.

Definition 7 (L-simulation). An L-simulation is a non-empty relation Z ⊆
PMODS(L)× PMODS(L) such that if 〈M, w〉Z〈N , v〉 then M, w � N , v.

66 F. Carreiro

We write M, w →L N , v to indicate that there exists an L-simulation Z such
that 〈M, w〉Z〈N , v〉. We drop the subscript when the logic is clear from context.

It is worth mentioning that we do not assume any particular ‘structural’ property
for the notion of L-simulation (e.g., the zig or zag condition for the basic modal
logic). We only require it to be defined as a non-empty binary relation between
L-pointed models and to preserve the truth of formulas (in one direction). This
is something that any reasonable observational equivalence notion should satisfy.

It is known that, in general, M, w � N , v does not imply M, w → N , v.
The classes of models where this property holds are called Hennessy-Milner
classes [1]. An important class which is closely related to this property is the
class of ω-saturated models.

Definition 8 (ω-saturation). A first order model M is ω-saturated if for ev-
ery finite A ⊆ |M| the expansion MA with new constants a for every a ∈ A
satisfies: Let Γ (x) be a set of formulas such that every finite subset is satisfiable
in MA then Γ (x) should also be satisfied in MA.

Informally, it resembles a kind of ‘intra-model’ compactness. That is, given a set
Γ (x) if every finite subset is satisfied in (possibly different) elements in M then
there is a single element in M which satisfies the whole set.

The notion of ω-saturation [8] is defined for first order models, but it also
applies to L-models using the model translation introduced in Definition 5: we
define an L-model M to be ω-saturated if T(M) is so.

Not all models are ω-saturated but it is a known result that every first or-
der model has an ω-saturated extension with the same first order theory (i.e.,
an elementarily equivalent extension). The ω-saturated extension M+ can be
constructed by taking the ultrapower of M with a special kind of ultrafilter.2

Observe that, in our setting, this extension will also have the same L-theory (via
Tfx and T as in Definition 5).

The following definition is central in this article. It makes explicit the require-
ments for our main theorems of Sections 3 and 4 to hold. From now on, we fix an
arbitrary modal logic L and a class of models K with the following properties.

Definition 9 (Adequate pair). A logic L and a class K ⊆ PMODS(F) are
said to be an adequate pair if they fulfill the following requirements:

1. K is closed under ultraproducts.
2. There exist truth-preserving translations Tfx, T (c.f. Definition 5).
3. There exists an L-simulation notion (c.f. Definition 7).
4. The class of ω-saturated L-models has the Hennessy-Milner property with

respect to L-simulations (c.f. Definition 8).

As we will show in the rest of the paper, we will be able to establish Charac-
terization and Definability results for any arbitrary adequate pair. The crucial
condition in the definition is item 4, which will usually be the hardest property
to establish when defining an adequate pair. The other conditions should be
naturally satisfied by any modal logic whose expressivity is below first order.
2 We assume that the reader is familiar with the definition of ultraproducts, ultrapowers

and ultrafilters; for details, see [11].

On Characterization, Definability and ω-Saturated Models 67

3 Characterization

One of the central notions of the Characterization theorem stated in Section 1
was that of bisimulation invariance. In the following definition we restate this
notion in terms of L and K.

Definition 10 (L-simulation K-invariance). Let 〈L, K〉 be an adequate pair.
A formula α(x) ∈ FORM1(F) is K-invariant for L-simulations if for all L-
pointed models M, w and N , v, such that M, w → N , v, if T(M, w) |= α(x)
then T(N , v) |= α(x).

This property is defined for first order formulas but L-simulations are defined
between L-models. When trying to generalize the notion of invariance, at least
two options come up naturally.

The first one is to call a first order formula α(x) ‘invariant for L-simulations’
if, for every two L-pointed models M, w and N , v such that M, w →L N , v
whenever α(x) is true in T(M, w) then it is also true in T(N , v). In this case we
would be checking simulation in L and satisfaction in F.

The second option is to define a simulation relation →F for F-models (e.g. as
done in [12]). In this case we could just say that a first order formula α(x) is
‘invariant for L-simulations’ if for every two F-models M, g and N , h such that
M, g →F N , h whenever α(x) is true in M, g, then it is also true N , h.

In this article we will use the first option because it is simpler and requires
no new definitions.

Theorem 11 (Characterization). Let 〈L, K〉 be an adequate pair. A formula
α(x) ∈ FORM1(F) is K-equivalent to the translation of an L-formula iff α(x) is
K-invariant for L-simulations.

The proof of this theorem will be the guide in the next few pages but the reader
should be aware that, in order to do it, we will prove some propositions and
lemmas which will allow us to conclude the desired result.

Proof. The claim from left to right is a consequence of the invariance of L-
formulas over L-simulations. The implication from the right to left, suppose
that α(x) is K-invariant for L-simulations, we want to see that it is K-equivalent
to the translation of an L-formula. Consider the set of L-consequences of α:

SLC(α) = {Tfx(ϕ) : ϕ is an L-formula and α(x) |=K Tfx(ϕ)}.

The following Proposition shows that it suffices to prove that SLC(α) |=K α(x).

Proposition 12. If SLC(α) |=K α(x) then α(x) is K-equivalent to the transla-
tion of an L-formula.

Proof. Suppose SLC(α) |=K α(x), by relative compactness (see Theorem 20 in
the Appendix) there is a finite set Δ ⊆ SLC(α) such that Δ |=K α(x), therefore
|=K

∧
Δ → α(x). Trivially (by definition) we have that |=K α(x) →

∧
Δ so we

conclude |=K α(x) ↔
∧

Δ. As every β ∈ Δ is the translation of an L-formula
and the translation preserves conjunctions then

∧
Δ is also the translation of

some modal formula. ��

68 F. Carreiro

Hence, the proof reduces to show that SLC(α) |=K α(x). Let us suppose that
T(M, w) |= SLC(α). We show that T(M, w) |= α(x). Define NThw(x) as

NThw(x) = {¬Tfx(ϕ) : ϕ is an L-formula and M, w �|= ϕ}

Observe that if L has negation then NThw(x) will be the translation of w’s modal
theory and every model of NThw(x) will be modally equivalent to w. If L does
not have negation we will only preserve formulas that are not true in w. The
above definition works in both cases. Let

Σ(x) = {α(x)} ∪ NThw(x).

Proposition 13. Σ(x) has a model in K.

Proof. Let us suppose that there is no model in K for Σ(x) and use the contra-
positive of Theorem 20. Then there is a finite subset {α(x),¬δ1, . . . ,¬δn} ⊆ Σ(x)
with ¬δi ∈ NThw(x) which does not have a model in K. Notice that this finite
set should include α(x), otherwise it would have a had model, namely T(M, w).

Observe that for every model Af ∈ K, as Af �|= {α(x),¬δ1, . . . ,¬δn} then
Af |= α(x) → ¬(¬δ1 ∧ · · · ∧¬δn). This means that α(x) → (δ1 ∨ · · ·∨ δn) is valid
in K, therefore α(x) |=K δ1 ∨ · · · ∨ δn. If δ1 ∨ · · · ∨ δn is a K-consequence of α(x)
then, as the formula translation preserves disjunction, δ1 ∨ · · · ∨ δn ∈ SLC(α).
But, as T(M, w) |= SLC(α) then T(M, w) |= δ1∨· · ·∨δn. This is a contradiction,
since T(M, w) �|= δi for every i. ��

As Σ(x) is satisfiable in K we have a model N and an element v such that
〈N , v〉 ∈ K and T(N , v) |= Σ(x). We make the following proposition.

Proposition 14. N , v �L M, w.

Proof. Take the contrapositive. Suppose thatM, w �|= ϕ then ¬Tfx(ϕ)∈NThw(x)
and because NThw(x) ⊆ Σ(x) we can state that T(N , v) |= ¬Tfx(ϕ) which im-
plies that T(N , v) �|= Tfx(ϕ). By truth-preservation of the translations we get
N , v �|= ϕ. ��

Now we link T(N , v) and T(M, w) in a way that lets us transfer the validity of
α(x) from the first model to the second. The next lemma, which makes a detour
through the class of ω-saturated models, will be useful for this matter.

Lemma 15 (Big Detour Lemma). Let α(x) ∈ FORM1(F) be L-simulation
K-invariant. If N , v �L M, w and T(N , v) |= α(x) then T(M, w) |= α(x).

Proof. We define some terminology to avoid cumbersome notation. We add a
subscript f to the first order translations of L-models, e.g. Mf = T(M). We
also add a superscript + to first order saturated models and a superscript ∗ to
modal saturated models.

Applying Theorem 21 to M, w and N , v (with M1 = M2 = MODS(L)) we
build up new models. The theorem explicitly states the relationship among them,
we will use this result to prove this lemma. Hereafter we will use the same

On Characterization, Definability and ω-Saturated Models 69

Nf , gv N+
f , g+

v

N , v N ∗, v∗

Mf , gw M+
f , g+

w

M, w M∗, w∗

�L

�L

�L

→/�
T T

T T

�F

�F

Fig. 1. Directions for the detour

notation as in Theorem 21. The diagram in Fig. 1 helps to illustrate the current
situation along with the relationship between the various models. Think of it
as a cube. The front face represents the L-models and the back face has the
F-models.

With this new notation the lemma can be restated as follows: Let α(x) be an
L-simulation K-invariant F-formula, if N , v �L M, w and Nf , gv |= α(x) then
Mf , gw |= α(x).

We can see that, as Nf , gv |= α(x) and N+
f , g+

v is elementarily equivalent
to Nf , gv, then N+

f , g+
v |= α(x). Because α(x) is invariant under L-simulations

and N ∗, v∗ →L M∗, w∗ we know that M+
f , g+

w |= α(x). Again by elementary
equivalence we finally conclude that Mf , gw |= α(x). ��

Since α(x) ∈ Σ(x) and T(N , v) |= Σ(x), aplying this lemma to M, w and N , v
yields T(M, w) |= α(x), and this concludes the proof of the characterization
theorem.

We have proved that a F-formula α(x) is K-equivalent to the translation of an
L-formula iff α(x) is K-invariant for L-simulations. We did it by showing that
α(x) was equivalent to the translation of the modal consequences of α(x). This
was accomplished by taking a detour through the class of ω-saturated first order
models (Lemma 15).

It is worth noting that the handling of ω-saturated models has been iso-
lated in Theorem 21. After invoking the theorem, we only used the relationships
among the models named by it. Also, the requirements for the adequate pair
(Definition 9) were used during the proof, e.g., closure under ultraproducts was
used for compactness in Theorem 20 and the Hennessy-Milner property of the
ω-saturated models was critically used in Theorem 21.

This result can already be applied to many logics, for example, ranging from
sub-boolean logics to hybrid or temporal logics. It is important to notice that
it allows for a relativization of the first order class of models (called K in the
definition of adequate pair). This particular point will be revisited in Section 5
when we draw conclusions over the developed framework.

70 F. Carreiro

4 Definability

Definability theorems address the question of which properties of models are
definable by means of formulas of a given logic. In this section we answer the
question of Definability for L, our arbitrary logic under study. We present two
results in this direction: one considers sets of L-formulas, and the other a single
L-formula. We begin with definability by a set of L-formulas.

Theorem 16 (Definability by a set). Let 〈L, K〉 be an adequate pair and let
M ⊆ PMODS(L). Then M is definable by a set of L-formulas iff M is closed
under L-simulations, T(M) is closed under ultraproducts and T(M) is closed
under ultrapowers.

Proof. From left to right, suppose that M is defined by the set Γ of L-formulas
and there is a model 〈M, w〉 ∈ M such thatM, w →N , v for some pointed model
N , v. Since 〈M, w〉 ∈ M, we haveM, w |= Γ . By simulation preservation we have
N , v |= Γ and therefore 〈N , v〉 ∈ M. Hence M is closed under L-simulations.

To see that T(M) is closed under ultraproducts we take a family of models
〈Mf

i , gi〉 ∈ T(M). As Mf
i |= Tfx(Γ) for all i then, by [8, Theorem 4.1.9], the

ultraproduct
∏

DM
f
i |= Tfx(Γ). We conclude that

∏
DM

f
i ∈ T(M). We still

have to check that T(M) is closed under ultrapowers. Take 〈Mf , g〉 ∈ T(M). By
definition Mf , g �|= Tfx(Γ). Let Mf

∗ =
∏

DMf be an ultrapower of Mf . By [8,
Corollary 4.1.10], the ultrapower is elementarily equivalent to the original model.
Hence, for the canonical mapping h(x) = λz.g(x), we have Mf

∗ , h �|= Tfx(Γ).
This means that 〈Mf

∗ , h〉 ∈ T(M), therefore T(M) is closed under ultrapowers.
For the right to left direction we proceed as follows: Define the set Γ = Th(M),

i.e. Γ is the set of all L-formulas which are valid in the class M. Trivially M |= Γ ,
and it remains to show that if M, w |= Γ then 〈M, w〉 ∈ M. We define the
following set:

NThw(x) = {¬Tfx(ϕ) : ϕ is an L-formula and M, w �|= ϕ}.

Using a compactness argument it can be shown that NThw(x) is satisfiable in
T(M). Suppose not, then by Theorem 20, there exists a finite Γ0 ⊆ Γ such that
Γ0 = {¬σ1, . . . ,¬σn} is not satisfiable in T(M). This means that the formula
ψ = Tf−1

x (σ1 ∨ · · · ∨ σn) is valid in M therefore ψ ∈ Γ . This is absurd because
M, w �|= σi for any i and by hypothesis M, w |= Γ . We conclude that there is a
model 〈N , v〉 ∈ M such that T(N , v) |= NThw(x). Observe that N , v � M, w.

Let M, w |= Γ and suppose by contradiction that 〈M, w〉 ∈ M. Using The-
orem 21 (with M1 = M, M2 = M) we conclude that there exist ω-saturated
extensions 〈N ∗, v∗〉 ∈ M and 〈M∗, w∗〉 ∈ M such that N ∗, v∗ →M∗, w∗. As M
is closed under L-simulations then 〈M, w〉 ∈ M and this is a contradiction. ��

The above result gives sufficient and necessary conditions for a class of L-models
to be definable by a set of L-formulas. It is worth noting most of the work is
done in the first order side and therefore detached from L. In the last part of
the theorem we make use of Theorem 21 which connects both logics through

On Characterization, Definability and ω-Saturated Models 71

the class of ω-saturated models. This gives us another hint that this theorem
isolates the very core of characterization and definability results.

Our second result considers classes of models definable by a single formula.
To prove the result we first need the following lemmas:

Lemma 17. Let M ⊆ PMODS(L). If M is closed under L-simulations and both
T(M) and T(M) are closed under ultrapowers then T(M) and T(M) are K-closed
under potential isomorphisms.

The proof of this lemma can be found in the Appendix. Intuitively, as the notion
of L-simulation is at most as strong as that of potential isomorphism then closure
under L-simulations should imply closure under partial isomorphisms.

Lemma 18. Let M ⊆ PMODS(L). If M is closed under L-simulations and both
T(M) and T(M) are closed under ultraproducts then there exists an F-formula
α(x) such that for every 〈M, g〉 ∈ K we have M, g |= α(x) iff 〈M, g〉 ∈ T(M).

Proof. The proof is a combination of Lemma 17 and [13, Theorem A.2]. This last
result uses a relativized version of the first order definability theorem (see [13]
for details).

Theorem 19 (Definability by a Single Formula). Let 〈L, K〉 be an adequate
pair and let M ⊆ PMODS(L). Then M is definable by a single L-formula iff
M is closed under L-simulations and both T(M) and T(M) are closed under
ultraproducts.

Proof. From left to right, suppose M is definable by a single L-formula ϕ. Using
Theorem 16, as M is defined by the singleton set T = {ϕ} we conclude that M
is closed under L-simulations and T(M) is closed under ultraproducts.

To see that T(M) is closed under ultraproducts proceed as follows. Observe
that T(M) = N ∩ K. where N = {〈Mf , g〉 : Mf , g |= ¬Tfx(ϕ)}. Observe that
the class N is defined by the first order formula ¬Tfx(ϕ), thus it is closed under
ultraproducts [8]. It is easy to check that the intersection of ultraproduct-closed
classes is also closed under ultraproducts. With this final observation we conclude
that T(M) is closed under ultraproducts.

For the right to left direction, because M is closed under L-simulations and
both T(M) and T(M) are closed under ultraproducts then, by Lemma 18, there is
a first order formula α(x) such that for every 〈Mf , g〉 ∈ K we haveMf , g |= α(x)
iff 〈Mf , g〉 ∈ T(M). As M is closed under L-simulations then α is K-invariant for
L-simulations. Using Theorem 11 we conclude that α(x) is K-equivalent to the
translation of an L-formula ϕ, which defines M. ��

In this result we give necessary and sufficient conditions for a class of L-models
to be definable by a single L-formula. The most interesting part is the right to
left direction where we use Lemma 18. For this step, standard proofs such as
those found in [1,9,10] use structural properties of the notion of L-simulation.
Namely, symmetry in the case of BML-bisimulation and that ↔ ⊆ →L when L
is the negation free basic modal logic and ↔ is the BML-bisimulation relation.

72 F. Carreiro

In our case we get, as a corollary of Lemma 17, that in our setting ∼= ⊆ →L for
any notion of L-simulation regardless of its structural definition. Using this fact,
the proof goes smoothly.

5 Conclusions and Further Work

We can usually think of many different notions of simulation for a given logic L
but, which is the correct one? At least, the following property should hold:

If M, w →L N , v then M, w �L N , v (1)

But this is not enough. Suppose that we claim that the right notion of simulation
→L for the basic modal logic is the equivalence notion for first order (namely,
partial isomorphisms). It is clear that we will be able to prove (1) but still →L

would be too strong.
In the process of finding the right simulation notion, candidates are often

checked against finite models, or against image finite models. In those cases,
one expects to be able to prove the converse of (1). These classes of models
are special cases of ω-saturated models. The main results of this article show
that proving the converse of (1) for the class of ω-saturated models is enough
to develop the basic model theory for that logic, at least in what respects to
Characterization and Definability. This observation stresses the crucial relation-
ship between ω-saturated models and the suitability of a simulation notion for
a given logic.

The general framework presented in this work can also be used to give new
and unifying proofs of Characterization and Definability for logics where these
theorems are well-known to hold, e.g. hybrid logics [13] and temporal logic with
Since and Until. It is worth noting that it can even be used to prove results for
non-classical modal logics such as monotonic neighbourhood logics where the
models are not Kripke models [12]. It also establishes these theorems for logics
that have not been investigated so far (e.g., Memory Logics [14,15]). In all cases,
we only need to check that the requirements in Definition 9 are met.

In general, characterization and definability results are stated with respect to
the class of all models. For example, BML is the fragment of first order formulas
which are bisimulation invariant in the class of all first models. The relativization
introduced in this framework (the K class in Definition 9) allows a new technique
to prove this kind of results. Think of the following motivational example.

The ‘Basic Temporal Logic’ is a modal logic which has two modalities F and
P . The classical perspective on this logic interprets it over Kripke models defined
as a tuple 〈W, R, V 〉 such that

M, w |= Fϕ iff there is a v such that wRv and M, v |= ϕ
M, w |= Pϕ iff there is a v such that vRw and M, v |= ϕ

Observe that the F modality can be thought as a normal ‘diamond’ over the
relation R but that is not possible with the P modality. An alternative is to in-
terpret it over Kripke models with two relations R1, R2 where K are the models

On Characterization, Definability and ω-Saturated Models 73

such that R2 = R−1
1 . In this case, both modalities can be interpreted as sim-

ple ‘diamonds’ (which have been given fancy names F and P) over R1 and R2

respectively. Our framework can be used to obtain characterization and defin-
ability results for this perspective. In fact, formulas of this logic are exactly the
BML-bisimulation K-invariant fragment of first order.

Although our results cover a big family of logics, they cannot be used to prove
Characterization or Definability results for the class of finite models. This is an
important class which lays beyond our framework, since it is not closed under
ultraproducts. Many Characterization or Definability theorems are known to
hold in the class of finite models [16]. Other logics outside of the scope of this
paper are those without disjuction. For example, several description logics are
known to satisfy preservation theorems but they do not have disjunction in the
language (see [17]).

We think that our results can be generalized, without much difficulty, to
cover the case without disjunction. On the other hand, the problem found in
the class of finite models is much more difficult to avoid. Our result requires K
to be closed under ultraproducts because that implies compactness and because
we use ultraproducts to get ω-saturated models. Although finite models are
ω-saturated, they are not closed under ultraproducts. Further study of proofs
that do not use these properties [7,18] may yield a result which would be able
to handle more cases uniformly.

Generalizations in this same line of thought have been pursued in the work of
Hollenberg, for instance. In [19] relativized versions of the characterization and
definability theorems for the so-called normal first order definable modalities
are stated —though without proof. Those modalities are defined by Σ0

1-formulas
and, therefore, they cannot be used to define the Since and Until operators of
temporal logics. Also, the results obtained in [19] do not take into account sub-
boolean logics. Our proofs work for any modality with a first order translation
and both boolean and sub-boolean logics. Therefore, they would subsume pre-
vious generalizations that we are aware of.

The work done by Areces and Goŕın in [20] gives a uniform way to define many
modalities by using the standard semantics over a restricted class of models.
From our perspective, the most important point of their work is that we get a
unique notion of model equivalence for every logic that fits in their framework.
The right simulation notion turns to be the same as BML’s bisimulation.

Not every modality can be expressed within their framework (e.g., the Since
and Until operators [21]). Nevertheless, we think that an interesting way to con-
tinue the work in this article is to try to expand the framework developed in [20]
to support more types of operators. This would allow us to give a ‘canonical’
simulation notion for a broader set of logics and therefore be able to easily prove
the Hennessy-Milner property for them. This line of work definitely looks as
a promising path to give an automatic derivation of the Characterization and
Definability theorems for a greater set of modal logics.

74 F. Carreiro

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

2. Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, University of
Califormia, Los Angeles (1968)

3. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal
of Logic and Computation 2(1), 5–30 (1992)

4. de Rijke, M.: The modal logic of inequality. Journal of Symbolic Logic 57, 566–584
(1992)

5. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science
27(3), 333–354 (1983)

6. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans.
Program. Lang. Syst. 31(4), 1–41 (2009)

7. van Benthem, J.: Modal Correspondence Theory. PhD thesis, Universiteit van Am-
sterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte Wetenschap-
pen (1976)

8. Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations
of Mathematics, vol. 73. Elsevier Science B.V., Amsterdam (1973)

9. Kurtonina, N., de Rijke, M.: Simulating without negation. Journal of Logic and
Computation 7, 503–524 (1997)

10. Kurtonina, N., de Rijke, M.: Bisimulations for temporal logic. Journal of Logic,
Language and Information 6, 403–425 (1997)

11. Keisler, H.J.: The ultraproduct construction. In: Proceedings of the Ultramath
Conference, Pisa, Italy (2008)

12. Hansen, H.H.: Monotonic modal logics. Master’s thesis, ILLC, University of Ams-
terdam (2003)

13. Carreiro, F.: Characterization and definability in modal first-order fragments. Mas-
ter’s thesis, Universidad de Buenos Aires (2010), arXiv:1011.4718

14. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability
for memory logics. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Informa-
tion and Computation. LNCS (LNAI), vol. 5110, pp. 56–68. Springer, Heidelberg
(2008)

15. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. Review of Symbolic Logic (to appear)

16. Rosen, E.: Modal logic over finite structures. Journal of Logic, Language and In-
formation 6, 95–27 (1995)

17. Kurtonina, N., de Rijke, M.: Classifying description logics. In: Brachman, R.J.,
Donini, F.M., Franconi, E., Horrocks, I., Levy, A.Y., Rousset, M.C. (eds.) Descrip-
tion Logics. URA-CNRS, vol. 410 (1997)

18. Otto, M.: Elementary proof of the van Benthem-Rosen characterisation theorem.
Technical Report 2342, Department of Mathematics, Technische Universität Darm-
stadt (2004)

19. Hollenberg, M.: Logic and Bisimulation. PhD thesis, Philosophical Institute,
Utrecht University (1998)

20. Areces, C., Goŕın, D.: Coinductive models and normal forms for modal logics.
Journal of Applied Logic (2010) (to appear)

21. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3. Elsevier Science Inc., New York (2006)

On Characterization, Definability and ω-Saturated Models 75

Appendix

Theorem 20 (First order compactness relative to a class of models).
Let C be a class of first order models which is closed under ultraproducts and let
Σ be a set of first order formulas. If every finite set Δ ⊆ Σ has a model in C
then there is a model in C for Σ.

Proof. Let Mf
i be a model for each finite subset Δi ⊆ Σ, algebraic proofs of

the compactness theorem [11, Theorem 4.3] show that the ultraproduct of the
models M =

∏
U M

f
i satisfies M |= Σ (with a suitable ultrafilter U). As each

Mf
i is in C and C is closed under ultraproducts we conclude that M∈ C.
The above argument proves the theorem for the case where Σ is a set of

sentences. If Σ has some formulas with free variables x1, x2, . . . we proceed as
follows. We extend the original first order language with constants x1, x2, . . .
and use the above result with a new set Σ′ where each free appearance of xi has
been replaced by xi. It is left to the reader to check that this transformation
preserves satisfiability. ��

Theorem 21. Let 〈L, K〉 be an adequate pair and let M1, M2 ⊆MODS(L) be two
classes such that T(M1) and T(M2) are closed under ultrapowers. Let M ∈ M1

and N ∈ M2 be two L-models such that for some w ∈ |M|, v ∈ |N | they satisfy
N , v �L M, w. Then there exist models M∗ ∈ M1 and N ∗ ∈ M2 and elements
w∗ ∈ |M∗|, v∗ ∈ |N ∗| such that

1. T(M, w) �F T(M∗, w∗) and T(N , v) �F T(N ∗, v∗)
Their translations are pairwise elementarily equivalent.

2. M, w �L M∗, w∗ and N , v �L N ∗, v∗

They are pairwise L-equivalent.
3. N ∗, v∗ →L M∗, w∗

There is a simulation from N ∗, v∗ to M∗, w∗.

Proof. We define some terminology for the models with which we will be working
on before starting with the proof. CallMf , gw = T(M, w) andNf , gv = T(N , v).
Take M+

f ,N+
f to be ω-saturated ultrapowers of Mf and Nf . As the classes are

closed under ultrapowers, the saturated models lay in the same class as the
original models.

By [8, Corollary 4.1.13] we have an elementary embedding d : |Mf | → |M+
f |.

Let g+
w be an assignment for M+

f such that g+
w (x) = d(gw(x)). Take the modal

preimage of M+
f , g+

w and call it M∗, w∗ = T
-1
(M+

f , g+
w). We repeat the same

process and assign similar names to models and points deriving from N .

1. As a consequence of [8, Corollary 4.1.13], since there is an elementary em-
bedding, we have thatMf , gw �F M+

f , g+
w . The same argument works with

Nf and N+
f .

2. Following the last point, we can conclude, through the truth-preserving
translations, that M, w �L M∗, w∗. The same proof works with N , v and
N ∗, v∗. Corollary: N ∗, v∗ �L M∗, w∗.

76 F. Carreiro

3. As both M+
f and N+

f are ω-saturated, by definition of adequate pair, that
implies that they have the Hennesy-Milner property. Therefore, because we
proved that N ∗, v∗ �L M∗, w∗ we conclude that N ∗, v∗ →L M∗, w∗. ��

Lemma 17. Let M ⊆ PMODS(L). If M is closed under L-simulations and both
T(M) and T(M) are closed under ultrapowers then T(M) and T(M) are K-closed
under potential isomorphisms.

Proof. Suppose that T(M) is not K-closed under potential isomorphisms. This
means that there exist models 〈Mf , g〉 ∈ T(M) and 〈N f , h〉 ∈ T(M) such that
Mf , g ∼= N f , h. Recall that K \ T(M) = T(M). For a smoother proof, call their
modal counterparts M, w and N , v respectively. Therefore 〈M, w〉 ∈ M and
〈N , v〉 /∈ M.

As Mf , g ∼= N f , h we know by [8, Proposition 2.4.4] that Mf , g |= ϕ(x)
if and only if N f , h |= ϕ(x). In particular they have the same modal theory,
M, w �L N , v. As this implies that M, w �L N , v we can use Theorem 21
(instantiating with K1 = T(M), K2 = T(M) and M, N interchanged) and get
models 〈M∗, w∗〉 ∈ M and 〈N ∗, v∗〉 ∈ M such that M∗, w∗ →L N ∗, v∗.

Knowing that M∗, w∗ →L N ∗, v∗ and that M is closed under simulations we
conclude that 〈N ∗, v∗〉 ∈ M. This is absurd because it contradicts 〈N ∗, v∗〉 ∈ M.
Hence TK(M) is K-closed under potential isomorphisms.

To see that T(M) is K-closed under potential isomorphisms we argue by con-
tradicction. Suppose it is not the case, then there exist 〈Mf , g〉 ∈ T(M) and
〈N f , h〉 ∈ K \ T(M) such that Mf , g ∼= N f , h. As 〈N f , h〉 ∈ K\T(M) this means
that 〈N f , h〉 ∈ T(M). We have just proved that T(M) is K-closed under poten-
tial isomorphism then, as Mf , g ∼= N f , h (and because of the symmetry of the
potential isomorphism relation), we conclude that 〈Mf , g〉 ∈ T(M) which con-
tradicts our hypothesis. Absurd. ��

On the Complexity of Szilard Languages of

Regulated Grammars

Liliana Cojocaru and Erkki Mäkinen

University of Tampere
School of Information Sciences, Computer Science
Kanslerinrinne 1, Tampere, FIN-33014, Finland

cslico@uta.fi, em@cs.uta.fi

Abstract. We investigate computational resources used by alternating
Turing machines (ATMs) to accept Szilard languages (SZLs) of regulated
rewriting grammars. The main goal is to relate these languages to low-
level complexity classes such as NC1 and NC2. We focus on the derivation
process in random context grammars (RCGs) with context-free rules. We
prove that unrestricted SZLs and leftmost-1 SZLs of RCGs can be ac-
cepted by ATMs in logarithmic time and space. Hence, these languages
belong to the UE∗-uniform NC1 class. Leftmost-i SZLs, i ∈ {2, 3}, of
RCGs can be accepted by ATMs in logarithmic space and square loga-
rithmic time. Consequently, these languages belong to NC2. Moreover,
we give results on SZLs of RCGs with phrase-structure rules and present
several applications on SZLs of other regulated rewriting grammars.

Keywords: regulated rewriting grammars, Szilard languages, alternat-
ing Turing machines, NC1 and NC2 complexity classes.

1 Introduction

A Szilard language (SZL) provides information concerning the derivational struc-
tures in a formal grammar. If labels are associated with productions in one-to-one
correspondence, then each terminal derivation can be expressed as a word over
the set of labels, such that labels in this word are concatenated in the same order
they have been used during the derivation. Informally, the SZL associated with
a generative device is the set of all words obtained in this way. If restrictions
are imposed on the derivation order then particular classes of SZLs, such as
leftmost Szilard languages [12], [20] are obtained. Consequently, SZLs have been
used to study closure, decidability, and complexity properties of derivations in
several types of grammars, such as Chomsky grammars [11], [13], [15], [16], [21],
or regulated rewriting grammars [5], [6], [14], [20], [21].

Characterizations of (leftmost) SZLs of CFGs and phrase-structure (unre-
stricted) grammars (PSGs) in terms of Turing machine resources are provided
in [11] and [16]. In [16] it is proved that unrestricted SZLs and leftmost SZLs of
CFGs can be recognized by a linear bounded (realtime) multicounter machine.
Since each realtime multicounter machine can be simulated by a deterministic

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 77–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 L. Cojocaru and E. Mäkinen

off-line1 Turing machine with logarithmic space, in terms of the length of the
input string [8], it follows that the classes of unrestricted SZLs and leftmost SZLs
associated with CFGs are contained2 in DSPACE(log n). In [3] we strengthened
this result by proving that these classes of SZLs can be accepted by an indexing
alternating Turing machine (ATM) in logarithmic time and space. Since the class
of languages recognizable by an indexing ATM in logarithmic time equals the
UE∗-uniform NC1 class [19], we obtain that the above classes of SZLs are strictly
contained in NC1. In [11] it is proved that log n is the optimal space bound for an
on-line3 deterministic Turing machine to recognize (leftmost) SZLs of CFGs. It
is also an optimal bound for an off-line deterministic Turing machine to recognize
leftmost SZLs of PSGs. However, the optimal bound for an on-line deterministic
Turing machine to recognize leftmost SZLs of CFGs and PSGs is n, where n
is the length of the input word. Since leftmost SZLs of PSGs are off-line rec-
ognizable by a deterministic Turing machine that uses only logarithmic space,
in terms of the length of the input string, it follows that the class of leftmost
SZLs of PSGs is contained in DSPACE(log n). In [3] we proved that this class is
strictly included in NC1 under the UE∗ -uniformity restriction.

For formal definitions and results on computational models, such as (realtime)
multicounter machines, (off-line and on-line) Turing machines, and (indexing)
ATMs the reader is referred to [1], [2], [8], and [10].

Regulated rewriting grammars are classes of Chomsky grammars with re-
stricted use of productions. The regulated rewriting mechanism in these gram-
mars obeys several filters and controlling constraints that allow or prohibit the
use of the rules during the generative process. There exists a wide variety of reg-
ulated rewriting mechanisms [5], which enriches the Chomsky hierarchy with
various language classes. They are useful because each of them uses totally
different regulating restrictions, providing thus structures to handle problems
in formal language theory, programming languages, computational linguistics,
grammatical inference, learning theory, and graph grammars [5].

In this paper we focus on the derivation mechanism in random context gram-
mars (RCGs) with context-free rules by studying their SZLs. The main aim
is to relate classes of SZLs of RCGs to parallel complexity classes, such as
ALOGTIME, NC1 and NC2. We recall that ALOGTIME is the class of lan-
guages recognizable by an indexing (random-access) ATM in logarithmic time
[2]. For each integer i, the NCi class is the class of Boolean functions com-
putable by polynomial size Boolean circuits with depth O(logi n) and fan-in two.
ALOGTIME is equal to UE∗-uniform NC1 [19]. For i ≥ 2, NCi = ATIME-
SPACE(logi n, log n) [19]. For more results, relationships and hierarchies on

1 An off-line Turing machine is a Turing machine equipped with a read-only input tape
and a read-write working tape. It is allowed to shift both heads on both directions.
Otherwise, it works similar to a Turing machine.

2 DSPACE(log n) is the class of languages recognizable by a deterministic (off-line)
Turing machine using logarithmic space.

3 An on-line Turing machine is an off-line Turing machine with the restriction that
the input head cannot be shifted to the left.

On the Complexity of Szilard Languages of Regulated Grammars 79

complexity classes, such as DSPACE(log n), ALOGTIME, and NCi, i ≥ 1, the
reader is referred to [1], [19], and [22].

The methods presented for SZLs of RCGs are afterward applied for other reg-
ulated rewriting grammars. Approaching classes of SZLs of regulated rewriting
grammars to low-level complexity classes is the most natural way to relate SZLs
to circuit complexity classes. This may bring new insights in finding fast parallel
algorithms to recognize languages generated by regulated rewriting grammars.

Our contribution. We prove that unrestricted SZLs and leftmost-1 SZLs of RCGs
with CF rules can be accepted by indexing ATMs in logarithmic time and space
(Sections 3). According to [19] these languages belong also to the UE∗-uniform
NC1 class. Leftmost-i SZLs [5], i ∈ {2, 3}, of RCGs with CF rules can be accepted
by indexing ATMs in logarithmic space and square logarithmic time (Section 3).
Hence, these classes of languages belong to NC2 [19]. The results presented
for SZLs of RCGs with CF rules are then generalized for RCGs with PS rules
(Section 4). The methods used for SZLs of RCGs are extended for other regulated
rewriting grammars such as programmed grammars, matrix grammars, regularly
controlled grammars, valence grammars and conditional RCGs (Section 5).

2 SZLs of RCGs - Prerequisites

The aim of this section is to introduce the main concepts concerning SZLs of
RCGs. We assume the reader to be familiar with the basic notions of formal
language theory [10]. For an alphabet X , X∗ denotes the free monoid generated
by X . By |x|a we denote the number of occurrences of letter a in the string x.

RCGs are regulated rewriting grammars in which the application of a rule is
enabled by the existence in the current sentential form of some nonterminals that
provides the context under which the rule can be applied. The use of a rule may
be disabled by the existence in the sentential form of some nonterminals that
provide the forbidden context under which the rule in question cannot be applied.
RCGs with CF rules have been introduced in [23] to cover the gap existing
between the classes of context-free languages and context-sensitive languages. A
generalization of RCGs for PS rules can be found in [5]. The generative capacity
and several descriptional properties of these regulated rewriting grammars can
be found in [4], [5], [7], [23], and [24].

Definition 1. A random context grammar is a quadruple G = (N, T, S, P)
where S is the axiom, N and T , N ∩ T = ∅, are finite sets of nonterminals
and terminals, respectively. P is a finite set of triplets (random context rules) of
the form r = (pr, Qr, Rr), where pr is an unrestricted Chomsky rule, Qr and Rr

are subsets of N , called the permitting and forbidding context of r, respectively.
If Rr = ∅, for any r ∈ P , then G is a permitting RCG. If Qr = ∅, for any r ∈ P ,
then G is a forbidding RCG.

A permitting RCG is a RCG without appearance checking. If R �= ∅, then the
grammar is called a RCG with appearance checking (henceforth RCGac).

80 L. Cojocaru and E. Mäkinen

Definition 2. Let G = (N, T, S, P) be a RCGac and V = N ∪ T . The language
L(G) generated by G is defined as the set of all words w ∈ T ∗ such that there
is a derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris
ws = w, s ≥ 1,

where rij = (αij → βij , Qij , Rij), 1 ≤ j ≤ s − 1, wj−1 = w′
j−1αij w

′′
j−1, wj =

w′
j−1βij w

′′
j−1 for some w′

j−1, w′′
j−1 ∈ V ∗, all symbols in Qij occur in w′

j−1w
′′
j−1,

and no symbol of Rij occur in w′
j−1w

′′
j−1.

If labels are associated with triplets r = (pr, Qr, Rr), in one-to-one correspon-
dence, then the SZL of a RCGac is defined as follows.

Definition 3. Let G = (N, T, S, P) be a RCGac, P = {r1, r2, ..., rk} the set of
productions, L(G) the language generated by G, and w ∈ L(G). The Szilard
word of w associated with derivation D: S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

...⇒ris

ws = w, s ≥ 1, is defined as SzD(w) = ri1ri2 ...ris , rij ∈ P , 1 ≤ j ≤ s. The
Szilard language of G is Sz(G) = {SzD(w)|w ∈ L(G), D is a derivation of w}.

Hence, the productions and their unique labels are used identically.
To reduce the nondeterminism in RCGsac three types of leftmost derivations

have been defined for RCGsac with CF rules [4], [5].

Definition 4. Let G = (N, T, S, P) be a RCGsac. A derivation in G is called
– leftmost-1 if each rule used in the derivation rewrites the leftmost nontermi-

nal occurring in the current sentential form,
– leftmost-2 if at each step of derivation, the leftmost occurrence of a nonter-

minal which can be rewritten has to be rewritten4,
– leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence

of its left-hand side in the current sentential form.

SZLs associated with leftmost-i, i ∈ {1, 2, 3}, derivations are defined in the same
way as in Definition 3, with the specification that D is a leftmost-i derivation
of w. We denote by SZRCac(CF) and SZRCLac

i (CF) the classes of SZLs and
leftmost-i SZLs of RCGsac with CF rules, respectively.

Henceforth, in any reference to a RCG, G = (N, T, A1, P), A1 is considered
to be the axiom, N = {A1, ..., Am} the ordered finite set of nonterminals, and
P = {r1, r2, ..., rk} the ordered finite set of labels associated with triplets in P .
Unless otherwise specified (as in Section 4), each rule pr of a triplet r ∈ P is a
CF rule of the form αpr → βpr , αpr ∈ N , and βpr ∈ (N ∪ T)∗. If βpr ∈ T ∗, then
pr is called terminal rule. Otherwise, pr is called non-terminal rule.

For each RC rule r = (pr, Qr, Rr) ∈ P the net effect or rule pr with respect
to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is given by dfAl

(pr) = |βpr |Al
− |αpr |Al

.
To each rule r we associate a vector V (r) ∈ Zm defined by V (r) = (dfA1(pr),
4 In other words, the RC rule r = (pr, Qr, Rr) can be applied in leftmost-2 derivation

manner if pr rewrites the leftmost nonterminal X that can be rewritten by any rule
eligible to be applied on the current sentential form, in the sense that if any other RC
rule r̄ = (pr̄, Qr̄, Rr̄) ∈ P can be applied on the sentential form, because it contains
all nonterminals in Qr̄ and no nonterminal in Rr̄, without counting one occurrence
of X ′, then the nonterminal X ′ rewritten by r̄ is either equal to X, case in which
the rule is nondeterministically chosen, or X ′ follows X in this sentential form.

On the Complexity of Szilard Languages of Regulated Grammars 81

dfA2(pr), ..., dfAm(pr)), where Z is the set of integers. The value of V (r) taken
at the lth place, 1 ≤ l ≤ m, is denoted by Vl(r).

3 On the Complexity of SZLs of RCGs

In this section we focus on the complexity of SZLs of RCGsac with CF rules. All
results presented for RCGsac hold also for RCGs without appearance checking.

We recall that an indexing ATM is an ATM that is allowed to write any
binary number on a special tape, called index tape. This number is interpreted
as an address of a location on the input tape. With i, written in binary on the
index tape, the machine can read the symbol placed on the ith cell of the input
tape. In terms of indexing ATM resources, for SZLs associated with unrestricted
derivations in RCGsac with CF rules, we have the next result.

Theorem 1. Each language L ∈ SZRCac(CF) can be recognized by an indexing
ATM in O(log n) time and space (SZRCac(CF) ⊆ ALOGTIME).

Proof. Let G = (N, T, P, A1) be an arbitrary RCGac with CF rules. We describe
an indexing ATM that decides in logarithmic time and space whether an input
word γ = γ1γ2...γn ∈ P ∗ of length n, belongs to Sz(G). Let A be an indexing
ATM composed of an input tape that stores γ, an index tape, and a working
tape composed of three tracks. Here and throughout this paper, each label γi

corresponds to a triplet in P of the form (pγi , Qγi , Rγi), where pγi is a CF rule
of the form αγi → βγi , αγi ∈ N , and βγi ∈ (N ∪ T)∗, 1 ≤ i ≤ n.

At the beginning of the computation the first track stores k + 1 vectors, V 0

corresponding to the axiom, i.e, V 0
1 = 1 and V 0

l = 0, 2 ≤ l ≤ m, and V (ri),
1 ≤ i ≤ k. The other two tracks are initially empty.

Level 1 (Existential). In an existential state A guesses the length of γ, i.e.,
writes on the index tape n, and checks whether the nth cell of the input tape
contains a terminal symbol and the cell n + 1 contains no symbol. The correct
value of n is recorded in binary on the second track of the working tape.
Level 2 (Universal). A spawns n universal processes ℘i, 1 ≤ i ≤ n.
• On ℘1, A checks whether αγ1 = A1. Process ℘1 returns 1 if this equality holds.
• For each ℘i, 2 ≤ i ≤ n, A counts the number of occurrences of each rule
rj ∈ P , 1 ≤ j ≤ k, in γ(i) = γ1γ2...γi−1. Suppose that each rj occurs c

(i)
j times,

0 ≤ c
(i)
j ≤ i−1, in γ(i). A computes s

(i)
Al

= V 0
l +

∑k
j=1 c

(i)
j Vl(rj), i.e., the number

of times each nonterminal Al, 1 ≤ l ≤ m, occurs in the sentential form obtained
at the ith step of derivation. Besides, for ℘n, for each 1 ≤ l ≤ m, A computes
s
(n,out)
Al

= V 0
l +

∑k
j=1 c

(n)
j Vl(rj)+Vl(γn). Each ℘i, 2 ≤ i ≤ n−1, returns 1 if only

one of the conditions 1− 3 holds. Process ℘n returns 1, if one of the conditions
1− 3 holds, and besides s

(n,out)
Al

= 0, for each 1 ≤ l ≤ m.

1. s
(i)
αγi

≥ 1, αγi /∈ Qγi ∪Rγi , s
(i)
X ≥ 1, for each X ∈ Qγi , and s

(i)
Y = 0 for each

Y ∈ Rγi ,

82 L. Cojocaru and E. Mäkinen

2. s
(i)
αγi

≥ 2 if αγi ∈ Qγi − Rγi , s
(i)
X ≥ 1, for each X ∈ Qγi , X �= αγi , and

s
(i)
Y = 0 for each Y ∈ Rγi ,

3. s
(i)
αγi

= 1 if αγi ∈ Rγi −Qγi, s
(i)
X ≥ 1, for each X ∈ Qγi , and s

(i)
Y = 0 for each

Y ∈ Rγi , Y �= αγi .

The computation tree of A has only two levels, in which each node has un-
bounded out-degree. By using a divide and conquer algorithm each of these levels
can be converted into a binary tree of height O(log n). All functions used in the
algorithm, such as counting and addition, are in NC1, which is equal to ALOG-
TIME under the UE∗-uniformity restriction [19]. In order to store, on the third
track of the working tape, the binary value of c

(i)
j , and to compute in binary s

(i)
Al

and s
(n,out)
Al

, 1 ≤ i ≤ n, 1 ≤ j ≤ k, 1 ≤ l ≤ m, A needs O(log n) space. Hence,
for the whole computation A uses O(log n) time and space. �

Corollary 1. SZRCac(CF) ⊂ NC1.

Proof. The claim is a direct consequence of Theorem 1 and results in [19]. The
inclusion is strict since there exists L = {pn|n ≥ 0} ∈ NC1 − SZRCac(CF). �

Corollary 2. SZRCac(CF) ⊂ DSPACE(log n).

Theorem 2. Each language L ∈ SZRCLac
1 (CF) can be recognized by an index-

ing ATM in O(log n) time and space (SZRCLac
1 (CF) ⊆ ALOGTIME).

Proof. Let G = (N, T, P, A1) be a RCGac with CF rules working in leftmost-1
derivation manner. Consider an indexing ATM A having a similar structure as
in the proof of Theorem 1. Let γ ∈ P ∗, γ = γ1γ2...γn, be an input word of length
n. In order to guess the length of γ, A proceeds with the procedure described at
Level 1-Existential, Theorem 1. Then A spawns (Level 2-Universal) n universal
processes ℘i, 1 ≤ i ≤ n, and (briefly) proceeds as follows.

For each ℘i, 1 ≤ i ≤ n, A checks as in Theorem 1, whether each triplet γi

can be applied on γ(i) = γ1γ2...γi−1 according to Definition 2. Then A checks
whether rule pγi can be applied in a leftmost-1 derivation manner on γ(i). To do
so, A spawns at most i−1 existential branches (Level 3-Existential) each branch
corresponding to a label γv, 1 ≤ v ≤ i − 1, such that pγv in (pγv , Qγv , Rγv) is
a non-terminal rule. Denote by q the number of non-terminal rules used in γ
between γv+1 and γi−1 (including γv+1 and γi−1), and by sq the total number of
nonterminals produced by these rules, and let s = i− v − sq. A checks whether
αγi is the sth nonterminal occurring on the right-hand side5 of rule pγv .
5 If pγv is the rule that produces the nonterminal rewritten by rule pγi , and this is the

sth nonterminal occurring on the right-hand side of pγv , then for the case of leftmost-
1 derivation order, we must have s + sq = i − v. This is because each nonterminal
produced in the sentential form by rules used in a leftmost-1 derivation manner,
between pγv and pγi (including nonterminals existing up to the sth nonterminal on
the right-hand side of pγv), must be fully rewritten by these rules. The nonterminals
existing in the sentential form before pγv has been applied, will be rewritten only
after the new nonterminals produced between pγv and pγi are fully rewritten.

On the Complexity of Szilard Languages of Regulated Grammars 83

An existential branch spawned at Level 3, is labeled by 1 if pγv satisfies these
properties. For each existential branch labeled by 1 at Level 3, A checks whether
the sth nonterminal occurring in βγv is indeed the αγi nonterminal rewritten
by rule pγi , i.e., no other rule used between rule pγv of γv and rule pγi of γi

rewrites the sth nonterminal, equal to αγi , in βγv (for which a relation of type
“s+sq = i−v” may also hold). Hence,A universally branches (Level 4-Universal)
all symbols occurring between rules γv+1 and γi−1. On each branch holding a
triplet γl = (pγl

, Qγl
, Rγl

), v < l < i, A checks whether

1. αγl
equals αγi ,

2. s+s̄q = l−v, providing that αγi is the sth nonterminal occurring on the right-
hand side of rule pγv (found at Level 3) and s̄q is the number of nonterminals
produced between rules pγv and pγl

,
3. the number of nonterminals αγi rewritten between pγv and pγl

is equal to
the number of nonterminals αγi produced between these rules, up to the sth

nonterminal occurring on the right-hand side of rule pγv .

On each universal branch (Level 4) A returns 0 if conditions 1 − 3 hold.
Otherwise, it returns 1. Note that, for each ℘i, 1 ≤ i ≤ n, A does not have
to check whether γv and γl, can be applied in leftmost-1 derivation manner.
This condition is checked by each of the processes ℘v and ℘l, since all of them
are universally considered. It is easy to estimate that A performs the whole
computation in logarithmic time and space. �
Corollary 3. SZRCLac

1 (CF) ⊂ NC1.

Corollary 4. SZRCLac
1 (CF) ⊂ DSPACE(log n).

In order to simulate letfmost-i derivations, i ∈ {2, 3}, and to check whether
γ = γ1γ2...γn ∈ P ∗ belongs to SZRCLac

i (CF), for each triplet γi, 1 ≤ i ≤ n, an
ATM must have information concerning the order in which the first occurrence
of each nonterminal Al ∈ N , 1 ≤ l ≤ m, occurs in the sentential form at any
step of derivation. In this respect we introduce the notion of ranging vector.

Definition 5. Let G = (N, T, P, A1) be a RCGac with CF rules, where P =
{r1, r2, ..., rk} is the ordered finite set of triplets in P . Let SFrj be the sentential
form obtained after the triplet rj = (pj , Qj, Rj), 1 ≤ j ≤ k, has been applied
at a certain step of derivation in G. The ranging vector associated with SFrj ,
denoted by S(rj), 1 ≤ j ≤ k, is a vector in Nm defined as

Sl(rj) =

⎧⎨
⎩

0, if Al ∈ N does not occur in SFrj , i.e., |SFrj |Al
= 0,

i,
if the first occurrence of Al in SFrj is the ith element in the
order of first occurrences of nonterminals from N in SFrj .

Depending on the context, the value of S(rj) taken at the lth place, 1 ≤ l ≤ m,
i.e., Sl(rj), is also denoted by Sαpj

(rj) if pj in rj = (pj , Qj , Rj) is a CF rule of
the form αpj → βpj and αpj = Al.

Note that, if rj′ = (pj′ , Qj′ , Rj′) is applied in the Szilard word before rj =
(pj , Qj, Rj) then the ranging vector S(rj) can be computed knowing S(rj′). This
observation holds for both leftmost-2 and leftmost-3 derivations (Example 1).

84 L. Cojocaru and E. Mäkinen

Example 1. Consider S(rj′) = (3, 0, 2, 1, 0) ∈ N5 the ranging vector associated
with the sentential form SFrj′ , obtained after rule rj′ has been applied, at the
ith step of derivation. Suppose that SFrj′ contains one occurrence of A1, three
occurrences of A3, and arbitrary number of A4. According to Definition 5, SFrj′

looks like SFrj′ = tA4X4A3X3,4A1X̄3,4, where t ∈ T ∗, X4 ∈ ({A4} ∪ T)∗,
X3,4, X̄3,4 ∈ ({A3, A4} ∪ T)∗. If in rj = (pj , Qj, Rj), pj is the rule A3 → tA5,
Qj = {A3, A4} and Rj = {A5}, then rj can be applied in leftmost-2 derivation
manner after rj′ , if there is no other RC rule rj′′ = (pj′′ , Qj′′ , Rj′′) ∈ P , able
to be applied on SFrj′ according to Definition 2, such that pj′′ rewrites A4.
Depending on the position of the second occurrence of A3 in SFrj′ , the sentential
form obtained after pj has been applied on SFrj′ may look like

– SFrj = tA4X4A5A3X3,4A1X̄3,4 or SFrj = tA4X4A5X̄4A3X3,4A1X̄3,4, t ∈
T ∗, X4, X̄4 ∈ ({A4} ∪ T)∗, X3,4, X̄3,4 ∈ ({A3, A4} ∪ T)∗, i.e., S(rj) =
(4, 0, 3, 1, 2), or like

– SFrj = tA4X4A5X̄4A1A3X3,4, or SFrj = tA4X4A5X̄4A1X̃4A3X3,4, t ∈
T ∗, X4, X̄4, X̃4 ∈ ({A4} ∪ T)∗, X3,4 ∈ ({A1, A3, A4} ∪ T)∗, i.e., S(rj) =
(3, 0, 4, 1, 2).

For the case of leftmost-3 derivation, rule rj can be applied in leftmost-3
manner after rj′ , by rewriting the leftmost occurrence of A3 in S(rj′), even if
there exists a RC rule rj′′ ∈ P able to rewrite A4.

Next we sketch an ATM A that decides whether an input word γ = γ1γ2...γn

belongs to SZRCLac
i (CF), i ∈ {2, 3}.

Let Q1 be the quotient, and R1 be the remainder of n divided6 by [log n].
Dividing Q1 by [log n] a new quotient Q2 and remainder R2 are obtained. If
this “iterated” division is performed until the resulted quotient, denoted by
Q�, can be no longer divided by [log n], then n (written in the base [log n])
is n = ((...((Q� [log n]+R�) [log n]+R�−1) [log n] + ...) [log n] +R2)[log n] +R1,
1 ≤Q� < log n, 0 ≤Rl < log n, l ∈ {1, ..., �}, and � < log n.

Knowing R1, A guesses an R1-tuple of ranging vectors associated with the
first R1 triplets (RC rules) occurring in γ and checks whether γ1γ2...γR1 is
valid, according to the leftmost-i derivation manner, i ∈ {2, 3}. Then A guesses
a [log n]-tuple of ranging vectors associated with triplets placed at the [log n]
cutting points in γ obtained by dividing [R1 +1...n] in [log n] intervals of length
Q1. A continues with this routine for each interval of length Q1 as follows. First
A checks, in parallel, whether the first R2 triplets in each Q1-interval form a
valid substring of a leftmost-i, i ∈ {2, 3}, Szilard word. Then, in parallel for each
Q1-interval, A guesses another [log n]-tuple of ranging vectors associated with
triplets placed at the [log n] cutting points in γ obtained by dividing each interval
of length Q1−R2 into [log n] intervals of length Q2. This procedure is repeated
until intervals of length Q� < log n are obtained. At this point, A checks whether
the substrings of γ corresponding to the Q�-intervals are valid according to the
leftmost-i derivation order, i ∈ {2, 3}. It can be proved that all cutting points
6 By [a] we denote the largest integer not greater than a, where a is a real number.

On the Complexity of Szilard Languages of Regulated Grammars 85

are right edges of these intervals. If correct ranging vectors can be found for all
intervals and all cutting points, then γ is a correct leftmost-i, i ∈ {2, 3}, Szilard
word. Hence, we have

Theorem 3. Each language L ∈ SZRCLac
i (CF), i ∈ {2, 3}, can be recognized

by an indexing ATM in O(log n) space and O(log2 n) time.

Proof. We prove the claim for the leftmost-2 derivation. For the leftmost-3 case
the proof is almost the same. Let G = (N, T, P, A1) be an arbitrary RCGac

working in leftmost-2 derivation manner, and A be an indexing ATM with a
similar configuration as in the proof of Theorem 1. Let γ = γ1γ2...γn ∈ P ∗, be
an input of length n. To guess the length of γ, A proceeds with the procedure
described at Level 1 (Existential), Theorem 1.

Level 2 (Existential). Consider the quotient Q1 and the remainder R1 of the
division of n by [log n], where 0 ≤R1 < [log n]. A spawns O(clog n) existential
branches, each branch holding an R1-tuple $R1 = (S(γ1), S(γ2), ..., S(γR1)) of
ranging vectors, where7 c = O(

∑m−1
s=1(m − s + 1)m) and S(γv) is the ranging

vector associated with γv, 2 ≤ v ≤R1. A checks (Levels 3) in O(log n) time and
space, whether all vectors in $R1 are correct, in the sense that S(γv) can be
obtained from S(γv−1) by applying rule γv in leftmost-2 derivation manner on
the sentential form built from S(γv−1).

Level 3 (Universal). A spawns R1 universal processes ℘
(R1)
v , 1 ≤ v ≤R1.

• Process ℘
(R1)
1 reads γ1 = (pγ1 , Qγ1 , Rγ1) and it checks whether γ1 can be

applied on A1, i.e., αγ1=A1, and whether S(γ1) is the ranging vector associated
with βγ1 . If these conditions hold, ℘

(R1)
1 returns 1. Otherwise, it returns 0.

• For each ℘
(R1)
v , 2 ≤ v ≤R1, A counts the number of occurrences of each RC

rule rj ∈ P , 1 ≤ j ≤ k, in γ(v) = γ1γ2...γv−1. Suppose that each rj occurs
c
(v)
j times in γ(v), 0 ≤ c

(v)
j ≤ v − 1. For each 1 ≤ l ≤ m, A computes s

(v)
Al

=

V 0
l +

∑k
j=1 c

(v)
j Vl(rj), i.e., the number of times nonterminal Al occurs in the

sentential form obtained at the vth step of derivation. Each ℘
(R1)
v , 2 ≤ v ≤R1,

returns 1 if only one of the conditions in I(v)
1 and all conditions in I(v)

2 hold.

I(v)
1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1. s
(v)
αγv

≥ 1, αγv /∈ Qγv ∪Rγv , s
(v)
X ≥ 1, for each X ∈ Qγv , and s

(v)
Y = 0

for each Y ∈ Rγv ,
2. s

(v)
αγv

≥ 2 if αγv ∈ Qγv −Rγv , s
(v)
X ≥ 1, for each X ∈ Qγv , X �= αγv ,

and s
(v)
Y = 0 for each Y ∈ Rγv ,

3. s
(v)
αγv

= 1 if αγv ∈ Rγv−Qγv , s
(v)
X ≥ 1, for each X ∈ Qγv , and s

(v)
Y = 0

for each Y ∈ Rγv , Y �= αγv .

7 The constant c depends on the number of vectors in Nm that can be built upon the
set {0, 1, ..., m}. If a certain sentential form has only m−s distinct nonterminals, then
there are (m− s + 1)m guesses that provide the ranging vector associated with this
sentential form. Hence, here and throughout the paper, c = O(

∑m−1
s=1 (m− s+ 1)m).

86 L. Cojocaru and E. Mäkinen

I(v)
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. S(γv−1) is a possible ranging vector on which γv−1 ends the (v − 1)th

step of derivation, i.e., Sl(γv−1) = 0 if s
(v)
Al

= 0, and Sl(γv−1) �= 0 if
s
(v)
Al

> 0, for each 1 ≤ l ≤ m,
2. for any RC rule r = (p, Q, R) ∈ P , p of the form αp → βp, αp �= αγv ,

that can be applied on γ(v) (because it satisfies one of the conditions
of type 1− 3 in I1) we have Sαγv

(γv−1) < Sαp(γv−1), i.e., pγv can be
applied in leftmost-2 manner on γ(v) with the ranging vector S(γv−1),

3. S(γv) is a possible ranging vector with which γv ends the vth step of
derivation, i.e., Sl(γv) = 0 if s

(v)
Al

+ Vl(γv) = 0, and Sl(γv) �= 0 if s
(v)
Al

+
Vl(γv) > 0, for each 1 ≤ l ≤ m.

If all ℘
(R1)
v , 1 ≤ v ≤R1, return 1 then $R1 is a correct guess and the existen-

tial branch holding the [log n]-tuple, spawned at Level 2, is labeled by 1.

Level 4 (Existential). Let Q2 be the quotient and R2 the remainder of Q1

divided by [log n], 0 ≤R2 < [log n]. A spawns O(clog n) existential branches,
each branch holding a 2 [log n]-tuple $c

R2
= (S(γR1), S(γR1+R2), S(γR1+Q1),

S(γR1+Q1+R2), ..., S(γR1+([log n]−1)Q1), S(γR1+([log n]−1)Q1+R2)), where S(γR1)
is the ranging vector belonging to the R1-tuple found correct at Level 3. Be-
cause the tuple $R1 is not useful anymore, the space used by A to record $R1

is allocated now to record $c
R2

.

Level 5 (Universal). On each existential branch from Level 4, A spawns [log n]
universal processes ℘

(Q1)
i1

, 0 ≤ i1 ≤ [log n] − 1. Each process ℘
(Q1)
i1

takes the
interval [R1 + i1Q1...R1 + i1Q1+R2], and checks whether the ranging vectors
S(γR1+i1Q1) and S(γR1+i1Q1+R2), 0 ≤ i1 ≤ [log n] − 1, provide a correct or-
der in which the leftmost-2 derivation can be performed between γR1+i1Q1 and
γR1+i1Q1+R2 . Besides S(γR1+i1Q1) and S(γR1+i1Q1+R2), each ℘

(Q1)
i1

also keeps,
from the previous level, the ranging vector S(γR1+(i1+1)Q1). In this way each
ranging vector S(γR1+i1Q1), 1 ≤ i1 ≤ [log n]−1, guessed at Level 4, is redirected
to only one process, i.e., ℘

(Q1)
i1−1. Denote by xi1 =R1 + i1Q1, 0 ≤ i1 ≤ [log n]− 1.

Level 6 (Existential). For each universal process ℘
(Q1)
i1

, 0 ≤ i1 ≤ [log n]− 1, A
spawns O(clog n) existential branches, each branch holding an (R2 + 1)-tuple of
ranging vectors $R2 = (S(γxi1

), S(γxi1+1), ..., S(γxi1+R2−1), S(γxi1+R2)). Then
A checks whether all vectors in $R2 are correct ranging vectors according to the
leftmost-2 derivation requirements. This can be done, for each process ℘

(Q1)
i1

in
O(log n) time and space, through Level 7 as follows.

Level 7 (Universal). For each existential branch spawned at Level 6, A spawns
R2 universal processes ℘

(R2)
v , 1 ≤ v ≤R2. On each ℘

(R2)
v , A checks whether

each substring γxi1
γxi1+1...γxi1+v is correct according to the leftmost-2 deriva-

tion order. In this respect, for each ℘
(R2)
v , 1 ≤ v ≤R2, A counts the number

of occurrences of each RC rule rj ∈ P , 1 ≤ j ≤ k, in γ(i1,v) = γ1γ2...γxi1+v−1.

Suppose that each rj occurs c
(i1,v)
j times, 0 ≤ c

(i1,v)
j ≤ xi1 + v− 1, in γ(i1,v). For

On the Complexity of Szilard Languages of Regulated Grammars 87

each 1 ≤ l ≤ m, A computes s
(i1,v)
Al

= V 0
l +

∑k
j=1 c

(i1,v)
j Vl(rj), i.e., the number

of times Al occurs in the sentential form obtained at the (xi1 + v)th step of
derivation. Then A checks conditions of type I(v)

1 and I(v)
2 (Level 3) for the RC

rule γxi1+v, i.e., instead of v, xi1 + v is considered. Denote by I(i1,v)
1 and I(i1,v)

2

these conditions.
Each ℘

(R2)
v , 1 ≤ v ≤R2, is said partially correct if one of the conditions in

I(i1,v)
1 and all conditions in I(i1,v)

2 hold. If ℘
(R2)
v is not partially correct, it is

labeled by 0. Note that, at this moment we cannot decide whether ℘
(R2)
v can

be labeled by 1, since we do not know whether S(γxi1
) is valid, i.e., whether

γxi1
indeed ends the xth

i1
step of derivation with the ranging vector S(γxi1

), and
whether γxi1

can be applied in the leftmost-2 derivation manner upon the ranging

vector S(γxi1−1) (which is not yet guessed8). The logical value of each ℘
(R2)
v will

be decided at the end of computation, when it will be known whether S(γxi1
)

is a valid ranging vector with respect to the rules that compose the subword
γR1+(i1−1)Q1 ...γR1+i1Q1−1 = γxi1−1 ...γxi1−1. A partially correct process ℘

(R2)
v is

labeled by %. If all ℘
(R2)
v ’s are labeled by %, then the existential branch holding

the tuple $R2 , provided at Level 6, is labeled by %. Otherwise, this branch is
labeled by 0. ℘

(Q1)
i1

, yielded at Level 5, will be labeled by % if there exists at least

one existential branch labeled by % at Level 6. Otherwise, ℘
(Q1)
i1

returns 0.
Suppose that we have run the algorithm up to the (� − 1)th “iterated” divi-

sion of n by [log n], i.e., we know the quotient Q�−1 and the remainder R�−1

of Q�−2 divided by [log n]. More precisely, Q�−2 =Q�−1 [log n] +R�−1 and n =
((...((Q�−1 [log n] +R�−1) [log n]+R�−2) [log n]+...) [log n] +R2) [log n]+R1, with
Q�−1 > [log n], 0 ≤Rl < [log n], l ∈ {1, 2, ..., �− 1}, and � ≤ [log n].

