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Abstract There has been great interest in the structure–function relationships

of the muscarinic acetylcholine receptors (mAChRs) because these prototypical

Family A/class 1 G protein-coupled receptors (GPCRs) are attractive therapeutic

targets for both peripheral and central nervous system disorders. A multitude of

drugs that act at the mAChRs have been identified over the years, but many of these

show minimal selectivity for any one of the five mAChR subtypes over the others,

which has hampered their development into therapeutics due to adverse side effects.

The lack of drug specificity is primarily due to high sequence similarity in this

family of receptor, especially in the orthosteric binding pocket. Thus, there remains

an ongoing need for a molecular understanding of how mAChRs bind their ligands,

and how selectivity in binding and activation can be achieved. Unfortunately, there

remains a paucity of solved high-resolution structures of GPCRs, including the

mAChRs, and thus most of our knowledge of structure–function mechanisms

related to this receptor family to date has been obtained indirectly through

approaches such as mutagenesis. Nonetheless, such studies have revealed a wealth

of information that has led to novel insights and may be used to guide future rational

drug design campaigns.
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1 Introduction

GPCRs comprise the largest family of membrane proteins in mammalian organisms

(Fredriksson et al. 2003) and respond to a wide range of endogenous and exogenous

ligands. Mammalian GPCRs are divided into three main classes based on similarities

in their amino acid sequence (Foord et al. 2005). Family A (or class 1) GPCRs, which

include the mAChRs, share sequence similarity to rhodopsin; Family B (class 2)

GPCRs to secretin receptors; Family C (class 3) GPCRs to metabotropic glutamate

receptors. Less than 10% of these three GPCR families already constitute the targets

of approximately 30% of all drugs on the market (Harmar et al. 2009; Hopkins and

Groom 2002) and, thus, there is ongoing incentive in understanding how the amino

acid sequence of these proteins relates to their function and three-dimensional

structure in order to facilitate drug discovery. The characteristic structural feature

of all these receptors is the presence of an extracellular N-terminal region, intracellu-

lar C-terminal region and seven transmembrane (TM)-spanning a-helical domains

connected by three extracellular and three intracellular loops. However, until very

recently, detailed three-dimensional structural information on GPCRs has been

hampered by difficulties in obtaining high-resolution crystal structures of these

receptors. This is because they are highly unstable upon removal from their membra-

nous environment and also because they dynamically isomerize between multiple

conformations, both of which hinder the crystallization process (Congreve and

Marshall 2010). To date, crystallization efforts have been successful for only a few

GPCRs; rhodopsin (Palczewski et al. 2000), the b1 (Warne et al. 2008) and

b2 (Cherezov et al. 2007; Rasmussen et al. 2007; Rosenbaum et al. 2007) adrenergic

receptors (b-ARs), and the A2A adenosine receptor (Jaakola et al. 2008).1 As a

consequence, computational approaches, such as homology modeling and associated

methods, are the mainstay of rationalizing structural information derived at other

GPCRs, such as the mAChR family. However, molecular models, in and of them-

selves, have only limited utility if not used in conjunction with molecular and

biophysical techniques that can help to refine our structural and functional under-

standing of a protein. In this regard, the mAChRs remain a prototypical Family A

GPCR model system that has been extensively explored by site-directed mutagenesis

and related approaches, which is the focus of this chapter.

2 Amino Acids That Are Essential for Stabilization

of the Receptor Structure

Substitution of amino acids that are essential for the structural stability and folding

of a protein can lead to impairment in its assembly, maturation, and/or trafficking.

In the mAChRs, substitutions of certain amino acid residues that are conserved

1At the time of writing, the crystal structures of antagonist-bound chemokine CXCR4 and

dopamine D3 receptors have been solved but not published.
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across all five mAChR subtypes cause a reduction in receptor expression, in

particular mutation of Asp2.50, Leu3.43, Asp3.49, Tyr3.51, Trp4.50, and Pro7.50

(Hulme et al. 2001, 2003a; Lu et al. 1997, 2001; Lu and Hulme 1999) [numbering

in superscript corresponds to the Ballesteros–Weinstein system (Ballesteros et al.

1995)]. In fact, these residues are highly conserved throughout the TM domains of

Family A GPCRs and thus likely serve an important role in maintaining the overall

helical structure of these receptors. For instance, in the rhodopsin X-ray crystal

structure, Asp2.50 interacts with Asn1.50 and Asn7.49 in a hydrogen-bonded network

of residues mediated by water molecules that may assist in the initial folding of the

receptor, whilst at later stages of the receptor lifetime these residues are implicated

in signaling cascades. Asp3.49 and Tyr3.51 are two additional residues that are

essential for the function of the majority of Family A GPCRs. In the mAChRs,

only His, Asn, or Glu substitutions are tolerated at the position of Asp3.49, although

even in these instances receptor expression levels are reduced. Substitution

with any other amino acid at this position generally results in undetectable levels

of radioligand binding (Lu et al. 1997), suggesting that this residue is critical for

maintaining a receptor conformation able to bind ligand.

