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Abstract The muscarinic cholinergic system constitutes an important part of

the neuronal circuitry that modulates normal cognition. Muscarinic receptor

antagonists are well known to produce or exacerbate impairments in attention,

learning, and memory. Conversely, both direct-acting muscarinic receptor agonists

and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase

inhibitors, have shown cognition-enhancing properties, including improvements in

normal cognitive function, reversal of cognitive deficits induced by muscarinic

receptor antagonists, and attenuation of cognitive deficits in psychiatric and neuro-

logical disorders, such as Alzheimer’s disease and schizophrenia. However, until

recently, the lack of small molecule ligands that antagonize or activate specific

muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has

been a major obstacle in defining the relative contributions of individual mAChRs

to different aspects of cognitive function and for the development of novel thera-

peutic agents. These limitations may be potentially overcome by the recent discov-

ery of novel mAChR subtype-selective compounds, notably allosteric agonists

and positive allosteric modulators, which exhibit greater selectivity for individual

mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies,

these novel ligands have shown promising efficacy in several models for the

enhancement of cognition. In this chapter, we will review the muscarinic
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cholinergic circuitry and pharmacology of mAChR agonists and antagonists rele-

vant to the modulation of different aspects of cognition in animals and clinical

populations.
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Abbreviations

AC Adenylyl cyclase

ACh Acetylcholine

AChEIs Acetylcholinesterase inhibitors

AD Alzheimer’s disease

ADAS-cog Alzheimer’s Disease assessment scale-cognitive

AMG Amygdala

BQCA Benzylquinolone carboxylic acid

cAMP Cyclic adenosine monophosphate

cc Corpus callosum

CGI Clinical Global Impression scale

CNS Central nervous system

CP Caudate-putamen

CSF Cerebrospinal fluid

DA Dopamine

DBB Diagonal band of Broca

EC Entorhinal cortex

EEG Electrocephalogram

EPSC Excitatory postsynaptic current

GABA g-aminobutyric acid

HPC Hippocampus

IP3 Inositol triphosphate

KO Knockout

LDTg Laterodorsal tegmental nucleus

M1–M5 Muscarinic receptor subtypes M1 through M5

mAChRs Muscarinic acetylcholine receptors

(m)PFC (Medial) prefrontal cortex

NAM Negative allosteric modulator

NAS Nucleus accumbens

NBM Nucleus basalis of Meynert

NMDA N-methyl-D-aspartate

OB Olfactory bulb

PAM Positive allosteric modulator

PANSS Positive and negative syndrome scale
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PLC Phospholipase C

PPI Prepulse inhibition

PPTg Pedunculopontine tegmental nucleus

SN Substantia nigra

TBPB 1-(1’-2-methylbenzyl)-1,4’-bipiperidin-4-yl)-1H-benzo[d]

imidazol-2(3H)-one

THAL Thalamus

VTA Ventral tegmental area

WT Wildtype

1 Introduction

Normal cognition requires the coordination of numerous complex processes,

including sensory information processing, sustained and divided attention, short-

and long-term memory, and executive functions. Many neurologic and psychiatric

disorders, including senile dementia, Alzheimer’s disease (AD), and schizophrenia,

are associated with severe impairments in cognitive functions that are directly

correlated with poor social and functional outcomes (Green 1996; Green et al.

2004; Farlow and Cummings 2007).

There is now accumulating evidence that modulation of the muscarinic choli-

nergic system is involved in normal cognitive processes and that imbalances in the

neurotransmission of this system may account, at least in part, for the cognitive

deficits associated with AD and schizophrenia. For example, nonselective muscarinic

acetylcholine receptor (mAChR) antagonists produce or exacerbate impairments in

cognition in animals and in healthy control, normal aging and AD populations

(Domer and Schueler 1960; Pazzagli and Pepeu 1965; Drachman and Leavitt 1974;

Bartus et al. 1982; Sunderland et al. 1986; Newhouse et al. 1988; Rusted and

Warburton 1988). In addition, mAChR antagonists can also induce psychotomimetic-

like symptoms in healthy humans and/or aggravate existing behavioral disturbances

in patients with dementia or psychosis (Osterholm and Camoriano 1982; Agnoli

et al. 1983; Hamborg-Petersen et al. 1984; Strauss et al. 1990). Conversely,

indirect-acting mAChR agonists, such as acetylcholinesterase inhibitors (AChEIs),

and direct-acting mAChR agonists can improve aspects of normal cognitive func-

tion and/or improve cognitive impairments in AD patients, and in animals, they

reverse deficits induced by mAChR antagonism or lesions of cholinergic basal

forebrain circuitry (Aigner and Mishkin 1986; Robbins et al. 1989a, b; Rupniak

et al. 1989, 1991; Matsuoka et al. 1991; Bodick et al. 1997a, b; Cummings 2003;

Shekhar et al 2008). Nonselective mAChR agonists and AChEIs have also

enhanced cognitive performance, particularly in the domains of attention and

memory, in schizophrenic patients (see review in Chouinard et al. 2007; Edelstein

et al. 1981; Shekhar et al. 2008). Taken together, these observations have led to the

hypothesis that selective activators of mAChRs may provide an important alterna-

tive approach for the treatment of the cognitive impairments associated with

neurologic and psychiatric disorders, such as AD and schizophrenia.

Muscarinic Receptor Pharmacology and Circuitry for the Modulation of Cognition 123



However, while AChEIs are clinically approved for the treatment of mild-to-

moderate cognitive dementia associated with AD, the effects of these compounds

on deficits in memory and other cognitive functions remain modest (Amenta et al.

2001). Unfortunately, early clinical studies using direct-acting mAChR agonists for

AD and schizophrenia have ultimately failed in clinical development due to a lack

of true subtype selectivity that resulted in a number of dose-limiting adverse effects

from nonselective activation of peripheral mAChRs (Bruno et al. 1986; Bodick

et al. 1997a, b; Shekhar et al. 2008). The high conservation of the acetylcholine

(ACh) binding site across the five mAChR subtypes has presented a major impedi-

ment to the development of highly selective mAChR orthosteric-site ligands. The

lack of subtype-selective mAChR ligands has also limited insights into the relative

roles of the mAChR subtypes in the different aspects of cognition and the clinical

efficacy observed with the AChEIs and nonselective muscarinic mAChR agonists.

