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Preface

This volume contains the proceedings of the 22nd Conference on Concurrency
Theory (CONCUR 2011) held in Aachen, Germany, September 6-9, 2011. The
purpose of the CONCUR conference is to bring together researchers, developers,
and students in order to advance the theory of concurrency and promote its
applications.

This edition of the conference attracted 94 submissions. We would like to
thank all their authors for their interest in CONCUR 2011. After careful review-
ing and discussions, the Program Committee selected 32 papers for presentation
at the conference. Each submission was reviewed by at least three reviewers,
who wrote detailed evaluations and gave insightful comments. The conference
Chairs would like to thank the Program Committee members and all their sub-
reviewers for their excellent work, as well as for the constructive discussions. We
are grateful to the authors for having revised their papers so as to address the
comments and suggestions by the referees.

The conference program was greatly enriched by the invited talks by Parosh
Aziz Abdulla (joint invited speaker with QEST 2011), Rachid Guerraoui, Wil
van der Aalst, and Ursula Goltz.

This year the conference was jointly organized with the 8th International
Conference on Quantitative Evaluation of Systems (QEST 2011) and the 6th
International Symposium on Trustworthy Global Computing (TGC 2011). On
the one hand, we wanted to acknowledge the increasing application of quanti-
tative methods in concurrency theory and to strengthen the link to work on
quantitative system evaluation. On the other hand, we wanted to emphasize the
importance of safety and reliability in global computing.

In addition, CONCUR included the following satellite workshops:
– Third Workshop on Computational Models for Cell Processes (CompMod

2011)
– 18th International Workshop on Expressiveness in Concurrency (EXPRESS

2011)
– 10th International Workshop on Foundations of Coordination Languages and

Software Architectures (FOCLASA 2011)
– Third Workshop on Games for Design, Verification and Synthesis (GASICS

2011)
– 4th International “Logics, Agents, and Mobility” Workshop (LAM 2011)
– ERCIM Working Group Meeting on Models and Logics for Quantitative

Analysis (MLQA 2011)
– 9th International Workshop on Security Issues in Concurrency (SecCo 2011)
– Workshop on Structural Operational Semantics (SOS 2011)
– Young Researchers Workshop on Concurrency Theory (YR-CONCUR 2011)

We would like to thank everybody who contributed to the organization of
CONCUR 2011. Furthermore, we thank the RWTH Aachen University, IVU
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Traffic Technologies AG, the European Microsoft Innovation Center (EMIC)
GmbH, and the Deutsche Forschungsgemeinschaft (DFG) for their financial sup-
port.

We are also grateful to Andrei Voronkov for providing us with his confer-
ence software system EasyChair, which was extremely helpful for the Program
Committee discussions and the production of the proceedings.

September 2011 Joost-Pieter Katoen
Barbara König
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Lukáš Hoĺık, Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar
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XIV Table of Contents

Bisimulation

Decidability of Branching Bisimulation on Normed Commutative
Context-Free Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
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Carrying Probabilities to the Infinite World�

Parosh Aziz Abdulla

Uppsala University, Sweden

Abstract. We give en example-guided introduction to a framework that
we have developed in recent years in order to extend the applicability of
program verification to the context of systems modeled as infinite-state
Markov chains. In particular, we describe the class of decisive Markov
chains, and show how to perform qualitative and quantitative analysis of
Markov chains that arise from probabilistic extensions of classical models
such as Petri nets and communicating finite-state processes.

1 Introduction

In recent years, several approaches have been proposed for automatic verification
of infinite-state systems (see e.g., [2, 1]). In a parallel development, there has been
an extensive research effort for the design and analysis of models with stochastic
behaviors (e.g., [12, 7, 6, 11]). Recently, several works have considered verification
of infinite-state Markov chains that are generated by push-down systems (e.g.,
[9, 10]). We consider verification of Markov chains with infinite state spaces. We
describe a general framework that can handle probabilistic versions of several
classical models such as Petri nets and communicating finite-state processes. We
do that by defining abstract conditions on infinite Markov chains that give rise
to the class of decisive Markov chains. For this class, we perform qualitative and
quantitative analysis wrt. standard properties such as reachability and repeated
reachability of a given set of configurations. This presentation is informal and
example-based. For the technical details, we refer to our works in [3–5].

2 Transition Systems

A transition system T is a pair (C,−→) where C is a (potentially infinite) set
of configurations, and −→⊆ C ×C is the transition relation. As usual, we write
c −→ c′ to denote that (c, c′) ∈−→ and use ∗−→ to denote the reflexive transitive
closure of −→. For a configuration c, a c-run is a sequence c0 −→ c1 −→ c2 −→
· · · where c0 = c. For a natural number k, we write c k−→ c′ if there is a sequence
c0 −→ c1 −→ · · · −→ c� with � ≤ k, c0 = c and c� = c′, i.e., we can reach c′ from
c in k or fewer steps. Notice that c ∗−→ c′ iff c

k−→ c′ for some k. We lift the
above notation to sets of configurations. For sets C1, C2 ⊆ C of configurations,
� This tutorial is based on common work with Noomene Ben Henda, Richard Mayr,

and Sven Sandberg.

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 1–16, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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we write C1 −→ C2 if c −→ c′ for some c ∈ C1 and c′ ∈ C2. We use C1
k−→ C2

and C1
∗−→ C2 in a similar way. We also mix the notations, so we we write for

instance c ∗−→ C2 instead of {c} ∗−→ C2 We say that C2 is reachable from C1 if
C1

∗−→ C2. A transition system T is said to be k-spanning wrt. a give set F of
configurations if for any configuration c, we have that c ∗−→ F implies c k−→ F .
In other words, for any configuration c, either c cannot reach F or it can reach
F within k steps. We say that T is finitely spanning wrt. F if there is a k such
that T is k-spanning wrt. F . In other words, if T is finitely spanning wrt. F
then ∃k. ∀c ∈ C. c ∗−→ F ⊃ c k−→ F . We define F̃ :=

{
c| c 	 ∗−→ F

}
, i.e., F̃ is the

set of configurations from which F is not reachable. For a set U ⊆ C, we define
Pre(U) := {c| ∃c′ ∈ U. c −→ c′}, i.e., Pre(U) is the set of configurations that
can reach U through the execution of a single transition. We assume familiarity
with the temporal logic CTL∗. Given a CTL∗ path-formula φ, we use (c |= φ) to
denote the set of c-runs that satisfy φ.

3 Petri Nets

We illustrate some ideas of our methodology, using the model of Petri Nets.
After recalling the standard definitions of Petri nets, we describe the transition
system induced by a Petri net. We describe how checking safety properties can
be translated to the reachability of sets of configurations which are upward
closed wrt. a natural ordering on the set of configurations1. We give a sketch
of an algorithm to solve the reachability problem, and show that Petri nets are
finitely spanning with respect to upward closed sets of configurations. Finally,
we briefly mention a model closely related to Petri nets, namely that of Vector
Addition Systems with States (VASS).

3.1 Model

A Petri net N is a tuple (P, T, F ), where P is a finite set of places, T is a finite
set of transitions, and F ⊆ (P × T ) ∪ (T × P ) is the flow relation. If (p, t) ∈ F
then p is said to be an input place of t; and if (t, p) ∈ F then p is said to be an
output place of t. We use In (t) := {p| (p, t) ∈ F} and Out (t) := {p| (t, p) ∈ F}
to denote the sets of input places and output places of t respectively.

Figure 1 shows an example of a Petri net with three places (drawn as circles),
namely L, W, and C; and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from
transitions to places. For instance, the flow relation in the example includes the
pairs (L, t1) and (t2, W), i.e., L is an input place of t1, and W is an output place
of t2.

The transition system induced by a Petri net is defined by the set configura-
tions together with the transition relation defined on them. A configuration c

1 Reachability of upward closed sets of configurations is referred to as the coverability
problem in the Petri net literature.



Carrying Probabilities to the Infinite World 3

L

W

C

t1 t2

(a)

L

W

C

t1 t2

(b)

Fig. 1. (a) A simple Petri net (b) The result of firing t1

of a Petri net2 is a multiset over P . The configuration c defines the number of
tokens in each place. Figure 1 (a) shows a configuration where there is one token
in place L, three tokens in place W, and no token in place C. The configuration
corresponds to the multiset

[
L, W3
]
.

The operational semantics of a Petri net is defined through the notion of firing
transitions. This gives a transition relation on the set of configurations. More
precisely, when a transition t is fired, then a token is removed from each input
place, and a token is added to each output place of t. The transition is fired only
if each input place has at least one token. Formally, we write c1 −→ c2 to denote
that there is a transition t ∈ T such that c1 ≥ In (t) and c2 = c1−In (t)+Out (t).

A set U ⊆ C of configurations is said to be upward closed if c ∈ U and c ≤ c′
implies that c′ ∈ U . For a configuration c ∈ C, define the upward closure of c by
ĉ := {c′| c ≤ c′}. We extend the definition to a set C1 ⊆ C of configurations by
Ĉ1 := ∪c∈C1 ĉ.

The Petri net of Figure 1 can be seen as a model of a simple mutual exclusion
protocol, where access to the critical section is controlled by a global lock. A
process is either waiting or is in its critical section. Initially, all the processes are
in their waiting states. When a process wants to access the critical section, it
must first acquire the lock. This can be done only if no other process has already
acquired the lock. From the critical section, the process eventually releases the
lock and moves back to the waiting state. The numbers of tokens in places W and
C represent the number of processes in their waiting states and critical sections
respectively. Absence of tokens in L means that the lock is currently taken by
some process.

2 A configuration in a Petri net is often called a marking in the literature.
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The set Cinit of initial configurations are those of the form [L, Wn] where n ≥ 0.
In other words, all the processes are initially in their waiting states, and the lock
is free. The transition t1 models a process moving to its critical section, while
the transition t2 models a process going back to its waiting state. For instance,
if we start from the configuration

[
L, W4
]
, we can fire the transition t1 to obtain

the configuration
[
C, W3
]

from which we can fire the transition t2 to obtain the
configuration

[
L, W4
]
, and so on.

3.2 Safety Properties

We are interested in checking a safety property for the Petri net in Figure 1.
In a safety property, we want to show that “nothing bad happens” during the
execution of the system. Typically, we define a set Bad of configurations, i.e.,
configurations which we do not want to occur during the execution of the system.
In this particular example, we are interested in proving mutual exclusion. The
set Bad contains those configurations that violate mutual exclusion, i.e., con-
figurations in which at least two processes are in their critical sections. These
configurations are of the form

[
Lk, Wm, Cn

]
where n ≥ 2. Checking the safety

property can be carried out by checking whether we can fire a sequence of tran-
sitions taking us from an initial configuration to a bad configuration, i.e., we
check whether the set Bad is reachable.

To analyze safety properties, we study some aspects of the behavior of Petri
nets. First, we observe that the behavior of a Petri net is monotonic: if c1 −→ c2
and c1 ≤ c3 then there is a c4 such that c3 −→ c4 and c4 ≥ c2.

We will work with sets of configurations that are upward closed with respect
to ≤. Such sets are interesting in our setting for two reasons. First, all sets of
bad configurations that occur in our examples are upward closed. For instance,
in our example, whenever a configuration contains two processes in their critical
sections then any larger configuration will also contain (at least) two processes in
their critical sections, so the set Bad is upward closed. In this manner, checking
the safety property amounts to deciding reachability of an upward closed set.
Second, each upward closed set U can be uniquely represented by its set of
minimal elements. This set, which we refer to as the set of generator of U , is
finite due to Dickson’s lemma [8]. In fact, since the ordering ≤ is anti-symmetric,
it follows that each upward closed set has a unique generator. Finally, we observe
that, due to monotonicity, if U is upward closed then Pre(U) is upward closed. In
other words, upward closedness is preserved by going backwards in the transition
relation.

Below, we give a sketch of backward reachability algorithm for checking safety
properties.

3.3 Algorithm

As mentioned above, we are interested in checking whether it is the case that
Bad is reachable. The safety property is violated iff the question has a positive
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[
C2
][L, W, C]

[
C3
]

[
L2, W2

]
[
C2
]

[
L3, W3

]
[L, W, C]

Fig. 2. Running the backward reachability algorithm on the example Petri net. Each
ellipse contains the configurations generated during one iteration. The subsumed
configurations are crossed over.

answer. The algorithm, illustrated in Figure 2, starts from the set of bad config-
urations, and tries to find a path backwards through the transition relation to
the set of initial configurations. The algorithm operates on upward closed sets
of configurations. An upward closed set is symbolically represented by a finite
set of configurations, namely the members of its generator. In the above exam-
ple, the set gen (Bad) is the singleton

{[
C2
]}

. Therefore, the algorithm starts
from the configuration c0 =

[
C2
]
. From the configuration c0, we go backwards

and derive the generator of the set of configurations from which we can fire a
transition and reach a configuration in Bad = ĉ0. Transition t1 gives the config-
uration c1 = [L, W, C], since ĉ1 contains exactly those configurations from which
we can fire t1 and reach a configuration in ĉ0. Analogously, transition t2 gives
the configuration c2 =

[
C3
]
, since ĉ2 contains exactly those configurations from

which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2, it follows
that ĉ2 ⊆ ĉ0. In such a case, we say that c2 is subsumed by c0. Since ĉ2 ⊆ ĉ0,
we can discard c2 safely from the analysis without the loss of any information.
Now, we repeat the procedure on c1, and obtain the configurations c3 =

[
L2, W2

]
(via t1), and c4 =

[
C2
]

(via t2), where c4 is subsumed by c0. Finally, from c3
we obtain the configurations c5 =

[
L3, W3

]
(via t1), and c6 = [L, W, C] (via t2).

The configurations c5 and c6 are subsumed by c3 and c1 respectively. The iter-
ation terminates at this point since all the newly generated configurations were
subsumed by existing ones, and hence there are no more new configurations to
consider. In fact, the set B =

{[
C2
]
, [L, W, C] ,

[
L2, W2

]}
is the generator of the

set of configurations from which we can reach a bad configurations. The three
members in B are those configurations which are not discarded in the analysis
(they were not subsumed by other configurations). To check whether Bad is
reachable, we check the intersection B̂ ∩ Cinit . Since the intersection is empty,
we conclude that Bad is not reachable, and hence the safety property is satisfied
by the system.
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3.4 Finite Span

An interesting consequence of the above algorithm is that Petri nets are finitely
spanning with respect to an upward closed set of configurations. First, the reach-
ability algorithm is guaranteed to terminate by Dickson’s lemma [8]. Suppose
that the algorithm starts by an upward closed set U (represented by its genera-
tor) and suppose that it terminates in k steps. Then, we claim that the Petri net
is k-spanning wrt. U . To see this, consider a configuration c such that c ∗−→ U .
Then, the algorithm will generate some c′ such that c′ ≤ c. Suppose that c′ is
generated in step � ≤ k. Then c′ �−→ U . By monotonicity, we have that c �−→ U .
For instance, the span of the Petri net of Figure 1 wrt.

[
C2
]

is equal to 2.

3.5 VASS

A VASS is simply a Petri net equipped with a finite set of control states. Each
transition has exactly one input control state and one output control state. Thus
a transitions changes the control state of the VASS (in addition to changing the
numbers of the tokens in the places). We can also think of a VASS as a counter
machine where the counters are allowed to be tested for equality with zero.

4 Markov Chains

A Markov chain M is a tuple (C,P ) where C is a (potentially infinite) set
of configuration, and P : C × C → [0, 1], such that

∑
c′∈C P (c, c′) = 1, for

each c ∈ C. A Markov chain induces a transition system, where the transition
relation consists of pairs of configurations related by positive probabilities. In this
manner, concepts defined for transition systems can be lifted to Markov chains.
For instance, for a Markov chain M, a run of M is a run in the underlying
transition system, andM is finitely spanning w.r.t. given set F if the underlying
transition system is finitely spanning w.r.t. F , etc.

We use Probc (φ) to denote the measure of the set of c-runs (c |= φ) (which
is measurable by [12]). Sometimes, we refer to Probc (φ) as the probability by
which φ holds at c. For instance, given a set F ⊆ C, Probc (�F ) is the measure of
c-runs which eventually reach F . We say that almost all runs of a Markov chain
satisfy a given property φ if Probc (φ) = 1. In this case one says that (c |= φ)
holds almost certainly. For formulas φ1, φ2, we use Probc (φ1 | φ2) to denote the
probability that φ2 holds under the assumption that φ1 holds.

5 Decisive Markov Chains

In this section, we introduce decisive Markov chains, present two sufficient condi-
tions for decisiveness, and show examples of models that induce decisive Markov
chains.

Consider a Markov chain M = (C,P ) and a set F of configurations. We
say that M is decisive wrt. F if each run of the system almost certainly will
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eventually either reach F or reach F̃ . Formally, for each configuration c, it is the
case that Probc

(
�F ∨�F̃

)
= 1. Put differently, if F is always reachable along a

run ρ then ρ will almost certainly eventually reach F , i.e., Probc(�F | �∃�F ) =
1. Figure 3 shows an illustration of a run in a decisive Markov chain.

F

F F F F F F

Fig. 3. Illustration of a run in a decisive Markov chain

Notice that all finite Markov chains are decisive (wrt. any given set of configu-
rations). On the other hand, Figures 4–5 show examples of infinite Markov chains
that are not decisive. Let us consider the Markov chain of Figure 4. The config-
uration F is reachable from each configuration in the Markov chain. Therefore
F̃ = ∅, and hence ProbInit

(
�F ∨�F̃

)
= ProbInit (�F ) = 2

3 < 1.

F Init

1

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

Fig. 4. A Markov chain that is not decisive

Next, let us consider the Markov chain of Figure 5. Again, the configura-
tion F is reachable from each configuration in the Markov chain. Therefore,
ProbInit

(
�F ∨�F̃

)
= ProbInit (�F ) < 0.2.

5.1 Sufficient Condition I

A configuration c is said to be of coarseness β if for each c′ ∈ C, P (c, c′) > 0
implies P (c, c′) ≥ β. A Markov chain M = (C,P ) is said to be of coarseness β
if each c ∈ C is of coarseness β. We say that M is coarse if M is of coarseness
β, for some β > 0. Notice that if M is coarse then the underlying transition
system is finitely branching; however, the converse is not necessarily true. For
instance, the Markov chain of Figure 4 is coarse (it is of coarseness 0.4), while
the Markov chain of Figure 5 is not coarse.
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Init

F

0.9 0.99 0.999 0.9999

0.1 0.01 0.001 0.0001 0.00001

1

Fig. 5. Another Markov chain that is not decisive

A sufficient condition for decisiveness is the combination of coarseness and
finite spanning. If a Markov chain M is both coarse and finitely spanning wrt.
to set F of configurations thenM is decisive wrt. F . The situation is illustrated
in Figure 6 that shows a run in a Markov chain with coarseness 0.1 and span
3 (wrt. some F ). The idea is that if we have a run ρ from which F is always

F F

F

F

F

F

0.1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

Fig. 6. A run in a Markov chain that is both coarse and finitely spanning

reachable, then from each configuration along the run, the probability of hitting
F within the next 3 steps is at least 0.001. Therefore, the probability that ρ will
avoid F forever is equal to 0. In other words, ρ will almost certainly eventually
reach F .

5.2 Sufficient Condition II

An attractor A ⊆ C is a set of configurations, such that each run of M will
almost certainly eventually reach A. Figure 7 illustrates an attractor. Formally,
for each c ∈ C, we have Probc (�A) = 1, i.e., the set A is reached from c with
probability one.
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A

Fig. 7. An attractor

In fact, any run of the system will almost certainly visit A infinitely often. The
reason (illustrated in Figure 8) is the following. Consider a run ρ. By definition
of an attractor, ρ will almost certainly eventually reach a configuration c1 ∈ A.
We apply the definition of an attractor to the continuation of ρ from c1. This
continuation will almost certainly eventually reach a configuration c2 ∈ A. The
reasoning can be repeated infinitely thus obtaining an infinite sequence c1, c2, . . .
of configurations inside A that will be visited. This means that A will be visited
infinitely often with probability 1.

A

Fig. 8. Repeated reachability of an attractor

The existence of a finite attractor is a sufficient condition for decisiveness
wrt. any set F of configurations. Assume a finite attractor A (see Figure 9). We
partition A into two sets: A0 := A ∩ F̃ and A1 := A ∩ ¬F̃ . In other words, the
configurations in A0 cannot reach F (in the underlying transition system), while
from each configuration in A1 there is a path to F . Consider a run ρ. We show
that ρ will almost certainly eventually either reach F̃ or reach F . We know that
ρ will almost certainly visit A infinitely often. If ρ reaches F at some point then
we are done. Otherwise, ρ will visit A1 infinitely often with probability 1. Since
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A F̃

F

Fig. 9. Decisiveness due to a finite attractor

A1 is a finite set, with probability 1, there is a configuration c ∈ A1 that will
be visited by ρ. By definition, we know that F is reachable from c, i.e., there is
path (say of length k) from c to F . Let β be the probability that this path is
taken during the next k steps of the run. This means that each time ρ visits c,
it will reach F during the next k steps with probability at least β, which implies
that ρ cannot avoid F forever. Thus ρ will almost certainly eventually reach F .

5.3 Probabilistic Petri Nets

To induce Markov chains from Petri nets, we associate weights (natural numbers)
with the transitions of the net. If several transitions are enabled from a given
configuration then a particular transition will be fired with a probability that
reflects its weight relative to the weights of the rest of the enabled transitions.

For instance, Figure 10 shows a weighted version of the Petri net of Figure 1,
where the transitions t1 and t2 have weights that are 3 and 2 respectively. Con-
sider the configuration c1 =

[
L, W3
]
. From c1 only transition t1 is enabled. There-

fore the probability of moving from c1 to the configuration c2 =
[
C, W2
]

is given
by P (c1, c2) = 1, while P (c1, c′1) = 0 for all other configurations c′1. On the other
hand, both t1 and t2 are enabled from the configuration c3 =

[
L, C, W3

]
. There-

fore, the probability of moving from c3 to the configuration c4 =
[
C2, W2

]
is given

by P (c3, c4) = 3
2+3 = 3

5 ; while, for c5 =
[
L, C, W3

]
, we have P (c3, c5) = 2

2+3 = 2
5 .

In such a manner, we obtain an infinite-state Markov chain, where the configu-
rations are those of the Petri net, and the probability distribution is defined by
the weights of the transitions as described above. On the one hand, this Markov
chain is finitely spanning wrt. an upward closed set F of configurations, since
the underlying transition system is finitely spanning wrt. to F (as explained in
Section 3). On the other hand, the Markov chains is coarse. In fact, the Markov
chain is at least of coarseness 1

w where w is the sum of weights of all the tran-
sitions in the Petri net. It follows that the Markov chain induced by a Petri net
is decisive wrt. any upward closed set F .
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L

W

C

t1 t23 2

(a)

Fig. 10. A weighted Petri net

Process 1

Process 2

Process 3

Fig. 11. Communicating finite-state processes

5.4 Communicating Processes

We consider systems that consist of finite sets of finite-state processes, communi-
cating through unbounded channels that behave as FIFO queues (see Figure 11).
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During each step in a run of the system, a process may either send a message
to a channel (in which case the message is appended to the tail of the channel), or
receive a message from a channel (in which case the message is fetched from the
head of the channel). Choices between different enabled transitions are resolved
probabilistically by associating weights to the transition in a similar manner to
the case of Petri nets. Furthermore, after each step in a run of the system, a
given message may be lost (removed from the buffer) by a predefined probability
λ. The probability of loss is identical (equal to λ) for all messages that reside in
the channels. The induced Markov chain is infinite-state, since the sizes of the
buffers are not bounded. However, such a Markov chains always contains a finite
attractor. In fact, the finite attractor is given by the set of configurations in
which all the channels are empty. This is due to the fact that the more messages
inside a buffer, the higher the probability that “many of” these message will be
lost in the next step. Thus, each run of the system will almost certainly reach
a configuration where all the channels are empty. Consequently, the induced
Markov chain is decisive wrt. any set F of configurations.

6 Qualitative Analysis

In this section, we consider qualitative analysis of (infinite-state) Markov chains.
We are given an initial configuration Init and a set of final (target) configurations
F . In qualitative reachability analysis, we want to check whether ProbInit (�F ) =
1, i.e., whether the probability of reaching F from Init is equal to 1. In qualitative
repeated reachability analysis, we want to check whether ProbInit (��F ) = 1,
i.e., whether the probability of repeatedly reaching F from Init is equal to 1.
In the case of decisive Markov chains, we reduce the problems to corresponding
problems defined on the underlying transition systems.

6.1 Reachability

For sets of configurations C1, C2 and a run ρ = c0 −→ c1 −→ c1 −→ · · ·, we say
that ρ satisfies C1 Before C2 if there is an i ≥ 0 such that ci ∈ C1 and for all
j : 0 ≤ j ≤ i it is the case that cj 	∈ C2. Then, for a configuration c, we have
c |= ∃. C1 Before C2 iff there is a c-run that reaches C1 before reaching C2.
We will show that ProbInit (�F ) = 1 iff Init 	|= ∃. F̃ Before F . One direction of
the proof is illustrated in Figure 12. In fact, this direction holds for any Markov
chain and is not dependent on the Markov chain being decisive.

Suppose that Init |= ∃. F̃ Before F , i.e., there is an Init -run that reaches
F̃ before reaching F . This means that there is a prefix ρ′ of ρ that will reach
F̃ before reaching F . The prefix ρ′ has a certain probability β. Notice that the
measure of all runs that are continuations of ρ′ (that have ρ′ as a prefix) is equal
to β. Furthermore, all these continuations will not reach F (since ρ′ visits F̃
from which F is not reachable). This means that the measure of computations
that will never reach F is larger than β, and hence the measure of computations
that will reach F is smaller than 1− β < 1.
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FF̃Init

Fig. 12. Reaching F̃ before F

The other direction of the proof, namely that Init 	|= ∃. F̃ Before F implies
ProbInit (�F ) = 1 does not hold in general. As a counter-example, consider the
Markov chain of Figure 4. In this example F̃ = ∅ since F is reachable from
every configuration in the Markov chain. Therefore, Init 	|= ∃. F̃ Before F holds
trivially. However, as mentioned in Section 5, we have ProbInit (�F ) = 2

3 < 1.
This direction of the proof holds for Markov chain that is decisive wrt. F

(Figure 13). Consider any Init -run ρ. By decisiveness, ρ will almost certainly

F

F̃

Init

Fig. 13. Reaching F before F̃

reach either F or F̃ . In the first case, the claim holds trivially. In the second
case, since ρ visits F̃ and since all runs must visit F before visiting F̃ , we know
that ρ must have visited F (before visiting F̃ ).

Thus, we have reduced the problem of checking whether ProbInit (�F ) = 1
in a Markov chain that is decisive wrt. F to that of checking whether Init |=
∃. F̃ Before F in the underlying transition system. In fact, as clear from the
structure of the proof, the two problems are equivalent.
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The problem of checking Init |= ∃. F̃ Before F is decidable for Petri nets in
case F is given by a set of control states (we are asking about the reachability
of a set of control states in a VASS). However, the problem is undecidable in
case F is given by an arbitrary upward closed set of configurations. This is quite
surprising since the control state reachability problem and upward closed set
reachability problem are equivalent for all other models (whether probabilistic
or not). The problem is also decidable for lossy channel systems which is the
underlying transition system model for communicating processes (as described
in Section 5).

6.2 Repeated Reachability

We will show that, for a configuration Init and a set F of configurations in a
decisive Markov chain, we have that ProbInit (��F ) = 1 iff Init |= ∀� ∃� F .
The formula states that the set F remains reachable along all Init -runs. Notice
that this is equivalent to Init 	|= ∃� F̃ . (it is not the case that there is an Init -
run that leads to F̃ ). Also, in this case, one direction of the proof (illustrated
in Figure 12) holds for any Markov chain (it is not dependent on the Markov
chain being decisive). Suppose that Init 	|= ∀� ∃� F (i.e. Init |= ∃� F̃ ). This
means that there is a Init-run ρ that reaches F̃ . The run ρ is similar to the one
shown in Figure 12 (with the difference that ρ is now allowed to visit F before
visiting F̃ ). In a similar manner to the case of reachability, there is a prefix ρ′

that will reach F̃ and that has a certain probability β. Furthermore, none of the
continuations of ρ′ will reach F . This means that the measure of computations
that will not repeatedly visit F is smaller than 1− β < 1.

Also here, the other direction of the proof, namely that Init |= ∀� ∃� F .
implies ProbInit (��F ) = 1 does not hold in general. For instance in the Markov
chain of Figure 4, we have F̃ = ∅. Therefore, Init |= ∀� ∃� F holds. However, we
have ProbInit (��F ) ≤ ProbInit (�F ) = 2

3 < 1. This direction of the proof holds
for Markov chain that is decisive wrt.F (Figure 14). Consider any Init -run ρ. Since
F̃ is not reachable from Init , it follows by decisiveness that ρ will almost certainly
reach some configuration c1 ∈ F . We apply the definition of an attractor to the
continuation of ρ from c1. This continuation will almost certainly eventually reach
a configuration c2 ∈ F . The reasoning can be repeated infinitely thus obtaining
an infinite sequence c1, c2, . . . of configurations inside the F that will be visited.
This means that F will be visited infinitely often with probability 1.

We have then reduced the problem of checking whether ProbInit (��F ) = 1
in a Markov chain that is decisive wrt. F to that of checking whether Init |=
∀� ∃� F in the underlying transition system.

The problem of checking Init |= ∀� ∃� F is decidable for Petri nets in case F
is an arbitrary upward closed set of configurations. This is again surprising since
it means that repeated reachability is a simpler problem than simple reachability
(as we have seen, the former is decidable for upward closed sets while the latter
is undecidable). The problem is also decidable for lossy channel systems.
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FInit

Fig. 14. Repeatedly reaching F

7 Quantitative Analysis

We give a sketch of a algorithm that computes the probability ProbInit (�F )
up to an arbitrary given precision ε. The algorithm builds the reachability tree
starting from Init as the root of the tree. It maintains two variables, namely
the variable yes that under-approximates ProbInit (�F ), and no that under-
approximates ProbInit (¬�F ). Each time the algorithm picks a leaf from the tree
(corresponding to a configuration c), it computes the successors of the node. For
each successor c′ such that c′ 	∈ F ∪ F̃ , it creates a child labeled with c′ and
labels the edge between the nodes by P (c, c′). If c′ ∈ F then it will close the
node and increases the value yes by the weight the path from the root to the
current node (equal to the product of the probabilities on the edges along the
path). If c′ ∈ F̃ it will close the node and increases the value no analogously.
The algorithm terminates when yes + no ≥ ε. The algorithm is guaranteed to
terminate in case the Markov chain is decisive wrt. F since, as more and more
steps of the algorithm are executed, the sum yes + no will get arbitrarily close
to one.
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Generalized Universality
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Abstract. State machine replication reduces distributed to centralized
computing. Any sequential service, modeled by a state machine, can be
replicated over any number of processes and made highly available to all
of them. At the heart of this fundamental reduction lies the so called
universal consensus abstraction, key to providing the illusion of single
shared service, despite replication.

Yet, as universal as it may be, consensus is just one specific instance
of a more general abstraction, k-set consensus where, instead of agreeing
on a unique decision, the processes may diverge but at most k different
decisions are reached. It is legitimate to ask whether the celebrated state
machine replication construct has its analogue with k > 1. If it did
not, one could question the aura of distributed computing deserving an
underpinning Theory for 1, the unit of multiplication, would be special
in a field, distributed computing, that does not arithmetically multiply.

This paper presents, two decades after k-set consensus was introduced,
the generalization with k > 1 of state machine replication. We show
that with k-set consensus, any number of processes can emulate k state
machines of which at least one remains highly available. While doing so,
we also generalize the very notion of consensus universality.

Keywords: State machine replication, k-set consensus, universality.

1 Introduction

One of the most fundamental constructs of distributed computing is the repli-
cated state machine protocol [11]. It essentially makes a distributed system
emulate a, highly available, centralized one using a consensus abstraction [6].
Making the approach efficient by allowing a system to run with little overhead
while the system’s components are well behaved, and nevertheless not let it
commit to a mistake while experiencing faults, has been a trust of distributed
computing [4].

How does state machine replication work? A computing service is modeled as
a state machine that executes commands deterministically. Processes hold each a
copy of this state machine, to which they issue commands. To provide the illusion
of sharing a single state machine, the processes use consensus. Each instance of
consensus is used to decide which command to execute next and hence make sure
all commands are executed on the state machine copies in the same order: this,
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together with the very fact that the state machine is deterministic, implies that
all its copies keep the same state. (It was later shown how the choice of which
proposed commands to execute next can be made fair [8].) Consensus is said to
be universal [8] in the sense that its availability implies the fair availability of
any shared service.

Yet, as universal as it may be, consensus is just the specific case of a more
general abstraction: k-set consensus [5], where the number of decisions that
can be output by processes is more than 1 but at most k. That realization of
Chaudhuri in 1990, the challenge she posed, whether k-set consensus is solvable
in a system where the number of processes is larger than k, and her quote of
Saks about “smelling like Sperner”, has resulted, three years later, in the dis-
covery of the connection between distributed computing and algebraic-topology
[9,2,10].1

Given the importance of the state machine replication construct and the cor-
nerstone role of consensus, it is natural to ask what form of construct we get if
we generalize consensus to k-set consensus. Not being able to generalize state
machine replication, and the actual universality of (1-set) consensus, to the case
where k > 1, would be frustrating and would somehow reveal a hole in the theory
of distributed computing.

We show in this paper that k-set consensus is, in a precise sense, k-universal:
with k-set consensus, we can implement k state machines with the guarantee that
at least one machine remains highly available to all processes. In other words,
whereas consensus reduces distributed computing to centralized computing, i.e.,
“1-computing”, k-set consensus is the generalization that reduces distributed
computing to “k-computing”.

“Practical” applications might be foreseen. Multiple state machines, imple-
menting different services, one of which is guaranteed to progress, is better than
one state machine that does not progress. This could be the case if consensus
cannot be reached but 2-set consensus can: a shared memory system of 3 pro-
cesses and 1 failure, or a system that provides some weak compare-swap primitive
that allows for two winners. In fact, multiple state machines, even implement-
ing the same service, may provide for an interesting alternative behavior to a
classical state machine replication scheme at the time when the system is not
stable. Instead of blocking like a single machine will do, in our case at least one
machine will progress. There is of course the danger that the state machines
diverge from each other but many applications can tolerate divergence of view
for a while. When the system stabilizes, these divergent views may be reconciled
to continue with what is effectively a single view of the system. k read-write
processes proceeding wait-free.

The rest of the paper is organized as follows. We first recall below the basic
state machine replication construct, then we present the properties of generalized
state machine replication and finally our protocol.

1 The connection has been symmetric so far: whatever one has proved using pure
algorithmic implementation arguments had the analogue in algebraic-topology.
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2 State Machine Replication: The Classics

2.1 Model

We assume here that processes can exchange information by reading and writing
from shared memory cells, as well as agree on common decisions. More precisely,
we assume a basic read-write shared memory model augmented with consensus
objects [1].

Processes can be correct, in which case they execute an infinite number of
steps of the algorithm assigned to them, or they crash and stop any activity.
We consider an asynchronous system, meaning we make no assumption neither
on process relative speeds nor on the time needed to access shared read-write
memory cells or consensus objects.

The way consensus is used is simple: processes propose inputs and get back
outputs such that the following properties are satisfied.

1. Validity: any output is the input of some process.
2. Agreement: all outputs are the same;
3. Progress: any correct process that proposes an input gets back an output;

2.2 Protocol

The algorithm underlying state machine replication is depicted in Figure 1. It is
round-based as we will explain below.

Every process maintains locally a copy of the state machine as well as an
ordered list of commands, denoted respectively sm and comList in Figure 1.
The state machine is deterministic: the same command executed on different
copies of the state machine in the same state, leads to copies that are also in the
same state .

The processes typically have different lists of commands, say requests coming
from different users of a web service modeled by the state machine. For the sake
of presentation simplicity, we assume here that every process has an infinite such
list of commands. A process picks one command at a time from its list; we also
say that the process issues the command. As we will explain, the process does
not issue the next command until it managed to execute the previous command
on its state machine. Of course, the challenge for the protocol is to execute
commands on the various copies of the state machine in the same order. This is
where the consensus abstraction comes to play.

Consensus objects form a list, denoted by ConsList in Figure 1, and exactly
one object of the list is used in each round of the protocol. Processes go round-
by-round, incrementally, in each round proposing a command to the consensus
object of the round and executing the command returned by that consensus
object. Crucial to the correctness of the protocol lies the very fact that, in any
given round, the consensus instance used by all the processes is the same shared
object.

Basically, every process p proposes the next command it wants executed to
the next consensus object. This, in turn, returns a command, not necessarily
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local data structures:
1 sm (∗ a copy of the state machine ∗)
2 comList (∗ a list of commands ∗)
3 passed := true (∗ determines if the process executed its previous command ∗)

shared data structure:
4 ConsList (∗ a list of shared consensus objects ∗)

forever do:
5 if passed then com1 := comList.next() (∗ pick the next command ∗)
6 cons := ConsList.next() (∗ pick the next consensus object ∗)
7 com2 := cons.propose(com1) (∗ agree on the next command ∗)
8 sm.execute(com2) (∗ execute the agreed upon command ∗)
9 if com2 = com1 then passed := true
10 else passed := false (∗ test if own command passed ∗)

Fig. 1. State machine replication

that proposed by p, but one proposed by at least some process. The command
returned to a process p is then executed by p on its state machine: we simply
say that p executes the command. To ensure that every process executes the
commands in their original order, no process issues its next command unless it
has executed its previous one.

2.3 Correctness

The correctness of the protocol of Figure 1 lies on four observations.

1. Validity: If a process q executes command c, then c was issued by some
process p and q has executed every command issued by p before c. This
follows from the facts that (a) a consensus object returns one of the inputs
proposed (validity property of consensus), i.e., one of the commands issued
by a process and (b) a process does not issue a new command unless it has
executed the previous one it issued.

2. Ordering: If a process executes command c without having executed com-
mand c′, then no process executes c′ without having executed c. This follows
from the facts that (a) the processes execute the commands output by the
consensus objects, (b) the consensus objects are invoked by the processes in
the same order and (c) each such object returns the same command to all
processes (agreement property of consensus).

3. Progress: Every correct process executes an infinite number of commands
on the state machine. This follows from the facts that (a) there is no wait
statement in the algorithm and (b) every invocation to consensus by a correct
process returns a command to that process (progress property of consensus).

It is important to notice at this point that this simple protocol does not guarantee
fairness. Consensus objects could always return the commands proposed by the
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same process, i.e., there is no obligation for a consensus object to be fair with
respect to the processes of which it selects the input. Fairness could however
easily be ensured by having the processes help each other. Namely, when a
process issues a command, it first writes it in shared memory before proposing
it to consensus. Processes would now propose sets of commands (their own and
those of others) to consensus; accordingly, a consensus would return a set; the
set would be the same at all processes which would execute the commands in
the same deterministic order. For presentation simplicity, we omit fairness and
helping.

3 Generalized State Machine Replication

Basically, with consensus, a state machine can be replicated over any number
of processes and made highly available to all those processes. This makes of
consensus a universal abstraction for any sequential service can be modeled as a
state machine accessed by any number of processes. In a sense, with consensus,
computing on several distributed computers is reduced to computing on a single,
highly available, one.

In the following, we generalize this idea to show that, with k-set consensus,
we can replicate k state machines one of which at least one is highly available.
(The one that remains highly available is unknown in advance, for otherwise this
would boil down to classical state machine replication.) In some sense, we show
that k-set consensus is k-universal. We first give below the model underlying
general state machine replication, then we define the properties we seek it to
ensure before diving into the details of our protocol.

3.1 Properties

Here, we assume k state machines replicated over all processes of the system.
The processes have each at their disposal a list of k-vectors of commands that
they issue and seek to execute on their local copies of the k state machines:
a command issued at entry j of a vector is to be executed on machine sm[j].
Again, for presentation simplicity, we assume the lists of commands are infinite.

A generalized state machine replication protocol satisfies the following prop-
erties:

1. Validity: If a process q executes command c on state machine sm[i], then c
was issued by some process p at entry i (of p’s command vector), and q has
executed every command issued by p before c at entry i.

2. Ordering: If a process executes command c on state machine sm[i] without
having executed command c′ on sm[i], then no process executes c′ without
having executed c on sm[i].

3. Progress: There is at least one state machine sm[i] on which every correct
process executes an infinite number of commands.

It is easy to see that for the case where k = 1, these properties correspond
exactly to those of state machine replication.
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3.2 K-set Consensus

We assume here a standard read-write memory but now augmented with the
k-set consensus abstraction [5]. We assume k-set consensus in its vector form
[3]: It takes as input a k-vector of non-nil values, and returns, to each process,
a k-vector composed of nil values and exactly one non-nil value among those
proposed. We simply call this abstraction the consensus vector. It ensures the
following properties:

1. Validity: any non-nil value returned at some entry i of an output vector is
the input of some process at entry i of an input vector.

2. Agreement: Any two non-nil values returned to any two processes at the
same entry of the output vectors are the same.

3. Progress: Every correct process that proposes an input (vector) gets back an
output (vector) and every output contains exactly one non-nil value.

It is important to notice that the agreement property above does not prevent
one process from getting a non-nil value returned at entry i and nil at entry
j, whereas another process is getting some non-nil value at entry j and nil at
entry i.

3.3 From 1 to k

To get a sense of the technical difficulty behind our generalization, consider
first a naive protocol resulting from (a) replacing, in Figure 1, the consensus
abstraction with the consensus vector one, and (b) having, in every round r, a
process p executes on state machine sm[i] the command obtained at position i
from the consensus vector, if any, i.e., if p obtains nil at position i in r, then p
does simply not execute anything on state machine sm[i] in round r.

Clearly, such a protocol would guarantee liveness (progress): at least one state
machine will remain highly available since the consensus vector will return at
least one non-nil value and at least one command will be executed in every
round. Yet, safety (ordering) will be violated as we illustrate now through a
simple two-round execution of this naive protocol.

– Round 1. Assume p obtains a command c at position 1 (after proposing its
initial command vector): p will then accordingly execute c on sm[1]. In the
meantime, assume process q obtains a command c′ 	= c at position 2 and
accordingly executes c′ on sm[2].

– Round 2. Assume p obtains a command at position 2 and accordingly exe-
cutes that command on its state machine sm[2]. This would violate ordering
for p ignores that q already executed c′ on sm[2] in round 1.

Intuitively, the issue should be sorted out by having every process announce what
command it has executed before proceeding to the next round: say q would need
to notify p that q has executed c′ on sm[2] in round 1. This notification is not
trivial for it needs to be synchronized with the action where p needs itself to
execute a command on sm[1].
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To sort out this issue, adopt-commit objects [7] come in handy. These can be
implemented in a standard asynchronous read-write memory. We recall below
the specification of such objects before explaining how they are used in our
context.

3.4 Vectors of Adopt-Commit Objects

The specification of an adopt-commit object is as follows. Every process proposes
an input value to such an object and obtains an output value, either in a com-
mitted or adopted status. (One could model such an output as a pair, combining
a value and a bit depicting the status committed or adopted of that value). The
following properties are satisfied:

1. Validity: The output value of any process is an input value of some process.
2. Agreement: If a committed value is returned to a process, then no different

output value (committed or adopted) can be returned to any other process.
3. Progress: Every correct process that proposes an input value obtains an

output value.
4. Commitment: If no two input values are different, then no output value can

be adopted. (It is necessarily committed).

We use a vector of adopt-commit objects at each round, and this vector acts as
a synchronization filter through which processes go, after passing the consensus
vector and before actually executing commands on their state machines. Each
process, after obtaining an output from the consensus vector, goes through the
vector of adopt-commit objects. (In a specific order we explain below). In short,
a process only executes commands that are committed. Those adopted are kept
for next round.

3.5 Protocol

Our generalized state machine replication protocol is depicted in Figure 2. We
denote the list of consensus vectors by ConsVectList, the list of adopt-commit
vectors by AConsVectList and the list of vectors of commands available to a
process by comVectList. A process can pick the next element in a list using
function next() and also recall the last element picked in a list using function
current(). Processes do not add items in those lists during the execution of the
protocol.

The protocol proceeds in rounds. In every round, the initial vector of com-
mands is denoted by comVect, the one resulting from the vector of consensus
objects is denoted by comVect1 (this one might contain nil values) and the one
resulting from the vector of adopt-commit objects is denoted by comVect2 (this
one contains values in an adopted or committed status). If the latter vector re-
turns a command that is committed (resp. adopted) to a process p, we say that
p commits (resp. adopts) the command.
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local data structures:
1 smVect[] (∗ a vector of state machines ∗)
2 comVectList (∗ a list of command vectors ∗)
3 for j := 1 to k do: comVect[j] := (∗ pick the first command vector ∗)
comVectList[j].next()

shared data structures:
4 ConsVectList (∗ a list of consensus vectors ∗)
5 AConsVectList (∗ a list of adopt-commit vectors ∗)

forever do:
6 consVect := ConsVectList.next() (∗ pick the next consensus vector ∗)
7 comVect1 := consVect.propose(comVect); (∗ decide a new vector of commands ∗)
8 aconsVect := AConsVectList.next() (∗ pick the next adopt-commit vector ∗)

9 for i := 1 to k do:
10 if comVect1[i] �= nil then:
11 comVect2[i] := aconsVect[i].propose(comVect1[i]) (∗ exploit success first ∗)

12 for i := 1 to k do:
13 if comVect1[i] = nil then: (∗ try to commit old commands ∗)
14 comVect2[i] := aconsVect[i].propose(comVect[i])

15 for i := 1 to k do:
16 if older(comVect2[i],comVect[i]) then sm[i].execute(comVect[i]) (∗ catch-up ∗)

(∗ keep the command for next round ∗)
17 if adopted(comVect2[i]) then comVect[i] := comVect2[i]
18 else
19 sm[i].execute(comVect2[i])
20 if comVect2[i] := comVectList[i].current()
21 then comVect[i] := comVectList[i].next()
22 else comVect[i] := comVectList[i].current()
23 add(comVect[i],comVect2[i]) (∗ remember the committed command ∗)

Fig. 2. Generalized state machine replication

For presentation simplicity, we assume that a process can test if a command
was adopted simply using a function adopted(c), a process can encode in a com-
mand c′ the fact it has committed c, simply by writing add(c′, c), and the process
can check that fact by simply testing if older(c, c′).

Two main ideas underly our generalized state machine replication protocol
(Figure 2):

1. Exploit success first. To ensure liveness, a process p, at round r, accesses
first the adopt-commit object corresponding to the non-nil value (i.e., the
command) returned by the consensus vector at r (lines 10–11 in Figure 2).
Subsequently, p proceeds to the rest of the entries at which is was returned
nil and proposes the original commands to the consensus vector (lines 13–14
in Figure 2).
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This ensures that at least one process will commit a command in every round.
Indeed, for an adopt-commit object not to commit a command, it has to be
concurrently invoked with at least two distinct values. The first process p
to return from any of the adopt-commit object, by virtue of being first,
must commit the command. No process q can prevent p from committing by
proposing a distinct command concurrent with p, as then, q’s command was
not returned there, and q already went through the adopt-commit object of
its returned command, contradicting the fact that p was the first to return
from any adopt-commit object.

2. Remember commitments. To ensure safety, a process p might need to execute
two commands on the same machine in the same round. A process p might
indeed adopt a command c in round r for entry i, then commit another
command c′ in round r + 1 for that same entry i. This might happen if
another process q committed c at r and then moved to propose and commit
c′ at r+ 1. In this case, p should execute c and then c′, both in round r+ 1.
Should p execute c′ without having executed c, p would violate safety.
In our protocol, when q commits a command c in round r, then moves to
round r+1 with a command c′, q encodes in c′ the fact that c was committed
before c′ (line 23 in Figure 2): hence, in round r + 1, p will decode that
information from c′, then execute c before c′ (line 16 in in Figure 2). In fact,
p executes c even if it only adopts c′ in round r + 1.
It is important to notice here that c cannot “get lost” as every process
that did not commit c in round r must have adopted c at round r. Hence,
all proposed values to the adopt-commit object at entry i at round r + 1,
which are not c, are commands which encode the very fact that c has been
committed at round r.

4 Correctness

Theorem 1. If a process q executes command c on state machine sm[i], then
c was issued by some process p at entry i (of its command vector), and q has
executed every command issued by p before c at entry i.

Proof. There are exactly two places of the algorithm of Figure 2 where a process
p can execute a command c on its state machine sm[i]: at line 19 and line 16.
For p to execute a command c on sm[i] at line 19, p must have obtained c from
an adopt-commit object at entry i (comVect2 [i]). For p to execute a command c
on sm[i] at line 16, some process p′ must have obtained c from an adopt-commit
object at entry i (comVect2 [i]) and added it to the command vector at entry
i (line 23). In both cases, some process p′′ must have proposed c to an adopt-
commit object at entry i, and hence must have obtained c from a consensus
vector at entry i. In turn, some process p′′′ must have proposed c to that vector
at entry i and hence must have issued the command at entry c. It remains to
show now that p has executed on sm[i] every command c′ issued by p before c
at entry i. The only place where a process p issues a new command at entry i
in the algorithm of Figure 2 is at line 20. By the preliminary test performed in
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that line, this happens only if the command executed by p at entry i was issued
by p for rank i. Hence, p cannot execute a new command at entry i which is
issued by p, without having executed the previous command issued by p.

Theorem 2. If a process executes command c on state machine sm[i] without
having executed command c′ on sm[i], then no process executes c′ without having
executed c on sm[i].

Proof. Assume a process p executes, on its state machine sm[i], command c at
some round r. If this happens at line 16, then some process q has committed c
through an adopt-commit object aconsVect [i] in round r − 1 (line 18). Assume
furthermore that process p did not execute c′ before c. This means that no
adopt-commit object aconsVect [i] has returned c′ in a committed status at round
r′ < r − 1. Assume now that p executes on sm[i], command c at round r at
line 19. This means that p has committed c through an adopt-commit object
aconsVect [i] in round r (line 18). Assume furthermore that process p did not
execute c′ before c. This means that no adopt-commit object aconsVect [i] has
returned c′ in a committed status at round r′ < r. Hence, no process q can
execute c′ without having executed c on state machine sm[i].

Lemma 1. If a process p commits command c in round r on state machine
sm[i], then every process which finishes round r+ 1 executes c on state machine
sm[i].

Proof. Assume process p commits command c in round r on state machine sm[i].
By the specification of adopt-commit, aconsVect[i] returns command c (either
in a committed or adopted status) to all processes that invoked it in round r.
Hence, all processes which start round r + 1 either (a) executed c on sm[i] in
round r and start round r + 1 with a command c′ such that c′ encoded the
commitment of c (line 23), or (b) start round r + 1 with command c itself (line
17). In both cases, any process that did not execute c in round r will, in round
r + 1, either commit c and execute it (line 19) or learn about c having been
committed and execute it (line 16).

Theorem 3. An infinite number of commands are executed on at least one state
machine at all correct processes.

Proof. Assume at least one process is correct. Assume by contradiction that
there is a round at which no process executes a command on a state machine.
This means that no adopt-commit object returns a committed command. Given
that the protocol of Figure 2 has no wait statement, every adopt-commit object
must have had two different concurrently proposed values. This means that all
processes obtained different values from the consensus vector. Consequently, all
processes started at different adopt-commit objects. This is in contradiction with
the fact that every adopt-commit object has two different concurrent proposals.
Hence, at least one process commits a command on at least one machine in every
round. This follows from the order according to which processes access adopt-
commit objects. By Lemma 1, all correct processes execute a command on at
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least one machine every two rounds. Hence, there is at least one state machine
on which all correct processes execute an infinite sequence of commands.

5 Concluding Remarks

When k-set consensus was introduced [5], as creative feat as it was, it was for-
mulated in the “wrong” way. The question “what the analogue of (consensus)
state machine replication is?” could not be imagined, as k-set referred to multi-
ple values. When [3] equated k-set consensus with vector consensus, the question
of generalizing state machine replication started to make sense. In retrospect,
generalized state machines replication as presented here is so simple, that it begs
the question “why so long?”
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Abstract. Process discovery—discovering a process model from exam-
ple behavior recorded in an event log—is one of the most challenging
tasks in process mining. The primary reason is that conventional model-
ing languages (e.g., Petri nets, BPMN, EPCs, and ULM ADs) have dif-
ficulties representing the observed behavior properly and/or succinctly.
Moreover, discovered process models tend to have deadlocks and live-
locks. Therefore, we advocate a new representation more suitable for
process discovery: causal nets. Causal nets are related to the representa-
tions used by several process discovery techniques (e.g., heuristic mining,
fuzzy mining, and genetic mining). However, unlike existing approaches,
we provide declarative semantics more suitable for process mining. To
clarify these semantics and to illustrate the non-local nature of this new
representation, we relate causal nets to Petri nets.

1 Motivation

In this paper, we advocate the use of Causal-nets (C-nets) in process mining.
C-nets were introduced in [2] and, in our view, provide a better representational
bias for process discovery than conventional design-oriented languages such as
Petri nets, BPMN, BPEL, EPCs, YAWL, and UML activity diagrams.

Figure 1 shows a C-net modeling the booking of a trip. After activity a (start
booking) there are three possible activities: b (book flight), c (book car), and d
(book hotel). The process ends with activity e (complete booking). Each activity
has sets of potential input and output bindings (indicated by the black dots).
Every connected set of dots on the output arcs of an activity is an output bind-
ing. For example, a has four output bindings modeling that a may be followed
by (1) just b, (2) just c, (3) b and d, or (4) b, c, and d. Hence, it is not possible
to book just a hotel or a hotel and a car. Activity c has two input bindings
modeling that it is preceded by (1) just a or (2) a and b. This construct is used
to model that when both a flight and a car are booked, the flight is booked first.
Output bindings create obligations whereas input bindings remove obligations.
For example, the occurrence of a with output binding {b, d} creates two obliga-
tions: both b and d need to be executed while referring to the obligations created
by a.
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Fig. 1. Causal net Ctravel

In a C-net there is one start activity (a in Fig. 1) and one end activity (e
in Fig. 1). A valid binding sequence models an execution path starting with
a and ending with e while removing all obligations created during execution.
The behavior of a C-net is restricted to valid binding sequences. Hence, unlike
conventional modeling languages, the semantics are non-local. Section 2 explains
the semantics of C-nets in more detail and provides additional examples.

C-nets address important limitations of conventional languages in the context
of process mining [2]. Process mining is an emerging research discipline focusing
on the interplay between event logs (observed behavior) and process models.
Process discovery is the process mining task that aims to learn process models
based on example behavior recorded in events logs, e.g., based on a multi-set
of activity sequences (process instances) a Petri net that models the observed
behavior is discovered. Conformance checking is the process mining task that
compares the example behavior in a events log with the modeled behavior. Based
on such a comparison it is possible to highlight and quantify commonalities and
differences.

In the last decade dozens of new process discovery techniques have been pro-
posed, typically aiming at the creation of a conventional process model (e.g., a
Petri net or EPC). This means that the search space that is implied by such
a design-oriented language—often referred to as the “representational bias”—
is not tailored towards process mining. This creates various problems. In this
paper, we focus on two of them:

– The discovered process model is unable to represent the underlying process
well, e.g., a significant proportion of the behavior seen in the log is not pos-
sible in the model (non-fitting model), the model allows for behavior not
related to the event log (underfitting), the model is overfitting (no general-
ization), or the model is overly complex because all kinds of model elements
need to be introduced without a direct relation to the event log (e.g., places,
gateways, and events).

– Most of the process models in the search space determined by conven-
tional languages are internally inconsistent (deadlocks, livelocks, etc.), i.e.,
there are more inconsistent models than consistent ones. Process discovery
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techniques need to “guess” the underlying model based on example behavior.
If almost all of these guesses result in models that are obviously incorrect
(even without considering the event log), then the results are of little value.

Consider for example an algorithm producing a Petri net (e.g., the various region-
based approaches [11] and variants of the α-algorithm [2]). The behavior in a
Petri net can be restricted by adding places. However, places have no direct
meaning in terms of the behavior seen in the event log. Moreover, the addition
or removal of places may introduce deadlocks, livelocks, etc.

This is the reason why the more useful process discovery techniques use al-
ternative representations: fuzzy models [7], heuristic nets [9], flexible heuristic
nets [10], causal matrices [8], etc. Also for conformance checking one can find
similar representations, e.g., flexible models [4]. On the one hand, these repre-
sentations are similar to C-nets (i.e., activities can model XOR/OR/AND-splits
and joins without introducing separate model elements). On the other hand, the
semantics of such models are very different from the semantics we use for C-nets.
The distinguishing feature is that we limit the possible behavior to valid binding
sequences, thus excluding a variety of anomalies.

This paper introduces C-nets while focusing on their semantics (Sect. 2).
We believe that our formalization sheds new light on the representations used
in [4,7,8,9,10]. We also provide two mappings: one from C-nets to Petri nets
and one from Petri nets to C-nets (Sect. 3). These mappings help to clarify
the semantics and highlight the distinguishing features of C-nets. Moreover, to
illustrate the practical relevance of C-nets, we describe how the ProM framework
is supporting/using C-nets (Sect. 4).

2 Causal Nets

This section introduces causal nets – a representation tailored towards process
mining – and their semantics.

2.1 Definition

A Causal-net (C-net) is a graph where nodes represent activities and arcs repre-
sent causal dependencies. Each activity has a set of possible input bindings and a
set of possible output bindings. Consider, for example, the C-net shown in Fig. 2.
Activity a has only an empty input binding as this is the start activity. There
are two possible output bindings: {b, d} and {c, d}. This means that a is followed
by either b and d, or c and d. Activity e has two possible input bindings ({b, d}
and {c, d}) and three possible output bindings ({g}, {h}, and {f}). Hence, e
is preceded by either b and d, or c and d, and is succeeded by just g, h or f .
Activity z is the end activity having two input bindings and one output binding
(the empty binding). This activity has been added to create a unique end point.
All executions commence with start activity a and finish with end activity z.
Note that unlike, Petri nets, there are no places in the C-net; the routing logic
is solely represented by the possible input and output bindings.
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Fig. 2. C-net Crfc modeling a “Request For Compensation” (RFC) process

Definition 1 (Causal net [2]). A Causal net (C-net) is a tuple C = (A, ai, ao,
D, I, O) where:

– A is a finite set of activities;
– ai ∈ A is the start activity;
– ao ∈ A is the end activity;
– D ⊆ A×A is the dependency relation,
– AS = {X ⊆ P(A) | X = {∅} ∨ ∅ 	∈ X};1
– I ∈ A→ AS defines the set of possible input bindings per activity; and
– O ∈ A→ AS defines the set of possible output bindings per activity,

such that

– D = {(a1, a2) ∈ A×A | a1 ∈
⋃

as∈I(a2)
as};

– D = {(a1, a2) ∈ A×A | a2 ∈
⋃

as∈O(a1) as};
– {ai} = {a ∈ A | I(a) = {∅}};
– {ao} = {a ∈ A | O(a) = {∅}}; and
– all activities in the graph (A,D) are on a path from ai to ao.

The C-net of Fig. 2 can be described as follows. A = {a, b, c, d, e, f, g, h, z} is
the set of activities, a = ai is the unique start activity, and z = ao is the
unique end activity. The arcs shown in Fig. 2 visualize the dependency relation

1 P(A) = {A′ | A′ ⊆ A} is the powerset of A. Hence, elements of AS are sets of sets
of activities.
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D = {(a, b), (a, c), (a, d), (b, e), . . . , (g, z), (h, z)}. Functions I and O describe the
sets of possible input and output bindings. I(a) = {∅} is the set of possible
input bindings of a, i.e., the only input binding is the empty set of activities.
O(a) = {{b, d}, {c, d}} is the set of possible output bindings of a, i.e., activity
a is followed by d and either b or c. I(b) = {{a}, {f}}, O(b) = {{e}}, . . . ,
I(z) = {{g}, {h}}, O(z) = {∅}. Note that any element of AS is a set of sets
of activities, e.g., {{b, d}, {c, d}} ∈ AS . If one of the elements is the empty set,
then there cannot be any other elements, i.e., for any any X ∈ AS : X = {∅} or
∅ 	∈ X . This implies that only the unique start activity ai has the empty binding
as (only) possible input binding. Similarly, only the unique end activity ao has
the empty binding as (only) possible output binding.

An activity binding is a tuple (a, asI , asO) denoting the occurrence of activity
a with input binding asI and output binding asO. For example, (e, {b, d}, {f})
denotes the occurrence of activity e in Fig. 2 while being preceded by b and d,
and succeeded by f .

Definition 2 (Binding). Let C = (A, ai, ao, D, I, O) be a C-net. B = {(a, asI ,
asO) ∈ A × P(A) × P(A) | asI ∈ I(a) ∧ asO ∈ O(a)} is the set of activity
bindings. A binding sequence σ is a sequence of activity bindings, i.e., σ ∈ B∗.

Note that sequences are denoted using angle brackets, e.g., 〈 〉 denotes the empty
sequence. B∗ is the set of all sequences over B (including 〈 〉). A possible binding
sequence for the C-net of Fig. 2 is σex = 〈(a, ∅, {b, d}), (b, {a}, {e}), (d, {a}, {e}),
(e, {b, d}, {g}), (g, {e}, {z}), (z, {g}, ∅)〉.

Function α ∈ B∗ → A∗ projects binding sequences onto activity sequences,
i.e., the input and output bindings are abstracted from and only the activity
names are retained. For instance, α(σex ) = 〈a, b, d, e, g, z〉.

Consider C-net Ctravel shown in Figure 1. The possible input and output bind-
ings of Ctravel are defined as follows: O(a) = I(e) = {{b}, {c}, {b, d}, {b, c, d}},
I(a) = O(e) = {∅}, I(b) = I(d) = {{a}}, O(c) = O(d) = {{e}}, I(c) =
{{a}, {a, b}}, and O(b) = {{e}, {c, e}}. A possible binding sequence for the C-net
shown in Fig. 1 is σ = 〈(a, ∅, {b, c, d}), (d, {a}, {e}), (b, {a}, {c, e}), (c, {a, b}, {e}),
(e, {b, c, d}, ∅)〉, i.e., the scenario in which a hotel, a flight, and a car are booked.
α(σ) = 〈a, d, b, c, e〉 is the corresponding activity sequence. Note that in Fig. 1 a
hotel can only be booked if a flight is booked. Moreover, when both a car and a
flight are booked, then first the flight needs to be booked.

2.2 Valid Sequences

A binding sequence is valid if a predecessor activity and successor activity
always “agree” on their bindings. For a predecessor activity x and successor
activity y we need to see the following “pattern”: 〈. . . , (x, {. . .}, {y, . . .}), . . . ,
(y, {x, . . .}, {. . . }), . . .〉, i.e., an occurrence of activity x with y in its output
binding needs to be followed by an occurrence of activity y, and an occurrence
of activity y with x in its input binding needs to be preceded by an occurrence
of activity x. To formalize the notion of a valid sequence, we first define the
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notion of state. States are represented by multi-sets of obligations, e.g., state
[(a, b)2, (a, c)] denotes the state where there are two pending activations of b by
a and there is one pending activation of c by a. This means that b needs to
happen twice while having a in its input binding and c needs to happen once
while having a in its input binding.

Definition 3 (State). Let C = (A, ai, ao, D, I, O) be a C-net. S = IB(A × A)
is the state space of C. s ∈ S is a state, i.e., a multi-set of pending obliga-
tions. Function ψ ∈ B∗ → S is defined inductively: ψ(〈 〉) = [ ] and ψ(σ ⊕
(a, asI , asO)) = (ψ(σ) \ (asI × {a})) � ({a} × asO) for any binding sequence
σ ⊕ (a, asI , asO) ∈ B∗.2 ψ(σ) is the state after executing binding sequence σ.

Consider C-net Crfc shown in Fig. 2. Initially there are no pending “obliga-
tions”, i.e., no output bindings have been enacted without having corresponding
input bindings. If activity binding (a, ∅, {b, d}) occurs, then ψ(〈(a, ∅, {b, d})〉) =
ψ(〈 〉) \ (∅× {a})� ({a}× {b, d}) = ([ ] \ [ ])� [(a, b), (a, d)] = [(a, b), (a, d)]. State
[(a, b), (a, d)] denotes the obligation to execute both b and d using input bindings
involving a. Input bindings remove pending obligations whereas output bindings
create new obligations.

A valid sequence is a binding sequence that (1) starts with start activity
ai, (2) ends with end activity ao, (3) only removes obligations that are pend-
ing, and (4) ends without any pending obligations. Consider, for example, the
valid sequence σ = 〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e}), (e, {b, d}, ∅)〉 for C-
net Ctravel in Fig. 1:

ψ(〈 〉) = [ ]
ψ(〈(a, ∅, {b, d})〉) = [(a, b), (a, d)]

ψ(〈(a, ∅, {b, d}), (d, {a}, {e})〉) = [(a, b), (d, e)]
ψ(〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e})〉) = [(b, e), (d, e)]

ψ(〈(a, ∅, {b, d}), (d, {a}, {e}), (b, {a}, {e}), (e, {b, d}, ∅)〉) = [ ]

Sequence σ indeed starts with start activity a, ends with end activity e, only
removes obligations that are pending (i.e., for every input binding there was an
earlier output binding), and ends without any pending obligations: ψ(σ) = [ ].

Definition 4 (Valid). Let C = (A, ai, ao, D, I, O) be a C-net and σ = 〈(a1, asI
1,

asO
1 ), (a2, asI

2, asO
2 ), . . . , (an, asI

n, asO
n )〉 ∈ B∗ be a binding sequence. σ is a valid

sequence of C if and only if:

– a1 = ai, an = ao, and ak ∈ A \ {ai, ao} for 1 < k < n;
– ψ(σ) = [ ]; and
– for any non-empty prefix σ′ = 〈(a1, asI

1, asO
1 ), . . . , (ak, asI

k, asO
k )〉 (1 ≤ k ≤

n): (asI
k×{ak}) ≤ ψ(σ′′) with σ′′ = 〈(a1, asI

1, asO
1 ), . . . , (ak−1, asI

k−1, asO
k−1)〉

VCN (C) is the set of all valid sequences of C.

2 ⊕ is used to concatenate an element to the end of a sequence, e.g., 〈a, b, c〉 ⊕ d =
〈a, b, c, d〉. X �Y is the union of two multi-sets. X \Y removes Y from X (difference
of two multi-sets). Ordinary sets will be used as multi-sets throughout this paper.
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The first requirement states that valid sequences start with ai and end with ao (ai

and ao cannot appear in the middle of valid sequence). The second requirement
states that at the end there should not be any pending obligations. (One can
think of this as the constraint that no tokens left in the net.) The last requirement
considers all non-empty prefixes of σ: 〈(a1, asI

1, asO
1 ), . . . , (ak, asI

k, asO
k )〉. The last

activity binding of the prefix (i.e., (ak, asI
k, asO

k )) should only remove pending
obligations, i.e., (asI

k×{ak}) ≤ ψ(σ′′) where asI
k×{ak} are the obligations to be

removed and ψ(σ′′) are the pending obligations just before the occurrence of the
k-th binding. (One can think of this as the constraint that one cannot consume
tokens that have not been produced.)

The C-net in Fig. 1 has seven valid sequences: only b is executed (〈(a, ∅, {b}),
(b, {a}, {e}), (e, {b}, ∅)〉), only c is executed (besides a and e), b and d are exe-
cuted (two possibilities), and b, c and d are executed (3 possibilities because b
needs to occur before c). The C-net in Fig. 2 has infinitely many valid sequences
because of the loop construct involving f .

For the semantics of a C-net we only consider valid sequences, i.e., invalid
sequences are not part of the behavior described by the C-net. This means that
C-nets do not use plain “token-game semantics” as employed in conventional
languages like BPMN, Petri nets, EPCs, and YAWL. The semantics of C-nets
are more declarative as they are defined over complete sequences rather than a
local firing rule. Note that the semantics abstract from the moment of choice;
pending obligations are not exposed to the environment and are not fixed during
execution (i.e., all valid interpretations remain open).

2.3 Soundness

The notion of soundness has been defined for a variety of workflow and business
process modeling notations (e.g., workflow nets as shown in Sect. 3.1). A process
model is sound if it is free of deadlocks, livelocks, and other obvious anomalies.
A similar notion can be defined for C-nets.

Definition 5 (Soundness of C-nets [2]). A C-net C = (A, ai, ao, D, I, O)
is sound if (1) for all a ∈ A and asI ∈ I(a) there exists a σ ∈ VCN (C) and
asO ⊆ A such that (a, asI , asO) ∈ σ, and (2) for all a ∈ A and asO ∈ O(a) there
exists a σ ∈ VCN (C) and asI ⊆ A such that (a, asI , asO) ∈ σ.

Since the semantics of C-nets already enforce “proper completion” and the “op-
tion to complete”, we only need to make sure that there are valid sequences
and that all parts of the C-net can potentially be activated by such a valid se-
quence. The C-nets Ctravel and Crfc in Figs. 1 and 2 are sound. Figure 3 shows
two C-nets that are not sound. In Fig. 3(a), there are no valid sequences be-
cause none of output bindings of a matches any of the input bindings of e.
For example, consider the binding sequence σ = 〈(a, ∅, {b}), (b, {a}, {e})〉. Se-
quence σ cannot be extended into a valid sequence because ψ(σ) = [(b, e)] and
{b} 	∈ I(e), i.e., the input bindings of e do not allow for just booking a flight
whereas the output bindings of a do. In Fig. 3(b), there are valid sequences, e.g.,
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Fig. 3. Two C-nets that are not sound. The first net (a) does not allow for any valid
sequence, i.e., VCN (C) = ∅. The second net (b) has valid sequences but also shows
input/output bindings that are not realizable (indicated in red).

a

c

b d e

Fig. 4. A sound C-net for which there does not exist a WF-net having the same set of
activity sequences

〈(a, ∅, {c}), (c, {a}, {e}), (e, {c}, ∅)〉. However, not all bindings appear in one or
more valid sequences. For example, the output binding {b} ∈ O(a) does not ap-
pear in any valid sequence, i.e., after selecting just a flight the sequence cannot
be completed properly. The input binding {c, d} ∈ I(e) also does not appear
in any valid sequence, i.e., the C-net suggests that only a car and hotel can be
booked but there is no corresponding valid sequence.

Figure 4 shows another C-net. One of the valid binding sequences for this
C-net is 〈(a, ∅, {b}), (b, {a}, {b, c}), (b, {b}, {c, d}), (c, {b}, {d}), (c, {b}, {d}), (d,
{b, c}, {d}), (d, {c, d}, {e}), (e, {d}, ∅)〉, i.e., the sequence 〈a, b, b, c, c, d, d, e〉. This
sequence covers all the bindings. Therefore, the C-net is sound. Examples of
other valid sequences are 〈a, b, c, d, e〉, 〈a, b, c, b, c, d, d, e〉, and 〈a, b, b, b, c, c, c, d,
d, d, e〉.

C-nets are particularly suitable for process mining given their declarative na-
ture and expressiveness without introducing all kinds of additional model ele-
ments (places, conditions, events, gateways, etc.). Several process discovery use
similar representations [7,8,9,10]. However, these models tend to use rather in-
formal semantics; the model serves more like a “picture” showing dependencies
rather than an end-to-end process model.

3 Relating C-nets and Petri Nets

To better understand the semantics of C-nets, we relate C-nets to Petri nets. We
provide a mapping from WF-nets to C-nets and show that the resulting C-net
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is behaviorally equivalent to the original WF-net. We also provide a mapping
from C-nets to WF-nets that over-approximates the behavior.

3.1 Petri Nets and WF-nets

We assume that the reader is familiar with Petri nets. Therefore, we just sum-
marize the basic concepts and notations relevant for the two mappings.

Definition 6 (Petri net). A Petri net is a triplet N = (P, T, F ) where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅,
and F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation.
A marked Petri net is a pair (N,M), where N = (P, T, F ) is a Petri net and
where M ∈ IB(P ) is a multi-set over P denoting the marking of the net.

Petri nets are defined in the standard way. Markings, i.e., states of the net, are
denoted as multi-sets. For any x ∈ P ∪ T , •x = {y | (y, x) ∈ F} (input nodes)
and x• = {y | (x, y) ∈ F} (output nodes). A transition t is enabled if each of its
input places •t contains at least one token. An enabled transition t may fire, i.e.,
one token is removed from each of the input places •t and one token is produced
for each of the input places t•. Formally: (M \ •t) � t• is the marking resulting
from firing enabled transition t in marking M .

A sequence σ ∈ T ∗ is called a firing sequence of (N,M0) if and only if, for some
n ∈ {0, 1, . . .}, there exist markings M1, . . . ,Mn and transitions t1, . . . , tn ∈ T
such that σ = 〈t1 . . . tn〉 and, for all i with 0 ≤ i < n, ti+1 is enabled in Mi and
firing ti+1 results in marking Mi+1.

For business process modeling and process mining, often a restricted class of
Petri nets is used: Workflow nets (WF-nets) [1,3]. The reason is that process
instances have a clear starting and ending point. For example, a customer order,
a patient treatment, a request for a mortgage, etc. all have a life-cycle with a
well-defined start and end. Process instances are often referred to as cases. A
WF-net describes the life-cycle of such cases.

Definition 7 (Workflow net [1]). Petri net N = (P, T, F ) is a workflow net
(WF-net) if and only if (1) P contains an input place pi (also called source place)
such that •pi = ∅, (2) P contains an output place po (also called sink place) such
that po• = ∅, and (3) every node is on a path from pi to po.

Cases start in the marking [pi] (one token in the unique source place) and ideally
end in the marking [po] (one token in the unique sink place). The WF-net should
ensure that it is always possible to reach the final marking [po]. Moreover, a WF-
net should not contain dead parts, i.e., parts that can never be activated. These
requirements result in the classical definition of soundness for WF-nets.

Definition 8 (Soundness [1,3]). Let N = (P, T, F ) be a WF-net with input
place pi and output place po. N is sound if and only if (1) for any marking
reachable from [pi] it is possible to reach the marking [po] ( option to complete),
and (2) (N, [pi]) contains no dead transitions ( absence of dead parts, i.e., for
any t ∈ T , there is a firing sequence enabling t).
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Fig. 5. Mapping a fragment of a WF-net (a) onto a C-net (b) using Definition 10

We are interested in the set VPN (N) of all firing sequences that start in marking
[pi] and end in marking [po]. Note that in a sound WF-net, all full firing sequences
(i.e., firing sequences ending in a dead marking) are valid.

Definition 9 (Valid firing sequences). Let N = (P, T, F ) be a WF-net.
VPN (N) ⊆ T ∗ is the set of all valid firing sequences, i.e., firing sequences start-
ing in marking [pi] and ending in marking [po].

At first sight, C-nets seem to be related to zero-safe nets [5]. The places in a zero-
safe net are partitioned into stable-places and zero-places. Observable markings
only mark stable-places, i.e., zero-places need to be empty. In-between observable
markings zero-places may be temporarily marked. However, zero-places cannot
be seen as bindings because the obligations between two activities may be non-
local, i.e., an output binding may create the obligation to execute an activity
occurring much later in the process.

3.2 Mapping WF-nets onto C-nets

Any sound WF-net can be transformed into an equivalent C-net by convert-
ing places into activities with XOR-join and XOR-split bindings. The idea is
sketched in Fig. 5 and can be formalized as follows.

Definition 10 (Mapping I). Let N = (P, T, F ) be a WF-net with input place
pi and output place po. CN = (A, ai, ao, D, I, O) is the corresponding C-net with
A = T ∪ P , ai = pi, ao = po, D = F , I(t) = {•t} and O(t) = {t•} for t ∈ T ,
and I(p) = {{t} | t ∈ •p} and O(p) = {{t} | t ∈ p•} for p ∈ P .

To relate valid firing sequences in WF-nets to valid binding sequences in C-nets,
we define a generic projection operation. σ ↑ Y is the projection of some sequence
σ ∈ X∗ onto some subset Y ⊆ X , i.e., elements of σ not in Y are removed.
This operation can be generalized to sets of sequences, e.g., {〈a, b, c, a, b, c, d〉,
〈b, b, d, e〉} ↑ {a, b} = {〈a, b, a, b〉, 〈b, b〉}.
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Theorem 1. Let N = (P, T, F ) be a sound WF-net having CN as its corre-
sponding C-net.

– For any valid firing sequence σN ∈ VPN (N), there exists a valid binding
sequence σC ∈ VCN (CN ) such that α(σC) ↑ T = σN .

– For any valid binding sequence σC ∈ VCN (CN ), there exists a valid firing
sequence σN ∈ VPN (N) such that α(σC) ↑ T = σN .

Proof. Let σN be a valid firing sequence of N . Replay σN on N while labeling
each token with the name of the transition that produced it. Suppose that t6
in Fig. 5 fires while consuming a token from p1 produced by t2 and a token
from p2 produced by t3. This occurrence of t6 corresponds to the subsequence
〈. . . , (p1, {t2}, {t6}), (p2, {t3}, {t6}), (t6, {p1, p2}, {. . .})〉. This way it is possible
to construct a valid binding sequence σC . Note that there may be multiple valid
binding sequences corresponding to σN .

Let σC be a valid binding sequence. It is easy to see that σC can be replayed
on the WF-net. In fact, one can simply abstract from “place activities” as these
correspond to routing decisions not relevant for WF-nets (only the presence of a
token matters not where the token came from). Therefore, each σC corresponds
to a single σN . ��

C-nets are at least as expressive as sound WF-nets because all valid firing se-
quences in N have a corresponding valid binding sequence in CN and vice-versa.
The reverse does not hold as is illustrated by Fig. 4. This model is unbounded
and has infinitely many binding sequences. Since sound WF-nets are bounded
[1,3], they can never mimic the behavior of the C-net in Fig. 4.

3.3 Mapping C-nets onto WF-nets

Figure 4 illustrates that WF-nets are not as expressive as C-net. Nevertheless,
it is interesting to construct WF-nets that over-approximate the behavior of
C-nets.

Definition 11 (Mapping II). Let C = (A, ai, ao, D, I, O) be a C-net. NC =
(P, T, F ) is the corresponding WF-net with P = {pI

a | a ∈ A} ∪ {pO
a | a ∈

A} ∪ {pD
(a1,a2)

| (a1, a2) ∈ D}, T I = {aI
X | a ∈ A ∧ X ∈ I(a) ∧ X 	= ∅},

TO = {aO
X | a ∈ A ∧ X ∈ O(a) ∧ X 	= ∅}, T = A ∪ T I ∪ TO, F =

{(pI
a, a) | a ∈ A} ∪ {(a, pO

a ) | a ∈ A} ∪ {(aI
X , p

I
a) | aI

X ∈ T I} ∪ {(pO
a , a

O
X) | aO

X ∈
TO}∪{(pD

(a1,a), a
I
X) | aI

X ∈ T I ∧ a1 ∈ X}∪{(aO
X , p

D
(a,a2)

) | aO
X ∈ TO ∧ a2 ∈ X}.

Figure 6 illustrates this construction. The black transitions correspond to silent
transitions (often referred to as τ transitions). Since there is a unique start
activity ai, there is one source place pi = pI

ai
. Moreover, there is one sink place

po = pO
ao

and all nodes are on a path from pi to po. Therefore, NC is indeed a
WF-net.



Causal Nets: A Modeling Language Tailored towards Process Discovery 39

book
flight

a

start
booking

c

b

d

book
car

book
hotel

e

complete
booking

Fig. 6. A C-net transformed into a WF-net: every valid firing sequence of the WF-net
corresponds to a valid sequence of the C-net Ctravel shown in in Fig. 1 and vice versa

It is easy to see that Definition 11 is such that the WF-net can mimic any
valid binding sequence. However, the corresponding WF-net does not need to
be sound and may have a firing sequence that cannot be extended into a valid
firing sequence.

Theorem 2. Let C = (A, ai, ao, D, I, O) be a C-net having NC as its corre-
sponding WF-net.

– For any valid binding sequence σC ∈ VCN (C), there exists a valid firing
sequence σN ∈ VPN (NC) such that α(σC) = σN ↑ A.

– For any valid firing sequence σN ∈ VPN (NC), there exists a valid binding
sequence σC ∈ VCN (C) such that α(σC) = σN ↑ A.

Proof. It is easy to construct a valid firing sequence σN for any valid binding
sequence σC . An activity binding (a,X, Y ) in σC corresponds to the firing sub-
sequence 〈aI

X , a, a
O
Y 〉 in σN . (For the start and end activity, aI

X respectively aO
Y

are omitted.) The constructed sequence meets all requirements.
Let σN be a valid firing sequence. Consider the occurrence of a transition

a ∈ A in σN . Based on the structure of the WF-net it can be seen that a was
preceded by a corresponding transition in T I (unless a = ai) and will be followed
by a corresponding transition in TO (unless a = ao). The reason is that a has a
dedicated input place (no other transition can consume from it) and a dedicated
output place (no other transition can add tokens) and that after executing σN

only pO
ao

is marked. Hence, for every occurrence of some transition a ∈ A there
is a corresponding occurrence of a transition aI

X ∈ T I and a corresponding
occurrence of a transition aO

Y ∈ TO. This information can be used to construct
σC ∈ VCN (C) such that α(σC) = σN ↑ A. ��

The theorem shows that the expressiveness of C-nets is due its declarative se-
mantics which considers only valid binding sequences (and not the notation
itself). If one restricts WF-nets to valid firing sequences (and allows for silent
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transitions!), the same expressiveness is achieved.3 Note that this is related to
the notion of relaxed soundness [6]. In fact, a C-net C is sound if and only if
the corresponding WF-net NC is relaxed sound. In [6] it is shown that for some
relaxed sound WF-nets a corresponding sound WF-net can be constructed.

4 Application of C-nets in ProM

In the previous sections we introduced C-nets and related them to Petri nets.
After these theoretical considerations, we briefly describe the way in which the
ProM framework supports C-nets. ProM is an open-source process analysis tool
with a pluggable architecture. Originally, the focus of ProM was exclusively on
process mining. However, over time the scope of the system broadened to also
include other types of analysis (e.g., verification). In the remainder, we provide
a brief overview of ProM’s functionality. Note that we show just a fraction of
the hundreds of plug-ins available (cf. www.processmining.org).

4.1 Model Management and Conversion

ProM is able to load and save C-nets in a dedicated file format. Petri nets can be
converted to C-nets using the construction of Definition 10. Similarly, it is pos-
sible to convert a C-net into a Petri net using the construction of Definition 11.
Conversions to and from other formats (EPCs, BPMN, etc.) are being developed.
These formats can already be converted to Petri nets thus enabling an indirect
conversion from these formats to C-nets.

4.2 Model-Based Verification

ProM has extensive support for transition systems and Petri nets. Moreover,
also Petri nets with reset and inhibitor arcs and specific subclasses such as WF-
nets are supported. Typical Petri nets properties such as liveness, boundedness,
etc. can be analyzed using various plug-ins. ProM also embeds the well-known
LoLA (a Low Level Petri Net Analyzer) tool for more advanced forms of model-
based analysis. There are also plug-ins analyzing structural properties of the
net (invariants, traps, siphons, components, etc.). These plug-ins can be applied
to WF-nets. Moreover, plug-ins like Woflan are able to verify soundness and
diagnose errors.

The plug-in “Check Soundness of Causal Net” checks the property defined in
Definition 5. Internally, the plug-in converts the model into a WF-net and then
checks relaxed soundness.

4.3 Process Discovery

One of the most challenging topics in process mining is the automated derivation
of a model based on example traces [2]. The starting point for process discovery
3 Expressiveness in terms matching sequences.

www.processmining.org
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is an event log in MXML or XES format. ProM provides a wide variety of
process discovery techniques, e.g., techniques based on state-based region theory,
language-based region theory, genetic mining, fuzzy mining, folding of partial
orders, or heuristic mining. The process discovery plug-ins in ProM typically
produce a Petri net or a model close to C-nets [2,7,8,9,10]. Using the various
conversion plug-ins such results can be mapped onto C-nets.

What is missing are dedicated process discovery techniques producing C-nets
while exploiting the representational bias. This is a topic for further research.

4.4 Conformance Checking and Performance Analysis

Given an event log and a process model, it is possible to replay the log on
the model. ProM provides several plug-ins that replay logs on Petri nets. An
example, is the “Conformance Checker” plug-in [2].

(a) Conformance analysis (b) Performance analysis

Fig. 7. Two ProM plug-ins showing the results obtained through replaying the event
log on a C-net

Recently, ProM started to support several plug-ins that replay logs on C-nets
[4]. Figure 7(a) shows that ProM is able to discover deviations between a C-net
and an event log. The plug-in indicates where deviations occur and what the
overall fitness of the log is (using configurable cost functions). Most event logs
contain timestamps. Therefore, replay can also be used to identify bottlenecks
and to measure waiting and service times. Figure 7(b) shows the result of such
analysis; the colors and numbers indicate different performance measurements.

5 Conclusion

This paper makes the case for Causal-nets (C-nets) in process mining. C-nets
provide a better representational bias than conventional languages that are ei-
ther too restrictive (e.g., OR-joins, unstructured loops, and skipping cannot be
expressed) or too liberal (in the sense that most models are incorrect). Key in-
gredients are (1) the notion of bindings allowing for any split and join behavior
and (2) the semantic restriction to valid binding sequences.
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We explored the basic properties of C-nets and analyzed their relation to Petri
nets. Moreover, we described the degree of support provided by ProM. Model
management, conversion, verification, process discovery, conformance checking,
and performance analysis of C-nets are supported by ProM 6 which can be
downloaded from www.processmining.org.
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Abstract. We consider approaches for causal semantics of Petri nets,
explicitly representing dependencies between transition occurrences. For
one-safe nets or condition/event-systems, the notion of process as de-
fined by Carl Adam Petri provides a notion of a run of a system where
causal dependencies are reflected in terms of a partial order. A well-
known problem is how to generalise this notion for nets where places
may carry several tokens. Goltz and Reisig have defined such a general-
isation by distinguishing tokens according to their causal history. How-
ever, this so-called individual token interpretation is often considered too
detailed. A number of approaches have tackled the problem of defining a
more abstract notion of process, thereby obtaining a so-called collective
token interpretation. Here we give a short overview on these attempts
and then identify a subclass of Petri nets, called structural conflict nets,
where the interplay between conflict and concurrency due to token mul-
tiplicity does not occur. For this subclass, we define abstract processes as
equivalence classes of Goltz-Reisig processes. We justify this approach by
showing that we obtain exactly one maximal abstract process if and only
if the underlying net is conflict-free with respect to a canonical notion of
conflict.

1 Introduction

In this paper we address a well-known problem in Petri net theory, namely how
to generalise Petri’s concept of non-sequential processes to nets where places
may carry multiple tokens.

One of the most interesting features of Petri nets is that they allow the ex-
plicit representation of causal dependencies between action occurrences when
modelling reactive systems. This is a key difference with models of reactive sys-
tems (like standard transition systems) with an inherent so-called interleaving
semantics, modelling concurrency by non-deterministic choice between sequen-
tial executions. In [GG01] it has been shown, using the model of event structures
or configuration structures, that causal semantics are superior to interleaving se-
mantics when giving up the assumption that actions are atomic entities.
� This work was partially supported by the DFG (German Research Foundation).
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In the following, we give a concise overview on existing approaches on se-
mantics of Petri nets that give an account of their runs, without claiming com-
pleteness, and following closely a similar presentation in [GGS11a].

Initially, Petri introduced the concept of a net together with a definition of
its dynamic behaviour in terms of the firing rule for single transitions or for finite
sets (steps) of transitions firing in parallel. Sequences of transition firings or of
steps are the usual way to define the behaviour of a Petri net. When consid-
ering only single transition firings, the set of all firing sequences yields a linear
time interleaving semantics (no choices between alternative behaviours are rep-
resented). Otherwise we obtain a linear time step semantics, with information on
possible parallelism, but without explicit representation of causal dependencies
between transition occurrences.

Petri then defined condition/event systems, where — amongst other restric-
tions — places (there called conditions) may carry at most one token. For this
class of nets, he proposed what is now the classical notion of a process, given
as a mapping from an occurrence net (acyclic net with unbranched places) to
the original net [Pet77,GSW80]. A process models a run of the represented sys-
tem, obtained by choosing one of the alternatives in case of conflict. It records
all occurrences of the transitions and places visited during such a run, together
with the causal dependencies between them, which are given by the flow relation
of the net. A linear-time causal semantics of a condition/event system is thus
obtained by associating with a net the set of its processes. Depending on the
desired level of abstraction, it may suffice to extract from each process just the
partial order of transition occurrences in it. The firing sequences of transitions
or steps can in turn be extracted from these partial orders. Nielsen, Plotkin and
Winskel extended this to a branching-time semantics by using occurrence nets
with forward branched places [NPW81]. These capture all runs of the represented
system, together with the branching structure of choices between them.

However, the most frequently used class of Petri nets are nets where places
may carry arbitrary many tokens, or a certain maximal number of tokens when
adding place capacities. This type of nets is often called place/transition systems
(P/T systems). Here tokens are usually assumed to be indistinguishable entities,
for example representing a number of available resources in a system. Unfortu-
nately, it is not straightforward to generalise the notion of process, as defined by
Petri for condition/event systems, to P/T systems. In fact, it has now for more
than 20 years been a well-known problem in Petri net theory how to formalise an
appropriate causality-based concept of process or run for general P/T systems.
In the following we give an introduction to the problem and a short overview on
existing approaches.

As a first approach, Goltz and Reisig generalised Petri’s notion of process to
general P/T systems [GR83]. We call this notion of a process GR-process. It is
based on a canonical unfolding of a P/T systems into a condition/event system,
representing places that may carry several tokens by a corresponding number of
conditions (see [Gol87]). Fig. 1 shows a P/T system with two of its GR-processes.

Engelfriet adapted GR-processes by additionally representing choices be-
tween alternative behaviours [Eng91], thereby adopting the approach of [NPW81]
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Fig. 1. A net N with its two maximal GR-processes. The correspondence between
elements of the net and their occurrences in the processes is indicated by labels.

to P/T systems, although without arc weights. Meseguer, Sassone and Montanari
extended this to cover also arc weights [MMS97].

However, if one wishes to interpret P/T systems with a causal semantics,
there are alternative interpretations of what “causal semantics” should actually
mean. Goltz already argued that when abstracting from the identity of multiple
tokens residing in the same place, GR-processes do not accurately reflect runs
of nets, because if a Petri net is conflict-free it should intuitively have only one
complete run (for there are no choices to resolve), yet it may have multiple
maximal GR-processes [Gol86]. This phenomenon already occurs in Fig. 1, since
the choice between alternative behaviours is here only due to the possibility to
choose between two tokens which can or even should be seen as indistinguishable
entities. A similar argument is made, e.g., in [HKT95].

At the heart of this issue is the question whether multiple tokens residing
in the same place should be seen as individual entities, so that a transition
consuming just one of them constitutes a conflict, as in the interpretation un-
derlying GR-processes and the approach of [Eng91,MMS97], or whether such
tokens are indistinguishable, so that taking one is equivalent to taking the other.
Van Glabbeek and Plotkin call the former viewpoint the individual token inter-
pretation of P/T systems. For an alternative interpretation, they use the term
collective token interpretation [GP95]. A possible formalisation of these interpre-
tations occurs in [Gla05]. In the following we call process notions for P/T systems
which are adherent to a collective token philosophy abstract processes. Another
option, proposed by Vogler, regards tokens only as notation for a natural num-
ber stored in each place; these numbers are incremented or decremented when
firing transitions, thereby introducing explicit causality between any transitions
removing tokens from the same place [Vog91].

Mazurkiewicz applies again a different approach in [Maz89]. He proposes
multitrees, which record possible multisets of fired transitions, and then takes
confluent subsets of multitrees as abstract processes of P/T systems. This ap-
proach does not explicitly represent dependencies between transition occurrences
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Fig. 2. A net with only a single process up to swapping equivalence

and hence does not apply to nets with self-loops, where such information may
not always be retrieved.

Yet another approach has been proposed by Best and Devillers in [BD87].
Here an equivalence relation is generated by a transformation for changing
causalities in GR-processes, called swapping, that identifies GR-processes which
differ only in the choice which token was removed from a place. In this paper, we
adopt this approach and we show that it yields a fully satisfying solution for a
subclass of P/T systems. We call the resulting notion of a more abstract process
BD-process. In the special case of one-safe P/T systems (where places carry at
most one token), or for condition/event systems, no swapping is possible, and a
BD-process is just an isomorphism class of GR-processes.

Meseguer and Montanari formalise runs in a net N as morphisms in a cate-
gory T (N) [MM88]. In [DMM89] it has been established that these morphisms
“coincide with the commutative processes defined by Best and Devillers” (their
terminology for BD-processes). Likewise, Hoogers, Kleijn and Thiagarajan rep-
resent an abstract run of a net by a trace, thereby generalising the trace theory
of Mazurkiewicz [Maz95], and remark that “it is straightforward but laborious
to set up a 1-1 correspondence between our traces and the equivalence classes of
finite processes generated by the swap operation in [Best and Devillers, 1987]”.

To explain why it can be argued that BD-processes are not fully satisfying
as abstract processes for general P/T systems, we recall in Fig. 2 an example
due to Ochmański [Och89,BMO09], see also [DMM89,GGS11a]. In the initial
situation only two of the three enabled transitions can fire, which constitutes a
conflict. However, the equivalence obtained from the swapping transformation
(formally defined in Section 3) identifies all possible maximal GR-processes and
hence yields only one complete abstract run of the system. We are not aware of
a solution, i.e. any formalisation of the concept of a run of a net that correctly
represents both causality and parallelism of nets, and meets the requirement
that for this net there is more than one possible complete run.

In [GGS11a] and in the present paper, we continue the line of research of
[MM88,DMM89,Maz89,HKT95] to formalise a causality-based notion of an ab-
stract process of a P/T system that fits a collective token interpretation. As
remarked already in [Gol86], ‘what we need is some notion of an “abstract pro-
cess”’ and ‘a notion of maximality for abstract processes’, such that ‘a P/T-
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system is conflict-free iff it has exactly one maximal abstract process starting
at the initial marking’. The example from Fig. 2 shows that BD-processes are
in general not suited. We defined in [GGS11a] a subclass of P/T systems where
conflict and concurrency are clearly separated. We called these nets structural
conflict nets. Using the formalisation of conflict for P/T systems from [Gol86],
we have shown that, for this subclass of P/T systems, we obtain more than one
maximal BD-process whenever the net contains a conflict.1 The proof of this
result is quite involved; it was achieved by using an alternative characterisation
of BD-processes via firing sequences from [BD87].

In this paper, we will show the reverse direction of this result, namely that
we obtain exactly one maximal BD-process of a structural conflict net if the net
is conflict-free. Depending on the precise formalisation of a suitable notion of
maximality of BD-processes, this holds even for arbitrary nets. Summarising,
we then have established that we obtain exactly one maximal abstract process
in terms of BD-processes for structural conflict nets if and only if the net is
conflict-free with respect to a canonical notion of conflict.

We proceed by defining basic notions for P/T systems in Section 2. In Section
3, we define GR-processes and introduce the swapping equivalence. Section 4
recalls the concept of conflict in P/T systems and defines structural conflict nets.2

In Section 5, we recapitulate the alternative characterisation of BD-processes
from [BD87] in terms of an equivalence notion on firing sequences [BD87] and
prove in this setting that a conflict-free net has exactly one maximal run. Finally,
in Section 6, we investigate notions of maximality for BD-processes and then
transfer the result from Section 5 to BD-processes. Due to lack of space, the
proofs of Lemma’s 2, 3, 4, 6 and 7, some quite involved, are omitted; these can
be found in [GGS11b].

We will employ the following notations for multisets.

Definition 1. Let X be a set.
• A multiset over X is a function A : X → IN, i.e. A ∈ INX.

• x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.

• For multisets A and B over X we write A ⊆ B iff A(x) ≤ B(x) for all x∈X ;
A ∪ B denotes the multiset over X with (A ∪ B)(x) := max(A(x), B(x)),
A ∩ B denotes the multiset over X with (A ∩ B)(x) := min(A(x), B(x)),
A + B denotes the multiset over X with (A + B)(x) := A(x) + B(x),
A − B is given by (A − B)(x) := A(x) ·− B(x) = max(A(x) − B(x), 0), and
for k ∈ IN the multiset k · A is given by (k · A)(x) := k · A(x).

1 The notion of maximality for BD-processes is not trivial. However, with the results
from Section 6, Corollary 1 from [GGS11a] may be rephrased in this way.

2 The material in Sections 2 to 4 follows closely the presentation in [GGS11a], but
needs to be included to make the paper self-contained.

2 Place Transition Systems
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• The function ∅ : X → IN, given by ∅(x) := 0 for all x ∈ X , is the empty
multiset over X .

• If A is a multiset over X and Y ⊆ X then A �Y denotes the multiset over Y
defined by (A � Y )(x) := A(x) for all x ∈ Y .

• The cardinality |A| of a multiset A over X is given by |A| :=
∑

x∈X A(x).

• A multiset A over X is finite iff |A| < ∞, i.e., iff the set {x | x ∈ A} is finite.

Two multisets A : X → IN and B : Y → IN are extensionally equivalent iff
A �(X ∩Y ) = B �(X ∩Y ), A �(X \Y ) = ∅, and B �(Y \X) = ∅. In this paper we
often do not distinguish extensionally equivalent multisets. This enables us, for
instance, to use A ∪ B even when A and B have different underlying domains.
With {x, x, y} we will denote the multiset over {x, y} with A(x)=2 and A(y)=1,
rather than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified
with the set {x | A(x) = 1}.

Below we define place/transition systems as net structures with an initial
marking. In the literature we find slight variations in the definition of P/T sys-
tems concerning the requirements for pre- and postsets of places and transitions.
In our case, we do allow isolated places. For transitions we allow empty post-
sets, but require at least one preplace, thus avoiding problems with infinite self-
concurrency. Moreover, following [BD87], we restrict attention to nets of finite
synchronisation, meaning that each transition has only finitely many pre- and
postplaces. Arc weights are included by defining the flow relation as a function
to the natural numbers. For succinctness, we will refer to our version of a P/T
system as a net.

Definition 2.
A net is a tuple N = (S, T, F, M0) where

• S and T are disjoint sets (of places and transitions),

• F : (S×T ∪ T×S) → IN (the flow relation including arc weights), and

• M0 : S → IN (the initial marking)

such that for all t ∈ T the set {s | F (s, t) > 0} is finite and non-empty, and
the set {s | F (t, s) > 0} is finite.

Graphically, nets are depicted by drawing the places as circles and the transitions
as boxes. For x, y ∈ S ∪ T there are F (x, y) arrows (arcs) from x to y. When a
net represents a concurrent system, a global state of this system is given as a
marking, a multiset of places, depicted by placing M(s) dots (tokens) in each
place s. The initial state is M0. The system behaviour is defined by the possible
moves between markings M and M ′, which take place when a finite multiset G
of transitions fires. When firing a transition, tokens on preplaces are consumed
and tokens on postplaces are created, one for every incoming or outgoing arc of
t, respectively. Obviously, a transition can only fire if all necessary tokens are
available in M in the first place. Definition 4 formalises this notion of behaviour.
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Definition 3. Let N =(S, T, F, M0) be a net and x ∈ S ∪ T .
The multisets •x, x• : S ∪ T → IN are given by •x(y) = F (y, x) and x•(y) =
F (x, y) for all y∈S∪T . If x ∈ T , the elements of •x and x• are called pre- and
postplaces of x, respectively. These functions extend to multisets X : S∪T →
IN as usual, by •X := Σx∈S∪T X(x) · •x and X• := Σx∈S∪T X(x) · x•.

Definition 4. Let N =(S, T, F, M0) be a net, G ∈ INT, G non-empty and finite,
and M, M ′ ∈ INS.

G is a step from M to M ′, written M
G
−→N M ′, iff

• •G ⊆ M (G is enabled) and

• M ′ = (M − •G) + G•.

We may leave out the subscript N if clear from context. Extending the notion
to words σ = t1t2 . . . tn ∈ T ∗ we write M

σ
−→ M ′ for

∃M1, M2, . . . , Mn−1. M
{t1}
−→M1

{t2}
−→M2 · · ·Mn−1

{tn}
−→M ′.

When omitting σ or M ′ we always mean it to be existentially quantified.
When M0

σ
−→N , the word σ is called a firing sequence of N . The set of all

firing sequences of N is denoted by FS(N).

Note that steps are (finite) multisets, thus allowing self-concurrency. Also note
that M

{t,u}
−−−→ implies M

tu
−→ and M

ut
−→. We use the notation t ∈ σ to indicate

that the transition t occurs in the sequence σ, and σ ≤ ρ to indicate that σ is a
prefix of the sequence ρ, i.e. ∃μ. ρ = σμ.

We now define processes of nets. A (GR-)process is essentially a conflict-free,
acyclic net together with a mapping function to the original net. It can be
obtained by unwinding the original net, choosing one of the alternatives in case
of conflict. The acyclic nature of the process gives rise to a notion of causality for
transition firings in the original net via the mapping function. Conflicts present
in the original net are represented by one net yielding multiple processes, each
representing one possible way to decide the conflicts.

Definition 5.
A pair P = (N, π) is a (GR-)process of a net N = (S, T, F, M0) iff

• N = (S ,T,F,M0) is a net, satisfying

− ∀s ∈ S . |•s| ≤1≥ |s•| ∧ M0(s) =
{

1 if •s = ∅
0 otherwise,

− F is acyclic, i.e. ∀x ∈ S ∪ T. (x, x) �∈ F
+, where F

+ is the transitive
closure of {(t, u) | F (t, u) > 0},

− and {t | (t, u) ∈ F
+
} is finite for all u ∈ T.

3 Processes of Place/Transition Systems
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• π : S ∪ T → S ∪ T is a function with π(S ) ⊆ S and π(T) ⊆ T , satisfying

− π(M0) = M0, i.e. M0(s) = |π−1(s) ∩M0| for all s ∈ S, and

− ∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t| ∧ F (π(t), s) = |π−1(s) ∩ t•|.

P is called finite if T is finite.

The conditions for N ensure that a process is indeed a mapping from an occur-
rence net as defined in [Pet77,GSW80] to the net N ; hence we define processes
here in the classical way as in [GR83,BD87] (even though not introducing oc-
currence nets explicitly).

A process is not required to represent a completed run of the original net. It
might just as well stop early. In those cases, some set of transitions can be added
to the process such that another (larger) process is obtained. This corresponds
to the system taking some more steps and gives rise to a natural order between
processes.

Definition 6. Let P = ((S ,T,F,M0), π) and
P ′ = ((S ′,T ′,F ′,M

′
0), π′) be two processes of the same net.

• P ′ is a prefix of P , notation P ′ ≤ P , and P an extension of P ′, iff S ′ ⊆ S ,
T ′ ⊆ T, M

′
0 = M0, F ′ = F �(S ′×T ′ ∪ T ′×S ′) and π′ = π �(S ′ × T ′).

• A process of a net is said to be maximal if it has no proper extension.

The requirements above imply that if P ′ ≤ P , (x, y) ∈ F
+ and y ∈ S ′ ∪T ′ then

x ∈ S ′ ∪ T ′. Conversely, any subset T ′ ⊆ T satisfying (t, u) ∈ F
+
∧ u ∈ T ′ ⇒

t ∈ T ′ uniquely determines a prefix of P .
Two processes (N, π) and (N ′, π′) are isomorphic iff there exists an isomor-

phism φ from N to N ′ which respects the process mapping, i.e. π = π′◦φ. Here an
isomorphism φ between two nets N = (S ,T,F,M0) and N ′ = (S ′,T ′,F ′,M

′
0)

is a bijection between their places and transitions such that M
′
0(φ(s)) = M0(s)

for all s ∈ S and F ′(φ(x), φ(y)) = F(x, y) for all x, y ∈ S ∪ T.

Next we formally introduce the swapping transformation and the resulting
equivalence notion on GR-processes from [BD87].

Definition 7. Let P = ((S ,T,F,M0), π) be a process and let p, q ∈ S with
(p, q) /∈ F

+
∪ (F+)−1 and π(p) = π(q).

Then swap(P, p, q) is defined as ((S ,T,F ′,M0), π) with

F
′(x, y) =

⎧⎪⎨⎪⎩
F(q, y) iff x = p, y ∈ T

F(p, y) iff x = q, y ∈ T

F(x, y) otherwise.

Definition 8.
• Two processes P and Q of the same net are one step swapping equivalent

(P ≈s Q) iff swap(P, p, q) is isomorphic to Q for some places p and q.
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• We write ≈∗
s for the reflexive and transitive closure of ≈s, and P for the ≈∗

s-
equivalence class of a finite process P . The prefix relation ≤ between processes
is lifted to such equivalence classes by P ′ ≤ P iff P ′ ≈∗

s Q′ ≤ Q ≈∗
s P for

some Q′, Q.

• Two processes P and Q are swapping equivalent (P ≈∞
s Q) iff

↓ ({ P ′ | P ′ ≤ P, P ′ finite}) =
↓ ({ Q′ | Q′ ≤ Q, Q′ finite})

where ↓ denotes prefix-closure under ≤.

• We call a ≈∞s -equivalence class of processes a BD-process, and write P
∞

.

It is not hard to verify that if P ≈∗
s Q ≤ Q′ then P ≤ P ′ ≈∗

s Q′ for some process
P ′. This implies that ≤ is a partial order on ≈∗

s-equivalence classes of finite
processes. Alternatively, this conclusion follows from Theorem 4 in [GGS11a].

Our definition of ≈∞
s deviates from the definition of ≡∞

1 from [BD87] to make
proofs easier later on. We conjecture however that the two notions coincide.

Note that if P ≈∞s Q and P is finite, then also Q is finite. Moreover, for
finite GR-processes P and Q we have P ≈∞

s Q iff P ≈∗
s Q. Thus, for a finite

GR-process P , we have P
∞

= P . In that case we call P a finite BD-process.