In addition to traditional approaches that have relied on rationally guided

systematic mutagenesis of the mAChR, a more recent, higher-throughput, random

mutagenesis study identified a number of additional mutations that profoundly

affected the expression of the M3 mAChR (Li et al. 2007a), suggesting that there

remains much to be learned about the structural determinants of mAChR stability
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Fig. 1 Snake diagram of the M3 mAChR. Residues labeled within the black circles indicate

amino acids that have been implicated in the control of receptor expression
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and expression. Many of these substitutions were for proline or charged amino

acids, which are likely to disrupt important interactions that are essential for the

folding of the receptor, including Thr1.46Pro, Ile1.51Asn, Leu1.52Pro, Ile1.54Asn,

Ala2.47Pro, Val2.55Asp, Cys140Gly, Ile3.31Asp, Val3.34Glu, Leu4.48Pro, Cys220Ser,

Thr6.49Asn, Leu6.56Pro, Leu6.56Gln, Leu7.41Pro, and Leu7.55Pro (Fig. 1). Interest-

ingly, mapping these positions onto models of the mAChR revealed that they are

adjacent, in either 2D or 3D space, to conserved residues and may affect their local

environment. In contrast to the above mutations, another series of positions

(Met4.43, Leu4.46, Leu4.49, Ala4.58, Phe4.61, and Thr7.47) have also been shown to

contribute to receptor conformation(s) that can result in an increase in the amount of

cell surface expression.

3 Elucidation of the mAChR Orthosteric Binding Site

A wide range of structurally diverse ligands bind to the orthosteric site of GPCRs

and, as such, a number of different domains may potentially form the ligand binding

pocket, depending on the receptor. To date the high-resolution X-ray crystal

structures for orthosteric inverse agonist-bound rhodopsin, the b1- and b2-ARs,
and the A2A adenosine receptor, have all been solved (Palczewski et al. 2000;

Cherezov et al. 2007; Rasmussen et al. 2007; Jaakola et al. 2008). Rhodopsin is not

a typical GPCR in that its ligand, 11-cis-retinal, is covalently bound to Lys7.43 via

a Schiff base in the inactive form of the receptor. 11-cis-retinal also makes a

number of additional contacts within the receptor that contribute to a binding

pocket that shares similarities with the orthosteric binding site in the b-ARs
(Rasmussen et al. 2007), being comprised of residues positioned predominantly

in TMIII, TMV, and TMVI. Residues that form the binding crevice in rhodopsin

and the b-ARs include 3.28, 3.29, 3.32, 3.33, 3.35, 3.36, 3.37, 5.41, 5.42, 5.43, 5.46,
5.47, 6.44, 6.48, 6.51, 6.52, 6.55, 7.35, 7.39, and 7.40. In contrast, the binding site

for the A2A receptor antagonist, ZM241385, is somewhat different and involves

residues predominantly located in TMII, TMVI, and TMVII (Jaakola et al. 2008).

Mutagenesis data support the hypothesis that the orthosteric binding site in

mAChRs closely resembles that of rhodopsin and the b-ARs. Some of the first

studies that investigated the location of the ACh binding site in mAChRs involved

propylbenzilylcholine and acetylcholine mustards. These alkylating agents were

used to highlight an important interaction that occurs between the common ammo-

nium moiety that exists in all biogenic amines and Asp3.32 (Curtis et al. 1989;

Spalding et al. 1994; Kurtenbach et al. 1990), conserved within TMIII of the

biogenic amine receptors. A series of site-directed mutagenic studies have since

identified additional amino acids that are equally critical for the binding of ACh to

the mAChRs (Lu et al. 2001; Wess et al. 1991; Ward et al. 1999). Generation of a

homology model of the M1 mAChR based on the structure of bovine rhodopsin has

predicted residues that most probably form direct contact points for ACh (Fig. 2a),

including five residues in particular: Tyr3.33, Thr5.39, Thr5.42, Tyr6.51, and Tyr7.39
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Fig. 2 The orthosteric binding pocket of mAChRs. A homology model of the M2 mAChR was

constructed using the crystal structure of the inactive-state b2 adrenergic receptor as a template.