Using an alternative strategy, our group and others have recently identified ligands

formAChRs that activate a specific receptor subtype through action at sites that are less

highly conserved and topographically distinct relative to the orthosteric binding site of

ACh, termed allosteric sites. Allosteric agonists activate the receptor subtype directly

in the absence of the endogenous ligand ACh, while positive allosteric modulators

(PAMs) bind to an allosteric site and potentiate the effects ofACh, but have no intrinsic

activity. Because mAChR PAMs can only exert their effects in the presence of ACh at

a given synapse, these ligands may maintain normal temporal and spatial components

of endogenous ACh neurotransmission. This latter feature may provide an important

advantage in the treatment of cognitive impairments in early stage dementia or

schizophrenia, as recent findings suggest that optimal levels of ACh transmission for

cognition are dynamic and task dependent (Kozak et al. 2006; Hasselmo and Sarter

2011). To date, these novel allosteric activators of the different mAChR subtypes have

shown efficacy in preclinical models for the enhancement of cognition, and possess

suitable physiochemical properties for optimization as potential clinical candidates.

In this chapter, we will provide a brief overview of cholinergic circuitry and

mAChR distribution and function in the central nervous system (CNS). We will

next review the effects of different mAChR antagonists and agonists in preclinical

models of cognition and in clinical populations. Finally, we will highlight recent

developments with novel subtype-selective allosteric agonists and PAMs of M1 and

M4 mAChRs in preclinical models for the enhancement of cognition.

2 Anatomy of the Cholinergic System

2.1 Cholinergic Cell Groups and Their Target Regions

Within the CNS, cholinergic projection neurons are organized into relatively dis-

crete cell groups in the basal forebrain and the caudal mesencephalon. As described

in the seminal work of Mesulam and colleagues (Mesulam et al. 1983), six groups of
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cholinergic projection neurons, termed Ch1–Ch6, can be distinguished based on

their localization and projection pattern (Fig. 1). Cell groups Ch1–Ch4, located in

the basal forebrain of the rat, are thought to be involved in attention, learning, and

memory functions (Everitt and Robbins 1997). The cholinergic neurons of the

nucleus basalis magnocellularis (Ch4), which in primates is known as the nucleus

basalis of Meynert (NBM), provide wide-spread cholinergic projections throughout

most of the cerebral cortex, and degeneration of these neurons is a hallmark of AD

(McGeer et al. 1986). In addition, the Ch4 cells innervate the amygdaloid complex

CP

NAS

OB

a c

b

HPC

Ch1

Ch2

Ch3Ch3

cc

C O R T E X

VTA SN

THAL

AMG

Ch4
Ch5

Ch6

Fig. 1 Schematic diagram illustrating the location of the cholinergic cell groups of the rat brain

and their projections. (a) Sagittal view showing Ch1 (medial septum), Ch2 (vertical limb of the

diagonal band of Broca [DBB]), and Ch3 (horizontal limb of the DBB) and their projections to the

hippocampal formation, cerebral cortex, and olfactory bulb. (b) Sagittal view depicting Ch4

(nucleus basalis magnocellularis) and its projections throughout the cortex and amygdala, as

well as Ch5 (pedunculopontine tegmental nucleus) and Ch6 (laterodorsal tegmental nucleus)

innervating the thalamus, substantia nigra, and ventral tegmental area. (c) Coronal section through

the striatal complex showing large cholinergic interneurons in the dorsal striatum and nucleus

accumbens. Drawings are based on the work of Kimura et al. (1980), Mesulam et al. (1983),

Eckenstein et al. (1988), and Gould et al. (1989). Ch1–Ch6 cholinergic cell groups; AMG
amygdala; cc corpus callosum; CP caudate-putamen (striatum); HPC hippocampus; NAS nucleus

accumbens; OB olfactory bulb; THAL thalamus; SN substantia nigra; VTA ventral tegmental area
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(Mesulam et al. 1983; Price and Stern 1983). Cholinergic neurons in the medial

septum (Ch1) and the vertical limb of the diagonal band of Broca (Ch2) send

projections to the hippocampal formation and to the medial aspects of the cortex,

such as the cingulate and retrosplenial cortices (Eckenstein et al. 1988). The

olfactory bulb is the recipient of cholinergic projections from the Ch3 cell group,

located in the horizontal limb of the diagonal band of Broca. The cholinergic

projection neurons of the caudal midbrain, which are involved in arousal, sleep,

and the regulation of dopaminergic cell groups (Datta and Siwek 1997), are located

in the pedunculopontine tegmental nucleus (PPTg, Ch5) and the laterodorsal teg-

mental nucleus (LDTg, Ch6), from where they project to the thalamus , the pontine

reticular formation, and areas of the ventral midbrain (Mesulam et al. 1983; Satoh

and Fibiger 1986; Clarke et al. 1987; Hallanger et al. 1987; Semba et al. 1990). The

parcellation scheme developed by Mesulam and colleagues (1983) has proven to be

invaluable for conceptualizing the various aspects of cholinergic function. How-

ever, the analysis of forebrain cholinergic function is complicated by the fact that

non-cholinergic projection neurons are embedded in the cholinergic cell groups

(Woolf et al. 1986). Therefore, results from lesion studies targeting the cholinergic

basal forebrain need to be interpreted carefully (see Robbins et al. 1989a, b).

2.2 Regional Distribution of Cholinergic Axons

Dense cholinergic fiber plexus originating from the basal forebrain are seen through-

out neo- and allocortical areas. The laminar distribution of cholinergic fibers varies

slightly across cortical areas, but layer V generally receives themost dense cholinergic

fiber innervation (Eckenstein et al. 1988; Mechawar et al. 2000). The cholinergic

innervation of the hippocampus is most prolific at the border between stratum oriens

and pyramidal layer and in the molecular layer, while the densely packed pyramidal

and granule cell layers themselves receive very little cholinergic input (Ichikawa and

Hirata 1986; Sch€afer et al. 1998). Cholinergic fiber density varies across the nuclei of
the amydaloid complex; the most densely innervated area is the basolateral nucleus

(Hellendall et al. 1986). In subcortical areas, moderate cholinergic innervations are

seen in select thalamic nuclei, including the anteroventral, centromedial, and reticular

nuclei (Gonzalo-Ruiz et al. 1995; Sch€afer et al. 1998), and in the midbrain dopamine

cell groups (Gould et al. 1989; Oakman et al. 1995; Omelchenko and Sesack 2006).

2.3 Striatal Cholinergic Interneurons

The striatal complex, including the nucleus accumbens, does not receive any

extrinsic cholinergic innervation, but instead contains cholinergic interneurons as

the sole source of ACh. These cholinergic interneurons are scattered throughout the

striatal matrix compartment, but are largely absent from striatal patches (Gerfen

and Bolam 2010). Although large cholinergic interneurons make up less than five
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percent of striatal neurons, their wide dendritic arbors enable them to exert control

over a large striatal area (Kimura et al. 1980; Bolam et al. 1984; Phelps et al. 1985).