Level 4(� − 1) (Existential). Let Q� be the quotient and R� the remainder of
Q�−1 divided by [log n], 0 ≤Q�,R� < [log n]. Since Q�−2, R�−2 and R�−1 are no
more needed, the space used to record them is now used to record Q� and R�

in binary, still keeping Q�−1. Denote by xi�−2 =
∑�−1

l=1Rl +
∑�−2

l=1 ilQl. For each
existential branch labeled by % at Level 4� − 6, A spawns O(clog n) existential
branches, each branch holding a 2 [log n]-tuple $c

R�
= (S(γxi�−2

), S(γxi�−2+R�
),

S(γxi�−2+Q�−1), S(γxi�−2+ Q�−1+ R�
), ..., S(γxi�−2+ ([log n]−1)Q�−1),

S(γxi�−2+ ([log n]−1)Q�−1+ R�
)), where S(γxi�−2

) is the ranging vector belonging
to tuple $R�−1 found correct at Level 4�− 5. Because $R�−1 is no more needed
the space used to record $R�−1 is allocated now to record $c

R�
. Then A proceeds

with Level 4�− 3, similar to Levels 5,..., 4�− 7.

Level 4�− 3 (Universal). On each existential branch spawned at Level 4(�− 1),
A spawns [log n] universal processes ℘

(Q�−1)
i�−1

, 0 ≤ i�−1 ≤ [log n]−1. Denote by

8 S(γxi1−1) will be guessed at the last level of the computation tree of A, when all
the remainders of the “iterated” division of n by [log n] will be spent, and when
γxi1−1 will be the last rule occurring in the suffix of length Q� of the substring
γR1+(i1−1)Q1 ...γR1+i1Q1−1 = γxi1−1 ...γxi1−1 of γ.

88 L. Cojocaru and E. Mäkinen

xi�−1 =
∑�−1

l=1 Rl +
∑�−1

l=1 ilQl = xi�−2 + i�−1Q�−1, 0 ≤ i�−1 ≤ [log n] − 1. Each
process ℘

(Q�−1)
i�−1

takes the interval [xi�−1 ... xi�−1 + R�], and it checks whether
the ranging vectors (guessed at Level 4(�− 1)) S(γxi�−1

) and S(γxi�−1+R�
), 0 ≤

i�−1 ≤ [log n]− 1, provide a correct order in which the leftmost-2 derivation can
be performed between γxi�−1

and γxi�−1+R�
. Besides S(γxi�−1

) and S(γxi�−1+R�
),

each ℘
(Q�−1)
i�−1

, also keeps from the previous level S(γxi�−2+(i�−1+1)Q�−1). Then A
continues with Level 4�− 2, similar to Levels 6, ..., 4�− 6.

Level 4�−2 (Existential). For each universal process ℘
(Q�−1)
i�−1

, 0 ≤ i�−1 ≤ [log n]−
1, A spawns O(clog n) existential branches, each branch holding an (R�+1)-tuple
of ranging vectors$R�

=(S(γxi�−1
), S(γxi�−1+1), ..., S(γxi�−1+R�−1), S(γxi�−1+R�

)).
Then A checks whether all vectors composing $R�

are correct. This can be done,
for each process ℘

(Q�−1)
i�−1

, 0 ≤ i�−1 ≤ [log n] − 1, in O(log n) time and space,
through Level 4�− 1 similar to Levels 3, 7, ..., 4�− 5.

Level 4�− 1 (Universal). For each existential branch spawned at Level 4�− 2,
A spawns R� universal processes ℘

(R�)
v , 1 ≤ v ≤R�. On each ℘

(R�)
v , A checks

whether each substring γxi�−1
...γxi�−1+v and each ranging vector in $R�

is correct
according to the leftmost-2 derivation order. In this respect A checks conditions
of type I(v)

1 and I(v)
2 (Level 3) for the RC rule γxi�−1+v, i.e., instead of v, xi�−1 +v

is considered. Denote by I(i�−1,v)
1 and I(i�−1,v)

2 these conditions.
Each process ℘

(R�)
v , 1 ≤ v ≤R�, that satisfies only one of the conditions in

I(i�−1,v)
1 and all conditions in I(i�−1,v)

2 is partially correct, and it is labeled by
a %. Otherwise, ℘

(R�)
v is labeled by 0. If all ℘

(R�)
v ’s are labeled by %, then the

existential branch holding the tuple $R�
, provided at Level 4� − 2, is labeled

by %. Otherwise, this branch is labeled by 0. Process ℘
(Q�−1)
i�−1

, yielded at Level
4�− 1 is labeled by % if there exists at least one existential branch labeled by %
at Level 4�− 2. Otherwise, ℘

(Q�−1)
i�−1

is labeled by 0.
At this level the only substrings of γ left unchecked are those substrings

that corresponds to the intervals of the form IQ�−1 = [
∑�−1

l=1Rl +
∑�−2

l=1 ilQl +
i�−1Q�−1+R�...

∑�−1
l=1Rl +

∑�−2
l=1 ilQl + (i�−1 + 1)Q�−1], 0 ≤ il ≤ [log n]− 1, 1 ≤

l ≤ �−1, and besides the cutting points Pu
� =

∑u
l=1Rl +

∑u−1
l=1 ilQl +(iu +1)Qu,

1 ≤ u ≤ �− 1. On each interval of type IQ�−1 , A proceeds with Level 4�.

Level 4� (Existential). Each interval IQ�−1 can be divided into [log n] subinter-
vals of length 1 ≤Q� < [log n]. Hence, A spawns O(clog n) existential branches
(guess-es) each of which holds a [log n]-tuple $c

Q�
= (S(γxi�−1+R�

),
S(γxi�−1+R�+Q�

), ..., S(γxi�−1+R�+([log n]−1)Q�
)), where S(γxi�−1+R�

) is the rang-
ing vector found valid at Level 4�− 1.

Level 4� + 1 (Universal). For each existential branch spawned at Level 4�, A
spawns [log n] universal processes ℘

(Q�)
i�

, 0 ≤ i� ≤ [log n]− 1. Each process ℘
(Q�)
i�

takes an interval of lengthQ� of the form [
∑�

l=1Rl+
∑�−1

l=1 ilQl+i�Q�...
∑�

l=1Rl+

On the Complexity of Szilard Languages of Regulated Grammars 89

∑�−1
l=1 ilQl + (i� + 1)Q�]. Denote by xi�

=
∑�

l=1Rl +
∑�−1

l=1 ilQl + i�Q�, 0≤ i�≤
[log n]− 1. For each interval [xi�

... xi�+1], A checks whether the substring γxi�
...

γxi�+1 is valid according to the leftmost-2 derivation order (Level 4� + 2).

Level 4�+2 (Existential). For each ℘
(Q�)
i�

, 0 ≤ i� ≤ [log n]−1, A spawnsO(clog n)
existential branches, each branch holding an (Q� + 1)-tuple of ranging vectors
$Q�

=(S(γxi�
), S(γxi�

+1), ..., S(γxi�
+Q�−1), S(γxi�+1)). In each $Q�

the vectors
S(γxi�

) and S(γxi�+1) have been guessed at Level 4�. They are ranging vectors
associated with triplets placed in cutting points, i.e., edges of intervals of length
[log n]. They are also overlapping points of two consecutive intervals of type
[xi�

... xi�+1]. Hence, each ranging vector S(γxi�
) is checked two times. Once if it

is a valid vector on which γxi�
+1 can be applied in leftmost-2 derivation manner

(checked by process ℘
(Q�)
i�

). Then, if by applying γxi�
on the sentential form built

upon the ranging vector S(γxi�
−1) a sentential form with an associated ranging

vector equal to S(γxi�
) is obtained (which is checked by ℘

(Q�)
i�−1).

As all intervals of type [xi�
... xi�+1] are universally checked by processes ℘

(Q�)
i�

,
the tuple $c

Q�
spawned at Level 4� is labeled by 1, if all ranging vectors S(γxi�

)
and all vectors in $Q�

are correct. To check whether all ranging vectors in $Q�

are correct, for each ℘
(Q�)
i�

, 0 ≤ i� ≤ [log n]−1,A follows the same procedure, that
requires O(log n) time and space, described at Levels 3, 7, ..., 4�−1 (Universals).
For the last substring of lengthQ� in γ, i.e., the suffix of γ of lengthQ� of the form
γ∑ �

l=1Rl+
∑ �−1

l=1 ([log n]−1)Ql+([log n]−1)Q�
...γ∑ �

l=1Rl+
∑ �−1

l=1 ([log n]−1)Ql+[log n]Q�
, ℘(Q�)

[log n]−1

must check whether the triplet γ∑ �
l=1Rl+

∑ �−1
l=1 ([log n]−1)Ql+[log n]Q�

= γn ends up
the computation. This is done as for process ℘n, Theorem 1.

Each cutting point Pu
� =

∑u
l=1Rl +

∑u−1
l=1 ilQl + (iu + 1)Qu can be equiv-

alently rewritten as
∑u+1

l=1 Rl +
∑u

l=1 ilQl + [log n]Qu+1, due to the equality
Qu = [log n]Qu+1+Ru+1, for any 1 ≤ u ≤ � − 1. Furthermore,

∑u+1
l=1 Rl +∑u

l=1 ilQl + [log n]Qu+1 is equal with
∑u+1

l=1 Rl+Ru+2 +
∑u

l=1 ilQl + ([log n] −
1)Qu+1 + [log n]Qu+2, due to the equality Qu+1 = [log n]Qu+2+Ru+2, for any
1 ≤ u ≤ �− 2. By applying this transformation k times, where k = �− u, each
Pu

� can be equivalently rewritten as
∑u+1

l=1 Rl+Ru+2 + ...+Ru+k +
∑u

l=1 ilQl +
([log n]− 1)(Qu+1 + ...+Qu+k−1) + [log n]Qu+k, where u + k = �.

In this way each Pu
� , yielded at Level 4u by $c

Ru+1
, 1 ≤ u ≤ �− 1, is in fact

the right edge of an interval of the form [
∑�

l=1Rl +
∑�−1

l=1 ilQl +i�Q�...
∑�

l=1Rl +∑�−1
l=1 ilQl+(i�+1)Q�] = [xi�

... xi�+1], for which 0 ≤ il ≤ [log n]−1, 1 ≤ l ≤ �−1,
i� = [log n] − 1. Hence, the decision on the correctness of each ranging vector
S(γ∑

u
l=1 Rl+

∑ u−1
l=1 ilQl+(iu+1)Qu

) = S(γP u
�
) will be actually taken by a process of

type ℘
(Q�)
[log n]−1. Since the validity of each cutting point is decided by a process

of type ℘
(Q�)
[log n]−1, the logical value returned by this process is “propagated” up

to the level of the computation tree that has spawned the corresponding cutting
point, and thus each % symbol receives a logical value. The input is accepted, if

90 L. Cojocaru and E. Mäkinen

going up in the computation tree, with all %’s changed into logical values, the
root of the tree is labeled by 1.

The tuples $R�
, $c

R�
, $Q�

, $c
Q�

, 1 ≤ � ≤ �, vectors V (rj), 1 ≤ j ≤ k, and
auxiliary net effects computed by A during the algorithm, are stored by using
O(log n) space, in a similar manner as in Theorems 1 and 2.

It is easy to observe that A has O(log n) levels. Since at each level A spawns
either O(nc1) or O(clog n

2) existential branches, where c1 and c2 are constants,
(each level being thus convertible into a binary tree with O(log n) levels), and
at each Level 4�, 1 ≤ � ≤ �, A performs a division operation, which requires
O(log n) time and space [9], A will perform the whole computation in O(log2 n)
parallel time and O(log n) space. �

Corollary 5. SZRCLac
i (CF) ⊂ NC2, i ∈ {2, 3}.

Corollary 6. SZRCLac
i (CF) ⊂ DSPACE(log2 n).

4 Remarks on SZLs of RCGs with PS Rules

The derivation mechanism in regulated rewriting grammars is quite similar to the
derivation mechanism in Chomsky grammars. For the case of RCGs constraints
are provided by the permitting and forbidding contexts that enable or disable a
rule to be applied. These restrictions do increase the generative power of RCGs
[5] but they do not change the complexity of the corresponding SZLs. On the
other hand Definition 4 of leftmost-i, i ∈ {1, 2, 3}, derivations in RCGs with CF
rules, can be naturally generalized for phrase-structure (PS) rules as follows.

Let G = (N, T, P, S) be a RCG with PS rules, where P = {r1, r2, ..., rk}, each
rj ∈ P , 1 ≤ j ≤ k, is of the form rj = (pj , Qj, Rj), and each pj is a PS rule of
the form αpj → βpj , αpj ∈ (N ∪ T)∗N(N ∪ T)∗, and βpj ∈ (N ∪ T)∗. Consider
Pα = {αpj |1 ≤ j ≤ k} the set of the left-hand sides of all rules in P .

Definition 6. Let G be a RCGac with PS rules. A derivation in G is called
– leftmost-1 if each rule used in the derivation rewrites the leftmost substring

α occurring in the current sentential form, such that if α0α is a prefix of the
current sentential form, then α0 ∈ T ∗ and α ∈ Pα,

– leftmost-2 if at each step of derivation, the leftmost occurrence of α ∈ Pα

that can be rewritten is rewritten,
– leftmost-3 if each rule used in the derivation rewrites the leftmost occurrence

of its left-hand side in the current sentential form.,

In [3] we proved that leftmost SZLs of PSGs, and particularly of context-sensitive
(CS) grammars, can be recognized in logarithmic time and space by indexing
ATMs. It is easy to observe that leftmost-1 derivations in RCGs are not more
restrictive than leftmost derivations in Chomsky grammars.

Denote by SZRCLac
1 (X) the class of leftmost-1 SZLs of RCGsac with X rules,

X ∈ {CS, PS}, respectively. We have

Theorem 4. SZRCLac
1 (X) ⊆ ALOGTIME, X ∈ {CS, PS}.

On the Complexity of Szilard Languages of Regulated Grammars 91

Sketch of Proof. The claim can be proved using a similar method as in [3]. How-
ever, besides checking the leftmost-1 condition of each RC rule γi of the form
(pγi , Qγi , Rγi), 1 ≤ i ≤ n, occurring in an input word γ = γ1γ2...γn ∈ P ∗, A
also checks whether the sentential form obtained at the ith step of derivation,
denoted by SFi, contains all nonterminals in Qγi and no nonterminal in Rγi

(by omitting to count common occurrences of a nonterminal on SFi and on the
left-hand side of rule pγi). �

Corollary 7. SZRCLac
1 (X) ⊂ NC1 (SZRCLac

1 (X) ⊂ DSPACE(log n)),
X ∈ {CS, PS}.

However, leftmost-i, i ∈ {2, 3}, derivations in RCGs with PS rules, are more
complex than the leftmost-1 case. We leave open these cases for further research.

5 On the Complexity of SZLs of Other Regulated
Rewriting Grammars

The methods presented in this paper can be applied to several other regulated
rewriting mechanisms. In this section we focus on the complexity of SZLs of
programmed grammars (PGs), and briefly discuss what is going on for other
regulated rewriting grammars. Results on the generative capacity of PGs can be
found in [5], [17], and [18]. From [5] we have the following definitions.

Definition 7. A programmed grammar is a quadruple G = (N, T, S, P) where S
is the axiom, N and T , N ∩T = ∅, are finite sets of nonterminals and terminals,
respectively. P is a finite set of triplets (programmed grammar rules) of the
form r = (pr, σr, ϕr), where pr is an unrestricted Chomsky rule, σr and ϕr are
subsets of P , called the success field and failure field of r, respectively. If ϕr = ∅,
for any r ∈ P , then G is a programmed grammar without appearance checking,
otherwise G is a programmed grammar with appearance checking (henceforth
PGac).

Definition 8. Let G = (N, T, S, P) be a PGac and V = N ∪ T . The language
L(G) generated by G is defined as the set of all words w ∈ T ∗ such that there
is a derivation D:S = w0 ⇒ri1

w1 ⇒ri2
w2 ⇒ri3

... ⇒ris
ws = w, s ≥ 1, and

for rij = (prij
, σrij

, ϕrij
), where prij

is a Chomsky rule of the form αij → βij ,
1 ≤ j ≤ s− 1, we have either wj−1 = w′

j−1αij w
′′
j−1, wj = w′

j−1βij w
′′
j−1 for some

w′
j−1, w′′

j−1 ∈ V ∗ and rij+1 ∈ σrij
, or αij does not occur in wj−1, wj−1 = wj

and rij+1 ∈ ϕrij
.

Unrestricted SZLs and leftmost-i, i ∈ {1, 2, 3}, SZLs of PGsac can be defined in
the same way as in Definition 3, with the specification that G is a PGac and D
is either an unrestricted or a leftmost-i derivation of w.

We denote by SZP ac(CF) and SZPLac
i (CF) the classes of SZLs and leftmost-

i, i ∈ {1, 2, 3}, SZLs of PGsac with CF rules, respectively.
In the sequel, for the sake of simplicity (as in the case of RCGs) we use the

same notation both for a PG rule and the label associated with it.

92 L. Cojocaru and E. Mäkinen

Let G = (N, T, P, A1) be a PGac, where A1 is the axiom, N = {A1, ..., Am}
and P = {r1, ..., rk} are the finite sets of ordered nonterminals and labels asso-
ciated in one-to-one productions in P , respectively. A rule pr in r = (pr, σr, ϕr)
is of the form αpr → βpr , αpr ∈ N , and βpr ∈ (N ∪ T)∗. As for RCGs, the net
effect of a PG rule r, with respect to each nonterminal Al ∈ N , 1 ≤ l ≤ m, is
defined by dfAl

(pr) = |βpr |Al
− |αpr |Al

. To each PG rule r we associate a vector
V (r) ∈ Zm defined by V (r) = (dfA1(pr), dfA2(pr), ..., dfAm(pr)).

Theorem 5. Each language L ∈ SZP ac(CF) can be recognized by an indexing
ATM in O(log n) time and space (SZP ac(CF) ⊆ ALOGTIME).

Proof. Let G = (N, T, P, A1) be a PGac with CF rules. Consider an indexing
ATM A with a similar configuration as in Theorem 1, and γ = γ1γ2...γn ∈ P ∗

an input word of length n. Each label γi corresponds to a triplet in P of the
form (pγi , σγi , ϕγi), where pγi is a CF rule of the form αγi → βγi , 1 ≤ i ≤ n.

At the beginning of the computation the first track of the working tape of A
stores k + 1 vectors, V 0 corresponding to the axiom, i.e., V 0

1 = 1 and V 0
l = 0,

2 ≤ l ≤ m, and V (rj), 1 ≤ j ≤ k. In order to guess the length of γ, A proceeds
with the procedure described at Level 1 (Existential), Theorem 1.

Levels 2-3 (Universal-Existential). A spawns n universal processes ℘i, 1 ≤ i ≤ n
(Level 2). On ℘1 A checks whether αγ1 = A1, while on ℘2 A checks whether
γ2 ∈ σγ1 . For each ℘i, 3 ≤ i ≤ n, A counts the number of occurrences of each
rj ∈ P , 1 ≤ j ≤ k, in γ(i−1) = γ1γ2...γi−2. Suppose that rj occurs c

(i−1)
j times in

γ(i−1), 0 ≤ c
(i−1)
j ≤ i−2. Since for some occurrences of rj = (pj , σj , ϕj) in γ(i−1),

pj may be either effectively applied (because its left-hand side αγj occurs in the
sentential form) or it is a “dummy” rule (because pj cannot be applied), for each
1 ≤ j ≤ k, A guesses a pair of arbitrarily large integers t

(i−1)
j = (c(i−1)

j,a , c
(i−1)
j,d)

such that c
(i−1)
j,a + c

(i−1)
j,d = c

(i−1)
j , where c

(i−1)
j,a is the number of times rj is

effectively applied up to the (i−1)th step of derivation, and c
(i−1)
j,d is the number

of times rj is a dummy rule in γ(i−1). Since there exist O(n2) guesses, A spawns
O(n2) existential branches (Level 3). On each existential branch holding a pair
t
(i−1)
j , A computes the sums s

(i−1)
Al

= V 0
l +

∑k
j=1 c

(i−1)
j,a Vl(rj), 1 ≤ l ≤ m, i.e., the

number of occurrences of each Al in the sentential form obtained at the (i−1)th

step of derivation. Then, A checks whether one of the following conditions holds:

1. s
(i−1)
αγi−1

≥ 1 and γi ∈ σi−1, i.e., γi−1 is effectively applied and the next rule
must be chosen from its success field,

2. s
(i−1)
αγi−1

= 0 and γi ∈ ϕi−1, i.e., γi−1 is a dummy rule and the next rule must
be chosen from its failure field.

Besides, for the last process ℘n, A computes s
(n,out,a)
Al

= s
(n−1)
Al

+dfAl
(pγn−1)+

dfAl
(pγn) and s

(n,out,d)
Al

= s
(n−1)
Al

+ dfAl
(pγn), 1 ≤ l ≤ m, and it checks whether

one of the following conditions holds:

On the Complexity of Szilard Languages of Regulated Grammars 93

1. s
(n−1)
αγn−1

≥ 1, γn ∈ σn−1, s
(n)
αγn

≥ 1, s
(n,out,a)
Al

= 0, 1 ≤ l ≤ m,

2. s
(n−1)
αγn−1

= 0, γn ∈ ϕn−1, s
(n)
αγn

≥ 1, s
(n,out,d)
Al

= 0, 1 ≤ l ≤ m.

Each process ℘i, 1 ≤ i ≤ n, returns 1, if one of the conditions 1 − 2 holds.
Otherwise it returns 0. As in Theorem 1, A performs the whole computation in
O(log n) time and space. �

Corollary 8. SZP ac(CF) ⊂ NC1 (SZP ac
1 (CF) ⊂ DSPACE(log n)).

The algorithm described in the proof of Theorem 2 cannot be applied for the case
of leftmost-1 SZLs of PGsac. The explanation is that, in the proof of Theorem
2, even if process ℘v (℘l) returns the true value, which means that at its turn
γv (γl) can be applied in a leftmost-1 derivation manner on γ1...γv−1 (γ1...γl−1),
the process ℘i cannot “see” whether γv (γl) has been effectively applied in the
derivation, or it is only a dummy rule, since all branches spawned at the same
level of the computation tree of A are independent on each other.

Denote by SZPL1(X) the class of leftmost-1 SZLs of PGs without appearance
checking, with X-rules, X ∈ {CF, CS, PS}, and by SZPLac

i (CF), i ∈ {1, 2, 3},
the class of leftmost-i SZLs of PGs with appearance checking and CF rules.
Using a similar method as in Theorems 2, 3, and 4 we have, respectively

Theorem 6. SZPL1(CF) ⊆ ALOGTIME (SZPL1(CF) ⊂ NC1).

Theorem 7. Each language L∈SZPLac
i (CF), i∈{1, 2, 3}, can be recognized by

an indexing ATM in O(log n) space and O(log2 n) time (SZPLac
i (CF)⊂NC2).

Theorem 8. SZPL1(X) ⊆ ALOGTIME (SZPL1(X) ⊂ NC1), X∈{CS, PS}.

Brief discussion on other regulated rewriting grammars. Matrix grammars (MGs)
are regulated rewriting grammars in which rules are grouped into matrices com-
posed of a finite number of rules obeying a predefined order. For the case of
MGs with appearance checking (MGsac) some rules in a matrix sequence can be
passed over if they belong to a set of forbidding rules and if by applying them
the derivation is blocked or never ends. If γ = γ1γ2...γn is an input word for an
indexing ATM A, where each γi is the label of a matrix used in the derivation
in a MGac, when spelling γ, A cannot estimate which of the forbidding rules of
a matrix, applied at a certain step of derivation, have been used or not. Hence,
as in the case of PGsac for each γi, A has to guess a t

(i−1)
j tuple composed of a

finite number of arbitrarily large integers that prescribes the number of times a
certain ordered combination of rules in a matrix sequence has been applied, up
to the ith step of derivation. Consequently, Theorems 5, 6, and 8 hold for SZLs
of MGs without appearance checking, while Theorems 7 holds for leftmost-i,
i ∈ {1, 2, 3}, SZLs of MGsac. The same observation holds for regularly controlled
grammars. The method used in Theorem 7 (or 3) can be applied to prove that
the class of unrestricted SZLs of MGsac is contained in NC2. Theorems 1, 2, 3,
and 4 hold also for additive and multiplicative valence grammars, and conditional
RCGs, since the membership problem for regular languages is in NC1.

94 L. Cojocaru and E. Mäkinen

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity, vol. II. Springer,
Heidelberg (1990)

2. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28(1), 114–133
(1981)

3. Cojocaru, L., Mäkinen, E., Ţiplea, F.L.: Classes of Szilard Languages in NC1. In:
11th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 299–306. IEEE Computer Society Press, Los Alamitos (2009)

4. Cremers, A.B., Maurer, H.A., Mayer, O.: A Note On Leftmost Restricted Random
Context Grammars. Inf. Process. Lett. 2(2), 31–33 (1973)

5. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

6. Duske, J., Parchmann, R., Specht, J.: Szilard Languages of IO-Grammars. Infor-
mation and Control 40(3), 319–331 (1979)

7. Ewert, S., van der Walt, A.P.J.: A Pumping Lemma for Random Permitting Con-
text Languages. Theor. Comput. Sci. 270(1-2), 959–967 (2002)

8. Fischer, P., Meyer, A., Rosenberg, A.: Counter Machines and Counter Languages.
Theory of Computing Systems 2(3), 265–283 (1968)

9. Hesse, W.: Division Is in Uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen,
J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)

10. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, Massachusetts (1979)

11. Igarashi, Y.: The Tape Complexity of Some Classes of Szilard Languages. SIAM
J. Comput. 6(3), 460–466 (1977)

12. Mäkinen, E.: On Certain Properties of Left Szilard Languages. EIK 19(10/11),
497–501 (1983)

13. Mäkinen, E.: On Context-Free and Szilard Languages. BIT Numerical Mathemat-
ics 24(2), 164–170 (1984)

14. Păun, G.: On Szilard’s Languages Associated to a Matrix Grammar. Inf. Process.
Lett. 8(2), 104–105 (1979)

15. Penttonen, M.: On Derivation Language Corresponding to Context-Free Gram-
mars. Acta Inf. 3, 285–291 (1974)

16. Penttonen, M.: Szilard Languages Are log n Tape Recognizable. EIK 13(11), 595–
602 (1977)

17. Rosenkrantz, D.J.: Programmed Grammars - a New Device for Generating Formal
Languages. PhD Thesis, Columbia University, New York (1967)

18. Rosenkrantz, D.J.: Programmed Grammars and Classes of Formal Languages. J.
ACM 16(1), 107–131 (1969)

19. Ruzzo, W.: On Uniform Circuit Complexity. J. Comput. Syst. Sci. 22(3), 365–383
(1981)

20. Salomaa, A.: Matrix Grammars with a Leftmost Restriction. Information and Con-
trol 20(2), 143–149 (1972)

21. Salomaa, A.: Formal Languages. Academic Press, London (1973)
22. Vollmer, H.: Introduction to Circuit Complexity A Uniform Approach. Springer,

Heidelberg (1999)
23. van der Walt, A.P.J.: Random Context Languages. In: Information Processing.

Proceedings of IFIP Congress, vol. 1, pp. 66–68. North-Holland, Amsterdam (1972)
24. van der Walt, A.P.J., Ewert, S.: A Shrinking Lemma for Random Forbidding

Context Languages. Theor. Comput. Sci. 237(1-2), 149–158 (2000)

Energy Games in Multiweighted Automata�

Uli Fahrenberg1, Line Juhl2, Kim G. Larsen2, and Jǐŕı Srba2,��

1 INRIA/IRISA, Rennes Cedex, France
ulrich.fahrenberg@irisa.fr

2 Aalborg University, Department of Computer Science, Denmark
{linej,kgl,srba}@cs.aau.dk

Abstract. Energy games have recently attracted a lot of attention.
These are games played on finite weighted automata and concern the
existence of infinite runs subject to boundary constraints on the accu-
mulated weight, allowing e.g. only for behaviours where a resource is
always available (nonnegative accumulated weight), yet does not exceed
a given maximum capacity. We extend energy games to a multiweighted
and parameterized setting, allowing us to model systems with multi-
ple quantitative aspects. We present reductions between Petri nets and
multiweighted automata and among different types of multiweighted au-
tomata and identify new complexity and (un)decidability results for both
one- and two-player games. We also investigate the tractability of an ex-
tension of multiweighted energy games in the setting of timed automata.

1 Introduction

Energy games are two-player games played on finite weighted graphs with the
objective of finding an infinite run where the accumulated weight is constrained
by a lower and possibly also an upper bound. Such games have attracted con-
siderable attention [4,5,6,7,8,9,10,11,12,17] in recent years, as they find natu-
ral applications in design and analysis of resource-constrained reactive systems,
e.g. embedded or hybrid systems.

We study multiweighted energy games, where the weight vectors can have
an arbitrary dimension. Let us motivate the study by a small example of an
automatic lawn mower with a rechargeable battery and a container for collecting
grass. Both the battery and the container have a maximum capacity that cannot
be exceeded. We assume that the battery can be recharged and the container
can be emptied at nearby servicing stations. The charger is an old-fashioned
one, and it charges only for a fixed amount of energy corresponding to going
from discharged to fully charged. If the lawn mower starts charging while the
battery is not fully discharged, the battery will break. The station for emptying
the container removes a unit amount of grass at a time and consumes a unit of
battery energy. The container will break if too much grass is stored in it.

� Supported by the VKR Center of Excellence MT-LAB.
�� Partially supported by Ministry of Education of Czech Republic, MSM 0021622419.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 95–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 U. Fahrenberg et al.

(bmax, 0)
charge (−1,−1)

empty

(−
1
,0

)

cu
t

(−1, 2)
tall

(−1, 1)
short

(a) A lawn mower 2-weighted game

bmax = 4 (battery capacity)

cmax = 3 (container capacity)

if battery = 0 then charge

else if battery ≥ 2 and container ≤ 1 then cut

else if battery ≥ 1 and container ≥ 1 then empty

(b) A winning strategy for Player 1

♦ ♦ ♦ ♦ ♦ ♦ ♦� �
0

1

2

cmax = 3

bmax = 4

−−−−→
charge

−−→
cut

−−−→
short

−−→
cut

−−→
tall

−−−−→
charge

−−−−→
empty

−−−−→
empty

(c) A run of the game (dashed line shows battery level, solid line container content)

Fig. 1. A lawn mower example

A weighted game describing the lawn mower behaviour is given in Figure 1a.
Each transition has a 2-dimensional vector representing the change to the ac-
cumulated battery level in the first coordinate and to the accumulated volume
of grass in the container in the second coordinate. The numbers bmax and cmax

represent the maximum capacity of the battery and the container, respectively.
The initial state drawn as a diamond is controlled by Player 1 (the existential
player), while the other state drawn as a square is controlled by Player 2 (the
universal player). In the initial state, Player 1 has the choice of either charging
the battery, emptying the container or cutting the grass. Moving to the lawn
costs one unit of battery energy, and then Player 2 (the environment) controls
whether the actual mowing, which costs again one energy unit, will fill the con-
tainer with one or two units of grass, depending on whether the grass was short
or tall. A configuration of the game consists of the state and the accumulated
weight in all coordinates. A run is a sequence of transitions between configura-
tions formed by the players of the game and starting from the initial state with
zero accumulated weight.

The question we ask now (the problem called energy games with lower and
upper bounds) is whether Player 1 has a strategy so that in the infinite run
of actions the lawn mower performs, starting with empty battery and empty
container, both the accumulated battery level as well as the container content
stay invariantly above zero and do not exceed the given upper bounds bmax = 4
and cmax = 3. Such a strategy exists and it is depicted in Figure 1b. Figure 1c
illustrates a finite run of the lawn mower game according to this strategy.

If we lower the volume of the container to cmax = 2, no such strategy exists.
Player 1 must take the charge transition as the first step, after which cutting is

Energy Games in Multiweighted Automata 97

the only opportunity. Player 2 can now choose to cut the short grass, leading
to battery level 2 and grass volume 1. From here Player 1 can only empty the
container, as cutting would allow Player 2 to break the container. After emptying
the container, battery level is 1 and no transition (apart from cutting) is possible.

There are several variants of the above energy game problem. If we e.g. assume
a modern battery charger which does not break the battery when it is not empty,
then we have another variant of the problem called energy games with weak
upper bounds. The weak upper bound game allows taking transitions that will
exceed the upper bounds, but these will never accumulate more energy than
the maximum capacity. We may also consider infinite runs that are constrained
only by a given lower bound but with no upper bound. Finally, we ask questions
regarding parameterization. We want to decide whether there exists some battery
capacity bmax and some initial battery level such that Player 1 wins the energy
game with lower and upper bound (or some of its variants). In our example one
can by a simple reasoning argue that for a container capacity cmax = 2, there is
no battery capacity bmax so that Player 1 can guarantee an infinite behaviour of
the lawn mower.

Contributions. We define the variants of multiweighted energy games (Section 2)
and present reductions involving these games, leading to new decidability and
complexity results. Some reductions are to/from Petri nets (Section 3) while
others are between different multiweighted energy games (Section 4). This is
followed by a summary of decidability and complexity results we achieved. In
Section 6 we consider a parameterized version of existential one-player games
and show that some variants of the problem lead to undecidability while others
are decidable in polynomial time. We conclude by presenting an undecidability
result for a natural timed extension of the energy games (Section 7).

Related Work. The idea of checking whether a given resource stays above zero
at all times was first presented by Chakrabarti et al. in [7], treating the subject
in relation to interfaces. The lower and (weak) upper bound problems were first
formulated in [5] for the case with a single weight. The paper presents several
complexity results for the 1-weighted case, both timed and untimed, and has
given rise to a number of recent papers on 1-weighted energy games [9,10,11].

The multiweighted extension has been studied in [6], but only for energy
games with unary weights, i.e. updates by 1, 0 or −1. A continuation of this
work presents a polynomial time algorithm for the 2-weighted case with unary
inputs [8]. Contrary to this line of work, we consider binary input encoding,
hence weight updates are now drawn from the full set of integers. Also in contrast
to [6,8], where only complexity upper bounds are given, we give complexity lower
bounds that in most cases match the upper bounds.

Multiweighted energy games with general integer updates have been consid-
ered in [9], where the authors show that the problem of deciding the existence of
an initial weight vector such that Player 1 can win the lower bound energy game
is solvable in polynomial time. In contrast to this, we show here that the non-
parameterized variant of this problem—can Player 1 win with a given initial

98 U. Fahrenberg et al.

weight vector—is EXPSPACE-hard. We also treat the parameterized setting,
where we show that the existential lower and (weak) upper bound problems
with both bounds and initial weight vector parameterized are also decidable in
polynomial time, unless the upper bound parameter is used in the transitions of
the automaton, in which case the problem becomes undecidable.

2 Multiweighted Automata and Games

We denote by �k the set of integer vectors of dimension k > 0 and by w̄[i]
the i’th coordinate of a vector w̄ ∈ �k. A k-weighted game G is a four-tuple
(Q1, Q2, q0,−→) where Q1 and Q2 are finite, disjoint sets of existential and
universal states, respectively, q0 ∈ Q1 ∪Q2 is the initial state and −→ ⊆ (Q1 ∪
Q2)×�k × (Q1 ∪Q2) is a finite weighted transition relation, written as q

w̄−→ q′

whenever (q, w̄, q′) ∈ −→. We refer to Figure 1a in the introduction for an
example of a k-weighted game with k = 2.

We are interested only in infinite runs in multiweighted games, hence for the
rest of the paper, we assume that the game G is non-blocking, i.e. for every
q ∈ Q1 ∪Q2 we have q

w̄−→ q′ for some w̄ ∈ �k and q′ ∈ Q1 ∪Q2.
A weighted run in a k-weighted game G = (Q1, Q2, q0,−→) restricted to a weak

upper bound b̄ ∈ (�0 ∪ ∞)k is an infinite sequence (q0, v̄0), (q1, v̄1), (q2, v̄2), . . .
where q0, q1, . . . ∈ Q1 ∪Q2, v̄0 = 0̄ = (0, 0, . . . , 0) and v̄1, v̄2, . . . ∈ �k such that

for all j ≥ 0 we have qj
w̄j−→ qj+1 and

v̄j+1[i] = min
{
v̄j [i] + w̄j [i], b̄[i]

}
for all coordinates i. An illustration of a run in a 2-weighted game is given in
Figure 1c in the introduction. Intuitively, a weighted run is a sequence of states
together with the accumulated weight gathered along the path. Moreover, the
accumulated weight is truncated, should it exceed in some coordinate the given
maximum weight b̄. By WRb̄(G) we shall denote the set of all weighted runs in
G restricted to the maximum accumulated weight b̄.

A strategy for Player i ∈ {1, 2} in a k-weighted game G = (Q1, Q2, q0,−→)
(restricted to a weak upper bound b̄) is a mapping σ from each finite prefix of
a weighted run in WRb̄(G) of the form (q0, v̄0), . . . , (qn, v̄n) with qn ∈ Qi to a
configuration (qn+1, v̄n+1) such that (q0, v̄0), . . . , (qn, v̄n), (qn+1, v̄n+1) is a prefix
of some weighted run in WRb̄(G). A weighted run (q0, v̄0), (q1, v̄1), . . . respects
a strategy σ of Player i if σ((q0, v̄0), . . . , (qn, v̄n)) = (qn+1, v̄n+1) for all n such
that qn ∈ Qi. Figure 1b in the introduction shows a strategy for the 2-weighted
game from Figure 1a; note that the run of the game depicted in Figure 1c indeed
respects this strategy.

We shall consider three decision problems related to energy games on a given
k-weighted game G = (Q1, Q2, q0,−→). Below we let ∞ = (∞,∞, . . . ,∞), and
we write w̄ ≤ v̄ if w̄[i] ≤ v̄[i] for all i, 1 ≤ i ≤ k.

Energy Game with Lower bound (GL): Given a game G, is there a strategy σ
for Player 1 such that any weighted run (q0, v̄0), (q1, v̄1), . . . ∈ WR∞(G)
respecting σ satisfies 0̄ ≤ v̄i for all i ≥ 0?

Energy Games in Multiweighted Automata 99

Hence we ask whether Player 1 has a winning strategy such that during any
play the accumulated weight stays above zero in all coordinates.

Energy Game with Lower and Weak upper bound (GLW): Given a game G and
a vector of upper bounds b̄ ∈ �k

0 , is there a strategy σ for Player 1 such that
any weighted run (q0, v̄0), (q1, v̄1), . . . ∈ WRb̄(G) respecting σ satisfies 0̄ ≤ v̄i

for all i ≥ 0?

Hence we ask whether Player 1 has a winning strategy such that during any
play the accumulated weight, which is truncated whenever it exceeds the
given upper bound, stays in all coordinates above zero.

Energy Game with Lower and Upper bound (GLU): Given a game G and a vec-
tor of upper bounds b̄ ∈ �k

0 , is there a strategy σ for Player 1 such that any
weighted run (q0, v̄0), (q1, v̄1), . . . ∈WR∞(G) respecting σ satisfies 0̄ ≤ v̄i ≤ b̄
for all i?

Hence we ask whether Player 1 has a winning strategy such that during any
play the accumulated weight stays in all coordinates above zero and below
the given upper bound.

The problems GL, GLW and GLU can be specialized in two different ways.
Either by giving Player 1 the full control over the game by setting Q2 = ∅ or
dually by giving the full control to Player 2 by assuming that Q1 = ∅. The first
problem is called the existential variant as we essentially ask whether there exists
some weighted run with the accumulated weight within the given bounds. The
second problem is called the universal variant as we now require that all weighted
runs satisfy the constraints of the energy game. We will denote the respective
existential problems by EL, ELW and ELU, and the universal problems by AL,
ALW and ALU. These special cases are known as one-player games or simply as
multiweighted automata, and we denote such games as only a triple (Q, q0,−→).

In the general formulation of energy games there is no fixed bound on the
dimension of the weight vectors, in other words, the dimension k is a part of
the input. If we want to consider problems of a fixed dimension k, we use the
notation GL(k), GLW(k), GLU(k), EL(k) etc.

As the inputs to our decision problems are numbers, it is important to agree
on their encoding. We will use the binary encoding, unlike some other recent
work [6,8] where unary notation is considered and thus enables to achieve better
complexity bounds as the size of their input instance is exponentially larger.

We may also easily allow an initial weight vector w̄0 different from 0̄. This is
evident by adding a new fresh start state with one transition labeled with w̄0

pointing to the original start state. In addition we may assume that in any given
upper bound or weak upper bound vector b̄ we have b̄[1] = b̄[2] = · · · = b̄[k].
This can be achieved by scaling every i’th coordinate of all weight vectors on
transitions with b̄[1]·...·b̄[k]

b̄[i]
in order to obtain equality on the coordinates of b̄.

Such a scaling implies only polynomial increase in the size (in binary encoding)
of the upper bound constants.

100 U. Fahrenberg et al.

p1

p2

p3

p4

p5t

14

2

3
3

2

�
q0 qt

(−1,−4,−2, 0, 0)

(3, 0, 0, 3, 2)

Fig. 2. Translation of a Petri net to a 5-weighted automaton

3 Relationship to Petri Nets

We show that the existential variants of the infinite run problems on multi-
weighted automata can be reduced to the corresponding problems on Petri nets
and vice versa. This will allow us to transfer some of the decidability and com-
plexity results from the Petri net theory to our setting.

We shall first define the Petri net model with weighted arcs (that allow to
consume more than one token from a given place). A Petri net is a triple N =
(P, T, W) where P is a finite set of places, T is a finite set of transitions, and
W : (P × T)∪ (T × P)→ �0 is a function assigning a weight to each arc in the
net. A marking on N is a function M : P → �0 denoting the number of tokens
present in the places. A marked Petri net is a pair (N, M0) where N is a Petri
net and M0 is an initial marking on N .

A transition t ∈ T is enabled in a marking M if M(p) ≥ W (p, t) for all
p ∈ P . An enabled transition may fire. When a transition t fires, it produces a
new marking M ′ obtained as M ′(p) = M(p) −W (p, t) + W (t, p) for all places
p ∈ P . Then we write M

t−→M ′. A marking M is reachable in N if M0 −→∗ M

where −→ =
⋃

t∈T
t−→. A marked Petri net is called 1-safe if for any reachable

marking M the number of tokens in any place is at most one, i.e. M(p) ≤ 1
for all p ∈ P . We say that a marked net (N, M0) has an infinite run if there is
a sequence of markings M1, M2, . . . and transitions t1, t2, . . . such that M0

t1−→
M1

t2−→ M2
t3−→ . . . The infinite run problem for Petri nets (see e.g. [13]) is to

decide whether a given Petri net has an infinite run.

Lemma 1. The infinite run Petri net problem is polynomial time reducible to
EL. The infinite run Petri net problem for 1-safe nets is polynomial time re-
ducible to ELU and ELW. The problem EL is polynomial time reducible to the
infinite run problem of Petri nets.

Proof. We first prove the first part of the lemma. Given a Petri net N =
(P, T, W) where P = {p1, . . . , pk} we construct a k-weighted automaton A =
(Q, q0,−→) such that Q = {q0} ∪ {qt | t ∈ T }. Now for every t ∈ T we add

to A two transitions q0
w̄−

t−→ qt and qt
w̄+

t−→ q0 where w̄−
t [i] = −W (pi, t) and

w̄+
t [i] = W (t, pi) for all i, 1 ≤ i ≤ k. Consult Figure 2 for an example. The

initial weight vector then corresponds to the initial marking of the net in the
expected way. It follows from the construction that each transition firing can

Energy Games in Multiweighted Automata 101

q q′

(−2, 5, 3)
� pq pq′

p1
p2 p3

2
5

3

1 1

Fig. 3. Translation of a 3-weighted automaton to a Petri net

be simulated by two transitions in the constructed weighted automaton and
vice versa. Observe that the reachable Petri net markings are represented as
accumulated weight vectors in the automaton and hence are nonnegative in all
coordinates. It is easy to verify that the net has an infinite run if and only if the
EL problem has a solution. The reduction clearly runs in polynomial time.

For the second part, observe that if the net is 1-safe then by taking the upper
bound b̄ = (1, 1, . . . , 1) we have a reduction from the infinite run problem for
1-safe nets to ELU and ELW.

The reduction from k-weighted automata to Petri nets works in a similar way.
Given a k-weighted automaton A = (Q, q0,−→) we construct a Petri net N =
(P, T, W) where P = {p1, . . . , pk} ∪ {pq | q ∈ Q} and T = {t(q,w̄,q′) | q

w̄−→ q′}.
For each t(q,w̄,q′) we set W (pq, t(q,w̄,q′)) = 1, W (t(q,w̄,q′), pq′) = 1 and for all
i, 1 ≤ i ≤ k, W (pi, t(q,w̄,q′)) = −w̄[i] if w̄[i] < 0 and W (t(q,w̄,q′), pi) = w̄[i]
if w̄[i] ≥ 0. See Figure 3 for an example of the reduction. The initial marking
corresponds to the initial weight vector in the natural way, and there is one
extra token in the place pq0 representing the current state of the automaton. As
before, it is easy to verify that the constructed Petri net has an infinite run if and
only if the EL problem has a solution. The reduction clearly runs in polynomial
time. ��

Theorem 1. The problem EL is EXPSPACE-complete. The problems ELU and
ELW are PSPACE-complete.

Proof. The complexity bounds for EL follow from Lemma 1 and from the
fact that the existence of an infinite run in a Petri net is decidable in EX-
PSPACE [16,2] and EXPSPACE-hard (see e.g. [13]). The same problem for 1-
safe Petri nets is PSPACE-complete (see again [13]) and by Lemma 1 we get
PSPACE-hardness also for ELU and ELW. The containment of the ELU and
ELW problems in PSPACE can be shown by noticing that these problems have
an infinite run (q0, v̄0), (q1, v̄1), . . . if and only if there are two indices i < j
such that (qi, v̄i) = (qj , v̄j). As the size of any configuration (q, v̄) appearing on
such a run is polynomially bounded by the size of the input (which includes the
upper bound vector), we can use a nondeterministic algorithm to guess such a
repeated configuration (qi, v̄i) and nondeterministically verify whether it forms
a loop which is reachable from the initial pair (q0, v̄0). This completes the argu-
ment for the containment of ELU and ELW in PSPACE. ��

102 U. Fahrenberg et al.

q0

q1

q2

(−3, 1)

(4,−4)(1, 5)

(−2, 1)

�
qs q0

q1

q2

(0, 0, 5, 7)

(−3, 1, 3
,−1)

(4,−4,−4, 4)(1, 5,−1,−5)

(−2, 1, 2,−1)

Fig. 4. Example of reduction from GLU with b̄ = (5, 7) to GL

4 Reductions among Energy Games

In this section we present reductions among the variants of one- and two-player
energy games with a particular focus on the size of the weight vectors.

Theorem 2. The problem GLU(k) is polynomial time reducible to GL(2k) and
GLW(2k) for all k > 0. The reduction preserves the existential and universal
variants of the problems.

Proof. Let Gk = (Q1, Q2, q0,−→) be a k-weighted game and let b̄ be a given
upper bound vector for the GLU problem. We construct a 2k-weighted game

G2k = (Q1 & {qs}, Q2, qs,−→) where q
(w̄[1],w̄[2],...,w̄[k],−w̄[1],−w̄[2],...,−w̄[k])−−−−−−−−−−−−−−−−−−−−−−−−−−→ q′ in

G2k if and only if q
w̄−→ q′ in Gk. We moreover add the initial transition qs

w̄0−→ q0

where w̄0[i] = 0 and w̄0[k + i] = b̄[i] for all i, 1 ≤ i ≤ k. Figure 4 illustrates the
construction on an example. Intuitively, every coordinate in the weight vector is
duplicated and the duplicated coordinate gets initially the value from the vector
b̄, while the original coordinate is 0. It is now easy to verify that during any run
in G2k all its configurations (q, v̄) satisfy the invariant v̄[i] + v̄[k + i] = b̄[i] for
all i, 1 ≤ i ≤ k.

The upper bound check is hence replaced with a lower bound on the duplicate
coordinates and hence the GLU problem is reduced to GL and also to GLW (by
using the weak upper bound vector b̄), while the size of the weight vectors dou-
bles. The reduction also clearly preserves the existential and universal variants
of the problems. ��

Since we already know that ELU(1) is NP-hard [5], using Theorem 2 with k = 1
gives that EL(2) is NP-hard too, which is of course then also the case for EL.
Similarly as GLU(1) is known to be EXPTIME-hard [5], we get EXPTIME-
hardness also for GL(2) and hence also for GL.

Our next reductions show (perhaps surprisingly) that allowing multiple
weights is not that crucial in terms of complexity. The first theorem shows that
for upper bound games, it suffices to work with one weight only; Theorem 4 then
shows that for the existential variant, two weights are enough.

Theorem 3. The problem GLU is polynomial time reducible to GLU(1).

Proof. Let G = (Q1, Q2, q0,−→) be a k-weighted game and b̄ a given upper
bound vector for the GLU problem. We assume that G is encoded in binary and

Energy Games in Multiweighted Automata 103

let n denote the size of such encoding. This means that all constants that appear
in the description of G are less than 2n. We will construct a corresponding 1-
weighted game G′ = (Q′

1, Q
′
2, qs,−→) where Q′

1 = Q1 ∪ {q2, q3, . . . , qk+5 | q ∈
Q1} ∪ {qs} and Q′

2 = Q2 ∪ {q1 | q ∈ Q2} that simulates G.
Let w̄ denote any weight vector present in G. Clearly, 0 ≤ w̄[1], . . . , w̄[k] < 2n

due to the encoding of the input. Without loss of generality we can assume that
all coordinates of b̄ are the same, i.e. that b̄ = (b, . . . , b) for some 0 ≤ b < 2n.

We need to encode the weights from G using only one weight. We will do
so by placing them into the single (large) weight w′. Since b < 2n, at most n
bits are needed to represent each weight w̄[i]. The weight w′ is constructed by
appending the weights from G in higher and higher bit positions, with a suitable
separation sequence to ensure that weights cannot get ‘entangled’ should their
bounds overflow or underflow. Formally, we introduce the following notation for
any integer � ∈ � and any i, 1 ≤ i ≤ k:

〈�〉i = � · 2(i−1)(n+2) .

For example, if n = 4 then 〈6〉2 = 6 · 26 = (in binary) = 110 · 1000000 =
110000000. A weight vector w̄ of size k in G is now represented by the number

〈w̄〉 def= 〈w̄[1]〉1 + 〈2n+1〉1 + 〈w̄[2]〉2 + 〈2n+1〉2 + . . . + 〈w̄[k]〉k + 〈2n+1〉k

where the weights w̄[1], . . . , w̄[k] written in binary from the less significant bits
to more significant ones are separated by the binary string ‘10’. For example if
again n = 4 then the weight vector w̄ = (110, 1, 1011) with the weights written
in binary is represented by the binary number 〈w̄〉 = 10 1011 10 0001 10 0110.

The new upper bound B for G′ is defined by B = 〈b〉k+1 + 〈b̄〉 where apart
from the standard encoding of all upper bounds for all coordinates we add one
more time the constant b at the most significant bits (we will use these bits for
counting in our construction).

Each transition q
w̄−→ q′ in G is transformed into a number of transitions in G′

as depicted in Figure 5 where Player 1 (existential) states are drawn as diamonds
and Player 2 (universal) states are drawn as squares. The states drawn as filled
circles can be of either type, and their type is preserved in the translation. We

also add the initial transition qs
〈0̄〉−→ q0 which inserts the separation strings 10

at the correct positions.
The idea is that the update of the accumulated weight vector v̄ in G via adding

a vector w̄ like in Figure 5 is simulated by adding the numbers 〈w̄[1]〉1, 〈w̄[2]〉2,
. . . , 〈w̄[k]〉k to the accumulated weight in G′. The chosen encoding of k weights
into a single weight is crucial to preserve the soundness of the construction as
discussed in the following remark.

Remark 1. Given an accumulated weight vector v̄ and a weight update vector
w̄ where 0̄ ≤ v̄, w̄ ≤ b̄ < (2n, . . . , 2n), then adding the numbers 〈v̄〉 and 〈w̄[i]〉i
in 〈v̄〉 changes at most the bits that are designated for representing the weight
coordinate w̄[i] and the separating two bits 10 just before it. This can be easily
seen by analyzing the two extreme cases of adding 11 . . .1 to an accumulated

104 U. Fahrenberg et al.

q q′

(w̄[1], . . . , w̄[k])
�

q q1 q′

q2

q3 q4 q5

. . .

qk+3

qk+4qk+5

〈w̄[1]〉1 + · · · + 〈w̄[k]〉k 0

〈b〉k+1

−〈0̄〉+B

−〈1
〉k+

1

−〈1〉1

0

−〈1〉2

0

−〈1〉3

0

−〈1〉k

0

0

0

Fig. 5. Simulation of a transition in a k-weighted game by a 1-weighted game

weight coordinate with full capacity and subtracting 11 . . . 1 from an accumulated
weight coordinate that represents zero as showed in the following two examples.

. . . 10 111 . . .111 10 . . .
+ . . . 00 111 . . .111 00 . . .

. . . 11 111 . . .110 10 . . .

. . . 10 000 . . .000 10 . . .
− . . . 00 111 . . .111 00 . . .

. . . 01 000 . . .001 10 . . .

Let us now argue about the correctness of this polynomial time construction.
Assume that Player 1 has a winning strategy in the game G. As the accumulated
weight stays within the bounds during any such play in G, it is clear that the same
winning strategy can be performed also in G′ using only a single weight. One
complication is that each transition in G is split in G′ and a new node for Player 2
(q1 in Figure 5) is inserted. Hence Player 2 could possibly have an extra winning

strategy by playing q1
〈b〉k+1

−−−−→ q2, instead of the expected move to q′. However,
because the accumulated weight vector v̄ satisfies 0 ≤ v̄[i] ≤ b < 2n for all i,
we can see that Player 1 wins in this case, by taking the loop q2, q3, . . . qk+3, q2

exactly b times while choosing the zero or −〈1〉i transitions (for all i) in such a
way that the bits representing the weight v̄[i] are all set to 0. What remains in
G′ as the accumulated weight is then the value 〈0̄〉 which consists only of the
separation symbols. From here Player 1 takes the transition with weight −〈0̄〉,
setting the accumulated weight to zero, and wins by performing the transition
labeled with +B (which is possible only if the accumulated weight is exactly
zero) and repeatedly performing in qk+5 the self-loop with weight zero.

On the other hand, assume that a play in G causes the accumulated weight
in some coordinate i, 1 ≤ i ≤ k, to get out of the bounds; we shall argue that
Player 2 has a winning strategy in G′ in this case. Should this happen during
a transition from q to q′ in G, then in G′, Player 2 will simply move from the
intermediate state q1 to q2, while the counter value of size b is added to the most
significant bits of the accumulated weight via adding the number 〈b〉k+1. It is
clear that it is possible to move from q2 to qk+5 only if the accumulated weight
is exactly 〈0̄〉. In order to achieve this value, the accumulated weight needs to
be decreased exactly b times via taking the loop q2, q3, . . . , qk+3, q2. Because of
Remark 1 we can see that only the bits relevant to each weight coordinate were

Energy Games in Multiweighted Automata 105

q q′

(w̄[1], . . . , w̄[k])
�

q

. . .

q′

(〈w̄[1]〉1 + . . . + 〈w̄[k]〉k, 0)

(i)

(max, 0)

(ii)

(−max, 0)

(iii)

(0, 〈max〉k+1)

(iv)

(0,−〈max〉k+1) (v)

(−1, 1 + 〈1〉k+1) (1,−〈1〉k+1)

(0, 〈b〉k+1)

(vi)

(0,−〈0̄〉)
(vii)

(0, 〈max〉k+1 + max)

(viii)

(0,−〈max〉k+1 −max)

(ix)

(0,−〈1〉k+1)

(0,−〈1〉1)

(0, 0)

(0,−〈1〉2)

(0, 0)

(0,−〈1〉3)

(0, 0)

(0,−〈1〉k)

(0, 0)

(0, 0)

Fig. 6. Simulation of a k-weighted transition by a 2-weighted automaton

changed before entering the loop, so it is impossible to zero all bits corresponding
to the coordinate i while preserving the separation bits 10. ��

Theorem 4. The problem ELU is polynomial time reducible to ELU(2).

Proof. The reduction idea is similar to the one in the proof of Theorem 3. The
main complication is that Player 2 has no states in control, hence checking the
underflow and overflow of weights has to be performed without resorting to an
opponent. As the original weight values are destroyed during such a check, we
need to employ a second weight for saving them.

Let A = (Q, q0,−→) be a k-weighted automaton and b̄ the upper bound vector
for the ELU problem. We construct a corresponding 2-weighted automaton A′ =
(Q′, qs,−→). Let w̄ denote the weight vectors in A and v̄[1], v̄[2] the two weights
in A′. As before for an input automaton of size n we may assume that all weights
in A have the same upper bound b̄ = (b, b, . . . , b) where b < 2n.

The upper bound b̄′ for the ELU(2) problem in A′ is given by b̄′ =
(max, 〈max〉k+1 + max) with max = 〈b〉k+1 + 〈b̄〉. The reason for reserving twice
as many bits in the second weight is that we need to save there two copies of the
first weight. Figure 6 shows how to simulate one transition in A by a number of
transitions in A′. From the newly added initial state qs we also add the transition

qs
(〈0̄〉,0)−−−−→ q0 which inserts the separation strings ‘10’ into the first weight.
We shall now argue that the automaton A′ faithfully simulates A. We will

examine the effect of the sequence of transitions between q and q′ added to the
automaton A′ (here numbered with (i), (ii), . . . , (ix) for convenience) and argue
at the same time that the part of the run between q and q′ in A′ is uniquely
determined. By construction, v̄[2] will be zero when entering q, and then the
transition (i) adds the encoded weights of the original transition in A to v̄[1].
Transition (ii) will add the upper bound to v̄[1], hence before this, we need to
take the loop with weight (−1, 1+ 〈1〉k+1) until v̄[1] equals zero, thereby copying
twice the value of v̄[1] to v̄[2] (first copy in the less significant bits, second copy
in the more significant bits). After the transitions (ii) and (iii), v̄[1] is then

106 U. Fahrenberg et al.

q q′

(w̄[1], . . . , w̄[k])
�

q

q1

q2 q′
· · ·

(w̄[1], . . . , w̄[k]) (2n, 2n, . . . , 2n) (−2n,−2n, . . . ,−2n)

(−1, 0, . . . , 0) (0, 0, . . . ,−1)

Fig. 7. Simulation of a transition in a LW game by a LU game

again at zero. Now transition (iv) wants to add the upper bound to the most
significant bits of v̄[2], hence before this, we need to take the loop with weight
(1,−〈1〉k+1) until the value of the most significant bits in v̄[2] is copied to v̄[1],
thereby restoring the original weight in v̄[1].

After the transitions (iv) and (v), we are in a situation where both coordinates
in the accumulated weight store the same number, and we can afford to destroy
the second copy during the verification phase for bound overflow/underflow per-
formed by transitions (vi), the long loop, and transitions (vii), (viii) and (ix).
This is identical to the construction in the previous proof (except for the extra
coordinate v̄[1] which is not updated). Provided that no violation of bounds was
detected, we will reach q′ with v̄[1] encoding the weight vector of A at q′ and
v̄[2] equal to zero.

Hence a transition between two states in A can be performed if and only if
the sequence of transitions between q and q′ in A′ can be performed. As the
reduction is clearly in polynomial time, this concludes the proof. ��

The next theorem finishes our considerations about reductions between different
variants of energy games.

Theorem 5. The problem GLW is polynomial time reducible to GLU, and ELW
is polynomial time reducible to ELU.

Proof. Let G = (Q1, Q2, q0,−→) be a k-weighted game and let b̄ be a given
upper bound vector for the GLW problem. We will construct a corresponding
k-weighted game G′ = (Q′

1, Q
′
2, q0,−→) where Q′

1 = Q1 ∪ {q1, q2 | q ∈ Q1} and
Q′

2 = Q2 that simulates G.
As before we assume that the weak upper bound is b̄ = (b, . . . , b) and that b

is represented using at most n bits, hence 0 ≤ b < 2n. The new upper bound for
G′ is given as b̄′ = (b′, . . . , b′) where b′ = 2n + b (in binary the most significant
bit 1 is appended to the binary encoding of b).

Each transition q
w̄−→ q′ in G is simulated by a number of transitions in G′

as seen in Figure 7. Moving from q to q1 adds w̄ to the accumulated weights
of G′ in exactly the same way as in G. In q1 Player 1 has the opportunity to
decrement independently all weight coordinates with an arbitrary value. The two
last transitions from q1 to q′ make sure that in all coordinates all weights are no
more than b, otherwise the upper bound b̄′ is exceeded.

It is now clear that if Player 1 has a winning strategy in G, then it has a
winning strategy also in G′ by lowering all weights above b to exactly b in the
state q1. On the other hand, if Player 1 does not have a winning strategy in G,
then it cannot win in G′ either. This can be observed by the fact that Player 1 is

Energy Games in Multiweighted Automata 107

Table 1. Complexity bounds; results obtained in this paper are in bold

Weights Type Existential Game

One L ∈ P [5] ∈ UP ∩ coUP [5]

LW ∈ P [5] ∈ NP ∩ coNP [5]

LU NP-hard [5], ∈ PSPACE [5] EXPTIME-complete [5]

Fixed
(k>1)

L NP-hard,
∈ k-EXPTIME [6] (Rem. 2)

EXPTIME-hard,
∈ k-EXPTIME [6] (Rem. 3)

LW NP-hard, ∈ PSPACE (Rem. 4)
PSPACE-complete for k ≥ 4

EXPTIME-complete
(Rem. 5)

LU PSPACE-complete (Rem. 4) EXPTIME-complete (Rem. 5)

Arbitrary L EXPSPACE-complete
(Thm. 1)

EXPSPACE-hard (from EL)
decidable [6]

LW PSPACE-complete (Thm. 1) EXPTIME-complete (Rem. 5)

LU PSPACE-complete (Thm. 1) EXPTIME-complete (Rem. 5)

forced to decrement all weights to at least b, and the player cannot benefit from
decrementing them to any lower number as this makes the position of Player 1
in the weak upper bound game only worse.

Since the reduction is clearly in polynomial time and it adds only existential
(Player 1) states, this concludes the proof. ��

Now, in combination with Theorems 3 and 4, we get the following corollary.

Corollary 1. The problems GLW and ELW are polynomial time reducible to
GLU(1) and ELU(2), respectively.

5 Summary of Complexity Results

The collection of complexity results and reductions between different types of
energy games and automata enables us to draw the conclusions presented in
Table 1. Notice that the LU problems are computationally easier than the L
problems for an arbitrary number of weights, even though they are harder than
the L problems in the 1-weighted case. The configuration space for the LU (and
LW) problems is bounded (see Theorem 1), whereas the same a priori does not
apply to the L problem.