Docking of (a) ACh or (b) NMS was performed and the key residues contributing to the respective

pockets are also indicated
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(Hulme et al. 2003a, b). Further residues that have been implicated in the binding of

ACh have also been identified as Trp3.28, Leu3.29, Ser3.36, Asn3.37, Trp4.50, Ser4.53,

Trp4.57, Ala5.46, Leu6.56, Cys7.42, and Tyr7.43 (Hulme et al. 2003a, b; Lu et al. 2001;

Hulme and Lu 1998). However, visual inspection of homology models of the

mAChR suggests that some of these amino acids lie outside of the orthosteric site

and may thus affect the route of entry for the ligand into its main binding site

crevice.

Many of the residues that are essential for ACh binding are equally as important

for the binding of inverse agonists/antagonists such as N-methyl scopolamine

(NMS), quinuclidinyl benzilate (QNB) and atropine to the mAChRs (Fig. 2b),

although some subtle differences have been observed with regards to amino acids

that contribute to the binding of these different ligands. For instance, although

Asn6.52 is predicted to face into the ligand binding pocket and is important for the

binding of atropine and NMS (Ward et al. 1999; Bluml et al. 1994a), it has a lesser

role in ACh and QNB binding (Bluml et al. 1994a). Similarly, the binding of QNB

is not significantly affected by substitution of Tyr6.51 (Ward et al. 1999), Tyr7.39,

Cys7.42, or Tyr7.43 (Lu et al. 2001). Phe5.47, on the other hand, which does not

appear to interact with ACh and QNB, has been predicted to lie in close proximity

to NMS and may be positioned at the very bottom of the NMS binding site, which

extends deeper into the helical bundle than the ACh binding site (Goodwin et al.

2007). Thus, different ligands clearly form molecular interactions with different

amino acid residues.

In addition to the role of the TM domains in binding orthosteric ligands, there is

some evidence that the extracellular domains of the mAChRs may contribute

structural stability to the orthosteric binding site. Family A GPCRs possess two

conserved cysteine residues that form a disulfide bond between the extracellular

portion of TMIII and the second extracellular loop of the receptors. In rhodopsin,

part of the second extracellular loop folds into the center of the helical bundle, with

Glu181 (residues that lie outside the TM domains are indicated by their amino

acid position) orientated toward 11-cis-retinal (Palczewski et al. 2000). Similarly,

Thr5.34 at the junction of TMV and the second extracellular loop in the b1-AR is

directed toward the ligand binding pocket, suggesting that this extracellular region

may form a “cap” to that pocket. Thus, in most mAChR structural models that are

based on homology with rhodopsin or the b-ARs, the second extracellular loop

of these receptors defines a boundary of the orthosteric binding site that forms a

lid-like structure over the top of the crevice. Although substitution of amino acid

residues in the second extracellular loop does not significantly alter the binding

affinity of prototypical orthosteric ligands, restriction of flexibility of this region

in the M2 mAChR (via engineering of an additional disulfide bond) was shown to

substantially hinder the access of ligands such as NMS and ACh to the orthosteric

binding site (Avlani et al. 2007). Residues that lie in close proximity to the cysteine

residues responsible for the conserved disulfide bond have additionally been

implicated in regulating the access of orthosteric ligands into the binding pocket.

For instance, substitution of Asp3.26 reduces the binding of orthosteric ligands such

as ACh, QNB, and NMS (Goodwin et al. 2007). It has been speculated that this
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residue may be involved in the initial contact of positively charged orthosteric

muscarinic ligands with their receptors before they enter into the main binding site

(Lu et al. 2001; Goodwin et al. 2007; Jakubik et al. 2000). Structural predictions

of the M1 mAChR suggest that Ser4.53, Trp4.57, and Ile4.61 lie in close proximity to

Asp3.26 and may also act to form this “peripheral” binding site (Lu et al. 2001).

The boundary between the top extracellular portion of TMII and the first

extracellular loop in the mAChRs has also been implicated in the binding affinity

of orthosteric ligands, with substitution of Trp99 in the M1 mAChR for Ala or Phe,

or the equivalent Trp133 for Gly in the M3 mAChR, significantly reducing the

binding affinity of ACh, NMS, and QNB (Li et al. 2007a; Matsui et al. 1995;

Avlani et al. 2010). Similarly, mutation of Asn2.68 Ile at the junction of TMII and

the first extracellular loop in the M3 mAChR results in a reduction in the binding of

[3H]NMS (Li et al. 2007a). Interestingly, recent in silico studies have suggested that

the extracellular loops can have a strong influence on how TM helices pack together

and, as such, perturbation of the extracellular loops may have an additional effect

on the fine packing in the TM helices; it is thus possible that effects of extracellular

loop mutations on orthosteric ligand binding may reflect such indirect perturbations

of the orthosteric pocket.