3 Muscarinic Receptor Distribution

For the purpose of this chapter, we will focus on the well-established distribution of

the five mAChR subtypes in the rodent brain. Our description of the distribution

of mAChRs will be limited to select brain regions that are thought to be involved

in cognition and that either contain cholinergic neurons or receive cholinergic

innervations. These areas include the cerebral cortex, hippocampus, thalamus, the

basal ganglia, and basal forebrain and caudal midbrain cholinergic cell groups.

3.1 Expression of Muscarinic Receptor Message

Distribution maps of M1–M5 mAChR mRNA, obtained by in situ hybridization

histochemistry, show that mAChRs are expressed throughout the rodent brain,

albeit not uniformly (Fig. 2). There are pronounced differences in the overall

expression levels of the five muscarinic receptors, with M1 and M5 receptors

being the most and least abundant receptor subtype, respectively. Moreover, each

muscarinic receptor exhibits a regional expression pattern that is strikingly different

from other members of the muscarinic receptor family (Brann et al. 1988).

The M1 receptor is not only most prominently expressed in the hippocampus,

but is also abundant throughout all layers of the cortex, where the superficial layers

stand out by being more intensely labeled than the remaining layers. Striatal

medium spiny neurons as well as interneurons also express high levels of M1

message (Bernard et al. 1992); caudal to the striatum, subcortical M1 expression

decreases along a rostro-caudal gradient from the diencephalon to the midbrain.

Moderately high M2 receptor expression is found mainly in the brain regions

containing cholinergic cell bodies (Vilaró et al. 1992) as well as in some thalamic

nuclei including the midline, parafascicular, and reticular nuclei. In the hippocam-

pus and cortex, M2 message is sparse; in cortical layer IV, it is completely absent.

The M3 receptor is mainly expressed in the hippocampus and in the cortex, except

for layers III and IV which are mostly devoid of M3 message. Very low levels of

M3 mRNA are seen in the striatum and basal forebrain (Brann et al. 1988). The

highest density of M4 receptors is found in the striatal complex (Vilaró et al. 1991),

followed by allocortical areas, such as the hippocampus and amygdala. Expression

of M4message is relatively high in all layers of the neocortex; like M2, M4 receptor

message is prominently expressed in central cholinergic neurons (Sugaya et al.

1997). The muscarinic receptor with the most restricted expression is M5. It is

found in low abundance in the ventral tegmental area and the pars compacta of the

substantia nigra (Vilaró et al. 1990).
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Fig. 2 Distribution of M1–M5muscarinic receptor mRNA in the mouse brain. This is a composite

of images obtained from the Allen Mouse Brain Atlas (2009) developed by the Allen Institute for

Brain Science (Lein et al. 2007) and available online at http://mouse.brain-map.org. CP caudate-

putamen; HPC hippocampus; NAS nucleus accumbens; PFC prefrontal cortex; SN substantia

nigra; VTA ventral tegmental area
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3.2 Muscarinic Receptor Protein Expression

The global distribution of muscarinic receptor protein was initially assessed using a

monoclonal (M35) pan-muscarinic antibody (van der Zee et al. 1989; for review, see

van der Zee and Keijser 2011). With the development of subtype-selective musca-

rinic receptor antibodies, it became feasible to quantitate levels of receptor protein

in microdissected brain regions (Li et al. 1991; Wall et al. 1991; Yasuda et al. 1993)

and to determine both the cell types expressing certain mAChR subtypes and the

(sub)cellular localization of mAChRs at the light and electron microscopic level

(Levey et al. 1991; Hersch et al. 1994; Hersch and Levey 1995). Immunohistochemical

studies demonstrated that M1–M5 protein distribution corresponds to a large degree

with the mRNA expression maps indicating receptor expression at the soma and

dendritic level. Furthermore, they revealed that muscarinic receptor proteins were

prominently expressed presynaptically as both autoreceptors and heteroceptors

(Table 1).

3.2.1 Cortex

M1, M2, and M4 are the most abundant muscarinic receptor proteins in the cortex

(Levey et al. 1991). M1 protein, expressed in pyramidal cells, is enriched in layers

II/III and VI, whereas M4 is localized in somata of layer II–IV cells. Terminals

located in layer IV and at the border between layers V and VI exhibit strong M2

labeling, which is in agreement with the dense cholinergic innervation of these

cortical layers and the role of M2 as autoreceptor (Eckenstein et al. 1988;

Mechawar et al. 2000).

3.2.2 Hippocampus

The complexity of hippocampal cholinergic circuitry is illuminated by the diverse

pre- and postsynaptic distribution of mAChRs, suggesting an intricate muscarinic

regulation of hippocampal function. Both intrinsic neurons (pyramidal neurons,

granule cells, and interneurons) and terminals originating from basal forebrain and

entorhinal cortex prominently express M1–M4 receptors (see Table 1) (Levey et al.

1995b; Rouse and Levey 1996, 1997, 1998; Rouse et al. 1999, 2000).

3.2.3 Amygdala

Pyramidal neurons in the basolateral amygdala, a limbic region involved in learning

and expression of fear conditioning, prominently express M1 protein (McDonald

and Mascagni 2010).
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3.2.4 Striatum

Approximately eighty percent and close to half of medium spiny neurons, the

principal cell type in the striatum, express M1 and M4 receptor proteins, respec-

tively (Hersch et al. 1994). Interestingly, the M4 receptor is mainly localized to the

medium spiny neurons projecting to the substantia nigra reticulata (Ince et al. 1997),

making M4 an interesting target to alter striatal output pathways differentially. In

contrast, M2 protein is mainly expressed in striatal cholinergic interneurons, where

the M2 receptor subserves the function of an autoreceptor (Hersch et al. 1994;

Hersch and Levey 1995). Presynaptically located M1–M3 receptor proteins are

thought to be localized to corticostriatal (M1/M3) and thalamostriatal (M2/M3)

terminals (Hersch et al. 1994). Overall, the high expression of mAChRs in the

striatum suggests that muscarinic ligand may be useful for modifying striatum-

mediated learning processes, in particular procedural learning (Saint-Cyr et al.

1988; Cayzac et al. 2011).

3.2.5 Thalamus

Expression of mAChR proteins in the thalamus is restricted to M1 and M3 in the

anterodorsal and -ventral nuclei and to M2 in the reticular nucleus (Oda et al. 2001,

2007). The thalamus as an important relay station to the cortex and striatal complex

may, therefore, be subject to muscarinic regulation via M1 and/or M3 mechanisms.

The presence of M2 in the reticular nucleus, whose GABAergic projections inhibit

thalamic relay nuclei, suggests that M2 may play a role in global control of thalamic

output (Cox et al. 1997; Pinault and Deschênes 1998).