We define a BD-run as a more abstract and more general form of BD-process.
Like a BD-process, a BD-run is completely determined by its finite approxima-
tions, which are finite BD-processes; however, a BD-run does not require that
these finite approximations are generated by a given GR-process.

Definition 9. Let N be a net.
A BD-run R of N is a non-empty set of finite BD-processes of N such that

• P ≤ Q ∈ R ⇒ P ∈ R (R is prefix-closed), and

• P , Q ∈ R ⇒ ∃ U ∈ R. P ≤ U ∧ Q ≤ U (R is directed).

The class of finite BD-processes and the finite elements (in the set theoretical
sense) in the class of BD-runs are in bijective correspondence. Every finite BD-
run R must have a largest element, say P , and the set of all prefixes of P is
R. Conversely, the set of prefixes of a finite BD-process P is a finite BD-run
of which the largest element is again P .

We now define a canonical mapping from GR-processes to BD-runs.

Definition 10. Let N be a net and P a process thereof.
Then BD(P ) := ↓{ P ′ | P ′ ≤ P, P ′ finite}.

Lemma 1. Let N be a net and P a process thereof.
Then BD(P ) is a BD-run.

Proof. See [GGS11a, Lemma 1]. ��
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This immediately yields an injective function from BD-processes to BD-runs,
since by Definition 8, P ≈∞s Q iff BD(P ) = BD(Q). For countable nets (i.e. nets
with countably many places and transitions), this function is even a bijection.

Lemma 2. Let N be a countable net and R a BD-run of N .
Then R is countable and there exists a process P of N such that R = BD(P ).

Lemma 2 does not hold for uncountable nets, as witnessed by the counterexample
in Fig. 3. This net N has a transition t for each real number t ∈ IR. Each such
transition has a private preplace st with M0(st) = 1 and F (st, t) = 1, which
ensures that t can fire only once. Furthermore there is one shared place s with
M0(s) = 2 and a loop F (s, t) = F (t, s) = 1 for each transition t. There are no
other places, transitions or arcs besides the ones mentioned above.

Each GR-process of N , and hence also each BD-process, has only countably
many transitions. Yet, any two GR-processes firing the same finite set of transi-
tions of N are swapping equivalent, and the set of all finite BD-processes of N
constitutes a single BD-run involving all transitions.

0 1

· · · · · ·· · ·

· · · · · ·· · ·

Fig. 3. A net with no maximal GR-process, but with a maximal BD-run.

We now show that the mapping BD respects the ordering of processes.

Lemma 3. Let N be a net, and P and P ′ two GR-processes of N .
If P ≤ P ′ then BD(P ) ⊆ BD(P ′).

We recall the canonical notion of conflict introduced in [Gol86].

Definition 11. Let N = (S, T, F, M0) be a net and M ∈ INS.
• A finite, non-empty multiset G ∈ INT is in (semantic) conflict in M iff

(∀t ∈ G. M
G �{t}
−−−→) ∧ ¬M

G
−→.

• N is (semantic) conflict-free iff no finite, non-empty multiset G ∈ INT is in
semantic conflict in any M with M0 −→ M .

• N is binary-conflict--free iff no multiset G ∈ INT with |G| = 2 is in semantic
conflict in any M with M0 −→ M .

4 Conflicts in Place/Transition Systems
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Remark: In a net (S, T, F, M0) with S = {s}, T = {t, u}, M0(s) = 1 and
F (s, t) = F (s, u) = 1, the multiset {t, t} is not enabled in M0. For this reason
the multiset {t, t, u} does not count as being in conflict in M0, even though it is
not enabled. However, its subset {t, u} is in conflict.

We proposed in [GGS11a] a class of P/T systems where the structural definition
of conflict in terms of shared preplaces, as often used in Petri net theory, matches
the semantic definition of conflict as given above. We called this class of nets
structural conflict nets. For a net to be a structural conflict net, we require that
two transitions sharing a preplace will never occur both in one step.

Definition 12. Let N = (S, T, F, M0) be a net.
N is a structural conflict net iff ∀t, u. (M0 −→

{t,u}
−−−→) ⇒ •t ∩ •u = ∅.

Note that this excludes self-concurrency from the possible behaviours in a struc-
tural conflict net: as in our setting every transition has at least one preplace,
t = u implies •t∩•u �= ∅. Also note that in a structural conflict net a non-empty,
finite multiset G is in conflict in a marking M iff G is a set and two distinct
transitions in G are in conflict in M . Hence a structural conflict net is conflict-
free if and only if it is binary-conflict--free. Moreover, two transitions enabled in
M are in (semantic) conflict iff they share a preplace.

In this section, we recapitulate results from [BD87], giving an alternative charac-
terisation of runs of a net in terms of firing sequences. We use an adapted notation
and terminology and a different treatment of infinite runs, as in [GGS11a]. As
a main result of the present paper, we then prove in this setting that a conflict-
free net has exactly one maximal run. In the following section, this result will
be transferred to BD-processes.

The behaviour of a net can be described not only by its processes, but also by
its firing sequences. The imposed total order on transition firings abstracts from
information on causal dependence, or concurrency, between transition firings. To
retrieve this information we introduce an adjacency relation on firing sequences,
recording which interchanges of transition occurrences are due to semantic inde-
pendence of transitions. Hence adjacent firing sequences represent the same run
of the net. We then define FS-runs in terms of the resulting equivalence classes
of firing sequences.

Definition 13. Let N = (S, T, F, M0) be a net, and σ, ρ ∈ FS(N).
• σ and ρ are adjacent, σ ↔ ρ, iff σ = σ1tuσ2, ρ = σ1utσ2 and M0

σ1−→
{t,u}
−−−→.

• We write ↔∗ for the reflexive and transitive closure of ↔, and [σ] for the

↔∗-equivalence class of a firing sequence σ.

Note that ↔∗-related firing sequences contain the same (finite) multiset of tran-
sition occurrences. When writing σ ↔∗ ρ we implicitly claim that σ, ρ ∈ FS(N).
Furthermore σ ↔∗ ρ ∧ σμ ∈ FS(N) implies σμ ↔∗ ρμ for all μ ∈ T ∗.

5 A Conflict-Free Net Has Exactly One Maximal Run
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The following definition introduces the notion of partial FS-run which is a
formalisation of the intuitive concept of a finite, partial run of a net.

Definition 14. Let N be a net and σ, ρ ∈ FS(N).
• A partial FS-run of N is an ↔∗-equivalence class of firing sequences.

• A partial FS-run [σ] is a prefix of another partial FS-run [ρ], notation [σ] ≤ [ρ],
iff ∃μ. σ ≤ μ ↔∗ ρ.

Note that σ′ ↔∗ σ ≤ μ implies ∃μ′. σ′ ≤ μ′ ↔∗ μ; thus the notion of prefix is
well-defined, and a partial order.

Similar to the construction of BD-runs out of finite BD-processes, the fol-
lowing concept of an FS-run extends the notion of a partial FS-run to possibly
infinite runs, in such a way that an FS-run is completely determined by its finite
approximations.

Definition 15. Let N be a net.
An FS-run of N is a non-empty, prefix-closed and directed set of partial
FS-runs of N .

There is a bijective correspondence between partial FS-runs and the finite ele-
ments in the class of FS-runs, just as in the case of BD-runs in Section 3. Much
more interesting however is the following bijective correspondence between BD-
runs and FS-runs.

Theorem 1. There exists a bijective function Π from FS-runs to BD-runs such
that Π(R) ⊆ Π(R′) iff R ⊆ R′.

Proof. See [GGS11a], in particular the remarks at the end of Section 5. ��

We now show that a conflict-free net has exactly one maximal run. As we have
a bijective correspondence, it does not matter which notion of run we use here
(FS-run or BD-run). We prove an even stronger result, using binary-conflict--free
instead of conflict-free. In preparation we need the following lemma.

Lemma 4. Let N be a binary-conflict--free net.
If σ, σ′ ∈ FS(N) then ∃μ, μ′. σμ ∈ FS(N) ∧ σ′μ′ ∈ FS(N) ∧ σμ ↔∗ σ′μ′.

Theorem 2. Let N be a binary-conflict--free net.
There is exactly one maximal FS-run of N .

Proof. Let R = {[σ] | σ is a finite firing sequence of N}. We claim that R is
said maximal FS-run of N .

First we show that R is prefix closed and directed, and thus indeed an FS-run.
Take any [ρ] ≤ [σ] ∈ R. Then by definition of ≤, ∃ν. ρ ≤ ν ∧ ν ↔∗ σ. We

need to show that [ρ] ∈ R, i.e. that ρ is a firing sequence of N . Since σ is a firing
sequence of N and ν ↔∗ σ, ν is also a firing sequence of N . Together with ρ ≤ ν
follows that ρ, too, is a firing sequence of N . Thus R is prefix closed.

54 R.J. van Glabbeek, U. Goltz, and J.-W. Schicke



To show directedness, let [σ], [ρ] ∈ R. We need to show that ∃[ν]∈R. [σ] ≤ [ν]
∧ [ρ] ≤ [ν], or with the definitions of ≤ and [ ] expanded, ∃ν. (∃α. σ ≤ α ↔∗ ν
∧ ∃β. ρ ≤ β ↔∗ ν). We now apply Lemma 4 to σ, ρ ∈ FS(N), obtaining μ and
μ′ as mentioned in that lemma, and take α = σμ and β = ρμ′. Then Lemma 4
gives us α ↔∗ β and we take ν = α. Thus R is directed.

Finally we show that R is maximal. Take any run R′ of N . Then R′ ⊆ R by
definition of R, hence R is maximal. ��

In this section we show that BD-processes are adequate as abstract processes for
the subclass of structural conflict nets.

In [GGS11a] we have shown that a semantic conflict in a structural conflict
net always gives rise to multiple maximal GR-processes even up to swapping
equivalence.

Theorem 3. Let N be a structural conflict net.
If N has only one maximal GR-process up to ≈∞s then N is conflict-free.

Proof. Corollary 1 from [GGS11a]. ��

We conjectured in [GGS11a] that, for countable nets, also the reverse direction
holds, namely that a countable conflict-free structural conflict net has exactly
one maximal GR-process up to ≈∞

s .
In Section 5 we have already shown that a corresponding result holds for

runs instead of processes. We will now transfer this result to BD-processes, and
hence prove the conjecture.

We proceed by investigating three notions of maximality for BD-processes;
they will turn out to coincide for structural conflict nets.

Definition 16.
– A BD-process P

∞
is weakly maximal (or a maximal GR-process up to ≈∞

s ),
iff some P ′ ∈ P

∞
is maximal (in the GR-process sense).

– A BD-process P
∞

is maximal iff ∀P ′ ∈ P
∞
∀Q. (P ′ ≤ Q ⇒ P ′ ≈∞

s Q).
– A BD-process P

∞
is run-maximal iff the BD-run BD(P ) is maximal.

The first notion is the simplest way of inheriting the notion of maximality of GR-
process by BD-processes, whereas the last one inherits the notion of maximality
from BD-runs. The middle notion is the canonical notion of maximality with
respect to a natural order on BD-process, defined below.

Definition 17. Let N be a net.
We define a relation � between BD-processes, via

P
∞
� Q

∞
:⇔ ∃P ′ ≈∞

s P ∃Q′ ≈∞
s Q. P ′ ≤ Q′ ,

and construct an order between BD-processes via

P
∞
≤ Q

∞
:⇔ P

∞
�+ Q

∞
.

6 BD-Processes Fit Structural Conflict Nets
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By construction, the relation ≤ is reflexive and transitive (even though � in
general is not transitive). Lemma 3 yields that it also is antisymmetric, and
hence a partial order. Namely, if P

∞
≤ Q

∞
and Q

∞
≤ P

∞
, then BD(P ) =

BD(Q), so P ≈∞
s Q, implying P

∞
= Q

∞
.

Now maximality according to Definition 16 is simply maximality w.r.t. ≤:

P
∞

is maximal iff � P ′
∞
. P

∞
≤ P ′

∞
∧ P

∞
�= P ′

∞
.

The following lemma tells how the above notions of maximality form a hierarchy.

Lemma 5. Let N be a net and P a process thereof.
1. If P

∞
is run-maximal, it is maximal.

2. If P
∞

is maximal, it is weakly maximal.

Proof. “1”: This follows since P
∞
≤ Q

∞
⇒ BD(P ) ⊆ BD(Q) by Lemma 3.

“2”: Assume P
∞

is maximal. By Lemma 2 in [GGS11a], which follows via
Zorn’s Lemma, there exists some maximal Q with P ≤ Q. Since P

∞
is maximal

we have Q ≈∞
s P and Q is a maximal process within P

∞
. ��
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2 2 2

2 2 2

3 3 3

Fig. 4. A net and two weakly maximal processes thereof

The three notions of maximality are all distinct. The first process depicted in
Fig. 4 is an example of a weakly maximal BD-process that is not maximal.
Namely, the process itself cannot be extended (for none of the tokens in place
2 will in the end come to rest), but the process is swapping equivalent with the
top half of the second process (using only one of the tokens in place 2), which
can be extended with the bottom half.

The process depicted in Fig. 5 is an example of a BD-process P
∞

which
is maximal, but not run-maximal. It is maximal, because no matter how it is
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Fig. 5. A net and a maximal process thereof

swapped, at some point the c-transition will fire, and after that the only token
left in place 2 will be in use forever, making it impossible to extend the process
with any (b-)transition. It is not run-maximal, as the set of all finite processes of
N constitutes a larger run. Note that every two finite processes of N mapping
to the same multiset of transitions are swapping equivalent.

The following lemmas show that for countable conflict-free nets maximal-
ity and run-maximality coincide, and that for structural conflict nets all three
notions of maximality coincide.

Lemma 6. Let N be a countable binary-conflict--free net, and P be a GR-
process of N .

If P
∞

is maximal, then P
∞

is run-maximal.

Lemma 7. Let N be a structural conflict net, and P be a GR-process of N .
If P

∞
is weakly maximal, then P

∞
is run-maximal.

Finally, we are able to show, using Theorem 2, that a countable, binary-conflict--
free net has only one maximal BD-process. In case of a conflict-free structural
conflict net we can do the stronger statement that it has only one weakly maximal
BD-process, i.e. only one GR-process up to swapping equivalence.

Lemma 8. Let N be a binary-conflict--free net.
(1) N has at most one run-maximal BD-process.
(2) If N moreover is countable, then it has exactly one run-maximal BD-process.

Proof. Suppose N had two run-maximal BD-processes P
∞

and P ′
∞

. Then
BD(P ) and BD(P ′) are maximal BD-runs. By Theorem 2 N has only one max-
imal BD-run. Hence BD(P ) = BD(P ′) and thus P

∞
= P ′

∞
.

Now assume that N is countable. By Theorem 2, N has a maximal BD-run
R. By Lemma 2 there is a process P with BD(P ) = R. By Definition 16 P

∞

is run-maximal, so at least one run-maximal BD-process exists. ��

Theorem 4. Let N be a countable binary-conflict--free net.
N has exactly one maximal BD-process.
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Proof. By Lemmas 5 and 6 the notions of maximality and run-maximality coin-
cide for N , and the result follows from Lemma 8. ��

The net of Fig. 3 is an example of an uncountable binary-conflict--free net without
any maximal or run-maximal BD-process.

Theorem 5. Let N be a conflict-free structural conflict net.
N has exactly one weakly maximal BD-process, i.e. exactly one maximal

GR-process up to ≈∞
s .

Proof. By Lemmas 5 and 7 the three maximality notions coincide for N , and
the “at most one”-direction follows from Lemma 8.

Surely, N has at least one process (with an empty set of transitions). By
Lemma 2 in [GGS11a], which in turn invokes Zorn’s lemma, every GR-process
is a prefix of a maximal GR-process. Hence N has a maximal GR-process, and
thus a maximal GR-process up to ≈∞

s . ��

The assumption that N is a structural conflict net is essential in Theorem 5.
The net in Fig. 4 is countable (even finite) and conflict-free, yet has multiple
maximal GR-process up to ≈∞s .

We can now justify BD-processes as an abstract notion of process for struc-
tural conflict nets since we obtain exactly one maximal abstract process if and
only if the underlying net is conflict-free.

Corollary 1. Let N be a structural conflict net.
N is conflict-free iff N has exactly one maximal BD-process, which is the

case iff N has exactly one maximal GR-process up to ≈∞
s .

Proof. All three notions of maximality coincide for structural conflict nets ac-
cording to Lemma 7 and Lemma 5.

“⇒”: By Theorem 5.
“⇐”: By Theorem 3. ��
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Abstract. Timed temporal logics exhibit a bewildering diversity of operators
and the resulting decidability and expressiveness properties also vary consider-
ably. We study the expressive power of timed logics TPTL[U,S] and MTL[UI ,SI ]
as well as of their several fragments. Extending the LTL EF games of Etessami
and Wilke, we define MT L Ehrenfeucht-Fraı̈ssé games on a pair of timed words.
Using the associated EF theorem, we show that, expressively, the timed logics
BoundedMTL[UI ,SI ], MTL[FI ,PI ] and MITL[UI ,SI ] (respectively incorporating
the restrictions of boundedness, unary modalities and non-punctuality), are all
pairwise incomparable. As our first main result, we show that MTL[UI ,SI ] is
strictly contained within the freeze logic TPTL[U,S] for both weakly and strictly
monotonic timed words, thereby extending the result of Bouyer et al and com-
pleting the proof of the original conjecture of Alur and Henziger from 1990. We
also relate the expressiveness of a recently proposed deterministic freeze logic
TTL[Xθ,Yθ] (with NP-complete satisfiability) to MT L. As our second main re-
sult, we show by an explicit reduction that TTL[Xθ,Yθ] lies strictly within the
unary, non-punctual logic MITL[FI ,PI ]. This shows that deterministic freezing
with punctuality is expressible in the non-punctual MITL[FI ,PI ].

1 Introduction

Temporal logics are well established formalisms for specifying qualitative ordering con-
straints on the sequence of observable events. Real-time temporal logics extend this
vocabulary with specification of quantitative timing constraints between these events.

There are two well-established species of timed logics with linear time. The logic
TPTL[U,S] makes use of freeze quantification together with untimed temporal modal-
ities and explicit constraints on frozen time values; the logic MTL[UI ,SI ] uses time in-
terval constrained modalities UI and SI . For example,the TPTL[U,S] formula x.(aU(b∧
T −x < 2)) and the MTL[UI,SI] formula aU[0,2)b both characterize the set of words that
have a letter b with time stamp < 2 where this b is preceded only by a string of letters a.
Timed logics may be defined over timed words (also called pointwise time models) or
over signals (also called continuous time models). Weak monotonicity (as against strict
monotonicity) allows a sequence of events to occur at the same time point. In this pa-
per we confine ourselves to finite timed words with both weakly and strictly monotonic
time, but the results straightforwardly carry over to infinite words too.

In their pioneering studies [1, 3, 4], Alur and Henzinger investigated the expres-
siveness and decidability properties of timed logics MTL[UI,SI ] and TPTL[U,S]. They
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showed that MTL[UI ,SI] can be easily translated into TPTL[U,S]. Further, they conjec-
tured, giving an intuitive example, that TPTL[U,S] is more expressive than MTL[UI ,SI ]
(see [3] section 4.3). Fifteen years later, in a seminal paper, Bouyer et al [6] for-
mally proved that the purely future time logic TPTL[U] is strictly more expressive than
MTL[UI] and that MTL[UI,SI ] is more expressive than MTL[UI ], for both pointwise and
continuous time. In this paper, we complete the picture by proving the original conjec-
ture of Alur and Henzinger for the full logic MTL[UI ,SI ] with both future and past over
pointwise time.

In their full generality, MTL[UI,SI ] and TPTL[U,S] are both undecidable even for
finite timed words. Several restrictions have been proposed to get decidable sub-logics
(see [12] for a recent survey). Thus, Bouyer et al. [7] introduced BoundedMTL[UI ,SI ]
with “bounded” intervals and showed that its satisfiability is EXPSPACE-complete.
Alur and Henzinger argued, using reversal bounded 2-way deterministic timed automata
RB2DTA, that the logic MITL[UI ,SI ] permitting only non-singular (or non-punctual) in-
tervals was decidable with EXPSPACE complexity [2,5]. Unary modalities have played
a special role in untimed logics [9], and we also consider unary fragments MTL[FI ,PI ]
and TPTL[F,P] in our study. Further sub-classes can be obtained by combining the
restrictions of bounded or non singular intervals and unary modalities.

In this paper, we mainly compare the expressive powers of various real-time temporal
logics. As our main tool we define an m-round MTL EF game with “until” and “since”
moves on two given timed words. As usual, the EF theorem equates the inability of any
MTL[UI,SI ] formula with modal depth m from distinguishing two timed words to the
existence of a winning strategy for the duplicator in m-round games. Our EF theorem is
actually parametrized by a permitted set of time intervals, and it can be used for proving
the lack of expressiveness of various fragments of MTL[UI ,SI ].

Classically, the EF Theorem has been a useful tool for proving limitations in ex-
pressive power of first-order logic [11, 16]. In their well-known paper, Etessami and
Wilke [10] adapted this to the LTL EF games to show the existence of the “until” hi-
erarchy in LTL definable languages. Our MTL EF theorem is a generalization of this
to the timed setting. We find that the use of EF theorem often leads to simple game
theoretic proofs of seemingly difficult questions about expressiveness of timed logics.
The paper contains several examples of such proofs.

Our main expressiveness results are as follows. We show these results for finite timed
words with weakly and strictly monotonic time. However, we remark that these results
straightforwardly carry over to infinite timed words.

– We show that logics BoundedMTL[UI ,SI ], MITL[UI ,SI ] and MTL[FI ,PI ] are all
pairwise incomparable. These results indicate that the restrictions of boundedness,
non-punctuality, and unary modalities are all semantically “orthogonal” in context
of MTL.

– As one of our main results, we show that the unary and future fragment TPTL[F]
of the freeze logic TPTL[U,S] is not expressively contained within MTL[UI ,SI] for
both strictly monotonic and weakly monotonic timed words. Thus, MTL[UI ,SI] is
a strict subset of TPTL[U,S] for pointwise time, as originally conjectured by Alur
and Henzinger almost 20 years ago [1, 3, 6].
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– It is easy to show that for strictly monotonic timed words, logic TPTL[U,S] can be
translated to the unary fragment TPTL[F,P] and for expressiveness the two logics
coincide. For weakly monotonic time, we show that MTL[UI ,SI ] and TPTL[F,P]
are expressively incomparable.

In the second part of this paper, we explore the expressiveness of a recently proposed
“deterministic” and “unary” fragment of TPTL[F,P] called TTL[Xθ,Yθ]. This is an inter-
esting logic with exact automaton characterization as partially ordered two way deter-
ministic timed automata [13]. Moreover, by exploiting the properties of these automata,
the logic has been shown to have NP-complete satisfiability. The key feature of this
logic is the “unique parsing” of each timed word against a given formula. Our main
results on the expressiveness of TTL[Xθ,Yθ] are as follows.

– By an explicit reduction, we show that TTL[Xθ,Yθ] is contained within the unary
and non-punctual logic MITL[FI ,PI ]. The containment holds in spite of the fact
that TTL[Xθ,Yθ] can have freeze quantification and punctual constraints (albeit only
occurring deterministically).

– Using the unique parsability of TTL[Xθ,Yθ], we show that neither MITL[FI ,PI ] nor
BoundedMTL[FI,PI ] are expressively contained within TTL[Xθ,Yθ].

Thus, the full logic TPTL[U,S] is more expressive than MTL[UI,SI ]. But its unary frag-
ment with deterministic freezing, TTL[Xθ,Yθ], lies strictly within the unary and non-
punctual logic MITL[FI ,PI ]. Figure 1 provides a succinct pictorial representation of all
the expressiveness results achieved.

The rest of the paper is organized as follows. Section 2 defines various timed logics.
The MT L EF games and the EF Theorem are given in Section 3. Section 4 explores
the relative expressiveness of various fragments of MTL[UI ,SI] and the subsequent
section compares TPTL[U,S] to MTL[UI,SI ]. Section 6 studies the expressiveness of
TTL[Xθ,Yθ] relative to sub logics of MTL[UI ,SI].

2 Timed Temporal Logics: Syntax and Semantics

We provide a brief introduction of the logics whose expressiveness is investigated in
this paper.

2.1 Preliminaries

Let R,Z and N be the set of reals, rationals, integers, and natural numbers, respectively
and R0 be the set of non-negative reals. An interval is a convex subset of R0, bounded
by non-negative integer constants or ∞. The left and right ends of an interval may be
open ( ”(” or ”)” ) or closed ( ”[” or ”]” ). We denote by 〈x,y〉 a generic interval whose
ends may be open or closed. An interval is said to be bounded if it does not extend
to infinity. It is said to be singular if it is of the form [c,c] for some constant c, and
non-singular (or non-punctual) otherwise. We denote by ZI all the intervals (including
singular intervals [c,c] and unbounded intervals [c,∞)), by ZIExt the set of all non-
punctual (or extended) intervals, and by BdZI the set of all bounded intervals. Given
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MTL[UI ,SI ]

TPTL[U,S]

TPTL[F,P]

MTL[FI ,PI ]BoundedMTL[UI ,SI ] MITL[UI ,SI ]≡ RECA

MITL[FI ,PI ]BoundedMITL[UI ,SI ]BoundedMTL[FI ,PI ]

TTL[Xθ,Yθ]≡po2DTA

A B ⇒ B⊂ A (strict subset)

A B ⇒ B 	⊆ A

Fig. 1. Expressiveness of Timed Logics for Pointwise Time

an alphabet Σ, its elements are used also as atomic propositions in logic, i.e. the set of
atomic propositions AP = Σ.

A finite timed word is a finite sequence ρ = (σ1,τ1),(σ2,τ2), · · · ,(σn,τn), of event-
time stamp pairs such that the sequence of time stamps is non-decreasing: ∀i < n . τi ≤
τi+1. This gives weakly monotonic timed words. If time stamps are strictly increasing,
i.e. ∀i < n . τi < τi+1, the word is strictly monotonic. The length of ρ is denoted by
#ρ, and dom(ρ) = {1, ...#ρ}. For convenience, we assume that τ1 = 0 as this simplifies
the treatment of “freeze” logics. The timed word ρ can alternately be represented as
ρ = (σ,τ) with σ = σ1, · · · ,σn and τ = τ1, · · · ,τn. Let untime(ρ) = σ. We shall use
the two representations interchangeably. Let T Σ∗ be the set of timed words over the
alphabet Σ.

2.2 Metric Temporal Logics

The logic MTL extends Linear Temporal Logic by adding timing constraints to the ”Un-
til” and ”Since” modalities of LTL. We parametrize this logic by a permitted set of inter-
vals Iv and denote the resulting logic as IvMTL[UI ,SI ]. Let φ range over IvMTL[UI ,SI ]
formulas, a ∈ Σ and I ∈ Iv. The syntax of IvMTL[UI ,SI ] is as follows:

φ ::= a | φ∧φ | ¬φ | φUIφ | φSIφ
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Let ρ = (σ,τ) be a timed word and let i ∈ dom(ρ). The semantics of MTL[UI ,SI]
formulas is as below:

ρ, i |= a iff σi = a
ρ, i |= ¬φ iff ρ, i 	|= φ

ρ, i |= φ1∨φ2 iff ρ, i |= φ1 or ρ, i |= φ2

ρ, i |= φ1UIφ2 iff ∃ j > i. ρ, j |= φ2 and τ j− τi ∈ I
and ∀i < k < j. ρ,k |= φ1

ρ, i |= φ1SIφ2 iff ∃ j < i . ρ, j |= φ2 and τi− τ j ∈ I
and ∀ j < k < i. ρ,k |= φ1

The language of an IvMTL[UI ,SI ] formula φ is given by L(φ) = {ρ | ρ,1 |= φ}. Note
that we use the ”strict” semantics of UI and SI modalities. We can define unary ”future”
and ”past” modalities as: FIφ := �UIφ and PIφ :=�SIφ. The subset of IvMTL[UI ,SI ]
using only these modalities is called IvMTL[FI ,PI ]. We can now define various well
known variants of MT L.

– Metric Temporal Logic [1, 3], denoted MTL[UI ,SI ] = ZIMTL[UI,SI]. This is ob-
tained by choosing the set of intervals Iv = ZI.

– Unary MTL, denoted MTL[FI ,PI ]= ZIMTL[FI ,PI ] uses only unary modalities. It is
a timed extension of the untimed unary temporal logic UTL studied by [9].

– Metric Interval Temporal Logic [5], denoted MITL[UI,SI ] = ZIExtMTL[UI ,SI ]. In
this logic, the timing constraints in the formulas are restricted to non-punctual (non-
singular) intervals. MITL[FI ,PI ] is MITL[UI ,SI ] confined to the unary modalities FI

and PI .
– Bounded MTL [7], denoted BoundedMTL[UI ,SI ] = BdZIMTL[UI,SI ]. Other log-

ics can be obtained as intersections of the above logics. Specifically, the logics
BoundedMTL[FI,PI ], BoundedMITL[UI,SI ], and BoundedMITL[FI,PI] are defined
respectively as BdZIMTL[FI,PI ], BdZIExtMTL[UI,SI], and BdZIExtMTL[FI ,PI ].

– Let ZIk denote the set of all intervals of the form 〈i, j〉 or 〈i,∞), with i, j ≤ k.
Let BdZIk denote the set of all bounded (i.e. non-infinite) ZIk intervals. Then
MTL[UI,SI ]

k and BoundedMTL[UI ,SI]
k are respectively the logic ZIkMTL[UI ,SI ]

and BdZIkMTL[UI,SI ]. Also, given an MTL[UI ,SI ] formula φ, let MaxInt(φ) denote
the maximum integer constant (apart from ∞) appearing in its interval constraints.

2.3 Freeze Logics

These logics specify timing constraints by conditions on special variables, called freeze
variables which memorize the time stamp at which a subformula is evaluated. Let X be
a finite set of freeze variables. Let x∈X and let ν : X →R0 be a valuation which assigns
a non-negative real number to each freeze variable. Let ν0 be the initial valuation such
that ∀x . ν0(x) = 0 and let ν(x← r) denote the valuation such that ν(x← r)(x) = r and
ν(x← r)(y) = ν(y) if x 	= y.

A timing constraint g in freeze logics has the form:
g := g1∧g2 | x−T ≈ c where≈∈ {<,≤,>,≥,=} and c ∈ Z.

Let ν,t |= g denote that the timing constraint g evaluates to true in valuation ν with
t ∈ R0 assigned to the variable T .
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TPTL[U,S]. given by [4, 15], is an extension of LTL with freeze variables. Let g be a
guard as defined above. The syntax of a TPTL[U,S] formula φ is as follows:

φ := a | g | φUφ | φSφ | x.φ | φ∨φ | ¬φ

The semantics of TPTL[U,S] formulas over a timed word ρ with i ∈ dom(ρ) and
valuation ν is as follows. The boolean connectives have their usual meaning.

ρ, i,ν |= a iff σi = a
ρ, i,ν |= φ1Uφ2 iff ∃ j > i . ρ, j,ν |= φ2 and ∀i < k < j . ρ,k,ν |= φ1

ρ, i,ν |= φ1Sφ2 iff ∃ j < i . ρ, j,ν |= φ2 and ∀ j < k < i . ρ,k,ν |= φ1

ρ, i,ν |= x.φ iff ρ, i,ν(x→ τi) |= φ
ρ, i,ν |= g iff ν,τi |= g

The language defined by a TPTL[U,S] formula φ is given by L(φ) = {ρ | ρ,1,ν0 |= φ}.
Also, TPTL[F,P] is the unary sub logic of TPTL[U,S].

Deterministic Freeze Logic. TTL[Xθ,Yθ] is a sub logic of TPTL[U,S]. A guarded event
over an alphabet Σ and a finite set of freeze variables X is a pair θ = (a,g) where a ∈ Σ
is an event and g is a timing constraint over X as defined before. Logic TTL[Xθ,Yθ]
uses the deterministic modalities Xθ and Yθ which access the position with the next and
previous occurrence of a guarded event, respectively. This is the timed extension of
logic T L[Xa,Ya] [8] using freeze quantification. The syntax of a TTL[Xθ,Yθ] formula φ
is as follows:

φ :=� | θ | SPφ | EPφ | Xθφ | Yθφ | x.φ | φ∨φ | ¬φ
The semantics of TTL[Xθ,Yθ] formulas over timed words is as given below. � denotes
the formula true. This and the boolean operators have their usual meaning.

ρ, i,ν |= θ iff σi = a and ν,τi |= g where θ = (a,g)
ρ, i,ν |= SPφ iff ρ,1,ν |= φ
ρ, i,ν |= EPφ iff ρ,#ρ,ν |= φ
ρ, i,ν |= Xθφ iff ∃ j > i . ρ, j,ν |= θ and ∀i < k < j.

ρ,k,ν 	|= θ and ρ, j,ν |= φ
ρ, i,ν |= Yθφ iff ∃ j < i . ρ, j,ν |= θ and ∀ j < k < i.

ρ,k,ν 	|= θ and ρ, j,ν |= φ
ρ, i,ν |= x.φ iff ρ, i,ν(x← τi) |= φ

3 EF Games for IvMTL[UI,SI]

We extend the LTL EF games of [10] to timed logics, and use these to compare expres-
siveness of various instances of the generic logic IvMTL[UI ,SI ]. Let Iv be a given set
of intervals. A k-round IvMTL[UI ,SI ]-EF game is played between two players, called
Spoiler and Duplicator, on a pair of timed words ρ0 and ρ1. A configuration of the
game (after any number of rounds) is a pair of positions (i0, i1) with i0 ∈ dom(ρ0) and
i1 ∈ dom(ρ1). A configuration is called partially isomorphic, denoted isop(i0, i1) iff
σi0 = σi1 .

The game is defined inductively on k from a starting configuration (i0, i1) and results
in either the Spoiler or Duplicator winning the game. The Duplicator wins the 0-round
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game iff isop(i0, i1). The k+1 round game is played by first playing one round from the
starting position. Either the spoiler wins in this round (and the game is terminated) or
the game results into a new configuration (i′0, i

′
1). The game then proceeds inductively

with k-round play from the configuration (i′0, i
′
1). The Duplicator wins the game only

if it wins every round of the game. We now describe one round of play from a starting
configuration (i0, i1).

– At the start of the round, if ¬isop(i0, i1) then the Spoiler wins the game and the
game is terminated. Otherwise,

– The Spoiler chooses one of the words by choosing δ ∈ {0,1}. Then δ = (1− δ)
gives the other word. The Spoiler also chooses either an UI-move or a SI move,
including an interval I ∈ Iv. The remaining round is played in two parts.

UI Move

– Part I: The Spoiler chooses a position i′δ such that iδ < i′δ ≤ #ρδ and (τδ[i′δ]−
τδ[iδ]) ∈ I.

– The Duplicator responds1 by choosing a position i′
δ

in the other word s.t. iδ <

i′
δ
≤ #ρδ and (τδ[i′

δ
]− τδ[iδ]) ∈ I. If the Duplicator cannot find such a position, the

Spoiler wins the game. Otherwise the play continues to Part II.
– Part II: Spoiler chooses to play either F-part or U-part.

• F-part: the round ends with configuration (i′0, i
′
1).

• U-part: Spoiler verifies that i′δ− iδ = 1 iff i′
δ
− iδ = 1 and Spoiler wins the game

if this does not hold. Otherwise Spoiler checks whether i′δ− iδ = 1. If yes, the
round ends with configuration (i′0, i

′
1). If no, Spoiler chooses a position i′′

δ
in the

other word such that iδ < i′′
δ
< i′

δ
. The Duplicator responds by choosing i′′δ such

that iδ < i′′δ < i′δ. The round ends with the configuration (i′′0 , i
′′
1).

SI Move This move is symmetric to UI where the Spoiler chooses positions i′δ as well
as i′′

δ
in “past” and the Duplicator also responds accordingly. In Part II, the Spoiler will

a have choice of P-part or S-part. We omit the details. This completes the description of
the game.

Definition 1. Given two timed words ρ0,ρ1 and i0 ∈ dom(ρ0), i1 ∈ dom(ρ1), we define

– (ρ0, i0) ≈Iv
k (ρ1, i1) iff for every k-round IvMTL[UI ,SI] EF-game over the words

ρ0,ρ1 and starting from the configuration (i0, i1), the Duplicator always has a win-
ning strategy.

– (ρ0, i0) ≡Iv
k (ρ1, i1) iff for every IvMTL[UI ,SI ] formula φ of operator depth ≤ k,

ρ0, i0 |= φ⇔ ρ1, i1 |= φ. ��

We shall now state the IvMTL[UI ,SI ] EF theorem. Its proof is a straight-forward exten-
sion of the proof of LTL EF theorem of [10]. The only point of interest is that there is
no a priori bound on the set of intervals that a modal depth n formula can use and hence
the set of isomorphism types seems potentially infinite. However, given timed words ρ0

1 The Duplicator can make use of the knowledge of I to choose his move. This is needed as
illustrated in the proof of Theorem 3.
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and ρ1, we can always restrict these intervals to not go beyond a constant k where k is
the smallest integer larger than the biggest time stamps in ρ0 and ρ1. This restricts the
isomorphism types to a finite cardinality. The complete proof can be found in the full
version of this paper.

Theorem 1. (ρ0, i0)≈Iv
k (ρ1, i1) if and only if (ρ0, i0)≡Iv

k (ρ1, i1) ��

When clear from context, we shall abbreviate≈Iv
k by ≈k and ≡Iv

k by ≡Iv. As temporal
logic formulas are anchored to initial position 1, define ρ0≡k ρ1 ⇐⇒ (ρ0,1)≡k (ρ1,1)
and ρ0 ≈k ρ1 ⇐⇒ (ρ0,1)≈k (ρ1,1). It follows from the EF Theorem that ρ0 ≡k ρ1 if
and only if ρ0 ≈k ρ1.

We can modify the IvMTL[UI ,SI] EF game to match the sub logic IvMTL[FI ,PI ]. An
IvMTL[FI,PI] game is obtained by the restricting IvMTL[UI ,SI ] game such that in PART
II of any round, the Spoiler always chooses an F-part or a P-part. The corresponding
IvMTL[FI,PI] EF Theorem also holds.

4 Separating Sub Logics of MTL[UI,SI]

Each formula of a timed logic defines a timed language. Let L(G) denote the set of
languages definable by the formulas of logic G . A logic G1 is at least as expressive as
(or contains) logic G2 if L(G2) ⊆ L(G1). This is written as G2 ⊆ G1. Similarly, we
can define G2 � G1 (strictly contained within), G2 	⊆ G1 (not contained within), G2#G1

(incomparable), and G2 ≡ G1 (equally expressive).
We consider three sub logics of MTL[UI,SI] namely MTL[FI ,PI ], MITL[UI,SI ] and

BoundedMTL[UI,SI ].These have fundamentally different restrictions and using their
corresponding EF-games, we show that they are all incomparable with each other.2

Theorem 2. MITL[FI,PI] � BoundedMTL[UI,SI ]

Proof. Consider the MITL[FI,PI ] formula φ := F[0,∞)(a∧F(1,2)c). Consider a family of
words An and Bn. We have untime(An) = untime(Bn) = an+1c with the a’s occurring at
integral time stamps 0,1, . . . ,n in both words. In An, the letter c occurs at time n + 2.5
and hence time distance between any a and c is more than 2. In Bn, the c occurs at time
n + 1.5 and the time distance between the c and the preceding a is in (1,2). Clearly,
An 	|= φ whereas Bn |= φ for any n > 0.

We prove the theorem using an m-round BdZIkMTL[UI ,SI ] EF game on the words
An and Bn where n = mk. We show that Duplicator has a winning strategy. Note that in
such a game the Spoiler is allowed to choose intervals at every round with maximum
upper bound of k and hence can shift the pebble at most k positions to the right. It is
easy to see that the Spoiler is never able to place a pebble on the last c. Hence, the
Duplicator has a winning strategy where she exactly copies the Spoiler moves. Using
the EF theorem, we conclude that no modal depth n formula of logic BdZIkMTL[UI ,SI ]
can separate the words An and Bn. Hence, there doesn’t exist a BoundedMTL[UI ,SI ]
formula giving the language L(φ). ��

2 It was already observed by Bouyer et al [7] that BoundedMTL[UI ,SI ] and MITL[UI ,SI ] have
separate expressiveness.
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Theorem 3. BoundedMTL[FI ,PI ] � MITL[UI,SI ]

Proof. Consider the BoundedMTL[FI ,PI ] formula φ := F(0,1)(a∧ F[3,3]c). Consider a
family of words An such that untime(An) = a2n+1c2n+1. Let δ = 1/(2n + 2)2 and ε =
1/(2n + 2)4. All the a’s are in the interval (0,1) at time stamps iδ and all the c’s are in
the interval (3,4), at time stamps 3 + iδ + ε for 1 ≤ i ≤ 2n + 1. Every a has a paired c,
which is at a distance 3 + ε from it. Hence, ∀n . An 	|= φ. Let Bn be a word identical to
An but with the middle c shifted leftwards by ε, so that it is exactly at a distance of 3
t.u. (time units) from the middle a. Thus, Bn |= φ.

We prove the theorem using the n-round ZIExtMTL[UI,SI ]EF game on the words
A2n and B2n where we can show that Duplicator has a winning strategy. This proves
that no modal depth n formula of logic MITL[UI,SI ] can separate A2n and B2n. Hence,
there is no MITL[UI ,SI ] formula giving L(φ) The full description of the Duplicator
strategy can be found in the full version of this paper. ��

Theorem 4. – BoundedMTL[UI,SI ] 	⊆MTL[FI,PI] over strict monotonic timed words
(and hence also over weakly monotonic timed words).

– BoundedMTL[UI ,SI] 	⊆ TPTL[F,P] over weakly monotonic timed words. ��

These results follow by embedding untimed LTL into logics MTL as well as TPTL. The
proof can be found in the full version of this paper.

5 TPTL and MTL

Consider the TPTL[F] formula φ1
def= x.F(b∧ F(c∧ T − x ≤ 2)). Bouyer et al [6]

showed that this formula cannot be expressed in MTL[UI] for pointwise models. They
also gave an MTL[UI,SI ] formula equivalent to it thereby showing that MTL[UI ,SI ] is
strictly more expressive than MTL[UI]. Prior to this, Alur and Henzinger [3] consid-
ered the formula �(a⇒ φ1) and they conjectured that this cannot be expressed within
MTL[UI,SI ]. Using a variant of this formula and the MTL[UI ,SI] EF games, we now
show that TPTL[F] is indeed expressively incomparable with MTL[UI ,SI ].

In Theorem 4 we showed that BoundedMTL[UI ,SI ] 	⊆ TPTL[F,P] over weakly mono-
tonic timed words. We now consider the converse.

Theorem 5. TPTL[F] 	⊆ MTL[UI ,SI] over strictly monotonic timed words (and hence
also for weakly monotonic timed words).

Proof. Let the TPTL[F] formula φ := Fp.[a∧{F(b∧ (T − p ∈ (1,2))∧F(c∧ (T − p ∈
(1,2))))}]. This formula characterizes the set of timed words which have an a followed
by a b and then a c such that the time lag between the a and b is in the interval (1,2) and
the time lag between the a and c is also in (1,2). We show that there is no MTL[UI ,SI ]
formula that expresses the language defined by φ.

The idea behind the proof is the following. We will design two families of strictly
monotonic timed words An,k and Bn,k (n > 0), such that An,k |= φ and Bn,k 	|= φ. We will
then show that for n round ZIkMTL[UI ,SI ] EF games over An,k and Bn,k the duplicator
has a winning strategy. Hence, no n modal depth ZIkMTL[UI ,SI ] formula can distin-
guish words An,k and Bn,k. Thus, there is no formula in ZIMTL[UI ,SI ] giving L(φ).
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Designing the Words. Fix some n,k. Let m = 2n(k+1)+1, δ = 1/2m and ε << δ. First,
we shall describe Bn,k. The first event is an a at time stamp 0. (This event is included
since all words must begin with time stamp 0.) Following this, there are no events in
the interval (0,k]. From k + 1 onwards, it has m copies of identical and overlapping
segments of length 2 + ε time units each. If the ith segment segi begins at some time
stamp (say t) then segi+1 begins at (t +1−δ). The beginning of each segment is marked
by an a at t, followed by a b in the interval (t + 2−2δ + 2ε, t + 2− δ−2ε), and a c in
the interval (t + 2,t + 2 + ε), as shown in figure 2. Note that all the events must be
placed such that no two events are exactly at an integral distance from each other (this
is possible, since n and k are finite and time is dense). Let X = n(k + 1) + 1. The Xth

segment is the middle segment, which is padded by n(k + 1) segments on either side.
Let segX begin at time stamp x and the following segments begin at y and z respectively,
as shown in the figure 3. Let px denote the position corresponding to the time stamp x
in both words.

An,k is identical to Bn,k except for the Xth segment where the corresponding c is
shifted leftwards to be in the interval (x + 2− ε,x + 2). Let pA and pA′ denote the posi-
tions of c corresponding to segX and segX+1 in An,k respectively. Similarly, let pB and
pB′ denote the positions of c corresponding to segX and segX−1 in Bn,k respectively.

Note that Bn,k is such that for every a, there exists a c at a distance (1,2) from it,
but the b between them is at a distance < 1 t.u. from the a. In addition, every a has a
b at a distance (1,2) from it, but the subsequent c is at a distance > 2 t.u. from the a.
See Figure 3. Hence, ∀n,k > 0, Bn,k 	|= φ. On the other hand, An,k is identical to Bn,k

except for the (n(k + 1) + 1)st segment for which the c is shifted left so that a has a b
followed by c, both of which are within time distance (1,2) from the a. Hence, ∀n,k > 0,
An,k |= φ. Since all the events occur at time stamps > k, the Spoiler cannot differentiate
between integer boundaries. This enables us to disregard the integer boundaries between
the events through the play of the game. Moreover, since the words are such that no two
events are exactly integral distance apart from each other, the Spoiler is forced to choose
a non-singular interval in every round.

I I l l l l I l

t t + 1 t + 2
2ε 2ε

——δ————δ——-

2ε

ca b

Fig. 2. MTL[UI ,SI ] EF game : A single segment in Bn,k

Key moves of Duplicator. As the two words are identical except for the time stamp of
the middle c, the strategy of Duplicator is to play a configuration of the form (i, i) when-
ever possible. Such a configuration (i, i) is called an identical configuration. The optimal
strategy of Spoiler is to get out of identical configurations as quickly as possible. We
give two example plays, where the Spoiler can force non-identical configuration (de-
picted by dotted arrows in figure 3). In first move, the Spoiler plays position px which
Duplicator duplicates giving the initial configuration of (px, px).
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An,k

pA pA′

pB′ pB

a b a ac b c b c a b c a b

px

I l l x I l 0 x I l 0 x l l 0

x y x + 1 z y+ 1 x + 2 z + 1 y+ 2 z + 2

Bn,k

a b a ac b c b c a b c a b

I l l x I l 0 x I l 0 x l l 0

px

x y x + 1 z y+ 1 x + 2 z + 1 y+ 2 z + 2

Fig. 3. MTL[UI ,SI ] EF game : Duplicator’s Strategy

1. If the Spoiler chooses the interval (1,2) and places its pebble at pA, then the
Duplicator will be forced to place its pebble at pB′ , which also occurs in the in-
terval x + (1,2). This is shown by downward dotted arrow in the figure.

2. Alternatively, if the Spoiler chooses the interval (2,3) and places a pebble at pB in
Bn,k, then the Duplicator is forced to place its pebble on pA′ , which is also in the
interval x + (2,3).

In both cases, if (i, j) is the resulting configuration, then seg(i)− seg( j) = 1.

Duplicator’s copy-cat Strategy. Consider the pth round of the game, with an initial
configuration (ip, jp). If the Duplicator plays in a manner such that the configuration
for the next round is (ip+1, jp+1) with seg(ip)− seg(ip+1) = seg( jp)− seg( jp+1), then
it is said to have followed the copy-cat strategy for the pth round.

Proposition 1. The only case when the Duplicator can not follow the copy-cat strategy
in a round with initial configuration (i, j), is when i = j = px and the Spoiler chooses to
first place its pebble on either pA or pB or when i = pA and j = pB and Spoiler chooses
to place a pebble at px in either word.

Proof. Firstly, note that untime(An,k) = untime(Bn,k) and the only position at which the
two words differ is at pA (and correspondingly pB), where τpB−τpA < 2ε. By observing
the construction of the words, we can infer that ∀p ∈ dom(An,k), if p 	= px then ∀i ∈ Z
we have τp−τpA ∈ (i, i+1) iff τp−τpB ∈ (i, i+1). However, if the initial configuration
is (px, px) or (pA, pB), then Duplicator may not be able to follow the copy-cat strategy,
since pA and pB lie on either side of x + 2. ��

The lemma below shows that in an n round game, for each round, the Duplicator can ei-
ther achieve an identical configuration, or restrict the segment difference between words
to a maximum of 1 in which case there are sufficient number of segments on either side
for the Duplicator to be able to duplicate the Spoiler’s moves for the remaining rounds.

Lemma 1. For an n round ZIk MTL[UI ,SI ] EF game over the words An,k,Bn,k the
Duplicator always has a winning strategy such that for any 1 ≤ p ≤ n, if (ip, jp) is the
initial configuration of the pth round then
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– seg(ip)− seg( jp) ≤ 1 AND
– If seg(ip) 	= seg( jp) then

Min{seg(ip),seg( jp)} > (n− p + 1)(k + 1)
Max{seg(ip),seg( jp)} < m− (n− p + 1)(k + 1)

Proof. The duplicator always follows copy-cat strategy in any configuration whenever
possible. We can prove the lemma by induction on p.
Base step: The lemma holds trivially for p = 1, as starting configuration (i1, j1) = (1,1).
Induction Step: Assume that the lemma is true for some p < n. We shall prove that the
lemma holds for p + 1. Consider the pth round, with initial configuration (ip, jp).
Case 1: The Duplicator can follow copy-cat strategy :
Then, seg(ip+1)− seg( jp+1) = seg(ip)− seg( jp). By induction hypothesis, seg(ip)−
seg( jp) ≤ 1 giving seg(ip+1)− seg( jp+1) ≤ 1. Also, since exactly k number of seg-
ments begin within a time span of k time units, if the Spoiler chooses an interval of
the form (h, l), with l ≤ k, then we know that seg(ip+1)− seg(ip) ≤ k and the lemma
will hold for p + 1. If the Spoiler chooses an interval (k,∞) and places a pebble k + 1
segments away in An,k, the Duplicator also has to place its pebble at least k + 1 seg-
ments away, thereby, either making seg(ip+1) = seg( jp+1) or making ip+1 and jp+1

come closer to either end by at most k + 1 segments.
Case 2: The Duplicator can not follow copy-cat strategy:
From proposition 1, this can happen only if seg(ip) = seg( jp) = X , the middle segment.
In this case, we know that seg(ip+1)− seg( jp+1) = 1, X − 2 ≤ seg(ip+1) ≤ X + 2 and
X−2≤ seg( jp+1)≤ X + 2. Hence the lemma holds in this case too. ��

6 Comparing TTL[Xθ,Yθ] with MTL[UI,SI] Fragments

6.1 Embedding TTL[Xθ,Yθ] into MITL[FI ,PI ]:

Fix a formula φ ∈ TTL[Xθ,Yθ]. The formula φ may be represented by its parse tree Tφ,
such that the subformulas of φ form the subtrees of Tφ. Let Subf (n) denote the subfor-
mula corresponding to the subtree rooted at node n, and let n be labelled by Opr(n)
which is the outermost operator (such as Xθ,∨,¬,x. etc.) if n is an interior node, and
by the corresponding atomic proposition, if it is a leaf node. We will use the notion of
subformulas and nodes interchangeably. The ancestry of a subformula n is the set of
nodes in the path from the root up to (and including) n.
Let η to range over subformulas of φ with ηroot denoting φ. Logic TTL[Xθ,Yθ] is a
deterministic freeze logic. Hence, given a timed word ρ, in evaluating ρ,1,ν0 |= φ,
any subformula η of φ needs to be evaluated only at a uniquely determined posi-
tion in dom(ρ)∪ {⊥} called posρ(η). We call this the Unique Parsability property
of TTL[Xθ,Yθ] formulas. Here, notation posρ(η) = ⊥ indicates that such a position
does not exist in ρ and that the subformula η plays no role in evaluating ρ,1,ν0 |= φ.
Also, valρ(η) is the unique valuation function of freeze variables under which η is
evaluated. Note that pos is strict w.r.t. ⊥, i.e. if η = OP(. . . ,η1, . . .) and posρ(η) = ⊥
then posρ(η1) = ⊥. Also, val is a partial function where valρ(η) is defined only when
posρ(η) 	=⊥. We define posρ(η) together with valρ(η) which are both simultaneously
defined by induction on the depth of η. Firstly, define posρ(ηroot) = 1 and valρ(ηroot) =
ν0. Now consider cases where posρ(η) = i (	=⊥) and valρ(η) = ν.
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– If η = SPη1 then posρ(η1) = 1 and valρ(η1) = ν.
– If η = EPη1 then posρ(η1) = #ρ and valρ(η1) = ν.
– If η = η1∨η2 or η =¬η1 then posρ(η1) = posρ(η2) = i and valρ(η1) = valρ(η2) =

ν.
– If η = x.η1 then posρ(η1) = i and valρ(η1) = ν(x← τi).
– Let η = Xθη1. Then, posρ(η1) =⊥ if ∀k > i, ρ,k,ν 	|= θ. Otherwise, posρ(η1) = j

s.t. j > i and ρ, j,ν |= θ and ∀i < k < j, ρ,k,ν 	|= θ. Moreover, valρ(η1) = ν.
– The case of η = Yθη1 is symmetric to that of η = Xθη1.

Given a freeze variable x, let ancx(η) be the node in the ancestry of η and nearest to it, at
which x is frozen. Hence, ancx(η) is the smallest ancestor η′ of η, which is of the form
x.η′. If there is no such ancestor, then let ancx(η) = ηroot . The following proposition
follows from this definition.

Proposition 2. valρ(η)(x) = τposρ(ancx(η))

Lemma 2. For any subformula η of a TTL[Xθ,Yθ] formula φ, we can effectively con-
struct an MITL[FI,PI ] formula α(η) such that ∀ρ ∈ TΣ∗ we have posρ(η) = j iff
ρ, j |= α(η).

Proof. The construction of α(η) follows the inductive definition of posρ(η), and the
lemma may be proved by induction on the depth of η. Consider any timed word ρ.

– Firstly, α(ηroot) = ¬P(0,∞)�. Therefore, ρ, i |= α(ηroot) iff i = 1.
– Similarly, if η = SPη1 then α(η1) = ¬P(0,∞)�. Hence, ρ, i |= α(ηroot) iff i = 1 =

posρ(η1).
– If η = EPη1 then α(η1) = ¬F(0,∞)�. Hence, ρ, i |= α(ηroot) iff i = #ρ = posρ(η1).
– If η is of the form η1∨η2 or ¬η or x.η1 then α(η1) = α(η). This follows from the

fact that posρ(η) = posρ(η1) = posρ(η2).
– Now consider the main case of η = Xθη1 with θ = (a,g). For given θ, we define a

corresponding MITL[FI ,PI ] formula C F (θ,η) such that the following proposition
holds:

Proposition 3. ρ, i,valρ(η) |= θ iff ρ, i |= C F (θ,η).

Using this we define α(η1) and show that ρ, i |= α(η1) iff i = posρ(η1).
– The case of η = Yθη1 is symmetric to the above case.

Given θ = (a,g), define C F (θ,η) = a∧ C (g,η) where the construction of C (g,η)
is given in Table 1. Note that any constraint of the form x− T = c can be replaced
by equivalent constraint (x− T ≤ c)∧ (x− T ≥ c). Similarly, for T − x = c too. We
omit from Table 1, the remaining cases of T − x ≈ c which are similar. To sketch the
proof of proposition 3, we first show that ρ, i |= C (g,η) iff valρ(η),τi |= g. From this, it
follows that ρ, i,valρ(η) |= θ iff ρ, i |= C F (θ,η). Consider the case where g = x−T < c.
Then, C (g,η) = F[0,c)α(ancx(η)). By semantics of MITL[FI ,PI], we know that ρ, i |=
C (g,η) iff ∃ j > i such that (i) j = posρ(ancx(η)) (using the inductive hypothesis) and
(ii) τ j−τi ∈ [0,c). However, from proposition 2, we know that valρ(η)(x) = τ j . Hence,
(i) and (ii) hold iff valρ(η),τi |= g. The other cases may be proved similarly.
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Table 1.

g C (g,η)
x−T < c F[0,c)α(ancx(η))
x−T ≤ c F[0,c]α(ancx(η))
x−T > c F(c,∞)α(ancx(η))
x−T ≥ c F[c,∞)α(ancx(η))
T −x < c P[0,c)α(ancx(η))
g1∧g2 C (g1,η)∧C (g2,η)

Now, define α(η1) = C F (θ,η) ∧ (P(0,∞)α(η)) ∧ (¬P(0,∞)(C F (θ,η)∧P(0,∞)α(η))).
The three conjuncts of the above formula respectively give the following observations.
ρ, i |= α(η1) iff (i) ρ, i,valρ(η1) |= θ (from proposition 3), (ii) ∃ j < i . j = posρ(η)
(from induction hypothesis), and (iii) ∀k . posρ(η) < k < i . ρ,k,valρ(η1) 	|= θ ��

Now define the evaluation evalρ(η) of a subformula as its truth value at its determinis-
tic position posρ(η). This can be defined as follows: If posρ(η) 	= ⊥ then evalρ(η) =
(ρ,valρ(η), posρ(η) |= η) and false otherwise. Clearly, since posρ(ηroot) = 1 and
valρ(ηroot) = ν0, it follows that evalρ(ηroot) = ((ρ,1,ν0) |= ηroot).

Theorem 6. For every subformula η, we construct an MITL[FI,PI ] formula β(η) such
that evalρ(η) iff posρ(η) 	=⊥ and ρ, posρ(η) |= β(η).

The construction of β(η) is by induction on the structure of η. In its construction, we
use the formula α(η) given earlier. If η = � then β(η) = α(η). If η = θ then β(η) =
α(η)∧C F(θ,η). If η = η1∨η2 then β(η) = α(η)∧ (β(η1)∨β(η2)). If η = x.η1 then
β(η) = β(η1). If η =¬η1 then β(η) = α(η)∧¬β(η1). Now, we consider the main case.
Let η = Xθη1. Then, β(η) = α(η)∧F(α(η1)∧β(η1)). It is easy to prove by induction
on the height of η that Theorem 6 holds.

6.2 On Limited Expressive Power of TTL[Xθ,Yθ]

Given any TTL[Xθ,Yθ] formula, its modal depth corresponds to the maximum number
of modal operators in any path of its parse tree and its modal count corresponds to the
total number of modal operators in the the formula.
A TTL[Xθ,Yθ] formula φ is said to reach a position i in a word w, if there exists a
subformula η of ψ such that Posw(η) = i.

Theorem 7. 1. BoundedMTL[FI ,PI ]� TTL[Xθ,Yθ]
2. MITL[FI ,PI ]� TTL[Xθ,Yθ]

Proof. (i) Consider the BoundedMTL[FI ,PI] formula φ := F(0,1)(a∧ F[3,3]c) given in
the proof of Theorem 3 and An and Bn be as defined in that proof. Let wn = An+1 and
vn = Bn+1. Thus, both wn and vn consist of events a2n+3c2n+3. Then, ∀n . wn 	∈ L(φ)
and vn ∈ L(φ).

Proposition 4. For n > 1, no TTL[Xθ,Yθ] formula of modal depth 1≤m≤ n can reach
the middle 2n−2m + 3 a’s or the middle 2n−2m + 3 c’s in wn.



74 P.K. Pandya and S.S. Shah

Proof. Firstly, note that if no TTL[Xθ,Yθ] formula of depth m can reach a position i in
a word, then its boolean combinations also cannot reach i in the word. We now prove
the claim by induction on m, for some fixed n. Base step: m = 1 : Since all a satisfy the
same integral guards and all c also satisfy the same set of intergral guards, the topmost
modality may match either the first or last a or the first or last c in wn (irrespective of
the guard that is chosen). Hence, the middle 2n− 2 + 3 a’s and c’s cannot be reached.
Induction Step: Let the proposition be true for some 1 ≤ m < n. Hence for every ψ
of modal depth m, ψ cannot reach the middle (2n− 2m + 3) a’s and c’s in wn. Every
TTL[Xθ,Yθ] formula ψ′ of modal depth m + 1 may be obtained from some TTL[Xθ,Yθ]
formula ψ of modal depth m, by extending every path in parse tree of ψ by at most
one modality in the end. However, since all the middle 2n− 2m + 3 a’s and c’s satisfy
the same integral guards with respect to the time stamps of the peripheral a’s and c’s,
adding another modality to ψ can make ψ′ reach at most the (m + 1)th or n− (m + 1)th

a or c. This leaves us with 2n− 2m + 3− 2 = 2n− 2(m + 1) + 3 middle a’s and c’s
which remain unreachable. ��

Consider a TTL[Xθ,Yθ]formula of modal depth ≤ n. From proposition 4, the middle 3
a’s and c’s are unreachable. Moreover, they satisfy the same set of time constraints with
respect to the reachable events. Hence, perturbing the middle c alone will not change
the truth of the formula as c it will continue to satisfy the same set of timing constraints
w.r.t. the reachable events. Hence wn |= ψ iff vn |= ψ. Since wn 	|= φ and vn |= φ, no ψ of
modal depth≤ n can distinguish between wn and vn. Hence, we can conclude that there
is no TTL[Xθ,Yθ] formula equivalent to φ.

(ii) Consider the MITL[FI ,PI] formula φ := F[0,∞)(a∧ F(1,2)c) and (assuming to con-
trary) let ψ be a TTL[Xθ,Yθ] formula of modal count m such that L(φ) = L(ψ). As-
suming that freeze variables in ψ are not reused, there are a maximum number of m
freeze variables in ψ. Now consider the word w consisting of event sequence (ac)4m+1

where the x’th ac pair gives the timed subword (a,2x)(c,2x + 0.5). Thus, each c is 0.5
t.u. away from its paired a, and 2.5 units away from the a of the previous pair. Hence,
w 	∈ L(φ).

Consider the evaluation of ψ over w. Each of the m freeze variables is frozen at most
once, in the evaluation of ψ. By a counting argument, there are at least m + 1 (possi-
bly overlapping but distinct) subwords of the form acacac, none of whose elements are
frozen. Call each such subword a group. Enumerate the groups sequentially. Let v j be a
word identical to w except that the jth group is altered, such that its middle c is shifted
by 0.7 t.u. to the right, so that v j satisfies the property φ. Note that there are at least
m + 1 such distinct v j’s and for all j, v j ∈ L(φ).

Claim: Given a v j, if there exists a subformula η of ψ such that Posvj (η) matches the
altered c, then for all k 	= j, Posvk (η) does not match its altered c. (This is because, the
altered c in v j must satisfy a guard which none of its two surrounding c’s in the group
can satisfy).

From the above claim, we know that the m modalities in ψ, may match its position in at
most m of the altered words v j. However, the family {v j} has at least m + 1 members.
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Hence, there exists a k such that the altered c of vk, (and the kth group) is not reachable
by ψ in w or any of the {v j}. Hence w |= ψ iff vk |= ψ. But this is a contradiction as
w /∈ L(φ) and vk ∈ L(φ) with L(φ) = L(ψ).

Therefore, there is no TTL[Xθ,Yθ] formula which can express the language L(φ). ��
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Abstract. Timed automata follow a mathematical semantics, which as-
sumes perfect precision and synchrony of clocks. Since this hypothesis
does not hold in digital systems, properties proven formally on a timed
automaton may be lost at implementation. In order to ensure imple-
mentability, several approaches have been considered, corresponding to
different hypotheses on the implementation platform. We address two of
these: A timed automaton is samplable if its semantics is preserved under
a discretization of time; it is robust if its semantics is preserved when all
timing constraints are relaxed by some small positive parameter.

We propose a construction which makes timed automata imple-
mentable in the above sense: From any timed automaton A, we build
a timed automaton A′ that exhibits the same behaviour as A, and more-
over A′ is both robust and samplable by construction.

1 Introduction

Timed automata [3] extend finite-state automata with real-valued variables which
measure delays between actions. They provide a powerful yet natural way of
modelling real-time systems. They also enjoy decidability of several important
problems, which makes them a model of choice for the verification of real-time
systems. This has been witnessed over the last twenty years by substantial ef-
fort from the verification community to equip timed automata with efficient tool
support, which was accompanied by successful applications.

However, timed automata are governed by a mathematical semantics, which
assumes continuous and infinitely precise measurement of time, while hardware
is digital and imprecise. Hence properties proven at the formal level might be
lost when implementing the abstract model of the automaton as a digital circuit
or as a program on a physical CPU. Several approaches have been proposed
to overcome this discrepancy, with different hypotheses on the implementation
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platform (e.g. [4,15,20,12,5,21]). In this work, we address two such approaches,
namely, the sampled semantics and the robustness, which we now detail.

Sampled semantics for timed automata, where all time delays are integer
multiples of a rational sampling rate, have been studied in order to capture, for
example the behaviour of digital circuits (e.g. [4,8]). In fact, only such instants
are observable in a digital circuit, under the timing of a quartz clock. How-
ever, for some timed automata, any sampling rate may disable some (possibly
required) behaviour [9]. Consequently, a natural problem which has been stud-
ied is that of choosing a sampling rate under which a property is satisfied. For
safety properties, this problem is undecidable for timed automata [9]; but it be-
comes decidable for reachability under a slightly different setting [17]. Recently,
[1] showed the decidability of the existence of a sampling rate under which the
continuous and the sampled semantics recognize the same untimed language.

A prominent approach, originating from [20,12], for verifying the behavior
of real-time programs executed on CPUs, is robust model-checking. It consists
in studying the enlarged semantics of the timed automaton, where all the con-
straints are enlarged by a small (positive) perturbation Δ, in order to model the
imprecisions of the clock. In some cases [11], this may allow new behaviours in
the system, regardless of Δ (See Fig. 2 on page 83). Such automata are said to
be not robust to small perturbations. On the other hand, if no new behaviour is
added to the system, that is, if the system is robust, then implementability on
a fast-enough CPU will be ensured [12]. Since its introduction, robust model-
checking has been solved for safety properties [20,11], and for richer linear-time
properties [6,7]. See also [21] for a variant of the implementation model of [12]
and a new approach to obtain implementations.

In this paper, we show that timed automata can always be made imple-
mentable in both senses. More precisely, given a timed automaton A, we build
another timed automaton B whose semantics under enlargement and under sam-
pling is bisimilar to A. We use a quantitative variant of bisimulation from [14]
where the differences between the timings in two systems are bounded above by
a parameter ε (see also [16] for a similar quantitative notion of bisimulation).
Our construction is parameterized and provides a bisimilar implementation for
any desired precision ε > 0. Moreover, we prove that in timed automata, this
notion of bisimulation preserves, up to an error of ε, all properties expressed in
a quantitative extension of CTL, also studied in [14].

2 Timed Models and Specifications

2.1 Timed Transition Systems and Behavioural Relations

A timed transition system (TTS) is a tuple S = (S, s0, Σ,K,→), where S is the
set of states, s0 ∈ S the initial state, Σ a finite alphabet, K ⊆ R≥0 the time
domain which contains 0 and is closed under addition, and → ⊆ S× (Σ∪K)×S

the transition relation. We write s
σ−→ s′ instead of (s, σ, s′) ∈ →; we also write

s
d,σ−−→ s′ if s

d−→ s′′ σ−→ s′ for d ∈ K, σ ∈ Σ and some state s′′, and s
σ==⇒ s′
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if s
d′,σ−−→ s′ for some d′ ∈ K. A run ρ of S is a finite or infinite sequence

q0
τ0−→ q′0

σ0−→ q1
τ1−→ q′1

σ1−→ . . ., where qi ∈ S, σi ∈ Σ and τi ∈ K for all
i. The word σ0σ1 . . . ∈ Σ∗ is the trace of ρ. We denote by Trace(S) the set
of finite and infinite traces of the runs of S. We define the set of reachable
states of S, denoted by Reach(S), as the set of states s′ for which some finite
run of S starts from state s0 and ends in state s′. A run written on the form
γ = q0

d0,σ0−−−→ q1
d1,σ1−−−→ q2 . . . is a timed-action path (or simply path). Each

state q0 ∈ S admits a set P (q0) of paths starting at q0. For any path γ, the suffix

γj is obtained by deleting the first j transitions in γ, and γ(j) = qj
dj ,σj−−−→ qj+1

is the j-th transition in γ; we also let statej(γ) = qj , γ(j)σ = σj , and γ(j)d = dj .
We consider a quantitative extension of timed bisimilarity introduced in [22].

This spans the gap between timed and time-abstract bisimulations: while the
former requires time delays to be matched exactly, the latter ignores timing
information altogether. Intuitively, we define two states to be ε-bisimilar, for a
given parameter ε ≥ 0, if there is a (time-abstract) bisimulation which relates
these states in such a way that, at each step, the difference between the time
delays of corresponding delay transitions is at most ε. Thus, this parameter
allows one to quantify the “timing error” made during the bisimulation. A strong
and a weak variant of this notion is given in the following definition.

Definition 1. Given a TTS (S, s0, Σ,K,→), and ε ≥ 0, a symmetric relation
Rε ⊆ S × S is a

– strong timed ε-bisimulation, if for any (s, t) ∈ Rε and σ ∈ Σ, d ∈ K,
• s

σ−→ s′ implies t
σ−→ t′ for some t′ ∈ S with (s′, t′) ∈ Rε,

• s
d−→ s′ implies t

d′
−→ t′ for some t′ ∈ S and d′ ∈ K with |d− d′| ≤ ε and

(s′, t′) ∈ Rε.
– timed-action ε-bisimulation, if for any (s, t) ∈ Rε, and σ ∈ Σ, d ∈ K,

• s
d,σ−−→ s′ implies t

d′,σ−−→ t′ for some t′ ∈ S and d′ ∈ K with |d − d′| ≤ ε
and (s′, t′) ∈ Rε.

If there exists a strong timed ε-bisimulation (resp. timed-action ε-bisimulation)
Rε such that (s, t) ∈ Rε, then we write s ∼ε t (resp. s ≈ε t). Furthermore we
write s ∼ε+ t (resp. s ≈ε+ t) whenever for every ε′ > ε, s ∼ε′ t (resp. s ≈ε′ t).

Observe that s ∼ε t implies s ∼ε′ t for every ε′ > ε. Also, s ∼ε+ t does not imply
s ∼ε t in general (see Fig. 1), and if s ∼ε+ t but s 	∼ε t, then ε = inf{ε′ > 0 |
s ∼ε′ t}. These observations hold true in the timed-action bisimulation setting
as well. Note also that s ∼ε t implies s ≈ε t. Finally, for ε > 0, strong timed
or timed-action ε-bisimilarity relations are not equivalence relations in general,
but they are when ε = 0.

Last, we define a variant of ready-simulation [18] for timed transition systems.
For Bad ⊆ Σ, we will write I �Bad S when I is simulated by S (and time delays
are matched exactly) in such a way that at any time during the simulation,
any failure (i.e., any action in Bad) enabled in S is also enabled in I. So, if
I �Bad S and S is safe w.r.t. Bad (i.e., Bad actions are never enabled), then any
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s s′ t t′
σ, x ≤ 1 σ, x < 1

Fig. 1. An automaton in which (s, 0) ∼0+ (t, 0) but (s, 0) �∼0 (t, 0)

run of I can be executed in S (with exact timings) without enabling any of the
Bad-actions. Fig. 2 will provide an automaton illustrating the importance of this
notion. More formally:

Definition 2. Given a TTS (S, s0, Σ,K,→), and a set Bad ⊆ Σ, a relation
R ⊆ S × S is a ready-simulation w.r.t. Bad if, whenever (s, t) ∈ R:

– for all σ ∈ Σ and d ∈ K, s
d,σ−−→ s′ implies t

d,σ−−→ t′ for some t′ ∈ S with
(s′, t′) ∈ R,

– for all σ ∈ Bad, t
σ==⇒ t′ implies s

σ==⇒ s′ for some s′ ∈ S.

We write s �Bad t if (s, t) ∈ R for some ready-simulation R w.r.t. Bad.

2.2 Timed Automata

Given a set of clocks C, the elements of RC≥0 are referred to as valuations. For
a subset X ⊆ C, and a valuation v, we define v[X ← 0] as the valuation
v[X ← 0](x) = v(x) for all x ∈ C \ X and v[X ← 0](x) = 0 for x ∈ X. For
any d ∈ R≥0, v + d is the valuation defined by (v + d)(x) = v(x) + d for all
x ∈ C. For any α ∈ R, we define αv as the valuation obtained by multiplying
all components of v by α, that is (αv)(x) = αv(x) for all x ∈ C. Given two
valuations v and v′, we denote by v+v′ the valuation that is the componentwise
sum of v and v′, that is (v + v′)(x) = v(x) + v′(x) for all x ∈ C.

Let Q∞ = Q∪{−∞,∞}. An atomic clock constraint is a formula of the form
k  x  ′ l or k  x − y  ′ l where x, y ∈ C, k, l ∈ Q≥0 and  , ′ ∈ {<,≤}.
A guard is a conjunction of atomic clock constraints. For M,η ∈ Q>0 such that
1
η ∈ N, we denote by ΦC(η,M) the set of guards on the clock set C, whose con-
stants are either ±∞ or less than or equal to M in absolute value and are integer
multiples of η. Let ΦC denote the set of all guards on clock set C. A valuation v
satisfies ϕ ∈ ΦC if all atomic clock constraints of ϕ are satisfied when each x ∈ C
is replaced by v(x). Let �ϕ� denote the set of valuations that satisfy ϕ. We define
the enlargement of atomic clock constraints by Δ ∈ Q as

〈k  x− y  ′ l〉Δ = k −Δ  x− y  ′ l + Δ,
and 〈k  x  ′ l〉Δ = k −Δ  x  ′ l + Δ.

for x, y ∈ C and k, l ∈ Q>0. The enlargement of a guard ϕ, denoted by 〈ϕ〉Δ, is
obtained by enlarging all its atomic clock constraints.

Definition 3. A timed automaton A is a tuple (L, C, Σ, l0, E), consisting of a
finite set L of locations, a finite set C of clocks, a finite alphabet Σ of labels,
a finite set E ⊆ L× ΦC ×Σ × 2C × L of edges, and an initial location l0 ∈ L.
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We write l
ϕ,σ,R−−−−→ l′ if e = (l, ϕ, σ,R, l′) ∈ E, and call ϕ the guard of e. A is an

integral timed automaton if all constants that appear in its guards are integers.

We call the inverses of positive integers granularities. The granularity of a timed
automaton is the inverse of the least common denominator of the finite constants
in its guards. For any timed automaton A and rational Δ ≥ 0, let AΔ denote the
timed automaton obtained from A where each guard ϕ is replaced with 〈ϕ〉Δ.

Definition 4. The semantics of a timed automaton A = (L, C, Σ, l0, E) is a
TTS over alphabet Σ, denoted �A�, whose state space is L × RC≥0. The initial
state is (l0,0), where 0 denotes the valuation where all clocks have value 0. Delay
transitions are defined as (l, v) τ−→ (l, v+τ) for any state (l, v) and τ ∈ K. Action

transitions are defined as (l, v) σ−→ (l′, v′), for any edge l
g,σ,R−−−→ l′ in A such that

v |= g and v′ = v[R← 0].
For any k ∈ N>0, we define the sampled semantics of A, denoted by �A� 1

k as
the TTS defined similarly to �A� by taking the time domain as K = 1

kN.

We write �A� ∼ε �B�, �A� ≈ε �B� and �A� �Bad �B� when the initial states of
timed automata A and B are related accordingly in the disjoint union of the
transition systems, defined in the usual way.

We define the usual notion of region equivalence [3]. Let M be the maximum
(rational) constant that appears in the guards of A, let η be the granularity of A.
Multiplying any constant in A by 1

η , we obtain an integral timed automaton.
Given valuations u, v ∈ RC≥0 and rationals M,η, define v !M

η u to hold if, and
only if, for all formulas ϕ ∈ ΦC(η,M), u |= ϕ if and only if v |= ϕ. The equivalence
class of a valuation u for the relation !M

η is denoted by reg(u)M
η = {v | u !M

η v}.
Each such class is called an (η,M)-region. In the rest, when constant M is
(resp. M and η are) clear from context, we simply write reg(u)η (resp. reg(u)) and
call these η-regions (resp. regions). We denote by reg(u)M

η the topological closure
of reg(u)M

η . The number of (η,M)-regions is bounded by O(2|C||C|!(M/η)|C|) [3].
For a region r, we denote by r[R ← 0], the region obtained by resetting clocks

in R. We define tsucc∗(r) as the set of time-successor regions of r, that is, the
set of η-regions r′ such that u + d ∈ r′ for some u ∈ r and d ∈ R≥0.

We now associate with each (η,M)-region a guard that defines it. Assume we
number the clocks with indices so that C = {x1, . . . , xm}, and fix any (η,M)-
region r. Let us define x0 = 0, and C0 = C ∪ {x0}. Then, for each pair i, j ∈ C0,
there exists a number Ai,j ∈ ηZ ∩ [−M,M ] ∪ {∞} and  i,j ∈ {<,≤} s.t. ϕr,
defined as

ϕr =
∧

(xi,xj)∈C0
−Aj,i  j,i xi − xj  i,j Ai,j ,

is such that �ϕr� = r. Moreover, we assume that for all i, j, k ∈ C0, Ai,i = 0 and
Ai,j ≤ Ai,k +Ak,j . Note that this is a standard definition: the matrix (Ai,j)i,j is
a difference-bound matrix (DBM) that defines region r, and the latter condition
defines its canonical form [13]. Later we will refer to matrix (Ai,j)i,j as the DBM
that defines region r.
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2.3 Quantitative Extension of Computation Tree Logic

In the style of [10,16,14] we present a quantitative extension of CTL, which
measures (in a sense that we make clear below) how far a formula is from being
satisfied in a given state.

Definition 5. Let I be the set of closed nonempty intervals of R≥0, and Σ be a
finite alphabet. We define the set of state- and path-formulas as follows1

Ψ ::= � | ⊥ | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | EΠ | AΠ

Π ::= XI
AΨ | X̄I

AΨ | Ψ1R
IΨ2 | Ψ1U

IΨ2

for I ∈ I and A ⊆ Σ. We write LT (Σ) or simply LT for the set of state formulae.

To define the semantics of LT , we introduce the distance between a point and
an interval: |z, [x, y]| = 0 when z ∈ [x, y], and |z, [x, y]| = min{|x − z|, |y − z|}
otherwise. Now, given a state s, the value of a state formula is defined inductively
as follows: ���(s) = 0, �⊥�(s) = ∞, and

�ψ1 ∨ ψ2�(s) = inf
{�ψ1�(s), �ψ2�(s)

} �Eπ�(s) = inf
{�π�(γ) | γ ∈ P (s)

}
�ψ1 ∧ ψ2�(s) = sup

{�ψ1�(s), �ψ2�(s)
} �Aπ�(s) = sup

{�π�(γ) | γ ∈ P (s)
}

For a path γ, it is defined as:

�XI
Aψ�(γ) = �X̄I

Aψ�(γ) = max{|γ(0)d, I|, �ψ�(state1(γ))} if γ(0)σ ∈ A

�XI
Aψ�(γ) = +∞ and �X̄I

Aψ�(γ) = 0 if γ(0)σ /∈ A

�ψ1U
Iψ2�(γ) = inf

k

(
max
{

max
0≤j<k

|�ψ1�(statej(γ)), I|, �ψ2�(statek(γ))
})

�ψ1R
Iψ2�(γ) = sup

k

(
min
{

max
0≤j<k

|�ψ1�(statej(γ)), I|, �ψ2�(statek(γ))
})

For instance, �EX
[2,5]
{a} ��(s) is the lower bound of the set

{
∣∣d, [2, 5]

∣∣ | there is a transition s
d,a−−→ s′}.

Intuitively, this semantics measures the amount of point-wise modifications
(in the timing constraints of the formula) that are needed for this formula to hold
at a given state. Notice that untimed2 formulas of LT can only be evaluated to 0
or +∞, and this value reflects the Boolean value of the underlying CTL formula.

It is shown in [22] that LT characterizes ε-bisimilarity between the states
of weighted Kripke structures. In the following proposition, we generalize one
direction of this result to timed automata, showing that ε-bisimilar states have
close satisfaction values for all formulas of LT , which implies that these properties
(and their values) are preserved upto ε by the constructions we give in Section 4.
1 To establish the relationship to timed-action ε-bisimulation, the logic uses actions

on transitions instead of the more usual atomic propositions on states. It is easy to
encode the latter by adding extra transitions to sink states.

2 I.e., when all timing constraints are [0, +∞).
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Proposition 1. For any timed automaton A and states s, s′ of �A�, for all
ε ≥ 0, if s ≈ε+ s′ then for any ψ ∈ LT either �ψ�(s) = �ψ�(s′) = ∞ or
|�ψ�(s)− �ψ�(s′)| ≤ ε.

3 Implementability

As explained in the introduction, even the smallest enlargement of the guards
may yield extra behaviour in timed automata. Similarly, any sampling of the time
domain may remove behaviours. Here, we give several definitions of robustness
and samplability, which distinguish timed automata whose enlargement (resp.
whose sampled semantics) is ε-bisimilar to the original automaton, for some ε.

3.1 Robustness

Earlier work on robustness based on enlargement, such as [11,6,7] concentrated
on deciding the existence of a positive Δ under which the enlarged automaton is
correct w.r.t. a given property. Here, we consider a stronger notion of robustness,
which requires systems to be ε-bisimilar for some ε.

Definition 6. A timed automaton A is ε-bisimulation-robust (or simply ε-
robust), where ε ≥ 0, if there exists Δ > 0 such that �A� ≈ε �AΔ�.
Note that not all timed automata are robust. In fact, in the automaton A of
Fig. 2, location �3 is not reachable in �A�, but it becomes reachable in �AΔ� for
any Δ > 0 (see [11]).

We do not know whether a timed automaton that is robust for some Δ is still
robust for any Δ′ < Δ, that is, whether �A� ≈ε �AΔ� implies �A� ≈ε �AΔ′� for
Δ′ < Δ, in general. This is the so-called “faster-is-better” property [2,12], which
means that if a property holds in some platform, it also holds in a faster or more
precise platform. This is known to be satisfied for simpler notions of robustness
mentioned above.

In the next section, we will present our construction which, for any A, pro-
duces an alternative automaton A′ which is robust and satisfies �A� ≈ε �A′Δ�
for all small enough Δ.

Bisimulation is not always sufficient when one wants to preserve state-based
safety properties proven for A. For instance, removing edges leading to unsafe
states in A may provide us with a trivially safe automaton under any enlarge-
ment. However, edges leading to such states are used to detect failures, so
removing these will not necessarily remove the failure (since the states that
immediately trigger a failure may still be reachable). Fig. 3 gives such an “in-
correct” construction. To cope with this problem, we rely on ready-simulation
and require A′ to satisfy �A′Δ� �Bad �AΔ�, where Bad are distinguished actions
leading to unsafe states in A. This means that any run of �A′Δ� can be realized
in �AΔ�, and that no Bad-action is enabled in that run in the latter (and hence no
unsafe state is reached). Thus, intuitively, no state reached in �A′Δ� corresponds
to an unsafe state in �AΔ�, and in particular, if AΔ has unsafe runs (leading
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�1 �2 �3
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0
x=0∧y=2

Bad

Fig. 2. A non-robust timed automaton [20]

�1 �2
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0

Fig. 3. A robust but unsafe alternative

to unsafe states), then these cannot be realized in A′Δ. Clearly, the automaton
in Fig. 3 does not satisfy this. We formalize this idea here.

Definition 7. A timed automaton A is safe w.r.t. a set of actions Bad ⊆ Σ,
if d∞

(
Reach(�A�),Pre(Bad)

)
> 0, where d∞ is the standard supremum metric,

and Pre(Bad) =
⋃

σ∈Bad,(l,σ,g,R,l′)∈E {l} × �g� is the precondition of Bad-actions

Notice that Pre(Bad) is the set of states from which a Bad action can be done,
and that d∞(Reach�A�,Pre(Bad)) = 0 does not imply that a state of Pre(Bad)
is reachable in A. But we still consider such an automaton as unsafe, since,
intuitively, any enlargement of the guards may lead to a state of Pre(Bad).
It can be seen that automaton of Fig. 2 is safe w.r.t. action Bad. Note that a
closed timed automaton is safe w.r.t. Bad iff Bad is not reachable.

Recall the standard notion of robustness, used e.g. in [11]:

Definition 8. A timed automaton A is safety-robust (w.r.t. Bad) if there exists
Δ > 0 such that �AΔ� is safe w.r.t. Bad.

In the rest, Bad will refer to a set of actions given with the timed automaton we
consider. When we say that a timed automaton is safe, or safety-robust, these
actions will be implicit.

We introduce the notion of safety-robust implementation (parameterized by
a bisimilarity relation ≡, which will range over {∼0,∼0+ ,≈0,≈0+}), where we
only require the alternative automaton to preserve a given safety specification.

Definition 9 (Safety-Robust Implementation). Let A be a timed automa-
ton which is safe w.r.t. actions Bad, and ≡ denote any bisimilarity relation. A
safety-robust implementation of A w.r.t ≡ is a timed automaton A′ such that:

(i) A′ is safety-robust;
(ii) �A′� ≡ �A�;

(iii) there exists Δ0 > 0 s.t. for all 0 < Δ′ < Δ < Δ0, �A′Δ′� �Bad �AΔ�.
Now we define the notion of robust implementation. We require such an imple-
mentation to be robust and equivalent to the original automaton, and to preserve
safety specifications.

Definition 10 (Robust Implementation). Let A be a timed automaton which
is safe w.r.t.actions Bad, and ≡ denote any bisimilarity. An ε-robust implemen-
tation of A w.r.t. ≡ is a timed automaton A′ such that:
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(i) A′ is ε-robust;
(ii) �A′� ≡ �A�;

(iii) there exists Δ0 > 0 s.t. for all 0 < Δ′ < Δ < Δ0, �A′Δ′� �Bad �AΔ�.

3.2 Samplability

As we noted in the introduction, some desired behaviours of a given timed au-
tomaton may be removed in the sampled semantics. Preservation of the un-
timed language under some sampling rate was shown decidable in [1]. The proof
is highly technical (it is based on the limitedness problem for a special kind
of counter automata).We are interested in the stronger notion of bisimulation-
samplability, which, in particular, implies the preservation of untimed language.

Definition 11. A timed automaton is said to be ε-bisimulation-samplable (or
simply ε-samplable) if there exists a granularity η such that �A� ≈ε �A�η.

Note that not all timed automata are bisimulation-samplable: [17] describes
timed automata A which are not (time-abstract) bisimilar to their sampled se-
mantics for any granularity η. We define a sampled implementation as follows.

Definition 12 (Sampled Implementation). Let A be a timed automaton,
and ≡ denote any bisimilarity relation. A ε-sampled implementation w.r.t. ≡ is
a timed automaton A′ such that

(i) A′ is ε-samplable;
(ii) �A′� ≡ �A�.

Note that a similar phenomenon as in Fig. 2 does not occur in sampled semantics
since sampling does not add extra behaviour, but may only remove some.

3.3 Main Result of the Paper

We will present two constructions which yield an implementation for any timed
automaton. In our first construction, for any timed automaton given with a
safety specification, we construct a safety robust implementation. Our second
construction is stronger: Given any timed automatonA and any desired ε > 0, we
construct a timed automaton A′ which is both an ε-robust implementation and
an ε-sampled implementation of A w.r.t. ≈0+ (we also give a variant w.r.t. ∼0

for robustness).
Since, A and A′Δ are timed-action ε-bisimilar, the satisfaction values of the

formulas in LT are preserved up to ε (Proposition 1). In particular, all stan-
dard untimed linear- and branching-time properties (e.g. expressible in LTL,
resp. CTL) proven for the original automaton are preserved in the implementa-
tion. An example of such a property is deadlock-freedom, which is an important
property of programs.

Theorem 1. Let A = (L, C, Σ, l0, E) be an integral timed automaton which is
safe w.r.t. some set Bad ⊆ Σ. Let W denote the number of regions of A. Then,
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1. There exists a safety robust implementation of A w.r.t ∼0, with |L| locations,
the same number of clocks and at most |E| ·W edges.

2. For all ε > 0, there exists a timed automaton A′ which is a ε-robust imple-
mentation w.r.t. ∼0; and a timed automaton A′′ which is both a ε-sampled
and ε-robust implementation w.r.t. ≈0+. Both timed automata have the same
number of clocks as A, and the number of their locations and edges is bounded
by O(|L| ·W · (1

ε )|C|).

The rest of the paper is devoted to the proof of this theorem. The two construc-
tions are presented in the next section, and proved thereafter.

4 Making Timed Automata Robust and Samplable

For any timed automaton A and any location l of A, let Reach(�A�)|l denote
the projection of the set of reachable states at location l to RC≥0. For any l,
there exist guards ϕl

1, . . . , ϕ
l
nl

such that
⋃

i�ϕl
i� = Reach(�A�)|l (in fact, the set

of reachable states at a given location is a union of regions but not necessarily
convex). We use these formulas to construct a new automaton where we restrict
all transitions to be activated only at reachable states.

Definition 13. Let A = (L, C, Σ, l0, E) be any integral timed automaton. Define

timed automaton safe(A) from A by replacing each edge l
ϕ,σ,R−−−−→ l′, by edges

l
ϕ∧ϕl

i,σ,R−−−−−−→ l′ for all i ∈ {1, . . . , nl}.

As stated in Theorem 1 the worst-case complexity of this construction is expo-
nential. However, in practice, Reach(�A�)|l may have a simple shape, which can
be captured by few formulas ϕl

i.
Although the above construction will be enough to obtain a safety-robust

timed automaton w.r.t. a given set Bad, it may not be bisimulation-robust. The
following construction ensures this.

Definition 14. Let A = (L, C, Σ, l0, E) be an integral timed automaton. Let M
be the largest constant that appears in A, and let η be any granularity. We define
implη(A) as a timed automaton over the set of locations lr where l is a location
of A and r is an (η,M)-region, and over the same set of clocks. Edges are defined

as follows. Whenever there is an edge l
ϕ,σ,R−−−−→ l′ in A, we let lr

ϕ∧ϕs,σ,R−−−−−−→ l′s[R←0],
for all (η,M)-regions r and s ∈ tsucc∗(r) such that �ϕs� ⊆ �ϕ�.

We define implη(A) as the closed timed automaton obtained from implη(A)
where each guard is replaced by its closed counterpart3.

Throughout this paper, we always consider integral timed automata as input,
and the only non-integer constants are those added by our construction. Observe
that the size of implη(A) depends on η, since a smaller granularity yields a greater
number of (η,M)-regions.

3 That is, all < are replaced by ≤, and > by ≥.
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The main theorem is a direct corollary of the following lemma, where we state
our results in detail. The bounds on the size of the constructed implementations
follow by construction.

Lemma 1. Let A = (L, C, Σ, l0, E) be an integral timed automaton and fix any
ε > 0. Assume that A is safe w.r.t. some set Bad ⊆ Σ. Then,

1. safe(A) is safety-robust, �A� ∼0 �safe(A)� and for any Δ < 1
2|C| ,

�safe(A)Δ� �Bad �AΔ�.
2. For any granularity η and Δ > 0 such that 2(η + Δ) < ε, we have �A� ≈0+�implη(A)� and �implη(A)� ≈ε �implη(A)Δ�. Moreover, for any 0 < Δ′ <

Δ < 1
|C| , �implη(A)Δ′� �Bad �AΔ�.

3. For any granularity η and Δ > 0 such that 2(η + Δ) < ε, we have �A� ∼0�implη(A)� and �implη(A)� ≈ε �implη(A)Δ�. Moreover, whenever Δ < 1
|C| ,

�implη(A)Δ� �Bad �AΔ�.
4. For any granularities η and α such that η = kα for some k ∈ N>0 and

η < ε/2, �implη(A)� ≈ε �implη(A)�α.

Note that both implη(A) and implη(A) provide the relation ≈ε+ between the
specification (that is, �A�) and the implementation (that is, �A′Δ�). However,
the latter has a stronger relation with �A�, so we also study it separately.

Trading Precision against Complexity. The choice of the granularity in implη(A)
and implη(A) allows one to obtain an implementation of A with any desired pre-
cision. However, this comes with a cost since the size of implη(A) is exponential
in the granularity η. But it is also possible to give up on precision in order
to reduce the size of the implementation. In fact, one could define impl≡(A)
where the regions are replaced by the equivalence classes of any finite time-
abstract bisimulation ≡. Then, we get �A� ≈0 �impl≡(A)� and �impl≡(A)� is
time-abstract bisimilar to �impl≡(A)Δ� for any Δ > 0. In order to obtain, say
�impl≡(A)� ≈K �impl≡(A)Δ�, for some desired K ≥ 1, one could, roughly, split
these bisimulation classes to sets of delay-width at most O(K), that is the max-
imal delay within a bounded bisimulation class (there is a subtlety with un-
bounded classes, where, moreover, all states must have arbitrarily large time-
successors within the class). Note however that safety specifications are only
guaranteed to be preserved for small enough K (see Lemma 1).

5 Proof of Correctness

This section is devoted to the proof of Lemma 1. We start with general proper-
ties of regions, in subsection 5.1. In subsection 5.2, we prove the robustness of
implη(A), implη(A) and safe(A), as stated in points 1 through 3 of Lemma 1.
In subsection 5.3, we prove that implη(A) is bisimulation-samplable (point 4).
Last, the ready simulation is proved for all the systems in subsection 5.4.
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5.1 Properties of Regions

We give several properties of the enlargement of regions. Fixing constants η and
M , we refer to any (η,M)-region simply as a region.

Proposition 2. Let u ∈ RC≥0 such that u ∈ �〈ϕs〉Δ� for some region s. Then
for any subset of clocks R ⊆ C, u[R← 0] ∈ �〈ϕs[R←0]〉Δ�.
The following proposition shows, intuitively, that enlarged guards cannot dis-
tinguish the points of an “enlarged region”. The proof is straightforward using
difference bound matrices in canonical form. Note that the property does not
hold if ϕs is not in canonical form.

Proposition 3. Let s denote a region, and ϕ a guard. If �ϕs� ⊆ �ϕ�, then
�〈ϕs〉Δ� ⊆ �〈ϕ〉Δ�.
Proposition 4. Let u ∈ RC≥0 such that u ∈ �〈ϕs〉Δ� for some region s. Then
for all s′ ∈ tsucc∗(s), there exists d ≥ 0 such that u + d ∈ �〈ϕs′ 〉Δ�.
The previous proposition is no longer valid if ϕs is not canonical. As an example,
take the region defined by x = 1 ∧ y = 0, whose immediate successor is 1 < x <
2∧ 0 < y < 1∧ x− y = 1. The enlargement of the former formula is satisfied by
valuation (x = 1 − Δ, y = Δ) but this has no time-successor that satisfies the
enlargement of the latter.

Last, we need the following proposition which provides a bound on the delay
that it takes to go from a region to another.

Proposition 5. Let r be a region, and s a time-successor region of r, and Δ ≥ 0.
Suppose that u ∈ �ϕr� and u + d ∈ �ϕs� for some d ≥ 0. Then for any v ∈
�〈ϕr〉Δ�, there exists d′ ≥ 0 such that v + d′ ∈ �〈ϕs〉Δ� and |d′ − d| ≤ 2η + 2Δ.

5.2 Proof of Robustness

We first prove that implη(A) and implη(A) are bisimulation-robust, for an ap-
propriate ε, that is �A′� ≈ε �A′Δ� where A′ denotes any of these (Lemma 2).
Then we show “faithfulness” results: Lemma 3 shows that �A� ∼0 �implη(A)�
and �safe(A)� ∼0 �A�, and Lemma 4 shows that �A� ≈0+ �implη(A)�.
Lemma 2. For any timed automaton A, any granularity η, and any Δ > 0, we
have �implη(A)� ≈2Δ+2η �implη(A)Δ� and �implη(A)� ≈2Δ+2η �implη(A)Δ�.
Proof (Sketch). We fix any η and Δ. Let us consider implη(A). The case of
implη(A) is similar. We define relation R ⊆ (L × RC) × (L × RC) between
�implη(A)� and �implη(A)Δ� by (lr, u)R(l′r′ , u′) whenever lr = l′r′ and

∀s ∈ tsucc∗(r), ∃d ≥ 0, u + d ∈ �ϕs� ⇐⇒ ∃d′ ≥ 0, u′ + d′ ∈ �〈ϕs〉Δ�. (1)

Intuitively, relation R relates states which can reach, by a delay, the same set of
regions: we require the first system to reach �ϕs�, while it is sufficient that the
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second one reaches �〈ϕs〉Δ�, since its guards are enlarged by Δ. Then, Propo-
sitions 2, 3, and 4 ensure that this relation is maintained after each transition,
proving that R is a timed-action bisimulation. The parameter 2Δ + 2η is given
by Proposition 5, applied on relation (1). ��

The parameter which we provide for the timed-action bisimilarity is (almost)
tight. In fact, consider the automaton in Figure 2, where the guard of the edge
entering �1 is changed to x ≤ 1. Fix any η and Δ and consider the following
cycle in implη(A): (�1,r1) −→ (�2,r2) −→ (�1,r1), where r1 is the region 1 − η <

x < 1 ∧ y = 0, and r2 is the region x = 0 ∧ 1 < y < 1 + η. Suppose �implη(A)Δ�
first goes to location (�1,r1) with x = 1 + Δ, y = 0, and that this is matched in
�implη(A)� by (�1,r′

1
, (x = 1 − α, y = 0)) where necessarily α ≥ 0. It is shown

in [11] that in any such cycle, the enlarged automaton can reach (by iterating
the cycle) all states of the region r1 at location �1. In particular, �implη(A)Δ�
can go to state (�1,r1 , (x = 1 − η, y = 0)). However, without enlargement, all
states (�1, r′1, (v′x, v′y)) reached from a state (�1,r1 , (vx, vy)) with vy = 0 satisfy
v′x ≥ vx, that is, the value of the clock x at location �1 cannot decrease along any
run ([11]). Thus, the state (�1,r1 , (x = 1− η, y = 0)) of �implη(A)Δ� is matched
in �implη(A)� by some state (�1,r′′

1
, (v′x, 0)) where v′x ≥ 1 − α. Now, from there,

�implη(A)Δ� can delay 1 + Δ + η and go to �2, whereas �implη(A)� can delay at
most 1 +α to take the same transition. The difference between the delays at the
first and the last step is then at least max

(
Δ+α, 1+Δ+η−(1+α)

)
≥ Δ+η/2.

Next, we show that safe(A) and implη(A) are strongly 0-bisimilar to A. The
proof is omitted.

Lemma 3. For any timed automaton A, we have �safe(A)� ∼0 �A�, and �A� ∼0�implη(A)� for any granularity η. ��

The proof of �A� ≈0+ �implη(A)� is trickier. In fact, since all guards are closed in
implη(A), but not necessarily in A, all time delays may not be matched exactly.
The first part of the proof follows the lines of Proposition 16 of [19], who, by a
similar construction, prove that the finite timed traces of �A� are dense in those
of �implη(A)�, for an appropriate topology. Their result has a similar flavor, but
we consider 0+-bisimulation which cannot be interpreted in terms of density in
an obvious way.

Lemma 4. For any timed automaton A and granularity η, �A� ≈0+ �implη(A)�.
Proof (Sketch). We fix any η and δ ∈ (0, 1). We define (l, v)R(lr, v′) iff

r = reg(v), v′ ∈ reg(v) and ∃v′′ ∈ reg(v), v = δv′′ + (1− δ)v′. (2)

We show that R is a timed-action 0+-bisimulation. One direction of the bisimu-
lation follows from convexity of regions, while the other direction is less obvious,
and necessitates the following technical lemma. ��

Lemma 5. Let v, v′, v′′ ∈ R≥0 such that v′′ ∈ reg(v) and v′ ∈ reg(v), and
v = εv′′+ (1− ε)v′ for some ε ∈ (0, 1). Then for all d ≥ 0, there exists d′, d′′ ≥ 0
s.t. v+d = ε(v′′+d′′)+(1−ε)(v′+d′), v′′+d′′ ∈ reg(v+d) and v′+d′ ∈ reg(v + d).
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5.3 Proof of Samplability

We now show that implη(A) is a sampled implementation for any timed automa-
ton A. This result follows from the following lemma and Lemma 4. The proof is
similar to Lemma 2.

Lemma 6. Let A be any integral timed automaton. For any granularities η and
α such that η = kα for some k ∈ N>0, we have �implη(A)� ≈2η �implη(A)�α.

5.4 Proof of Safety Preservation (Ready Simulation)

Lemma 7. We have �implη(A)Δ′� �Bad �AΔ� and �implη(A)Δ� �Bad �AΔ� for
any 0 < Δ′ < Δ < 1

|C| ; and �safe(A)Δ� �Bad �AΔ� for any Δ < 1
2|C| .

Proof (Sketch). The simulation can be shown similarly to Lemma 3. We show
that actions Bad are not enabled in any state of the simulating run, whenever A
is safe w.r.t. Bad. Let us consider the first statement. Informally, this is due to
two facts: (1) the set of reachable states in �implη(A)Δ� have a small distance
(at most Δ) to the corresponding reachable states in �A�; (2) the states of �A�
have a positive distance to PreA(Bad), which can be bounded from below by 1

|C| .
Thus, choosing 1

|C| −Δ > 0, we prove that �implη(A)Δ′� is also safe w.r.t. Bad.
��

6 Conclusion

We have presented a way to transform any timed automaton into robust and
samplable ones, while preserving the original semantics with any desired preci-
sion. Such a transformation is interesting if the timed automaton under study
is not robust (or not samplable), or cannot be certified as such. In this case,
one can simply model-check the original automaton for desired properties, then
apply our constructions, which will preserve the specification.

Our constructions also allow one to solve the robust synthesis problem. In the
synthesis problem, the goal is to obtain automatically (i.e. to synthesize) a timed
automaton which satisfies a given property. If one solves this problem for timed
automata and obtain a synthesized system A, then applying our constructions,
we get that implη(A)Δ and implη(A)η satisfy the same (say, untimed) properties.

As a future work, we will be interested in robust controller synthesis. In this
problem, we are given a system S which we cannot change, and we are asked to
synthesize a system C, called controller, such that the parallel composition of the
two satisfies a given property. The robust controller synthesis is the controller
synthesis problem where the behaviour of the controller is CΔ (the controller has
imprecise clocks), and we need to decide whether there is some Δ for which the
parallel composition still satisfies the property.

Acknowledgement. We thank David N. Jansen for his detailed and insightful
comments.
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Abstract. An infinite run of a timed automaton is Zeno if it spans only
a finite amount of time. Such runs are considered unfeasible and hence
it is important to detect them, or dually, find runs that are non-Zeno.
Over the years important improvements have been obtained in checking
reachability properties for timed automata. We show that some of these
very efficient optimizations make testing for Zeno runs costly. In partic-
ular we show NP-completeness for the LU-extrapolation of Behrmann et
al. We analyze the source of this complexity in detail and give general
conditions on extrapolation operators that guarantee a (low) polynomial
complexity of Zenoness checking. We propose a slight weakening of the
LU-extrapolation that satisfies these conditions.

1 Introduction

Timed automata [1] are finite automata augmented with a finite number of
clocks. The values of the clocks increase synchronously along with time in the
states of the automaton and these values can be compared to a constant and
reset to zero while crossing a transition. This model has been successfully used
for verification of timed systems thanks to a number of tools [3,6,15].

Since timed automata model reactive systems that continuously interact with
the environment, it is interesting to consider questions related to their infinite
executions. An execution is said to be Zeno if an infinite number of events
happen in a finite time interval. Such executions are clearly unfeasible. During
verification, the aim is to detect if there exists a non-Zeno execution that violates
a certain property. On the other hand while implementing timed automata, it is
required to check the presence of pathological Zeno executions. This brings the
motivation to analyze an automaton for the presence of such executions.

The analysis of timed automata faces the challenge of handling its uncountably
many configurations. To tackle this problem, one considers a finite graph called
the abstract zone graph (also known as simulation graph) of the automaton. This
finite graph captures the semantics of the automaton. In this paper, we consider
the problems of deciding if an automaton has a non-Zeno execution, dually a
Zeno execution, given its abstract zone graph as input.

An abstract zone graph is obtained by over-approximating each zone of the
so-called zone graph with an abstraction function. The zone graph in principle
could be infinite and an abstraction function is necessary for reducing it to a

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 92–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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finite graph. The coarser the abstraction, the smaller the abstract zone graph,
and hence the quicker the analysis of the automaton. This has motivated a lot of
research towards finding coarser abstraction functions [2]. The classic maximum-
bound abstraction uses as a parameter the maximal constant a clock gets com-
pared to in a transition. A coarser abstraction called the LU-extrapolation was
introduced in Behrmann et al. [2] for checking state reachability in timed au-
tomata. This is the coarsest among all the implemented approximations and is
at present efficiently used in tools like UPPAAL.

It was shown in [13,14] that even infinite executions of the automaton di-
rectly correspond to infinite paths in the abstract zone graph when one uses the
maximum-bound approximation. In addition, it was proved that the existence
of a non-Zeno infinite execution could be determined by adding an extra clock
to the automaton to keep track of time and analyzing the abstract zone graph
of this transformed automaton. A similar correspondence was established in the
case of the LU-extrapolation by Li [11]. These results answer our question about
deciding non-Zeno infinite executions of the automaton from its abstract zone
graph. However, it was shown in [10] that adding a clock has an exponential worst
case complexity. A new polynomial construction was proposed for the case of the
classic maximum-bound approximation. But, the case of the LU-extrapolation
was not addressed.