4 Elucidation of mAChR Allosteric Binding Sites

In addition to the orthosteric binding site, it is now well established that GPCRs

can possess topographically distinct allosteric sites (May et al. 2007a). Indeed,

studies of the phenomenon at the mAChRs represent the earliest known examples in

the field, dating back to the late 1960s and early 1970s when investigators described

noncompetitive interactions between orthosteric mAChR agonists and the neuro-

muscular blocking agent, gallamine, or certain alkane-bis-ammonium compounds,

exemplified by C7/3-phth (Clark and Mitchelson 1976; Lullmann et al. 1969). Since

that time, the actions of additional allosteric mAChR modulators have been

characterized (Stockton et al. 1983; Lazareno and Birdsall 1995; Lazareno et al.

1998). Although beyond the scope of this chapter, it should be noted that there now

exists a relatively rich, and expanding, allosteric pharmacology around the

mAChRs, including prototypical negative allosteric modulators, such as gallamine

and C7/3-phth, as well as positive modulators of ACh, such as brucine and BQCA at

the M1 mAChR, LY2033298 at the M4 mAChR, and VU0238429 at the M5

mAChR (Lazareno et al. 1998; Birdsall et al. 1999; Chan et al. 2008; Gharagozloo

et al. 1999; Leach et al. 2010; Ma et al. 2009; May et al. 2007b). In recent years,

a number of putative allosteric agonists, which can activate the receptor in their

own right, have also been identified (Chan et al. 2008; Leach et al. 2010; Ma et al.

2009; May et al. 2007b; Nawaratne et al. 2008; Jones et al. 2008; Langmead et al.

2006; Spalding et al. 2006; Sur et al. 2003; Thomas et al. 2008; Bridges et al. 2009).

There is compelling pharmacological evidence indicating that there are at

least two allosteric binding sites on the mAChRs that can be targeted by small
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molecule ligands. The best characterized site, referred to herein as the “prototypical

modulator site,” recognizes compounds such as gallamine, C7/3-phth, brucine and

alcuronium, whereas the “second” allosteric site binds certain indolocarbazoles and

the benzimidazole analogs, WIN 51,708 and WIN 62,577 (Lazareno et al. 2000;

Lanzafame et al. 2006). To date, all mutagenesis studies of mAChR allosteric

binding sites have focused on the prototypical modulator site, which is believed

to comprise epitopes that are more extracellularly located than those within the

TM-bound orthosteric pocket. The location of the “second” allosteric site is

currently unknown, although a molecular modeling study has suggested an intra-

cellular location (Espinoza-Fonseca and Trujillo-Ferrara 2005, 2006).

Given that many prototypical modulators interact with all five mAChR subtypes,

it is likely that some conserved residues may be involved in their actions. An early

study at the M1 mAChR proposed that Trp3.28 and Trp7.35, which lie at the

extracellular end of TMIII and TMVII, respectively, may serve such a role, at

least with respect to the binding of gallamine (Matsui et al. 1995). However,

another key aspect of allosteric modulator action is that these compounds typically

display greater degrees of selectivity across mAChR subtypes than do orthosteric

ligands, and thus nonconserved amino acids must also contribute to modulator

binding and/or actions. For example, gallamine binds with higher affinity to the

M2 mAChR than to the other mAChR subtypes and this preference has been

attributed, in part, to the interaction of gallamine with residues located in the

second extracellular loop of the M2 mAChR, predominantly Tyr177 and to a lesser

degree 172Glu-Asp-Gly-Glu175, as well as residues at the junction of the third

extracellular loop and the top of TMVII, namely Asn7.32, Trp7.35, and Thr7.36

(May et al. 2007b; Voigtlander et al. 2003; Huang et al. 2005; Prilla et al. 2006;

Valant et al. 2008). Similarly, in the M4 mAChR, Ser7.36 has been implicated in

gallamine binding (Buller et al. 2002), whilst Glu7.32 in the M1 mAChR has been

implicated in the transmission of positive cooperativity between brucine and ACh

(Stewart et al. 2010).