3.2.6 Cholinergic Neurons

In the basal forebrain and other cholinergic cell groups, the principal mucarinic

receptor protein is M2, which is located both in cholinergic cell bodies and in

unidentified axon terminals (Levey et al. 1995a).

4 Role of Muscarinic Receptor Subtypes in Cognition

4.1 Findings with mAChR Antagonists and KO Mice

Based on an extensive literature, nonselective mAChR antagonists, such as scopol-

amine, disrupt multiple domains of cognitive function, from sensory information

gating, attention, and memory to higher problem-solving skills in rodents,

monkeys, and humans, as shown in Table 3; also see chemical structures of
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representative mAChR antagonists and their in vitro affinities for the different

mAChR subtypes in Fig. 3 and Table 2, respectively (see Terry et al. 2006; Barak

2009; Klinkenberg and Blokland 2010 for complete reviews). For example, scopol-

amine, trihexyphenidyl, and benztropine produced robust dose-dependent

disruptions of prepulse inhibition (PPI) of the acoustic startle reflex, a model of

sensory information processing, at doses that had no effects on startle response

(Jones and Shannon 2000). Scopolamine markedly decreased accuracy and/or

response rates in the 5-choice serial reaction time task, a preclinical model of

attentional functions used to test rats and monkeys (J€ak€al€a et al. 1992; Callahan

et al. 1993; Jones and Higgins 1995; Higgs et al. 2000; Mirza and Stolerman 2000;

Shannon and Love 2005, 2006; Shannon and Eberle 2006; Spinelli et al. 2006). In

addition, scopolamine induced impairments in attention in humans, including in the

attentional components of the CogState Early Phase Battery and in the digit

vigilance test (Ellis et al. 2006; Fredrickson et al. 2008). With regard to learning

and memory, muscarinic antagonism with scopolamine produced robust deficits in

performance accuracy in numerous memory-related behavioral tasks in rodents and
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monkeys, including spatial memory tasks such as the Morris water maze and radial

arm maze, classic Pavlovian conditioned responding, delayed non-matching to

sample, and object recognition tasks (Buresová et al. 1986; Riekkinen et al. 1990;

Dennes and Barnes 1993; Anagnostaras et al. 1995, 1999; Rudy 1996; Mishima

et al. 2000; Feiro and Gould 2005; Betz et al. 2007; Sheffler et al. 2009; Dietrich

and Jenck 2010). In humans, scopolamine decreased performance accuracy in

measures of visual and verbal learning and item recognition memory tasks

(Sherman et al. 2003; Green et al. 2005; Fredrickson et al. 2008; Thienel et al.

2009). Scopolamine has also been reported to produce impairments in executive

functions, including attentional set-shifting in rats and Groton maze learning in

humans (Chen et al. 2004; Fredrickson et al. 2008). In review of the dose-related

disrupting effects of scopolamine and other nonselective mAChR antagonists, the

interpretation of these effects are clearest in measures of sensory discrimination and

Table 2 Receptor affinities [nM]of orthosteric muscarinic receptor antagonists

Drug Receptor Ligand Species References

M1 M2 M3 M4 M5

Non-selective

Scopolamine 1.1 2 0.4 0.80 2.07 [3H]-QNB Humana Bolden et al. (1992)

Benztropine 0.2 1.4 1.1 1.10 2.8 [3H]-QNB Humana Bolden et al. (1992)

– 244.0 415.0 97.00 53 [3H]-NMS Humana

Dicyclomine 57.0 – – – – [3H]-NMS Rata Buckley et al. (1989)

– 244.0 415.0 97.00 53 [3H]-NMS Humana

Pirenzepine 8.0 270.0 150.0 28.00 170 [3H]-NMS Humana Bolden et al. (1992)

Trihexyphenidyl 1.6 7 6.4 2.60 15.9 [3H]-NMS Humana Bolden et al. (1992)

M1-selective

VU0255035 – 661.0 876.9 – 2362.3 [3H]-NMS Humana Sheffler et al. (2009)

14.9 – – 1177.7 – [3H]-NMS Rata Sheffler et al. (2009)

M2-preferring

AFDX-116 776 105.0 1,660 447.0 4,571 [3H]-NMS Humana Doods et al. (1993)

BIBN-99 1,072 30.0 776.0 174.00 1,445 [3H]-NMS Humana Doods et al. (1993)

SCH57790 112 2.8 29.0 14.00 309 [3H]-QNB Humana Lachowicz et al.

(1999)

M3-preferring

Imidafenacinb,c – 4.1d 0.3e – – – gp Miyachi et al. (1999)

4-DAMP 0.6 3.8 0.5 1.17 1.05 [3H]-NMS Humane D€orje et al. (1991)

M4-preferring

Tropicamide 66.0 50.0d 38.0f – – [3H]-NMS Rat Lazareno et al.

(1990)

– – – 14.00g – [3H]-PIR Rabbit Lazareno et al.

(1990)

gp guinea pig; [3H]-NMS, [3H]-N-methylscopolamine; [3H]-PIR, [3H]-pirenzepine; [3H]-QNB,

[3H]-quinuclinidyl benzylate
bKRP 197; ONO 8025
cEC50 for inhibiting agonist-induced effects on target organ
dHeart
eGut
fSubmandibular gland
gLung
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attentional function, in which deficits are observed within a dose range that does not

produce confounding effects on general motor output and/or levels of arousal as

observed in models of learning and memory.

Recent findings from studies using either mAChR KO mice or antagonists are

providing more defined roles for each of the mAChR subtypes in the modulation of

cognition. In the case of M1 mAChRs, this particular subtype regulates a variety of

physiologic effects in hippocampal and cortical brain regions, most notably

enhancement of glutamatergic signaling through potentiation of N-methyl-D-aspar-

tate (NMDA) receptor function (Marino et al. 1998). Modulation of NMDA

receptor neurotransmission is key for the acquisition and consolidation of new

learning and memories; and its disruption is speculated to account, at least in

part, for the cognitive impairments observed in many neurological and psychiatric

disorders (Marino and Conn 2002; Tsai and Coyle, 2002). Consistent with a role of

M1 in learning and memory, the M1-preferring mAChR antagonist pirenzepine

impaired accuracy and/or acquisition in tasks of passive avoidance, Morris water

maze, and visual discrimination in rats (Fig. 3, Tables 2 and 3) (Hunter and Roberts

1988; Drinkenburg et al. 1995). Moreover, M1 mAChR KO mice have reduced

long-term potentiation in response to theta burst stimulation, a physiologic endpoint

thought to be procognitive in nature (Anagnostaras et al. 2003). In contrast to the

effects of nonselective mAChR antagonists, M1 KO mice have shown normal

performance in hippocampus-mediated tasks, including in the Morris water maze

task with or without scopolamine challenge (Miyakawa et al. 2001), but distinct

impairments in behavioral tasks that require medial prefrontal cortex (mPFC)

function (Anagnostaras et al. 2003). For example, M1 KOmice relative to wild-type

(WT) controls showed pronounced performance deficits in non-matching-to-sample

tasks, including win-shift radial arm maze learning and social discrimination tests

(Anagnostaras et al. 2003). Despite significant enhancement in the acquisition of

contextual fear conditioning, M1 KO mice performed poorly after a time period

when the task becomes independent of hippocampal function (Anagnostaras et al.