In this paper, we prove that the non-Zenoness question turns out to be NP-
complete for the LU-extrapolation, that is, given the abstract zone graph over the
LU-extrapolation, deciding if the automaton has a non-Zeno execution is NP-
complete. We study the source of this complexity in detail and give conditions
on abstraction operators to ensure a polynomial complexity. To this regard, we
extend the polynomial construction given in [10] to an arbitrary abstraction
function and analyze when it stays polynomial. It then follows that a slight
weakening of the LU-extrapolation makes the construction polynomial. In the
second part of the paper, we repeat the same for the dual question: given an
automaton’s abstract zone graph, decide if it has Zeno executions. Yet again, we
notice NP-completeness for the LU-extrapolation. We introduce an algorithm for
checking Zenoness over an abstract zone graph with conditions on the abstraction
operator to ensure a polynomial complexity. We provide a different weakening
of LU-extrapolation that gives a polynomial solution to the Zenoness question.

Related Work. As mentioned above, the LU-extrapolation was proposed in [2]
and shown how it could be efficiently used in UPPAAL for the purpose of reach-
ability. The correctness of the classic maximum-bound abstraction was shown
in [4]. Extensions of these results to infinite executions occur in [14,11]. The
trick involving adding an extra clock for non-Zenoness is discussed in [12,14,10].
For the case of checking existence of Zeno runs in timed automata, a bulk of
the literature directs to [8,5]. They provide a sufficient-only condition for the
absence of Zeno runs. This is different from our proposed solution which gives a
complete solution (necessary and sufficient conditions) by analyzing the abstract
zone graph of the automaton.
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Organization of the Paper. We start with the formal definitions of timed
automata, abstract zone graphs, the Zenoness and Non-Zenoness problems in
Section 2. Subsequently, we prove the NP-completeness of the non-Zenoness
problem for the LU-extrapolation in Section 3. We then recall the construction
proposed for non-Zenoness in [10] and extend it to a general abstraction opera-
tor giving conditions for polynomial complexity. Section 5 talks about the dual
Zenoness problem and Section 6 concludes the paper with some perspectives.

2 Zeno-Related Problems for Timed Automata

2.1 Timed Automata

Let R≥0 denote the set of non-negative real numbers. Let X be a set of variables,
named clocks hereafter. A valuation is a function ν : X #→ R≥0 that maps every
clock in X to a non-negative real value. We denote the set of all valuations by
RX
≥0, and 0 the valuation that maps every clock in X to 0. For δ ∈ R≥0, we

denote ν + δ the valuation mapping each x ∈ X to the value ν(x) + δ. For a
subset R of X , let [R]ν be the valuation that sets x to 0 if x ∈ R and assigns
ν(x) otherwise. A clock constraint is a conjunction of constraints x#c for x ∈ X ,
# ∈ {<,≤,=,≥, >} and c ∈ N. We denote Φ(X) the set of clock constraints
over clock variables X . For a valuation ν and a constraint φ we write ν � φ when
ν satisfies φ, that is, when φ holds after replacing every x by ν(x).

A Timed Automaton (TA) [1] A is a finite automaton extended with clocks
that enable or disable transitions. Formally, A is a tuple (Q, q0, X, T ) where Q
is a finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks
and T ⊆ Q × Φ(X) × 2X × Q is a finite set of transitions. For each transition
(q, g, R, q′) ∈ T , g is a guard that defines the valuations of the clocks that allow
to cross the transition, and R is a set of clocks that are reset on the transition.

A configuration of A is a pair (q, ν) ∈ Q×RX
≥0. A transition (q, ν)

δ,t−→ (q′, ν′)
with t = (q, g, R, q′) ∈ T and δ ∈ R≥0 is enabled when ν + δ � g and ν′ =
[R](ν + δ). A run ρ of A is a (finite or infinite) sequence of transitions starting

from the initial configuration: (q0,0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · · (qi, νi)
δi,ti−−−→ · · ·

Definition 1 (Zeno/non-Zeno runs). A run (q0,0)
δ0,t0−−−→ . . . (qi, νi)

δi,ti−−−→ . . .
is non-Zeno if time diverges, that is,

∑
i≥0 δi = ∞. Otherwise it is Zeno.

Notice that only infinite sequences can be non-Zeno. As can be seen, the num-
ber of configurations (q, ν) could be uncountable. We now define the abstract
semantics for timed automata.

2.2 Symbolic Semantics, Zenoness and Non-zenoness Problems

A zone is a set of clock valuations that satisfy a conjunction of constraints of the
form xi#c and xi − xj#c with xi, xj ∈ X , # ∈ {<,≤,=,≥, >} and c ∈ N. For
instance, (x1 ≤ 1∧x1−x2 ≥ 0) is a zone. Zones can be efficiently represented by
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Difference Bound Matrices (DBMs) [7]. A DBM representation of a zone Z is a
|X |+ 1 square matrix (Zij)i,j∈[0;|X|] where each entry Zij = (cij ,�ij) represents
the constraint xi−xj �ij cij for cij ∈ Z∪{∞} and �ij∈ {<,≤}. A special clock
x0 encodes the value 0.

The symbolic semantics (or zone graph) ofA is the transition system ZG(A) =
(S, s0,⇒) where S is the set of nodes (q, Z) with q a state of A and Z a zone;
s0 = (q0, Z0) with Z0 = {0 + δ | δ ∈ R≥0} as the initial node. There exists a
transition (q, Z) t⇒ (q′, Z ′) with t = (q, g, R, q′) ∈ T if Z ′ is the set of valuations
[R]ν + δ for some δ ∈ R≥0 and some valuation ν ∈ Z such that ν � g. If Z is a
zone, then Z ′ is a zone. Moreover, a DBM representation of Z ′ can be computed
from the DBM representation of Z (see for instance [4]).

However ZG(A) may still be infinite. Several abstractions have been intro-
duced to obtain a finite graph from ZG(A). A finite abstraction a is a map
from P(RX

≥0) to P(RX
≥0) such that for every zone Z: a(Z) is a zone, Z ⊆ a(Z),

a(a(Z)) = a(Z) and a has a finite range. In particular ExtraM [4], Extra+
M ,

ExtraLU and Extra+
LU [2] are well-known finite abstractions. The last two abstrac-

tions are usually preferred as they are coarser and hence lead to more efficient
algorithms. We recall the definitions below.

Let L : X #→ N ∪ {−∞} and U : X #→ N ∪ {−∞} be two maps that asso-
ciate to each clock in A its maximal lower bound and its maximal upper bound
respectively: that is, for every x ∈ X , L(x) is the maximal integer c such that
x > c or x ≥ c appears in some guard of A. We let L(x) = −∞ if no such c
exists. Similarly, we define U(x) with respect to clock constraints like x ≤ c and
x < c. We define ExtraLU (Z) = ZLU and Extra+

LU (Z) = ZLU+ as:

ZLU
ij =

⎧⎪⎨⎪⎩
(∞, <) if cij > L(xi)

(−U(xj), <) if − cij > U(xj)

Zij otherwise

ZLU+
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∞, <) if cij > L(xi)

(∞, <) if − c0i > L(xi)

(∞, <) if − c0j > U(xj), i �= 0

(−U(xj), <) if − c0j > U(xj), i = 0

Zij otherwise

where L(x0) = U(x0) = 0 for the special clock x0. The abstraction ExtraM

(resp. Extra+
M ) is obtained from ExtraLU (resp. Extra+

LU ) by replacing every oc-
currence of L and U by M which maps every clock x to max(L(x), U(x)). These
abstractions compare in the following way.

Theorem 1 ([2]). For each zone Z, we have: Z ⊆ ExtraM (Z) ⊆ Extra+
M (Z);

Z ⊆ ExtraLU (Z) ⊆ Extra+
LU (Z) and Extra+

M (Z) ⊆ Extra+
LU (Z).

For two nodes (q, Z) and (q′, Z ′), we define the relation (q, Z) t⇒a (q′, Z ′) if
(q, Z) t⇒ (q′, Z ′′) in ZG(A), Z = a(Z) and Z ′ = a(Z ′′). The abstract symbolic
semantics (or the abstract zone graph) of A is the transition system ZGa(A)
induced by ⇒a with the intial node (q0, a(Z0)), where (q0, Z0) is the initial node
of ZG(A). We denote by ZGLU (A) the abstract symbolic semantics when ab-
straction ExtraLU is considered, and ZGM (A) when the abstraction a is ExtraM .

A path π in ZGa(A): (q0, Z
′
0) t0⇒a (q1, Z

′
1) t1⇒a · · · (qi, Z

′
i)

ti⇒a · · · is a (finite or

infinite) sequence of transitions. We say a run (q0,0)
δ0,t0−−−→ . . . (qi, νi)

δi,ti−−−→ . . .
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of A is an instance of a path π of ZGa(A) if they agree on the sequence of
transitions t0, t1, . . . , and if for every i ≥ 0, (qi, νi) and (qi, Z

′
i) coincide on qi,

and νi ∈ Z ′i. By definition of Z ′i this implies νi +δi ∈ Z ′i. We say an abstraction a
is sound if every path can be instantiated as a run of A. Conversely, a is complete
when every run of A is an instance of some path in ZGa(A).

A classical verification problem for Timed Automata is to answer state reach-
ability queries. For that purpose, runs of A and paths in ZGa(A) are defined as
finite sequences of transitions. A reachability query asks for the existence of a
finite run leading to a given state. Such problems can be solved using ZGa(A)
when a is sound and complete and this is true for the classical abstractions.

Theorem 2 ([4,2]). ExtraM , Extra+
M , ExtraLU and Extra+

LU are sound and
complete for finite sequences of transitions.

Liveness properties ask for the existence of an infinite run satisfying a given
property. For instance, does A visit state q infinitely often? Soundness and com-
pleteness of a with respect to infinite runs allow to solve such problems from
ZGa(A). Recently, it has also been proved that classical abstractions are also
sound and complete for infinite paths/runs.

Theorem 3 ([13,11]). ExtraM , Extra+
M , ExtraLU and Extra+

LU are sound and
complete for infinite sequences of transitions.

Thanks to Theorem 3, we know that every path π in ZGa(A) can be instantiated
to a run of A. However, soundness is not sufficient to know if π can be instanti-
ated as a non-Zeno run. In the sequel, we consider the following problems, given
an automaton A and an abstract zone graph ZGa(A).

Input A and ZGa(A)
Non-Zenoness problem (NZPa) Does A have a non-Zeno run?
Zenoness problem (ZPa) Does A have a Zeno run?

Observe that solving ZPa does not solve NZPa and vice-versa: one is not the
negation of the other. In this paper, we focus on the complexity of deciding
ZPa and NZPa for different abstractions a. We denote NZPM and ZPM when
abstraction ExtraM is considered. We similarly define NZPLU and ZPLU for ab-
straction ExtraLU . The non-Zenoness problem is solved in polynomial time when
abstraction ExtraM is considered [10]. Surprisingly, this is not true for abstraction
ExtraLU : in Section 3 we show that NZPLU is NP-complete. The same asymme-
try appears in the Zenoness problem as well, which is shown in Section 5.

3 Non-zenoness is NP-complete for ExtraLU

We give a reduction from the 3SAT problem: given a 3CNF formula φ, we build
an automaton ANZ

φ that has a non-Zeno run iff φ is satisfiable. The size of the
automaton will be linear in the size of φ. We will then show that the abstract
zone graph ZGLU (ANZ

φ ) is isomorphic to the automaton ANZ
φ , thus completing

the polynomial reduction from 3SAT to NZPLU .
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

Fig. 1. ANZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

Let P = {p1, . . . , pk} be a set of propositional variables and let φ = C1 ∧ · · ·∧
Cn be a 3CNF formula with n clauses. We define the timed automaton ANZ

φ

as follows. Its set of clocks X equals {x1, . . . , xk, x1, . . . , xk}. For a literal λ, let
cl(λ) denote the clock xi when λ = pi and the clock xi when λ = ¬pi. The
set of states of ANZ

φ is {q0, . . . , qk, r0, . . . , rn} where q0 is the initial state. The
transitions are as follows:

– for each pi we have transitions qi−1
{xi}−−−→ qi and qi−1

{xi}−−−→ qi,
– for each clause Cm = λm

1 ∨λm
2 ∨λm

3 , m = 1, . . . , n, there are three transitions

rm−1

cl(λm
j )≤0

−−−−−−→ rm where λm
j ∈ {λm

1 , λm
2 , λm

3 },
– transitions qk −→ r0 and rn −→ q0 with no guards and resets.

Figure 1 shows the automaton for the formula (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3).
Intuitively, a reset of xi represents pi #→ true and a reset of xi means pi #→ false.
From r0 to r2 we check if the formula is satisfied by this guessed assignment. This
formula is satisfied by every assignment that maps p3 to true. This can be seen

from the automaton by picking a cycle containing the transitions q2
{x3}−−−→ q3,

r0
x3≤0−−−→ r1 and r1

x3≤0−−−→ r2. On that path, time can elapse for instance in
state q0, since x3 is reset before being zero-checked. Conversely, consider the
assignment p1 #→ false, p2 #→ true and p3 #→ false that does not satisfy the
formula. Take a cycle that resets x1, x2 and x3 corresponding to the assignment.
Then none of the clocks that are checked for zero on the transitions from r0 to
r1 has been reset. Notice that these transitions come from the first clause in the
formula that evaluates to false according to the assignment. To take a transition
from r0, one of x1, x2 and x3 must be zero and hence time cannot elapse.

Lemma 1 below states that if the formula is satisfiable, there exists a sequence
of resets that allows time elapse in every loop. Conversely, if the formula is
unsatisfiable, in every iteration of the loop, there is a zero-check that prevents
time from elapsing.

Lemma 1. A 3CNF formula φ is satisfiable iff ANZ
φ has a non-Zeno run.

Proof of Lemma 1 can be found in [9]. The NP-hardness of NZPLU then follows
due to the small size of ZGLU (ANZ

φ ).

Theorem 4. The abstract zone graph ZGLU (ANZ
φ ) is isomorphic to ANZ

φ . The
non-Zenoness problem is NP-complete for abstractions ExtraLU and Extra+

LU .
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Proof. We first prove that ZGLU (ANZ
φ ) is isomorphic to ANZ

φ . For every clock
x, L(x) = −∞, hence ExtraLU abstracts all the constraints xi − xj �ij cij to
xi−xj <∞ except those of the form x0−xi �0i c0i that are kept unchanged. Due
to the guards in ANZ

φ , for every reachable zone in ZG(ANZ
φ ) we have x0−xi ≤ 0

(i.e. xi ≥ 0). Therefore ExtraLU (Z) is the zone defined by
∧

x∈X x ≥ 0 which
is RX

≥0. For each state of ANZ
φ , the zone RX

≥0 is the only reachable zone in
ZGLU (ANZ

φ ), hence showing the isomorphism. The result transfers to Extra+
LU

thanks to Theorem 1.
The NP-hardness of NZPLU then follows from Lemma 1. The membership to

NP will be proved in Lemma 3 in the next section. ��

Notice that the type of zero checks in ANZ
φ is crucial to Theorem 4. Replacing

zero-checks of the form x ≤ 0 by x = 0 does not modify the semantics of ANZ
φ .

However, this yields L(x) = 0 for every clock x. Hence, the constraints of the
form xi−xj ≤ 0 are not abstracted: ExtraLU then preserves the ordering among
the clocks. Each sequence of clock resets leading from q0 to qk yields a dis-
tinct ordering on the clocks. Thus, there are exponentially many LU-abstracted
zones with state qk. As a consequence, the polynomial reduction from 3SAT is
lost. We indeed provide in Section 4 below an algorithm for detecting non-Zeno
runs from ZGLU (A) that runs in polynomial time when L(x) = 0 for every
clock x.

4 Finding Non-zeno Runs

Recall the non-Zenoness problem (NZPa):

Given an automaton A and its abstract zone graph ZGa(A), decide if
A has a non-Zeno run.

A standard solution to this problem involves adding one auxiliary clock to A
to detect non-Zenoness [13]. This solution was shown to cause an exponential
blowup in [10]. In the same paper, a polynomial method has been proposed in
the case of the ExtraM abstraction. We briefly recall this construction below.

An infinite run of the timed automaton could be Zeno due to two factors:
blocking clocks, which are clocks that are bounded from above (i.e. x ≤ c
for some c > 0) but are never reset in the run and zero checks, which are
guards of the form x ≤ 0 or x = 0 that prevent time elapse in the run. The
method in [10] tackles these two problems as follows. Blocking clocks are han-
dled by first detecting a maximal strongly connected component (SCC) of the
zone graph and repeatedly discarding the transitions that bound some blocking
clock until a non-trivial SCC with no such clocks is obtained. This algorithm
runs in time polynomial for every abstraction that is sound and complete. For
zero checks, a guessing zone graph construction has been introduced to detect
nodes where time can elapse. We now extend this construction to an arbitrary
abstraction.
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4.1 Reduced Guessing Zone Graph rGZGa(A)

The necessary and sufficient condition for time elapse in a node despite zero-
checks is to have every reachable zero-check from that node preceded by a corre-
sponding reset. The nodes of the guessing zone graph are triples (q, Z, Y ) where
Y ⊆ X is the set of clocks that can potentially be checked for zero before being
reset in a path from (q, Z, Y ). In particular, in a node with Y = ∅ zero-checks
do not hinder time elapse.

A clock that is never checked for zero need not be remembered in sets Y . In
order to lift the construction in [10], we restrict Y sets to only contain clocks
that can indeed be checked for zero. We say that a clock x is relevant if there
exists a guard x ≤ 0 or x = 0 in the automaton. We denote the set of relevant
clocks by Rl(A). For a zone Z, let C0(Z) denote the set of clocks x such that
there exists a valuation ν ∈ Z with ν(x) = 0. The clocks that can be checked
for zero from (q, Z) lie in Rl(A) ∩ C0(Z).

Definition 2. Let A be a timed automaton with clocks X. The reduced guessing
zone graph rGZGa(A) has nodes of the form (q, Z, Y ) where (q, Z) is a node in
ZGa(A) and Y ⊆ Rl(A)∩C0(Z). The initial node is (q0, Z0,Rl(A)), with (q0, Z0)
the initial node of ZGa(A). For t = (q, g, R, q′), there is a transition (q, Z, Y ) t⇒a

(q′, Z ′, Y ′) with Y ′ = (Y ∪ R) ∩ Rl(A) ∩ C0(Z ′) if there is (q, Z) t⇒a (q′, Z ′) in
ZGa(A) and some valuation ν ∈ Z such that ν � (Rl(A)− Y ) > 0 and ν � g. A
new auxiliary letter τ is introduced that adds transitions (q, Z, Y ) τ⇒a (q, Z, Y ′)
for Y ′ = ∅ or Y ′ = Y .

Observe that as we require ν � (Rl(A) − Y ) > 0 and ν � g for some ν ∈ Z, a
transition that checks x ≤ 0 (or x = 0) is allowed from a node (q, Z, Y ) only if
x ∈ Y . Thus, from a node (q, Z, ∅) every reachable zero-check x = 0 should be
preceded by a transition that resets x, and hence adds it to the guess set. Such
a node is called clear. Time can elapse in clear nodes. A variable x is bounded
in a transition of rGZGa if the guard of the transition implies x ≤ c for some
constant c. A path of rGZGa is said to be blocked if there is a variable that is
bounded infinitely often and reset only finitely often by the transitions on the
path. Otherwise the path is called unblocked. An unblocked path says that there
are no blocking clocks to bound time and clear nodes suggest that inspite of
zero-checks that might possibly occur in the future, time can still elapse. We get
the following theorem.

Theorem 5. A timed automaton A has a non-Zeno run iff there exists an un-
blocked path in rGZGa(A) visiting a clear node infinitely often.

The proof of Theorem 5 is in the same lines as for the guessing zone graph in [10].
We provide a proof in [9].
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4.2 Polynomial Algorithms for NZPa

Since we have a node in rGZGa(A) for every (q, Z) in ZGa(A) and every subset
Y of Rl(A), it can in principle be exponentially bigger than ZGa(A). Below, we
see that depending on abstraction a, not all subsets Y need to be considered.

Let X ′ be a subset of X . We say that a zone Z orders the clocks in X ′ if for
all clocks x, y ∈ X ′, Z implies that at least one of x ≤ y or y ≤ x hold.

Definition 3 (Weakly order-preserving abstractions). An abstraction a
weakly preserves orders if for all clocks x, y ∈ Rl(A) ∩ C0(Z), Z � x ≤ y iff
a(Z) � x ≤ y.

It has been observed in [10] that all the zones that are reachable in the un-
abstracted zone graph ZG(A) order the entire set of clocks X . Assume that a
weakly preserves orders, then for every reachable node (q, Z, Y ) in rGZGa(A),
the zone Z orders the clocks in Rl(A)∩C0(Z). We now show that Y is downward
closed with respect to this order given by Z: for clocks x, y ∈ Rl(A) ∩ C0(Z), if
Z � x ≤ y and y ∈ Y , then x ∈ Y . This entails that there are at most |Rl(A)|+1
downward closed sets to consider, thus giving a polynomial complexity.

Theorem 6. Let A be a timed automaton. If a weakly preserves orders, then
the reachable part of rGZGa(A) is O(|Rl(A)|) bigger than the reachable part of
ZGa(A).

Proof. We prove by induction on the transitions in rGZGa(A) that for every
reachable node (q, Z, Y ) the set Y is downward closed with respect to Z on the
clocks in Rl(A) ∩ C0(Z). This is true for the initial node (q0, Z0,Rl(A)).

Now, assume that this is true for (q, Z, Y ). Take a transition (q, Z, Y ) t⇒a

(q′, Z ′, Y ′) with t = (q, g, R, q′). By definition, Y ′ = (Y ∪ R) ∩ Rl(A) ∩ C0(Z ′).
Suppose Z ′ � x ≤ y for some x, y ∈ Rl(A) ∩ C0(Z ′) and suppose y ∈ Y ′. This
could mean y ∈ Y or y ∈ R. If y ∈ R, then x is also in R since Z ′ � x ≤ y. If
y /∈ R then we get y ∈ Y and Z � x ≤ y. By hypothesis that Y is downward
closed, x ∈ Y . In both cases x ∈ Y ′. ��

The following lemma shows that ExtraM and Extra+
M weakly preserve orders.

Hence, rGZGM (A) yields a polynomial algorithm for NZPM . Thanks to the
reduction of the guessing zone graph to the relevant clocks, this algorithm is
more efficient than the algorithm in [10] despite using the same abstraction.

Lemma 2. The abstractions ExtraM and Extra+
M weakly preserve orders.

Proof. It has been proved in [10] that ExtraM weakly preserves orders. We now
prove this for Extra+

M . Firstly note that for a clock x in Rl(A) we have M(x) ≥
0. Moreover if x ∈ C0(Z) we have that Z is consistent with x ≤ 0. Hence,
for a clock x ∈ Rl(A) ∩ C0(Z), Z is consistent with x ≤ M(x). Therefore,
by definition, Extra+

M (Z) restricted to clocks in Rl(A) ∩ C0(Z) is identical to
ExtraM (Z) restricted to the same set of clocks. Since ExtraM weakly preserves
orders, we get that Extra+

M weakly preserves orders too. ��



Coarse Abstractions Make Zeno Behaviours Difficult to Detect 101

However, the polynomial complexity is not preserved by coarser abstractions
ExtraLU and Extra+

LU .

Lemma 3. The abstractions ExtraLU and Extra+
LU do not weakly preserve

orders. The non-Zenoness problem is in NP for ExtraLU and Extra+
LU .

Proof. The proof of Theorem 4 gives an example that illustrates ExtraLU does
not weakly preserve orders. This also holds for Extra+

LU by Theorem 1.
For the NP membership, let N be the number of nodes in ZGLU (A). Let us

non-deterministically choose a node (q, Z). We assume that (q, Z) is reachable
as this can be checked in polynomial time on ZGLU (A).

We augment (q, Z) with an empty guess set of clocks. From (q, Z, ∅), we non-
deterministically simulate a path π of the (non-reduced) guessing zone graph [10]
obtained from Definition 2 with Rl(A) = X and C0(Z) = X for every zone Z.
We avoid taking τ transitions on this path. This ensures that the guess sets
accumulate all the resets on π. During the simulation, we also keep track of
a separate set U containing all the clocks that are bounded from above on a
transition in π.

If during the simulation one reaches a node (q, Z, Y ) such that U ⊆ Y , then we
have a cycle (q, Z, ∅) ⇒∗a (q, Z, Y ) τ⇒a (q, Z, ∅) that is unblocked and that visits a
clear node infinitely often. Also, since (q, Z) is reachable in ZGLU (A), (q, Z,X)
is reachable in the guessing zone graph. Then (q, Z, ∅) is reachable from (q, Z,X)
with a τ transition. From [10] and from the fact that ExtraLU and Extra+

LU are
sound and complete [2] we get a non-Zeno run of A.

Notice that it is sufficient to simulate N × (|X |+ 1) transitions since we can
avoid visiting a node (q′, Z ′, Y ′) twice in π. ��

The abstraction ExtraLU does not weakly preserve orders in zones due to relevant
clocks with L(x) = −∞ and U(x) ≥ 0. We show that this is the only reason for
NP-hardness. We slightly modify ExtraLU to get an abstraction ExtraLU that is
coarser than ExtraM , but it still weakly preserves orders.

Definition 4 (Weak L bounds). Let A be a timed automaton. Given the
bounds L(x) and U(x) for every clock x ∈ X, the weak lower bound L is given
by: L(x) = 0 if x ∈ Rl(A), L(x) = −∞ and U(x) ≥ 0, and L(x) = L(x)
otherwise.

We denote ExtraLU the ExtraLU abstraction obtained by choosing L instead of
L. Notice that ExtraLU and ExtraLU coincide when zero-checks are written x = 0
instead of x ≤ 0 in the automaton. By definition of ExtraLU , we get the following.

Lemma 4. The abstraction ExtraLU weakly preserves orders.

ExtraLU coincides with ExtraLU for a wide class of automata. For instance, when
the automaton does not have a zero-check, ExtraLU is exactly ExtraLU , and the
existence of a non-Zeno run can be decided in polynomial time.
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

Fig. 2. AZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

5 The Zenoness Problem

In this section we consider the Zenoness problem (ZPa):

Given an automaton A and its abstract zone graph ZGa(A), decide if
A has a Zeno run.

As in the case of non-Zenoness, this problem turns out to be NP-complete when
the abstraction operator a is ExtraLU . We subsequently give the hardness proof
by providing a reduction from 3SAT.

5.1 Reducing 3SAT to ZPa with Abstraction ExtraLU

Let P = {p1, . . . , pk} be a set of propositional variables. Let φ = C1∧· · ·∧Cn be
a 3CNF formula with n clauses. Each clause Cm, m = 1, 2, . . . , n is a disjunction
of three literals λm

1 , λm
2 and λm

3 . We construct in polynomial time an automaton
AZ

φ and its zone graph ZGLU (AZ
φ ) such thatAZ

φ has a Zeno run iff φ is satisfiable,
thus proving the NP-hardness.

The automaton AZ
φ has clocks {x1, x1, . . . , xk, xk} with xi and xi correspond-

ing to the literals pi and ¬pi respectively. We denote the clock associated to
a literal λ by cl(λ). The set of states of AZ

φ is given by {q0, q1, . . . , qk} ∪
{r0, r1, r2, . . . , rn} with q0 being the initial state. The transitions are as follows:

– transitions qi−1
{xi}−−−→ qi and qi−1

{xi}−−−→ qi for i = 1, 2, . . . , k,
– a transition qk −→ r0 with no guards and resets,

– for each clause Cm there are three transitions rm−1
cl(λ) ≥1−−−−−→ rm where λ =

{λm
1 , λm

2 , λm
3 },

– a transition rn −→ q0 with no guards and resets. This transition creates a
cycle in AZ

φ .

As an example, Figure 2 shows the automaton for the formula (p1 ∨ ¬p2 ∨ p3)∧
(¬p1∨p2∨p3). Clearly, AZ

φ can be constructed from φ in O(|φ|) time. It remains
to show that ZGLU (AZ

φ ) can also be calculated in polynomial time from AZ
φ and

to show that φ is satisfiable iff AZ
φ has a Zeno run.

Lemma 5. A 3CNF formula φ is satisfiable iff AZ
φ has a Zeno run.
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The proof of Lemma 5 is given in [9]. We note that the size of the ZGLU (A) is
the same as that of the automaton.

Theorem 7. The zone graph ZGLU (AZ
φ ) is isomorphic to AZ

φ . The Zenoness
problem is NP-complete for ExtraLU and Extra+

LU .

Proof. By looking at the guards in the transitions, we get that for each clock
x, L(x) = 1 and U(x) = −∞. The initial node of the zone graph ZGLU (AZ

φ ) is
(q0,ExtraLU (Z0)) where Z0 is the set of valuations given by (x1 ≥ 0) ∧ (x1 =
x1 = · · · = xk = xk). By definition, since for each clock x, U(x) = −∞, we have
ExtraLU (Z0) = RX

≥0, the non-negative half-space.
On taking a transition with a guard x ≥ 1 from RX

≥0, we come to a zone
RX
≥0∧x ≥ 1. However, since U(x) = −∞, ExtraLU (RX

≥0 ∧x ≥ 1) gives back RX
≥0.

Same for transitions that reset a clock. It follows that ZGLU (AZ
φ ) is isomorphic

to AZ
φ . This extends to Extra+

LU by Theorem 1. NP-hardness then comes from
Lemma 5. NP-membership is proved in Lemma 7. ��

In the next section, we provide an algorithm for the zenoness problem ZPa and
give conditions on abstraction a for the solution to be polynomial.

5.2 Finding Zeno Paths

We say that a transition is lifting if it has a guard that implies x ≥ 1 for some
clock x. The idea is to find if there exists a run of an automatonA in which every
clock x that is reset infinitely often is lifted only finitely many times, ensuring
that the run is Zeno. This amounts to checking if there exists a cycle in ZG(A)

where every clock that is reset is not lifted. Observe that when (q, Z)
x≥c
=⇒ (q′, Z ′)

is a transition of ZG(A), then Z ′ entails that x ≥ c. Therefore, if a node (q, Z)
is part of a cycle in the required form, then in particular, all the clocks that are
greater than 1 in Z should not be reset in the cycle.

Based on the above intuition, our solution begins with computing the zone
graph on-the-fly. At some node (q, Z) the algorithm non-deterministically guesses
that this node is part of a cycle that yields a zeno run. This node transits to
what we call the slow mode. In this mode, a reset of x in a transition is allowed
from (q′, Z ′) only if Z ′ is consistent with x < 1.

Before we define our construction formally, recall that we would be working
with the abstract zone graph ZGa(A) and not ZG(A). Therefore for our solution
to work, the abstraction operator a should remember the fact that a clock has
a value greater than 1. For an automaton A over the set of clocks X , let Lf(A)
denote the set of clocks that appear in a lifting transition of A.

Definition 5 (Lift-safe abstractions). An abstraction a is called lift-safe if
for every zone Z and for every clock x ∈ Lf(A), if Z � x ≥ 1 then a(Z) � x ≥ 1.

We are now in a position to define our slow zone graph construction to decide if
an automaton has a Zeno run.
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Definition 6 (Slow zone graph). Let A be a timed automaton over the set
of clocks X. Let a be a lift-safe abstraction. The slow zone graph SZGa(A) has
nodes of the form (q, Z, l) where l = {free, slow}. The initial node is (q0, Z0, free)
where (q0, Z0) is the initial node of ZGa(A). For every transition (q, Z) t⇒a

(q′, Z ′) in ZGa(A) with t = (q, g, R, q′), we have the following transitions in
SZGa(A):

– a transition (q, Z, free) t⇒a (q′, Z ′, free),
– a transition (q, Z, slow) t⇒a (q′, Z ′, slow) if for all clocks x ∈ R, Z ∧ g is

consistent with x < 1,

A new letter τ is introduced that adds transitions (q, Z, free) τ⇒a (q, Z, slow).

A node of the form (q, Z, slow) is said to be a slow node. A path of SZGa(A)
is said to be slow if it has a suffix consisting entirely of slow nodes. The τ -
transitions take a node (q, Z) from the free mode to the slow mode. Note that
the transitions of the slow mode are constrained further. The correctness follows
from the fact that there is a cycle in SZGa(A) consisting entirely of slow nodes
iff A has a Zeno run, proof of which can be found in [9].

From the definition of SZGa(A) it follows clearly that for each node (q, Z)
of the zone graph there are two nodes in SZGa(A): (q, Z, free) and (q, Z, slow).
We thus get the following theorem.

Theorem 8. Let a be a lift-safe abstraction. The automaton A has a Zeno
run iff SZGa(A) has an infinite slow path. The number of reachable nodes of
SZGa(A) is atmost twice the number of reachable nodes in ZGa(A).

We now turn our attention towards some of the abstractions existing in the
literature. We observe that both ExtraM and Extra+

M are lift-safe and hence
the Zenoness problem can be solved using the slow zone graph construction.
However, in accordance to the NP-hardness of the problem for ExtraLU , we get
that ExtraLU is not lift-safe.

Lemma 6. The abstractions ExtraM and Extra+
M are lift-safe.

Proof. Observe that for every clock that is lifted, the bound M is at least 1. It
is now direct from the definitions that ExtraM and Extra+

M are lift-safe. ��

Lemma 7. The abstractions ExtraLU and Extra+
LU are not lift-safe. The

Zenoness problem for ExtraLU and Extra+
LU is in NP.

Proof. That ExtraLU and Extra+
LU are not lift-safe follows from the proof of

Theorem 7. We show the NP-membership using a technique similar to the slow
zone graph construction. Since ExtraLU is not lift-safe, the reachable zones in
ZGLU (A) do not maintain the information about the clocks that have been
lifted. Therefore, at some reachable zone (q, Z) we non-deterministically guess
the set of clocks W that are allowed to be lifted in the future and go to a node
(q, Z,W ). From now on, there are transitions (q, Z,W ) t⇒a (q′, Z ′,W ) when:
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– (q, Z) t⇒a (q′, Z ′) is a transition in ZGLU (A),
– if t contains a guard x ≥ c with c ≥ 1, then x ∈ W ,
– if t resets a clock x, then x /∈ W

If a cycle is obtained that contains (q, Z,W ), then the clocks that are reset and
lifted in this cycle are disjoint and hence A has a Zeno run.

This shows that if A has a Zeno run we can non-deterministically choose a
path of the above form and the length of this path is bounded by twice the
number of zones in ZGLU (A) (which is our other input). This proves the NP-
membership. ��

5.3 Weakening the U Bounds

We saw in Lemma 7 that the extrapolation ExtraLU is not lift-safe. This is due
to clocks x that are lifted but have U(x) = −∞. These are exactly the clocks x
with L(x) ≥ 1 and U(x) = −∞. We propose to weaken the U bounds so that
the information about a clock being lifted is remembered in the abstracted zone.

Definition 7 (Weak U bounds). Given the bounds L(x) and U(x) for each
clock x ∈ X, the weak upper bound U(x) is given by: U(x) = 1 if L(x) ≥ 1 and
U(x) = −∞, and U(x) = U(x) otherwise.

Let ExtraLU denote the ExtraLU abstraction, but with U bound for each clock
instead of U . This definition ensures that for all lifted clocks, that is, for all x ∈
Lf(A), if a zone entails that x ≥ 1 then ExtraLU (Z) also entails that x ≥ 1. This
is summarized by the following lemma, the proof of which follows by definitions.

Lemma 8. For all zones Z, ExtraLU is lift-safe.

From Theorem 8, we get that the Zenoness problem is polynomial for ExtraLU .
However, there is a price to pay. Weakening the U bounds leads to zone graphs
exponentially bigger in some cases. For example, for the automaton AZ

φ that was
used to prove the NP-completeness of the Zenoness problem with ExtraLU , note
that the zone graph ZGLU (AZ

φ ) obtained by applying ExtraLU is exponentially

bigger than ZGLU (AZ
φ ). This leads to a slow zone graph SZGLU (AZ

φ ) with size

polynomial in ZGLU (AZ
φ ).

6 Conclusion

We have shown a surprising fact that the problem of deciding existence of Zeno or
non-Zeno behaviours from abstract zone graphs depends heavily on the abstrac-
tions, to the extent that the problem changes from being polynomial to becoming
NP-complete as the abstractions get coarser. We have proved NP-completeness
for the coarse abstractions ExtraLU and Extra+

LU . In contrast, the fundamental
notions of reachability and Büchi emptiness over abstract zone graphs have a
mere linear complexity, independent of the abstraction.
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On the positive side, from our study on the conditions for an abstraction
to give a polynomial solution, we see that a small modification of the LU-
extrapolation works. We have defined two weaker abstractions: ExtraLU for de-
tecting non-Zeno runs and ExtraLU for detecting Zeno runs. The weak bounds L
and U can also be used with Extra+

LU to achieve similar results. Despite leading
to a polynomial solution for checking Zeno or non-Zeno behaviours from abstract
zone graphs, these abstractions transfer the complexity to the input: they could
lead to exponentially bigger abstract zone graphs themselves.

While working with abstract zone graphs, coarse abstractions (and hence
small abstract zone graphs) are essential to handle big models of timed au-
tomata. These, as we have seen, work against the Zenoness questions. Our re-
sults therefore provide a theoretical motivation to look for cheaper substitutes
to the notion of Zenoness.

Acknowledgements. We would like to thank Igor Walukiewicz for his insight-
ful ideas on our problems and his helpful comments during the preparation of
the manuscript. We thank Laurent Fribourg for pointing us to the problem of
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Abstract. Probabilistic automata (PA) [20] have been successfully applied in the
formal verification of concurrent and stochastic systems. Efficient model check-
ing algorithms have been studied, where the most often used logics for expressing
properties are based on PCTL [11] and its extension PCTL∗ [4]. Various behav-
ioral equivalences are proposed for PAs, as a powerful tool for abstraction and
compositional minimization for PAs. Unfortunately, the behavioral equivalences
are well-known to be strictly stronger than the logical equivalences induced by
PCTL or PCTL∗. This paper introduces novel notions of strong bisimulation rela-
tions, which characterizes PCTL and PCTL∗ exactly. We also extend weak bisim-
ulations characterizing PCTL and PCTL∗ without next operator, respectively.
Thus, our paper bridges the gap between logical and behavioral equivalences in
this setting.

1 Introduction

Probabilistic automata (PA) [20] have been successfully applied in the formal verifi-
cation of concurrent and stochastic systems. Efficient model checking algorithms have
been studied, where properties are mostly expressed in the logic PCTL, introduced
in [11] for Markov chains, and later extended in [4] for Markov decision processes,
where PCTL is also extended to PCTL∗.

To combat the infamous state space problem in model checking, various behavioral
equivalences, including strong and weak bisimulations, are proposed for PAs. Indeed,
they turn out to be a powerful tool for abstraction for PAs, since bisimilar states im-
plies that they satisfy exactly the same PCTL formulae. Thus, bisimilar states can be
grouped together, allowing one to construct smaller quotient automata before analyz-
ing the model. Moreover, the nice compositional theory for PAs is exploited for com-
positional minimization [5], namely minimizing the automata before composing the
components together.

For Markov chains, i.e., PAs without nondeterministic choices, the logical equiv-
alence implies also bisimilarity, as shown in [3]. Unfortunately, it does not hold in
general, namely PCTL equivalence is strictly coarser than bisimulation – and their ex-
tension probabilistic bisimulation – for PAs. Even there is such a gap between behavior
and logical equivalences, bisimulation based minimization is extensively studied in the
literatures to leverage the state space explosion, for instance see [6,1,15].
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Fig. 1. Counter Example of Strong Probabilistic Bisimulation

The main reason for the gap can be illustrated by the following example. Consider
the PAs in Fig.1 where assuming that s1, s2, s3 are three absorbing states with differ-
ent state properties. It is easy to see that s and r are PCTL equivalent: the additional
middle transition out of r does not change the extreme probabilities. Existing bisimu-
lations differentiate s and r, mainly because the middle transition out of r cannot be
matched by any transition (or combined transition) of s. Bisimulation requires that the
complete distribution of a transition must be matched, which is in this case too strong,
as it differentiates states satisfying the same PCTL formulae.

In this paper we will bridge this gap. We introduce novel notions of behavioral equiv-
alences which characterize (both soundly and completely) PCTL, PCTL∗ and their
sublogics. Summarizing, our contributions are:

– A new bisimulation characterizing PCTL∗ soundly and completely. The bisimu-
lation arises from a converging sequence of equivalence relations, each of which
characterizes bounded PCTL∗.

– Branching bisimulations which correspond to PCTL and bounded PCTL equiva-
lences.

– We then extend our definitions to weak bisimulations, which characterize sublogics
of PCTL and PCTL∗ with only unbounded path formulae.

Full proofs are given in [22].

Organization of the Paper. Section 2 introduces some notations. In Section 3 we re-
call definitions of probabilistic automata, bisimulation relations by Segala [19]. We
also recall the logic PCTL∗ and its sublogics. Section 4 introduces the novel strong
and strong branching bisimulations, and proves that they agree with PCTL∗ and PCTL
equivalences, respectively. Section 5 extends them to weak (branching) bisimulations.
In Section 6 we discuss related work, and Section 7 concludes the paper.

2 Preliminaries

Probability space. A (discrete) probability space is a tuple P = (Ω,F, η) where Ω is
a countable set, F = 2Ω is the power set, and η : F → [0, 1] is a probability func-
tion which is countable additive. We skip F whenever convenient. Given probability
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spaces {Pi = (Ωi, ηi)}i∈I and weights wi > 0 for each i such that
∑

i∈I wi = 1,
the convex combination

∑
i∈I wiPi is defined as the probability space (Ω, η) such that

Ω =
⋃

i∈I Ωi and for each set Y ⊆ Ω, η(Y ) =
∑

i∈I wiηi(Y ∩Ωi).

Distributions. We denote by Dist(S) the set of discrete probability spaces over S. We
shall use s, r, t, . . . and μ, ν . . . to range over S and Dist(S), respectively. The support
of μ is defined by supp(μ) := {s ∈ S | μ(s) > 0}. For an equivalence relation R,
we write μ R ν if it holds that μ(C) = ν(C) for all equivalence classes C ∈ S/R.
A distribution μ is called Dirac if |supp(μ)| = 1, and we let Ds denote the Dirac
distribution with Ds(s) = 1.

Upward Closure. Below we define the upward closure of a subset of states.

Definition 1. For pre-orderR over S and C ⊆ S, define CR = {s′ | sR s′ ∧ s ∈ C}.
We say C is R-upward-closed iff C = CR.

We use sR as the shorthand of {s}R, and R = {CR | C ⊆ S} denotes the set of all
R-upward-closed sets.

3 Probabilistic Automaton, PCTL∗ and Bisimulations

Definition 2. A probabilistic automaton1 is a tuple P = (S,→, IS ,AP , L) where S
is a finite set of states, → ⊆ S × Dist(S) is a transition relation, IS ⊆ S is a set
of initial states, AP is a set of atomic propositions, and L : S → 2AP is a labeling
function.

As usual we only consider image-finite PAs, i.e. {(r, μ) ∈→| r = s} is finite for each
s ∈ S. A transition (s, μ) ∈→ is denoted by s −→ μ. Moreover, we write μ −→ μ′ iff for
each s ∈ supp(μ) there exists s −→ μs such that μ′(r) =

∑
s∈supp(μ)

μ(s) · μs(r).

A path is a finite or infinite sequence ω = s0s1s2 . . . of states. For each i ≥ 0 there
exists a distribution μ such that si → μ and μ(si+1) > 0. We use lstate(ω) and l(ω) to
denote the last state of ω and the length of ω respectively if ω is finite. The sets Path
is the set of all paths, and Path(s0) are those starting from s0. Similarly, Path∗ is the
set of finite paths, and Path∗(s0) are those starting from s0. Also we use ω[i] to denote
the (i + 1)-th state for i ≥ 0, ω|i to denote the fragment of ω ending at ω[i], and ω|i to
denote the fragment of ω starting from ω[i].

We introduce the definition of scheduler to resolve nondeterminism. A scheduler is
a function σ : Path∗ → Dist(→) such that σ(ω)(s, μ) > 0 implies s = lstate(ω). A
scheduler σ is deterministic if it returns only Dirac distributions, that is, the next step is
chosen deterministically. We use

Path(s0, σ) = {ω ∈ Path(s0) | ∀i ≥ 0.∃μ.σ(ω|i)(ω[i], μ) > 0 ∧ μ(ω[i + 1]) > 0}
1 In this paper we omit the set of actions, since they do not appear in the logic PCTL we shall

consider later. Note that the bisimulation we shall introduce later can be extended to PA with
actions directly.
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to denote the set of paths starting from s0 respecting σ. Similarly, Path∗(s0, σ) only
contains finite paths.

The cone of a finite path ω, denoted by Cω , is the set of paths having ω as their
prefix, i.e., Cω = {ω′ | ω ≤ ω′} where ω′ ≤ ω iff ω′ is a prefix of ω. Fixing a starting
state s0 and a scheduler σ, the measure Probσ,s0 of a cone Cω, where ω = s0s1 . . . sk,
is defined inductively as follows: Probσ,s0(Cω) equals 1 if k = 0, and for k > 0,

Probσ,s0(Cω) = Probσ,s0(Cω|k−1) ·

⎛⎝ ∑
(sk−1,μ′)∈→

σ(ω|k−1)(sk−1, μ
′) · μ′(sk)

⎞⎠
Let B be the smallest algebra that contains all the cones and is closed under comple-

ment and countable unions. 2 Probσ,s0 can be extended to a unique measure on B.

Given a pre-order R over S, Ri
is the set of R-upward-closed paths of length i

composed of R-upward-closed sets, and is equal to the Cartesian product of R with

itself i times. Let R∗ = ∪i≥1R
i

be the set of R-upward-closed paths of arbitrary
length. Define l(Ω) = n for Ω ∈ Rn

. For Ω = C0C1 . . . Cn ∈ R
∗
, the R-upward-

closed cone CΩ is defined as CΩ = {Cω | ω ∈ Ω}, where ω ∈ Ω iff ω[i] ∈ Ci for
0 ≤ i ≤ n.

For distributions μ1 and μ2, we define μ1 × μ2 by (μ1 × μ2)((s1, s2)) = μ1(s1)×
μ2(s2). Following [2] we also define the interleaving of PAs:

Definition 3. Let Pi = (Si,→i, IS i,AP i, Li) be two PAs with i = 1, 2. The interleave
composition P1 || P2 is defined by:

P1 || P2 = (S1 × S2,→, IS1 × IS 2,AP1 ∪ AP2, L)

where L((s1, s2)) = L1(s1) ∪ L2(s2) and (s1, s2) → μ iff either s1 → μ1 and μ =
μ1 ×Ds2 , or s2 → μ2 and μ = Ds1 × μ2.

3.1 PCTL∗ and Its Sublogics

We introduce the syntax of PCTL [11] and PCTL∗ [4] which are probabilistic exten-
sions of CTL and CTL∗ respectively. PCTL∗ over the set AP of atomic propositions
are formed according to the following grammar:

ϕ ::= a | ϕ1 ∧ ϕ2 | ¬ϕ | P��q(ψ)
ψ ::= ϕ | ψ1 ∧ ψ2 | ¬ψ | Xψ | ψ1Uψ2

where a ∈ AP , �� ∈ {<,>,≤,≥}, q ∈ [0, 1]. We refer to ϕ and ψ as (PCTL∗) state
and path formulae, respectively.

The satisfaction relation s |= ϕ for state formulae is defined in a standard man-
ner for boolean formulae. For probabilistic operator, it is defined by s |= P��q(ψ) iff

2 By standard measure theory this algebra is a σ-algebra and all its elements are the measurable
sets of paths.
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∀σ.Probσ,s({ω ∈ Path(s) | ω |= ψ}) �� q. The satisfaction relation ω |= ψ for path
formulae is defined exactly the same as for LTL formulae, for example ω |= Xψ iff
ω|1 |= ψ, and ω |= ψ1Uψ2 iff there exists j ≥ 0 such that ω|j |= ψ2 and ω|k |= ψ1 for
all 0 ≤ k < j.

Sublogics. The depth of path formula ψ of PCTL∗ free of U operator, denoted by
Depth(ψ), is defined by the maximum number of embedded X operators appearing
in ψ, that is, Depth(ϕ) = 0, Depth(ψ1 ∧ ψ2) = max{Depth(ψ1),Depth(ψ2)},
Depth(¬ψ) = Depth(ψ) and Depth(Xψ) = 1 + Depth(ψ). Then, we let PCTL∗−

be the sublogic of PCTL∗ without the until (ψ1Uψ2) operator. Moreover, PCTL∗−i is a
sublogic of PCTL∗− where for each ψ we have Depth(ψ) ≤ i.

The sublogic PCTL is obtained by restricting the path formulae to:

ψ ::= Xϕ | ϕ1Uϕ2 | ϕ1U≤nϕ2

Note the bounded until formula does not appear in PCTL∗ as it can be encoded by
nested next operator. PCTL− is defined in a similar way as for PCTL∗−. Moreover we
let PCTL−i be the sublogic of PCTL− where only bounded until operator ϕ1U≤jϕ2

with j ≤ i is allowed.

Logical equivalence. For a logic L, we say that s and r are L-equivalent, denoted by
s ∼L r, if they satisfy the same set of formulae of L, that is s |= ϕ iff r |= ϕ for all
formulae ϕ in L. The logic L can be PCTL∗ or one of its sublogics.

3.2 Strong Probabilistic Bisimulation

In this section we introduce the definition of strong probabilistic bisimulation [20]. Let
{s → μi}i∈I be a collection of transitions of P , and let {pi}i∈I be a collection of
probabilities with

∑
i∈I pi = 1. Then (s,

∑
i∈I piμi) is called a combined transition

and is denoted by s→P μ where μ =
∑

i∈I piμi.

Definition 4. An equivalence relationR ⊆ S×S is a strong probabilistic bisimulation
iff s R r implies that L(s) = L(r) and for each s → μ, there exists a combined
transition r →P μ′ such that μ R μ′. We write s ∼P r whenever there is a strong
probabilistic bisimulationR such that sR r.

It was shown in [20] that ∼P is preserved by ||, that is, s ∼P r implies s || t ∼P r || t
for any t. Also strong probabilistic bisimulation is sound for PCTL which means that
if s ∼P r then for any state formula ϕ of PCTL, s |= ϕ iff r |= ϕ. But the other way
around is not true, i.e. strong probabilistic bisimulation is not complete for PCTL, as
illustrated by the following example.

Example 1. Consider again the two PAs in Fig. 1 and assume that L(s) = L(r) and
L(s1) 	= L(s2) 	= L(s3). In addition, s1, s2, and s3 only have one transition to them-
selves with probability 1. The only difference between the left and right automata is
that the right automaton has an extra step. It is not hard to see that s ∼PCTL∗ r. By
Definition 4 s �P r since the middle transition of r cannot be simulated by s even
with combined transition. So we conclude that strong probabilistic bisimulation is not
complete for PCTL∗ as well as for PCTL.
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It should be noted that PCTL∗ distinguishes more states in a PA than PCTL. Refer to
the following example.

Example 2. Suppose s and r are given by Fig. 1 where each of s1, s2, and s3 is extended
with a transition such that s1 → μ1 with μ1(s1) = 0.6 and μ1(s4) = 0.4, s2 → μ2

with μ2(s4) = 1, and s3 → μ3 with μ3(s3) = 0.5 and μ3(s4) = 0.5. Here we assume
that every state satisfies different atomic propositions except that L(s) = L(r). Then
it is not hard to see s ∼PCTL r while s �PCTL∗ r. Consider the PCTL∗ formula
ϕ = P≤0.38(X(L(s1)∨L(s3))∧X X(L(s1)∨L(s3))): it holds s |= ϕ but r 	|= ϕ. Note
that ϕ is not a well-formed PCTL formula. Indeed, states s and r are PCTL-equivalent.

We have the following theorem:

Theorem 1. 1. ∼PCTL,∼PCTL∗ ,∼PCTL− ,∼PCTL−
i

,∼PCTL∗− ,∼PCTL∗−
i

, and∼P

are equivalence relations for any i ≥ 1.
2. ∼P ⊆ ∼PCTL∗ ⊆ ∼PCTL.
3. ∼PCTL∗− ⊆ ∼PCTL− .
4. ∼PCTL∗−

1
= ∼PCTL−

1
.

5. ∼PCTL∗−
i

⊆ ∼PCTL−
i

for any i > 1.
6. ∼PCTL ⊆ ∼PCTL− ⊆ ∼PCTL−

i+1
⊆ ∼PCTL−

i
for all i ≥ 0.

7. ∼PCTL∗ ⊆ ∼PCTL∗− ⊆ ∼PCTL∗−
i+1

⊆ ∼PCTL∗−
i

for all i ≥ 0.

4 A Novel Strong Bisimulation

This section presents our main contribution of the paper: we introduce a novel notion of
strong bisimulation and strong branching bisimulation. We shall show that they agree
with PCTL and PCTL∗ equivalences, respectively. As the preparation step we introduce
the strong 1-depth bisimulation.

4.1 Strong 1-depth Bisimulation

Definition 5. A pre-orderR ⊆ S × S is a strong 1-depth bisimulation if sR r implies
that L(s) = L(r) and for anyR-upward-closed set C

1. if s→ μ with μ(C) > 0, there exists r → μ′ such that μ′(C) ≥ μ(C),
2. if r → μ with μ(C) > 0, there exists s→ μ′ such that μ′(C) ≥ μ(C).

We write s ∼1 r whenever there is a strong 1-depth bisimulationR such that sR r.

The – though very simple – definition requires only one step matching of the distribu-
tions out of s and r. The essential difference to the standard definition is: the quantifi-
cation of the upward-closed set comes before the transition s → μ. This is indeed the
key of the new definition of bisimulations. The following theorem shows that∼1 agrees
with ∼PCTL−

1
and ∼PCTL∗−

1
which is also an equivalence relation:
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Lemma 1. ∼PCTL−
1

= ∼1 = ∼PCTL∗−
1

.

Note that in Definition 5 we consider all theR-upward-closed sets since it is not enough
to only consider the R-upward-closed sets in {sR | s ∈ S}, refer to the following
counterexample.

Counterexample 1. Suppose that there are four absorbing states s1, s2, s3, and s4

which are assigned with different atomic propositions. Suppose we have two processes
s and r such that L(s) = L(r), and s → μ1, s → μ2, r → ν1, r → ν2 where
μ1(s1) = 0.5, μ1(s2) = 0.5, μ2(s3) = 0.5, μ2(s4) = 0.5, ν1(s1) = 0.5, ν1(s3) = 0.5,
ν2(s2) = 0.5, ν2(s4) = 0.5. If we only consider the R-upward-closed sets in {sR |
s ∈ S} where S = {s, r, s1, s2, s3, s4}, then we will conclude that s ∼1 r, but r |= ϕ
while s 	|= ϕ where ϕ = P≥0.5(X(L(s1) ∨ L(s2))).

It turns out that ∼1 is preserved by ||, implying that ∼PCTL−
1

and ∼PCTL∗−
1

are pre-
served by || as well.

Theorem 2. s ∼1 r implies that s || t ∼1 r || t for any t.

Remark 1. We note that for Kripke structure (PA with only Dirac distributions) ∼1

agrees with the usual strong bisimulation by Milner [17].

4.2 Strong Branching Bisimulation

r || t

s1 || t s2 || t s3 || t

s1 || t1 s1 || t2

0.4

0.3

0.3

0.4 0.6 0.4

s3 || t1 s3 || t2

0.6

Fig. 2. ∼b
i is not compositional when i > 1

Now we extend the relation ∼1 to
strong i-step bisimulations. Then,
the intersection of all of these re-
lations gives us the new notion
of strong branching bisimulation,
which we show to be the same as
∼PCTL. Recall Theorem 1 states
that ∼PCTL is strictly coarser than
∼PCTL∗ , which we shall consider in
the next section.

Following the way in [23] we de-
fine Probσ,s(C,C′, n, ω) which de-
notes the probability from s to states in C′ via states in C possibly in at most n steps
under scheduler σ, where ω is used to keep track of the path and only deterministic
schedulers are considered in the following. Formally, Probσ,s(C,C′, n, ω) equals 1 if
s ∈ C′, and else if n > 0 ∧ (s ∈ C \ C′), then

Probσ,s(C,C′, n, ω) =
∑

r∈supp(μ′)

μ′(r) · Probσ,r(C,C′, n− 1, ωr). (1)

where σ(ω)(s, μ′) = 1, otherwise equals 0.
Strong i-depth branching bisimulation is a straightforward extension of strong 1-

depth bisimulation, where instead of considering only one immediate step, we consider
up to i steps. We let ∼b

1 = ∼1 in the following.
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Definition 6. A pre-order R ⊆ S × S is a strong i-depth branching bisimulation if
i > 1 and sR r implies that s ∼b

i−1 r and for anyR upward-closed sets C,C′,

1. if Probσ,s(C,C′, i, s) > 0 for a scheduler σ, then there exists a scheduler σ′ such
that Probσ′,r(C,C′, i, r) ≥ Probσ,s(C,C′, i, s),

2. if Probσ,r(C,C′, i, r) > 0 for a scheduler σ, then there exists a scheduler σ′ such
that Probσ′,s(C,C′, i, s) ≥ Probσ,r(C,C′, i, r).

We write s ∼b
i r whenever there is a strong i-depth branching bisimulation R such

that sR r. The strong branching bisimulation ∼b is defined as ∼b = ∩i≥1 ∼b
i .

The following lemma shows that ∼b
i is an equivalence relation, and moreover, ∼b

i de-
creases until a fixed point is reached.

Lemma 2. 1. ∼b and ∼b
i are equivalence relations for any i > 1.

2. ∼b
j ⊆ ∼b

i provided that 1 ≤ i ≤ j.
3. There exists i ≥ 1 such that ∼b

j = ∼b
k for any j, k ≥ i.

It is not hard to show that ∼b
i characterizes PCTL−i . Moreover, we show that ∼b agrees

with PCTL equivalence.

Theorem 3. ∼PCTL−
i

= ∼b
i for any i ≥ 1, and moreover ∼PCTL = ∼b.

Intuitively, since ∼PCTL−
i

= ∼b
i decreases with i, for any PA ∼b

i will eventually
converge to PCTL equivalence.

Recall ∼b
1 is compositional by Theorem 2, which unfortunately is not the case for

∼b
i with i > 1. This is illustrated by the following example:

Counterexample 2. s ∼b
i r does not imply s || t ∼b

i r || t for any t generally if i > 1.
We have shown in Example 1 that s ∼PCTL r. If we compose s and r with t where t

only has a transition to μ such that μ(t1) = 0.4 and μ(t2) = 0.6, then it turns out that
s || t �PCTL r || t. Since there exists

ϕ = P≤0.34(trueU≤2(L(s1 || t2) ∨ L(s3 || t1)))

such that s || t |= ϕ but r || t 	|= ϕ, as there exists a scheduler σ such that the proba-
bility of paths satisfying ψ in Probσ,r equals 0.36 where ψ = (trueU≤2(L(s1 || t2) ∨
L(s3 || t1))). Fig. 2 shows the execution of r guided by the scheduler σ, and we assume
all the states in Fig. 2 have different atomic propositions except that L(s || t) = L(r || t).
It is similar for ∼PCTL∗ .

Note that ϕ is also a well-formed state formula of PCTL−2 , so ∼PCTL−
i

as well as

∼b
i are not compositional if i ≥ 2.

4.3 Strong Bisimulation

In this section we introduce a new notion of strong bisimulation and show that it
characterizes ∼PCTL∗ . Given a pre-orderR, a R-upward-closed cone CΩ and a mea-
sure Prob, the value of Prob(CΩ) can be computed by summing up the values of all
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Prob(Cω) with ω ∈ Ω. We let Ω̃ ⊆ R∗ be a set of R-upward-closed paths, then
CΩ̃ is the corresponding set of R-upward-closed cones, that is, CΩ̃ = ∪Ω∈Ω̃ CΩ . De-
fine l(Ω̃) = Max{l(Ω) | Ω ∈ Ω̃} as the maximum length of Ω in Ω̃. To compute
Prob(CΩ̃), we cannot sum up the value of each Prob(CΩ) such that Ω ∈ Ω̃ as be-
fore since we may have a path ω such that ω ∈ Ω1 and ω ∈ Ω2 where Ω1, Ω2 ∈ Ω̃,
so we have to remove these duplicate paths and make sure each path is considered
once and only once as follows where we abuse the notation and write ω ∈ Ω̃ iff
∃Ω.(Ω ∈ Ω̃ ∧ ω ∈ Ω):

Prob(CΩ̃) =
∑

ω∈Ω̃∧�∃ω′∈Ω̃.ω′≤ω

Prob(Cω) (2)

Note Equation 2 can be extended to compute the probability of any set of cones in a
given measure.

The definition of strong i-depth bisimulation is as follows:

Definition 7. A pre-order R ⊆ S × S is a strong i-depth bisimulation if i > 1 and
sR r implies that s ∼i−1 r and for any Ω̃ ⊆ R∗ with l(Ω̃) = i

1. if Probσ,s(CΩ̃) > 0 for a scheduler σ, there exists σ′ such that
Probσ′,r(CΩ̃) ≥ Probσ,s(CΩ̃),

2. if Probσ,r(CΩ̃) > 0 for a scheduler σ, there exists σ′ such that
Probσ′,s(CΩ̃) ≥ Probσ,r(CΩ̃).

We write s ∼i r whenever there is a i-depth strong bisimulation R such that s R r.
The strong bisimulation ∼ is defined as ∼ = ∩i≥1 ∼i.

Similar to∼b
i , the relation∼i forms a chain of equivalence relations where the strictness

of ∼i increases as i increases, and ∼i will converge finally in a PA.

Lemma 3. 1. ∼i is an equivalence relation for any i > 1.
2. ∼j ⊆ ∼i provided that 1 ≤ i ≤ j.
3. There exists i ≥ 1 such that ∼j = ∼k for any j, k ≥ i.

Below we show that∼i characterizes∼PCTL∗−
i

for all i ≥ 1, and∼ agrees with PCTL∗

equivalence:

Theorem 4. ∼PCTL∗−
i

= ∼i for any i ≥ 1, and moreover, ∼PCTL∗ = ∼.

Recall by Lemma 3, there exists i > 0 such that ∼PCTL∗=∼i. For the same reason as
strong i-depth branching bisimulation,∼i is not preserved by || when i > 1.

Counterexample 3. s ∼i r does not imply s || t ∼i r || t for any t generally if i > 1.
This can be shown by using the same arguments as in Counterexample 2.

4.4 Taxonomy for Strong Bisimulations

Fig. 3 summaries the relationship among all these bisimulations and logical equiva-
lences. The arrow→ denotes⊆ and � denotes �. We also abbreviate∼PCTL as PCTL,
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PCTL−
1

PCTL

PCTL∗−
1

PCTL∗−
2

PCTL∗−
n

PCTL∗−

PCTL∗

∼P

∼1

∼2

∼n

∼

PCTL−
2

PCTL−
n

PCTL−

∼b
1

∼b
2

∼b
n

∼b

Fig. 3. Relationship of Different Equivalences in Strong Scenario

and it is similar for other logical equivalences. Congruent relations with respect to || op-
erator are shown in circles, and non-congruent in boxes. Segala has considered another
strong bisimulation in [20], which can be defined by replacing the r →P μ′ with r→ μ′

and thus is strictly stronger than ∼P. It is also worth mentioning that all the bisimula-
tions shown in Fig.3 coincide with the strong bisimulation defined in [3] in the DTMC
setting which can be seen as a special case of PA (i.e., deterministic probabilistic au-
tomata).

5 Weak Bisimulations

As in [3] we use PCTL\ X to denote the subset of PCTL without next operator Xϕ and

bounded until ϕ1U≤nϕ2. Similarly, PCTL∗\ X is used to denote the subset of PCTL∗

without next operator Xψ. In this section we shall introduce weak bisimulations and
study the relation to ∼PCTL\ X

and ∼PCTL∗
\ X

, respectively. Before this we should point
out that ∼PCTL∗

\ X
implies ∼PCTL\ X but the other direction does not hold. Refer to the

following example.

Example 3. Suppose s and r are given by Fig. 1 where each of s1 and s3 is attached with
one transition respectively, that is, s1 → μ1 such that μ1(s4) = 0.4 and μ1(s5) = 0.6,
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s3 → μ3 such that μ3(s4) = 0.4 and μ3(s5) = 0.6. In addition, s2, s4 and s5 only have
a transition with probability 1 to themselves, and all these states are assumed to have
different atomic propositions. Then s ∼PCTL\ X r but s �PCTL∗

\ X
r, since we have a

path formula ψ = ((L(s) ∨ L(s1))UL(s5)) ∨ ((L(s) ∨ L(s3))UL(s4)) such that s |=
P≤0.34ψ but r 	|= P≤0.34ψ, since there exists a scheduler σ where the probability of path
formulae satisfying ψ in Probσ,r is equal to Probσ,r(ss1s5) + Probσ,r(ss3s4) = 0.36.
Note ψ is not a well-formed path formula of PCTL\X.

5.1 Branching Probabilistic Bisimulation by Segala

Before introducing our weak bisimulations, we give the classical definition of branching
probabilistic bisimulation proposed in [20]. Given an equivalence relation R, s can
evolve into μ by a branching transition, written as s⇒R μ, iff i) μ = Ds, or ii) s→ μ′

and
μ =

∑
r∈(supp(μ′)∩[s])∧r⇒Rμr

μ′(r) · μr +
∑

r∈supp(μ′)\[s]
μ′(r) · Dr

where [s] denotes the equivalence class containing s. Stated differently, s⇒R μ means
that s can evolve into μ only via states in [s]. Accordingly, branching combined tran-
sition s ⇒RP μ can be defined based on the branching transition, i.e. s ⇒RP μ iff there
exists a collection of branching transitions {s⇒R μi}i∈I , and a collection of probabil-
ities {pi}i∈I with

∑
i∈I pi = 1 such that μ =

∑
i∈I piμi.

We give the definition branching probabilistic bisimulation as follows:

Definition 8. An equivalence relation R ⊆ S × S is a branching probabilistic bisim-
ulation iff s R r implies that L(s) = L(r) and for each s → μ, there exists r ⇒RP μ′

such that μR μ′.
We write s !P r whenever there is a branching probabilistic bisimulation R such

that sR r.

The following properties concerning branching probabilistic bisimulation are taken
from [20]:

Lemma 4 ([20]).

1. !P ⊆ ∼PCTL∗
\ X

⊆ ∼PCTL\ X
.

2. !P is preserved by ||.

5.2 A Novel Weak Branching Bisimulation

Similar to the definition of bounded reachability Probσ,s(C,C′, n, ω), we define the
function Probσ,s(C,C′, ω) which denotes the probability from s to states in C′ possi-
bly via states in C. Again ω is used to keep track of the path which has been visited.
Formally, Probσ,s(C,C′, ω) is equal to 1 if s ∈ C′, Probσ,s(C,C′, ω) is equal to 0 if
s /∈ C, otherwise when σ(ω)(s, μ′) = 1,

Probσ,s(C,C′, ω) =
∑

r∈supp(μ′)

μ′(r) · Probσ,r(C,C′, ωr). (3)

The definition of weak branching bisimulation is as follows:
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Definition 9. A pre-orderR ⊆ S×S is a weak branching bisimulation if sR r implies
that L(s) = L(r) and for anyR-upward closed sets C,C′

1. if Probσ,s(C,C′, s) > 0 for a scheduler σ, there exists σ′ such that
Probσ′,r(C,C′, r) ≥ Probσ,s(C,C′, s),

2. if Probσ,r(C,C′, r) > 0 for a scheduler σ, there exists σ′ such that
Probσ′,s(C,C′, s) ≥ Probσ,r(C,C′, r).

We write s ≈b r whenever there is a weak branching bisimulationR such that sR r.

The following theorem shows that ≈b is an equivalence relation. Also different from
the strong cases where we use a series of equivalence relations to either characterize
or approximate ∼PCTL and ∼PCTL∗ , in the weak scenario we show that ≈b itself is
enough to characterize∼PCTL\ X . Intuitively because in ∼PCTL\ X only unbounded un-
til operator is allowed in path formula which means we abstract from the number of
steps to reach certain states.

Theorem 5. 1. ≈b is an equivalence relation.
2. ≈b = ∼PCTL\ X

.

As in the strong scenario, ≈b suffers from the same problem as ∼b
i and ∼i with

i > 1, that is, it is not preserved by ||.

Counterexample 4. s ≈b r does not always imply s || t ≈b r || t for any t. This can
be shown in a similar way as Counterexample 2 since the result will still hold even if we
replace the bounded until formula with unbounded until formula in Counterexample 2.

5.3 Weak Bisimulation

In order to define weak bisimulation we consider stuttering paths. Let Ω be a finite
R-upward-closed path, then

CΩst =

⎧⎨⎩CΩ l(Ω) = 1⋃
∀0≤i<n.∀ki≥0

C(Ω[0])k0 ...(Ω[n−2])kn−2Ω[n−1] l(Ω) = n ≥ 2 (4)

is the set of R-upward-closed paths which contains all stuttering paths, where Ω[i]
denotes the (i + 1)-th element in Ω such that 0 ≤ i < l(Ω). Accordingly, CΩ̃st

=
∪

Ω∈Ω̃
CΩst contains all the stuttering paths of each Ω ∈ Ω̃. Given a measure Prob,

Prob(Ω̃st ) can be computed by Equation (2).
Now we are ready to give the definition of weak bisimulation as follows:

Definition 10. A pre-order R ⊆ S × S is a weak bisimulation if s R r implies that
L(s) = L(r) and for any Ω̃ ⊆ R∗

1. if Probσ,s(CΩ̃st
) > 0 for a scheduler σ, there exists σ′ such that

Probσ′,r(CΩ̃st
) ≥ Probσ,s(CΩ̃st

),
2. if Probσ,r(CΩ̃st

) > 0 for a scheduler σ, there exists σ′ such that
Probσ′,s(CΩ̃st

) ≥ Probσ,r(CΩ̃st
).
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We write s ≈ r whenever there is a weak bisimulationR such that sR r.
The following theorem shows that ≈ is an equivalence relation. For the same reason

as in Theorem 5, ≈ is enough to characterize ∼PCTL∗
\ X

which gives us the following
theorem.

Theorem 6. 1. ≈ is an equivalence relation.
2. ≈ = ∼PCTL∗

\ X
.

Not surprisingly ≈ is not preserved by ||.

Counterexample 5. s ≈ r does not always imply s || t ≈ r || t for any t. This can be
shown by using the same arguments as in Counterexample 4.

5.4 Taxonomy for Weak Bisimulations

As in the strong cases we summarize the relation of the equivalences in the weak sce-
nario in Fig. 4 where all the denotations have the same meaning as Fig. 3. Compared to
Fig. 3, Fig. 4 is much simpler because the step-indexed bisimulations are absent. As in
strong cases, here we do not consider the standard definition of branching bisimulation
which is a strict subset of !P and can be defined by replacing⇒RP with ⇒R in Defini-
tion 8. Again not surprisingly all the relations shown in Fig. 4 coincide with the weak
bisimulation defined in [3] in DTMC setting.

6 Related Work

≈b

PCTL∗
\ X

≈

PCTL\ X


P

Fig. 4. Relationship of Different Equivalences
in Weak Scenario

For Markov chains, i.e., deterministic
probabilistic automata, the logic PCTL
characterizes bisimulations, and PCTL
without X operator characterizes weak
bisimulations [10,3]. As pointed out
in [20], probabilistic bisimulation is
sound, but not complete for PCTL for
PAs. In the literatures, various extensions
of the Hennessy & Milner [12] are con-
sidered for characterizing bisimulations.
Larsen and Skou [16] considered such
an extension of Hennessy-Milner logic,
which characterizes bisimulation for alternating automaton [16], or labeled Markov
processes [8] (PAs but with continuous state space). For probabilistic automata, Jon-
sson et al. [14] considered a two-sorted logic in the Hennessy-Milner style to char-
acterize strong bisimulations. In [13], the results are extended for characterizing also
simulations.

Weak bisimulation was first defined in the context of PAs by Segala [20], and then
formulated for alternating models by Philippou et al. [18]. The seemingly very related
work is by Desharnais et al. [8], where it is shown that PCTL∗ is sound and complete
with respect to weak bisimulation for alternating automata. The key difference is the
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Fig. 5. Alternating Automata

model they have considered is not the same as probabilistic automata considered in this
paper. Briefly, in alternating automata, states are either nondeterministic like in transi-
tion systems, or stochastic like in discrete-time Markov chains. As discussed in [21],
a probabilistic automaton can be transformed to an alternating automaton by replacing
each transition s −→ μ by two consecutive transitions s −→ s′ and s′ −→ μ where s′

is the new inserted state. Surprisingly, for alternating automata, Desharnais et al. have
shown that weak bisimulation – defined in the standard manner – characterizes PCTL∗

formulae. The following example illustrates why it works in that setting, but fails in
probabilistic automata.

Example 4. Refer to Fig. 1, we need to add three additional states sμ1 , sμ2 , and sμ3 in
order to transform s and r to alternating automata. The resulting automata are shown
in Fig. 5. Suppose that s1, s2, and s3 are three absorbing states with different atomic
propositions, so they are not (weak) bisimilar with each other, as result sμ1 , sμ2 and
sμ3 are not (weak) bisimilar with each other either since they can evolve into s1, s2,
and s3 with different probabilities. Therefore s and r are not (weak) bisimilar. Let ϕ =
P≥0.4(XL(s1)) ∧ P≥0.3(XL(s2)) ∧ P≥0.3(XL(s3)), it is not hard to see that sμ2 |=
ϕ but sμ1 , sμ3 	|= ϕ, so s |= P≤0(Xϕ) while r 	|= P≤0(Xϕ). If working with the
probabilistic automata, sμ1 , sμ2 , and sμ3 will not be considered as states, so we cannot
use the above arguments for alternating automata anymore.

Finally, we want to mention some similarities of ∼1 and notion of metrics studied in
[9,7]. In the definition of ∼1, we choose first the upward-closed set C before the suc-
cessor distribution to be matched, which is the key for achieving our new notion of
bisimulations. This is used in a similar way in defining metrics in [9,7].

7 Conclusion and Future Work

In this paper we have introduced novel notion of bisimulations for probabilistic au-
tomata. They are coarser than the existing bisimulations, and most importantly, we
show that they agree with logical equivalences induced by PCTL∗ and its sublogics.
Even in this paper we have not considered actions, it is worth noting that actions can
be easily added, and all the results relating (weak) bisimulations hold straightforwardly.
On the other side, they are then strictly finer than the logical equivalences, because of
the presence of these actions.
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As future work, we plan to study decision algorithms for our new (strong and weak)
bisimulations, and also extend the work to countable state space.
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A Spectrum of Behavioral Relations
over LTSs on Probability Distributions

Silvia Crafa and Francesco Ranzato

University of Padova, Italy

Abstract. Probabilistic nondeterministic processes are commonly modeled as
probabilistic LTSs (PLTSs, a.k.a. probabilistic automata). A number of logical
characterizations of the main behavioral relations on PLTSs have been studied.
In particular, Parma and Segala [2007] define a probabilistic Hennessy-Milner
logic interpreted over distributions, whose logical equivalence/preorder when re-
stricted to Dirac distributions coincide with standard bisimulation/simulation be-
tween the states of a PLTS. This result is here extended by studying the full
logical equivalence/preorder between distributions in terms of a notion of bisimu-
lation/simulation defined on a LTS of probability distributions (DLTS). We show
that the standard spectrum of behavioral relations on nonprobabilistic LTSs as
well as its logical characterization in terms of Hennessy-Milner logic scales to
the probabilistic setting when considering DLTSs.

1 Introduction

Formal methods for concurrent and distributed system specification and verification
have been extended to encompass randomized phenomena exhibited by the behavior
of probabilistic systems. In a standard nonprobabilistic setting, systems are commonly
modeled as labeled transition systems (LTSs) and model checking techniques are based
on two major tools: temporal logics and behavioral relations. Logics are used to specify
the properties that systems have to satisfy, while behavioral equivalence and preorder
relations are used as appropriate abstractions that reduce the state space. Precise rela-
tionships have been established between these two approaches: van Glabbeek [8] shows
how a wide spectrum of observational equivalences for concurrent processes is logically
characterized in terms of Hennessy-Milner-like modal logics (HML).

A number of probabilistic behavioral relations and probabilistic temporal logics have
been proposed (see e.g. [4,9,10,11,12,13,15]). Probabilistic LTSs (PLTSs, a.k.a. prob-
abilistic automata) are a prominent model for formalizing probabilistic systems since
they allow to model both probabilistic and nondeterministic behaviors. In PLTSs, a state
s evolves through a labeled transition to a state distribution d that defines the probabil-
ities of reaching the possible successor states of s. Accordingly, the standard proba-
bilistic extension [15] of the simulation relation requires that if a state s progresses to
a distribution d, then a simulating state s′ needs to mimic such a transition by moving
to a distribution d′ that is related to d through a so-called weight function. This defini-
tion is a conservative extension of the simulation relation on LTSs since a LTS can be
viewed as a particular PLTS where the target of transitions are Dirac distributions, i.e.,
distributions δs such that δs(s) = 1 and δs(t) = 0 for any t 	= s.

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 124–139, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A number of modal logics have been proposed in order to provide a logical
characterization of probabilistic simulation and bisimulation. Larsen and Skou [12]’s
logic as well as Hansson and Jonsson [10]’s PCTL logic are interpreted over states of
probabilistic systems, such as reactive models and discrete time Markov chains, that do
not express nondeterminism. On the other hand, Parma and Segala [13] show that richer
probabilistic models that encode pure nondeterminism (besides probabilistic choice),
such as PLTSs, call for a richer logic. They propose a probabilistic extension of HML
whose formulae are interpreted over distributions rather than states, and they show that
two states s and t are similar (the same holds for bisimilarity) if and only if their cor-
responding Dirac distributions δs and δt satisfy the same set of formulae. However,
nothing is stated about logically equivalent distributions that are not Dirac distributions.

In this paper we study the full logical equivalence between (possibly non-Dirac)
distributions that is induced by Parma and Segala [13]’s logic. We show that this logic
actually characterizes a novel and natural notion of simulation (bisimulation) between
distributions of a PLTS, so that the standard state simulation (bisimulation) on PLTSs
can be indeed retrieved by a suitable restriction to Dirac distributions. Furthermore, the
transition relation of a PLTS is lifted to a transition relation between distributions that
gives rise to a corresponding LTS on distributions (called DLTS). This allows us to lift
behavioral relations on PLTSs to corresponding behavioral relations on DLTSs. Such a
move from PLTSs to DLTSs yields a number of byproducts:

– Parma and Segala [13]’s logic turns out to be equivalent to a logic L whose diamond
operator is interpreted on the DLTS in accordance with its standard interpretation
on LTSs. Hence, this logic best suits as probabilistic extension of HML.

– This logic L characterizes a (bi)simulation relation between distributions which
is equivalent to that characterized by Parma and Segala’s logic, but that naturally
admits a game-theoretic characterization.

– A spectrum of behavioral relations can be defined on DLTSs along the lines of the
standard approach on LTSs [9]. These preorders and equivalences between distri-
butions can be then projected back to states, thus providing a spectrum of (proba-
bilistic) preorders and equivalences between states of PLTSs.

– Shifting the problem from PLTSs to DLTSs opens the way to the reuse of efficient
model checking techniques available for LTSs.

This approach is studied on a number of well known probabilistic relations appearing
in literature, namely simulation, probabilistic simulation, failure simulation, and their
corresponding bisimulations. A discussion about related approaches is the subject of
the final section, that also hints at future work.

2 Probabilistic Simulation and Bisimulation

Given a set X and a relation R ⊆ X ×X , we write xRy for (x, y) ∈ R; if x ∈ X and
Y ⊆ X then R(x) � {y ∈ X | xRy} and R(Y ) � ∪x∈Y R(x).

Distr(X) denotes the set of (stochastic) distributions on a set X , i.e., the set of
functions d : X → [0, 1] such that

∑
x∈X d(x) = 1. The support of a distribution d

is defined by supp(d) � {x ∈ X | d(x) > 0}; moreover, if Y ⊆ X , then d(Y ) �



126 S. Crafa and F. Ranzato∑
y∈Y d(y). The Dirac distribution on x ∈ X , denoted by δx, is the distribution that

assigns probability 1 to x (and 0 otherwise).
A probabilistic LTS (PLTS) is a tuple M = 〈Σ,Act ,�〉 where Σ is a (denumerable)

set of states, Act is a (denumerable) set of actions, and � ⊆ Σ × Act ×Distr(Σ) is a
transition relation, where (s, a, d)∈ � is tipically denoted by s a→d. For any a ∈ Act ,
the predecessor operator prea : ℘(Distr(Σ)) → ℘(Σ) is defined by prea(D) � {s ∈
Σ | ∃d ∈ D. s a→d}.

The definitions of probabilistic behavioral relations often rely on so-called weight
functions [14], that are used to lift a relation between states to a relation between dis-
tributions. We do not recall here the definition of weight functions, as we will use the
following equivalent characterizations (see [6,11,17]).

Definition 2.1 (Lifting). Let R ⊆ X×X be any relation. Then, the lifting of R to dis-
tributions is the relation �R ⊆ Distr(X)×Distr(X) that can be equivalently defined
in one of the following ways:

– d �R e iff there exists a weight function for (d, e) w.r.t. R;
– d �R e iff d(U) ≤ e(R(U)) for any set U ⊆ supp(d);
– when R is an equivalence on X , then d �R e iff d(B) = e(B) for any equivalence

class B of R. ��

It is easy to see that if R ⊆ R′ then �R ⊆ �R′ ; moreover, if R is symmetric then �R

is also a symmetric relation, that we denote with ≡R.

Definition 2.2 (Simulation). Given a PLTS M, a relation R ⊆ Σ ×Σ is a simulation
on M if for all s, t ∈ Σ such that sRt,

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d �R e. ��

Let Rsim � ∪{R ⊆ Σ × Σ | R is a simulation on M}. Then, Rsim turns out to be a
preorder relation which is the greatest simulation on M and is called simulation preorder
on M. Simulation equivalence Psim on M is defined as the kernel of the simulation
preorder, i.e., Psim � Rsim ∩R−1

sim.

Definition 2.3 (Bisimulation). A symmetric relation S ⊆ Σ ×Σ is a bisimulation on
M if for all s, t ∈ Σ such that sSt,

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d ≡S e. ��

Let Pbis � ∪{S ⊆ Σ × Σ | S is a bisimulation on M}. Then, Pbis turns out to be an
equivalence relation which is the greatest bisimulation on M and is called bisimilarity
on M.

3 An Operational View of Probabilistic HML

In order to logically characterize behavioral relations on probabilistic models that en-
code pure nondeterminism, such as PLTSs, Parma and Segala [13] put forward an ex-
tension of Hennessy-Milner logic whose formulae are interpreted over distributions on
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the states of a PLTS. They show that two states are bisimilar if and only if their cor-
responding Dirac distributions satisfy the same set of formulae. However, nothing is
stated about logically equivalent distributions that are not Dirac distributions. In the
following, we give a novel notion of simulation (and correspondingly bisimulation) be-
tween distributions which (i) characterizes the full logical equivalence of Parma and
Segala’s logic and (ii) boils down to standard simulation (and bisimulation) between
the states of a PLTS when restricted to Dirac distributions.

Parma and Segala’s logic [13] is syntactically defined as follows:

φ ::= � |
∧
i∈I

φi | ¬φ | ♦aφ | [φ]p

where I is a possibly infinite (denumerable) set of indices, a ∈ Act and p is a rational
number in [0, 1]. Given a PLTS 〈Σ,Act ,�〉, the semantics of the formulae is inductively
defined as follows: for any distribution d ∈ Distr(Σ),

d |= �
d |=
∧

I φi iff for any i ∈ I, d |= φi

d |= ¬φ iff d 	|= φ
d |= ♦aφ iff ∀x ∈ supp(d). ∃e ∈ Distr(Σ). x a→e and e |= φ

d |= [φ]p iff d({s ∈ Σ | δs |= φ}) ≥ p

The first three clauses are standard. The modal connective ♦a is a probabilistic coun-
terpart of HML’s diamond operator. ♦aφ is satisfied by a distribution d ∈ Distr(Σ)
whenever any state x ∈ supp(d) reaches through an a-labeled transition a distribu-
tion e that satisfies the formula φ. As the formulae ♦aφ only deal with transitions of
the PLTS, a further modal operator [·]p needs to take into account the probabilities that
distributions assign to sets of related states. More precisely, a distribution d satisfies a
formula [φ]p when d assigns a probability at least p to the set of states whose Dirac
distributions satisfy the formula φ. This logic is here referred to as L∀ in order to stress
the universal nature of its diamond operator ♦a.

Definition 3.1 (Logical equivalence and preorder). Two distributions d, e ∈ Distr(Σ)
are logically equivalent for L∀, written d ≡L∀ e, when, for any φ ∈ L∀, d |= φ iff
e |= φ. We write d ≤L∀ e for the corresponding logical preorder, i.e., when for any
φ ∈ L∀, d |= φ implies e |= φ. ��

Let L
+
∀ be the negation-free and finitely disjunctive fragment of L∀, that is:

φ ::= � |
∧
i∈I

φi | φ ∨ φ | ♦aφ | [φ]p

The following result by Parma and Segala [13] (see also [11]) shows that the logical
equivalence induced by L∀ and the logical preorder induced by L

+
∀, when restricted

to Dirac distributions, correspond, respectively, to bisimulation and simulation. No-
tice that the simulation preorder is logically characterized by negation-free formulae,
reflecting the fact that simulation, differently from bisimulation, is not a symmetric
relation. However, the logic for simulation requires finite disjunction to characterize
probabilistic choice.
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Theorem 3.2 ([13]). Consider Rsim and Pbis on a given PLTS. Then, for all s, t ∈ Σ,

– sRsim t if and only if δs ≤L+
∀
δt;

– s Pbis t if and only if δs ≡L∀ δt.

Our main goal is to define a notion of simulation and bisimulation between distri-
butions that represents the operational match of the full logical preorder ≤L+

∀
and

equivalence ≡L∀ between distributions. Firstly, notice that any relation on distribu-
tions R ⊆ Distr(Σ) × Distr(Σ) embeds a corresponding relation on states that can
be obtained by restricting R to Dirac distributions. This is formalized by a mapping
Δ : ℘(Distr(Σ)×Distr(Σ)) → ℘(Σ ×Σ) defined as follows:

Δ(R) � {(s, t) ∈ Σ ×Σ | (δs, δt) ∈ R}.

Note that if R is a symmetric/preorder/equivalence relation then Δ(R) is correspond-
ingly a symmetric/preorder/equivalence relation on Σ.

Our definition of (bi)simulation between distributions (called d-(bi)simulation) is
directly inspired by the logic L∀. In particular, the two distinctive modal operators of L∀
are mirrored in two defining conditions of (bi)simulation between distributions. More
precisely, the semantics of the diamond operator suggests a kind of transfer property that
(bi)similar distributions should respect (cf. condition (1)). On the other hand, a second
condition, peculiar of the probabilistic setting, deals with the probabilities assigned by
(bi)similar distributions to sets of related states (cf. condition (2)).

Definition 3.3 (∀d-simulation). A relation R ⊆ Distr(Σ)×Distr(Σ) is a ∀d-simula-
tion on a PLTS if for all d, e ∈ Distr(Σ), if dR e then:

(1) for all D ⊆ Distr(Σ), if supp(d) ⊆ prea(D) then supp(e) ⊆ prea(R(D));
(2) d �Δ(R) e. ��

Definition 3.4 (∀d-bisimulation). A symmetric relation S ⊆ Distr(Σ)× Distr(Σ) is
a ∀d-bisimulation on a PLTS if for all d, e ∈ Distr(Σ), if d S e then:

(1) for all D ⊆ Distr(Σ), if supp(d) ⊆ prea(D) then supp(e) ⊆ prea(S(D));
(2) d ≡Δ(S) e. ��

Given a PLTS M, let R∀sim � ∪{R | R is a ∀d-simulation on M}. Then, it turns out

that R
∀
sim is the greatest ∀d-simulation on M and is a preorder, called the ∀d-simulation

preorder on M. Analogously, let P∀bis � ∪{S | S is a ∀d-bisimulation on M}, so that

P∀bis turns out to be the greatest ∀d-bisimulation on M and an equivalence relation,
called the ∀d-bisimilarity on M

It turns out that ∀d-simulation preorder fully captures the logical preorder induced
by L

+
∀ while ∀d-bisimilarity fully captures the logical equivalence induced by L∀.

Theorem 3.5. For any d, e ∈ Distr(Σ),

– dR∀sim e if and only d ≤L+
∀
e;

– dP∀bis e if and only d ≡L∀ e.
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A closer look at the semantics of the diamond operator of L∀ points out a key difference
with the semantics of the standard diamond operator in HML. In the case of LTSs,
the diamond operator of HML induces the predecessor operator of the LTS. Similarly,
the semantic definition of the diamond operator of L∀ induces the following operator
ppre∀a, that we call probabilistic predecessor operator:

ppre∀a : ℘(Distr(Σ)) → ℘(Distr(Σ))

ppre∀a(D) � {d ∈ Distr(Σ) | supp(d) ⊆ prea(D)}

where prea : ℘(Distr(Σ)) → ℘(Σ) is the PLTS predecessor operator. However, dif-
ferently from the predecessor operators of LTSs and PLTSs, this probabilistic prede-
cessor ppre∀a does not preserve set unions, i.e., it is not true in general that, for any
D1, D2 ⊆ Distr(Σ), ppre∀a(D1 ∪D2) = ppre∀a(D1)∪ppre∀a(D2). In fact, supp(d) ⊆
prea(D1 ∪ D2) does not imply supp(d) ⊆ prea(D1) nor supp(d) ⊆ prea(D2). It is
here worth noting that, in general, an operator f : ℘(X)→ ℘(X) defined on a powerset
℘(X) preserves set unions if and only if there exists a relation R ⊆ X ×X whose cor-
responding predecessor operator preR = λY.{x ∈ X | ∃y ∈ Y.xRy} coincides with f .
As a consequence, one cannot define a transition relation between distributions whose
corresponding predecessor operator coincides with ppre∀a. The lack of a transition rela-
tion between distributions is particularly troublesome when defining coinductive behav-
ioral relations between distributions. Consider the transfer property of ∀d-simulations,
namely condition (1) of Definition 3.3: this can be equivalently stated as

if d ∈ ppre∀a(D) then e ∈ ppre∀a(R(D)) (1)

Since ppre∀a does not preserve set unions, the statement d ∈ ppre∀a(D) is not equiv-
alent to ∃f ∈ D. d ∈ ppre∀a(f), so that the above condition (1) does not scale to the
standard transfer property of (bi)simulations on LTSs that naturally admits a game char-
acterization. It is therefore interesting to ask whether a suitable definition of an additive
(i.e., union-preserving) probabilistic predecessor operator between distributions can be
found. In the following, this question will be positively answered.

3.1 LTS on Distributions

Let us consider the following alternative definition of probabilistic predecessor opera-
tor:

pprea : ℘(Distr(Σ)) → ℘(Distr(Σ))

pprea(D) � {d ∈ Distr(Σ) | supp(d) ∩ prea(D) 	= ∅}
This definition is much less restrictive than that of the above ppre∀a operator: in order for
a distribution d to be a probabilistic predecessor of a distribution e it is now sufficient
that the support of d contains some state that reaches e. In this sense, pprea has an
existential flavour as opposed to the universal flavour of ppre∀a. In the following, this
observation will be also formalized by means of abstract interpretation [1,2].

Since the pprea operator actually preserves set unions, a corresponding transition
relation between distributions can be defined as follows: d a→e iff d ∈ pprea({e}),
namely,

d a→e iff ∃s ∈ supp(d). s a→e (∗)
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Fig. 1. A pair of PLTSs

This allows us to lift a PLTS to an LTS of distributions, that we call DLTS. Hence, the
following notions of simulation/bisimulation based on the standard transfer property
naturally arise.

Definition 3.6 (d-simulation). Given a PLTS M, a relation R ⊆ Distr(Σ)×Distr(Σ)
is a d-simulation on M if for all d, e ∈ Distr(Σ), if dR e then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f R g;
(2) d �Δ(R) e. ��

Definition 3.7 (d-bisimulation). Given a PLTS M, a symmetric relation S ⊆
Distr(Σ) × Distr(Σ) is a d-bisimulation on M if for all d, e ∈ Distr(Σ), if d S e
then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f S g;
(2) d ≡Δ(S) e. ��

Given a PLTS M, let Rsim � ∪ {R | R is a d-simulation on M} and Pbis � ∪ {S | S is
a d-bisimulation on M}. Then, Rsim turns out to be the greatest d-simulation on M and
a preorder, called the d-simulation preorder on M. Likewise, it turns out that Pbis is the
greatest d-bisimulation on M and an equivalence, called d-bisimilarity on M

Interestingly, d-simulations (and analogously for d-bisimulations) enjoy a neat cor-
respondence with state simulations in a PLTS. More precisely, the state simulation pre-
order Rsim can be recovered from the d-simulation preorder Rsim by restricting Rsim

to Dirac distributions. On the other hand, the d-simulation preorder coincides with the
lifting to distributions of the state simulation preorder.

Theorem 3.8.

– Δ(Rsim) = Rsim and Rsim = �Rsim .
– Δ(Pbis) = Pbis and Pbis = ≡Pbis .

It is worth noting that this result opens the way to define new model checking tools that
compute (bi)simulations on PLTSs by adapting to DLTSs the standard (bi)simulation
techniques/algorithms designed in the nonprobabilistic framework.
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Example 3.9. Consider the leftmost PLTS depicted in Figure 1. The relation R1 =
{(δs1 , δt1), (d1, e1)} ∪ {(d, d) | d ∈ Distr(Σ)} is not a d-simulation since d1

b→δv

but e1
b→δu and δu /∈ R1(δv). Moreover, even if R1 respects the transfer prop-

erty of ∀d-simulations (since there is no set D ⊆ Distr(Σ) such that supp(d1) ⊆
prea(D)), R1 is not even a ∀d-simulation because d1 	�Δ(R1) e1, since, for in-
stance, 0.5 = d({x2}) 	≤ e(Δ(R1)({x2})) = e({x2}) = 0. Nevertheless,
s1 and t1 are bisimilar states since there exists a (∀)d-bisimulation containing the
pair (δs1 , δt1). Let R be the equivalence relation corresponding to the partition
{{δs1 , δt1}, {d1, e1}, {δx1, δx3}, {δx2, δx4 , δu, δv}}. It is not difficult to check that R

is a (∀)d-bisimulation: every pair in R respects the transfer property and is ≡Δ(R)-
equivalent, where Δ(R) = {{s1, t1}, {x1, x3}, {u, v, x2, x4}}.

As a further example, consider the rightmost PLTS in Figure 1. We have that s2

simulates t2 but t2 does not simulate s2. In fact, consider the relation

R2 = {(δt2 , δs2), (e2, d2), (δu, δu)} ∪ {(δx4 , δxi)}i=1,...,4 ∪ {(δx3 , δxi)}i=1,2,3.

Then, R2 is a (∀)d-simulation since every pair respects the transfer property and belongs
to �Δ(R2). For instance, let us check that e2 �Δ(R2) d2: by Definition 2.1, it is enough
to check that for all U ⊆ supp(e2), e2(U) ≤ d2(Δ(R2)(U)). The nonempty subsets of
supp(e2) are: U1 = {x3}, U2 = {x4} and U3 = {x3, x4}, so that we have

0.5 = e2({x3}) ≤ d2(Δ(R2)({x3})) = d2({x1, x2, x3}) = 1

0.5 = e2({x4}) ≤ d2(Δ(R2)({x4})) = d2({x1, x2, x3, x4}) = 1

1 = e2({x3, x4}) ≤ d2(Δ(R2)({x3, x4})) = d2({x1, x2, x3, x4}) = 1

The fact that t2 does not simulate s2 depends on the fact that e2 does not simulate d2

since this would imply that there exists a (∀)d-simulation R such that d2 �Δ(R) e2.
However, the latter statement implies that 1 = d2({x1, x2}) ≤ e2(Δ(R)({x1, x2})),
which is true only if supp(e2) = {x3, x4} ⊆ Δ(R)({x1, x2}); hence, in particular, we
would obtain δx4 ∈ R({δx1, δx2}), which is a contradiction since x4 cannot simulate a
b-transition. ��

Besides the above notions of d-simulation/d-bisimulation, the operator pprea allows us
to provide a corresponding new interpretation for the diamond connective. Let L denote
the logic whose syntax coincides with L∀ and whose semantics is identical to that of
L∀ but for the diamond connective, which is interpreted as follows:

d |= ♦aφ iff ∃e. d a→e and e |= φ

This is therefore the standard interpretation of the diamond operator on a DLTS, namely
a LTS whose “states” are distributions and whose transitions are defined by (∗). In the
following, we will argue that L is best suited as probabilistic extension of Hennessy-
Milner logic. As a first result, it turns out that the preorder≤L+ and the equivalence≡L

logically characterize, respectively, d-simulations and d-bisimulations.

Theorem 3.10. For any d, e ∈ Distr(Σ),

– dRsim e if and only d ≤L+ e;
– dPbis e if and only d ≡L e.
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3.2 Comparing L∀ and L

It turns out that ∀d-(bi)simulations and d-(bi)simulations are equivalent notions. In spite
of the fact they rely on quite different transfer properties (cf. condition (1) of Defini-
tions 3.3 and 3.6), their second defining condition, peculiar to the probabilistic setting,
is powerful enough to bridge their gap. More precisely, this depends on the following
key property: if d �R e then for any state s in the support of d there exists a state t in
the support of e such that t ∈ R(s), and viceversa, for any state t in the support of e
there exists a state s in the support of d such that t ∈ R(s).

Lemma 3.11. Consider a PLTS M and a relation R ⊆ Distr(Σ)×Distr(Σ). Then, R

is a ∀d-(bi)simulation on M iff R is a d-(bi)simulation on M.

As a consequence, we have that R∀sim = Rsim and P∀bis = Pbis, so that, by Theorems 3.5
and 3.10, the two modal logics L∀ and L induce the same equivalence on distributions
while L

+
∀ and L+ induce the same preorder on distributions. As far as their relative

expressive powers are concerned, we have that L∀ and L are equivalent, while this is
not the case for their negation-free fragments.

Theorem 3.12.

– L∀ and L have the same expressive power (and therefore ≡L∀ = ≡L).
– L

+
∀ is strictly less expressive than L

+, although≤L+
∀

= ≤L+ .

Let us observe that the equivalence between L∀ and L depends on the fact that the
semantics of the diamond operator of L∀ can be encoded in L and viceversa. In
particular, the semantics of the L∀-formula ♦aφ, i.e. [[♦aφ]]L∀ = {d | supp(d) ⊆
prea({e | e |=L∀ φ})}, can be expressed in L by the formula [♦aφ]1, whose seman-
tics is indeed [[[♦aφ]1]]L = {d | d({x | δx |=L ♦aφ}) = 1 } = {d | supp(d) ⊆
{x | δx |=L ♦aφ}}. On the other hand, the encoding of L’s diamond as a L∀-formula
is more tricky. The semantics of ♦aφ viewed as a L-formula is given by all the distribu-
tions whose support contains at least a state that moves to a distribution that satisfies φ,
i.e., [[♦aφ]]L = {d | d({x | ∃e. x a→e, e |=L φ}) > 0}. This semantics can be therefore
expressed in L∀ by requiring that d |=L∀ [♦aφ]p for some p > 0. However, in general
the existence of a rational number p > 0 can be expressed as a logical formula only by
means of an infinite (countable) disjunction, hence it is expressible in the full L∀ logic,
but not in its negation-free and finitely disjunctive fragment L

+
∀.

Let us describe an example showing that the logic L
+
∀ is strictly less expressive

than L+. Consider a PLTS M = 〈{x1, x2}, {a}, {x1
a→d = (x1/0.5, x2/0.5)}〉 that

contains two states x1, x2 and a single transition from x1 to the distribution d =
(x1/0.5, x2/0.5). In the logic L, we have that [[♦a�]]L = Distr(Σ) � {δx2}, since
any distribution different from δx2 contains x1 in its support, and therefore has an
outgoing a-transition. Let us show that there is no formula in L∀ whose semantics
is Distr(Σ) � {δx2}. Consider the L∀-formulae �, ♦a� and [♦a�]p, with p > 0,
whose semantics are as follows: [[�]]L∀ = Distr(Σ), [[♦a�]]L∀ = {δx1}, [[[♦a�]p]]L∀ =
{d | d({x1}) ≥ p}. It is easily seen that the semantics of any other formula in L∀ is in
the set SemL∀ = {[[�]]L∀, [[♦a�]]L∀} ∪ {[[[♦a�]p]]L∀ | p > 0}, which is indeed closed
under infinite intersections, finite unions, probabilistic predecessor and the semantics of
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the operator [·]p. It is thus enough to observe that Distr(Σ)�{δx2} /∈ SemL∀ : actually,
Distr(Σ) � {δx2} can only be expressed as the infinite union ∪p>0[[[♦a�]p]]L∀ . ��

Example 3.13. Consider again the rightmost PLTS in Figure 1. We have already ob-
served that s2 simulates t2 whilst t2 does not simulate s2. The fact that t2 does not
simulate s2 can be easily proved by exhibiting a formula that is satisfied by δs2 but not
by δt2 . We provide both a formula in L∀ and an equivalent formula in L:

(1) let φ � ♦a♦b� ∈ L∀; then δs2 |=L∀ φ and δt2 	|=L∀ φ

(2) let φ′ � ♦a[♦b�]1 ∈ L; then δs2 |=L φ′ and δt2 	|=L φ′

To see (1), observe that δs2 |=L∀ φ since supp(δs2) ⊆ prea(d2) and supp(d2) ⊆
preb(δu) with δu |=L∀ �. On the other hand, supp(δt2) ⊆ prea(e2) but supp(e2) 	⊆
preb(f) for some distribution f such that f |=L∀ �. To show (2), notice that δs2 |=L φ′

since δs2
a→d2, and d2({x | δx |=L ♦b�}) = 1 since for any x ∈ supp(d2) it holds

δx
b→δu with δu |=L �. On the other hand, δt2 	|=L φ′ since δt2

a→e2 and e2({x | δx |=L

♦b�}) = 0.5 	≥ 1 since for x4 ∈ supp(e2) it holds δx4 	|=L ♦b�. ��

4 States as Abstract Interpretation of Distributions

Differently from LTSs and their behavioral relations, whose definitions rely on a sin-
gle notion of system state, PLTSs as well as their corresponding spectra of behavioral
relations in some sense involve two notions of system state, namely a bare state and a
probabilistic state modeled as a state distribution. We have shown above how PLTSs
can be embedded into DLTSs, that is, LTSs of probabilistic states that involve a single
(but richer) notion of system state, i.e. state distributions. We show in this section how
to formalize a systematic embedding of states into distributions by viewing states as
abstract interpretation of distributions.

Intuitively, Dirac distributions allow us to view states as an abstraction of distribu-
tions, namely the map δ : Σ → Distr(Σ) such that δ(x) � δx may be viewed as a
function that embeds states into distributions. The other way round, the support map
supp : Distr(Σ) → ℘(Σ) can be viewed as a function that abstracts a distribution d as
the set of states in its support.

Let us recall that in standard abstract interpretation [1,2], approximations of a con-
crete semantic domain are encoded by abstract domains that are specified by Galois
insertions (GIs for short) or, equivalently, by adjunctions. Approximation on a con-
crete/abstract domain is encoded by a partial order where traditionally x ≤ y means
that y is a concrete/abstract approximation of x. Concrete and abstract approximation
orders, denoted by ≤C and ≤A, must be related by a GI. Recall that a GI of an ab-
stract domain 〈A,≤A〉 into a concrete domain 〈C,≤C〉 is determined by a surjective
abstraction map α : C → A and a 1-1 concretization map γ : A → C such that
α(c) ≤A a ⇔ c ≤C γ(a) and is denoted by (α,C,A, γ). In a GI, intuitively α(c)
provides the best approximation in A of a concrete value c while γ(a) is the concrete
value that a abstractly represents.

In our case, in order to cast δ as a concretization map in abstract interpretation,
we need to lift its definition from sets of states to sets of distributions, namely we
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need to provide its so-called “collecting” version [1,2]. Observe that {δ(x)} = {d ∈
Distr(Σ) | supp(d) ⊆ {x}}. This leads us to define the following concretization
function γ∀ : ℘(Σ) → ℘(Distr(Σ)):

γ∀(S) � {d ∈ Distr(Σ) | supp(d) ⊆ S}.

This is a universal concretization function, meaning that d ∈ γ∀(S) iff all the states in
supp(d) are contained into S. Hence, one can dually define an existential concretization
map γ∃ : ℘(Σ) → ℘(Distr(Σ)) as

γ∃(S) � {d ∈ Distr(Σ) | supp(d) ∩ S 	= ∅},

where d ∈ γ∃(S) if there exists some state in the support of d which is contained
into S. Actually, these two mappings give rise to a pair of GIs (i.e., approximations
in abstract interpretation) where ℘(Distr(Σ)) and ℘(Σ) play, respectively, the role of
concrete and abstract domains. The approximation order is encoded by the subset rela-
tion (i.e., logical implication) in the case of γ∀ and by the superset relation (i.e., logical
co-implication) in the case of γ∃. The dual maps, systematically obtained by adjunction
from γ∀ and γ∃, are α∀, α∃ : ℘(Distr(Σ)) → ℘(Σ) defined as follows:

α∀(X) � {s ∈ Σ | ∃d ∈ X. s ∈ supp(d)}
α∃(X) � {s ∈ Σ | ∀d ∈ Distr(Σ). s ∈ supp(d) ⇒ d ∈ X}

Lemma 4.1. (α∀, ℘(Distr(Σ))⊆, ℘(Σ))⊆, γ∀) and (α∃, ℘(Distr(Σ))⊇, ℘(Σ))⊇, γ∃)
are GIs.