Observe also that any universal problem with k weights can be solved by
checking the same problem for each coordinate independently. If the k-weighted
problem violates the bounds at some coordinate, so will do the 1-weighted prob-
lem projected on this coordinate. On the other hand, if some coordinate in the
1-weighted problem violates the bounds then so will do the k-weighted game,
as the same run leading to the violation in one coordinate leads to a violation
in the k-weighted game (unless the violation occurs in some other coordinate
before that). As AL(1), ALW(1) and ALU(1) are decidable in P [5], this implies
polynomial upper bounds also for all the other k-weighted universal problems.

108 U. Fahrenberg et al.

Remark 2. The problem ELU(1) is NP-hard, and Theorem 2 implies NP-
hardness for EL(2). The upper bound follows from the game version of the
problem (see also Remark 3).

Remark 3. The lower bound follows from EXPTIME-hardness of GLU(1) and
Theorem 2. The upper bound is due to a result in [6] showing (k−1)-EXPTIME
containment for GL(k) but for games where weight updates are only +1, 0, and
−1. We can reduce updates with arbitrary weights into this setting by standard
techniques (introducing intermediate transitions which repeatedly add or sub-
tract 1) but this causes an exponential blowup in the size of the system. Hence
the complexity upper bound increases by one exponent to k-EXPTIME.

Remark 4. The PSPACE upper bound follows from the results for an arbitrary
number of weights (Theorem 1). The PSPACE lower bound for ELU(2) is due to
the reduction in Theorem 4 and PSPACE-hardness of ELU. By using Theorem 2
we get PSPACE-hardness for ELW(4) because ELU(2) is PSPACE-hard, and we
also get NP-hardness of ELW(2) as ELU(1) is NP-hard.

Remark 5. The upper bound for GLU follows from Theorem 3 and the
EXPTIME upper bound for GLU(1); the upper bound for GLW follows ad-
ditionally from Theorem 5. The lower bound for GLU is obvious and for GLW
it is by Theorem 2 and the EXPTIME-hardness result for GLU(1).

6 Parameterized Existential Problems

In this section we shall focus in more detail on the existential one-player energy
games. So far we have studied decision problems where both the initial weight
vector and the upper bound were given as a part of the input. We will now
consider parameterized versions of the problems where, given a weighted au-
tomaton, we ask whether there is some initial weight vector v̄0 (and some upper
bound b̄ in case of ELU and ELW) such that the automaton has a run where the
accumulated weight satisfies the constraints imposed by the respective variant
of the problem.

Recent work by Chatterjee et al. [9] proves that the parameterized version
of the EL problem, asking if there is an initial weight vector such that the
accumulated weight of some run in the automaton stays (component-wise) above
zero, is decidable in polynomial time. Perhaps surprisingly, this result contrasts
with our EXPSPACE-hardness result for the EL problem where the initial weight
vector is fixed. An interesting fact, using Lemma 1, is that by the result of [9],
it is also decidable in polynomial time whether there is an initial marking such
that a given Petri net has an infinite run.

The situation can be, however, different when considering the problems ELU
and ELW. Depending on whether the parameterized upper bound b̄ is allowed to
appear as a weight in transitions of the given weighted automaton (see Section 1
for an example where the upper bound appears as a weight), we shall show below
that the problem is either decidable in polynomial time or undecidable.

Energy Games in Multiweighted Automata 109

We present first the positive result. Its proof is based on a polynomial time
algorithm for zero-weight cycle detection in multiweighted automata by Kosaraju
and Sullivan [14], and we acknowledge [9] where we found a pointer to this result,
which is mentioned there in connection with the parameterized EL problem.

Theorem 6. The parameterized ELU and ELW problems where the upper bound
parameter does not appear as a weight in the underlying weighted automaton are
decidable in polynomial time.

Proof. We shall first focus on the ELU problem. Notice that a parameterized
ELU problem has an infinite run (q0, v̄0), (q1, v̄1), . . . where 0̄ ≤ v̄i ≤ b̄ for all i
and some b̄ if and only if there are two indices j < k such that (qj , v̄j) = (qk, v̄k).
In other words, there is a cycle such that the accumulated weight on that cycle
is exactly 0̄. A result in [14] shows that the existence of such zero-weight cycle
is decidable in polynomial time.

Assume without loss of generality that the given weighted automaton contains
only states reachable (while disregarding the weights) from the initial state q0. It
is now clear that if the weighted automaton contains a zero-weight cycle then the
parameterized ELU problem has a solution by choosing an appropriate initial
weight vector v̄0 and a sufficiently large upper bound b̄ which enables us to
execute the whole cycle plus reach the cycle from the initial pair (q0, v̄0). On the
other hand, if there is no zero-weight cycle then the parameterized ELU does not
have a solution, as for any choice of v̄0 and b̄, every run will eventually violate
either the lower bound or the upper bound.

By similar arguments, it is easy to see that a parameterized ELW problem has
a solution if and only if the weighted automaton contains a nonnegative-weight
cycle. To check for the existence of such a cycle in polynomial time we can use the
trick described in [9]. We simply add to each state in the automaton a number of
self-loops with weights (−1, 0, . . . , 0), (0,−1, 0, . . . , 0), . . . (0, . . . , 0,−1) and then
ask for the existence of a zero-weight cycle. ��

However, if the upper bound can appear as a weight, we get undecidability.
Recall that a Minsky machine with two nonnegative counters c1 and c2 is a

sequence of labeled instructions 1 : inst1; 2 : inst2; . . . , n : instn where instn =
HALT and each insti, 1 ≤ i < n, is of one of the following forms:

(Inc) i: cj := cj + 1; goto k

(Test-Dec) i: if cj = 0 then goto k else (cj := cj - 1; goto �)

for j ∈ {1, 2} and 1 ≤ k, � ≤ n. Instructions of type (Inc) are called increment
instructions and of type (Test-Dec) are called test and decrement instructions.
A configuration is a triple (i, v1, v2) where i is the current instruction and v1

and v2 are the values of the counters c1 and c2 respectively. A computation step
between configurations is defined in the natural way. If starting from the initial
configuration (1, 0, 0) the machine reaches the instruction HALT then we say it
halts.

It is well known that the problem whether a given Minsky machine halts is
undecidable [15].

110 U. Fahrenberg et al.

Theorem 7. The parameterized ELU(2) and ELW(4) problems where the upper
bound parameter can appear as a weight in the underlying weighted automaton
are undecidable.

Proof. We provide a reduction from the undecidable halting problem of Minsky
machines [15] to ELU(3). Let 1 : inst1; 2 : inst2; . . . , n : instn be a Minsky
machine over the nonnegative counters c1 and c2. We construct a 3-weighted
automaton (Q, q0,−→) where Q = {qi, q

′
i | 0 ≤ i ≤ n} and where the initial

weight vector v̄0 and the upper bound b̄ are parameterized. The intuition is that
the first and second coordinates will record the accumulated values of counters
c1 and c2, respectively, and the third coordinate will be used for counting the
number of steps the machine performs. The transitions are of four types:

1. q0
+b̄−→ q′0

−b̄−→ q1

2. For each instruction i: cj := cj + 1; goto k, we add the transitions

– qi
(+1,0,+1)−−−−−−→ qk if j = 1, and qi

(0,+1,+1)−−−−−−→ qk if j = 2.
3. For each instruction i: if cj = 0 then goto k else (cj := cj - 1;

goto �), we add the transitions

– qi
(+b̄[1],0,0)−−−−−−−→ q′i

(−b̄[1],0,+1)−−−−−−−−→ qk and qi
(−1,0,+1)−−−−−−→ q� if j = 1, and

– qi
(0,+b̄[2],0)−−−−−−−→ q′i

(0,−b̄[2],+1)−−−−−−−−→ qk and qi
(0,−1,+1)−−−−−−→ q� if j = 2.

4. Finally, we add the loop qn
(0,0,0)−−−−→ qn.

It is now easy to argue that the constructed 3-weighted automaton has an infinite
run if and only if the Minsky machine halts.

From Theorem 4 we get that ELU(3) is reducible to ELU(2), hence the pa-
rameterized existential problem is undecidable for vectors of dimension two. By
Theorem 2 we can reduce ELU(2) to ELW(4), which implies the undecidability
of the problem also for weak upper bound and weight vectors of size at least
four. ��

The parameterized problems ELU(1) and ELW(k) for 1 ≤ k ≤ 3 where the
upper bound parameter can appear in the automata are open.

7 Extension to Timed Automata

It is natural to ask for extensions of the results presented in this article to multi-
weighted timed automata and games [1,3]. For the case with one weight and one
clock only, such extensions have been discussed in [4,5]. In [5] it has been shown
that the GLU(1) problem is already undecidable for one-clock multiweighted
timed automata. By an adaptation of the technique introduced in [5], we can
prove that the existential problem ELU with two weights and one clock is also
undecidable. As the reductions from Theorem 2 apply also to timed automata,
we altogether get the following undecidability results. The full version of the
proof is in the appendix.

Theorem 8. The problems ELU(2), EL(4) and ELW(4), and GLU(1), GL(2)
and GLW(2) are undecidable for one-clock multiweighted timed automata.

Energy Games in Multiweighted Automata 111

8 Conclusion and Future Work

We have presented an extension of different types of energy games to a setting
with multiple weights and established a comprehensive account of the complexity
of these problems. To derive our results, we have demonstrated a close connection
of these problems with infinite run problems in Petri nets, together with a number
of reductions between different variants of multiweighted energy games. We have
also studied a parameterized version of these problems and shown that depending
on the precise statement of the problem, it is either solvable in polynomial time
or undecidable. Finally, we have demonstrated that for the timed automata
extension of energy games, the lower and upper bound existential problem is
undecidable already for one clock and two weights.

There are two main problems left open. The first one deals with settling the
complexity of the one-weight lower and upper bound existential problem, which
is only known to be between NP and PSPACE. This is closely related to the
lower bound and weak upper bound problems with a fixed number of weights.
The second problem deals with the complexity of energy games with lower bound
only, as the present upper complexity bound depends on the number of weights
and does not have a matching lower bound. Further extensions with e.g. different
acceptance conditions and the optimization problems are also of future interest.

References

1. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
Theoretical Computer Science 318(3), 297–322 (2004)

2. Atig, M.F., Habermehl, P.: On Yen’s Path Logic for Petri Nets. In: Bournez, O.,
Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 51–63. Springer, Heidelberg (2009)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T., Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Au-
tomata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

4. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with ob-
servers under energy constraints. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp.
61–70. ACM, New York (2010)

5. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

6. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

7. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)

8. Chaloupka, J.: Z-reachability problem for games on 2-dimensional vector addition
systems with states is in P. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS,
vol. 6227, pp. 104–119. Springer, Heidelberg (2010)

112 U. Fahrenberg et al.

9. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: Proceedings of FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

10. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

11. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

12. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8(2), 109–113 (1979)

13. Esparza, J.: Decidability and complexity of Petri net problems — An introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

14. Kosaraju, S.R., Sullivan, G.: Detecting cycles in dynamic graphs in polynomial
time. In: Proceedings of the 20th Annual ACM Symposium on Theory of Comput-
ing (STOC 1988), pp. 398–406. ACM, New York (1988)

15. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Engle-
wood Cliffs (1967)

16. Yen, H.C.: A unified approach for deciding the existence of certain Petri net paths.
Information and Computation 96(1), 119–137 (1992)

17. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor-
ertical Computer Science 158(1&2), 343–359 (1996)

Energy Games in Multiweighted Automata 113

Appendix

Definition of a k-weighted timed automaton. Let Φ(C) be the standard set of
(diagonal-free) clock constraints over a finite set of clocks C given by conjunctions
of constraints of the form x �� c with x ∈ C, c ∈ �, and �� any of the relations
≤, <, =, >, and ≥.

A k-weighted timed automaton is a tuple T = (L, �0, C, E, r, w), where L is
a finite set of locations, �0 ∈ L is the initial location, C is a finite set of clocks,
E ⊆ L × Φ(C) × 2C × L is a finite set of edges, and r : L → �

k, w : E → �
k

assign weight vectors to locations and edges.
Note that we allow weight updates on edges here; as shown in [4], this can have

a significant influence on the complexity of the problems one wants to consider.
We also use the standard notation v |= g for the fact that a valuation v :

C → �≥0 satisfies the clock constraint g ∈ Φ(C), v + t for the valuation given
by (v + t)(x) = v(x) + t, and v[R] for the valuation with clocks in R reset to
value 0.

The semantics of a k-weighted timed automaton is now given by a k-weighted
automaton with states Q = L×�C

≥0 and transitions

(�, v)
t·r(�)−→ (�, v + t) for all t ∈ �≥0 (delay),

(�, v)
w(e)−→ (�′, v′) for all e = (�, g, R, �′) ∈ E s.t. v |= g and v′ = v[R] (switch).

We recall the fact that weights on delay transitions may be non-integer real
numbers; formally we have to change the definition of a k-weighted game to
allow an infinite weighted transition relation −→ ⊆ Q × �k × Q. A run in a
multiweighted timed automaton is a sequence of alternating switch and delay
transitions in the corresponding multiweighted automaton.

Proof (of Theorem 8). We start by proving the case of ELU(2). The proof is
by reduction from Minsky machines to multiweighted timed automata, based
on the technique of the proof of Theorem 17 in [5]. We construct a one-clock
2-multiweighted timed automaton T that simulates a Minsky machine such that
the Minsky machine loops if and only if T is a positive instance of the ELU(2)
problem.

The values c1, c2 of the counters will be encoded by the accumulated weight
vector w̄ = (5− 2−c1 , 5− 2−c2) and T will start with an initial weight vector of
v̄0 = (4, 4), and the upper bound vector is b̄ = (5, 5).

In order to simulate the instructions of the Minsky machine we now describe
two different modules of T .

Increment and decrement: Figure 8 shows the general module used for incre-
menting and decrementing counter c1; by interchanging the two weights one
obtains the module for c2. Note that the second component w̄[2] of the weight
vector is not changed in the module, and we assume that w̄[1] = 5 − e when
entering the module and 0 ≤ en ≤ 30. We now prove that when exiting the
module, w̄[1] = 5− en

6 .

114 U. Fahrenberg et al.

(−6, 0)

�1

(1, 0) (30, 0)

�2

(−1, 0) (−n, 0)

�3

x := 0

(5, 0) (−5, 0) (−5, 0) (5, 0)

x = 1

Fig. 8. The module for incrementing (n = 3) and decrementing (n = 12)

(0, 0) (0, 0) Module mk

Dec (0, 0) Module m�

(1, 0) (−1, 0)

(0, 0)
(−4, 0) (4, 0)

Fig. 9. The test-decrement module

Any legal run must decrease w̄[1] to value 0 while delaying in �1 (otherwise
adding 5 to w̄[1] in the following transition exceeds the upper bound), hence the
clock x has the value 5−e

6 when leaving �1. We cannot delay in the next location,
as this would exceed the upper bound, hence we arrive in �2 with x = 5−e

6 and
w̄[1] = 0. We must delay in �2 until w̄[1] has the value 5, otherwise the following
transition would exceed the lower bound, hence the delay in �2 is precisely 1/6

time units. Location �3 is thus entered with x = 1 − e
6 and w̄[1] = 5, and after

delaying for e/6 time units, w̄[1] = 5− en
6 .

Hence instantiating n = 3 converts an input of w̄[1] = 5 − e to w̄[1] = 5− e
2 ,

thus incrementing counter c1. Likewise, for n = 12 counter c1 is decremented.

The test-decrement module: We have shown how to implement a module which
increments a counter, so we miss to construct a module performing the instruc-
tion if c1 = 0 then goto k else (c1 := c1 - 1; goto �). This module is
displayed in Figure 9; the construction for the corresponding c2 module is sym-
metric.

We now argue that the module acts as claimed. If c1 = 0 when entering,
i.e. w̄[1] = 4, then the upper path can be taken, leading to Module mk with
counter value c1 = 0 (and c2 unchanged). On the other hand, attempting to take
the lower path exits the Dec module with a value w̄[1] = 3, hence the following
transition leads to a violation of the lower bound.

If c1 ≥ 1, i.e. w̄[1] ≥ 4.5, when entering the module, then the (1, 0) transition
in the upper path will violate the upper bound. In the lower path, the Dec module
is left with w̄[1] ≥ 4 and c1 decreased by one, hence Module m� is entered with
the correct c1 value.

We have shown how to faithfully simulate a Minsky machine by a one-clock
2-multiweighted timed automaton such that the Minsky machine has an infinite
computation if and only if the timed automaton has an infinite alternating run.

By undecidability of the halting problem for Minsky machines, this concludes
the proof for the case of ELU(2).

Energy Games in Multiweighted Automata 115

For the case of EL(4) and ELW(4) we observe that the construction in the
proof of Theorem 2 can be adapted also to multiweighted timed automata. Given
a k-weighted timed automaton T = (L, �0, C, I, E, r, w) and an upper bound vec-
tor b̄, we construct a 2k-weighted timed automaton T ′ = (L′, �′0, C, I ′, E′, r′, w′)
with L′ = L & {�′0}, I ′(�) = I(�) for � ∈ L, I ′(�′0) = (

∧
x∈C x = 0),

E′ = E ∪ {(�′0, (
∧

x∈C x = 0), ∅, �0)}, r′(�′0) = 0̄, and

r′(�) = (r̄[1], . . . , r̄[k],−r̄[1], . . . ,−r̄[k]) for � ∈ L and r̄ = r(�),
w′(�, g, R, �′) = (w̄[1], . . . , w̄[k],−w̄[1], . . . ,−w̄[k])

for (�, g, R, �′) ∈ E and w̄ = w(�, g, R, �′),
w′(�′0, g, R, �0) = (0, . . . , 0, b̄[1], . . . , b̄[k]).

Then T is a positive instance of the ELU problem with an upper bound vector
b̄ if and only if T ′ is a positive instance of the EL or ELW (with weak upper
bound vector b̄) problems. The claim then follows from Theorem 8.

The results for the game versions of the problems follow from undecidability
of GLU(1) [5] together with Theorem 2. ��

Intersection Types
for the Resource Control Lambda Calculi

Silvia Ghilezan1,�, Jelena Ivetić1,�, Pierre Lescanne2, and Silvia Likavec3,�

1 University of Novi Sad, Faculty of Technical Sciences, Serbia
gsilvia@uns.ac.rs, jelenaivetic@uns.ac.rs

2 University of Lyon, École Normal Supérieure de Lyon, France
pierre.lescanne@ens-lyon.fr

3 Dipartimento di Informatica, Università di Torino, Italy
likavec@di.unito.it

Abstract. We propose intersection type assignment systems for two resource
control term calculi: the lambda calculus and the sequent lambda calculus with
explicit operators for weakening and contraction. These resource control calculi,
λ� and λGtz

� , respectively, capture the computational content of intuitionistic nat-
ural deduction and intuitionistic sequent logic with explicit structural rules. Our
main contribution is the characterisation of strong normalisation of reductions in
both calculi. We first prove that typability implies strong normalisation in λ� by
adapting the reducibility method. Then we prove that typability implies strong
normalisation in λGtz

� by using a combination of well-orders and a suitable em-

bedding of λGtz
� -terms into λ�-terms which preserves types and enables the sim-

ulation of all its reductions by the operational semantics of the λ�-calculus. Fi-
nally, we prove that strong normalisation implies typability in both systems using
head subject expansion.

Introduction

It is well known that simply typed λ-calculus captures the computational content of
intuitionistic natural deduction through Curry-Howard correspondence [21]. This con-
nection between logic and computation can be extended to other calculi and logical
systems [19]: Parigot’s λµ-calculus [28] corresponds to classical natural deduction,
whereas in the realm of sequent calculus, Herbelin’s λ-calculus [20], Espı́rito Santo’s
λGtz-calculus [14], Barbanera and Berardi’s symmetric calculus [3] and Curien and Her-
belin’s λµµ̃-calculus [11] correspond to its intuitionistic and classical versions. Extend-
ing λ-calculus (λGtz-calculus) with explicit operators for weakening and contraction
brings the same correspondence to intuitionistic natural deduction (intuitionistic se-
quent calculus) with explicit structural rules, as investigated in [22,23,18].

Among many extensions of the simple type discipline is the one with intersection
types, originally introduced in [9,10,29,33] in order to characterise termination prop-
erties of term calculi [36,16,17]. The extension of Curry-Howard correspondence to

� Partially supported by the Ministry of Education and Science of Serbia, projects III44006 and
ON174026.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 116–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Intersection Types for the Resource Control Lambda Calculi 117

other formalisms brought the need for intersection types into many different settings
[13,24,25,26].

Our work is inspired by Kesner and Lengrand’s work on resource operators for λ-
calculus [22]. Their linear λlxr calculus introduces operators for substitution, erasure
and duplication, preserving at the same time strong normalisation, confluence and sub-
ject reduction property of its predecessor λx [8].

Explicit control of erasure and duplication leads to decomposing of reduction steps
into more atomic steps, thus revealing the details of computation which are usually left
implicit. Since erasing and duplicating of (sub)terms essentially changes the structure
of a program, it is important to see how this mechanism really works and to be able to
control this part of computation. We choose a direct approach to term calculi, namely
lambda calculus and sequent lambda calculus, rather than taking a more common path
through linear logic [1,7]. In practice, for instance in the description of compilers by
rules with binders [31,32], the implementation of substitutions of linear variables by
inlining is simple and efficient when substitution of duplicated variables requires the
cumbersome and time consuming mechanism of pointers and it is therefore important
to tightly control duplication. On the other hand, precise control of erasing does not
require a garbage collector and prevents memory leaking.

We introduce the intersection types into λ� and λGtz
� , λ-calculus and λGtz-calculus

with explicit rules for weakening and contraction. To the best of our knowledge, this is
a first treatment of intersection types in the presence of resource control operators. Our
intersection type assignment systems λ�∩ and λGtz

� ∩ integrate intersection into logical
rules, thus preserving syntax-directedness of the system. We assign restricted form of
intersection types, namely strict types, therefore minimizing the need for pre-order on
types. Using these intersection type assignment systems we prove that terms in both
calculi enjoy the strong normalisation property if and only if they are typable.

We first prove that typability implies strong normalisation in λ�-calculus by adapt-
ing the reducibility method for explicit resource control operators. Then we prove
strong normalisation for λGtz

� by using a combination of well-orders and a suitable
embedding of λGtz

� -terms into λ�-terms which preserves types and enables the sim-
ulation of all its reductions by the operational semantics of the λ�-calculus. Finally, we
prove that strong normalisation implies typability in both systems using head subject
expansion.

The paper is organised as follows. In Section 1 we extend the λ-calculus and λGtz-
calculus with explicit operators for weakening and contraction obtaining λ�-calculus
and λGtz

� -calculus, respectively. Intersection type assignment systems with strict types
are introduced to these calculi in Section 2. In Section 3 we first prove that typability
implies strong normalization in λ�-calculus by adapting the reducibility method. Then
we prove that typability implies strong normalization in λGtz

� -calculus by using a com-
bination of well-orders and a suitable embedding of λGtz

� -terms into λ�-terms which
preserves types and enables the simulation of all its reductions by the operational se-
mantics of the λ�-calculus. Section 4 gives a proof of strong normalization of typable
terms for both calculi using head subject expansion. We conclude in Section 5.

118 S. Ghilezan et al.

1 Untyped Resource Control Calculi

1.1 Resource Control Lambda Calculus λ�

The resource control lambda calculus, λ�, is an extension of the λ-calculus with ex-
plicit operators for weakening and contraction. It corresponds to the λcw-calculus of
Kesner and Renaud, proposed in [23] as a vertex of ”the prismoid of resources”.

The pre-terms of λ�-calculus are given by the following abstract syntax:

Pre-terms f ::= x |λx. f | f f |x(f |x <x1
x2 f

where x ranges over a denumerable set of term variables. λx. f is an abstraction, f f is an
application, x(f is a weakening and x <x1

x2 f is a contraction. The contraction operator
is assumed to be insensitive to order of the arguments x1 and x2 i.e. x <x1

x2 f = x <x2
x1 f .

The set of free variables of a pre-term f , denoted by Fv(f), is defined as follows:
Fv(x) = x; Fv(λx. f) = Fv(f)\ {x}; Fv(f g) = Fv(f)∪Fv(g);
Fv(x(f) = {x}∪Fv(f); Fv(x <x1

x2 f) = {x}∪Fv(f)\ {x1,x2}.
In x <x1

x2 f , the contraction binds the variables x1 and x2 and a free variable x is intro-
duced. The operator x(f also introduces a free variable x. In order to avoid parentheses,
we let the scope of all binders extend to the right as much as possible.

The set of λ�-terms, denoted by Λ� and ranged over by M,N,P,M1, is a subset
of the set of pre-terms, defined in Figure 1.

x ∈ Λ�

f ∈ Λ� x ∈ Fv(f)

λx. f ∈ Λ�

f ∈ Λ� g ∈ Λ� Fv(f)∩Fv(g) = /0
f g ∈ Λ�

f ∈ Λ� x /∈ Fv(f)
x(f ∈ Λ�

f ∈ Λ� x1,x2 ∈ Fv(f) x /∈ Fv(f)

x <x1
x2 f ∈ Λ�

Fig. 1. Λ�: λ�-terms

Informally, we say that a term is a pre-term in which in every subterm every free
variable occurs exactly once, and every binder binds (exactly one occurrence of) a free
variable. This notion corresponds to the notion of linear terms in [22]. In that sense,
only linear expressions are in the focus of our investigation. This assumption is not a
restriction, since every non linear λ-term has its linear correspondent, as illustrated by
the following example.

Example 1. Pre-terms λx.y and λx.xx are not λ�-terms, on the other hand pre-terms
λx.(x(y) and λx.x <x1

x2 (x1x2) are λ�-terms.
In the sequel, we use the notation X (M for x1(... xn(M and X <Y

Z M for x1 <y1
z1

... xn <
yn
zn M, where X , Y and Z are lists of the size n, consisting of all distinct variables

x1, ...,xn,y1, ...,yn,z1, ...,zn.

Intersection Types for the Resource Control Lambda Calculi 119

(β) (λx.M)N → M[N/x]

(γ1) x <x1
x2
(λy.M) → λy.x <x1

x2
M (ω1) λx.(y�M) → y� (λx.M), x �= y

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 ∈ Fv(M) (ω2) (x�M)N → x� (MN)

(γ3) x <x1
x2
(MN) → M(x <x1

x2
N), if x1,x2 ∈ Fv(N) (ω3) M(x�N) → x� (MN)

(γω1) x <x1
x2
(y�M) → y� (x <x1

x2
M), y �= x1,x2 (γω2) x <x1

x2
(x1 �M) → M[x/x2]

Fig. 2. Reduction rules of λ�-calculus

The reduction rules of λ�-calculus are presented in Figure 2.
The inductive definition of the meta operator [/], representing the substitution of

free variables, is given in Figure 3. In this definition, the terms N1 and N2 are obtained
from N by renaming of all the free variables in N by fresh variables.

x[N/x] � N (y(M)[N/x] � y(M[N/x], x �= y
(λy.M)[N/x] � λy.M[N/x], x �= y (x(M)[N/x] � Fv(N)(M
(MP)[N/x] � M[N/x]P, x ∈ Fv(M) (y <

y1
y2 M)[N/x] � y <

y1
y2 M[N/x], x �= y

(MP)[N/x] � MP[N/x], x ∈ Fv(P) (x <x1
x2 M)[N/x] � Fv(N) <

Fv(N1)
Fv(N2)

M[N1/x1][N2/x2]

Fig. 3. Substitution in λ�-calculus

In the λ�, one works modulo equivalencies given in Figure 4.

x((y(M) ≡ y((x(M) x <x1
x2 M ≡ x <x2

x1 M
x <

y
z (y <u

v M) ≡ x <
y
u (y <z

v M) x <x1
x2 (y <

y1
y2 M) ≡ y <

y1
y2 (x <x1

x2 M), x �= y1,y2, y �= x1,x2
M[(y(N)/x] ≡ y(M[N/x] M[(y <

y1
y2 N)/x] ≡ y <

y1
y2 M[N/x], y1,y2 ∈ Fv(N)

Fig. 4. Equivalences in λ�-calculus

1.2 Resource Control Sequent Lambda Calculus λGtz
�

The resource control lambda Gentzen calculus λGtz
� is derived from the λGtz-calculus

(more precisely its confluent sub-calculus λGtz
V) by adding the explicit operators for

weakening and contraction. It is proposed in [18]. The abstract syntax of λGtz
� pre-

expressions is the following:

Pre-values F ::= x |λx. f |x(f |x <x1
x2 f

Pre-terms f ::= F | f c
Pre-contexts c ::= x̂. f | f :: c |x(c |x <x1

x2 c

where x ranges over a denumerable set of term variables.
A pre-value can be a variable, an abstraction, a weakening or a contraction; a pre-

term is either a value or a cut (an application). A pre-context is one of the following:
a selection, a context constructor (usually called cons), a weakening on pre-context or a

120 S. Ghilezan et al.

contraction on a pre-context. Pre-terms and pre-contexts are together referred to as the
pre-expressions and will be ranged over by E . Pre-contexts x(c and x <x1

x2 c behave
exactly like corresponding pre-terms x(f and x <x1

x2 f in the untyped calculus, so they
will not be treated separately. The set of free variables of a pre-expression is defined
analogously to the free variables in λ�-calculus with the following additions:

Fv(f c) = Fv(f)∪Fv(c); Fv(x̂. f) = Fv(f)\ {x}; Fv(f :: c) = Fv(f)∪Fv(c).
Like in the case of λ�-calculus, the set of λGtz

� -expressions (namely values, terms and
contexts), denoted by ΛGtz

� ∪ΛGtz
�,C, is a subset of the set of pre-expressions, defined as

in Figure 1 plus:

f ∈ ΛGtz
� x ∈ Fv(f)

x̂. f ∈ ΛGtz
�,C

f ∈ ΛGtz
� c ∈ ΛGtz

�,C Fv(f)∩Fv(c) = /0

f :: c ∈ ΛGtz
�,C

Values are denoted by T, terms by t,u,v..., contexts by k,k′, ... and expressions by e,e′.
The computation over the set of λGtz

� -expressions reflects the cut-elimination process.
Four groups of reductions in λGtz

� -calculus are given in Figure 5.

(β) (λx.t)(u :: k) → u(x̂.tk) (σ) T (x̂.v) → v[T/x]
(π) (tk)k′ → t(k@k′) (μ) x̂.xk → k

(γ1) x <x1
x2
(λy.t) → λy.x <x1

x2
t (ω1) λx.(y� t) → y� (λx.t), x �= y

(γ2) x <x1
x2
(tk) → (x <x1

x2
t)k, if x1,x2 ∈ Fv(t) (ω2) (x� t)k → x� (tk)

(γ3) x <x1
x2
(tk) → t(x <x1

x2
k), if x1,x2 ∈ Fv(k) (ω3) t(x� k) → x� (tk)

(γ4) x <x1
x2
(ŷ.t) → ŷ.(x <x1

x2
t) (ω4) x̂.(y� t) → y� (x̂.t), x �= y

(γ5) x <x1
x2
(t :: k) → (x <x1

x2
t) :: k, if x1,x2 ∈ Fv(t) (ω5) (x� t) :: k → x� (t :: k)

(γ6) x <x1
x2
(t :: k) → t :: (x <x1

x2
k), if x1,x2 ∈ Fv(k) (ω6) t :: (x� k) → x� (t :: k)

(γω1) x <x1
x2
(y� e) → y� (x <x1

x2
e) x1 �= y �= x2 (γω2) x <x1

x2
(x1 � e) → e[x/x2]

Fig. 5. Reduction rules of λGtz
� -calculus

The first group consists of β, π, σ and µ reductions from λGtz. New reductions are
added to deal with explicit contraction (γ reductions) and weakening (ω reductions). The
groups of γ and ω reductions consist of rules that perform propagation of contraction
into the expression and extraction of weakening out of the expression. This discipline
allows us to optimize the computation by delaying the duplication of terms on the one
hand, and by performing the erasure of terms as soon as possible on the other.

The meta-substitution v[T/x] is defined as in Figure 3 with the following additions:

(tk)[u/x] = t[u/x]k, x ∈ Fv(t) (tk)[u/x] = tk[u/x], x ∈ Fv(k)
(ŷ.t)[u/x] = ŷ.t[u/x]

(t :: k)[u/x] = t[u/x] :: k, x ∈ Fv(t) (t :: k)[u/x] = t :: k[u/x], x ∈ Fv(k)

In the π rule, the meta-operator @, called append, joins two contexts and is defined as:

(x̂.t)@k′ = x̂.tk′ (u :: k)@k′ = u :: (k@k′)
(x(k)@k′ = x((k@k′) (x <

y
z k)@k′ = x <

y
z (k@k′).

Intersection Types for the Resource Control Lambda Calculi 121

2 Intersection Type Assignment Systems for Resource Control

In this section we introduce intersection type assignment systems which assign strict
types to λ�-terms and λGtz

� -expressions. Strict types were proposed in [36] and already
used in [15] for characterisation of strong normalisation in λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α→ σ
Types α ::= σ | σ∩α

where p ranges over a denumerable set of type atoms. We denote types with α,β,γ...
and strict types with σ,τ,υ.... We assume that intersection operator is idempotent, com-
mutative and associative. Due to this property, equivalent terms have the same type.

Definition 1

(i) A basic type assignment is an expression of the form x : α, where x is a term
variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all term
variables are different. Dom(Γ) = {x1, . . . ,xn}. A basis extension Γ,x : α denotes
the set Γ∪{x : α}, where x �∈ Dom(Γ).

(iii) A bases intersection is ∩Γi = {x : ∩αi | x : αi ∈ Γi}, where for all i, j, Dom(Γi) =
Dom(Γ j).

2.1 Intersection Types for λ�

The type assignment system λ�∩ is given in Figure 6.

x : ∩σi � x : σi
(Ax)

Γ,x : α �M : σ
Γ � λx.M : α→ σ

(→I)
Γ �M : ∩αi → σ Δi � N : αi

Γ,∩Δi �MN : σ
(→E)

Γ,x : α,y : β �M : σ
Γ,z : α∩β � z <x

y M : σ
(Cont) Γ �M : σ

Γ,x : α � x(M : σ
(Weak)

Fig. 6. λ�∩: λ�-calculus with intersection types

The Generation lemma induced by the proposed system is the following:

Proposition 2 (Generation lemma for λ�∩)

(i) Γ � λx.M : β iff there exist α and σ such that β≡ α→ σ and Γ,x : α �M : σ.
(ii) Γ �MN : σ iff Γ = Γ′,∩Δi and there exists a type ∩αi such that

Γ′ �M : ∩αi → σ and for all i Δi � N : αi.

122 S. Ghilezan et al.

(iii) Γ � z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β

and Γ′,x : α,y : β �M : σ.
(iv) Γ � x(M : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ �M : σ.

The proposed system satisfies the following properties.

Proposition 3. If M →M′ then Fv(M) = Fv(M′).

Proposition 4. (i) If Γ �M : , then Dom(Γ) = Fv(M).
(ii) If Γ1 �M : σ and Γ2 �M : σ , then Γ1∩Γ2 �M : σ .

Proposition 5 (Substitution lemma). If Γ,x : ∩αi �M : σ and for all i, Δi � N : αi,
then Γ,∩Δi �M[N/x] : σ.

Proposition 6 (Subject reduction and equivalence). For every λ�-term M: if
Γ �M : σ and M→M′ or M ≡M, then Γ �M′ : σ.

2.2 Intersection Types for λGtz
�

The type assignment system λGtz
� ∩ is given in Figure 7.

x : ∩σi � x : σi
(Ax)

Γ,x : α � t : σ
Γ � λx.t : α→ σ

(→R)
Γi � t : αi Δ;σ � k : τ
∩Γi,Δ;∩αi → σ � t :: k : τ

(→L)

Γi � t : αi Δ;∩αi � k : σ
∩Γi,Δ � tk : σ

(Cut)
Γ,x : α � t : σ
Γ;α � x̂.t : σ

(Sel)

Γ,x : α,y : β � t : σ
Γ,z : α∩β � z <x

y t : σ
(Contt)

Γ � t : σ
Γ,x : α � x(t : σ

(Weakt)

Γ,x : α,y : β;γ � k : σ
Γ,z : α∩β;γ � z <x

y k : σ
(Contk)

Γ;γ � k : σ
Γ,x : α;γ � x(k : σ

(Weakk)

Fig. 7. λGtz
� ∩: λGtz

� -calculus with intersection types

The Generation lemma induced by the proposed system is the following:

Proposition 7 (Generation lemma for λGtz
� ∩)

(i) Γ � λx.t : β iff there exist α and σ such that β≡ α→ σ and Γ,x : α � t : σ.
(ii) Γ;γ � t :: k : τ iff Γ =∩Γi,Δ, γ≡∩αi → σ, and Γi � t : αi,∀i and Δ;σ � k : τ .

(iii) Γ � tk : σ iff Γ = ∩Γi,Δ and there exists a type ∩αi such that Γi � t : αi, ∀i
and Δ;∩αi � k : σ.

(iv) Γ;α � x̂.t : σ iff Γ,x : α � t : σ.

Intersection Types for the Resource Control Lambda Calculi 123

(v) Γ � z <x
y t : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β � t : σ.
(vi) Γ � x(t : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ � t : σ.

(vii) Γ;ε � z <x
y k : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ,x : α,y : β;ε � k : σ.
(viii) Γ;γ � x(k : σ iff there exist Γ,β such that Γ = Γ′,x : β and Γ;γ � k : σ.

3 Typability⇒ SN in Both Systems

3.1 Typeability⇒ SN in λ�∩

The main idea of the reducibility method, introduced in Tait [35] for proving the strong
normalization property for the simply typed lambda calculus, is to interpret types by
suitable sets of lambda terms which satisfy certain realizability properties.

In the remainder of the paper we consider Λ� as the applicative structure whose
domain are λ�-terms and where the application is just the application of λ�-terms. We
recall some notions from [4]. The set of strongly normalizing terms is defined as

SN = {M ∈ Λ� | ¬(∃M1,M2, . . . ∈ Λ�)M→M1 →M2 → . . .}.

Definition 8. For M ,N ⊆ Λ�, we define M �� N ⊆ Λ� as

M �� N = {N ∈ Λ� | ∀M ∈M . (f v(M)∩ f v(N) = /0 ⇒ NM ∈N)}.

Definition 9. The type interpretation [[−]] : Types→ 2Λ� is defined by:

(I1) [[p]] = SN , where p is a type atom;
(I2) [[σ∩α]] = [[σ]]∩ [[α]];
(I3) [[α→ σ]] = ([[α]] �� [[σ]]) = {M ∈ Λ� | ∀N ∈ [[α]] MN ∈ [[σ]]}.

Next, we introduce the notions of saturation property, obtained by extending the sat-
uration property given in [5], and weakening property. To this aim we introduce the
following notation: if R denotes the set of reductions given in Figure 2, r ∈ R \ (β),
then redexr (contrr) denote the left (right) hand side of the reduction r (its redex and
contractum, respectively).

Definition 10

– A set X ⊆ SN satisfies the saturation property, notation SAT(X), if
• VAR(X): (∀n≥ 0) (∀x ∈ var) (∀M1, . . . ,Mn ∈ SN)

(x∩ f v(M1)∩ . . .∩ f v(Mn) = /0 ⇒ xM1 . . .Mn ∈ X .
• SATβ(X):1 (∀n≥ 0)(∀M1, . . . ,Mn ∈ SN)

M[N/x]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X .
• SATr(X): (∀n≥ 0)(∀M1, . . . ,Mn ∈ SN)

contrrM1 . . .Mn ∈ X ⇒ redexrM1 . . .Mn ∈ X .

1 Notice that we do not need a condition that N ∈ SN in SATβ(X) since we only work with
linear terms, hence if the contractum M[N/x] ∈ SN , then N ∈ SN .

124 S. Ghilezan et al.

– A set X ⊆ SN satisfies the weakening property, notation WEAK(X),
• WEAK(X): (∀x ∈ var) M ∈ X , x �∈ Fv(M) ⇒ x(M ∈ X .

Definition 11 (-Saturated set). A set X ⊆ Λ� is called 	-saturated, if it satisfies
the saturation and weakening properties.

Proposition 12. Let M ,N ⊆ Λ�.

(i) SN is 	-saturated.
(ii) If M and N are 	-saturated, then M �� N is 	-saturated.

(iii) If M and N are 	-saturated, then M ∩N is 	-saturated.
(iv) For all types ϕ ∈ Types, [[ϕ]] is 	-saturated.

We further define a valuation of terms [[−]]ρ : Λ� → Λ� and the semantic satisfiability
relation |= which connects the type interpretation with the term valuation.

Definition 13. Let ρ : var→Λ� be a valuation of term variables in Λ�. For M ∈Λ�,
with Fv(M) = x1, . . . ,xn the term valuation [[−]]ρ : Λ� → Λ� is defined as:

(i) [[x]]ρ = ρ(x);

(ii) [[MN]]ρ≡
{

[[M]]ρ[[N]]ρ, if Fv([[M]]ρ)∩Fv([[N]]ρ)= /0
Y <Y ′

Y ′′ ([[M]]ρ(Y ′/Y)[[N]]ρ(Y ′′/Y)), if Fv([[M]]ρ)∩Fv([[N]]ρ)={y1, . . . ,yk}
where

Y = {y1, . . . ,yk}, Y ′ = {y′1, . . . ,y′k} and Y ′′ = {y′′1 , . . . ,y′′k} and
ρ(Y ′/Y) denotes ρ(y′1/y1, . . . ,y′k/yk) (similarly for ρ(Y ′′/Y)).

(iii) [[λx.M]]ρ ≡ λx.[[M]]ρ(x/x).
(iv) [[x(M]]ρ ≡ Fv(ρ(x))([[M]]ρ.
(v) [[z <x

y M]]ρ ≡ Fv(ρ(z)) <
Fv(N1)
Fv(N2) [[M]]ρ(N1/x,N2/y)

where N1 and N2 are obtained from ρ(z) by renaming its free variables.

Lemma 14

(i) [[M]]ρ(N/x) ≡ [[M]]ρ(x/x)[N/x].
(ii) [[z <x

y M]]ρ(N/z) ≡ (z <x
y [[M]]ρ(x/x,y/y))[N/z].

(iii) [[M]]ρ(N/x,N/y) ≡ Fv(N) <
Fv(N′)
Fv(N′′) [[M]]ρ(N′/x,N′′/y), where N′ and N′′ are obtained

from N by renaming all free variables of N with fresh variables.

Proof. By induction on the construction of M. For the cases (i)-(iv) we consider only
the base cases when M is a variable, other cases being straightforward using IH.

(i) [[y]]ρ(N/x) = y[N/x,ρ(y)/y] = ρ(y).
[[y]]ρ(x/x)[N/x] = y[x/x,ρ(y)/y][N/x] = ρ(y).

(ii) Using (i) and the definition of substitution.
[[z <x

y M]]ρ(N/z) = [[z <x
y M]]ρ(z/z)[N/z] = (z <x

y [[M]]ρ(x/x,y/y))[N/z] =

Fv(N) <
Fv(N1)
Fv(N2) [[M]]ρ(x/x,y/y)[N1/x][N2/y] = Fv(N) <

Fv(N1)
Fv(N2) [[M]]ρ(N1/x,N2/y) =

Fv(N) <
Fv(N1)
Fv(N2) [[M]]ρ(x/x,y/y)[N1/x][N2/y] = (z <x

y [[M]]ρ(x/x,y/y))[N/z].
(iii) By straightforward application od Definition 13.

Intersection Types for the Resource Control Lambda Calculi 125

Definition 15

(i) ρ |= M : α ⇐⇒ [[M]]ρ ∈ [[α]];
(ii) ρ |= Γ ⇐⇒ (∀(x : α) ∈ Γ) ρ(x) ∈ [[α]];

(iii) Γ |= M : α ⇐⇒ (∀ρ,ρ |= Γ⇒ ρ |= M : α).

Proposition 16 (Soundness of λ�∩). If Γ �M : α, then Γ |= M : α.

Proof. By induction on the derivation of Γ �M : α. The cases (Ax) and (→I) are anal-
ogous to the corresponding rules in ordinary λ calculus. We prove the statement for the
remaining inference rules.

– The last rule applied is (→E), i.e., Γ �M : ∩αi → σ,Δi �N : αi ⇒ Γ,∩Δi �MN : σ.
By the IH Γ |= M : ∩αi → σ and Δi |= N : αi,∀i. Suppose that ρ |= Γ,∩Δi, then
ρ |= Γ and ρ |= ∩Δi. From ρ |= Γ, using the IH we deduce that [[M]]ρ ∈ [[∩αi → σ]].
From ρ |= ∩Δi, we deduce that ρ |= Δi,∀i (since every variable x : α ∈ ∩Δi is of
the form x : ∩αi,x : αi ∈ Δi), hence using the IH we deduce that [[N]]ρ ∈ [[αi]],∀i.
This means that [[N]]ρ ∈ ∩[[αi]]ρ = [[∩αi]]ρ. Using Definition 13(ii) we obtain that
[[M]]ρ[[N]]ρ = [[MN]]ρ ∈ [[σ]].

– The last rule applied is (Weak), i.e., Γ � M : α ⇒ Γ,x : β � x(M : α. By the IH
Γ |= M : α. Suppose that ρ |= Γ,x : β⇔ ρ |= Γ and ρ |= x : β. From ρ |= Γ we obtain
[[M]]ρ ∈ [[α]]. Using the weakening property WEAK and Definition 13(iv) we obtain
Fv(ρ(x))([[M]]ρ = [[x(M]]ρ ∈ [[α]], since Fv(ρ(x))∩Fv([[M]]ρ) = /0.

– The last rule applied is (Cont), i.e., Γ,x : α,y : β � M : γ ⇒ Γ,z : α∩ β � z <x
y

M : γ. By the IH Γ,x : α,y : β |= M : γ. Suppose that ρ |= Γ,z : α∩ β, in order
to prove [[z <x

y M]]ρ ∈ [[γ]]. This means that ρ |= Γ and ρ |= z : α∩ β ⇔ ρ(z) ∈
[[α]] and ρ(z) ∈ [[β]]. For the sake of simplicity let ρ(z) ≡ N. We define a new ρ′
such that ρ′ = ρ(N/x,N/y). Then ρ′ |= Γ,x : α,y : β since x,y �∈ Dom(Γ), N ∈
[[α]] and N ∈ [[β]]. By the IH [[M]]ρ′ ∈ [[γ]]. By the definition of term valuation
(Definition 13), Lemma 14(i), (ii) and (iii) and the definition of substitution we

obtain [[M]]ρ′ = [[M]]ρ(N/x,N/y) = Fv(N) <
Fv(N′)
Fv(N′′) [[M]]ρ(N′/x,N′′/y) = Fv(N) <

Fv(N′)
Fv(N′′)

[[M]]ρ(x/x,y/y)[N′/x][N′′/y] = (z <x
y [[M]]ρ(x/x,y/y)[N/z]=([[z <x

y M]]ρ(z/z))[N/z]=[[z <x
y

M]]ρ(N/z) = [[z <x
y M]]ρ, since ρ(z) = N. Hence, [[z <x

y M]]ρ ∈ [[γ]]. ��

Theorem 17 (SN for λ�∩). If Γ�M : α, then M is strongly normalizing, i.e. M ∈ SN .

Proof. Suppose Γ�M : α. By Proposition 16 Γ |= M : α. According to Definition 15(iii),
this means that (∀ρ |= Γ) ρ |= M : α. We can choose a particular ρ0(x) = x for all
x ∈ var. By Proposition 12(iv), [[β]] is saturated for each type β, hence x = [[x]]ρ ∈ [[β]]
(variable condition for n = 0). Therefore, ρ0 |= Γ and we can conclude that [[M]]ρ0 ∈ [[α]].
On the other hand, M = [[M]]ρ0 and [[α]]⊆ SN (Proposition 12), hence M ∈ SN . ��

3.2 Typeability⇒ SN in λGtz
� ∩

In this section, we prove the strong normalisation property of the λGtz
� -calculus with

intersection types. The termination is proved by showing that the reduction on the set

126 S. Ghilezan et al.

ΛGtz
� ∪ΛGtz

�,C of the typeable λGtz
� -expressions is included in a particular well-founded

relation, which we define as the lexicographic product of three well-founded component
relations. The first one is based on the mapping of λGtz

� -expressions into λ�-terms. We
show that this mapping preserves types and that all λGtz

� -reductions can be simulated by
the reductions or identities of the λ�-calculus. The other two well-founded orders are
based on the introduction of quantities designed to decrease a global measure associated
with specific λGtz

� -expressions during the computation.

Definition 18. The mapping � � : ΛGtz
� → Λ� is defined together with the auxiliary

mapping � �k : ΛGtz
�,C → (Λ� → Λ�) in the following way:

�x� = x �x̂.t�k(M) = (λx.�t�)M
�λx.t� = λx.�t� �t :: k�k(M) = �k�k(M�t�)
�x(t� = x(�t� �x(k�k(M) = x(�k�k(M)
�x <

y
z t� = x <

y
z �t� �x <

y
z k�k(M) = x <

y
z �k�k(M)

�tk� = �k�k(�t�)

Lemma 19. (i) Fv(t) = Fv(�t�), for t ∈ ΛGtz
� .

(ii) �v[t/x]�= �v�[�t�/x], for v,t ∈ ΛGtz
� .

We prove that the mappings � � and � �k preserve types. In the sequel, the notation
Λ�(Γ′�λ� α) stands for {M | M ∈ Λ� & Γ′ �λ� M : α}.

Proposition 20 (Type preservation with � �)

(i) If Γ′ � t : α, then Γ′ �λ� �t� : α.
(ii) If Γ′;α � k : β, then �k�k : Λ�(Γ′′�λ� α)→ Λ�(Γ′ ,Γ′′�λ� β), for some Γ′′.

Proof. The proposition is proved by simultaneous induction on derivations. We distin-
guish cases according to the last typing rule used.

– Cases (Ax), (→R), (Weakt) and (Contt) are easy, because the intersection type as-
signment system of λ� has exactly the same rules.

– Case (Sel): the derivation ends with the rule

Γ′,x : α � t : σ
Γ′;α � x̂.t : σ

(Sel)

By IH we have that Γ′,x : α �λ� �t� : σ. For any M ∈ Λ� such that Γ′′ �λ� M : α,
for some Γ′′, we have

Γ′,x : α �λ� �t� : σ
(→I)

Γ′ �λ� λx.�t� : α→ σ Γ′′ �λ� M : α
(→E)

Γ′,Γ′′ �λ� (λx.�t�)M : σ

Since (λx.�t�)M = �x̂.t�k(M), we conclude that �x̂.t�k : Λ�(Γ′′�λ� α)→Λ�(Γ′ ,Γ′′�λ� σ).

Intersection Types for the Resource Control Lambda Calculi 127

– Case (→L): the derivation ends with the rule

Γ′i � t : αi Δ;σ � k : β
∩Γ′i,Δ;∩αi → σ � t :: k : β

(→L)

By IH we have that Γ′i �λ� �t� : αi, ∀i. For any M ∈ Λ� such that Γ′′′ �λ� M :
∩αi → σ, we have

Γ′′′ �λ� M : ∩αi → σ Γ′i �λ� �t� : αi

∩Γ′i,Γ′′′ �λ� M�t� : σ
(→E)

From the right-hand side premise in the (→L) rule, by IH, we get that �k�k is the
function with the scope �k�k : Λ�(Γ′′′′�λ� σ) → Λ�(Γ′′′′ ,Γ′′�λ� β). For Γ′′′′ ≡ ∩Γ′i,Γ′′′

and by taking M�t� as the argument of the function �k�k, we get ∩Γ′i,Δ,Γ′′′ �λ�
�k�k(M�t�) : β. Since �k�k(M�t�) = �t :: k�k(M), we have that ∩Γ′i,Δ,Γ′′′ �λ� �t ::
k�k(M) : β. This holds for any M of the appropriate type, yielding
�t :: k�k : Λ�(Γ′′′�λ� ∩αi→σ)→ Λ�(∩Γ′i ,Δ,Γ′′′�λ� β), which is exactly what we need.

– Case (Cut): the derivation ends with the rule

Γ′i � t : αi Δ;∩αi � k : σ
∩Γ′i,Δ � tk : σ

(Cut)

By IH we have that Γ′i �λ� �t� : α and �k�k : Λ�(Γ′′�λ� ∩αi)→ Λ�(Γ′′ ,Δ�λ� σ). Hence,

for any M ∈ Λλ� such that Γ′′ �λ� M : ∩αi, it holds Γ′′,Δ �λ� �k�k(M) : σ. By
taking M≡�t� and Γ′′ ≡ ∩Γ′i, we get∩Γ′i,Δ�λ� �k�k(�t�) : σ. But �k�k(�t�)= �tk�,
so the proof is done.

– Case (Weakk): the derivation ends with the rule

Γ′;γ � k : β
Γ′,x : α;γ � x(k : β

(Weakk)

By IH we have that �k�k is the function with the scope �k�k : Λ�(Γ′′�λ� γ) →
Λ�(Γ′ ,Γ′′�λ� β), meaning that for each M ∈Λ� such that Γ′′ �λ� M : γ holds Γ′,Γ′′ �λ�
�k�k(M) : β. Now, we can apply (Weak) rule:

Γ′,Γ′′ � �k�k(M) : β
Γ′,Γ′′,x : α � x(�k�k(M) : β

(Weak)

Since x (�k�k(M) = �x (k�k(M), this means that �x (k�k : Λ�(Γ′′�λ� γ) →
Λ�(Γ′ ,Γ′′,x:α�λ� β), which is exactly what we wanted to get.

– Case (Contk): similar to the case (Weakk), relying on the rule (Cont) in λ�. ��

For the given encoding � �, we show that each λGtz
� -reduction step can be simulated by

λ�-reduction or identity. In order to do so, we prove the following lemmas. The proofs
of Lemma 22 and Lemma 23 use Regnier’s σ reductions, investigated in [30].

128 S. Ghilezan et al.

Lemma 21. If M →λ� M′, then �k�k(M)→λ� �k�k(M′).

Lemma 22. �k�k((λx.P)N)→λ� (λx.�k�k(P))N.

Lemma 23. If M ∈ Λ� and k,k′ ∈ ΛGtz
�,C, then �k′�k ◦ �k�k(M)→λ� �k@k′�k(M).

Lemma 24

(i) If x /∈ Fv(k), then (�k�k(M))[N/x] = �k�k(M[N/x]).
(ii) If x,y /∈ Fv(k), then z <x

y (�k�k(M))→λ� �k�k(z <x
y M).

(iii) �k�k(x(M)→λ� x(�k�k(M).

Now we can prove that the reduction rules of λGtz
� can be simulated by the reduction

rules or identities in λ�-calculus.

Theorem 25 (Simulation of λGtz
� -reduction by λ�-reduction)

(i) If term M →M′, then �M� →λ� �M
′�.

(ii) If context k→ k′ by γ6 or ω6 reduction, then �k�k(M)≡�k′�k(M), for any M ∈Λ�.
(iii) If context k→ k′ by some other reduction, then �k�k(M)→λ� �k

′�k(M), for any

M ∈ Λ�.

The previous proposition shows that each λGtz
� -reduction step is interpreted either by a

λ�-reduction or by an identity. If one wants to prove that there is no infinite sequence
of λGtz

� -reductions one has to prove that there cannot exist an infinite sequence of λGtz
� -

reductions which are all interpreted as identities. To prove this, one shows that if a
term is reduced with such a λGtz

� -reduction, it is reduced for another order that forbids
infinite decreasing chains. This order is itself composed of several orders, free of infinite
decreasing chains (Definition 29).

Definition 26. The functions S , || ||C, || ||W : (ΛGtz
� ∪ Λ�)→N are defined in Figure 8.

S(x) = 1 ||x||C = 0 ||x||W = 1
S(λx.t) = 1+S(t) ||λx.t||C = ||t||C ||λx.t||W = 1+ ||t||W

S(x(e) = 1+S(e) ||x(e||C = ||e||C ||x(e||W = 0
S(x <

y
z e) = 1+S(e) ||x <

y
z e||C = ||e||C +S(e) ||x <

y
z e||W = 1+ ||e||W

S(tk) = S(t)+S(k) ||tk||C = ||t||C + ||k||C ||tk||W = 1+ ||t||W + ||k||W
S(x̂.t) = 1+S(t) ||x̂.t||C = ||t||C ||x̂.t||W = 1+ ||t||W

S(t :: k) = S(t)+S(k) ||t :: k||C = ||t||C + ||k||C ||t :: k||W = 1+ ||t||W + ||k||W

Fig. 8. Definitions of S(e), ||e||C, ||e||W

Lemma 27. For all e,e′ : Λ�:

(i) If e →γ6 e′, then ||e||C > ||e′||C.
(ii) If e →ω6 e′, then ||e||C = ||e′||C.

Lemma 28. For all e,e′ ∈ Λ�: If e →ω6 e′, then ||e||W > ||e′||W .

Intersection Types for the Resource Control Lambda Calculi 129

Now we can define the following orders based on the previously introduced mapping
and norms.

Definition 29. We define the following strict orders and equivalencies on ΛGtz
� ∩:

(i) t >λ� t ′ iff �t� →+
λ�
�t ′�; t =λ� t ′ iff �t� ≡ �t ′�;

k >λ� k′ iff �k�k(M)→+
λ�
�k′�(M) for every λ� term M ;

k =λ� k′ iff �k�k(M)≡ �k′�k(M) for every λ� term M;
(ii) e >c e′ iff ||e||C > ||e′||C; e =c e′ iff ||e||C = ||e′||C;

(iii) e >w e′ iff ||e||W > ||e′||W ; e =w e′ iff ||e||W = ||e′||W ;

A lexicographic product of two orders >1 and >2 is usually defined as follows ([2]):
a >1 ×lex >2 b ⇔ a >1 b or (a =1 b and a >2 b).

Definition 30. We define the relation. on ΛGtz
� as the lexicographic product:

. = >λ� ×lex >c ×lex >w .

The following propositions proves that the reduction relation on the set of typed λGtz
� -

expressions is included in the given lexicographic product..

Proposition 31. For each e ∈ ΛGtz
� : if e→ e′, then e. e′.

Proof. The proof is by case analysis on the kind of reduction and the structure of..
If e→ e′ by β, σ, π, µ, γ1, γ2, γ3, γ4 γ5, γω1, γω2, ω1, ω2, ω3 ω4 or ω5 reduction, then
e >λ� e′ by Proposition 25.
If e→ e′ by γ6, then e =λ� e′ by Proposition 25, and e >c e′ by Lemma 27.
Finally, if e→ e′ by ω6, then e =λ� e′ by Proposition 25, e =c e′ by Lemma 27 and
e >w e′ by Lemma 28. ��

SN of→ is another terminology for the well-foundness of the relation→ and it is well-
known that a relation included in a well-founded relation is well-founded and that the
lexicographic product of well-founded relations is well-founded.

Theorem 32 (Strong normalization). Each expression in ΛGtz
� ∩ is SN.

Proof. The reduction→ is well-founded on ΛGtz
� ∩ as it is included (Proposition 31) in

the relation. which is well-founded as the lexicographic product of the well-founded
relations >λ� , >c and >w. Relation >λ� is based on the interpretation � � : ΛGtz

� →Λ�.
By Proposition 20 typeability is preserved by the interpretation � � and→λ� is SN (i.e.,

well-founded) on Λ�∩ (Section 3.1), hence >λ� is well-founded on ΛGtz
� ∩. Similarly,

>c and >w are well-founded, as they are based on interpretations into the well-founded
relation > on the set N of natural numbers. ��

4 SN ⇒ Typability in Both Systems

4.1 SN⇒ Typability in λ�∩
We want to prove that if a λ�-term is SN, then it is typable in the system λ�∩. We
proceed in two steps: 1) we show that all λ�-normal forms are typable and 2) we prove

130 S. Ghilezan et al.

The head subject expansion property. First, let us observe the structure of the λ�-normal
forms, given by the following abstract syntax:

Mn f ::= x |λx.Mn f |λx.x(Mn f |xM1
n f . . .Mn

n f |x <x1
x2 Mn f Nn f , if x1 ∈ Fv(Mn f),x2 ∈ Fv(Nn f)

Wn f ::= x(Mn f |x(Wn f

Proposition 33. λ�-normal forms are typable in the system λ�∩.

Proposition 34 (Inverse substitution lemma). Let Γ � M[N/x] : α and N typable.
Then, there are Δi and βi, i ∈ I such that Δi � N : βi, ∀i and Γ′,x : ∩βi �M : α, where
Γ = Γ′,∩Δi.

Proof. By induction on the structure of M. ��

Proposition 35 (Head subject expansion). For every λ�-term M: if M → M′, M is
contracted redex and Γ � M′ : α , then Γ �M : α, provided that if M ≡ (λx.N)P→β
N[P/x]≡M′, P is typable.

Proof. By the case study according to the applied reduction. ��

Theorem 36 (SN⇒ typability). All strongly normalising λ�-terms are typable in the
λ�∩ system.

Proof. The proof is by induction on the length of the longest reduction path out of a
strongly normalising term M, with a subinduction on the size of M.

– If M is a normal form, then M is typable by Proposition 33.
– If M is itself a redex, let M′ be the term obtained by contracting the redex M.

M′ is also strongly normalising, hence by IH it is typable. Then M is typable, by
Proposition 35. Notice that, if M ≡ (λx.N)P →β N[P/x] ≡ M′, then, by IH, P is
typable, since the length of the longest reduction path out of P is smaller than that
of M, and the size of P is smaller than the size of M.

– Next, suppose that M is not itself a redex nor a normal form. Then M is of one of the
following forms: λx.N, λx.x(N, xM1 . . .Mn, x(N, or x <x1

x2 NP, x1 ∈ Fv(N), x2 ∈
Fv(P) (where M1, . . . ,Mn, and NP are not normal forms). M1, . . . ,Mn and NP are
typable by IH, as subterms of M. Then, it is easy to build the typing for M. For
instance, let us consider the case x <x1

x2 NP with x1 ∈ Fv(N), x2 ∈ Fv(P). By in-
duction NP is typable, hence N is typable with say Γ,x1 : β � N : ∩αi → σ and
P is typable with say Δi,x2 : γi � P : αi. Then using the rule (E →) we obtain
Γ,∩Δi,x1 : β,x2 : ∩γi � NP : σ. Finally, the rule (Cont) yields Γ,∩Δi,x : β∩(∩γi) �
x <x1

x2 NP : σ. ��

4.2 SN⇒ Typability in λGtz
� ∩

Finally, we want to prove that if a λGtz
� -term is SN, then it is typable in the system

λGtz
� ∩. We follow the procedure used in Section 4.1. The proofs are similar to the ones

in Section 4.1 and omitted due to the lack of space.

Intersection Types for the Resource Control Lambda Calculi 131

The abstract syntax of λGtz
� -normal forms is the following:

tn f ::= x |λx.tn f |λx.x(tn f |x(tn f :: kn f) |x <
y
z y(tn f :: kn f)

kn f ::= x̂.tn f | x̂.x(tn f |tn f :: kn f |x <y
z (tn f :: kn f), y ∈ Fv(tn f),z ∈ Fv(kn f)

wn f ::= x(en f |x(wn f

We use en f for any λGtz
� -expression in the normal form.

Proposition 37. λGtz
� -normal forms are typable in the system λGtz

� ∩.

The following two lemmas explain the behavior of the meta operators [/] and @ during
expansion.

Lemma 38 (Inverse substitution lemma)

(i) Let Γ � t[u/x] : α and u typable. Then, there exist ∩Δi and ∩βi, i ∈ I such that
Δi � u : βi, ∀i and Γ′,x : ∩βi � t : α, where Γ = Γ′,∩Δi.

(ii) Let Γ;γ � k[u/x] : α and u typable. Then, there exist ∩Δi and ∩βi, i ∈ I such that
Δi � u : βi, ∀i and Γ′,x : ∩βi;γ � k : α, where Γ = Γ′,∩Δi.

Lemma 39 (Inverse append lemma). If Γ;α � k@k′ : σ, then Γ = Γ′,Γ′′ and there is
a type ∩βi such that Γ′;α � k : βi, ∀i and Γ′′;∩βi � k′ : σ.

Now we prove that the type of a term is preserved during the expansion.

Proposition 40 (Head subject expansion). For every λGtz
� -term t: if t → t ′, t is con-

tracted redex and Γ � t ′ : α , then Γ � t : α.

Theorem 41 (SN⇒ typability). All strongly normalising λGtz
� terms are typable in the

λGtz
� ∩ system.