2003). In support of these findings, the highly selective M1 mAChR antagonist

VU0255035 (see Fig. 3, Tables 2 and 3) had no effect on acquisition of contextual

fear conditioning, a hippocampus mediated memory task (Sheffler et al. 2009).

Taken together, these studies indicate a consistent role for M1 mAChR in the

modulation of mPFC-mediated tasks, but future studies using the selective M1

mAChR antagonist VU0255035 are needed to further evaluate the effects of selec-

tive disruption of M1 activity in other cognitive functions.

For the role of M2 in cognition, previous studies have postulated that selective

M2 mAChR antagonists may provide improvements in the cognitive deficits

observed in dementia patients by increasing cholinergic signaling through antago-

nism of M2 mAChRs on presynaptic cholinergic terminals (Rouse et al. 2000;

Zhang et al. 2002; Tzavara et al. 2003). Consistent with this hypothesis, the

selective M2 mAChR antagonists, BIBN-99 and SCH57790 (see Fig. 3, Tables 2

and 3) improved performance in the passive avoidance and Morris water maze tasks

in normal and aged rats, and in fixed ratio discrimination in monkeys (Table 3)

(Quirion et al. 1995; Carey et al. 2001; Rowe et al. 2003). However, M2 mAChRs
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also function as heteroceptors localized on the axon terminals of non-cholinergic

neurons that mediate presynaptic regulation of release of other neurotransmitters

(Rouse et al. 2000). Not surprisingly, M2 mAChR KO mice have shown deficits in

tasks of working memory and cognitive flexibility, as well as hippocampal long-

term potentiation, suggesting that blockade of M2mAChRs on both cholinergic and

non-cholinergic nerve terminals may disrupt, not enhance, overall cognitive func-

tion (Tzavara et al. 2003; Seeger et al. 2004). Consistent with the M2 KO mouse

cognitive phenotype AFDX116, another selective M2 mAChR antagonist

decreased accuracy and increased response latencies and omissions in a rodent

visual discrimination task (see Fig. 3, Tables 2 and 3) (Drinkenburg et al. 1995).

Thus, more detailed studies with M2 mAChR antagonists are needed to further

understand the full therapeutic potential of M2 mAChR antagonists for the treat-

ment of clinical populations with varying levels of cholinergic tone.

To date, the relative importance of the M3 mAChR in modulating different

aspects of cognitive function remains undefined. M3 mAChR KO mice have shown

robust impairments in contextual fear conditioning, a classic hippocampus-

mediated memory task (Poulin et al. 2010). However, there are currently no

selective M3 mAChR antagonists reported in the literature, and the M3-preferring

antagonist imidafenacin had no effect on performance in the Morris water maze,

another hippocampus-mediated memory task (Kobayashi et al. 2007) (see Fig. 3,

Tables 2 and 3). Whether selective M3 mAChR activators may have procognitive

properties remains unclear as does the issue whether a viable therapeutic index

could be achieved between activation of central and peripheral M3 mAChRs.

The significance of M4 mAChRs in cognitive functions remains unclear because

of the pre- and postsynaptic localization of M4 mAChRs within the CNS (Levey

et al. 1991; Zang and Creese 1997; Zhang et al. 2002; Tzavara et al. 2004). Previous

in vivo microdialysis studies have shown significant increases in basal midbrain

extracellular ACh concentrations in M4, but not M2 mAChR KO mice (Tzavara

et al. 2004). Moreover, scopolamine-induced increases in midbrain extracellular

ACh concentrations were dampened in the M4 mAChR KO mice (Tzavara et al.

2004). M4 mAChR KO mice also displayed increased DA efflux in response to

psychotomimetics (Tzavara et al. 2004). These findings suggest that activation of

M4 mAChRs may provide feedback control on basal and evoked DA release in the

striatum. The tight regulation of striatal DA and ACh neurotransmission by M4

mAChRs may be critical for cognitive functions, such as procedural learning and

effort-based decision making, tasks that require striatal involvement. Interestingly,

the M4-preferring mAChR antagonist tropicamide disrupted PPI of the acoustic

startle reflex, a task that is dependent on proper mesolimbic DA neurotransmission

(Ukai et al. 2004) (Fig. 3, Tables 2 and 3). Tropicamide administration also resulted

in decreased accuracy in a visuospatial delayed non-matching-to-sample task in rats

(Betz et al. 2007). Studies using selective M4 mAChR agonists and antagonists

need to further dissect the role of M4 mAChRs in other aspects of cognition, as will

be discussed in the allosteric modulator section of this chapter.

With the expression of M5 mAChRs limited to the VTA and substantia nigra

pars compacta, it is not surprising that preliminary studies with M5 mAChR KO
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mice have reported disruptions in the proper regulation of dopaminec-mediated

behavioral tasks (Vilaró et al. 1990; Weiner et al. 1990). In particular, M5 mAChR

KO mice have impaired PPI (Thomsen et al. 2007) and reduced sensitivity to the

effects of different drugs of abuse (Basile et al. 2002; Fink-Jensen et al. 2003;

Yamada et al. 2003; Thomsen et al. 2005; Steidl and Yeomans 2009). While there

are currently no available selective M5 mAChR antagonists, the studies with M5

mAChR KO mice suggest that selective blockade of M5 mAChRs might be useful

for regulating the hyperactivation of mesolimbic dopaminergic circuitry in patients

with schizophrenia. Moreover, the proper function of nonneuronal M5 mAChRs

expressed in the cerebrovasculature that control cerebrovasodilation and blood flow

may also indirectly impact cognitive functions (Yamada et al. 2001; Araya et al.

2006). Vascular pathology has been implicated in AD, and dysfunction in cholin-

ergic control of cerebral blood vessel dilation may contribute, in part, to the

pathophysiology of this disease. Cerebrovascular deficits in M5 mAChR KO

mice are associated with neuronal atrophy and deficits in performance of the

novel object recognition task (Araya et al. 2006), which further support the role

of M5 mAChRs in the modulation of cognitive function through nonneuronal

mechanisms.