Observe that α∀/γ∀ and α∃/γ∃ are dual abstractions, i.e.,

α∃ = ¬ α∀¬ and γ∃ = ¬ γ∀¬

where ¬α∀¬(X) = Σ�α∀(Distr(Σ)�X) and ¬ γ∀¬(S) = Distr(Σ)�γ∀(Σ �S).
Moreover, it is not hard to see that α∀ is the additive extension of the supp function,
while α∃ is its co-additive extension, i.e.,

α∀(X) = ∪d∈X supp(d) and α∃(Distr �X) = ∩d∈XΣ � supp(d).

These two abstract domains thus provide dual universal/existential ways for logically
approximating sets of distributions into sets of states. The interesting point in these for-
mal abstractions lies in the fact that they allow us to systematically obtain the above
probabilistic predecessor operators ppre∀a and pprea in a DLTS from the predecessor
operator prea of the corresponding PLTS. Recall that in a PLTS the predecessor oper-
ator prea : ℘(Distr(Σ)) → ℘(Σ) maps a set of distributions into a set of states. Here,
℘(Σ) can therefore be viewed as a universal/existential abstraction of ℘(Distr(Σ)), so
that, correspondingly, prea can be viewed as an abstract predecessor function, since
its co-domain actually is an abstract domain. Consequently, the output of this abstract
function can be projected back to distributions using the corresponding concretization
map. Interestingly, it turns out that the corresponding concrete predecessor functions,
obtained by composing the operator prea with either γ∀ or γ∃, exactly coincide with
the two probabilistic predecessors ppre∀a and pprea.
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Lemma 4.2. ppre∀a = γ∀ ◦ prea and pprea = γ∃ ◦ prea.

Thus, in equivalent terms, the predecessor operator prea is the best correct univer-
sal/existential approximation of the operators ppre∀a/pprea, for the universal/existential
abstractions α∀/γ∀ and α∃/γ∃.

5 A Spectrum of Probabilistic Relations over DLTSs

The approach developed above suggests a general methodology for defining behavioral
relations between the states of a PLTS: first define a “lifted” behavioral relation be-
tween distributions of the corresponding DLTS and then restrict this definition to Dirac
distributions. As discussed above, this approach works satisfactorily for simulation and
bisimulation on PLTSs. In what follows, we show that this technique is indeed more
general since it can be applied to a number of known probabilistic behavioral relations.

5.1 Probabilistic Simulation

Segala and Lynch [15] put forward a variant of simulation where a state transition s a→d
can be matched by a so-called combined transition from a state t, namely a convex
combination of distributions reachable from t. We show that this same idea can be
lifted to transitions in DLTSs.

Let M = 〈Σ,Act,�〉 be a PLTS, let {s a→di}i∈I be a (denumerable) family of
transitions of M and let {pi}i∈I be a corresponding family of probabilities in [0, 1]
such that

∑
i∈I pi = 1. Let d ∈ Distr(Σ) be the convex combination d =

∑
i∈I pidi.

Then, {s, a,
∑

i∈I pidi}, denoted by s a
�d, is called a combined transition in M. This

notion of combined transition can be lifted to distributions as follows.

Definition 5.1 (Combined d-transitions and Hyper transitions).

– Let d, e ∈ Distr(Σ). Then, d a
�e if there exists s ∈ supp(d) such that s a

�e. d a
�e

is called a combined d-transition.
– Let {d a→di}i∈I be a family of transitions in a DLTS, and let {pi}i∈I be a corre-

sponding family of probabilities such that
∑

i∈I pi = 1. Let d =
∑

i∈I pidi. Then,
the triple {d, a,

∑
i∈I pidi}, compactly denoted by d

a

⇒e, is called a hyper transi-
tion. ��

It is worth noting that the notion of hyper transition is “stronger” than that of combined
d-transition, in that d a

�e implies d
a

⇒e but not viceversa. Moreover, our definition of
hyper transition can be compared with analogous notions of hyper transition defined
in [16] and [5]. In particular, it can be shown that a hyper transition in the sense of
both Stoelinga [16] and Deng et al. [5] is a hyper transition in our sense, but not vice
versa. Anyhow, the notion of combined d-transition is sufficient to lift probabilistic
(bi)simulations of [15] to distributions.

In what follows, we focus on simulation relations only, since the same results scale
to bisimulations. A probabilistic simulation is defined as a simulation in a PLTS apart
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from using combined transitions rather than standard transitions of a PLTS. Correspond-
ingly, probabilistic d-simulation is defined as in Definition 3.6, but using combined d-
transitions rather than transitions in a DLTS.

Let Rpsim (Rpsim) be the union of all the probabilistic (d-)simulations on M. Then,
all the results obtained in Section 3 also hold for probabilistic simulation, and they are
collected in the following theorem. In particular, as before, the probabilistic simulation
preorder between states can be recovered from the probabilistic d-simulation preorder
by restricting to Dirac distributions. Dually, the probabilistic d-simulation preorder co-
incides with the lifting of the probabilistic simulation preorder. As far as the logic is
concerned, Parma and Segala [13] show that the probabilistic relations between the
states of a PLTS are logically characterized by the logical equivalence/preorder — re-
stricted to Dirac distributions — of a modal logic that has the same syntax of L∀ but
whose diamond operator is defined in terms of combined transitions on the PLTS. Let
LP denote the logic L (which is equivalent to L∀) where the semantics of the diamond
operator is defined in terms of combined d-transitions. Then, as in Section 3, the result
in [13] can be extended by showing that the full logical preorder of L

+
P coincides with

the probabilistic d-simulation preorder.

Theorem 5.2.

– Δ(Rpsim) = Rpsim and �Rpsim= Rpsim.
– Rpsim = ≤L+

P
.

5.2 Failure Simulation

One nice consequence of defining DLTSs as LTSs of distributions lies in the fact that the
standard van Glabbeek’s spectrum [8] of behavioral relations on LTSs can be reformu-
lated in terms of transitions between distributions of a DLTS. This leads to a spectrum
of d-relations between distributions of a DLTS, that can be projected into a spectrum
of relations between states of a PLTS by restricting the d-relations to Dirac distribu-
tions. As an example we show how this approach works on failure simulation [8]. A
formalization and generalization of such a “lifting schema” in a suitable framework
like abstract interpretation or coalgebras is left as future work.

Definition 5.3 (Failure Simulation). A relation R ⊆ Σ ×Σ is a failure simulation on
a PLTS when for any s, t ∈ Σ, if sRt then:

– if s a→d then there exists e ∈ Distr(Σ) such that t a→e and d �R e;
– if s A� then t A� for any A ⊆ Act . ��

Definition 5.4 (Failure d-Simulation). A relation R ⊆ Distr(Σ) × Distr(Σ) is a
failure d-simulation on a PLTS when for all d, e ∈ Distr(Σ), if dR e then:

(1) if d a→f then there exists g ∈ Distr(Σ) such that e a→g and f R g;
(2) if d A� then e A� for any A ⊆ Act ;
(3) d �Δ(R) e. ��



A Spectrum of Behavioral Relations over LTSs on Probability Distributions 137

The lifting of a relation between states of a PLTS to a relation between distributions of
the corresponding DLTS is obtained by resorting to the standard transfer property and
by adding the condition (i.e., condition (3) in Definition 5.4) that deals with probabil-
ities assigned to sets of related states. Let Rfail and Rfail be, respectively, the failure
simulation and d-simulation preorders on a PLTS M. According to the LTS spectrum,
failure simulation can be logically characterized through a modality that characterizes
which transitions cannot be fired. We follow this same approch and we denote by L

+
F

the logic obtained from L+ by adding a modality ref〈A〉, where A ⊆ Act , and whose
semantics is defined as follows: for any d ∈ Distr(Σ), d |=L+

F
ref〈A〉 iff d A� .

Theorem 5.5.

– Δ(Rfail) = Rfail and �Rfail= Rfail;
– Rfail = ≤L+

F
.

6 Related and Future work

Simulation and bisimulation relations on PLTSs have been introduced by Segala and
Lynch [15] as two equivalences that preserve significant classes of temporal properties
in the probabilistic logic PCTL [10]. Since then a number of works put forward prob-
abilistic extensions of Hennessy-Milner logic in order to logically characterize these
equivalences. Larsen and Skou [12] and Desharnais et al. [7] investigated a probabilis-
tic diamond operator that enhances the diamond operator of HML with the probability
bounds of transitions. However, these logics are adequate just for reactive and alternat-
ing systems, which are probabilistic models that are strictly less expressive than PLTSs.
Two further probabilistic variants of HML are available [13,5]. The first one is that of
Parma and Segala [13] (see also [11]), whose formulae are interpreted on sets of prob-
ability distributions over the states of a PLTS. One distinctive operator of this logic is
a modal operator [φ]p, whose semantics is the set of distributions that assigns at least
probability p to the set of states whose Dirac distributions satisfy φ. This paper has
shown that such a logic admits an equivalent formulation that retains the probabilistic
operator [φ]p and retrieves the diamond operator of HML by lifting it to distributions.
Deng et al. [5] follow a different approach. They propose a probabilistic variant of
HML that is interpreted on sets of processes of the pCSP process calculus. In their
logic the semantics of the diamond operator is defined in terms of hyper transitions be-
tween distributions: this notion of hyper transition is more complex than ours and has
been compared with our notion of hyper transitions in Section 5. Moreover, Deng et
al.’s logic features a probabilistic operator

⊕
i∈I piφi that is satisfied by processes that

correspond to distributions that can be decomposed into convex combinations of dis-
tributions that satisfy φi. Besides (bi)simulation and probabilistic (bi)simulation, this
logic is able to characterize two notions of failure and forward simulation that have
been proved to agree with the testing preorders on pCSP processes (see [5]).

Deng et al. [5]’s definition of failure simulation is quite different from ours, that
we directly derived from the standard LTS spectrum. One major difference is that we
define a relation between states of a PLTS which is then lifted to a relation between
distributions, whereas Deng et al. consider a relation between states and distributions.
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A precise comparison between the spectrum of behavioral relations on DLTSs and the
behavioral relations defined by Deng et al. [5] is left as subject for future work. We
also plan to investigate weak transitions in DLTSs that abstract from internal, invisi-
ble, actions. Weak variants of simulation, probabilistic simulation, forward and failure
simulation have been studied both in [5] and [13].

As a further avenue of future work we plan to study whether and how behavioral
relations on PLTSs can be computed by resorting to standard algorithms for LTSs that
compute the corresponding lifted relations on a DLTS. A first step in this direction has
been taken in [3], where efficient algorithms to compute simulation and bisimulation
on PLTSs have been derived by resorting to abstract interpretation techniques.
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Abstract. We study long run average behavior of generalized semi-Markov pro-
cesses with both fixed-delay events as well as variable-delay events. We show that
allowing two fixed-delay events and one variable-delay event may cause an unsta-
ble behavior of a GSMP. In particular, we show that a frequency of a given state
may not be defined for almost all runs (or more generally, an invariant measure
may not exist). We use this observation to disprove several results from litera-
ture. Next we study GSMP with at most one fixed-delay event combined with an
arbitrary number of variable-delay events. We prove that such a GSMP always
possesses an invariant measure which means that the frequencies of states are
always well defined and we provide algorithms for approximation of these fre-
quencies. Additionally, we show that the positive results remain valid even if we
allow an arbitrary number of reasonably restricted fixed-delay events.

1 Introduction

Generalized semi-Markov processes (GSMP), introduced by Matthes in [23], are a stan-
dard model for discrete-event stochastic systems. Such a system operates in continuous
time and reacts, by changing its state, to occurrences of events. Each event is assigned a
random delay after which it occurs; state transitions may be randomized as well. When-
ever the system reacts to an event, new events may be scheduled and pending events may
be discarded. To get some intuition, imagine a simple communication model in which a
server sends messages to several clients asking them to reply. The reaction of each client
may be randomly delayed, e.g., due to latency of communication links. Whenever a re-
ply comes from a client, the server changes its state (e.g., by updating its database of
alive clients or by sending another message to the client) and then waits for the rest of
the replies. Such a model is usually extended by allowing the server to time-out and to
take an appropriate action, e.g., demand replies from the remaining clients in a more
urgent way. The time-out can be seen as another event which has a fixed delay.

More formally, a GSMP consists of a set S of states and a set E of events. Each
state s is assigned a set E(s) of events scheduled in s. Intuitively, each event in E(s) is
assigned a positive real number representing the amount of time which elapses before
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the event occurs. Note that several events may occur at the same time. Once a set of
events E ⊆ E(s) occurs, the system makes a transition to a new state s′. The state s′
is randomly chosen according to a fixed distribution which depends only on the state s
and the set E. In s′, the old events of E(s)�E(s′) are discarded, each inherited event of
(E(s′)∩E(s))�E remains scheduled to the same point in the future, and each new event
of (E(s′) � E(s)) ∪ (E(s′) ∩ E) is newly scheduled according to its given probability
distribution.

In order to deal with GSMP in a rigorous way, one has to impose some restrictions
on the distributions of delays. Standard mathematical literature, such as [15,16], usually
considers GSMP with continuously distributed delays. This is certainly a limitation, as
some systems with fixed time delays (such as time-outs or processor ticks) cannot be
faithfully modeled using only continuously distributed delays. We show some exam-
ples where fixed delays exhibit qualitatively different behavior than any continuously
distributed approximation. In this paper we consider the following two types of events:

– variable-delay: the delay of the event is randomly distributed according to a proba-
bility density function which is continuous and positive either on a bounded interval
[�, u] or on an unbounded interval [�,∞);

– fixed-delay: the delay is set to a fixed value with probability one.

The desired behavior of systems modeled using GSMP can be specified by various
means. One is often interested in long-run behavior such as mean response time, fre-
quency of errors, etc. (see, e.g., [1]). For example, in the above communication model,
one may be interested in average response time of clients or in average time in which
all clients eventually reply. Several model independent formalisms have been devised
for expressing such properties of continuous time systems. For example, a well known
temporal logic CSL contains a steady state operator expressing frequency of states
satisfying a given subformula. In [9], we proposed to specify long-run behavior of a
continuous-time process using a timed automaton which observes runs of the process,
and measure the frequency of locations of the automaton.

In this paper we consider a standard performance measure, the frequency of states of
the GSMP. To be more specific, let us fix a state s̊ ∈ S . We define a random variable d
which to every run assigns the (discrete) frequency of visits to s̊ on the run, i.e. the ratio
of the number of transitions entering s̊ to the number of all transitions. We also define a
random variable c which gives timed frequency of s̊, i.e. the ratio of the amount of time
spent in s̊ to the amount of time spent in all states. Technically, both variables d and c are
defined as limits of the corresponding ratios on prefixes of the run that are prolonged ad
infinitum. Note that the limits may not be defined for some runs. For example, consider
a run which alternates between s̊ and another state s; it spends 2 time unit in s̊, then 4
in s, then 8 in s̊, then 16 in s, etc. Such a run does not have a limit ratio between time
spent in s̊ and in s. We say that d (or c) is well-defined for a run if the limit ratios exist
for this run. Our goal is to characterize stable systems that have the variables d and c
well-defined for almost all runs, and to analyze the probability distributions of d and c
on these stable systems.

As a working example of GSMP with fixed-delay events, we present a simplified
protocol for time synchronization. Using the variable c, we show how to measure relia-
bility of the protocol. Via message exchange, the protocol sets and keeps a client clock
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Fig. 1. A GSMP model of a clock synchronization protocol. Below each state label, we list the
set of scheduled events. We only display transitions that can take place with non-zero probability.

sufficiently close to a server clock. Each message exchange is initialized by the client
asking the server for the current time, i.e. sending a query message. The server adds a
timestamp into the message and sends it back as a response. This query-response ex-
change provides a reliable data for synchronization action if it is realized within a given
round-trip delay. Otherwise, the client has to repeat the procedure. After a success, the
client is considered to be synchronized until a given stable-time delay elapses. Since the
aim is to keep the clocks synchronized all the time, the client restarts the synchroniza-
tion process sooner, i.e. after a given polling delay that is shorter than the stable-time
delay. Notice that the client gets desynchronized whenever several unsuccessful syn-
chronizations occur in a row. Our goal is to measure the portion of the time when the
client clock is not synchronized.

Figure 1 shows a GSMP model of this protocol. The delays specified in the proto-
col are modeled using fixed-delay events roundtrip_d, stable_d, and polling_d while
actions are modeled by variable-delay events query, response, and sync. Note that if
the stable-time runs out before a fast enough response arrives, the systems moves into
primed states denoting it is not synchronized at the moment. Thus, c(Init’)+ c(Q-sent’)
expresses the portion of the time when the client clock is not synchronized.

Our Contribution. So far, GSMP were mostly studied with variable-delay events only.
There are a few exceptions such as [4,3,8,2] but they often contain erroneous statements
due to presence of fixed-delay events. Our goal is to study the effect of mixing a number
of fixed-delay events with an arbitrary amount of variable-delay events.

At the beginning we give an example of a GSMP with two fixed-delay events for
which it is not true that the variables d and c are well-defined for almost all runs. We
also disprove some crucial statements of [3,4]. In particular, we show an example of
a GSMP which reaches one of its states with probability less than one even though
the algorithms of [3,4] return the probability one. The mistake of these algorithms is
fundamental as they neglect the possibility of unstable behavior of GSMP.

Concerning positive results, we show that if there is at most one fixed-delay event,
then both d and c are almost surely well-defined. This is true even if we allow an
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arbitrary number of reasonably restricted fixed-delay events. We also show how to ap-
proximate distribution functions of d and c. To be more specific, we show that for
GSMP with at most one unrestricted and an arbitrary number of restricted fixed-delay
events, both variables d and c have finite ranges {d1, . . . , dn} and {c1, . . . , cn}. More-
over, all values di and ci and probabilities P(d = di) and P(c = ci) can be effectively
approximated.

Related Work. There are two main approaches to the analysis of GSMP. One is to re-
strict the amount of events or types of their distributions and to solve the problems using
symbolic methods [8,2,21]. The other is to estimate the values of interest using simu-
lation [26,15,16]. Concerning the first approach, time-bounded reachability has been
studied in [2] where the authors restricted the delays of events to so called expolyno-
mial distributions. The same authors also studied reachability probabilities of GSMP
where in each transition at most one event is inherited [8]. Further, the widely studied
formalisms of semi-Markov processes (see, e.g., [20,9]) and continuous-time Markov
chains (see, e.g., [6,7]) are both subclasses of GSMP.

As for the second approach, GSMP are studied by mathematicians as a stan-
dard model for discrete event simulation and Markov chains Monte Carlo (see, e.g.,
[14,17,25]). Our work is strongly related to [15,16] where the long-run average behavior
of GSMP with variable-delay events is studied. Under relatively standard assumptions
the stochastic process generated by a GSMP is shown to be irreducible and to possess an
invariant measure. In such a case, the variables d and c are almost surely constant. Be-
side the theoretical results, there exist tools that employ simulation for model checking
(see, e.g., [26,11]).

In addition, GSMP are a proper subset of stochastic automata, a model of concur-
rent systems (see, e.g., [12]). Further, as shown in [16], GSMP have the same modeling
power as stochastic Petri nets [22]. The formalism of deterministic and stochastic Petri
nets (DSPN) introduced by [21] adds deterministic transitions – a counterpart of fixed-
delay events. The authors restricted the model to at most one deterministic transition
enabled at a time and to exponentially distributed timed transitions. For this restricted
model, the authors proved existence of a steady state distribution and provided an al-
gorithm for its computation. However, the methods inherently rely on the properties of
the exponential distribution and cannot be extended to our setting with general variable
delays. DSPN have been extended by [13,19] to allow arbitrarily many deterministic
transitions. The authors provide algorithms for steady-state analysis of DSPN that were
implemented in the tool DSPNExpress [18], but do not discuss under which conditions
the steady-state distributions exist.

2 Preliminaries

In this paper, the sets of all positive integers, non-negative integers, real numbers, pos-
itive real numbers, and non-negative real numbers are denoted by N, N0, R, R>0, and
R≥0, respectively. For a real number r ∈ R, int(r) denotes its integral part, i.e. the largest
integer smaller than r, and frac(r) denotes its fractional part, i.e. r − int(r). Let A be a
finite or countably infinite set. A probability distribution on A is a function f : A→ R≥0

such that
∑

a∈A f (a) = 1. The set of all distributions on A is denoted byD(A).
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Aσ-field over a setΩ is a setF ⊆ 2Ω that includesΩ and is closed under complement
and countable union. A measurable space is a pair (Ω,F ) whereΩ is a set called sample
space and F is a σ-field over Ω whose elements are called measurable sets. Given a
measurable space (Ω,F ), we say that a function f : Ω → R is a random variable if
the inverse image of any real interval is a measurable set. A probability measure over
a measurable space (Ω,F ) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , we have P(

⋃
i∈I Xi) =

∑
i∈I P(Xi)

and, moreover, P(Ω) = 1. A probability space is a triple (Ω,F ,P), where (Ω,F ) is a
measurable space and P is a probability measure over (Ω,F ). We say that a property
A ⊆ Ω holds for almost all elements of a measurable set Y if P(Y) > 0, A ∩ Y ∈ F , and
P(A ∩ Y | Y) = 1. Alternatively, we say that A holds almost surely for Y.

2.1 Generalized Semi-Markov Processes

Let E be a finite set of events. To every e ∈ E we associate the lower bound �e ∈ N0

and the upper bound ue ∈ N ∪ {∞} of its delay. We say that e is a fixed-delay event
if �e = ue, and a variable-delay event if �e < ue. Furthermore, we say that a variable-
delay event e is bounded if ue � ∞, and unbounded, otherwise. To each variable-delay
event e we assign a density function fe : R → R such that

∫ ue

�e
fe(x) dx = 1. We assume

fe to be positive and continuous on the whole [�e, ue] or [�e,∞) if e is bounded or
unbounded, respectively, and zero elsewhere. We require that fe have finite expected
value, i.e.

∫ ue

�e
x · fe(x) dx < ∞.

Definition 1. A generalized semi-Markov process is a tuple (S ,E,E, Succ, α0) where

– S is a finite set of states,
– E is a finite set of events,
– E : S → 2E assigns to each state s a set of events E(s) � ∅ scheduled to occur in s,
– Succ : S × 2E → D(S ) is the successor function, i.e. assigns a probability dis-

tribution specifying the successor state to each state and set of events that occur
simultaneously in this state, and

– α0 ∈ D(S ) is the initial distribution.

A configuration is a pair (s, ν) where s ∈ S and ν is a valuation which assigns to
every event e ∈ E(s) the amount of time that elapsed since the event e was scheduled.1

For convenience, we define ν(e) = ⊥ whenever e � E(s), and we denote by ν(�) the
amount of time spent in the previous configuration (initially, we put ν(�) = 0). When
a set of events E occurs and the process moves from s to a state s′, the valuation of
old events of E(s) � E(s′) is discarded to ⊥, the valuation of each inherited event of
(E(s′) ∩ E(s)) � E is increased by the time spent in s, and the valuation of each new
event of (E(s′) � E(s)) ∪ (E(s′) ∩ E) is set to 0.

We illustrate the dynamics of GSMP on the example of Figure 1. Let the
bounds of the fixed-delay events roundtrip_d, polling_d, and stable_d be 1,

1 Usually, the valuation is defined to store the time left before the event appears. However, our
definition is equivalent and more convenient for the general setting where both bounded and
unbounded events appear.
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90, and 100, respectively. We start in the state Idle, i.e. in the configura-
tion (Idle, ((polling_d, 0), (stable_d, 0), (�, 0))) denoting that ν(polling_d) = 0,
ν(stable_d) = 0, ν(�) = 0, and ⊥ is assigned to all other events. After 90 time units,
the event polling_d occurs and we move to (Init, ((query, 0), (stable_d, 90), (�, 90))).
Assume that the event query occurs in the state Init after 0.6 time units and we move to
(Q-sent, ((response, 0), (roundtrip_d, 0), (stable_d, 90.6), (�, 0.6))) and so forth.

A formal semantics of GSMP is usually defined in terms of general state-space
Markov chains (GSSMC, see, e.g., [24]). A GSSMC is a stochastic process Φ over
a measurable state-space (Γ,G) whose dynamics is determined by an initial measure μ
on (Γ,G) and a transition kernel P which specifies one-step transition probabilities.2

A given GSMP induces a GSSMC whose state-space consists of all configurations,
the initial measure μ is induced by α0 in a natural way, and the transition kernel is
determined by the dynamics of GSMP described above. Formally,

– Γ is the set of all configurations, and G is a σ-field over Γ induced by the discrete
topology over S and the Borel σ-field over the set of all valuations;

– the initial measure μ allows to start in configurations with zero valuation only, i.e.
for A ∈ G we have μ(A) =

∑
s∈Zero(A) α0(s) where Zero(A) = {s ∈ S | (s, 0) ∈ A};

– the transition kernel P(z, A) describing the probability to move in one step from
a configuration z = (s, ν) to any configuration in a set A is defined as follows. It
suffices to consider A of the form {s′}×X where X is a measurable set of valuations.
Let V and F be the sets of variable-delay and fixed-delay events, respectively, that
are scheduled in s. Let F′ ⊆ F be the set of fixed-delay events that can occur as first
among the fixed-delay event enabled in z, i.e. that have in ν the minimal remaining
time u. Note that two variable-delay events occur simultaneously with probability
zero. Hence, we consider all combinations of e ∈ V and t ∈ R≥0 stating that

P(z, A) =

⎧
⎪⎪⎨
⎪⎪⎩

∑
e∈V
∫ ∞

0
Hit({e}, t) ·Win({e}, t) dt if F = ∅

∑
e∈V
∫ u

0
Hit({e}, t) ·Win({e}, t) dt + Hit(F′, u) ·Win(F′, u) otherwise,

where the term Hit(E, t) denotes the conditional probability of hitting A under the
condition that E occurs at time t and the term Win(E, t) denotes the probability
(density) of E occurring at time t. Formally,

Hit(E, t) = Succ(s, E)(s′) · 1[ν′ ∈ X]

where 1[ν′ ∈ X] is the indicator function and ν′ is the valuation after the transition,
i.e. ν′(e) is ⊥, or ν(e) + t, or 0 for each old, or inherited, or new event e, respec-
tively; and ν′(�) = t. The most complicated part is the definition of Win(E, t) which
intuitively corresponds to the probability that E is the set of events “winning” the
competition among the events scheduled in s at time t. First, we define a “shifted”
density function fe|ν(e) that takes into account that the time ν(e) has already elapsed.
Formally, for a variable-delay event e and any elapsed time ν(e) < ue, we define

fe|ν(e)(x) =
fe(x + ν(e))
∫ ∞
ν(e)

fe(y) dy
if x ≥ 0.

2 Precisely, transition kernel is a function P : Γ × G → [0, 1] such that P(z, ·) is a probability
measure over (Γ,G) for each z ∈ Γ; and P(·,A) is a measurable function for each A ∈ G.
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Otherwise, we define fe|ν(e)(x) = 0. The denominator scales the function so that
fe|ν(e) is again a density function. Finally,

Win(E, t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fe|ν(e)(t) ·∏c∈V\E
∫ ∞

t
fc|ν(c)(y) dy if E = {e} ⊆ V

∏
c∈V
∫ ∞

t
fc|ν(c)(y) dy if E = F′ ⊆ F

0 otherwise.

A run of the Markov chain is an infinite sequence σ = z0 z1 z2 · · · of configurations.
The Markov chain is defined on the probability space (Ω,F ,P) where Ω is the set of
all runs, F is the productσ-field

⊗∞
i=0 G, and P is the unique probability measure such

that for every finite sequence A0, · · · , An ∈ G we have that

P(Φ0∈A0, · · · , Φn∈An) =
∫

z0∈A0

· · ·
∫

zn−1∈An−1

μ(dz0) · P(z0, dz1) · · · P(zn−1, An)

where each Φi is the i-th projection of an element in Ω (the i-th configuration of a run).
Finally, we define an m-step transition kernel Pm inductively as P1(z, A) = P(z, A)

and Pi+1(z, A) =
∫

Γ
P(z, dy) · Pi(y, A).

2.2 Frequency Measures

Our attention focuses on frequencies of a fixed state s̊ ∈ S in the runs of the Markov
chain. Let σ = (s0, ν0) (s1, ν1) · · · be a run. We define

d(σ) = lim
n→∞

∑n
i=0 δ(si)

n
c(σ) = lim

n→∞

∑n
i=0 δ(si) · νi+1(�)
∑n

i=0 νi+1(�)

where δ(si) is equal to 1 when si = s̊, and 0 otherwise. We recall that νi+1(�) is the
time spent in state si before moving to si+1. We say that the random variable d or c is
well-defined for a run σ if the corresponding limit exists for σ. Then, d corresponds to
the frequency of discrete visits to the state s̊ and c corresponds to the ratio of time spent
in the state s̊.

2.3 Region Graph

In order to state the results in a simpler way, we introduce the region graph, a standard
notion from the area of timed automata [5]. It is a finite partition of the uncountable set
of configurations. First, we define the region relation ∼. For a, b ∈ R, we say that a and
b agree on integral part if int(a) = int(b) and neither or both a, b are integers. Further,
we set the bound B = max

({�e, ue | e ∈ E} \ {∞}). Finally, we put (s1, ν1) ∼ (s2, ν2) if

– s1 = s2;
– for all e ∈ E(s1) we have that ν1(e) and ν2(e) agree on integral parts or are both

greater than B;
– for all e, f ∈ E(s1) with ν1(e) ≤ B and ν1( f ) ≤ B we have that frac(ν1(e)) ≤

frac(ν1( f )) iff frac(ν2(e)) ≤ frac(ν2( f )).
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Fig. 2. A GSMP of a producer-consumer system. The events p, t, and c model that a packet
production, transport, and consumption is finished, respectively. Below each state label, there is
the set of scheduled events. The fixed-delay events p and c have lp = up = lc = uc = 1 and the
uniformly distributed variable-delay event t has lt = 0 and ut = 1.

Note that ∼ is an equivalence with finite index. The equivalence classes of ∼ are called
regions. We define a finite region graph G = (V, E) where the set of vertices V is the set
of regions and for every pair of regions R,R′ there is an edge (R,R′) ∈ E iff P(z,R′) > 0
for some z ∈ R. The construction is correct because all states in the same region have
the same one-step qualitative behavior (for details, see [10]).

3 Two Fixed-Delay Events

Now, we explain in more detail what problems can be caused by fixed-delay events. We
start with an example of a GSMP with two fixed-delay events for which it is not true
that the variables d and c are well-defined for almost all runs. Then we show some other
examples of GSMP with fixed-delay events that disprove some results from literature.
In the next section, we provide positive results when the number and type of fixed-delay
events are limited.

When the Frequencies d and c are Not Well-Defined

In Figure 2, we show an example of a GSMP with two fixed-delay events and one
variable-delay event for which it is not true that the variables d and c are well-defined
for almost all runs. It models the following producer-consumer system. We use three
components – a producer, a transporter and a consumer of packets. The components
work in parallel but each component can process (i.e. produce, transport, or consume)
at most one packet at a time.

Consider the following time requirements: each packet production takes exactly
1 time unit, each transport takes at most 1 time unit, and each consumption takes again
exactly 1 time unit. As there are no limitations to block the producer, it is working for all
the time and new packets are produced precisely each time unit. As the transport takes
shorter time than the production, every new packet is immediately taken by the trans-
porter and no buffer is needed at this place. When a packet arrives to the consumer, the
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Fig. 3. A GSMP with two fixed-delay events p and c (with lp = up = lc = uc = 1), a uniformly
distributed variable-delay events t, t′ (with lt = lt′ = 0 and ut = ut′ = 1)

consumption is started immediately if the consumer is waiting; otherwise, the packet
is stored into a buffer. When the consumption is finished and the buffer is empty, the
consumer waits; otherwise, a new consumption starts immediately.

In the GSMP in Figure 2, the consumer has two modules – one is in operation and
the other idles at a time – when the consumer enters the waiting state, it switches the
modules. The labels 1 and 2 denote which module of the consumer is in operation.

One can easily observe that the consumer enters the waiting state (and switches the
modules) if and only if the current transport takes more time than it has ever taken. As
the transport time is bounded by 1, it gets harder and harder to break the record. As
a result, the system stays in the current module on average for longer time than in the
previous module. Therefore, due to the successively prolonging stays in the modules,
the frequencies for 1-states and 2-states oscillate. For precise computations, see [10].
We conclude the above observation by the following theorem.

Theorem 1. There is a GSMP (with two fixed-delay events and one variable-delay
event) for which it is not true that the variables c and d are almost surely well-defined.

Counterexamples

In [3,4] there are algorithms for GSMP model checking based on the region construc-
tion. They rely on two crucial statements of the papers:

1. Almost all runs end in some of the bottom strongly connected components (BSCC)
of the region graph.

2. Almost all runs entering a BSCC visit all regions of the component infinitely often.

Both of these statements are true for finite state Markov chains. In the following, we
show that neither of them has to be valid for region graphs of GSMP.

Let us consider the GSMP depicted in Figure 3. This is a producer-consumer model
similar to the previous example but we have only one module of the consumer here.
Again, entering the state C-waiting indicates that the current transport takes more time
than it has ever taken. In the state C-waiting, an additional event t′ can occur and move
the system into a state Sink. One can intuitively observe that we enter the state C-waiting
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less and less often and stay there for shorter and shorter time. Hence, the probability
that the event t′ occurs in the state C-waiting is decreasing during the run. For precise
computations proving the following claim, see [10].

Claim. The probability to reach Sink from Init is strictly less than 1.

The above claim directly implies the following theorem thus disproving statement 1.

Theorem 2. There is a GSMP (with two fixed-delay and two variable delay events)
where the probability to reach any BSCC of the region graph is strictly smaller than 1.

Now consider in Figure 3 a transition under the event p from the state Sink to the state
Init instead of the self-loop. This turns the whole region graph into a single BSCC.
We prove that the state Sink is almost surely visited only finitely often. Indeed, let
p < 1 be the original probability to reach Sink guaranteed by the claim above. The
probability to reach Sink from Sink again is also p as the only transition leading from
Sink enters the initial configuration. Therefore, the probability to reach Sink infinitely
often is limn→∞ pn = 0. This proves the following theorem. Hence, the statement 2
of [3,4] is disproved, as well.

Theorem 3. There is a GSMP (with two fixed-delay and two variable delay events)
with strongly connected region graph and with a region that is reached infinitely often
with probability 0.

4 Single-Ticking GSMP

First of all, motivated by the previous counterexamples, we identify the behavior of the
fixed-delay events that may cause d and c to be undefined. The problem lies in fixed-
delay events that can immediately schedule themselves whenever they occur; such an
event can occur periodically like ticking of clocks. In the example of Figure 3, there are
two such events p and c. The phase difference of their ticking gets smaller and smaller,
causing the unstable behavior.

For two fixed-delay events e and e′, we say that e causes e′ if there are states s, s′
and a set of events E such that Succ(s, E)(s′)>0, e ∈ E, and e′ is newly scheduled in s′.

Definition 2. A GSMP is called single-ticking if either there is no fixed-delay event
or there is a strict total order < on fixed-delay events with the least element e (called
ticking event) such that whenever f causes g then either f < g or f = g = e.

From now on we restrict to single-ticking GSMP and prove our main positive result.

Theorem 4. In single-ticking GSMP, the random variables d and c are well-defined
for almost every run and admit only finitely many values. Precisely, almost every run
reaches a BSCC of the region graph and for each BSCC B there are values d, c ∈ [0, 1]
such that d(σ) = d and c(σ) = c for almost all runs σ that reach the BSCC B.

The rest of this section is devoted to the proof of Theorem 4. First, we show that almost
all runs end up trapped in some BSCC of the region graph. Second, we solve the prob-
lem while restricting to runs that start in a BSCC (as the initial part of a run outside of
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any BSCC is not relevant for the long run average behavior). We show that in a BSCC,
the variables d and c are almost surely constant. The second part of the proof relies on
several standard results from the theory of general state space Markov chains. Formally,
the proof follows from Propositions 1 and 2 stated below.

4.1 Reaching a BSCC

Proposition 1. In single-ticking GSMP, almost every run reaches a BSCC of the region
graph.

The proof uses similar methods as the proof in [4]. By definition, the process moves
along the edges of the region graph. From every region, there is a minimal path through
the region graph into a BSCC, let n be the maximal length of all such paths. Hence, in
at most n steps the process reaches a BSCC with positive probability from any config-
uration. Observe that if this probability was bounded from below, we would eventually
reach a BSCC from any configuration almost surely. However, this probability can be
arbitrarily small. Consider the following example with event e uniform on [0, 1] and
event f uniform on [2, 3]. In an intuitive notation, let R be the region [0 < e < f < 1].
What is the probability that the event e occurs after the elapsed time of f reaches 1
(i.e. that the region [e = 0; 1 < f < 2] is reached)? For a configuration in R with val-
uation ((e, 0.2), ( f , 0.7)) the probability is 0.5 but for another configuration in R with
((e, 0.2), ( f , 0.21)) it is only 0.01. Notice that the transition probabilities depend on the
difference of the fractional values of the clocks, we call this difference separation. Ob-
serve that in other situations, the separation of clocks from value 0 also matters.

Definition 3. Let δ > 0. We say that a configuration (s, ν) is δ-separated if for every
x, y ∈ {0} ∪ {ν(e) | e ∈ E(s)}, we have either |frac(x) − frac(y)| > δ or frac(x) = frac(y).

We fix a δ > 0. To finish the proof using the concept of δ-separation, we need two obser-
vations. First, from any configuration we reach in m steps a δ-separated configuration
with probability at least q > 0. Second, the probability to reach a fixed region from any
δ-separated configuration is bounded from below by some p > 0. By repeating the two
observations ad infinitum, we reach some BSCC almost surely. Let us state the claims.
For proofs, see [10].

Lemma 1. There is δ > 0, m ∈ N and q > 0 such that from every configuration we
reach a δ-separated configuration in m steps with probability at least q.

Lemma 2. For every δ > 0 and k ∈ N there is p > 0 such that for any pair of regions R,
R′ connected by a path of length k and for any δ-separated z ∈ R, we have Pk(z,R′) > p.

Lemma 2 holds even for unrestricted GSMP. Notice that Lemma 1 does not. As in the
example of Figure 3, the separation may be non-increasing for all runs.

4.2 Frequency in a BSCC

From now on, we deal with the bottom strongly connected components that are reached
almost surely. Hence, we assume that the region graph G is strongly connected. We



Fixed-Delay Events in GSMP Revisited 151

have to allow an arbitrary initial configuration z0 = (s, ν); in particular, ν does not have
to be a zero vector.3

Proposition 2. In a single-ticking GSMP with strongly connected region graph, there
are values d, c ∈ [0, 1] such that for any initial configuration z0 and for almost all runs
σ starting from z0, we have that d and c are well-defined and d(σ) = d and c(σ) = c.

We assume that the region graph is aperiodic in the following sense. A period p of a
graph G is the greatest common divisor of lengths of all cycles in G. The graph G is
aperiodic if p = 1. Under this assumption4, the chainΦ is in some sense stable. Namely,
(i) Φ has a unique invariant measure that is independent of the initial measure and (ii)
the strong law of large numbers (SLLN) holds for Φ.

First, we show that (i) and (ii) imply the proposition. Let us recall the notions. We
say that a probability measure π on (Γ,G) is invariant if for all A ∈ G

π(A) =

∫

Γ

π(dx)P(x, A).

The SLLN states that if h : Γ → R satisfies Eπ[h] < ∞, then almost surely

lim
n→∞

∑n
i=1 h(Φi)

n
= Eπ[h], (1)

where Eπ[h] is the expected value of h according to the invariant measure π.
We set h as follows. For a run (s0, ν0)(s1, ν1) · · · , let h(Φi) = 1 if si = s̊ and 0,

otherwise. We have Eπ[h] < ∞ since h ≤ 1. From (1) we obtain that almost surely

d = lim
n→∞

∑n
i=1 h(Φi)

n
= Eπ[h].

As a result, d is well-defined and equals the constant value Eπ[h] for almost all runs.
We treat the variable c similarly. Let W((s, ν)) denote the expected waiting time of the
GSMP in the configuration (s, ν). We use a function τ((s, ν)) = W((s, ν)) if s = s̊ and
0, otherwise. Since all the events have finite expectation, the functions W and τ are
bounded and we have Eπ[W] < ∞ and Eπ[τ] < ∞. We show in [10] that almost surely

c = lim
n→∞

∑n
i=1 τ(Φi)

∑n
i=1 W(Φi)

=
Eπ[τ]
Eπ[W]

.

Therefore, c is well-defined and equals the constant Eπ[τ]/Eπ[W] for almost all runs.
Second, we prove (i) and (ii). A standard technique of general state space Markov

chains (see, e.g., [24]) yields (i) and (ii) for chains that satisfy the following condition.
Roughly speaking, we search for a set of configurations C that is visited infinitely often
and for some � the measures P�(x, ·) and P�(y, ·) are very similar for any x, y ∈ C. This
is formalized by the following lemma.

3 Technically, the initial measure is μ(A) = 1 if z0 ∈ A and μ(A) = 0, otherwise.
4 If the region graph has period p > 1, we can employ the standard technique and decompose the

region graph (and the Markov chain) into p aperiodic components. The results for individual
components yield straightforwardly the results for the whole Markov chain, see, e.g., [9].
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Lemma 3. There is a measurable set of configurations C such that

1. there is k ∈ N and α > 0 such that for every z ∈ Γ we have Pk(z,C) ≥ α, and
2. there is � ∈ N, β > 0, and a probability measure κ such that for every z ∈ C and

A ∈ G we have P�(z, A) ≥ β · κ(A).

Proof (Sketch). Let e be the ticking event and R some reachable region where e is the
event closest to its upper bound. We fix a sufficiently small δ > 0 and choose C to be the
set of δ-separated configurations of R. We prove the first part of the lemma similarly to
Lemmata 1 and 2. As regards the second part, we define the measure κ uniformly on a
hypercube X of configurations (s, ν) that have ν(e) = 0 and ν( f ) ∈ (0, δ), for f � e. First,
assume that e is the only fixed-delay event. We fix z = (s′, ν′) in R; let d = ue−ν′(e) > δ
be the time left in z before e occurs. For simplicity, we assume that each variable-delay
events can occur after an arbitrary delay x ∈ (d − δ, d). Precisely, that it can occur in
an ε-neighborhood of x with probability bounded from below by β · ε where β is the
minimal density value of all E. Note that the variable-delay events can be “placed” this
way arbitrarily in (0, δ). Therefore, when e occurs, it has value 0 and all variable-delay
events can be in interval (0, δ). In other words, we have P�(z, A) ≥ β · κ(A) for any
measurable A ⊆ X and for � = |E|.

Allowing other fixed-delay events causes some trouble because a fixed-delay event
f � e cannot be “placed” arbitrarily. In the total order <, the event f can cause
only strictly greater fixed-delay events. The greatest fixed-delay event can cause only
variable-delay events that can be finally “placed” arbitrarily as described above. ��

5 Approximations

In the previous section we have proved that in single-ticking GSMP, d and c are al-
most surely well-defined and for almost all runs they attain only finitely many values
d1 . . . , dk and c1, . . . , ck, respectively. In this section we show how to approximate di’s
and ci’s and the probabilities that d and c attain these values, respectively.

Theorem 5. In a single-ticking GSMP, let d1, . . . , dk and c1, . . . , ck be the discrete and
timed frequencies, respectively, corresponding to BSCCs of the region graph. For all
1 ≤ i ≤ k, the numbers di and ci as well as the probabilities P(d = di) and P(c = ci)
can be approximated up to any ε > 0.

Proof. Let X1, . . . , Xk denote the sets of configurations in individual BSCCs and di and
ci correspond to Xi. Since we reach a BSCC almost surely, we have

P(d = di) =
k∑

j=1

P(d = di | Reach(X j)) · P(Reach(X j)) =
k∑

j=1

1[d j = di] · P(Reach(X j))

where the second equality follows from the fact that almost all runs in the j-th BSCC
yield the discrete frequency d j. Therefore, P(d = di) and di can be approximated as
follows using the methods of [25].
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Claim. Let X be a set of all configurations in a BSCC B, Xs̊ ⊆ X the set of config-
urations with state s̊, and d the frequency corresponding to B. There are computable
constants n1, n2 ∈ N and p1, p2 > 0 such that for every i ∈ N and zX ∈ X we have

|P(Reach(X)) − Pi(z0, X)| ≤ (1 − p1)�i/n1�
|d − Pi(zX , Xs̊)| ≤ (1 − p2)�i/n2�

Further, we want to approximate ci = Eπ[τ]/Eπ[W], where π is the invariant measure
on Xi. In other words, we need to approximate

∫

Xi
τ(x)π(dx) and

∫

Xi
W(x)π(dx). An n-

th approximation wn(x) of W(x) can be gained by discretizing the regions into, e.g.,
1/n-large hypercubes. If W is continuous, then (wn)∞n=1 is its pointwise approximation.
Moreover, if W is bounded, then it is dominated by the approximation function wn.
Hence the approximation is correct by the dominated convergence theorem. Note that τ
only differs from W in being identically zero on some regions. Therefore, the following
claim concludes the proof. For details, see [10].

Claim. On each region, W is continuous and bounded and can be approximated.

6 Conclusions, Future Work

We have studied long run average properties of generalized semi-Markov processes
with both fixed-delay and variable-delay events. We have shown that two or more (un-
restricted) fixed-delay events lead to considerable complications regarding stability of
GSMP. In particular, we have shown that the frequency of states of a GSMP may not be
well-defined and that bottom strongly connected components of the region graph may
not be reachable with probability one. This leads to counterexamples disproving sev-
eral results from literature. On the other hand, for single-ticking GSMP we have proved
that the frequencies of states are well-defined for almost all runs. Moreover, we have
shown that almost every run has one of finitely many possible frequencies that can be
effectively approximated (together with their probabilities) up to a given error tolerance.

In addition, the frequency measures can be easily extended into the mean payoff
setting. Consider assigning real rewards to states. The mean payoff then corresponds to
the frequency weighted by the rewards.

Concerning future work, the main issue is efficiency of algorithms for computing
performance measures for GSMP. We plan to work on both better analytical methods
as well as practicable approaches to Monte Carlo simulation. One may also consider
extensions of our positive results to controlled GSMP and games on GSMP.
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Abstract. Gossip protocols have been proposed as a robust and efficient
method for disseminating information throughout large-scale networks.
In this paper, we propose a compositional analysis technique to study
formal probabilistic models of gossip protocols in the context of wire-
less sensor networks. We introduce a simple probabilistic timed process
calculus for modelling wireless sensor networks. A simulation theory is
developed to compare probabilistic protocols that have similar behaviour
up to a certain probability. This theory is used to prove a number of
algebraic laws which revealed to be very effective to evaluate the perfor-
mances of gossip networks with and without communication collisions.

1 Introduction

Wireless sensor networks (WSNs) are (possibly large-scale) networks of sensor
nodes deployed in strategic areas to gather data. Sensor nodes collaborate using
wireless communications with an asymmetric many-to-one data transfer model.
Typically, they send their sensed data to a sink node which collects the rel-
evant information. WSNs are primarily designed for monitoring environments
that humans cannot easily reach (e.g., motion, target tracking, fire detection,
chemicals, temperature); they are used as embedded systems (e.g., biomedical
sensor engineering, smart homes) or mobile applications (e.g., when attached
to robots, soldiers, or vehicles). In wireless sensor networks, sensor nodes are
usually battery-powered, and the energy expenditure of sensors has to be wisely
managed by their architectures and protocols to prolong the overall network
lifetime. Energy conservation is thus one of the major issues in sensor networks.

Flooding is a traditional robust algorithm that delivers data packets in a
network from a source to a destination. In WSNs, each node that receives a
message propagates it to all its neighbours by broadcast. This causes unnecessary
retransmissions increasing the number of collisions, together depriving sensors
of valuable battery power. Therefore, flooding algorithms may not be suitable
in the context of dense networks like wireless sensor networks.

Gossipping [9] addresses some critical problems of flooding overhead. The goal
of gossip protocols is to reduce the number of retransmissions by making some
of the nodes discard the message instead of forwarding it. Gossip protocols ex-
hibit both nondeterministic and probabilistic behaviour. Nondeterminism arises
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as they deal with distributed networks in which the activities of individual nodes
occur nondeterministically. As to the probabilistic behaviour, nodes are required
to forward packets with a pre-specified gossip probability pgsp. When a node re-
ceives a message, rather than immediately retransmitting it as in flooding, it relies
on the probability pgsp to determine whether or not to retransmit. The main ben-
efit is that when pgsp is sufficiently large, the entire network receives the broadcast
message with very high probability, even though only a nondeterministic subset
of nodes has forwarded the message.

Most of the analyses of protocols for large-scale WSNs are usually based on
discrete-event simulators (e.g., ns-2, Opnet and Glomosim). However, different
simulators often support different models of the MAC physical-layer yielding
different results, even for simple systems. In principle, as noticed in [2], owing
to their often relatively simple structure, gossip protocols lend themselves very
well to formal analysis, in order to predict their behaviour with high confidence.
Formal analysis techniques are supported by (semi-)automated tools. For in-
stance, probabilistic model checking [6,10] provides both an exhaustive search
of all possible behaviours of the system, and exact, rather than approximate,
quantitative results. Of course, model checking suffers from the so-called state
explosion problem whereas simulation-based approaches are scalable to much
larger systems, at the expense of exhaustiveness and numerical accuracy.

Contribution. In this paper, we propose a compositional analysis technique to
study probabilistic models of gossip protocols in the context of WSNs. We intro-
duce a simple probabilistic timed process calculus, called pTCWS, for modelling
wireless sensor networks. We then develop a compositional simulation theory,
denoted �p, to compare probabilistic protocols that have similar behaviour up
to a certain probability p. Intuitively, we write M �p N if M is simulated by N
with a probability (at least) p. Compositionality is crucial when reasoning about
large-scale protocols where all nodes run the same probabilistic (simple) code as
in gossip protocols. For instance, it allows us to join and sometime merge the
behaviour of different components of a network. In particular, for a gossip net-
work GSPpgsp , which transmits with gossip probability pgsp, we can estimate the
probability pok to simulate a non-probabilistic network GSP OK whose target
nodes successfully receive the message:

GSP OK �pok GSPpgsp .

For this purpose, we prove and apply a number of algebraic laws, whose appli-
cation can be mechanised, to evaluate the performances of gossip networks.

The paper uses the gossip protocol described above as baseline. That descrip-
tion, however, is incomplete. It does not specify, for instance, what happens in
case of a collision, i.e. when a node receives two messages at the same time.
We start our analysis by assuming no collision. Then, we study gossip proto-
cols in the presence of communication collision, to determine its effect on the
performance results.

In this paper proofs are sketched or omitted; full proofs can be found in [12].
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Table 1 Syntax

Networks:
M, N ::= 0 empty network∣∣ M1 | M2 parallel composition∣∣ n[P ]ν node

Processes:
P, Q ::= nil stuck∣∣ !〈u〉.C broadcast∣∣ ?(x).C�D receiver with timeout∣∣ τ.C�D internal with timeout∣∣ σ.C sleep∣∣ X process variable∣∣ fixX.P recursion

Probabilistic Choice:
C, D ::=

⊕
i∈I pi:Pi

2 A Probabilistic Timed Process Calculus

In Table 1, we define the syntax of pTCWS in a two-level structure, a lower one
for processes and an upper one for networks. We use letters m,n, . . . for logical
names, x, y, z for variables, u for values, and v and w for closed values, i.e. values
that do not contain variables.

A network in pTCWS is a (possibly empty) collection of nodes (which represent
devices) running in parallel and using a unique common radio channel to com-
municate with each other. All nodes are assumed to have the same transmission
range (this is a quite common assumption in models for ad hoc networks).The
communication paradigm is local broadcast ; only nodes located in the range of
the transmitter may receive data. We write n[P ]ν for a node named n (the device
network address) executing the sequential process P . The tag ν contains (the
names of) the neighbours of n. Said in other words, ν contains all nodes laying
in the transmission cell of n (except n). In this manner, we model the network
topology.1 Our wireless networks have a fixed topology as node mobility is not
relevant to sensor networks. Moreover, nodes cannot be created or destroyed.

Processes are sequential and live within the nodes. The symbol nil denotes the
stuck process. The sender process !〈v〉.C broadcasts the value v, the continuation
being C. The process &?(x).C'D denotes a receiver with timeout. Intuitively, this
process either receives a value v, in the current time interval, and then continues
as C where the variable x is instantiated with v, or it idles for one time unit, and
then continues as D. Similarly, the process &τ.C'D either performs an internal
action, in the current time interval, or it idles for one time unit and then continues
1 We could have represented the topology in terms of a restriction operator à la CCS

on node names; we preferred our notation to keep at hand the neighbours of a node.
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as D. The process σ.C models sleeping for one time unit. In sub-terms of the form
σ.D, &τ.C'D and &?(x).C'D the occurrence of D is said to be time-guarded. The
process fixX.P denotes time-guarded recursion, as all occurrences of the process
variable X may only occur time-guarded in P .

Remark 1. In the remainder of the paper, with an abuse of notation, we will write
?(x).C to denote a persistent listener, defined as fixX.&?(x).C'X. Similarly, we
will write τ.C as an abbreviation for fixX.&τ.C'X.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is an indexing
finite set and pi ∈ (0, 1] denotes the probability to execute the process Pi, with∑

i∈I pi = 1. In process &?(x).C'D the variable x is bound in C. Similarly, in
process fixX.P the process variable X is bound in P . This gives rise to the
standard notions of free (process) variables and bound (process) variables and
α-conversion. We identify processes and networks up to α-conversion. A term is
said to be closed if it does not contain free (process) variables. We always work
with closed networks: The absence of free variables is trivially maintained at
run-time. We write {v/x}T for the substitution of the variable x with the value
v in the term T . Similarly, we write {P/X}T for the substitution of the process
variable X with the process P in T .

We report some notational conventions .
∏

i∈I Mi denotes the parallel compo-
sition of all Mi, for i ∈ I. We identify

∏
i∈I Mi = 0 if I = ∅. We write P1 ⊕p P2

to denote the probabilistic process p:P1⊕(1−p):P2. We identify the probabilistic
process 1:P with P . We write !〈v〉 as an abbreviation for !〈v〉.1:nil. For k > 0 we
write σk.P as an abbreviation for σ.σ. . . . σ.P , where prefix σ appears k times.

Here are some definitions that will be useful in the remainder of the paper.
Given a network M , nds(M) returns the names of M . If m ∈ nds(M), the
function ngh(m,M) returns the set of the neighbours of m in M . Thus, for
M = M1 | m[P ]ν | M2 it holds that ngh(m,M) = ν. We write ngh(M) for⋃

m∈nds(M) ngh(m,M).

Definition 1. Structural congruence over pTCWS, written ≡, is defined as the
smallest equivalence relation, preserved by parallel composition, which is a com-
mutative monoid with respect to parallel composition and for which n[fixX.P ]ν ≡
n[P{fix X.P/X}]ν .

The syntax presented in Table 1 allows to derive networks which are somehow ill-
formed. With the following definition we rule out networks containing two nodes
with the same name. Moreover, as all nodes have the same transmission range,
the neighbouring relation must be symmetric. Finally, in order to guarantee clock
synchronisation, we impose network connectivity.

Definition 2 (Well-formedness). M is said to be well-formed if

– whenever M ≡M1 | m1[P1]
ν1 | m2[P2]

ν2 it holds that m1 	= m2;
– whenever M ≡ N | m1[P1]

ν1 | m2[P2]
ν2 with m1 ∈ ν2 it holds that m2 ∈ ν1;

– for all m,n ∈ nds(M) there are m1, . . . ,mk ∈ nds(M), such that m=m1,
n=mk, νj = ngh(mj ,M), for 1≤j≤k, and mi ∈ νi+1, for 1≤i≤k−1.

Henceforth we will always work with well-formed networks.
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2.1 Probabilistic Labelled Transition Semantics

Along the lines of [5,11], we propose an operational semantics for pTCWS associat-
ing with each network a graph-like structure representing its possible reactions:
We use a generalisation of labelled transition system that includes probabilities.

Below, we report the mathematical machinery for doing that.

Definition 3 (Deng et al. [5]). A (discrete) probability sub-distribution over
a countable set S is a function Δ : S → [0, 1] such that

∑
s∈S Δ(s) ∈ (0..1]. The

support of a probability sub-distribution Δ is given by )Δ* = {s ∈ S | Δ(s) >
0}. We write Dsub(S), ranged over Δ, Θ, Φ, for the set of all probability sub-
distributions over S with finite support. For any s ∈ S, the point distribution at
s, written s, assigns probability 1 to s and 0 to all others elements of S.

If pi ≥ 0 and Δi is a sub-distribution for each i in some finite index set I, and∑
i∈I pi ∈ (0, 1], then the probability sub-distribution

∑
i∈I pi ·Δi is given by

(
∑
i∈I

pi ·Δi)(s) def=
∑
i∈I

pi ·Δi(s) .

We write a sub-distribution as p1 · Δ1 + ... + pn · Δn, when the index set I is
{1, . . . , n}. Sometimes, with an abuse of notation, in the previous decomposition,
the terms Δi are not necessarily distinct (for instance 1 ·Δ may be rewritten as
p ·Δ+ (1−p) ·Δ, for any p ∈ [0..1]). A probability sub-distribution Δ ∈ Dsub(S)
is said to be a probability distribution if

∑
s∈S Δ(s) = 1. With D(S) we denote

the set of all probability distributions over S with finite support.
Definition 1 and Definition 2 generalise to sub-distributions in Dsub(pTCWS).

Given two probability sub-distributions Δ and Θ, we write Δ ≡ Θ whenever
Δ([M ]≡) = Θ([M ]≡) for all equivalence classes [M ]≡ ⊆ pTCWS of ≡. Moreover,
a probability sub-distribution Δ ∈ Dsub(pTCWS) is said to be well-formed if its
support contains only well-formed networks.

We now give the probabilistic generalisation of labelled transition system:

Definition 4 (Deng et al. [5]). A probabilistic labelled transition system2

(pLTS) is a triple 〈S,L,→〉 where i) S is a set of states; ii) L is a set of transition
labels; iii) → is a labelled transition relation contained in S × L×D(S).

The operational semantics of pTCWS is given by a particular pLTS 〈pTCWS,L,→〉,
where L = {m!v�μ,m?v, τ, σ} contains the labels denoting broadcasting, recep-
tion, internal actions and time passing, respectively. As regards the labelled
transition relation, we need to formalise the interpretation of nodes containing
probabilistic processes as probability distributions.

Definition 5. For any probabilistic choice
⊕

i∈I pi:Pi over a finite indexing set
I, �n[

⊕
i∈I pi:Pi]

ν� denotes the probability distribution defined as follows:

– if I 	=∅ then for any M∈pTCWS: �n[
⊕

i∈I pi:Pi]
ν�(M) def=

∑
i∈I ∧n[Pi]

ν=M pi

2 Essentially the same model has appeared in the literature under different names such
as, for instance, NP-systems [8] or simple probabilistic automata [15].
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Table 2 Probabilistic Labelled Transition System

(Snd)
−

m[!〈v〉.C]ν
m!v�ν−−−−−−→ �m[C]ν�

(Rcv)
m ∈ ν

n[?(x).C�D]ν
m?v−−−−→ �n[{v/x}C]ν�

(Rcv-0)
−

0
m?v−−−−→ 0

(RcvEnb)
¬(m ∈ ν ∧ rcv(P )) ∧ m �= n

n[P ]ν
m?v−−−−→ n[P ]ν

(RcvPar)
M

m?v−−−−→ Δ N
m?v−−−−→ Θ

M | N m?v−−−−→ Δ | Θ
(Bcast)

M
m!v�ν−−−−−−→ Δ N

m?v−−−−→ Θ μ:=ν\nds(N)

M | N m!v�μ−−−−−−→ Δ | Θ

(Tau)
−

m[τ.C�D]ν
τ−−→ �m[C]ν�

(TauPar)
M

τ−−→ Δ

M | N τ−−→ Δ | N

(σ-0)
−

0
σ−−→ 0

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Timeout)
−

n[. . .�D]ν
σ−−→ �n[D]ν�

(Sleep)
−

n[σ.C]ν
σ−−→ �n[C]ν�

(σ-Par)
M

σ−−→ Δ N
σ−−→ Θ

M | N σ−−→ Δ | Θ (Rec)
n[{fix X.P/X}P ]ν

λ−−→ Δ

n[fixX.P ]ν
λ−−→ Δ

– if I = ∅ then �n[
⊕

i∈I pi:Pi]
ν� def= n[nil]ν .

The definition of the relations
λ−−→, for λ ∈ L, is given in Table 2. Some of

these rules use an obvious notation for distributing parallel composition over a
(sub-)distribution:

(Δ | Θ)(M) def=

{
Δ(M1) ·Θ(M2) if M = M1 |M2

0 otherwise.

In rule (Snd) a sender m broadcasts a message v to its neighbours ν, and then
continues as C. In the label m!v�ν the set ν contains the neighbours of m which
may receive the message v. In rule (Rcv) a receiver gets a message v from a
neighbour node m, and then evolves as {v/x}C. If no message is received in the
current time interval the node n will continue with process D, as specified in
rule (Timeout). Rules (Rcv-0) and (RcvEnb) serve to model reception enabling for
synchronisation purposes. For instance, rule (RcvEnb) regards nodes which are
not involved in transmissions originating from m. This may happen either be-
cause the two nodes are out of range (i.e. m 	∈ ν) or because n is not willing to re-
ceive (rcv(P ) is a boolean predicate that returns true if n[P ]ν ≡ n[&?(x).C'D]ν ,
for some x, C, D). In both cases, node n is not affected by the transmis-
sion. In rule (RcvPar) we model the composition of two networks receiving the
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same message from the same transmitter. Rule (Bcast) models the propagation
of messages on the broadcast channel. Note that we loose track of those trans-
mitter’s neighbours that are in N . Rule (Tau) models internal computations in a
single node. Rule (TauPar) propagates internal computations on parallel compo-
nents. Rules (σ-nil) and (σ-0) are straightforward as both terms 0 and n[nil]ν do
not prevent time-passing. Rule (Sleep) models sleeping for one time unit. Rule
(σ-Par) models time synchronisation between parallel components. Rule (Rec) is
standard. Rules (Bcast) and (TauPar) have their symmetric counterparts.

Below, we report a number of basic properties of our LTS.

Proposition 1. Let M , M1 and M2 be well-formed networks.

1. m 	∈ nds(M) if and only if M
m?v−−−−→ Δ, for some distribution Δ.

2. If M1 |M2
m?v−−−−→ Δ if and only if there are Δ1 and Δ2 such that M1

m?v−−−−→
Δ1, M2

m?v−−−−→ Δ2 with Δ = Δ1 | Δ2.

3. If M
m!v�μ−−−−−−→ Δ then M ≡ m[!〈v〉.C]ν | N , for some m, ν, C and N

such that m[!〈v〉.C]ν
m!v�ν−−−−−−→ �m[C]ν�, N

m?v−−−−→ Θ, Δ ≡ �m[C]ν� | Θ and
μ = ν \ nds(N).

4. If M
τ−−→ Δ then M ≡ m[&τ.C'D]ν | N , for some m, ν, C, D and N such

that m[&τ.C'D]ν
τ−−→ �m[C]ν� and Δ ≡ �m[C]ν� | N .

5. M1 | M2
σ−−→ Δ if and only if there are Δ1 and Δ2 such that M1

σ−−→ Δ1,
M2

σ−−→ Δ2 and Δ = Δ1 | Δ2.

As the topology of our networks is static and nodes cannot be created or de-
stroyed, it is easy to prove the following result.

Proposition 2 (Well-formedness preservation). Let M be a well-formed

network. If M
λ−−→ Θ then Θ is a well-formed distribution.

2.2 Time Properties

Our calculus enjoys a number of desirable time properties. Proposition 3 for-
malises the determinism nature of time passing: a network can reach at most
one new state by executing the action σ.

Proposition 3 (Time Determinism). Let M be a well-formed network. If
M

σ−−→ Δ and M
σ−−→ Θ then Δ and Θ are syntactically the same.

The maximal progress property says that sender nodes transmit immediately.
Said in other words, the passage of time cannot block transmissions.

Proposition 4 (Maximal Progress). Let M be a well-formed network. If
M ≡ m[!〈v〉.C]ν | N then M

σ−−→ Δ for no distribution Δ.

Patience guarantees that a process will wait indefinitely until it can communi-
cate [7]. In our setting, this means that if no transmissions can start then it must
be possible to execute a σ-action to let time pass.
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Proposition 5 (Patience). Let M =
∏

i∈I mi[Pi]
νi be a well-formed network,

such that for all i ∈ I it holds that Pi 	= !〈v〉.C, then there is a distribution Δ

such that M
σ−−→ Δ.

Finally, as recursion is time-guarded, our networks satisfy the well-timedness (or
finite variability) property [14]. Intuitively, only a finite number of instantaneous
actions can fire between two contiguous σ-actions.

Proposition 6 (Well-Timedness). For any well-formed network M there is
an upper bound k ∈ N such that whenever M

α1−−−→ · · · αh−−−→ Δ, αj 	= σ for
1 ≤ j ≤ h, then h ≤ k.

3 Simulation Up to Probability

In this section, we use our pLTS to define an appropriate probabilistic timed
simulation theory for pTCWS. Our focus is on weak similarities which abstract
away non-observable actions. To this end, we extend the set of rules of Table 2
with the following two rules:

(Shh)
M

m!v�∅−−−−−→ Δ

M
τ−−→ Δ

(Obs)
M

m!v�ν−−−−−−→ Δ ν 	= ∅
M

!v�ν−−−−→ Δ

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers is in the environment. Rule (Obs) models transmissions that
can be observed by those nodes of the environment contained in ν. Notice that
the name of the transmitter is removed from the label. This is motivated by the
fact that nodes may refuse to reveal their identities, e.g. for security reasons or
limited sensory capabilities in perceiving these identities. Notice also that in a
derivation tree the rule (Obs) can only be applied at top-level.

In the rest of the paper, the metavariable α ranges over the following actions:
!v�ν, m?v, τ , and σ.

Let us provide the definition of weak transition. In a probabilistic setting, this
definition is somewhat complicated by the fact that transitions go from processes
(in our case networks) to distributions; consequently if we use weak transitions

α==⇒, which abstract from sequences of internal actions, then we need to gener-
alise transitions, so that they go from (sub-)distributions to (sub-)distributions.

We write M
τ̂−−→ Δ if either M

τ−−→ Δ or Δ = M , and M
α̂−−→ Δ if M

α−−→ Δ,
for α 	= τ . Let Δ =

∑
i∈I pi ·Mi be a sub-distribution; we write Δ

α̂−−→ Θ when-

ever Θ =
∑

j∈J pi · Θj , with J ⊆ I, and Mj
α̂−−→ Θj , for any j ∈ J . We define

the weak transition relation τ̂==⇒ as the transitive and reflexive closure of
τ̂−−→,

i.e. (
τ̂−−→)∗, while for α 	= τ we let α̂==⇒ to denote τ̂==⇒ α−−→ τ̂==⇒. Finally, indepen-

dently whether α is τ or not, we write α==⇒ to denote τ̂==⇒ α−−→ τ̂==⇒. Proposition 6
ensures that weak transitions always contain a bounded number of

τ−−→ actions.
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Since transitions go from networks to distributions we need to lift our relations
over networks to sub-distribution. Let R ⊆ pTCWS× pTCWS be a binary relation
over networks. We lift it to a relation R ⊆ Dsub(pTCWS)×Dsub(pTCWS) by letting
Δ R Θ whenever:

– Δ =
∑

i∈I pi ·Mi, where I is a finite index set
– for each i ∈ I there is a network Ni such that Mi R Ni and Θ =

∑
i∈I pi ·Ni.

Definition 6 (Simulation up to probability). Let p ∈ (0..1] be a probability.
A parameterised relation Rp ⊆ pTCWS× pTCWS is said to be a simulation up to
probability p if whenever (M,N) ∈ Rp and M

α−−→ Δ, there are a probability q,

with p
q ∈ (0..1], and a distribution Θ such that N

α̂==⇒ q · Θ and Δ R p
q

Θ. We
write M �p N if (M,N) ∈ Rp for some simulation up to probability Rp. The
equivalence induced by �p is denoted !p.

Intuitively, if M �p N then M is simulated by N up to a probability (at least)
p. Within the remaining probability 1 − p, the network N might still simulate
M . That is why the probability p is a lower-bound, i.e. �q ⊆ �p, for any q ≤ p.

Example 1. 1. n[P ]ν �p n[τ.(P ⊕p Q)]ν

2. n[P ]ν �q n[τ.(P ⊕p Q)]ν with 0 ≤ q ≤ p
3. n[Q]ν �p(1−q) n[τ.(τ.(P ⊕q Q)⊕p R)]ν

4. n[!〈v〉.!〈w〉]ν �pq n[τ.(!〈v〉.τ.(!〈w〉 ⊕q P )⊕p Q)]ν .

From these examples one can realise that when M �p N the network N may
contain a number of probabilistic choices which are resolved in M with a prob-
ability (at least) p. Unfortunately, this notion of similarity is not transitive, in
the sense that is it not true that �p�q =�pq.3 This would be a highly desirable
property to algebraically reason on our networks. However, as one may have no-
ticed from the first three algebraic laws of the previous example, the probability
p is often manifested when executing the first action. So, to recover transitivity
we add a root condition and replace weak transitions α̂==⇒ with α==⇒.

Definition 7 (Rooted simulation up to probability). Let p ∈ (0..1] be a
probability. A parameterised relation Rp ⊆ pTCWS× pTCWS is said to be a rooted
simulation up to probability p if whenever (M,N) ∈ Rp and M

α−−→ Δ there
is a distribution θ such that N

α==⇒ p · Θ and Δ R1 Θ. We write M �1
p N if

(M,N) ∈ Rp for some rooted simulation up to probability Rp. The equivalence
induced by �1

p is denoted !1
p.

Proposition 7. M �1
p N implies M �p N .

Proposition 8. If M �1
p N and N �1

q O then M �1
pq O.

Here comes a crucial result on the compositionality of our simulation theory.

3 For details the reader is deferred to [12].



Semantic Analysis of Gossip Protocols for Wireless Sensor Networks 165

Theorem 1. Let M , N and O be well-formed networks such that both M | O
and N | O are well-formed as well. Then,

1. M �1
p N implies M | O �1

p N | O
2. M �p N implies M | O �p N | O.

Below, we report a number of algebraic laws that will be useful in the next
section when analysing gossip protocols.

Theorem 2 (Some algebraic laws).

1. n[σ.nil]ν !1
1 n[nil]ν

2.
∏

i∈I mi[Pi]
νmi !1

1

∏
j∈J nj[Qj]

νnj iff
∏

i∈I mi[σ.Pi]
νmi !1

1

∏
j∈J nj[σ.Qj]

νnj

3. n[&?(x).P 'Q]ν !1
1 n[σ.Q]ν if no nodes in ν send in the current time interval.

4. n[?(x).P ]ν !1
1 n[nil]ν if no nodes in ν contain sender processes

5. n[?(x).P ]ν !1
1 n[σ.?(x).P ]ν if no nodes in ν send in the current time unit.

6. m[τ.(!〈v〉 ⊕p nil)]ν |
∏

i∈I ni[Pi]
νi +1

1 m[nil]ν |
∏

i∈I ni[Pi]
νi if ν =

⋃
i∈I ni,

and for all i ∈ I either Pi = nil or Pi = σ.Qi, for some Qi.

4 Gossipping without Collisions

The baseline model for our study is gossipping without collisions where all nodes
are perfectly synchronised. For the sake of clarity, communication proceeds in
synchronous rounds: A node can transmit or receive one message per round. In
our implementation rounds are separated by σ-actions.

The processes involved in the protocol are the following:

snd〈u〉pg

def= τ.(!〈u〉⊕pg nil) resnd〈u〉pg

def= σ.snd〈u〉pg fwdpg

def= ?(x).resnd〈x〉pg .

Here, a sender broadcasts a value u with gossip probability pg∈(0..1], and a for-
warder gossips the received value, in the next round, with the same probability.

Now, we can apply our simulation theory to prove algebraic laws on message
propagation. For instance, consider a fragment of a network with a sender m
and two forwarder neighbours n1 and n2. Then, the following holds:

m[snd〈v〉p]ν | n1[fwdq]
ν1 | n2[fwdr]

ν2 �1
p m[nil]ν | n1[resnd〈v〉q]ν1 | n2[resnd〈v〉r]ν2

whenever ν = {n1, n2} and the nodes in ν1 ∪ ν2 \ {m} cannot transmit in the
current instant of time. A complementary law is

m1[snd〈v〉p1 ]
n | m2[snd〈v〉p2 ]

n | n[fwdq]
ν +1

p m1[nil]n | m2[nil]n | n[resnd〈v〉q]ν

with p = 1−(1−p1)(1−p2), whenever the nodes in ν\{m1,m2} cannot transmit
in the current instant of time. More generally, the following result holds.
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Theorem 3 (Message propagation). Let K, I and J be pairwise disjoint
subsets of N. Let M be a well-formed network defined as

M ≡
∏
k∈K

mk[nil]νmk

∣∣ ∏
i∈I

mi[snd〈v〉pi ]
νmi
∣∣ ∏

j∈J

nj[fwdqj ]
νnj

such that for all i ∈ I it holds that
⋃

j∈J nj ⊆ νmi ⊆
⋃

j∈J nj ∪
⋃

k∈K∪I mk.
Then,

M +1
r

∏
h∈K∪I

mh[nil]νmh

∣∣ ∏
j∈J

nj[resnd〈v〉qj ]
νnj

with r = 1−
∏

i∈I(1 − pi).

The previous theorem is a powerful tool to reason on gossip networks. However,
it requires that all senders transmit to all subsequent forwarders. This may
represent a limitation. Consider, for example, a simple gossip network GSP1,
with gossip probability p, composed by two source nodes s1 and s2, a destination
node d and three intermediate nodes n1, n2 and n3:

GSP1
def=

2∏
i=1

si[snd〈v〉p]νsi
∣∣ 3∏

i=1

ni[fwdp]
νni
∣∣ d[fwd1]

νd

with νs1={n1}, νs2={n1, n2}, νn1={s1, n3}, νn2={s1, s2, n3}, νn3={n1, n2, d}.
The reader should notice that we cannot directly apply Theorem 3 to GSP1.

This is because node s1, unlike s2, can transmit to n1 but not to n2. Theorem 3
becomes much more effective when used together with Theorem 4 which allows us
to compose estimates concerning partial networks. Roughly speaking, Theorem 4
allows us to consider in our calculation the probability that a sender transmits
as well as the probability that the same sender does not transmit.

Theorem 4 (Composing networks).

M
∣∣ m[snd〈v〉p]νm

∣∣ ∏
j∈J

nj[&?(xj).Pj'Qj]
νnj +1

ps1+(1−p)s2
N

whenever

– M | m[nil]νm |
∏

j∈J nj[{v/xj}Pj]
νnj +1

s1
N

– M | m[nil]νm |
∏

j∈J nj[&?(xj).Pj'Qj]
νnj +1

s2
N

–
⋃

j∈J nj ⊆ νm ⊆
⋃

j∈J nj ∪ nds(M)
– nodes in νm ∩ nds(M) cannot receive in the current instant of time.4

Let us compute an estimate of success for the network GSP1 previously defined.
For verification reasons we assume that the environment contains a fresh node
test , close to the destination, i.e. νd = {n3, test}, to test successful gossipping.
For simplicity, we assume that the test node can receive messages but it cannot
transmit.
4 We could generalise the result to take into account more senders at the same time.

This would not add expressivity, it would just speed up the reduction process.
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We start proving the following chain of similarities by applying, in sequence,
Theorem 2(6), Theorem 2(5), Theorem 3 together with Theorem 2(2), with
q = 1−(1−p)2, Theorem 2(5) together with Theorem 2(1), again Theorem 3
together with Theorem 2(2), and Theorem 2(1):

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3
∣∣ d[fwd1]

νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3
∣∣ d[fwd1]

νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[σ.snd〈v〉p]νni

∣∣ n3[σ.fwdp]
νn3
∣∣ d[σ.fwd1]

νd

+1
q

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[σ.nil]νni

∣∣ n3[σ.resnd〈v〉p]νn3
∣∣ d[σ.fwd1]

νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[nil]νni

∣∣ n3[σ2.snd〈v〉p]νn3
∣∣ d[σ2.fwd1]

νd

+1
p

∏2
i=1 si[nil]νsi

∣∣ ∏2
i=1 ni[nil]νni

∣∣ n3[σ2.nil]νn3
∣∣ d[σ2.resnd〈v〉1]νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

By Proposition 8 it follows that

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏2
i=1 ni[resnd〈v〉p]νni

∣∣ n3[fwdp]
νn3
∣∣ d[fwd1]

νd

+1
p2(2−p)

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

Similarly, by applying in sequence, Theorem 3, Theorem 2(5), Theorem 3 to-
gether with Theorem 2(2), Theorem 2(5) together Theorem 2(1), again The-
orem 3 together with Theorem 2(2), and finally Theorem 2(6) together with
Theorem 2(1) we get:

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd

+1
p

∏2
i=1 si[nil]νsi

∣∣ n1[resnd〈v〉p]νn1
∣∣ ∏3

i=2 ni[fwdp]
νni
∣∣ d[fwd1]

νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ n1[σ.snd〈v〉p]νn1
∣∣ ∏3

i=2 ni[σ.fwdp]
νni
∣∣ d[σ.fwd1]

νd

+1
p

∏2
i=1 si[nil]νsi

∣∣ n1[σ.nil]νn1
∣∣ n2[σ.fwdp]

νn2
∣∣ n3[σ.resnd〈v〉p]νn3

∣∣ d[σ.fwd1]
νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ n1[nil]νn1
∣∣ n2[σ2.fwdp]

νn2
∣∣ n3[σ2.snd〈v〉p]νn3

∣∣ d[σ2.fwd1]
νd

+1
p

∏2
i=1 si[nil]νsi

∣∣n1[nil]νn1
∣∣n2[σ3.snd〈v〉p]νn2

∣∣n3[σ2.nil]νn3
∣∣ d[σ2.resnd〈v〉1]νd

+1
1

∏2
i=1 si[nil]νsi

∣∣ ∏3
i=1 ni[nil]νni

∣∣ d[σ3.snd〈v〉1]νd .

By Proposition 8 it follows that

s1[snd〈v〉p]νs1
∣∣ s2[nil]νs2

∣∣ ∏3
i=1 ni[fwdp]

νni
∣∣ d[fwd1]

νd +1
p3∏2

i=1 si[nil]νsi
∣∣ ∏3

i=1 ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd .

Finally, we can apply Theorem 4 and Proposition 7 to derive:

GSP1 +p3(3−2p)

2∏
i=1

si[nil]νsi
∣∣ 3∏

i=1

ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd .

This result essentially says that the gossip network GSP1 succeeds in trans-
mitting the message v to the destination d, after three rounds, with probability
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(at least) p3(3−2p). Thus, for a gossip probability p = 0.8 the destination will
receive the message with probability 0.72, with a margin of 10%. For p = 0.85
the probability at the destination increases to 0.8, with a margin of 6%; while
for p = 0.9 the probability at destination rises to 0.88, with a difference of only
2%. So, p = 0.9 can be considered the threshold of our small network.5

5 Gossipping with Collisions

An important characteristic of the wireless domain is that transmissions are
prone to collisions due to the well-known hidden-terminal problem. In the previ-
ous section we have reasoned assuming no collisions. In this section, we formally
demonstrate that, as expected, the presence of communication collisions deteri-
orates the performances of gossip protocols.

A receiver node faces a collision if it is exposed to more than one transmission
in the same round and as a result drops some of these transmissions. We can
model this behaviour in pTCWS as follows:

resndc〈u〉pg

def= &?(x).nil'snd〈u〉pg fwdcpg

def= ?(x).resndc〈x〉pg .

Here, the forwarder process waits for a message in the current instant of time.
If it receives a second message in the same round then it is doomed to fail.
Otherwise, it moves to the next round and broadcasts the received message with
gossip probability pg. Thus, for example, the first law of the previous section
becomes:

m1[snd〈v〉p1 ]
n | m2[snd〈v〉p2 ]

n | n[fwdcq]
ν +1

p m1[nil]n | m2[nil]n | n[resndc〈v〉q]ν

with p = p1(1−p2)+p2(1−p1) which is definitely smaller than 1−(1−p1)(1−p2),
the lower bound seen in the previous section without collisions.

More generally, if collisions are taken into account Theorem 3 needs to be
slightly changed as follows.

Theorem 5 (Message propagation with collision). The same as Theo-
rem 3 except for processes fwdqj and resnd〈v〉qj which are replaced by fwdcqj and
resndc〈v〉qj , respectively; the probability r is

∑
i∈I pi

∏
j∈I\{i}(1− pj).

Here, the probability changes with respect to Theorem 3 because a forwarder
successfully receives the value v only if exactly one sender transmits.

Let us apply our theorems to compute the probability of successful gossipping
in the presence of collisions. Let us define:

GSP2
def=

2∏
i=1

si[snd〈v〉p]νsi
∣∣ 3∏

i=1

ni[fwdcp]
νni
∣∣ d[fwdc1]

νd

with the same network topology as GSP1.
5 Had we considered a larger network, with more senders, we would have obtained a

more significant threshold.
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By applying Theorem 5 and Theorem 2 to compute estimates, Theorem 4 to
compose such estimates, and Proposition 7, we obtain:

GSP2 +q
2∏

i=1

si[nil]νsi
∣∣ 3∏

i=1

ni[nil]νni
∣∣ d[σ3.snd〈v〉1]νd

with q = p(2p2(1− p)2 + p3) + (1− p)p3 = p3(3− 4p + 2p2). This probability is
definitely smaller than that computed for GSP1, demonstrating that collisions
degrade the performances of gossip protocols. Thus, for instance, for a gossip
probability p = 0.8 the destination in GSP2 will receive the message with prob-
ability 0.55 while in GSP1 this probability is 0.72; similarly for p = 0.9 the
probability of success in GSP2 is about 0.74 while in GSP1 it is 0.88.

6 Conclusions, Future and Related Work

We have proposed a probabilistic simulation theory to compare the performances
of gossip protocols for wireless sensor networks. This theory is used to prove a
number of algebraic laws which revealed to be very effective to evaluate the per-
formances of gossip networks with and without communication collisions. Our
simulation theory provides lower-bound probabilities. However, due to the in-
herent structure of gossip networks, the probabilities of our algebraic laws are
actually precise (see [12] for details). As future work, we will study gossip net-
works with random delays and lossy channels. Moreover, we intend to mechanise
the application of our laws to deal with large-scale gossip networks.

A nice survey of formal verification techniques for the analysis of gossip proto-
cols is presented in [2]. Probabilistic model-checking has been used in [6] to study
the influence of different modelling choices on message propagation in flooding
and gossip protocols. It has been used also in [10] to investigate the expected
rounds of gossipping required to form a connected network. However, the analy-
sis of gossip protocols in large-scale networks remains beyond the capabilities of
current probabilistic model-checking tools. For this reason, the paper [3] suggests
to apply mean-field analysis for a formal evaluation of gossip protocols.

Several process calculi for wireless systems have been proposed in the last
five years. Our calculus is a probabilistic variant of [4] which takes inspiration
from [5,11]. The paper [17] contains the first probabilistic untimed calculus for
wireless systems, where connections are established with a given probability.

Our notion of simulation up to probability may remind one of the idea of
simulation with a fixed precision. A first version of probabilistic bisimulation
with ε precision appeared in [1] to relax security constrains. Indeed their simu-
lation is able to tolerate local fluctuations by allowing small differences in the
probability of occurrence of weak actions. In [13] a theory of approximate equiv-
alence for task-structured Probabilistic I/O Automata is proposed. In this case,
the distance between probabilities is based on trace distributions. Afterwards,
in order to study simulations in cryptographic protocols [16] proposed a notion
of simulation where distances may grow by a negligible value at each step.
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Abstract. We develop a general framework for the specification and
implementation of systems whose executions are words, or partial or-
ders, over an infinite alphabet. As a model of an implementation, we in-
troduce class register automata, a one-way automata model over words
with multiple data values. Our model combines register automata and
class memory automata. It has natural interpretations. In particular, it
captures communicating automata with an unbounded number of pro-
cesses, whose semantics can be described as a set of (dynamic) message
sequence charts. On the specification side, we provide a local existential
monadic second-order logic that does not impose any restriction on the
number of variables. We study the realizability problem and show that
every formula from that logic can be effectively, and in elementary time,
translated into an equivalent class register automaton.

1 Introduction

A recent research stream, motivated by models from XML database theory,
considers data words, i.e., strings over an infinite alphabet [2, 8, 11, 17, 19].
The alphabet is the cartesian product of a finite supply of labels and an infinite
supply of data values. While labels may represent, e.g., an XML tag or reveal
the type of an action that a system performs, data values can be used to model
time stamps [8], process identifiers [5, 21], or text contents in XML documents.

We will consider data words as behavioral models of concurrent systems. In
this regard, it is natural to look at suitable logics and automata. Logical formulas
may serve as specifications, and automata as system models or tools for deciding
logical theories. This viewpoint raises the following classical problems/tasks:
satisfiability (does a given logical formula have a model ?), model checking (do
all executions of an automaton satisfy a given formula ?), and realizability (given
a formula, construct a system model in terms of an automaton whose executions
are precisely the models of the formula). Much work has indeed gone into defining
logics and automata for data words, with a focus on satisfiability [4, 10].

One of the first logical approaches to data words is due to [8]. Since then, a
two-variable logic has become a commonly accepted yardstick wrt. expressivity
and decidability [4]. The logic contains a predicate to compare data values of
two positions for equality. Its satisfiability problem is decidable, indeed, but sup-
posedly of very high complexity. An elementary upper bound has been obtained

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 171–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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only for weaker fragments [4, 10]. For specification of communicating systems,
however, two-variable logic is of limited use: it cannot express properties like
“whenever a process Pid1 spawns some Pid2, then this is followed by a message
from Pid2 to Pid1”. Actually, the logic was studied for words with only one
data value at each each position, which is not enough to encode executions of
message-passing systems. But three-variable logics as well as extensions to two
data values lead to undecidability. To put it bluntly, any “interesting” logic for
dynamic communicating systems has an undecidable satisfiability problem.

Instead of satisfiability or model checking, we therefore consider realizability.
A system model that realizes a given formula can be considered correct by con-
struction. Realizability questions for data words have, so far, been neglected. One
reason may be that there is actually no automaton that could serve as a realistic
system model. Though data words naturally reflect executions of systems with
an unbounded number of threads, existing automata fail to model distributed
computation. Three features are minimum requirements for a suitable system
model. First, the automaton should be a one-way device, i.e., read an execution
once, processing it “from left to right” (unlike data automata [4], class automata
[3], two-way register automata, and pebble automata [17]). Second, it should be
non-deterministic (unlike alternating automata [11, 17]). Third, it should reflect
paradigms that are used in concurrent programming languages such as process
creation and message passing. Two known models match the first two properties:
register automata [13, 14, 21] and class memory automata [2]; but they clearly
do not fulfill the last requirement.

Contribution. We provide an existential MSO logic over data words, denoted
rEMSO, which does not impose any restriction on the number of variables. The
logic is strictly more expressive than the two-variable logic from [4] and suitable
to express interesting properties of dynamic communicating systems.

We then define class register automata as a system model. They are a mix of
register automata [13, 14, 21] and class memory automata [2]. A class register
automaton is a non-deterministic one-way device. Like a class memory automa-
ton, it can access certain configurations in the past. However, we extend the
notion of a configuration, which is no longer a simple state but composed of a
state and some data values that are stored in registers. This is common in con-
current programming languages and can be interpreted as “read current state of
a process” or “send process identity from one to another process”. Moreover, it is
in the spirit of communicating finite-state machines [9] or nested-word automata
[1], where more than one resource (state, channel, stack, etc.) can be accessed
at a time. Actually, our automata run over directed acyclic graphs rather than
words. To our knowledge, they are the first automata model of true concurrency
that deals with structures over infinite alphabets.

We study the realizability problem and show that, for every rEMSO formula,
we can compute, in elementary time, an equivalent class register automaton. The
translation is based on Hanf’s locality theorem [12] and properly generalizes [7]
to a dynamic setting.
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Outline. Sections 2 and 3 introduce data words and their logics. In Section 4,
we define the new automata model. Section 5 is devoted to the realizability
problem and states our main result. In Section 6, we give translations from
automata back to logic. We conclude in Section 7. Omitted proofs, as well as an
extension of our main result to infinite data words, can be found in the full version
of this paper available at: http://hal.archives-ouvertes.fr/hal-00558757/

2 Data Words

Let N = {0, 1, 2, . . .} denote the set of natural numbers. For m ∈ N, we denote
by [m] the set {1, . . . ,m}. A boolean formula over a (possibly infinite) set A of
atoms is a finite object generated by the grammar β ::= true | false | a ∈ A |
¬β | β ∨β | β ∧β. For an assignment of truth values to elements of A, a boolean
formula β is evaluated to true or false as usual. Its size |β| is the number of
vertices of its syntax tree. Moreover, |A| ∈ N∪ {∞} denotes the size of a set A.
The symbol ∼= will be used to denote isomorphism of two structures.

We fix an infinite set D of data values. Note that D can be any infinite
set. For examples, however, we usually choose D = N. In a data word, every
position will carry m ≥ 0 data values. It will also carry a label from a non-
empty finite alphabet Σ. Thus, a data word is a finite sequence over Σ × Dm

(over Σ if m = 0). Given a data word w = (a1, d1) . . . (an, dn) with ai ∈ Σ and
di = (d1

i , . . . , d
m
i ) ∈ Dm, we let �(i) refer to label ai and dk(i) to data value dk

i .
Classical words without data come with natural relations on word positions

such as the direct successor relation ≺+1 and its transitive closure <. In the
context of data words with one data value (i.e., m = 1), it is natural to consider
also a relation ≺∼ for successive positions with identical data values [4]. As, in
the present paper, we deal with multiple data values, we generalize these notions
in terms of a signature. A signature S is a pair (σ, I). It consists of a finite set σ of
binary relation symbols and an interpretation I. The latter associates, with every

 ∈ σ and every data word w = w1 . . . wn ∈ (Σ×Dm)∗, a relation 
w ⊆ [n]× [n]
such that the following hold, for all word positions i, j, i′, j′ ∈ [n]:

(1) i 
w j implies i < j
(2) there is at most one k such that i 
w k
(3) there is at most one k such that k 
w i
(4) if i 
w j and i′ 
w j′ and wi = wi′ and wj = wj′ , then i < i′ iff j < j′

In other words, we require that 
w (1) complies with <, (2) has out-degree at
most one, (3) has in-degree at most one, and (4) is monotone. Our translation
from logic into automata will be symbolic and independent of I, but its applica-
bility and correctness rely upon the above conditions. However, several examples
will demonstrate that the framework is quite flexible and allows us to capture
existing logics and automata for data words. Note that 
w can indeed be any
relation satisfying (1)–(4). It could even assume an order on D.

As the interpretation I is mostly understood, we may identify S with σ and
write 
 ∈ S instead of 
 ∈ σ, or |S| to denote |σ|. If not stated otherwise, we
let in the following S be any signature.

http://hal.archives-ouvertes.fr/hal-00558757/
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8 5 3 4 3 4 5 4
r r r r a a a a

≺∼

≺+1

Fig. 1. Data word over S
1
+1,∼

n f n f n ! ? ! ! ? ?
2 2 3 2 1 2 3 1 1 3 3
2 3 2 1 2 3 2 3 3 1 1

n f

n

f !

n

?

! !

? ?
≺fork

≺proc ≺msg ≺msg

Fig. 2. Data word over S
2
dyn

Example 1. Typical examples of relation symbols include ≺+1 and ≺k
∼ relating

direct successors and, respectively, successive positions with the same k-th data
value: For w = w1 . . . wn, we let ≺w

+1 = {(i, i + 1) | i ∈ {1, . . . , n − 1}} and
(≺k
∼)w = {(i, j) | 1 ≤ i < j ≤ n, dk(i) = dk(j), and there is no i < i′ < j such

that dk(i) = dk(i′)}. When m = 1, we write ≺∼ instead of ≺1∼. Automata and
logic have been well studied in the presence of one single data value (m = 1)
and for signature S1

+1,∼ = {≺+1 , ≺∼} with the above interpretation [2, 4].
Here, and in the following, we adopt the convention that the upper index of a
signature denotes the number m of data values. Figure 1 depicts a data word
over Σ = {r, a} (request/acknowledgment) and D = N as well as the relations
≺+1 (straight arrows) and ≺∼ (curved arrows) imposed by S

1
+1,∼. ♦

Example 2. We develop a framework for message-passing systems with dynamic
process creation. Each process has a unique identifier from D = N. Process c ∈ N

can execute an action f(c, d), which forks a new process with identity d. This
action is eventually followed by n(d, c), indicating that d is new (created by c) and
begins its execution. Processes can exchange messages. When c executes !(c, d), it
sends a message through an unbounded first-in-first-out (FIFO) channel c→ d.
Process d may execute ?(d, c) to receive the message. Elements from Σdyn =
{f, n , ! , ?} reveal the nature of an action, which requires two identities so that
we choose m = 2. When a process performs an action, it should access the current
state of (i) its own, (ii) the spawning process if a new-action is executed, and
(iii) the sending process if a receive is executed (message contents are encoded in
states). To this aim, we define a signature S2

dyn = {≺proc , ≺fork , ≺msg} with the
following interpretation. Assume w = w1 . . . wn ∈ (Σdyn×N×N)∗ and consider,
for a, b ∈ Σdyn and i, j ∈ [n], the property

P(a,b)(i, j) = (�(i) = a ∧ �(j) = b ∧ d1(i) = d2(j) ∧ d2(i) = d1(j)) .

We set≺w
proc = (≺1

∼)w, which relates successive positions with the same executing
process. Moreover, let i ≺w

fork j if i < j, P(f,n)(i, j), and there is no i < k < j such
that P(f,n)(i, k) or P(f,n)(k, j). Finally, we set i ≺w

msg j if i < j, P(!,?)(i, j), and

|{i′ < i | P(!,?)(i′, j) }| = |{j′ < j | P(!,?)(i, j′) }| .

This models FIFO communication. An example data word is given in Figure 2,
which also depicts the relations induced by S

2
dyn. Horizontal arrows reflect ≺proc,
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vertical arrows either ≺fork or ≺msg, depending on the labels. Note that n(2, 2) is
executed by “root process” 2, which was not spawned by some other process. ♦

Our principal proof technique relies on a graph abstraction of data words. Let
Part(m) be the set of all partitions of [m]. An S-graph is a (node- and edge-
labeled) graph G = (V, (
G)�∈S, λ, ν). Here, V is the finite set of nodes, λ : V →
Σ and ν : V → Part(m) are node-labeling functions, and each 
G ⊆ V × V is a
set of edges such that, for all i ∈ V , there is at most one j ∈ V with i
G j, and
there is at most one j ∈ V with j 
G i. We represent 
G and (
G)−1 as partial
functions and set nextG�(i) = j if i 
G j, and prevG

�(i) = j if j 
G i.
Local graph patterns, so-called spheres, will also play a key role. For nodes

i, j ∈ V , we denote by distG(i, j) the distance between i and j, i.e., the length of
the shortest path from i to j in the undirected graph (V ,

⋃
�∈S 
G ∪ (
G)−1)

(if such a path exists). In particular, distG(i, i) = 0. For some radius B ∈ N,
the B-sphere of G around i, denoted by B-SphG(i), is the substructure of G
induced by {j ∈ V | distG(i, j) ≤ B}. In addition, it contains the distinguished
element i as a constant, called sphere center.

These notions naturally transfer to data words: With word w of length n,
we associate the graph G(w) = ([n], (
w)�∈S, λ, ν) where λ maps i to �(i) and
ν maps i to {{l ∈ [m] | dk(i) = dl(i)} | k ∈ [m]}. Thus, K ∈ ν(i) contains
indices with the same data value at position i. Now, nextw�, prevw

�, distw, and
B-Sphw(i) are defined with reference to the graph G(w). We hereby assume that
S is understood. We might also omit the index w if it is clear from the context.

Data words u and v are called (S-)equivalent if G(u) ∼= G(v). For a language
L, we let [L]S denote the set of words that are equivalent to some word in L.

Given the data word w from Figure 1, we have distw(1, 8) = 3. The picture

r r a a
on the right shows 1-Sphw(4). The sphere center is framed by a
rectangle; node labelings of the form {{1}} are omitted.

3 Logic

We consider monadic second-order logic to specify properties of data words. Let
us fix countably infinite supplies of first-order variables {x, y, . . .} and second-
order variables {X,Y, . . .}.

The set MSO(S) of monadic second-order formulas is given by the grammar

ϕ ::= �(x) = a | dk(x) = dl(y) | x 
 y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where a ∈ Σ, k, l ∈ [m], 
 ∈ S, x and y are first-order variables, and X is a
second-order variable. The size |ϕ| of ϕ is the number of nodes of its syntax tree.

Important fragments of MSO(S) are FO(S), the set of first-order formulas,
which do not use any second-order quantifier, and EMSO(S), the set of formulas
of the form ∃X1 . . .∃Xn ϕ with ϕ ∈ FO(S).

The models of a formula are data words. First-order variables are interpreted
as word positions and second-order variables as sets of positions. Formula �(x) =
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a holds in data word w if position x carries an a, and formula dk(x) = dl(y)
holds if the k-th data value at position x equals the l-th data value at position
y. Moreover, x 
 y is satisfied if x 
w y. The atomic formulas x = y and x ∈ X
as well as quantification and boolean connectives are interpreted as usual.

For realizability, we will actually consider a restricted, more “local” logic: let
rMSO(S) denote the fragment of MSO(S) where we can only use dk(x) = dl(x)
instead of the more general dk(x) = dl(y). Thus, data values of distinct positions
can only be compared via x 
 y. This implies that rMSO(S) cannot distinguish
between words u and v such that G(u) ∼= G(v). The fragments rFO(S) and
rEMSO(S) of rMSO(S) are defined as expected.

In the case of one data value (m = 1), we will also refer to the logic
EMSO2(S1

+1,∼ ∪ {<}) that was considered in [4] and restricts EMSO logic to
two first-order variables. The predicate < is interpreted as the strict linear or-
der on word positions (strictly speaking, it is not part of a signature as we
defined it). We shall later see that rEMSO(S1

+1,∼) is strictly more expressive
than EMSO2(S1

+1,∼ ∪ {<}), though the latter involves the non-local predicates
d1(x) = d1(y) and <. This gain in expressiveness comes at the price of an unde-
cidable satisfiability problem.

A sentence is a formula without free variables. The language defined by sen-
tence ϕ, i.e., the set of its models, is denoted by L(ϕ). By MSO(S), rMSO(S),
rEMSO(S), etc., we refer to the corresponding language classes.

Example 3. Think of a server that can receive requests (r) from an unbounded
number of processes, and acknowledge (a) them. We let Σ = {r, a}, D = N,
and m = 1. A data value from D is used to model the process identity of the
requesting and acknowledged process. We present three properties formulated in
rFO(S1

+1,∼). Formula ϕ1 = ∃x∃y (�(x) = r ∧ �(y) = a ∧ x ≺∼ y) expresses that
there is a request that is acknowledged. Dually, ϕ2 = ∀x∃y (�(x) = r → �(y) =
a ∧ x ≺∼ y) says that every request is acknowledged before the same process
sends another request. A last formula guarantees that two successive requests
are acknowledged in the order they were received:

ϕ3 = ∀x, y
(

�(x) = r ∧ �(y) = r ∧ x ≺+1 y
→ ∃x′, y′

(
�(x′) = a ∧ �(y′) = a ∧ x ≺∼ x′ ≺+1 y′ ∧ y ≺∼ y′

))
This is not expressible in EMSO2(S1

+1,∼ ∪ {<}). We will see that ϕ1, ϕ2, ϕ3 form
a hierarchy of languages that correspond to different automata models, our new
model capturing ϕ3. ♦

Example 4. We pursue Example 2 and consider Σdyn with signature S2
dyn. Recall

that we wish to model systems where an unbounded number of processes com-
municate via message-passing through unbounded FIFO channels. Obviously,
not every data word represents an execution of such a system. Therefore, we
identify some well formed data words, which have to satisfy ϕ1 ∧ ϕ2 ∧ ϕ3 ∈
rFO(S2

dyn) given as follows. We require that there is exactly one root process:
ϕ1 = ∃x

(
�(x) = n ∧ d1(x) = d2(x) ∧ ∀y (d1(y) = d2(y) → x = y)

)
. Next, we
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assume that every fork is followed by a corresponding new-action, the first ac-
tion of a process is a new-event, and every new process was forked by some other
process:

ϕ2 = ∀x

⎛⎝ �(x) = f → ∃y (x ≺fork y)
∧ �(x) = n ↔ ¬∃y (y ≺proc x)
∧ �(x) = n →

(
d1(x) = d2(x) ∨ ∃y (y ≺fork x)

)
⎞⎠

Finally, every send should be followed by a receive, and a receive be preceded
by a send action: ϕ3 = ∀x

(
�(x) ∈ { ! , ? } → ∃y (x ≺msg y ∨ y ≺msg x)

)
. This for-

mula actually ensures that, for every c, d ∈ N, there are as many symbols !(c, d)
as ?(d, c), the N -th send symbol being matched with the N -th receive symbol.
We call a data word over Σdyn and S2

dyn a message sequence chart (MSC, for
short) if it satisfies ϕ1 ∧ ϕ2 ∧ ϕ3. Figure 2 shows an MSC and the induced rela-
tions. When we restrict to MSCs, our logic corresponds to that from [16]. Note
that model checking rMSO(S2

dyn) specifications against fork-and-join grammars,
which can generate infinite sets of MSCs, is decidable [16].

A last rFO(S2
dyn)-formula (which is not satisfied by all MSCs) specifies that,

whenever a process c forks some d, then this is followed by a message from d to
c: ∀x1, y1 (x1 ≺fork y1 → ∃x2, y2 (x1 ≺proc x2 ∧ y1 ≺proc y2 ≺msg x2)). ♦

4 Class Register Automata

In this section, we define class register automata, a non-deterministic one-way au-
tomata model that captures rEMSO logic. It combines register automata [13, 14]
and class memory automata [2]. When processing a data word, data values from
the current position can be stored in registers. The automaton reads the data
word from left to right but can look back on certain states and register contents
from the past (e.g., at the last position that is executed by the same process).
Positions that can be accessed in this way are determined by the signature S.
Their register entries can be compared with one another, or with current values
from the input. Moreover, when taking a transition, registers can be updated by
either a current value, an old register entry, or a guessed value.

Definition 1. A class register automaton (over signature S) is a tuple A =
(Q,R,Δ, (F�)�∈S, Φ) where Q is a finite set of states, R is a finite set of reg-
isters, the F� ⊆ Q are sets of local final states, and Φ is the global acceptance
condition: a boolean formula over { ‘q ≤ N ’ | q ∈ Q and N ∈ N}. Moreover, Δ
is a finite set of transitions of the form

(p, g) a−→ (q, f) .

Here, p : S ⇀ Q is a partial mapping representing the source states. Moreover, g
is a guard, i.e., a boolean formula over { ‘θ1 = θ2’ | θ1, θ2 ∈ [m]∪ (dom(p) × R)}
to perform comparisons of values that are are currently read and those that are
stored in registers. Finally, a ∈ Σ is the current label, q ∈ Q is the target state,
and f : R ⇀ (dom(p)×R) ∪ ([m]×N) is a partial mapping to update registers.
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Hereby, dom(p) denotes the domain of p. In the following, we write p� instead
of p(
). Transition (p, g) a−→ (q, f) can be executed at position i of a data word
if the state at position prev�(i) is p� (for all 
 ∈ dom(p)) and, for a register
guard (
1, r1) = (
2, r2), the entry of register r1 at prev�1

(i) equals that of r2

at prev�2
(i). The automaton then reads the label a together with a tuple of data

values that also passes the test given by g, and goes to q. Moreover, register r
obtains a new value according to f(r): if f(r) = (
, r′) ∈ dom(p)×R, then the
new value of r is the value of r′ at position prev�(i); if f(r) = (k,B) ∈ [m]×N,
then r obtains any k-th data value in the B-sphere around i. In particular,
f(r) = (k, 0) assigns to r the (unique) k-th data value of the current position.
To some extent, f(r) = (k,B) calls an oracle to guess a data value. The guess is
local and, therefore, weaker than [14], where a non-deterministic reassignment
allows one to write any data value into a register. This latter approach can indeed
simulate our local version (this is not immediately clear, but can be shown using
the sphere automaton from Section 5).