5 Conclusions

In this paper, we have proposed intersection type assignment systems for λ�-calculus
(λCW of [23]) and λGtz

� -calculus of [18]. The two intersection type systems proposed
here, for resource control lambda and sequent lambda calculus, give a complete char-
acterisation of strongly normalising terms for both calculi. The strong normalisation
of typeable resource lambda terms is proved directly by appropriate modification of
the reducibility method, whereas the same property for resource sequent lambda terms
is proved by well-founded lexicographic order based on suitable embedding into the
former calculus. Although the obtained results are not surprising, this paper expands
the range of the intersection type techniques and combines different methods in the
strict types environment. Unlike the approach of introducing non-idempotent intersec-
tion into the calculus with some kind of resource management [27], our intersection is
idempotent. As a consequence, our type assignment system corresponds to full intu-
itionistic logic, while non-idempotent intersection type assignment systems correspond
to intuitionistic linear logic.

Resource control lambda and sequent lambda calculi are good candidates to investi-
gate the computational content of substructural logics ([34]) both in natural deduction

132 S. Ghilezan et al.

and sequent calculus. The motivation for these logics comes from philosophy (Rele-
vant Logics), linguistics (Lambek Calculus) to computing (Linear Logic). The basic
idea of resource control is to explicitly handle structural rules, so the absence of (some)
structural rules in substructural logics such as weakening, contraction, commutativity,
associativity can possibly be handled by resource control operators, which is in the
domain of further research. Another direction will involve the investigation of the use
of intersection types, being a powerful means for building models of lambda calculus
([6,12]), in constructing models for sequent lambda calculi.

Acknowledgements. We would like to thank the anonymous referees for careful read-
ing and many valuable comments, which helped us improve the final version of the
paper. We would also like to thank Dragiša Žunić for participating in the earlier stages
of the work.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111(1&2),
3–57 (1993)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, UK
(1998)

3. Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program extraction.
Inform. Comput. 125(2), 103–117 (1996)

4. Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics. North-Holland, Amster-
dam (1984), revised edition

5. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 117–309. Oxford University
Press, UK (1992)

6. Barendregt, H.P., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the com-
pleteness of type assignment. J. Symb. Logic 48(4), 931–940 (1984) (1983)

7. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for intuitionistic linear
logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 75–90. Springer,
Heidelberg (1993)

8. Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with
explicit substitution and garbage collection. In: Computer Science in the Netherlands, CSN
1995, pp. 62–72 (1995)

9. Coppo, M., Dezani-Ciancaglini, M.: A new type-assignment for lambda terms. Archiv für
Mathematische Logik 19, 139–156 (1978)

10. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory for the
λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980)

11. Curien, P.-L., Herbelin, H.: The duality of computation. In: 5th International Conference on
Functional Programming, ICFP 2000, pp. 233–243. ACM Press, New York (2000)

12. Dezani-Ciancaglini, M., Ghilezan, S., Likavec, S.: Behavioural Inverse Limit Models. Theor.
Comput Sci. 316(1-3), 49–74 (2004)

13. Dougherty, D.J., Ghilezan, S., Lescanne, P.: Characterizing strong normalization in the
Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. Theor.
Comput Sci. 398, 114–128 (2008)

Intersection Types for the Resource Control Lambda Calculi 133

14. Espı́rito Santo, J.: Completing herbelin’s programme. In: Della Rocca, S.R. (ed.) TLCA
2007. LNCS, vol. 4583, pp. 118–132. Springer, Heidelberg (2007)

15. Espı́rito Santo, J., Ivetić, J., Likavec, S.: Characterising strongly normalising intuitionistic
terms. Fundamenta Informaticae (to appear 2011)

16. Gallier, J.: Typing untyped λ-terms, or reducibility strikes again! Ann. Pure Appl. Logic 91,
231–270 (1998)

17. Ghilezan, S.: Strong normalization and typability with intersection types. Notre Dame J.
Formal Logic 37(1), 44–52 (1996)

18. Ghilezan, S., Ivetić, J., Lescanne, P., Žunić, D.: Intuitionistic sequent-style calculus with
explicit structural rules. In: Bezhanishvili, N. (ed.) TbiLLC 2009. LNCS, vol. 6618, pp. 101–
124. Springer, Heidelberg (2011)

19. Ghilezan, S., Likavec, S.: Computational interpretations of logics. In: Ognjanović, Z. (ed.)
Collection of Papers, Special issue Logic in Computer Science, vol. 20(12), pp. 159–215.
Mathematical Institute of Serbian Academy of Sciences and Arts (2009)

20. Herbelin, H.: A lambda calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer,
Heidelberg (1995)

21. Howard, W.A.: The formulas-as-types notion of construction. In: Seldin, J.P., Hindley, J.R.
(eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp.
479–490. Academic Press, London (1980)

22. Kesner, D., Lengrand, S.: Resource operators for lambda-calculus. Inform. Comput. 205(4),
419–473 (2007)

23. Kesner, D., Renaud, F.: The prismoid of resources. In: Královič, R., Niwiński, D. (eds.)
MFCS 2009. LNCS, vol. 5734, pp. 464–476. Springer, Heidelberg (2009)

24. Kikuchi, K.: Simple proofs of characterizing strong normalization for explicit substitution
calculi. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 257–272. Springer, Heidelberg
(2007)

25. Matthes, R.: Characterizing strongly normalizing terms of a λ-calculus with generalized ap-
plications via intersection types. In: Hindley, J.R., et al. (eds.) ICALP Workshops 2000. Car-
leton Scientific (2000)

26. Neergaard, P.M.: Theoretical pearls: A bargain for intersection types: a simple strong nor-
malization proof. J. Funct. Program. 15(5), 669–677 (2005)

27. Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L. (ed.)
FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010)

28. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg
(1992)

29. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, pp. 561–577. Academic Press, London (1980)

30. Regnier, L.: Une équivalence sur les lambda-termes. Theor. Comput Sci. 126(2), 281–292
(1994)

31. Rose, K.H.: CRSX - Combinatory Reduction Systems with Extensions. In: Schmidt-Schauß,
M. (ed.) 22nd International Conference on Rewriting Techniques and Applications, RTA
2011. Leibniz International Proceedings in Informatics (LIPIcs), vol. 10, pp. 81–90. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

134 S. Ghilezan et al.

32. Rose, K.H.: Implementation Tricks That Make CRSX Tick. Talk at IFIP 1.6 Workshop, RDP
2011 (May 2011)

33. Sallé, P.: Une extension de la théorie des types en lambda-calcul. In: Ausiello, G., Böhm, C.
(eds.) ICALP 1978. LNCS, vol. 62, pp. 398–410. Springer, Heidelberg (1978)

34. Schroeder-Heister, P., Došen, K.: Substructural Logics. Oxford University Press, UK (1993)
35. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb. Logic 32, 198–

212 (1967)
36. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor. Comput

Sci. 102(1), 135–163 (1992)

Modal Interface Theories for Communication-Safe
Component Assemblies�

Rolf Hennicker1 and Alexander Knapp2

1 Ludwig-Maximilians-Universität München
hennicke@pst.ifi.lmu.de

2 Universität Augsburg
knapp@informatik.uni-augsburg.de

Abstract. We propose an extension of the abstract rules for independent imple-
mentability of reactive components proposed in interface theories to take into
account interface assemblies. As a concrete instantiation we extend existing in-
terface theories for modal I/O-transition systems to support assemblies, (greybox)
assembly refinement and assembly encapsulation. We introduce a new notion of
communication-safety for N-ary assemblies which overcomes problems with pre-
vious definitions of interface compatibility. We show that communication-safety
can be checked incrementally. We also show that communication-safety is pre-
served by assembly refinement, that blackbox refinement of component interfaces
is compositional w.r.t. greybox refinement of assemblies and, conversely, that as-
sembly encapsulation maps greybox to blackbox refinement. The methodology
of our approach is illustrated by a small case study.

1 Introduction

Reactive software components are commonly understood as encapsulated units which
communicate with their environment via well-defined interfaces. Interface specifica-
tions provide a means to describe the visible behaviour of interacting components. They
serve, on the one hand, to express what is expected from the environment for a correct
functioning of a component, and, on the other hand, to specify what is offered by a
component. For the development of component systems on the basis of interfaces we
can identify three key issues: the ability to build larger specifications from smaller ones
(by composition), the (stepwise) refinement of interface specifications, and compati-
bility requirements ensuring safe communication of components. Of course, it is im-
portant that the different aspects fit properly together, i.e. that refinement is preserved
by composition and that compatibility of interfaces is preserved by refinement, thus
guaranteeing independent implementability of components.

1.1 Interface Languages

These crucial requirements, that any concrete interface theory should obey, are nicely
formulated by the rules of an interface language stated in [7]. It assumes a domain F
� This work has been partially sponsored by the Bavarian Ministry for Economics, Infrastruc-

ture, Traffic and Technology under the IuK-project RAJA, IUK-0805-0005 and by the Euro-
pean Union under the FP7-project ASCENS, 257414.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 135–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 R. Hennicker and A. Knapp

of interfaces, a partial composition operator ‖ : F × F → F , a binary compatibility
relation ∼ ⊆ F × F , and a refinement relation ≤ ⊆ F × F relating concrete and ab-
stract specifications. On this basis the principle of independent implementability reads
as follows:

Independent implementability: For all � ,� ′,� ,� ′ ∈ F ,
if � ∼ � and � ′ ≤ � , � ′ ≤ � , then � ′ ∼ � ′ and (� ′ ‖ � ′) ≤ (� ‖ �).1

Particular instances of interface theories satisfying these requirements are formulated
for interface automata in [7] and for modal I/O-transition systems (MIOs) in [10,2].

Following the ideas of an interface language, interfaces for complex components are
constructed from smaller ones by interface composition, following, e.g., a synchronous
communication scheme, like interface automata and MIOs, where shared actions of
complementary types (input/output) are synchronised. The result of an interface com-
position yields again an interface describing the visible (blackbox) behaviour of a com-
posite component. Hence, the architectural information behind interface composition
is hidden and it is not possible to specify architectural requirements, which are impor-
tant as well for the development of complex systems. In particular, the communication
behaviour of interacting components is abstracted away during interface composition
and can not be taken into account in further refinement, since interface refinement is
inherently a blackbox refinement. For instance, assume that an interface for a credit
card payment system is specified by composing an interface describing the customer’s
behaviour with another interface describing the clearing company’s behaviour, which is
responsible to verify the credit card. That the verification is really performed assumes a
communication between the customer with the clearing company. But during interface
composition this communication is made invisible and therefore the composite interface
could be refined, for instance, by a primitive interface which has the same observable
behaviour but which does not actually communicate with the clearing company.2

1.2 Interface Assemblies

As a consequence of this discussion, we claim that there is still a missing link in the
notion of an interface language and in its concrete instantiations. What is still missing
is the specification of architectural information and the explicit possibility to observe
communications between components. Only in a next step, if the necessary communi-
cations are established, it should be legal to abstract them away and to construct a new
interface specification by explicit encapsulation of the architectural one. To tackle this
issue the most obvious approach is to consider interface networks as a distinguished
concept. Interface networks are assemblies of connected interfaces thus providing ar-
chitectural requirements for the planned system. Such assemblies can be refined only
if the architectural requirements are respected. From the behavioural point of view this

1 It is assumed that the composition of compatible interfaces is defined. Interface languages
require also the property of incremental design which will be discussed later.

2 A way out could be to require that refinements of composite interfaces not only can but must be
performed piecewise; but this is not anchored in the formalism and anyway cannot be treated
with alternating simulation refinement of interface automata since, in contrast to modal I/O-
transition systems, abstract outputs can always be omitted there in a refinement.

Modal Interface Theories for Communication-Safe Component Assemblies 137

means that not only the visible actions to the outside but also specified communications
between components within the assembly must be taken into account when assemblies
are refined. Following the terminology of [12] such refinements are also called grey-
box refinements. Hence, we can extend the abstract concept of an interface language
by introducing, additionally to the domain F of interfaces, a domain A of assemblies.
For the construction of assemblies we assume, for each natural number �, a partial
(overloaded) operator asm : F� → A. Concerning compatibility of components, we
extend the binary compatibility relation between interfaces to a communication-safety
predicate cs ⊆ A on assemblies, which expresses that the interfaces belonging to an
assembly can work together without communication errors. This could mean, e.g., that
the assembly is deadlock-free, or, in the context of the I/O-transition systems considered
below, that any output a component wants to issue to the remainder of the assembly is
indeed accepted.3 Concerning refinement, we distinguish between interface and assem-
bly refinement, expressed by the binary relations �intf ⊆ F × F and �asm ⊆ A ×A
resp. Finally, we introduce an operation pack : A → F which allows to express en-
capsulation of an assembly into an interface (by hiding the architectural information of
the assembly). The principle of independent implementability can now be rephrased as
follows:

Independent implementability: For all �� ,� ′
� ∈ F for � = 1, . . . ,�,

if cs(asm(�1, . . . ,��)) and � ′
� �intf �� for � = 1, . . . ,�,

then cs(asm(� ′
1, . . . ,�

′
�)) and asm(� ′

1, . . . ,�
′
�) �asm asm(�1, . . . ,��).

But obviously this does not suffice for extracting an interface from an assembly by en-
capsulation, i.e., by applying the pack operation. Then it must be ensured that packing
two assemblies which are in refinement relation leads to interfaces which are in refine-
ment relation again, which is expressed by the principle of refinement encapsulation:

Refinement encapsulation: For all �,�′ ∈ A,
if cs(�) and �′ �asm �, then pack(�′) �intf pack(�).

1.3 Modal I/O-Automata for Interface and Assembly Specifications

As a concrete instantiation of our approach we will build upon modal I/O-transition
systems (MIOs) introduced by Larsen et al. [10,11]. We have chosen MIOs as our
basic formalism since they allow us to distinguish between transitions which are op-
tional (may) or mandatory (must) for refinements. We extend the interface theory of
MIOs presented in [2] by introducing interface assemblies together with a new notion
of communication-safety and assembly refinement. In our approach, interface speci-
fications are simply MIOs with input and output actions only, while assemblies are
MIO networks formally presented by finitely indexed sets of (syntactically compos-
able) MIOs. To any assembly a greybox behaviour is associated which is again a MIO
having, additionally to input and output actions, distinguished communication actions.
It is computed by the synchronous composition of the interface MIOs contained in
the assembly, but synchronisations on complementary input and output actions are not

3 We will show in the technical part of the paper that this requirement is different from deadlock-
freedom.

138 R. Hennicker and A. Knapp

hidden, as in the original MIO approach, but considered as visible communication ac-
tions. Our notion of communication-safety is inspired by the notion of weak modal
compatibility proposed in [2]. However, it goes beyond that because, first, it allows to
study the compatibility of arbitrarily many interfaces, and, secondly, it generalises sig-
nificantly the behavioural requirements of weak modal compatibility. The idea is that
whenever one component wants to send an output it finds the communication partner in
a state where it must eventually take the corresponding input. Before taking the input
the communication partner can still perform silent must-transitions and/or mandatory
communications with other components of the assembly and also outputs which are
a must and are directed outside of the assembly. The latter is a significant generali-
sation of weak modal compatibility needed in many practical applications. We show
that communication-safe assemblies can be built up in an incremental way, i.e., given a
communication-safe assembly � and an interface � which is compatible to �, the new
assembly extending � by � will be communication-safe again. This result is related to
the property of incremental design of an interface language [7].

Concerning refinement we distinguish, as explained above, between interface and
assembly refinement. Interface refinement has to respect blackbox behaviours, it is for-
malised in terms of weak modal refinement of MIOs based on a simulation relation
which abstracts from silent transitions (labelled with the invisible action τ). Assembly
refinement has to respect the architectural requirements and the (greybox) behaviour of
assemblies. Therefore it is defined as structure preserving pairwise refinement of the
finitely indexed sets of interfaces which form the assemblies. The refinement of assem-
bly behaviours abstracts away silent transitions (which stem from inner components),
but transitions resulting from communications are considered as visible and therefore
they are respected by the simulation relation. Interface refinement is also called black-
box refinement and assembly refinement corresponds to greybox refinement.

As central results of our approach we obtain that the property of independent imple-
mentability (second version from above) is satisfied. Indeed we even get stronger re-
sults, called compositionality of refinement and preservation of communication-safety,
which read as follows and which obviously imply independent implementability:

Compositionality of refinement: For all �� ,� ′
� ∈ F for � = 1, . . . ,�,

if � ′
� �intf �� for � = 1, . . .�,

then asm(� ′
1, . . . ,�

′
�) �asm asm(�1, . . . ,��).

Preservation of communication-safety: For all �,�′ ∈ A,
if cs(�) and �′ �asm �, then cs(�′).

Last but not least we consider the encapsulation of MIO assemblies into interfaces, i.e.
the pack operation, which moves the visible communications of assemblies into silent
transitions of interfaces. We show that encapsulation is compatible with assembly and
interface refinement, i.e., that the principle of refinement encapsulation stated above is
satisfied as well. Also in this case we can prove a stronger version which does not need
the communication-safety assumption of the abstract assembly. Our methodology and
our results will be demonstrated on a small, but detailed case study.

The paper is structured as follows: In Sect. 2 we summarise the basic notions of
modal I/O-transition systems and in Sect. 3 we introduce our running example. Then, in

Modal Interface Theories for Communication-Safe Component Assemblies 139

Sect. 4, we consider formally interfaces, assemblies, their greybox behaviour and their
communication-safety; we also define interface and assembly refinement and prove our
central compatibility and compositionality results. Our methodology is illustrated by
our small case study in Sect. 5. Finally, in Sect. 6, we finish with some concluding
remarks.

2 Modal I/O-Transition Systems: Basic Definitions

Modal I/O-transition systems (MIOs) have been introduced by Larsen et al. [10,11] as
a formalism to specify the behaviour of reactive components. They allow to distinguish
between transitions which are optional (may) or mandatory (must) for refinements. We
will use MIOs for describing interface behaviours as well as assembly behaviours. Tech-
nically this is achieved by distinguishing not only input, output, and internal labels, but
also communication labels expressing synchronous communication. In contrast to [10]
internal actions are not explicitly named here but represented by the internal, invisible
action τ while communication labels are newly introduced here. In the following of
this section we recall the technical definitions used hereafter. These definitions will be
illustrated by our running example introduced in Sect. 3.

An I/O-labelling � = (��,��,	�) consists of pairwise disjoint sets of input labels
��, output labels ��, and communication labels 	�, such that τ /∈ �� ∪ �� ∪ 	�. We
write

⋃
� for �� ∪�� ∪ 	�.

A modal I/O-transition system (MIO)
 = (�� ,�� , �0,� ,
�

,
�

) consists of
an I/O-labelling �� = (�� ,�� ,	�), a set of states �� , an initial state �0,� ∈ �� ,
a may-transition relation

�
⊆ �� × (

⋃
�� ∪ {τ}) × �� , and a must-transition

relation
�

⊆
�

.
 is called an implementation if
�

=
�

. For ∈
⋃
��

we write � �̂
�

� ′ for � τ �
�

· �
�

· τ �
�

� ′ with �,� ≥ 0, and � τ̂
�

� ′ for
� τ �

�
� ′ with � ≥ 0 (and likewise for the must-transition relation). Furthermore, for

� ⊆
⋃
�� , we write � �̂

�
� ′ for � �̂1

�
· · · �̂�

�
� ′ with � ≥ 0 and 1, . . . , � ∈ � .

The reachable states of
 are denoted by R(
) with � ∈ R(
) if, and only if there
is a finite sequence of may-transitions from �0,� to � in
 .

The hiding of communication labels of a MIO
 is given by
 ξ = (�� ξ,�� ,

�0,� ,
�ξ ,

�ξ) with �� ξ = (��� ,��� , ∅),
�ξ = {(� , , � ′) | � �

�
� ′, ∈

�� ∪��} ∪ {(� , τ, � ′) | � �
�
� ′, ∈ 	� } and likewise for

�ξ .
Two I/O-labellings � and � are composable if their labels overlap only on com-

plementary types, i.e.
⋃
� ∩

⋃
� ⊆ (�� ∩ ��) ∪ (�� ∩ ��). The synchronous com-

position of two composable I/O-labellings � and � moves corresponding input/output
labels to the set of communication labels, i.e., it yields the I/O-labelling � ⊗sy � =
((�� \��)∪ (�� \��), (�� \ ��)∪ (�� \ ��),	� ∪	� ∪ (�� ∩��)∪ (�� ∩��)).

Two MIOs
 and � are composable if their I/O-labellings are composable. The
synchronous composition of two composable MIOs
 and � is denoted by
 ⊗sy �

and defined as the usual product of automata with synchronisation on shared labels,
which are communication labels of the product; a synchronisation transition in
 ⊗sy

� is a must-transition if, and only if both synchronising transitions are must-transitions.

140 R. Hennicker and A. Knapp

Composability and synchronous composition are straightforwardly extended to
finitely indexed sets of I/O-labellings and MIOs: A finitely indexed set (�)1≤	≤� of
I/O-labellings with � ≥ 1 is composable if its I/O-labellings are pairwise composable.
The synchronous composition of a composable finitely indexed set (�)1≤	≤� of I/O-
labellings with � ≥ 1 is inductively given by

⊗sy
1≤	≤� �	 = �1 ⊗sy . . . ⊗sy �� .

A finitely indexed set (
)1≤	≤� of MIOs with � ≥ 1 is composable if the I/O-
labellings of its MIOs are pairwise composable. The synchronous composition of a
composable finitely indexed set (
)1≤	≤� of MIOs with � ≥ 1 is inductively given
by

⊗sy
1≤	≤�
	 =
1 ⊗sy . . . ⊗sy
� . (Commutativity and associativity laws could

be obtained up to strong bisimulation.)

3 Modelling Component Systems with MIOs: Example

We introduce a running example to explain our notions of interface and assembly, its
greybox behaviour and encapsulation. We consider a simple cash desk application, in-
spired by [13]. Figure 1 shows the assembly CashDeskAssembly, which is a set of three
interfaces, CashDeskGUI, CashDeskController and ClearingCompany. Each interface has
input and output actions indicated by incoming and outgoing arrows on the frame of
the interface which shows the interface’s signature. Interfaces are connected by shared
actions of complementary types. For instance, newSale, itemReady and finish are the
shared actions of CashDeskGUI and CashDeskController where, e.g., newSale is an in-
put for CashDeskGUI and an output of CashDeskController. The assembly itself has also
a signature with communication actions given by the shared actions of the interfaces and

«interface» CashDeskGUI

newSale?
saleFinish?

finish!

item? itemReady!

«interface» CashDeskController

newSale!
finish?

printTotal!

cash?
creditCard?

verify!

verified?

itemReady? printItem!

«interface» ClearingCompany

verify?

verified!

newSale

finish

itemReady

verify verified

«assembly» CashDeskAssembly

item

saleFinish

cash

creditCard

printItem

printTotal

finish itemReady newSale verify verified

Fig. 1. Cash desk assembly with contained interfaces

Modal Interface Theories for Communication-Safe Component Assemblies 141

newSale
saleFinish? finish

printTotal!

cash?
creditCard?

verify

verified

item?

itemReady

item?

printItem!

printItem!

printItem!

saleFinish?
B

A

grb(CashDeskAssembly)

item

saleFinish

cash

creditCard

printItem

printTotal

finish itemReady newSale verify verified

Fig. 2. Greybox behaviour of CashDeskAssembly in Fig. 1

with input/output actions given by the non-connected (open) actions of the interfaces.
The communication actions are indicated by bullets on the frame of the assembly.

Each interface has a behaviour specification represented by a modal I/O-transition sys-
tem with input/output labels but without communication labels. The I/O-labelling of the
MIO determines the signature of the interface (shown on its frame). There may also be
silent transitions labelled with τ , but those do not occur in the three example interfaces.
In the drawings of the MIOs, labels suffixed with ? indicate inputs, those suffixed with !
outputs of the interface. The CashDeskGUI interface behaviour waits for a newSale? from
the environment, then reacts to incoming item?s by issuing corresponding itemReady!s
until a saleFinish? arrives, upon which it signals finish!. The CashDeskController inter-
face behaviour starts each sale by issuing newSale! and then answers each itemReady?
by printItem! until a finish? arrives, upon which a printTotal! is issued and either cash? or
creditCard? is accepted. Only creditCard? is a may-transition, such that in a refinement of
CashDeskController it may be absent or turned into a must-transition. The ClearingCom-
pany waits for a verify? and then reacts with a verified!. For simplicity of presentation we
have only specified the positive case where a credit card is validated.

To each assembly we associate a behaviour which is presented as a MIO with input,
output, and communication labels. It is also called greybox behaviour since the com-
munication labels are still visible, only τ actions possibly occurring in the contained
interfaces of the assembly are hidden. Figure 2 shows the greybox behaviour of the
CashDeskAssembly. It is constructed by the synchronous composition (see Sect. 2) of
the three interface MIOs where communication happens if shared labels of complemen-
tary types match. The resulting communication labels are still visible but not usable for
further input or output; i.e., we follow the binary communication scheme of interface
automata and MIOs. Pictorially, the communication labels are drawn without a suffix on
the transitions. Note that the signature of an assembly is determined by the I/O-labelling
of its greybox view.

142 R. Hennicker and A. Knapp

τ
saleFinish? τ

printTotal!

cash?
creditCard?

τ

τ

item?

τ

item?

printItem!

printItem!

printItem!

saleFinish?

«interface» pack(CashDeskAssembly)

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 3. Interface resulting from packing CashDeskAssembly in Fig. 1

An assembly can be encapsulated by “packing” its greybox view, i.e. by hiding all
communication labels; see Sect. 2. Technically, this is achieved by replacing each tran-
sition with a communication label by a silent τ -transition. The result of assembly en-
capsulation yields an interface. Hence, assembly encapsulation is an important step for
hierarchical system development. In our example, packing of the greybox behaviour of
the CashDeskAssembly results in the interface shown in Fig. 3.

4 Interfaces and Assemblies

We now turn to a formal presentation of the notions of interface and assembly as mo-
tivated in the introduction and illustrated by the example. We discuss communication-
safe assemblies and the refinement of interfaces and assemblies. In particular, we justify
compositionality of refinement, preservation of communication-safety, and refinement
encapsulation in our approach. We build on the definitions of MIOs, their composabil-
ity and synchronous composition, as well as hiding of communication labels recalled in
Sect. 2. All claims are reduced to corresponding lemmas for MIOs and their refinement;
the proofs of these lemmas can be found in App. A.

The domain of interfaces F is constructed from all those MIOs whose I/O-labellings
do not show communication labels. We write � = intf (
) for an interface with un-
derlying MIO
 with I/O-labelling �� = (�� ,�� , ∅). The signature of � is given
by the I/O-labelling �� and pictorially indicated in the examples on the frame of an
interface. The labelling restriction reflects the blackbox characteristics of interfaces ab-
stracting from communication. Two interfaces are composable if their underlying MIOs
are composable, and a finitely indexed set (�)1≤	≤� of interfaces is composable if the
�	 are pairwise composable.

The domain of assemblies A is constructed from the composable finitely indexed sets
of interfaces, and we write � = asm((�)1≤	≤�) for an assembly consisting of the

Modal Interface Theories for Communication-Safe Component Assemblies 143

interfaces �1, . . . ,�� . Each assembly � is assigned its greybox behaviour grb(�)
which is the synchronous composition of the MIOs underlying the constituting inter-
faces of the assembly, formally

grb(asm((intf (
))1≤	≤�)) =
⊗sy

1≤	≤�
	 .

In particular, such a greybox behaviour leaves communications visible. The signature
of an assembly � is given by the I/O-labelling

⊗sy
1≤	≤� �	 of the MIO

⊗sy
1≤	≤�
	 .

We also construct an interface pack (�) from an assembly�which abstracts from the
communication labels in the greybox view. For this purpose we use the hiding operator
ξ on MIOs defined in Sect. 2:

pack (�) = intf (grb(�)ξ) .

According to the hiding operator in the signature of pack (�) all communication labels
of � have become τ .

4.1 Communication-Safe Assemblies

Our notion of communication-safe assembly is inspired by the notion of weak modal
compatibility in [2]. This compatibility notion, as well as the compatibility notions
in [6,7] and [10], relies on the assumption that outputs are autonomous and must be ac-
cepted by a communication partner while inputs are subject to external choice and need
not to be served. Hence the discrimination of inputs and outputs is essential here. For in-
stance, the two interfaces shown in the assembly in Fig. 4(a) are (strongly) compatible,
since the output x! issued by the interface on the left-hand side will be (immediately)
accepted by the input x? of the MIO on the right-hand side. However, if we consider the
assembly in Fig. 4(b), then the two interfaces are not compatible, since the interface on
the right-hand side can autonomously decide to output y! which cannot be accepted by
the interface on the left-hand side.

«interface» F1

x!

«interface» F2

x? y?

x

y

«assembly» A

x y

(a) Compatible interfaces

«interface» F1

x?

«interface» F2

x! y!

x

y

«assembly» A

x y

(b) Incompatible interfaces

Fig. 4. Autonomy of outputs

Strong modal compatibility is based on the idea that whenever one component wants
to send an output it finds the communication partner in a state where it must take the
corresponding input immediately. Weak modal compatibility is more liberal since it is
sufficient if the communication partner must accept the message possibly after perform-
ing first some silent must-transitions. But simple examples show, see e.g. Ex. 1 below,

144 R. Hennicker and A. Knapp

that this compatibility requirement is still too strong. Therefore we generalise weak
compatibility further and allow the communication partner to take the input only after
performing silent must-transitions and/or mandatory communications with other com-
ponents of the assembly and also outputs which are a must and are directed outside of
the assembly. This works well because, assuming communication-safe developments,
these (open) outputs are again guaranteed to be taken (possibly after a delay) when
an assembly is further extended. We show that communication-safe assemblies can in-
deed be built up in an incremental way. Moreover, our notion of communication-safety
goes beyond the compatibility notions because it allows to study the compatibility of
arbitrarily many interfaces within an assembly.

We base our definition of communication-safety on the corresponding notion of out-
put compatibility for MIO-families. Assume given a composable finitely indexed set
(
)1≤	≤� of MIOs and let

 be an arbitrary MIO of the family. Then the rest of
the family after omitting

 , let us call it �
 , plays the role of the environment for

 . We must ensure that in any reachable state of the product of the family, when-
ever

 wants to send an output, then �
 must be able to take the corresponding input
possibly after some autonomous must-transitions of �
 which do not concern commu-
nication with

 . These autonomous transitions can be silent must-transitions or must-
communication transitions or must-outputs of �
 which are not shared with the inputs
of

 .

Definition 1. Let (
)1≤	≤� be a composable finitely indexed set of MIOs. For each
� with 1 ≤ � ≤ �, let �
 =

⊗sy
1≤	 =
≤�
	 . The MIO-family (
)1≤	≤� is output

compatible if for each 1 ≤ � ≤ �, each (�1, . . . , ��) ∈ R(
⊗sy

1≤	≤�
), and each
 ∈ ���

∩ ��� the following holds with �
 = 	�� ∪ (��� \ ���
).4

∃� ′
 ∈ ���
. �

�
��

� ′
 ⇒ ∃(� ′1, . . . , � ′
−1, �
′

+1, . . . , �

′
�) ∈ R(�
) .

(�1, . . . , �
−1, �
+1, . . . , ��) �̂�
��

· �
��

(� ′1, . . . , � ′
−1, �
′

+1, . . . , �

′
�) .

An assembly � = asm((intf (
))1≤	≤�) is communication-safe, denoted by cs(�),
if the family of MIOs (
)1≤	≤� is output compatible .

Example 1. Consider the CashDeskAssembly in Fig. 1. To check communication-safety
we have to consider the assembly’s greybox behaviour shown in Fig. 2. Crucial states
are the states A and B. For instance, in state A the CashDeskGUI has reached its lowest
state in Fig. 1 where it wants to send out itemReady! and the CashDeskController has
also reached its lowest state in Fig. 1 where it can perform the open output printItem! to
the environment of the assembly. Only after this output it can input, as requested, item-
Ready?. This would not be allowed by weak compatibility since printItem! is not silent.
On the other hand, sending printItem! before accepting itemReady? is not a problem,
because we can expect that the whole assembly will only be put in a communication-
safe context, where we can again assume that the output printItem! will eventually be

4 Note that ��� is the set of communication labels of �� and (��� \ ���) is the set of output
labels of �� which are not shared with the input labels of �� , i.e. not used for communication

between �� and �� . The silent must-transitions are anyway subsumed in the notation
�̂�

��
;

see Sect. 2.

Modal Interface Theories for Communication-Safe Component Assemblies 145

accepted. A similar situation concerns state B of the assembly, where the CashDeskCon-
troller accepts an output finish! of the CashDeskGUI only if it has performed an output of
printItem! before.

Let us still point out that communication-safety does not coincide with deadlock-
freedom. Indeed deadlock-freedom is neither necessary nor sufficient. For instance, the
assembly in Fig. 4(b) is not communication-safe but deadlock-free. On the other hand,
the assembly in Fig. 5 is communication-safe but does deadlock immediately since none
of the inputs is served which is not required by our notion of communication-safety. (Of
course one can also imagine other variants of communication correctness where inputs
must be served.)

«interface» F1

x?

«interface» F2

y?

x

y

«assembly» A

x y

Fig. 5. Deadlocking interfaces

Communication-safety of an assembly can be shown incrementally, i.e. by enlarging
the assembly by one interface at a time, each time checking that the assembly from the
packed assembly up to now and the additional interface is communication-safe:

Proposition 1. Let� = asm((�)1≤	≤�+1) be an assembly. If�′ = asm((�)1≤	≤�)
and asm(����(�′),��+1) are communication-safe, then � is communication-safe.

This claim follows immediately from a corresponding lemma for the underlying MIOs
ensuring incremental checking of output compatibility:

Lemma 1. Let (
)1≤	≤�+1 be a composable finitely indexed set of MIOs. If
(
)1≤	≤� and (

⊗sy
1≤	≤�
	 ,
�+1) are output compatible, then (
)1≤	≤�+1 is out-

put compatible.

However, for guaranteeing communication-safety of an assembly asm((�)1≤	≤�)
it does not suffice to check pairwise communication-safety in the sense that each
asm(�	 ,�
) with 1 ≤ � �= � ≤ � is communication-safe. Consider the assembly A
in Fig. 6 consisting of three interfaces F1, F2, F3. The three assemblies asm(F1, F2),
asm(F1, F3), and asm(F2, F3) are communication-safe; but asm(F1, F2, F3) is not
communication-safe. For instance in the initial state of the whole assembly, F1 wants to
send x!, but the product of F2 and F3 does never take x? after autonomous actions which
are not shared with F1 (note that the output z! is shared).

4.2 Refinement of Interfaces and Assemblies

Refinement of interfaces and assemblies relies on the notion of weak modal refinement
for MIOs [9]. The basic idea of modal refinement is that required (must) transitions

146 R. Hennicker and A. Knapp

«interface» F1

x! z?

«interface» F2

y! x?

«interface» F3

z! y?

x

yz

«assembly» A

x y z

Fig. 6. Communication-safety does not follow from pairwise communication-safety

of an abstract specification must also occur in the concrete specification. Conversely,
allowed (may) transitions of the concrete specification must be allowed by the abstract
specification. The refinement relation is weak, because it supports observational ab-
straction, i.e., silent τ -transitions can be dropped and inserted as long as the modalities
and the simulation relation are preserved. We first extend the notion of weak modal
refinement given in [9] in a straightforward way to MIOs with communication labels.
Like in [9], weak modal refinement abstracts from internal actions, but transitions with
communication labels must be respected in the same way as input/output actions.

Definition 2. Let
 and � be MIOs with the same I/O-labelling.
 weakly modally
refines � , written
 ≤∗

m � , if there exists a relation � ⊆ �� × �� containing
(�0,� , �0,�) such that for all (�� , ��) ∈ �:

1. ∀ ∈
⋃
�� , � ′� ∈ �� . ��

�
�
� ′� ⇒ ∃� ′� ∈ �� . ��

�̂
�
� ′� ∧ (� ′� , � ′�) ∈ �

2. ∀� ′� ∈ �� . ��
τ

� ′� ⇒ ∃� ′� ∈ �� . ��

τ̂
�
� ′� ∧ (� ′� , � ′�) ∈ �

3. ∀ ∈
⋃
�� , � ′� ∈ �� . ��

�
�
� ′� ⇒ ∃� ′� ∈ �� . ��

�̂
�
� ′� ∧ (� ′� , � ′�) ∈ �

4. ∀� ′� ∈ �� . ��
τ
�
� ′� ⇒ ∃� ′� ∈ �� . ��

τ̂
�
� ′� ∧ (� ′� , � ′�) ∈ �

A MIO
 co-simulates a MIO � , written
 =∗
m � , if
 ≤∗

m � and � ≤∗
m
 .

Note that ≤∗
m is reflexive and transitive. If all transitions of
 are must-transitions co-

simulation corresponds to weak bisimulation; if all transitions of
 are may-transitions
it is classical co-simulation.

Since interface refinement has to respect blackbox behaviours, and since interfaces
do not show any communication labels, the notion of weak modal refinement is directly
applicable to define interface refinement. An interface� = intf (
) refines an interface
� = intf (�), written as � �intf � , if
 ≤∗

m � . The interfaces � and � are
equivalent, written � ≈intf � , if � �intf � and � �intf � , i.e.,
 =∗

m � .

Example 2. The interface pack (CashDeskAssembly) in Fig. 3 was obtained by hid-
ing the communication labels from the greybox behaviour of the CashDeskAssem-
bly. Figure 7 shows an equivalent but “smaller” interface behaviour. For this pur-
pose one has to prove two refinement relations pack (CashDeskAssembly) �intf

min(pack (CashDeskAssembly)) and vice versa. Indeed both directions have been ver-
ified with the MIO-Workbench [2]. Note that for the first direction observational ab-
straction w.r.t. τ -transitions on the refinement side, i.e. on pack (CashDeskAssembly),

Modal Interface Theories for Communication-Safe Component Assemblies 147

saleFinish?
printTotal!

cash?

creditCard?

item?
printItem!

item? printItem!

saleFinish?
printItem!

«interface» min(pack (CashDeskAssembly))

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 7. Interface equivalent to the result from packing CashDeskAssembly in Fig. 3

is necessary which would not work for alternating simulation of interface automata.
We believe that the interface min(pack (CashDeskAssembly)), as the name suggests, is
minimal. However, whether minimal behaviours for equivalent interfaces exist and how
they can be computed is an open issue for future research.

Assembly refinement has to respect the architectural requirements and the greybox
behaviour of assemblies. The first requirement amounts to relate the interfaces of as-
semblies pairwise by interface refinement; the latter amounts to relate the greybox be-
haviours of assemblies by means of weak modal refinement, which abstracts away silent
transitions (which stem from inner interfaces), but transitions resulting from commu-
nications are considered as visible and indeed they are respected by our generalised
notion of weak modal refinement. In summary, an assembly � = asm((�)1≤	≤�)
refines an assembly � = asm((�)1≤	≤�), written as � �asm � , if (1) � = � and
�	 �intf �	 for all 1 ≤ � ≤ � and (2) grb(�) ≤∗

m grb(�). In fact, the first condition
implies already the second one which is a consequence of the following lemma:

Lemma 2. Let (
)1≤	≤� and (�)1≤	≤� be composable finitely indexed sets of MIOs
such that
	 ≤∗

m �	 for all 1 ≤ � ≤ �. Then
⊗sy

1≤	≤�
	 ≤∗
m

⊗sy
1≤	≤� �	 .

Moreover, the lemma shows that our claim of compositionality of refinement in Sect. 1.3
— refinements of the interfaces constituting assemblies induce assembly refinements —
is indeed valid in our approach:

Proposition 2. Let (�)1≤	≤� and (�)1≤	≤� be finitely indexed sets of interfaces with
�	 �intf �	 for all 1 ≤ � ≤ �. Then asm((�)1≤	≤�) �asm asm((�)1≤	≤�).

The rule of preservation of communication-safety stated in Sect. 1.3 requires that each
refinement of a communication-safe assembly is again communication-safe. Indeed,
also this rule is valid here. The proof relies on the fact that must-transitions are preserved
by refinements.

Proposition 3. If cs(�) and � �asm � , then cs(�).

The proof of this proposition is reduced to a corresponding lemma for the preservation
of output compatibility w.r.t. weak modal refinements.

148 R. Hennicker and A. Knapp

Lemma 3. Let (
)1≤	≤� and (�)1≤	≤� be composable finitely indexed sets of MIOs
such that
	 ≤∗

m �	 for all 1 ≤ � ≤ �. If (�)1≤	≤� is output compatible, then also
(
)1≤	≤� is output compatible.

Finally, we also obtain the (strong) version of refinement encapsulation discussed in
Sect. 1.3 that assembly refinements induce interface refinements of their packings:

Proposition 4. If � �asm � , then pack (�) �intf pack (�).

The proof of this proposition relies on Lem. 2 and the following simple observation that
hiding preserves weak modal refinement:

Lemma 4. If � ≤∗
m �, then � ξ ≤∗

m �ξ.

5 Case Study

We will illustrate how our techniques work in terms of a (small) top-down develop-
ment of the cash desk application. Figure 8 gives an overview of the different steps
and their proof obligations. We start by an abstract requirements specification of the
whole system which is given by the interface CashDesk in Fig. 9. The specification is
rather loose having only a single must-transition requiring cash payment to be possible
in any system implementation whenever a printTotal! has been performed before. The
other transitions are may-transitions. At the start of a sale arbitrarily many items may
be taken and printed; note that only as many printItem!s should be performed as item?s
have been taken before, but this cannot be specified with finite state. Also a saleFin-
ish? request may be accepted, possibly followed by printing items (that have not been
printed yet) and then printing the total. Instead of cash payment, payment by credit card
may be allowed by an implementation.

«interface»
CashDeskGUI

«interface»
CashDeskController

«interface»
ClearingCompany

«assembly» CashDeskAssembly

«interface»
CashDeskGUI

«interface»
CashDeskControllerRef

«interface»
ClearingCompany

«assembly» CashDeskAssemblyRef

 a
sm(2)

�−→pack «interface»
pack(CashDeskAssembly)

�−→pack «interface»
pack(CashDeskAssemblyRef)

 i
n
tf

(3)

«interface»
CashDesk

 i
n
tf

(1)

Fig. 8. Overview of top-down development of the cash desk application

Modal Interface Theories for Communication-Safe Component Assemblies 149

saleFinish?
printTotal!

cash?

creditCard?

item?

printItem! printItem!

«interface» CashDesk
item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 9. Interface CashDesk

In the next step we specify an architecture for the intended system, which is given by
the CashDeskAssembly known from Sect. 3, Fig. 1. As a first proof obligation, we have
to show that the behaviour induced by the proposed assembly fits to the abstract require-
ments specification of the system. Formally this means that the interface of the encapsu-
lated assembly is an interface refinement of CashDesk, i.e., that (1) in Fig. 8 is satisfied.
For the proof it is obviously sufficient (cf. Sect. 4.2) to consider the minimised version
of the interface shown in Fig. 7 and to prove min(pack (CashDeskAssembly)) �intf

CashDesk. We have verified this statement with the MIO-Workbench.5

The CashDeskAssembly introduces architectural requirements and behavioural re-
quirements in terms of the greybox behaviour of the assembly shown in Fig. 2. In
our third step this assembly is refined by the assembly CashDeskAssemblyRef where
the interface CashDeskController is replaced by the interface CashDeskControllerRef.
The latter has the same behaviour specification as CashDeskController (see Fig. 1) but
the previous may-transition for creditCard? is turned into a must-transition. Obviously,
CashDeskControllerRef �intf CashDeskController and therefore, by compositionality
of refinement as stated in Sect. 4.2, we get the proof obligation (2) in Fig. 8. Since
CashDeskAssembly is communication-safe, (2) implies that CashDeskControllerRef is
communication-safe as well; cf. Sect. 4.2. Moreover, encapsulation of assemblies turns
assembly (greybox) refinement into interface (blackbox) refinement (cf. Sect. 4.2), and
therefore we obtain (3) in Fig. 8. Now we can utilise that interface refinement is transi-
tive to be sure that the visible behaviour of the encapsulated assembly CashDeskAssem-
blyRef is conform to the system’s interface specification.

Finally, we would like to emphasise the significance of proper assembly refine-
ment, i.e. the importance of respecting communications during assembly refine-
ment. Imagine that we would use instead of CashDeskAssemblyRef an assembly
CashDeskAssemblyRef’ where the interface CashDeskControllerRef is replaced by the
interface CashDeskControllerRef’ shown in Fig. 10. This interface accepts creditCard?
without initiating a subsequent verification of the card with the clearing company. Ob-
viously, CashDeskControllerRef’ is not an interface refinement of CashDeskController
and also CashDeskAssemblyRef’ is not an assembly refinement of CashDeskAssem-
bly since the required communications with the clearing company, see Fig. 2, do not

5 It may be interesting to remark, that the refinement would not hold, if at least one of the
remaining inputs of the CashDesk interface would be a must-transition; hence we could also
not get an alternating simulation relation here.

150 R. Hennicker and A. Knapp

newSale!
finish?

printTotal!

creditCard?

cash?

itemReady? printItem!

«interface» CashDeskControllerRef’

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 10. Interface CashDeskControllerRef’

τ
saleFinish? τ

printTotal!

creditCard?

cash?

item?

τ

item?

printItem!

printItem!

printItem!

saleFinish?

«interface» CashDeskAssemblyRef’

item

saleFinish

cash

creditCard

printItem

printTotal

Fig. 11. Interface resulting from packing CashDeskAssemblyRef’

happen. However, if we would not check the assembly refinement but hide immedi-
ately all communications, which happens in approaches based on interface composition,
then we obtain the interface pack (CashDeskAssemblyRef’) shown in Fig. 11 which is
obviously an interface refinement of pack (CashDeskAssembly); cf. Fig. 3. Thus the as-
sembly CashDeskAssemblyRef’ with no credit card verification could be used for the
implementation of the system, which is certainly not intended.

6 Conclusion

Our study is motivated by an extension of the abstract rule of independent imple-
mentability of interface languages [7] to take into account architectural information
given by interface assemblies. We have deliberately kept our approach to assemblies
simple, not involving further constructs like connectors, but we believe that our fun-
damental research can be successfully applied to component models as well. As a con-
crete formalism we have chosen modal I/O-transition systems which we have adopted to
take into account not only interface specifications and interface (black-box) refinement
but also interface assemblies and assembly (grey-box) refinement. To our knowledge
such an extension of the interface theory of MIOs did not exist yet. Also our notion
of communication-safe assembly is an extension of previous work on compatibility of

Modal Interface Theories for Communication-Safe Component Assemblies 151

interfaces which we claim is strongly needed in practical examples. Of course many
approaches in the literature support assemblies, i.e. networks of interface specifications
and hierarchical constructions, in one or the other way. Among those based on labelled
transition systems we want to mention interaction automata [5], pNets [1], symbolic
transition systems (STS) [8], PADL [3], and communicating finite state machines (CF-
SMs) [4]. CFSMs are based on asynchronous communication and introduce a notion
of unspecified reception which is related to (a stronger version of) communication-
safety not allowing “open” outputs. Otherwise usually deadlock checks are performed
for assemblies which, however, are neither sufficient nor necessary for communication-
safety, at least in our sense. Assembly refinement, however, is not a concern in these
approaches. Most closely related to our result on compositional refinement is the in-
teraction automata approach which studies substitutability of components w.r.t. a be-
havioural equivalence which can be tuned, e.g., to keep communications visible. In
future work we want to investigate to what extent our notion of assembly refinement
can be relaxed such that architectures can change in a controlled way. We are also in-
terested to transfer our results to asynchronous communication, hybrid systems, and
interfaces for components with data states.

Acknowledgements. We want to thank Sebastian Bauer for checking the examples with
the MIO-Workbench, and Stephan Janisch for fruitful discussions on communication-
safety.

References

1. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural models
for distributed Fractal components. Ann. Télécom. 64(1-2), 25–43 (2009)

2. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refine-
ment, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

3. Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting families of software systems with
process algebras. ACM Trans. Softw. Eng. Methodol. 11(4), 386–426 (2002)

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

5. Cerná, I., Vareková, P., Zimmerova, B.: Component substitutability via equivalencies of
component-interaction automata. Electr. Notes Theor. Comput. Sci. 182, 39–55 (2007)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th ACM SIGSOFT Ann. Symp.
Foundations of Software Engineering (FSE 2001), pp. 109–120 (2001)

7. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D.,
Hoare, C.A.R. (eds.) Engineering Theories of Software-intensive Systems. NATO Science
Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg
(2005)

8. Fernandes, F., Royer, J.-C.: The STSLib project: Towards a formal component model based
on STS. Electr. Notes Th. Comp. Sci. 215, 131–149 (2008)

9. Hüttel, H., Larsen, K.G.: The use of static constructs in a modal process logic. In: Meyer,
A.R., Taitslin, M.A. (eds.) Logic at Botik. LNCS, vol. 363, pp. 163–180. Springer, Heidel-
berg (1989)

152 R. Hennicker and A. Knapp

10. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line
theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidel-
berg (2007)

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. 3rd Ann. Symp. Logic in Com-
puter Science (LICS 1988), pp. 203–210. IEEE Computer Society, Los Alamitos (1988)

12. Plášil, F., Višňovský, S.: Behavior protocols for software components. IEEE Trans. Software
Eng. 28(11), 1056–1076 (2002)

13. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Component Model-
ing Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

A Proofs

Proof (of Lem. 1). For each 1 ≤ � ≤ � + 1 let �
 =
⊗sy

1≤	 =
≤�+1
	 . For each 1 ≤
� ≤ � let � ′

 =
⊗sy

1≤	≤
≤� . Let (�1, . . . , ��+1) ∈ R(
⊗sy

1≤	≤�+1
) and �

�
��

� ′

for ∈ ���

∩ ��� .
Let � = � + 1. Then �
 =

⊗sy
1≤	≤�
	 , and the claim follows since ��+1 and

�+1 are output compatible by assumption. Now let 1 ≤ � ≤ �.

If ∈ ���
∩ ���+1 , then ��+1

�̂
��+1

· �
��+1

� ′�+1 with � =
	��+1 ∪ (���+1 \ ���+1) since ��+1 and
�+1 are output compatible. Thus

(�1, . . . , �
−1, �
+1, . . . , ��+1) �̂
��

· �
��

(�1, . . . , �
−1, �
+1, . . . , �
′
�+1) and � ⊆

	�� ∪ (��� \ ���
), since 	��+1 ⊆ 	�� , ���+1 \ ���+1 ⊆ ��� , and (���+1 \

���+1) ∩ ���
= ∅ for all 1 ≤ � ≤ �.

If ∈ ���
∩ (

⋃
1≤	 =
≤� �), then (�1, . . . , �
−1, �
+1, . . . , ��)

�̂ ′
�

� ′
�

· �
� ′
�

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�) with � ′

 = 	� ′
�
∪ (�� ′

�
\ ���

) by the output compatibil-

ity of (
)1≤	≤� . Let (� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , �

′′
�) �′

� ′
�

(� ′′′1 , . . . , � ′′′
−1, �
′′′

+1, . . . , �

′′′
�)

with ′ ∈ ���
∩ ���+1 for some 1 ≤ � ≤ � be the first transition to occur in

this sequence. Then ��+1
�̂
��+1

· �′
��+1

� ′�+1 with � = 	��+1 ∪ (���+1 \
���+1) since ��+1 and
�+1 are output compatible. As argued in the previous case

(� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , ��+1) �̂

��
· �′

��
(� ′′1 , . . . , � ′′
−1, �

′′

+1, . . . , �

′
�+1) and thus

inductively (�1, . . . , �
−1, �
+1, . . . , ��+1)
�̂�
��

· �
��

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�+1)

with �
 = 	�� ∪ (��� \ ���
).

Proof (of Lem. 2). We show that if
 , � , and � are MIOs such that � and � are
composable and
 ≤∗

m � , then
 ⊗sy � ≤∗
m � ⊗sy �. Then the claim follows by

induction and symmetry.
Let such
 , � , and � be given, let
� =
 ⊗sy �, �� = � ⊗sy �, and let ���

be a relation witnessing
 ≤∗
m � with (�0,� , �0,�) ∈ ��� . Let

� = {((�� , ��), (�� , ��)) | (�� , ��) ∈ ���} .

Then ((�0,� , �0,�), (�0,� , �0,�)) ∈ �. Let ((�� , ��), (�� , ��)) ∈ �; we check the
conditions of weak modal refinement for �:

Modal Interface Theories for Communication-Safe Component Assemblies 153

(1) Let ∈ ��� ∪��� ∪	�� and (�� , ��) �
��

(� ′� , � ′�). If ∈ (�� \��)∪ (�� \
��) ∪ 	� , then ��

�
�
� ′� and �� = � ′�. By (1) for ��� there is an � ′� ∈ �� with

��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , ��); thus ((� ′� , ��), (� ′� , ��)) ∈
�. — If ∈ (�� \ ��) ∪ (�� \ ��) ∪ 	�, then �� = � ′� and ��

�
�
� ′�. Thus

(�� , ��) �
��

(�� , � ′�) and hence ((�� , � ′�), (�� , � ′�)) ∈ �. — If ∈ (�� ∩ ��) ∪
(�� ∩ ��), then ��

�
�
� ′� and ��

�
�
� ′� for some � ′� ∈ �� and � ′� ∈ ��. By (1)

for ��� there is an � ′� ∈ �� with ��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , � ′�); thus ((� ′� , � ′�), (� ′� , � ′�)) ∈ �.

(2) Let (�� , ��) τ
��

(� ′� , � ′�). If ��
τ
�
� ′� and �� = � ′�, then ��

τ̂
�

� ′� for

some � ′� ∈ �� by (2) for ��� ; in particular, (� ′� , ��) τ̂
��

(� ′� , ��) and hence

((� ′� , ��), (� ′� , ��)) ∈ �. — If �� = � ′� and ��
τ
�
� ′� then (�� , � ′�) τ̂

��
(�� , � ′�)

and hence ((�� , � ′�), (�� , � ′�)) ∈ �.

(3) Let ∈ ���∪���∪	�� and (�� , ��) �
��

(� ′� , � ′�). If ∈ (�� \��)∪(�� \
��) ∪ 	� , then ��

�
�
� ′� and �� = � ′�. By (3) for ��� there is an � ′� ∈ �� with

��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , ��); thus ((� ′� , ��), (� ′� , ��)) ∈
�. — If ∈ (�� \ ��) ∪ (�� \ ��) ∪ 	�, then �� = � ′� and ��

�
�
� ′�. Thus

(�� , ��) �
��

(�� , � ′�) and hence ((�� , � ′�), (�� , � ′�)) ∈ �. — If ∈ (�� ∩ ��) ∪
(�� ∩ ��), then ��

�
�

� ′� and ��
�
�
� ′� for some � ′� ∈ �� and � ′� ∈ ��. By (3)

for ��� there is an � ′� ∈ �� with ��
�̂
�

� ′� and, in particular, (�� , ��) �̂
��

(� ′� , � ′�); thus ((� ′� , � ′�), (� ′� , � ′�)) ∈ �.

(4) Let (�� , ��) τ
��

(� ′� , � ′�). If ��
τ
�

� ′� and �� = � ′�, then ��
τ̂
�

� ′�
for some � ′� ∈ �� by (4) for ��� ; in particular, (� ′� , ��) τ̂

��
(� ′� , ��) and hence

((� ′� , ��), (� ′� , ��)) ∈ �. — If �� = � ′� and ��
τ
�
� ′� then (�� , � ′�) τ̂

��
(�� , � ′�)

and hence ((�� , � ′�), (�� , � ′�)) ∈ �.

Proof (of Lem. 3). Let �1, . . . ,�� be the weakly modal refinement relations witness-
ing
1 ≤∗

m �1, . . . ,
� ≤∗
m �� , respectively. Let �
 =

⊗sy
1≤	 =
≤�
	 and

�
 =
⊗sy

1≤	 =
≤� �	 for all 1 ≤ � ≤ �. Let (�1, . . . , ��) ∈ R(
⊗sy

1≤	≤�
) and

let ∈ ���
∩ ���

for some 1 ≤ � ≤ � such that �

�
��

� ′′
 for some � ′′
 ∈ ���
.

Then there are � ′1 ∈ ��1 , . . . , �
′
� ∈ ��� with (�1, � ′1) ∈ �1, . . . , (�� , � ′�) ∈ �� and

(� ′1, . . . , �
′
�) ∈ R(

⊗sy
1≤	≤� �) by conditions (3) and (4) of weakly modal refine-

ment relations. Moreover, � ′

�
��

� ′′′
 for some � ′′′
 ∈ ��� by condition (3). Thus,

(� ′1, . . . , �
′

−1, �

′

+1, . . . , �

′
�) �̂�

��
· �

��
(� ′′′1 , . . . , � ′′′
−1, �

′′′

+1, . . . , �

′′′
�) with �
 =

	�� ∪(��� \���) by output compatibility of (�)1≤	≤� . Now�
 = 	��
∪(���

\���
).

From conditions (1) and (2) of weakly modal refinement relations it follows that

(�1, . . . , �
−1, �
+1, . . . , ��) �̂�
��

· �
��

(� ′′1 , . . . , � ′′
−1, �
′′

+1, . . . , �

′′
�).

Proof (of Lem. 4). Let � be a relation witnessing � ≤∗
m �. Then � is also a relation

witnessing � ξ ≤∗
m �ξ.

WP Semantics and Behavioral Subtyping�

Yijing Liu, Zongyan Qiu, and Quan Long

LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
{liuyijing,qzy}@math.pku.edu.cn,longquan78@gmail.com

Abstract. For the object oriented (OO) world, developing formal semantics for
theoretical study and practical use is still an important topic despite of a decade’s
efforts. In this paper, for a sufficiently large subset of sequential Java with a pure
reference semantics model, we define a Weakest Precondition (WP) semantics,
and prove its soundness and completeness. Based on this WP semantics, we study
specifications of methods and the refinement relationship between specifications,
and we propose new definitions for object invariants and behavioral subtyping
notation for general OO programs.

Keywords: Object Orientation, Weakest Precondition, Separation Logic, Speci-
fication, Refinement, Behavioral Subtyping.

1 Introduction

Object Orientation (OO) is and will be, for a long time, one of the mainstream tech-
niques in software development. Recently, due to the even higher demands on the reli-
ability and correctness of software systems (and in general, computer-based systems),
developing powerful and useful frameworks for specifying and verifying OO programs
becomes more urgent. For developing such frameworks, two mutually dependent issues
must be considered: (1) a formal semantics for OO programs as the basis for verifi-
cation, which should be powerful enough to capture the desired behaviors of various
useful programs, and abstract enough so researchers do not suffer from the implemen-
tation details; (2) useful specification and verification techniques, which can support
modular verification, thus offering scalability to program verification.

For the first issue, we believe that Weakest Precondition (WP) and Strongest Post-
condition (SP) semantics are among the best choices. One reason is that such semantics
may achieve completeness, thus can describe what a program does exactly. In addition,
these semantics are relatively high-level because they define the semantics of programs
as predicate transformers that is completely independent of any implementation. As the
result, these semantics can be used not only directly to verify OO programs, but also as
a solid foundation to define important OO concepts formally, and to validate verifica-
tion frameworks and tools. In this paper, we will focus especially on the WP semantics
for OO Programs.

According to our knowledge, people strive for a WP semantics for OO programs
since 1999. [6] proposes a WP calculus for OO programs. Later Cavalcanti and Nau-
mann gave a WP semantics [5] for an OO language, but it does not support object

� Supported by NNSF of China Grant No. 90718002.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 154–172, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

WP Semantics and Behavioral Subtyping 155

reference and sharing. With more study on OO, various forms of WP semantics for OO
programs are proposed. Noticeable works include ESC/JAVA [7], LOOP [4], JML [14]
and Spec# [2]. All of these works use WP to generate verification conditions. However,
although many works can be listed here, many central issues in OO languages and pro-
grams, especially those related to mutable object structures, have not been sufficiently
addressed. After the emergence of Separation Logic [23], things begin to change. Peo-
ple use WP ideas in their work, explicitly or implicitly, to deal with problems related
to OO programs. However, there is still not enough work directly on a WP semantics
to establish a well-founded theoretical foundation which covers most of the important
features of OO programs.

For the second issue, it is well known that Behavioral Subtyping, or Liskov Substi-
tutability Principle, [16] plays a central role in verification of OO programs. Almost all
recent works in this field adopt this principle as a part of their theoretical foundations.
Liskov [17] gave the first formal treatment for behavioral subtyping by a group of con-
straint rules, and considered object invariants (or class invariants) in the rules. Some
researchers offered various new definitions afterward, where the most influential one
is [12], where Leavens and Naumann proposed a natural refinement order on specifica-
tions, and defined the behavioral subtyping based on the order. More importantly is that
they proved that behavioral subtyping is equivalent to modular reasoning for OO pro-
grams. They also considered object invariants in subsequent work [13]. However, we
will point out that their treatment for object invariant is not very adequate in practice.

In this paper we will discuss both of these two issues. We introduce a language
μJava [27], which is a sufficiently large subset of sequential Java covering most impor-
tant OO features, including reference types, subtypes, inheritance, dynamic binding,
and sharing based parameters for methods, etc. We develop a WP semantics for μJava
based on an OO Separation Logic (OOSL) [25]. The WP semantics is proved to be both
sound and complete respect to μJava’s operational semantics. Then we use the WP se-
mantics as a theoretical tool to formalize and study specification, object invariant and
behavioral subtyping, to show its power and effects.

Briefly, the main contributions of this work are as follows:

– Firstly, we answer a theoretical question: Can we have a sound and complete WP
semantics for a typical class-based OO language that takes the pure reference se-
mantic model for variables and fields? Here we can say that the answer is yes.

– We illustrate such a WP semantics is useful in OO field by use it to define speci-
fications and their refinement relationship, prove some refinement judgments; and
we offer a new definition for object invariant by this WP semantics.

– We give a new behavioral subtyping definition, which follows Liskov Substitutabil-
ity Principle and Leavens’s natural refinement order, but our formalism is more
natural and closer to practice than these previous works.

The rest of the paper is organized as follows. We introduce briefly μJava in Section 2.
The WP semantics is defined in Section 3, and some properties are provided, as well
as the soundness and completeness. In Section 4, we study behavioral subtyping and
other important issues in OO verification, including specification, refinement and object
invariant. Due to the paper length limit, we left most of the proofs and other applications
of the WP semantics in our report [26].

156 Y. Liu, Z. Qiu, and Q. Long

2 The Programming Language: μJava

The language used in this paper, μJava, is a sequential subset of Java. We consider
mainly essential OO features relating to object sharing, updating, and creation. We
choose the reference semantics for variables and fields, to reflect the reality in main-
stream OO languages. μJava has a clear separation of store and heap operations. It is
simple to facilitate theoretical study, and large enough for covering important OO fea-
tures, e.g., dynamic binding, object sharing, aliasing, casting, etc.

The syntax of μJava is as follows:

v ::= this | x e ::= true | false | null | v
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip | x := e | x := v.a | x := (C)v | v.a := e | x := v.m(e) |

x := new C(e) | return e | c; c | if b c else c | while b c
T ::= Bool | Object | C M ::= T m(T z){T y; c}
K ::= class C : C{T a; C(T z){T y ; c}; M}
G ::= K | K G

here x is a variable, C a class name, a and m field and method names respectively. We
use over-lined form to represent a sequence. Here are some explanations:

– We assume a built-in type Object, which has no field, as the supertype of all
classes, and Null the subtype of any class. Null is the type of null, used only
in definitions of the type system and semantics. The only primitive type Bool is not
a supertype or subtype of any type. true and false are boolean values.

– We restrict expressions to those whose values depend only on the store, and restrict
assignments to a number of special forms, including plain x := e, mutation v.a :=
e, and lookup x := v.a, where the right hand sides are only our expressions. We
consider cast as a part of a special form of assignments. Command x := new C(e)
creates a new object, builds it with parameters e and assigns its reference to variable
x. We take this also as a special form of assignment. More complex structures can
be encoded with some auxiliary variables and/or assignments.

– We assume all references to fields of current object in methods are decorated with
this, to make the field references uniformly of the form v.a. We can remove this
restriction by adding repeated rules.