The binding site for the allosteric modulator/agonist, LY2033298, may also

overlap with the prototypical allosteric site, because the interaction between

LY2033298 and C7/3-phth appears competitive (Leach et al. 2010). In support of

this hypothesis, alanine substitution of Phe186 in the second extracellular loop of the

M4 mAChR, which corresponds to Tyr177 in the M2 mAChR, markedly attenuates

the binding of LY2033298 (Nawaratne et al. 2010). Interestingly, the equivalent

position in the M1 and M3 mAChRs is also an aromatic residue, suggesting that

aromaticity is an important characteristic in this region of the second extracellular

loop of most mAChRs. Moreover, alanine substitution of the Tyr in this position of

the M1 mAChR extracellular loop greatly diminished the potency of BQCA as an

allosteric modulator of ACh (Ma et al. 2009). Also in agreement with prior studies

on the M1 mAChR that focused on gallamine, substitution of the conserved Trp3.28

and Leu3.29 in the M4 mAChR with alanine decreased the affinity of both C7/3-phth

and LY2033298 (Leach et al. 2011). However, alanine substitution of Asp7.32 in the

M4 mAChR to the corresponding Asn7.32 in the M2 mAChR had no significant

effect on the binding affinity of LY2033298 (Chan et al. 2008). Similarly, mutation
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of Ser7.36 (M4 mAChR) to the corresponding Thr7.36 in the M2 mAChR did not alter

the interaction between LY2033298 and ACh (Chan et al. 2008). Thus, as with

orthosteric ligands, it appears that allosteric ligands can recognize a common site

but, nonetheless, adopt different poses within that site such that they display

differential sensitivity to specific mutations.

More recently, a novel class of ligand has been described that can bridge both
orthosteric and allosteric sites concomitantly. Such ligands have been termed

“bitopic,” and it is possible that a number of putative “allosteric agonists” may

actually fall into this category (Voigtlander et al. 2003). A good example of this

phenomenon has been noted with the functionally selective mAChR agonist,

McN-A-343. Although exhibiting many properties commensurate with a competi-

tive (orthosteric) mode of action, there have been provocative examples in

the literature to suggest that McN-A-343 can also interact allosterically with

the M2 mAChR (May et al. 2007b; Birdsall et al. 1983; Waelbroeck 1994).

A subsequent study revealed that the molecule is actually a hybrid composed of

orthosteric (trimethylammonium) and allosteric (3-chorophenylcarbamate)

moieties (Lanzafame et al. 2006), thus providing a possible explanation of previous

studies; depending on the experimental conditions, McN-A-343 can adopt a binding

pose that bridges both orthosteric and allosteric sites (Fig. 3) or a second pose

that only interacts allosterically with a prebound orthosteric ligand. Importantly,

TM2

Tyr177

Asp3.32

TM1
TM7

TM4

TM5

TM3

TM6

Fig. 3 A possible bitopic binding mode for McN-A-343 at the M2 mAChR. Two key residues

affecting the actions of the agonist in the orthosteric (Asp3.32) and allosteric (Tyr177) pockets are

highlighted. Coordinates taken from Valant et al. (2008)
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the binding of McN-A-343 is sensitive to mutation of both the key orthosteric

site residue, Asp3.32, and key allosteric site residue, Tyr177, in the M2 mAChR

(May et al. 2007b; Valant et al. 2008).

Similarly to McN-A-343, there is some evidence that the putative allosteric

agonists, AC-42 and its congener 77-LH-28-1, may also bridge both the orthosteric

and allosteric binding sites at the M1 mAChR, and thus are better classed as bitopic,

rather than allosteric, agonists. Although the binding of AC-42 is relatively insen-

sitive to orthosteric site mutations at Tyr3.33 and Tyr6.51 (Spalding et al. 2002,

2006), recent studies have suggested that AC-42 and 77-LH-28-1 could still interact

with the key orthosteric site residue, Asp3.32, but bind with a significantly different

pose to prototypical orthosteric agonists (Lebon et al. 2009). In agreement with this

model, the binding affinity of AC-42 is decreased by mutation of Leu3.29, whilst that

of AC-42 and 77-LH-28-1 is increased by Ala substitution of Trp3.28 (Avlani et al.

2010; Spalding et al. 2006; Gregory et al. 2010), indicating that they interact with

a region that may border the orthosteric and allosteric binding sites. To accommo-

date this binding mode, it has been proposed that Trp3.28, which would normally

face toward the center of the helical bundle, may “flip” outwards and be stabilized

by Phe2.56 in the M1 mAChR, which is located on the external side of TMII

(Avlani et al. 2010).

Collectively, these recent studies of bitopic ligands highlight a number of impor-

tant considerations. First, it is possible that ligands previously classed as “functionally

selective” may achieve such selectivity as a consequence of a bitopic mechanism of

action. Second, caution must be exercised when classifying any novel agonist as

“allosteric,” unless rigorous pharmacological data are available to suggest that such

a compound’s agonism indeed arises directly from an interaction with an allosteric

site (and not the orthosteric site, as would be expected for a bitopic ligand). Third, it

should be possible to rationally design bitopic ligands by purposefully utilizing

appropriate orthosteric and allosteric fragments joined together by an optimal

linker. A number of recent elegant studies have indeed provided proof of concept

for this approach (Disingrini et al. 2006; Steinfeld et al. 2007; Antony et al. 2009).