Let us be more precise. A configuration of A is a pair (q, ρ) where q ∈ Q
is the current state and ρ : R ⇀ D is a partial mapping denoting the current
register contents. If ρ(r) is undefined, then there is no entry in r. Let w =
w1 . . . wn ∈ (Σ×Dm)∗ be a data word and ξ = (q1, ρ1) . . . (qn, ρn) be a sequence
of configurations. For i ∈ [n], k ∈ [m], and B ∈ N, let Dk

B(i) = {dk(j) | j ∈ [n]
such that distw(i, j) ≤ B}. We call ξ a run of A on w if, for every position

i ∈ [n], there is a transition (pi, gi)
�(i)−→ (qi, fi) such that the following hold:

(1) dom(pi) = {
 ∈ S | prev�(i) is defined}
(2) for all 
 ∈ dom(pi) : (pi)� = qprev�(i)

(3) gi is evaluated to true on the basis of its atomic subformulas: θ1 = θ2 is true iff
val i(θ1) = val i(θ2) ∈ D where val i(k) = dk(i) and val i((
, r)) = ρprev�(i)(r)
(the latter might be undefined and, therefore, not be in D)

(4) for all r ∈ R :

⎧⎪⎨⎪⎩
ρi(r) = ρprev�(i)(r′) if fi(r) = (
, r′) ∈ dom(p)×R

ρi(r) ∈ Dk
B(i) if fi(r) = (k,B) ∈ [m]×N

ρi(r) undefined if fi(r) undefined

Run ξ is accepting if qi ∈ F� for all i ∈ [n] and 
 ∈ S such that next�(i) is
undefined. Moreover, we require that the global condition Φ is met. Hereby, an
atomic constraint q ≤ N is satisfied by ξ if |{ i ∈ [n] | qi = q}| ≤ N . The language
L(A) ⊆ (Σ ×Dm)∗ of A is defined in the obvious manner. The corresponding
language class is denoted by CRA(S).

The acceptance conditions are inspired by Björklund and Schwentick [2], who
also distinguish between local and global acceptance. Local final states can be
motivated as follows. When data values model process identities, a ≺∼-maximal
position of a data word is the last position of some process and must give rise to
a local final state. Moreover, in the context of S2

dyn, a sending position that does
not lead to a local final state in F≺msg requires a matching receive event. Thus,
local final states can be used to model “communication requests”. The global
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acceptance condition of class register automata is more general than that of [2]
to cope with all possible signatures. However, in the special case of S1

+1,∼, there
is some global control in terms of ≺+1. We could then perform some counting
up to a finite threshold and restrict, like [2], to a set of global final states.

We can classify many of the non-deterministic one-way models from the
literature (most of them defined for m = 1) in our unifying framework:

– A class memory automaton [2] is a class register automaton where, in all
transitions (p, g) a−→ (q, f), the update function f is undefined everywhere.
The corresponding language class is denoted by CMA(S).

– As an intermediary subclass of class register automata, we consider non-
guessing class register automata: for all transitions (p, g) a−→ (q, f) and
registers r, one requires f(r) ∈ (dom(p)× R) ∪ ([m] × {0}). We denote the
corresponding language class by CRA−(S).

– A register automaton [11, 13] is a non-guessing class register automaton over
Sm

+1 = {≺+1}. Moreover, non-guessing class register automata over S1
+1,∼

capture fresh-register automata [21], which can dynamically generate data
values that do not occur in the history of a run. Actually, this feature is
also present in dynamic communicating automata [5] and in class memory
automata over S1

+1,∼ where a fresh data value is guaranteed by a transition
(p, g) a−→ (q, f) such that p≺∼ is undefined.

– Class register automata are a model of distributed computation: considered
over Σdyn and S2

dyn, they subsume dynamic communicating automata [5]. In
particular, they can handle unbounded process creation and message passing.
Updates of the form f(r) = (≺fork, r

′) and f(r) = (≺msg, r
′) correspond to

receiving a process identity from the spawning/sending process. Moreover,
when a process requests a message from the thread whose identity is stored
in register r, a corresponding transition is guarded by (≺proc, r) = (≺msg, r0)
where we assume that every process keeps its identity in some register r0.

Example 5. Let us give a concrete example. Suppose Σ = {r, a} and D = N.
We pursue Example 3 and build a non-guessing class register automaton A over
S1

+1,∼ for L = [{(r, 1) . . . (r, n)(a, 1) . . . (a, n) | n ≥ 1}]S1
+1,∼ . Roughly speaking,

there is a request phase followed by an acknowledgment phase, and requests
are acknowledged in the order they are received. Figure 3 presents A and an
accepting run on (r, 8)(r, 5)(a, 8)(a, 5). The states of A are q1 and q2. State q1 is
assigned to request positions (first phase), state q2 to acknowledgments (second
phase). Moreover, A is equipped with registers r1 and r2. During the first phase,
r1 always contains the data value of the current position, and r2 the data value
of the ≺+1-predecessor (unless we deal with the very first position, where r2 is
undefined, denoted ⊥). These invariants are ensured by transitions 1 and 2. In
the second phase, by transition 3, position n+1 carries the same data value as the
first position, which is the only request with undefined r2. Guard (≺∼, r2) = ⊥
is actually an abbreviation for ¬((≺∼, r2) = (≺∼, r2)). By transition 4, position
n + i with i ≥ 2 has to match the request position whose r2-contents equals r1

at n + i− 1. Finally, F≺∼ = {q2}, F≺+1 = {q2}, and Φ = ¬(q1 ≤ 0). ♦
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Transitions Run
source (p) guard (g) input q update (f) input state r1 r2

≺∼ ≺+1

1 (r, d) q1 r1 := d (r, 8) q1 8 ⊥
2 q1 (r, d) q1

r1 := d
r2 := (≺+1, r1)

(r, 5) q1 5 8

3 q1 q1 (≺∼, r2) = ⊥ (a, d) q2 r1 := d (a, 8) q2 8 ⊥
4 q1 q2 (≺∼, r2) = (≺+1, r1) (a, d) q2 r1 := d (a, 5) q2 5 ⊥

Fig. 3. A non-guessing class register automaton over S
1
+1,∼ and a run

For the language L from Example 5, one can show L 	∈ CMA(S1
+1,∼), using

an easy pumping argument. Next, we will see that non-guessing class register
automata, though more expressive than class memory automata, are not yet
enough to capture rEMSO logic. Thus, dropping just one feature such as registers
or guessing data values makes class register automata incomparable to the logic.
Assume m = 2 and consider S2

∼ = {≺1
∼ , ≺2

∼} (cf. Example 1).

Lemma 1. rFO(S2
∼) 	⊆ CRA−(S2

∼).

The proof of Lemma 1 can be adapted to show rFO(S2
dyn) 	⊆ CRA−(S2

dyn). It
reveals that non-guessing class register automata can in general not detect cycles.
However, this is needed to capture rFO logic [12]. In Section 5, we show that full
class register automata capture rFO and, as they are closed under projection,
also rEMSO logic. Closure under projection is meant in the following sense. Let
Γ be a non-empty finite alphabet. Given S = (σ, I), we define another signature
SΓ for data words over (Σ×Γ )×Dm. Its set of relation symbols is {
Γ | 
 ∈ S}.
For w ∈ ((Σ×Γ )×Dm)∗, we set i 
w

Γ j iff i 
projΣ(w) j. Hereby, the projection
proj Σ just removes the Γ component while keeping Σ and the data values. For
C ∈ {CRA,CRA−,CMA}, we say that C(S) is closed under projection if, for
every Γ and L ⊆ ((Σ × Γ )×Dm)∗, L ∈ C(SΓ ) implies proj Σ(L) ∈ C(S).

Lemma 2. For every signature S, CRA(S), CRA−(S), and CMA(S) are closed
under union, intersection, and projection. They are, in general, not closed under
complementation.

5 Realizability of EMSO Specifications

In this section, we solve the realizability problem for rEMSO specifications:

Theorem 1. For all signatures S, rEMSO(S) ⊆ CRA(S). An automaton can be
computed in elementary time and is of elementary size.

Classical procedures that translate formulas into automata follow an inductive
approach, use two-way mechanisms and tools such as pebbles, or rely on reduc-
tions to existing translations. There is no obvious way to apply any of these
techniques to prove our theorem.
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We therefore follow a technique from [7], which is based on ideas from [18, 20].
We first transform the first-order kernel of the formula at hand into a normal
form due to Hanf [12]. According to that normal form, satisfaction of a first-
order formula wrt. data word w only depends on the spheres that occur in
G(w), and on how often they occur, counted up to a threshold. The size of a
sphere is bounded by a radius that depends on the formula. The threshold can
be computed from the radius and |S|. We can indeed apply Hanf’s Theorem, as
the structures that we consider have bounded degree: every node/word position
has at most |S| incoming and at most |S| outgoing edges. In a second step, we
transform the formula in normal form into a class register automaton.

Recall that B-SphG(i) denotes the B-sphere of graph/data word G around i
(cf. Section 2). Its size (number of nodes) is bounded by maxSize := (2|S|+ 2)B.
Let B-SpheresS = {B-SphG(i) | G = (V, . . .) is an S-graph and i ∈ V }. We do
not distinguish between isomorphic structures so that B-SpheresS is finite.

Theorem 2 (cf. [6, 12]). Let ϕ ∈ rFO(S). One can compute, in elementary
time, B ∈ N and a boolean formula β over { ‘S ≤ N ’ | S ∈ B-SpheresS and
N ∈ N} such that L(ϕ) is the set of data words that satisfy β. Here, we say that
w = w1 . . . wn satisfies atom S ≤ N iff |{i ∈ [n] | B-Sphw(i) ∼= S}| ≤ N . The
radius B and the size of β and its constants N are elementary in |ϕ| and |S|.

By Theorem 2, it will be useful to have a class register automaton that, when
reading a position i of data word w, outputs the sphere of w around i. Its
construction is actually the main difficulty in the proof of Theorem 1, as spheres
have to be computed “in one go”, i.e., reading the word from left to right, while
accessing only certain configurations from the past.

Proposition 1. Let B ∈ N. One can compute, in elementary time, a class reg-
ister automaton AB = (Q,R,Δ, (F�)�∈S, true) over S, as well as a mapping
π : Q → B-SpheresS such that L(AB) = (Σ ×Dm)∗ and, for every data word
w = w1 . . . wn, every accepting run (q1, ρ1) . . . (qn, ρn) of AB on w, and every
i ∈ [n], π(qi) ∼= B-Sphw(i). Moreover, |Q| and |R| are elementary in B and |S|.

The proposition is proved below. Let us first show how we can use it, together
with Theorem 2, to translate an rEMSO formula into a class register automaton.

Proof (of Theorem 1). Let ϕ = ∃X1 . . .∃Xn ψ ∈ rEMSO(S) be a sentence with
ψ ∈ rFO(S) (we also assume n ≥ 1). Since Theorem 2 applies to first-order for-
mulas only, we extend Σ to Σ × Γ where Γ = 2{1,...,n}. Consider the extended
signature SΓ (cf. Section 4). From ψ, we obtain a formula ψΓ ∈ rFO(SΓ ) by re-
placing �(x) = a with

∨
M∈Γ �(x) = (a,M) and x ∈ Xj with

∨
a∈Σ, M∈Γ �(x) =

(a,M ∪ {j}). Consider the radius B ∈ N and the normal form βΓ for ψΓ due to
Theorem 2. Let AB = (Q,R,Δ, (F�)�∈SΓ

, true) be the class register automaton
over SΓ from Proposition 1 and π be the associated mapping. The global accep-
tance condition of AB is obtained from βΓ by replacing every atom S ≤ N with
π−1(S) ≤ N (which can be expressed as a suitable boolean formula). We hold
A′B, a class register automaton satisfying L(A′B) = L(ψΓ ). Exploiting closure
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under projection (Lemma 2), we obtain a class register automaton over S that
recognizes L(ϕ) = proj Σ(L(ψΓ )). ��

The Sphere Automaton. In the remainder of this section, we construct the
class register automaton AB = (Q,R,Δ, (F�)�∈S, true) from Proposition 1,
together with π : Q → B-SpheresS. The idea is that, at each position i in the
data word w at hand, AB guesses the B-sphere S of w around i. To verify that
the guess is correct, i.e., S ∼= B-Sphw(i), S is passed to each position that is
connected to i by an edge in G(w). That new position locally checks label and
data equalities imposed by S, then also forwards S to its neighbors, and so on.
Thus, at any time, several local patterns have to be validated simultaneously
so that a state q ∈ Q is actually a set of spheres. In fact, we consider extended
spheres E = (S, α, col ) where S = (U, (
E)�∈S, λ, ν, γ) is a sphere (with universe
U and sphere center γ), α ∈ U is the active node, and col is a color from a finite
set, which will be specified later. The active node α indicates the current context,
i.e., it corresponds to the position currently read.

Let B-eSpheresS denote the set of extended spheres, which is finite up to
isomorphism. For E = (S, α, col ) ∈ B-eSpheresS, S = (U, (
E)�∈S, λ, ν, γ), and
j ∈ U , we let E[j] refer to the extended sphere (S, j, col ) where the active node α
has been replaced with j. Now suppose that the state q ofAB that is reached after
reading position i of data word w contains E = (S, α, col ). Roughly speaking,
this means that the neighborhood of i in w shall look like the neighborhood of
α in S. Thus, if S contains j′ such that α 
E j′, then we must find i′ such that
i 
w i′ in the data word. Local final states will guarantee that i′ indeed exists.
Moreover, the state assigned to i′ in a run of AB will contain the new proof
obligation E[j′] and so forth. Similarly, an edge in (the graph of) w has to be
present in spheres, unless it is beyond their scope, which is limited by B. All
this is reflected below, in conditions T2–T6 of a transition.

We are still facing two major difficulties. Several isomorphic spheres have
to be verified simultaneously, i.e., a state must be allowed to include isomor-
phic spheres in different contexts. A solution to this problem is provided by
the additional coloring col . It makes sure that centers of overlapping isomorphic
spheres with different colors refer to distinct nodes in the input word. To put
it differently, for a given position i in data word w, there may be i′ such that
0 < distw(i, i′) ≤ 2B+1 and B-Sphw(i) ∼= B-Sphw(i′). Fortunately, there cannot
be more than (2|S|+1) ·maxSize2 such positions. As a consequence, the coloring
col can be restricted to the set {1, . . . , (2|S|+ 1) ·maxSize2 + 1}.

Implementing these ideas alone would do without registers and yield a class
memory automaton. But this cannot work due to Lemma 1. Indeed, a faithful
simulation of cycles in spheres has to make use of data values. They need to be
anticipated, stored in registers, and locally compared with current data values
from the input word. We introduce a register (E, k) for every extended sphere
E and k ∈ [m]. To get the idea behind this, consider a run (q1, ρ1) . . . (qn, ρn)
of AB on w = (a1, d1) . . . (an, dn). Pick a position i of w and suppose that
E = (U, (
E)�∈S, λ, ν, γ, α, col) ∈ qi. If α is minimal in E, then there is no
pending requirement to check. Now, as α shall correspond to the current position
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i of w, we write, for every k ∈ [m], dk
i into register (E, k) (first case of T8 below).

For all j ∈ U \ {α}, on the other hand, we anticipate data values and store them
in (E[j], k) (also first case of T8). They will be forwarded (second case of T8)
and checked later against both the guesses made at other minimal nodes of E
(second line in T7) and the actual data values in w (end of line 1 in T7). This
procedure makes sure that the values that we carry along within an accepting
run agree with the actual data values of w.

Now, as prevw
� and nextw� are monotone wrt. positions with identical labels

and data values, two isomorphic cycles cannot be “merged” into one larger one,
unlike in non-guessing class register automata where different parts may act
erroneously on the assumption of inconsistent data values (cf. Lemma 1). As a
consequence, spheres are correctly simulated by the input word.

Let us formalize AB = (Q,R,Δ, (F�)�∈S, true) and the mapping π : Q →
B-SpheresS, following the above ideas. The set of registers is R = B-eSpheresS×
[m]. A state from Q is a non-empty set q ⊆ B-eSpheresS such that

(i) there is a unique E = (U, (
E)�∈S, λ, ν, γ, α, col) ∈ q such that γ = α (we
set π(q) = (U, (
E)�∈S, λ, ν, γ) to obtain the mapping required by Prop. 1),

(ii) there are a ∈ Σ and η ∈ Part(m) such that, for all E = (. . . , λ, ν, . . .) ∈ q,
we have λ(α) = a and ν(α) = η (we let label (q) = a and data(q) = η), and

(iii) for every (S, α, col ), (S, α′, col) ∈ q, we have α = α′.

Before we turn to the transitions, we introduce some notation. Below, E will
always denote (S, α, col ) with S = (U, (
E)�∈S, λ, ν, γ); in particular, α refers
to the active node of E. The mappings nextE�, prevE

�, and distE are defined for
extended spheres in the obvious manner. For j ∈ U , we set type−(j) = {
 ∈ S |
prevE

�(j) is defined}. Let us fix, for all E ∈ B-eSpheresS such that type−(α) 	= ∅,
some arbitrary 
E ∈ type−(α). Finally, for state q and k1, k2 ∈ [m], we write
k1 ∼q k2 if there is K ∈ data(q) such that {k1, k2} ⊆ K.

We have a transition (p, g) a−→ (q, f) iff the following hold:

T1 label (q) = a

T2 for all 
 ∈ S, E ∈ q : 
 	∈ dom(p) =⇒ prevE
�(α) is undefined

T3 for all 
 ∈ dom(p), E ∈ q, j ∈ U : j 
E α ⇐⇒ E[j] ∈ p�

T4 for all 
 ∈ dom(p), E ∈ p�, j ∈ U : α 
E j ⇐⇒ E[j] ∈ q

T5 for all 
 ∈ dom(p), E ∈ q : prevE
�(α) undefined =⇒ distE(γ, α) = B

T6 for all 
 ∈ dom(p), E ∈ p�: nextE�(α) undefined =⇒ distE(γ, α) = B

T7 g =
∧

k1,k2∈[m]
k1 ∼q k2

k1 = k2 ∧
∧

k1,k2∈[m]
k1 �∼q k2

¬ (k1 = k2) ∧
∧

k∈[m] E ∈ q

�∈type−(α)

k = (
, (E, k))

∧
∧

k∈[m] E ∈ q j ∈U

�1,�2∈type−(α)

(
1, (E[j], k)) = (
2, (E[j], k))
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MSO(S1
+1,∼) = rMSO(S1

+1,∼)

CRA(S1
+1,∼)

CRA−(S1
+1,∼)

EMSO(S1
+1,∼)

rEMSO(S1
+1,∼)

EMSO2(S1
+1,∼ ∪ {<}) = CMA(S1

+1,∼)

CRA(S1
+1) = CRA−(S1

+1)

Thm. 1

[2]

[2, 4]

Fig. 4. A hierarchy of automata and logics over one-dimensional data words

T8 for all k ∈ [m] and E ∈ B-eSpheresS :

f((E, k)) =

⎧⎨⎩ (k, distE(j, α)) if ∃j ∈ U : E[j] ∈ q and type−(j) = ∅
(
E[j], (E, k)) if ∃j ∈ U : E[j] ∈ q and type−(j) 	= ∅
undefined otherwise

For every 
 ∈ S, the local acceptance condition is given by F� = {q ∈ Q | for
all E ∈ q, nextE

�(α) is undefined}. Recall that the global one is true.
As the maximal size of a sphere is exponential in B and polynomial in |S|, the

numbers |Q| and |R| are elementary in B and |S|. Note that AB can actually be
constructed in elementary time.

6 From Automata to Logic

Next, we give translations from automata back to logic. Note that rEMSO(S1
+1) 	

CRA(S1
+1), as rEMSO(S1

+1) cannot reason about data values. However, we show
that the behavior of a class register automaton is always MSO definable and,
in a sense, “regular”. There are natural finite-state automata that do not share
this property: two-way register automata (even deterministic ones) over one-
dimensional data words are incomparable to MSO(S1

+1,∼) [17].

Theorem 3. For every signature S, we have CRA(S) ⊆ MSO(S).

In the proof, the non-local predicate dk(x) = dl(y) is indeed essential to simulate
register assignments, as we need to compare data values at positions where
registers are updated. For one-dimensional data words, however, the predicate
can be easily defined in rMSO(S1

+1,∼). The following theorem is dedicated to
this classical setting over S1

+1,∼.

Theorem 4. We have the inclusions depicted in Figure 4. Here, −→ means
‘strictly included’ and ��� means ‘included’.
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The remaining (strict) inclusions are left open. When there are no data values,
we have expressive equivalence of EMSO logic and class register automata (which
then reduce to class memory automata). The translation from automata to logic
follows the standard approach. The following theorem is a proper generalization
of the main result of [7].

Theorem 5. Suppose m = 0. For every signature S, EMSO(S) = CRA(S).

7 Conclusion

We studied the realizability problem for data-word languages. A particular case
of this general framework constitutes a first step towards a logically motivated
automata theory for dynamic message-passing systems. As future work, it re-
mains to study alternative specification formalisms such as temporal logic [15].
It would also be interesting to extend [16], whose logic corresponds to ours in
the case of S2

dyn, to general data words.
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Abstract. Checking language inclusion between two nondeterministic Büchi au-
tomata A and B is computationally hard (PSPACE-complete). However, several
approaches which are efficient in many practical cases have been proposed. We
build on one of these, which is known as the Ramsey-based approach. It has
recently been shown that the basic Ramsey-based approach can be drastically
optimized by using powerful subsumption techniques, which allow one to prune
the search-space when looking for counterexamples to inclusion. While previous
works only used subsumption based on set inclusion or forward simulation on A
and B , we propose the following new techniques: (1) A larger subsumption rela-
tion based on a combination of backward and forward simulations on A and B .
(2) A method to additionally use forward simulation between A and B . (3) Ab-
straction techniques that can speed up the computation and lead to early detection
of counterexamples. The new algorithm was implemented and tested on automata
derived from real-world model checking benchmarks, and on the Tabakov-Vardi
random model, thus showing the usefulness of the proposed techniques.

1 Introduction

Checking inclusion between finite-state models is a central problem in automata
theory. First, it is an intriguing theoretical problem. Second, it has many practical ap-
plications. For example, in the automata-based approach to model-checking [19], both
the system and the specification are represented as finite-state automata, and the model-
checking problem reduces to testing whether any behavior of the system is allowed by
the specification, i.e., to a language inclusion problem.

We consider language inclusion for Büchi automata (BA), i.e., automata over infi-
nite words. While checking language inclusion between nondeterministic BA is com-
putationally hard (PSPACE-complete [13]), much effort has been devoted to devising
approaches that can solve as many practical cases as possible. A naı̈ve approach to
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language inclusion between BA A and B would first complement the latter into a BA
Bc, and then check emptiness of L(A)∩L(Bc). The problem is that Bc is in gen-
eral exponentially larger than B . Yet, one can determine whether L(A)∩L(Bc) 	= /0
by only looking at some “small” portion of Bc. The Ramsey-based approach [16,9,10]
gives a recipe for doing this. It is a descendant of Büchi’s original BA complementation
procedure, which uses the infinite Ramsey theorem in its correctness proof.

The essence of the Ramsey-based approach for checking language inclusion between
A and B lies in the notion of supergraph, which is a data-structure representing a class
of finite words sharing similar behavior in the two automata. Ramsey-based algorithms
contain (i) an initialization phase where a set of supergraph seeds are identified, (ii) a
search loop in which supergraphs are iteratively generated by composition with seeds,
and (iii) a test operation where pairs of supergraphs are inspected for the existence of a
counterexample. Intuitively, this counterexample has the form of an infinite ultimately
periodic word w1(w2)ω∈L(A)∩L(Bc), where one supergraph witnesses the prefix and
the other the loop. While supergraphs themselves are small, and the test in (iii) can be
done efficiently, the limiting factor in the basic algorithm lies in the exponential number
of supergraphs that need to be generated. Therefore, a crucial challenge in the design
of Ramsey-based algorithms is to limit the supergraphs explosion problem. This can
be achieved by carefully designing certain subsumption relations [10,1], which allow
one to safely discard subsumed supergraphs, thus reducing the search space. Moreover,
methods based on minimizing supergraphs [1] by pruning their structure can further
reduce the search space, and improve the complexity of (iii) above.

This paper contributes to the Ramsey-based approach to language inclusion in
several ways. (1) We define a new subsumption relation based on both forward and
backward simulation within the two automata. Our notion generalizes the subset-based
subsumption of [10] and the forward simulation-based subsumption of [1]. (2) On a
similar vein, we improve minimization of supergraphs by employing forward and back-
ward simulation for minimizing supergraphs. (3) We introduce a method of exploiting
forward simulation between the two automata, while previously only simulations inter-
nal to each automaton have been considered. (4) Finally, we provide a method to speed
up the tests performed on supergraphs by grouping similar supergraphs together in a
combined representation and extracting more abstract test-relevant information from it.

The correctness of the combined use of forward and backward simulation turns out to
be far from trivial, requiring suitable generalizations of the basic notions of composition
and test. Technically, we consider generalized composition and test operations where
jumps are allowed—a jump occurring between states related by backward simulation.
The proofs justifying the use of jumping composition and test, which can be found in
[2], are much more involved than in previous works.

We have implemented our techniques and tested them on BA derived from a set
of real-world model checking benchmarks [15] and from the Tabakov-Vardi random
model [18]. The new technique is able to finish many of the difficult problem instances
in minutes while the algorithm of [1] cannot finish them even in one day. All our
benchmarks, the source code, and the executable of our implementation are available
at http://www.languageinclusion.org/CONCUR2011. Due to limited space, some
details of the experiments are deferred to [2].
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Related Work. An alternative approach to language inclusion for BA is given by rank-
based methods [14], which provide a different complementation procedure based on
a rank-based analysis of rejecting runs. This approach is orthogonal to Ramsey-based
algorithms. In fact, while rank-based approaches have a better worst-case complexity,
Ramsey-based approaches can still perform better on many examples [10]. A subsum-
ption-based algorithm for the rank-based approach has been given in [5]. Subsumption
techniques have recently been considered also for automata over finite words [20,3].

2 Preliminaries

A Büchi Automaton (BA) A is a tuple (Σ,Q, I,F,δ) where Σ is a finite alphabet, Q is
a finite set of states, I ⊆Q is a non-empty set of initial states, F ⊆Q is a set of accepting
states, and δ⊆Q×Σ×Q is the transition relation. A run of A on a word w = σ1σ2 . . .∈
Σω starting in a state q0 ∈ Q is an infinite sequence q0q1 . . . s.t. (q j−1,σ j,q j) ∈ δ for
all j > 0. The run is accepting iff qi ∈ F for infinitely many i. The language of A is
L(A) = {w | A has an accepting run on w starting from some q0 ∈ I}.

A path in A on a finite word w = σ1 . . .σn ∈ Σ+ is a finite sequence q0q1 . . .qn s.t.
∀0 < j ≤ n : (q j−1,σ j,q j) ∈ δ. The path is accepting iff ∃0 ≤ i ≤ n : qi ∈ F . For any

p,q ∈ Q, let p
w
�F q iff there is an accepting path on w from p to q, and p

w
� q iff there

is a (not necessarily accepting) path on w from p to q.
A forward simulation [4] on A is a relation R ⊆ Q×Q such that pRr only if p ∈

F =⇒ r ∈ F , and for every transition (p,σ, p′)∈ δ, there exists a transition (r,σ,r′) ∈ δ
s.t. p′Rr′. A backward simulation on A ([17], where it is called reverse simulation) is a
relation R⊆Q×Q s.t. p′Rr′ only if p′ ∈ F =⇒ r′ ∈ F , p′ ∈ I =⇒ r′ ∈ I, and for every
(p,σ, p′) ∈ δ, there exists (r,σ,r′) ∈ δ s.t. pRr. Note that this notion of backward sim-
ulation is stronger than the usual finite-word automata version, as we require not only
compatibility w.r.t. initial states, but also w.r.t. final states. It can be shown that there
exists a unique maximal forward simulation denoted by  A

f and also a unique maxi-
mal backward simulation denoted by  A

b , which are both polynomial-time computable
preorders [11]. We drop the superscripts when no confusion can arise.

In the rest of the paper, we fix two BA A = (Σ,QA , IA ,FA ,δA) and B = (Σ,QB , IB ,
FB ,δB ). The language inclusion problem consists in deciding whether L(A) ⊆ L(B).
It is well known that deciding language inclusion is PSPACE-complete [13], and that
forward simulations [4] can be used as an underapproximation thereof. Here, we focus
on deciding language inclusion precisely, by giving a complete algorithm.

3 Ramsey-Based Language Inclusion Testing

Abstractly, the Ramsey-based approach for checking L(A)⊆L(B) consists in building
a finite set X ⊆ 2L(A) of fragments of L(A) satisfying the following two properties:

α (covering)
⋃

X = L(A).
β (dichotomy) For all X ∈ X , either X ⊆ L(B) or X ∩L(B) = /0.

The covering property ensures that the considered fragments cover L(A), and the di-
chotomy property states that the fragments are either entirely in L(B) or disjoint from
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L(B). Moreover, the fragments are chosen such that they can be effectively generated
and such that their inclusion in L(B) is easy to test. During the generation of the frag-
ments, it then suffices to test each of them for inclusion in L(B). If this is the case, the
inclusion L(A) ⊆ L(B) holds. Otherwise, there is a fragment X ⊆ L(A) \L(B) s.t.
every ω-word w ∈ X is a counterexample to the inclusion of L(A) in L(B).

We now instantiate the above described abstract algorithm by giving primitives for
representing fragments of L(A) satisfying the conditions of covering and dichotomy.
Much like in [9], we introduce the notion of arcs for satisfying Condition α, the notion
of graphs for Condition β, and then we put them together in the notion of supergraphs
as to satisfy α + β. Then, we explain that supergraphs can be effectively generated and
that the fragment languages they represent can be easily tested for inclusion in L(B).

Condition α: Edges and Properness. An edge 〈p,a,q〉 is an element of EA = QA ×
{0,1}×QA. Its language L〈p,a,q〉 ⊆ Σ+ contains a word w ∈ Σ+ iff either (1) a = 1
and p

w
�F q, or (2) a = 0, p

w
� q, but not p

w
�F q. A pair of edges (〈q1,a,q2〉,〈q3,b,q4〉)

is proper iff q1 ∈ IA , q2 = q3 = q4, and b = 1. A pair of edges (x,y) can be used to
encode the ω-language Yxy = L(x) · (L(y))ω. Clearly, if the pair of edges is proper,
Yxy ⊆ L(A). Intuitively, the language of a proper pair of edges contains words accepted
by lasso-shaped accepting runs starting from q1 and looping through q2. Furthermore,
it is clearly the case that one can completely cover L(A) by languages Yxy. Thus, the
set Xedges = {Yxy | (x,y) is proper } satisfies Condition α.

Condition β: Graphs. A graph g is a subset of edges from EB = QB ×{0,1}×QB
containing at most one edge for every pair of states. Its language is defined as the set of
words over Σ+ that are consistent with all the edges of the graph. Namely, w ∈ L(g) iff,
for any pair of states p,q ∈QB , either (1) p

w
�F q and 〈p,1,q〉 ∈ g, (2) p

w
� q, ¬(p

w
�F

q), and 〈p,0,q〉 ∈ g, or (3) ¬(p
w
� q) and there is no edge in g of the form 〈p,a,q〉.

Intuitively, the language of a graph consists of words that all connect any chosen pair of
states in the same way (i.e., possibly through an accepting state, through non-accepting
states only, or not at all). Let G be the set of all graphs. Not all graphs, however, contain
meaningful information, e.g., a graph may contain an edge between states not reachable
from each other. Such contradictory information makes the language of a graph empty.
Define G f = {g ∈ G | L(g) 	= /0} as the set of graphs with non-empty languages.

It can be shown that the languages of graphs partition Σ+. Like with edges, a pair of
graphs (g,h) can be used to encode the ω-language Ygh = L(g) · (L(h))ω. Intuitively,
the pair of graphs g, h encodes all runs in B over the ω-words in Ygh. These runs can
be obtained by selecting an edge from g and possibly multiple edges from h that can be
connected by their entry/exit states to form a lasso. Since the words in the language of
graphs have the same power for connecting states, accepting runs exist for all elements
of Ygh or for none of them. The following lemma [16,9,10] shows that the set Xgraphs =
{Ygh | g,h ∈G f } satisfies Condition β.

Lemma 1. For graphs g,h, either Ygh ⊆ L(B) or Ygh∩L(B) = /0.

Condition α + β: Supergraphs. We combine edges and graphs to build more com-
plex objects satisfying, at the same time, Conditions α and β. A supergraph is a pair
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g = 〈x,g〉 ∈ EA ×G.1 A supergraph is only meaningful if the information in the edge-
part is consistent with that in the graph-part. To this end, let L(g) = L(x)∩L(g) and
let S f = {g | L(g) 	= /0} be the set of supergraphs with non-empty language. For two
supergraphs g = 〈x,g〉 and h = 〈y,h〉, the pair (g,h) is proper if the edge-pair (x,y) is
proper. Let Ygh = L(g) · (L(h))ω. Notice that Ygh ⊆ Yxy ∩Ygh. Therefore, since Ygh sat-
isfies Condition β, so does Ygh ⊆Ygh. For Condition α, we show that Yxy can be covered
by a family of languages of the form Y〈x,g〉〈y,h〉. This is sound since Y〈x,g〉〈y,h〉 ⊆ Yxy for
any g,h. Completeness follows from the lemma below, stating that every word w ∈ Yxy

lies in a set of the form Y〈x,g〉〈y,h〉. It is proved by a Ramsey-based argument.

Lemma 2. For proper edges (x,y) and w∈Yxy, there exist graphs g,h s.t. w ∈Y〈x,g〉〈y,h〉.

Thus, Yxy can be covered by Xxy = {Ygh | g,h ∈ G f ,g = 〈x,g〉,h = 〈y,h〉}. Since Xedges

covers L(A), and each Yxy ∈ Xedges can be covered by Xxy, it follows that X = {Ygh |
g,h ∈ S f ,(g,h) is proper} covers L(A). Thus, X fulfills α + β.

Generating and Testing Supergraphs. While supergraphs in S f are a convenient syn-
tactic object for manipulating languages in X , testing that a given supergraph has non-
empty language is expensive (PSPACE-complete). In [12], this problem is elegantly
solved by introducing a natural notion of composition of supergraphs, which preserves
non-emptiness: The idea is to start with a (small) set of supergraphs which have non-
empty language by construction, and then to obtain S f by composing supergraphs until
no more supergraphs can be generated.

For a BA C and a symbol σ ∈ Σ, let Eσ
C = {〈p,a,q〉 | (p,σ,q) ∈ δC ,(a = 1 ⇐⇒ p ∈

F∨q ∈ F)} be the set of edges induced by σ. The initial seed for the procedure is given
by one-letter supergraphs in S1 =

⋃
σ∈Σ{(x,Eσ

B) | x ∈ Eσ
A}. Notice that S1 ⊆ S f by con-

struction. Next, two edges x = 〈p,a,q〉 and y = 〈q′,b,r〉 are composable iff q = q′. For
composable edges x and y, let x;y = 〈p,max(a,b),r〉. Further, the composition g;h of
graphs g and h is defined as follows: 〈p,c,r〉 ∈ g;h iff there is a state q s.t. 〈p,a,q〉 ∈ g
and 〈q,b,r〉 ∈ h, and c = maxq∈Q{max(a,b) | 〈p,a,q〉 ∈ g,〈q,b,r〉 ∈ h}. Then, super-
graphs g = 〈x,g〉 and h = 〈y,h〉 are composable iff 〈x,y〉 are composable, and their
composition is the supergraph g;h = 〈x;y,g;h〉. Notice that S f is closed under compo-
sition, i.e., g,h∈S f =⇒ g;h∈S f . Composition is also complete for generating S f :

Lemma 3. [1] A supergraph g is in S f iff ∃g1, . . . ,gn ∈ S1 such that g = g1; . . . ;gn.

Now that we have a method for generating all relevant supergraphs, we need a way
of checking inclusion of (supergraphs representing) fragments of L(A) in L(B). Let
(g,h) be a (proper) pair of supergraphs. By the dichotomy property, Ygh ⊆ L(B) iff
Ygh∩L(B) 	= /0. We test the latter condition by the so-called double graph test: For a pair
of supergraphs (g,h), DGT(g,h) iff, whenever (g,h) is proper, then LFT(g,h). Here,
LFT is the so-called lasso-finding test: Intuitively, LFT checks for a lasso with a handle
in g and an accepting loop in h. Formally, LFT(g,h) iff there is an edge 〈p,a0,q0〉 ∈ g
and an infinite sequence of edges 〈q0,a1,q1〉, 〈q1,a2,q2〉, . . . ∈ h s.t. p ∈ I and a j = 1
for infinitely many j’s.

1 The definition of supergraph given here is slightly different from [9,1], where the edge-part is
just a pair of states (p,q). Having labels allows us to give a notion of properness which does
not require to have q ∈ F .
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Lemma 4. [1] L(A)⊆ L(B) iff for all g,h ∈ S f , DGT(g,h).

Basic Algorithm [9]. The basic algorithm for checking inclusion enumerates all super-
graphs from S f by extending supergraphs on the right by one-letter supergraphs from
S1; that is, a supergraph g generates new supergraphs by selecting some h ∈ S1 and
building g;h. Then, L(A)⊆ L(B) holds iff all the generated pairs pass the DGT.

Intuitively, the algorithm processes all lasso-shaped runs that can be used to accept
some words in A . These runs are represented by the edge-parts of proper pairs of gen-
erated supergraphs. For each such run of A , the algorithm uses LFT to test whether
there is a corresponding accepting run of B among all the possible runs of B on the
words represented by the given pair of supergraphs. These latter runs are encoded by
the graph-parts of the respective supergraphs.

4 Optimized Language Inclusion Testing

The basic algorithm of Section 3 is wasteful for two reasons. First, not all edges in the
graph component of a supergraph are needed to witness a counterexample to inclusion:
Hence, we can reduce a graph by keeping only a certain subset of its edges (Optimiza-
tion 1). Second, not all supergraphs need to be generated and tested: We show a method
which safely allows the algorithm to discard certain supergraphs (Optimization 2). Both
optimizations rely on various notions of subsumption, which we introduce next.

Given two edges x = 〈p,a,q〉 and y = 〈r,b,s〉, we say that y subsumes x, written
x � y, if p = r, a ≤ b, and q = s; that x forward-subsumes y, written x �f y, if p = r,
a ≤ b, and q  f s; that x backward-subsumes y, written x �b y, if p  b r, a ≤ b, and
q = s; and that x forward-backward-subsumes y, written x �fb y, if p  b r, a ≤ b, and
q f s. We lift all the notions of subsumption to graphs: For any z ∈ {f,b, fb, } and for
graphs g and h, let g�z h iff, for every edge x ∈ g, there exists an edge y ∈ h s.t. x�z y.
Since the simulations  f and  b are preorders, all subsumptions are preorders. We
define backward and forward-backward subsumption equivalence as !b = �b ∩�−1

b

and !fb =�fb∩�−1
fb , respectively.

4.1 Optimization 1: Minimization of Supergraphs

The first optimization concerns the structure of individual supergraphs. Let g = 〈x,g〉 ∈
S be a supergraph, with g its graph-component. We minimize g by deleting edges therein
which are subsumed by�fb-larger ones. That is, whenever we have x�fb y for two edges
x,y ∈ g, we remove x and keep y. Intuitively, subsumption-larger arcs contribute more
to the capability of representing lassoes since their right and left endpoints are  f / b-
larger, respectively, and have therefore a richer choice of possible futures and pasts.
Subsumption smaller arcs are thus redundant, and removing them does not change the
capability of g to represent lassoes in B . Formally, we define a minimization operation
Min mapping a supergraph g = 〈x,g〉 to its minimized version Min(g) = 〈x,Min(g)〉
where Min(g) is the minimization applied to the graph-component.2

2 In [1], we used �f for minimization. The theory allowing the use of �fb is significantly more
involved, but as as shown in Section 8, the use of�fb turns out to be much more advantageous.
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Definition 1. For two graphs g and h, let g  h iff (1) g � h and (2) h �fb g. For
supergraphs g = 〈x,g〉 and h = 〈y,h〉, let g  h iff x = y and g  h. A minimization of
graphs is any function Min such that, for any graph h, Min(h)  h.

Point 1 in the definition of  allows some edges to be erased or their label decreased.
Point 2 states that only subsumed arcs can be removed or have their label decreased.
Note also that, clearly, Min(h)  h holds for any supergraph h. Finally, note that Min is
not uniquely determined: First, there are many candidates satisfying Min(h)  h. Yet,
an implementation will usually remove a maximal number of edges to keep the size of
graphs to a minimum. Second, even if we required Min(h) to be a -smallest element
(i.e., no further edge can be removed), the minimization process might encounter �fb-
equivalent edges, and in this case, we do not specify which ones get removed. Therefore,
we prove correctness for any minimization satisfying Min(h)  h.

Intuitively, a minimized supergraph g can be seen as a small representative of all
supergraphs h ∈ G f with g  h, and of all the fragments of L(A) encoded by them.
Using representatives allows us to deal with a smaller number of smaller supergraphs.
We now explain how (sufficiently many) representatives encoding fragments of L(A)
can be generated and tested for inclusion in L(B).

Generating Representatives of Supergraphs. We need to create a representative of each
supergraph in S f by composing representatives only. Let g = 〈x,g〉 and h = 〈y,h〉 be two
composable supergraphs, representing g′ = 〈x,g′〉 and h′ = 〈y,h′〉, respectively. If graph
composition were -monotone, i.e., g;h  g′;h′, then we would be done. However,
graph composition is not monotone: The reason is that some composable edges e ∈ g′

and f ∈ h′ may be erased by minimization, and be represented by some ê ∈ g and f̂ ∈ h
instead, with e �fb ê and f �fb f̂ . But now, ê and f̂ are not necessarily composable
anymore. Thus, g;h 	 g′;h′. We solve this problem in two steps: We allow composition
to jump to  b-larger states (Def. 2), and relax the notion of representative (Def. 3).

Definition 2. Given graphs g,h ∈ G, their jumping composition g �b h contains an
edge 〈p,c,r〉 ∈ g �b h iff there are edges 〈p,a,q〉 ∈ g, 〈q′,b,r〉 ∈ h s.t. q  b q′, and
c = maxq,q′{max(a,b) | 〈p,a,q〉 ∈ g,〈q′,b,r〉 ∈ h,q b q′}. For two composable super-
graphs g = 〈x,g〉 and h = 〈y,h〉, let g �b h = 〈x;y,g �b h〉.

Jumping composition alone does not yet give the required monotonicity property. The
problem is that g �b h is not necessarily a minimized version of g′;h′, but it is only
a minimized version of something!b-equivalent to g′;h′. This leads us to the following
more liberal notion of representatives, which is based on  modulo the equivalence!b,
and for which Lemma 5 proves the required monotonicity property.

Definition 3. A graph g ∈ G is a representative of a graph h ∈ G f , denoted g � h, iff
there exists h̄ ∈ G such that g  h̄ !b h. For supergraphs g = 〈x,g〉,h = 〈y,h〉 ∈ S, we
say that g is a representative of h, written g � h, iff x = y and g � h. Let SR = {g | ∃h ∈
S f . g � h} be the set of representatives of supergraphs.

Lemma 5. For supergraphs g,h ∈ SR and g′,h′ ∈ S f , if g � g′, h � h′ and g′,h′ are
composable, then g,h are composable and g �b h � g′;h′ and g �b h ∈ SR.
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Lemma 6. Let f∈ S, g∈ SR, and h∈ S f . If f  g and g � h, then f � h (and thus f∈ SR).
In particular, the statement holds when f = Min(g).

Lemmas 5, 6, and 3 imply that creating supergraphs by �b-composing representatives,
followed by further minimization, suffices to create a representative of each supergraph
in S f . This solves the problem of generating representatives of supergraphs.

Weak Properness and Relaxed DGT. We now present a relaxed DGT proposed in [1],
which we further improve below. The idea is to weaken the properness condition in
order to allow more pairs of supergraphs to be eligible for LFT on their graph part. This
may lead to a quicker detection of a counterexample. Weak properness is sound since
it still produces fragments Ygh ⊆ L(A) as required by Condition α. Completeness is
guaranteed since properness implies weak properness.

Definition 4. (adapted from [1]) A pair of edges (〈p,a,q〉,〈r,b,s〉) is weakly proper iff
p ∈ IA , r  f q, r  f s, and b = 1,3 and a pair of supergraphs (g = 〈x,g〉,h = 〈y,h〉) is
weakly proper when (x,y) is weakly proper. Supergraphs g,h pass the relaxed double
graph test, denoted RDGT(g,h), iff whenever (g,h) is weakly proper, then LFT(g,h).

Lemma 7. [1] L(A)⊆ L(B) iff for all g,h ∈ S f , RDGT(g,h).

Testing Representatives of Supergraphs. We need a method for testing inclusion in
L(B) of the fragments of L(A) encoded by representatives of supergraphs that is equiv-
alent to testing inclusion of fragments of L(A) encoded by the represented supergraphs.
As with composition, minimization is not compatible with such testing since edges
needed to find loops may be erased during the minimization process. Technically, this
results in the LFT (and therefore RDGT) not being �-monotone. Therefore, we general-
ize the LFT by allowing jumps to b-larger states, in a similar way as with �b. Lemma 8
establishes the required monotonicity property.

Definition 5. A pair of graphs (g,h) passes the jumping lasso-finding test, denoted
LFTb(g,h), iff there is an edge 〈p,a0,q0〉 in g and an infinite sequence of edges
〈q′0,a1,q1〉, 〈q′1,a2,q2〉, . . . in h s.t. p ∈ I, qi  b q′i for all i ≥ 0, and a j = 1 for in-
finitely many j’s. A pair of supergraphs (g,h) passes the jumping relaxed double graph
test, denoted RDGTb(g,h), iff whenever (g,h) is weakly proper, then LFTb(g,h).

Lemma 8. For any g,h ∈ SR and g′,h′ ∈ S f such that g � g′ and h � h′, it holds that
RDGTb(g,h)⇐⇒ RDGT(g′,h′).

Algorithm with Minimization. By Lemma 8, RDGTb on representatives is equivalent
to RDGT on the represented supergraphs. Together with Lemma 7, this means that it
is enough to generate a representative of each supergraph from S f , and test all pairs
of the generated supergraphs with RDGTb. Thus, we have obtained a modification of
the basic algorithm which starts from minimized 1-letter supergraphs in Min(S1) =
{Min(g) | g ∈ S1}, and constructs new supergraphs by �b-composing already generated
supergraphs with Min(S1) on the right. New supergraphs are further minimized with
Min. Inclusion holds iff all pairs of generated supergraphs pass RDGTb.

3 We note that instead of testing r  f q, testing inclusion of the languages of the states is suf-
ficient. Furthermore, instead of testing r  f s, one can test for delayed simulation, but not for
language inclusion. See [2] for details.
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4.2 Optimization 2: Discarding Subsumed Supergraphs

The second optimization gives a rule for discarding supergraphs subsumed by some
other supergraph. This is safe in the sense that if a subsumed supergraph can yield
a counterexample to language inclusion, then also the subsuming one can yield a coun-
terexample. We present an improved version of the subsumption from [1]. The new
version uses both  f and  b on the B part of supergraphs instead of  f only. This al-
lows us to discard significantly more supergraphs than in [1], as illustrated in Section 8.

Definition 6. We say that a supergraph g = 〈x,g〉 subsumes a supergraph g′ = 〈y,g′〉,
written g�fb g′, iff y�f x and g�fb g′.

Intuitively, if y�f x, then x has more power for representing lassoes in A than y since, by
the properties of forward simulation, it has a richer choice of possible forward continu-
ations in A . On the other hand, g �fb g′ means that g′ has more chance of representing
lassoes in B than g: In fact, g′ contains edges that have a richer choice of backward con-
tinuations (due to the  b on the left endpoints of the edges) as well as a richer choice
of forward continuations (due to the  f on the right endpoints). Thus, it is more likely
for g than for g′ to lead to a counterexample to language inclusion. This intuition is
confirmed by the lemma below, stating the �fb-monotonicity of RDGTb.

Lemma 9. For supergraphs g,h ∈ SR and g′,h′ ∈ S, if g �fb g′ and h �fb h′, then
RDGTb(g,h)⇒ RDGTb(g′,h′).

Therefore, no counterexample is lost by testing only�fb-smaller supergraphs. To show
that we can completely discard �fb-larger supergraphs, we need to show that sub-
sumption is compatible with composition, i.e., that descendants of larger supergraphs
are (eventually) subsumed by descendants of smaller ones. Ideally, we would achieve
this by showing the following more general fact: For two composable representatives
g′,h′ ∈ SR that are subsumed by supergraphs g and h, respectively, the composite su-
pergraph g �b h subsumes g′ �b h′. The problem is that subsumption does not preserve
composability: Even if g′,h′ are composable, this needs not to hold for g,h.

We overcome this difficulty by taking into account the specific way supergraphs are
generated by the algorithm. Since we only generate new supergraphs by composing
old ones on the right with 1-letter minimized supergraphs, we do not need to show
that arbitrary composition is �fb-monotone. Instead, we show that, for representatives
g,g′ ∈ SR and a 1-letter minimized supergraph h′ ∈ Min(S1), if g subsumes g′, then
there will always be a supergraph h available which is composable with g such that
g �b h subsumes g′ �b h′. Thus, we can safely discard g′ from the rest of the computation.

Lemma 10. For any g,g′ ∈ SR with g �fb g′ and h′ ∈ Min(S1) such that g′ and h′

are composable, there exists ĥ ∈ Min(S1) such that for all h ∈ SR with h �fb ĥ, g is
composable with h and g �b h�fb g′ �b h′.

Algorithm with Minimization and Subsumption. We have obtained a modification of
the algorithm with minimization. It starts with a subset Init⊆Min(S1) of �fb-smallest
minimized one-letter supergraphs. New supergraphs are generated by �b-composition
on the right with supergraphs in Init, followed by minimization with Min. Generated
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supergraphs that are �fb-larger than other generated supergraphs are discarded. The
inclusion holds iff all pairs of generated supergraphs that are not discarded pass RDGTb.
(An illustration of a run of the algorithm can be found in [2].)

5 Using Forward Simulation Between A and B

Previously, we showed that some supergraphs can safely be discarded because some
�fb-smaller ones are retained, which preserves the chance to find a counterexample to
language inclusion. Our subsumption relation �fb is based on forward/backward simu-
lation on A and B . In order to use forward simulation between A and B , we describe
a different reason to discard supergraphs. Generally, supergraphs can be discarded be-
cause they can neither find a counterexample to inclusion (i.e., always pass the RDGT)
nor generate any supergraph that can find a counterexample. However, the RDGT is
asymmetric w.r.t. the left and right supergraph. Thus, a supergraph that is useless (i.e.,
not counterexample-finding) in the left role is not necessarily useless in the right role
(and vice-versa). The following condition C is sufficient for a supergraph to be useless
on the left. Moreover, C is efficiently computable and compatible with subsumption.
Therefore, its use preserves the soundness and completeness of our algorithm.

Definition 7. For g=〈〈p,a,q〉,g〉 ∈ S, C(g) iff p /∈ IA ∨(∃〈r,b,s〉 ∈ g. r ∈ IB∧q AB
f s).

The first part p /∈ IA of the condition is obvious because paths witnessing counterex-
amples to inclusion must start in an initial state. The second part (∃〈r,b,s〉 ∈ g. r ∈
IB ,q  AB

f s) uses forward-simulation  AB
f between A and B to witness that neither

this supergraph nor any other supergraph generated from it will find a counterexample
when used on the left side of the RDGT. It might still be needed for tests on the right
side of the RDGT though. Instead of  AB

f , every relation implying language inclusion
would suffice, but (as mentioned earlier) simulation preorder is efficiently computable
while inclusion is PSPACE-complete. The following lemma shows the correctness of
C.

Lemma 11. ∀g,h ∈ SR. C(g)⇒ RDGTb(g,h).

C is �fb-upward-closed and closed w.r.t. right extensions. Hence, it is compatible with
subsumption-based pruning of the search space and with the employed incremental
construction of supergraphs (namely, satisfaction of the condition is inherited to super-
graphs newly generated by right extension with one-letter supergraphs).

Lemma 12. Let g,h ∈ S s.t. g�fb h. Then C(g)⇒ C(h).

Lemma 13. Let g ∈ SR, h ∈Min(S1) be composable. Then C(g)⇒ C(g �b h).

In principle, one could store separate sets of supergraphs for use on the left/right in the
RDGT, respectively. However, since all supergraphs need to be used on the right any-
way, a simple flag is more efficient. We assign the label L to a supergraph to indicate that
it is still useful on the left in the RDGT. If a supergraph satisfies condition C, then the L-
label is removed. The algorithm counts the number of stored supergraphs that still carry
the L-label. If this number drops to zero, then (1) it will remain zero (by Lemma 13), and
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(2) no RDGT will ever find a counterexample: In this case, the algorithm can terminate
early and report inclusion. In the special case where forward-simulation holds even be-
tween the initial states of A and B , condition C is true for every generated supergraph.
Thus, all L-labels are removed and the algorithm terminates immediately, reporting in-
clusion. Of course, condition C can also help in other cases where simulation does not
hold between initial states but “more deeply” inside the automata.

The following lemma shows that if some supergraph g can find a counterexample
when used on the left in the RDGT, then at least one of its 1-letter right-extensions
can also find a counterexample. Intuitively, the counterexample has the form of a prefix
followed by an infinite loop, and the prefix can always be extended by one step. E.g., the
infinite words xy(abc)ω and xya(bca)ω are equivalent. This justifies the optimization in
line 15 of our algorithm (cf. [2]).

Lemma 14. Let g,h ∈ SR. If ¬RDGTb(g,h), then there exists a �fb-minimal super-
graph f in Min(S1) and e ∈ SR s.t. ¬RDGTb(g �b f,e).4

6 Metagraphs and a New RDGT

Since many supergraphs share the same graph for B , they can be more efficiently repre-
sented by a combined structure that we call a metagraph. Moreover, metagraphs allow
to define a new RDGT where several A-edges jointly witness a counterexample to in-
clusion, so that counterexamples can be found earlier than with individual supergraphs.

A metagraph is a structure (X ,g) where X ⊆ EA is a set of A-edges and g ∈GB . The
metagraph (X ,g) represents the set of all supergraphs 〈x,g〉 with x ∈ X . The L-labels of
supergraphs then become labels of the elements of X since the graph g is the same.

We lift basic concepts from supergraphs to metagraphs. For every character σ ∈ Σ,
there is exactly one single-letter metagraph (Eσ

A ,Eσ
B ). Let M1 = {(Eσ

A ,Eσ
B )| σ ∈ Σ}.

Thus, the set of single-letter metagraphs M1 represents all single-letter supergraphs
in S1. The function RightExtend defines the composition of two metagraphs such that
RightExtend((X ,g),(Y,h)) = (X ;Y,g �bh), which is the metagraph containing the super-
graphs that are �b-right extensions of supergraphs contained in (X ,g) by supergraphs
contained in (Y,h). The L-labels of the elements z ∈ X ;Y are assigned after testing
condition C. The function Minf is defined on sets X ⊆ EA s.t. Minf(X) contains the�f-
minimal edges of X . If some edges are �f-equivalent, then Minf(X) contains just any
of them. Let MinM(X ,g) = (Minf(X),Min(g)). Thus, MinM(X ,g) contains exactly one
representative of every!fb equivalence class of the�fb-minimal supergraphs in (X ,g).

It is not meaningful to define subsumption for metagraphs. Instead, we need to re-
move certain supergraphs (i.e., A-edges) from some metagraph if another metagraph
contains a�fb-smaller supergraph. If no A-edge remains, i.e., X = /0 in (X ,g), then this
metagraph can be discarded. This is the purpose of introducing the function Clean: It
takes two metagraphs (X ,g) and (Y,h), and it returns a metagraph (Z,g) that describes
all supergraphs from (X ,g) for which there is no �fb-smaller supergraph in (Y,h). For-
mally, if h�fb g, then x ∈ Z iff x ∈ X and 	 ∃y ∈Y s.t. x�f y. Otherwise, if h 	�fb g, then
Z = X . Now we define a generalized RDGT on metagraphs.

4 A slightly modified version, presented in [2], holds for the version of the RDGT mentioned in
the footnote on Definition 4.
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Algorithm 1. Inclusion Checking with Metagraphs

Input: BA A = (Σ,QA , IA ,FA ,δA ), B = (Σ,QB , IB ,FB ,δB ), and the set M1
A,B .

Output: TRUE if L(A)⊆ L(B). Otherwise, FALSE.
Next := {MinM((X ,g)) | (X ,g) ∈M1

A,B}; Init := /0;1

while Next 	= /0 do2

Pick and remove a metagraph (X ,g) from Next;3

Clean1((X ,g), Init);4

if X 	= /0 then5

Clean3(Init,(X ,g)); Add (X ,g) to Init;6

Processed := /0; Next := Init;7

foreach (X ,g) ∈ Next do8

foreach x ∈ X do9

if ¬C(〈x,g〉) then label x with L10

while Next 	= /0∧∃(X ,g) ∈ Next∪Processed. ∃x ∈ X .L(x) do11

Pick a metagraph (X ,g) from Next and remove (X ,g) from Next;12

if ¬RDGTM
b ((X,g),(X,g)) then return FALSE;13

if ∃(Y,h) ∈ Processed : ¬RDGTM
b ((Y ,h),(X,g))∨¬RDGTM

b ((X,g),(Y ,h)) then14

return FALSE;
Create (X ′,g) from (X ,g) by removing the L-labels from X and add (X ′,g) to15

Processed;
foreach (Y,h) ∈ Init do16

(Z, f ) := MinM(RightExtend((X ,g),(Y,h)));17

if Z 	= /0 then Clean1((Z, f ),Next);18

if Z 	= /0 then Clean2((Z, f ),Processed);19

if Z 	= /0 then20

Clean3(Next,(Z, f )); Clean3(Processed,(Z, f )); Add (Z, f ) to Next;21

return TRUE;22

Definition 8. A pair of sets of A-edges X ,Y ⊆ EA passes the forward-downward jump-
ing lasso-finding test, denoted LFTf(X ,Y ), iff there is an arc 〈p,a0,q0〉 in X (with the
L-label) and an infinite sequence of arcs 〈q′0,a1,q1〉,〈q′1,a2,q2〉, . . . in Y s.t. p ∈ IA ,
q′i  f qi for all i≥ 0, and a j = 1 for infinitely many j’s.

Definition 9. RDGTM
b ((X,g),(Y,h)) iff, whenever LFTf(X ,Y ), then LFTb(g,h).

The following lemma shows the soundness of the new RDGT.

Lemma 15. Let (X ,g),(Y,h) be metagraphs where all contained supergraphs are in
SR. If ¬RDGTM

b ((X,g),(Y,h)), then L(A) 	⊆ L(B).

If there are x ∈ X ,y ∈ Y s.t. ¬RDGTb(〈x,g〉,〈y,h〉), then ¬RDGTM
b ((X,g),(Y,h)), by

Definitions 4, 8, and 9. Thus the completeness of the new RDGT follows already from
Lemmas 7 and 8. Checking RDGTM

b ((X,g),(Y,h)) can be done very efficiently for large
numbers of metagraphs, by using an abstraction technique that extracts test-relevant
information from the metagraphs and stores it separately (cf. [2]).
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7 The Main Algorithm

Algorithm 1 describes our inclusion testing algorithm. The function Clean is extended
to sets of metagraphs in the standard way and implemented in procedures Clean1 and
Clean3 in which the result overwrites the first argument (the two procedures differ in the
role of the first argument, and Clean3 in addition discards empty metagraphs). Lines 1-6
compute the metagraphs which contain the subsumption-minimal 1-letter supergraphs.
Lines 7-10 initialize the set Next with these metagraphs and assign the correct labels
by testing condition C. L(x) denotes that the A-arc x is labeled with L. Lines 11-21
describe the main loop. It runs until Next is empty or there are no more L-labels left.
In the main loop, metagraphs are tested (lines 13-14) and then moved from Next to
Processed without the L-label (line 15). Moreover, new metagraphs are created and
some parts of them discarded by the Clean operation (lines 16-21). Extra bookkeeping
is needed to handle the case where L-labels are regained by supergraphs in Processed
in line 19 (see Clean2 in [2]).

Theorem 1. Algorithm 1 terminates. It returns TRUE iff L(A)⊆ L(B).

8 Experimental Results

We have implemented the proposed inclusion-checking algorithm in Java (the imple-
mentation is available at http://www.languageinclusion.org/CONCUR2011) and
tested it on automata derived from (1) mutual exclusion protocols [15] and (2) the
Tabakov-Vardi model [18]. We have compared the performance of the new algorithm
with the one in [1] (which only uses supergraphs, not metagraphs, and subsumption
and minimization based on forward simulation on A and on B), and found it better on
average, and, in particular, on difficult instances where the inclusion holds. Below, we
present a condensed version of the results. Full details can be found in [2].

In the first experiment, we inject artificial errors into models of several mutual exclu-
sion protocols from [15]5, translate the modified versions into BA, and compare the se-
quences of program states (w.r.t. occupation of the critical section) of the two versions.
For each protocol, we test language inclusion L(A) ⊆ L(B) of two variants A and B .
We use a timeout of 24 hours and a memory limit of 4GB. We record the running
time and indicate a timeout by “>24h”. We compare the algorithm from [1] against its
various improvements proposed above. The basic new setting (denoted as “default” in
the results) uses forward simulation as in [1] together with metagraphs from Section 6
(and some further small optimizations described in [2]). Then, we gradually add the use
of backward simulation proposed in Section 4 (denoted by -b in the results) and for-
ward simulation between A and B from Section 5 (denoted by -c, finally yielding the
algorithm of Section 7). We also consider repeated quotienting w.r.t. forward/backward-
simulation-equivalence before starting the actual inclusion checking (denoted by -qr),
while the default does quotienting w.r.t. forward simulation only. In order to better show

5 The models in [15] are based on guarded commands. We derive variants from them by ran-
domly weakening or strengthening the guard of some commands.
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Table 1. Language inclusion checking on mutual exclusion protocols. Forward simulation holds
between initial states. The option -c is extremely effective in such cases.

Protocol
A B Algorithm New Algorithm

Trans. States Trans. States of [1] default -b -b -qr -b -qr -c
Peterson 33 20 34 20 0.46s 0.39s 0.54 0.61s 0.03s
Phils 49 23 482 161 12h36m 11h3m 7h21m 7h23m 0.1s
Mcs 3222 1408 21503 7963 >24h 2m43s 2m32s 2m49s 1m24s
Bakery 2703 1510 2702 1509 >24h >24h >24h >24h 12s
Fischer 1395 634 3850 1532 4h50m 2m38s 2m50s 27s 3.6s
FischerV2 147 56 147 56 13m15s 5m14s 1m26s 1m1s 0.1s

Table 2. Language inclusion checking on mutual exclusion protocols. Language inclusion holds,
but forward simulation does not hold between initial states (we call this category “inclusion”).
The new alg. is much better in FischerV3, due to metagraphs. Option -b is effective in FischerV4.
BakeryV2 is a case where -c is useful even if simulation does not hold between initial states.

Protocol
A B Algorithm New Algorithm

Trans. States Trans. States of [1] default -b -b -qr -b -qr -c
FischerV3 1400 637 1401 638 3h6m 45s 10s 11s 7s
FischerV4 147 56 1506 526 >24h >24h 1h31m 2h12m 2h12m
BakeryV2 2090 1149 2091 1150 >24h >24h >24h >24h 18s

Table 3. Language inclusion checking on mutual exclusion protocols. Language inclusion does
not hold. Note that the new algorithm uses a different search strategy (BFS) than the alg. in [1].

Protocol
A B Algorithm New Algorithm

Trans. States Trans. States of [1] default -b -b -qr -b -qr -c
BakeryV3 2090 1149 2697 1506 12m19s 5s 6s 16s 15s
FischerV5 3850 1532 1420 643 7h28m 1m6s 1m47s 39s 36s
PhilsV2 482 161 212 80 1.1s 0.7s 0.8s 1s 1s
PhilsV3 464 161 212 80 1s 0.7s 0.8s 1.2s 1.1s
PhilsV4 482 161 464 161 10.7s 3.8s 4.5s 4.8s 4.8s

the capability of the new techniques, the results are categorized into three classes, ac-
cording to whether (1) simulation holds, (2) inclusion holds (but not simulation), and
(3) inclusion does not hold. See, resp., Tables 1, 2, and 3. On average, the newly pro-
posed approach using all the mentioned options produces the best result.

In the second experiment, we use the Tabakov-Vardi random model6 with fixed al-
phabet size 2. There are two parameters, transition density (td; average number of tran-

6 Note that automata generated by the Tabakov-Vardi model are very different from a control-
flow graph of a program. They are almost unstructured, and thus on average the density of sim-
ulation is much lower. Hence, we believe it is not a fair evaluation benchmark for algorithms
aimed at program verification. However, since it was used in the evaluation of most previous
works on language inclusion testing, we also include it as one of the evaluation benchmarks.
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Table 4. Results of the Tabakov-Vardi experiments on two selected configurations. In each case,
we generated 100 random automata and set the timeout to one hour. The new algorithm found
more cases with simulation between initial states because the option -qr (do fw/bw quotienting
repeatedly) may change the forward simulation in each iteration. In the “Hard” case, most of the
timeout instances probably belong to the category “inclusion” (Inc).

Hard: td=2, ad=0.1, size=30 Easy, but nontrivial: td=3, ad=0.6, size=50
The Algorithm of [1] New Algorithm The Algorithm of [1] New Algorithm

Sim 1%, 32m42s 2%, 0.025s 13%, 2m5s 21%, 0.14s
Inc 16%, 43m 20%, 30m42s 68%, 26m14s 64%, 6m12s
nInc 49%, 0.17s 49%, 0.2s 15%, 0.3s 15%, 0.3s
TO 34% 29% 4% 0%

sitions per state and alphabet symbol) and acceptance density (ad; percentage of ac-
cepting states). The results of a complete test for many parameter combinations and
automata of size 15 can be found in [2]. Its results can be summarized as follows. In
those cases where simulation holds between initial states, the time needed is negligi-
ble. Also the time needed to find counterexamples is very small. Only the “inclusion”
cases are interesting. Based on the results presented in [2], we picked two configura-
tions (Hard: td=2, ad=0.1, size=30) and (Easy, but nontrivial: td=3, ad=0.6, size=50) for
an experiment with larger automata. Both configurations have a substantial percentage
of the interesting “inclusion” cases. The results can be found in Table 4.

9 Conclusions

We have presented an efficient method for checking language inclusion for Büchi au-
tomata. It augments the basic Ramsey-based algorithm with several new techniques
such as the use of weak subsumption relations based on combinations of forward and
backward simulation, the use of simulation relations between automata in order to limit
the search space, and methods for eliminating redundant tests in the search procedure.
We have performed a wide set of experiments to evaluate our approach, showing its
practical usefulness. An interesting direction for future work is to characterize the roles
of the different optimizations in different application domains. Although their overall
effect is to achieve a much better performance compared to existing methods, the con-
tribution of each optimization will obviously vary from one application to another. Such
a characterization would allow a portfolio approach in which one can predict which op-
timization would be the dominant factor on a given problem. In the future, we also plan
to implement both the latest rank-based and Ramsey-based approaches in a uniform
way and thoroughly investigate how they behave on different classes of automata.
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17. Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS. vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

18. Tabakov, D., Vardi, M.Y.: Model Checking Büchi Specifications. In: Proc. of LATA 2007
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Abstract. A multi-stack pushdown system is a natural model of con-
current programs. The basic verification problems are in general un-
decidable (two stacks suffice to encode a Turing machine), and in the
last years, there have been some successful approaches based on under-
approximating the system behaviors. In this paper, we propose a restric-
tion of the semantics of the general model such that a symbol that is
pushed onto a stack can be popped only within a bounded number of
context-switches. Note that, we allow runs to be formed of unboundedly
many execution contexts, we just bound the scope (in terms of number
of contexts) of matching push and pop transitions. We call the result-
ing model a multi-stack pushdown system with scope-bounded matching
relations (SMpds). We show that the configuration reachability and the
location reachability problems for SMpds are both Pspace-complete,
and that the set of the reachable configurations is regular, in the sense
that there exists a multi-tape finite automaton that accepts it.

1 Introduction

Multi-stack pushdown systems are a natural and well-established model of pro-
grams with both concurrency and recursive procedure calls, which is suitable to
capture accurately the flow of control. A multi-stack pushdown system is essen-
tially a finite control equipped with one or more pushdown stores. Each store
encodes a recursive thread of the program and the communication between the
different threads is modelled with the shared states of the finite control.

The class of multi-stack pushdown systems is very expressive. It is well known
that two stacks can simulate an unbounded read/write tape, and therefore, a
push-down system with two stacks suffices to mimic the behaviour of an arbitrary
Turing machine. In the standard encoding, it is crucial for the automaton to move
an arbitrary number of symbols from one stack to another and repeat this for
arbitrarily many times. To achieve decidability it is thus necessary to break this
capability by placing some limitations on the model.

In the last years, the analysis of multi-stack pushdown systems within a
bounded number of execution contexts (in each context only one stack is used)
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has been proposed as an effective method for finding bugs in concurrent pro-
grams [14]. This approach is justified in practice by the general idea that most
of the bugs of a concurrent program are likely to manifest themselves already
within few execution contexts (which has also been argued empirically in [13]).
Though bounding the number of context-switching in the explored runs does
not bound the depth of the search of the state space (the length of each context
is unbounded), it has the immediate effect of bounding the interaction among
different threads and thus the exchanged information. In fact, the reachability
problem with this limitation becomes decidable and is NP-complete [11,14].

In this paper, we propose a decidable notion of multistack pushdown system
that does not bound the number of interactions among the different stacks, and
thus looks more suitable for a faithful modeling of programs with an intensive
interaction between threads. We impose a restriction which is technically an ex-
tension of what is done in the bounded context-switching approach but is indeed
conceptually very different. We allow an execution to go through an unbounded
number of contexts, however recursive calls that are returned can only span for a
bounded number of contexts. In other words, we bound the scope of the match-
ing push and pop operations in terms of the number of context switches allowed
in the between. Whenever a symbol is pushed onto a stack, it is either popped
within a bounded number of context switches or never popped. This has the
effect that in an execution of the system, from each stack configuration which
is reached, at most a finite amount of information can be moved into the other
stacks, thus breaking the ability of the multistack pushdown system of simulat-
ing a Turing machine. We call the resulting model a multistack pushdown system
with scope-bounded matching relations (SMpds).

Bounding the scope of the matching relations to a given number of context-
switches instead of the whole computation has some appealing aspects. First,
for a same bound k, it covers a reachable space which is at least that covered by
the bounded context-switching analysis, and in some cases can be significantly
larger. In fact, there are systems such that the whole space of configurations
can be explored with a constant bound on the scope while it will require a large
number of context switches or even unboundedly many of them (see for example
Figure 1). Thus, for systems where the procedure calls do not need to hang for
many contexts before returning, the bounded scope analysis covers the behavior
explored with the context bounded analysis with smaller values of the bound k,
which is a critical parameter for the complexity of the decision algorithms (time
is exponential in k in both settings). It is known that looking at the computa-
tions as nested words with multiple stack relations, when restricting to k-context
computations, the corresponding set has a bounded tree-width (see [12]). More-
over, a bounded context-switch multistack pushdown system can be simulated
by a standard pushdown system with just one stack (see [7,10]). For SMpds

instead, any of these results does not seem to work or at least requires a more
complex encoding. Finally, SMpds have a natural and meaningful semantics for
infinite computations which allows to observe also infinitely many interactions
between the different threads.
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In this paper, we tackle the reachability problem for SMpds, and show that
it is Pspace-complete. Our decision algorithm is an elaborated adaptation of
the saturation procedure which is used for the analysis of pushdown sytems
[15] and reused in [14] for solving the reachability within a bounded number
of context switches. As in [14] we grow the set of reachable configurations as
tuples of automata accepting configurations of each stack, and construct the
automata by iterating the saturation algorithm from [15] into layers, each for
execution context. However, in [14] the construction has a natural limit in the
allowed number of contexts which is bounded, while in our setting, we appeal
to the bound on the scope of the matching relations and use the automata to
represent not all the stack contents but only the portions corresponding to the
last k execution contexts.

We assume that the executions of an SMpds go through rounds of schedule,
where in each round all stacks are scheduled exactly once and always according to
the same order. To prove our results, we construct a finite graph, that we call the
reachability graph, whose nodes are n-tuples of k-layered automata along with
the n-states of the finite control at which the context-switches have happened in
the last round. The edges of the graph link a tuple u to any other tuple v such
that executing a whole round, by context-switching at the states listed in u, the
stack content of the last k rounds is captured by the tuple of k-layered automata
in v. We show that the reachability graph reduces the location reachability for
SMpds to standard reachability in finite graphs. Since its size is exponential
in the number of locations, the number of stacks and the number of rounds
in a scope, this problem can be decided in polynomial space. The reachability
graph can be also used as a general framework where the k-layered automata are
combined to obtain an n-tape finite automaton that accept exactly the reachable
configurations.

The configuration reachability problem is stated as the problem of deciding
if a configuration within a set of target configurations is reachable. The target
set is given as a Cartesian product of regular languages over the stack alpha-
bets. The n-tape finite automaton accepting the reachable configurations can
be modified to compute the intersection with the target set (this can be done
componentwise since the target set is a Cartesian product) and thus the configu-
ration reachability problem can be reduced to check emptiness of an n-tape finite
automaton of exponential size, and thus again this can be done in polynomial
space. Pspace-hardness of the considered problems can be shown with standard
constructions from the membership of linear bounded automata.

Related Work. In [9], the notion of context is relaxed and the behaviours of
multistack pushdown systems are considered within a bounded number of phases,
where in each phase only one stack is allowed to execute pop transitions but all
the stacks can do push transitions. The reachability problem in this model turns
out to be 2Etime-complete [9,5]. We observe that in each phase an unbounded
amount of information can pass from one stack to any other, but still this can
be done only a bounded number of times. Thus, in some sense this extension is
orthogonal to that proposed in this paper. Moreover, it is simple to verify that
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the extension of SMpds where contexts are replaced with phases in the rounds
is as powerful as Turing machines.

The notion of bounded-context switching has been successfully used in recent
work: model-checking tools for concurrent Boolean programs [6,10,16]; transla-
tions of concurrent programs to sequential programs reducing bounded context-
switching reachability to sequential reachability [7,10]; model-checking tools for
Boolean abstractions of parameterized programs (concurrent programs with un-
boundedly many threads each running one of finitely many codes) [8]; sequential-
ization algorithms for parameterized programs [3]; model-checking of programs
with dynamic creation of threads [1]; analysis of systems with systems heaps [2],
systems communicating using queues [4], and weighted pushdown systems [11].

2 Multistack Pushdown Systems

In this section we introduce the notations and definitions we will use in the rest
of the paper. Given two positive integers i and j, i ≤ j, we denote with [i, j] the
set of integers k with i ≤ k ≤ j, and with [j] the set [1, j].

A multi-stack pushdown system consists of a finite control along with one or
more pushdown stores. There are three kinds of transitions that can be executed:
the system can push a symbol on any of its stacks, or pop a symbol from any
of them, or just change its control location by maintaining unchanged the stack
contents. For the ease of presentation and without loss of generality we assume
that the the symbols used in each stack are disjoint from each other. Therefore,
a multi-stack pushdown system is coupled with an n-stack alphabet Γ̃n defined
as the union of n pairwise disjoint finite alphabets Γ1, . . . , Γn. Formally:

Definition 1. (Multi-stack pushdown system) A multi-stack pushdown
system (Mpds) with n stacks is a tuple M = (Q,QI , Γ̃n, δ) where Q is a finite
set of states, QI ⊆ Q is the set of initial states, Γ̃n is an n-stack alphabet, and
δ ⊆ (Q×Q) ∪ (Q×Q× Γ ) ∪ (Q× Γ ×Q) is the transition relation.

We fix an n-stack alphabet Γ̃n = ∪n
i=1Γi for the rest of the paper. A transi-

tion (q, q′) is an internal transition where the control changes from q to q′ and
the stack contents stay unchanged. A transition (q, q′, γ) for γ ∈ Γi is a push-
transition where the symbol γ is pushed onto stack i and the control changes
from q to q′. Similarly, (q, γ, q′) for γ ∈ Γi is a pop-transition where γ is read
from the top of stack i and popped, and the control changes from q to q′. A stack
content w is a possibly empty finite sequence over Γ . A configuration of an Mpds

M is a tuple C = 〈q, w1, . . . , wn〉, where q ∈ Q and each wi is a stack content.
Moreover, C is initial if q ∈ QI and wi = ε for every i ∈ [n]. Transitions between
configurations are defined as follows: 〈q, w1, . . . , wn〉 →M 〈q′, w′1, . . . , w′n〉 if one
of the following holds (M is omitted whenever it is clear from the context):

[Push] there is a transition (q, q′, γ) ∈ δ such that γ ∈ Γi, w′i = γ · wi, and
w′h = wh for every h ∈ ([n] \ {i}).
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[Pop] there is a transition (q, γ, q′) ∈ δ such that wi = γ · w′i and w′h = wh for
every h ∈ ([n] \ {i}).

[Internal] there is a transition (q, q′) ∈ δ, and w′h = wh for every h ∈ [n].

A run of M from C0 to Cm, with m ≥ 0, denoted C0 �M Cm, is a possibly
empty sequence of transitions Ci−1 →M Ci for i ∈ [m] where each Ci is a
configuration. A pushdown system (Pds) is an Mpds with just one stack.

Reachability. A target set of configurations for M is S × L(A1) × . . . × L(An)
such that S ⊆ Q and for i ∈ [n], L(Ai) ⊆ Γ ∗i is the language accepted by a
finite automaton Ai. Given an Mpds M = (Q,QI , Γ̃n, δ) and a target set of
configurations T , the reachability problem for M with respect to target T asks
to determine whether there is a run of M from C0 to C such that C0 is an initial
configuration of M and C ∈ T . The location reachability problem for Mpds

is defined as the reachability problem with respect to a target set of the form
S × Γ ∗1 × . . .× Γ ∗n .

It is well known that the reachability problem for multi-stack pushdown sys-
tems is undecidable already when only two stacks are used (two stacks suffice to
encode the behavior of a Turing machine) and is decidable in polynomial time
(namely, cubic time) when only one stack is used (pushdown systems).

Theorem 1. The (location) reachability problem is undecidable for Mpds and
is decidable in cubic time for Pds.

Execution Contexts and Rounds. We fix an Mpds M = (Q,QI , Γ̃n, δ). A context
of M is a run of M where the pop and push transitions are all over the same stack
(the only active stack in the context), i.e., a run C0 →M C1 →M . . . →M Cm

over the transition rules δ ∩ ((Q ×Q) ∪ (Q× Γi ×Q) ∪ (Q×Q× Γi)) for some
i ∈ [n]. The concatenation of two runs C �M C′ and C′ �M C′′ is the run
C �M C′ �M C′′. A round of M is the concatenation of n contexts Ci−1 � Ci

for i ∈ [n], where stack i is the active stack of Ci−1 � Ci. Note that a run
without push and pop transitions (and in particular, a run formed of a single
configuration) is a context where the active stack can be any of the stacks. Thus,
each run of M can be seen as the concatenation of many rounds (and contexts).

Multi-stack Pushdown Systems with Scope-bounded Matching Relations. In the
standard semantics of Mpds a pop transition (q, γ, q′) can be always executed
from q when γ is at the top of the stack. We introduce a semantics that restricts
this, in the sense that the pop transitions are allowed to execute only when the
symbol at the top of the stack was pushed within the last k rounds, for a fixed
k. Thus, each symbol pushed onto the stack can be effectively used only for
boundedly many rounds (scope of the push/pop matching). We call the resulting
model an Mpds with scope-bounded matching relations (SMpds, for short). We
use the notation k-SMpds when we need to stress the actual bound k on the
number of rounds of the scope. Formally:
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Definition 2. (Mpds with scope-bounded matching relations) A multi-
stack pushdown system (k-SMpds) with n stacks and k-round scope is a tuple
M = (k,Q,QI , Γ̃n, δ) where k ∈ N and (Q,QI , Γ̃n, δ) is as for Mpds.

For an Mpds M = (Q,QI , Γ̃n, δ) we often denote the corresponding SMpds

(k,Q,QI , Γ̃n, δ) with (k,M).
To describe the behavior of such systems, we extend the notion of configu-

ration. We assume that when a symbol is pushed onto the stack, it is anno-
tated with the number of the current round. Also we keep track of the current
round number and the currently active stack. An extended configuration is of
the form 〈r, s, q, w1, . . . , wn〉 r ∈ N, s ∈ [n], q ∈ Q and wi ∈ (Γ × N)∗. Note
that by removing the components r and s, and the round annotation from the
stacks, from each extended configuration we obtain a standard configuration.
We define a mapping conf that maps each extended configuration to the cor-
responding configuration, that is, conf (〈r, s, q, w1, . . . , wn〉) is the configuration
〈q, π(w1), . . . , π(wn)〉, where for each wi = (γ1, i1) . . . (γm, im), with π(wi) we
denote the stack content γ1 . . . γm. An extended initial configuration is an ex-
tended configuration E = 〈r, s, q, w1, . . . , wn〉 such that r = s = 1 and conf (E)
is an initial configuration.

Transitions between extended configurations are formally defined as follows:
〈r, s, q, w1, . . . , wn〉 #→M 〈r′, s′, q′, w′1, . . . , w′n〉 if one of the following holds (M is
omitted whenever it is clear from the context):

[Push] r′ = r, s′ = s, w′h = wh for every h ∈ ([n]\{s}), and there is a transition
(q, q′, γ) ∈ δ such that γ ∈ Γs and w′s = (γ, r) · ws.

[Pop] r′ = r, s′ = s, w′h = wh for every h ∈ ([n] \ {s}), and there is a transition
(q, γ, q′) ∈ δ such that ws = (γ, h) · w′s and h > r − k.

[Internal] r′ = r, s′ = s, and there is a transition (q, q′) ∈ δ w′h = wh for every
h ∈ [n].

[Context-switch] w′h = wh for every h ∈ [n], and if s = n then r′ = r + 1 and
s′ = 1, otherwise r′ = r and s′ = s + 1.

An extended run of a k-SMpds M from E0 to Em, with m ≥ 0, denoted
E0 ↪→M Em, is a possibly empty sequence of transitions Ei−1 #→M Ei for i ∈ [m]
where each Ei is an extended configuration. A run of a k-SMpds M from C to C′,
denoted C �M C′, is the projection through conf of an extended run E ↪→M E′

such that C = conf (E) and C′ = conf (E′). Using this notion of run, we define
the reachability and the location reachability problems for SMpds as for Mpds.
Given a run ρ = C′ �M C where C = 〈q, w1, . . . , wn〉, and an integer m ≥ 0,
with Lastρ(C,m) we denote the tuple (y1, . . . , yn) where for i ∈ [n], yi a prefix
of wi and contains the symbols pushed onto stack i in the last m rounds of ρ
and not yet popped.

Example 1. Figure 1 gives a 2-stack Mpds M with stack alphabets Γ1 = {a} and
Γ2 = {b, c}. The starting location of M is q0. A typical execution of the system
M from the initial location q0 starts pushing a on stack 1, and then b on stack 2.
Thus, M iteratively pushes a on stack 1 and c on stack 2, until it starts popping



Reachability of Multistack Pushdown Systems 209

M = ({qi|i ∈ [0, 5]}, {q0}, Γ1 ∪ Γ2, δ ) Γ2 = {a}, Γ2 = {b, c}

δ = { (q0, q1, a), (q1, q2, b), (q2, q3, a), (q3, q2, c), (q2, c, q4), (q2, b, q5), (q4, c, q4), (q4, b, q5) }

q0 q1

q2

q3

q4 q5
push(a)

push(b)

push(a) push(c)

pop(c)

pop(b)

pop(c)

pop(b)

Fig. 1. The Mpds M from Example 1 and its graphical representation

c from stack 2. When all c’s are popped out, it can also pop the b and finally
reach location q5 with stack 2 empty. Observe that each iteration of pushes of
a’s and c’s (resp. b’s) is a round, and assuming k of such iterations, a run ρ as
described above can be split into at least k-rounds. Thus, it cannot be captured
by any run of the SMpds (h,M) for any h < k. However, denoting with ρ′ the
prefix of ρ up to the first pop transition, clearly ρ′ is a run of (1,M). ��

3 Reachability within a Fixed Number of Contexts and
Phases

Bounded-context Switching Reachability. A k-round run of M is the concate-
nation of k rounds. The reachability problem within k rounds is the restriction
of the reachability problem to the sole k-round runs of M . It is defined as the
problem of determining whether there is a k-round run of M starting from an
initial configuration and reaching a target configuration in T .

Theorem 2. [11,14] The (location) reachability problem within k rounds for
Mpds is NP-complete.

Bounded-phase Reachability. A phase of M is a run of M where the pop tran-
sitions are all from the same stack (pushes onto any of the stacks are allowed
within the same phase). Exploring all the runs of a system obtained as the con-
catenation of k phases ensures a better coverage of the state space compared
to k-contexts reachability. In fact, a k-phase run can be formed of an arbitrary
number of contexts (for example, a run that iterates k times a push onto stack
1 and a push onto stack 2 is a 2k-context one, while it uses only one phase). On
the other side, the resulting reachability problem has higher complexity.

Theorem 3. [9,5] The location reachability problem within k phases for Mpds

is 2Etime-complete.

Coverage of the State Space in the Different Notions of Reachability. We com-
pare the different reachability problems we have introduced in terms of coverage
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Fig. 2. Graphical representation of the Mpds M1 and M2

of the reachable state space of a multi-stack pushdown system. We start observ-
ing that for the Mpds M from Example 1, for each k ≥ 2, the configuration
〈q4, a

k, ck−1b〉 is reachable in M within at least k rounds and is also reachable
in the SMpds (1,M). Moreover, for each k ≥ 1, the configuration 〈q5, a

k, ε〉
is reachable in the SMpds (k,M) and is not reachable in any of the SMpds

(h,M) for h < k. Therefore, the reachable set of a k-SMpds strictly covers the
set of configurations reachable within k-rounds, and thus provides a more careful
approximation of the reachable configurations of Mpds. Formally, the following
result holds.

Lemma 1. Let M = (Q,QI , Γ̃n, δ) be an Mpds.
If a configuration C′ is reachable from C in (k,M), then C′ is also reachable

from C in M . Vice-versa, there is an Mpds M ′ such that for each k ∈ N there
is a reachable configuration C that is not reachable in the SMpds (k,M).

If a configuration C′ is reachable from C in M within k rounds, then C′ is
also reachable from C in (k,M). Vice-versa, there is an Mpds M ′ such that for
each k ∈ N there is a reachable configuration C of (k,M ′) that is not reachable
within k rounds.

Now, fix Γ1 = {a}, Γ2 = {b}. Let M1 be the 2-stack Mpds from Figure 2. Since
the only pop transitions are from the same stack, any run of M1 is 1-phase. It
is simple to see that a configuration Ck = 〈q2, ε, b

k〉 for k ∈ N, is only reachable
with a run of at least k rounds and moreover in the last round all the a’s pushed
onto stack 1 should be readable in order to pop all them out. Thus, Ck is not
reachable in the SMpds (h,M) for any h < k. Moreover, let M2 be the 2-stack
Mpds from Figure 2. It is simple to see that any run of M2 is also a run of
(1,M2). However, a configuration Ck = 〈q0, a

k, bk〉 for k ∈ N is not reachable
with a run with less than 2k phases.

Therefore, from the above arguments and the given definitions, we get that
the notion of reachability for SMpds is not comparable with the notion of reach-
ability up to k-phases. More precisely, we get the following result.

Lemma 2. There is an Mpds M such that any reachable configuration can be
reached within one phase, and for each k ∈ N there is a configuration C that is
not reachable in the SMpds (k,M).

There is an Mpds M such that any reachable configuration can be reached
also in (1,M), and for any k ∈ N there is a configuration C that is not reachable
within k phases.
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4 Location Reachability for SMpds

In this section, we present a decision algorithm that solves the location reacha-
bility problem, and address its computational complexity. The main step in our
algorithm consists of constructing a finite graph such that solving the consid-
ered decision problem equals to solving a standard reachability problem on this
graph, that we thus call the reachability graph. The nodes of the reachability
graph are tuples of n automata, one for each stack and each accepting the words
formed by the symbols pushed onto the corresponding stack in the last k rounds
of a run of the k-SMpds. Any such component automaton is structured into
layers, which are added incrementally one on the top of the lower ones essen-
tially by applying the saturation procedure from [15]. We use the reachability
graph in Section 5 as a main component in the construction of a multi-tape finite
automaton accepting the reachable configurations of a given SMpds.

For the rest of this section we fix a k-SMpds M = (k,Q,QI , Γ̃n, δ) and
Γ = ∪n

i=1Γi. We start defining k-layered automata. We assume that the reader
is familiar with the basic concepts on finite automata and graphs.

k-layered Automata. A k-layered automaton A of M is essentially a finite au-
tomaton structured into (k + 1) layers whose set of states contains k copies of
each q ∈ Q (each copy belonging to a different layer from 1 through k) along
with a new state qF which is the sole final state and the sole state of layer 0.
The input alphabet is Γh for some h, and the set of transitions contains only
transitions of the form (s, γ, s′) where the layer of s′ is not larger than the layer
of s. Moreover, there are no transitions leaving from qF and every state is either
isolated or connected to qF . Formally, we have:

Definition 3. (k-layered automaton) A k-layered finite automaton A of
M over Γh is a finite automaton (S, Γh, δ, S0), where h ∈ [n], Γh is the input
alphabet and:

– S = ∪k
i=0Si is the set of states where S0 = {qF } and Si = {〈q, i〉 | q ∈ Q},

for i ∈ [k] (for i ∈ [0, k], Si denotes the layer i of A);
– δ ⊆ S × (Γh ∪ {ε})× S is the transition relation and contains transitions of

the form (s, γ, s′) such that s ∈ Si, s′ ∈ Sj, i > 0 and i ≥ j;
– for each state s ∈ S, either there is a run from s to qF or s is isolated (i.e.,

there are no transitions involving s).

For t ∈ [0, k], St is called the top layer if t is the largest i such that there is at
least a state of layer i which is connected to qF (t is referred to as the top-layer
index) and A is full if its top layer is Sk. The language accepted by A from a
top-layer state 〈q, t〉, for t > 0, is denoted L(A, q). Moreover, L(A, qF ) denotes
the language {ε} accepted A from qF when the top-layer index is 0 .

Note that two k-layered automata over the same alphabet Γh may differ only
on the set of transitions and the only k-layered automaton over the alphabet Γh

of top-layer index 0 is the one having no transitions. In the following, we often
refer to a state 〈q, i〉 of a layered automaton as the copy of q in layer i .
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We define the following transformations on k-layered automata. Let A be a
k-layered automaton A with alphabet Γh and top-layer index t.

With DownShift(A) we denote the k-layered automaton A′ obtained from A
by shifting the transitions one layer down, i.e., the set of transitions of A′ is
the smallest set such that if (〈q, j〉, γ, s) is a transition of A with j > 1, then
(〈q, j−1〉, γ, s′) is a transition of A′ where s′ is qF , if s ∈ S0∪S1, and is 〈q′, i−1〉,
if s = 〈q′, i〉 for some i ∈ [2, k] (note that if St is the top layer of A, with t > 1,
then St−1 is the top layer of A′).

With Add(A, s, s′) we denote the k-layered automaton A′ obtained from A by
adding the transition (s, ε, s′).

With Saturate(A) we denote the k-layered automaton A′ obtained by applying
to A the saturation procedure from [15] with respect to the internal transitions
and the push and pop transitions involving stack h, and such that the new
transitions that are added are all leaving from the top-layer states. Namely, let
t > 0 be the top layer index (if t = 0, Saturate does nothing), the saturation
procedure consists of repeating the following steps until no more transitions can
be added (we let γ ∈ Γh in the following):

– for an internal transition (q, q′) ∈ δ: (〈q′, t〉, ε, 〈q, t〉) is added to set of tran-
sitions provided that 〈q, t〉 is connected to qF ;

– for a push-transition (q, q′, γ) ∈ δ: (〈q′, t〉, γ, 〈q, t〉) is added to set of transi-
tions provided that 〈q, t〉 is connected to qF ;

– for a pop-transition (q, γ, q′) ∈ δ: (〈q′, t〉, ε, 〈q′′, i〉), with i ≤ t, is added to the
set of transitions provided that there is a run of A′ from 〈q, t〉 to 〈q′′, i〉 over
γ (note that such a run may contain an arbitrary number of ε-transitions;
also, 〈q′′, i〉 is not isolated, and thus, connected to qF by definition).

Note that all the transitions which cross layers, that get added in the above satu-
ration procedure, are ε-transitions. Moreover, we recall that a similar procedure
is given in [15] for constructing a finite automaton accepting all the configura-
tions of a Pds P which are reachable starting from those accepted by a given
finite automaton R. The iterated application of the saturation procedure over
the execution contexts of an Mpds is already exploited in [14]. However, only
runs with a constant bounded number of context switches are considered there
and thus it is sufficient to iterate k times. Here, we need to iterate more. The
essence of our algorithm is captured by the following definition.

Let A be a k-layered automaton with top layer index t and q be a state
of M , define Successor(A, q, q′) as follows, where q′ is a state of M , if t > 0,
and q′ = qF , if t = 0. When A is full, Successor(A, q, q′) denotes the automa-
ton that is obtained from A by first shifting the transitions one layer down,
then adding to the resulting automaton an ε-transition from 〈q, k〉 to 〈q′, k − 1〉
and then applying the saturation procedure. Formally: Successor(A, q, q′) =
Saturate(Add(DownShift(A), 〈q, k〉, 〈q′, k − 1〉)). Moreover, if 〈q′, k − 1〉 is con-
nected to qF then Successor(A, q, q′) is a full k-layered automaton.

In the other case, i.e., if A is not full, Successor(A, q, q′) denotes the automaton
obtained as before except that no shifting is needed now. Formally, if t > 0 then
Successor(A, q, q′) = Saturate(Add(A, 〈q, t + 1〉, 〈q′, t〉)). Moreover, if 〈q′, t〉 is
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connected to qF then Successor(A, q, q′) is a k-layered automaton with top-layer
index (t+ 1). Finally, if t = 0, Successor(A, q, qF ) = Saturate(Add(A, 〈q, 1〉, qF ))
and is a k-layered automaton of top-layer index 1.

The Reachability Graph. In this section, we construct a finite graph that summa-
rizes the computations of an SMpds. In particular, each vertex stores, as tuples
of k-layered automata, the portions of the stack contents that have been pushed
onto the stacks in the last k rounds of any run leading to it. In each vertex is
also stored the sequence of the states entered when the context switches occur
in the last round. Each edge then summarizes the effects of the execution of an
entire round on the information stored in the vertices.

The reachability graph GM = (VM , EM ) of M is defined as follows. The set
of vertices VM contains tuples of the form (q0, A1, q1, . . . , An, qn) where q0 ∈ Q,
each Ai is a k-layered automaton on alphabet Γi and for each i ∈ [n], if the
top-layer index of Ai is 0, then qi = qF , otherwise, qi ∈ Q is such that the copy
of qi in the top layer of Ai is not isolated (and thus connected to qF ). The set of
edges EM contains an edge from (q0, A1, q1, . . . , An, qn) to (q′n, A

′
1, q
′
1, . . . , A

′
n, q
′
n)

if A′i = Successor(Ai, q
′
i−1, qi), for i ∈ [n] and denoting q′0 = q0 (note that in

each vertex that has in-going edges, the first and the last components coincide).
Let A0 be the k-layered automaton without any transition. We refer to each

vertex of the form (q, A0, qF , . . . , A0, qF ) such that q ∈ QI as an initial vertex of
GM and denote it with inq. Observe that since qF 	∈ Q, q 	= qF always holds in
the above tuple and thus each initial vertex has no in-going edges.

The following lemma relates the reachability within an SMpds M with the
reachability within GM .

Lemma 3. Let M be a k-SMpds. There is a path of m edges in GM starting
from an initial vertex inq and ending at a vertex v = (q0, A1, q1, . . . , An, qn) if and
only if there is a run ρ of m rounds in M starting from the initial configuration
〈q, ε, . . . , ε〉 and ending at a configuration C = 〈q0, w1, . . . , wn〉 such that for
i ∈ [n], yi ∈ L(Ai, qi) where (y1, . . . , yn) = Lastρ(C,min{k,m}).

Proof. We only sketch the proof for the “only if” part, the “if” part being similar.
The proof is by induction on the length m of the path in GM . The base of the in-
duction (m = 0) follows from the fact that there is a one-to-one correspondence
between an initial vertex inq of G and an initial configuration 〈q, ε, . . . , ε〉 of M .
Now, assume by induction hypothesis that the statement holds for m ≥ 0. Thus,
for any path of m edges from inq to v = (q0, A1, q1, . . . , An, qn), there is a cor-
responding m-rounds run ρ of M from 〈q, ε, . . . , ε〉 to C = 〈q0, w1, . . . , wn〉 such
that for i ∈ [n], yi ∈ L(Ai, qi) where (y1, . . . , yn) = Lastρ(C,min{k,m}). Let
wi = z′iz

′′
i for i ∈ [n] where (z′1, . . . , z

′
n) = Lastρ(C,min{k−1,m}) (clearly, z′′i = ε

if m < k). Consider now an edge of GM from v to v′ = (q′0, A
′
1, q
′
1, . . . , A

′
n, q
′
n).

From the definition of GM we get that q′0 = q′n, A′1 = Successor(A1, q0, q1), and
A′i = Successor(Ai, q

′
i−1, qi) for i ∈ [2, n]. Now, by a standard proof by induction

on the number of applications of the rules of the saturation procedure, it is pos-
sible to show that, denoting C0 = C and for i ∈ [n], there are y′i ∈ L(A′i, q

′
i) and



214 S. La Torre and M. Napoli

contexts Ci−1 �M Ci where the stack i is active, and such that y′iz
′′
i is the con-

tent of stack i in Ci and q′i is the location of Ci. Thus, C �M C1 . . . �M Cn is
a round and Cn = 〈q′n, y′1z′′1 , . . . , y′nz′′n〉 (recall that in each context Ci−1 �M Ci

only stack i can be updated). Therefore, appending this round as a continuation
of run ρ, we get an (m+ 1)-rounds run with the properties stated in the lemma.

��

Let QT ⊆ Q be a target set of locations of M . By the above lemma,
we can solve the reachability problem for SMpds by checking if any vertex
(q, A1, q1, . . . , An, qn), with q ∈ QT , can be reached in GM from an initial ver-
tex. Observe that the number of different k-layered automata for an alphabet
Γi is at most χi = 2k|Q|+k|Γh||Q|2+k2|Q|2 . Since G has exactly |QI | initial ver-
tices, and all the other reachable vertices have the first and the last component
that coincide, the number of vertices of GM is at most |QI | + χn|Q|n where
χ = max{χi | i ∈ [n]}, and thus exponential in the number of stacks, in the
number of rounds and in the number of locations. Since we can explore the
graph GM on-the-fly, the proposed algorithm can be implemented in space poly-
nomial in all the above parameters. With fairly standard constructions, it is
possible to reduce the membership problem for a Turing machine to the location
reachability problem for both a 2-stack k-SMpds and an n-stack 1-SMpds, thus
showing Pspace-hardness in both n and k. Therefore, by Lemma 3 we get:

Theorem 4. The location reachability problem for SMpds is Pspace-complete,
and hardness can be shown both with respect to the number of stacks and the
number of rounds.

5 Configuration Reachability for SMpds

Regularity of the Reachable Configurations. Fix an SMpds M = (k,Q,QI , Γ̃n, δ).
For q ∈ Q, with Reachq we denote the set of tuples (w1, . . . , wn) such that
(q, w1, . . . , wn) is configuration which is reachable from an initial configuration.

Observe that in general this set may not be expressible as a finite union
of the Cartesian product of regular sets. For example, consider the 2-stack 1-
SMpds M1 with Γ1 = {a}, Γ2 = {b}, QI = {q0} and set of transitions δ =
{(q0, q1, a), (q1, q0, b)}. The only initial configuration is 〈qo, ε, ε〉. It is simple to
verify that ReachM (q0) = {(an, bn) | n ≥ 0} that clearly cannot be expressed as
finite union of the Cartesian product of regular languages.

In this section, we show that the sets Reachq are recognized by an n-tape
finite automaton. An n-tape finite automaton (n-FA) A is (S, I,Σ,Δ, F ) where
S is a finite set of states, I ⊆ S is the set of initial states, Σ is a finite set of
input symbols, F ⊆ S is the set of final states, and Δ ⊆ S × (Σ ∪ {ε})× [n]× S
is the set of transitions. The meaning of a transition rule (s, τ, i, s′) is that for
a state s the control of A can move to a state s′ on reading the symbol τ from
tape i. Every time a symbol τ is read from a tape the corresponding head moves
to next symbol (clearly, if τ = ε, the head does not move). A tuple (w1, . . . , wn)
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is accepted by A if there is a run from s ∈ I to s′ ∈ F that consumes the words
w1, . . . , wn (one on each tape).

Now, we construct an n-FA Rq recognizing Reachq for a location q of M . A
main part of this automaton is the reachability graph GM definend in Section 4.
In particular, the automaton Rq starts from a vertex (q, A1, q1, . . . , An, qn) ∈ VM

and then moves backwards along a path up to an initial vertex of GM . We recall
that from Lemma 3, each edge on a path of GM corresponds to a round of a run of
M and thus moving backwards along a path corresponds to visiting a run of GM

round-by-round starting from the last round (round-switch mode). Therefore, on
each visited vertex v, Rq can read the symbols (if any) that, along the explored
run, are pushed onto a stack in the current round and then never popped out,
and this can be done by simulating just the top layers of the k-layered automata
of v that are required to move into this round (simulation mode).

To implement these two main modes of the automaton Rq, we store in each
state a vertex v of GM (the currently explored vertex) and a tuple of the states
which are currently visited for each k-layered automaton A of v. We also couple
each such state with a count-down counter that maintains the number of rounds
that the corresponding A will stay idle before executing the top layer transitions
(when this counter is 0, A gets executed). Such counters are used to synchro-
nize the two modes of Rq. When all the counters are non-zero, then Rq moves
backwards in GM , and decrements all the counters, and this is repeated until
some counters are 0. As long as there is a counter d set to 0, Rq can execute
for the corresponding k-layered automaton either a top-layer transition or an
ε-transition to a state q in a lower layer. In both cases, the state coupled with d
gets updated accordingly to the taken transition, and only in the second case d
is set to the difference between the top layer and the layer of q. The automaton
Rq accepts when it enters a state where all the counters are 0, the coupled states
are all qF (the final state of each k-layered automaton), and the current vertex
of G is an initial vertex.

Formally, the n-FA Rq = (Sq, Iq, Γ̃n, Δq, Fq) is defined as follows.

– The set of states Sq of Rq contains tuples of the form (v, q1, d1, . . . , qn, dn)
where v = (pn, A1, p1, . . . , An, pn) ∈ VM and for i ∈ [n], qi ∈ Q ∪ {qF} and
di ∈ [0, k].

– The set of initial states Iq contains states of the form (v, q1, 0, . . . , qn, 0)
where v = (qn, A1, q1, . . . , An, qn) and qn = q.

– The set of final states Fq contains states of the form (v, qF , 0, . . . , qF , 0) where
v is an intial vertex of GM .

– Denoting s = (v, q1, d1, . . . , qn, dn) and s′ = (v′, q′1, d
′
1, . . . , q

′
n, d
′
n), where v =

(pn, A1, p1, . . . , An, pn) and v′ = (p′n, A′1, p′1, . . . , A′n, p′n), the set of transition
Δq contains tuples (s, τ, h, s′) such that s 	∈ Fq and one of the following cases
applies (in the following description, if a component of s′ is not mentioned
then it is equal to the same component of s):
[simulate within the top layer] dh = 0 and (〈qh, t〉, τ, 〈q′h, t〉) is a transi-

tion of Ah where t is the top-layer index of Ah;
[simulate exit from the top layer] dh = 0, d′h = t−t′, (〈qh, t〉, τ, 〈q′h, t′〉)

is a transition of Ah, where t is the top-layer index of Ah and t′ < t;
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[round-switch] for i ∈ [n], di > 0 and d′i = di − 1, there is an edge from v′

to v in GM .

Observe that Δq is such that in any run of Rq whenever a component qi of a
visited state (v, q1, d1, . . . , qn, dn) becomes qF , then it stays qF up to the end of
the run.

With a standard proof by induction, by Lemma 3, we get that Rq accepts the
language Reachq. Therefore, we have the following theorem.

Theorem 5. For each q ∈ Q, the set Reachq is accepted by an n-FA.

Reachability of SMpds. Fix an SMpds M = (k,Q,QI , Γ̃n, δ) and a set of con-
figurations T = P × L(B1)× . . .× L(Bn), where P ⊆ Q.

By Theorem 5, the reachability problem for SMpds can be reduced to checking
the emptiness of ∪q∈P (Reachq ∩ L) where L = L(B1) × . . . × L(Bn). Denoting
with Ai×Bi the standard cross product construction synchronized on the input
symbols (ε transitions can be taken asynchronously), the construction of Rq

given above can be modified such that in the simulation mode it tracks the
behaviors of Ai × Bi instead of just the k-layered automaton Ai. Denote with
RT

q the resulting n-FA. We observe that in RT
q , the simulation of each Bi starts

from the initial states, and then the Bi-component gets updated only in the
simulation mode in pair with the couped k-layered automaton. For the lack of
space we omit the explicit construction of RT

q .
The number of states of each RT

q is at most |VM | (|Q|+ 1)n(k + 1)n χn, where
χ is the maximum over the number of states of B1, . . . , Bn. Recall that the
number of vertices |VM | of GM is exponential in n, |Q| and k. Thus, the number
of states of RT

q is also exponential in the same parameters. Again, we can explore
on-the-fly the state space of each RT

q , thus we can check the emptiness of RT
q in

polynomial space, and in time exponential in n, |Q| and k. Since each instance of
the location reachability is also an instance of the general reachability problem,
by Theorems 4 and 5 we get:

Theorem 6. The reachability problem for SMpds is Pspace-complete, and
hardness can be shown both with respect to the number of stacks and the number
of rounds.