– The special C(T z){T y; c} in each class C is the constructor, which has the same
name as the class. We assume return e only appears as the last statement in non-
constructor methods. For recording the return value in semantic definitions, we
assume an internal-variable res, which cannot be used in programs. We require that
local variables and res initialized to special nil values (represented as nil) according
to their types, i.e., rfalse for Bool and rnull for class types.

– We do not have access control here. A program is just a sequence of class decla-
rations. We assume, as in Java, a main method in last class as the execution entry.
If there is a main method in a μJava program, we say that it is a closed program,
otherwise we say it is an open program.

In [5] a static environment is defined, then in the definition of the WP semantics, only
well-typed expressions and commands need to be considered. We follow the idea, and

WP Semantics and Behavioral Subtyping 157

define a static environment Γ = (Δ, Θ) with Δ for typing, and Θ for method lookup.
Both Δ and Θ can be established by scanning the program text. Now we introduce their
skeletons with respect to the requirement of this paper.

The typing environment ΔG for program G (abbr. Δ) records static structural in-
formation in G. Its construction is routine and omitted, and we only assume several
notations here. We use super(C1, C2) to mean that C2 is the immediate superclass of
C1, and use T1 <: T2 as the transitive closure of super, here we often omit the context
Δ when it is clear. On the other hand, we record every method for each class in Θ. We
will use notation Θ, C, m � λ(z){var y ; c} to denote that m(z){var y ; c} is a method
in class C with parameters z , local variables y and body code c.

The type judgment for expressions takes the form Γ, C, m � e :T to denote that e is
of the type T in the scope of method m of C under Γ . On the other hand, Γ, C, m �
c : com means that c is a well-typed command in body of m of C. For a method m in
class C, we use Γ, C � m :method to assert that it is well-typed. We consider only
the well-formed commands and methods in the rest of the paper.

In [27], we give rules for the construction of Δ and Θ, and rules for the typing, as
well as an operational semantics. Due to space limitation, we omit the details here.

3 A WP Semantics for μJava

In this section, we define a Weakest Precondition (WP) semantics for μJava and inves-
tigate its properties.

3.1 The Assertion Language: OOSL

Separation Logic [23] is extension of Hoare logic, aims to reason programs in C like
languages. It has been proved a powerful tool to handle mutable data structures. In our
previous work [25], we proposed a revised Separation Logic, OO Separation Logic
(OOSL), to describe OO programs’ states. And we will use it as our assertion language
in this work. Firstly we give a short introduction to OOSL. And readers can refer to the
appendix or our report [25] to find more details.

We use a revised Stack-Heap storage model to represent the states of OO programs.
A state s = (σ, O) ∈ State consists of a store and a heap (object pool):

Store =̂ Name ⇀fin Ref Heap =̂ Ref ⇀fin Name ⇀fin Ref
State =̂ Store × Heap

Here Name is an infinite name set. Special names true, false, null ∈ Name denote
boolean constants and null. Type is an infinite set of types. Object, Null, Bool ∈
Type, where Object is the supertype of all classes, and Null is the subtype of all
classes. Ref is an infinite set of references denoting object identities. It contains three
constants: rtrue, rfalse refer Bool objects respectively, and rnull refers to nothing.

For any σ ∈ Store, we assume σtrue = rtrue, σfalse = rfalse and σnull = rnull.
We will use r, r1, . . . to denote references, and a, a1, . . . for fields of objects.

158 Y. Liu, Z. Qiu, and Q. Long

The assertion language of OOSL is similar to that of Separation Logic, with some
revisions to fit the needs of OO programs:

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a �→ r2 | obj(r, T)
ψ ::= ρ | η | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ ⇒ ψ | ψ ∗ ψ | ψ —∗ψ | ∃r · ψ | ∀r · ψ

where T is a type, v a variable or constant, r1, r2 references. We use Ψ to denote the set
of assertions. Here are some explanations:

– ρ denotes assertions independent of heaps. References are atomic values here. For
any two references r1, r2, r1 = r2 holds iff r1 and r2 are identical. r : T indicates
that r refers to an object with exact type T . r <: T means that r refers to an object
of T or subtype of T . And v = r asserts that the value of variable or constant v
is r.

– η denotes assertions involving heaps, where emp asserts the heap is empty. As
a cell in heap is a field-value binding of an object (denoted by a reference), the
singleton assertion takes the form r1.a �→ r2. In addition, obj(r, T) indicates that
the heap contains exact an entire object of type T , which r refers to. In Separation
Logic, people use l �→ - or l ↪→ - to denote that location l is allocated in current
storage. But because the existence of empty objects in OO, we cannot use r.a �→-
or r.a ↪→ - to express that object which r refers to is allocated in current heap. To
solve this problem, we introduce assertion form obj(r, T) in OOSL.

– Connectors ∗ and —∗ are from Separation Logic. ψ1 ∗ ψ2 means current heap can
be split into two parts, where ψ1 and ψ2 hold on each part respectively; ψ1 —∗ψ2

means that if we add a heap satisfying ψ1 to current heap, the combined heap will
satisfy ψ2.

We use ψ[v/x] (or ψ[r/x], ψ[r1/r2]) to denote substitution of variable or constant v (or
reference r2). We treat r = v the same as v = r, and define v.a �→ r as ∃r′ · (v =
r′ ∧ r′.a �→ r). And we have some abbreviations borrowed from Separation Logic:

r.a �→- =̂ ∃r′ · r.a �→ r′ r.a ↪→ r′ =̂ r.a �→ r′ ∗ true

We use notation (σ, O) |= ψ to denote that assertion ψ holds on state (σ, O), its defini-
tion is given in appendix, and a complete treatment of OOSL’s semantics can be found
in [25].

3.2 The WP Semantics

As usual, the WP semantics of a command c will be defined as a predicate transformer,
which maps any given predicate ψ to the weakest precondition of c with respect to ψ.
We define the semantics only for well-typed commands, that is, for any command c in
discussion, Γ, C, m � c : com is supposed true. The static necessities ensured by typing
will not appear in semantic rules.

Remember Ψ denotes the set of assertions in OOSL, thus the set of predicate trans-
formers is T = Ψ → Ψ . We use [[Γ, C, m � c : com]] to denote the WP semantics

WP Semantics and Behavioral Subtyping 159

[[Γ, C, m � c1; c2]] = [[c1]] ◦ [[c2]] (SEQ)

[[Γ, C, m � if b c1 else c2]] = λψ · (b ⇒ [[c1]]ψ) ∧ (¬b ⇒ [[c2]]ψ) (COND)

[[Γ, C, m � while b c]] = λψ · μφ · (¬b ⇒ ψ) ∧ (b ⇒ [[c]]φ) (ITER)

[[Γ, C, m � skip]] = λψ · ψ (SKIP)

[[Γ, C, m � x := e]] = λψ · ψ[e/x] (ASN)

[[Γ, C, m � v.a := e]] = λψ · ∃r1, r2 · (v = r1) ∧ (e = r2)∧
(r1.a �→- ∗ (r1.a �→ r2 —∗ψ))

(MUT)

[[Γ, C, m � x := v.a]] = λψ · ∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2) ∧ ψ[r2/x] (LKUP)

[[Γ, C, m � x := (N)v]] = λψ · ∃r · (r <: N) ∧ (v = r) ∧ ψ[v/x] (CAST)

[[Γ, C, m � return e]] = λψ · ψ[e/res] (RET)

Θ, C, m � λ(z){var y ; c}, [[Γ, C, m � c]] = f

[[Γ, C � m :method]] = λ this, z · λψ · f(ψ)[nil/y]
(MTHD)

Γ, C, m0 � v : T, S1, ..., Sk are all subtypes of T,
[[Γ, Si � m :method]] = Fi(i = 1, ..., k)

[[Γ, C, m0 � x := v.m(e)]] = λψ · ∃r · (v = r) ∧ (
∨

(r : Si ∧ Fi(r, e)(ψ[res/x])))
(INV)

[[Γ, N � N :method]] = F

[[Γ, C, m � x := new N(e)]] = λψ · ∀r · raw(r, N) —∗F (r, e)(ψ[r/x])
(NEW)

Fig. 1. WP Semantics for μJava

of command c, and sometimes [[c]] if Γ, C and m are clear. In most cases, we use λ-
notations. We use f = g in the definition to mean that ∀ψ · f(ψ) ⇔ g(ψ).

The WP semantics rules for μJava are listed in Fig. 1. The semantics of sequential
composition, choice, and iteration are routine, given as three rules (SEQ), (COND),
and (ITER), where μφ ·f denotes the least fix-point of λφ ·f . Below we give some
explanations to each group of the other rules.
Basic Commands: The semantics of skip is the identity transformer. The semantics of
the plain assignment x := e is ordinary, due to the restricted expression forms in μJava,
and the clear separation of assertion forms for the stores and heaps in OOSL.

If any ψ holds after mutation v.a := x, it is necessary that variable v points to
an object that has field a. The existence of field a is guaranteed by typing. After the
assignment, v.a holds the reference which is the value of x that is defined by rule
(MUT). The last part of the rule takes the similar form as in the Separation Logic.

As shown in rule (LKUP), the lookup command x := v.a is similar to the plain
assignment. The only pre-requirement for executing this command is that v must point
to an object containing field a.

Type cast is treated by rule (CAST). Here we ask for that the variable v must refer to
an object with type N or N ’s subtype. Remember that for any type T , null <: T .

Before discussing the WP semantics of method invocations, as well as the new com-
mands, we need to have some preparation.

Generally, a method can be thought as a parameterized command. Following this
idea, we define the semantics of a method as a parameterized predicate transformer

160 Y. Liu, Z. Qiu, and Q. Long

with type PT n+1 =̂ Refn+1 → T , where n is the number of the parameters of the
method, and an extra one for current object of the invocation. For a F : PT n+1, we
need to apply it to a set of references r0, r1, . . . , rn, which stand for the objects referred
by this and all the arguments, to obtain a predicate transformer F (r0, r1, . . . , rn). For
convenience, we define an abbreviation form that for any expression e,

F (r0, .., e, .., rn) =̂ λψ · ∃r · (e = r) ∧ F (r0, .., r, .., rn)(ψ).

We may also accept more than one expressions in this abbreviation. For example, we
can see F (r, e) in the last two rules in Fig. 1.

We use the notation [[Γ, C � m :method]], or short [[C.m]], to denote the WP se-
mantics of a method m defined in class C. Here m could be C to denote the constructor
of class C. Then we have the following rules.

Method: Rule (MTHD) gives the semantics of methods and constructors. Here all local
variables are replaced with nil values. This means that, on one hand, all local variables
are initialized with nil according to the requirements mentioned in Section 2; on the
other hand, all local variables are inaccessible from outside of the method. So, if a
given ψ contains names in y , we should rename such local variables to avoid it.

If all methods are non-recursive, we can get their parameterized predicate transform-
ers directly. Otherwise, by the rules, we can obtain a group of equations about parame-
terized predicate transformers. [8] tells us there exists a least fix-point solution for such
a set of equations, and we define the solution as the WP semantics for these methods
respectively. So the WP semantics for methods is well-defined.

Method Invocation: Based on the above definition, semantics for method invocation
is given by rule (INV) which takes a similar form as the corresponding one in [5].
Here we collect all methods of the subclasses in the program (which are determined
statically by the program text), and define the weakest precondition as the disjunction
of the predicates produced by these subclasses. Note that r : Si ensures r = rnull. When
reasoning on a real invocation, this disjunction will be resolved by the type of current
object and disappeared. In building the precondition, we replace x with res in ψ, because
the invocation can be viewed as two “actions”: the first one is the execution of the body
of v.m(e) which stores the return value in res at the end, and the second copies the
value to x.

Clearly, this rule demands that the program been reasoned about is a closed program.
In this case, our definition can describe the behavior of a method invocation precisely.
The closeness of the program is one crucial condition, because only under this condi-
tion, the WP semantics can achieve completeness, which we will prove in Section 3.4.

Object Creation: Informally, object creation can be thought as two “actions” sequen-
tially: the first one extends current heap by creating a new raw object (while all its
fields take nil values) and obtains its reference; the second initiates the object’s state.
That is exactly the case for practical OO languages, and specified by rule (NEW). The
rule states that if we append any new object of class N to current heap, after the exe-
cution of the constructor, ψ will hold. In this rule, the assertion raw(r, N) asserts that r
refers to a raw object of N , with the definition as

WP Semantics and Behavioral Subtyping 161

raw(r, N) =̂

⎧⎨
⎩

obj(r, N), N has no field
r : N ∧ (r.a1 �→ nil) ∗ .. ∗ (r.ak �→ nil),

{a1, .., ak} is the set of all attrs of N

We will use raw(r,−) if do not care the type. We can prove this assertion satisfies the
following proposition, which says that separated objects must be different:

Proposition 1. raw(r1,-) ∗ raw(r2,-) ⇒ r1 = r2. ��

3.3 Properties

Now we show some properties of the WP semantics for μJava defined above. We have
the following theorems, with all their proofs in our report [26].

The first theorem says that the WP semantics is well-defined, i.e., it forms a well-
defined function on all well-typed commands and methods.

Theorem 1. Suppose we have built Γ for program G. For any c in G with Γ, C, m �
c : com, its semantics [[Γ, C, m � c : com]] is a total function on all formulas. Addi-
tionally, if Γ, C � m :method, the semantics [[Γ, C � m :method]] is a well-defined
parameterized predicate transformer.

The WP semantics is monotonic, that is, the predicate transformer defined by any well-
typed commands is a monotonic function. In fact, the monotonicity is essential to get a
least fix-point solution for parameterized predicate transformers.

Theorem 2. Suppose f : T is a predicate transformer produced by rules in Fig. 1, and
ψ, ψ′ are any well-formed predicates. If ψ ⇒ ψ′, then f(ψ) ⇒ f(ψ′).

Theorem 3. Given command c and assertions ψ1, ψ2, if FV (ψ2) ∩ md(c) = ∅, then

([[c]]ψ1) ∗ ψ2 ⇒ [[c]](ψ1 ∗ ψ2)

where FV (ψ2) is the set of all program variables (including internal variable res) in
ψ2, md(c) is the variable set modified by c, defined as:

md(c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{x}, c is x := . . .
{res}, c is return . . .
md(c1) ∪ md(c2), c is c1; c2

md(c1) ∪ md(c2), c is if b c1 else c2

md(c), c is while b c
∅, otherwise

In fact, this theorem is the Frame Rule [23] in the WP style.

Example 1 (Empty Object Creation). Now we give a small example to show how to do
verification with the WP semantics defined above. Suppose the body of the constructor
of Object is skip, then by the WP semantics we have:

[[Γ, Object � Object :method]] = λψ · ψ

162 Y. Liu, Z. Qiu, and Q. Long

Then we have the following calculation:

[[x := new Object(); y := new Object();]](x = y)
= [[x := new Object();]](∀r · raw(r, Object)—∗x = r)
= ∀r1, r2 · raw(r1, Object)—∗ raw(r2, Object)—∗ r1 = r2

= true

This indicates that two newly created empty objects are different. In fact, this result also
holds for non-empty objects, but the calculation is complicated. ��
More examples can be found in our report [26].

3.4 Soundness and Completeness

Now we give the soundness and completeness theorems of the WP semantics defined
above. Due to the page limit, we leave their proofs in our report [26].

Informally, a WP semantics [[•]] is sound, if for any command c and predicate ψ, if c
executes from a state satisfying the weakest precondition ψ′ = [[c]]ψ, it terminates and
the final state will satisfy ψ. A WP semantics is complete, if it really gives the weakest
precondition, that is, if any command c executes from any state s and terminates on a
state satisfying a condition ψ, then [[c]]ψ = ψ′ holds on state s.

We take COM the space of legal commands, and use 〈c, (σ, O)〉 �∗ (σ′, O′) to
denote configuration transformation of μJava, that says when command c executes from
current state (σ, O), after its execution of the state will be (σ′, O′). More details about
the transformation (operational semantics) can be found in our report [26].

Definition 1 (Soundness). A WP predicate transformer generator [[•]] : COM → T is
sound, if and only if for any assertions ψ, ψ′ ∈ Ψ and command c ∈ COM satisfying
[[Γ, C, m � c : com]]ψ = ψ′, we have: For any pair of states (σ, O) and (σ′, O′), if
(σ, O) |= ψ′ and 〈c, (σ, O)〉 �∗ (σ′, O′), then (σ′, O′) |= ψ.

Definition 2 (Completeness). A WP predicate transformer generator [[•]] : COM →
T is complete, if and only if for any ψ, ψ′ ∈ Ψ and command c ∈ COM satisfying
[[Γ, C � c : com]]ψ = ψ′, we have: For any pair of states ((σ, O) and (σ′, O′), if
(σ′, O′) |= ψ and 〈c, (σ, O)〉 �∗ (σ′, O′), then (σ, O) |= ψ′.

In these definitions, we see the WP as a generator which produces for each command in
COM a predicate transformer. In report [26], we give the detailed proofs for the sound-
ness and completeness of our WP semantics, according to the operational semantics of
the language. Thus we conclude that,

Theorem 4. The WP semantics for μJava is both sound and complete.

4 Behavioral Subtyping

Because the WP semantics defined above is both sound and complete, we can use it
as a theoretical foundation to study various problems. In report [26], we prove a set of
Hoare-style rules for reasoning about OO programs using the WP semantics, including
the Frame Rule which is important in local reasoning. Here we study the behavioral
subtyping concept, and this concept involves many important issues in OO program
verification, including method specification, refinement and object invariants.

WP Semantics and Behavioral Subtyping 163

4.1 Method Specification and Refinement

The specification for a method (or a piece of code) is often given as a pair of pre and
post conditions. In the following we will use {P}-{Q} to denote a specification with
precondition P and postcondition Q.

A method C.m(z) satisfies the specification {P}-{Q}, if C.m executes under a pre-
state where P holds, then Q will hold on the post-state when C.m terminates. This can
be defined based on the WP semantics:

Definition 3 (Method Specification). Given any method C.m(z), we say that method
C.m satisfies specification {P}-{Q}, written as {P}C.m {Q}, iff:

∀r, r′ · P [r, r′/this, z] ⇒ [[C.m]](r, r′)(Q[r, r′/this, z]).

This definition is straightforward and intuitive. Based on this definition, we can define
the refinement relationship between specifications.

Definition 4 (Refinement of Specifications). We say a specification {P2}-{Q2} re-
fines another specification {P1}-{Q1}, written {P1}-{Q1} � {P2}-{Q2}, iff for any
command c, {P2} c {Q2} implies {P1} c {Q1}.

This definition implies that if {P2}-{Q2} refines {P1}-{Q1}, then the former can
substitute the latter anywhere. This idea follows the natural refinement order in [12].

Although this definition for refinement is simple and clear, it is not easy for us to use
in practice, because we could hardly have ways to investigate all commands. Here we
provide a sound condition for refinement judgement.

Theorem 5. Given specification {P1}-{Q1} and {P2}-{Q2}, we have {P1}-{Q1} �
{P2}-{Q2} if there exists an assertion R such that: (1). R does not contains program
variables, and (2). (P1 ⇒ P2 ∗ R) ∧ (Q2 ∗ R ⇒ Q1).

In fact, this theorem combines the consequence rule in Hoare Logic and Frame Rule in
Separation Logic. It provides a useful way to check refinement relation in OO programs
where the heap and heap extension are taken into account.

4.2 Object Invariant

Object invariant is an important concept in both practice and research, because it de-
scribes a kind of consistent object states we can rely on. A popular view about an
object invariant is that it is a shorthand for the postcondition of constructor and de-
fault pre/post conditions for every public methods. This view leads to the following
verification conditions for class C with object invariant I: (1) The postcondition of
C’s constructor implies I; and (2) for every method C.m with specification {P}-{Q},
{P ∧ I}C.m {Q ∧ I} holds. Point (2) shows that the “real” specification of a method
is a combination of its declared specification and the object invariant. But we want to
say that this treatment of object invariant is not adequate for practice.

We use the code in Fig. 2 to illustrate our points, where are three classes: Base has
a field a and methods f, g, h. Its object invariant demand that a always holds true.
Derive inherits Base with a new field b, and strengthens the object invariant with that
b should also hold true. Client may use Base and Derive . Here the rep modifier

164 Y. Liu, Z. Qiu, and Q. Long

class Base : Object {
rep Bool a;
invariant this.a ↪→ true;
Base() { this.a = true; }
void f()
requires this.a ↪→ -;
ensures this.a ↪→ true;
{ this.a = true ; }

void g()
requires this.a ↪→ -;
ensures true;
{ this.a = false; this.f(); }

void h(C c)
requires this.a ↪→ -;
ensures true;
{ this.a = false; c.fun(this);

this.a = true; }
}
class Derive : Base {
rep Bool b;
invariant this.a ↪→ true∗

this.b ↪→ true;
Derive()

{ this.a = true; this.b = true; }
}
class Client : Object {
void m(Base b)
requires b.a ↪→ -;
ensures true

{ b.f(); }
}

Fig. 2. Sample Code with Specifications and Object Invariants

denotes a representation field of a class, that is inaccessible to clients. This notation is
from ownership types [19], and is adopted by many work about object invariants.

Firstly, a method may be invoked by methods of same class, including itself (recur-
sive call). In these circumstances, the object invariant can be ignored, in fact, we may
allow breaking the invariant for a while in a method. For example, before the invoca-
tion of Base .f in Base.g, we do assignment this.a = false, this cause the invariant
temporarily broken. Under a common treatment of invariants, invocation this.f() is
invalid, although Base .g re-establishes the invariant before its termination, thus this
temporary breakage is harmless. This tells us that a method invocation may appear in
two kinds of scenarios, inside or outside the class it belongs to. The requirements for
these two scenarios are different. As far as our knowledge, this problem is not well
studied.

Secondly, the object invariant is often strengthened in subclasses. If we treated the
precondition of a method as the conjunction of the object invariant and the declared
precondition in method interface, then preconditions of subclass’s methods would be
stronger. In this example, if we took (this.a ↪→ -∧this.a ↪→ true) as the precondi-
tion for Base .f and (this.a ↪→ -∧this.a ↪→ true∧this.b ↪→ true) for Derive.f ,
we would find that Derive.f is not a refinement of Base.f ! Because for refinement,
always we demand that precondition may only be weakened in a subclass. Existing so-
lutions to this problem are abstracting away details of the objects [1,9,18]. For example,
in [1], Barnett uses a model field st in specifications to indicate whether the object in-
variant holds. For this example, he suggest to write (this.a ↪→ - ∧ this.st = Valid)
as the precondition of Base .f , thus it can be validly inherited by Derive .

At last, the object invariant should be transparent for clients. In fact, clients often care
only about the specification declared in a method’s interface, but have no obligation to
establish the object invariant before some invocation. Consider method Client .m in
above example, the invocation b.f() is valid according Base .f ’s specification. But if
we required that “the real specification of Base.f is this.a ↪→ - ∧ this.a ↪→ true”,

WP Semantics and Behavioral Subtyping 165

this invocation would become invalid. Barnett also considered this problem in [1], but
because they also combine objects invariants with specifications, they cannot show the
validity of b.f() here with their methodology.

From the above analysis, we conclude that it is not adequate to treat an object invari-
ants as a necessary part of method specifications. In fact, an object invariant has class
scope, while a specification is only for particular method, they are independent with
each other, and thus we have to verify them separately. Definition 3 has provided a ver-
ification condition for a method specification. And we define what an object invariant
is below:

Definition 5 (Object Invariant). We say that assertion I is an object invariant of class
C, written C |= I , iff: (1),

∀r, r′ · ([[C.C]](r, r′)true) ⇒ ([[C.C]](r, r′)(I[r/this])),

and (2), for every client accessible method C.m

∀r, r′ · (([[C.m]](r, r′)true) ∧ I[r/this]) ⇒ ([[C.m]](r, r′)I[r/this]).

The first condition requires that constructor establish the object invariant, and the sec-
ond condition ensures that every client accessible method preserves the invariant. Thus,
the object invariant will always hold for clients. Please note that, this definition for the
invariant does not involve method specifications, in addition, for a method, we need
only verify that it satisfy its specification, and condition (2) if it is client accessible.

By this definition, we can see that the object invariant becomes a self-contained con-
cept, and has nothing to do with particular method specification. Comparing to existing
treatments for object invariants, such as [13, 1] and so on, our definition is a complete
one. That is to say, our definition captures the nature of object invariants.

Back to our sample code, by definitions of method specification and object invari-
ant, we can conclude the code meets its specifications except of method Base.h. We
point that although Base.h preserve the object invariant, but its implementation is not
valid, because the object invariant does not hold before calling c.fun(this). Barnett et
al has studied this problem in [1]. They proposed a pair of new primitive statements
pack/unpack to explicitly establish or break the object invariant. This invalid method
call can be verified by Barnett’s techniques. But we will not discuss this issue further,
because it is out of this paper’s scope.

4.3 Behavioral Subtyping

Now we give our definition for Behavioral Subtyping based on above discussion.

Definition 6 (Behavioral Subtype). Given class C and B, we say C is a behavioral
subtype of B, written C � B, iff, (1), for every assertion I , B |= I implies C |= I , and
(2), for every client accessible method B.m we have for any specification {P}-{Q},
{P}B.m {Q} implies {P}C.m {Q}.

The first condition requires that every object invariant of superclass is an object invariant
of subclass; and the second requires that subclass obeys superclass’s behavior. Clearly,
this definition follows the thought of Liskov substitution principle.

166 Y. Liu, Z. Qiu, and Q. Long

Now we focus on the practical verification procedures. We will develop verifica-
tion conditions for a program with behavioral subtyping requirement. At first, we in-
troduce some notations. For a μJava program G, we suppose a specification envi-
ronment ΠG containing specifications of all methods of classes in consideration, and
an invariant environment ΛG containing all object invariants. We will omit subscript
G in what follows. More precisely, the specification environment Π is a map from
a method/constructor to its specification. We will use {P}C.m {Q} ∈ Π (or {P}
{C.C} ∈ ΠQ for constructor) to state that {P}-{Q} is the specification for method
C.m (or constructor of C). And the invariant environment Λ mapping every class to
its object invariant, which is just an assertion. We will use notation Λ(C) to denote the
object invariant of class C.

Definition 7 (Satisfaction of specification and invariant environment). We say a
program G satisfies specification environment Π and invariant environment Λ, writ-
ten G |= (Π, Λ), iff (1), for every {P}C.m {Q} ∈ Π , {P}C.m {Q} holds, here m
could be the constructor; and (2), for every class C in G, C |= Λ(C) holds.

This definition leads the following verification conditions for G |= (Π, Λ):

Theorem 6. Given a program G, a specification environment Π , and an invariant en-
vironment Λ, we have G |= (Π, Λ), if following two conditions hold: (1), for every
constructor specification {P}C.C {Q} ∈ Π , {P}C.C {Q ∧ Λ(C)} holds, and (2),
for every method specification {P}C.m {Q} ∈ Π , {P}C.m {Q} holds; and if C.m is
client accessible, {P ∧ Λ(C)}C.m {Λ(C)} holds.

From this theorem, we can see that suppose Λ(C) = I , for the constructor of C with
specification {P}-{Q}, we should verify that {P}C.C {Q ∧ I}; and for a method
C.m with specification {P}-{Q}, we have two proof obligations: {P}C.m {Q} for
its behavior, and {P ∧ I}C.m {I} for the object invariant. This is very different from
common treatment like [13, 1] in two aspects: First, method invocations now only rely
on declared specifications {P}-{Q}, but not {P ∧ I}-{Q ∧ I} with object invari-
ant considered. Second, the object invariant is hidden inside a class and transparent to
clients, but at any program point clients can assert the object invariant hold.

Although Definition 6 gives a sound definition for behavioral subtype, it is not prac-
tical for real verification. As seen, we provide specifications and object invariants for
classes with Π and Λ, and usually use them to do verification so that we need not ex-
plore the class details. In this sense, Π and Λ give the strongest specifications and object
invariants. So we have the following behavioral subtype definition for practice:

Definition 8. Given specification environment Π and invariant environment Λ for pro-
gram G, and class C, B defined in G, we say C is a behavioral subtype of B under
Π and Λ, written (Π, Λ) � C � B, iff, (1), Λ(C) ⇒ Λ(B), and (2), for every client
accessible method B.m we have Π(B.m) � Π(C.m).

In fact, this definition implies Definition 6 with the meaning of that Π and Λ give the
strongest specifications and object invariants. And clearly, this behavioral subtyping
relationship is transitive.

WP Semantics and Behavioral Subtyping 167

Definition 9. Given a program G with specification environment Π and invariant en-
vironment Λ, we say G satisfies the behavioral subtyping requirement under Π and Λ,
iff for any class C <: B, we have (Π, Λ) � C � B.

By Definition 8 and its transitiveness, we can deduce that we only need check the be-
havioral subtype relationship for immediate super/sub classes. And, combining Defini-
tion 9 and Theorem 6, we can obtain a kind of verification conditions for programs with
behavioral subtyping requirements. These verification conditions have similar forms as
Liskov’s [17] and Leavens’s [13], but the meanings are very different according to above
discussions.

5 Related Work and Conclusion

In this paper, we investigate some important techniques in OO program verification:
WP semantics, specification refinement, object invariant and behavioral subtyping. In
this section, we discuss some related work and conclude.

WP semantics is one of the most powerful tools in theoretical study of procedural
programming. Researchers apply it to define and validate semantics, generate verifi-
cation conditions, validate refinement rules, and so on. But in OO world, after many
years of efforts, WP has not yet fulfilled its potentials, since a satisfactory and well-
studied WP semantics does not emerging yet. Efforts striving on a WP semantics for
OO programs since 1999 [6] where a WP calculus was given for OO programs toward
to support some object sharing. The semantics is restricted to the forms of syntactic sub-
stitution. To define the semantics syntactically, many restrictions to the programs and
assertions are made, and many cases are treated specially. However, even many asser-
tions cannot be checked statically, and the complicated special cases are hard to make
accurately and completely. A. Cavalcanti and D. Naumann developed a WP seman-
tics for OO language in [5]. Their language covers subtyping, dynamic binding, but not
sharing. They introduce notations of OO refinement too. However, the semantics model
in the work is not based on references, thus departs from the essentials of practical OO
languages. This also makes the object sharing and updating hard to treat, if not impos-
sible. With the rising and success of Separation Logic (SL), many problems related to
programs with pointers or OO have been reexamined. Some papers mention or use WP
semantics based on some form of SL. For example, the work presented in [20] use a WP
semantics to prove the soundness of their framework on Separation Logic and Implicit
Dynamic Frames [24]. However, the WP semantics is defined as state transformers, but
not predicate transformers, that is not abstract enough, thus is not very useful practically.
OO verification tools, such as ESC/JAVA [7], LOOP [4], JML [14,10] and Spec# [2,3]
and so on, also utilize WP principle to generate verification conditions. But these work
mainly focus on powerful, useful, yet succinct notations for proper specifications to
support modular verification while ensuring information hiding, all these work put the
important mutable object structures aside.

Behavioral subtyping is an important concept for OO program verification, and it
always involves other crucial concepts like specification and object invariants. The es-
sential formalisms on this topic is [16, 17], where Liskov proposed a group of con-
straint rules to ask that subtype methods preserve the supertype method’s behavior,

168 Y. Liu, Z. Qiu, and Q. Long

and subtype invariant implies supertype invariant. However, as pointed by Leavens and
Naumann [12,13], the constraints given in [17] are too strong, so they offered a new be-
havioral subtyping definition by nature specification refinement, and provided a general
notation for specification and refinement. But these works are based on state transition,
thus is not high-level enough for practical verification framework. Besides, they treat
object invariant as an always holding precondition of methods, this kind of require-
ment is not adequate as our discussion in Section 4.3. Specification refinement has been
investigated by many other researchers. For example, rCOS [11] defines refinement
relationship by graph transformation, Parkinson [21] defines refinement by a proof be-
tween specifications. In fact, all these definition follows the nature refinement order, and
it seems that researchers have reached some consensus on specification refinement. The
most famous work about object invariants are Hoare [9], Barnett [1], Leino [15] and
Müller [18], and their techniques have applied to verification tools like ESC/JAVA [7],
JML [14] and Spec# [2]. But they do not provide a complete formal definition for object
invariant, and they treat object invariant as a part of method specification.

In this paper, based on an OO version of Separation Logic, we develop a WP seman-
tics for a model OO language with typical OO features, and prove that the semantics
is both sound and complete. In addition, some properties of the WP semantics are pro-
posed and proved. As far as we know, this is the first work on the completeness of such
a semantics for OO languages with pure reference semantic model. Based on the WP
semantics, we investigate the behavioral subtyping notation which is central for OO
verification. We introduction method specification and define refinement relationship
on them, we propose new formal definitions for object invariants and behavioral sub-
tying. And we provide verification conditions for a program with behavioral subtyping
requirement. Conducting a comparison to existing works, e.g., [5,6,22,16,17,12,13], we
might conclude that our WP semantics captures more essentials of object-orientation in
an more adequate and useful way, and our treatment for object invariant and behavioral
subtyping is more natural and closer to practice.

As for the future work, first, we will apply the WP semantics and our refinement and
behavioral subtyping notation to OO program verification. We are working on a spec-
ification and verification framework for Java-like languages, with polymorphism, en-
capsulation and modular verification in mind. Second, we will extend our specification
refinement to data refinement and program refinement, thus can study the refinement
relationship between programs/specifications at different abstract levels, and provide
the possibility of programming from specifications or/and code generation.

References

1. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W., Rustan, K., Leino, M.:
Verification of object-oriented programs with invariants. Journal of Object Technology 3,
2004 (2003)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: Proceedings
of the 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, PASTE 2005, pp. 82–87. ACM, New York (2005)

WP Semantics and Behavioral Subtyping 169

4. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: A developer-oriented approach.
In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 422–439.
Springer, Heidelberg (2003)

5. Cavalcanti, A.L.C., Naumann, D.: A weakest precondition semantics for refinement of
object-oriented programs. IEEE Trans. on Software Engineering 26(8), 713–728 (2000)

6. de Boer, F.S.: A WP-calculus for OO. In: Thomas, W. (ed.) FOSSACS 1999. LNCS,
vol. 1578, pp. 135–149. Springer, Heidelberg (1999),
http://dx.doi.org/10.1007/3-540-49019-1 10

7. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for java. SIGPLAN Not. 37, 234–245 (2002)

8. Hesselink, W.H.: Predicate-transformer semantics of general recursion. Acta Informatica 26,
309–332 (1989)

9. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1, 271–281
(1972)

10. Jacobs, B.: Weakest precondition reasoning for java programs with jml annotations. Journal
of Logic and Algebraic Programming 58, 2004 (2002)

11. Jifeng, H., Li, X., Liu, Z.: rcos: a refinement calculus of object systems. Theor. Comput.
Sci. 365, 109–142 (2006)

12. Leavens, G.T., Naumann, D.A.: Behavioral subtyping is equivalent to modular reasoning for
object-oriented programs. Technical Report 06-36, Department of Computer Science, Iowa
State University, Ames, Iowa, 50011 (December 2006)

13. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance, and modular
reasoning. Technical Report 06-20b, Department of Computer Science, Iowa State Univer-
sity, Ames, Iowa, 50011 (September 2006)

14. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes 31(3), 1–38 (2006)

15. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

16. Liskov, B.: Keynote address - data abstraction and hierarchy. In: Addendum to the Proceed-
ings on Object-Oriented Programming Systems, Languages and Applications (Addendum),
OOPSLA 1987, pp. 17–34. ACM, New York (1987)

17. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16(6), 1811–1841 (1994)

18. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262. Springer, Heidelberg (2002)

19. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP 1998. LNCS,
vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

20. Parkinson, M., Summers, A.: The relationship between separation logic and implicit dynamic
frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 439–458. Springer, Heidelberg
(2011)

21. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In: Proceed-
ings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2008, pp. 75–86. ACM, New York (2008)

22. Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming. Theor. Com-
put. Sci. 343(3), 413–442 (2005)

23. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Symposium
on Logic in Computer Science, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

24. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic frames and
separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 148–172.
Springer, Heidelberg (2009)

http://dx.doi.org/10.1007/3-540-49019-1_10

170 Y. Liu, Z. Qiu, and Q. Long

25. Liu, Y., Qiu, Z.: A separation logic for OO programs. Technical Report 2010-42, School of
Math., Peking University (2010) (preprints),
http://www.mathinst.pku.edu.cn/index.php?styleid=2

26. Liu, Y., Qiu, Z., Long, Q.: A weakest precondition semantics for Java. Technical Report
2010-46, School of Math., Peking University (2010) (preprints),
http://www.mathinst.pku.edu.cn/index.php?styleid=2

27. Qiu, Z., Wang, S., Long, Q.: Sequential μJava: Formal foundations. Technical Report 2007-
35, School of Math., Peking University (2007) (preprints),
http://www.mathinst.pku.edu.cn/index.php?styleid=2

A OOSL: Some Details and Semantics

Now we give some details about OOSL. A complete treatment can be found in [25],
including a careful comparison with other similar works.

To represent the states of OO programs, we use an extension of classical Stack-Heap
storage model based upon three basic sets Name, Type and Ref. Here we say something
more for Ref. Because references are atomic, we assume two primitive functions:1

– eqref : Ref → Ref → bool, justifies whether two references are the same, i.e. for
any r1, r2 ∈ Ref, eqref(r1, r2) iff r1 is same to r2.

– type : Ref → Type decides the type of the object referred by some reference. We
define type(rtrue) = type(rfalse) = Bool, and type(rnull) = Null.

A program state s = (σ, O) ∈ State consists of a store and an object pool:

Store =̂ Name ⇀fin Ref Heap =̂ Ref ⇀fin Name ⇀fin Ref
State =̂ Store × Heap

We use r, . . . to denote references, and a, . . . for fields. An element of O is a pair (r, f),
where f is an abstraction of some object o pointed by r, a function from fields of o to
values.2 For domain of O, we refer to either a subset of Ref associated with objects, or
a subset of Ref ×Name associated with values. We use domO to denote the domain of
O, and define dom2 O =̂ {(r, a) | r ∈ domO, a ∈ domO(r)} for the second case.

For the program states, we define the well-typedness as follows.

Definition 10 (Well-Typedness). Store σ is well-typed iff

∀v ∈ domσ · type(σ(v)) <: dtype(v).

Heap O is well-typed iff

– ∀(r, a) ∈ dom2 O · a ∈ fld(r) ∧ type(O(r)(a)) <: fields(r)(a), and

1 One possible implementation, for example, is to define a reference as a pair (t, id) where
t ∈ Type and id ∈ N, and define eqref as the pair equality, and type(r) = r.first.

2 Please pay attention that Ref ⇀fin Name ⇀fin Ref is very different from Ref × Name ⇀fin

Ref. Informally speaking, the former is a map from references to objects, while the latter is
a map from object fields to field values. So objects have no direct presentations in the latter,
especially empty objects.

http://www.mathinst.pku.edu.cn/index.php?styleid=2
http://www.mathinst.pku.edu.cn/index.php?styleid=2
http://www.mathinst.pku.edu.cn/index.php?styleid=2

WP Semantics and Behavioral Subtyping 171

M(true) = State (I-TRUE)

M(false) = ∅ (I-FALSE)

M(r1 = r2) = State if eqref(r1, r2), ∅ otherwise (I-REF)

M(r : T) = State if type(r) = T, ∅ otherwise (I-TYPE)

M(r <: T) = State if type(r) <: T, ∅ otherwise (I-SUBT)

M(v = r) = {(σ, O) | σ(v) = r} (I-VAL)

M(emp) = {(σ, ∅)} (I-EMP)

M(r1.a �→ r2) = {(σ, {(r1, a, r2)})} (I-SGL)

M(obj(r, T)) = {(σ, O) | type(r) = T ∧ dom O = {r}∧
dom (O(r)) = dom (fields(T))}

(I-OBJ)

M(p(r)) = J (p)(r), J is the least fixpoint model of Λ (I-PRE)

M(¬ψ) = State \M(ψ) (I-NEG)

M(ψ1 ∨ ψ2) = M(ψ1) ∪M(ψ2) (I-OR)

M(ψ1 ∧ ψ2) = M(¬(¬ψ1 ∨ ¬ψ2)) (I-AND)

M(ψ1 ⇒ ψ2) = M(¬ψ1 ∨ ψ2) (I-IMP)

M(ψ1 ∗ ψ2) = {(σ, O) | ∃O1, O2 · O1 ∗ O2 = O ∧ (σ, O1) ∈ M(ψ1)
∧(σ, O2) ∈ M(ψ2)}

(I-SCON)

M(ψ1 —∗ψ2) = {(σ, O) | ∀O1 · O1⊥O ∧ (σ, O1) ∈ M(ψ1)
implies (σ, O1 ∗ O) ∈ M(ψ2)

(I-SIMP)

M(∃r · ψ) = {(σ, O) | ∃r ∈ Ref · (σ, O) ∈ M(ψ)} (I-EX)

M(∀r · ψ) = M(¬(∃r · ¬ψ)) (I-ALL)

Fig. 3. Semantics of OOSL

– ∀r ∈ dom O · fld(r) = ∅ ∨ (fld(r) ∩ domO(r) = ∅).

fld(r) = domfields(r) is the field set of the type of r.
State s = (σ, O) is well-typed iff both σ and O are well-typed. ��

A well-typed heap requires that: 1) all fields in O are valid according to their objects,
and hold values of valid types; and 2) for a non-empty object (according to its type),
only when at least one of its fields is in O, we can say the object is in O. Thus we can
identify empty objects in any heap. We will only consider well-typed states.

We define a special overriding operator ⊕ on Heap:

(O1 ⊕ O2)(r) =̂
{

O1(r) ⊕ O2(r) if r ∈ domO2

O1(r) otherwise

The ⊕ operator on the right hand side is the standard function overriding. Thus, for
heap O1, O1 ⊕ {(r, a, r′)} gives a new heap, where only one field value (the value for
a) of the object pointed by r is modified (denoted by r′).

172 Y. Liu, Z. Qiu, and Q. Long

We use O1 ⊥ O2 to indicate that O1 and O2 are separated from each other:

O1 ⊥ O2 =̂ ∀r ∈ domO1 ∩ domO2·
O1(r) = ∅ ∧ O2(r) = ∅ ∧ dom (O1(r)) ∩ dom (O2(r)) = ∅.

If a reference to object o, is in both dom O1 and domO2, then O1 and O2 must contain
non-empty and disjoint subsets of o’s fields (the well-typedness guarantees this). This
means that we can separate fields of a non-empty object into different heaps, but not an
empty object. We use O1 ∗ O2 for the union of O1 and O2, when O1 ⊥ O2.

This storage model gives us both an object view and a field view. With it, we can
correctly handle whole objects and their fields.

The assertion language of OOSL is in Section 3.1. Now we explain more about
user-defined assertions and semantics of OOSL.

We allow user-defined predicates in OOSL. In fact, these predicates are indispensable
to support specification and verification programs involving recursive data structures,
e.g., lists, trees, etc. We record these definitions in a Logic Environment Λ:

Λ ::= ε | p(r) .= ψ, Λ

Here ε denotes the empty environment, p is a symbol (a predicate name), r are (a list of)
formal parameters of the predicate, and ψ is the body, which is an assertion correlated
with r. Recursive definitions are allowed.

As a well-formedness, the body ψ of any definition in Λ cannot use symbols not
defined in Λ. Further, we require that Λ is finite and any body predicate ψ in it is
syntactically monotone3. Under these conditions, we can define a least fix-point model
for Λ by Tarski’s theorem. Based on this model, we define semantics of assertions by
a semantic function MΛ : Ψ → P(State) by rules listed in Fig. 3, where subscript Λ
is omitted as default, and J is the least fix-point model of Λ. With this least fix-point
model J , we can define that some assertion holds on a given state:

Definition 11.
(σ, O) |= ψ iff (σ, O) ∈ M(ψ).

3 For definition p(r)
.
= ψ, every symbol occurred in ψ must lie under even number of negations.

Computing Preconditions and Postconditions of

While Loops

Olfa Mraihi1, Wided Ghardallou2, Asma Louhichi2, Lamia Labed Jilani1,
Khaled Bsaies2, and Ali Mili3

1 Institut Superieur de Gestion, Tunis, Tunisia
2 Faculte des Sciences de Tunis, El Manar, Tunisia

3 NJIT, Newark NJ, USA
louhichiasma@yahoo.fr, olfa.mraihi@yahoo.fr, wided.ghardallou@gmail.com,

lamia.labed@isg.rnu.tn, khaled.bsaies@fst.rnu.tn
mili@cis.njit.edu

Abstract. Weakest preconditions were introduced by Dijkstra as a tool
to define the semantics of programming constructs, and thereby as a
means to prove the correctness of programs; the dual concept of strongest
postcondition was introduced subsequently as an alternative means for
the same ends. In this paper, we present and discuss a method to com-
pute weakest preconditions and strongest postconditions of while loops
in a C-like programming language; to this effect, we use the concept
of invariant relation. Whereas the task of computing weakest precondi-
tions and strongest postconditions of while loops is usually approached
by limiting the number of iterations and applying successive sequential
compositions, invariant relations afford us a crisper, closed form solution.

Keywords: weakest precondition, strongest postcondition, while loop,
invariant relation, programming language semantics, program correct-
ness, relational calculus.

1 Introduction: Preconditions and Postconditions of
Loops

Weakest preconditions were introduced by Dijkstra in [7], and further explored
in [12,8] as a basis for a sound discipline of program derivation; specifically, they
have been used to define the semantics of programming languages and design
languages, and to prove the correctness of programs with respect to specifi-
cations represented by precondition/ postcondition pairs. Strongest postcondi-
tions, a dual concept, were introduced subsequently as means to essentially the
same broad ends (defining semantics, proving correctness, capturing functional
properties of programs and/ or designs). Like much of the research pertaining
to programming language semantics and program correctness, weakest precondi-
tions and strongest postconditions were the focus of much research interest in the
seventies and eighties, and emerged again recently as important research topics
[14,13,11,1,4,24,16,2,9]. Also, like most program correctness methods, weakest

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 173–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

174 O. Mraihi et al.

preconditions and strongest postconditions meet their toughest challenge when
they deal with iterative constructs, most notably while loops.

In this paper, we use the concept of invariant relation of a while loop, in-
troduced by us in earlier work [19], and explore how this concept can help
us to compute or approximate weakest preconditions and strongest postcon-
ditions. Our approach is fairly orthogonal to existing methods for the derivation
of preconditions and postconditions, and can be characterized by the following
premises:

– It is applicable to loops written in actual programming languages, such as
C, C++, Java, etc.

– It proceeds by a divide-and-conquer discipline, which allows us to handle
large programs (loops) in near linear time (as a function of the size of the
loop); hence it is fairly scalable.

– It is automatable, and proceeds by matching (some representation of) the
source code against pre-catalogued code patterns.

– For strongest postconditions, it may proceed by successive approximations,
generating (arbitrary) postconditions that culminate in the strongest post-
condition or an approximation thereof (depending on whether our tool has
the necessary programming knowledge and domain knowledge required to
fully analyze the loop).

– It allows us to compute weakest preconditions once we have captured all the
relevant functional details of the loop.

In section 3 we briefly introduce the concept of invariant relations, using the
mathematical background discussed in section 2. In sections 4 and 5 we introduce
weakest preconditions and strongest postconditions, and discuss how invariant
relations help us compute these by means of invariant relations. Then, in section 6
we discuss how we generate invariant relations in practice. Finally, in section 7
we conclude by summarizing our results, assessing them by comparison with
related work, and sketching venues for further research.

2 Mathematical Background

2.1 Elements of Relations

Definitions and Notations. We consider a set S defined by the values of
some program variables, say x, y and z; we typically denote elements of S by s,
and we note that s has the form s = 〈x, y, z〉. We use the notation x(s), y(s),
z(s) to denote the x-component, y-component and z-component of s. We may
sometimes use x to refer to x(s) and x′ to refer to x(s′), when this raises no
ambiguity. We refer to elements s of S as program states and to S as the space of
the program. A relation on S is a subset of the cartesian product S×S. Constant
relations on some set S include the universal relation, denoted by L, the identity
relation, denoted by I, and the empty relation, denoted by ∅.

Computing Preconditions and Postconditions of While Loops 175

Operations on Relations. Because relations are sets, we apply the usual set
theoretic operations between relations: union (∪), intersection (∩), and comple-
ment (R). Operations on relations also include

– The converse, denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}.
– The product of relations R and R′ is the relation denoted by R ◦R′ (or RR′)

and defined by R ◦ R′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}. We admit

without proof that R̂R′ = R̂′R̂ and that ̂̂
R = R.

– The pre-restriction (resp. post-restriction) of relation R to predicate t is the
relation {(s, s′)|t(s) ∧ (s, s′) ∈ R} (resp. {(s, s′)|(s, s′) ∈ R ∧ t(s′)}). Given
a predicate t, we denote by T the relation defined as T = {(s, s′)|t(s)}. We
admit without proof that the pre-restriction of a relation R to predicate t
can be written as T ∩ R, and the post-restriction of relation R to predicate
t can be written as R ∩ T̂ .

– The domain of relation R is defined as dom(R) = {s|∃s′ : (s, s′) ∈ R}. We
admit without proof that for a relation R, RL = {(s, s′)|s ∈ dom(R)}.

– The nth power of relation R, for natural number n, is denoted by Rn and
defined as follows:

R0 = I,
For n > 0, Rn = Rn−1 ◦ R.

– The transitive closure of relation R is the relation denoted by R+ and defined
by R+ = {(s, s′)|∃n > 0 : (s, s′) ∈ Rn}.

– The reflexive transitive closure of relation R is the relation denoted by R∗
and defined by R∗ = R+ ∪ I.

We apply the usual conventions with regards to operator precedence.

Properties of Relations. We say that R is deterministic (or that it is a
function) if and only if R̂R ⊆ I, and we say that R is total if and only if I ⊆ RR̂,
or equivalently, RL = L. A vector V is a relation that satisfies V L = V ; in set
theoretic terms, a vector on set S has the form C × S, for some subset C of S.
A relation R is said to be reflexive if and only if I ⊆ R, transitive if and only if
RR ⊆ R and symmetric if and only if R = R̂. We admit without proof that the
transitive closure of a relation R is the smallest transitive superset of R; and that
the reflexive transitive closure of relation R is the smallest reflexive transitive
superset of R. A relation R is said to be inductive if and only if it can be written
as R = A ∪ Â for some vector A; we leave it to the reader to check that if A is
written as {(s, s′)|α(s)}, then A ∪ Â can be written as {(s, s′)|α(s) ⇒ α(s′)}.

2.2 Refinement Ordering

We define an ordering relation on relational specifications under the name re-
finement ordering:

Definition 1. A relation R is said to refine a relation R′ if and only if

RL ∩ R′L ∩ (R ∪ R′) = R′.

176 O. Mraihi et al.

In set theoretic terms, this equation means that the domain of R is a superset of
(or equal to) the domain of R′, and that for each element s in the domain of R′,
the set of images of s by R is a subset of (or equal to) the set of images of s by R′.
This is similar to, but different from, refining a pre/postcondition specification
by weakening its precondition and/or strengthening its postcondition [12,22].
We denote this relation by R � R′ or R′ � R. We consider a program g on
space S written in some C-like programming language. Because g is written in
a deterministic programming language, its semantics is captured by a function,
which we denote by G and define by

G = {(s, s′)| if g starts execution in state s then it terminates in state s′}.

From this definition, it stems that dom(G) can be interpreted as

dom(G) = {s| if g starts execution in state s then it terminates}.

We admit that, modulo traditional definitions of total correctness [8,12,20], the
following propositions hold:

– A program g is correct with respect to a specification R if and only if G � R.
– R � R′ implies that any program correct with respect to R is correct with

respect to R′.

In other words, R refines R′ if and only if R represents a stronger requirement
than R′.

2.3 Lattice Properties

We admit without proof that the refinement relation is a partial ordering. In
[3] Boudriga et al. analyze the lattice properties of this ordering and find the
following results:

– Any two relations R and R′ have a greatest lower bound, which we refer to
as the meet, denote by �, and define by:

R � R′ = RL ∩ R′L ∩ (R ∪ R′).

– Two relations R and R′ have a least upper bound if and only if they satisfy
the following condition (which we refer to as the consistency condition):
RL ∩ R′L = (R ∩ R′)L. Under this condition, their least upper bound is
referred to as the join, denoted by �, and defined by:

R � R′ = (RL ∩ R′) ∪ (R′L ∩ R) ∪ (R ∩ R′).

Intuitively, the join of R and R′, when it exists, behaves like R outside the
domain of R′, behaves like R′ outside the domain of R, and behaves like the
intersection of R and R′ on the intersection of their domain.

– Two relations R and R′ have a least upper bound if and only if they have
an upper bound.

Computing Preconditions and Postconditions of While Loops 177

– The lattice of refinement admits a universal lower bound, which is the empty
relation.

– The lattice of refinement admits no universal upper bound.
– Maximal elements of this lattice are total deterministic relations.

Figure 1 (a) shows the overall structure of the lattice of specifications.

φ
��������

��������

�
�

��

�
�

��

�
�

��

�
�

��R R′

R � R′

R � R′
�� �� �� �� �� �� �� �� �� ��

Total Functions

φ
��������

��������

�� �� �� �� �� �� �� �� �� ��[w]

�
�

�
�

�
��

Y1
�� Y2

�� Y3

...

�� Yk

Y1 � Y2

Y1 � Y2 � Y3

Y1 � Y2 � Y3... � Yk

Total Functions

(a): Lattice Operations (b): Successive Approximations

Fig. 1. Lattice Structure of Refinement

3 Invariant Relations

In this section, we discuss invariant relations; first, we introduce some back-
ground notations and results about loops, in subsection 3.1.

3.1 Loop Semantics

We consider while loops written in some C-like programming language, and we
submit the following theorem, due to [21], which we use as the semantic definition
of a while loop.

Theorem 1. (Mili et. al. 2009 [21]) We consider a while statement of the form
w = while t do b that terminates for all the states in S. Then its function W
is given by:

W = (T ∩ B)∗ ∩ T̂ .

For the sake of simplicity, we limit our investigation to while loops that ter-
minate for all initial states, i.e. such that WL = L. In [21], we have dis-
cussed why this hypothesis does not, in theory, restrict the generality of our
study; although we concede that in practice it makes for less interesting results.

178 O. Mraihi et al.

To illustrate our subsequent discussions, we use a simple running example, which
is the following while loop on natural variables n, f , k, such that 1 ≤ k ≤ n + 1:

w: while k!=n+1 {f=f*k; k=k+1}.

3.2 Invariant Relations

Intuitively, an invariant relation is a relation that contains all the pairs of states
(s, s′) such that s′ can be derived from s by application of an arbitrary number
(including zero) of iterations of the loop body. We define it formally as follows.

Definition 2. Given a while loop of the form w = while t do b on some space
S, we say that relation R is an invariant relation for w if and only if it is a
reflexive and transitive superset of (T ∩ B).

As a rationale for the concept of invariant relation, consider that a reflexive
transitive closure of a relation is the smallest reflexive transitive superset of the
relation. Had we been able to derive the reflexive transitive closure of (T ∩ B),
we would apply Theorem 1 to compute the function of the loop, and we would
dispose of/ dispense with all other means to analyze the loop. But computing
the reflexive transitive closure of (T ∩ B), i.e. the smallest reflexive transitive
superset of (T ∩B), is usually difficult; as a substitute, invariant relations provide
arbitrary (not necessarily smallest) reflexive transitive supersets of (T ∩ B). By
taking the intersection of a sufficient number of invariant relations, we may attain
the reflexive transitive closure of (T ∩ B).

To illustrate this concept, we consider the loop of the running example, and
we submit the following relation:

R =
{

(s, s′)| f

(k − 1)!
=

f ′

(k′ − 1)!

}
.

This relation is clearly reflexive and transitive; to prove that it is a superset of
(T ∩ B), we take an arbitrary pair (s, s′) in (T ∩ B), and we proceed as follows:

(s, s′) ∈ (T ∩ B)
⇒ { substitution }

k = n + 1 ∧ n′ = n ∧ f ′ = f × k ∧ k′ = k + 1
⇒ { substitution }

f ′

(k′−1)! = f×k
(k+1−1)!

⇒ { simplification }
f ′

(k′−1)! = f
(k−1)!

⇒ { substitution }
(s, s′) ∈ R.

4 Weakest Preconditions

4.1 A Relational Formula

We consider a while loop w = while t do b on space S, we let W be the function
computed by w, and we assume that w terminates for all s in S, i.e. that WL = L.

Computing Preconditions and Postconditions of While Loops 179

The weakest precondition p of the loop w with respect to postcondition q is the
weakest predicate p such that the Hoare triplet [15]

{p}w{q}

is valid. We wish to rewrite this condition in relational terms, using vector P =
{(s, s′)|p(s)} and vector Q = {(s, s′)|q(s)} to represent predicates p and q. We
rewrite the Hoare triplet as follows:

∀s : p(s) ⇒ ∃s′ : (s, s′) ∈ W ∧ q(s′)
⇔ { tautology }

∀s, s′′ : p(s) ∧ s′′ ∈ S ⇒ ∃s′ : (s, s′) ∈ W ∧ q(s′) ∧ s′′ ∈ S
⇔ { definition of P and Q }

∀s, s′′ : (s, s′′) ∈ P ⇒ ∃s′ : (s, s′) ∈ W ∧ (s′, s′′) ∈ Q
⇔ { definition of relational product }

∀s, s′′ : (s, s′′) ∈ P ⇒ (s, s′′) ∈ WQ
⇔ { set theory }

P ⊆ WQ.

Whence we submit the following definition.

Definition 3. We consider a while loop w on space S whose function is W ,
and we let q be a predicate on S, represented by a vector Q on S, that we use
as postcondition for w. A precondition of W with respect to q is any subset of
WQ; the weakest precondition of W with respect to Q is WQ.

Indeed, the largest subset (representing the weakest precondition) of WQ is WQ
itself. In the remainder of the paper, we make no distinction between a predicate
(p or q) and the vector that represents it (respectively, P or Q).

4.2 Invariant Relations and Weakest Preconditions

In [21], we have outlined a method to compute the function of the while loop (W)
by successive approximations using invariant relations. The method is based on
the following proposition.

Proposition 1. Let w be a while statement while t do b on space S, let W be
the function of w and let R be an invariant relation of w. Then R∩ T̂ is refined
by W .

Proof. If we let R′ be defined as R ∩ T̂ , then we must prove that W � R′, i.e.
that WL ∩ R′L ∩ (W ∪ R′) = R′. Before we do that, we establish a lemma to
the effect that W is a subset of R′. We proceed as follows:

R′

= { substitution }
R ∩ T̂

= { because R is reflexive and transitive }

180 O. Mraihi et al.

R∗ ∩ T̂
⊇ { because R is a superset of (T ∩ B) }

(T ∩ B)∗ ∩ T̂
= { semantic definition of loops, Theorem 1 }

W .

Now we check the condition of refinement:

WL ∩ R′L ∩ (W ∪ R′)
= { because R′ ⊇ W }

WL ∩ R′L ∩ (R′)
= { because R′L ⊇ WL }

WL ∩ (R′)
= { because W is total }

R′.

qed

In other words, Y = R ∩ T̂ is a lower bound of W . Because W is total (by
hypothesis: section 3.1) and deterministic (since we are considering actual C-like
programming languages), it is maximal in the refinement ordering (see Figure 1);
hence we can approximate it using nothing but lower bounds. To compute the
function of the loop, we proceed as follows:

– We generate as many invariant relations as we can; this step is carried out
by an automated tool, whose algorithm we will discuss in section 6. The
performance of this tool is dependent on a knowledge base that contains
programming knowledge and domain knowledge, and can handle loops that
fall within the boundaries of the knowledge base.

– We transform the invariant relations of w into lower bounds of W (the func-
tion of w), using the formula given in Proposition 1.

– We compose the lower bounds by the join operation in the refinement lattice,
to record all the functional information that we have collected on the loop
(see Figure 1 (b)); all this information is represented as equations between
initial states and final states, written in Mathematica (c©Wolfram Research).

– We solve the Mathematica equations obtained above taking the final values
of state variables as unknowns and the initial state variables as parameters;
if the result is a total and deterministic relation (i.e. no condition on the in-
put variables, and all output variables are uniquely specified) then we have
obtained the function of the loop; else we have obtained the best approxi-
mation of the function of the loop we can get, given the current contents of
our knowledge base.

As a brief illustration, we consider the sample program we had introduced in
section 3.1, and we let the postcondition be: Q = {(s, s′)|f = n!}. To compute
the weakest precondition P of w with respect to Q, we must first compute W ,

Computing Preconditions and Postconditions of While Loops 181

then we derive P as WQ. We propose two invariant relations for this loop,
namely:

R0 = {(s, s′)| f
(k−1)! = f ′

(k′−1)!}
R1 = {(s, s′)|n′ = n}.

We have already checked that R0 is an invariant relation for w; checking that
R1 is also an invariant relation for w is trivial. From these invariant relations,
we infer the following lower bounds of W :

Y0 = {(s, s′)| f
(k−1)! = f ′

(k′−1)! ∧ k′ = n′ + 1}
Y1 = {(s, s′)|n′ = n ∧ k′ = n′ + 1}.

Taking the join of these lower bounds, we find:

Y0 � Y1

= { definition of join }
Y0 ∩ Y1L ∪ Y1 ∩ Y0L ∪ Y0 ∩ Y1

= { Y0 and Y1 are both total }
Y0 ∩ L ∪ Y1 ∩ L ∪ Y0 ∩ Y1

= { L = φ }
Y0 ∩ Y1

= { substitution }
{(s, s′)|k′ = n + 1 ∧ n′ = n ∧ f ′ = n! × f

(k−1)!}.

Because this relation is total and deterministic, the only relation that is more
refined than it is itself. Hence

W = {(s, s′)|k′ = n + 1 ∧ n′ = n ∧ f ′ = n! × f

(k − 1)!
}.

whence the weakest precondition is:

WQ
= { substitution }

{(s, s′)|k′ = n + 1 ∧ n′ = n ∧ f ′ = n! × f
(k−1)!} ◦ {(s, s′)|f = n!}

= { product }
{(s, s′)|∃s′′ : k′′ = n + 1 ∧ n′′ = n ∧ f ′′ = n! × f

(k−1)! ∧ f ′′ = n′′!}
= { logic inference }

{(s, s′)| f
(k−1)! = 1 ∧ ∃s′′ : k′′ = n + 1 ∧ n′′ = n ∧ f ′′ = n! × f

(k−1)!}
= { logic simplification }

{(s, s′)| f
(k−1)! = 1}

= { numeric simplification }
{(s, s′)|f = (k − 1)!}.

4.3 Illustration: A Larger Example

We consider the following program; this program is written in C++ syntax,
except for two minor details, namely that constants are not assigned values

182 O. Mraihi et al.

(since, for our purposes, we may want to keep them as arbitrary parameters),
and that #include statements are packed on one line (to save space).

#include <iostream> #include <list> using namespace std;//header

int main () {const int cn; int x, y, y, i, j, z, u, v;// scalars

list <int> l1, l2; int aa[cn], bb[cn];//lists and arrays

while (! l2.empty()) {x=x+aa[i]; y=y+bb[j]; j=j+i; i=i+1; u=z;

z=v+u; v=u; j=j-i; l1.push_back(l2.front()); l2.pop_front();}}

Our tool produces the following function for the loop (where sl2 is an abbre-
viation for size(l2), F is the Fibonacci function, and the dot (.) represents list
concatenation):

W = {(s, s′)|l2 = 〈〉 ∧ s′ = s}∪⎧⎪⎪⎨
⎪⎪⎩(s, s′)|

l2 = 〈〉 ∧ i′ = i + sl2 ∧ j′ = j − sl2 ∧ l1′ = l1.l2∧
l2′ = 〈〉 ∧ x′ = x +

∑sl2+i−1
h=i aa[h] ∧ y′ = y +

∑j
h=j+1−sl2 bb[h]∧

v′ = vF (sl2 − 1) + zF (sl2) ∧ z′ = vF (sl2) + zF (sl2 + 1)
∧aa′ = aa ∧ bb′ = bb ∧ u′ = vF (sl2 − 1) + zF (sl2)

⎫⎪⎪⎬
⎪⎪⎭ .

Using this function, we compute the weakest precondition of w for the following
postconditions.