5 Effects of Mutations on Signaling

The molecular details underlying the activation mechanisms of GPCRs remain

largely unknown, and thus represent a major ongoing field of research. Much of

the problem lies with the fact that GPCRs are highly dynamic proteins that can

adopt multiple active states, each associated with different intracellular interacting

partners and functional outcomes. Thus, any interpretation of mutational studies on

GPCR signaling must be tempered by the fact that it will be influenced by the

choice of functional assay used as a measure of receptor activation.

In general, ACh binding is predicted to initially elicit conformational changes

in the mAChRs that result in a reduced pocket volume between key residues,
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specifically Tyr3.33, Thr5.39, Thr5.42, Tyr6.51, and Tyr7.39, that surround the bound

ligand (Lu et al. 2002). Not surprisingly therefore, substitutions of these amino

acids result in reduced ACh efficacy (Lu et al. 2001; Nawaratne et al. 2010; Gregory

et al. 2010; Spalding et al. 1998). However, the efficacy of other agonists need not

be affected by mutation of some or all of these residues, as they are likely to adopt

differing poses to ACh, depending on their structures. Recent disulfide cross-

linking experiments performed on the rat M3 mAChR also indicated that Ser3.36

and Cys7.42 lie in close proximity when the receptor is in an active conformation

(Han et al. 2005a), consistent with movement of residues that point into the

orthosteric binding pocket toward one another. Ser3.36 is predicted to face directly

into the core of the orthosteric binding pocket thus it may serve as a secondary

contact point for ACh when receptor activation is triggered. Indeed, substitution of

Ser3.36 for Ala in the M1 (Lu and Hulme 1999), M2 (Gregory et al. 2010), and M4

mAChRs (Leach et al. 2011) leads to a large attenuation in the signaling of ACh and

other agonists.

The movement of key “inner shell” residues toward ACh causes a reorientation

of amino acids located in TMVII, in particular those located in the highly conserved

Asn7.49-Pro7.50-X-Cys7.52-Tyr7.53 motif, which mediates a large conformational

change at the intracellular end of TMVII. Agonist binding triggers movement of

Tyr7.53 toward Val1.53, whilst residues in TMVII that are predicted to face the lipid

bilayer move opposite TMI, suggesting a rotational movement of the cytoplasmic

end of TMVII (Han et al. 2005b) and concomitant movement of helix VIII away

from TMI (Li et al. 2007b). An M1 model based on homology with rhodopsin

predicted that the Asn7.49-Pro7.50-X-Cys7.52-Tyr7.53 motif constrains the inactive

receptor conformation by forming a network of hydrogen bonds that connect

TMVII to TMI, TMII, and TMIII (Lu et al. 2001). In support of this, Ala substitu-

tion of Asn7.49, Pro7.50, and Tyr7.53 increases the affinity of ACh for the M1 mAChR

(Lu et al. 2001). However, although Asn7.49 interacts with Thr6.43 and Asp6.44 in the

inactive state of rhodopsin, an interaction between Asn7.49 and Asp2.50 is observed

in opsin through crystal waters (Urizar et al. 2005), suggesting that this residue

forms new contacts upon receptor activation that are important for the stability of

the active receptor state. An identical interaction seems likely in the M1 mAChR

(Bee and Hulme 2007), and the significant reduction in agonist efficacy following

mutation of Asn7.49 in the mAChRs confirms that this residue is indeed important

for stabilizing an active receptor conformation.

In conjunction with the conformational changes associated with TMVII, reloca-

tion of the bottom of TMVI away from the helical bundle and toward TMV takes

place upon receptor activation. The crystal structures of rhodopsin and opsin show

significant differences in the position of TMVI relative to TMIII (Palczewski et al.