6 Conclusion and Future Work

We have introduced a decidable restriction of multistack pushdown systems that
allows unboundedly many context switches. Bounding the scope of the matching
relations of push and pop operations on each stack has the effect of bounding the
amount of information that can flow out of a stack configuration into the other
stacks in the rest of the computation. For the resulting model we have shown that
the set of reachable configurations is recognized by a multitape finite automaton,
and that location and configuration reachability can be solved essentially by
searching a graph of size exponential in the number of control states, stacks and
rounds in a scope.
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We see mainly two future directions in this research. We think that it would
be interesting to experiment the effectiveness of the verification methodology
based on our approach, by implementing our algorithms in a verification tool
and compare them with competing tools. If on one side the considered reach-
ability problem has a theoretically higher complexity compared to the case of
bounded context-switching, on the other side smaller values of the bound on the
number of context switches are likely to suffice for several systems. Moreover, our
model presents the right features for studying the model-checking of concurrent
software with respect to properties that concern non-terminating computations
or require to explore unboundedly many contexts.
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Abstract. When defining the semantics of shared-memory concurrent
programming languages, one conventionally has to make assumptions
about the atomicity of actions such as assignments. Running on physical
hardware, these assumptions can fail to hold in practice, which puts in
question reasoning about their concurrent execution. We address an ob-
servation, due to John Reynolds, that processes proved sound in concur-
rent separation logic are separated to an extent that these assumptions
can be disregarded, so judgements remain sound even if the assumptions
on atomicity fail to hold. We make use of a Petri-net based semantics
for concurrent separation logic with explicit representations of the key
notions of ownership and interference. A new characterization of the sep-
aration of processes is given and is shown to be stronger than existing
race-freedom results for the logic. Exploiting this, sufficient criteria are
then established for an operation of refinement of processes capable of
changing the atomicity of assignments.

1 Introduction

When giving the semantics of concurrent shared-memory programming lan-
guages, one has to choose a level of granularity for primitive actions. For ex-
ample, an assignment x := [y] + [y] which assigns to x twice the value held in
the location pointed-to by y might be considered to be a primitive action that
occurs in one step of execution. On the other hand, depending on the compiler
and the system architecture, the assignment might be split in two, in effect
running x := [y];x :=x + [y]. In a sequential setting, this is of little significance,
but in a concurrent setting the second interpretation can give rise to additional
behaviour. Suppose, for example, that the variable z points to the same heap
location, � say, as y; we say that y and z are aliases. If we run the programs
above in parallel with the program [z] := [z] + 1 which increments the value at
�, it can be seen that (x := [y] + [y]) ‖ ([z] := [z] + 1) always yields an even value
in x, but (x := [y];x :=x + [y]) ‖ ([z] := [z] + 1) terminates with an odd value in
x if the assignment [z] := [z] + 1 occurs after x := [y] but before x :=x + [y].

The key feature of the example above is that there is a data-race, i.e. an
attempt to concurrently access the memory location �. One of the key properties
enforced by concurrent separation logic [8] is that every parallel process owns a
disjoint region of memory and each process only accesses locations that it owns,
from which it follows that proved processes are race-free. In [10], John Reynolds
argues that race-freedom as enforced by the logic means that issues of granularity

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 219–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



220 J. Hayman

can be disregarded; this has come to be known as Reynolds’ conjecture. Due
to the possibility of aliasing and the vital richness of the logic in allowing the
transfer of ownership between processes, soundness of the logic and race-freedom
are certainly non-trivial to prove, and led to the pioneering proof by Brookes [2]
based on action traces. However, the intricacy of the powerful trace-based model
stymied attempts to provide a formal proof of Reynolds’ conjecture.

With the general goal of connecting concurrent separation logic and indepen-
dence models for concurrency, in [7,6] it was shown how to define a Petri-net
based semantics for programming languages and, based on this, a semantics for
the logic was developed. A key feature of independence models such as Petri
nets is that they support notions of refinement : semantic operations to allow
the provision of more accurate specifications of actions without affecting overall
system behaviour [5]. General properties that are intrinsically linked to the in-
dependence of events connect the refined process back to the original process. In
[7,6], a form of refinement was given that could be applied to change the granu-
larity assumed in the net semantics, and examples of its use were given. However,
this did not fully address Reynolds’ conjecture: there was no formal proof that
the constraints governing when the refinement operation could be applied were
always met for proved processes. This is tackled in this paper by establishing
conditions on subprocesses and their refinements based on their footprints. In
doing so, we reveal a new, stronger characterization of race-freedom arising from
separation logic, which has the interesting side-effect of eliminating certain key
examples of incompleteness of the logic.

Recently, Ferreira et al. have developed a new ‘parameterized’ operational
semantics for programs and used it to show that a wide range of relaxations of
assumptions of the memory model, including granularity, do not introduce extra
behaviour for race-free processes [4]. However, not only does the net semantics
presented here provide a valuable alternative perspective, with its direct account
of ownership inherited from [7,6], but it also shows how the Petri-net model
directly supports reasoning about issues such as granularity: there is no need
to extend the model, refinement being a native operation on nets, and so there
is no need to provide a new proof of soundness of the logic as there is in [4].
This is part of a general programme of research aimed at demonstrating the use
of independence models for concurrency, such as Petri nets, in the semantics of
programming languages and showing how they natively support the study of a
wide range of important aspects such as race-freedom, separation, granularity,
weak memory models and memory-optimisation.

2 Syntax

In this section, we present the syntax of the programming language to be con-
sidered, and in the following section we present its Petri-net semantics. These
sections are as in [6,7] with the exception of equivalence at the end of Section 2
and Lemmas 1 and 2 in Section 3.
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The programs that we consider operate on a heap, a finite partial map from a
subset of heap locations Loc to values Val. We reserve the symbols �,m, n, �′, . . .
to range over heap locations and h, h′, . . . to range over heaps. In a heap, a
location can either be allocated, in which case the partial function is defined at
that location, or be unallocated, in which case the partial function is undefined.

Heap = Loc ⇀fin Val

Heap locations can point to other heap locations, so we have Loc ⊆ Val.
We now introduce a simple language for concurrent heap-manipulating pro-

grams. Its terms, ranged over by t, follow the grammar

t ::= α | alloc(�) | dealloc(�) | t1; t2 | t1 ‖ t2 | α1.t1 + α2.t2
| while b do t od | with r do t od

where α ranges over heap actions, b ranges over Boolean guards and r ranges
over resources.

Heap actions represent arbitrary forms of action on the heap that neither
allocate nor deallocate locations. For every action α, we assume that we are
given a set

A �α� ⊆ Heap×Heap

such that (h1, h2) ∈ A �α� implies dom(h1) = dom(h2). The set A �α� represents
all the ways in which the action α can behave; the interpretation is that α can
occur in a heap h if there exists (h1, h2) ∈ A �α� s.t. (the graph of) h1 is contained
in h, yielding a new heap in which the values held at locations in dom(h1) are
updated according to h2. For example, the semantics of an assignment � := v′ is

A �� := v′� = {({(�, v)}, {(�, v′)}) | v ∈ V al}.

For any initial value v of �, the heap can be updated to v′ at �. Further examples
of action, such as pointer manipulation, are presented in [7,6].

Boolean guards are heap actions that can occur only if the property that they
represent holds. A full logic is given in [7,6], but examples include:

– false, the action that can never occur (so A �false� = ∅),
– true, the action that can always occur (so A �true� = {(∅, ∅)}),
– � ?= v, the action that proceeds only if � holds value v, and
– [�] != v, the action that proceeds only if � points to some location m that

does not hold value v.

Allocation of heap locations can only occur through the term alloc(�), which
allocates an unused location and makes the existing location � point to it, and
deallocation can only occur through the term dealloc(�), which deallocates the
location pointed at by �. There are primitives for iteration, sequential composi-
tion and parallel composition, and there is a form of guarded sum α1.t1 + α2.t2
which is a process that can run the process t1 if the action α1 can occur and can
run the process t2 if the action α2 can occur. We sometimes use the notation
if b then t1 endif for the term b.t1 + ¬b.true.
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Finally, critical regions can be specified through the construct with r do t od
indexed by resources r drawn from a set Res. This construct enforces the prop-
erty that no two processes can concurrently be inside a critical region protected
by the same resource r. This is implemented by recording a set of available re-
sources; a critical region protected by r may only be entered if r is available, and
whilst the process is in the critical region, the resource is marked as unavailable.

We define equivalence on terms to be the least congruence such that:

(t1; t2); t3 ≡ t1; (t2; t3) (t1 ‖ t2) ‖ t3 ≡ (t1 ‖ t2) ‖ t3 t1 ‖ t2 ≡ t2 ‖ t1.

A key tool in what follows shall be term contexts, terms with a single ‘hole’
denoted −. We use the symbols k, k′, . . . to range over term contexts.

k ::= − | k; t | t; k | k ‖ t | t ‖ k | α1.k + α2.t | α1.t + α2.k
| while b do k od | with r do k od

We denote by k[t] the term obtained by substituting the term t for the hole in k.
Term contexts and equivalence will be used together to discuss the subprocesses
of terms; for example, α;β is a subprocess of α; (β; γ) since there is a context,
namely −; γ, such that α; (β; γ) ≡ (−; γ)[α;β]. Note the essential rôle here of
equivalence as opposed to syntactic equality.

3 Petri-Net Semantics

Petri nets represent the behaviour of processes as collections of events that af-
fect regions of local state called conditions. The particular form of net that we
give semantics over is nets without multiplicity in which contact inhibits the
occurrence of events — cf. the ‘basic’ nets of [12].

We place some additional structure on nets to form what we call embedded
nets, which shall be used to define the semantics of programs. An embedded net
is a tuple (C,S, E, pre, post, I, T ), where C is the set of control conditions, S is
the set of state conditions, disjoint from C, and I, T ⊆ C are the initial and
terminal control conditions, respectively. We require that (C ∪ S, E, pre, post)
forms a Petri-net with pre- and post-condition maps pre and post. As such,
embedded nets are Petri nets equipped with a partition of their conditions into
control and state conditions, alongside subsets of control conditions to indicate
the initial and terminal control states of the process.

Any marking M of an embedded net can correspondingly be partitioned into
(c, s) where c = M∩C and s = M∩S. We write Ce for the control conditions that
are preconditions to an event e, namely pre(e) ∩ C, and define notation for the
post-control conditions eC and pre- and post-state conditions Se and eS similarly.
We say that two embedded nets are isomorphic if there exists a bijection between
their conditions and events that preserves the pre- and postconditions of events
and preserves initial and terminal control markings. An isomorphism is said to
be state-preserving if the restriction of the bijection to state conditions is the
identity.
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Table 1. Event notations

Event e Se eS

Heap action act(c,c′)(h, h′) h h′

Allocation alloc(c,c′)(�, v, �′, v′) {(�, v)} {(�, �′), (�′, v′), curr(�′)}
Deallocation dealloc(c,c′)(�, �

′, v′) {(�, �′), (�′, v′), curr(�′)} {(�, �′)}
Enter CR acq(c,c′)(r) {r} ∅
Leave CR rel(c,c′)(r) ∅ {r}

For all the above notations, Ce = c and eC = c′.

The embedded net representing a term t is denoted N �t� with initial control
conditions Ic(t) and terminal control conditions Tc(t). The inductive definition is
presented in [7,6]. The sets of control and state conditions are defined as follows:

Definition 1. The control conditions C and state conditions S are defined as:

– C is ranged-over by a and follows the grammar

a, a′ ::= i | t | 1:a | 2:a | (a, a′)

– S = Res ∪ (Loc×Val) ∪ {curr(�) | � ∈ Loc}

A marking of state conditions s ⊆ S has r ∈ s if the resource r is available;
the heap holds value v at � if (l, v) ∈ s; and the location � has been allocated
if curr(�) ∈ s. Only certain markings of state conditions are sensible, namely
those that are finite, satisfying curr(�) ∈ s iff there exists v s.t. (�, v) ∈ s, and if
(�, v), (�, v′) ∈ s then v = v′. We call such markings (state) consistent. Given a
consistent marking of state conditions s, we denote by hp(s) the heap in s, i.e.
(the graph of) a partial function with finite domain:

hp(s) = {(�, v) | (�, v) ∈ s}

Notations for the kinds of event that might be present in the net N �t� are
given in Table 1. The set of events for any process shall be extensional: any event
is fully described just by its sets of pre- and postconditions. Two operations on
events viewed in this way will be of particular use. The first prefixes a ‘tag’
onto the control conditions of an event. For any event e, the event 1 : e (and
similarly 2 :e) is defined to have exactly the same effect as e on state conditions,
S(1 :e) = Se and (1 :e)S = eS, but using the tagged control conditions:

C(1 :e) = {1:a | a ∈ Ce} (1 :e)C = {1:a | a ∈ eC}

The second operation is used to ‘glue’ two nets together, for example form-
ing N �t1; t2� by pairing initial conditions of N �t2� with terminal conditions of
N �t1�. Given a set of control conditions c ⊆ C and a set P ⊆ C×C, define

P � c = {(a, x) ∈ P | a ∈ c} ∪ {a ∈ c | �x.(a, x) ∈ P}
P � c = {(x, a) ∈ P | a ∈ c} ∪ {a ∈ c | �x.(x, a) ∈ P}
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This notation is applied to events e, yielding events P � e and P � e with

S(P � e) = S(P � e) = Se (P � e)S = (P � e)S = eS

C(P � e) = P � (Ce) (P � e)C = P � (eC)
C(P � e) = P � (Ce) (P � e)C = P � (eC)

The definitions of tagging and gluing extend to sets of events in the obvious way
(for example, 1 :E = {1:e | e ∈ E}).

3.1 Net Contexts and Substitution

The net semantics for terms can be extended to give a net semantics for term
contexts, giving what we call a net context. A net context simply specifies a
control-point at which an embedded net may be placed.

Definition 2. A net context is an embedded net with a distinguished event de-
noted [−] such that S[−] = ∅ = [−]S.

The inductive definition of the net semantics of terms is extended in the obvious
way to define a semantics for term contexts, denoted N �k�: the interpretation
of the term context − is the net context N �−� with a single event [−] with
pre([−]) = {i} and post([−]) = {t}.

Given a net context K and an embedded net N , we now define an embedded
net representing the substitution of N for the hole [−] in K. This is simply
obtained by using tagging to force the events of K and N to be disjoint, removing
the artificial ‘hole’ event from K and then ‘gluing’ N in the appropriate place.

Definition 3. Let the embedded net N = (C,S, EN , preN , postN , IN , TN) and
let the net context K = (C,S, EK , preK , postK , IK , TK). Define the subsets of
control conditions

Pinit = 1:preK([−])× 2:IN Pterm = 1:postK([−])× 2:TN .

The embedded net K[N ] = (C,S, E, pre, post, I, T ) is defined as

I = (Pinit ∪ Pterm) � 1:IK T = (Pinit ∪ Pterm) � 1:TK

E = (Pinit ∪ Pterm) � (1 :(EK \ {[−]})) ∪ (Pinit ∪ Pterm) � 2:EN

An example is shown in Figure 1 (eliding the unaffected state conditions). Note
that the conditions Pinit = {(1 : c, 2 : w), (1 : c, 2 : x), (1 : d, 2 : w), (1 : d, 2 : x)} are
marked when the initial control point of N is reached. Generally, we say that
the subprocess N in K[N ] is initialized in the marking of control conditions c
when Pinit ⊆ c.

Net contexts and net substitution connect with term contexts and substitution
through the following lemma.

Lemma 1. There is a state-preserving isomorphism of embedded nets

γk,t : N �k[t]� ∼= N �k� [N �t�].
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Fig. 1. Application of context K to net N , yielding K[N ]

It now becomes possible to determine when a subprocess t in k[t] becomes active.
Given a marking c of control conditions in N �k[t]�, let γk,tc denote the subset
of control conditions of N �k� [N �t�] obtained as the image of the set c under
γk,t. We shall say that t is initialized in c if, under the isomorphism, the set of
conditions Pinit is marked; that is, if Pinit ⊆ γk,tc. The semantics of terms ensures
that if t is initialized in c, no condition inside t is marked and no condition
corresponding to a terminal condition of t is marked.

Lemma 2. For any initial marking (Ic(k[t]), s0) of N �k[t]�, if (c, s) is reachable
and γ−1

k,tPinit ⊆ c then c = γ−1
k,tPinit ∪ 1:c1 for some set of control conditions c1.

The property is shown by consideration of the control nets described in [7,6].

4 Concurrent Separation Logic

Concurrent separation logic is a Hoare-style system designed to provide partial
correctness judgements about concurrent heap-manipulating programs. We refer
the reader to [8] for a full introduction to the logic.1

In this section, we briefly summarize the essential parts of the Petri-net model
presented in [7,6], to which we refer the reader for the full definition of the syntax
and semantics of the logic. A selection of rules is presented in Figure 2. The key
judgement is Γ / {ϕ}t{ψ}, which has the following interpretation:

If initially ϕ holds of the heap defined at the locations owned by the process,
then, after t runs to completion, ψ holds of the heap defined at the locations
owned by the process; during any such run, the process only accesses locations
that it owns and preserves invariants in Γ .

At the core of separation logic is the separating conjunction, ϕ1 " ϕ2. A heap
h satisfies this formula, written h |= ϕ1 "ϕ2, if h can be partitioned into disjoint
subheaps h1 and h2 such that h1 |= ϕ1 and h2 |= ϕ2.

The environment Γ associates an invariant to every resource free in t. An
invariant is a precise heap formula: a formula χ is said to be precise if given any
1 Here, we make two simplifications to the logic that are orthogonal to our results: we

do not distinguish stack and heap variables and we do not give a rule for declaration
of new resources (so the environment Γ is fixed through any derivation).
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∀h |= ϕ : ∀(h1, h2) ∈ A �α� :
∀h′ ⊇ h : (h1 ⊆ h′ =⇒ h1 ⊆ h)

& (h1 ⊆ h =⇒ (h \ h1) ∪ h2 |= ψ)

Γ � {ϕ}α{ψ}

Γ � {ϕ1}t1{ψ1}
Γ � {ϕ2}t2{ψ2}

Γ � {ϕ1 � ϕ2}t1 ‖ t2{ψ1 � ψ2}

Γ, w : χ � {ϕ � χ}t{ψ � χ}
Γ, w : χ � {ϕ}with w do t od{ψ}

Fig. 2. Selected rules of concurrent separation logic

heap h, there is at most one heap h0 ⊆ h such that h0 |= χ. When a process
enters a critical region, it gains ownership of the part of the heap that satisfies
the invariant. When it leaves the critical region, it is required to have restored
the invariant and it loses ownership of the associated part of the heap. This is
reflected in the rule for critical regions. As seen in [8], ownership of locations
can be transferred between processes using critical regions. This provides vital
power to the logic but introduces subtlety to the notion of ownership since the
set of locations that the process owns changes as it executes.

4.1 Interference and Ownership Nets

In order to demonstrate the correctness of the rule for parallel composition, we
shall reason about the process running in the presence of arbitrary processes that
act only on locations that they are seen to own. Central to this interpretation
is a formal treatment of ownership, in which locations are partitioned into three
disjoint sets: locations that are owned by the process, locations that are used
to satisfy the invariants of available resources and locations that are owned by
other processes.

The first stage in the creation of the formal model is the definition of an
interference net, a net to simulate the behaviour of the arbitrary concurrently-
executing processes on the shared state. The constraints on their behaviour are
represented through the presence of explicit conditions to represent ownership
in the system. Notation to describe the kinds of event present in the interference
net is given in Table 2.

Definition 4. The set of ownership conditions is defined to be the set W =
{ωproc(x), ωinv(x), ωoth(x) | x ∈ Loc ∪ Res}. The interference net for Γ has
conditions S ∪W and events called interference events:

– act(h1, h2) for all heaps h1 and h2 such that dom(h1) = dom(h2)
– alloc(�, v, �′, v′) and dealloc(�, �′, v′) for all � and �′ and values v and v′

– acq(r, h) and rel(r, h) for all r ∈ dom(Γ ) and h such that h |= χ, for χ the
unique formula such that r : χ ∈ Γ

We use the symbol u to range over interference events and use w to range
over markings of ownership conditions. A marking σ = (s, w) of the interfer-
ence net is said to be consistent if σ is consistent and, for each z ∈ Loc ∪
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Table 2. Interference events

Abbreviation Preconditions Postconditions
act(h1, h2) h1 ∪ {ωoth(�) | � ∈ dom(h1)} h2 ∪ {ωoth(�) | � ∈ dom(h1)}
alloc(�, v, �′, v′) {ωoth(�), (�, v)} {ωoth(�), ωoth(�

′), curr(�′), (�, �′), (�′, v′)}
dealloc(�, �′, v′) {ωoth(�), ωoth(�

′), curr(�′), (�, �′), (�′, v′)} {ωoth(�), (�, �
′)}

acq(r, h) {ωinv(r), r} ∪ h ∪ {ωinv(�) | ∃v.(�, v) ∈ h} {ωoth(r)} ∪ h ∪ {ωoth(�) | ∃v.(�, v) ∈ h}
rel(r, h) {ωoth(r)} ∪ h ∪ {ωoth(�) | ∃v.(�, v) ∈ h} {ωinv(r), r} ∪ h ∪ {ωinv(�) | ∃v.(�, v) ∈ h}

Res, if either z ∈ Res or curr(z) ∈ s then there is precisely one condition in
{ωproc(z), ωinv(z), ωoth(z)} ∩ w; otherwise, if z ∈ Loc and curr(z) 	∈ s, we require
that the set {ωproc(z), ωinv(z), ωoth(z)}∩w be empty. As such, a consistent mark-
ing assigns precisely one ownership state to every current location and resource.

The interference net for an environment Γ describes the potential behaviour
of other processes that can take place on the state. For example, the interference
event act(h1, h2) can update the heap only if the locations operated-on are seen
as owned by ‘other’ processes. The interpretation of a judgement Γ / {ϕ}t{ψ}
shall therefore consider the net for t running in parallel with the interference
net. However, additionally, the symmetry in the rule for parallel composition re-
quires that the behaviour of t can be seen as interference when considering other
processes; we establish this by synchronization of N �t� with the interference net
for Γ . We begin by defining with which interference events an event e of N �t�
can synchronize:

– the event act(c,c′)(h1, h2) can synchronize with act(h1, h2),
– the event alloc(c,c′)(�, v, �′, v′) can synchronize with alloc(�, v, �′, v′),
– the event dealloc(c,c′)(�, �′, v′) can synchronize with dealloc(�, �′, v′),
– the event acq(c,c′)(r) can synchronize with acq(r, h) for any h, and

– the event rel(c,c′)(r) can synchronize with rel(r, h) for any h.

Suppose that two events synchronize, e from the process and u from the interfer-
ence net. The event u is the event that would fire in the net for the other parallel
process to simulate the event e. Let e ·u be the event formed by taking the union
of the preconditions (and, respectively, postconditions) of e and u, other than
using ωproc(�) in place of ωoth(�), and similarly ωproc(r) in place of ωoth(r).

Definition 5. The ownership net W �t�Γ is the net with conditions C ∪ S ∪
W and all events that are either events u from the interference net for Γ or
synchronized events e · u where e is an event of N �t� and u is an interference
event such that e and u can synchronize.

Markings of ownership nets are tuples (c, s, w) where c, s and w are the markings
of, respectively, control, state and ownership conditions. We say that (c, s, w) is
consistent if (s, w) is consistent. It is shown in [7,6] that the property of markings
being consistent is preserved as processes execute.
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4.2 Soundness

The formulation of the ownership net permits a fundamental understanding of
when a process acts in a way that would not be seen as interference when con-
sidering other processes, by failing to respect ownership or to restore invariants.

Definition 6 (Violating marking). We say that a consistent marking (c, s, w)
of W �t�Γ is violating if there exists an event e of N �t� that has concession in
the marking (c, s) but there is no event u from the interference net such that u
synchronizes with e and e · u has concession in (c, s, w).

We are now ready to turn to soundness of judgements. Given a state s and
environment Γ , let inv(Γ, s) denote the separating conjunction of formulae χr

s.t. r ∈ R and r : χr ∈ Γ ; so inv(Γ, s) is a formula that is satisfied by a heap
that can be split into separate parts, each of which satisfies the invariant for a
distinct available resource.

Definition 7. Let s be a state containing heap h. For any L ⊆ Loc, let h �

L denote the restriction of h to L, so h � L = {(�, v) | � ∈ L and v ∈
Val and (�, v) ∈ s}. The marking (c, s, w) is said to satisfy ϕ in Γ if (c, s, w) is
consistent, h � {� | ωinv(�) ∈ w} |= inv(Γ, s), and h � {� | ωproc(�) ∈ w} |= ϕ.

We now present soundness of the system: see [7,6] for a proof and also formal
results connecting this down to the behaviour of the original process N �t�.
Theorem 1. If Γ / {ϕ}t{ψ} then, for any s and w such that (Ic(t), s, w) satis-
fies ϕ in Γ , no violating marking is reachable from (Ic(t), s, w) in W �t�Γ and if
(Tc(t), s′, w′) is reachable from (Ic(t), s, w) then (Tc(t), s′, w′) satisfies ψ in Γ .

5 Separation

In this section, we use the ownership semantics described above to capture how
the subprocesses of any proved term can be separated from their environment.
In [7,6], the characterization was based solely on independence of events; here,
we provide a stronger result based on ownership.

First, we extend the construction of the ownership net to contexts, yielding
ownership nets W �k�Γ consisting of events that are either interference events
from the interference net for Γ , synchronized events as described above or the
hole event [−] drawn from N �k�. Note that Lemma 2 extends straightforwardly
to ownership nets: Given an initial marking (Ic(k[t]), s0, w0) of an ownership net
W �k[t]�Γ , any reachable marking (c, s, w) such that t is initialized in c satisfies
c = γ−1

k,tPinit ∪ 1:c1 for some (necessarily unique) subset of control conditions c1.
Central to characterizing how a term t and context k can be separated is

the ability to split their ownership. Let w,w1 and w2 be markings of ownership
conditions. Then w1 and w2 form an ownership split of w if for all z ∈ Loc∪Res:

ωproc(z) ∈ w ⇐⇒ ωproc(z) ∈ w1 ∪w2

ωoth(z) ∈ w ⇐⇒ ωoth(z) ∈ w1 ∩ w2

ωinv(z) ∈ w ⇐⇒ ωinv(z) ∈ w1 ⇐⇒ ωinv(z) ∈ w2
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Definition 8 (Separability and subprocess race-freedom). With respect
to an environment Γ , say that k and t are separable from (s0, w0) if, for any
marking (c, s, w) reachable from (Ic(k[t]), s0, w0) in W �k[t]�Γ such that t is ini-
tialized in c, there exist w1 and w2 forming an ownership split of w satisfying

– no violating marking is reachable from (c1, s, w1) in W �k�Γ by events ex-
cluding [−], where c1 is the set such that c = γ−1

k,tPinit ∪ 1:c1, and
– no violating marking is reachable from (Ic(t), s, w2) in W �t�Γ .

Say that a term t0 is subprocess race-free from (s0, w0) if, for all k and t such
that t0 ≡ k[t], it is the case that k and t are separable from (s0, w0).

Intuitively, if a marking is encountered in W �k[t]�Γ in which t is initialized, that
k and t are separable means that the ownership of the heap and resources can
be partitioned between t and k in such a way that the allocation of resources
to t is sufficient that it never acts on anything that it does not own, and the
allocation of resources to k is sufficient that any action that k can perform prior
to the completion of t is constrained to be on the locations that k owns.

Theorem 2. If Γ / {ϕ}t{ψ} then t0 is subprocess race-free from any (s0, w0)
that satisfies ϕ in Γ .

5.1 Strength of Race-Freedom

Subprocess race-freedom is unusual in its use of ownership; as we shall see,
this is intimately related to the logic and shall be central to our constraint on
refinement. We first study its position in a hierarchy of race-freedom properties.

An interesting alternative candidate is to say that a term t0 is AAD race-free
from marking (s0, w0) if, for any context k and any term t that is either a heap
action, an allocation or a deallocation command such that t0 ≡ k[t], then k and
t are separable from (s0, w0). (A full treatment of this would extend contexts to
allow the hole to occur at guards in loops and the sum.)

AAD race-freedom is a stronger property than the more familiar notions of
race-freedom [2,7,6] which require that no two actions can occur concurrently on
the same memory location. For example, consider the process t defined as � :=0
and context k defined as− ‖ alloc(m); dealloc(m); if m = � then � :=1 endif
(the Boolean m = � passes only if m is a pointer to �). From any initial state in
which � and m are owned by k[t], it is easy to see that the allocation command
can never allocate � so there is never any concurrent access of any memory
location. However, these processes are not AAD race-free. To see this, we would
certainly have to give ownership of � to the assignment � :=0. Consequently,
in the net W �k�∅, an interference event could occur in which � is deallocated
followed by allocation of � by the allocation command and subsequently by the
assignment of 1 to the location � which is not owned by the process.

Subprocess race-freedom is an even more discriminating condition than AAD
race-freedom. Consider the net W �k′[t′]�∅ where

t′ = n :=0; dealloc(p)
k′ = − ‖ alloc(�); while (� !=m) do alloc(�) od;n := 1
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running from an initial state with heap {(�, 0), (m, 0), (n, 0), (p,m)} and owner-
ship marking {ωproc(�), ωproc(m), ωproc(n), ωproc(p)}. Going through each action,
it can be verified that k′[t′] is AAD race-free; the key is that n := 1 can only hap-
pen after dealloc(p). However, k′[t′] is not subprocess race-free: ownership of
n, p and m must be given to t′, which means that when considering the context
W �k′�∅, it becomes possible for an interference event deallocating m to occur,
then re-allocation of m by k′ followed by assignment to the unowned location n.

Interestingly, the most important known examples of the incompleteness of
concurrent separation logic all involve processes that are not subprocess race-
free according to the definition here, so one may hope that this tighter form of
race-freedom gives new insight towards (relative) completeness.

6 Footprints and Refinement

We have seen that any context k and term t that form a proved process can
be separated from suitable initial states. We now introduce an operation of
refinement of t by some other process t′. Of course, this is only permitted when
the interaction of t and t′ with k is restricted; in particular, we shall restrict to
processes that do not have critical regions or allocate or deallocate locations.

Definition 9. A term z is static if it follows the grammar

z ::= α | z1; z2 | α1.z1 + α2.z2 | z1 ‖ z2 | while b do z od.

The key goal is to show that, for static terms z and z′, if k[z′] runs from a
suitable initial state to a terminal state, there should be a corresponding run of
k[z] from the initial state to the same terminal state.

Two constraints shall be necessary when considering whether a static term z′

can replace z in a context k. The first is that if z′ runs from an initial state s
to a terminal state s′ then z can also run from s to s′. For any term t, write
t : s ⇓ s′ if the marking (Tc(t), s′) is reachable from (Ic(t), s) in N �t�. We shall
require that if z′ : s ⇓ s′ then z : s ⇓ s′.

The second constraint is that, running from any state s, the locations that z′

accesses are all locations that z might access. To justify this, consider the follow-
ing example. It is easy to see that there are no s and s′ such that � ?= 0; � ?=1 :
s ⇓ s′, so the first constraint for using � ?=0; � ?=1 to replace false in the process
false ‖ � := 1 would be met. However, the resulting process � ?= 0; � ?=1 ‖ � :=1
has more behaviour, so the refinement is unsound. It should be ruled-out because
the command false accesses no locations whereas � ?=0; � ?=1 accesses �.

The locations that might be accessed by z are called its footprint, which we
now capture as the least allocation of ownership of the heap to the process that
ensures that no violation is encountered. The notion of footprint has intricacies,
but since our interest is in the footprint of static terms, we can avoid many of
them. In particular, we do not need to consider ownership of invariants; we shall
say that a marking of ownership conditions w is invariant-empty if there exists
no z ∈ Loc ∪ Res such that ωinv(z) ∈ w.
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Let w and w′ be invariant-empty markings of ownership conditions consistent
with some state s. Define w ≤ w′ if ωproc(z) ∈ w implies ωproc(z) ∈ w′ for all
z ∈ Loc∪Res. For two invariant-empty ownership markings w and w′ consistent
with the state s, define

w �s w′ =
{ωproc(z) | ωproc(z) ∈ w and ωproc(z) ∈ w′}
∪{ωoth(z) | ωoth(z) ∈ w or ωoth(z) ∈ w′ }.

It is easy to see that this is consistent and is a least upper bound of w and w′

w.r.t. the partial order ≤ over invariant-empty ownership markings consistent
with s.

Lemma 3. Let z be a static term. For any s and invariant-empty w and w′ such
that both (s, w) and (s, w′) are consistent, if no violating marking is reachable
from either (Ic(z), s, w) or (Ic(z), s, w′) in W �z�∅ then no violating marking is
reachable from (Ic(z), s, w �s w′) in W �t�∅.
Recalling that the marking s must be finite, it follows immediately from this
lemma that, for any static term z and state s, there exists a least (according
to the order ≤) invariant-empty marking of ownership conditions w consistent
with s such that no violating marking is reachable in W �z�∅ from (Ic(z), s, w).
The locations that must be owned by the process form the footprint of t:

footprint(z, s) = {� | ωproc(�) ∈ w}

The restriction to static terms in Lemma 3 is important: there are examples of
non-static processes for which this property fails. For example, consider the state
with heap {(k, 0), (l, 0), (m, 0)} and term while m != k do alloc(m) od; � :=1.
No violating marking is reachable from either of the initial ownership mark-
ings {ωproc(m), ωproc(�), ωoth(k)} or {ωproc(m), ωoth(�), ωproc(k)} but a violating
marking is reachable from their l.u.b., {ωproc(m), ωoth(�), ωoth(k)}.

We now give a key result, that footprint-respecting refinements give rise to
no additional behaviour.

Theorem 3. Let z and z′ be static terms such that, for all states s and s′:

z′ : s ⇓ s′ =⇒ z : s ⇓ s′ and footprint(z′, s) ⊆ footprint(z, s)

Let k be a context such that k and z are separable from (s0, w0). Then:

– k and z′ are separable from (s0, w0),
– if no violating marking is reachable in W �k[z]�Γ from (s0, w0) then no vio-

lating marking is reachable in W �k[z′]�Γ , and
– if the terminal marking (Tc(k[z′]), s, w) is reachable from (Ic(k[z′]), s0, w0)

in W �k[z′]�Γ then the terminal marking (Tc(k[z]), s, w) is reachable from
(Ic(k[z]), s0, w0) in W �k[z]�Γ .

The proof proceeds similarly to that for ‘non-interfering substitutions’ in [7,6],
using the fact that any two consecutive occurrences of events whilst z′ is active
will be independent if one event is from k and one is from z′.

We now show how the property of being subprocess race-free is preserved
under the forms of refinement described above.
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Theorem 4. Let z and z′ be static terms such such that, for all states s and s′:

– z′ : s ⇓ s′ implies z : s ⇓ s′ and footprint(z′, s) ⊆ footprint(z, s), and
– for any w such that (s, w) is consistent, if z is subprocess race-free from (s, w)

then z′ is subprocess race-free from (s, w), both taking the environment to be
empty.

For any context k, environment Γ and consistent (s0, w0), if k[z] is subprocess
race-free from (s0, w0) then k[z′] is subprocess race-free from (s0, w0).

Together, Theorems 3 and 4 show how the validity of judgements is preserved
by footprint-preserving refinements of static subprocesses.

We conclude by giving an example of the kind of refinement that is permitted,
showing how any static subterm can be refined to its effect. For a static term z
define the action collapsez as

A �collapsez� def=
{

(hp(s), hp(s′))
z : s ⇓ s′ and for all s0 s.t. s ⊆ s0 :

footprint(z, s0)=dom(hp(s))

}
.

The action is formed of minimal heaps that represent the fault-avoiding (i.e.
sufficient that z never accesses an unallocated location) big-step semantics of z.
It is easy to see that the conditions for collapsez replacing any static subterm
z in any context k are met, so the obtained semantics is related to the original
semantics by Theorems 3 and 4.

An adaptation of this would be to define two actions, one representing the
start of z and the other the end of z. The events of the ‘start’ action record the
part of the heap to be modified by z and the ‘end’ events would perform the
update, yielding a semantics for proved processes following that in [10].

7 Conclusions and Related Work

We have seen how a Petri-net semantics for concurrent separation logic can be
used to prove that its judgements are insensitive to the granularity assumed of
primitive actions. In particular, through net and term contexts, an interpretation
of the subprocesses of programs was introduced and it was shown how ownership
can be split between any subprocess and its context in such a way that neither
exceeds the constraints imposed by ownership. The issue of granularity was then
addressed by showing that if the footprint of a refinement of a subprocess does
not exceed the original footprint, the validity of judgements is preserved.

We have seen how refinements of static terms can begin to yield a seman-
tics along the lines of Reynolds’ model [10], with static terms being replaced
by ‘start’ and ‘end’ actions. His model, however, treats races as ‘catastrophic’;
we directly prove that they cannot occur. This may be of use when considering
refinements of separable parts of racy programs. Related to Reynolds’ model is
Brookes’ footstep trace model [1], in which sequences of actions in individual
traces are ‘collapsed’ to their effect. The goal of the footstep model is to move
towards logical full abstraction. However, work presented there (and Reynolds’)
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is critically different from that presented here in that no general connection is
shown between the behaviour of processes following change in the granularity of
actions and the original processes. The model in [1] also bypasses the important
issue of interaction between concurrent processes through allocation or deallo-
cation of memory; it assumes that all allocated memory locations are ‘fresh’,
whereas in real implementations the opposite is often the case. Reynolds’ model,
on the other hand, has no allocation or deallocation at all.

As discussed in the introduction, in [4] it has recently been shown how a
range of assumptions relating both to granularity and other aspects of ‘relaxed’
memory models can be ignored for programs proved in separation logic. The
key difference between their model and this one is that the net-based semantics
natively permits refinements, whereas their model relies on an additional ‘pa-
rameterization’ relation in the semantics. This leads to them having to re-prove
concurrent separation logic sound. However, their constraints on their param-
eterization relations under which the validity of judgements is preserved are
similar to those seen here, so it would be interesting to provide a full connection
with their work, in particular to consider how the net model can be applied to
prove sound the other forms of memory relaxation described there.

There are a number of areas worthy of further investigation, one of which is
the extension of refinement beyond static terms. It seems as though a treatment
of refinement of terms involving allocation and deallocation would require a more
subtle interpretation of footprint, perhaps along the lines of that presented in
[9]. More broadly, the net model here and the abstract semantics for concurrent
separation logic [3] deserve connection, and thereon, for example, to RGSep [11].
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Abstract. In 2004, Berdine, Calcagno and O’Hearn introduced a frag-
ment of separation logic that allows for reasoning about programs with
pointers and linked lists. They showed that entailment in this fragment
is in coNP, but the precise complexity of this problem has been open
since. In this paper, we show that the problem can actually be solved in
polynomial time. To this end, we represent separation logic formulae as
graphs and show that every satisfiable formula is equivalent to one whose
graph is in a particular normal form. Entailment between two such for-
mulae then reduces to a graph homomorphism problem. We also discuss
natural syntactic extensions that render entailment intractable.

1 Introduction

Separation logic (SL) [11,14] is an extension of Hoare logic to reason about
pointer manipulating programs. It extends the syntax of assertions with pred-
icates describing shapes of memory; aliasing and disjointness can be concisely
expressed within these shapes. This extended assertion languages allows elegant
and concise hand written proofs of programs that manipulate dynamically allo-
cated data structures. However, generating such proofs in an automated fashion
is constrained by the undecidability of separation logic [14]. For that reason, in
recent years research has been concentrating on finding decidable fragments of
this logic, see e.g. [2,5].

In this paper, we study the SL fragment presented in [2]. This fragment allows
for reasoning about structural integrity properties of programs with pointers and
linked lists. In [2], the decidability of checking validity of entailments in this logic
has been shown. Entailment is the problem to decide whether, given two sep-
aration logic assertions α and α′, α′ holds in every memory model in which
α holds. Decidability was shown in model-theoretic terms and by providing a
complete syntactic proof theory for this fragment. Based on these theoretical
results, Berdine, Calcagno and O’Hearn [3] later developed the tool Small-

foot. This tool decides entailments via a syntactic proof search using the proof
theory, however in the worst case an exponential number of proofs have to be
explored. The tool demonstrated that SL could be used to automatically ver-
ify memory safety of linked list and tree manipulating programs. Based on the
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success of Smallfoot, this approach has been extended to allow automatic
inference of specifications of systems code [1,4], to reason about object-oriented
programs [7,12], and even to reason about non-blocking concurrent programs [3].
But fundamentally all these tools are based on the same style of syntactic proof
theory.

The precise computational complexity of checking entailments was not fully
answered in [2]. The authors show that a memory model disproving an entail-
ment is polynomial in the size of the input, thus giving a coNP algorithm. As
we are going to show in this paper, entailment can actually be decided in poly-
nomial time. To this end, we take a fundamentally different approach to [2]:
Instead of reasoning syntactically about formulae, we represent them as graphs
in a particular normal form and then compute a homomorphism between those
graphs to prove that an entailment holds. It is well-known [8] that computing
graph homomorphisms is an NP-complete problem, however our graphs in nor-
mal form enjoy some special structural properties that allow one to compute
homomorphisms in polynomial time.

This paper is structured as follows: In Section 2 we formally introduce our
SL fragment, graphs and the decision problems that we consider. Section 3 then
shows how we can compute in polynomial time from a given assertion a graph in
normal form that represents the same set of models of the formula. We then show
in Section 4 that a homomorphism between graphs in normal form witnesses an
entailment, and that such a homomorphism can be computed in polynomial time.
Section 5 deals with syntactic extensions that make entailment coNP-hard.

Due to space constraints, we do not present all algorithms and proofs in the
main part of this paper, they can however be found in an extended version [6].
Moreover, we assume the reader to be familiar with basic notions and concepts
of separation logic. For a comprehensive introduction to separation logic, see
[14].

2 Preliminaries

Let Vars and V be countably infinite sets of variables and nodes. We assume
some fixed total order < on Vars and for any finite S ⊆ Vars, denote by min(S)
the unique x ∈ S such that x ≤ y for all y ∈ S.

The syntax of our assertion language is given by the following grammar, where
x ranges over Vars:

expr ::= x (expressions)
φ ::= expr = expr | expr 	= expr | φ ∧ φ (pure formulae)
σ ::= expr #→ expr | ls(expr , expr) | σ ∗ σ (spatial forumlae)
α ::= (φ;σ) (assertions)

Subsequently, we call formulae of our assertion language SL-formulae. An exam-
ple of an SL-formula is α = (x 	= y; ls(x, y)∗y #→ z). It describes memory models



Tractable Reasoning in a Fragment of Separation Logic 237

Fig. 1. Three SL-graphs, where l-edges are dotted arrows, p-edges solid arrows and
d-edges dashed lines. Nodes are labelled with the variables next to them. The graphs
(b) and (c) are in normal form, where (b) is obtained by reducing (a). The arrows from
(c) to (b) depict a homomorphism.

in which the value of the stack variable x is not equal to the value of the stack
variable y, and in which the heap can be separated into two disjoint segments
such that in one segment there is a linked list from the heap cell whose address
is the value of x to the heap cell whose address is the value of y, and where in
the other segment the latter heap cell points to the heap cell whose address is
z. We denote by |φ| the size of a pure formula and by |σ| the size of a spatial
formula, which is in both cases the number of symbols used to write down the
formula. Given an assertion α = (φ;σ), the size of α is |α| def= |φ|+ |σ|. By ε, we
subsequently denote the empty spatial assertion of size zero.

Remark 1. The SL fragment considered in [2] also contains nil as an expression.
This does however not give more expressiveness, since we can introduce a des-
ignated variable nil and implicitly join nil #→ nil to every spatial assertion to
obtain the same effect.

The semantics of SL-formulae is given in terms of SL-graphs, which we define
to be a special class of directed graphs. Throughout this paper, SL-graphs will
also be used to represent SL-formulae.

Definition 2. An SL-graph G is either ⊥ or (Vb, Vr, El, Ep, Ed, �) such that

– Vb, Vr ⊆fin V , Vb ∩ Vr = ∅, Vb,r
def
= Vb ∪ Vr;

– El ⊆ Vb,r × Vb,r;
– Ep ⊆ Vr × Vb,r and for every v ∈ Vr, Ep(v) is defined;
– Ed ⊆ {{v, w} : v, w ∈ Vb,r , v 	= w};
– � : Vars ⇀fin Vb,r
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Table 1. Semantics of the assertion language, where I is an SL interpretation

I |= x = y ⇐⇒ �I(x) = �I(y)

I |= x �= y ⇐⇒ �I(x) �= �I(y)

I |= φ1 ∧ φ2 ⇐⇒ I |= φ1 and I |= φ2

I |= x �→ y ⇐⇒ ∃v, w ∈ V I
b,r.V

I
r = {v}, EI

p = {(v, w)}, �I(x) = v, �I(y) = w

I |= ls(x , y) ⇐⇒ ∃n ∈ N.I |= lsn(x , y)

I |= ls0(x , y) ⇐⇒ �I(x) = �I(y) and V I
r = ∅

I |= lsn+1(x , y) ⇐⇒ ∃z /∈ dom(�I), v ∈ V.I[�/�[z �→ v]] |= x �→ z ∗ lsn(z, y)

I |= σ1 ∗ σ2 ⇐⇒ ∃I1, I2.I = I1 ∗ I2, I1 |= σ1, I2 |= σ2

I |= (φ; σ) ⇐⇒ I = I1 ∗ I2, I1 |= φ and I1 |= σ, where I |= ε for all I

An SL interpretation is an SL-graph where El = ∅, Ep is functional and Ed =
{{v, w} : v, w ∈ Vb,r, v 	= w}.

An SL-graph ⊥ indicates an inconsistent SL-graph. The set Vb,r of nodes of
an SL-graph partitions into sets Vb and Vr, where we refer to nodes in Vb as
black nodes and to those in Vr as red nodes. We call Ep the set of pointer edges
(p-edges), El the set of list edges (l-edges), Ed is the set of disequality edges
(d-edges) and � the variable labelling function. For convenience, Ep,l denotes the

set Ep ∪ El. Given a node v ∈ V , we set vars(v) def= {x ∈ Vars : �(x) = v} and

var(v) def= min(vars(v)). We sometimes wish to alter one component of a graph
and, e.g., write G[Ep/E

′
p] to denote the graph G′ = (Vb, Vr, E

′
p, El, Ed, �).

Example 3. Figure 1 shows three examples of SL-graphs. Subsequently, we iden-
tify nodes of an SL-graph with any of the variables they are labelled with. Graph
(a) has an l-edge from the black node x1 to the red node x3, depicted by a dotted
arrow. The latter node has a p-edge to the black node x4, depicted by a solid
arrow. Moreover, there is a d-edge between x5 and x7, depicted by a dashed line.

In the remainder of this paper, we denote an SL interpretation by I and usually
denote the components of an interpretation with superscript I, e.g., we write
V Ib to denote the black nodes of an interpretation I. Given SL interpretations
I, I ′, I ′′, we define I = I ′ ∗I ′′ if, and only if, V Ir = V I

′
r 1V I

′′
r , V I

′
b = V Ib ∪V I

′′
r ,

V I
′′

b = V Ib ∪ V I
′

r , EIp = EI
′

p 1 EI
′′

p , and �I = �I
′

= �I
′′
. The semantics of our

assertion language is presented in Table 1. We call I a model of α if I |= α.

Remark 4. In [2], the semantics of SL-formulae is given in terms of heaps and
stacks. In our setting, we can view the red nodes of an interpretation as the set of
allocated heap cells, EIp as a representative of the contents of heap cells and �I as
the stack. Black nodes then correspond to dangling locations. Moreover, our se-
mantics differs in that we employ the intuitionistic model of separation logic [14]
and that the semantics of lists is imprecise. We will discuss the relationship to
the semantics given in [2] in Section 4.
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The decision problems of interest to us are satisfiability and entailment. Given
an assertion α, we say α is satisfiable if there exists a model I such that I |= α.
Given two assertions α1 and α2, we say α1 entails α2 if for any SL interpretation
I, whenever I |= α1 then I |= α2. We write α1 |= α2 if α1 entails α2, and α1 ≡ α2

if α1 |= α2 and α2 |= α1.
Given an SL-graph G, we now define its corresponding assertion α(G). If

G = ⊥ then α(G) def= (x 	= x; ε), i.e., an unsatisfiable SL-formula. Otherwise, the
assertion α(G) corresponding to G is defined as follows, where we use an indexed
separation operator:

φ(G) def=
∧

v∈Vb,r
x,y∈vars(v)

x = y ∧
∧

{v,w}∈Ed

var(v) 	= var (w),

σ(G) def=
(
∗(v,w)∈Ep

var(v) #→ var (w)
)
∗
(
∗(v,w)∈El

ls(var (v), var (w))
)
,

α(G) def=(φ(G), σ(G)).

We define the size of an SL-graph G as |G| def= |α(G)|.
Example 5. Graph (b) of Figure 1 corresponds to the assertion (x1 = x2 ∧ x2 =
x3 ∧x4 = x6 ∧x1 	= x4 ∧x5 	= x7;x1 #→ x4 ∗ ls(x4, x5) ∗ ls(x4, x7)), where we have
omitted superfluous equalities.

We now give some technical definitions about paths in SL-graphs. Given a
relation E ⊆ V × V , a v-w path in E of length n is a sequence of nodes
π : v1 · · · vn+1 such that v1 = v, vn+1 = w and (vi, vi+1) ∈ E for all 1 ≤ i ≤ n.
We write |π| to denote the length of π. The edges traversed by π is defined
as edges(π) def= {(vi, vi+1) : 1 ≤ i ≤ n}. Two paths π1, π2 are distinct if
edges(π1) ∩ edges(π2) = ∅. If v 	= w, we call a v-w path loop-free if vi 	= vj

for all 1 ≤ i 	= j ≤ n + 1. We write v �p w, v �l w and v �p,l w if there exists
a v-w path in Ep, El respectively Ep,l. Moreover, we write v →p w, v →l w and
v →p,l w if (v, w) ∈ Ep, (v, w) ∈ El respectively (v, w) ∈ Ep,l. Given a set of

edges E, V (E) denotes the set V (E) def= {v : ∃w.(v, w) ∈ E or (w, v) ∈ E}. As
usual, E∗ denotes the reflexive and transitive closure of E. For e = (v, w) ∈ E,
we define E∗(e) def= {u : (w, u) ∈ E∗} ∪ {v}.

The challenging aspect in giving a polynomial time algorithm to decide entail-
ment is that our logic is non-convex. As has already been observed in [2], given
α = (y 	= z; ls(x, y) ∗ ls(x, z)), for any model I of α we have I |= (x = y; ε) or
I |= (x = z; ε). However there are models I1, I2 of α such that I1 	|= (x = y; ε)
and I2 	|= (x = z; ε). Non-convexity often makes computing entailment coNP-
hard for logics that contain predicates for describing reachability relations on
graphs, e.g., in fragments of XPath or description logics [13,10]. However, in our
SL fragment we obtain tractability through the SL-graph normal form we de-
velop in the next section and the fact that variable names only occur at exactly
one node in an SL-graph, which fully determines a graph homomorphism if it
exists.
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3 A Normal Form of SL-Graphs

In this section, we show that given an assertion α we can compute in polynomial
time an SL-graph G in a normal form such that α ≡ α(G). This normal form
serves three purposes: First, it makes implicit equalities and disequalities from α
explicit. Second, an SL-graph in normal form has the structural property that if
there is a loop-free path between two distinct vertices then there is exactly one
such path. Third, any SL-graph G 	= ⊥ in normal form can be transformed into
an interpretation I such that I |= α(G), thus showing that satisfiability in our
SL fragment is in polynomial time.

First, we show how given a pure formula φ we can construct a corresponding
graph Gφ such that (φ, ε) ≡ α(Gφ). Let {x1, . . . , xm} ⊆ Vars be the set of all
variables occurring in φ, and let {[e1], . . . , [en]} be the set of all equivalence
classes of variables induced by φ, i.e., x, y ∈ [ei] if, and only if, φ implies x = y.
Let Vb

def= {v1, . . . , vn} ⊆ V ; �(x) def= vi if, and only if, x ∈ [ei]; and Ed
def=

{{vi, vj} : ∃x, y ∈ Vars.x ∈ [ei], y ∈ [xj ] and x 	= y occurs in φ}. If there is a

singleton set in Ed then set Gφ
def= ⊥, otherwise Gφ

def= (Vb, ∅, ∅, ∅, Ed, �). The
following lemma can now easily be verified.

Lemma 6. Let φ be a pure formula. There exists a polynomial time computable
SL-graph Gφ such that α(Gφ) ≡ (φ, ε).

Next, we show how to deal with spatial assertions. When processing spatial
assertions and transforming SL-graphs into normal form, we need to manipulate
SL-graphs. The two operations we perform on them are merging nodes and
removing edges. Due to space constraints, we relegate details of the algorithms
that implement these operations to the extended version of this paper [6].

Algorithm Merge(G, v, w) takes an SL-graph G as input and merges the node
w into node v by adding all labels from w to the labels of v and appropriately
updating El, Ep and Ed. Moreover, the algorithm makes sure that if either
v ∈ Vr or w ∈ Vr then v ∈ Vr in the returned graph. If both v, w ∈ Vr or
{v, w} ∈ Ed then Merge(G, v, w) returns ⊥. Thus, Merge is characterised
as follows: If α(G) = (φ;σ), v, w ∈ Vb,r , x = var(v) and y = var (w) then
α(Merge(G, v, w)) ≡ (φ ∧ x = y;σ).

Algorithm LRemove(G, (v, w)) takes an SL-graph G as input and removes
the l-edge (v, w) from G. Likewise, PRemove(G, (v, w)) removes a p-edge from
G and, if necessary, moves v from Vr to Vb. Both algorithms can be charac-
terised as follows: If α(G) = (φ;σ ∗ ls(x, y)), v, w ∈ Vb,r, x = var (v) and
y = var (w) then α(LRemove(G, (v, w))) ≡ (φ;σ). If α(G) = (φ;σ ∗ x #→ y))
then α(PRemove(G, (v, w))) ≡ (φ;σ), where v, w, x and y are as before. As an
abbreviation, we introduce LReMerge(G, (v, w)) and PReMerge(G, (v, w))
which first remove an l- respectively p-edge (v, w) from G and then merge w
into v.

Finally, Algorithm Apply(G, σ) takes an SL-graph G and a single spatial
assertion σ ∈ {x #→ y, ls(x, y)} as input and outputs an SL-graph G′ such that
if α(G) = (φ;σ′) then α(G′) ≡ (φ;σ′ ∗ σ). Again, the concrete algorithm can be
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Algorithm 1. Reduce

Require: G
while G is not reduced do

case split on violated condition at node v
// conditions are as in Table 2
// node names below refer in each case to the corresponding case in Lemma 13
case (i): return ⊥
case (ii): G = LReMerge(G, (v, w′))
case (iii): G = LReMerge(G, (v, w′′))
case (iv): G = Merge(G′, v, w)

end while
return G

found in the extended version due to space limitations, but it is not difficult to
construct such an algorithm that runs in polynomial time. Some extra care has
to be taken if an l-edge is added that is already present in G, since (φ;σ∗ ls(x, y)∗
ls(x, y)) ≡ (φ ∧ x = y;σ ∗ ls(x, y)). By combining all algorithms considered in
this section, we obtain the following lemma.

Lemma 7. Let α be an SL-graph. Then there exists a polynomial-time algorithm
that computes an SL-graph G such that α ≡ α(G).

We now move towards defining the normal form of an SL-graph and show that
any SL-graph can be transformed into one in normal form such that their cor-
responding assertions are equivalent. A key concept of the normal form is that
of a persistent set of edges.

Definition 8. Let G be an SL-graph, a set of edges E ⊆ Ep,l is persistent if
V (E) ∩ Vr 	= ∅ or there are v, w ∈ V (E) such that {v, w} ∈ Ed.

For example, let e1 be the l-edge from x4 to x5 and e2 the l-edge from x4 to x7

of graph (a) in Figure 1. Neither {e1} nor {e2} is persistent, but {e1, e2} is as
there is a d-edge between x5 and x7. Intuitively, the idea behind the definition
is as follows: Suppose we are given an SL-graph G with (v, w) ∈ El such that
E = E∗p,l(v, w) is persistent. Then in any model I of α(G) for v′ = �I(var(v)), we
have v′ ∈ V Ir since v′ must have an outgoing p-edge as the persistence property
enforces that there is a p-edge in E or that not all variable names occurring in
E are mapped to v′ in I. Moreover, if v has a further outgoing l-edge (v, w′)
then �I(var (w′)) = v since v can only have one outgoing p-edge in I. For graph
(a) in Figure 1, this means that x6 becomes equivalent to x4 in any model of
the corresponding SL-formula. Thus persistency allows us to make some implicit
equalities in G explicit.

Definition 9. An SL-graph G is reduced if G = ⊥ or if it fulfils the conditions
in Table 2.

The definition of a reduced SL-graph is the first step towards the normal form
of SL-graphs. Table 2 consists of four conditions, and the idea is that if any of
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Table 2. Conditions for an SL-graph G to be reduced

(i) if v ∈ Vr then |Ep(v)| = 1
(ii) if v →p,l w such that E∗

p,l(v, w) is persistent then El(v) ⊆ {w}
(iii) if v →l w1 and v →l w2 such that E∗

p,l(v, w1) ∪ E∗
p,l(v, w2) is persistent then

El(v) ⊆ {w1, w2}
(iv) there are no distinct loop-free v-w paths π1, π2 in El.

those conditions is violated by an SL-graph G then we can make some implicit
facts explicit. Clearly, if (i) is violated then α(G) is unsatisfiable as the spatial
part of α(G) consists of a statement of the form x #→ y ∗ x #→ z. If (ii) or (iii)
is violated then by the previous reasoning any further outgoing l-edge can be
collapsed into v. Condition (iv) contributes to making sure that between any
two different nodes there is at most one loop-free path, as can be seen by the
following lemma.

Lemma 10. Let G 	= ⊥ be a reduced SL-graph, v, w be distinct nodes in Vb,r

and π : v �l,r w a loop-free path. Then π is the unique such loop-free path.

Proof. To the contrary, assume that there are two different loop-free v-w paths
π1, π2. Then there are nodes v′, w′ such that there are distinct v′-w′ paths π′1
and π′2 that are segments of π1 respectively π2, where at least one of π1 or π2 is
of non-zero length. If v′ = w′ then this contradicts to π1 or π2 being loop-free.
Thus, assume v′ 	= w′. If both π′1, π

′
2 are l-paths then this contradicts to G being

reduced, as condition (iv) is violated. Otherwise, if π′1 reaches a red node then
edges(π′1) is persistent and hence v′ has one outgoing edge, contradicting to π′1
and π′2 being distinct. The case when π′2 reaches a red node is symmetric.

It is easy to see that deciding whether a graph G is reduced can be performed
in polynomial time in |G|. In order to transform an arbitrary SL-graph into a
reduced SL-graph, Algorithm Reduce just checks for a given input G if any
condition from Table 2 is violated. If this is the case, the algorithm removes
edges and merges nodes, depending on which condition is violated, until G is
reduced. We will subsequently prove Reduce to be correct. First, we provide
two technical lemmas that will help us to prove correctness. They allow us to
formalise our intuition about persistent sets of edges. Due to space constraints,
we omit the proof of the following lemma.

Lemma 11. Let G be an SL-graph and v, w,w′ ∈ Vb,r such that x = var (v),
y = var (w), v �l w, and let I be a model of α(G). Then the following holds:

(i) if �I(y) ∈ V Ir then �I(x) ∈ V Ir ; and
(ii) if v �l w

′ and {w,w′} ∈ Ed then �I(x) ∈ V Ir .

Lemma 12. Let α = (φ, σ) and x ∈ Vars be such that for all models I of α,
�I(x) ∈ V Ir . Then for all y ∈ Vars and α′ = (φ, σ ∗ ls(x, y)), α′′ = (φ ∧ x = y, σ),
we have α′ ≡ α′′.
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Proof. We clearly have that α′′ |= α′. For the other direction, let I ′ be a model
of α′. By definition, there are I1, I2 such that I ′ = I1 ∗I2, I1 |= (φ;σ) and I2 |=
(φ; ls(x, y)). By assumption, �I1(x) ∈ V I1r and hence �I2(x) /∈ V I2r . Consequently,
�I2(x) = �I2(y). Hence �I

′
(x) = �I

′
(y), which yields I ′ |= (φ ∧ x = y;σ).

We are now prepared to show the correctness of Reduce. Each case in the
lemma below captures a violated condition from Table 2 and shows that the
manipulation performed by Reduce is sound and correct.

Lemma 13. Let G be an SL-graph,

(i) if there is v ∈ Vr such that |Ep(v)| > 1 then α(G) is unsatisfiable;
(ii) if there are v, w,w′ ∈ Vb,r, x, y ∈ Vars such that v →p,l w, v →l w′,

x = var(v), y = var (w′), E∗p,l(v, w) is persistent and α(G) = (φ, σ∗ls(x, y))
then α(G) ≡ (φ ∧ x = y;σ);

(iii) if there are v, w,w′, w′′ ∈ Vb,r, x, y ∈ Vars such that v →l w, v →l w′,
v →l w′′, x = var (v), y = var (w′′), E∗p,l(v, w) ∪ E∗p,l(v, w

′) is persistent
and α(G) = (φ, σ ∗ ls(x, y)) then α(G) ≡ (φ ∧ x = y;σ);

(iv) if there are v, w ∈ Vb, x, y ∈ Vars such that x = var (v), y = var (w),
α(G) = (φ, σ) and there are distinct loop-free v-w l-paths π1, π2 in El then
α(G) ≡ (φ ∧ x = y;σ).

Proof. Case (i): Let x = var(v); we have that there are y, z ∈ Vars such that
(φ;σ ∗ x #→ y ∗ x #→ z), which clearly is unsatisfiable.

Case (ii): We show that for all models I of α(G), �I(x) ∈ Vr. The statement
then follows from Lemma 12. If there is u ∈ V (E∗p,l(v, w)) ∩ Vr then by Lemma
11(i) we have x ∈ V Ir . Otherwise, if there are u, u′ ∈ V (E∗p,l(v, w)) such that
{u, u′} ∈ Ed then Lemma 11(ii) gives x ∈ V Ir .

Case (iii): Again, we show that for all models I of α(G), �I(x) ∈ Vr. The
statement then follows from Lemma 12. It is sufficient to consider the case in
which there are u, u′ ∈ Vb,r such that w �l u, w �l u′ and {u, u′} ∈ Ed as all
other cases are subsumed by (ii). But then, Lemma 11(ii) again yields x ∈ V Ib,r.

Case (iv): Let π1 = vw1 · π′1 and π2 = vw2 · π′2 be v-w paths. Thus, w1 	= w2

and hence m
def= |π1| + |π2| ≥ 3. We show the statement by induction on m.

For m = 3, the statement follows from a similar reasoning as in Lemma 12. For
the induction step, let m > 3 and I be model of α(G). Let y1 = var (w1) and
y2 = var(w2), we have that α(G) = (φ;σ ∗ ls(x, y1) ∗ ls(x, y2)) and consequently
I |= σ ∗ lsn1(x, y1)∗ lsn2(x, y2) for some n1, n2 ∈ N. If n1 = 0 then I |= G′, where
G′ = LReMerge(G, (v, w1)) and the induction hypothesis yields �I(x) = �I(y).
The case n2 = 0 follows symmetrically.

Lemma 14. Let G,G′ be SL-graphs such that G′ = Reduce(G). Then G′ is
reduced and α(G) ≡ α(G′). Moreover, Reduce runs in polynomial time on any
input G.

Proof. Clearly, Reduce only returns graphs that are reduced. Moreover, Lemma
13 shows that in every iteration equivalent graphs are generated and hence
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α(G) ≡ α(G′). Regarding the complexity, checking if G is reduced can be per-
formed in polynomial time in |G|. Removing edges and merging nodes in the
while body can also be performed in polynomial time. Moreover, the size of G
strictly decreases after each iteration of the while body. Hence the while body
is only executed a polynomial number of times.

A nice property of reduced SL-graphs is that they allow to easily construct a
model of their corresponding SL-formulae.

Lemma 15. Let G 	= ⊥ be a reduced SL-graph and v, w ∈ Vb,r such that v 	= w.
Then α(G) has a model I such that �I(var(v)) 	= �I(var (w)) and for all x, y ∈
Vars, �(x) = �(y) implies �I(x) = �I(y).

Proof. We sketch how G can iteratively be turned into a desired model I. Sup-
pose w is reachable from v and let π be the loop-free path from v to w. First,
we replace any l-edge occurring on π by two consecutive p-edges. For all nodes
v′ 	= w along π that have further outgoing l-edges, we merge all nodes reachable
via l-paths from v′ into v′ and remove the connecting l-edges. If v is reachable
from w via a loop-free path π′, we apply the same procedure to π′. Finally, we
iterate the following procedure: if there is a node u with more than one outgoing
l-edge, we fix an l-edge e and merge all nodes reachable from u via the remaining
l-edges different from e into u and remove the connecting l-edges. We then replace
e with two new consecutive p-edges. Once this procedure has finished, we obtain
an SL-graph containing no l-edges that can be turned into an interpretation I.
It is easily checked that I is a model of α(G) and �I(var (v)) 	= �I(var(w)).

Theorem 16. Satisfiability of SL-formulae is decidable in polynomial time.

Remark 17. When we expand l-edges in the proof of Lemma 15, we replace them
by two consecutive p-edges. When we consider entailment in the next section,
this will make sure that we obtain a model in which ls(x, y) holds, but x #→ y
does not hold. This corresponds to the observation made in [2] that in order to
find a counter-model of an entailment, each l-edge has to be expanded at most
to length two.

Finally, we can now define our normal form. An SL-graph is in normal form if it
is reduced and if its set of disequalities is maximal. Note that in particular any
interpretation I is an SL-graph in normal form.

Definition 18. Let G be an SL-graph. Then G is in normal form if G is reduced
and for all v, w ∈ Vb,r such that α(G) = (φ;σ), x = var (v) and y = var (w),
whenever (φ ∧ x = y;σ) is unsatisfiable then {v, w} ∈ Ed.

Proposition 19. For any SL-formula α, there exists a polynomial time com-
putable SL-graph G in normal form such that α ≡ α(G).

Proof. Given an assertion α = (φ;σ), by Lemma 7 we can construct an SL-graph
G′ such that α(G′) ≡ α. Applying Reduce to G′ yields a reduced graph G′′
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such that α(G′) ≡ α(G′′). In order to bring G′′ into normal form, we check for
each of the polynomially many pairs v, w ∈ Vb,r if Reduce returns ⊥ on input
Merge(G′′, v, w). If this is the case, we add {v, w} to Ed, which finally gives
us the desired graph G. As argued before, all constructions can be performed in
polynomial time.

We close this section with an example. Graph (b) in Figure 1 is in normal form
and obtained from the graph (a) by applying Reduce. Graph (a) violates condi-
tion (iii) as {(�(x4), �(x5)), (�(x4), �(x7)} is persistent, which results in Reduce

merging x6 into x4. Moreover, the graph also violates condition (iv) since there
are two distinct l-paths from x1 to x3. Hence, Reduce merges x1 and x3 and
then removes all newly obtained outgoing l-edges from x3 due to a violation of
condition (ii). Finally, {(�(x3), �(x4))} is added to Ed in order to obtain graph (b)
as merging the nodes x3 and x4 and applying Reduce results in an inconsistent
graph.

4 Computing Entailment via Homomorphisms between
SL-Graphs in Normal Form

In this section, we show that entailment between SL-formulae can be decided by
checking the existence of a graph homomorphism between their corresponding
SL-graphs in normal form. Throughout this section, we will assume that all
SL-formulae considered are satisfiable and all SL-graphs G 	= ⊥, since deciding
entailment becomes trivial otherwise, and checking for satisfiability can be done
in polynomial time.

A homomorphism is a mapping between the nodes of two SL-graphs that,
if it exists, preserves the structure of the source graph in the target graph. In
the definition of a homomorphism, we make use of the property of SL-graphs in
normal form that between any disjoint nodes there is at most one loop-free path
connecting the two nodes. For nodes v 	= w, we denote this path by π(v, w) if it
exists. If v = w then π(v, w) is the zero-length path π(v, w) def= v.

Definition 20. Let G,G′ be SL-graphs in normal form. A mapping h : Vb,r →
V ′b,r is a homomorphism from G to G′ if the homomorphism conditions from
Table 3 are satisfied.

Given a mapping h, it is easy to see that checking whether h is a homomorphism
can be performed in polynomial time in |G| + |G′|. The goal of this section
is to prove the following proposition, which gives us the relationship between
homomorphisms and entailment.

Proposition 21. Let G,G′ be SL-graphs in normal form. Then α(G′) |= α(G)
if, and only if, there exists a homomorphism h from G to G′.

Before we begin with formally proving the proposition, let us discuss its validity
on an intuitive level. Suppose there is a homomorphism from G to G′. Condition
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Table 3. Conditions for a homomorphism h from G to G′

(i) vars(v) ⊆ vars(h(v))
(ii) if {v, w} ∈ Ed then {h(v), h(w)} ∈ E′

d

(iii) if v →p w then h(v) →′
p h(w))

(iv) if v →l w then h(v) �′
p,l h(w)

(v) for all v1 →p,l w1 and v2 →p,l w2 such that (v1, w1) �= (v2, w2),
edges(π(h(v1), h(w1))) ∩ edges(π(h(v2), h(w2))) = ∅

(vi) if v, w ∈ Vr and v �= w then h(v) �= h(w)

(i) makes sure that for any node v of G its image under h is labelled with at
least the same variables. If this were not the case, we could easily construct a
counter-model of α(G′) disproving entailment. Likewise, condition (ii) ensures
that whenever two nodes are required to be not equivalent, the same is true for
the two nodes under the image of h. Since G′ is in normal form, merging the
two nodes in the image of h would otherwise be possible since E′d is maximal.
Condition (iii) requires that whenever there is a p-edge between any two nodes
v, w, such an edge also exists in G′. Again, it is clear that if this were not the
case we could construct a counter-model I of α(G′) such that there is no p-edge
between �I(var (v)) and �I(var (w)). Condition (iv) is of a similar nature, but
here we allow that there is a whole path between h(v) and h(w). In condition
(v), we require that the paths obtained from the image of two disjoint edges do
not share a common edge in G′. If this were the case, we could construct a model
of α(G′) in which separation is violated. Finally, condition (vi) makes sure that
no two different nodes from Vr are mapped to the same node. This condition
is needed to handle p-edges of the form (v, v), which may not be covered by
condition (v). We now proceed with formally proving Proposition 21. First, the
following lemma shows the relationship between models and homomorphisms
and that homomorphisms can be composed.

Lemma 22. Let G,G′, G′′ be SL-graphs in normal form and I an interpreta-
tion. Then the following holds:

(i) let h : Vb,r → V Ib,r be such that for all v ∈ Vb,r, h(v)
def
= �I(var(v)); then

I |= α(G) if, and only if, h is a homomorphism from G to I; and

(ii) given homomorphisms h′, h′′ from G′ to G respectively G′′ to G′; then h
def
=

h′′ ◦ h′ is a homomorphism from G′′ to G.

The proof of the lemma is rather technical but not difficult and deferred to
the extended version of this paper. Proposition 21 now is a consequence of the
following lemma. Note that the homomorphism is fully determined by G and G′.

Lemma 23. Let G,G′ be SL-graphs in normal form and let h : Vb,r → V ′b,r be

defined as h(v)
def
= �′(var (v)) for all v ∈ Vb,r. Then α(G′) |= α(G) if, and only

if, h is a homomorphism from G to G′.
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Proof. (“⇐”) Let h be a homomorphism from G to G′ and I be such that
I |= α(G′). By Lemma 22(i), there exists a homomorphism h′ from G′ to I.
By Lemma 22(ii), h′′ def= h′ ◦ h is a homomorphism from G to I. Consequently,
Lemma 22(i) yields I |= α(G).

(“⇒”) Due to space constraints, we defer the full proof of this direction to
the appendix. The direction is shown via the contrapositive by constructing a
counter-model depending on which homomorphism condition from Table 3 is
violated, as discussed earlier in this section.

We can now combine all results of this paper so far. Given satisfiable SL-formulae
α and α′, by Proposition 19 we can compute in polynomial time SL-graphs G and
G′ in normal form such that α ≡ α(G) and α′ ≡ α(G′). Next, we can compute
in polynomial time a mapping h from α(G′) to α(G) and check in polynomial
time whether h is a homomorphism. By the previous lemma, this then is the
case if, and only if, α |= α′.

Theorem 24. Entailment between SL-formulae is decidable in polynomial time.

An example of a homomorphism can be found in Figure 1. The arrows from graph
(c) to graph (b) depict a homomorphism witnessing an entailment between the
corresponding formulae of the graphs.

As promised in Section 2, we are now going to briefly discuss the differences
between the semantic models in [2] and this paper. In [2], I |= α = (φ;σ) if, and
only if, I |= φ and I |= σ, i.e., the semantics is non-intuitionistic. Informally
speaking, in our semantics models can contain more red nodes than actually
required. It is not difficult to see that the concept of SL-graphs in normal form
can be adopted to non-intuitionistic semantics, in fact most proofs carry over
straight forwardly. However, the homomorphism conditions need some adjust-
ments. One basically needs to add extra conditions that ensure that when h is
a homomorphism from G to G′, all edges from G′ are covered by h. These ex-
tra conditions ensure that no model of α(G′) can contain extra red nodes that,
informally speaking, do not get used up by α(G). Moreover, some further ad-
justments have to be made in order to deal correctly with precise list semantics.
The details are messy and deferred to a full version of this paper.

5 Syntactic Extensions Leading to Intractability

As stated in Section 2, due to the non-convexity, it is rather surprising that
entailment in our fragment is decidable in polynomial time. In this section,
we briefly discuss syntactic extensions that render satisfiability or entailment
intractable. It turns out that even small syntactic extensions make computing
entailment intractable.

First, we consider additional Boolean connectives in pure and spatial formu-
lae. Allowing disjunction in pure formulae with the standard semantics makes
entailment coNP-hard, since implication between Boolean formulae is coNP-
hard. Less obviously, allowing conjunction in spatial assertions makes satisfia-
bility NP-hard and thus entailment coNP-hard. To be more precise, suppose
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we allow assertions of the form α = (φ;σ1 ∧ σ2), where σ1 and σ2 are spatial
formulae and I |= (φ;σ1 ∧ σ2) if, and only if, I |= (φ;σ1) and I |= (φ;σ2).
We reduce from graph three colourability (3Col), which is known to be NP-
complete [8]. Given an instance G = (V , E) of 3Col with V = {v1, . . . , vn},
we construct an assertion α such that G can be coloured with three colours if,
and only if, α is satisfiable. We set α

def= (φ, σ), where φ
def=
∧

(vi,vj)∈E xi 	= xj

and σ
def= y1 #→ y2 ∗ y2 #→ y3 ∧

∧
vi∈V ls(y1, xi) ∗ ls(xi, y3). Let us sketch the

correctness of our reduction. The first conjunct of σ ensures that any model of
α contains a list of three nodes that are successively labelled with the variable
names y1, y2 and y3. The remaining conjuncts enforce that for any vi ∈ V , some
yj-node is additionally labelled with the variable name xi. Our intention is that
yj is additionally labelled with xi in a model of α if vi is coloured with colour j
in a three-colouring induced by that model. We use φ to enforce that that two
labels xi, xk are not placed on the node labelled with the same yj if vi and vk

are adjacent in G, i.e., they must have a different colour in the induced three
colouring. Hence G can be three coloured if, and only if, α is satisfiable. The
coNP-hardness of entailment then follows from the fact that α is satisfiable if,
and only if, α 	|= (x 	= x; ε).

Finally, we briefly discuss allowing existentially quantified variables in asser-
tions. An example of such an assertion is α = ∃y.(x 	= y;x #→ y), where I |= α
if I can be extended to I ′ in which some node of I is labelled with y such that
I ′ |= (x 	= y;x #→ y). It is easily seen that satisfiability in this extended fragment
is still decidable in polynomial time by just dropping the existential quantifier.
However, it follows from recent results that entailment becomes coNP-hard [9].

6 Conclusion

In this paper, we have studied the complexity of entailment in a fragment of sep-
aration logic that includes pointers and linked lists. Despite the non-convexity
of this logic, we could show that entailment is computable in polynomial time.
To this end, we showed that for any SL-formula we can compute in polyno-
mial time a corresponding SL-graph in a particular normal form which has an
equivalent corresponding SL-formula. Moreover, we showed that deciding entail-
ment between two SL-formulae then reduces to checking for the existence of a
homomorphism between their associated SL-graphs in normal form. A key ad-
vantage was that the homomorphism, if it exists, is uniquely determined by the
SL-graphs, and that checking the homomorphism conditions can be performed
in polynomial time. Moreover, we discussed how minor syntactic extensions to
our fragment lead to intractability of the entailment problem.

Acknowledgements. We would like to thank Nikos Gorogiannis for interesting
and helpful discussions and the anonymous referees for helpful suggestions on
how to improve the presentation of the paper.
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Abstract. This paper studies algebraic models for concurrency, in light
of recent work on Concurrent Kleene Algebra and Separation Logic. It es-
tablishes a strong connection between the Concurrency and Frame Rules
of Separation Logic and a variant of the exchange law of Category The-
ory. We investigate two standard models: one uses sets of traces, and
the other is state-based, using assertions and weakest preconditions. We
relate the latter to standard models of the heap as a partial function. We
exploit the power of algebra to unify models and classify their variations.

1 Introduction

The theory of concurrency is composed of a bewildering variety of models founded
on diverse concepts. The general outlook in this paper is one of unification.
Wouldn’t it be wonderful if we could find a more general theory that accepted
the diverse models as instances? Might it be possible to have a comprehensive
treatment of concurrency in which shared memory (in weak or strong forms),
message passing (in its numerous forms), interleaving and independence models
were seen to be part of the same theory with the same core axioms, specialised in
different ways, rather than founded on disparate models or calculi? Ideally, such
a unifying theory would even connect up the models, program logics, and op-
erational semantics. Of course, unification has long been an aim in concurrency
theory, with many translations between models aiding understanding.

With such lofty general aims, we state right away that this paper is but a
modest attempt to contribute to such a programme. We in no way have a grand
unifying theory at the moment. But we are probing, and as a result altering,
algebraic concepts by comparing them with concrete models, in the hope that
evolution to a general theory is eventually possible.

This paper builds on previous work on Concurrent Kleene Algebra (CKA,
[8]), where an algebra mixing primitives for concurrent (∗) and sequential (;)
composition was introduced, generalizing the Kleene algebra of sequential pro-
grams [9]. The standout feature of these algebras is the presence of an ordered
version of the exchange law from 2-categories or bi-categories

(p ∗ r); (q ∗ s) � (p ; q) ∗ (r ; s)

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 250–264, 2011.
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This law makes immediate sense in an interleaving model of concurrency. Sup-
pose you have a trace t = t1; t2 where t1 is an interleaving of two traces tp and
tr, and t2 of tq and ts. Then t is certainly also an interleaving of tp; tq and tr; ts.
But, as was shown in [8], the law also validates proof rules which originally arose
in a completely different model of concurrency, based on separation of resources,
the Concurrency and Frame Rules from Concurrent Separation Logic [10,3],

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ P2}C1‖C2 {Q1 ∗Q2}

{P}C {Q}
{P ∗ F}C {Q ∗ F} .

These rules are derived at once from the algebraic structure of CKA, mean-
ing that the modular reasoning that these rules support could conceivably be
applicable in a wide variety of circumstances.

This is a remarkable situation. The concurrency and Frame Rules in Concur-
rent Separation Logic (CSL) have historically relied on somewhat subtle locality
properties of the semantics of programs [11,4], which say that programs access
resources in a circumscribed fashion. But these laws flow extremely easily in a
CKA, and examples of CKAs have been described which do not have anything
that looks like locality conditions on resource access. Furthermore, in [8] the
validity of Hoare logic laws is referred to, slightly tongue in cheek, as due to a
‘cheat’, of identifying assertions with programs. Our starting point was simply
to understand: what is going on here? Is the easy validity of these laws in CKA a
sleight of hand? Or, do they have the same import as in CSL (but generalized)?

We consider another concrete model, the Resource Model, based on the prim-
itive of resource separation used in CSL. This model is built from predicate
transformers, and is equipped with notions of parallel and sequential composi-
tion. It is directly a model of Concurrent Separation Logic. We show that two
algebraic interpretations of Hoare triples coincide, in the model, with the usual
interpretation of pre/post specs for predicate transformers. This shows that there
is no cheating or sleight of hand: the various logical laws of Hoare and Separation
Logic ‘mean the same thing’ when the algebra is instantiated to this standard
and independently existing model of Separation Logic.

An interesting point is that we find some, but not all, of the structure of
a CKA in the Resource Model. This leads us to propose a notion of ‘locality
bimonoid’, which is derived from algebraic considerations as well as computa-
tional considerations concerning concurrency and resources. The basic structure
is that of a pair of ordered monoids on the same underlying poset, linked by the
exchange law. Locality is expressed using the equation f = f ∗ skip, where skip is
the unit of the sequencing operator ; . We show that this provides a simpler and
much more general alternate characterization of a semantic definition of locality
used in work on Separation Logic. We end up with a situation where there is
an algebra satisfying exchange but not locality, and this equation serves as a
healthiness condition (in the sense of Dijkstra [5] and He/Hoare [7]) used to dis-
tinguish a subalgebra of local elements, which we call the local core. We also find,
in contrast with our initial expectation, that the exchange law does not itself
rely on locality: the non-local algebra admits exchange, and as a consequence it
validates the Concurrency but not the Frame Rule of CSL.
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In addition to the aforementioned works on CKA and CSL, we mention other
prior related work on the exchange law in concurrency. The structure of two
monoids with shared unit and exchange has been called ‘concurrent monoid’
in [8]. This structure was studied earlier by Gischer in the 1980s [6], and then
by Bloom and Ésik [2] in the 1990s. Gischer showed that pomsets or series
parallel posets are models of concurrent monoids, and that series parallel posets
form the free ordered algebras in that variety. Bloom and Ésik showed that
languages with shuffle form models of concurrent monoids. The relation of this
paper to these works is similar to the relation to the CKA work: we introduce
a more general structure, locality bimonoid, which has a concurrent monoid as
the local core, and we connect this structure to a standard model of pre/post
specs, complementing the models in [6,2,8] based on traces.

All calculational proofs in this paper have been formally verified by automated
theorem proving in Isabelle; they can be found online [1].

2 Two Models

Before moving to algebra, we describe two concrete models that we will refer to
throughout the paper.

The Trace Model. Let A be a set. Then Traces is the set of finite sequences over
A. The powerset P (Traces) will be the carrier set of this algebra. We have the
following two binary operations on P (Traces)

1. T1 ∗ T2 is the set of interleavings of traces in T1 with traces in T2;
2. T1 ;T2 is the set of concatenations of traces in T1 with traces in T2.

The set {ε} functions as a unit for both ; and ∗, where ε is the empty sequence.
The exchange law in this model was already stated in [2]. P (Traces) is a proto-
typical CKA and even a quantale [8]. This means, among other things, that it is
a complete lattice in which ∗ and ; distribute through

⊔
, and that both ∗ and ;

have a left and right zero (the empty set, ∅).

The Resource Model. Let (Σ, •, u) be a partial, commutative monoid, given by
a partial binary operation • and unit u where the unity, commutativity and
associativity laws hold. Here equality means that both sides are defined and
equal, or both are undefined. In examples we will often refer to the partial
monoid of heaps, where Σ is the set of finite partial functions from naturals to
naturals, Σ = N ⇀f N , with • being the partial operation of union of functions
with disjoint domains and u being the empty function. The domain of a heap h
is denoted by dom(h).

The powerset P (Σ) has an ordered total commutative monoid structure
(∗, emp) given by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q}
emp = {u}

where σ0#σ1 means that σ0 • σ1 is defined.
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The monotone function space [P (Σ) → P (Σ)] will be the carrier set of the
algebra in the Resource Model. These functions represent (backwards) predicate
transformers and the algebra has the following operators. Using Fi to range over
predicate transformers, and Y , Yi... to range over subsets of Σ, we define

(F1 ∗ F2)Y =
⋃
{F1Y1 ∗ F2Y2 | Y1 ∗ Y2 ⊆ Y }

nothing Y = Y ∩ emp

(F1 ;F2)Y = F1(F2(Y ))

skip Y = Y

Here we are overloading ∗, relying on context to disambiguate: sometimes, as
on the right of the definition of F1 ∗ F2, it refers to an operator on predicates,
and other times, as on the left of the definition, to an operation on predicate
transformers. The definition of the predicate transformer F1 ∗ F2 was suggested
to O’Hearn by Hongseok Yang in 2002, shortly after CSL was introduced (and
before it was published). It is motivated by the concurrency proof rule of CSL.
The idea is that we start with a postcondition Y , split it into separate assertions
Y1 and Y2, and apply the Concurrency Rule backwards to get a precondition
F1Y1 ∗ F2Y2 for the parallel composition of F1 and F2. We union over all such,
to obtain the weakest possible precondition.

We use the reverse pointwise ordering � on [P (Σ) → P (Σ)]: F � G iff
∀X.FX ⊇ GX . According to this definition, the least element is the function
λX.Σ, corresponding to the weakest (liberal) precondition transformer for diver-
gence. We are thinking of preconditions for partial rather than total correctness
here, so we do not insist on Dijkstra’s ‘law of the excluded miracle’ F∅ = ∅.

Note that, in contrast to the Trace Model, the Resource Model has distinct
units: nothing is the unit of ∗ and skip that of ; .

3 Exchange

In this section we introduce the main definitions surrounding the exchange law,
we make the connection to program logic, and we classify our two running ex-
amples in terms of the introduced notions.

3.1 Algebra

Definition 3.1 (Ordered bisemigroup). An ordered bisemigroup (M,�, ∗, ;)
is a partially ordered set (M,�) with two monotone compositions ∗ and ;, such
that (M, ∗) is a commutative semigroup and (M, ;) is a semigroup.

Definition 3.2 (Exchange Laws). Over the signature of an ordered bisemi-
group (M,�, ∗, ;), we consider the following formulas for p, q, r, s ∈M :

(p ∗ r) ;(q ∗ s) � (p; q) ∗ (r; s) (full) exchange
(r ∗ p); q � r ∗ (p; q) small exchange I
p; (q ∗ r) � (p; q) ∗ r small exchange II
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As mentioned in Section 1, it is easy to see that the exchange law holds in
the Trace Model. The situation in the Resource Model is subtler, and it will be
helpful to exemplify the full law and give counterexamples to the small versions.

Example 3.3 (Exchange in Heap Model). We consider a specialization of
the Resource Model, based on heaps. With this model we will use commands

[n] := m = λX. {h[n #→ l] | h ∈ X, l ∈ IN, n ∈ dom(h), h(n) = m}

where h[n #→ l] is function update. The command [n] := m updates the memory
at location n to have the value m.

With this definition, we can give this example of the exchange law.

([10] := 55 ∗ [20] := 66) ;([20] := 77 ∗ [10] := 88) (	= �)
�

([10] := 55 ;[20] := 77) ∗ ([20] := 66 ;[10] := 88) (= �)

The reason that this holds is that, as there is a race on locations 10 and 20,
the lower term is �. The reader might enjoy verifying this in the model. On the
other hand, the upper term is not � since, given a state whose domain contains
both 10 and 20, we can split it for the first parallel composition, and again for
the second: thus, there is a non-empty precondition for the upper program.

Note that this example also shows that the reverse direction of the exchange
law is not valid in the model. �

Example 3.4 (Invalidity of Small Exchange in Heap Model). To obtain
a counterexample to the law p ;(q ∗ r) � (p ; q) ∗ r, we choose p = q = nothing
and r = skip. The left hand side is then nothing ;(nothing ∗ skip) = nothing.

We now observe that in the Resource Model, nothing ; nothing = nothing, so the
right hand side simplifies to skip. And clearly it is not the case that nothing � skip
in the Resource Model.

The same instantiation yields a counterexample to (r ∗ p) ; q � r ∗ (p ; q). �

Proposition 3.5. The Resource Model satisfies the exchange law.

Proof. Let F1, F2, G1 and G2 be (monotone) predicate transformers and X ⊆ Σ.
Since the order on predicate transformers is pointwise reverse inclusion, we aim
to show

((F1 ;F2) ∗ (G1 ;G2))X ⊆ ((F1 ∗G1) ;(F2 ∗G2))X

The left hand side expands to⋃
{F1(F2XF ) ∗G1(G2XG) | XF ∗XG ⊆ X}

Now, for every subsplitting XF ∗ XG of X , we see that F2XF ∗ G2XG is a
subsplitting of (F2 ∗G2)X =

⋃
{F2A ∗G2B | A ∗ B ⊆ X}, simply because it is

one of the elements of the union. So we can overapproximate the left hand side:⋃
{F1(F2XF )∗G1(G2XG) |XF ∗XG ⊆ X}⊆

⋃
{F1A∗G1B | A∗B ⊆ (F2∗G2)X}
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and this overapproximation quickly rewrites to the right hand side:⋃
{F1A∗G1B | A∗B ⊆ (F2∗G2)X}=(F1∗G1)((F2∗G2)X)=(F1∗G1);(F2∗G2)X

��

It is a straightforward extension to consider units.

Definition 3.6 (Ordered bimonoid). An ordered bimonoid is a structure
(M, �, ∗, nothing, ;, skip) such that (M,�, ∗, ;) is an ordered bisemigroup and
(M, ∗, nothing) and (M, ;, skip) are monoids.

A first important consequence is

Lemma 3.7. In an ordered bimonoid with exchange, skip � nothing and
nothing � nothing ; nothing.

It is tempting to require the two units to be identical, but in the Resource Model
they are not. Still, when the units are equal we are in a special situation.

Lemma 3.8. In an ordered bimonoid (M,�, ∗, nothing, ;, skip) with shared unit
(meaning nothing = skip), the full exchange law implies the small exchange laws.

3.2 Program Logic

In our algebra we may interpret pre/post specs in two ways.

Definition 3.9. Let (M,�, ;) be an ordered semigroup and p, c, q ∈M .

1. The Hoare triple {p} c {q} is defined by {p} c {q} ⇔ p; c � q
2. The Plotkin triple p→c q is defined by p→c q ⇔ p + c; q

The Hoare triple can be thought of in terms of the past. In the Trace Model,
it says that if p describes events done before command c is run, then q over-
approximates p followed by c. Conversely, the Plotkin triple can be thought of in
terms of the future: it says that if p describes a possible future, and q describes
the future after c is run, then p over-approximates c followed by q.

In the Resource Model, there is a further interpretation of pre/post specs:

Definition 3.10 (Dijkstra Triple). In the Resource Model, if X is a predicate
(a set of states) and F is a predicate transformer, then the relationship X ⊆ FY
says that X is a valid precondition for F with post Y :

〈〈X〉〉F 〈〈Y 〉〉 ⇔ X ⊆ FY

While this definition can be given for arbitrary predicate transformers, the rule
of consequence for F , that X ⊆ X ′ ∧ 〈〈X ′〉〉F 〈〈Y ′〉〉 ∧ Y ′ ⊆ Y ⇒ 〈〈X〉〉F 〈〈Y 〉〉,
holds iff F is monotone.

While the interpretations in Definition 3.9 make sense on their own, it is
useful to try to connect them to the ordinary understanding of specs in state-
based (rather than history-based) models; we will do that in Section 5.

We now leave the concrete model and the Dijkstra triples, and describe the
program logic that results from Definition 3.9.
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Lemma 3.11 (Hoare Logic). In an ordered semigroup the following rules hold:
Rule of Consequence:

∀p, c, q, p′, q′. {p′} c {q′} ∧ p � p′ ∧ q′ � q ⇒ {p} c {q}
Sequencing Rule:

∀p, c, r, c′, q. {p} c {r} ∧ {r} c′ {q} ⇒ {p} c; c′ {q}
If the ordered semigroup is an ordered monoid, then the following holds:

Skip Rule: ∀p. {p} skip{p}
Furthermore, this lemma also holds with Plotkin in place of Hoare triples, except
that the ordering is reversed in the Rule of Consequence.

In a bisemigroup we can obtain proof rules from Separation Logic.

Theorem 3.12 (Separation Logic). In an ordered bisemigroup,
1. The exchange law holds iff we have the

Concurrency Rule:
∀p, c, q, p′, c′, q′. {p} c {q} ∧ {p′} c′ {q′} ⇒ {p ∗ p′} c ∗ c′ {q ∗ q′}

Furthermore, the same holds true with Plotkin in place of Hoare triples.
2. The first small exchange law holds iff we have

Frame Rule (for Hoare triples):
∀p, c, q, r. {p} c {q} ⇒ {p ∗ r} c {q ∗ r}

3. The second small exchange law holds iff we have
Frame Rule (for Plotkin triples):

∀p, c, q, r. p→c q ⇒ p ∗ r →c q ∗ r
This abstract treatment does not cover all of the rules of Hoare or Separation
Logic, notably the conjunction rule and rules for variable renaming and quanti-
fiers, as there is not enough structure to state them.

It is worth remarking that we also have temporal frame rules.
Futuristic Frame Rule (for Plotkin Triples):

∀p, c, q, r. p→c q ⇒ p; r→c q; r

Archaic Frame Rule (for Hoare Triples):
∀p, c, q, r. {p} c {q} ⇒ {r; p} c {r; q}

We summarize the situation with our two example models as follows.

Proposition 3.13 (Classification).

1. The Trace Model (P (Traces),�, ∗, {ε}, ;, {ε}) is an ordered bimonoid with
shared unit satisfying the exchange law. Consequently, it satisfies all of the
Hoare and Separation Logic rules mentioned in this section.

2. The Resource Model ([P (Σ) → P (Σ)],�, ∗, nothing, ;, skip) is an ordered bi-
monoid with distinct units, satisfying the full but not small exchange laws.
Consequently, it satisfies the rules of Hoare Logic and the Concurrency Rule
of Separation Logic, but not the Frame Rule (for Hoare or Plotkin triples).
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The Trace Model is an example of a CKA, defined in [8]. The Resource Model,
however, is not. Having two different units causes a difference. Additionally, the
model does not have a right zero for ;, an element 0 where p; 0 = 0 for all p
(while all constant transformers are left zeros). The Trace Model does have a
right zero, the empty set.

The properties of the Resource Model seem a bit odd at first sight. We have
a situation where the Concurrency Rule (which expresses a form of modular
reasoning) is present while the Frame Rule (which expresses locality) is absent.
We now probe this issue further.

4 Locality

In this section we develop the concept of locality, culminating in an analysis of
what we call a ‘locality bimonoid’ (an ordered bimonoid with exchange where
skip is idempotent for ∗, Definition 4.7). In a locality bimonoid we have the Frame
Rules exactly for the local elements, and we also have that the local elements
form a locality sub-bimonoid where the inclusion is a Galois insertion. Some of
the results in this section do not require all of the data of a locality bimonoid,
so we build up to the definition as we go along.

4.1 Local Elements

In the Resource Model, a transformer F is called local if it can be described in
terms of its action on parts of the state. This can be expressed as follows:

FP =
⋃
{(FX) ∗R | X ∗R = P} (1)

We have already seen a non-local transformer, nothing = λY. Y ∩ emp, and
it will be helpful to see why this contradicts the frame rule. Note that emp ⊆
nothing emp, but that (in the heap model) {1 #→ 2} 	⊆ nothing{1 #→ 2} where
1 #→ 2 is a singleton heap. Thus, as {1 #→ 2} ∗ emp = {1 #→ 2}, we have
(emp ∗ {1 #→ 2}) 	⊆ nothing(emp ∗ {1 #→ 2}). So the usual semantics of pre/post
specs for predicate transformers does not validate the frame rule for nothing.

The shape of the right-hand side of equation (1) suggests a connection between
the transformers F and F ∗ skip. First, choosing X = P and R = emp we get,
for arbitrary F ,

FP ⊆
⋃
{(FX) ∗R | X ∗R = P} ⊆

⋃
{(FX) ∗R | X ∗R ⊆ P} = (F ∗ skip)P

i.e., F ∗ skip � F . We will see that this is a consequence of the exchange law.
So the nontrivial part of (1) is

⋃
{(FX) ∗ R | X ∗ R = P} ⊆ FP . Setting

P = X ∗R for arbitrary X,R, this implies FX ∗R ⊆ F (X ∗R) and hence

(F ∗ skip)P =
⋃
{(FX) ∗R | X ∗R ⊆ P} ⊆

⋃
{F (X ∗R) | X ∗R ⊆ P} = FP

since F is monotone. This means F � F ∗ skip. Conversely, if F � F ∗ skip then

FP ⊇
⋃
{(FX) ∗R | X ∗R ⊆ P} ⊇

⋃
{(FX) ∗R | X ∗R = P}

These results can be summarised by
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Lemma 4.1. A predicate transformer F satisfies (1) iff F = F ∗ skip.

We now consider locality on the algebraic level. First, Lemma 3.7 implies that
in an ordered bimonoid with exchange, all elements satisfy p ∗ skip � p, so in
this setting the definition below simply states the other direction.

Definition 4.2. An element p in an ordered bisemigroup is local if p ∗ skip = p.

Example 4.3 (Local skip). In the Resource Model, skip is local. �

The idea of locality is to admit local reasoning, and indeed that can be verified
on the level of algebra:

Lemma 4.4. In an ordered bimonoid with exchange, the Frame rules for Plotkin
and Hoare triples hold when the ‘command’ c is local. That is, for c = c ∗ skip

∀p, q, r. {p} c {q} ⇒ {p ∗ r} c {q ∗ r}
∀p, q, r. p→c q ⇒ p ∗ r →c q ∗ r

The local elements form a subalgebra:
Lemma 4.5. In an ordered bimonoid, the local elements are closed under ∗ .
Lemma 4.6. In an ordered bimonoid with exchange, the local elements are closed
under ; .

The units nothing and skip may not be local, though [1], so one cannot im-
mediately form a sub-bimonoid. We now consider the special case of an ordered
bimonoid where skip is local. This enables us to localize elements and thus recover
a sub-bimonoid.

Definition 4.7 (Locality Bimonoid). A locality bimonoid is an ordered bi-
monoid with exchange where skip is local, i.e., skip ∗ skip = skip.

Both our running examples, the Trace Model and the Resource Model, are ex-
amples of locality bimonoids. Proposition 3.13 and Example 4.3 states this.

Lemma 4.8. Let G be a locality bimonoid and p ∈ G. Then p ∗ skip is local.

Another way to say this is that the localizer (−)∗ skip is idempotent. This allows
us to define a sub-bimonoid:

Definition 4.9 (Local Core). Let G = (M,�, ∗, nothing, ;, skip) be a locality
bimonoid. Then we define the local core Gloc of G by

Gloc = (Mloc,�, ∗, skip, ;, skip)

where Mloc = {p ∈M | p = p ∗ skip}, and ∗ and ; are restricted appropriately.

Since the localizer is idempotent, selecting the local elements is the same as
selecting the image of the localizer.

Lemma 4.10. If G is a locality bimonoid, then so is Gloc.

Thus, the notion of Local Core is well defined, but we can say more. It is an
instance of the special situation of when all elements are local, which gives us a
structure called a concurrent monoid in [8] (see Definition 4.12 below).
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Lemma 4.11. In a bimonoid, the following are equivalent

(i) nothing is local
(ii) All elements are local

(iii) skip is a unit of ∗
(iv) nothing = skip

Definition 4.12 (Concurrent Monoid, [8]). A concurrent monoid is an or-
dered bimonoid with exchange where nothing = skip.

Since all elements of a concurrent monoid are local, skip is as well, and we
immediately have that a concurrent monoid is a locality bimonoid.

Proposition 3.13 and Example 4.3 states that the Trace Model is a concur-
rent monoid, while the Resource Model is a locality bimonoid which is not a
concurrent monoid.

From Lemma 3.8 we can infer that the full and small exchange laws are valid
in a concurrent monoid.

Corollary 4.13 (to Lemma 4.11). Let G be a locality bimonoid. Then Gloc

is a concurrent monoid.

There is a simple connection between G and Gloc, given by the localizing map
(−) ∗ skip. We can even phrase it without needing skip to be local:

Lemma 4.14. In an ordered bimonoid with exchange, p ∗ skip is the greatest
local element smaller than p.

When we have a locality bimonoid, the same reasoning gives us a Galois con-
nection between the bimonoid and its core.

Lemma 4.15. Let G be a locality bimonoid. There is a Galois connection be-
tween G and Gloc, where localization (−)∗ skip : G→ Gloc is right adjoint to the
inclusion from Gloc into G.

The final result explains the name locality bimonoid. It states that locality co-
incides with local reasoning in the form of the Frame rule.

Theorem 4.16. In a locality bimonoid, the Frame rules for Plotkin and Hoare
triples hold exactly when the ‘command’ c is local. That is, c = c ∗ skip iff

∀p, q, r. {p} c {q} ⇒ {p ∗ r} c {q ∗ r}
iff ∀p, q, r. p→c q ⇒ p ∗ r →c q ∗ r

In terms of algebraic models of concurrency, this suggests to us that local ele-
ments should be considered ‘programs’, while in general a bimonoid might con-
tain non-program-like elements, such as those that play the role of assertions.
This is a crucial difference between locality bimonoids and Concurrent Kleene
Algebras. There seems to be no compelling reason for requiring locality of (the
denotations of) assertions, and a locality bimonoid does not require them to be.
But, we will see in Section 5 that neither does requiring locality of all elements
lose us anything in characterizing pre/post specs in our state-based model.
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4.2 Lubs and Fixed-points

The notion of locality bimonoid is not, on its own, rich enough to interpret pro-
grams. There are many further constructs one could consider beyond sequencing
and parallelism, but perhaps the most important is recursion or iteration; with-
out it, we don’t even have Turing-completeness. This subsection does some basic
sanity checking in this direction, and can be skipped or skimmed on a first read-
ing, without loss of continuity: it shows that our motivating Resource Model
admits a standard treatment of recursion.

Theorem 4.17. If the order of a locality bimonoid is a complete lattice, then

1. The local core is a complete lattice as well.
2. Any expression e built from local elements using ∗, ; and

⊔
denotes a local

element.
3. Any expression e(X) built from local elements using ∗, ; and

⊔
and one

unknown X denotes a monotone function on the local core; it thus has a
least (local) fixed-point μX. e(X) which is again in the local core.

Part 1 of this theorem is immediate from the Tarski-Knaster fixed-point theorem
because the local elements are the fixed-points of the monotonic function (−) ∗
skip. Parts 2 and 3 are consequences of 1.

This gives us enough information to interpret a programming language with
sequencing, parallelism, nondeterminism and recursion. The form of recursion
is sufficient to encode iterators for both sequential and parallel composition, as
μX.F ;X and μX.F ∗X . We will connect this to program logic in Section 5.

Finally, although we have noted that the lub of local transformers is local,
curiously, we do not have that (−) ∗ skip distributes through

⊔
.

Example 4.18 (Localization does not preserve binary
⊔

). We first de-
fine a number of heaps:

h = {1 #→ 1, 2 #→ 2, 3 #→ 3}
h12 = {1 #→ 1, 2 #→ 2} h23 = {2 #→ 2, 3 #→ 3}

h1 = {1 #→ 1} h2 = {2 #→ 2} h3 = {3 #→ 3}

This allows us to define the following (constant) transformers:

F = λP. {h1} G = λP. {h3}

And now we obtain a counterexample to distribution through lubs as

((F �G) ∗ skip){h12, h23} 	= ((F ∗ skip) � (G ∗ skip)){h12, h23}

For the left hand side, we observe that F �G = λP. {h1} ∩ {h3} = λP. ∅ and so
(F �G) ∗ skip = λP. ∅.

For the right hand side, we observe that {h} = {h1}∗{h23} = (F emp)∗{h23}
and that emp ∗ {h23} ⊆ {h12, h23}, so {h} ⊆ (F ∗ skip){h12, h23}. Similarly,
{h} = {h3} ∗ {h12} = (G emp) ∗ {h12} and emp ∗ {h12} ⊆ {h12, h23} so {h} ⊆
(G ∗ skip){h12, h23}. Thus the right hand side is not empty. �
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Being a right adjoint, however, (−) ∗ skip does distribute through
�

.
As a consequence of this result, we do not have that our locality bimonoid of

predicate transformers is a quantale: a quantale requires that p∗ (·) preserves all
lubs, for arbitrary p.

There are two ways to interpret this fact. The first reaction is that we expect
distribution to hold; that the Resource Model is somehow defective. It is worth
remarking that the Trace Model does satisfy distribution of p ∗ (·) through lubs.
The second reaction is that there is nothing in program logic (say, CSL) which
forces this law of distribution of p ∗ (·) through lubs, and thus we needn’t insist
upon it. We add that neither does sequencing (;) in the Resource Model preserve
all lubs (in its second argument). Sequential composition of predicate transform-
ers is so basic that it is hard to argue that one should demand full distribution
laws (useful though they are when present), as that would rule out a host of
natural models.

5 On Assertions, Triples and Programs

At the beginning of the paper we asked whether program logic rules ‘meant the
same thing’ in the algebra models as in familiar state-based models of pre/post
specs. This section answers that question in the affirmative, and also provides
further perspective on whether we should insist that assertions satisfy locality.