– Postcondition Q0 = {(s, s′)|x =
∑cN−1

k=0 aa[k]}. The weakest precondition of
w for postcondition Q0 is P0 = WQ0. We compute it in Mathematica by
reducing the expression ∃s′ : (s, s′) ∈ W ∧ q0(s′). We find:

P0 = T ∩ Q0∪

{(s, s′)|l2 = 〈〉 ∧
cN−1∑
h=0

aa[h] = x +
sl2+i−1∑

h=i

aa[h]}.

Note that this precondition can be satisfied by the following initialization:
i=1; x=0; // sl2=cN-1; the latter condition is achieved by making list l2
one shorter than cN .

– Postcondition Q1 = {(s, s′)|x =
∑cN−1

k=0 aa[k]∧y =
∑cN−1

k=0 bb[k]}. The weak-
est precondition of w for postcondition Q1 is P1 = WQ1. We compute it in
Mathematica by reducing the expression ∃s′ : (s, s′) ∈ W ∧ q1(s′). We find:

P1 = T ∩ Q1∪

{(s, s′)|l2 �= 〈〉 ∧
cN−1∑
h=0

aa[h] = x +

sl2+i−1∑
h=i

aa[h] ∧
cN−1∑
h=0

bb[h] = y +

j∑
h=1+j−sl2

bb[h]}.

Note that this precondition can be satisfied by the following initialization:
i=1; j=cN-1; x=0; y=0;// sl2=cN-1;

– Postcondition Q2 = {(s, s′)|z = F (cN + 1)}. The weakest precondition of
w for postcondition Q2 is P2 = WQ2. We compute it in Mathematica by
reducing the expression ∃s′ : (s, s′) ∈ W ∧ q2(s′). We find:

P2 = T ∩ Q2 ∪ {(s, s′)|l2 = 〈〉 ∧ F (cN + 1) = vF (sl2) + zF (sl2 + 1)}.

Computing Preconditions and Postconditions of While Loops 183

Note that this precondition can be satisfied by the following initialization:
v=1; z=1; // sl2=cN-1;

For this example, the generation of invariant relations took 953 ms of CPU
time, and the resolution of the equations took 12.932 sec; as for the generation
of weakest precondition, it took 156 ms for Q0, 296 ms for Q1, and 140 ms for Q2.

5 Strongest Postconditions

5.1 Relational Definition

We consider a while loop w = while t do b on space S, we let W be the
function computed by w, and we assume that it terminates for all s in S, i.e.
that WL = L. The strongest postcondition of w for precondition p is represented
by the smallest vector Q such that (according to the relational interpretation we
made earlier of the Hoare triplet {p} w {q}):

P ⊆ WQ,

where P is the vector that represents predicate p. To better characterize the
strongest postcondition, we use the following proposition.

Proposition 2. Let P and Q be vectors on S and let W be a total function on
S. Then P ⊆ WQ is logically equivalent to Q ⊇ ŴP .

Proof. Left to Right:

P ⊆ WQ
⇒ { monotonicity }

ŴP ⊆ ŴWQ
⇒ { determinacy of W }

ŴP ⊆ Q.

Right to Left:

Q ⊇ ŴP
⇒ { monotonicity }

WQ ⊇ WŴP
⇒ { totality of W }

WQ ⊇ P

��
Using the equation Q ⊇ ŴP , we can say that a postcondition of w with respect
to P is any superset of ŴP ; the strongest postcondition of w with respect to P
corresponds to the smallest superset of ŴP , which is ŴP itself. We formulate
this in the following definition.

Definition 4. Given a while loop w on space S whose function is W , and given
a precondition p of w, which we represent by vector P on S; then any superset
of ŴP is said to be a postcondition of w with respect to p, and ŴP is said to
be the strongest postcondition of w with respect to p.

184 O. Mraihi et al.

5.2 Invariant Relations and Strongest Postconditions

In section 4.2, we found that in order to derive the weakest precondition, we had
to generate a sufficient number of invariant relations to compute the function
of the loop, which we then use to compute the weakest precondition WQ. The
following proposition indicates that for postconditions, we can proceed in a more
stepwise manner.

Proposition 3. Let w be a while loop on space S and let R be an invariant
relation for w; given a vector P , the vector (T ∩ R̂P) is a postcondition of w
with respect to P .

Proof. From T ∩B ⊆ R we infer (T ∩B)∗ ⊆ R∗ which is equivalent to (T ∩B)∗ ⊆
R since R is reflexive and transitive. By monotonicity we infer (T ∩ B)∗ ∩ T̂ ⊆
R ∩ T̂ . By Proposition 1, we rewrite this as W ⊆ R ∩ T̂ . Taking the inverse on
both sides and multiplying on the right by P preserves the inequation: ŴP ⊆
(R̂∩ T)P . By a vector identity (which provides that (v ∩R)Q = v ∩RQ for any
vector v and any relations R and Q), this can be rewritten as: ŴP ⊆ R̂P ∩T . ��
The interest of this proposition is that any invariant relation gives rise to a post-
condition (an approximation of the strongest postcondition); we can compute
the strongest postcondition by finding enough invariant relations to compute
W ; but even if we do not find all the necessary invariant relations, we obtain an
approximation of the strongest postcondition.

As a brief illustration, we consider the sample program we had introduced in
section 3.1, and we let the precondition P be {(s, s′)|f = (k − 1)!}. Note that
this precondition represents initial conditions such as: f=1; k=1; or f=1; k=2;,
or f=6; k=4;, etc. We consider two invariant relations,

R0 = {(s, s′)| f
(k−1)! = f ′

(k′−1)!}
R1 = {(s, s′)|n′ = n}.

for which we generate the associated postconditions:

Q0 = {(s, s′)| f
(k−1)! = f ′

(k′−1)!} ◦ {(s, s′)|f = (k − 1)!} ∩ {(s, s′)|k = n + 1}
Q1 = {(s, s′)|n = n′} ◦ {(s, s′)|f = (k − 1)!} ∩ {(s, s′)|k = n + 1}.

These can be simplified into:

Q0 = {(s, s′)|k = n + 1 ∧ f = n!}
Q1 = {(s, s′)|k = n + 1}

Taking their intersection, we find Q = {(s, s′)|k = n + 1 ∧ f = n!}. Note that in
this case the postcondition generated from R1 did not add any information.

5.3 Illustration: A Larger Example

As an illustration of how our tool for generating invariant relations can help
us compute strongest postconditions of non-trivial loops, we consider the fol-
lowing program written in C++ (with slight syntactic modifications: #include

Computing Preconditions and Postconditions of While Loops 185

statements are written on the same line, constants are left unspecified, and
function declarations are left undefined):

#include <iostream> #include <list> #include<math.h>

using namespace std; int fact (int z); int f(int x);

// fact is factorial, f is an arbitrary function

int main() {const int ca,cb,cd,ce,cN; int i,j,k,h,y,m,q,w,x2,fx;

float ma,st,ut,x1,t,p,n,g,r,s,u,v,z,ta,ka,la,uv;

list <int> l1,l2; float aa[]; float ab[];

while (l2.size()!=0)

{r=pow(i,5) + r; s=s+2*u; k=ca*h+k; la=pow(x1,j)/fact(j) + la;

l1.push_back(l2.front()); h=h+j; m=m+1; j=j+i; fx=f(fx);

g=g-15*cd; q= 1+2*i + q; ma=ka-ma; i=i+1; st=st+aa[i]; j= j-i;

w=4*w; ut=ut+ab[j]; ma=(cd+1)*ka - ma; ka=ka-1; ta=pow(ta,3);

if(x2%4==0) {x2=x2/4; y= y+2; t= t*4;}

else {if (x2%2==0) {x2= x2/2; y= y+1; t= t*2;}

else {x2= x2-1; z=z+t;}}

ka=3+3*ka; w= cd+ w/2; p= 2*pow(p,3); m=2*m -2; n=1 + n/2;

s=(cb-2)*u + s; h=h-1+cb-j; g=3*cd + g/5; v=pow(v,4); u=ca+u;

uv=pow(uv,5); l2.pop_front();}

}

We are interested to compute the strongest postcondition of this while loop for
the precondition p defined by:

size(l2) = 5 ∧ x2 = 66 ∧ y = 0 ∧ t = 1 ∧ ut = 0 ∧ st = 0 ∧ la = 0 ∧ j = 5 ∧ i = 0.

To this effect, we compute the function of the loop, then we submit the following
formula (as per Proposition 3) to Mathematica:

simplify(!(l2.size()!=0 & (exists s’: R(s’,s)& P(s’))).
The result is (where Γ is Euler’s Gamma function):

Q =

{
(s, s′)|

i = 5 ∧ j = 0 ∧ 120(la + 1) = ex1Γ (6, x1) ∧ st =
∑5

H=1 aa[H]∧
t = 26−� log(x2)

log(2) � ∧ ut =
∑4

H=0 ab[H] ∧ y + � log(x2)
log(2) = 6

}
.

On this example, our tool needed 136.531 seconds of CPU time to generate
invariant relations, and 53.243 seconds to compute the strongest postcondition
for precondition P .

6 Computing Invariant Relations

While in the previous sections we discussed how to use invariant relations, in
this section we discuss how to generate them. The detailed discussion of the
algorithm is beyond the scope of this paper; we will content ourselves with
presenting the main mathematical results behind its design, as well as some
empirical observations of its operation.

186 O. Mraihi et al.

6.1 Mathematical Foundations

As we recall, an invariant relation is a reflexive transitive superset of the function
of the loop body; invariant relations are interesting because they help us to
approximate the transitive closure of (T ∩ B), which is the smallest reflexive
transitive superset of (T ∩B). Clearly, smaller invariant relations are better; the
following proposition provides means to obtain small invariant relations.

Proposition 4. Let w be a while loop on space S and let R and R′ be invariant
relations for w; then R ∩ R′ is an invariant relation for w.

Proof. The intersection of two reflexive relations is reflexive; the intersection of
two transitive relations is transitive; and the intersection of two supersets of
(T ∩ B) is a superset of (T ∩ B). ��

Consequently, we can generate smaller invariant relations by taking the intersec-
tion of arbitrary invariant relations. As for how to generate elementary invariant
relations, consider that in order to find supersets of (T ∩ B), it helps to write it
as an intersection, such as:

(T ∩ B) = B1 ∩ B2 ∩ B3 ∩ ... ∩ Bn.

Then, any superset of B1 is a superset of (T ∩ B); any superset of B1 ∩ B2 is a
superset of (T ∩B); any superset of B1∩B2∩B3 is a superset of (T ∩B); etc. This
is the basis of our divide-and-conquer strategy: we can invariant relations for an
arbitrarily large loop, by writing the function of its loop body as an intersection,
then by looking at one term at a time, or two at a time, or three at a time, etc.
Specifically, our algorithm proceeds as follows:

– The source code is mapped into a notation that rewrites the function of the
loop body as an intersection; when the loop body is merely a sequence of
assignments, this can be done by eliminating sequential dependencies. When
the loop body has more complex control structures, we invoke a more general
procedure, which we discuss subsequently. We refer to this notation as CCA,
for conditional concurrent assignments; there are as many CCA statements
in the loop body as the program has variables, where each statement records
the cumulative effect of the sequential statements on a variable.

– We deploy a pattern-matching algorithm that matches the terms of the inter-
section one a time, then two at a time, then three at a time against pre-stored
patterns (called the recognizers) for which we store the corresponding invari-
ant relation pattern. Whenever a match is successful, we instantiate the
invariant relation pattern to obtain an actual invariant relation. We limit
ourselves to no more than three terms for the time being, but we do not
exclude to consider bigger recognizers.

– We take the intersection of all the invariant relations that are generated, to
obtain a smaller invariant relation.

It is easy to write the function of the loop body as an intersection when the loop
body is made up of a sequence of assignments. When the loop body contains

Computing Preconditions and Postconditions of While Loops 187

more complex control structures, such as nested if-then-else statements, then
the outermost structure of the function of loop body is a union. In that case,
we apply the pattern matching algorithm discussed above to each term of the
union, to obtain the following structure:

R = (R1,1 ∩ R1,2 ∩ ...R1,n1)
∪(R2,1 ∩ R2,2 ∩ ...R2,n2) ∪ ...
∪(Rm,1 ∩ Rm,2 ∩ ...Rm,nm).

This relation is a superset of the function of the loop body, and it is reflexive;
but it is not transitive, as the union of transitive relations is not transitive; hence
it is not an invariant relation. To derive an invariant relation from it, it suffices
to compute a transitive superset of it. To explain how this is done, we consider
two terms of the union, where each term is the intersection of two factors:

R = (R11 ∩ R12) ∪ (R21 ∩ R22).

If we find, for example, that (R21 ∩ R22) ⊆ R11 then we conclude that R11 is
an invariant relation, since it is reflexive and transitive (by construction), and
it is a superset of each term of the union. If, for example, we find also that
(R11 ∩ R12) ⊆ R22 then we can infer (for the same reasons as above) that R22

is an invariant relation. From which we conclude that R11 ∩ R22 is an invariant
relation. As an illustration, consider the following simple loop:

while (y!=0) {if (y%2==0) {y=y/2;x=2*x;} else {z=z+x;y=y-1;}}

As a reflexive transitive superset of the first branch (which we call B1), our tool
finds R1 = R11∩R12, where R11 = {(s, s′)|xy = x′y′} and R12 = {(s, s′)|z = z′}.
As a reflexive transitive superset of the second branch (which we call B2), our tool
finds R2 = R21 ∩ R22, where R21 = {(s, s′)|x = x′} and R22 = {(s, s′)|z + xy =
z′ + x′y′}. The relation R = R1 ∪ R2 is a superset of (T ∩ B) (by construction);
and it is reflexive (as the union of reflexive relations); but it is not necessarily
transitive (as the union of transitive relations). However, we note that R22 is
a superset of R1 (by inspection); on the other hand, it is also a superset of
R2. Hence R22 is a superset of R1 ∪ R2; because by construction R1 ⊇ B1 and
R2 ⊇ B2 we infer that R22 is a superset of B1 ∪ B2, which is (T ∩ B). On the
other hand, because it is generated by our tool, R22 is by construction reflexive
and transitive. As a reflexive transitive superset of (T ∩ B), R22 is an invariant
relation for the while loop.

6.2 Scaling Up

Two obvious issues arise when we are dealing with large programs:

– First, the combinatorial explosion that results from trying to match p state-
ments of the loop body out of N CCA statements, against K recognizers,
trying in turn all permutations of the statements. The number of operations
required for this task is bound by O(N !

(N−p)! ×K×p!), where N is the number

188 O. Mraihi et al.

of CCA statements (which is the same as the number of program variables),
p is the maximum recognizer size (currently 3), and K is the number of rec-
ognizers in the database. For small values of p, p! is a small constant, and
the expression above is linear in K; hence the factor that we must focus on
is N !

(N−p)! . A simple observation enables us to scale that factor down from
O(Np) to O(N): We observe that invariant relations reflect the property
that the statements they involve are executed an equal number of times. We
let G be the graph whose nodes are the CCA statements of the loop body,
and we let there be an arc between two nodes of this graph if and only if we
have matched a recognizer against the statements representing these nodes.
Because the relation ”being executed the same number of times” is transi-
tive, it is not necessary to build a complete graph on the nodes representing
CCA statements; rather, it is sufficient to build a connected graph. For a set
of N nodes, N − 1 arcs are sufficient to make the graph connected. Hence,
as we try to match combinations of CCA statements against recognizers, we
maintain a graph G that represents direct connections between statements
and a graph G∗ that represents transitive links between statements. We con-
clude the matching process whenever we have tried all the recognizers, or
when G∗ becomes full.

– Second, when we exhaust all our available recognizers and still cannot fill
graph G∗, we conclude that it is because we are missing recognizers for the
loop at hand. In that case, our tool uses matrix G∗ to offer suggestions for
the statements that ought to be linked by recognizers. Whenever G∗ has a
zero in some entry, say G∗(i, j), the system proposes the pair of statements
(i, j) as a candidate for a 2-recognizer; also, whenever G∗ has two zeros in
the same row or the same column, say G∗(i, j) and G∗(i, k), then the system
proposes the triplet (i, j, k) as a possible candidate for a 3-recognizer.

7 Conclusion: Summary, Comparison and Prospects

7.1 Summary

Weakest preconditions and strongest postconditions have been introduced by
Dijkstra in the seventies, and have been widely adopted as means to define
programming language semantics and to prove the correctness of designs and
programs. Like many other program analysis artifacts, weakest preconditions
and strongest postconditions show their limitations when they come up against
iterative programs. In this paper, we use the concept of invariant relation, intro-
duced in [19], to compute or approximate weakest preconditions and strongest
postconditions of while loops. Among the results of this paper, we mention:

– Explicit relational formulas for weakest precondition and strongest
postcondition.

– The ability to compute the weakest precondition of a while loop with respect
to a given postcondition, by identifying enough invariant relations of the loop
to compute its function.

Computing Preconditions and Postconditions of While Loops 189

– The ability to compute the strongest postcondition of a while loop with
respect to a given precondition, by identifying enough invariant relations of
the loop to compute its function.

– The ability to compute arbitrary (not necessarily strongest) postconditions
of a while loop with respect to a given precondition, by identifying any
invariant relation of the loop.

Hence there is a difference between how invariant relations are used to generate
preconditions and post conditions: for preconditions, we must derive the function
of the loop in full before we can compute any precondition; once we have the
function in full, then we can use it to compute the weakest precondition for
any given postcondition. By contrast, for postconditions, any invariant relation
yields a postcondition; when we have enough invariant relations to compute the
function of the loop, then we can compute the strongest postcondition.

7.2 Related Work

Dijsktra [8] introduced weakest preconditions in 1976, and used them to spec-
ify the semantics of a non-deterministic design language; his ideas were taken
further by Gries [12], who put them in practice as the basis for his scientific dis-
cipline of programming. Weakest preconditions were further used subsequently
to define the semantics of emerging programming paradigms and constructs,
such as object oriented programming [5], exception handling [18], Java’s method
invocation [24,25], unstructured programming constructs [13,1], system security
attributes [4], procedural abstraction [11], and proof carrying code [23], to cite
some.

As for the generation of weakest preconditions and strongest postconditions,
it is a challenge that remains largely unfulfilled as far as while loops are con-
cerned. In [10], Flanagan and Saxe acknowledge the combinatorial complexity
that stems from trying to generate weakest preconditions by analyzing large
segments of code, and propose an algorithm that produces weakest precondi-
tions whose size (in terms of number of clauses) is O(M2) as a function of the
program size. Subsequent research by Jager and Brumley [16] and by Leino
[18,17] focuses on minimizing or at least controlling predicate size and predi-
cate generation time. Others focus on minimizing predicate size by performing
simplifications after the generation phase [6]. All the efforts we have seen so far
compute preconditions and postconditions of while loops by relying on loop in-
variants, which some attempt to generate and some assume to be available. Our
approach relies on invariant relations, which are generated by a static analysis of
the code, once it is mapped into a quasi-relational representation that highlights
its structure as an intersection, or a union of intersections. Another difference
that our approach has with most of the works cited above is that we have a
way to test whether our invariant relation is sufficiently strong: it is sufficiently
strong if the approximation it generate for the loop function (by the formula of
Proposition 1) is total and deterministic. Then, we know, by virtue of Defini-
tions 3 and 4, that we are indeed computing the weakest precondition and the
strongest postcondition.

190 O. Mraihi et al.

7.3 Prospects

As practical extensions of our work, we envision two directions:

– First, consolidating the pattern matching algorithm that is used to generate
invariant relations. Currently, our pattern matching operates syntactically,
by matching code patterns against pre-stored recognizers one token at a
time; we intend to replace this syntactic matching algorithm by a semantic
algorithm, that recognizes a match as soon as two expressions are equivalent;
we anticipate that this will greatly enhance the recall, without affecting the
precision of the algorithm.

– Second, expanding the capability of our approach beyond numeric compu-
tations; we have started this expansion, as the examples discussed in this
paper show, but much remains to be done, in terms of capturing domain
knowledge and using inference mechanisms that may be domain specific.

As for theoretical extensions, we are considering to lift the hypothesis that loops
terminate for all states in the space; we anticipate that lifting this hypothesis
will require a more sophisticated theoretical background, but also yield more
interesting results.

References

1. Barnett, M., Rustan Leino, K.: Weakest precondition of unstructured programs.
In: Proceedings, Sixth ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, Lisbon, Portugal (2005)

2. Berghammer, R.: Soundness of a purely syntactical formalization of weakest pre-
conditions. Electronic Notes in Theoretical Computer Science. Elsevier Science
Publisher, Amsterdam (2000)

3. Boudriga, N., Elloumi, F., Mili, A.: The lattice of specifications: Applications to a
specification methodology. Formal Aspects of Computing 4, 544–571 (1992)

4. Brumley, D., Wang, H., Jha, S., Song, D.: Creating vulnerability signatures us-
ing weakest preconditions. In: Proceedings, 20th Computer Security Foundations
Symposium, Venice, Italy, pp. 311–325 (2007)

5. Cavalcanti, A., Naumann, D.: A weakest precondition semantics for refinement
of object oriented programs. IEEE Transactions on Software Engineering 26(8),
713–728 (2000)

6. Costa, M., Castro, M., Zhou, L., Zhang, L., Peinado, M.: Bouncer: Securing soft-
ware by blocking bad input. In: Proceedings, ACM Symposium on Operating Sys-
tems Principles (October 2007)

7. Dijkstra, E.W.: Guarded commands, non dterminacy, and formal derivation of
programs. Communications of the ACM 18(8), 453–457 (1975)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

9. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Pro-
ceedings, POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2002)

10. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact ver-
ification conditions. In: Proceedings, Symposium on Principles of Programming
Languages (2001)

Computing Preconditions and Postconditions of While Loops 191

11. Gannod, G.C., Cheng, B.H.C.: Strongest postcondition semantics as the formal ba-
sis for reverse engineering. In: Proceedings, Second Working Conference on Reverse
Engineering, Toronto, Ontario, Canada, pp. 188–197 (1995)

12. Gries, D.: The Science of programming. Springer, Heidelberg (1981)
13. Grigore, R., Charles, J., Fairmichael, F., Kiniry, J.: Strongest postcondition of

unstructured programs. In: Proceedings of the 11th International Workshop on
Formal Techniques for Java-like Programs (2009)

14. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: Proceedings, PLDI 2008: ACM SIGPLAN 2008 Conference on Programming
Languages and their Implementation, Tuscon, AZ (2008)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–583 (1969)

16. Jager, I., Brumley, D.: Efficient directionless weakest preconditions. Technical Re-
port CMU-CyLab-10-002, Carnegie Mellon University (February 2010)

17. Leino, K.R.M.: Efficient weakest preconditions. Information Processing Let-
ters 93(6), 281–288 (2005)

18. Leino, K.R.: Towards reliable modular programs. Technical report, California
Institute of Technology, Pasadena, CA (1995)

19. Louhichi, A., Mraihi, O., Jilani, L.L., Mili, A.: Invariant assertions, invariant re-
lations and invariant functions. In: Proceedings, 2nd International Workshop on
Invariant Generation, York, UK (2009)

20. Manna, Z.: A Mathematical Theory of Computation. McGraw-Hill, New York
(1974)

21. Mili, A., Aharon, S., Nadkarni, C.: Mathematics for reasoning about loop. Science
of Computer Programming, 989–1020 (2009)

22. Morgan, C.C.: Programming from Specifications. International Series in Computer
Sciences. Prentice Hall, London (1998)

23. Necula, G.C.: Proof carrying code. In: Proceedings, Symposium on Principles of
Programming Languages (1997)

24. Rauch, N.: Precondition generation for a Java subset. In: Proceedings, FM-TOOLS
2002: The Fifth Workshop on Tools for System Design and Verification, Reisens-
berg, Germany (2002)

25. von Oheimb, D.: Analyzing java in isabelle/hol: Formalization, type safety, and
hoare logic. Technical report, Technische Universitaet Muenchen (2001)

192 O. Mraihi et al.

A Illustration: A Fibonacci Example

We consider the following program on natural variables i, u, z, v, where cN is a
constant that we assume to be greater than or equal to 1, and we further assume
that i ≤ cN .

const int cN; int i, z, u, v;
while (i!=cN) {i=i+1; u=z; z=v+u; v=u;}

A.1 Invariant Relations

The invariant relations that we generate for this program, written in Mathemat-
ica notation, are as follows:

i<=iP && zP==z*Fibonacci[iP+1-i]+v*Fibonacci[iP-i] &&
vP==z*Fibonacci[iP-i]+v*Fibonacci[iP-i-1] &&
((i==cN && iP==i && zP==z && uP=u && vP==v) ||
(i!=cN && Exists [{iPP,uPP,vPP,zPP} iPP!=cn &&

(uP==zPP && vP==zPP && zP==vPP+zPP && iP=iPP+1)]))

Using this information, we compute the function of the loop, and find the fol-
lowing relation (where F is the Fibonacci function):

W = {(s, s′)|i = cN ∧ s′ = s}∪⎧⎨
⎩(s, s′)|

i = cN ∧ u′ = v × F (cN − i − 1) + z × F (cN − i)
∧i′ = cN ∧ v′ = v × F (cN − i − 1) + z × F (cN − i)

∧z′ = v × F (cN − i) + z × F (cN − i + 1)

⎫⎬
⎭ .

The derivation of the invariant relations took 78 ms and the derivation of the
loop’s function from the invariant relations took 47 ms of CPU time.

A.2 Weakest Precondition

Using the function of the loop, computed above, we can compute the weakest
precondition of the loop with respect to any postcondition. We take postcondi-
tion P defined by

Q = {(s, s′)|z = F (cN + 2)},

and we find
P = {(s, s′)|i = cN ∧ z = F (cN + 2)}∪

{(s, s′)|i < cN ∧ F (cN + 2) = v × F (cN − i) + z × F (cN − i + 1)}.

Note that this precondition can be satisfied by setting i to zero and setting v
and z to 1 before the loop. The calculation of the weakest precondition took 15
ms of CPU time.

Computing Preconditions and Postconditions of While Loops 193

A.3 Postconditions

We can generate arbitrary (not necessarily strongest) postconditions from any
invariant relation (not necessarily the smallest invariant relation). We consider
the precondition

P = {(s, s′)|i = 0 ∧ v = 1 ∧ z = 1}.

With invariant relation

R0 = {(s, s′)|i ≤ i′ ∧ z′ = z × F (i′ + 1 − i) + v × F (i′ − i)},

We find the post condition

Q0 = {(s, s′)|i = cN ∧ z = F (i) + F (i + 1)}.

Mathematica takes 16 ms of CPU time to generate this (straightforward) post-
condition; we are not sure why it fails to reduce F (i) + F (i + 1) to F (i + 2).

With invariant relation

R1 = {(s, s′)|i ≤ i′ ∧ v′ = z × F (i′ − i) + v × F (i′ − i − 1)},

We find the post condition

Q1 = {(s, s′)|i = cN ∧ v = F (i − 1) + F (i)}.

Mathematica takes 16 ms of CPU time to generate this (straightforward) post-
condition; we are not sure why it fails to reduce F (i − 1) + F (i) to F (i + 1).

To compute the strongest postcondition for precondition P , we use all the
invariant relations we have derived, and we find:

Q2 = {(s, s′)|i = cN ∧ u = F (cN + 1) ∧ v = F (cN + 1) ∧ z = F (cN + 2)}.

Mathematica takes 63 ms of CPU time to compute this (simple) strongest
postcondition.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 194–217, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Framework for Instantiating Pedagogic mLearning
Objects Applications

Paul Birevu Muyinda1,*, Jude T. Lubega1, Kathy Lynch2, and Theo van der Weide3

1 Department of Open and Distance Learning
Makerere University

P.O. Box 7062
Kampala, Uganda

mpbirevu@iace.mak.ac.ug, jlubega@cit.mak.ac.ug
2 University of the Sunshine Coast

Maroochydore
Queensland, Australia

KLynch1@usc.edu.au
3 Information Retrieval and Information Systems

Digital Security
Institute for Computing and Information Sciences

Radboud University Nijmegen, Netherlands
Th.P.vanderWeide@cs.ru.nl

Abstract. An increasing desire to port learning objects on mobile phones exists.
However, there is limited understanding on how to pedagogically obtain access
to and use learning objects on mobile phones. The limited understanding is
caused by a dearth in frameworks for underpinning the development of mobile
learning objects applications. Following Design Research methodology, we
developed a Mobile Learning Objects Deployment and Utilisation Framework
(MoLODUF) to address this problem. MoLODUF is composed of twelve
dimensions, including: MLearning Objects, MLearning Device, MLearning
Interface, MLearning Connectivity, MLearning Process, MLearning Costs,
MLearning Resources, MLearning Context, MLearning Pedagogy, MLearning
Ethics, MLearning Policy and MLearning Evaluation. The MoLODUF makes
significant extensions to existing electronic and mLearning frameworks. It
provides a competency set of guidelines for developing and/or evaluating
applications for deploying and utilising learning objects on mobile phones.

Keywords: mLearning, mLearning Objects, Framework, mLearning Objects
Framework, mLearning Objects Deployment, mLearning Objects Utilization,
MoLODUF, mLearning Objects Applications, Makerere University.

1 Introduction

Of recent, learner mobility has been enabled by use of mobile devices in their learning
processes. This process has been termed ‘mobile learning’ or ‘mLearning’ for short.

* Corresponding author.

 A Framework for Instantiating Pedagogic mLearning Objects Applications 195

Due to its embryonic nature, the practice of mLearning is still insignificant. As such,
mLearning requires increasing research attention to let it mature. Research related to
mLearning development, practice and evaluation is necessary. More so, little research
attention has been accorded to the development of frameworks for instantiating
pedagogic application for mLearning objects deployment and utilisation.

In [32], a pedagogic framework for mLearning is given. The framework categorizes
educational applications of mobile technologies into four types, namely: 1) high
transactional distance socialized mLearning, 2) high transactional distance
individualized mLearning, 3) low transactional distance socialized mLearning, and 4)
low transactional distance individualized mLearning (p.1). Other researchers [4, 5, 13]
have also developed frameworks for theorizing about mLearning. All these frameworks
are aloof to issues necessary for instantiating and/or evaluating pedagogic mLearning
objects applications and environments. In [21, 34, 43], research that specifically targets
development of frameworks for guiding the instantiation of applications for obtaining
access to and utilising learning objects on mobile devices is called for.

In this paper, we have developed a Mobile Learning Objects Deployment and
Utilization Framework (MoLODUF). MOLODUF provides process steps for
instantiating pedagogic applications that can enable learners in developing countries
obtain access to and use learning objects, delivered over the Internet, regardless of
their proximity to higher education institutions, through the use of mobile phones.
MoLODUF can also be used to evaluate mLearning environments in developing
countries. Developing countries are faced with a hoard of infrastructural constraints
which inhibit conventional eLearning [11] but on the other hand, they are embracing
mobile telephony at unprecedented rates [18]. For instance, by the end of 2009, the
Compound Annual Growth Rate (CAGR) for mobile telephony stood at 28.7 Percent
for Uganda, 92.7 Percent for South Africa, 63.4 Percent for Ghana and 66.7 Percent
for Egypt [18]. Such impressive mobile telephony permeation statistics are good
recipe for mLearning [28, 41].

MLearning is a subset of eLearning [5]. Research into mLearning should thus be
informed by earlier developments in eLearning. To develop a mLearning framework,
one has to draw from existing eLearning frameworks. In [13], [20] and others,
eLearning frameworks have been developed. A review of these frameworks posts the
Global eLearning Framework in [20] as being the most comprehensive of all
eLearning frameworks. For this reason, the development of the MoLODUF was
guided by the Global eLearning Framework in [20]. The Global eLearning
Framework [20] suggests implementation of eight dimensions for meaningful
eLearning to occur. These are the Pedagogical, Technological, Interface Design,
Ethical, Institutional, Evaluation, Management and Resource Support dimensions.
Through Design Research [2], the Global eLearning Framework in [20] was extended
to include dimensions that allow for learner mobility.

Design research is; ”… a systematic but flexible methodology aimed [at
improving] educational practices through iterative analysis, design, development, and
implementation, based on collaboration among researchers and practitioners in real-
world settings, and leading to contextually-sensitive design principles and theories”.
[48, p.6]. The framework developed in this study provides important guidelines for
developing and evaluating mLearning objects applications and environments. It was
developed from dimensions adduced from answers to the following six research
questions;

196 P.B. Muyinda et al.

i. What are the current learner contexts, practices and prospects for the
development and growth of mLearning?

ii. What learning processes can be accomplished through mLearning?
iii. What kinds of learning objects can be used to service the identified

learning processes?
iv. What are the issues and factors to obtain access to and use learning

objects in mLearning?
v. What are the major dimensions and sub-dimensions of the MoLODUF?

vi. How is the MoLODUF related with existing mLearning and eLearning
frameworks?

The rest of this paper is organized in six sections. In Section 2, we review the concept
of mLearning, mLearning objects, traditional learning theories and mLearning,
mLearning objects frameworks and the Global eLearning Framework in [20]. In
Section 3, we detail the methodology we used to get the dimensions for the
MoLODUF and in Section 4 we present and discuss results of the study with a view of
developing the MoLODUF. The process steps for instantiating or evaluating
mLearning objects applications and environments are given in Section 5 before
drawing the conclusion and future work from the study in Section 6.

2 Related Work

2.1 Mobile Learning (MLearning)

Wireless tiny handheld devices are making it possible for learners not to be tethered
in orchestrated fixed classrooms for learning purposes. Such “anytime”, “anywhere”
computing platforms have ignited a paradigm shift from eLearning models to
mLearning models [25, p.1]. Hence increasing research attention is unfolding in the
area of mLearning from industrialists, researchers, educationist and policy makers [3,
5, 7, 22, 25, 43, 45]. As a consequence, mLearning has been variously defined. While
considering a mobile device as an enabler of learner mobility, [43] defined mLearning
as learning which takes place at anytime in anyplace using a mobile device. As such,
mLearning is more than just the use of mobile devices for learning but the ability for
one to electronically learn on-the-go (ibid). In [32, p.79], “mobile learning refers to
the use of mobile or wireless devices for the purpose of learning while on the move”.
A view earlier espoused by [5] emphasized that mLearning is eLearning which uses
mobile devices to deliver learning. It is evident from the various definitions that
mLearning is a form of eLearning which takes place at anytime in any place using
wireless tiny handheld technologies.

MLearning enables learner mobility and as such exposes a learner to different
learning environments/contexts [3, 43, 45]. Research has shown that a learner
acquires a rich learning experience when exposed to an environment with other
learners that have different learning experiences acquired from different contexts
[7, 22, 45]. MLearning enables high transactional socialized learning [32] in different
contexts. Context relates to information which describes the situation of a learner in a
given location [45]. Learning from one’s known context increases ones ability to
relate what is being learnt to the surroundings, thus increasing learning experience
and flexibility in learning.

 A Framework for Instantiating Pedagogic mLearning Objects Applications 197

In mLearning, the accumulation of different learning experiences is brought about
by the advantages inherent in mobile devices since they facilitate just-in-time and
just-in-place interaction and collaboration in specific contexts through exchange of
mLearning objects [45]. In developing countries, contextualized learning is
oftentimes lost because of the tethered technologies usually employed in conventional
eLearning [5, 26]. A blend of mLearning and eLearning would suffice to bridge the
gaps that exist in each of these models. By implementing mLearning, on-the-go,
contextualized and flexible learning can be introduced in eLearning. However, the
extent of development and use of mLearning in different contexts is still embryonic
[41, 45]. Likewise, the development of content for mobile devices cum mLearning
objects is also still embryonic [3].

2.2 MLearning Objects

The concept of mLearning objects started way back in 2002 [36]. Since then, little
research attention was realized until recently when the Internet became increasingly
accessible via mobile devices. It is now possible to deliver content to learners via their
mobile phones [3]. However, because of the limitations of mobile devices [15], the
content has to be “leaner than content prepared for eLearning systems” [24, p.9]. The
content has to be granular, sequenceable, reusable and contextualiseable [3, 45].
These requirements are a perfect match for the characteristics of a learning object. In
[49], a learning object is defined as a digital educational resource/content which is
granulated into units that are reusable, adaptive, and can be re-purposed to different
learning styles, knowledge levels and conditions. In [38, p.2], a learning object is
defined as “one or more files or ‘chunks’ of materials, which might consist of
graphics, text, audio, animation, calculator, or interactive notebook, designed to be
used as a standalone learning experience”. Elsewhere, a learning object is “any
entity, digital or non-digital, which can be used, reused or referenced during
technology supported learning” [17, p.1].

Whereas resources are abundantly available for desktop computer learning objects,
learning objects for mobile devices have to be granulated so that they are viewable
and sequenceable on tiny screens via limited bandwidth pipes. Learning objects that
can be accessed by and delivered on mobile devices are called mLearning objects [3,
30, 36, 42, 44, 50]. Also a mLearning object can be “an interactive software
component, personalized and reusable in different contexts, designed to support an
educational objective through a mobile device in situated learning or collaborative
learning activities” [3, p.153]. This implies that a mLearning object is not only
restricted to content on the mobile device but also the interface to the content or
activities related to the use of the content or all of these. An SMS to learners
providing them with a URL to content in the WWW could be regarded as a
mLearning object.

Research into the development, deployment and utilization of mLearning objects is
ongoing [3, 13, 30, 36, 42, 44, 50, 51]. This research is however skewed in favor of
developed countries’ contexts and is mainly still in trial or prototype phases. Since
uptake of mobile phones in developing countries has surpassed industry analyst’s
predictions, it is important to undertake research into development of frameworks for
instantiating applications for deploying and utilizing mLearning objects and
evaluating mLearning in those contexts.

198 P.B. Muyinda et al.

MLearning objects could take the form of carefully designed materials that take
cognizance of mobile device limitations. However, according to [3], considering
mobile devices limitations alone in the design of mLearning objects is being short
sighted. Designing for learner personalization, collaboration and interaction
completes the picture of a mLearning object (ibid). It means even considering the
capability of the mobile device owned by the target learner. It also means taking into
consideration exogenous factors that could have an influence on mLearning objects
deployment and utilization.

MLearning objects could be delivered in traditional classroom environments, could
be used for online performance support to guide a learner working through a task,
could be used for augmenting classroom instructions and other learning materials and
could be used as instructions for operating a given device [36]. The size, presentation
and scope of a mLearning object is dependant upon the capacity of the mobile device
in question and how a given institution conceptualizes a learning object. In [3], a
software component is regarded as a mLearning object. In developing countries where
learners own mainly low end mobile phones, text based learning objects are more
feasible than resource heavy learning objects such as software modules [5].

Software modules extending academic and administrative support to students
can be run on Java enabled mobile phones. Multiple choice quizzes, exams and
lecture calendars, reminders for important events and frequent errors committed by
students in a given subject can be developed as Java midlets and delivered on java
enabled mobile phones [42]. The success of mLearning lies in the need to recognize
the limitation of mobile devices so as to deploy learning objects onto them which
address pedagogic assistance. Consequently, mLearning objects should be
characterized by appropriate pedagogic values. Just like any other learning delivery
model, mLearning is intended to contribute to student learning. Therefore, the
pedagogic values inherent in mLearning should as well be underpinned by the
traditional learning theories.

2.3 Traditional Learning Theories and MLearning

While learning, learners collaborate, interact and communicate with each other to
accomplish group or individual learning activities. Collaboration, interaction and
communication are functions that can be accomplished using mobile communication
technologies. These learning tenets are inherent in the Social Constructivist Learning
Theory [46], Conversational Learning Theory [33], Behaviorist Learning Theory [39],
Learning and Teaching Support Theory [29], and Informal and Lifelong Learning
Theory [10].

The Social Constructivist Learning Theory is an extension of the Constructivist
Learning Theory [46]. The Constructivist Learning Theory recognizes learning as an
active process in which a learner constructs new ideas or concepts based on his/her
current and past knowledge. The Constructivist Learning Theory takes an individualistic
angle that negates the fact that learning occurs in social settings. Consequently, critiques
of the Constructivist Learning Theory such as [35] have argued for the Social
Constructivist Learning Theory [46]. The Social Constructivist Learning Theory
proponents posit that knowledge creation is shared rather than an individual experience.
Their position is inline with that of [14] who contends that knowledge is constructed
through interaction of a number of minds and not just one. Hence knowledge is a social
product [35]. Tools and raw materials for creating this social product can arise from

 A Framework for Instantiating Pedagogic mLearning Objects Applications 199

technologies that encourage interaction and collaboration. The mobile phone is a good
example of such technologies. Mobile teleconferencing and SMS can scaffold learning
in communities of practice (CoP). Members of a given CoP and their facilitator (s) may
use collaborative and interactive tools afforded by mobile technologies to interplay their
minds on topical issue so as to generate new knowledge. In this case collaboration and
interaction afforded by mobile technologies become key tenets for social learning.

Another traditional learning theory which can underpin mLearning is the
Conversational Learning Theory [33]. According to this theory, learning takes place if
there is a continuous two-way conversation and interaction between the teacher and
learner and amongst the learners themselves. Indeed, learning will take place if two
parties participating in a conversation can understand each other. As [29, p.15]
observed, learning will take place if “Person A [makes] sense of B’s explanations of
what B knows, and person B can make sense of A’s explanation of what A knows”.
The Conversational Learning Theory emphasizes the need for continuous
conversation with peers and the teacher or a device which subsumes the role of a
teacher. Mobile technologies such as mobile phones are well suited at providing this
conversational space.

Learning occurs if there is a force in the learning process which reinforces a
relationship between a stimulus and a response. This exposition derives from the
Behaviorist Learning Theory [39]. This theory emphasizes activities that promote
learning as a change in learner’s observable actions. In the case of mLearning, an
SMS message, for example, invokes a stimulus that may lead to an action as a
response. When a message is received on a learner’s mobile phone, for example, the
learner will be triggered to respond or provide feedback. The message received on the
learner’s phone presents a problem (stimulus) that requires the learner to solve
through a response. In this case, the mobile phone which presented the problem
reinforces the relationship between the problem (stimulus) and the solution
(response). Moreover, once learners are conditioned to an SMS as a conveyor of
educational related messages, they will be conditioned to immediately read them as
they are delivered. This abets just-in-time and just-in-place learning.

Provision of learning is not just about providing content and learning activities to
learners. It also involves a great deal of coordination of learners and resources [29].
Besides, access, communication and support are the three canonical uses of ICTs in
education [5]. The Learning and Teaching Support Theory [29] emphasizes the need
for support systems in learning and teaching. The support systems assist in the
“coordination of learners and resources for learning activities” [29, p.11]. By using
SMS and voice calls, a lecturer can be able to coordinate class activities and organize
resources for the class. The lecturer can be able to support learners through reminders
of learning events and provide URLs to reading materials. Learners can also support
each other using their mobile phones.

As per the Informal and Lifelong Learning Theory [10] learning can take place at
any time, in any place and at any age. According to this theory, “learning happens all
of the time and is influenced both by our environment and the particular situations we
are faced with” [29, p.17]. Informal and lifelong learning can occur as a result of

200 P.B. Muyinda et al.

intentional or accidental learning episodes that are orchestrated by exchange of
information and knowledge [31]. Intentional learning episodes occur when learning is
planned while accidental learning episodes occur from scenes which have no direct
learning intentions, such as experiencing an accident, watching television, engaging in
casual conversations, reading a newspapers or even listening to radio talk shows
(ibid). It means that accidental learning can occur at anytime in anyplace. Learners
carry their mobile phones at all times in anyplace, implying that they can be a source
of information for accidental learning.

The above learning theories have been at the forefront of research for formulating
mLearning and eLearning frameworks and models. Some of these frameworks and
models are reviewed in Sections 2.4 and 2.5 respectively.

2.4 The Global eLearning Framework

In [20], an eLearning framework addressing global eLearning issues is presented. The
framework has eight (8) major dimensions that are instrumental to meaningful
implementation of eLearning. These dimensions are presented in the framework
shown in Figure 1 below.

The eight (8) major dimensions in the Global eLearning Framework [20] presented
in Figure 1 below are: Institutional, Pedagogical, Interface Design, Evaluation,
Management, Resource Support, Ethical and Technological dimensions. Each of the
major dimensions consists of several sub-dimensions as is detailed below.

Fig. 1. Showing the Global eLearning Framework [20, p.1]

 A Framework for Instantiating Pedagogic mLearning Objects Applications 201

The Institutional dimension implores institutions wishing to adopt eLearning to
examine their administrative, academic and student support affairs. In the
Administrative sub-dimension, an institution should determine whether it is ready to
offer eLearning or not. In the Academic sub-dimension, the institution should
determine whether the quality of programs to be offered via eLearning meet quality
standards similar to those offered through traditional programs. In the Student Support
sub-dimension, the institution should determine that the instructors/administrators are
available and ready to support the students during online learning.

The Pedagogical dimension consists of the Content, Audience, Goal and
Objectives, Medium, Design, Organization and Methods sub-dimensions. The Content
sub-dimension requires institutions to determine the type of content that can be
delivered over different learning technologies. The Audience sub-dimension requires
institutions to profile their learners. The Goal and Objectives sub-dimension requires
institutions to provide clear expectations of what the learners are expected to achieve.
The Medium sub-dimension requires institutions to determine whether they should
utilize multiple media content (text, audio, video, graphics or a combination of these)
in their delivery. The Design sub-dimension determines the role of the instructor. Is it
more facilitative than didactic, more didactic than facilitative or a combination of
both? The Organization sub-dimension is concerned with whether eLearning provides
a sense of continuity in the learning process. It answers questions related to whether
in eLearning, one unit of a lesson builds on the previous unit. The Methods sub-
dimension asks whether the eLearning environment being proposed provides means
and mechanisms for collaboration among learners and learners and their tutors and
administrators.

In the Interface Design dimension are sub-dimensions such as Page and Site
Design, Content Design, Navigation, Accessibility and Usability Testing. The Page
and Site Design sub-dimension is concerned with the appearance of the web-pages to
the learners. Pages must appear good and appealing to learners. The Content Design
sub-dimension implores content developers to follow a ‘one idea per paragraph’ rule
while designing content. The Navigation sub-dimension requires an eLearning
program to provide structural aid or site map to guide learner’s navigation. The
Accessibility sub-dimension requires that an eLearning program should be designed in
such a way as to be accessed by a wider user population. The Usability Testing sub-
dimension requires that an eLearning program provides instant feedback to frequently
asked questions in the program itself.

The Evaluation dimension considers the assessment of learners and evaluation of
instruction and learning environment. The Assessment of Learners sub-dimension
requires the eLearning program to have a mechanism for truly measuring the learner’s
learning achievements without having loopholes for cheating. The Evaluation of
Instruction and Learning Environment sub-dimension requires that eLearning
program should have mechanism to enable learners to evaluate the content, instructor,
learning environment, learning resources, course design and technical support.

The Management dimension has two sub-dimensions, namely: Content
Development and Maintenance. In Content Development sub-dimension, a requirement
for a project support site for eLearning production team is placed. In the Maintenance
sub-dimension, a requirement for constant and timely updates within the eLearning

202 P.B. Muyinda et al.

program is placed. The updates to the learners could be made through e-mail,
announcement page, alert boxes, running footer added to a page or phone call.

The Resource Support dimension has the Online Support and Resources Support
sub-dimensions. The online support sub-dimension requires that eLearning should
have troubleshooting expertise or helpdesk support. The Resources and Support sub-
dimension requires the eLearning program to facilitate learning by providing
examples of prior work of the student in digitized formats.

The Ethical dimension includes the Social/Political Influence, Cultural Diversity,
Bias, Geographical Diversity, Learner Diversity, Digital Divide, Etiquette and Legal
Issues sub-dimensions. In the Social/Political Influence sub-dimension, an institution
should determine whether there are social/political forces that might curtail the
implementation of eLearning. In the Cultural Diversity sub-dimension, counsel is
provided to reduce or avoid the use of idioms, jargons, ambiguous words or cute
humor and acronyms. The Bias sub-dimension requires that more than one view point
be presented to a controversial issue. The Geographical sub-dimension requires that
eLearning should be provided to learners located in different geographical areas and
must therefore take care of different time zones so as to appropriately schedule
synchronous communication. The Learner Diversity sub-dimension recognizes that
there are slow, medium and fast learners. Therefore an eLearning system must take
care of all these learners. The Digital Divide sub-dimension is important in that it
considers access to technology. The system should not disadvantage learners who
lack the necessary learning technologies. The digital divide issue should be
considered while designing the eLearning content. The Etiquette sub-dimension
provides guidance to learners on how to behave during eLearning. It provides the dos
and don’ts in eLearning. The Legal Issues sub-dimension requires the eLearning
program to seek permission to post on the Web, students’ photographs and projects.

The Technological dimension has Infrastructure Planning and Hardware and
Software sub-dimensions. Infrastructure Planning sub-dimension requires the
institution to ascertain whether it has the necessary personnel who can assist learners
to get onto eLearning. The Hardware and Software sub-dimension is important for
profiling the necessary hardware and software requirements for the eLearning
program (ibid).

The dimensions espoused in the Global eLearning Framework [20] do not cater for
mLearning objects deployment and utilization on mobile phones. In the Global
eLearning Framework [20] , no dimension(s) is/are included for enabling learning on-
the-go. Using Design Research [2] approach, this paper has developed a global
framework, underpinned by the Global eLearning Framework [20], for instantiating
mLearning objects applications.

2.5 MLearning Objects Frameworks

Table 1 below provides a review of some mLearning objects frameworks and models.
From Table 1, it is worth noting that the models and frameworks therein are not
global in nature in as far as mLearning objects deployment and utilization is
concerned. They address endogenous factors needed for mLearning objects adaptation
and aggregation while putting less emphasis on exogenous factors that have potential
influence on the deployment and utilization of learning objects on mobile phones.

 A Framework for Instantiating Pedagogic mLearning Objects Applications 203

Table 1. Some mLearning Objects Frameworks

204 P.B. Muyinda et al.

3 Methodology

MoLODUF aims at widening the dissemination of knowledge through the mobile
phone. Knowledge is a social product [35]. Research into the design, development
and evaluation of artifacts for disseminating knowledge is socially responsible [37].
The social responsibility emanates from the belief that such research addresses the
needs and aspiration of the masses pursuing an education. It implies that research
approaches to be employed in such socially responsible studies must ensure the
participation of the masses involved in the knowledge dissemination artifacts design,
development, evaluation and use. Since MoLODUF was aimed at widening
knowledge dissemination; it implies that its development was socially responsible.

Design Research has been fronted as the most suitable approach/methodology for
accomplishing socially responsible studies [2, 8, 16, 37, 48]. Design Research
combines research, design and practice [48] and its outputs include: constructs,
models, methods/frameworks, instantiations and better theories [2]. “Constructs are
vocabularies or symbols used to define a problem or solution while models are
abstractions and representations of the problem or solution and methods/frameworks
are algorithms and practices for implementing the artifact. Instantiations are
implementations and prototype systems” [16, p.2]. Constructs provide building blocks
for models and frameworks. A framework is a supporting structure around which
something can be built [ibid]. MoLODUF was built following the Design Research
methodology.

Design Research methodology is an iterative process for developing or evaluating
artifacts. It is accomplished through five process steps shown in Figure 2 below.

Fig. 2. Showing the Design Research Methodology [2, p.13]

 A Framework for Instantiating Pedagogic mLearning Objects Applications 205

The five process steps of Design Research as depicted in Figure 2 above were
followed in the development of the MoLODUF. The process steps are: the Awareness
of the Problem, Suggestion, Development, Evaluation and Conclusion. At the
Awareness of the Problem process step, a survey of 446 learners at Makerere
University in Uganda was undertaken. The learners were selected using multi-stage
sampling method involving cluster sampling at stage one and stratified random
sampling at stage two. The learners were distributed as 48.9 Percent (n=218) distance
learners and 51.1 Percent (n=228) campus-based learners. Males constituted 62.3
Percent while 37.7 Percent were female. Their minimum age was 18 while the
maximum age was 46 with a mean age of 24.7 and mode of 21. The minimum age of
18 was recorded from amongst campus-based learners while the maximum age of 46
was recorded from distance learners. Forty three Percent of the learners surveyed
were pursuing science related disciplines while 57.0 Percent were pursuing
humanities related disciplines. Learners were drawn from all years of study,
including: first year (15.9 Percent), second year (32.3 Percent), third year (35.2
Percent) and fourth year (16.6 Percent). Most of the learners were unemployed (67.5
Percent) and not married (79.8 Percent). They joined university after attaining ‘A’
Level (70.2 Percent), diploma (26.9 Percent), grade III teacher certificate (1.1
Percent), degree (1.1 Percent) or other qualifications (0.7 Percent).

A semi-structured, self-administered questionnaire was used to capture data. The
survey consisted of open and close ended questions. The questionnaire collected data
on mLearning context, mLearning activities, mLearning devices and technologies,
mLearning resources, mLearning objects, mLearning institutional issues and
mLearning environmental issues.

The survey results were triangulated with results from literature review and
interviews held with key eLearning and mLearning stakeholders drawn from across
Africa.

The Awareness of the Problem process step was useful for gathering requirements
for suggesting and developing the MoLODUF during the Suggestion and
Development process steps respectively. Using deductive reasoning, dimensions and
sub-dimensions for constructing the MoLODUF were generated from the
requirements. In the Evaluation process step the MoLODUF was compared with
existing mLearning and eLearning frameworks with a view of establishing the novelty
in our research. In the Conclusion process step, we drew conclusions from the novelty
revealed in the Evaluation process step. The process of suggesting, developing and
evaluating the MoLODUF and drawing conclusions from it resulted in new
knowledge which was used in refining requirements for further development of the
MoLODUF.

4 Results and Discussions

The results are presented and discussed following the six research questions
formulated in this study and within the Design Research [2] framework.

206 P.B. Muyinda et al.

4.1 Raising Awareness of the Problem and Making Suggestions for MoLODUF
Dimensions

This Section is underpinned by the Awareness of the Problem and Suggestion process
steps of Design Research methodology. These process steps were used to gather
requirements for deducing dimensions and sub-dimensions for constructing the
MoLODUF. The Section provides answers to four of the six research questions in this
study, namely:

i. What are the current learner contexts, practices and prospects for the
development and growth of mLearning?

ii. What learning processes can be accomplished through mLearning?
iii. What kinds of learning objects can be used to service the identified learning

processes?
iv. What are the issues and factors to obtain access to and use learning objects in

mLearning?

Current Learner Contexts, Practices and Prospects for the Development and
Growth of MLearning. Distance and campus-based learners faced similar contextual
challenges and opportunities in as far as ICTs for learning was concerned. Mobile
connectivity was available to all distance and campus-based learners (p=0.062).
Urban areas were not a preserve for campus-based learners alone but they hosted
distance learners as well (p=0.532). All the learners faced similar availability or
intermittence in power supply (p=0.199) and Internet connectivity (p=0.329). This
confirms the conclusion in [11] that developing countries of Africa are faced with a
multitude of contextual constraints that undermine the development and growth of
eLearning. Studies have indicated that mLearning has the potential to defy the odds
that inhibit conventional eLearning [28]. For instance, there was no significant
association between power supply and mobile network connectivity (p=0.301), yet
Internet connectivity, which powers eLearning, was highly significantly associated
(p=0.000) with availability of power supply. The implication in these findings is that
there is need for equal planning for educational technologies aimed at enhancing
learning amongst all learners in all learning contexts, which calls for a mLearning
Context dimension in a framework for mLearning.

MLearning was practiced in a few instances, albeit inadvertently. In the majority of
instances, it was established that learners could not be able to tell whether placing a
call or text message for the purposes of learning or education constituted mLearning.
These findings are not surprising because in [43], the infancy of mLearning is
reiterated. MLearning just like any other infant field of study is likely to face limited
epistemology. Consequently, the limited epistemology of mLearning has resulted into
its limited practice.

Where mLearning existed, it was mainly practiced through text and audio learning
objects in trial and pilot projects for collaborative and interactive learning. MLearning
mainly occurred in a push nature with limited bi-directional synchronous and
asynchronous collaboration and interaction through text messaging. The one way use
of text messages was mainly due to the limitations imposed by low end mobile
phones. Also, the use of text messaging in a push fashion was brought about by the
high cost of using other media such as video and the prevalence of low end mobile
phones which were owned by the majority (68.0 Percent) of learners. Low end mobile
phones limitations curtail push and pull synchronous text messaging [15].

 A Framework for Instantiating Pedagogic mLearning Objects Applications 207

Through voice calls, the study showed that pull and push synchronous and
asynchronous audio communication was practiced and preferred on low end mobile
phones because voice calls imposed no character length limitations inherent in text
messages. In [6] and [12], the use of audio mLearning objects on low end mobile
phones is reported. In the mLearning project in [6], learners learn how to pronounce
and spell English words by listening in to a word from the Hadeda system before
being required to type it out. If a learner correctly types the word, the system
congratulates him/her, otherwise it gives him/her the correct spelling. In the
mLearning project in [12], a mobile audio-wikipedia system is reported. In this
system, learners use their mobile phones to dial into it and listen to a definition of a
given word. If the definition does not exist, the learner is given a chance to dictate a
definition to the system.

Whereas audio learning objects for low end mobile phones were in use, earlier
studies [4, 5, 26] on the practice of mLearning in Africa showed that text messaging
was the most prevalent way of deploying and utilising learning objects in mLearning.
In a report for the Commonwealth of Learning on the use of mobile phones for open
schooling, [41] enumerated a number of innovative mLearning projects in which text
messaging was the key technology for learning objects deployment and utilisation.
One of such projects is the mobile research supervision initiative in Uganda in which
lecturers and distance learning students interact with each other for the purpose of
accomplishing field research activities. Another project is Dr. Math on Mxit, for
collaborative learning in mathematics using instant text messaging [41].

All the projects discussed above considered the capabilities of learners’ mobile
device and the kind of learning objects that could be deployed and utilised on them.
There must therefore be dimensions in the MoLODUF for mLearning Devices and
mLearning Objects.

Through text and audio based mLearning objects, 77.7 Percent of the learners were
able to collaboratively and interactively work on assignments and receive
administrative and academic support. Learner support is one of the three imperatives
of ICTs in education [5]. The other two being access to content and communication
(ibid). When learners are adequately supported, a lot of their time is freed to
participate in other learning activities. They also feel cared for and are motivated to
learn. For distance learners who are separated by time and space [1, 7, 43, 47],
collaborative and interactive learning can be an avenue for reducing the loneliness
usually associated with distance learning. In so doing the ‘distance’ amongst the
distance learners themselves and between the distance learners and their university
can be bridged. In the learner support process, mLearning objects were used by
learners, lecturers and university administrators which imply the need for mLearning
Pedagogy dimension for profiling the mLearning Object Users.

The study revealed a number of prospects for the development and growth of
mLearning. The prospects lay in the existence of possible learning activities that
could be ported onto mLearning. MLearning was found to be suitable for out-of-
classroom direct learning activities or activities meant to plan and support direct
learning activities. While outside the classroom, learners participated in collaborative
and interactive learning (41.0 Percent), co-curricular/extra-curricula activities (20.0
Percent), independent research (16.0 Percent), completed theoretical, practical and
field courseworks and assignments (8.0 Percent), watched/listened to educative and
entertaining music, news and movies (6.0 Percent), engaged in work related activities

208 P.B. Muyinda et al.

(4 Percent), consulted their lecturers (7.0 Percent), acquainted themselves with the
university environment (1.0 Percent) and took computer lessons (1.0 Percent). All
these learning activities can be variously supported through mLearning to accomplish
various learning processes. This calls for a mLearning Processes dimension in the
MoLODUF.

Even if out-of-classroom learning activities can be ported on mobile phones, the
tiny mobile phone screen and keyboard can be uncomforting to the mLearning object
user. When asked to provide a view on using mobile phones to learn, one of the
respondents said, “if it were not for the tiny screen and keyboard of my mobile phone,
I would use it to learn”. This calls for strategies to mitigate mobile phone limitations.
One way could be blending mLearning devices with other eLearning devices and
regularly evaluating the learning comfort afforded by the blend with the view of
mitigating any discomfort. This suggests the need for a mLearning Evaluation
dimension in the MoLODUF.

MLearning Processes. While considering learning activities that learners participated
in while outside the classroom environment, the need to consider learning processes
in mLearning was unearthed. Learning processes are value addition learning activities
[9]. Since mLearning is of great value to out-of-classroom learning activities, it
presents significant benefits to distance learning processes or learners on-the-go with
limited access to web-based computers. From traditional learning theories reviewed in
this study [10, 29, 33, 39, 46], learning processes related to Co-Creation of New
Knowledge, Knowledge Sharing, Collaborative and Interactive Learning, Reflective
Learning, Problem-Based Learning, Academic and Administrative Support and
Communication/Information Exchange can be supported through mLearning.

Learning Objects for MLearning Processes. The study revealed that different
mLearning objects could be used to service different mLearning processes identified
above. MLearning objects could take the form of text messages, voice calls, MMSs,
audio and video podcasts, Wapsites, software modules/components or games [3, 5,
19, 42]. The ability to deploy and utilize any of the aforementioned mLearning
objects depends on financial, human and technological resources available, costs
associated, constraints placed on mobile technologies, the learning processes in
question, management/institutional policies and ethical considerations. Within the
context of developing countries, text and audio based learning objects were found to
be more feasible than any other learning objects. This discussion presents a need for
profiling mLearning objects, hence the need for a mLearning Objects dimension in
the MoLODUF. Other dimensions that can be adduced from these results include:
mLearning Processes, mLearning Ethics, mLearning Cost, mLearning Resources,
mLearning Device and mLearning Policy.

Issues and Factors for Obtaining Access to and Utilizing MLearning Objects.
There are three design issues that can enable easy access to learning objects [40].
These include: designing for device independence, designing for multiple media
content and allowing learners to control moving content [ibid]. In addition to these
three issues, this research has established that mobile network
connectivity/networking technology and intellectual property rights issues are also
important factors to consider while obtaining access to learning objects in mLearning.

 A Framework for Instantiating Pedagogic mLearning Objects Applications 209

The interface of the mLearning device is yet another important factor to consider. The
cultural appropriateness of using a learning object, the pedagogy chosen by the
institution, the relationship between mLearning devices with other delivery devices
and the cost of mLearning among others are important issues and factors for
deploying and utilizing learning objects on mobile devices. These factors calls for
mLearning Objects, mLearning Connectivity, mLearning Ethics, mLearning
Resources, mLearning Cost and mLearning Interface dimensions in the MoLODUF.

4.2 Developing the MoLODUF

This Section is underpinned by the Development process step of Design Research
methodology. It answers the research question - What are the major dimensions and
sub-dimensions of the MoLODUF? In the Development process step, artifacts are
developed from constructs adduced from the Suggestion process step [2]. From the
awareness raised and suggestions made in Section 4.1 above, twelve (12) major
dimensions are apparent. These are: mLearning Cost, mLearning Processes,
mLearning Objects, mLearning Devices, mLearning Resources, mLearning
Connectivity, mLearning Pedagogy, mLearning Interface, mLearning Evaluation,
mLearning Ethics, mLearning Policy and mLearning Context dimensions. These
major dimensions are explained below and shown with their respective sub-
dimensions in Table 2 below.

MLearning Cost Dimension. The study has revealed that mLearning was practiced
mainly in a push nature with limited bi-directional synchronous and asynchronous
interaction because of its high cost. Mitigation of mLearning costs is therefore vital
for successful mLearning. The mLearning Costs dimension is the ‘midrib’ or
‘backbone’ in the MoLODUF. For effective deployment and utilisation of learning
objects in mLearning, there must be mechanisms to mitigate the usually high cost of
mLearning. Thus there is need to determine the unit cost of mLearning and put in
place a mLearning cost sustainability model.

MLearning Processes Dimension. MLearning Processes provide all the learning and
teaching models commensurate with the limitations of mobile devices [43]. This
research has adduced seven (7) learning processes that can be supported using
mLearning. These are: Co-Creation of New Knowledge, Knowledge Sharing,
Collaboration and Interaction, Reflective Learning, Problem-Based Learning,
Academic and Administrative Support and Communication/Information Exchange.
Consequently institutions wishing to effectively deploy and utilize learning objects in
mLearning should first profile existing learning processes with the aim of determining
those which are appropriate for mLearning. Learning processes can be abducted from
the different learning activities partaken of by the learners especially when they are
on-the-move or outside the classroom learning environment.