2000; Park et al. 2008), particularly within the regions that comprise the retinal

binding pocket. The movement of TMVI is driven, in part, by alterations in a region

that contains an aromatic cluster of amino acids (Cys6.47-Trp6.48-Leu6.49-Pro6.50-

Tyr6.51-Ala6.52 in rhodopsin) located toward the extracellular portion of TMVI

(Ruprecht et al. 2004). This leads to the development of a kink at the highly

conserved Pro6.50, which causes the cytoplasmic end of TMVI to tilt away from
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the center of the helical bundle (Park et al. 2008). In the mAChRs, mutations in the

Thr6.47-Trp6.48-Thr/Ala6.49-Pro6.50-Tyr6.51-Asn6.52 motif lead to reduced agonist

efficacy or nonfunctional receptors (Spalding et al. 1998; Wess et al. 1992), as do

substitutions at surrounding residues, including Lys6.29, Ala6.34 and Ser6.38 in the

M3 mAChR and Val6.55 and Val6.57, Val6.59 in the M3 and M5 mAChRs (Spalding

et al. 1998; Schmidt et al. 2003). In contrast, mutations at other residues in TMVI,

including Glu6.30 in the M1 mAChR, Gln6.35 in the M3 mAChR and Ile6.40, Ala6.43,

Phe6.44, and Ser6.58 in the M5 mAChR, result in constitutive activity (Spalding et al.

1998; Schmidt et al. 2003; Hogger et al. 1995), suggesting that these residues help

to stabilize the ground state of the receptor. Overall, these observations highlight

the importance of the cytoplasmic end of TMVI in mAChR activation.

Substitution of conserved amino acids throughout TMIII, TMIV, and TMV,

including Asp3.26, Asp3.32, Ile3.46, Trp4.57, Pro4.59, Thr5.37, Ile5.38, Ala5.46, and Ile5.61

can have particularly detrimental effects on agonist efficacy (Lu and Hulme 1999;

Nawaratne et al. 2010; Spalding et al. 1998; Schmidt et al. 2003; Lu and Hulme

2000; Page et al. 1995). However, Pro4.59 is predicted to face into the lipid bilayer

(Wess et al. 1991), thus the effect of mutations at this position may be indirect. In

the M1 mAChR, Ala substitution of Trp3.28 also greatly reduces the signaling

efficacy of ACh (Lu and Hulme 1999).

More recently, a number of mutations that disrupt the function of the M3

mAChR were identified in TMI and TMII, including mutations at Thr1.46, Ile1.47,

Asn1.50, Val1.53, Asn1.60, Asn2.38, Asn2.39, Ser2.45, Ala2.49, Asp2.50, Leu2.51, Ser2.57

Met2.58, Asn2.59, Phe2.61 Ile2.66, and Asn2.68 (Li et al. 2007a). Furthermore, residues

in the second extracellular loop of the M3 mAChR are critical for the functional

activity of the receptor, including Gln207, Gly211, Arg213, Gly218, Ile222, Phe224,

Leu225, and Pro228 (Scarselli et al. 2007). This is consistent with observations that

conformational changes in the second extracellular loop occur upon activation of

rhodopsin, whereby movement of TMV and disruption of the proposed ionic lock

between TMIII and TMVI causes rearrangement of the hydrogen bond network

that connects the extracellular ends of TMIV, TMV, and TMVI to the second

extracellular loop (Ahuja et al. 2009).

In addition to inactivating mutations, amino acid substitutions in TMIII can

result in increased constitutive activity of mAChRs, including Leu3.43 and Ser3.47

in the M1 mAChR (Lu and Hulme 1999), suggesting a role for these residues in

constraining the inactive receptor state. In particular, the highly conserved
3.49Glu/Asp-Arg-Tyr3.51 motif, which is found in approximately 70% of Family

A GPCRs, has been implicated in stabilizing the inactive receptor state and

enabling a switch to an active receptor conformation. In rhodopsin, the b-ARs
and the A2A adenosine receptor, Arg3.50 forms a hydrogen bond with the adjacent

Glu/Asp3.49 (Cohen et al. 1993; Ballesteros et al. 2001; Scheer et al. 1996). In

rhodopsin, Arg3.50 also forms a key salt bridge with Glu6.30 (although this interac-

tion was not present in the b-ARs or A2A adenosine receptor structures) that is

broken upon receptor activation as TMVI moves apart from TMIII. In opsin,

Arg3.50 interacts instead with Tyr5.58 and potentially with Tyr7.53. Accordingly,

mutation of Arg3.50 in the M1 mAChR leads to significant reductions in agonist
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efficacy (Jones et al. 1995), suggesting that this residue is essential for stabilizing

the active receptor state in the mAChRs. However, and in contrast to observations

at other GPCRs, significant effect on the signaling efficacy of ACh is not observed

in the M1 or M5 mAChRs upon mutation of Asp3.49 (Lu et al. 1997; Burstein et al.

1998), suggesting that the postulated hydrogen bond between Asp3.49 and Arg3.50

does not necessarily exist in the mAChRs.

The bulk of the studies described above have focused on activation mechanisms

thought to be “universal” to agonists of the mAChRs. However, recent studies of

allosteric and other novel functionally selective agonists of these receptors have

begun to identify residues that contribute to receptor activation in a more ligand or

pathway-specific manner. For instance, Phe2.56 in the M1 mAChR is essential for

the activity of AC-42 and 77-LH-28-1 but not ACh or pilocarpine (Avlani et al.