5.1 Connections in the Resource Model

We first show how to connect the Dijkstra triple to the Hoare and Plotkin triples
in the Resource Model. We remind the reader of the definitions:

Hoare triple {p} c {q} ⇔ p; c � q

Plotkin triple p→c q ⇔ p + c; q

Dijkstra triple 〈〈X〉〉F 〈〈Y 〉〉 ⇔ X ⊆ FY

Comparing these requires that we can turn the predicates X and Y in the
relationship X ⊆ FY defining the Dijkstra triple into predicate transformers,
as the pre and post of Hoare and Plotkin triples are the same kinds of entities
as the programs. We achieve this via bpt [X,Y ], the ‘best predicate transformer’
corresponding to precondition X and postcondition Y :

bpt [X,Y ] = λP. if Y ⊆ P then X else ∅.
It is easily seen that bpt [X,Y ] is the largest monotone transformer F such that
〈〈X〉〉F 〈〈Y 〉〉. Using this definition, for a given X we can define before[X ] as

before[X ] = bpt [true,X ]
where true is the predicate Σ. We think of before[X ] as covering a ‘past’ in
which X eventually becomes true, and this lets us characterize Dijkstra triples
in terms of Hoare triples: It is not difficult to see that, in the Resource Model,

{before[X ]}F {before[Y ]} iff 〈〈X〉〉F 〈〈Y 〉〉
In this sense, the algebraic Hoare triple subsumes the traditional state-based
one. In fact, before[] is not the only choice; the next result summarizes a few:
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Proposition 5.1. In the Resource Model

〈〈X〉〉F 〈〈Y 〉〉 ⇔ {bpt [emp,X ]}F {bpt [emp, Y ]}
⇔ {bpt [true,X ]}F {bpt [true, Y ]}
⇔ bpt [X, emp] →F bpt [Y, emp]
⇔ bpt [X, true] →F bpt [Y, true]

Here, bpt [Y, emp] and bpt [Y, true], characterizing the Plotkin triple, talk about
the future rather than the past. For instance, we can think of bpt [Y, emp], the
largest transformer satisfying 〈〈Y 〉〉 − 〈〈emp〉〉, as an operation that cleans up
memory, returning it to the operating system, after checking that Y holds.

It would be ideal if these characterizations were obtained using embeddings
of the monoid (P (Σ), ∗, emp) of predicates into the locality bimonoid, and this
is possible to achieve by choosing embeddings carefully. We observe that

bpt [X,Y ] ∗ bpt [X ′, Y ′] = bpt [X ∗X ′, Y ∗ Y ′]

So fixing one variable to an idempotent (such as emp or true) yields that the em-
bedding of predicates into predicate transformers preserves ∗. If the idempotent
is chosen to be emp, then the characterization of emp is bpt [emp, emp] = nothing,
and so in this case, the characterization preserves the unit as well.

Conceptually, there is no reason to demand that assertions are local in the
same way that programs arguably should be. But as it turns out, in the Resource
Model, the question of whether one faithfully recovers program logic in the al-
gebra is independent of the question of whether all the elements are required to
be local, i.e. one only considers local transformers.

The best predicate transformers are not necessarily local. An example is that
bpt [emp, emp] = nothing. However, we can use localization to define the best
local transformer blt [X,Y ] = bpt [X,Y ] ∗ skip which also happens to characterize
triples in the sense that for F local

〈〈X〉〉F 〈〈Y 〉〉 ⇔ {blt [emp,X ]}F {blt [emp, Y ]}
⇔ blt [X, emp] →F blt [Y, emp]

5.2 Recursion Rule

We now give a sufficient condition for modelling the Recursion Rule in locality
bimonoids. The best transformer blt [X,Y ] is an example of a greatest satisfier
for a predicate, in this case the predicate 〈〈X〉〉 − 〈〈Y 〉〉. This idea is used in our
sufficient condition:

Proposition 5.2 (Recursion Rule). If the order of a locality bimonoid G is
a complete lattice, and if greatest local satisfiers for triples exist, then we have
the usual Hoare logic proof rule for recursive (parameterless) procedures.

Recursion Rule: For all F,H ∈ [Gloc → Gloc]
{a} x {b} ⇒ {a}F x {b}

∧ {a} x {b} ⇒ {p}H x {q}
=⇒ {p}H(μF ) {q}
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where [A → B] denotes the monotone function space and μF is the least fixed
point of F .

The Hoare triples can be replaced with any downwards closed predicate for
which greatest local satisfiers exist (say, Plotkin or Dijkstra triples).

Proof. Since F is monotone it has a least (local) fixed point μF , given by
μF =

	
{x | Fx � x}

Here x ranges over local elements and so μF is the greatest local lower bound
of local prefixed points, besides being a fixed point.

We will argue that {a}μF {b}. Let s be the greatest local satisfier of {a}− {b}.
Since s is a local satisfier, we know by assumption that F (s) is a local satisfier.
Since s is the greatest local satisfier, we know that F (s) � s. Thus, s is a
local prefixed point. This means that μF � s, as μF is a lower bound of local
prefixed points. We now use that satisfaction is downwards closed to conclude
that {a}μF {b}. (This is easily seen as a ;μF � a ; s � b.)

Thus, by assumption, H(μF ) is a local satisfier of {p} − {q}. ��
The statement in this lemma is another way of describing the usual Hoare proof
rule for recursive parameterless procedures

{A}X {B} / {A}F {B} {A}X {B} / {P}H {Q}
/ {P} letrec X = F in G {Q}

where, by the previous results, this rule applies when commands are built using
sequencing, composition, nondeterministic choice, and procedure declarations.

In the Resource Model we have greatest local satisfiers for Dijkstra triples,
given by blt [X,Y ], and satisfaction for Dijkstra triples is downwards closed, so
this provides a model for CSL with recursion.

Hoare triples, however, are a bit more general. To obtain greatest local satis-
fiers for the Hoare triple {p} − {q}, we look to⊔

{c | p ; c � q}
But this is not guaranteed to be a satisfier, because ; does not distribute through⊔

in its second argument.
As it turns out, ; does distribute through

⊔
in its first argument, and so

the Resource Model models recursion for Plotkin triples. Seeing as the Resource
Model is built on backwards predicate transformers, it is perhaps natural to
expect the Plotkin triples to be more well-behaved than the Hoare triples. We
shall just note here that with of definition of ; suitable for forward predicate
transformers, it would distribute through

⊔
in its second argument.

The Trace Model, being a quantale, models the Recursion Rule for both Hoare
and Plotkin triples.

6 Conclusion

In this paper we have described links between a standard model of Concurrent
Separation Logic, the Resource model, and algebraic models inspired by the re-
cent Concurrent Kleene Algebra. By looking at such a concrete, and previously-
existing, model we hope to have shown that the notion of locality in the algebra
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generalizes the understanding obtained from the concrete resource-based seman-
tics of Separation Logic.

The algebraic structure used in this paper admits both state-based and history-
based models (the Resource and Traces models), and this exemplifies the unify-
ing nature of the algebra, which allows principles to be stated independently of
the syntax in specific models. Precursor works even used ‘true concurrency’ in
addition to interleaving models, giving further evidence of the generality [6,8].
In fact, we ended up with a weaker structure than CKA, and perhaps this pa-
per will also have some input into further developments of algebraic models for
concurrency. The most pressing issues going forward include axiomatization of
further primitives (e.g., distinguishing internal and external choice), exploring
a wider range of concrete models, and determining the practical significance of
the generalized program logic in any of the concrete models.
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2. Bloom, S.L., Ésik, Z.: Free shuffle algebras in language varieties. TCS 163(182),
55–98 (1996)

3. Brookes, S.D.: A semantics of concurrent separation logic. TCS 375(1-3), 227–270
(2007); Prelim. version appeared in CONCUR 2004

4. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS, pp. 366–378. IEEE Computer Society, Los Alamitos (2007)

5. Dijkstra, E.W.: A discipline of programming. Prentice-Hall series in automatic
computation. Prentice-Hall, Englewood Cliffs (1976)

6. Gischer, J.L.: The equational theory of pomsets. TCS 61, 199–224 (1988)
7. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall series

in computer science. Prentice-Hall, Englewood Cliffs (1998)
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Typed ψ-calculi

Hans Hüttel�

Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, Denmark

Abstract. A large variety of process calculi extend the π-calculus with more
general notions of messages. Bengtson et al. have shown that many of these π-
like calculi can be expressed as so-called ψ-calculi. In this paper, we describe a
simple type system for ψ-calculi. The type system satisfies a subject reduction
property and a general notion of channel safety. A number of existing systems
are shown to be instances of our system, and other, new type systems can also be
obtained. We first present a new type system for the calculus of explicit fusions
by Wischik and Gardner, then one for the distributed π-calculus of Hennessy and
Riely and finally show how existing type systems for secrecy and authenticity in
the spi calculus can be represented and shown to be safe.

1 Introduction

Process calculi are formalisms that allow us to describe and reason about parallel and
distributed computations. A prominent example is the π-calculus due to Milner et al.
[17,23], and one of the techniques for reasoning about properties of processes is that of
type systems. The first type system, due to Milner [17], dealt with the notion of correct
usage of channels, ensuring that only names of the correct type could be communicated.

Since then, a plethora of type systems have been introduced. Pierce and Sangiorgi
[19] described a type system that uses subtyping and capability tags to control the use of
names as input or output channels. There are also several type systems for variants of the
π-calculus. In the spi-calculus [3], type systems have been used to capture properties of
cryptographic protocols such as secrecy [1,2] and authenticity [11,9]. The distributed π-
calculus, Dπ, by Hennessy and Riely [20] can describe located computations in which
subprocesses can migrate between locations, and in this setting type systems have been
proposed [20,21] for controlling migration.

The type systems mentioned above are seemingly unrelated and arise in different
settings but share certain characteristics. They only classify processes as either well-
typed or not, so type judgments for processes P are of the form E / P , where E is
a type environment that records the types of the free names in P . On the other hand,
terms M are given a type T , so that type judgments are of the form E /M : T .

Bengtson et al. introduced ψ-calculi [4] as a generalization of the many variants of
the π-calculus in which structured message terms appear. A main innovation is the use
of a small set of process constructs that generalize those of the π-calculus, and the use
of general notions of terms, assertions and conditions. Each of these syntactic categories
is then assumed to form a nominal set in the sense of Gabbay and Mathijssen [10]. It
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has been shown [4] that both existing calculi such as the π-calculus and the spi-calculus
and new variants can be captured as ψ-calculi.

The goal of the present paper is to describe a general framework for type systems for
variants of the π-calculus within the above tradition by means of a type system for ψ-
calculi. Our type system generalizes the so-called simply typed π-calculus introduced
by Sangiorgi and Walker [23]. Within it, we can capture several existing, seemingly
quite different type systems, including those mentioned above, and formulate new ones.
An important advantage is that we can formulate general soundness results that allow
us to conclude the soundness of several such type systems.

There has been other work aimed at giving a general account of type systems for
process calculi. Most work has focused on general type systems for the π-calculus, and
in much of it processes have types that come equipped with a notion of behaviour. Early
work includes that of Honda [12] who introduces so-called typed algebras which can
be provided with a notion of reduction semantics. Later, [13], Igarashi and Kobayashi
described a general type system for a subset of the polyadic π-calculus. This type sys-
tem can be instantiated to describe e.g. deadlock freedom and race freedom. The type
of a π-process is a term in a process calculus reminiscent of CCS.

Bigraphs [18] provide another general setting for process calculi. Here, Elsborg et al.
have proposed a type system[8]; however, there are as yet few actual results that show
how this type system can be instantiated.

In [16], Makholm and Wells describe a general process calculus Meta* and a gen-
eral type system Poly*. Meta* can be instantiated by a concrete set of reduction rules,
and the resulting type system will satisfy a subject reduction property. Here, there are
also significant differences from our approach. Firstly, the main focus of [16] is that
of understanding variants of the calculus of Mobile Ambients [6], not variants of the
π-calculus. Secondly, in the type system Poly* the typable entities are processes, not
names. Finally, the type system of [16] is not instantiated to any existing type system,
and it is not clear how this is to be done, given the importance of typed names in many
existing type systems for variants of the π-calculus. In the present paper we develop a
framework for π-calculus variants in which this can be achieved.

The rest of our paper is structured as follows. Section 2 gives a short introduction
to ψ-calculi. In Section 3, we describe our type system for ψ-calculi. In Section 4 we
establish important properties of the type system. In particular, we prove a subject re-
duction property and introduce a general notion of safety. Finally, in Section 5 we show
how a number of existing type systems can be seen as instances of our type system.

2 ψ-calculi

The intention of ψ-calculi [4] is to generalize the common characteristics of variants of
the π-calculus that allow for transmission of message terms that may be structured, i.e.
that need not be names.

2.1 Syntax

A ψ-calculus has a set of processes, ranged over by P,Q, . . .. Processes contain oc-
currences of terms, ranged over by M,N . . . and both processes and terms can contain
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names. We assume a countably infinite set of names N . The set of names that appear
in patterns (defined below) is called the set of variable names NV and is ranged over
by x, y . . .. The set of other names,N \NV is ranged over by a, b, . . . ,m, n . . .. We let
u, v . . . range overN .

The formation rules for processes are the following.

P ::= M(λx)N.P input

MN.P output

P1 | P2 parallel composition

(νn : T )P restriction of name n

!P replication

case ϕ1 : P1, . . . , ϕk : Pk conditional

(|Ψ |) assertion process

The process constructs are similar to those of the π-calculus; however, the object M of
an input or output prefix can be an arbitrary term and in the input construct M(λx)N.P
the subject (λx)N is a pattern whose variable names x can occur free in N and P . Any
term received on channel M must match this pattern; a term N1 matches the pattern
(λx)N if N1 can be found by instantiating the variable names x in N with terms.
Finally note that assertions (see below) can also be used as processes.

As we consider typed ψ-calculi, we assume that a name n in a restriction (νn : T )P
is annotated with a type T ; types are introduced in Section 3.1.

To understand the properties of names, an important notion is that of a nominal set.
Informally speaking, this is a set whose members can be affected by names being bound
or swapped. If x is an element of a nominal set and a ∈ N , we write a#x, to denote
that a is fresh for x; the notion extends to sets of names in the expected way.

Another difference from [4] is that the sets of types, assertions and terms are each
assumed to be generated by a signature of constructors. A nominal data type [4] is a
nominal set with internal structure. Let Σ be a signature. Then a nominal data type
over Σ is a Σ-algebra, whose carrier set is a nominal set (for the precise definition,
see [10]). In the nominal data types of ψ-calculi we use simultaneous term substitution
X [z := Y ] – terms in Y replace the names in z in X .

Further, nominal data types are assumed to be distributive: for every function sym-
bol f and term substitution σ acting on variable names, we have f(M1, . . . ,Mk)σ =
f(M1σ, . . . ,Mkσ). In other words, term substitution distributes over function symbols.
This requirement of distributivity, which is also not required in [4], will ensure that a
standard substitution lemma for type judgments will hold if the substitution is well-
typed, i.e. if σ(x) and x have the same type for any variable name x ∈ dom(σ).

The set of types T is a nominal datatype, since names can appear in types. We let T
range over T and let fn(T ) denote the set of free names in type T .

Terms, assertions and conditions belong to the following nominal data types.

T terms M,N

C conditions ϕ

A assertions Ψ
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Given valid choices of T, C and A, the following operations on data types are always
assumed:

⊗ : A×A→ A composition of assertions

↔̇ : T×T→ C channel equivalence

1 ∈ A unit assertion

|=⊆ A×C entailment

The notion of channel equivalence tells us which terms represent the same communica-
tion channel; ↔̇ thus appears in the rules describing communication and prefixes. The
entailment relation |= describes when conditions are true, given an assertion set, and is
needed to describe the behaviour of conditionals and to decide channel equivalence.

For any process P , we let n(P ) denote the support of P , i.e. the names of P , and let
fn(P ) denote the set of free names in P . This notion is also defined for terms.

2.2 Labelled Semantics

In ψ-calculi, the assertion information of a process P can be extracted as its frame
F(P ) = 〈EP , ΨP 〉, where ΨP is the composition of assertions in P and EP records
the types of the names local to ΨP . We call these qualified frames, since (unlike [4])
names are now annotated with types. Composition of frames is defined by 〈E1, Ψ1〉 ⊗
〈E2, Ψ2〉 = 〈E1E2, Ψ1 ⊗ Ψ2〉 whenever we have dom(E1)#dom(E2), dom(E1)#Ψ2,
and dom(E2)#Ψ1. Moreover, we write (νb : T )F to mean 〈b : T,EF , ΨF 〉.
Definition 1 (Frame of a process).

F(P | Q) = F(P )⊗F(Q) F((νb : T )P ) = (νb : T )F(P )
F((|Ψ |)) = 〈ε, Ψ〉 F(P ) = 1 otherwise

Labelled transitions are of the form Ψ � P
α−−→ P ′ where the label α is defined by the

formation rules
α ::= τ |MN |MN | (νb : T )MN

We let bn((νb : T )MN) = b and bn(α) = ∅ otherwise.
The transitions are given by the rules in Table 1. We omit the symmetric versions

of (COM) and (PAR). In (COM) we assume that F(P ) = 〈EP , ΨP 〉 and F(Q) =
〈EQ, ΨQ〉, where dom(EP ) is fresh for all of Ψ , ΨQ, Q, M , and P – and that the sym-
metric freshness condition holds for EQ. In (PAR) we assume that F(Q) = 〈EQ, ΨQ〉,
where dom(EQ) is fresh for Ψ , P and α. In (CASE), if more than one condition holds,
the choice between them is nondeterministic.

Our semantics differs from that of [4], since types may contain names and appear
in restrictions, so the order of restrictions now matters. In the rule (OPEN) we write
νa ∪ {b : T } to denote the typed sequence a extended with b : T and extend the side
condition of [4] to deal with the case where an extruded name appears in the type. To
see why this is necessary, assume a type Ch(b) of channels that can carry the name b
and consider the process (νb : T1)(νc : Ch(b))ac.. Here, both b and c must be extruded
to make use of c as a channel, even though b does not appear as a name in ac.
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Table 1. Labelled transition rules (for name freshness conditions, see Section 2.2)

(IN)
Ψ |= M↔̇K

Ψ �M(λx)N.P
KN [x:=L]−−−−−−−−−→ P [x := L]

(OUT)
Ψ |= M↔̇K

Ψ �MN.P
KN−−−−→ P

(COM)

ΨQ ⊗ Ψ � P
M(νa:T )N−−−−−−−−−→ P ′

ΨP ⊗ Ψ �Q
KN−−−−→ Q′

Ψ ⊗ ΨP ⊗ ΨQ � M↔̇K

Ψ � P | Q τ−−→ (νa : T )(P ′ | Q′)
a#Q

(CASE) Ψ � Pi
α−−→ P ′ Ψ |= ϕi

Ψ � case ϕ̃ : P̃
α−−→ P ′

(PAR) ΨQ ⊗ Ψ � P
α−−→ P ′

Ψ � P | Q α−−→ P ′ | Q
bn(α)#Q (SCOPE) Ψ � P

α−−→ P ′ b#α, Ψ

Ψ � (νb : T )P
α−−→ (νb : T )P ′

(OPEN) Ψ � P
M(νa:T )N−−−−−−−−−→ P ′

Ψ � (νb : T1)P
M(νa:T∪{b:T1})N−−−−−−−−−−−−−−−→ P ′

(REP)
Ψ � P |!P α−−→ P ′

Ψ�!P
α−−→ P ′

b#a, Ψ,M and b ∈ n(N) ∪ n(T ) ∪ n(T1)

3 A Simple Type System for ψ

Our type system extends that of the simply typed π-calculus of [23] in two ways. Firstly,
we assign types to messages, and secondly, typability may depend on assertions.

3.1 Types and Type Environments

In type systems for process calculi with names, a type environment records the types
of free names. Since typability in our setting can also depend on assertions, a type
environment E can also contain assertions. We define the set of type environments by

E ::= E, x : T | E,Ψ | ∅

A type environmentE is well-formed, written E / 4, if it is a finite partial function from
names to types such that if E = E1, Ψ, E2 and x is a name in Ψ , then x ∈ dom(E1).
We refer to the type annotations of E as E(E) and to the composed assertion

⊗
Ψ∈E Ψ

as Ψ(E).

Definition 2. We write E1 <T E2 if E1 / 4, E2 / 4, E1 = E10, E11, E12, . . . , E1(k+1)

and E2 = E10, u1 : T1, E11, . . . , uk : Tk, E1k, E1(k+1) for some u1 : T1, . . . , uk : Tk.

Thus, E <T E′ if E′ extends E with additional type annotations.

Definition 3. Let E and E′ be type environments. We write E <0
A E′ if E′ = E,Ψ for

some assertion Ψ . We let <A denote the transitive closure of <0
A and let < denote the

least preorder containing <T ∪ <A.
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3.2 Type Judgements and Type Rules

A type system for a ψ-calculus must have type judgements for each of the three nominal
datatypes: E /M : T , E / ϕ and E / Ψ . Let J range over judgements, i.e.

J ::= M : T | ϕ | Ψ

We consider only qualified judgementsJE of the form E / J where fn(J ) ⊆ dom(E).

Definition 4. Let JE = E / J and J ′E = E′ / J ′ be qualified judgements. We write
JE < J ′E if J = J ′ and E < E′.

General Assumptions. We make a series of general assumptions concerning our type
rules that are sufficient for establishing usual properties – in particular, the weakening
and strengthening properties – of any concrete instance of our type system.

A natural assumption is that bindings in the type environment can be used:

(VAR) E / x : T if E(x) = T

Type rules have zero or more premises and a conclusion that are qualified judgements
and may also include a side condition; a side condition is a predicate that is not a
qualified type judgement but can depend on judgements in the rule. A side condition
is dependent on the qualified judgements JE of the rule it occurs in and is therefore
denoted χ(JE). We require the following to hold for all rules for terms and assertions.

– Every side condition χ must be monotone wrt. environment extensions. Let JE be
an arbitrary instance of a rule. Suppose that whenever χ(JE) holds and JE < J ′

E

for another rule instance J ′
E then also χ(J ′

E). Then χ is monotone.
– Every side condition χ must be topical; removing unnecessary type annotations

will not affect the validity of a side condition. Let JE be an arbitrary instance of
a rule, and suppose that whenever JE <T J ′

E for some other instance J ′
E and

χ(J ′
E) holds, then also χ(JE). Then χ is topical.

– Assertion typability must respect composition of environment assertions. If E / Ψ ,
then E(E),Ψ(E) /E Ψ .

Finally, we require compositionality.

– For composite assertions, we require that there is a compositional rule

E / Ψ1 E / Ψ2

E / Ψ1 ⊗ Ψ2

– If a type rule types a composite condition g(ϕ1, . . . , ϕk), it must be of the form

E / ϕi 1 ≤ i ≤ k χ

E / g(ϕ1, . . . , ϕk)

– If a type rule types a composite term f(M1, . . . ,Mk), it must be of the form

E /Mi : Ti 1 ≤ i ≤ k χ

E / f(M1, . . . ,Mk) : T
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We do not impose any constraints on how the result type arises from the types of im-
mediate constituents, but we require channels to have the same type in environment E,
if they are equivalent for an assertion that is well-typed wrt. E.

If E /M : T ,E / Ψ and Ψ |= M↔̇N then E / N : T (1)

To deal with pattern matching in inputs, we introduce the following type rule for mes-
sage patterns:

(PATTERN)
E,x : T /M : U

E / (λx)M : T → U

If an input abstraction has type T → U , it will receive any term of type U if this
term contains pattern variables of types corresponding to T .

Type Rules. The type rules are found in Table 2. In the rule (PAR), for each component
P we collect the relevant assertions ΨP and type bindings EP associated with bound
names that may occur in the types and include these when typing the other component.
In the rules (IN) and (OUT), the type of the subject M and the type of the object (the
term transmitted on channel M ) must be compatible wrt. a compatibility predicate �.

(IN)

E,x : T � P

E � (λx)N : T → Uo

E � M : Us

E � M(λx)N.P
Us � Uo

(OUT)
E � M : Ts E � N : To E � P

E � MN.P
Ts � To

(PAR)
E, EP2 , ΨP2 � P1 E, EP1 , ΨP1 � P2

E � P1 | P2

(RES)
E, x : T � P

E � (νx : T )P (REP)
E � P

E �!P

(ASS)
E � Ψ

E � (|Ψ |) (CASE)
E � ϕi E � Pi 1 ≤ i ≤ k

E � case ϕ1 : P1, . . . , ϕk : Pk

Table 2. Type rules for processes

Example 1. To capture a type system with channel types such as the original sorting
system by Milner [17] we can let � be defined by T1 � T2 if T1 = Ch(T2).

4 Properties of the Simple Type System

Type systems normally guarantee two properties of well-typed programs. A subject
reduction property ensures that if a program is well-typed, it stays well-typed under
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subsequent reduction steps. A safety property ensures that if a program is well-typed, a
certain safety predicate will hold. We now consider these two properties in our setting.

4.1 Standard Lemmas

The following standard properties follow from the assumptions of compositionality,
monotonicity and topicality.

Lemma 1. The following properties hold for all instances that satisfy the general as-
sumptions of Section 3.2.

Substitution. Let σ be a term substitution. If E / J , dom(E) = dom(σ) and E /
σ(x) : E(x) for all x ∈ dom(σ) then E / J σ

Interchange. If E,E1, x : T,E2 / J and x 	∈ dom(E1) and x 	∈ fn(E1) then E, x :
T,E1, E2 / J .

Weakening. If E / J and E,E′ / 4 then E,E′ / J
Strengthening. If E, x : T1 / J and x 	∈ fn(J ) then E / J

4.2 The Subject Reduction Property

Our type system guarantees a subject reduction property, namely that typability is pre-
served under τ -actions.

Theorem 1. Suppose E / Ψ and E / P and that Ψ � P
τ−−→ P ′. Then also E / P ′.

Proof. (Sketch) Induction in the labelled transition rules. We first establish a lemma for
transitions not labelled with τ : that if E / Ψ , E / P and Ψ � P

α−−→ P ′ where α 	= τ
and E′ is any type environment such that E,E′ / α (i.e. the terms in α can be typed),
then E,E′ / P ′. The proof of the theorem then consists in an induction in the rules
defining τ -transitions.

4.3 Safety in the Simple Type System

The notion of safety depends on the particular instantiation of the type system. However,
all instantiations guarantee a general notion of channel safety.

Given a predicate on process configurations, now(E,Ψ, P ), which defines a notion
of now-safety of process P relative to a type environment E and an assertion Ψ . We can
then define the general notion of safety as invariant now-safety.

Definition 5. Given assertion Ψ , process P , type environment E and predicate now,

Ψ � P is safe for E if for any P ′ where Ψ � P
τ−−→
∗
P ′, we have that now(E,Ψ, P ′).

Following this approach, we can show that an instance of the simple type system has a
safety property by defining the property in terms of a suitable notion of now-safety and
then showing that typability implies now-safety.

The side conditions of the type rules (IN) and (OUT) guarantee a general form of
channel safety. This property guarantees that channels are always used to transmit mes-
sages whose type is compatible with that of the channel. Note that in Definition 6 we
may need to extend the type environment; this is the case, since an input action may
involve the reception of a term containing extruded names.
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Definition 6. Define nowCh(E,Ψ, P ) to hold if when Ψ � P
α−−→ P ′ and E / Ψ , then

1. If α = M(νx : T )N and E / M : Us , then we have E,x : T , Ψ1 ⊗ · · · ⊗ Ψk /
N : Uo for some Ψ1, . . . , Ψk and Uo where Us � Uo

2. If α = MN , if fn(N) = x and it is the case that E / M : Us, then for some Uo,
T and Ψ1, . . . , Ψk we have E,x : T , Ψ1 ⊗ · · · ⊗ Ψk / N : Uo, such that Us � Uo.

We say that Ψ � P is now-channel safe for E.

Theorem 2. If E / P and E / Ψ , then nowCh(E,Ψ, P ).

Safety now follows from the subject reduction property of Theorem 1.

Theorem 3. If E / Ψ and E / P then Ψ � P is channel-safe for E.

5 Instances of the Simple Type System

We now describe how a series of new and existing type systems can be expressed as
instances of our simple type system and how their safety properties can be established
using the general results that we now have.

5.1 The Calculus of Explicit Fusions

In [4], a ψ-calculus translation is given of the calculus of explicit fusions of Wischik
and Gardner [24]. No type systems were formulated for this calculus; here is one.

Fusions express that names a and b are considered equivalent and can therefore be
represented as assertions. For any binary relation R, we let EQ(R) denote its reflexive,
transitive and symmetric closure. The ψ-calculus representation of the calculus explicit
fusions is now as follows.

The set of terms T is taken to be N . The set of conditions C is the set of name
identities of the form a = b with a, b ∈ T. The assertion set A is the family of finite
sets of identities of the form {a1 = b1, . . . , an = bn} for n ≥ 0. Composition ⊗ is set
union, the identity assertion 1 is ∅ and the entailment relation is defined by

Ψ |= a = b if a = b ∈ EQ(Ψ)

In the calculus of explicit fusions, a relevant notion of safety is that only names of the
same type will ever be fused.

Definition 7. P is now-safe wrt. E if for any assertion a = b in P , E(a) = E(b).

To capture this, we use a notion of channel type. Names have types of the form

T ::= Ch(T ) | X

where X ranges over the set of type variables TVar. Actual types are defined by means
of a sorting, which is a finite function Δ : TVar → T . Again, the compatibility relation
is defined by Ch(T ) � T . The type rule for assertions is then as follows.

E / {a1 = b1, . . . , an = bn} if E(ai) = E(bi) for 0 ≤ i ≤ n
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For conditions, the type rules are similar:

E / a = b if E(a) = E(b) E / a↔̇b if E(a) = E(b)

The safety result is now the following.

Theorem 4. If E / P , then P is safe wrt. E.

5.2 The Distributed π-calculus

The distributed π-calculus was first proposed by Hennessy and Riely [20]. In Dπ,
processes are located at named locations (l[P ]) and can migrate to a named location
(go k.P ). In our version P ranges over the set of processes and N over networks.

P ::= 0 | a〈x〉.P1 | a(x).P1 | P1 | P2 | (νn : T )P1 |!P1 | go k.P1

N ::= 0 | N1 | N2 | (νn : T )N1 | l[P ]

The labelled transition semantics, which involves a notion of structural congruence≡,

has transitions of the form P
l@α−−−−→ P ′ for processes and N

α−−→ N ′ for networks,
where either α = an, α = an or α = τ .

Dπ can be represented as a ψ-calculus by a translation, due to Carbone and Maffeis
[5]. The central insight is to view a channel a at location l as a composite term l · a,
so the set of terms is T = {l · a | l, a ∈ N}. This set is not closed wrt. arbitrary
substitutions, but the set of well-typed terms is closed under well-typed substitutions,
which suffices. The set of conditions C is C = {l · a↔̇l · a | l, a ∈ N}.

For networks, the translation is

[[l[P ]]] = [[P ]]l [[0]] = 1
[[N1 | N2]] = [[N1]] | [[N2]] [[(νn)N1]] = (νn)[[N1]]

For processes, we have

[[go k.P ]]l = [[P ]]k [[a(x).P ]]l = (l · a)(x).[[P ]]l

[[a〈x〉.P ]]l = (l · a)〈x〉.[[P ]]l [[P1 | P2]]l = [[P1]]l | [[P2]]l
[[!P1]]l =![[P1]]l [[(νn)P ]] = (νn)[[P ]]

The only assertion is the trivial assertion 1; we always have E / 1.
Most type systems for Dπ are concerned about notions of channel safety. Here, we

describe a type system that assigns types to both location and channel names. We there-
fore consider types of the form

T ::= Ch(T ) | Loc{ai : Ch(Ti)}i∈I | B

where I is a finite index set and B ranges over a set of base types. A location type
Loc{ai : Ch(Ti)}I describes the available interface of a location: only the specified
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channel names can be used for communication at locations of this particular type. The
type rule for composite names is then

E / l : Loc{ai : Ch(Ti)}i∈I E / ai : Ch(Ti) for some i ∈ I

E / l · ai : Ch(Ti)

where I is a finite set. The compatibility relation is given by Ch(T ) � T

Definition 8. A Dπ network N is now-safe wrt. E if whenever N ≡ (νk)l[P ] | N ′ and

P
l@α−−−−→ where either α = an or α = an, then E(l) = Loc{ai : Ch(Ti)}I where

a = ai and E(n) = Ti for some i ∈ I .

The following result follows from Theorem 3.

Theorem 5. Let P = [[N ]] for a Dπ network N . If E / P , then N is safe wrt. E.

5.3 A Type System for Secrecy

Next, we show how to represent a type system for secrecy in the spi calculus due to
Abadi and Blanchet [2]. The version of the spi calculus used in [2] has primitives for
asymmetric cryptography and its formation rules are

M ::= x | a | {M}M

P ::= M〈M 〉 | a(x1, . . . , xn).P | 0 | P |Q | !P | (νa)P
| case M of {x1, . . . , xn}a : P else Q | if M = N then P else Q

The term {M}M denotes that the tupleM = (M1, . . . ,Mk) is encrypted with key M .
The process constructs resemble those of ψ-calculi, but output is asynchronous, and the
subject of an input must be a name a (as opposed to a variable x). Similarly, in a de-
cryption case M of {x1, . . . , xn}k : P else Q, the key k must be a name. Thus, input
and decryption capabilities cannot be transmitted – the latter lets us distinguish between
private keys (only used for decryption) and public keys (only used for encryption).

The representation of this as a ψ-calculus is straightforward and based on [4]. We
introduce conditions M = enc(∗, k) and M 	= enc(∗, k) whose intended meaning is
that M is, resp. is not, encrypted using key k. Similarly, we introduce match conditions
M = N and mismatch M 	= N .

The decryption construct now becomes

(νx)(case M = enc(∗, k) : ((|x = dec(M,k)|) | P ) ; M 	= enc(∗, k) : Q)

and the biconditional construct is case M = N : P ;M 	= N : Q. Channel equality ↔̇
is defined to be the identity relation on terms.

Abadi and Blanchet consider a notion of secrecy under all opponents [2]. If RW is
a finite set of names and W a finite set of closed terms, then an (RW,W )-opponent is
a spi-calculus process Q such that Q = Q′[x := N ] where fn(Q′) ⊆ RW , W = N
and such that the set of free variables of Q′ contains at most x.
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Definition 9. Let RW be a finite set of names and W a finite set of closed terms..

Process P preserves the secrecy of M wrt. RW if whenever P
τ−−→
∗
P ′ then it is not

the case that P ′
cM−−−→ P ′′ for any P ′′ or c ∈ RW . P preserves the secrecy of M from

(RW,W ) if P |Q preserves the secrecy of M wrt. RW for any (RW,W )-opponent Q.

The types given in [2] have the syntax

T ::= Pub | Sec | CPub[T ] | CSec[T ] | KSec[T ] | KPub[T ]

where T is any tuple of types. CPub[T ] and CSec[T ] are channel types for sending
public, resp. secret, data and KSec[T ] and KPub[T ] are key types for encrypting these.

Abadi and Blanchet introduce a subtype relation which states that public types are
subtypes of Pub (so e.g. CPub[T ] ≤ Pub) and secret types are subtypes of Sec. More-
over, a special judgment E /M : S describes the set of types S that M can have.

In our representation of the type system we must distinguish between names and
variables. Our syntax of types is therefore

T ::= Pub | Sec | CA
B [T ] | KA

B [T ] | T

where A ∈ {Pub, Sec} and B ∈ {Name,Var}. We capture the subtype relation and the
type set judgment by rules including the following.

(PUBVAR)
E(x) = Pub

E / x : CPub
Var [T ] (KEYP) E /M : CPub

Var [T ]
E /M : Pub

The original type rules for the decryption construct are now captured via type rules for
assertions, two of which are shown below.

(DEC-PK1)

E � M : Pub E(k) = KPub
Name[T ]

E(xi) = Ti

for 1 ≤ i ≤ |x| |T | = |x|
E � x = dec(M,k)

(EQUAL) E � M : T E � N : T

E � M = N

For the assertion M = N , the type system of [2] allows if M = N then P else Q
to be well-typed if E / M : S1 and E / N : S2 but S1 ∩ S2 = ∅. This is not allowed
in our type system; our rules mirror the stronger requirement (originally made in [1])
that S1 ∩ S2 	= ∅. The remaining assertions are defined to be always well-typed.

For the input and output rules the original type system allows channels of type
CPub

B [T ] to transmit either messages of type Pub or a tuple of type T . We can cap-
ture this by defining the compatibility predicate as follows (where Pub stands for a
tuple type of arbitrary length, all of whose components are Pub).

CPub
B [T ] � Pub CPub

B [T ] � T CSec
B [T ] � T

The secrecy result for the type system is the following.
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Theorem 6 ([2]). Let P be a closed process. Suppose that E / P and E / s : Sec. Let

RW = {a | E(a) = Pub} W = {a′ | E(a′) = CPub[· · · ] or E(a′) = KPub[· · · ]}

Then P preserves the secrecy of s from (RW,W ).

We obtain this safety result from Theorem 3 by first noticing that channel safety implies
that if a process R satisfies that E / R, then a secret name s cannot be leaked on any
channel in RW as defined. To conclude the proof, now apply the result (established in
[2]) that E / P | Q for any (RW,W )-opponent Q.

5.4 Correspondence Types for Authenticity

Next, we represent a type and effect system for a spi-calculus capturing non-injective
authenticity using correspondence assertions[9]. This case shows how the typability of
processes and terms can depend on assertions.

We now consider symmetric encryption, and the decryption operation is written as
case M of {x1, . . . , xn}M : P else Q, where the key M can be an arbitrary term.

We introduce correspondence assertions begin �(M) and end �(M); these are la-
belled message terms where � ranges over a set of labels disjoint from the set of message
terms. In a process, begin assertions are placed where authentication is to be initiated,
and end assertions are placed where authentication should be completed.

The set of message terms is defined by the formation rules

M ::= x | (M1,M2) | {M1}M2 | fst M | snd M | ok

where fst M and snd M extract the first, respectively second coordinate of a pair M .
The ok term is an explicit effect term used to transfer the capability to match begin
assertions. ok terms and correspondence assertions do not influence process behaviour;
their only role is in the type system.

Definition 10. A process P is safe for type environment E if whenever

P
τ−−→
∗

(νn)(end �(M) | P ′), then either we have P ′ ≡ (|begin �(M)|) | P (2)

or begin �(M) ∈ E. An opponent is a spi calculus process Q that has no end asser-
tions and where every term in P can be typed with opponent type Un. Process P is
robustly safe if P | Q is safe for any opponent Q.

Here, ≡ is the structural congruence relation of the spi calculus [3]. Note that the
safety property employs the following notion of now-safety: P is now-safe, if every
end-assertion can be matched by a begin-assertion with the same label.

The important property is similar to that for the secrecy type system: if P can be
well-typed when all its free variables have opponent type Un, then P is robustly safe.

Theorem 7. [9] If x1 : Un, . . . , xk : Un / P where {x1, . . . , xk} = fv(P ), then P
is robustly safe.

The representation of the spi calculus is as in Section 5.3, and we can keep the original
types of [9].

T ::= Ch(T ) | Pair(x : T1, T2) | Ok(S) | Un



278 H. Hüttel

Here Pair(x : T1, T2) is a dependent pair type, Ok(S) is an ok-type, where S is a finite
set of assertions called an effect, and Un is an opponent type. We incorporate opponent
types by defining the compatibility relation by Un � Un.

Correspondence assertions begin �(M) and end �(M) are added to the assertions A
of Section 5.3. Their type rules are defined below. All other assertions are assumed to
be always well-typed. Note that there are two rules for end-assertions, since effects can
either occur directly in the type environment or be hidden within an ok-type. Also note
that these rules show how typability can depend on assertions in the type environment.

(BEGIN) E / begin �(M) (END-1)
E = E1, �(M), E2 fn(M) ⊆ dom(E1)

E / end �(M)

(END-2)
E = E1, x : Ok(S), E2

�(M) ∈ S

E / end �(M)
fn(M) ⊆ dom(E1)

Some of the type rules for terms are shown below.

(ENC)
E /M : T E / N : Key(T )

E / {M}N : Un
(OK)

E / 4 E / ψ ∀ψ ∈ S

E / ok : Ok(S)

(ENC UN)
E /M : Un E / N : Un

E / {M}N : Un
(OK UN)

E / 4
E / ok : Un

The authenticity result of Theorem 7 can now be established by Theorem 1 combined
with a lemma that every well-typed process is now-safe wrt. correspondences. This is
easily proved by induction in the type derivation of a well-typed P .

6 Conclusions and Further Work

In this paper we have presented a simple type system for ψ-calculi where term types
belong to a nominal data type and judgements for processes are of the form E / P
and given by a fixed set of rules. Terms, assertions and conditions are assumed to form
nominal datatypes, and only a few requirements on type rules are imposed, such as com-
positionality and substitutivity. The type system lets us represent existing type systems
for secrecy and authenticity in the spi calculus and location safety in the distributed
π-calculus and also gives rise to a first type system for the calculus of explicit fusions.

The type system represents forms of channel subtyping by a compatibility relation
and deals with opponent typability, but a more general account of subtyping is another
important line of future research.

Other type systems in the literature deal with resource-aware properties such as lin-
earity or receptiveness of names [14,22], or notions of termination [7,15]. Common to
these systems is that the rules for parallel composition and prefixes are modified and the
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use of replication is limited; most often by only allowing replicated inputs. An extension
of our work to such type systems is a topic of ongoing work.
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Full Abstraction in a Subtyped pi-Calculus with

Linear Types

Romain Demangeon and Kohei Honda

Queen Mary, University of London

Abstract. We introduce a concise pi-calculus with directed choices and
develop a theory of subtyping. Built on a simple behavioural intuition,
the calculus offers exact semantic analysis of the extant notions of sub-
typing in functional programming languages and session-based program-
ming languages. After illustrating the idea of subtyping through exam-
ples, we show type-directed embeddings of two known subtyped calculi,
one for functions and another for session-based communications. In both
cases, the behavioural content of the original subtyping is precisely cap-
tured in the fine-grained subtyping theory in the pi-calculus. We then
establish full abstraction of these embeddings with respect to their stan-
dard semantics, Morris’s contextual congruence in the case of the func-
tional calculus and testing equivalence for the concurrent calculus. For
the full abstraction of the embedding of the session-based calculus, we
introduce a new proof method centring on non-deterministic computa-
tional adequacy and definability. Partially suggested by a technique used
by Quaglia and Walker for their full abstraction result, the new proof
method extends the framework used in game-based semantics to the
May/Must equivalences, giving a uniform proof method for both deter-
ministic and non-deterministic languages.

1 Introduction

A subtyping is a form of polymorphism where we can assign to a program a
type which is more inclusive than the original type of the program, called sub-
sumption. This notion of inclusion forms a partial order on types, where “more
inclusive” may most simply be interpreted as having more inhabitants satisfying
the type specification. In the standard subtyping theories, this inclusiveness is
structurally calculable from the construction of types, such as through the well-
known variance rule for arrow types, records and variants, cf. [2]. The notion of
subtyping plays a key role in the practice of programming languages [20].

In this paper we study a simple theory of subtyping for interacting processes
and show that it subsumes extant notions of subtyping in programming lan-
guages through encoding. We first introduce a concise pi-calculus with directed
choices and linear types, and develop a theory of subtyping purely based on these
choices. The resulting calculus is called π{1,1,ω} for brevity. After illustrating a
simple behavioural intuition behind the subtyping theory through examples, we
show that the calculus offers exact semantic analysis of the existing notions of
subtyping in functional programming languages and session-based programming
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languages. First we introduce type-directed embeddings of two known subtyped
calculi, one for functions [22] (which uses Milner’s encoding [16] but with novelty
in the treatment of sums) and another for session-based communications [25,13].
In both cases, the behavioural content of the original subtyping is precisely cap-
tured in the fine-grained subtyping theory in the pi-calculus.

We then establish full abstraction of each embedding with respect to a stan-
dard semantics of the target calculus, Morris’s contextual congruence in the case
of the functional calculus and the testing/failure equivalence for the concurrent
calculus. The full abstraction, together with the concision of the encoding, may
offer an exact interactional elucidation of these existing subtyping notions. For
the full abstraction of the embedding of the session-based calculus, we introduce
a new proof method centring on non-deterministic computational adequacy and
definability. Partially suggested by a technique used by Quaglia and Walker
for their full abstraction of the polyadic synchronous π-calculus in the monadic
asynchronous π-calculus [23], as well as by those from game-based semantics [15],
the new proof method is uniform (the method for non-deterministic languages
specialises the one for the traditional, deterministic languages), has generality
(the type structure of a meta calculus, here the linear subtyped π-calculus, can
be disjoint from that of an object language, here the λ-calculus and the session
calculus), and is generic (as far as some key properties hold for adequacy and
definability, it automatically gives full abstraction).

We summarise some of the main technical contributions of the work.
1. A concise subtyped π-calculus with linear typing (π{1,1,ω}), giving rise to a

simple and general theory of subtyping, whose key properties we establish.
2. Type-directed embeddings of a call-by-value λ-calculus with record and vari-

ant subtyping and a concurrent calculus with session subtyping in π{1,1,ω},
obtaining full abstractions. For the latter we use a new proof method centring
on non-deterministic computational adequacy and definability.

To our knowledge, this is the first full abstraction results for these subtyped
calculi in the π-calculus: further, the corresponding results have not been known
in game-based semantics (which is in close corresponding with the π-calculus,
cf. [12,14,9]). The semantically sound encoding of the session calculus itself looks
new. In another vein, this may be the first full abstraction result for the interac-
tional representation of a non-trivial, fully non-deterministic concurrent calculus.

In the rest of the paper, Section 2 introduces π{1,1,ω} and develops the the-
ory of subtyping, illustrating its intuition through examples and establishing its
key properties. Section 3 fully abstractly embeds λΠ,Σ,� in π{1,1,ω}. Section 4
fully abstractly embeds the session-calculus from [13] with subtyping in π{1,1,ω}.
Section 5 discusses related works. The full proofs can be found in [7].

2 A Concise, Subtyped π-Calculus

In the following, we use the shortcut ẽ for a vector (e1, . . . , ek) for some integer k.
Processes and Reduction. We use a, b, c, . . . , u, v, . . . , x, y to denote names, or
channels, X,Y, . . . for agent variables, and l, . . . for labels. Syntax for processes of
π{1,1,ω}, our linear-affine π-calculus (cf. [3,28]), is given by the following grammar.
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P ::= (P | P ) | 0 | X〈ṽ〉 | (μX(x̃).P )〈ṽ〉 | u⊕m l〈ṽ〉 | u&m
i∈I{li(x̃i).Pi} | (νu) P

where m ::= 1 | 1 | ω is called a mode. The mode can be either linear 1, affine 1
or replicated ω. We use a standard recursion (μX(x̃).P )〈ṽ〉. The two prefixes of
our calculus are the asynchronous output (or selection) u ⊕m l〈ṽ〉 which is the
output of the values ṽ on the channel u as well as selecting the label l, and the
input (or choice) u&m

i∈I{li(x̃i).Pi} which offers on channel u several branches to
choose from, labelled by the lis, each with continuation Pi. We use a standard
structural congruence ≡ on π{1,1,ω}, described in Figure 1.

P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3) P | 0 ≡ P

(νa)(νb) P ≡ (νb)(νa) P (νa) (P1 | P2) ≡ ((νa) P1) | P2 if a not free in P2

(μX(x̃).P )〈ṽ〉 ≡ P{ṽ/x̃}{μX(x̃).P/X}

Fig. 1. Structural congruence rules

(cong)
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

(comm)
E[u ⊕1,1 lj〈ṽ〉 | u&1,1

i∈I{li(x̃i).Pi}] → E[Pj{ṽ/x̃i}]

(trig)
E[u ⊕ω lj〈ṽ〉 | u&ω

i∈I{li(x̃i).Pi}] → E[Pj{ṽ/x̃i} | u&ω
i∈I{l}i(x̃i).Pi]

Fig. 2. Reduction rules

The rules to generate the reduction relation → are given in Figure 2, using
evaluation contexts (à la Wright-Felleisen) given by: E ::= [ ] | E | P | (νu) E.
Henceforth →+ (resp. →∗) denotes the transitive (resp. reflexive-transitive) clo-
sure of →. We also use �→ to notify that a process cannot reduce further.

Types. Types consist of base types (integers, booleans and unit), the choice
and selection types (together called interaction types), and recursive types. The
choice types can be seen as a generalisation of input types (as used in [3]); the
selection types as a generalisation of output types. Their branching structure
plays a key role in our subtyping theory. The syntax for types is given by the
following grammar:

T ::= &m
i∈I{li(T̃i)} | ⊕m

i∈I{li(T̃i)} | μt.T | t | uc | N | B | �

where N, B and � are the types for integers, booleans and the unit, respectively.
We assume recursive types are contractive (type variables occur guarded) [20].
Closed types are types without free type variables. uc, never occurring in another
type, means a pair of dual linear-affine channels are present and is now“un-
composable”. Types are considered up to the standard tree isomorphisms.
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If T has form &m
i∈I{li(T̃i)} (resp. ⊕m

i∈I{li(T̃i)}), the mode of T , mod(T ), is m.
For brevity we shall often use shortcuts for prefixes and types when their

branching is reduced to a single branch. Below we set x1 = x, P1 = P and
l1 = lone (lone is a distinguished label we fix).

u(x).P = u&1
i∈{1}{li(xi).Pi} !u(x).P = u&ω

i∈{1}{li(xi).P}

u〈v〉 = u⊕m lone〈v〉 when u has type ⊕m
i∈{1} {li(Ti)}

↑m (T ) = ⊕m
i∈{1}{li(T )} ↓m (T ) = &m

i∈{1}{li(T )}

Example 1 (Intuitive meaning of types)

1. ↑1 (↓1 (N)) indicates a behaviour at an output channel, through which a
process surely sends a channel exactly once; and through that channel, surely
receiving a natural number (considered to be a constant channel) exactly
once.

2. &1
i∈{1,2}{l1(N), l2(↑1 (↓1 (N)))} indicates a behaviour of exactly once receiving

one of the two options, l1 and l2, in the former with an integer, in the latter
with a channel which the process will use as specified in 1 above.

3. &1
i∈{1,2}{l1(N), l2(↑1 (↓1 (N)))} is the same behaviour as 2 above, except it

receives an initial option at most once, by the modality 1.

The interaction types form a self-contained universe in that base types can be
considered as syntactic sugar, through encodings. There are several faithful (and
semantically isomorphic) encodings, of which we present a simple and convenient
one. We write T ◦, if T is a base type, for the encoding of T as an interaction
type.

N◦ def= ↓ω (⊕1
i∈N{i()}) B◦ def= ↓ω (⊕1

i∈B{i()}) �◦ def= ↓ω (⊕1
i∈�{i()})

where we use the labels which represent natural numbers, booleans and the single
element of the unit. Each describes a behaviour which can be enquired about its
content and responds with one. We then extend ( )◦ so that when a base type is
used for output, we use the above encoding, e.g. (↑ (B))◦ =↑ (B◦), and for input,
its dual, e.g. (↓ (B))◦ =↓ (B◦), where T is defined below.

A key idea in interaction types is duality, defined co-inductively [21] to capture
recursion. Note by taking recursive types modulo their tree isomorphism, we can
safely regard each closed type as either a base, choice or selection type.

Definition 2. A relation over closed types R is duality if T1 R T2 implies:

1. either T1 = T2 where T1 ∈ {N, B,�},
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = ⊕m

i∈I{li(T̃ 2
i )} and (c) ∀i ∈ I, T 1

i R T 2
i

3. or (a) T1 = ⊕m
i∈I{li(T̃ 1

i )} (b) T2 = &m
i∈I{li(T̃ 2

i )} and (c) ∀i ∈ I, T 1
i R T 2

i
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There is the largest duality relation denoted ��.

When we encode away base types through ( )◦, we dispense with the first clause.

Fact and Definition 3 (Dualisation). The duality �� defines a total invo-
lution (i.e. a symmetric total function), which we write T , called the dual of
T .

A generalisation of duality is coherence, which we introduce below. Intuitively,
coherence specifies when two types can match: this is not only when two types
are dual, but also when one offers more choices than the options the other wishes
to select. This intuition is the basis of the whole subtyping theory.

Definition 4. A relation R over closed types is a coherence if T1 R T2 implies:

1. either T1 = T2 where T1 ∈ {N, B,�}.
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = ⊕m

j∈J{lj(T̃ 2
j )}, and (c) ∀j ∈ J, T 1

j R T 2
j

where J ⊆ I.
3. or (a) T1 = ⊕m

i∈I{li(T̃ 1
i )}, (b) T2 = &m

j∈J{lj(T̃ 2
j )}, and (c) ∀i ∈ I, T 1

i R T 2
i

where I ⊆ J

There is the largest coherence relation noted .

Note �� � . Non-trivial inclusion among base types can be incorporated into
coherence: however how we can do so is already in , through the encoding
discussed above. We shall come back to this point later.

Typing. The typing rules for π{1,1,ω} use typing contexts and compatibility over
them, which we introduce below.

A typing context Γ is a partial map from names to types and from process
variable to vectors of types. When Γ (a) is undefined, we write Γ, a :T to denote
the map Γ ′ defined by Γ ′(a) = T , Γ ′(u) = Γ (u) for u �= a and Γ ′(Y ) = Γ (Y ) for
all Y . Γ,X : T̃ is defined the same way. We write ∅ for the empty typing context.

Definition 5. We define compatibility � as a partial symmetric function over
pair of typing contexts generated from:

∅ � ∅ = ∅
(Γ1, X : T̃ )� Γ2 = Γ1 � Γ2, X : T̃ (Γ1, u : uc)� Γ2 = Γ1 � Γ2, u : uc
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : uc if T1  T2 and ∀i, mod(Ti) = 1
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : uc if T1  T2 and ∀i, mod(Ti) = 1
(Γ1, u : T1)� (Γ2, u : T2) = Γ1 � Γ2, u : T1 if T1  T2, mod(T1) = mod(T2) = ω

and T1 = &ω
i∈I{li(T̃i)}

Compatibility stipulates, through its partiality, when a parallel composition of
two typed processes is allowed. Typing rules are presented in Figure 3.
In (Cho), we assume no 1 types occur in Γ when m = 1; and no 1 and 1 types
occur when m = ω. We observe:
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(Nil)∅ �π 0
(Rec)

Γ, X : T̃ , x̃ : T̃ �π P Γ (ṽ) = T̃

Γ �π (μX(x̃).P )〈ṽ〉

(Res)
Γ, u : T �π P T = uc or &ω

i∈I{li(Ti)}
Γ �π (νu) P

(Par)
Γ1 �π P1 Γ2 �π P2

Γ1 	 Γ2 �π P1 | P2

(Var)
X : T̃ , ṽ : T̃ �π X〈ṽ〉

(Sel)
j ∈ I

u : ⊕m
i∈I{li(T̃i)}, ṽj : T̃j , Γ �π u ⊕m lj〈ṽj〉

(Cho)
(Γ, x̃i : T̃i �π Pi)i∈I

Γ, u : &m
i∈I{li(T̃i)} �π u&m

i∈I{li(x̃i) : Pi}

Fig. 3. Typing rules for π{1,1,ω}

Proposition 6 (Subject Reduction). If Γ �π P and P → P ′, then Γ �π P
′.

Example 7. As an example of the expressive power, we present an easy way
to encode references (or states):

Mem =!ref(cell, val).cell&1
l∈{set,get}{

set(r, new). (r〈()〉 | ref〈cell, new〉)
get(s). (s〈val〉 | ref〈cell, val〉) }

Here Mem is a server that create memory cells. Clients can interact with a cell
either to fetch the value store inside or to update it with a new value. Consider:

E1 = Mem | ref〈cell1, 0〉 | ref〈cell2, 3〉

which reduces in two steps to:

Mem | cell1&1
l∈{set,get}{

set(r1, new1). (r1〈()〉 | ref〈cell1, new1〉)
get(s1). (s1〈0〉 | ref〈cell1, 0〉)

}

| cell2&1
l∈{set,get}{

set(r2, new2). (r2〈()〉 | ref〈cell2, new2〉)
get(s2). (s2〈3〉 | ref〈cell2, 3〉)

}

creating two memory cells, one called cell1 containing 0 and one called cell2
containing 3. Each cell offers an input with two labels, set and get. The former
waits for a return channel r, returns the current value through r and construct
the cell again, the latter waits for a return channel r and a new value new,
reconstructs the updated cell with the new value and return an acknowledgement
through r. The process Mem can be typed by giving to ref the type:

Tref =↓ω (&1
l∈{set,get}{

set(↑1 (�), N)
get(↑1 (N))

}, N)

As another example showing concurrency, consider:

Ex = (νans1, ans2) (E1 | cell1set〈1, ans1〉 | ans1() | cell1get〈ans2〉 | ans2(x)
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When reducing Ex, x can be instantiated either by 1 or 0 depending on which
output on cell1 occurs first.

Subtyping theory. As hinted in Definition 4, the framework of π{1,1,ω} lets us
define a notion of subtyping: informally, a type will be a subtype of another if
it “offers more choices” (as input) or if it “selects among less options” (as an
output). Intuitively, a type which is ready to receive no less labels, and which
may potentially sends no more labels, (in other words, a type representing a
more gentle behaviour), is a subtype of another.

Definition 8. A relation R is a subtyping relation if when T1 R T2 then:

1. either T1 = T2 ∈ {N, B,�},
2. or (a) T1 = &m

i∈I{li(T̃ 1
i )}, (b) T2 = &m

j∈J{lj(T̃ 2
j )} and (c) ∀j ∈ J, T 1

j R T 2
j ,

where J ⊆.
3. or (a) T1 = ⊕m

i∈I{li(T̃ 1
i )}, (b) T2 = ⊕m

j∈J{lj(T̃ 2
j )}, and (c) ∀i ∈ I, T 1

i R T 2
i ,

where I ⊆ J .

� is the largest (for ⊆) subtyping relation.

The subsumption is admissible in our typing system. Below we write Γ � Γ ′ to
denote that the two typing environments have same domain and that for each a
(resp. X) in the domain of Γ , Γ (a) � Γ ′(a) (resp. Γ (X) � Γ ′(X)).

Proposition 9 (Subsumption). If Γ �π P and Γ � Γ ′ then Γ ′ �π P .

That is, if P satisfies Γ and if Γ ′ is more inclusive as a specification then P also
satisfies Γ ′ (noting Γ in Γ �π P specifies the behaviour of P , cf. Example 1).

Now it is known in the literature that subtyping is closely related to composabil-
ity of types, cf. [11], which we may call compatibility. In brief, T2 has more compat-
ibility than T1 if it is coherent with every type with which T1 is coherent: it is more
composable. In the following we show compatibility and subtyping coincide in our
theory, showing its consistency as well as giving useful theoretical tools.

Definition 10. For T1 and T2 closed, T1 ≤comp T2 when ∀T, T1  T ⇒ T2  T .

Below Propositions 11 relates together duality, subtyping and coherence, using
which we show coincidence, Proposition 12.

Proposition 11. (1) T  T . (2) T1  T2 iff T2  T1. (3) T1 � T2 iff T2 � T1.
(4) If T ′1 � T1, T ′1  T ′2, T ′2 � T2 then T1  T2. (5) T1 � T2 iff T1  T2

Proposition 12 (Coincidence). T1 � T2 iff T2 ≤comp T1.

Proof (Sketch). First we show ≤comp is a subtyping relation coinductively by
inspecting the shape of T2 and Def. 4 gives information on T1. Then we prove
T  T1 implies T  T2 by the form of T2, using Definition 8. �

Example 13. To illustrate our subtyping, recall Tref from section 2 inhabited
by Mem. An obvious subtype of Tref is the following T ′ref :
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T ′ref =↓ω (&1
l∈{set,get,del}{

set(↑1 (�), N)
get(↑1 (N))
del(↑1 (�))

}, N)

Since this is a subtype of Tref , there are some processes which live (are typed by)
ref : Tref as well as by ref : T ′ref . The following is such a process:

Mem′ =

!ref ′(cell, val).cell&1
l∈{set,get,del}{

set(r, new). (r〈()〉 | ref ′〈cell, new〉)
get(s). (s〈val〉 | ref ′〈cell, val〉)
del(t). (t〈()〉)

}

The process Mem′ performs the same role as Mem but offer one additional
choice, the label del allows one to delete a memory cell, preventing further in-
teractions with this cell to be performed. One can notice that in every process
containing Mem under ref : Tref , it can be replaced with Mem′: as far as the
supertype Tref goes, they have the same behaviour.

3 Embedding Functional Subtyping

A subtyped call-by-value functional calculus. For brevity we consider a
typed, PCF-like, call-by-value λ-calculus with � as its base type, which we call
λΠ,Σ,�. The syntax of terms contains both products (or records) {li.Mi}i∈I and
projections, and sums (or variants) and case-branches, and is given, along with
the syntax of types, by the following grammar:

M ::= M M | x | () | λx.M | {li.Mi}i∈I |M.l

| injl(M) | case M of [li(xi).Mi]i∈I | Y V

T ::= � | N | T → T | Π{li : Ti}i∈I | Σ[li : Ti]i∈I

The subtyping relation T1 � T2 on λΠ,Σ,� types is defined as the largest reflexive
and transitive relation satisfying:

1. If T1 = Ta → Tb, then T2 = T ′a → T ′b and Ta � T ′a, T ′b � Tb.
2. If T1 = Π{li : Ti}i∈I , then T2 = Π{li : T ′i}i∈J , J ⊆ I and ∀i ∈ J, Ti � T ′i .
3. If T1 = Σ[li : Ti]i∈I , then T2 = Σ[lj : T ′j ]j∈J , I ⊆ J and ∀i ∈ I, Ti � T ′i .

The typing system and the call-by-value reduction rules are completely standard:
for reference, below we only list the key rule for subtyping, the subsumption, and
leave the rest in [7].

(Sub)
Γ �M : T1 T1 � T2

Γ �M : T2
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Encoding of types. We present the encoding of λΠ,Σ,� into our calculus
π{1,1,ω}. Definition 14 presents how we encode λΠ,Σ,� types into π{1,1,ω} types.
A notable point of this encoding is the encoding of the arrow type, which is
decomposed in such a way that function application is seen as a choice between
the possible arguments. As a result, the type B → T , for instance, is encoded
into ↑1 (&ω

l∈{true,false}{true(T ); false(T )}). This means that a function having
booleans as domain can be seen as being composed of two terms, one associated
to the argument true, the other for false.

Definition 14 (Encoding of types)

〈�〉 =↑1 (�) 〈Π{li : Ti}i∈I〉 =↑1 (&ω
i∈I{li(〈Ti〉)})

〈Σ[li : Ti]i∈I〉 = ⊕1
i∈I{li(↓ω (〈Ti〉))}

〈T1 → T2〉 =↑1 (&ω
i∈I{li(Ti, 〈T2〉)}) if 〈T1〉 = ⊕1

i∈I{li(Ti)}

The last line is well-defined since 〈T1〉 is always an output type. In the first line,
we can encode � (of π{1,1,ω}) by ( )◦ in Section 2, similarly any base types.
Encoding of terms. Figure 4 gives the encoding of terms following that of types
and using a return channel u and an environment ζ (required to remember en-
coding of variables). The former is standard [24]. The latter may be notable,
coming from our arrow type encoding which forces us to remember the associ-
ation between a branch label and a variable. An environment ζ maps λΠ,Σ,�

each variable to a choice (li, xi), a pair composed of one label and one π{1,1,ω}

variable.
A brief illustration of three key cases: when encoding an application M N

on u, one compute the encoding on M and N with two new return channels
(respectively m and n), then the address of the function y is caught on m and
the possible arguments are decomposed into an address xi and a label li, fetched
on n. Then both of them are sent to the function together with the return channel
u. Symmetrically, to encode the abstraction λx.M , we create a new channel c,
send it on the return channel of the function, then we wait for a label li which will
determine which branch of the function is chosen, an argument xi and a return
channel m, and we proceed to the execution of the encoding of M , with a new
environment where the variable x is associated with the choice (li, xi). Finally,
to encode a variable x on the return channel u, we fetch in the environment the
choice (li, xi) associated with x and send it on the channel u.

As our encoding makes use of environment, we formally define the encoding
for typing contexts accordingly.

〈Γ, x : T 〉ζ,x �→(li,xi) = 〈Γ 〉ζ , xi : Ti if 〈T 〉 = ⊕m
i∈I{li(Ti)}

A variable environment ζ is reasonable w.r.t. a term M when ζ maps every free
variable of M to a choice.

Proposition 15. If Γ � M : T , then 〈Γ 〉ζ , u : 〈T 〉 �π 〈M〉ζu for all reasonable
ζ.
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〈()〉ζu = u〈()〉

〈M N〉ζu = (νm,n) (〈M〉ζm | 〈N〉ζn | m(y).n&1
i∈I{li(xi).y ⊕ω li〈xi, u〉})

if M has type T → T ′ with 〈T 〉 = ⊕1
i∈I{li(Ti)}

〈λx.M〉ζu = (νc) (u〈c〉.c&ω
i∈I{li(xi, m).〈M〉ζ,x �→(li,xi)

m })

if λx.M has type T → T ′ with 〈T 〉 = ⊕1
i∈I{li(Ti)}

〈x〉ζ.x �→(li,xi)
u = u ⊕1 li〈xi〉 〈{li : Mi}i∈I〉ζu = (νp) u〈p〉.p&ω

i∈I{li().〈Mi〉ζu}

〈M.l〉ζu = (νm) (〈M〉ζm | m(y).y ⊕ω l〈〉)

〈injl(M)〉ζu = (νm) (〈M〉ζm | m&1
j∈J{l′j(yj).(νc) (u ⊕1 l〈c〉 | !c(n).n ⊕ω l′j〈yj〉)})

〈case M of [li(xi).Mi]i∈I〉ζu =

(νm) (〈M〉ζm | m&1
ı∈I{li(xi).(νp) (xi〈p〉 | p&ω

j∈J{l′j(yj).〈Mi〉ζ,xi �→(l′j ,yj)
u })})

〈Y V 〉ζu = μX(x).((νp,m) 〈V 〉ζp | (X〈m〉) | m(f).p(a).f〈a, x〉)〈u〉

Fig. 4. Encoding for λ-terms

Example 16. Consider the following λΠ,Σ,� term:

F opt = λx.case x of [
s(x1) (F x1)
n(x2) 0 ]l∈{s,n}

F opt : (s : N) + (n : ())→ N is a partial version of the function F : N→ N. If its
argument is an actual value injs(3) it will apply F to it. And if its argument is
undefined injn(()) then it will return 0. With 〈N〉 =↑1 (N) and 〈�〉 =↑1 (�), its
encoding 〈F opt〉∅u is given by:

(νv) u〈v〉.v&ω
l∈{s,n}{

s(x, b). (νc) (c⊕1 s〈x〉 | Caseof)
n(x, b). (νc) (c⊕1 n〈x〉 | Caseof)

}

Caseof being c&1
l∈{s,n}{

s(x1). (νp1) (x1〈p1〉 | !p1(n).App)
n(x2) (νp2) (x1〈p2〉 | !p2.b〈0〉)

}

App being (νf, a) (〈F 〉∅f | a〈n〉 | f(y).a(z).y〈z, b〉)

If we look through the several indirections induced by the encoding, we can notice
that the choice induced by the option type will be translated as two choices, one
in the abstraction encoding and one in the case-construct encoding.

Functional subtyping through encoding. The following proposition relates
the subtyping for λΠ,Σ,� with the subtyping for π{1,1,ω}. It is proved by showing
that the relation R, defined by TaRTb when there exist T1, T2 s.t. 〈T1〉 = Ta,
〈T2〉 = Tb, and T1 R T2, is a subtyping according to Definition 8.
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Proposition 17 If T1 � T2, then 〈T1〉 � 〈T2〉.

The base type encoding in π{1,1,ω} through the operator ( )◦ in section 2 allows
us to extend the above result to λΠ,Σ,� with non-trivial subtyping on base
types, e.g. with the type R of reals. Indeed, for N � R, we get 〈N〉◦ � 〈R〉◦, by
↑1 (↓ω (⊕1

i∈N
{i()})) � ↑1 (↓ω (⊕1

i∈R
{i()})).

Full abstraction. In order to obtain a full abstraction result we restrict our π-
calculus, imposing sequentiality to typed processes by controlling the number of
activities compositionally as in [3]. We derive a definability result [7], that is, ev-
ery sequential process typable with the encoding a λ-typing context is equivalent
to the encoding of a term typable with that context. Using as the equivalence
on the functional side �λ Morris congruence [17] and as the equivalence of the
concurrent side �π the standard reduction-closed barbed congruence [24], we
obtain:

Theorem 18. Let M1,M2 be two λΠ,Σ,� terms, then M1 �λ M2 if and only
if 〈M1〉∅u �π 〈M1〉∅u under sequential typing.

4 Embedding Communication Subtyping

This section is dedicated to the study of the encoding of a session-based con-
current calculus πsession with synchronous interactions based on session types.
Session types abstract protocols of communicating processes as types, and ensure
their sound communication behaviour through the associated type discipline, see
[8] for a survey.

Our presentation of πsession follows [13]. In this language, names are divided
into channels u, v, . . . and sessions s, k, . . . ; we use a, b, c, . . . to denote names of
any kind. Syntax for terms is given by the following grammar:

P ::= u(x).P | u(x).P | k!l〈v〉.P | k?{li(xi).Pi}i∈I | if e then P else P

| (νa)P | P |P | (μX(x̃).P )〈ṽ〉 | X〈ṽ〉 | 0

The definition of evaluation contexts is straightforward. For brevity, we do not
include delegation, though its encoding follows that of shared name passing. The
semantics is generated from the following two base rules:

E[u(x1).P1 | u(x2).P2] → E[(νs) (P1{s/x1} | P2{s/x2})]

E[s?{(xi).Pi}i∈I | s!lj〈v〉.P ] → E[Pj{v/xj} | P ]

We use binary session types given as follows.

T, S ::= &ses
i∈I{li(Ti).Si} | ⊕ses

i∈I{li(Ti).Si} | end | ↓ses (S) | ↑ses (S) | μS.S | N |�

As in π{1,1,ω}, we use shortcuts: when I is a singleton {1}, we use ?(T1).S1

(resp. !(T1).S1) to denote &ses
i∈I{li(Ti).Si} (resp. ⊕ses

i∈I{li(Ti).Si}). Compatibility
and duality for πsession are the straightforward adaptation of those of π{1,1,ω}.
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(SOut)
Γ (u) =↑ses (T ) Γ, x : T �ses P

Γ �ses u(x).P
(SIn)

Γ (u) =↓ses (T ) Γ, x : T �ses P

Γ �ses u(x).P

(SCho)
(Γ, xi : T

′
i , s : Si �ses Pi)i∈I J ⊆ I ∀j ∈ J.T ′

j � Tj

Γ, s : &ses
i∈J{li(Ti).Si} �ses s?{li(xi).Pi}i∈I

(SSel)
Γ (v) = T ′

j Γ, s : Sj �ses P T ′
j � Tj

Γ, s : ⊕ses
i∈I{li(Ti).Si} �ses s!lj〈v〉.P

(SPar)
Γ1 �ses P1 | Γ2 �ses P2

Γ1 � Γ2 �ses P1 | P2

Fig. 5. Some of the main typing rules for πsession

Some of the key typing rules are given in Figure 5. In session types, the type
of a session name s in the prefix s!l〈v〉.P gives information not only on the type
of v but also on how the session s will be used in the continuation P .

The encodings. The encoding of πsession terms into π{1,1,ω} given in Figure 6.
The main points are that, in π{1,1,ω}, we lack both synchronous outputs and the
way to ensure that sessions behave correctly, that is, how the names in subject
positions in later prefixes of the same session, are used following the stipulated
protocol, i.e. its session type.

First, to encode the synchronous outputs, we use an administrative syn-
chronisation on a linear name. This is standard [23]: we encode a(v).P into
(νv, c) a〈v, c〉 | c.P . The new name c is output with the value v and the syn-
chronising party will emit it after inputting the message, thus activating the
guarded continuation P . Then, to make sure that sessions are encoded following
their protocols, we proceed as follows: if a session name s has type ?(S1).S2, we
create a new name k that is given type �S2�; and replace in the continuations
the name s by k. This gives an equivalent process, and the type of k is now the
encoding of the new type S2 of the session s, after one communication step. The
encoding is given by Figure 7.

Soundness of the encoding is stated in the following proposition and proved
by induction on the typing derivation.

Proposition 19. If Γ �ses P then �Γ � �π �P �.

�(νa) P � = (νa) �P � �u(x).P � = u(x, c).(c | �P �)

�u(x).P � = (νx, c) (u〈x, c〉 | c.�P �)

�k!l〈e〉.P � = (νc) (k ⊕1 l〈e, c〉 | c(s).�P �{s/k})

�k?{li(xi).Pi}i∈I� = (νs) k&1
i∈I{li(xi, c).(�Pi�{s/k} | c〈s〉)}

Fig. 6. Encoding of πsession terms
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�⊕ses
i∈I{li(Ti).Si}� = ⊕ω

i∈I{li(�Ti�, ↓1 (�Si�))}

�&ses
i∈I{li(Ti).Si}� = ⊕ω

i∈I{li(�Ti�, ↑1 (�Si�))} �↓ses (S)� =↓1 (�S�, ↑1 (�))

�↑ses (S)� =↑1 (�S�, ↓1 (�)) ��� = � �N� = N

Fig. 7. Encoding of πsession types

Example 20. As an example, consider this toy πsession process:

S = a(x).x?(z2).x!〈z2〉 | a(y).(y!〈0〉.y?(z1)

S is composed of two subprocesses, one initiates a new session through channel
a, then receives and emits, the other behaves dually. Its encoding is given by:

�S� = (νx, c)(a〈x, c〉 | c.(νk2) (x(z2, c3).(c3〈k2〉 | k2〈z2, c4〉 | c4)))
| a(y, c0).(c0 | (νc1) (y〈0, c1〉 | c1(k1).(νc2) k1(z1, c2).c2))

First, a session initialisation takes place on x (after y has been instantiated to
x with a “channel” synchronisation), but a new name k2 is later created and
transmitted in order to continue the session.

For subtyping on session types, we can closely follow π{1,1,ω}: a relation over
types R in πsession is a subtyping relation if, whenever S1 R S2, we have:

1. either S1 = S2 = N or S1 = S2 = �,
2. or (a) S1 =↓ses (S1) (resp. ↑ses (S1)), (b) S2 =↓ses (S2) (resp. ↑ses (S2)), (c)
S1 R S2

3. or (a) S1 = &ses
i∈I{li(T 1

i ).S1
i }, (b) S2 = &ses

j∈J{lj(T 2
j ).S2

j }, (c) I ⊆ J , (c)
∀j ∈ J, T 1

j R T 2
j , (d) ∀j ∈ J, S1

j R S2
j

4. or (a) S1 = ⊕ses
i∈I{li(T 1

i ).S1
i }, (b) S2 = ⊕ses

j∈J{lj(T 2
j ).S2

j }, (c) J ⊆ I, (d)
∀i ∈ I, T 1

i R T 2
i , (e) ∀i ∈ I, S1

i R S2
i

Then � is the largest subtyping relation. We can then show the subsumption is
admissible in the typing rules for πsession1.

Using the fact that branching session prefixes are encoded into branching
π{1,1,ω} prefixes, we prove the following proposition, relating subtyping in πsession

with subtyping in π{1,1,ω}.

Proposition 21 If S1 � S2, then �S1� � �S2�
1 In the subtyping, a carried type for a shared channel is covariant in both output and

input: this is because we choose each carried name to be typed as the dual of how
the other party should use it, following π{1,1,ω}. We can use the standard format
through dualisation.
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For full abstraction, we use a testing (may-must) equivalence based on [6], both
for π{1,1,ω} and πsession processes. A maximal reduction sequence starting form
P is a sequence (Pi)i≤n with n ∈ N ∪ {ω} such that P0 = P , ∀i, Pi → Pi+1 and
Pn �→.

Definition 22 We define the barbs for π{1,1,ω} and πsession as follows:

– If P ∈ π{1,1,ω}, P ⇓ a when P ≡ (νc̃) (a⊕m l〈v〉 | P1) and a /∈ c̃.
– If P ∈ πsession,
• P ⇓ u when P ≡ (νc̃) (u(v).P2 | P1) and u /∈ c̃
• and P ⇓ s when P ≡ (νc̃) (s!l〈v〉.P2 | P1) and s /∈ c̃.

We define the may observation for π{1,1,ω} and πsession as: P ⇓maya when there
exists R, P →∗ R, R �→ and R ⇓ a. We also define the must observation
for π{1,1,ω} and πsession as P ⇓musta when for all maximal reduction sequences
(Pi)i≤n, n ∈ N ∪ {ω} starting from P , Pj ⇓ a.

Using Definition 22, we define may, must and testing barbed equivalences (con-
sidering only observables from processes), denoted ∼may, ∼must and ∼test; and
the corresponding congruences (considering testers), denoted �may, �must and
�test. In both cases, testing is the conjunction of may and must.

Definition 23. P ∼may Q if for all a, P ⇓maya implies Q ⇓maya and P → P ′

implies there exists Q′ s.t. Q→∗ Q′∗ and P ′ ∼may Q
′.

P ∼must Q if for all a, P ⇓musta implies Q ⇓musta and P → P ′ implies there
exists Q′ s.t. Q→∗ Q′∗ and P ′ ∼must Q

′. Then, P ∼test Q when P ∼may Q and
P ∼must Q.

For π{1,1,ω} and πsession, we define P �may Q (resp. P �must Q) if for all
R ∈ π{1,1,ω}, (R | P ) ∼may (R | Q) (resp. (R | P ) ∼must (R | Q)). Then,
P �test Q when P �may Q and P �must Q.

Full abstraction. Lemma 24 is crucial, it shows how the original process and
its encoding are able to simulate each other. The main difficulty is that the
encoding introduces communications on new linear names.

Lemma 24. Below let P be a well-typed πsession-term.

1. If P → P ′, then there exists R, �P �→ R and R→+ �P ′�
2. If �P �→ R, then there exists P ′, P → P ′ and R→ �P ′�.
3. If (Qi)i≤n is a maximal reduction sequence starting from �P �, there exists a

maximal reduction sequence (Pi)i≤n starting from P and a strictly increasing
function φ : N→ N s.t. �Pi� ≡ Qφ(i)

The proof of 3 above concerns infinite reduction sequences. In this case, one
has first to prove that such a reduction sequence contains an infinite number of
non-linear reduction steps.

Lemma 25 (Definability). For all P ∈ π{1,1,ω}, Γ ∈ πsession s.t. �Γ � �π P ,
exists R ∈ πsession s.t. Γ �ses R and P �test �R�.
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A key idea of the proof is decoding P into a corresponding πsession-process. First,
for every e.g. output at a hidden name say a which is not hereditarily typed in
�Γ �, we replace it by an encoding of a session type, similarly for a hidden input.
Then all names in P are now typed with the encoding of session types, without
changing behaviour. We now use induction on typing rules for π{1,1,ω} to extract
the shape of encoded processes from P by induction on the size of P .

Now the computational adequacy lemma concludes the full-abstraction proof.

Lemma 26 (Adequacy). For all P ∈ πsession s.t. Γ �ses P , P ∼test �P �.
Theorem 27 (Full abstraction) Let P,Q be two πsession processes s.t. Γ �ses
P and Γ �ses Q, then P �test Q if and only if �P � �test �Q�.
Proof (Sketch). For both implications, we present only the ’may’ case, the ’must’
one is very similar.

– We take a tester K, from Lemma 26, (P | K) ∼may �P | K�. By hypothesis,
�P | K� ∼may �Q | K� and by Lemma 26, �Q | K� ∼may Q | K, hence done.

– We take a tester R, from Lemma 25, we get K s.t. R �may �K� and thus
(R | �P �) ∼may �K | P �. By Lemma 26, �K | P � ∼may (K | P ). By hypothesis,
(K | P ) ∼test (K | Q). By Lemma 26, (K | Q) ∼test �K | Q� and then,
R | �P � ∼test R | �Q�.

5 Related Work and Further Topics

In [21], the authors present both the idea of distinguishing output and input
types in the π-calculus, and the use of subtyping for controlling the right to
perform actions on a given channel. They show that this notion of subtyping
allows them to state an operational correspondence between λ-terms and the
second encoding into the π-calculus proposed in [16]. The work in [5] addresses
the question of the subtyping in a semantic way: a type T1 is a subtype of a type
T2 if the interpretation of T2 (the set of all processes that can be typed with
T2) is included into the interpretation of T1. They prove that their definition
of subtyping is decidable and present a π-calculus with dynamic type-checks.
The work in [10] first introduces to session types a notion of subtyping based on
branching. Through dualisation, the session subtyping we treated in the present
paper is essentially identical. The present work has embedded the session sub-
typing in a more fine-grained linear typing, and has shown that it leads to not
only the embedding of the subtyping but also semantic full abstraction, which
may shed light on this ordering relation and its theory. The author of [18] studies
the semantics of session-types, which contains a notion of subtyping for sessions,
called subsession, a session S1 is a subsession of S2 when for every session S, if
(S1 | S) must reach a successful state (according to a must semantics similar to
the one we use) implies that (S2 | S) must reach a successful state. This notion of
subtyping is more related to what we called compatibility ordering in Section 2.
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Our full abstraction proof for the λΠ,Σ,� embedding follows game semantics
except the subtyping and, in the context of the π-calculus, the one found in [3],
which uses both a restriction to a sequential π-calculus and the use of a finite
definability lemma.

Our full abstraction proof for the πsession embedding is inspired by the one
in [23] where the authors prove the full abstraction of a polyadic, output-
synchronous π-calculus into a monadic, output-asynchronous one. They use a
computational adequacy lemma stating that a process and its encoding are
barbed bisimilar. Together with a definability result, it leads to the full ab-
straction result, with a barbed congruence as equivalence. As a comparison, in
[23], the meta-calculus (monadic asynchronous π) is a sub-calculus of the target
calculus (polyadic synchronous π), which may have facilitated the proof based
on barbed bisimilarity. On the other hand, barbed congruence is in terms of the
branching structure finer than the testing equivalence. It is an interesting future
topic how we can obtain a similar result for such finer equivalences in the present
setting.

The calculus we propose in this paper can be easily extended to accommo-
date more features. For instance, we believe we can adapt a standard definition
of polymorphic types [26] in order to include it into our subtyping framework.
This opens the possibility of studying the encoding of subtyped System F [4], to-
gether with the polymorphic subtypes, into our calculus. We are also interested
in showing that our subtyping theory can accommodate objects. Though an en-
coding of object-oriented calculi into the π-calculus have already been proposed
(see [27] for instance) and subtyping for objects is well-studied [1], we believe the
analysis as we have carried out in this work will shed new light on their nature.
Finally, we are interested in studying how to accommodate other definitions for
subtyping for sessions, as the one presented in [19].

Acknowledgements. We thank the CONCUR referees for their useful com-
ments. This work is supported by EPSRC grants EP/F002114/1 and
EP/G015481/1.
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Abstract. We present in this paper a fine-grained rollback primitive
for the higher-order π-calculus (HOπ), that builds on the reversibility
apparatus of reversible HOπ [9]. The definition of a proper semantics for
such a primitive is a surprisingly delicate matter because of the potential
interferences between concurrent rollbacks. We define in this paper a
high-level operational semantics which we prove sound and complete with
respect to reversible HOπ backward reduction. We also define a lower-
level distributed semantics, which is closer to an actual implementation
of the rollback primitive, and we prove it to be fully abstract with respect
to the high-level semantics.

1 Introduction

Motivation and contributions. Reversible computing, or related notions, can be
found in many areas, including hardware design, program debugging, discrete-
event simulation, biological modeling, and quantum computing (see [2] and the
introduction of [10] for early surveys on reversible computing). Of particular in-
terest is the application of reversibility to the study of programming abstractions
for fault-tolerant systems. In particular, most fault tolerance schemes based on
system recovery techniques [1], including rollback/recovery schemes and transac-
tion abstractions, imply some form of undo. The ability to undo any single action
in a reversible computation model provides an ideal setting to study, revisit, or
imagine alternatives to these different schemes. This is in part the motivation
behind the recent development of the reversible process calculi RCCS [4] and
ρπ [9], with [5] showing how a general notion of interactive transaction emerges
from the introduction of irreversible (commit) actions in RCCS. However, these
calculi provide very little in the way of controlling reversibility. The notion of
irreversible action in RCCS only prevents a computation from rolling back past a
certain point. Exploiting the low-level reversibility machinery available in these
models of computation for fault-recovery purposes would require more extensive
control on the reversal of actions, including when they can take place and how
far back (along a past computation) they apply.

We present in this paper the study of a fine-grained rollback control primi-
tive, where potentially every single step in a concurrent execution can be undone.
� Partly funded by the EU project FP7-231620 HATS, the ANR-2010-SEGI-013
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Specifically, we introduce a rollback construct for an asynchronous higher-order
π-calculus (HOπ [11]), building on the machinery of ρπ, the reversible higher-
order π-calculus presented in [9]. We chose HOπ as our substrate because we find
it a convenient starting point for studying distributed programming models with
inherently higher-order features such as dynamic code update, which we aim to
combine with abstractions for system recovery and fault tolerance. Surprisingly,
finding a suitable definition for a fine-grained rollback construct in HOπ is more
difficult than one may think, even with the help of the reversible machinery from
[9]. There are two main difficulties. The first one is in actually pinning down the
intended effect of a rollback operation, especially in presence of concurrent roll-
backs. The second one is in finding a suitably distributed semantics for rollback,
dealing only with local information and not relying on complex atomic transi-
tions involving a potentially unbounded number of distinct processes.

We show in this paper how to deal with these difficulties by making the
following contributions: (i) we define a high-level operational semantics for a
rollback construct in an asynchronous higher-order π-calculus, which we prove
maximally permissive, in the sense that it makes reachable all past states in a
given computation; (ii) we present a low-level semantics for the proposed rollback
construct which can be understood as a fully distributed variant of our high-level
semantics, and we prove it to be fully abstract with respect to the high-level one.

Paper Outline. In Section 2, we informally present our rollback calculus, which
we call roll-π, and illustrate the difficulties that may arise in defining a fine-
grained rollback primitive. In Section 3, we formalize roll-π and its high-level
operational semantics. In Section 4, we present a distributed operational seman-
tics for roll-π, and we prove that it is fully abstract with respect to the high-level
one. Section 5 discusses related work and concludes the paper. The interested
reader can find proofs of the main results in [8].

2 Informal Presentation

To define roll-π and its rollback construct, we rely on the same support for
reversibility as in ρπ [9]. Let us review briefly its basic mechanisms.

Reversibility in ρπ. We attach to each process P a unique tag κ (either simple,
written as k, or composite, denoted as 〈hi, h̃〉 · k). The uniqueness of tags for
processes is achieved thanks to the following structural congruence rule that
defines how tags and parallel composition commute.

k :
n�

i=1

τi ≡ νh̃.
n�

i=1

(〈hi, h̃〉 · k : τi) with h̃ = {h1, . . . , hn} n ≥ 2 (1)

In equation (1),
n�

i=1

is n-ary parallel composition and ν is the restriction operator,

both standard from the π-calculus. Each thread τi is either a message, of the form
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a〈P 〉 (where a is a channel name), or a receiver process (also called a trigger),
of the form a(X) � P . A forward computation step (or forward reduction step,
noted with arrow �) consists of the reception of a message by a receiver process,
and takes the following form (note that ρπ is an asynchronous calculus).

(κ1 : a〈P 〉) | (κ2 : a(X) � Q) � νk. k : Q{P /X} | [M ; k] (2)

In this forward step, κ1 identifies a thread consisting of message a〈P 〉 on channel
a, and κ2 identifies a thread consisting of a trigger process a(X)�Q that expects
a message on channel a. The result of the message input yields, as usual, an
instance Q{P/X} of the body of the trigger Q with the formal parameter X
instantiated by the received value, i.e., the process P (ρπ is higher-order). Mes-
sage input also has two side effects: (i) the tagging of the newly created process
Q{P/X} by a fresh tag k, and (ii) the creation of a memory [M ; k], which records
the original two threads, M = (κ1 : a〈P 〉) | (κ2 : a(X) �Q), together with tag k.

In ρπ, a forward reduction step such as (2) above is systematically associated
with a backward reduction step (noted with arrow �) of the form:

(k : Q) | [M ; k] � M (3)

which undoes the communication between threads κ1 and κ2. When necessary to
avoid confusion, we will add a ρπ subscript to arrows representing ρπ reductions.

Given a configurationM , the set of memories present in M provides us with an
ordering :> between tags in M that reflects their causal dependency: if memory
[κ1 : P1 | κ2 : P2; k] occurs in M , then κi > k. Also, k > 〈hi, h̃〉 ·k, and we define
the relation :> as the reflexive and transitive closure of the > relation. We say
that tag κ has κ′ as a causal antecedent if κ′ :> κ.

Reversibility in roll-π. The notion of memory introduced in ρπ is in some way a
checkpoint, uniquely identified by its tag. In roll-π, we exploit this intuition to
introduce an explicit form of backward reduction. Specifically, backward reduc-
tion is not allowed by default as in ρπ, but has to be triggered by an instruction
of the form roll k, whose intent is that the current computation be rolled back to
a state just prior to the creation of the memory bearing the tag k. To be able to
form an instruction of the form roll k, one needs a way to pass the knowledge of
a memory tag to a process. This is achieved in roll-π by adding a bound variable
to each trigger process, which now takes the form a(X) �γ P , where γ is the
tag variable bound by the trigger construct and whose scope is P . A forward
reduction step in roll-π therefore is:

(κ1 : a〈P 〉) | (κ2 : a(X) �γ Q) � νk. k : Q{P,k/X,γ} | [M ; k] (4)

where the only difference with (2) lies in the fact that the newly created tag k
is passed as an argument to the trigger body Q. We write a(X) � P in place of
a(X) �γ P if the tag variable γ does not appear free in P .

Now, given the above intent for the rollback primitive roll, how does one de-
fine its operational semantics? As hinted at in the introduction, this is actually
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a subtler affair than one may expect. A big difference with ρπ, where commu-
nication steps are undone one by one, is that the k in roll k may refer to a
communication step far in the past. So the idea behind a roll k is to restore the
content of a memory [M ; k] and to delete all its forward history. Consider the
following attempt at a rule for roll:

(Naive)

N � k complete(N | [M ; k] | (κ : roll k))
N | [M ; k] | (κ : roll k) � M | N
k

The different predicates and the 
 operator used in the rule are defined formally
in the next section, but an informal explanation should be enough to understand
how the rule works. Briefly, the assertion N � k states that all the active threads
and memories in N bear tags κ that have k as causal antecedent, i.e., k :> κ (N
does not contain unrelated processes). The assertion complete(Mc) states that
configuration Mc gathers all the threads (inside or outside memories) whose tags
have as a causal antecedent the tag of a memory in Mc itself, i.e., if a memory
in Mc is of the form [M ′; k′] (the communication M ′ created a process tagged
with k′), then a process or a memory containing a process tagged with k′ has to
be in Mc (Mc contains every related process). The premises of rule Naive thus
asserts that the configuration Mc = N | [M ; k] | κ : roll k, on the left hand side
of the reduction in the conclusion of the rule, gathers all (and only) the threads
and memories which have originated from the process tagged by k, itself created
by the interaction of the message and trigger recorded in M . Being complete,
Mc is thus ready to be rolled back and replaced by the configuration M which
is at its origin. Rolling back Mc has another effect, noted as N
k in the right
hand side of the conclusion, which is to release from memories those messages
or triggers which do not have k as a causal antecedent, but which participated
in communications with causal descendants of k.

For instance, the configuration M0 = M1 | (κ2 : c(Y ) �δ Y ), where M1 =
(κ0 : a〈P 〉) | (κ1 : a(X) �γ c〈roll γ〉), has the following forward reductions (where
M2 = (k : c〈roll k〉) | (κ2 : c(Y ) �δ Y )):

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y ) �δ Y )
� νk, l. [M1; k] | [M2; l] | (l : roll k) = M3

Applying rule Naive (and structural congruence, defined later) on M3 we get:

M3 � M1 | [M2; l]
k = M1 | (κ2 : c(Y ) �δ Y ) = M0

where (κ2 : c(Y ) �δ Y ) is released from memory [M2; l] because it does not have
k as a causal antecedent.

Rule Naive looks reasonable enough, but difficulties arise when concurrent
rollbacks are taken into account. Consider the following configuration:

M = (k1 : τ1) | (k2 : a〈0〉) | (k3 : τ3) | (k4 : b〈0〉)

where1 τ1 = a(X) �γ d〈0〉 | (c(Y ) � roll γ) and τ3 = b(Z) �δ c〈0〉 | (d(U) � roll δ).
1 We assume parallel composition has precedence over trigger.
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M1 a
�� �������� M3 d

�� ��������

M a
�� ��������

b �� ��������
M ′

d
�� ��������

c �� ��������
M ′′

roll δ

��

roll γ

��

M2

b �� ��������
M4

c �� ��������

Fig. 1. Concurrent rollback anomaly

The most interesting reductions of M are depicted in Figure 1. Forward re-
ductions are labelled by the name of the channel used for communication, while
backward reductions are labelled by the executed roll instruction. The main pro-
cesses and short-cuts are detailed below:

M1 = νl2, h3, h4. σ1 | [σ2; l2] | (κ3 : c〈0〉) | (κ4 : τ4)
M2 = νl1, h1, h2. [σ1; l1] | (κ1 : d〈0〉) | (κ2 : τ2) | σ2

M ′′=νl1 . . . l3, h1 . . . h4. [σ1; l1] | [σ2; l2] | [σ3; l3] | [σ4; l4] | (l3 : roll l1) | (l4 : roll l2)

σ1 = (k1 : τ1) | (k2 : a〈0〉) σ2 = (k3 : τ3) | (k4 : b〈0〉) τ2 = c(Y ) � roll l1

σ3 = (κ2 : τ2) | (κ3 : c〈0〉) σ4 = (κ1 : d〈0〉) | (κ4 : τ4) τ4 = d(U) � roll l2

The anomaly here is that there is no way from M1 or M2 to get back to the
original configurationM , despite the fact that M ′′ has two roll instructions which
would seem sufficient to undo all the reductions which lead from M to M ′′. Note
that M1 and M2 are configurations which could both have been reached from
M . Thus rule Naive is not unsound, but incomplete or insufficiently permissive,
at least with respect to what is possible in ρπ: if we were to undo actions in M ′′

step by step, using ρπ’s backward reductions, we could definitely reach all of M ,
M1, and M2. Note that the higher-order aspects do not matter here.

The main motivation to have a complete rule comes from the fact that, in an
abstract semantics, one wants to be as liberal as possible, and not unduly restrict
implementations. If we were to pick the Naive rule as our semantics for rollback,
then a correct implementation would have to enforce the same restrictions with
respect to states reachable from backward reductions, restrictions which, in the
case of rule Naive, are both complex to characterize (in terms of conflicting
rollbacks) and quite artificial since they do not correspond to any clear execution
policy. In the next section, we present a maximally permissive semantics for
rollback, using ρπ as our benchmark for completeness.

3 The roll-π Calculus and Its High-Level Semantics

3.1 Syntax

Names, keys, and variables. We assume the existence of the following denumer-
able infinite mutually disjoint sets: the set N of names, the set K of keys, the
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P, Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | a(X) �γ P | roll k | roll γ

M, N ::= 0 | νu. M | (M | N) | κ : P | [μ; k] | [μ; k]•

κ ::= k | 〈h, h̃〉 · k
μ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) �γ Q))

a ∈ N X ∈ VP γ ∈ VK u ∈ I h, k ∈ K

Fig. 2. Syntax of roll-π

set VK of tag variables, and the set VP of process variables. The set I = N ∪K
is called the set of identifiers. We note N the set of natural integers. We let
(together with their decorated variants): a, b, c range over N ; h, k, l range over
K; u, v, w range over I; δ, γ range over VK; X,Y, Z range over VP . We note ũ a
finite set of identifiers {u1, . . . , un}.

Syntax. The syntax of the roll-π calculus is given in Figure 2 (we often add bal-
anced parenthesis around roll-π terms to disambiguate them). Processes, given
by the P,Q productions in Figure 2, are the standard processes of the asyn-
chronous higher-order π-calculus, except for the presence of the roll primitive
and the extra bound tag variable in triggers. A trigger in roll-π takes the form
a(X) �γ P , which allows the receipt of a message of the form a〈Q〉 on channel a,
and the capture of the tag of the receipt event with tag variable γ.

Processes in roll-π cannot directly execute, only configurations can. Configu-
rations in roll-π are given by the M,N productions in Figure 2. A configuration
is built up from tagged processes and memories.

In a tagged process κ : P the tag κ is either a single key k or a pair of the
form 〈h, h̃〉 · k, where h̃ is a set of keys with h ∈ h̃. A tag serves as an identifier
for a process. As in ρπ [9], tags and memories help capture the flow of causality
in a computation.

A memory is a configuration of the form [μ; k], which keeps track of the
fact that a configuration μ was reached during execution, that triggered the
launch of a process tagged with the fresh tag k. In a memory [μ; k], we call
μ the configuration part of the memory, and k the tag of the memory. The
configuration part μ = (κ1 : a〈P 〉) | (κ2 : a(X) �γ Q) of a memory records the
message a〈P 〉 and the trigger a(X)�γQ involved in the message receipt, together
with their respective thread tags κ1, κ2. A marked memory is a configuration of
the form [μ; k]•, which just serves to indicate that a rollback operation targeting
this memory has been initiated.

We note P the set of roll-π processes, and C the set of roll-π configurations. We
call agent an element of the set A = P∪C. We let (together with their decorated
variants) P,Q,R range over P ; L,M,N range over C; and A,B,C range over
A. We call thread, a process that is either a message a〈P 〉, a trigger a(X) �γ P ,
or a rollback instruction roll k. We let τ and its decorated variants range over
threads.
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Free identifiers and free variables. Notions of free identifiers and free variables
in roll-π are usual. Constructs with binders are of the following forms: νa. P
binds the name a with scope P ; νu.M binds the identifier u with scope M ; and
a(X) �γ P binds the process variable X and the tag variable γ with scope P .
We note fn(P ), fn(M), and fn(κ) the set of free names, free identifiers, and
free keys, respectively, of process P , of configuration M , and of tag κ. Note in
particular that fn(κ : P ) = fn(κ) ∪ fn(P ), fn(roll k) = {k}, fn(k) = {k} and
fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration M is closed
if it has no free (process or tag) variable. We note Pcl, Ccl and Acl the sets of
closed processes, configurations, and agents, respectively.

Initial and consistent configurations. Not all configurations allowed by the syn-
tax in Figure 2 are meaningful. For instance, in a memory [μ; k], tags occurring
in the configuration part μ must be different from the key k; if a tagged process
κ1 : roll k occurs in a configuration M , we expect a memory [μ; k] to occur in M
as well. In the rest of the paper, we only will be considering well-formed, or con-
sistent, closed configurations. A configuration is consistent if it can be derived
using the rules of the calculus from an initial configuration. A configuration is
initial if it does not contain memories, all the tags are distinct and simple (i.e.,
of the form k), and the argument of each roll is bound by a trigger.

We do not give here a syntactic characterization of consistent configurations
as it is not essential to understand the developments in this paper (the interested
reader may find some more details in [9], where a syntactic characterization of
ρπ consistent configurations is provided).

Remark 1. We have no construct for replicated processes or guarded choice in roll-π:

as in HOπ, these can easily be encoded.

Remark 2. In the remainder of the paper, we adopt Barendregt’s Variable Convention:

if terms t1, . . . , tn occur in a certain context (e.g., definition, proof), then in these terms

all bound identifiers and variables are chosen to be different from the free ones.

3.2 Operational Semantics

The operational semantics of the roll-π calculus is defined via a reduction relation
→, which is a binary relation over closed configurations (→ ⊂ Ccl × Ccl), and a
structural congruence relation ≡, which is a binary relation over processes and
configurations (≡ ⊂ P2 ∪ C2). We define evaluation contexts as “configurations
with a hole ·”, given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole ·. A congru-
ence on processes or configurations is an equivalence relation R that is closed
for general contexts: P RQ =⇒ C[P ]RC[Q] or M RN =⇒ C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and con-
figurations that satisfies the rules in Figure 3. We note t =α t′ when terms
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.ParN) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu. A

(E.NewP) (νu. A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa.P ≡ νa. κ : P

(E.TagP) k :

n�

i=1

τi ≡ νh̃.

n�

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n ≥ 2

Fig. 3. Structural congruence for roll-π

t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A stands for
νu1. . . . νun. A. We note

�n
i=1Ai for A1 | . . . | An (there is no need to indi-

cate how the latter expression is parenthesized because the parallel operator
is associative by rule E.ParA). In rule E.TagP, processes τi are threads. Re-
call the use of the variable convention in these rules: for instance, in the rule
(νu.A) | B ≡ νu. (A | B) the variable convention makes implicit the condition
u �∈ fn(B). The structural congruence rules are the usual rules for the π-calculus
(E.ParC to E.α) without the rule dealing with replication, and with the addi-
tion of two new rules dealing with tags: E.TagN and E.TagP. Rule E.TagN is
a scope extrusion rule to push restrictions to the top level. Rule E.TagP allows
to generate unique tags for each thread in a configuration. An easy induction on
the structure of terms provides us with a kind of normal form for configurations
(by convention

�
i∈I Ai = 0 if I = ∅, and [μ; k]◦ stands for [μ; k] or [μ; k]•):

Lemma 1 (Thread normal form). For any configuration M , we have

M ≡ νũ.
�

i∈I

(κi : ρi) |
�

j∈J

[μj ; kj ]◦

with ρi = 0, ρi = roll ki, ρi = ai〈Pi〉, or ρi = ai(Xi) �γi Pi.

We say that a binary relation R on closed configurations is evaluation-closed if
it satisfies the inference rules:

(R.Ctx)

M R N

E[M ] R E[N ]
(R.Eqv)

M ≡M ′ M ′ R N ′ N ′ ≡ N
M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation �: → = � ∪ �.
Relations � and � are defined to be the smallest evaluation-closed binary re-
lations on closed configurations satisfying the rules in Figure 4 (note again the
use of the variable convention: in rule H.Com the key k is fresh).

The rule for forward reduction H.Com is the standard communication rule
of the higher-order π-calculus with three side effects: (i) the creation of a new
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(H.Com)

μ = (κ1 : a〈P 〉) | (κ2 : a(X) �γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) �γ Q) � νk. (k : Q{P,k/X,γ}) | [μ; k]

(H.Start) (κ1 : roll k) | [μ; k] � (κ1 : roll k) | [μ; k]•

(H.Roll)

N � k complete(N | [μ; k])

N | [μ; k]• � μ | N�k

Fig. 4. Reduction rules for roll-π

memory to record the configuration that gave rise to it; (ii) the tagging of the
continuation of the message receipt with the fresh key k; (iii) the passing of
the newly created tag k as a parameter to the newly launched instance of the
trigger’s body Q.

Backward reduction is subject to the rules H.Roll and H.Start. Rule H.Roll

is similar to rule Naive defined in the previous section, except that it relies on the
presence of a marked memory instead of on the presence of the process κ : roll k
to roll back a given configuration. Rule H.Start just marks a memory to enable
rollback.

The definition of rule H.Roll exploits several predicates and relations which
we define below.

Definition 1 (Causal dependence). Let M be a configuration and let TM be
the set of tags occurring in M . The binary relation >M on TM is defined as the
smallest relation satisfying the following clauses:

– k >M 〈hi, h̃〉 · k;
– κ′ >M k if κ′ occurs in μ for some memory [μ; k]◦ that occurs in M .

The causal dependence relation :>M is the reflexive and transitive closure of
>M .

Relation κ :>M κ′ reads “κ is a causal antecedent of κ′ according to M”. When
configuration M is clear from the context, we write κ :> κ′ for κ :>M κ′.

Definition 2 (κ dependence). Let M ≡ νũ.
�

i∈I κi : ρi |
�

j∈J [μj ;κj ]◦.
Configuration M is κ-dependent, written M � κ, if ∀i ∈ I ∪ J, κ :>M κi.

We now define the projection operation on configurationsM
κ, that captures the
parallel composition of all tagged processes that do not depend on κ occurring
in memories in M .

Definition 3 (Projection). Let M ≡ νũ.
�

i∈I(κi : ρi) |
�

j∈J [μj ;κj]◦, with
μj = κ′j : Rj | κ′′j : Tj. Then:

M
κ = νũ. (
�

j′∈J′
κ′j′ : Rj′ ) | (

�

j′′∈J′′
κ′′j′′ : Tj′′)
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where J ′ = {j ∈ J | κ �:> κ′j} and J ′′ = {j ∈ J | κ �:> κ′′j }.

Finally we define the notion of complete configuration, used in the premise of
rule H.Roll.

Definition 4 (Complete configuration). A configuration M contains a tag-
ged process κ : P , written κ : P ∈M , if M ≡ νũ. (κ : P ) | N or M ≡ νũ. [κ : P |
κ1 : Q; k]◦ | N .

A configuration M is complete, noted complete(M), if for each memory
[μ; k]◦ that occurs in M , one of the following holds:

1. There exists a process P such that k : P ∈M .
2. There is h̃ such that for each hi ∈ h̃ there exists a process Pi such that
〈hi, h̃〉 · k : Pi ∈M .

Barbed bisimulation. The operational semantics of the roll-π calculus is com-
pleted classically by the definition of a contextual equivalence between configu-
rations, which takes the form of a barbed congruence. We first define observables
in configurations. We say that name a is observable in configuration M , noted
M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a �∈ ũ. Keys are not observable: this is
because they are just an internal device used to support reversibility. We note
⇒, �∗, �∗ the reflexive and transitive closures of →, �, and �, respectively.

One of the aims of this paper is to define a low-level semantics for roll-π, and
show that it is equivalent to the high-level one. We want to use weak barbed
congruence for this purpose. Thus we need a definition of barbed congruence
able to relate roll-π configurations executed under different semantics. These se-
mantics will also rely on different runtime syntaxes. Thus, we define a family of
relations, each labeled by the semantics to be used on the left and right compo-
nents of its elements. We also label sets of configurations with the corresponding
semantics, thus highlighting that the corresponding runtime syntax has to be
included. However, contexts do not include runtime syntax, since we never add
contexts at runtime.