4.2 Findings with mAChR Orthosteric Agonists

Over the last 2 decades, the drive to improve cognitive impairments in patient

populations with AD and other dementias has resulted in the development of two

major pharmacologic approaches that modulate mACh neurotransmission, specifi-

cally indirect modulation through the enhancement of general cholinergic tone with

AChEIs and direct modulation by mAChR orthosteric agonists. To date, only the

AChEIs tacrine, donepezil, galantamine, and rivastigmine are clinically approved

for the treatment of cognitive impairments associated with mild-to-moderate AD.

While AChEIs can improve cognitive deficits in dementia patients, their therapeutic

benefits are limited by a short duration of action, dose-limiting side effects,

relatively modest efficacy on memory deficits, and a large population of non-

responders (Pepeu and Giovannini 2010; Birks 2006; Birks and Flicker 2006;

Persson et al. 2009; Hasselmo 2006; Barten and Albright 2008).

As an alternative to the limited clinical utility of AChEIs, considerable efforts

have been focused on the development of highly selective mAChR orthosteric

agonists for the treatment of cognitive impairments in AD; representative chemical

structures for each compound are depicted in Fig. 4 with their in vitro binding

affinities at each mAChR subtype described in Table 4 and highlighted efficacy in

different cognitive tasks shown in Table 5. All of the mAChR agonists presented in

Table 4, including the reported M1-preferring agonist WAY-132983 and the M1/

M4-preferring mAChR agonist xanomeline, exhibit relatively nonselective profiles

of binding affinities across the different mAChR subtypes, underscoring the draw-

back of designing orthosteric site ligands that target the highly conserved ACh
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Table 4 Receptor affinities [nM]of orthosteric muscarinic receptor agonists

Drug Receptor Ligand Species References

M1 M2 M3 M4 M5

Arecoline 29 2.4 43 60 56 [3H]-QNB Human Kim et al. (2003)

Cevimelinea 4,850 854 2,575 1,012 [3H]-QNB Human Loudon et al. (1997)

Milamelineb 2,300 2,400 3,600 3,900 4,300 [3H]-NMS Human Sedman et al. (1995)

Oxotremorine 923 70 881 454 – [3H]-QNB Human Loudon et al. (1997)

RS-86 22,900c 39,200d – – – [3H]-QNB Rat Palacios et al. (1986)

Sabcomelinee 230 204 120 267 – [3H]-QNB Human Loudon et al. (1997)

Talsaclidinef 25,500 7,100 34,000 – – – Human Wienrich et al. (2002)

WAY-132983 17.8 9.4 29.0 10.6 20.0 [3H]-NMS Human Sullivan et al. (2007)

Xanomeline 79.4 125.9 39.8 20.0 39.8 [3H]-QNB Human Watson et al. (1998)

[3H]-QNB, [3H]-quinuclinidyl benzylate
aAF102B
bCL-979, PD-129,409, Ru-35926
cCortex
dBrain stem;
eSB202026
fWAL2014FU
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binding site of the five mAChR subtypes. Due to the relatively nonselective in vitro

binding profiles for each of these mAChR orthosteric agonists, the role(s) of the

different mAChR subtypes in the observed in vivo effects of these compounds

remain unclear. However, as shown in Table 5, the majority of mAChR orthosteric

agonists produced robust reversals of pharmacologic and/or lesion-induced deficits

in different cognitive domains, including sensory information processing, attention,

and various aspects of learning and memory. For example, oxotremorine and

xanomeline reversed deficits in PPI induced by the non-selective mAChR antago-

nist scopolamine and the D1/D2 dopamine receptor agonist apomorphine (Jones

and Shannon 2000; Stanhope et al. 2001; Jones et al. 2005) (Table 5). Cevimeline

improved performance in divided or visuospatial attentional tasks in monkeys

(O’Neill et al. 1999; 2003) (Table 5). In models of learning and memory, the mAChR

agonists milameline, xanomeline, WAY-132983, and cevimeline enhanced perfor-

mance in spatial and delayed nonmatching to sample radial arm maze tasks in

scopolamine-impaired, cholinergic-lesioned, and aged rats (M’Harzi et al. 1995;

Brandeis et al. 1990; Hodges et al. 1999; Bartolomeo et al. 2000) (Table 5). In

addition, oxotremorine and RS-86 reversed disruptions in Morris water maze tasks

induced by hemicholinium-3 (Hagan et al. 1989). Notable nonhuman primate studies

include improved reversal learning in delayed non-matching-to-sample tasks after

administration of mAChR agonists arecoline and RS-86 (Rupniak et al. 1989, 1992)

(Table 5). Moreover, milameline also had effects on cortical EEG parameters consis-

tent with enhanced arousal in monkeys (Schwarz et al. 1999), while sabcolemine and

arecoline induced hippocampal rhythmical slow wave activity, a procognitive bio-

marker, in anesthetized rats (Loudon et al. 1997) (Table 5). Finally, a potential

disease-modifying effect of mAChR agonists in AD has been revealed by clinical

studies with sabcomeline and talsaclidine in which treated AD patients showed

decreases in cerebrospinal fluid (CSF) levels of total Ab or Ab40 and Ab42, indicative
of a reduction in the pro-amyloidogenic processing of the amyloid precursor protein

(Hock et al. 2000, 2003). These data are consistent with earlier studies using another

mAChR agonist, AF102B (Fisher 2007). However, other studies have shown that

decreased CSF Ab42 may predict cognitive decline in AD (Motter et al. 1995;

Galasko et al. 1998; Sunderland et al. 2003; Fagan et al. 2006) and, thus raise the

question which amyloid fraction in CSF may be the most suitable biomarker for

predicting, predicting pro-amyloidogenic processing of amyloid precursor protein in

brain tissue (Motter et al. 1995; Galasko et al. 1998; Sunderland et al. 2003; Fagan

et al. 2006). Future studies are needed to clarify these important issues in the AD

literature. Taken together, there is a robust preclinical, and in some cases clinical,

profile for the efficacy of mAChR agonists in the enhancement of different aspects of

cognition. However, as discussed in the introduction, all of the mAChR orthosteric

agonists described in Table 5 have failed to advance into further clinical development

due to a lack of true subtype selectivity.