MLearning Objects Dimension. This dimension is responsible for modeling the
learning objects for deploying and utilizing on mobile devices. It should have sub-
dimensions for mLearning Objects Organization, mLearning Objects Granulation,
mLearning Objects Media Types, mLearning Objects Accessibility, mLearning
Objects Utilization, mLearning Objects Pedagogy, mLearning Objects Repository and
mLearning Objects Brokering. The first three sub-dimensions are also available in the
multi-dimensional framework for content adaptation [13].

210 P.B. Muyinda et al.

MLearning Devices Dimension. This dimension profiles the mobile devices being
used in mLearning objects deployment and utilization. By profiling the mobile
devices in use, their Generation Order, Properties, Capabilities and Limitations can
be determined and mitigated. Mobile devices limitations can constrain mLearning
[15], hence they should be mitigated by adopting a device blend.

MLearning Resources Dimension. The mLearning Resources dimension has three
sub-dimensions which are necessary for the successful implementation of mLearning,
namely: Infrastructural, Human and Financial Resources sub-dimensions. The
infrastructural resources needed for mLearning are: servers, fiber optic backbones,
computers, fast Internet connectivity, e-mail, high end mobile phones, mobile
network connectivity, learning management systems, local area networks (wired and
wireless) and mobile applications development software. The human resources
needed for mLearning are: flexible managers, administrators, lecturers and students
willing to experiment with innovations in core educational practices. Other vital
mLearning human resources are: mLearning researchers and systems analysts, mobile
applications programmers, technicians, instructional and graphic designers, and
content developers. The availability of financial resources is central for the
acquisition, installation and maintenance of all the other mLearning resources.
Financial resources are also necessary for sustaining mLearning costs. Therefore a
budget vote for mLearning is a must for institutions wishing to deploy and utilize
learning objects on mobile phones.

Table 2. MLearning Objects Deployment and Utilization Framework (MoLODUF)

 A Framework for Instantiating Pedagogic mLearning Objects Applications 211

MLearning Connectivity Dimension. Internet and mobile network connectivity are not
always available to all the learners. Also, the ability to deploy and utilize a given media
type of a learning object depends not only on the capability of the mobile phone but also
on the mobile networking technology at hand. Before embarking on any mLearning
instance, it is important to profile the Mobile Connectivity State, Mobile Networking
Technology, Mobile Service Providers and Bandwidth available to learners.

MLearning Pedagogy Dimension. The mLearning Pedagogy dimension profiles the
users of mLearning objects. To be able to do so, it profiles the mLearning Objects
User Role, Profile and Education. The actors in mLearning can be learners, lecturers
or administrators. Their respective roles must be known before hand so as to deploy
the right learning object to the right user. A user profile in terms of learning history,
preferences, style and motivation for learning is vital for brokering the right learning
objects. For users to be able to effectively utilize the learning objects, mobile phone
user education is important.

MLearning Interface Dimension. In order to increase learning comfort in
mLearning, mLearning devices should be blended with conventional eLearning
devices. This implies that interfaces for mLearning are not strictly tied to Mobile
Devices Interfaces alone. A blended approach means that mLearning objects could as
well be deployed and utilised on PC Interfaces. This has learning objects design
implication in the sense that a learning object should be designed with interoperability
capability between mobile devices (Mobile Device Interface sub-dimension) and PCs
(PC Interface sub-dimension).

MLearning Evaluation Dimension. “Evaluation is a reflective learning process” [23,
p.43]. There must be mechanisms in a mLearning system for self evaluation. The
MoLODUF has an mLearning Evaluation dimension whose functions are to establish:
whether a mLearning objects user has understood the content in the object (using
MCQ Quizzes sub-dimension), whether there is learning comfort in mLearning (using
Learning Comfort sub-dimension), whether there is learning equity in mLearning
(using Learning Equity sub-dimension) and whether a deployed learning object
actually reached its intended recipients (using mLearning Object Deployment
Feedback sub-dimension).

MLearning Ethics Dimension. This dimension is responsible for spelling out the
mLearning etiquettes in a particular organization. It is responsible for protecting
mLearning providers from unethical behaviors that may arise from the use of mLearning.
It should be responsible for saving mLearning object users from cognitive overloads
arising from multiple mLearning objects use and requests. It therefore spells out
mechanisms for handling Cognitive Overload, Culturally Inappropriate communications
and Privacy and Security of information being communicated.

MLearning Policy Dimension. This dimension consists of two sub-dimensions,
namely: Institutional Policies and Government Policies. Institutional policies can
curtail or propel the development and growth of mLearning. A favorable mLearning
policy is therefore necessary. Likewise, if a government has an eLearning policy
which takes cognizance of all learning platforms including mLearning, then

212 P.B. Muyinda et al.

mLearning will get support. The policies should be able to give guidelines and
strategies for using mLearning in universities and other institutions of learning. The
mLearning Policy dimension ensures that favorable mLearning policies, strategies,
regulations and guidelines are put in place. Policies will inform the mLearning
processes and therefore guide all mLearning activities in an institution. They will
even provide regulations on the mobile devices to be used for mLearning and set
aside resources for sustaining mLearning.

MLearning Context Dimension. In this study, it was established that learners lived
and operated in different contexts. According to [45], learning context is an important
factor in mLearning. Therefore the MoLODUF should have a mLearning Context
dimension aimed at profiling mLearners’ learning contexts. In so doing, mLearning
Propellers can be established and exploited. Also, mLearning Inhibitors can be
known and mitigated. The Learning Environment where the learner is based must also
be profiled to determine the noise levels of the learner’s usual learning environment,
mobile connectivity in the area, availability of resources such as desktop computers
and power connectivity and so on. The environment should be favorable for
mLearning or if not, attempts must be made to make it favorable.

4.3 Evaluating the MoLODUF

This Section is underpinned by the Evaluation process step of Design Research
methodology. It answers the research question - How is the MoLODUF related with
existing key eLearning frameworks? Therefore the MoLODUF was evaluated by

Table 3. Summary Comparison of MoLODUF with mLearning and eLearning Frameworks

 A Framework for Instantiating Pedagogic mLearning Objects Applications 213

comparing it with existing mLearning and eLearning Frameworks in [3, 13, 20, 27,
30, 36, 44, 50, 51]. The differences and similarities of these frameworks with respect
to the MoLODUF dimensions are presented in Table 3 below.

A shaded box in the dimensions column indicates the existence of the
corresponding dimension in the respective framework on the right. In the Table, it can
be seen that existing mLearning frameworks do not have dimensions for mLearning
Costs, mLearning Processes, mLearning Evaluation, mLearning Policy and
mLearning Ethics. All the aforementioned dimensions are present in the MoLODUF.
When the MoLODUF is compared with the Global eLearning Framework in [20], it
can be deduced that the mLearning Cost, mLearning Processes, mLearning Objects
and mLearning Context dimensions are MoLODUF’s extension to that framework.
The Coordination and mLearning Pedagogy dimensions are present in all
frameworks. The MoLODUF has extended exiting mLearning frameworks with the
mLearning Costs, mLearning Processes, mLearning Evaluation, mLearning Policy
and mLearning Ethics dimensions. In the conventional eLearning arena, MoLODUF
has contributed towards integrating mLearning with eLearning by suggesting the
addition of mLearning Cost, mLearning Processes, mLearning Objects and
mLearning Context dimensions into the Global eLearning Framework in [20].

5 Instantiating MLearning Objects Deployment and Utilization
Applications

Whereas the MoLODUF process steps are not necessarily sequential in nature, we
suggest that implementation of the MoLODUF guidelines/dimensions be based on the
loose sequence provided in the process steps in Figure 3 below.

Fig. 3. Showing the Process Steps for Instantiating mLearning Applications using the
MoLODUF

214 P.B. Muyinda et al.

Loosely speaking, organizations wishing to create applications for deploying and
utilizing learning objects on mobile phones should implement the
guidelines/dimensions given in the MoLODUF dimensions following the sequence
provided in Figure 3 above. However, as can be seen in the Figure, mLearning costs
present a central challenge that must be dealt with at all process steps. Further,
sustainable deployment and utilization of mLearning objects will only be achieved if
there is an appropriate mLearning policy. This is the reason why an mLearning policy
must be put in place first before implementing any other dimension. Though
formative mLearning evaluation is important to evaluate the mLearning applications
development process, Figure 3 above suggests the need for summative evaluation to
measure the learning outcomes, learning comfort and learning equity emanating from
the learning objects deployed and utilized by any mLearning application. Figure 3
further shows that as a result of an mLearning summative evaluation,
recommendation can be made to revise the mLearning policy and so on.

6 Conclusion and Future Work

This Section was underpinned by the Conclusion process step of Research Design
methodology. The MoLODUF provides a competence set of dimensions and sub-
dimensions for instantiating and/or evaluating mLearning objects applications and/or
environments. By introducing four mobility dimensions, namely: mLearning Cost,
mLearning Processes, mLearning Objects and mLearning Context into the Global
eLearning Framework in [20], the MoLODUF provides a method for integrating
mLearning with conventional eLearning. It also enhances research into adoption and
implementation of mLearning. Further, MoLODUF offers guidelines for the
pedagogic use of mobile phones. Future work emanating from this study include: a
practical implementation of the MoLODUF, developing mLearning cost sustainability
model and mobile phones limitation mitigation plan.

Acknowledgement. This work was part of the corresponding authors PhD research.
Many thanks go to Makerere University, SIDA/SAREC and NUFFIC for funding this
PhD Project.

References

1. Aderinoye, A.R., Ojokheta, O.K., Olojede, A.A.: Integrating Mobile Learning into
Nomadic Education Programmes in Nigeria: Issues and perspectives. The International
Review of Research in Open and Distance Learning 8(2), 1–17 (2007)

2. Association of Information Systems: Design Research in Information Systems (2007),
http://www.isworld.org/Researchdesign/drisISworld.htm

3. Ayala, G., Castillo, S.: Towards Computational Models for Mobile Learning Objects. In:
The Fifth IEEE International Conference on Wireless, Mobile, and Ubiquitous Technology
in Education (WMTE 2005), Tokushima, Japan, March 23-26 (2008)

4. Barker, A., Krull, G., Mallinson, B.: A proposed Theoretical Model for M-Learning
Adoption in Developing Countries. In: The 4th World conference on m-learning (MLearn
2005), Cape Town, SA, October 25-28 (2005)

 A Framework for Instantiating Pedagogic mLearning Objects Applications 215

5. Brown, H.T.: Towards a Model for m-Learning in Africa. International Journal on E-
learning 4(3), 299–315 (2005)

6. Butgereit, L., Botha, A.: Hadeda: The Noisy Way to Practice Spelling Vocabulary using a
Cell Phone. In: The IST-Africa 2009 Conference, Kampala, Uganda, May 6-8 (2009)

7. Caudill, G.J.: The Growth of m-Learning and the Growth of Mobile Computing: Parallel
developments. The International Review of Research in Open and Distance Learning 8(2),
1–13 (2007)

8. Design-based research collective: Design-Based Research: An Emerging Paradigm for
Educational Inquiry. Educational Researcher 32(1), 5–8 (2003)

9. Doos, M., Wilhelmson, L., Backlund, T., Dixon, N.: Functioning at the edge of
knowledge. A study of learning processes in new product development. Journal of
Workplace Learning 17(8), 481–492 (2005)

10. Eraut, M.: Non-formal learning, implicit learning and tacit knowledge in professional
work. In: The Necessity of Informal Learning. The Policy Press, Bristol (2000)

11. Farrell, G., Isaacs, S.: Survey of ICT and Education in Africa. A Summary Report Based
on 53 Country Surveys (2007),
http://akgul.bcc.bilkent.edu.tr/egitim/ict-africa-survey.pdf

12. Ford, M., Botha, A.: MobiLED – Mobile-Led and Leading via Mobile. In: The IST-Africa
2009 Conference, Kampala, Uganda, May 6-8 (2009)

13. Goh, T., Kinshuk, D.: Getting Ready for Mobile Learning - Adaptation Perspectives.
Journal of Educational Multimedia and Hypermedia 15(2), 175–198 (2006)

14. Goodman, N.: Mathematics as an objective science. In: Tymoezko, T. (ed.) New
Directions in the Philosophy of Mathematics, pp. 79–94. Barkhauser, Boston (1986)

15. Grant, J., Lynch, K., Fisher, J.: Looks Can Cost; Especially On A Small Screen. In: The
7th IFIP International Conference on e-Business, e-Services, and e-Society (I3E 2007),
Wuhan, China, October 10-12 (2007)

16. Hevner, R.A., March, T.S., Park, J., Ram, S.: Design Science in Information Systems
research. MIS Quarterly 28(1), 75–105 (2004)

17. IEEE: WG12: Learning Object Metadata, http://ltsc.ieee.org/wg12/ (2010)
18. International Telecommunications Union: Mobile cellular subscribers (2009),

http://www.itu.int/ITU-D/icteye/Reporting/
ShowReportFrame.aspx?ReportName=/WTI/CellularSubscribersPubl
ic&ReportFormat=HTML4.0&RP_intYear=2009&RP_intLanguageID=1&R
P_bitLiveData=False

19. Ketterl, M., Heinrich, T., Mertens, R., Morisse, K.: Enhanced Content Utilization:
Combined Re-Use of Multi-Type e-Learning Content on Mobile Devices. IEEE
Multidisciplinary Engineering Education Magazine 2, 61–64 (2007)

20. Khan, B.: Elements of e-learning (2001), http://BadrulKhan.com
21. Kurubacak, G.: Identify Research Priorities and Needs for Mobile Learning Technologies

in Open and Distance Education: A Delphi Study. College of Open Education, Anadolu
University, Anadolu (2007)

22. Laurillard, D.: Pedagogical forms for mobile learning. In: Pachler, N. (ed.) Mobile
Learning: Towards a Research Agenda. WLE Centre, London (2007)

23. Lin, X., Hmelo, C., Kinzer, K.C., Secules, J.T.: Designing Technology to Support
Reflection. Educational Technology Research and Development 47(3), 43–62 (1999)

24. Low, L.: M-learning standards report. Background, discussion and recommendations for
usable and accessible m-learning (2007),
http://e-standards.flexiblelearning.net.au/docs/
m-standards-report-v1-0.pdf

216 P.B. Muyinda et al.

25. Luis de Marcos, H.R.J., Gutiérrez, A.J., Pagés, C., Martínez, J.J.: Implementing Learning
Objects Repositories for Mobile Devices (2006), http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-208/paper04.pdf

26. Masters, K.: Low-key m-learning: a realistic introduction of m-learning to developing
countries, http://www.fil.hu/mobil/2005/Masters_final.pdf (nd)

27. Motiwalla, F.L.: Mobile learning: A framework and evaluation. Computers &
Education 49(3), 581–596 (2007)

28. Muyinda, B.P., Lubega, J., Lynch, K.: Unleashing mobile phones for research supervision
support at Makerere University, Uganda: the lessons learned. International Journal of
Innovation and Learning 7(1), 14–34 (2010)

29. Naismith, L., Lonsdale, P., Vavoula, G., Sharples, M.: Literature Review in Mobile
Technologies and Learning (No. 11). University of Birmingham, Birmingham (2006)

30. Nakabayashi, K., Hoshide, T., Hosokawa, M., Kawakami, T., Sato, K.: Design and
Implementation of a Mobile Learning Environment as an Extension of SCORM 2004
Specifications. In: The Seventh IEEE International Conference on Advanced Learning
Technologies (ICALT 2007), Niigata, Japan, July 18-20 (2007)

31. Nie, M.: The Pedagogical Perspectives of Mobile Learning (2007),
https://lra.le.ac.uk/bitstream/2381/407/1/
The%20Pedagogical%20Perspectives%20of%20Mobile%
20Learning%20-%20A%20Literature%20Review.pdf

32. Park, Y.: A Pedagogical Framework for Mobile Learning: Categorizing Educational
Applications of Mobile Technologies into Four Types. The International Review of
Research in Open and Distance Learning 12(2), 78–102 (2011)

33. Pask, G.: Minds and media in education and entertainment: some theoretical comments
illustrated by the design and operation of a system for exteriorizing and manipulating
individual theses. In: Trappl, R., Pask, G. (eds.) Progress in Cybernetics and Systems
Research, Hemisphere, London, pp. 38–50 (1975)

34. Pettit, J., Kukulska-Hulme, A.: Going with the grain: Mobile devices in practice.
Australasian Journal of Educational Technology 23(1), 17–33 (2007)

35. Prawat, S.R., Floden, E.R.: Philosophical perspectives on constructivist views on learning.
Educational Psychology 29(1), 37–48 (1994)

36. Quinn, N.C.: Flexible Learning: Mobile Learning Objects. Knowledge Anywhere (2002)
37. Reeves, C.T., Herrington, J., Oliver, R.: Design Research: A Socially Responsible

Approach to Instructional Technology Research in Higher Education. Journal of
Computing in Higher Education 16(2), 97–116 (2005)

38. Schibeci, R., Lake, D., Phillips, R., Lowe, K., Cummings, R., Miller, E.: Evaluating the
use of learning objects in Australian and New Zealand schools. Computers &
Education 50(1), 271–283 (2008)

39. Skinner, B.F.: The Technology of Teaching. Appleton-Century-Crofts (reprinted by the BF
Skinner Foundation in 2003), New York (1968)

40. Smith, S.R.: Guidelines for Authors of Learning Objects (2004),
http://archive.nmc.org/guidelines/NMC%20LO%20Guidelines.pdf

41. South African Institute for Distance Education: Using Mobile Technology for Learner
Support in Open Schooling. Project report for: Commonwealth of Learning (2008),
http://www.col.org/SiteCollectionDocuments/
Mobile%20Technology_Final%20Report.pdf

42. Toledano, M.C.M.: Learning objects for mobile devices: A case study in the Actuarial
Sciences degree. Current Developments in Technology-Assisted Education 2006, 2095–
2099 (2006)

 A Framework for Instantiating Pedagogic mLearning Objects Applications 217

43. Traxler, J.: Defining, Discussing, and Evaluating Mobile Learning: The moving finger
writes and having writ.... International Review of Research in Open and Distance
Learning 8(2), 1–12 (2007)

44. Trifonova, A., Ronchetti, M.: Hoarding content for mobile learning. International Journal
of Mobile Communications 4(4), 459–476 (2006)

45. Uden, L.: Activity theory for designing mobile learning. International Journal of Mobile
Learning and Organization 1(1), 81–102 (2007)

46. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes.
Harvard University Press, Cambridge (1978)

47. Wang, C., Liu, Z.: Distance education: basic resource guide. Collection Building 22(3),
120–130 (2003)

48. Wang, F., Hannafin, J.M.: Design-Based Research and Technology Enhanced Learning
Environments. ETR&D 53(4), 5–23 (2005)

49. Wiley, D.A.: The Instructional use of Learning Objects. Association for Educational
Communication and Technology, Bloomington (2001)

50. Yang, M.: An Adaptive Framework for Aggregating Mobile Learning Materials. In: The
Seventh IEEE International Conference on Advanced Learning Technologies (ICALT
2007) Los Alamitos, California, July 18-20 (2007)

51. Zhang, D.: Delivery of personalized and adaptive content to mobile devices: a framework
and enabling technology. Communication of the Association for Information Systems 12,
183–202 (2003)

Emulating Primality with Multiset

Representations of Natural Numbers

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

Denton, Texas
tarau@cs.unt.edu

Abstract. Factorization results in multisets of primes and this mapping
can be turned into a bijection between multisets of natural numbers and
natural numbers. At the same time, simpler and more efficient bijections
exist that share some interesting properties with the bijection derived
from factorization.

This paper describes mechanisms to emulate properties of prime num-
bers through isomorphisms connecting them to computationally simpler
representations involving bijections from natural numbers to multisets of
natural numbers.

As a result, interesting automorphisms of N and emulations of the rad,
Möbius and Mertens functions emerge in the world of our much simpler
multiset representations.

The paper is organized as a self-contained literate Haskell program.
The code extracted from the paper is available as a standalone program
at http://logic.cse.unt.edu/tarau/research/2011/mprimes.hs.

Keywords: bijective datatype transformations, multiset encodings and
prime numbers, Möbius and Mertens functions, experimental mathemat-
ics and functional programming, automorphisms of N.

1 Introduction

Paul Erdös’s statement, shortly before he died, that “It will be another million
years at least, before we understand the primes” is indicative of the difficulty of
the field as perceived by number theorists. The growing number of conjectures
[1] and the large number of still unsolved problems involving prime numbers [2]
shows that the field is still open to surprises, after thousands of years of effort
by some of the brightest human minds.

Interestingly, some significant progress on prime numbers correlates with un-
expected paradigm shifts, the prototypical example being Riemann’s paper [3]
connecting primality and complex analysis, all evolving around the still unsolved
Riemann Hypothesis [4,5,6,7]. The genuine difficulty of the problems and the
seemingly deeper and deeper connections with fields ranging from cryptography
to quantum physics suggest that unusual venues might be worth trying out.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 218–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://logic.cse.unt.edu/tarau/research/2011/mprimes.hs

Emulating Primality with Multiset Representations of Natural Numbers 219

A number of breakthroughs in various sciences involve small scale emulation of
complex phenomena. Common sense analogies thrive on our ability to extrapo-
late from simpler (or, at least, more frequently occurring and better understood)
mechanisms to infer surprising properties in a more distant ontology.

Prime numbers exhibit a number of fundamental properties of natural phe-
nomena and human artifacts in an unusually pure form. For instance, reversibility
is present as the ability to recover the operands of a product of distinct primes.
This relates to the information theoretical view of multiplication [8] and it sug-
gests investigating connections between combinatorial properties of multisets
and operations on multisets and multiplicative number theory.

With such methodological hints in mind, this paper will explore mappings
between multiset encodings and prime numbers. It is based on our data type
transformation framework connecting most of the fundamental data types used
in computer science with a groupoid of isomorphisms [9,10,11].

The paper is organized as follows. Section 2 revisits the well-known connec-
tion between multisets and primes using a variant of Gödel’s encoding [12].
Section 3 describes our computationally efficient multiset encoding. Based on
these encodings, section 4 explores the analogy between multiset decomposi-
tions and factoring and describes a multiplicative monoid structure on multisets
that “emulates” properties of the monoid induced by ordinary multiplication as
well as generic definitions in terms of multiset encodings of the rad, Möbius and
Mertens functions. Section 5 describes automorphisms of N derived from alter-
native multiset encodings. Section 6 overviews some related work and section 7
concludes the paper.

We organize our literate programming code as a Haskell module, relying only
on the List library module:

module MPrimes where

import Data.List

2 Encoding Finite Multisets with Primes

2.1 Ranking/Unranking of Sets and Finite Sequences

First, we define an isomorphism between sets and finite sequences (the Hub of the
groupoid of isomorphisms) as described in [9] (also in the Appendix), resulting
in the Encoder set:

set2list xs = shift_tail pred (mset2list xs) where

shift_tail _ [] = []

shift_tail f (x:xs) = x:(map f xs)

list2set = (map pred) . list2mset . (map succ)

set :: Encoder [N]

set = Iso set2list list2set

220 P. Tarau

We can rank/unrank a set represented as a list of distinct natural numbers by
observing that it can be seen as the list of exponents of 2 in the number’s base
2 representation.

nat_set = Iso nat2set set2nat

nat2set n | n≥0 = nat2exps n 0 where

nat2exps 0 _ = []

nat2exps n x = if (even n) then xs else (x:xs) where

xs=nat2exps (n ‘div‘ 2) (succ x)

set2nat ns = sum (map (2^) ns)

The resulting Encoder is:
nat :: Encoder N

nat = compose nat_set set

2.2 Encoding Multisets

Multisets [13] are unordered collections with repeated elements. Non-decreasing
sequences provide a canonical representation for multisets of natural numbers.

The mapping between finite multisets and primes described in this section
goes back to Gödel’s arithmetic encoding of formulae [12,14]. A factorization of
a natural number is uniquely described as a multiset of primes. We can use the
fact that each prime number is uniquely associated to its position in the infinite
stream of primes to obtain a bijection from multisets of natural numbers to natu-
ral numbers. This mapping is the same as the prime counting function tradition-
ally denoted π(n), which associates to n the number of primes smaller or equal
to n, restricted to primes. It is provided by the function to prime positions
defined in Appendix. The function nat2pmset maps a natural number to the
multiset of prime positions in its factoring1.

nat2pmset 1 = []

nat2pmset n = to_prime_positions n

Clearly the following holds:

Proposition 1. p is prime if and only if its decomposition in a multiset given
by nat2pmset is a singleton.

The function pmset2nat (relying on from in and primes defined in Appendix)
maps back a multiset of positions of primes to the result of the product of the
corresponding primes.

pmset2nat [] = 1

pmset2nat ns = product (map (from_pos_in primes . pred) ns)

The operations nat2pmset and pmset2nat form an isomorphism that, using the
combinator language defined in [9] (and summarized in the Appendix to ensure
1 In contrast to [9], we will assume that our mappings are defined on N

+ = N − {0}
rather than N.

Emulating Primality with Multiset Representations of Natural Numbers 221

that this paper is fully self-contained) provides any-to-any encodings between
various data types. This gives the Encoder pmset for prime encoded multisets
as follows:

pmset :: Encoder [N]

pmset = compose (Iso pmset2nat nat2pmset) nat

working as follows:

∗MPrimes> as pmset nat 2010

[1,2,3,19]

∗MPrimes> as nat pmset [1,2,3,19]

2010

For instance, as the factoring of 2010 is 2 ∗ 3 ∗ 5 ∗ 67, the list [1,2,3,19] contains
the positions of the factors, starting from 1, in the sequence of primes.

3 A Bijection between Finite Multisets and Natural
Numbers

We will now define ranking/unranking functions for multisets i.e. bijective map-
pings to/from natural numbers. While finite multisets and sequences represent-
ing finite functions share a common representation [N], multisets are subject
to the implicit constraint that their ordering is immaterial. This suggest that
a multiset like [4, 4, 1, 3, 3, 3] could be represented canonically as sequence by
first ordering it as [1, 3, 3, 3, 4, 4] and then computing the differences between
consecutive elements i.e. [x0, x1 . . .xi, xi+1 . . .] → [x0, x1 − x0, . . .xi+1 − xi . . .].
This gives [1, 2, 0, 0, 1, 0], with the first element 1 followed by the increments
[2, 0, 0, 1, 0], as implemented by mset2list:

mset2list xs = zipWith (-) (xs) (0:xs)

It is now clear that incremental sums of the numbers in such a sequence return
the original set as implemented by list2mset:

list2mset ns = tail (scanl (+) 0 ns)

Note that canonical representation (i.e. being sorted) is assumed for set and
multisets.

The isomorphism between finite multisets and finite functions (seen as finite
sequences in N) is specified with two bijections mset2list and list2mset.

mset0 :: Encoder [N]

mset0 = Iso mset2list list2mset

The resulting isomorphism mset0 can be applied by using its two components
mset2list and list2mset directly.

222 P. Tarau

∗MPrimes> mset2list [1,3,3,3,4,4]

[1,2,0,0,1,0]

∗MPrimes> list2mset [1,2,0,0,1,0]

[1,3,3,3,4,4]

Equivalently, following [9] (see also summary in Appendix), it can be expressed
generically by using the “as” combinator:

∗MPrimes> as list mset0 [1,3,3,3,4,4]

[1,2,0,0,1,0]

∗MPrimes> as mset0 list [1,2,0,0,1,0]

[1,3,3,3,4,4]

The combinator “as” derives automatically any-to-any encodings, by routing
through the appropriate one-to-one transformations (see [9] and the Appendix).
As a result, we obtain “for free” a bijection from N to finite multisets of elements
of N :

∗MPrimes> as mset0 nat 2011

[0,0,1,1,2,2,2,2,2]

∗MPrimes> as nat mset0 it

2011

We will need one small change to convert this into a mapping on N
+.

nat2mset1 n=map succ (as mset0 nat (pred n))

mset2nat1 ns=succ (as nat mset0 (map pred ns))

mset :: Encoder [N]

mset = compose (Iso mset2nat1 nat2mset1) nat

The resulting mapping, like pmset, now works on N
+.

∗MPrimes> as mset nat 2012

[1,1,2,2,3,3,3,3,3]

∗MPrimes> as nat mset it

2012

∗MPrimes> map (as mset nat) [1..7]

[[],[1],[2],[1,1],[3],[1,2],[2,2]]

Note that these mappings work in linear time and space in the bitsize of the
numbers [15]. On the other hand, as prime number enumeration and factoring
are involved in the mapping from numbers to multisets, the encoding described
in section 2 is intractable for all but small values.

4 Exploring the Analogy between Multiset
Decompositions and Factoring

As natural numbers can be uniquely represented as multisets of prime factors
and, independently, they can also be represented as a multiset with the Encoder
mset (described in section 3), the following question arises naturally:

Can the computationally efficient encoding mset help emulate some properties
of the the difficult to reverse factoring operation?

Emulating Primality with Multiset Representations of Natural Numbers 223

4.1 A Multiset Analog to Multiplication

The first step is to define an analog of the multiplication operation in terms
of the computationally easy multiset encoding mset. Clearly, it makes sense
to take inspiration from the fact that factoring of an ordinary product of two
numbers can be computed by concatenating the multisets of prime factors of
its operands. We use the combinator borrow from and the sorted concatenation
sortedConcat operations (see Appendix) to express this:

mprod = borrow_from mset sortedConcat nat

Proposition 2. 〈N+, mprod, 1〉 is a commutative monoid i.e. mprod is defined
for all pairs of natural numbers and it is associative, commutative and has 1 as
an identity element.

Proof. After rewriting the definition of mprod as the equivalent:

mprod_alt n m = as nat mset

(sortedConcat (as mset nat n) (as mset nat m))

the proposition follows immediately from the associativity of the concatenation
operation and the order independence of the multiset encoding provided by
mset. ��

Here are a few examples showing that mprod has properties similar to ordinary
multiplication:

∗MPrimes> mprod 41 (mprod 33 38) == mprod (mprod 41 33) 38

True

∗MPrimes> mprod 33 46 == mprod 46 33

True

∗MPrimes> mprod 1 712 == 712

True

Given the associativity of mprod, it makes sense to define the product of a list
of numbers as

mproduct ns = foldl mprod 1 ns

Note also that any multiset encoding of natural numbers can be used to define
a similar commutative monoid structure. In the case of pmset we obtain:

pmprod n m = as nat pmset

(sortedConcat (as pmset nat n) (as pmset nat m))

This brings us back to observe that:

Proposition 3. 〈N, pmprod, 1〉 is a commutative monoid i.e. pmprod is defined
for all pairs of natural numbers and it is associative, commutative and has 1 as
an identity element.

224 P. Tarau

Unsurprisingly, this is the case indeed as one can deduce immediately from the
definition of pmprod that, on N

+:

pmprod ≡ ∗ (1)

As obvious as this equivalence is, note that computing * is easy, while computing
pmprod involves factoring which is intractable for large values.

Experimentally (including very large random integers), mprod x y ≤ pmprod
x y, leading us to:

Conjecture 1. mprod x y = x ∗ y if and only if ∃n ≥ 0 such that x = 2n or
y = 2n. Otherwise, mprod x y < x ∗ y.

Fig. 1 shows the self-similar landscape generated by the function (mprod x y)
/ (x*y) for values of x,y in [1..128].

Fig. 1. Ratio between mprod and product

We can derive an exponentiation operation as a repeated application of mprod:

mexp n 1 = n

mexp n k = mprod n (mexp n (k-1))

Let us first observe that the ordinary exponent and our emulated variant corre-
late as follows:

∗MPrimes> map (λx→mexp 2 x) [1..8]

[2,4,8,16,32,64,128,256]

∗MPrimes> map (λx→2^x) [1..8]

[2,4,8,16,32,64,128,256]

Emulating Primality with Multiset Representations of Natural Numbers 225

Fig. 2. Square vs. mexp n 2

∗MPrimes> map (λx→mexp x 2) [1..16]

[1,4,7,16,13,28,31,64,25,52,55,112,61,124,127,256]

∗MPrimes> map (λx→x^2) [1..16]

[1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256]

Fig. 2 shows that values for mexp x 2 follow from below those of the x2 function
and that equality only holds when x is a power of 2.

4.2 Multiset Analogues for div, gcd and lcd

Besides the connection with products, natural mappings worth investigating
are the analogies between multiset intersection and gcd of the corresponding
numbers or between multiset union and the lcm of the corresponding numbers.
Assuming the definitions of multiset operations provided in the Appendix, one
can define:

mgcd :: N → N → N

mgcd = borrow_from mset msetInter nat

mlcm :: N → N → N

mlcm = borrow_from mset msetUnion nat

mdivisible :: N→N→Bool

mdivisible n m = mgcd n m==m

226 P. Tarau

mdiv :: N → N → N

mdiv = borrow_from mset msetDif nat

mexactdiv :: N → N → N

mexactdiv n m | mdivisible n m = mdiv n m

and note that properties similar to usual arithmetic operations hold:

mprod(mgcd x y)(mlcm x y) ≡ mprod x y (2)

mexactdiv(mprod x y) y ≡ x (3)

mexactdiv(mprod x y) x ≡ y (4)

4.3 Multiset Primes

A remarkable algebraic property of N is that the lattice structure defined by the
divisibility relation has an infinite antichain: the set of prime numbers. We will
now provide a simple “emulation” of primality that shares this property.

Definition 1. We say that p > 1 is a multiset-prime (or mprime shortly), if its
decomposition as a multiset is a singleton.

The following holds

Proposition 4. p > 1 is a multiset prime if and only if it is not mdivisible by
any number in [2..p − 1].

Proof. This follows immediately by observing that singleton multisets are the
first to contain a given number as the multiset [a,b] corresponds to a number
strictly larger than the numbers corresponding to multisets [a] and [b]. ��

We are now ready to “emulate” primality in our multiset monoid by defining
is mprime (or alternatively alt is mprime) as a recognizer for multiset primes
and mprimes as a generator of their infinite stream:

is_mprime p | p >1 = 1==length (as mset nat p)

alt_is_mprime p | p>1 =
[]==[n |n←[2..p-1],p ‘mdivisible‘ n]

mprimes = filter is_mprime [2..]

Trying out mprimes gives:

∗MPrimes> take 10 mprimes

[2,3,5,9,17,33,65,129,257,513]

suggesting the following proposition:

Proposition 5. There’s an infinite number of multiset primes and they are
exactly the numbers of the form 2n + 1.

Emulating Primality with Multiset Representations of Natural Numbers 227

Proof. The proof follows immediately by observing that the first value of as
mset nat n that contains k, is n = 2k + 1 and that numbers of that form are
exactly the numbers resulting in singleton multisets. ��
The following example illustrates this property.

∗MPrimes> map (as mset nat) [1..9]

[[],[1],[2],[1,1],[3],[1,2],[2,2],[1,1,1],[4]]

^^^ ^^^ ^^^

2+1 4+1 8+1

We can now implement faster versions of mprimes and is mprime:

mprimes’ = map (λx→2^x+1) [0..]

is_mprime’ p | p>1 = p==
last (takeWhile (λx→x≤p) mprimes’)

4.4 An Analog to the “rad” Function

Definition 2. n is square-free if each prime on its list of factors occurs exactly
once.

The rad(n) function (A007947 in [16]) is defined as follows:

Definition 3. rad(n) is the largest square-free number that divides n

Clearly, rad can be computed by factoring, then trimming multiple occurrences
with the nub library function and finally by multiplying the resulting primes
with product.

rad n = product (nub (to_primes n))

Note that rad can also be computed by trimming multiplicities in a multiset
representation of n i.e. after defining respectively

pfactors n = nub (as pmset nat n)

mfactors n = nub (as mset nat n)

we can define prad ≡ rad and its multiset equivalent mrad:

prad n = as nat pmset (pfactors n)

mrad n = as nat mset (mfactors n)

∗MPrimes> map rad [2..16]

[2,3,2,5,6,7,2,3,10,11,6,13,14,15,2]

∗MPrimes> map prad [2..16]

[2,3,2,5,6,7,2,3,10,11,6,13,14,15,2]

∗MPrimes> map mrad [2..16]

[2,3,2,5,6,3,2,9,10,11,6,5,6,3,2]

A comparison of the plots of the two functions (Fig. 3) shows that rad’s chaotic
behavior corresponds to a more regular, self-similar behavior in the case of mrad.

One can further explore if this “emulation” of the rad function can bring some
light on the well known connections between the rad function and the famous
abc conjecture [17].

228 P. Tarau

Fig. 3. rad(n) and mrad(n) on [2..27 − 1]

4.5 Emulating the Möbius and Mertens Functions

The Möbius function separates square free primes with even and odd number of
factors from numbers that are not square free.

μ(n) =

⎧⎨
⎩

1 if n = 1
0 if p2 divides n for some prime p
(−1)r if n has r distinct prime factors

A generalization that parameterizes it by the type t of a multiset encoding of
natural numbers is given as follows.

Emulating Primality with Multiset Representations of Natural Numbers 229

mobius t n = if nub ns == ns then f ns else 0 where

ns = as t nat n

f ns = if even (genericLength ns) then 1 else -1

For t=pmset one obtains the instance corresponding to primes (sequence A008683
in [16]) while t=mset provides an instance corresponding to mprimes.

∗MPrimes> map (mobius pmset) [1..16]

[1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0]

∗MPrimes> map (mobius mset) [1..16]

[1,-1,-1,0,-1,1,0,0,-1,1,1,0,0,0,0,0]

Surprisingly this corresponds to the apparently identical sequences A132971 and
A085357 in [16], related to enumeration of ternary trees and infinite Fibonacci
words. We postpone exploring this connections for now, and define, in a similar
way a generalization of the Mertens function (A002321 in [16])

M(x) =
∑
n≤x

μ(n)

that accumulates values of the Möbius function up to n:

mertens t n = sum (map (mobius t) [1..n])

working as follows

∗MPrimes> map (mertens pmset) [1..16]

[1,0,-1,-1,-2,-1,-2,-2,-2,-1,-2,-2,-3,-2,-1,-1]

∗MPrimes> map (mertens mset) [1..16]

[1,0,-1,-1,-2,-1,-1,-1,-2,-1,0,0,0,0,0,0]

The Mertens conjecture (disproved by Odlyzko and te Riele, [18]) states that

|M(n)| <
√

n, for n > 1

After defining

mertens2 t n = m^2 where m = mertens t n

counterex_mertens t m = [n |n←[2..m],mertens2 t n ≥ n^2]

we can show that it holds for small values for both t=mset and t=pmset

∗MPrimes> counterex_mertens pmset 1000

[]

∗MPrimes> counterex_mertens mset 1000

[]

Fig. 4 shows the more regular, fractal-like behavior of the Mertens function
derived from mset in contrast with the more chaotic and strongly oscillating
behavior of the original Mertens function derived from pmset.

230 P. Tarau

Fig. 4. Mertens functions for mset and pmset

A connection between the Riemann Hypothesis, originating from a represen-
tation of the inverse of the Riemann ζ function as

1
ζ(s)

=
∞∑

n=1

μ(n)
ns

has lead to an equivalent elementary formulation (attributed to Littlewood) of
the Riemann Hypothesis [6,19] as

M(x) = O(x1/2+ε) ∀ε > 0 (5)

By instantiating this statement to a Mertens function parameterized by a sim-
ple multiset representation like mset one obtains an analogue of the Riemann
Hypothesis in much simpler and possibly more tractable context.

Conjecture 2. The inequality 5 holds for the the instance of M(x) derived from
mset i.e. computed by the function mertens mset.

This leads to speculating that, for instance, connecting values of ε between the
emulation (derived from mset) and the original Martens function (derived from
pmset) could provide interesting insight on the Riemann Hypothesis as such.

After defining:

mlt k m = [n |n←[k..m],mertens2 mset n< mertens2 pmset n]

meq k m = [n |n←[k..m],mertens2 mset n==mertens2 pmset n]

mgt k m = [n |n←[k..m],mertens2 mset n>mertens2 pmset n]

Emulating Primality with Multiset Representations of Natural Numbers 231

experiments indicate that bounds of the mset function might be dominated by
bounds of the pmset function for large values of k < m.

∗MPrimes> length (mlt 1000 1100)

95

∗MPrimes> length (meq 1000 1100)

6

∗MPrimes> length (mgt 1000 1100)

0

∗MPrimes> length (mgt 2000 2100)

2

∗MPrimes> length (mgt 3000 3100)

2

5 Deriving Automorphisms of N

Definition 4. An automorphism is an isomorphism for which the source and
target are the same.

A nice property of automorphisms is that, given the isomorphisms provided by
the data transformation framework [9], they propagate from one data type to
another. In our case, the multiset representations provided by pmset and mset
induce two automorphisms on 〈N, ∗, 1〉
auto_m2p 0 = 0

auto_m2p n = as nat pmset (as mset nat n)

auto_p2m 0 = 0

auto_p2m n = as nat mset (as pmset nat n)

working as follows:

∗MPrimes> map auto_m2p [0..31]

[0,1,2,3,4,5,6,9,8,7,10,15,12,25,18,27,16,11,14,

21,20,35,30,45,24,49,50,75,36,125,54,81]

∗MPrimes> map auto_p2m [0..31]

[0,1,2,3,4,5,6,9,8,7,10,17,12,33,18,11,16,65,14,

129,20,19,34,257,24,13,66,15,36,513,22,1025]

After extending mprod to mimic pmprod (i.e. *) w.r.t. its behavior on 0

mprod’ 0 _ = 0

mprod’ _ 0 = 0

mprod’ x y | x>0 && y>0= mprod x y

note that, as expected, one can define functors that transport mprod’ into (*)
and transport (*) into mprod’ as follows:

emulated_mprod’ x y =
auto_p2m ((auto_m2p x) ∗ (auto_m2p y))

232 P. Tarau

emulated_prod x y =
auto_m2p (mprod (auto_p2m x) (auto_p2m y))

Note that emulated mprod’ x y works as if defined by mprod’ x y and
emulated prod x y works as if defined by x*y.

∗MPrimes> mprod’ 20 30

376

∗MPrimes> emulated_mprod’ 20 30

376

∗MPrimes> 20∗30
600

∗MPrimes> emulated_prod 20 30

600

Fig. 5 shows the quickly amplifying reshuffling of the sequence [0..] generated by
the functions auto m2pfor values in [0..26 − 1].

An experimental comparison is between the values for which auto m2p is
strictly larger or smaller than auto p2m:

lt_mp n = length [x |x←[0..n],auto_m2p x < auto_p2m x]

eq_mp n = length [x |x←[0..n],auto_m2p x == auto_p2m x]

gt_mp n = length [x |x←[0..n],auto_m2p x > auto_p2m x]

indicates a shift from eq mp for small numbers to lt mp for larger ones.

∗MPrimes> map eq_mp [0..15]

[1,2,3,4,5,6,7,8,9,10,11,11,12,12,13,13]

∗MPrimes> map gt_mp [0..15]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

∗MPrimes> map lt_mp [0..15]

[0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2]

∗MPrimes> map eq_mp [1000..1015]

[43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43]

∗MPrimes> map gt_mp [1000..1015]

[321,322,322,323,323,323,323,324,325,325,325,325,326,326,327,328]

∗MPrimes> map lt_mp [1000..1015]

[637,637,638,638,639,640,641,641,641,642,643,644,644,645,645,645]

∗MPrimes> map eq_mp [2000..2015]

[48,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48]

∗MPrimes> map gt_mp [2000..2015]

[590,591,592,592,592,592,593,593,593,594,594,594,594,595,596,597]

∗MPrimes> map lt_mp [2000..2015]

[1363,... 1364,1365,1366,1366,1367,1368,1368,1369,1370,1371,...,1371]

An interesting open problem related to these automorphisms is to prove or dis-
prove that the permutations of N induced by auto m2p and auto p2m cannot
contain infinite cycles.

Emulating Primality with Multiset Representations of Natural Numbers 233

Fig. 5. The automorphisms auto m2p and auto p2m

6 Related Work

There’s a huge amount of work on prime numbers and related aspects of multi-
plicative and additive number theory. Studies of prime number distribution and
various probabilistic and information theoretic aspects also abound.

While we have not made use of any significantly advanced facts about prime
numbers, the following references circumscribe the main topics to which our
experiments can be connected [19,8,2,6,5].

Natural Number encodings of various set-theoretic constructs have triggered
the interest of researchers in fields ranging from Axiomatic Set Theory and
Foundations of Logic to Complexity Theory and Combinatorics [20,21,22]. In
combinatorics they show up as Ranking functions [23] that can be traced back
to Gödel numberings [12,14] associated to formulae. Together with their inverse
unranking functions they are also used in combinatorial generation algorithms
for various data types [24].

This paper relies on the compositional and extensible data transformation
framework (summarized in the Appendix) that connects most of the fundamental
data types used in computer science with a groupoid of isomorphisms. A large
(100+ pages) unpublished draft [25], provides encodings between more than 60
different data types. The basic idea of the framework is described in [10] and
some of its applications to computational mathematics in [9]. A compact Prolog
implementation of the framework with focus on mapping between complex data
structures is described in [11].

7 Conclusion and Future Work

We have explored some computational analogies between multisets, natural num-
ber encodings and prime numbers in a framework for experimental mathematics
implemented as a literate Haskell program.

This has resulted in a methodology for emulating more difficult number the-
oretic phenomena through simpler isomorphic representations. In a way this

234 P. Tarau

parallels abstract interpretation [26] by using a simpler domain to approximate
interesting properties in a more complex one.

We are in the process of lifting our Haskell implementation to a generic type
class based model, along the lines of [15], which allows experimenting with in-
stances parameterized by arbitrary bijections between N and [N]. Of special
interest in this direction are multiset decompositions of a natural number in
O(log(log(n))) factors, similar to the ω(x) and Ω(x) functions counting the dis-
tinct and non-distinct prime factors of x, to mimic more closely the distribution
of primes. Future work will also focus on finding a matching additive operation
for the multiset induced commutative monoid.

Acknowledgment. We thank NSF (research grant 1018172) for support.

References

1. Cégielski, P., Richard, D., Vsemirnov, M.: On the additive theory of prime numbers.
Fundam. Inform. 81(1-3), 83–96 (2007)

2. Crandall, R., Pomerance, C.: Prime Numbers–a Computational Approach, 2nd
edn. Springer, New York (2005)

3. Riemann, B.: Ueber die anzahl der primzahlen unter einer gegebenen grösse.
Monatsberichte der Berliner Akademie (November 1859)

4. Miller, G.L.: Riemann’s hypothesis and tests for primality. In: STOC, pp. 234–239.
ACM, New York (1975)

5. Lagarias, J.C.: An Elementary Problem Equivalent to the Riemann Hypothesis.
The American Mathematical Monthly 109(6), 534–543 (2002)

6. Conrey, B.: The Riemann Hypothesis. Not. Amer. Math. Soc. 60, 341–353 (2003)
7. Chaitin, G.: Thoughts on the riemann hypothesis. Math. Intelligencer 26(1), 4–7

(2004)
8. Pippenger, N.: The average amount of information lost in multiplication. IEEE

Transactions on Information Theory 51(2), 684–687 (2005)
9. Tarau, P.: A Groupoid of Isomorphic Data Transformations. In: Carette, J., Dixon,

L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS,
vol. 5625, pp. 170–185. Springer, Heidelberg (2009)

10. Tarau, P.: Isomorphisms, Hylomorphisms and Hereditarily Finite Data Types in
Haskell. In: Proceedings of ACM SAC 2009, pp. 1898–1903. ACM, New York (2009)

11. Tarau, P.: An Embedded Declarative Data Transformation Language. In: Pro-
ceedings of 11th International ACM SIGPLAN Symposium PPDP 2009, Coimbra,
Portugal, pp. 171–182. ACM, New York (2009)

12. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

13. Singh, D., Ibrahim, A.M., Yohanna, T., Singh, J.N.: An overview of the applications
of multisets. Novi Sad J. Math 52(2), 73–92 (2007)

14. Hartmanis, J., Baker, T.P.: On Simple Goedel Numberings and Translations. In:
Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 301–316. Springer, Heidelberg
(1974)

15. Tarau, P.: Declarative modeling of finite mathematics. In: PPDP 2010: Proceedings
of the 12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming, pp. 131–142. ACM, New York (2010)

Emulating Primality with Multiset Representations of Natural Numbers 235

16. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2010), published
electronically at http://www.research.att.com/~njas/sequences

17. Granville, A.: ABC allows us to count squarefrees. International Mathematics Re-
search Notices (19), 991 (1998)

18. Odlyzko, A.M., Te Riele, A.M., Disproof, H.J.J.: of the Mertens conjecture. J.
Reine Angew. Math. 357, 138–160 (1985)

19. Derbyshire, J.: Prime Obsession: Bernhard Riemann and the Greatest Unsolved
Problem in Mathematics. Penguin, New York (2004)

20. Kaye, R., Wong, T.L.: On Interpretations of Arithmetic and Set Theory. Notre
Dame J. Formal Logic 48(4), 497–510 (2007)

21. Avigad, J.: The Combinatorics of Propositional Provability. In: ASL Winter Meet-
ing, San Diego (January 1997)

22. Kirby, L.: Addition and multiplication of sets. Math. Log. Q. 53(1), 52–65 (2007)
23. Mart́ınez, C., Molinero, X.: Generic algorithms for the generation of combinatorial

objects. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 572–581.
Springer, Heidelberg (2003)

24. Ruskey, F., Proskurowski, A.: Generating binary trees by transpositions. J. Algo-
rithms 11, 68–84 (1990)

25. Tarau, P.: Declarative Combinatorics: Isomorphisms, Hylomorphisms and Hered-
itarily Finite Data Types in Haskell, p. 150 (January 2009), Unpublished draft,
http://arXiv.org/abs/0808.2953, updated version at http://logic.cse.unt.

edu/tarau/research/2010/ISO.pdf

26. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
Symp. Principles of Programming Languages, pp. 238–278 (1977)

http://www.research.att.com/~njas/sequences
http://arXiv.org/abs/0808.2953
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf

236 P. Tarau

Appendix

An Embedded Data Transformation Language

We will describe briefly the embedded data transformation language used in this
paper as a set of operations on a groupoid of isomorphisms. We refer to ([9,25])
for details.

The Groupoid of Isomorphisms. We implement an isomorphism between
two objects X and Y as a Haskell data type encapsulating a bijection f and its
inverse g.

X Y
...

f = g−1

...

g = f−1

We will call the from function the first component (a section in category theory
parlance) and the to function the second component (a retraction) defining the
isomorphism. The isomorphisms are naturally organized as a groupoid.

data Iso a b = Iso (a→b) (b→a)

from (Iso f _) = f

to (Iso _ g) = g

compose :: Iso a b → Iso b c → Iso a c

compose (Iso f g) (Iso f’ g’) = Iso (f’ . f) (g . g’)

itself = Iso id id

invert (Iso f g) = Iso g f

Assuming that for any pair of type Iso a b, f ◦ g = idb and g ◦ f = ida, we can
now formulate laws about these isomorphisms.

The data type Iso has a groupoid structure, i.e. the compose operation, when
defined, is associative, itself acts as an identity element and invert computes the
inverse of an isomorphism.

The Hub: Finite Sequences of Natural Numbers. To avoid defining n(n−1)
2

isomorphisms between n objects, we choose a Hub object to/from which we will
actually implement isomorphisms.

Choosing a Hub object is somewhat arbitrary, but it makes sense to pick a
representation that is relatively easy convertible to various others and scalable
to accommodate large objects up to the runtime system’s actual memory limits.

We will choose as our Hub object finite sequences of natural numbers. They
can be seen as finite functions from an initial segment of N, say [0..n], to N.
We will represent them as lists i.e. their Haskell type is [N].

Emulating Primality with Multiset Representations of Natural Numbers 237

type N = Integer

type Hub = [N]

We can now define an Encoder as an isomorphism connecting an object to Hub

type Encoder a = Iso a Hub

together with the combinators as providing an embedded transformation language
for routing isomorphisms through two Encoders.

as :: Encoder a → Encoder b → b → a

as that this x = g x where

Iso _ g = compose that (invert this)

The combinator “as” adds a convenient syntax such that converters between A
and B can be designed as:

a2b x = as B A x

b2a x = as A B x

Hub

A B

..............
.............
.............
.............
..............
.............
.............
.............
..............
.............
.............
......................
............

b

.............
.............

.............
............

.............
............

.............
.............

.............
............

.............
..............................

a−1

..
..
............

b−1

..
..

a

...a2b = as B A

...
b2a = as A B

A particularly useful combinator that transports binary operations from an
Encoder to another, borrow from, can be defined as follows:

borrow_from :: Encoder a → (a → a → a) →
Encoder b → (b → b → b)

borrow_from lender op borrower x y = as borrower lender

(op (as lender borrower x) (as lender borrower y))

Given that [N] has been chosen as the root, we will define our finite function
data type list simply as the identity isomorphism on sequences in [N].

list :: Encoder [N]

list = itself

Primes

The following code implements factoring function to primes a primality test
(is prime) and a generator for the infinite stream of primes.

primes = 2 : filter is_prime [3,5..]

is_prime p = [p]==to_primes p

to_primes n |n>1 = to_factors n p ps where (p:ps) = primes

238 P. Tarau

to_factors n p ps | p∗p > n = [n]

to_factors n p ps | 0==n ‘mod‘ p =
p : to_factors (n ‘div‘ p) p ps

to_factors n p ps@(hd:tl) = to_factors n hd tl

to_prime_positions n =
map (succ . (to_pos_in (h:ps))) qs where

(h:ps)=genericTake n primes

qs=to_factors n h ps

to_pos_in xs x = fromIntegral i where

Just i=elemIndex x xs

from_pos_in xs n = xs !! (fromIntegral n)

Multiset Operations

The following functions provide multiset analogues of the usual set operations,
under the assumption that multisets are represented as non-decreasing sequences.

msetInter, msetDif, msetSymDif, msetUnion ::

(Ord a) ⇒ [a] → [a] → [a]

msetInter [] _ = []

msetInter _ [] = []

msetInter (x:xs) (y:ys) | x==y = x:msetInter xs ys

msetInter (x:xs) (y:ys) | x<y = msetInter xs (y:ys)

msetInter (x:xs) (y:ys) | x>y = msetInter (x:xs) ys

msetDif [] _ = []

msetDif xs [] = xs

msetDif (x:xs) (y:ys) | x==y = msetDif xs ys

msetDif (x:xs) (y:ys) | x<y = x:msetDif xs (y:ys)

msetDif (x:xs) (y:ys) | x>y = msetDif (x:xs) ys

msetSymDif xs ys =
sortedConcat (msetDif xs ys) (msetDif ys xs)

msetUnion xs ys =
sortedConcat (msetSymDif xs ys) (msetInter xs ys)

sortedConcat xs ys = sort (xs ++ ys)

Formal Verification of a Lock-Free Stack

with Hazard Pointers

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg

{tofan,schellhorn,reif}@informatik.uni-augsburg.de

Abstract. A significant problem of lock-free concurrent data structures
in an environment without garbage collection is to ensure safe memory
reclamation of objects that are removed from the data structure. An
elegant solution to this problem is Michael’s hazard pointers method.
The formal verification of concurrent algorithms with hazard pointers
is yet challenging. This work presents a mechanized proof of the major
correctness and progress aspects of a lock-free stack with hazard pointers.

1 Introduction

Non-blocking implementations of concurrent data structures avoid major prob-
lems associated with blocking, such as convoying, deadlocks or priority inversion.
In particular, lock-free [1] algorithms guarantee termination of some operation
in a finite number of steps, even when individual operations are arbitrarily de-
layed or fail. Their main correctness property linearizability [2], ensures that each
operation appears to take effect instantly at one step (the linearization point)
between its invocation and response. Thus, from an external point of view, a
linearizable operation executes atomically and can be used in a modular way.
In addition, performance results show that lock-free implementations can out-
perform their lock-based counterparts significantly in the presence of contention
or multiprogramming. These properties are even more important as multi-core
architectures have become mainstream.

The advantages of lock-free implementations come at the price of an increased
complexity to develop and verify them. These data structures are often used in
programming environments without support for garbage collection (GC). There,
the problem of safe memory reclamation of objects that have been removed
from the data structure imposes significant additional challenges on design and
verification. Memory occupied by a removed object can not be simply deallocated
(e.g., using a free library call in C / C++) as other processes typically still
access this object in their operations. The possible concurrent reuse of locations
introduces a further fundamental problem of lock-free algorithms, the ABA-
problem [3]. It becomes manifest in subtle errors such as wrong return values or
data structure corruption, as we explain in Section 3.1 for a lock-free stack.

Several memory reclamation schemes that compensate the absence of GC ex-
ist. Hazard pointers [4] enable safe memory reclamation by extending concurrent

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 239–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 B. Tofan, G. Schellhorn, and W. Reif

algorithms with their own local, non-blocking garbage collection. The reclama-
tion technique is applicable to a class of important concurrent algorithms. This
work analyzes the central properties of the hazard pointers method and then ap-
plies the results to verify a well-known lock-free stack that uses hazard pointers.
Proving safe memory reclamation and ABA-avoidance for such a stack has been
declared a challenge for program verification [5].

Our main contribution is an intuitive verification that exploits the central
properties of Michael’s reclamation scheme. The proof is mechanized in the in-
teractive theorem prover KIV [6] and addresses all major aspects: memory-safety,
ABA-prevention as well as preservation of linearizability and lock-freedom of the
stack with hazard pointers. We apply temporal logic and local rely-guarantee
reasoning, but use neither complex history variables nor reasoning about the
temporal past, as in other approaches (cf. Section 7). The proofs reveal that the
correctness of the reclamation scheme can be expressed in terms of two contend-
ing processes. A further novel insight is that its relation to GC can be exploited
to reuse central correctness arguments under GC.

To keep the presentation readable, we do not detail every formal aspect. In
particular, the verification and an in-depth description of the applied decompo-
sition theory is omitted. Further details can be found in [7]; a complete presen-
tation that includes all KIV-proofs is available online [8].

The remainder of this paper is organized as follows: Section 2 gives an intro-
duction to hazard pointers. Section 3 specifies the main case study of this paper,
the extended stack algorithm. Section 4 briefly introduces the verification frame-
work that forms the logical base for the applied decomposition theory, which is
described in Section 5. Section 6 shows four central properties of the hazard
pointers method and their specialization to formal verification conditions in the
case study. Section 7 presents related work and a comparison. Finally, Section 8
concludes with a summary and discussion of the main results.

2 The Hazard Pointers Method

Figure 1 illustrates hazard pointers: (1) processes p, q, . . . can concurrently al-
locate and insert new objects NEW to a lock-free data structure LDS . Every
process p collects the memory of objects r that it removes from LDS in a local
pool of retired locations RLp. These locations are candidates for deallocation.
However, the contending use of these retired locations must be considered first.

(2) shows that each process is associated with a fixed (small) number of multi-
reader single-writer shared pointers, so called hazard pointers. All hazard point-
ers of all processes are contained in a hazard pointer record HPR. By setting
one of its hazard pointers to a location r , process p signals other contending
processes not to deallocate this location. Crucially, to ensure that this signal is
indeed considered, p subsequently checks whether r is still part of LDS . Only
if this check – called hazard pointer validation – succeeds, p enters a hazardous
code region where it accesses r .

To deallocate memory, a process p executes a scan operation in two phases
(3) and (4). In (3), it consecutively collects all hazard pointers of all processes in

Formal Verification of a Lock-Free Stack with Hazard Pointers 241

Environment without GC

LDS

NEW

r

HPR

LDS

Scan

−−
HPR

++++
r

r

p

(1) (2)

(4)(3)

allocp, q

retirep
RLp

insertp, q

setp

remvp valid
p

PLp

RLp

PLp

deallocp

Fig. 1. Michael’s hazard pointers method

a local pointer list PLp by traversing HPR. In (4), all retired memory locations
r that were not found during this traversal (r ∈ RLp − PLp), are freed to the
environment’s memory management system for arbitrary reuse.

A properly extended lock-free algorithm with hazard pointers has the follow-
ing central correctness property:

A validated hazard pointer is not concurrently freed. (1)

This is because at the time of its successful validation, a hazard pointer is in
LDS and hence in no retired list. Consequently, no currently running scan will
deallocate it. After its successful validation, a hazard pointer might be concur-
rently retired, while still being used. Yet it is not freed, since the retiring process
collects the pointer during its traversal of HPR. (We intuitively formalize this
central argument in Section 6.)

3 A Lock-Free Stack with Hazard Pointers

3.1 The Lock-Free Stack

Instead of using locks, lock-free algorithms typically utilize atomic synchroniza-
tion primitives such as the widely supported single-word CAS (Compare-And-
Swap) instruction. A CAS compares a shared value SV with an older local copy
of it Old, called snapshot. If these values are equal, then SV is updated to a new
value New and true is returned; otherwise false is returned.

CAS(Old ,New ; SV , Succ) {
if* SV = Old then {SV := New , Succ := true} else Succ := false}

242 B. Tofan, G. Schellhorn, and W. Reif

Throughout this work, we use formal KIV-specifications to describe programs
and thereby explain the introduced syntax. In the specification of CAS, the semi-
colon separates input from in-output parameters; the comma indicates parallel
assignments and in if* evaluating the if-condition requires no extra step.

Figure 2 illustrates the lock-free stack which provides concurrent push and pop
operations. The shaded code in pop, the scan and reset operations can be ignored
for now. The algorithm is a prime example of a lock-free data structure, taken
from Michael [4] and attributed to Treiber [3]. The shared stack is a singly linked
list of cells – pairs of values and locations with .val and .nxt selector functions – in
the application’s memory heap H . The heap is a partial function from locations
r : ref (with null ∈ ref) to cells with standard operations, e.g., H [r , ?] is allocation
with arbitrary content “?”, r ∈ H tests if r is allocated, H [r] is lookup and H − r
deallocation. A shared variable Top points to the top cell of the stack.

Whenever a process executes a push, it first allocates a new cell UNew (lines
U3 / U4 execute in one step) and initializes it with input value In. Then it
repeatedly tries to CAS the shared top to point to this new cell (lines U6 –
9). A pop reads the shared top (if this snapshot is null, the special value empty
is returned) and locally stores the snapshot’s next reference which becomes the
target of the subsequent CAS. If it succeeds, the top cell is removed from the
stack and its value is returned. Variables UNew , USucc, OTop and OSucc are
local variables of “pUsh” resp. “pOp”. They are defined as in-output parameters
instead of using let, to allow us to reason about them.

Simply deallocating a removed cell at the end of pop can cause contending
pop-processes to dereference an illegal snapshot pointer. If the reference is con-
currently reused, an ABA-problem can occur: suppose that a pop-process p takes
a snapshot of the top pointer when the stack consists of exactly one cell at lo-
cation A. Process p is delayed after setting ONxt to null in line O12 for another
process q, which executes a successful pop, freeing A. Subsequently, q executes
two successful push operations, thereby allocating reference B and then again A.
Then p is rescheduled and its CAS operation in line O13 erroneously succeeds,
violating the semantics of pop.

3.2 The Extended Stack

Applying the hazard pointers technique requires no modification of the push
operation. The pop operation requires one hazard pointer to cover the hazardous
usage of the snapshot pointer OTop in lines O12 and O13. This hazard pointer is
atomically set in line O9, using the shared hazard pointer record HPR : N → ref
and the identifier Id : N of the current process. In line O10, before any hazardous
usage, the hazard pointer is validated. Crucially, only after this test succeeds, it
can be guaranteed that the snapshot cell is not concurrently freed and possibly
reused. An additional boolean flag Hazardpc marks the hazardous code region
in which the validated hazard pointer equals (covers) the snapshot OTop. This
simple auxiliary variable is required in the verification only, since our logic does
not use program counters. In line O16, a location that has been removed from
the stack is added to a local list of retired locations RL.