2010), whilst the efficacy of the allosteric agonist, LY2033298, but not that of

ACh or McN-A-343, at the M4 mAChR is selectively sensitive to mutations of

extracellular loop 1 residues Ile93 and Lys95 (Nawaratne et al. 2010). Conversely,

a recent study of the M2 mAChR identified Tyr3.33 as a key residue selectively

linking activation of the receptor to the phosphorylation of ERK1/2, irrespective of

the nature of the activating ligand (Gregory et al. 2010). These findings indicate that

there are likely to be a number of agonist and pathway-specific mechanisms that

contribute to receptor signaling, consistent with the hypothesis that mAChRs can

adopt multiple active states that are differentially stabilized by various classes of

ligand and/or intracellular interacting proteins.

6 The G Protein Binding Interface

The only crystallographic evidence of the interaction between a GPCR and its

G protein comes from the structure of opsin and metarhodopsin II in combination

with a synthetic peptide composed of the first 11 amino acids of transducin, the

cognate Ga subunit for this receptor (Scheerer et al. 2008). This study indicated

that the second and third intracellular loops, the cytoplasmic ends of TMIII, TMV,

and TMVI and the amino-terminal segment of helix 8 are all involved in G protein

binding events. Specifically, an interaction between Arg3.50 and a Cys residue in

the Ga peptide corresponding to Cys347 in transducin was observed, confirming the

importance of Arg3.50 in receptor signaling and underlining its importance in

stabilizing an active receptor state. Likewise, interactions were observed between

the transducin peptide and Leu226, Val230, Ala233, Thr242, Thr243, Ala246, and Val250

in the third intracellular loop of the receptor.

In agreement with the binding of the transducin peptide to opsin, mutagenic

studies suggest an interaction between full-length Gaq and TMV, TMVI and helix

8 of the M3 mAChR. Residues located at the junctions between the third intra-

cellular loop and TMV and TMVI are particularly important for the recognition

by Gaq proteins of the M3 mAChR, including Tyr5.64, Ala6.32, Ala6.33, Leu6.36,
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and Ser6.34 (Bluml et al. 1994b, c; Blin et al. 1995; Kostenis et al. 1997). Similar

observations have been made in the M5 mAChR (Burstein et al. 1995, 1996;

Hill-Eubanks et al. 1996). A recent cysteine cross-linking study additionally

identified Leu173 and Arg176 in the second intracellular loop and Thr549, Thr552,

and Thr556 in the amino-terminal segment of helix 8 of the M3 mAChR as residues

that directly interact with the carboxy-terminal portion of Gaq (Hu et al. 2010).

These interactions were observed in the absence and presence of agonist and even

in the presence of the inverse agonist, atropine, suggesting that inactive mAChRs

can exist in complex with Ga proteins. However, upon agonist stimulation, an

interaction between Ala6.33 and the carboxy-terminal region of Gaq was promoted,

whilst interactions between Thr549 and Thr552 and the G protein were enhanced.

This is consistent with the concept that agonists trigger movement of the cytoplas-

mic end of TMVI away from the TM bundle, which enables the carboxy-terminus

of Ga to interact with TMV and TMVI. A weaker interaction was detected between

Lys548 at the junction of TMVII and helix 8 of the M3 mAChR and Asp321 in the

carboxy-terminus of Gaq, which was also enhanced by agonist treatment. Interest-

ingly, the same study identified an interaction between Leu173 in the second

intracellular loop of the M3 mAChR and Arg31 in the amino-terminal region of

the Gaq subunit, again in the absence of agonist or inverse agonist, indicating that

multiple regions of the G protein are involved in coupling to the receptor.

7 Conclusions

A wealth of mutagenesis-derived information continues to provide insight into the

structural and functional role of diverse receptor regions in the mAChRs. Coupled

with direct crystallographic information obtained for other Family A GPCRs, we

are starting to gain an understanding of the intramolecular interactions that exist in

the mAChRs, how mAChR ligands bind to their receptors, and how ligand binding

triggers conformational changes in the mAChR structure that ultimately lead to

intracellular signaling events. No doubt, given the recent advances in the field of

GPCR structural biology, high-resolution structures of ligand-bound mAChRs are a

likely outcome in the not-too-distant future. Irrespective of the nature of the

experimental paradigm, the most likely gage of success in the area of receptor

structure–function analyses is the use of information gained to successfully explain

and predict biological events, and to rationally design drugs that can alleviate

diseases associated with the mAChRs.
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