Despite the overall clinical failure of mAChR orthosteric agonists, two clinical

studies with the M1/M4-preferring mAChR agonist xanomeline have provided

critical proof-of-concept efficacy for the reversal of cognitive impairments and

behavioral disturbances observed in AD and schizophrenia patients. In a clinical
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trial with mild-to-moderate AD patients, xanomeline improved aspects of cognitive

performance as measured by the Alzheimer’s disease assessment scale cognitive

(ADAS-cog) battery, including spoken language ability, word-finding difficulty in

spontaneous speech, and constructional praxis (i.e., three-dimensional motor

planning and execution) (Bodick et al. 1997a, b). Xanomeline also significantly

improved a number of behavioral disturbances, including agitation, vocal outbursts,

and hallucinations, observed in AD patients (Bodick et al. 1997a, b). In a separate

clinical trial conducted in a small group of treatment refractory schizophrenic

patients, xanomeline produced a significant enhancement in verbal learning and

short-term memory functions, as well as decreased positive symptoms (Shekhar

et al. 2008). The dose-limiting adverse effects observed in the xanomeline treat-

ment groups in both clinical studies, due to the nonselective activation of peripheral

mAChRs, halted further development of this compound.

4.3 Allosteric Agonists and Positive Allosteric Modulators

In recent years, several groups in both academia and industry have pursued a novel

strategy for the discovery of mAChR ligands that stimulate a specific receptor

subtype by targeting sites that are less highly conserved than the orthosteric ACh

binding site, termed allosteric sites (Fig. 5a). As discussed in the following sections,

allosteric activators of mAChRs exhibit high subtype selectivity and different

mechanisms of action in comparison with orthosteric mAChR agonists. For exam-

ple, PAMs of mAChRs exhibit no intrinsic activity at the receptor (Fig. 5b), but can

bind to an allosteric site and potentiate the effects of the endogenous ligand ACh

through enhancement of the affinity of ACh for the orthosteric site and/or increased

coupling efficiency to the G-proteins (Fig. 5c). In contrast, allosteric mAChR

agonists bind to an allosteric site on the receptor and can directly activate the

receptor in the absence of ACh (Christopoulos 2002; Waelbroeck 2003; Conn et al.

2009). Discovery of these novel allosteric mAChR activators is providing exciting

tools for further characterization of the roles of different mAChRs on cognition.

4.3.1 M1 Allosteric Modulators

As shown in Fig. 6, there has been excellent progress in the identification of several

M1 allosteric activators for critical proof-of-concept studies in preclinical models

(see representative chemical structures for the M1 allosteric agonists and PAMs in

Fig. 6 with the in vitro functional potencies at each subtype, if available, described

in Table 6 and highlighted efficacy in different preclinical cognitive tasks shown in

Table 7.

AC-260584 is an analog of the first-generation M1 allosteric mAChR agonist

AC-42 that was shown to have activity through binding at an allosteric site on the

M1 mAChR (Heinrich et al. 2009; Spalding et al. 2002; Langmead et al. 2006).
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Fig. 5 Schematic representation of a muscarinic acetylcholine receptor showing orthosteric and

putative allosteric binding sites and effector mechanisms (a). Each of the five mAChR subtypes is

a seven-transmembrane protein. Allosteric activators bind to sites other than the orthosteric Ach

binding site to activate or potentiate the receptor. Muscarinic receptors are divided into two

functional classes based on G-protein-coupled receptor coupling. M1, M3, and M5 mAChRs

couple to Gq/G11, which results in increased intracellular calcium levels via phospholipase C

activation. M2 and M4 mAChRs couple to Gi/o, resulting in the inhibition of adenylyl cyclase and

ion channels. Unlike orthosteric agonists, PAMs have no intrinsic activity (b). The graph in (c)

illustrates two potential modes of action of PAMs in a cell-based system: affinity modulation

(PAM1) with a resulting leftward shift of the concentration–response curve and efficacy modula-

tion (PAM2) leading to an increase in maximal response. AC adenylyl cyclase; ACh acetylcholine;
cAMP cyclic AMP; IP3 inositol triphosphate; M1–M5 muscarinic cholinergic receptor subtypes

1–5; PAM positive allosteric modulator; PLC phospholipase C
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AC-260584 has been reported to enhance memory functions as assessed in the

novel object recognition and Morris water maze tasks in mice, as well as produce

effects in preclinical models predictive of antipsychotic-like effects (Bradley et al.

2010; Vanover et al. 2008) (Table 7). Unfortunately, interpretation of the in vivo

efficacy of AC-260584 is confounded by off-target effects at dopamine D2, adren-

ergic a1A, and serotonin 5-HT2A receptors (Heinrich et al. 2009). The M1 allosteric

agonist, 77-LH-28-1, is another systemically active AC-42 analog (Langmead et al.
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2008) with high selectivity for M1 and some weak M3 agonist activity (Heinrich

et al. 2009) (see Fig. 6, Tables 6 and 7). Functional and site-directed mutagenesis

studies have established that 77-LH-28-1not only acts as a “bi-topic” agonist that

binds to a site that overlaps with the orthosteric site, but also includes an allosteric

site that modulates affinity of the ACh site (Avlani et al. 2010). Several physiologic

effects thought to potentiate cognition, including increased hippocampal CA1

pyramidal cell firing in vitro and in vivo and induction of synchronous network

activity through increased CA3 hippocampal g oscillations, are increased with 77-

LH-28-1 treatment (Langmead et al. 2008; Buchanan et al. 2010; Jo et al. 2010;

Spencer et al. 2010). Another highly selective AC-42-based compound, Lu

AE51090, reversed delay-dependent memory decay in a Y-maze delayed alterna-

tion paradigm (Sams et al. 2010) (Fig. 6, Tables 6 and 7).

There are now additional second-generation, systemically active and highly

selective M1 allosteric agonists and PAMs that are serving as important tools for

determining the role of selective activation of M1 mAChRs in native tissue

preparations and in animal models of cognition, including the M1 allosteric

agonists TBPB, which is a selective and potent M1 allosteric agonist in recombi-

nant systems (Jones et al. 2008) (Fig. 6, Tables 6 and 7). Site-directed mutagenesis

studies have revealed that point mutations in the ACh binding site that reduce the

activity of orthosteric mAChR agonists at M1 produce no change in the response to

TBPB. A Schild analysis for the blockade of TBPB effects with the orthosteric

mAChR antagonist atropine showed that TBPB interacts with the orthosteric site in

a noncompetitive manner (Jones et al. 2008). Based on an allosteric ternary

complex model for the actions of two molecules that interact with distinct sites

on a receptor, these results collectively suggest that TBPB may act as an allosteric

M1 agonist (Christopoulos and Mitchelson 1997; Jacobson et al. 2010). However,

further studies are warranted as it cannot be ruled out that TBPB may act as a

bi-topic agonist, similar to 77-LH-28-1 (Avlani et al. 2010). In native tissue

preparations, TBPB potentiated NMDA receptor currents in CA1 hippocampal

pyramindal cells, a function that is thought to contribute to the procognitive effects

of mAChR agonists, as described earlier (Jones et al. 2008). In several preclinical

models predictive of antipsychotic-like activity, TBPB produced efficacy at doses

that do not induce the side effects associated with nonselective stimulation of

peripheral mAChRs. More importantly, TBPB reversed apomorphine-induced

deficits in PPI of the acoustic startle reflex and scopolamine-induced impairments

in the acquisition of a hippocampal working memory task, contextual fear condi-

tioning (Kane 2008). In addition, selective activation of M1 by TBPB increased the

non-amyloidogenic processing of the amyloid precursor protein and reduced Ab
formation in vitro, as previously reported with other nonselective mAChR agonists.