Formal Verification of a Lock-Free Stack with Hazard Pointers 243

U1
U2
U3
U4
U5
U6
U7
U8
U9

Push(In; UNew , USucc,Top,H) {
let UTop = ? in {
choose r with (r �= null ∧ r /∈ H) in {
UNew := r , H := H [r , ?], USucc := false;
H [UNew].val := In;
while ¬ USucc do {
UTop := Top;
H [UNew].nxt := UTop;
CAS(UTop,UNew ;Top,USucc)}}}}

O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15
O16
O17

Pop(; Id ,Hazardpc ,OTop,OSucc,RL,Top,H ,HPR,Out) {
let ONxt = ?,Lo = empty in {

OSucc := false;
while ¬ OSucc do {
OTop := Top,Hazardpc := false;
if OTop = null then {
OSucc := true

} else {
HPR(Id) := OTop;
if* OTop = Top then {

Hazardpc := true;
ONxt := H [OTop].nxt;
CAS(OTop,ONxt ;Top,OSucc)}}}

if OTop �= null then {
Lo := H [OTop].val′;
RL := OTop + RL,Hazardpc := false}

Out := Lo}}

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

Scan(; Scan,BefIncpc ,Lid ,Lhp,PL,RL, H ,HPR) {
PL := [], Scan := true;
while Lid ≤ MAXID do {

Lhp := HPR(Lid),BefIncpc := true;
if Lhp �= null then {
PL := Lhp + PL}

Lid := Lid + 1, BefIncpc := false};
while Scan do {
choose r with (r ∈ RL − PL) in {
RL := RL − r ,H := H − r}

ifnone Scan := false,Lid := 0}}

R1 Reset(; Id ,HPR) {HPR(Id) := null}

Fig. 2. A lock-free data-stack with hazard pointers

Operation Scan, characterized by boolean flag Scan, frees retired locations
that are not concurrently used. In its first loop, a scan sequentially traverses the
hazard pointer record, reading each hazard pointer and collecting it in a further
local pointer list PL, where constant MAXID denotes the greatest occuring pro-
cess identifier. This includes atomically taking a snapshot Lhp of the HPR entry

244 B. Tofan, G. Schellhorn, and W. Reif

at process index Lid (BefIncpc is a further simple program counter substitute
used in the proofs). In the second loop, retired memory locations that are not
in PL are consecutively deallocated.

To simplify verification while maintaining the core ideas of Michael’s algo-
rithm, our version of the extended stack uses several algebraic data structures.
In particular, we use a function to model the hazard pointer record, while Michael
proposes a singly linked heap list. In the second loop of the scan operation, the
choose summarizes some merely local steps that are required to determine the
deallocable references RL−PL. This avoids some standard sequential reasoning.
Furthermore, we slightly generalize Michael’s version, by allowing a scan to be
performed arbitrarily between stack operations, while Michael calls a scan at the
end of pop, depending on the current number of retired locations. As a further
minor extension, we consider the possible reset of a hazard pointer Reset between
executions of push, pop or scan, while the original code does not explicitly reset.

4 The Verification Framework

4.1 Interval Temporal Logic

Interval temporal logic (ITL) [9] in KIV is based on algebras and intervals.
Algebras define a semantic for the signature and intervals (executions) are finite
or infinite sequences of states which evolve from program execution. A state maps
variables to values in the algebra. In contrast to standard ITL, the logic explicitly
includes the behavior of the program’s environment in each step. Similar to
“reactive sequences” [10], in an interval I = [I(0), I ′(0), I(1), I ′(1), . . .] the first
transition from state I(0) to the primed state I ′(0) is a program transition,
whereas the next transition from state I ′(0) to I(1) is a transition of a program’s
environment. In this manner program and environment transitions alternate.
A variable V is evaluated over I(0), whereas its primed resp. double primed
version V ′ resp. V ′′ is evaluated over I ′(0) and I(1) respectively. E.g., formula
V = V ′ denotes that variable V is changed in the first program transition,
whereas V ′ = V ′′ states that V is not changed in the first environment transition.
The last state of an interval is characterized by the atomic formula last.

The logic uses standard temporal operators to express future properties of
an interval (�, �, • , until). In rely-guarantee proofs, formulas R(V ′, V ′′) +−→
G(V, V ′) are of particular interest, where G resp. R are guarantee resp. rely con-
ditions and the “sustains” operator +−→ ensures that the guarantee is sustained
by a program, as long as its environment has not previously violated the rely
(cf. Section 5).

R(V ′, V ′′) +−→ G(V, V ′) :↔ ¬ (R(V ′, V ′′)until¬ G(V, V ′))

The programming language provides the common sequential constructs, a
construct for weak-fair and one for non-fair interleaving. Note that arbitrary
programs α and formulas can be mixed, since they both evaluate to true or false
over an algebra and an interval I. In particular, α evaluates to true in I iff I is
an execution of α interleaved with arbitrary environment steps.

Formal Verification of a Lock-Free Stack with Hazard Pointers 245

4.2 Symbolic Execution and Induction

The verification framework is based on the sequent calculus. A sequent is an
assertion of the form Γ � Δ, where Γ, Δ are lists of formulas. It states that
the conjunction of all formulas in antecedent Γ implies the disjunction of all
formulas in succedent Δ. Sequents are implicitly universally closed. A typical
sequent (proof obligation) about concurrent programs has the form α, E, F � ϕ
where a program α executes the program steps in an environment constrained
by temporal formula E. Predicate logic formula F describes the current state of
an α-execution and ϕ denotes the temporal property of interest. A sequent of
the aforementioned form is:

(M := M + 1; β), M = 1 � M ′ = M ′′ +−→ M ′ > M (2)

The executed program is the sequential composition M := M+1; β, environment
behavior is unrestricted (E = true omitted), the current state maps M to 1 and
the succedent claims that the program increments M as long as its environment
leaves M unchanged (M ′ = M ′′ +−→ M ′ > M).

Symbolic Execution. Proving sequents that contain temporal assertions is
done by symbolically stepping forward to the next states of an interval, calculat-
ing strongest post conditions for each program step, possibly weakened accord-
ing to environment assumptions. Thus the calculus is rather similar to classic
symbolic execution of sequential programs [11], once environment behavior is
suitably restricted.

A step computes by applying unwinding rules to both programs and formu-
las. A program is unwound by calculating the effect of its first statement and
discarding it; the sustains operator is unwound using the rule R

+−→ G ≡
G ∧ (R → • (R +−→ G)). Applying it on the succedent of (2) yields M ′ >

M ∧ (M ′ = M ′′ → • (M ′ = M ′′ +−→ M ′ > M)). That is, we must prove
that the counter is incremented by the (first) program transition as a first sub-
goal (M ′ > M). If the following environment transition leaves M unchanged
(M ′ = M ′′), then the sustains formula must further hold in the rest of the
interval (•). Thus, we get a second subgoal when proving (2):

β, M = 2 � M ′ = M ′′ +−→ M ′ > M

Induction. Well-founded induction is used to deal with loops. For infinite in-
tervals a term for well-founded induction can often be derived from a known
liveness property � ϕ as the number of steps N until ϕ holds.

� ϕ ↔ ∃ N. (N = N ′′ + 1) until ϕ.

This equivalence states that ϕ is eventually true iff there is a natural number N
which can be decremented until ϕ becomes true. Note that N is a fresh variable
and N = N ′′ + 1 is equivalent to N ′′ = N − 1 ∧ N > 0.

An induction term can be also extracted from a sustains formula.

R
+−→ G ↔ ∀ B. (� B) → ((R ∧ ¬ B)

+−→ G)

246 B. Tofan, G. Schellhorn, and W. Reif

Thus, the proof of a sustains formula on an infinite interval I can be carried
out by induction over the length of an arbitrary finite I-prefix, which ends when
the fresh boolean variable B is true for the first time. Further details on the
underlying calculus can be found, e.g., in [12,13].

5 The System Model and the Decomposition Theory

This section briefly describes the decomposition theory which we have applied
to verify the case study. It contains several improvements over the theory used
in [14,15], which are independent from verifying the stack. Their description is
not in the scope of this paper (cf. [7] for more details).

The Concurrent System Model. The system model Spawn(n; . . .) recur-
sively spawns n + 1 processes (n : N) to execute in parallel. Each process exe-
cutes finitely or infinitely often operations COP(In;LS ,S ,Out) on shared data
structures. Variables In resp. Out are thereby used to insert resp. return values.
Parameter LS : lstate is the exclusive local state of the invoking process (with
process identifier LS .id), whereas S : sstate is the shared state.

In the stack case study, COP is instantiated with the non-deterministic choice
between one of the operations that each legal process, having an identifier ≤
MAXID, can concurrently execute. Illegal processes just skip.

COP(In;LS ,S ,Out) {
if LS .id ≤ MAXID then {

Push(In;LS , S) ∨ Pop(; LS ,S ,Out) ∨ Scan(; LS ,S) ∨ Reset(;LS ,S)}}
The shared state S consists of the shared variables Top, H , HPR, whereas the
local state LS is the tuple of all local variables UNew , USucc, OTop, OSucc, Id ,
Hazardpc , Scan, BefIncpc , Lid , Lhp, PL, and RL.

Local Rely-Guarantee Reasoning. To avoid reasoning about interleaved ex-
ecutions of Spawn, we use a local version of rely-guarantee reasoning [16] that is
embedded in the temporal logic framework. Different from the original approach
[16], it does not enforce reasoning over the whole system state with n + 1 local
states. Specifications instead consider two processes p resp. q with local states
LS resp. LSQ . Such a reduction to a few representative processes is often useful
for the verification of concurrent data types.

The rely-guarantee embedding abstracts from interference from other pro-
cesses using rely conditions Rext . In return, each process guarantees a certain
behavior towards its environment according to guarantee conditions Gext . Both
Gext and Rext are structured into three categories: step invariant guarantee and
rely conditions G and R, state invariant conditions Inv and Disj (to symmet-
rically encode disjointness between the two local states), plus, local idle state
conditions Idle which hold between COP-executions only. (The use of these
structural predicates in the case study is shown in Section 6.) Thus, the central
proof obligation for rely-guarantee reasoning is:

COP(In;LS ,S ,Out), Idle(LS), Inv(LS ,S),

LS .id �= LSQ .id, Inv(LSQ ,S),Disj (LS ,LSQ) � Rext
+−→ Gext

(3)

Formal Verification of a Lock-Free Stack with Hazard Pointers 247

According to Gext , COP-steps maintain the guarantee conditions and the state
invariants, plus, establish the idle state conditions.

Gext (LS ,LSQ ,S ,LS ′,LSQ ′, S ′) :↔
G(LS , LSQ ,S ,LS ′,S ′)

∧ (Inv(LS ,S) ∧ Inv(LSQ, S) ∧ Disj (LS ,LSQ)
→ Inv(LS ′,S ′) ∧ Inv(LSQ ′,S ′) ∧ Disj (LS ′,LSQ ′)) ∧ (last → Idle(LS))

According to Rext , transitions of COP’s environment do not modify LS and
they maintain R and the state invariants.

Rext (LS ′,LSQ ′,S ′,LS ′′,LSQ ′′,S ′′) :↔
LS ′ = LS ′′ ∧ R(LS′,S ′,S ′′)

∧ (Inv(LS ′,S ′) ∧ Inv(LSQ ′,S ′) ∧ Disj (LS ′,LSQ ′)
→ Inv(LS ′′,S ′′) ∧ Inv(LSQ ′′,S ′′) ∧ Disj (LS ′′,LSQ ′′))

Theorem 1 (Local Rely-Guarantee Reasoning). If (3) can be proved for
some transitive rely predicate R, reflexive predicate G with G(LS ,LSQ ,S ,LS ′,S ′)
→ R(LSQ ,S ,S ′), symmetric predicate Disj and predicates Idle and Inv, then

each system step of Spawn(n; . . .) is a guarantee step G which does not modify
the local state of other processes, the invariant conditions Inv and Disj hold for
all processes at all times, and each process is Idle, just before it invokes COP.

The Decomposition of Linearizability and Lock-Freedom. Linearizability
[2] and lock-freedom [1] are major, global correctness resp. progress properties
of concurrent systems. We define local proof obligations for COP which imply
linearizability and lock-freedom of Spawn. They are based on a local invari-
ant property ISR that each process may always assume during its execution of
COP(In;LS ,S ,Out), according to Theorem 1.

ISR :↔ Inv(LS ,S) ∧ Inv(LS ′,S ′) ∧ LS ′ = LS ′′ ∧ R(LS ′,S ′,S ′′)

Linearizability. We prove linearizability by locating the linearization point
(i.e., the step where a call appears to take effect) of each operation during its
execution. Conceptually, the linearization point of an execution of COP is deter-
mined in a refinement proof using an abstraction function Abs ⊆ sstate×astate
(a partial function defined on shared states that satisfy Inv , which returns a
corresponding abstract state). In the stack example, Abs maps a linked list rep-
resentation of the stack to a finite algebraic list St of its data values.

Abs(Top,H , []) :↔ Top = null
Abs(Top,H , v + St) :↔ Top �= null ∧ Top ∈ H ∧ H [Top].val = v

∧ Abs(H [Top].nxt,H , St)

To prove linearizability, one has to show that each concrete operation from COP,
non-atomically refines a corresponding abstract operation, which is defined in a
further generic procedure AOP on an abstract state AS . In the case study, AOP
is the non-deterministic choice between an abstract push or pop on St, or a se-
quence of mere skip steps for the scan and reset operations, which leave the stack
unchanged. Hence, a sufficient process-local proof obligation for linearizability is:

248 B. Tofan, G. Schellhorn, and W. Reif

COP(In;LS ,S ,Out), � (ISR ∧ Abs(S ,AS) ∧ Abs(S ′,AS ′)), Idle(LS)
� AOP(In;AS ,Out)

(4)

Theorem 2 (Decomposition of Linearizability). In a setting in which the
preconditions of Theorem 1 and proof obligation (4) hold for a suitable abstrac-
tion function Abs, the concurrent system Spawn is linearizable.

Lock-Freedom. Lock-free data structures ensure that even when single pro-
cesses crash, neither deadlocks nor livelocks occur. In the stack example, single
push and pop operations can be forced to always retry their loop if another
process modifies the shared top pointer. If such an interference occurs, it is the
interfering process which terminates its current execution and without interfer-
ence, the current process terminates.

We capture this intuitive argument using an additional reflexive and transitive
relation U ⊆ sstate×sstate to describe interference freedom (“unchanged”). To
prove lock-freedom, one has to do two process-local termination proofs for each
data structure operation. First, termination without U -interference and second,
termination after violating U in a step. Thus, a sufficient process-local proof
obligation for lock-freedom is (cf. [8,15] for more details):

COP(In;LS ,S ,Out), � ISR, Idle(LS)
� � ((� U (S ′,S ′′)) ∨ ¬ U (S ,S ′) → � last)

(5)

Theorem 3 (Decomposition of Lock-Freedom). In a setting in which the
preconditions of Theorem 1 and proof obligation (5) hold for a reflexive and
transitive relation U , the concurrent system Spawn is lock-free.

6 Verifying the Stack with Hazard Pointers

This section shows central properties of hazard pointers and their specializa-
tion to formal verification conditions for the stack from Figure 2. To keep the
presentation readable, we only give some major conditions explicitly (all formal
conditions are described in [7]). All conditions are expressed in terms of at most
two processes. This is possible, since a retired location r can only be freed by the
process, which has removed r from the stack and then retired it. Thus, when a
process is in its hazardous code region, there is at most one other process which
could free its critical pointer.

6.1 Central Properties of Hazard Pointers

The following central invariant property of hazard pointers ensures that heap
access errors do not occur in hazardous code regions.

HPRvalid ⊆ H (6)

According to (6), each validated hazard pointer is in the application’s heap at
all times, i.e., it is never freed (cf. (1)). This property correlates with GC where

Formal Verification of a Lock-Free Stack with Hazard Pointers 249

one may assume that a heap location r is not concurrently freed if it is just
referenced in some operation. With hazard pointers, one can make the same
assumption if r is covered by a validated hazard pointer.

Before a process p validates a location r , however, it can be concurrently
freed by another process q and arbitrarily reused even if p has already set its
hazard pointer to r . This happens when HPRp := r is executed after the location
has been retired by q, and q has passed p’s hazard pointer entry in its current
traversal of HPR. Therefore, we omit any assertions about hazard pointers which
are not validated yet. This differs from Parkinson et al. [5], who include such
locations in their main correctness argument (cf. Section 7).

A difference between hazard pointers and GC is that while locations that are
reachable from a root location can be concurrently freed if they are no longer
covered by a validated hazard pointer, they would typically not be freed under
GC, as long as their root is used.

The next central property of hazard pointers ensures that retired locations
are in the application’s heap, but not in the lock-free data structure.

RL ⊆ (H − LDS) (7)

This has two major consequences. First, deallocation steps are safe, as they do
not affect locations which are not in the application’s heap. Second, succeeding
validations (a location is in LDS at that time) imply that the validated location
is currently not retired, hence not a deallocation candidate of any current scan.

Two further central properties of hazard pointers ensure that no ABA-problem
occurs.

if r ∈ HPRvalid then r /∈ NEW (8)

if under GC: H ′(r) = H ′′(r) then if r ∈ HPRvalid : H ′(r) = H ′′(r) (9)

(8) states that if a location r is covered by a validated hazard pointer, then it is
not reused, i.e., it is not reinserted in the data structure which averts the ABA-
problem. This property is also related to GC, where a heap location is not reused
as long as it is referenced in some operation. Hence, the environment assumption
(9) holds: if the content of a heap location r is not concurrently changed in an
environment with GC, then it is also unchanged when r is covered by a validated
hazard pointer.

6.2 Verification Conditions for the Stack

Properties (6) - (9) are specialized to formal verification conditions which ensure
memory-safety and ABA-avoidance for the stack. Properties in bold script are the
corresponding verification conditions under GC, which we have simply reused.

Absence of Access Errors. The stack-specific counterpart of generic property
(6) ensures that the snapshot pointer is allocated and covered by a validated
hazard pointer in the hazardous code region of pop.

250 B. Tofan, G. Schellhorn, and W. Reif

Hazardpc ∧ OTop �= null → OTop ∈ H ∧ HPR(Id) = OTop (10)

The stack-specific version of (7) implies that retired locations are allocated and
disjoint from the stack, where a standard reachability predicate checks whether
a location r is in the stack.

∀ r ∈ RL. r �= null ∧ r ∈ H ∧ ¬ reach(Top, r , H) (11)

(10) and (11) ensure that heap access errors do not occur in pop and scan.
To sustain (10) at all times in every possible execution, the validated hazard

pointer OTop = HPR(Id) used in a pop operation of process p (Hazardpc holds,
Id is the process identifier of p) must not be freed by any process q. The worst
case is that q has retired OTop, just traverses HPR, but has not yet collected it
(OTop ∈ RLq−PLq). Then q must not have passed the entry of p yet (Lidq ≤ Id)
and if it has reached p’s entry, it must store OTop in the local variable Lhpq to
ensure that it is collected. Invariant ishazard encodes this criterion precisely:

ishazard(LS ,LSQ) :↔
Hazardpc ∧ OTop ∈ (RLq − PLq) ∧ Scanq →
if BefIncqpc then Lidq < Id ∨ (Lidq = Id ∧ Lhpq = OTop) else Lidq ≤ Id

Note that ishazard is independent from the underlying data structure, except
for mentioning the concrete hazardous reference OTop. It can be easily adapted
to ensure memory-safety for other lock-free data structures as well.

To sustain invariant (11) at all times, we must establish that retired lists
are always duplicate free and pairwise disjoint. Otherwise, a retired list might
contain a freed location after a deallocation step. Furthermore, three basic heap-
disjointness properties are necessary: removed locations, which are subsequently
retired, must be disjoint from the stack and they must not be concurrently
retired, plus, concurrently removed locations must be disjoint.

To ensure that heap access faults do not occur in push either, we claim that
new cells that have not been inserted yet, are always allocated and never con-
currently retired, hence never freed.

ABA-prevention. The stack-specific version of (8) ensures that the validated
snapshot in pop is not reused, thus it is disjoint from other new cells.

Hazardpc ∧ ¬ USuccq → OTop �= UNewq (12)

The specialization of (9) yields the following rely condition which ensures that
the snapshot’s content is immutable in the hazardous code region of pop, to
avoid an ABA-problem between the execution of lines O12 and O13.

Hazardpc
′ ∧ OTop ′ �= null → H ′[OTop ′] = H ′′[OTop ′] (13)

An ABA-problem does not happen in push as well, since the content of a new
cell remains unchanged.

¬ USucc′ → H ′[UNew ′] = H ′′[UNew ′] (14)

Formal Verification of a Lock-Free Stack with Hazard Pointers 251

To maintain rely (14) for the other process, when the current push process
updates the new cell’s next reference in line U8, new cells must be disjoint.

¬ USucc ∧ ¬ USuccq → UNew �= UNewq (15)

Verification conditions (10) and (11) are a main part of the structural predicate
Inv from Section 5. Conditions ishazard , (12) and (15) are part of the symmetric
predicate Disj , which is defined as:

Disj (LS ,LSQ) :↔ ishazard (LS ,LSQ) ∧ ishazard(LSQ ,LS) ∧ (12) ∧ . . .

Rely conditions (13) and (14) are the major part of R; guarantee G is defined to
maintain R for the other process and a simple step-invariant which ensures that
COP-steps do not create memory leaks. Finally, the Idle predicate encodes the
following local restrictions:

USucc ∧ OSucc ∧ ¬ Hazardpc ∧ ¬ Scan ∧ ¬ BefIncpc ∧ Lid = 0

6.3 The Main Proofs

Sustainment of the Verification Conditions. The main effort of the case
study is to prove the rely-guarantee proof obligation (3) – sustainment of the ver-
ification conditions during steps of each operation. We proceed by case analysis
over Op ∈ {Scan, Pop, Push, Reset}. The proof resembles a Hoare-style proof
of a sequential program. We use +−→ induction for loops and consecutively, sym-
bolically execute each program statement in Op according to Section 4. Only
some major arguments are outlined.

Op ≡ Scan: It is rather subtle to establish ishazard (LSQ ,LS) when the cur-
rent process switches to the next hazard pointer entry in line S7. This step must
not miss a validated hazard pointer OTopq of the other process q if the current
process p has retired, but not yet collected it (OTopq ∈ RL − PL). If the snap-
shot Lhp of the current HPR entry is not null, we know from previous symbolic
execution that it is in PL. If the current iteration examines q, ishazard before
this step implies Lhp = OTopq , i.e., the validated hazard pointer has just been
collected in the current iteration (OTopq ∈ PL), implying ishazard (LSQ ,LS).

In the deallocation step (line S10), ishazard ensures that the validated snap-
shot location of the other process is not freed (10). The proof is by contradiction:
if the other process is in its hazardous code region and its snapshot pointer is in
RL−PL, then ishazard before this step implies that the current process must not
have finished its traversal. However, the current process is in its second scan loop
already (technically, the contradiction is MAXID + 1 = Lid ≤ Idq ≤ MAXID).

Op ≡ Pop: In the succeeding hazard pointer validation step (lines O10 /
O11), ishazard and (10) can be established, since the hazard pointer is in the
data structure, hence allocated and not concurrently retired. Immediately after
removal of the snapshot OTop from the stack in line O13, we know from (11)
that it can not be in the current process’ retired list RL. Hence, we can establish
(11) again in the retiring step (line O16), since both OTop and RL are local.

252 B. Tofan, G. Schellhorn, and W. Reif

Op ≡ Push: The allocation step (lines U3 / U4) resets the content of a new
cell. However, it does not affect allocated locations and thus neither rely con-
dition (13) nor (14) of the other process are violated. We additionally establish
UNew /∈ RL in this step which allows to prove disjointness of retired locations
from the data structure (11), when the new cell is added to the stack in line U9.

Op ≡ Reset : The reset of a hazard pointer entry is safe, since it happens
outside of the hazardous code region in pop.

Preservation of Linearizability. The proof of linearizability (4) distinguishes
between the four possible concrete operations. In case of the hazard pointer
operations scan and reset, each concrete step refines an abstract skip step. In
particular, the deallocation step (lines S9 / S10) does not affect the stack, as
retired locations are disjoint from the stack, according to (11).

The extended pop operation still has one linearization point in line O5 if the
stack is empty, or else in line O13 if the CAS succeeds. Rely (13) ensures that
the next reference of the snapshot cell and its value are immutable. Thus, the
successful CAS corresponds to an abstract pop and returns the correct value.
In case of a push operation, the linearization point is the successful CAS. Rely
(14) ensures that the initial value of the new cell and its next reference are
immutable. Hence, the successful CAS corresponds to an abstract push of the
invoked value.

Preservation of Lock-Freedom. According to (5), the proof of lock-freedom
requires termination proofs for each data structure operation if environment
behavior is restricted according to U and if a step violates U . We determine the
unchanged relation as identity of the top-of-stack pointer. It is then relatively
simple to show that push and pop terminate. Since the scan operation is wait-
free, we can prove its termination without U . Termination of the first scan loop
uses well-founded induction over the term MAXID − Lid which decreases in
every iteration. Similarly, termination of the second loop follows by induction
over the number of retired locations.

7 Related Work and Comparison

Current automatic techniques do not prove linearizability or lock-freedom with-
out implicitly assuming GC, which significantly simplifies the proofs. Thus they
are not directly related to this work. We do not know of any other mechanized
verification of a lock-free algorithm with hazard pointers. [17] describes a mech-
anized proof of a lock-free queue with modification counters [3], which focuses
on linearizability. Neither an ABA-problem nor lock-freedom are discussed.

Manual Proofs. Michael [4] gives a semantic verification condition which en-
sures safe memory reclamation for a lock-free algorithm with hazard pointers.
This global condition requires the existence of a time in the past from which a
hazardous location is safely covered by a hazard pointer. Michael verifies neither
linearizability nor lock-freedom of the extended stack, but informally ensures
safety by construction. Our verification of the stack formally resembles Michael’s

Formal Verification of a Lock-Free Stack with Hazard Pointers 253

arguments, while avoiding both global reasoning and reasoning about the past.
A key idea was to map Michael’s temporal interval in which memory-safety and
ABA-prevention are guaranteed, to a corresponding code interval (Hazardpc).

There are two formal pen and paper proofs of a Treiber-like stack with hazard
pointers. Parkinson et al. [5] apply concurrent separation logic (CSL) to verify a
variant of the original stack, focusing on heap-modular reasoning and fractional
permissions, which are used for simple properties such as (12) or (15). Their
central correctness argument states that after a hazard pointer covers a loca-
tion t, it can not be removed from the stack and then reinserted, which avoids
the ABA-problem. Restricting this property to the case that t is covered by a
validated hazard pointer better captures the essence of the reclamation scheme.
While we use mainly simple formulas to ensure ABA-avoidance for validated
hazard pointers, their proof requires rather complex auxiliary data structures.

Fu et al. [18] verify the stack in a program logic for history (HLRG). It provides
temporal operators of the past only and evaluates state assertions in the last state
of an execution. Their proof is based on rather complex global arguments about
the temporal past of finite executions, while our verification conditions are just
state/step invariants. Their implementation is not lock-free, since their HPR-
traversal does not complete when a location is covered by a hazard pointer and
the associated process fails. Michael’s traversal, however, completes independent
from environment behavior.

CSL and HLRG are based on separation logic and use abstract code anno-
tations in their verification, while we use refinement, separating concrete from
abstract code. They benefit from the implicit treatment of different heap lo-
cations by the separating conjunction operator, while we have to encode some
disjointness properties explicitly. Their verification considers memory-safety and
structural invariance of the stack only, but proves neither linearizability nor lock-
freedom. They use process-global conditions and do not exploit symmetry.

8 Summary and Discussion

This work describes the first mechanized verification of a challenging lock-free
stack. The proof intuitively applies central properties of the hazard pointers
method and takes advantage of the relation between Michael’s method and GC.
It addresses the main safety and liveness aspects, avoiding process-global reason-
ing, complex history variables and reasoning about the past. Hence, it contributes
an improved formal verification of the stack with hazard pointers.

Furthermore, we have applied our verification technique to the Michael-Scott
queue with hazard pointers [4], where each process requires two hazard pointers.
The central verification condition ishazard has been used analogously to ensure
that the hazardous snapshot locations of the queue are not concurrently freed.
The verification conditions from our previous proof under GC have been simply
reused (cf. [8]). This indicates that the results of this work can be carried over
to verify other lock-free algorithms in a similar way. A mechanized, schematic
proof of correctness for an arbitrary underlying data structure, however, is left
for future work.

254 B. Tofan, G. Schellhorn, and W. Reif

As a further extension of our work, Maged Michael proposed that reading
and writing hazard pointers non-atomically should be safe too, even though the
scan algorithm may then read corrupted values. We confirmed this conjecture by
replacing the atomic assignments with generic read and write procedures. These
were specified to work correctly only if the environment does not concurrently
modify the shared value. Just a few minor modifications of the proofs were
necessary (cf. [8]).

Our current approach to verify linearizability suffices for algorithms that have
an internal linearization point within the code of the executing process, even
when its location depends on subsequent system behavior. This is possible, since
future states of an interval can be easily analyzed in ITL (refer to [14] for more
details). A generalization of the technique, using the results of [19], is part of
current work.

Acknowledgments. We thank Jörg Pfähler for verifying the Michael-Scott
queue with hazard pointers, resp. Alexander Knapp and Maged Michael for
fruitful discussions.

References

1. Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. Technical Report CUCS-
005-91, Columbia University (1991)

2. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Trans. on Prog. Languages and Systems 12(3), 463–492 (1990)

3. Treiber, R.K.: System programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

4. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

5. Parkinson, M., Bornat, R., O’Hearn, P.: Modular verification of a non-blocking
stack. SIGPLAN Not. 42(1), 297–302 (2007)

6. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications. Systems and Implementation Techniques,
vol. II, pp. 13–39. Kluwer Academic Publishers, Dordrecht (1998)

7. Tofan, B., Schellhorn, G., Reif, W.: Verifying a stack with hazard pointers in tem-
poral logic. Technical Report 2011-08, Universität Augsburg (2011),
http://opus.bibliothek.uni-augsburg.de/volltexte/2011/1717/

8. KIV. Presentation of proofs for concurrent algorithms (2011),
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

9. Moszkowski, B.: Executing Temporal Logic Programs. Cambr. Univ. Press, Cam-
bridge (1986)

10. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press, Cambridge (2001)

11. Burstall, R.M.: Program proving as hand simulation with a little induction. Infor-
mation Processing 74, 309–312 (1974)

http://opus.bibliothek.uni-augsburg.de/volltexte/2011/1717/
http://www.informatik.uni-augsburg.de/swt/projects/lock-free.html

Formal Verification of a Lock-Free Stack with Hazard Pointers 255

12. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification
of concurrent systems using symbolic execution. AI Communications 23(2,3), 285–
307 (2010)

13. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Proc. of TIME. IEEE, CPS (to appear, 2011)

14. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. In: Formal Aspects of Computing (FAC) (2009), appeared online first
http://www.springerlink.com/content/7507m59834066h04/

15. Tofan, B., Bäumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of
lock-freedom. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 377–396. Springer, Heidelberg (2010)

16. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland, Amsterdam (1983)

17. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

18. Fu, M., Li, Y., Feng, X., Shao, Z., Zhang, Y.: Reasoning about optimistic con-
currency using a program logic for history. In: Gastin, P., Laroussinie, F. (eds.)
CONCUR 2010. LNCS, vol. 6269, pp. 388–402. Springer, Heidelberg (2010)

19. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisabilty with potential
linearisation points. In: Proc. Formal Methods (to appear, 2011)

http://www.springerlink.com/content/7507m59834066h04/

Ambiguity of Unary Symmetric Difference NFAs

Brink van der Merwe, Lynette van Zijl, and Jaco Geldenhuys�

Department of Computer Science
Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

{abvdm,jaco}@cs.sun.ac.za, lvzijl@sun.ac.za

Abstract. Okhotin [9] showed an exponential trade-off in the conversion
from nondeterministic unary finite automata to unambiguous nondeter-
ministic unary finite automata. In this paper, we consider the trade-off
in the case of unary symmetric difference finite automata to finitely am-
biguous unary symmetric difference finite automata. Surprisingly, the
trade-off is linear in the number of states of the finite automaton. In
particular, for every n-state unary nondeterministic symmetric differ-
ence finite automaton, there is an equivalent finitely ambiguous n-state
unary symmetric difference nondeterministic finite automaton. We also
note other relevant ambiguity issues in the unary case, such as the am-
biguity of k-deterministic finite automata.

Keywords: nondeterminism, ambiguity.

1 Introduction

Symmetric difference nondeterministic finite automata (⊕-NFAs) are well-suited
to the investigation of periodic or cyclic behaviour in regular languages. The
succinctness of ⊕-NFAs has been investigated in some detail [15], but little work
has been done on the language-theoretic properties of ⊕-NFAs. In this work, we
therefore consider the issue of the ambiguity of unary ⊕-NFAs.

The ambiguity of a nondeterministic finite automaton (NFA) M refers to the
maximum number of different accepting paths of M for all the words in the
language accepted by M . For example, if M has only one accepting path for
any word, then M is unambiguous. Or, M may have no more than c accepting
paths for any word (with c a constant), in which case M is finitely ambiguous.
Similarly, M may be polynomially or exponentially ambiguous, if the number of
accepting paths is at most polynomial or exponential in the number of letters in
an accepted word. The ambiguity of NFAs has been extensively investigated (see
for example [5,6,10]), and recently Okhotin [9] considered the difference between
unary NFAs and NFAs with larger alphabets as far as ambiguity is concerned.

In previous work [17] we investigated the ambiguity of ⊕-NFAs (as opposed
to the ambiguity of traditional NFAs). We showed the existence of families of ⊕-
NFAs for each ambiguity class, and also considered the descriptional complexity
of ambiguous ⊕-NFAs. In particular, we showed that for each ambiguity class,
� This research was supported by NRF grant #69872.

A. Cerone and P. Pihlajasaari (Eds.): ICTAC 2011, LNCS 6916, pp. 256–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Ambiguity of Unary Symmetric Difference NFAs 257

there exists an n-state binary ⊕-NFA for which the minimal equivalent DFA has
O(2n) states. In this work, we specifically consider the ambiguity of unary ⊕-
NFAs. Here, we are interested in the state trade-off between equivalent finitely
ambiguous unary ⊕-NFAs and unary ⊕-NFAs falling in any other ambiguity
class. Okhotin [9] showed, for traditional NFAs, an exponential trade-off between
unary NFAs and unary unambiguous NFAs. Surprisingly, quite different results
hold for ⊕-NFAs, and we shall show that for any unary n-state ⊕-NFA, there is
an equivalent unary finitely ambiguous ⊕-NFA with n states.

The remainder of this article is organised as follows: Sect. 2 gives background
and definitions, and specifically establishes the algebraic background required
in the rest of the paper. In Sect. 3 we prove the state trade-off between unary
⊕-NFAs and unary finitely ambiguous ⊕-NFAs. The next section notes some
related results, such as the ambiguity of k-deterministic finite automata. We
conclude in Sect. 5.

2 Background

⊕-NFAs were defined in [15], and Vuillemin and Gama give an overview of the
mathematical basis for ⊕-NFAs [14]. We therefore only briefly summarize the
necessary definitions and background. We assume that the reader has a basic
knowledge of automata theory and formal languages, as for example in [12],
and a background in linear algebra, as for example in [11]. Note that symmetric
difference is used in the usual set theoretic sense: for any two sets A and B, the
symmetric difference of A and B is defined as A ⊕ B = (A ∪ B) \ (A ∩ B). Also
note that for n sets A1, . . . , An, the expression A1 ⊕ . . . ⊕ An is equal to the set
of elements appearing in an odd number of the sets A1, . . . , An.

2.1 Definition of ⊕-NFAs

Definition 1. A ⊕-NFA M is a 5-tuple M = (Q, Σ, δ, Q0, F), where Q is the
finite non-empty set of states, Σ is the finite non-empty input alphabet, Q0 ⊆ Q
is the set of start states, F ⊆ Q is the set of final states and δ is the transition
function such that δ : Q × Σ → 2Q. ��

The transition function δ can be extended to δ : 2Q × Σ → 2Q by defining

δ(A, a) =
⊕
q∈A

δ(q, a)

for any a ∈ Σ and A ∈ 2Q. The transition function of the ⊕-NFA can be extended
to δ∗ : 2Q × Σ∗ → 2Q by defining δ∗(A, ε) = A and δ∗(A, aw) = δ∗(δ(A, a), w)
for any a ∈ Σ, w ∈ Σ∗ and A ∈ 2Q.

Note that, if the size of the alphabet is one (that is, |Σ| = 1), then the ⊕-NFA
is called a unary ⊕-NFA.

Definition 2. Let M be a ⊕-NFA M = (Q, Σ, δ, Q0, F), and let w be a word in
Σ∗. Then M accepts w if and only if |F ∩ δ(Q0, w)| mod 2 = 0. ��

258 B. van der Merwe, L. van Zijl, and J. Geldenhuys

For any word w = w0w1 . . .wk ∈ Σ∗ read by a ⊕-NFA M , there is at least one
associated sequence of states s0, s1, . . . , sk+1 such that δ(si, wi) = si+1. Such
a sequence of states is a path for the word w. All possible paths on the word
w can be combined into an execution tree of M . A path in the execution tree
is an accepting path if it ends in a final state. It is important to note that in
the execution tree of a ⊕-NFA, if there is an even number of occurrences of a
state si on level i, then those states cancel out under the symmetric difference
operation, and those paths terminate. If an odd number of occurrences of a state
si occurs on level i, then none of the si cancel out and all their paths remain in
the execution tree.

In other words, a ⊕-NFA accepts a word w by parity — if there is an odd
number of accepting paths for w in the execution tree, then w is accepted; else
it is rejected. This parity acceptance is motivated by the algebraic foundations
of ⊕-NFAs, where unary ⊕-NFAs correspond to pseudo-noise sequences [4].

Example 1. Let M = ({q1, q2, q3}, {a}, δ, {q1}, {q3}) be a ⊕-NFA where δ is given
by

δ a

q1 {q2}
q2 {q3}
q3 {q1, q3}.

Figure 1 shows a graphical representation of M ; note that there is no visual
difference from a traditional NFA. To find the DFA M ′ equivalent to M , we
apply the subset construction using the symmetric difference operation instead
of union. The transition function δ′ of M ′ is

δ′ a

[q1] [q2]
[q2] [q3]

∗ [q3] [q1, q3]
∗ [q1, q3] [q1, q2, q3]
∗ [q1, q2, q3] [q1, q2]

[q1, q2] [q2, q3]
∗ [q2, q3] [q1].

��

Note that each accepting state is marked by a ‘∗’.
It is easy to see that any unary ⊕-NFA is an autonomous linear machine

(see [13,15] for a formal exposition). As such, one can encode the transition
table of a unary ⊕-NFA M as a binary matrix A:

aji =
{

1 if qj ∈ δ(qi, a)
0 otherwise,

Ambiguity of Unary Symmetric Difference NFAs 259

q1
a

q2
a

q3

a

a

Fig. 1. The ⊕-NFA for Example 1

and successive matrix multiplications in the Galois field GF (2) reflect the subset
construction on M .

A is called the characteristic matrix of M , and c(x) = det(A − xI) is known
as its characteristic polynomial.

Similarly, we can encode any set of states X ⊆ Q as an n-entry row vector v
by defining

vi =
{

1 if qi ∈ X
0 otherwise .

Note that we place an arbitrary but fixed order on the elements of Q. We refer
to v as the vector encoding of X , and to X as the set encoding of v.

If y encodes the initial states of a ⊕-NFA M , and A is its characteristic matrix,
then AyT encodes the states reachable from the initial state after reading one
letter, A2yT encodes the states reachable after two letters, and in general AkyT

encodes the states reachable after k letters. If z encodes the final states of M ,
then standard linear algebra shows the following:

M accepts ak if and only if zAkyT = 1.

Example 2. Consider the ⊕-NFA in Example 1. Its characteristic matrix is

A =

⎡
⎣0 0 1

1 0 0
0 1 1

⎤
⎦

and its characteristic polynomial is c(x) = x3 + x2 + 1. Interested readers may
note that c(x) is a primitive polynomial in GF (2). If we encode the start state as
a column vector yT , with only the first component of y equal to one, and compute
AkyT , we end up with the k-th entry in the on-the-fly subset construction on
M . For example, with the start state q1 encoded as y = [1 0 0], we see that A4

is given by

A4 =

⎡
⎣1 1 0

1 1 1
1 0 1

⎤
⎦ ,

and hence A4yT is given by [1 1 1]. This corresponds to the state [q1, q2, q3],
which is reached after four applications of the subset construction on M . Simi-
larly, A6yT is given by [0 1 1], which corresponds to [q2, q3]. ��

260 B. van der Merwe, L. van Zijl, and J. Geldenhuys

2.2 Analysis of ⊕-NFA Behaviour

In [15] we formally showed that the state behaviour of a unary ⊕-NFA is the
same as that of a linear feedback shift register (LFSR). The similarity is intu-
itively straightforward, as an LFSR is a linear machine over GF (2), and we can
encode a unary ⊕-NFA as a linear machine over GF (2) as shown above. This
correspondence means that we can exploit the wealth of literature on LFSRs to
analyse the behaviour of unary ⊕-NFAs, and in particular their cyclic behaviour
(see, for example, [3] or [13]).

Because a unary ⊕-NFA is characterized by a matrix in GF (2), one can per-
form a change of basis without changing the accepted language. It is precisely
this observation that we use in the proof of the next theorem.

Theorem 1. Let M = (Q, {a}, δ, Q0, F) be a unary n-state ⊕-NFA that accepts
a non-empty language L. Then for any non-empty subset of states X ⊆ Q there
exists unary ⊕-NFAs M ′ and M ′′, both accepting L, such that:

1. M ′ = (Q, {a}, δ′, X, F ′), and
2. M ′′ = (Q, {a}, δ′′, Q′′

0 , X).

Proof. Both claims are based on the same principle; we only show the first. Let
s, f , and x be the vector encodings of sets Q0, F , and X , respectively, and let
A be the characteristic matrix of M . Choose a non-singular matrix1 P such that
xT = PsT. Note that Q0 and F are non-empty sets, since L is non-empty, and
thus s and f are non-zero. Let y = fP−1, and let B = PAP−1. Let F ′ be the
set encoding of y and define δ′ by

qi ∈ δ′(qj , a) if and only if bij = 1.

Then

M ′ accepts ak

⇔ yBkxT = 1
⇔ (fP−1)(PAP−1)k(PsT) = 1
⇔ fAksT = 1
⇔ M accepts ak.

��
In essence, the technique in Theorem 1 changes the basis of the characteristic
matrix. This makes it possible to transform any unary ⊕-NFA into an equivalent
automaton while controlling either the choice of start states, final states, or (non-
singular) characteristic matrix.
1 Such a matrix P must exist. We can obtain P as the product P1P

−1
2 , where P1

and P2 are non-singular matrices obtained as follows: Denote by e1 the vector with
a 1 in the first component and 0’s in all the other components. Let P1 and P2 be
non-singular matrices such that P1e1

T = xT and P2e1
T = sT. We construct for

example P1 (and similarly P2) by setting the first column of P1 to be equal to xT

and then select the remaining columns in any way such that the column vectors of
P1 are linearly independent.

Ambiguity of Unary Symmetric Difference NFAs 261

q1
a

q2a
a

a

q3a

a

Fig. 2. The ⊕-NFA from Example 3

Example 3. Consider again the ⊕-NFA M in Example 1. To transform it to an
automaton where all of the states are start states, we solve x = PsT. We know
from the definition of M that s = [1 0 0] and we want x = [1 1 1]. We can take
for example

P =

⎡
⎣1 0 0

1 1 0
1 1 1

⎤
⎦ and P−1 =

⎡
⎣1 0 0

1 1 0
0 1 1

⎤
⎦

and therefore

B = PAP−1 =

⎡
⎣0 1 1

1 1 1
0 1 0

⎤
⎦

and the vector encoding for the final states is y = fP−1 = [0 1 1]. The resulting
automaton is shown in Figure 2. One can also verify the fact that the language
is not changed by the change in basis, by calculating the DFA corresponding to
the new ⊕-NFA:

δ′ a

[q1, q2, q3] [q2, q3]
[q2, q3] [q3]

∗ [q3] [q1, q2]
∗ [q1, q2] [q1, q3]
∗ [q1, q3] [q1]

[q1] [q2]
∗ [q2] [q1, q2, q3].

It is easy to check that this DFA is isomorphic to the DFA in Example 1. ��

2.3 Ambiguity

We briefly state the formal definitions for ambiguity.

Definition 3. Unambiguous: An NFA or ⊕-NFA is said to be unambiguous
if every word in the language is accepted with at most one accepting path.

Definition 4. Finitely ambiguous: An NFA or ⊕-NFA is said to be finitely
ambiguous if every word in the language is accepted with at most k accepting
paths, where k is a positive integer.

262 B. van der Merwe, L. van Zijl, and J. Geldenhuys

Definition 5. Polynomially ambiguous: An NFA or ⊕-NFA is said to be
polynomially ambiguous if every word in the language is accepted with at most k
accepting paths, where k is bound polynomially in the length of the input word.

Definition 6. Exponentially ambiguous: An NFA or ⊕-NFA is said to be
exponentially ambiguous if every word in the language is accepted with at most
k accepting paths, where k is bounded exponentially in the length of the input
word.

Ambiguity for a given NFA or ⊕-NFA can be visually demonstrated by drawing
the execution tree of the corresponding automaton. Given an NFA or ⊕-NFA M ,
we assume that the root is on level 0 of the execution tree, and is a start state
of M . Note that, if M has multiple start states, then one considers the forest of
execution trees, where the root of each tree is one of the start states of M .

3 Ambiguity of Unary ⊕-NFAs

It is known that the conversion of a traditional n-state NFA to a DFA has an
upper bound of O(2n) states, and this bound is tight [7,8]. This does not hold
in the case of unary NFAs, where the bound is g(n) + n2 states, where g(n) is
Landau’s function [1]. In the case of unary n-state ⊕-NFAs, we recall a tight
upper bound of 2n − 1 for the ⊕-NFA to DFA conversion [16].

Okhotin [9] showed that the g(n) + n2 bound also holds for the unary NFA
to unary unambiguous NFA trade-off. Surprisingly, the unary ⊕-NFA to unary
finitely ambiguous ⊕-NFA trade-off is simply linear – any unary n-state ⊕-NFA
has an equivalent n-state finitely ambiguous ⊕-NFA, as we show in detail below.

For any state in a ⊕-NFA, its indegree denotes the number of transitions
entering the state in its graphical representation.

Theorem 2. Any unary n-state ⊕-NFA such that each state has indegree at
most two, is finitely ambiguous.

Proof. Let N be any unary ⊕-NFA such that each state has indegree at most
two. We have an execution tree associated with each initial state in N , but it is
enough to show that there are finitely many accepting paths for a given word in
each of the execution trees. Thus we may in fact assume that we have only one
initial state in N and hence a single execution tree. First we show by induction
that each state appears at most once on a given level in the execution tree. This
is certainly true at the root of the tree where we have only the initial state.
Assume the result for level i in the execution tree and consider level i + 1, and
let q be any state in N . Since the indegree of q is at most two, precisely one of
the following three statements hold:

– there is no transition from a state at level i to state q, and therefore state q
is not present at level i + 1;

– there is a transition from a single state at level i to state q;

Ambiguity of Unary Symmetric Difference NFAs 263

– there are transitions from precisely two states at level i to state q, and thus
by definition of an ⊕-NFA, state q is not present at level i + 1.

We thus conclude that each state appears at most once on a given level in the
execution tree. Since we therefore have only finitely many acceptance states at
each level in the execution tree, we conclude that N is finitely ambiguous. ��
Theorem 3. Let M be any unary ⊕-NFA. Then there exists a finitely ambigu-
ous unary ⊕-NFA N , accepting the same language as M , and also with the same
number of states as M .

Proof. Let A be the characteristic matrix of M .
First recall from linear algebra that the companion matrix of the monic poly-

nomial p(x) = c0 + c1x + . . . + cn−1x
n−1 + xn over GF (2) is the square matrix

C(p) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

...
...

...
...

0 0 . . . 1 cn−1

⎤
⎥⎥⎥⎥⎥⎦ .

A classic result from linear algebra (see [11], Theorem 7.14), states that A has
a rational canonical form with entries from GF (2). More precisely, there exists
an invertible matrix Q such that B = Q−1AQ = diag[L(f1),L(f2), . . . ,L(fs)],
where L(fi) is the companion matrix for a monic polynomial fi. By diag
[A1,A2, . . . ,As], with the Ai’s square matrices, we denote the matrix with the
Ai’s on the diagonal and all other entries equal to 0. In our context, the impor-
tant property of the matrix diag[L(f1),L(f2), . . . ,L(fs)] is that the indegree of
each state of a ⊕-NFA N , with characteristic matrix diag[L(f1),L(f2), . . . ,L(fs)],
must be at most two. One can see this by noting that we have at most two non-
zero entries in each row of diag[L(f1),L(f2), . . . ,L(fs)]. We thus apply a change
of basis (by using Q) to A to obtain the characteristic matrix B of a ⊕-NFA
N , and also to the initial and accepting vectors of M to obtain the initial and
accepting vectors for N . Since a change of basis preserves the language accepted
by a ⊕-NFA, M and N accept the same language. Note that M and N will also
have the same number of states, and from the previous result we have that N is
finitely ambiguous. ��

4 Other Ambiguity Results

There are a number of other results that follow from Theorem 2 in the previous
section, in particular for the complement of a language, and for k-deterministic
⊕-NFAs.

We note that for any n-state unary ⊕-NFA M which accepts a language L, it
is possible to construct an n + 1-state unary ⊕-NFA M ′ such that M ′ accepts
the complement L. This is in constrast to traditional unary NFAs [9], where the
state complexity of complementation for unambigous unary finite automata lies
between the bounds 1

42n
√

n (for n ≥ 867) and eΘ(
3
√

n ln2n).

264 B. van der Merwe, L. van Zijl, and J. Geldenhuys

Theorem 4. Let M be a unary ⊕-NFA accepting the language L. Then there
is an n + 1-state unary ⊕-NFA M ′ such that M ′ accepts L.

Proof. By construction. Let M = (Q, {a}, δ, Q0, F) such that Q = {q1, . . . , qn}.
We introduce a new state q0 ∈ Q. Define M ′ = (Q∪ {q0}, {a}, δ′, Q0 ∪ {q0}, F ∪
{q0}), where δ′(qi, a) = δ(qi, a) when i > 0 and δ′(q0, a) = {q0}. The DFA
equivalent to M ′ is isomorphic to that of M , and during the subset construction
the subsets are identical, except that q0 is added to every single subset. The
execution of M ′ is identical to that of M , except that an independent linear
branch consisting of q0 states is added “on the side”.

Suppose that M accepts the word w = ak. This means that there is an odd
number of final states on level k of M ’s execution tree. On the other hand,
in M ′’s execution tree there is one extra state (q0) on level k, which therefore
contains an even number of final states. Hence M ′ does not accept w.

The same argument shows that if M does not accept the word w = am, then
M ′ does accept w. Hence M ′ accepts the language L. ��

Theorem 5. Assume the language L is accepted by an n-state unary finitely
ambiguous ⊕-NFA M . Then there is an n+1-state unary ⊕-NFA M ′ that accepts
L.

Proof. Directly from Theorem 2. ��

We now consider the ambiguity of k-deterministic unary ⊕-FAs. A k-deterministic
FA (k-DFA) or ⊕-FA (k-⊕-DFA) is a deterministic finite automaton, except that
it has multiple initial states. Hence the only nondeterminism in a k-DFA occurs
in its multiple initial states.

Definition 7. A k-DFA M is a 5-tuple M = (Q, Σ, δ, Q0, F), where Q is the
finite non-empty set of states, Σ is the finite non-empty input alphabet, Q0 ⊆ Q
is the set of start states, F ⊆ Q is the set of final states and δ is the transition
function such that δ : Q × Σ → Q. ��

Note that, as before, the difference between a traditional k-DFA and a k-⊕-
DFA lies in the application of the subset construction to get the equivalent DFA
(without multiple initial states).

It is to be expected that a unary k-DFA should be either unambiguous or
finitely ambiguous, and this is indeed the case both for the traditional k-DFA
and the k-⊕-DFA:

Theorem 6. Any unary k-DFA or k-⊕-DFA is finitely ambiguous, with the
constant for the finite ambiguity no more than |Q0|.

Proof. The multiple initial states lead to a forest of disconnected execution trees,
such that each tree is a single deterministic branch. In the case of k-DFAs the
ambiguity is determined by the number of possible final states on each level,
which is bounded below by zero and above by |Q0|. Note that the number of
trees stay constant. Hence, the k-DFA is finitely ambiguous.

Ambiguity of Unary Symmetric Difference NFAs 265

In the case of k-⊕-DFAs, the number of deterministic trees in the forest of
disconnected execution trees cannot be more than |Q0|, but may become less if
an even number of identical states occur on the same level. The result holds by
the same argument as above. ��

It is interesting to note, however, that there exists a family {Mn}n≥2 of k-DFAs
that are finitely ambiguous when considered as k-DFAs, but are unambiguous
when considered as k-⊕-DFAs.

Theorem 7. There exists a family {Mn}n≥2 of unary k-DFAs that are finitely
ambiguous when considered as k-DFAs, but are unambiguous when considered
as k-⊕-DFAs.

Proof. By construction. Let Mn = (Q, {a}, δ, Q0, F) be defined by Q = {q1, . . . ,
qn−1}, Q0 = Q, F = {qn−1} and δ(qi, a) = qi+1 for 1 ≤ i < n − 1, and
δ(qn−1, a) = qn−2.

Consider first the k-DFA case. The forest of execution trees contains n = |Q0|
disconnected trees with no branches. Hence, on any level, there are exactly n
states. The transition function ensures that each tree has the form qi → qi+1 →
. . . qn−2 → qn−1 → qn−2 → qn−1 In other words, each tree consists of a single
branch with consecutive states, until the last two states alternate indefinitely.
Now, since all the elements in Q0 are distinct, the trees all reach the state qn−1

within n − 1 steps. Hence, from step n onwards, there are at most |Q0| final
states at any level, and hence the k-DFA is finitely ambiguous.

In the case of the k-⊕-DFA, we note that on level one of the execution tree,
there are n distinct states {q1, q2, . . . , qn−1}, and hence one final state. On level
two, states qn−3 and qn−1 both result in state qn−2, and symmetric difference
causes the trees with state qn−2 to terminate. This process continues with the
other branches, until only one tree remains which alternates between states qn−1

and qn−2, or which ends in an empty set of states. Hence, the k-⊕-DFA is
unambiguous. ��

5 Conclusion and Future Work

We showed that, for any n-state unary ⊕-NFA, there is an equivalent n-state
unary ⊕-NFA which is finitely ambiguous. This implies that, for unary regular
languages, there are no languages which are strictly polynomially or strictly
exponentially ambiguous with ⊕-NFAs. This result also holds for traditional
unary NFAs, and a further avenue of investigation is to determine whether any
kind of unary NFA (such as a ∩-NFA or XNOR-NFA) must be at most finitely
ambiguous.

It also remains to investigate ambiguity issues in more detail for non-unary
languages.

266 B. van der Merwe, L. van Zijl, and J. Geldenhuys

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Sci-
ence 47(3), 149–158 (1986), erratum appeared as [2]

2. Chrobak, M.: Errata on “Finite automata and unary languages”. Theoretical Com-
puter Science 302(1-3), 497–498 (2003)

3. Dornhoff, L., Hohn, F.: Applied Modern Algebra. Macmillan Publishing Company,
Basingstoke (1978)

4. Goresky, M., Klapper, A.: Pseudonoise sequences based on algebraic feedback shift
registers. IEEE Transactions on Information Theory 52(4), 1649–1662 (2006)

5. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM Journal of Computing 27(4), 1073–1082 (1998)

6. Leung, H.: Descriptional complexity of NFA of different ambiguity. International
Journal of Foundations of Computer Science 16(5), 975–984 (2005)

7. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12 Annual IEEE Symposium on Switching
and Automata Theory, pp. 188–191 (October 1971)

8. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic and two-way finite automata by deterministic au-
tomata. IEEE Transactions on Computing C-20(10), 1211–1219 (1971)

9. Okhotin, A.: Unambiguous finite automata over a unary alphabet. In: Hliněný, P.,
Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 556–567. Springer, Heidelberg
(2010)

10. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata
to the succinctness of their representation. SIAM Journal of Computing 18(6),
1263–1282 (1989)

11. Roman, S.: Advanced Linear Algebra. Springer, Heidelberg (1992)
12. Sipser, M.: Introduction to the Theory of Computation. International Thomson

Publishing (1996)
13. Stone, H.: Discrete Mathematical Structures. Science Research Associates (1973)
14. Vuillemin, J., Gama, N.: Efficient equivalence and minimization for nondetermin-

istic XOR automata. Tech. rep., INRIA (December 2009)
15. van Zijl, L.: Generalized Nondeterminism and the Succinct Representation of Reg-

ular Languages. Ph.D. thesis, Stellenbosch University (November 1997)
16. van Zijl, L.: Magic numbers for symmetric difference NFAs. International Journal

of Foundations of Computer Science 16(5), 1027–1038 (2005)
17. van Zijl, L., Geldenhuys, J.: Descriptional complexity of ambiguity in symmetric

difference NFAs. Journal of Universal Computer Science (accepted for publication,
2011)

Author Index

Aceto, Luca 7
Althaus, Ernst 25
Altmeyer, Sebastian 25
Ando, Ei 45

Bhattacharya, Binay 45
Bsaies, Khaled 173

Carreiro, Facundo 62
Cojocaru, Liliana 77

de Frutos Escrig, David 7

Fahrenberg, Uli 95

Geldenhuys, Jaco 256
Ghardallou, Wided 173
Ghilezan, Silvia 116
Gregorio-Rodŕıguez, Carlos 7

Hennicker, Rolf 135
Hu, Yuzhuang 45

Ingolfsdottir, Anna 7
Ivetić, Jelena 116

Juhl, Line 95

Kameda, Tsunehiko 45
Knapp, Alexander 135

Labed Jilani, Lamia 173
Larsen, Kim G. 95

Lescanne, Pierre 116
Likavec, Silvia 116
Liu, Yijing 154
Long, Quan 154
Louhichi, Asma 173
Lubega, Jude T. 194
Lynch, Kathy 194

Mäkinen, Erkki 77
Mili, Ali 173
Misra, Jayadev 1
Mraihi, Olfa 173
Muyinda, Paul Birevu 194

Naujoks, Rouven 25

Parnas, David Lorge 4

Qiu, Zongyan 154

Reif, Wolfgang 239

Schellhorn, Gerhard 239
Shi, Qiaosheng 45
Srba, Jǐŕı 95

Tarau, Paul 218
Tofan, Bogdan 239

van der Merwe, Brink 256
van der Weide, Theo 194
van Zijl, Lynette 256
Visser, Willem 6

	Title
	Preface
	Organization
	Table of Contents
	Virtual Time and Timeout in Client-Server Networks
	Introduction
	Background
	Causal Model of Virtual Time
	Simulation Model of Virtual Time
	Contributions of This Work

	References

	The Use of Mathematics in Software Development
	References

	Infinitely Often Testing
	Axiomatizing Weak Ready Simulation Semantics over BCCSP
	Introduction
	Preliminaries
	Weak Simulation
	Ground-Completeness for Weak Simulation
	-Completeness for Weak Simulation

	Weak Ready Simulation
	Axiomatizing RS When A Is Infinite
	Axiomatizing RS When A Is Finite

	Conclusion
	References

	Symbolic Worst Case Execution Times
	Introduction
	Related Work
	Numeric Path Analysis
	Parametric Path Analysis

	Longest Paths in Singleton-Loop-Graphs
	Preliminaries
	The Algorithm
	While-Loop-Graphs

	Conclusion
	References

	Selecting Good a Priori Sequences for Vehicle Routing Problem with Stochastic Demand
	Introduction
	The a Priori Strategy for VRPSD
	Previous Results
	Our Model
	Our Results

	Non-split VRPSD on Trees
	Non-split VRPSD on Cycles
	VRPSD on Cactus Graphs
	Non-split VRPSD on General Graphs
	Discussion
	Conclusion
	References

	On Characterization, Definabilityand ω-Saturated Models
	Introduction
	Basic Definitions
	Characterization
	Definability
	Conclusions and Further Work
	References

	On the Complexity of Szilard Languages of Regulated Grammars
	Introduction
	SZLs of RCGs - Prerequisites
	On the Complexity of SZLs of RCGs
	Remarks on SZLs of RCGs with PS Rules
	On the Complexity of SZLs of Other Regulated Rewriting Grammars
	References

	Energy Games in Multiweighted Automata
	Introduction
	Multiweighted Automata and Games
	Relationship to Petri Nets
	Reductions among Energy Games
	Summary of Complexity Results
	Parameterized Existential Problems
	Extension to Timed Automata
	Conclusion and Future Work
	References

	Intersection Types for the Resource Control Lambda Calculi
	Untyped Resource Control Calculi
	Resource Control Lambda Calculus \rcl
	Resource Control Sequent Lambda Calculus \llG

	Intersection Type Assignment Systems for Resource Control
	Intersection Types for \rcl
	Intersection Types for \llG

	Typability \Rightarrow SN in Both Systems
	Typeability \Rightarrow SN in $\rcl \cap$
	Typeability \Rightarrow SN in $\llG \cap$

	SN \Rightarrow Typability in Both Systems
	SN \Rightarrow Typability in $\rcl \cap$
	SN \Rightarrow Typability in $\llG \cap$

	Conclusions
	References

	Modal Interface Theories for Communication-Safe Component Assemblies
	Introduction
	Interface Languages
	Interface Assemblies
	Modal I/O-Automata for Interface and Assembly Specifications

	Modal I/O-Transition Systems: Basic Definitions
	Modelling Component Systems with MIOs: Example
	Interfaces and Assemblies
	Communication-Safe Assemblies
	Refinement of Interfaces and Assemblies

	Case Study
	Conclusion
	References

	WP Semantics and Behavioral Subtyping
	Introduction
	The Programming Language: Java
	A WP Semantics for Java
	The Assertion Language: OOSL
	The WP Semantics
	Properties
	Soundness and Completeness

	Behavioral Subtyping
	Method Specification and Refinement
	Object Invariant
	Behavioral Subtyping

	Related Work and Conclusion
	References

	Computing Preconditions and Postconditions of While Loops
	Introduction: Preconditions and Postconditions of Loops
	Mathematical Background
	Elements of Relations
	Refinement Ordering
	Lattice Properties

	Invariant Relations
	Loop Semantics
	Invariant Relations

	Weakest Preconditions
	A Relational Formula
	Invariant Relations and Weakest Preconditions
	Illustration: A Larger Example

	Strongest Postconditions
	Relational Definition
	Invariant Relations and Strongest Postconditions
	Illustration: A Larger Example

	Computing Invariant Relations
	Mathematical Foundations
	Scaling Up

	Conclusion: Summary, Comparison and Prospects
	Summary
	Related Work
	Prospects

	References

	A Framework for Instantiating Pedagogic mLearning Objects Applications
	Introduction
	Related Work
	Mobile Learning (MLearning)
	MLearning Objects
	Traditional Learning Theories and MLearning
	The Global eLearning Framework
	MLearning Objects Frameworks

	Methodology
	Results and Discussions
	Raising Awareness of the Problem and Making Suggestions for MoLODUF Dimensions
	Developing the MoLODUF
	Evaluating the MoLODUF

	Instantiating MLearning Objects Deployment and Utilization Applications
	Conclusion and Future Work
	References

	Emulating Primality with Multiset Representations of Natural Numbers
	Introduction
	Encoding Finite Multisets with Primes
	Ranking/Unranking of Sets and Finite Sequences
	Encoding Multisets

	A Bijection between Finite Multisets and Natural Numbers
	Exploring the Analogy between Multiset Decompositions and Factoring
	A Multiset Analog to Multiplication
	Multiset Analogues for div, gcd and lcd
	Multiset Primes
	An Analog to the ``rad'' Function
	Emulating the Möbius and Mertens Functions

	Deriving Automorphisms of N
	Related Work
	Conclusion and Future Work
	References

	Formal Verification of a Lock-Free Stack with Hazard Pointers
	Introduction
	The Hazard Pointers Method
	A Lock-Free Stack with Hazard Pointers
	The Lock-Free Stack
	The Extended Stack

	The Verification Framework
	Interval Temporal Logic
	Symbolic Execution and Induction

	The System Model and the Decomposition Theory
	Verifying the Stack with Hazard Pointers
	Central Properties of Hazard Pointers
	Verification Conditions for the Stack
	The Main Proofs

	Related Work and Comparison
	Summary and Discussion
	References

	Ambiguity of Unary Symmetric Difference NFAs
	Introduction
	Background
	Definition of -NFAs
	Analysis of -NFA Behaviour
	Ambiguity

	Ambiguity of Unary -NFAs
	Other Ambiguity Results
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