These data are consistent with the hypothesis that selective activation of M1

mAChRs may provide both enhancement of cognitive functions and potential

disease-modifying activity for the treatment of symptoms associated with AD.

Finally, VU0357017 represents a highly potent, selective, and systemically

active third-generation M1 allosteric agonist (Lebois et al. 2010) (Fig. 6, Tables 6

and 7). Unlike the other allosteric M1 agonists, VU0357017 activates the M1
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mAChR at a novel allosteric site on the third extracellular loop, instead of within

the seven transmembrane domain (Lebois et al. 2010). This compound potentiated

NMDA receptor currents in slice electrophysiology experiments and blocked sco-

polamine-induced deficits in contextual fear conditioning (Lebois et al. 2010).

4.3.2 M1 Positive Allosteric Modulators

Amajor advance in the development of systemically active and selective M1 PAMs

was the identification and characterization of benzylquinolone carboxylic acid

(BQCA) (Fig. 6). In cell-based systems, BQCA is a potent PAM with a 129-fold

leftward shift of the ACh concentration–response curve with high M1 selectivity

that lacks agonist, potentiator, or antagonist activity at M2–M5 up to 100 mM (Ma

et al. 2009) (Table 6). In addition, BQCA increases the affinity of the M1 mAChR

for ACh, but does not bind at the orthosteric ACh binding site. In native tissue,

BQCA increased mPFC spontaneous excitatory postsynaptic currents (sEPSCs) and

potentiated carbachol-induced effects on sEPSCs frequency, and these effects were

absent in M1 mAChR KO mice (Shirey et al. 2009). With in vivo electrophysio-

logical techniques, BQCA was also shown to enhance firing rates of mPFC neurons

after systemic administration (Shirey et al. 2009) (Table 7). In animal studies,

BQCA reversed scopolamine-induced disruptions of the hippocampus-mediated

memory task of contextual fear conditioning, increased wakefulness, decreased

delta sleep, and restored deficits in mPFC-dependent discrimination reversal

learning in a transgenic mouse that overexpresses a familial AD mutant form of

the amyloid precursor protein (Tg2576 mice) (Ma et al. 2009; Shirey et al. 2009)

(Table 7). Interestingly, BQCA also increased cortical blood flow, a process

previously attributed to M5 mAChR activation based on KO studies (Yamada

et al. 2001, 2003). Taken together, studies with M1 allosteric agonists and PAMs

have demonstrated that selective activation of M1 produces efficacy in preclinical

models of cognitive enhancement similar to the effects observed with other nonse-

lective mAChR agonists, and indicate an important role for M1 activation in

prefrontal cortex-dependent synaptic plasticity and learning.

4.3.3 M4 Positive Allosteric Modulators

There have also been recent developments in the identification of systemically

active M4 PAMs, including LY2033298 and VU0152100 (Chan et al. 2008; Brady

et al. 2008) (see Fig. 6 for chemical structures, and Tables 6 and 7 for in vitro

properties and functional effects, respectively). LY2033298 represents a highly

selective M4 PAM that robustly potentiates the response of ACh through binding at

residue F186 in the third extracellular loop (o3) of the receptor (Nawaratne et al.

2010), but does not directly activate M4 mAChRs. Using rat M4 AChRs (rM4)

membranes in cell-based studies, the in vitro potency of LY2033298 for potentia-

tion of [3H]-oxotremorine-M was decreased by fivefold to sixfold in comparison

with studies using human M4 AChR (hM4) membranes (hM4 EC50 ¼ 8 nM; see
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Table 6). Across all in vivo models tested to date, LY2033298 had no effects when

administered alone, but potentiated the effects of a subthreshold dose of the

nonselective mAChR agonist oxotremorine in the inhibition of conditioned avoid-

ance responding and reversal of apomorphine-induced disruption of the PPI (Chan

et al. 2008; Leach et al. 2010; Suratman et al. 2011). The observed lower potency of

LY2033298 at the rat M4 mAChR has been postulated to account for the lack of

efficacy observed in animal models with the LY2033298 alone.

More recently, another highly selective, systemically active M4 mAChR PAM,

VU0152100, with a 30- to 70-fold leftward shift in the ACh response was discov-

ered (Brady et al. 2008) (Fig. 6). VU0152100 exhibits high mAChR subtype

selectivity for M4 (see Table 6) relative to the other mAChRs and 15 other

GPCRs that are highly expressed in the brain (Brady et al. 2008), and increases

M4 mAChR receptor affinity for ACh without competing for the orthosteric ACh

binding site (Brady et al. 2008). In preclinical studies, VU0152100 reversed

amphetamine-induced hyperlocomotion and disruptions in the acquisition of con-

textual fear conditioning (Byun et al. 2011). Interestingly, these findings suggest

that there is sufficient endogenous ACh tone to potentiate cholinergic responses

when VU0152100 is administered alone. Although preliminary, these studies using

selective M4 mAChR PAMs indicate that selective activation of M4 mAChRs

produces efficacy in preclinical models predictive of antipsychosis-like activity

comparable to the effects observed with xanomeline and other mAChR agonists

and hint at some potential cognition enhancing effects.

5 Summary

Converging findings with subtype-selective mAChR activators and mAChR

antagonists and KO mice are providing important validation for the role of the

muscarinic cholinergic system in the modulation of normal cognitive functions

and in the potential reversal of cognitive deficits observed in neurologic and psy-

chiatric disorders, including AD and schizophrenia. Discovery of the novel sub-

type-selective mAChR ligands is also providing critical tools to better understand

the relative roles of the mAChR subtypes in the different aspects of cognition and in

the observed efficacy with AChEIs and orthosteric mAChR agonists. To date,

selective M1 and M4 allosteric agonists and/or PAMs are providing the most

promising preclinical data for the potential treatment of cognitive impairments

and behavioral disturbance associated with dementia or schizophrenia.
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