Definition 5 (Barbed bisimulation and congruence). A relation s1Rs2 ⊆
Ccl

s1 × Ccl
s2 on closed consistent configurations is a strong (resp. weak) barbed

simulation if whenever M s1Rs2N

– M ↓a implies N ↓a (resp. N ⇒s2↓a)
– M →s1 M ′ implies N →s2 N ′, with M ′s1Rs2N

′ (resp. N ⇒s2 N ′ with
M ′s1Rs2N

′)

A relation s1Rs2 ⊆ Ccl
s1 × Ccl

s2 is a strong (resp. weak) barbed bisimulation if
s1Rs2 and (s1Rs2)−1 are strong (resp. weak) barbed simulations. We call strong
(resp. weak) barbed bisimilarity and note s1∼s2 (resp. s1≈s2) the largest strong
(resp. weak) barbed bisimulation with respect to semantics s1 and s2.

We say that two configurations M and N are strong (resp. weak) barbed
congruent, written s1∼c

s2 (resp. s1≈c
s2), if for each roll-π context C such that

C[M ] and C[N ] are consistent, then C[M ] s1∼s2 C[N ] (resp. C[M ] s1≈s2 C[N ]).
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3.3 Soundness and Completeness of Backward Reduction in roll-π

We present in this section a Loop Theorem, that establishes the soundness of
backward reduction in roll-π, and we prove the completeness (or maximal per-
missiveness) of backward reduction in roll-π.

Theorem 1 (Loop Theorem - Soundness of backward reduction). For
any (consistent) configurations M and M ′ with no marked memories, if M �∗

M ′, then M ′ �∗ M .

To state the completeness result for backward reduction in roll-π, we define a
family of functions φe : Croll-π → Cρπ, where e ∈ N , mapping a roll-π configura-
tion to a ρπ configuration. Function φe is defined by induction as follows:

φe(νu.A) = νu. φe(A) φe(A | B) = φe(A) | φe(B) φe(κ : P ) = κ : φe(P )
φe([μ; k]�) = [φe(μ); k] φe(0) = 0 φe(X) = X

φe(roll k) = e〈0〉 φe(roll γ) = e〈0〉 φe(a〈P 〉) = a〈φe(P )〉
φe(a(X) �γ P ) = a(X) � φe(P )

Note that roll instructions are transformed not into 0 but into a thread e〈0〉: this
is to ensure a consistent roll-π configuration is transformed into a consistent ρπ
configuration (recall that 0 is not a thread, thus it may be collected by structural
congruence and there would be no thread corresponding to the roll k process).

We now state that roll-π is maximally permissive: any subset of roll primitives
in evaluation context may successfully be executed, unlike in the naive example
of Section 2. Let M = νũ. [μ; k] | (k : P ) | N be a ρπ configuration and S =
{k1, . . . , kn} a set of keys. We note M �S M ′ if M �ρπ M ′, M ′ = νũ. μ | N ,
and ki :> k for some ki ∈ S (here k is the key of the memory [μ; k] consumed by
the reduction). If M ′ ��S , we say that M ′ is final with respect to S. We note �∗S
the reflexive and transitive closure of �S . We assume here that reductions are
name-preserving, i.e., existing keys are not α-converted (cf. [9] for a discussion
on the topic).

Theorem 2 (Completeness of backward reduction). Let M be a (con-
sistent) roll-π configuration such that M ≡ νũ.

�n
i=1 κi : roll ki | M1, let

S = {k1, . . . , kn}, and let e ∈ N \ fn(M). Then for all T ⊆ S, if φe(M) �∗T N
and N is final with respect to T , there exists M ′ such that N = φe(M ′), and
M �∗roll-π M

′.

4 A Distributed Semantics for roll-π

The semantics defined in the previous section captures the behavior of rollback,
but its H.Roll rule specifies an atomic action involving a configuration with an
unbounded number of processes and relies on global checks on this configuration,
for verifying that it is complete and κ-dependent. This makes it arduous to
implement, especially in a distributed setting.
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(L.Com)

μ = (κ1 : a〈P 〉) | (κ2 : a(X) �γ Q)

(κ1 : a〈P 〉) | (κ2 : a(X) �γ Q) �LL νk. (k : Q{P,k/X,γ}) | [μ; k]

(L.Start) (κ1 : roll k) | [μ; k] �LL (κ1 : roll k) | [μ; k]• | rl k

(L.Span) rl κ1 | [κ1 : P | M ; k]◦ �LL [�κ1 : P� | M ; k]◦ | rl k

(L.Branch)

〈hi, h̃〉 · k occurs in M

rl k | M �LL

�

hi∈h̃

rl 〈hi, h̃〉 · k | M

(L.Up) rl κ1 | (κ1 : P ) �LL �κ1 : P� (L.Stop) [μ; k]◦ | �k : P� �LL μ

Fig. 5. Reduction rules for LL

(E.Gb1) νk. rl k ≡LL 0 (E.Gb2) νk.
�

hi∈h̃

rl 〈hi, h̃〉 · k ≡LL 0

(E.TagPFr) �k :

n�

i=1

τi� ≡LL νh̃.

n�

i=1

�(〈hi, h̃〉 · k : τi)� h̃ = {h1, . . . , hn} n ≥ 2

Fig. 6. Additional structural laws for LL

We thus present in this section a low-level (written LL) semantics, where
the conditions above are verified incrementally by relying on the exchange of rl
notifications. We show that the LL semantics captures the same intuition as the
one introduced in Section 3 by proving that given a (consistent) configuration,
its behaviors under the two semantics are weak barbed congruent according to
Definition 5.

To avoid confusion between the two semantics, we use a subscript LL to
identify all the elements (reductions, structural congruence, . . . ) referred to the
low-level semantics presented here, and HL (for high-level) for the semantics
described in Section 3.

The LL semantics→LL of roll-π is defined as for the HL one (cf. Section 3.2),
as →LL = �LL ∪ �LL, where relations �LL and �LL are defined to be the
smallest evaluation-closed binary relations on closed LL configurations satisfying
the rules in Figure 5. The notion of structural congruence used in the definition
of evaluation-closed is here the smallest congruence on LL processes and config-
urations that satisfies the rules in Figure 3 and in Figure 6.

LL configurations differ from HL configurations in two aspects. First, tagged
processes (inside or outside memories) can be frozen, denoted �κ : P�, to indicate
that they are participating to a rollback (rollback is no longer atomic). Second,
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LL configurations include notifications of the form rl κ, used to notify a tagged
process with key κ to enter a rollback.

Let us describe the LL rules. Communication rule L.Com is as before. The
main idea for rollback is that when a memory pointed by a roll is marked (rule
L.Start), a notification rl k is generated. This notification is propagated by
rules L.Span and L.Branch. Rule L.Span also freezes threads inside memories,
specifying that they will be eventually removed by the rollback. Rule L.Branch

(where the predicate “κ occurs in M” means that either M = κ : P or M =
[μ; k′]◦ with κ : P ∈ M) is used when the target configuration has been split
into multiple threads: a notification has to be sent to each of them. Rule L.Up

is similar to L.Span, but it applies to tagged processes outside memories. It also
stops the propagation of the rl notification. The main idea is that by using rules
L.Span, L.Branch, and L.Up one is able to tag all the causal descendants of
a marked memory. Finally, rule L.Stop rolls back a single computation step
by removing a frozen process and freeing the content of the memory created
with it. In the LL semantics a rollback request is thus executed incrementally,
while it was atomic in the HL semantics (rule H.Roll). The LL semantics also
exploits an extended structural congruence, adding axioms E.Gb1 and E.Gb2

to garbage collect rl notifications when they are no more needed, and extending
axiom E.TagP to deal with frozen threads (axiom E.TagPFr).

We now show an example to clarify the semantics (each reduction is labeled
by the name of the axiom used to derive it). Let M0 = M1 | (κ2 : c(Y ) �δ Y ),
where M1 = (κ0 : a〈P 〉) | (κ1 : a(X) �γ c〈roll γ〉). We have:

M0 � νk. [M1; k] | (k : c〈roll k〉) | (κ2 : c(Y ) �δ Y )
(L.Com) � νk, l. [M1; k] | [M2; l] | (l : roll k)

(L.Start) � νk, l. [M1; k]• | [M2; l] | (l : roll k) | rl k
(L.Span) � νk, l. [M1; k]• | [M ′2; l] | (l : roll k) | rl l

(L.Up) � νk, l. [M1; k]• | [M ′2; l] | �(l : roll k)�
(L.Stop) � νk. [M1; k]• |M ′2
(L.Stop) � M1 | (κ2 : c(Y ) �δ Y )

where:

M2 = (k : c〈roll k〉) | (κ2 : c(Y ) �δ Y ) M ′2 = �(k : c〈roll k〉)� | (κ2 : c(Y ) �δ Y )

One can see that the rollback operation starts with the application of the rule
L.Start, whose effects are (i) to mark the memory aimed by a roll process, and
(ii) to generate a notification rl k to freeze its continuation. Since the continuation
of the memory [M1; k] is contained in the memory [M2; l] then the rule L.Span

is applied. So, the part of the memory containing the tag k gets frozen and
a freeze notification rl l is generated. The notification eventually reaches the
process l : roll k and freezes it (rule L.Up). Now, since there exists a memory
whose continuation is a frozen process, we can apply the rule L.Stop, and free
the configuration part of the memory (M ′2). Again, we have that the continuation
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of [M1; k] is a frozen process and by applying the rule L.Stop we can free the
configuration M1, obtaining the initial configuration. In general, a rollback of a
step whose memory is tagged by k is performed by executing a top-down visit
of its causal descendants, freezing them, followed by a bottom-up visit undoing
the steps one at the time.

We can now state the correspondence result between the two semantics.

Theorem 3 (Correspondence between HL and LL). For each roll-π HL
consistent configuration M , M HL≈c

LL M .

Proof. The proof is quite long and technical, and relies on a several additional
semantics used as intermediate steps from HL to LL. It can be found in [8]. ��

This result can be easily formulated as full abstraction. In fact, the encoding
j from HL configurations to LL configurations defined by the injection (HL
configurations are a subset of LL configurations) is fully abstract.

Corollary 1 (Full abstraction). Let j be the injection from HL (consistent)
configurations to LL configurations and let M , N be two HL configurations. Then
we have j(M) LL≈c

LL j(N) iff M HL≈c
HL N .

Proof. From Theorem 3 we have M HL≈c
LL j(M) and N HL≈c

LL j(N). The
thesis follows by transitivity. ��

The results above ensure that the loss of atomicity in rollback preserves the
reachability of configurations yet does not make undesired configurations reach-
able.

5 Related Work and Conclusion

We have introduced in this paper a fine-grained undo capability for the asyn-
chronous higher-order π-calculus, in the form of a rollback primitive. We present
a simple but non-trivial high-level semantics for rollback, and we prove it both
sound (rolling back brings a concurrent program back to a state that is a proper
antecedent of the current one) and complete (rolling back can reach all an-
tecedent states of the current one). We also present a lower-level distributed
semantics for rollback, which we prove to be fully abstract with respect to the
high-level one. The reversibility apparatus we exploit to support our rollback
primitive is directly taken from our reversible HOπ calculus [9].

Undo or rollback capabilities in programming languages have been the subject
of numerous previous works and we do not have the space to review them here;
see [10] for an early survey in the sequential setting. Among the recent works
that have considered undo or rollback capabilities for concurrent program execu-
tion, we can single out [3] where logging primitives are coupled with a notion of
process group to serve as a basis for defining transaction abstractions, [12] which
introduces a checkpoint abstraction for functional programs, and [7] which ex-
tends the actor model with constructs to create globally-consistent checkpoints.
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Compared to these works, our rollback primitive brings immediate benefits: it
provides a general semantics for undo operations which is not provided in [3];
thanks to the fine-grained causality tracking implied by our reversible substrate,
our roll-π calculus does not suffer from uncontrolled cascading rollbacks (domino
effect) which may arise with [12], and, in contrast to [7], provides a built-in guar-
antee that, in failure-free computations, rollback is always possible and reaches
a consistent state (soundness of backward reduction).

Our low-level semantics for rollback, being a first refinement towards an imple-
mentation, is certainly related to distributed checkpoint and rollback schemes,
in particular to the causal logging schemes discussed in the survey [6]. A thor-
ough analysis of this relationship must be left for further study, however, as it
requires a proper modeling of site and communication failures, as well as an
explicit model for persistent data.
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Abstract. A quite flourishing research thread in the recent literature
on component-based system is concerned with the algebraic properties
of various kinds of connectors for defining well-engineered systems. In a
recent paper, an algebra of stateless connectors was presented that con-
sists of five kinds of basic connectors, plus their duals. The connectors
can be composed in series or in parallel and employing a simple 1-state
buffer they can model the coordination language Reo. Pawel Sobocin-
ski employed essentially the same stateful extension of connector algebra
to provide semantics-preserving mutual encoding with some sort of ele-
mentary Petri nets with boundaries. In this paper we show how the tile
model can be used to extend Sobocinski’s approach to deal with P/T
nets, thus paving the way towards more expressive connector models.

1 Introduction

It is now widely acclaimed that software architectures are centred around three
main kinds of elements, namely processing elements (also called components),
data elements and connecting elements (also called connectors) [18]. The idea
is to assemble simple, separately developed, components that exchange data
items by synthesizing the appropriate glue code, i.e., by linking components via
connectors. Connectors must take care of all those aspects that lie outside of the
scopes of individual components. Thus, connectors are first class entities and
assessing rigorous mathematical theories for them is of crucial relevance for the
analysis of component-based systems.

Connectors can live at different levels of abstraction (architecture, software,
processes) and several kinds of connectors have been studied in the literature [1,
13, 8, 5, 4]. Here we focus on the approach initiated in [7] and continued in [8],
where a basic algebra of stateless connectors was presented. It consists of five
kinds of basic connectors (plus their duals), namely symmetry, synchronization,
mutual exclusion, hiding and inaction. The connectors can be composed in se-
ries or in parallel and the resulting circuits are equipped with a normal form
axiomatization. These circuits are quite expressive: they can model the coordi-
nation aspects of the architectural design language CommUnity [13] and, using
in addition a simple 1-state buffer, the coordination language Reo [1] (see [2]).
� Research supported by the EU Integrated Project 257414 ASCENS, the Italian
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In [22], Pawel Sobocinski employed essentially the same stateful extension of
the connector algebra to compose Condition-Event (C/E) Petri nets (with con-
sume/produce loops). Surprisingly enough, the proposed operations are quite
different than those of CCS-like process calculi usually employed for making Petri
nets compositional, and closer to approaches like Reo and the tile model [14].
Technically speaking, the contribution in [22] can be summarized as follows.
C/E nets with boundaries are first introduced that can be composed in series
and in parallel and come equipped with a bisimilarity semantics. Then, a suit-
able instance of the wire calculus from [21] is presented, called Petri calculus,
that roughly models circuit diagrams with one-place buffers and interfaces. The
first result enlightens a tight semantics correspondence: it is shown that a Petri
calculus process can be defined for each net such that the translation preserves
and reflects the semantics. The second result provides the converse translation,
from Petri calculus to nets. Unfortunately, some problems arise in this direc-
tion that complicate a compositional definition of the encoding: Petri calculus
processes must be normalized before the translation via a set of transformation
rules that add new buffers to the circuit (and thus new places to the net).

In this paper we show how to exploit the tile model to provide an answer
to the challenge posed by Sobocinski by the end of [22], namely to extend the
correspondence result to deal with Place/Transition Petri nets with boundaries
(where places can store more than one token and where arcs are weighted).
Moreover, we are able to provide a more elegant (compositional) translation from
the tile model to P/T nets that neither involves normalizing transformation, nor
introduces additional places. The technical key to achieve the main result is the
monoidality of the so-called vertical composition of tiles. For this reason, we
conjecture that our results are unlikely to be achieved in the framework of [22],
unless analogous structure is over-imposed on the Petri calculus.

Structure of the paper In § 2 we recall the basic notions of tile systems, Petri
nets and [22]. In § 3 we introduce P/T nets with boundaries. In § 4 we define
a tile system, called Petri tile calculus, where P/T nets with boundaries can
be encoded via a semantics-preserving and -reflecting translation. In § 5 we
show that the converse encoding is also possible and that it can be defined in a
compositional way. This establishes a tight correspondence result: the Petri tile
calculus and P/T nets with boundaries have the same expressive power. Related
work is discussed in § 6 and some concluding remarks can be found in § 7.

2 Background

2.1 The Tile Model

The tile model [14] offers a flexible, rule-based semantic setting for concurrent
systems [17, 12, 10, 9, 2]. A tile A : s a−→

b
t is a rewrite rule stating that the initial

configuration s can evolve to the final configuration t via A, producing the effect
b; but the step is allowed only if the ‘arguments’ of s can contribute by producing
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(i)

i1
s ��

a 		 A

i2
b		

i3
t
�� i4

(ii)
◦ ��

		 A

◦ ��

		 B

◦
		◦ �� ◦ �� ◦

(iii)

◦ ��

		 A

◦
		◦ ��

		 B

◦
		◦ �� ◦

(iv)

◦ ��

		
◦
		◦ ��

		
◦
		

B

◦ �� ◦
◦ ��A ◦

Fig. 1. Examples of tiles and their composition

a, which acts as the trigger of A (see Fig. 1(i)). Triggers and effects are called
observations and tile vertices are called interfaces.

Tiles can be composed horizontally, in parallel, or vertically. The horizontal
composition A;B coordinates the evolution of the initial configuration of A with
that of B, ‘synchronizing’ their rewrites (see Fig. 1(ii)). The vertical composition
A∗B is the sequential composition of computations (see Fig. 1(iii)). The parallel
composition A⊗B builds concurrent steps (see Fig. 1(iv)).

Roughly, the semantics of concurrent systems can be expressed via tiles when:
i) configurations are equipped with sequential composition s; t (defined when
the output interface of s matches the input interface of t), with identities for
each interface and with a monoidal tensor product s⊗ t (associative, with unit
and distributing over sequential composition); ii) observations have analogous
structure a; b and a⊗ b; iii) the interfaces of configurations and of observations
are the same. Technically, we require that configurations and observations form
two monoidal categories H and V with the same underlying set of objects.

Definition 1 (Tile system). A tile system is a tuple R = (H,V , N,R) where
H and V are monoidal categories over the same set of objects, N is the set of
rule names and R : N → H×V ×V ×H is a function such that for all A ∈ N , if
R(A) = 〈s, a, b, t〉, then the sources and targets of s, a, b, t match as in Fig. 1(i).

The categories H and V are typically those freely generated from some (sorted,
hyper-)signatures ΣH and ΣV , i.e., from sorted families of symbols f : τi → τo.
Their objects are words on the sort alphabet S, which must be common to the
signatures ΣH and ΣV , i.e., τi, τo ∈ S∗. Identity arrows idτ : τ → τ (and possibly
other auxiliary arrows) are introduced by the free construction.

Our main contribution exploits the fact that, by the functoriality of the
monoidal product imposed by the free construction, we have (f ⊗ g); (f ′⊗ g′) =
(f ; f ′) ⊗ (g; g′) for any arrows (either all configurations or all observations)
f, f ′, g, g′ such that f ; f ′ and g; g′ are well-defined. In particular, for a : τi → τo
and a′ : τ ′i → τ ′o, we have (id τi ⊗ a′); (a⊗ idτ ′

o
) = a⊗ a′ = (a⊗ id τ ′

i
); (id τo ⊗ a′).

Like rewrite rules in rewriting logic, tiles can be seen as sequents of tile logic:
the sequent s a−→

b
t is entailed by R, written R � s a−→

b
t, if it can be obtained

by horizontal, parallel, and vertical composition of some basic tiles in R plus
identities tiles id a−→

a
id and s

id−→
id

s (and possibly other auxiliary tiles). The

“borders” of composed sequents are defined in Fig. 2.
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s
a−→
b

t h
b−→
c

f

s; h
a−→
c

t; f
(hor)

s
a−→
b

t h
c−→
d

f

s ⊗ h
a⊗c−−→
b⊗d

t ⊗ f
(par)

s
a−→
b

t t
c−→
d

h

s
a;c−−→
b;d

h
(ver)

Fig. 2. Main inference rules for tile logic

Tiles express the reactive behavior of configurations in terms of trigger+effect
labels. In this context, the usual notion of bisimilarity is called tile bisimilarity
(�t). Note that s �t t only if s and t have the same input-output interfaces.

Definition 2 (Tile bisimilarity). Let R = (H,V , N,R) be a tile system. A
symmetric relation ∼t on configurations is called a tile bisimulation if whenever
s ∼t t and R � s a−→

b
s′, then t′ exists such that R � t a−→

b
t′ and s′ ∼t t

′. The

largest tile bisimulation is called tile bisimilarity and it is denoted by �t.

Lemma 1 (cfr. [14]). A tile system R = (H,V , N,R) enjoys the basic source
property if for each A ∈ N if R(A) = 〈s, a, b, t〉, then s ∈ ΣH.

If a tile system R enjoys the basic source property, then tile bisimilarity is a
congruence for R (w.r.t. ; and ⊗ ).

2.2 Nets with Boundaries

Petri nets [19] consist of places (i.e. resources types), which are repositories of
tokens (i.e., resource instances), and transitions that remove and produce tokens.

Definition 3 (Net). A net N is a 4-tuple N = (SN , TN ,
◦−N ,−◦N) where SN

is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions, t, t′, . . .
(with SN ∩ TN = ∅), and the functions ◦−N ,−◦N : TN → ℘f(SN ) assign finite
sets of places, called respectively source and target, to each transition.

Places of a Place/Transition net (P/T net) can hold zero, one or more tokens
and arcs are weighted. The state of a P/T net is described in terms of markings,
i.e., (finite) multisets of tokens available in the places of the net. Given a set S, a
multiset over S is a function m : S → N (where N is the set of natural numbers).
We writeMS for the set of all finite multisets over S, ∅ for the empty multiset,
s ∈ S for the singleton {s}, and ns for the multiset with n instances of s. The
multiset union ⊕ is defined such that (m1 ⊕m2)(a) = m1(a) +m2(a) for all a.

Definition 4 (P/T net). A marked place / transition Petri net (P/T net) is
a tuple N = (SN , TN ,

◦−N ,−◦N ,m0N ) where SN is a set of places, TN is a set
of transitions, the functions ◦−N ,−◦N : TN → MSN assign respectively, preset
and postset to each transition, and m0N ∈MSN is the initial marking.

We often omit subscripts when they are clear from the context and denote t ∈ T
simply as ◦t[〉t◦. For U : T → N we let ◦U =

⊕
t∈U

◦t and U◦ =
⊕

t∈U t
◦.
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Definition 5 (Semantics). Let t ∈ T , m,m′ ∈MS and U ∈MT . We let:

m[t〉m′ def= ∀a ∈ S : ◦t(a) ≤ m(a) and m′(a) = m(a)− ◦t(a) + t◦(a)

m[U〉m′ def= ∀a ∈ S : ◦U(a) ≤ m(a) and m′(a) = m(a)− ◦U(a) + U◦(a)

Let N,N ′ be P/T nets. A pair f = (fS : SN → SN ′ , fT : TN → TN ′) is a net
homomorphism from N to N ′ (written f : N → N ′) if fS(◦(t)N ) = ◦(fT (t))N ′

and fS((t)◦N ) = (fT (t))◦N ′ . Given f : S → S′ (or even f : S →MS′) we denote
the homomorphic extension of f to MS with the symbol f itself, i.e., we let
f(m1 ⊕m2) = f(m1)⊕ f(m2) and f(∅) = ∅.

Definition 6 (Causal net and process). A net K = (SK , TK , δ0K , δ1K) is a
causal net (also called deterministic occurrence net) if it is acyclic and ∀t0 ∈
TK , ∀t1 �= t0, δiN (t0) ∩ δiN (t1) = ∅, for i = 0, 1.

A process for a P/T net N is a net morphism P from a causal net K to N .

Two processes P : K → N and P ′ : K ′ → N are isomorphic, written P ≈ P ′,
if there exists a net isomorphism ψ : K → K ′ such that ψ;P ′ = P . We let [P ]≈
denote the equivalence class of P w.r.t. ≈.

Given a process P : K → N , the set of origins and destinations of P are
defined as O(P ) = ◦K ∩ SK and D(P ) = K◦ ∩ SK , respectively. We write ◦P
and P ◦ for the multisets denoting the initial and final markings of the process,
i.e. ◦P = P (O(P )) and P ◦ = P (D(P )). Moreover, as isomorphisms respect
initial and final markings, we say that O(ξ) = ◦P , D(ξ) = P ◦, for ξ = [[P ]]≈.

Definition 7 (Connected process). A deterministic process P : K → N is
a connected process if TK is non-empty, and for all t0, t1 ∈ TK there exists an
undirected path (w.r.t. the flow relation) connecting t0 and t1.

The remaining of this section recalls the composable nets proposed in [22]. Due
to space limitation, we refer to [22] for a detailed presentation. In the following
we let k, l, m, n range over finite ordinals: n def= {0, 1, . . . , n− 1}.

Definition 8 (Nets with boundaries). Let m,n ∈ N. A net with boundaries
N : m→ n is a tuple N = (S, T, ◦−,−◦, •−,−•,m0) where (S, T, ◦−,−◦,m0) is
a net and functions •− : T → ℘f(m) and −• : T → ℘f(n) assign transitions to
the left and right boundaries of N .

Figure 3 shows two different nets with boundaries. Places are circles and a mark-
ing is represented by the presence or absence of tokens; rectangles are transitions
and arcs stand for pre and postset relations. The left interface (right interface)
is depicted by points situated on the left (respectively, on the right). Figure 3(a)
shows the net P : 2 → 2 containing two places, two transitions and one token.
Net Q is similar to P , but has a different initial marking.

Nets with boundaries can be composed in parallel and in series. Given N :
m → n and M : k → l, their tensor product is the net N ⊗M : m+ k → n+ l
whose sets of places and transitions are the disjoint union of the corresponding
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Fig. 3. Two nets with with boundaries

sets in N and M , whose maps ◦−,−◦, •−,−• are defined according to the maps
in N and M and whose initial marking is m0N ⊕ m0M . Intuitively, the tensor
product corresponds to put the nets N and M side-by-side.

The sequential composition N ;M : m → k of N : m → n and M : n → k
is slightly more involved. Intuitively, transitions attached to the left or right
boundaries can be seen as transition fragments, that can be completed by at-
taching other complementary fragments to that boundary. When two transition
fragments in N share a boundary node, then they are two mutually exclusive
options for completing a fragment of M attached to the same boundary node.
Thus, the idea is to combine the transitions of N with that of M when they
share a common boundary, as if their firings were synchronized. As in general
several combinations are possible, only minimal synchronizations are selected,
because the other can be recovered as concurrent firings.

2.3 Petri Calculus

Petri Calculus [22] extends the calculus of stateless connectors [8] with one-place
buffers. Terms of the Petri Calculus are defined by the grammar in Fig. 4.

Any term has a unique associated sorting of the form (k, l) with k, l ∈ N, that
intuitively declare the left (input) interface and the right (output) interface. The
type of constants are as follows: ©, ©· , and I have type (1, 1), X : (2, 2), ∇ and
∧ have type (1, 2) and their duals

∇

and ∨ have type (2, 1), ⊥ and ↓ have type
(1, 0) and their duals % and ↑ have type (0, 1).

Inference rules for sorts are in Fig. 5. Operational semantics is defined by the
rules in Fig. 6, where the labels of transitions are strings of 0 and 1, all transitions
are sort-preserving, and if P a−→

b
Q with P,Q : (n,m), then |a| = n and |b| = m.

Notably, bisimilarity induced by such a transition system is a congruence.
For example, let P def= (∇⊕∇); (©· ⊕X⊕©); (

∇⊕ ∇

) and Q def= (∇⊕∇); (©⊕
X⊕©· ); (

∇⊕ ∇

). Clearly both P and Q have type (2, 2). The only moves for P
are P 00−→

00
P and P 01−→

10
Q while the only moves for Q are Q 00−→

00
Q and Q 10−→

01
P .

It is immediate to note that P and Q are the terms corresponding to the nets
in Fig. 3 and that Q is bisimilar to X;P ; X.

A close correspondence between nets with boundaries and Petri calculus terms
is established in [22]. First, it is shown that any net N : m → n with initial
marking X can be associated with a term TN,X : (m,n) that preserves and
reflects the semantics of N . Conversely, for any term t : (m,n) of the Petri
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P ::= © | ©· | I | X | ∇ | ∇| ⊥ | � | ∧ | ∨ | ↓ | ↑ | P ⊕ P | P ; P

Fig. 4. Petri calculus grammar

� P : (k, l) � R : (m, n)

� P ⊕ R : (k + m, l + n)

� P : (k, n) � R : (n, l)

� P ; R : (k, l)

Fig. 5. Sort inference rules

© 1−→
0

©· ©· 0−→
1

© ©· 1−→
1

©· I
1−→
1

I ∇ 1−→
11

∇ ∇11−→
1

∇ ⊥ 1−→ ⊥ � −→
1

�

a, b ∈ {0, 1}
X

ab−→
ba

X

a ∈ {0, 1}
∧ 1−−−−→

(1−a)a
∧

a ∈ {0, 1}
∨ (1−a)a−−−−→

1
∨

P
a−→
c

Q R
c−→
b

S

P ; R
a−→
b

Q; S

P
a−→
b

Q R
c−→
d

S

P ⊗ R
ac−→
bd

Q ⊗ S

P : (m, n)

P
0m−−→
0n

P

Fig. 6. Operational semantics for the Petri Calculus

calculus there exists a bisimilar net Nt : m → n. Due to space limitation we
omit details here and refer the interested reader to [22]. We remark here that the
encoding from Petri calculus to nets with boundaries has been defined only for a
subclass of terms, called composable, which have been characterized structurally.
The correspondence result holds because it is possible to transform any term t
into a bisimilar composable term t′ by using a suitable set of normalizing axioms
that may add new filled places ©· to t′ and therefore to Nt′ .

3 P/T Nets with Boundaries

This section defines a version of composable P/T following the line proposed
in [22]. It is immediate to check that our definitions generalize the ones in [22].

Definition 9 (P/T net with boundaries). Let m,n ∈ N. A P/T net with
boundaries N : m → n is a tuple N = (S, T, ◦−,−◦, •−,−•,m0) such that
(S, T, ◦−,−◦,m0) is a P/T net and functions •− : T →Mm and −• : T →Mn

assign transitions to the left and right boundaries of N .

The notion of net homomorphism extends to P/T nets with the same bound-
aries: given N,N ′ : m → n is a pair f = (fS : SN → SN ′ , fT : TN → TN ′)
s.t. fS(◦(t)N ) = ◦(fT (t))N ′ , fS((t)◦N ) = (fT (t))◦N ′ , fS(•(t)N ) = •(fT (t))N ′ and
fS((t)•N ) = (fT (t))•N ′ . A homomorphism is an isomorphism if its two components
are bijections. We write N ∼= M if there is an isomorphism from N to M .
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(a) Two P/T with boundaries M and N .
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���� ����

(b) Composition M ;N .

Fig. 7. Composition of P/T with boundaries

In what follows we will use + to denote the disjoint union of sets. Given two
functions f : M → R and g : N → R, we also use f to denote the obvious
extension f ′ : M → R+ S and f + g for the obvious function h : M +N → R.

Definition 10 (Synchronization). A synchronization between nets M : l →
m and N : m→ n is a connected process P of the following net N +M = (SN +
SM +l+m+n, TM +TN , (◦−M ∪•−M )+(◦−N ∪•−N ), (−◦M ∪−•M )+(−◦N ∪−•N ))
s.t. ◦P ∩m = P ◦ ∩m = ∅.

We write a synchronization P : K → M + N as (U, V )P with U ∈ MTM ,
V ∈MTN and P (TK) = U ⊕V . We usually omit subscript P from (U, V )P . Let

TM ;N
def= {(U, V )P | (U, V )P a synchronization of M and N}

Define ◦−,−◦ : TM ;N → MPM+PN such that ◦(U, V )P = ◦P and (U, V )◦P =
P ◦. Define •− : TM ;N → l by •(U, V ) = •U and −• : TM ;N → n by (U, V )• = V •.

Definition 11. The composition of M and N , written M ;N : l → n, has:
PM ;N = PM +PN ; TM ;N as the set of transitions defined above; ◦−,−◦ : TM ;N →
MPM+PN ; and m0M ;N = m0M ⊕m0N .

Figure 7(b) shows the sequential composition of the nets M and N depicted in
Fig. 7(a). As for nets with boundaries, it can be shown that sequential composi-
tion is associative up-to isomorphism, i.e., given three nets L : k → l, M : l → m
and N : m → n then (L;M);N ∼= L; (M ;N). Parallel composition (or tensor
product) is defined analogously to nets with boundaries (see Section 2.2).

For any k ∈ N, there is a bijection �−� :Mk → Nk with �m�i = m(i).

Definition 12 (Semantics). Let N : m→ n and m0,m
′
0 ∈MPN . We write

(N,m0) α−→
β

(N,m′0) def= ∃U0 . . . Uk ∈ MTN s.t.

m0[U0〉 . . . [Uk〉m′0, α = �•U� and β = �U•� with U = ⊕iUi

Lemma 2. Let M : l → m and N : m → n. (M,m0) α−→
γ

(M,m′0) and

(N,m1)
γ−→
β

(N,m′1) for some γ iff (M,m0); (N,m1) α−→
β

(M,m′0); (N ;m′1).
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© : 1 → 1 ◦ 
������ ◦ ©· : 1 → 1 ◦ 
������• ◦ γ : 2 → 2
◦

							 ◦

◦







 ◦

∇ : 1 → 2

◦
◦

�������
�������

◦

∇

: 2 → 1

◦
�������

◦
◦

�������
! : 1 → 0 ◦ �

∇· : 1 → 2

◦
◦

�������
�������+

◦

∇· : 2 → 1

◦
�������

◦+

◦
�������

0 : 1 → 0 ◦ ◦

!

: 0 → 1
� ◦ 0 : 0 → 1 ◦ ◦

Fig. 8. Horizontal signature

4 Petri Tile Calculus

The horizontal signature of the tile system for modeling P/T nets with bound-
aries includes operators for basic places, tokens, mergers and replicators. The
full horizontal signature of our tile system is in Fig. 8, together with the di-
agrammatic representation of each operator, which makes evident the duality
of certain operators (e.g. ∇ and

∇

). Notably, the symmetry γ is self-dual. We
remark that the identity id : 1 → 1 is not part of the signature and it is added
by the free construction to the monoidal category of configurations.

We find it useful to introduce the following notation, to be used in several
definitions and lemmas: let s : 1 → 1 and t : 1→ 1, then we write 〈s, t〉 : 1 → 1
as a shorthand for ∇· ; (s ⊗ t); ∇· . Moreover, we introduce a few (inductively
defined) terms to be used in the following sections. (Their dual versions are
defined analogously, but not given explicitly.) For n > 0 and k ≥ 0:

©n =
⊗

n© ©· n =
⊗

n©· γ1 = γ γn+1 = (γn ⊗ id); (idn ⊗ γ)
idn =

⊗
n id !n =

⊗
n! ∇1 = ∇ ∇n+1 = (∇⊗∇n); (id ⊗ γn ⊗ idn)

0n =
⊗

n 0 dn =

!

n;∇n ∇· 1 = ∇· ∇· n+1 = (∇· ⊗∇· n); (id ⊗ γn ⊗ idn)
∇0

n = !n ∇k+1
n = ∇n; (∇k

n ⊗ idn)
∇· 0

n = 0n ∇· k+1
n = ∇· n; (∇· k

n ⊗ idn)

Observations are strings a ∈ N∗, with a : |a| → |a|, e.g. n : 1 → 1 for any
n ≥ 0. Vertical composition of observations is defined as (a0 . . . an); (b0 . . . bn) =
(a0 + b0) . . . (an + bn). The empty string ε is the unit, and the identity for each
n is the string of 0s with length n.

Definition 13 (Petri tile calculus). The Petri tile calculus is the tile system
consisting of the basic tiles in Fig. 9(a) (duals omitted for brevity).

We remind that for any configuration t : m → n we have always the vertical
indentity tile t a−→

b
t where a (resp. b) is the string of 0s with length m (resp. n).

The properties of γ, ∇,

∇

, ∇· , ∇· , !,

!

, 0 and 0 are well-known and have
been studied in [8] under the name stateless connectors. There is one technical
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© 1−→
0

〈©,©· 〉 ∇ 1−→
11

∇ !
1−→
ε
!

©· 1−→
0

〈©· ,©· 〉 ∇· 1−→
10

∇· 0
0−→
ε

0

©· 0−→
1

© ∇· 1−→
01

∇·

γ
xy−→
yx

γ for x, y ∈ {1, 0}
(a) Basic connectors

◦
1

�������� ◦
0��������

���

◦

���+ ◦+

��������•


◦
1

��������• ◦
0��������•

���

◦

���+ ◦+

��������•


◦
0

��������• ◦
1

◦ �������� ◦

(b) Graphical representation of stateful basic tiles

Fig. 9. Tiles for ordinary connectors

difference, however, namely that the observation 0 is here the vertical identity,
whereas in [8] it was interpreted as forced inaction. This difference has some
consequences at the semantic level w.r.t. tile bisimilarity, as discussed below.
One key property for them is that if s α−→

β
t for s one of the above connector,

then t = s and α and β are suitably constrained. For example, γ α−→
β
t iff t = γ,

α = a0a1 and β = a1a0. Moreover, identity id can also be regarded as a stateless
connector, which are closed under sequential and monoidal composition.

There are some interesting laws that hold up-to-bisimilarity. For example, we
remind that γ; γ �t id and that for all s, t : 1→ 1 we have γ; (s⊗ t) �t (t⊗s); γ.
Below we note just a few useful equivalences (we remind that that their duals
hold too and that ⊗ has precedence over ;):

∇; (id⊗∇) �t ∇; (∇⊗ id) ∇; (id⊗!) �t id ∇; γ �t ∇ 0;∇ �t 0⊗ 0
∇· ; (id⊗∇· ) �t ∇· ; (∇· ⊗ id) ∇· ;(id⊗0)�t id ∇· ;γ �t ∇· !

;∇· �t

!⊗ !
∇

;∇ �t id⊗∇;

∇⊗ id ∇;

∇�t id �t ∇· ; ∇· ∇· ;∇· �t ∇· 2; ∇· ⊗ ∇·

Notably, this last bisimilarity does not hold in [8]. Moreover, contrary to [8], in
our case ∇· ;

∇��t 0; 0, because ∇· ;

∇2−→
11
∇· ;

∇

while 0; 0 can only stay idle.
Since the Petri tile calculus satisfies the basic source property, then tile bisim-

ilarity is a congruence and we can safely apply all the above equivalences within
any larger term guaranteeing that the original term is bisimilar to the result,
e.g., ∇; (∇;

∇

)⊗ id;

∇�t ∇; id⊗ id;

∇�t ∇;

∇�t id.

Lemma 3. Let s, t, p : 1→ 1. Then 〈s, t〉 �t 〈t, s〉 and 〈s, 〈t, p〉〉 �t 〈〈s, t〉, p〉.

4.1 P/T Nets as Tiles

Consider a P/T net N = (S, T, ◦−,−◦,m). W.l.o.g. assume SN = p and TN = t.
Then, the marking is encoded as follows

[[m]]m =
⊗

i<p[[m(i)]] : p→ p
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where [[n]] : 1→ 1 with n ∈ N is defined as follows

[[0]] =© [[k + 1]] = 〈[[k]],©· 〉 = ∇· ; ([[k]] ⊗©· ); ∇·
Intuitively© represent a place and©· a token, so that, e.g., [[2]] = 〈〈©,©· 〉,©· 〉

represents two tokens in a place. Note however that when a token is consumed,
then the space occupied is left vacant, e.g., [[2]] 0−→

1
t with either t = 〈〈©,©· 〉,©〉

or t = 〈〈©,©〉,©· 〉. Nevertheless, we note that 〈 , 〉 is associative and commu-
tative up to tile bisimilarity and thus 〈〈©,©· 〉,©〉 �t 〈〈©,©〉,©· 〉. Moreover,
any number of empty places combined in mutual exclusion is bisimilar to one
empty place, e.g., 〈©,©〉 �t ©. Thus, e.g., 〈〈©,©· 〉,©〉 �t [[1]].

Next, we give a structural characterization of the configurations reachable
from [[n]]. For n, a, b ∈ N such that n+ a ≥ b, we let [[n]]ab denote the set of terms
obtained from [[n]] by inserting a instances of ©· and replacing b instances of ©·
with ©. Formally, we let 〈n〉 denote the set of any combination of n tokens, i.e.,
〈1〉 = {©· } and 〈n〉 = { 〈t1, t2〉 | ∃n1, n2 > 0, n1 + n2 = n, t1 ∈ 〈n1〉, t2 ∈ 〈n2〉 }
for n > 1. Similarly, we let 〈n〉0 = 〈n〉 and 〈1〉1 = {©} and 〈n〉b = { 〈t1, t2〉 |
∃n1, n2 > 0, n1 +n2 = n, ∃b1 ≤ n1, ∃b2 ≤ n2, b1 +b2 = b, t1 ∈ 〈n1〉b1 , t2 ∈ 〈n2〉b2 }
for n ≥ b > 0 and n �= 1. Finally, we let [[n]]00 = { [[n]] }, [[0]]a+1

b = [[1]]ab and
[[n+1]]ab = {〈t1, t2〉 | ∃a1, a2, a1 +a2 = a, ∃b1, b2, b1 + b2 = b, n+a1 ≥ b1, 1+a2 ≥
b2, t1 ∈ [[n]]a1

b1
, t2 ∈ 〈1 + a2〉b2〉 }. We extend this notation to markings, by letting

[[m,ma,mb]]m =
{⊗

i<p ti | ti ∈ [[m(i)]]ma(i)
mb(i)

}
Notably, [[n]]ab �t [[n + a − b]] and therefore for any t ∈ [[m,ma,mb]]m we have
t �t

⊗
i<p[[m(i) +ma(i)−mb(i)]]

Lemma 4. Let m0 ∈ Mp. [[m0]]m
a0...ap−1−−−−−−→
b0...bp−1

t iff t ∈ [[m0,ma,mb]]m with ma(i) =

ai, mb(i) = bi and m0(i) +ma(i) ≥ mb(i) for i ∈ p.

We use λf with f : k →Ml to denote the tile λf : l→ k defined as follows

λf = ∇· k
l ;
⊗

j<k[[f(j)]]λ : l→ k

where [[m]]λ : l → 1 for m ∈Ml is defined as follows

[[m]]λ =
⊗

i<l(∇· m(i)
1 ;

∇m(i)
1 );

∇l
1

Lemma 5. λf
α−→
β
t iff t = λf , α = �a′�, β = �b′� and f(b′) = a′.

Similarly, we use ρf with f : k →Ml to denote the following tile ρf : k → l

ρf =
⊗

j<k[[f(j)]]ρ; ∇· k
l

where [[m]]ρ : 1→ l is defined by [[m]]ρ = ∇l
1;
⊗

i<l (∇m(i)
1 ; ∇· m(i)

1 ).

Lemma 6. ρf
α−→
β
t iff t = ρf , α = �a′�, β = �b′� and f(a′) = b′.
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Definition 14 (Encoding). The encoding of a P/T net with boundaries N =
(p, t, ◦−,−◦, •−,−•,m0) as a tile is defined as follows

[[m0]]N = (dt ⊗ λ•−); (idt ⊗ (

∇

t; ρ−◦ ; [[m0]]m;λ◦−;∇t)); (et ⊗ ρ−•)

We write [[m0,ma,mb]]N to denote the class of bisimilar representations of N
with marking m1 such that m0(i) +ma(i)−mb(i) = m1(i) for i ∈ p. Formally,

[[m0,ma,mb]]N = {r | m ∈ [[m0,ma,mb]]m and
r = (dt ⊗ λ•−); (idt ⊗ (

∇

t; ρ−◦ ;m;λ◦−;∇t)); (et ⊗ ρ−•)}
We now define the Petri tile terms encoding the behaviour of the nets in Fig. 7

(for space limitation we show terms that are bisimilar to the ones generated
by the encoding, but simpler). Term M1 =

!

;©;∇; ∇· stands for transition α
and M2 =

!

;©;∇· ;

∇

for β. Then, M = (M1 ⊗ M2). Similarly, N = (∇· 3
1 ⊗

id);

∇4
1;©; !. Finally, the term for the net M ;N is bisimilar to ((

!

;©;∇· 3
1) ⊗

(

!

;©;∇· 4
1));

∇7
1;∇; ∇· ;©; !.

Theorem 1. Let N be a finite net with boundaries, then

– if m0
α−→
β

m1 then ∃Q,ma,mb s.t. [[m0]]N
α−→
β

Q, Q ∈ [[m0,ma,mb]]N and

m0(i) +ma(i)−mb(i) = m1(i) for i ∈ p.
– if [[m0]]N

α−→
β
Q then ∃Q,ma,mb,m1 such that Q ∈ [[m0,ma,mb]]N , m0(i) +

ma(i)−mb(i) = m1(i) for i ∈ p and m0
α−→
β
m1.

5 Petri Tile Calculus as P/T Nets with Boundaries

The encoding of basic tiles is shown in Fig. 10. Rules are analogous to the ones
proposed in [22]. In addition, our encoding is homomorphic w.r.t. ‘;’ and ⊕,
e.g., {[t1; t2]} = {[t1]}; {[t2]} and {[t1 ⊕ t2]} = {[t1]} ⊕ {[t2]}. We remark that our
encoding is compositional and we can avoid normalizing terms before encoding
them. Consider the encoding of term ∇· ; ∇· , which is problematic for [22]:

{[∇· ; ∇· ]} = {[∇· ]}; {[ ∇· ]} =

• �� α
�����

���

•
• �� β

��������
;

α′ ��•
•

��������

�������
�

β′ ��•
=

• ��
������� αα′ ��•
αβ′

���
��

��
��

βα′

���������

• ��
������� ββ′ ��•

When considering the string 11 over the left interface, we have the following
behaviours for ∇· ;∇· : ∇· ;∇· 11−→

20

∇· ;∇· , ∇· ;∇· 11−→
02

∇· ;∇· and ∇· ;∇· 11−→
11

∇· ;∇· . It is easy

to notice that {[ ∇· ;∇· ]} 11−→
20
{[ ∇· ;∇· ]} (by firing αα′ and βα′), {[ ∇· ;∇· ]} 11−→

02
{[ ∇· ;∇· ]}

(using αβ′ and ββ′) and {[ ∇· ;∇· ]} 11−→
11
{[ ∇· ;∇· ]} (by firing either αα′ and ββ′ or αβ′

and βα′). From this simple fact, we also learned how to “repair” the encoding
in [22] (see Section 6).

Theorem 2. For any connector t, t ∼ {[t]}.
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{[©]}:• �� ��
������ �� ��• {[©· ]}:• �� ��
������• �� ��• {[γ]}:
•

���
������� ��•

•

���������� ��•

{[∇]}:
•

• ��
���������

���������

•
{[ ∇

]}:
•

���������
��•

•
���������

{[!]}:• ��

{[∇· ]}:
��•

•
���������
���������

��•
{[ ∇· ]}:

• ��
���������

•
• ��

���������
{[0]}:•

{[ !]}: ��• {[0]}: •

Fig. 10. Encoding of basic tiles into P/T nets

6 Related Work

Different studies about primitive forms of connectors have appeared in the litera-
ture. Due to space limitation, we will just mention the most prominent ones and
we will postpone a detailed comparison to the full version of this paper. Connec-
tors have been studied as key aspect of coordination languages like Reo [1], which
provides a set of primitive connectors modelling synchronous / asynchronous /
lossy channels and the asynchronous one-place buffer. Complex forms of in-
teractions are defined as combinations of basic forms of connectors. Similarly,
connectors are a fundamental notion of architectural languages. In particular,
CommUnity [13] presents a formal treatment of architectural connectors in a cat-
egorical setting. A formal link between tiles and Reo and CommUnity connectors
is presented in [8]. Connectors considering prioritized forms of interactions have
been addressed in [5], where the relation with [8] is also mentioned (for the non
prioritized case). Our approach to connectors is much indebted to [23, 7].

Tiles resemble Plotkin’s SOS inference rules [20], but take inspiration also
from Structured Transition Systems [11] and context systems [15]. The Tile
Model also extends rewriting logic [16] (in the non-conditional case) by taking
into account rewrite with side effects and rewrite synchronization. While in this
paper we exploit horizontal connectors only, in [9] it is shown how to benefit
from the interplay of connectors in both the horizontal and vertical dimensions
for defining causal semantics.

Operators of the Petri tile calculus are in one-to-one correspondence with
operators of the Petri Calculus of [22]. The semantics of unary operators except
for buffers (i.e., © and ©· ) coincide in both calculus. Rules for buffers in the
Petri calculus allows for at most one token in any place while buffers in the
Petri tile calculus may contain an unbounded number of tokens (this can be
traced to the rules that define the semantics of © and ©· ). Thanks to vertical
composition of tiles we can easily deal with computations that are problematic
in the Petri calculus, like ∇· ;∇· 11−→

11

∇· ;∇· , which is not possible to obtain in [22],
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because ∇· and ∇· serializes the access to the shared interface and their vertical
composition misses the functoriality axiom of tensor product. One simple fix
to their counterexamples, that allows to get rid of term normalization before
producing the net just consists in mapping ∇· to a net with two transitions α
and β with the same left interface and distinct right interface, both having a
self-loop on the same (internal) place p. This way, the problematic step 11−→

11
is

banned also from the net. If instead, one wants to avoid introducing additional
places in the net, then we can just take the semantics rules for the calculus
in [22] (places have capacity one, they are not unbounded) and make vertical
composition monoidal, with 0 as identity. This is in fact a key semantic difference
between the wire calculus [21] and the tile model. Finally, we mention that nets
with boundaries are very similar to the open nets in [3].

7 Conclusions

In theoretical computer science, it is very frequent that quite different represen-
tations can be reconciled by showing that they can be mutually encoded one in
the other with tight semantics correspondence: thus, in the end, they have the
same expressive power and represent the same abstract concept.

In this paper, we have contributed to the above thread by showing that a
suitable class of tile models, called Petri tile calculus, has the same expressive
power as a composable version of Petri nets, called P/T nets with boundaries.
Our result gives some insights on how to improve the analogous result in [22]
(by exploiting compositionality and a simpler translation). Moreover, given the
correspondence between similar tile models and other approaches to connec-
tors [2,6,8], the algebraic properties of the tile model can serve to relate formal
frameworks that are otherwise very different in style and nature (CommUnity,
Reo, Petri nets), and it is now possible to establish a hierarchy of connectors just
by selecting different subsets of the basic connectors from the Petri tile calculus.

In this respect, an interesting line of research is the study of prioritised ver-
sion of tiles, such that local priorities can be attributed to the basic elements
to guarantee that some global order of preference in the reactive behaviour is
obtained. In fact global priorities are often introduced in ad hoc ways in connec-
tors to prune some unwanted behaviours, but then it is not clear under which
conditions they can be distributed over basic connectors preserving the overall
behaviour. We plan to investigate suitable classes of tile models where either this
is always made possible by assuming suitable structural constraints, or when non-
distributable global priorities are assigned, then the problem can be identified
and a relaxed assignment of priorities can be suggested.
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Vector Addition System
Reversible Reachability Problem

Jérôme Leroux

LaBRI, Université Bordeaux 1, CNRS

Abstract. The reachability problem for vector addition systems is a central prob-
lem of net theory. This problem is known to be decidable but the complexity is
still unknown. Whereas the problem is EXPSPACE-hard, no elementary upper
bounds complexity are known. In this paper we consider the reversible reachabil-
ity problem. This problem consists to decide if two configurations are reachable
one from each other. We show that this problem is EXPSPACE-complete. As an
application of the introduced materials we characterize the reversibility domains
of a vector addition system.

1 Introduction

Vector addition systems (VASs) or equivalently Petri nets are one of the most popular
formal methods for the representation and the analysis of parallel processes [EN94].
Their reachability problem is central since many computational problems (even out-
side the realm of parallel processes) reduce to the reachability problem. Sacerdote and
Tenney provided in [ST77] a partial proof of decidability of this problem. The proof
was completed in 1981 by Mayr [May81] and simplified by Kosaraju [Kos82] from
[ST77, May81]. Ten years later [Lam92], Lambert provided a further simplified version
based on [Kos82]. This last proof still remains difficult and the upper-bound complexity
of the corresponding algorithm is just known to be non-primitive recursive. Nowadays,
the exact complexity of the reachability problem for VASs is still an open-problem.
The problem is known to be EXPSPACE-hard [CLM76] but even the existence of an
elementary upper-bound complexity is open.

Recently, in [Ler11] we provided a new proof of the reachability problem based on
the notion of production relations inspired by Hauschildt [Hau90]. That proof shows
that reachability sets are almost semilinear, a class of sets introduced in that paper that
extends the class of Presburger sets. An application of that result was provided; we
proved that a final configuration is not reachable from an initial one if and only if there
exists a forward inductive invariant definable in the Presburger arithmetic that con-
tains the initial configuration but not the final one. Since we can decide if a Presburger
formula denotes a forward inductive invariant, we deduce that there exist checkable
certificates of non-reachability in the Presburger arithmetic. In particular, there exists
a simple algorithm for deciding the general VAS reachability problem based on two
semi-algorithms. A first one that tries to prove the reachability by enumerating finite
sequences of actions and a second one that tries to prove the non-reachability by enu-
merating Presburger formulas. The Presburger inductive invariants presented in that

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 327–341, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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paper are obtained by over approximating production relations thanks to strongly con-
nected subreachability graphs (called witness graph and recalled in Section 6). As a
direct consequence, configurations in these graphs are reachable one from each other.

In this paper we consider the reversible reachability problem that consists to decide
if two configurations are reachable one from each other. We prove that this problem is
EXPSPACE-complete. This result extends known result for the subclasses of reversible
and cyclic vector addition systems [BF97]. We also prove that the general coverability
problem reduces to the reversible reachability problem (see Section 3). As an applica-
tion of the introduced materials we characterize the reversibility domains of a vector
addition system in the last Section 11.

2 Projected Vectors

In this paper, some components of vectors in Zd are projected away. In order to avoid
multiple dimensions, we introduce an additional element � �∈ Z, the set Z� = Z ∪ {�},
and the set Zd

I of vectors z ∈ Zd
� such that I = {i | z(i) = �}. Operations on Z

are extended component-wise into operations on Zd
I by interpreting � as a projected

component. More formally we denote by z1 +z2 where z1, z2 ∈ Zd
I the vector z ∈ Zd

I

defined by z(i) = z1(i) + z2(i) for every i �∈ I . Symmetrically given z ∈ Zd
I and an

integer k ∈ Z, we denote by kz the vector in Zd
I defined by (kz)(i) = k(z(i)) for every

i �∈ I . The relation ≤ is extended over Zd
∗ component-wise by z1 ≤ z2 if z2(i) �= �

then z1(i) �= � and in this case z1(i) ≤ z2(i).

Example 2.1. We have k(�, 1) = (�, k) even if k = 0. We also have (�, 5)− (�, 2) =
(�, 3) and (�, 1) + (�, 2) = (�, 3). We have · · · ≤ −1 ≤ 0 ≤ 1 ≤ · · · ≤ �.

The projection of a vector z ∈ Zd
I over a set L ⊆ {1, . . . , d} of indexes is the vector

in Zd
I∪L defined by πL(z)(i) = z(i) for every i �∈ L. The projection of a set Z ⊆ Zd

I

over L is defined as expected by πL(Z) = {πL(z) | z ∈ Z}.

Example 2.2. Let L = {1}. We have πL(1000, 1) = (�, 1) and πL(4, �) = (�, �). We
also have πL({(2, 0), (1, 1), (2, 0)}) = {(�, 0), (�, 1), (�, 2)}.

Let z ∈ Zd
I . We denote by ||z||∞ the natural number equals to 0 if I = {1, . . . , d} and

equals to maxi�∈I |z(i)| otherwise. Given a finite set Z ⊆ Zd
I we denote by ||Z||∞ the

natural number maxz∈Z ||z||∞ if Z is non empty and 0 is Z is empty.

3 Vector Addition Systems

A Vector Addition System (VAS) is a finite setA ⊆ Zd. Vectorsa ∈ A are called actions
and vectors c ∈ Nd

� with N� = N∪{�} are called configurations. A configuration in Nd

is said to be standard and we denote by Nd
I the set of configurations c ∈ Nd

� such that
I = {i | c(i) = �}. Given a word σ = a1 . . .ak of actions aj ∈ A we denote by Δ(σ)
the vector in Zd defined by Δ(σ) =

∑k
j=1 aj . This vector is called the displacement

of σ. We also introduce the vector ΔI(σ) = πI(Δ(σ)). A run ρ from a configuration
x ∈ Nd

I to a configuration y ∈ Nd
I labelled by a word σ = a1 . . .ak of actions aj ∈ A
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is a non-empty word ρ = c0 . . . ck of configurations cj ∈ Nd
I such that c0 = x, ck = y

and such that cj = cj−1 + πI(aj) for every j ∈ {1, . . . , k}. Note that in this case ρ is
unique and y − x = ΔI(σ). This run is denoted by x

σ−→ y. The set I is called the set
of projected components of ρ. The projection πL(ρ) of a run ρ = c0 . . . ck over a set of
indexes L ⊆ {1, . . . , d} is defined as expected as the run πL(ρ) = πL(c0) . . . πL(ck).
Observe that if ρ is the run x

σ−→ y then πL(ρ) is the run πL(x) σ−→ πL(y). The
following lemma provides a simple way to deduce a converse result.

Lemma 3.1. Let L be a set of indexes and c be a configuration such that there exists a
run from πL(c) labelled by a word σ. If c(i) ≥ |σ| ||A||∞ for every i ∈ L then there
exists a run from c labelled by σ.

Proof. Let c ∈ Nd
I be a configuration such that there exists a path from πL(c) labelled

by a word σ = a1 . . .ak where aj ∈ A. Let us introduce the vector cj = c+ πI(a1 +
. . .+ aj). Since there exists a run from πL(c) labelled by σ we deduce that πL(cj) ∈
Nd

I∪L. Observe that for every j ∈ {0, . . . , k} and for every i �∈ I we have cj(i) ≥
c(i) − |σ| ||A||∞. In particular if c(i) ≥ |σ| ||A||∞ for every i ∈ L\I we deduce that
cj ∈ Nd

I . Therefore ρ = c0 . . . ck is a run from c labelled by σ. ��

Example 3.2. ρ = (2, 0)(1, 1)(0, 2) is the run (2, 0)
(−1,1)(−1,1)−−−−−−−−→ (0, 2). Let L = {1}

and observe that πL(ρ) = (�, 0)(�, 1)(�, 2) is the run (�, 0)
(−1,1)(−1,1)−−−−−−−−→ (�, 2).

Let x and y be two standard configurations. When there exists a run from x to y
we say that y is reachable from x and if there also exists a run from y to x we say
that (x,y) is in the reversible reachability relation. The problem of deciding this last
property is called the reversible reachability problem. This problem is shown to be
EXPSPACE-hard by introducing the coverability problem. Given two standard config-
urations x and y we say that y is coverable by x if there exists a standard configuration
in y + Nd reachable from x. The coverability problem is known to be EXPSPACE-
complete [CLM76, Rac78]. We reduce the coverability problem as follows. We first
observe that we can add to a vector addition system A additional actions of the form
(0, . . . , 0,−1, 0, . . . , 0) without modifying the coverability problem. Thanks to this
transformation a standard configuration y is coverable from a standard configuration x
if and only if y is reachable fromx. We introduce the VASV in dimension d+2 defined
by V = ((0, 0) ×A) ∪ {(−1, 1,−y), (1,−1,x)}. Observe that (1, 0,x) and (0, 1,0)
are in the reversible reachability relation of V if and only if y is coverable from x in
A. As a direct consequence, the reversible reachability problem is EXPSPACE-hard.

4 Subreachability Graphs

A subreachability graph is a graphG = (Q, T ) whereQ ⊆ Nd
I is a non empty finite set

of configurations called states and T ⊆ Q×A×Q is a finite set of triples (x,a,y) ∈
Q×A×Q satisfying x

a−→ y called transitions. The set I is called the set of projected
components of G and the subreachability graph is said to be standard if I is empty. A
witness graph is a strongly connected subreachability graph (see Fig. 1 for examples).
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(1, 1, 0) (0, 2, 1)

(1, 0, 1) (0, 1, 2)

(−1, 1, 1)

(1,−1,−1)

(1,−1,−1)

(0,−1, 1)(0, 1,−1)

(1, , ) (0, , )

(−1, 1, 1)

(1,−1,−1)

(0,−1, 1)(0, 1,−1)

Fig. 1. A subreachability graph G and the subreachability graph πL(G) with L = {2, 3}

The projection πL(t) of a transition t = (x,a,y) over a set of indexes L ⊆ {1, . . . , d}
is defined by πL(t) = (πL(x),a, πL(y)) and the projection of the set of transitions T
is defined by πL(T ) = {πL(t) | t ∈ T }. The projection πL(G) of a subreachability
graph G = (Q, T ) is the subreachability graph πL(G) = (πL(Q),A, πL(T )).

Example 4.1. A standard subreachability graph G = (Q, T ) and the subreachability
graph πL(G) projected over the set L = {2, 3} are depicted in Fig. 1.

A path in a subreachability graph G from a configuration x ∈ Q to a configuration
y ∈ Q labelled by a word σ = a1 . . .ak of actions aj ∈ A is a word p = t1 . . . tk of
transitions tj ∈ T of the form tj = (cj−1,aj , cj) with c0 = x and ck = y. We observe
that the word p is unique. This path is denoted by x

σ−→G y. Let us observe that in this
case ρ = c0 . . . ck is the unique run x

σ−→ y. In particular if a path x
σ−→G y exists then

the run x
σ−→ y also exists. Note that conversely if there exists a run x

σ−→ y then there
exists a subreachability G such that x

σ−→G y. Such a G is obtained by introducing
the set of states Q = {c0, . . . , ck} and the set of transitions T = {t1, . . . , tk} where
tj = (cj−1,aj , cj). A path x

σ−→G y is called a cycle if x = y. The cycle is said
to be simple if cj1 = cj2 with j1 < j2 implies j1 = 0 and j2 = k. The projection
πL(p) of a path p = t1 . . . tk in G over a set of indexes L ⊆ {1, . . . , d} is the path
πL(p) = πL(t1) . . . πL(tk) in πL(G). Observe that the projection of a path x

σ−→G y

over L is the path πL(x) σ−→πL(G) πL(y). The Parikh image of a path is the function
μ : T → N defined by μ(t) is the number of occurrences of t in this path. A cycle is
said to be total if its Parikh image μ satisfies μ(t) ≥ 1 for every t ∈ T .

Example 4.2. Let us come back to the standard witness graph G depicted in Fig. 1.

Let us consider the cycle (1, 1, 0)
(−1,1,1)(1,−1,−1)−−−−−−−−−−−→G (1, 1, 0) in G. Its projection over

L = {2, 3} is the cycle (1, �, �)
(−1,1,1)(1,−1,−1)−−−−−−−−−−−→πL(G) (1, �, �) in the witness graph

πL(G) also depicted in Fig. 1.

A word σ ∈ A∗ is said to be forward iterable from a configuration c if there exists
a run c

σ−→ y such that c ≤ y. In this case the configuration c� = πL(c) where
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L = {i | c(i) �= y(i)} is called the forward limit of σ from c. We observe that σ is

forward iterable from c if and only if for every n ∈ N there exists a run c
σn

−−→ yn.
In that case L is the minimal set of indexes such that πL(yn) does not depend on n.
Symmetrically σ is said to be backward iterable from a configuration c if there exists
a run x

σ−→ c such that c ≤ x. In this case the configuration c� = πL(c) where
L = {i | c(i) �= x(i)} is called the backward limit of σ from c.

Example 4.3. The action a = (0,−1, 1) is forward iterable from x = (0, �, 0) since

(0, �, 0) a−→ (0, �, 1). Observe that in this case (0, �, 0) an

−−→ (0, �, n) for every n ∈ N.
The forward limit of a from (0, �, 0) is (0, �, �).

A configurations c is said to be forward pumpable by a cycle q
σ−→G q if σ is forward

iterable from c with a forward limit equals to q. Note that in this case q is unique since
it satisfies q = πI(c) where I is the set of projected components of G. Symmetrically
a configuration c is said to be backward pumpable by a cycle q

σ−→G q if σ is backward
iterable from c with a backward limit equals to q.

Example 4.4. Let us come back to the witness graph πL(G) depicted in Fig. 1. Observe

that (0, �, 0) is forward pumpable by (0, �, �)
(0,−1,1)−−−−−→πL(G) (0, �, �).

5 Outline

The reminder of this paper is a proof that the reversible reachability problem is in EX-
PSPACE. We prove that if a pair (x,y) of standard configurations are in the reversible
reachability relation then there exist runs from x to y and from y to x with lengths
bounded by a number double exponential in the size of (x,A,y). Using the fact that
NEXPSPACE=EXPSPACE, and that double exponential numbers can be stored in ex-
ponential space, one obtain the EXPSPACE upper bound. These “short” runs are ob-
tained as follows.

Theorem 6.3 gives a bound on the size of the Parikh image of a cycle in a witness
graph to achieve a particular displacement vector, using a result of Pottier [Pot91]. This
result is used in Section 7, which considers the special case of reversible witness graphs
in which each path can be followed by another path such that the total displacement
is zero. In Theorem 7.3 it is shown that a reversible witness graph possesses a “short”
total cycle that has a zero displacement.

Section 9 takes an arbitrary witness graph G and asserts the existence of a set of
indexes J such that the witness graph πJ(G) has a “small” number of states and such
that states of G that are not “too” large are pumpable by “short” cycles in πJ (G).

The development culminates with the main result in Section 10. There, it is shown
that x and y are two states of a reversible witness graph G. One then uses the result
from Section 9 to generate a reversible witness graph πJ (G). Most of the work involves
showing how to replace arbitrary path between x and y by “short” paths by exploiting
the fact that x and y are pumpable to move from πJ (G) back to G.
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6 Displacement Vectors

A displacement vector of a witness graph G is a finite sum of vectors of the form
Δ(σ) =

∑k
j=1 aj where σ = a1 . . .ak is a word labelling a cycle in G. We denote

by ZG the set of displacement vectors. Observe that ZG is a submonoid of (Zd,+).
Displacement vectors are related to Kirchhoff functions as follows. A Kirchhoff function
for a witness graph G = (Q, T ) is a function μ : T → N such that the functions
in(μ), out(μ) : Q→ N defined bellow are equal.

in(μ)(x) =
∑

t∈T∩(Q×A×{x})
μ(t) out(μ)(x) =

∑
t∈T∩({x}×A×Q)

μ(t)

A Kirchhoff function μ : T → N is said to be total if μ(t) ≥ 1 for every t ∈ T .

Lemma 6.1 (Euler’s Lemma). A function μ is a Kirchhoff function for a witness graph
G if and only if μ is a finite sum of Parikh images of cycles inG. In particular a function
μ is a total Kirchhoff function if and only if μ is the Parikh image of a total cycle.

As a direct consequence of the Euler’s Lemma, we deduce that a vector z ∈ Zd is
a displacement vector of G if and only if there exists a Kirchhoff function μ for G
satisfying the following equality:

z =
∑

t=(x,a,y)∈T

μ(t)a

In this case z is called the displacement of μ.

Example 6.2. Let us come back to the witness graph πL(G) depicted in Fig. 1. A func-
tion μ : πL(T ) → N is a Kirchhoff function for πL(G) if and only if μ(t1) = μ(t2)
where t1 = ((1, �, �), (−1, 1, 1), (0, �, �)) and t2 = ((0, �, �), (1,−1,−1), (1, �, �)).
In particular the set of displacement vectors of πL(G) satisfies ZπL(G) = {z ∈ Z3 |
z(1) = 0 ∧ z(2) + z(3) = 0}.

The following theorem shows that the displacement vectors z ∈ ZG are displacement
of Kirchhoff functions μ for G such that ||μ||∞ = maxt∈T μ(t) is bounded by a poly-
nomial in |Q|, ||A||∞, and ||z||∞.

Theorem 6.3. Vectors z ∈ ZG are displacement of Kirchhoff functions μ such that the
following inequality holds where q = |Q|, a = ||A||∞, and m = ||z||∞:

||μ||∞ ≤ (qd+1a(1 + 2a)d +m)d

Proof. We first recall a “Frobenius theorem” proved in [Pot91]. LetH ∈ Zd×n be a ma-
trix and let us denote by hi,j for each i ∈ {1, . . . , d} and j ∈ {1, . . . , n} the element of
H at position (i, j). We denote by ||H ||1,∞ the natural number max1≤i≤d

∑n
j=1 |hi,j |.

Given a vector v ∈ Nn, we introduce the natural number ||v||1 =
∑n

j=1 v(j). Let V be
the set of vectors v ∈ Nn such that Hv = 0. Recall that V is a submonoid of (Nn,+)
generated by the finite set min(V \{0}) of minimal elements for ≤. From [Pot91] we
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deduce that vectors v ∈ min(V \{0}) satisfy the following inequality where r is the
rank of H :

||v||1 ≤ (1 + ||H ||1,∞)r

Observe that if a = 0 then z = 0 and the theorem is proved with the Kirchhoff
function μ defined by μ(t) = 0 for every t ∈ T . So we can assume that a ≥ 1. Since
every cycle labelled by a word σ can be decomposed into a finite sequence of simple
cycles labelled by words σ1, . . . , σk such thatΔ(σ) =

∑k
j=1Δ(σj) we deduce that the

set of displacement vectors ZG is the submonoid of (Zd,+) generated by the set Z of
non-zero vectors z = Δ(σ) where σ is the label of a simple cycle. Since the length of
a simple cycle is bounded by the cardinal q of Q, we get ||Z||∞ ≤ qa. As a corollary
we deduce that the cardinal k of Z is bounded by k ≤ (1 + 2qa)d − 1 (the −1 comes
from the fact that vectors in Z are non-zero).

Let us consider a vector z ∈ ZG and let us introduce a whole enumerationz1, . . . , zk

of the vectors in Z and the following set V where n = k + 1:

V = {v ∈ Nn |
d∧

i=1

k∑
j=1

v(j)zj(i)− v(n)z(i) = 0}

We observe that V is associated to a matrix H ∈ Zd×n. The rank of H is bounded
by d and ||H ||1,∞ ≤ kqa + m. We deduce from the Frobenius theorem that vectors
v ∈ min(V \{0}) satisfy the following inequality:

||v||1 ≤ (1 + kqa+m)d ≤ (qd+1a(1 + 2a)d +m)d

Since z ∈ ZG, there exists a vector v ∈ V such that v(n) = 1. In particular there
exists another vector v ∈ min(V \{0}) such that v(n) = 1. Observe that for every j ∈
{1, . . . , k} there exists a function λj that is the Parikh image of a simple cycle such that
zj is the displacement of λj . We introduce the Kirchhoff function μ =

∑k
j=1 v(j)λj .

Since v ∈ V and v(n) = 1 we deduce that the displacement of μ is z. The theorem is
proved by observing that μ(t) =

∑k
j=1 v(j)λj(t) ≤ ||v||1 since λj(t) ∈ {0, 1}. ��

7 Reversible Witness Graphs

A witness graph G is said to be reversible if for every path x
u−→G y there exists a

path y
v−→G x such that Δ(u) + Δ(v) = 0. Observe that standard witness graphs are

reversible since the condition Δ(u) +Δ(v) = 0 is implied by the two paths.

Example 7.1. Witness graphs depicted in Fig. 1 are reversible. The witness graph G =
({�}, {(�, 1, �)}) is not reversible.

Let us recall that a submonoid Z of (Zd,+) is said to be a subgroup if −z ∈ Z for
every z ∈ Z. The following lemma provides two characterizations of the reversible
witness graphs.

Lemma 7.2. A witness graphG is reversible if and only ifZG is a subgroup of (Zd,+)
if and only if the zero vector is the displacement of a total Kirchhoff function.
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Proof. Assume first that G is reversible and let us prove that ZG is a subgroup of
(Zd,+). Let us consider a cycle x

u−→G x. Since G is reversible, there exists a cycle
x

v−→G x such that Δ(u) + Δ(v) = 0. We deduce that −ZG = ZG since vectors in
ZG are finite sums of vectorsΔ(u) where u is the label of a cycle in G. ThereforeZG

is a subgroup of Zd.
Now let us assume that ZG is a subgroup of (Zd,+) and let us prove that the zero

vector is the displacement of a total Kirchhoff function. Since G is strongly connected,
there exists a total cycle x

u−→G x. Observe that z = Δ(u) is in ZG. Since ZG is
a subgroup we deduce that −z ∈ ZG. Hence −z is the displacement of a Kirchhoff
function λ. Let λ′ be Parikh image of x

u−→G x and observe that μ = λ + λ′ is a total
Kirchhoff function. Moreover the displacement of μ is −z + z = 0.

Finally, let us assume that the zero vector is the displacement of a total Kirchhoff
function μ and let us prove that G is reversible. Let us consider a path x

u−→G y. Since
G is strongly connected, there exists a path y

α−→G x. Let us consider the Parikh image
λ of the cyclex

uα−−→G x and letm = 1+||λ||∞. We observe that μ′ = mμ−λ is a total
Kirchhoff function and the Euler’s Lemma shows that μ′ is the Parikh image of a cycle

x
β−→G x. From μ′ = mμ − λ we deduce that Δ(β) = m0−Δ(uα). Let us consider

v = αβ and observe that y
v−→G x and Δ(u) +Δ(v) = 0. Thus G is reversible. ��

The following theorem shows that ifG is a reversible witness graph then the zero vector
is the displacement of a total Kirchhoff function μ such ||μ||∞ can be bounded by a
polynomial in |Q| and ||A||∞.

Theorem 7.3. Let G be a reversible witness graph. The zero vector is the displacement
of a total Kirchhoff function μ such that the following inequality holds where q = |Q|
and a = ||A||∞:

||μ||∞ ≤ (q(1 + 2a))d(d+1)

Proof. Since G is strongly connected, every transition t ∈ T occurs in at least one
simple cycle. We denote by λt the Parikh image of such a simple cycle and we introduce
the Kirchhoff function λ =

∑
t∈T λt. We have λ(t) ∈ {1, . . . , |T |} for every t ∈ T .

We introduce the displacement z of λ. Since G is reversible, we deduce that −z is the
displacement vector of a Kirchhoff function forG. As ||z||∞ ≤ |T |qa, |T | ≤ q|A|, and
|A| ≤ (1 + 2a)d we deduce that ||z||∞ ≤ q2a(1 + 2a)d. Theorem 6.3 shows that −z
is the displacement of a Kirchhoff function λ′ satisfying the following inequalities:

||λ′||∞ ≤ (qda(1 + 2a)d + q2a(1 + 2a)d)d ≤ (qd+12a(1 + 2a)d)d

Let us consider the total Kirchhoff function μ = λ+ λ′. Observe that the displacement
of μ is the zero vector and since ||λ||∞ ≤ |T | ≤ q(1 + 2a)d ≤ (qd+1(1 + 2a)d)d we
get the theorem with:

||μ||∞ ≤ (qd+12a(1 + 2a)d)d + (qd+1(1 + 2a)d)d ≤ (q(1 + 2a))d(d+1)

��
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8 Extractors

In this section we introduce a way for extracting “large” components of configurations.
An extractor is a non increasing sequence λ = (λn)1≤n≤d of natural numbers λn ∈ N.
LetX ⊆ Nd

I . An excluding set for (λ,X) is a set of indexes J such that x(i) < λ|J|+1

for every i �∈ J and for everyx ∈X . Since λ is non increasing we deduce that the class
of excluding sets for a couple (λ,X) is stable by intersection. As this class contains
{1, . . . , d} we deduce that there exists a unique minimal excluding set J for (λ,X).
By minimality of this set we deduce that for every i ∈ J there exists x ∈ X such
that x(i) ≥ λ|J|. We denote λ(X) the set πJ (X) where J is the minimal excluding
set for (λ,X). A set X ⊆ Nd

I is said to be normalized for λ if λ(X) = X . As a
direct consequence of the following lemma we deduce that λ(X) is normalized for λ
for every set X ⊆ Nd

I .

Lemma 8.1. LetX ⊆ Nd
I and let L be a set of indexes included in the minimal exclud-

ing set of (λ,X). Then λ(X) = λ(πL(X)).

Proof. Note that ifX is empty the result is immediate so we can assume thatX is non
empty. Let J be the minimal excluding set of (λ,X) and observe that J is an excluding
set forX ′ = πL(X). In particular the minimal excluding set J ′ forX ′ satisfies J ′ ⊆ J .
Since J ′ is an excluding set of (λ,X ′) we deduce that x′(i) < λ|J′|+1 for every i �∈ J ′.
Hence πL(x)(i) < λ|J′|+1 for every x ∈ X . As x ≤ πL(x) we deduce that J ′ is an
excluding set of (λ,X). By minimality of J we get the other inclusion J ⊆ J ′. Thus
J = J ′ and we have proved that λ(X) = λ(πL(X)). ��

Example 8.2. Let λ = (5, 3, 2) be an extractor. We have λ({(1, 8, 1)}) = {(1, �, 1)},
λ({(1, 8, 1), (3, 1, 1)}) = {(�, �, 1)}.

9 Pumpable Configurations

In this section we show that for arbitrary witness graphG, there exists a set J of indexes
such that the number of states of πJ (G) is “small” and such that states with “small” size
of G are pumpable by “short” cycles of πJ (G). The proof of this result is inspired by
the Rackoff ideas [Rac78]. All other results or definitions introduced in this section are
not used in the sequel.

Theorem 9.1. Let G be a witness graph and let s ∈ N>0 be a positive integer. We
introduce the positive integer x = (1 + ||A||∞)s. There exists a set of indexes J such
that the number of states of πJ (G) is bounded by xdd

and such that every state q ∈ Q
such that ||q||∞ < s is forward and backward pumpable by cycles of πJ(G) with
lengths bounded by dxdd

.

Such a set J is obtained by introducing the class of adapted extractors. An extractor λ
is said to be adapted if the following inequality holds for every n ∈ {2, . . . , d}:

λn−1 ≥ λd−n+1
n ||A||∞ + λn
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Lemma 9.2. Let λ be an adapted extractor, G be a witness graph with a set of states
Q ⊆ Nd

I , and let J be the minimal excluding set for (λ,Q). For every state q ∈ Q
there exists a run q

u−→ y such that πJ(q) u−→πJ (G) πJ (y) and such that the bounds
|u| ≤

∑
|I|<n≤|J| λ

d+1−n
n , and y(j) ≥ λ|J| for every j ∈ J hold.

Proof. Since Q ⊆ Nd
I we deduce that I ⊆ J . We introduce a parameter k ∈ N and we

prove the lemma by induction over k under the constraint |J | − |I| ≤ k. Observe that
if k = 0 then I = J and the property is proved with u = ε and y = q. Assume the
property proved for a natural number k ∈ N and let us consider a witness graphG with
a set of projected components I such that |J | − |I| ≤ k + 1 where J is the minimal
excluding set for (λ,Q). We consider a state q ∈ Q.

We say that a state p ∈ Q is normalized if {p} is normalized for λ, i.e λ({p}) = {p}
or equivalently p(i) < λ|I|+1 for every i �∈ I . Observe that if every state p ∈ Q is
normalized then λ(Q) = Q and in particular J = I and the property is proved. So
we can assume that there exists a state in p ∈ Q that is not normalized. Since G is
strongly connected, there exists a path q

σ−→G p with a minimal length such that p is
not normalized. Let us observe that the number of states in Q that are normalized is
bounded by λd−|I|

|I|+1 . By minimality of the length of σ we deduce that |σ| ≤ λd−|I|
|I|+1.

We introduce the minimal excluding set K for (λ, {p}). Observe that I is strictly
included in K since p is not normalized. Moreover K is included in J since J is an
excluding set for (λ, {p}). Lemma 8.1 shows that J is the minimal excluding set of
(λ, πK(Q)). Observe that |J | − |K| < |J | − |I| ≤ k + 1. By applying the induction
on the witness graph πK(G) and the state πK(p), we deduce that there exists a run
πK(p) u−→ y such that πJ(p) u−→πJ (G) πJ (y) with |u| ≤

∑
|K|<n≤|J| λ

d+1−n
n and such

that y(j) ≥ λ|J| for every j ∈ J . We introduce the word v = σu. Since λ is an adapted
extractor we deduce that λ|K| ≥ ||A||∞

∑
|K|<n≤|J| λ

d+1−n
n . From p(k) ≥ λ|K| for

every k ∈ K we deduce that p(k) ≥ ||A||∞|u|. Since there exists a run from πK(p)
labelled by u, Lemma 3.1 shows that there exists a run p

u−→ z. For every k ∈ K we
have z(k) ≥ λ|J| if p(k) = � and z(k) ≥ p(k) − ||A||∞|u| ≥ λ|J| otherwise since

λ is an adapted extractor. As p
u−→ z we deduce that πK(p) u−→ πK(z). In particular

πK(z) = y. Let j ∈ J\K . From the previous equality we get z(j) = y(j). Moreover
since y(j) ≥ λ|J| we get z(j) ≥ λ|J|. We have proved that z(j) ≥ λ|J| for every
j ∈ J . Hence the induction is proved. ��
Now let us prove Theorem 9.1. We consider a witness graph G with a set of states
Q ⊆ Nd

I . We also consider a positive integer s ∈ N>0 and we introduce the positive
integers a = ||A||∞ and x = (1+a)s. Let λ be the adapted extractor defined by λd = s
and the following induction for every n ∈ {2, . . . , d}:

λn−1 = λd
n(1 + ||A||∞)

An immediate induction provides λd+1−n
n ≤ xdd

for every n ∈ {1, . . . , d}. We in-
troduce the minimal excluding set J for (λ,Q). Observe that the number of states in

πJ (Q) is bounded by λd−|J|
|J|+1 . Hence |πJ (Q)| ≤ xdd

. Let us consider q ∈ Q such that

||q||∞ < s. Lemma 9.2 shows that there exists a run q
σ−→ x with x(j) ≥ λ|J| for every

j ∈ J such that πJ (q) σ−→πJ (G) πJ (x) and such that:
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|σ| ≤
|J|∑

n=1

λd+1−n
n

Since πJ (G) is strongly connected there exists a path πJ (x) u−→πJ (G) πJ (q). We
can assume that the length of u is minimal. In particular u = ε if J = {1, . . . , d} and

|u| ≤ λ
d−|J|
|J|+1 otherwise. In both case |σu| ≤ dxdd

. Since λ is an adapted extractor we
deduce that x(j) ≥ |u| ||A||∞ for every j ∈ J and by applying Lemma 3.1 we deduce
that there exists a run x

u−→ y. Since πJ (x) u−→ πJ (q) we deduce that y(j) = q(j) for
every j �∈ J . Moreover if j ∈ J\I since y(j) ≥ s and s > ||q||∞ we get y(j) > q(j).
We deduce that q ≤ y and J\I = {i | q(i) �= y(i)}. Therefore q is forward pumpable
by the cycle πJ(q) σu−−→πJ (G) πJ (q).

Symmetrically we prove the backward case. We have proved Theorem 9.1.

10 Deciding The Reversibility Problem

In this section, the reversible reachability problem is proved to be EXPSPACE-complete.
The proof is inspired by the Kosaraju ideas [Kos82]. A word α ∈ A∗ is said to be re-

versible on a configuration c if there exists a word β ∈ A∗ such that c
αβ−−→ c and

Δ(α) + Δ(β) = 0. Note that if c is a standard configuration the last condition is im-
plied by the first one.

Theorem 10.1. Let α ∈ A∗ be a reversible word on a configuration c. There exists
another word α′ ∈ A∗ reversible on c such that Δ(α) = Δ(α′) and such that:

|α′| ≤ 17d2x15dd+2

where x = (1 + 2||A||∞) (1 + ||p||∞ + ||Δ(α)||∞).

Let us assume that α ∈ A∗ is a reversible word on a configuration c. There exists a

word β ∈ A∗ such that the run p
αβ−−→ p satisfies Δ(α) + Δ(β) = 0. From this run

we extract a unique witness graph G = (Q, T ) such that p
αβ−−→G p is a total cycle. In

particular the Parikh image of this cycle is a total Kirchhoff function proving that G is
reversible by Lemma 7.2.

Let I be the set of projected components of G. We introduce a = ||A||∞ and s =
1+||p||∞+||Δ(α)||∞. Let q = p+ΔI(α). We have ||q||∞ ≤ ||p||∞+||Δ(α)||∞ < s.
Let us introduce x = (1 + 2a)s. Theorem 9.1 shows that there exists a set of indexes
J such that πJ (G) has at most xdd

states and such that p forward pumpable by a cycle
πJ (p) v−→πJ (G) πJ (p) and q is backward pumpable by a cycle πJ (q) w−→πJ (G) πJ (q)
such that |v|, |w| ≤ dxdd

. In particular ΔI(v) and −ΔI(w) are two vectors in {c ∈
Nd

I | c(i) �= 0⇔ i ∈ J}. We deduce that for every n ∈ N we have:

p
vn

−→ p+ nΔI(v) q − nΔI(w) wn

−−→ q
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Since the witness graph G is reversible, Lemma 7.2 shows that πJ (G) is reversible.
From Theorem 7.3 we deduce that the zero vector is the displacement of a total Kirch-
hoff function μ for πJ(G) satisfying:

||μ||∞ ≤ (xdd

(1 + 2a))d(d+1) ≤ x4dd+2

Note that |πJ (T )| ≤ |πJ (Q)| |A| ≤ xdd

xd ≤ x2dd

Lemma 10.2. There exists a cycle πJ(q) u−→πJ (G) πJ (q) such that Δ(v) + Δ(u) +
Δ(w) = 0 and:

|u| ≤ 3d x7dd+2

Proof. Let μv, μw be the Parikh images of πJ(p) v−→πJ (G) πJ (p) and πJ (q) w−→πJ (G)

πJ (q). We introduce the function λ = (1 + 2dxdd

)μ − (μv + μw). Observe that λ
is a Kirchhoff function for πJ (G) satisfying λ(t) ≥ (1 + 2dxdd

) − 2dxdd ≥ 1 for
every t ∈ πJ (T ). The Euler’s Lemma shows that λ is the Parikh image of a total cycle
πJ (q) u−→πJ (G) πJ(q). Observe that Δ(u) = (1 + 2dxdd

)0− (Δ(v) + Δ(w)). Hence
Δ(v) +Δ(u) +Δ(w) = 0. The length of u is bounded by:

|u|=
∑

t∈πJ (T )

(1 + 2dxdd

)μ(t)−(μv(t)+μw(t))≤3dxdd

||μ||∞|πJ (T )| ≤ 3dx7dd+2
��

Lemma 10.3. There exists a path πJ (p) α̃−→πJ (G) πJ (q) such that Δ(α̃) = Δ(α) and:

|α̃| ≤ 2x7dd+2

Proof. Since πJ (G) is strongly connected, there exists a path πJ (q)
β̃−→πJ (G) πJ (p).

We can assume that |β̃| is minimal. In particular |β̃| < xdd

. Moreover, we know that
πJ (p) α−→πJ (G) πJ (q). Observe that αβ̃ is the label of a cycle in πJ(G). Hence z =
Δ(α) + Δ(β̃) is the displacement of a Kirchhoff function for G. We have ||z||∞ ≤
||Δ(α)||∞+||Δ(β̃)||∞ ≤ s+|β̃|awe get ||z||∞ ≤ s+xdd

a ≤ xdd

(1+a). Theorem 6.3
shows that z is the displacement of a Kirchhoff function θ for G such that:

||θ||∞ ≤ ((xdd

)d+1a(1 + 2a)d + xdd

(1 + a))d ≤ x4dd+2

We introduce the Parikh image f of the path πJ (q)
β̃−→πJ (G) πJ (p). Let us add to the

strongly connected graph πJ(G) an additional transition t• from πJ(q) to πJ (p) and let
G• be this new graph and T• = πJ (T )∪{t•} be its set of transitions. Functions θ, μ and
f are extended over T• by θ(t•) = μ(t•) = f(t•) = 0. We also introduce the Parikh
image f• of t•, i.e. f•(t•) = 1 and f•(t) = 0 for every t ∈ πJ (T ). Let us observe that
g = θ + xdd

μ − f + f• is a Kirchhoff function for G•. Since f(t) < xdd

we deduce
that g(t) ≥ 1 for every t ∈ πJ (T ). Euler’s Lemma shows that g is the Parikh image of
a total cycle. Since g(t•) = 1 we deduce that g is the Parikh image of a cycle of the

form (πJ (p) α̃−→ πJ (q)) t•. By definition of g we getΔ(α̃) = z+xdd

0−Δ(β̃). Hence
Δ(α̃) = z − Δ(β̃). Since z = Δ(α) + Δ(β̃) we get Δ(α̃) = Δ(α). The following
inequalities provide the lemma:

|α̃| ≤ |πJ (T )| ||θ||∞ + xdd

|πJ(T )| ||μ||∞ ≤ 2x7dd+2
��
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Lemma 10.4. For every n ≥ |u|a we have:

q + nΔI(v) un

−−→ q − nΔI(w)

Proof. Let n ≥ |u|a. We introduce the sequence (xk)0≤k≤n of configurations xk =
q + (n − k)ΔI(v) − kΔI(w). Since πJ (xk) = πJ (q) we deduce that there exists a
run from πJ (xk) labelled by u. Moreover as ΔI(v)(j) ≥ 1 and −ΔI(w)(j) ≥ 1 for
every j ∈ J , we deduce that xk(j) ≥ n ≥ |up|a for every j ∈ J . Lemma 3.1 shows
that there exists a run from xk labelled by u. Since Δ(v) + Δ(u) + Δ(w) = 0 we get
xk

u−→ xk+1. ��

Lemma 10.5. For every n ≥ |α̃|a we have:

p+ nΔI(v) α̃−→ q + nΔI(v)

Proof. Observe that πJ (p + nΔI(v)) = πJ(p) and πJ (p) α̃−→ πJ (q). Moreover for
every j ∈ J we have (p + nΔI(v))(j) ≥ n ≥ |α̃|a. From Lemma 3.1 we deduce
that there exists a run from p + nΔI(v) labelled by α̃. From p

α−→ q we deduce that
p+ΔI(α) = q. Since Δ(α) = Δ(α̃) we deduce that p+ΔI(α̃) = q. We deduce the

run p+ nΔI(v) α̃−→ q + nΔI(v). ��

Finally, let n = amax{|α̃|, |u|}. We have proved that p
α′
−→ q where α′ = vnα̃unwn.

Note that Δ(α′) = Δ(α) since Δ(α̃) = Δ(α) and Δ(v) + Δ(u) + Δ(w) = 0. We

deduce that Δ(α′) = Δ(α). As q
β−→ p with Δ(α) + Δ(β) = 0 we deduce that α′ is

reversible on p. Note that n ≤ a3dx7dd+2 ≤ 3dx8dd+2
. Hence we have:

|α′| ≤ 2x7dd+2
+ 3dx8dd+2

(2dxdd

+ 3dx7dd+2
) ≤ 17d2x15dd+2

We have proved Theorem 10.1.

Corollary 10.6. Two standard configurations p, q are is the same strongly connected
component of a standard subreachability graph if and only if there exist runs p

α−→ q

and q
β−→ p such that:

|α|, |β| ≤ 17d2x15dd+2

where x = (1 + 2||A||∞)(1 + 2 max{||p||∞, ||q||∞}).

Theorem 10.7. The reversible reachability problem is EXPSPACE-complete.

11 Application : Reversibility Domains

During the execution of a VAS some actions are reversible and some not. More pre-
cisely, let Da be the set of standard configurations c such that there exists a word α
satisfying c

a−→ c+ a α−→ c. We observe that the setDa is an upward closed set for the
order≤. In fact c

a−→ c+ a α−→ c implies the same thing by replacing c with a standard
configuration x ∈ c+ Nd. SoDa is characterized by its finite set of minimal elements
min(Da) for ≤. As an application of Theorem 10.1, we obtain the following result.
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Theorem 11.1. Configurations c ∈ min(Da) satisfy the following inequality where
a = ||A||∞.

||c||∞ ≤ (102d2a2)(15dd+2)d+2

Proof. Observe that if a = 0 we are done since in this case c = 0. So we can assume
that a ≥ 1. We introduce the extractor λ = (λ1, . . . , λd) defined by λd+1 = a and the
following induction for n ∈ {1, . . . , d+ 1}:

λn−1 = 17d2(6aλn)15dd+2

Let c ∈ min(Da) and let d = c + a. Let us consider the minimal excluding set I for
(λ, {d}). By minimality of I we have d(i) < λ|I|+1 for every i �∈ I and d(i) ≥ λ|I| for
every i ∈ I . We consider the standard configuration y defined by y(i) = λ|I| if i ∈ I
and y(i) = d(i) if i �∈ I . Let us consider q = πI(c) and p = πI(d). Since c ∈ Da

there exists a run d
α−→ c. In particular p

α−→ q
a−→ p with Δ(α) + Δ(a) = 0. We

deduce that α is reversible on p and Theorem 10.1 shows that there exists a word α′

such that p
α′
−→ q, Δ(α′) = Δ(α) and:

|α′| ≤ 17d2x15dd+2

where x = (1 + 2a)(1 + ||p||∞ + ||a||∞). Note that ||p||∞ ≤ λ|I|+1 − 1. We deduce
that x ≤ (1 + 2a)(λ|I|+1 + a) ≤ 6aλ|I|+1 since 1 ≤ a and a ≤ λ|I|+1. Hence
a|α′| ≤ λ|I| thanks to the induction defining λ. Since πI(y) = p we deduce that
there exists a run from πI(y) labelled by α′. As y(i) ≥ λ|I| ≥ a|α′| for every i ∈ I ,

Lemma 3.1 shows that there exists a run y
α′
−→ x. Since Δ(α′) = Δ(α) = −a we

deduce that x = y − a. From y ≤ d we get x ≤ c by subtracting a. Moreover as

x
a−→ y

α′
−→ x we deduce that x ∈ Da. By minimality of c we get c = x. Hence

c = y − a. In particular ||c||∞ ≤ λ|I| + a ≤ λ0 + a. Finally let us get a bound on λ0.
We get the equality λn−1 = cλe

n by introducing e = 15dd+2 and c = 17d2(6a)e. Hence
λ0 ≤ (ca)ed+1 ≤ (102d2a2)ed+2

and from ed+2 ≤ (15dd+2)d+2 we are done. ��

12 Conclusion

The reversible reachability problem is proved to be EXPSPACE-complete in this paper.
The proof is inspired by the Rackoff and Kosaraju ideas [Rac78, Kos82]. We have intro-
duced the domain of reversibilityDa of every action a ∈ A. Observe that the reflexive
and transitive closure of the following relation R is a congruence and from [BF97] we
deduce that this relation is definable in the Presburger arithmetic. That means there exist
a Preburger formula φ that exactly denotes the pair (x,y) of standard configurations in
the reversible reachability relation. As a future work we are interested in characteriz-
ing precisely the size of such a formula (we already derive an elementary bound from
[BF97] and Theorem 11.1).

R =
⋃

a∈A

{(x,x+ a) | x ∈ Da}

Such a formula will provide a first hint on the structure of the production relations intro-
duced in [Ler11] for solving the general vector addition system reachability problem.
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Abstract. A contextual net is a Petri net extended with read arcs,
which allow transitions to check for tokens without consuming them.
Contextual nets allow for better modelling of concurrent read access than
Petri nets, and their unfoldings can be exponentially more compact than
those of a corresponding Petri net. A constructive but abstract procedure
for generating those unfoldings was proposed in earlier work; however, no
concrete implementation existed. Here, we close this gap providing two
concrete methods for computing contextual unfoldings, with a view to
efficiency. We report on experiments carried out on a number of bench-
marks. These show that not only are contextual unfoldings more compact
than Petri net unfoldings, but they can be computed with the same or
better efficiency, in particular with respect to the place-replication en-
coding of contextual nets into Petri nets.

1 Introduction

Petri nets are a means for reasoning about concurrent, distributed systems. They
explicitly express notions such as concurrency, causality, and independence.

The unfolding of a Petri net is, essentially, an acyclic version of the net in which
loops have been unrolled. The unfolding is infinite in general, but for finite-state
Petri nets one can construct a finite complete prefix of it that completely rep-
resents the behaviour of the system, and whose acyclic structure permits easier
analyses. This prefix is typically much smaller than the number of reachable
markings because an unfolding exploits the inherently concurrent nature of the
underlying system; loosely speaking, the more concurrency there is in the net,
the more advantages unfoldings have over reachability-graph techniques.

Petri net unfoldings may serve as a basis for further analyses. There is a large
body of work describing their construction, their properties, and their use in
various fields (see, e.g., [6] for an extensive survey).

However, Petri nets are not well-suited to model concurrent read access, that
is, multiple actions requiring non-exclusive access to one common resource. Con-
sequently, the unfolding technique becomes inefficient in such situations. It is
possible to mitigate this problem with a place-replication (PR) encoding [17].
Here, a resource with n readers is duplicated n times, and each reader obtains a
“private” copy. However, the resulting unfolding may still be exponential in n.
� Supported by Fundación Caja Madrid, the MIUR project SisteR, and the University
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Contextual nets explicitly model concurrent read accesses and address this
problem. They extend Petri nets with read arcs, allowing an action to check for
the presence of a resource without consuming it. They have been used, e.g., to
model concurrent database access [13], concurrent constraint programs [12], pri-
orities [9], and asynchronous circuits [17]. Their accurate representation of con-
currency makes contextual unfoldings up to exponentially smaller in the presence
of multiple readers, which promises to yield more efficient analysis procedures.

While the properties and construction of ordinary Petri net unfoldings are
well-understood, research on how to construct and exploit the properties of con-
textual unfoldings has been lacking so far. Contextual unfoldings are introduced
in [17,1], and a first unfolding procedure for a restricted subclass can be found
in [17]. A general but non-constructive procedure is proposed in [18].

A constructive, general solution was finally given in [3], at the price of mak-
ing the underlying theory notably more complicated. In particular, computing a
complete prefix required to annotate every event e with a subset of its histories,
where roughly speaking, a history of e is a set of events that must precede e
in any execution. However, it remained unclear whether the approach could be
implemented with reasonable efficiency, and how. For 1-safe nets, the interest of
computing a complete contextual prefix was doubtful: while the prefix can be ex-
ponentially smaller than the complete prefix of the corresponding PR-encoding,
the intermediate product used to produce it has asymptotically the same size.
More precisely, the number of histories in the contextual prefix matches the
number of events in the PR-prefix (for general k-safe nets, this is not the case).

In [2], first theoretical advances towards an efficient implementation were
made, proposing to annotate not only events, but conditions with histories. This
gave rise to a binary concurrency relation, a concept that mimics a crucial ele-
ment of efficient Petri unfolding tools [16,10]. However, an implementation was
still lacking, so the above doubts persisted.

In this paper, we address these open issues with the following contributions:

– We provide new approaches to two key elements of an unfolding tool: the
computation of possible extensions and maintaining a concurrency relation.

– We generalise the results in [3,2] in order to deal with a slight generalization
of the adequate orders from [7]. Although not very surprising, this extension
is quite relevant in practice as it drastically reduces the resulting prefixes.

– We implemented both approaches, aiming for efficiency. The resulting tool,
called Cunf [14], matches dedicated Petri net unfolders like Mole [16] on pure
Petri nets and additionally handles contextual unfoldings. The development
of such a tool was non-trivial: First, the new unfolder is not a simple exten-
sion of an existing one because the presence of histories influences the data
structures at every level. Secondly, even a Petri unfolder has complicated
data structures, and its computation requires to solve subproblems that are
computationally hard in principle [8].

– We ran the tool on a set of benchmarks and report on the experiments, for
both approaches. In particular, it turns out that, even for 1-safe nets, our
construction of contextual unfoldings is faster than that for PR-unfoldings.
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Apart from details of the prefix computation, our main message is that efficient
contextual unfolding is possible and performs better than the PR-encoding, even
for 1-safe nets. Contextual nets and their unfoldings therefore have a rightful
place in research on concurrency, including from an efficiency point of view. A
full version of this paper including all the proofs can be found at [15].

2 Basic Notions

A contextual net (c-net) is a tuple N = 〈P, T, F, C,m0〉, where P and T are
disjoint sets of places and transitions, F ⊆ (P ×T )∪(T ×P ) is the flow relation,
and C ⊆ P × T is the context relation. A pair (p, t) ∈ C is called read arc. Any
function m : P → N is called a marking, and m0 is the initial marking. A Petri
net is a c-net without any read arcs.

p1

t1

p3 t2

t3 p4

p2

c2

e1

c3

e3

c′2

e′1

c′3

e2

(b)

c1

(a)

e′2

c′4

c4

Fig. 1. (a) A 1-safe
c-net; and (b) an
unfolding prefix

For x ∈ P ∪ T , we call •x := {y ∈ P ∪ T | (y, x) ∈ F} the
preset of x and x• :={y ∈ P∪T | (x, y) ∈ F} the postset of x.
The context of a place p is defined as p:={ t ∈ T | (p, t) ∈ C },
and the context of a transition t as t :={ p ∈ P | (p, t) ∈ C }.
These notions are extended to sets in the usual fashion.

A marking m is n-safe if m(p) ≤ n for all p ∈ P . A set
A ⊆ T of transitions is enabled at m if for all p ∈ P ,

m(p) ≥ |p• ∩A|+
{

1 if p ∩A �= ∅
0 otherwise

Such A can occur or be executed, leading to a new marking
m′, where m′(p) = m(p) − |p• ∩ A|+ |•p ∩ A| for all p ∈ P .
We call 〈m,A,m′〉 a step of N .

A finite sequence of transitions σ = t1 . . . tn ∈ T ∗ is a run
if there exist markingsm1, . . . ,mn such that 〈mi−1, {ti},mi〉
is a step for 1 ≤ i ≤ n, and m0 is the initial marking of N ;
if such a run exists, mn is said to be reachable. A c-net N is
said to be n-safe if every reachable marking of N is n-safe.

Fig. 1 (a) depicts a 1-safe c-net. Read arcs are drawn as
undirected lines. For t2, we have {p1} = •t2, {p3} = t2 and
{p4} = t•2.

General assumptions. We restrict our interest to finite 1-safe
c-nets and treat markings as sets of places. Furthermore, for
any c-net N = 〈P, T, C, F,m0〉 we assume for all transitions
t ∈ T that •t ∩ t = ∅; notice that transitions violating this
condition can never fire in 1-safe nets.

2.1 Encodings of Contextual Nets

A c-net N can be encoded into a Petri net whose reachable markings are in
one-to-one correspondence with those of N . We treat two such encodings, and
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N ′′

(c)(b)

p1

N

(a)

b

a

p
c

d

N ′
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d

c b

a
p2

c

d

Fig. 2. C-net N , its plain encoding N ′ and its Place-Replication encoding N ′′

illustrate them by the c-net N in Fig. 2 (a). Place p has two transitions b, c in
its context, modelling a situation where, e.g., two processes are read-accessing a
common resource modelled by p. Note that step {b, c} can occur in N .

Plain encoding. Given a c-net N , the plain encoding of N is the net N ′ obtained
by replacing every read arc (p, t) in the context relation by a read/write loop
(p, t), (t, p) in the flow relation. The net N ′ has the same reachable markings
as N ; it also has the same runs but not the same steps as N . An example can
be found in Fig. 2 (b). Note that the step {b, c} can no longer occur in N ′, as
the firings of {b} and {c} are sequentialized.

PR-encoding. The place-replication (PR-) encoding [17] of a c-net N is a Petri
net N ′′ in which we substitute every place p read by n ≥ 1 transitions t1, . . . , tn
by places p1, . . . , pn, updating the flow relation ofN ′′ as follows. For i ∈ {1, . . . , n},

1. transition ti consumes and produces place pi, i.e., pi ∈ •ti and pi ∈ t•i ;
2. any transition t producing p in N produces pi in N ′′, i.e., pi ∈ t•;
3. any transition t consuming p in N consumes pi in N ′′, i.e., pi ∈ •t.

A PR-encoding is depicted in Fig. 2 (c). Reachable markings, runs, and steps
of N ′′ are in one-to-one correspondence to those of N .

3 Contextual Unfoldings and Their Prefixes

In this section, we mostly recall basic definitions from [3] concerning unfoldings.
We fix a 1-safe c-net N = 〈P, T, F, C,m0〉 for the rest of the section. Intuitively,
the unfolding of N is a safe acyclic c-net where loops of N are “unrolled”; in
general, this structure is infinite.

Definition 1. The unfolding of N , written UN , is a c-net (B,E,G,D, m̂0)
equipped with a mapping f : (B ∪ E) → (P ∪ T ), which we extend to sets and
sequences in the usual way. We call the elements of B conditions, and those of
E events; f maps conditions to places and events to transitions.

Conditions will take the form 〈p, e′〉, where p ∈ P and e′ ∈ E ∪ {⊥}, and
events will take the form 〈t,M〉, where t ∈ T and M ⊆ B. We shall assume



346 C. Rodŕıguez, S. Schwoon, and P. Baldan

a

b

d

p
c

(b) (c)(a)

p

a

b c

b c

ddd dd

p p

pp

a

p2

cb

p1

dddd

p1 p2

Fig. 3. Unfoldings of N , N ′, and N ′′ from Fig. 2

f(〈p, e′〉) = p and f(〈t,M〉) = t, respectively. A set M of conditions is called
concurrent, written conc(M), iff UN has a reachable marking M ′ s.t. M ′ ⊇M .
UN is the smallest net containing the following elements:

– if p ∈ m0, then 〈p,⊥〉 ∈ B and 〈p,⊥〉 ∈ m̂0;
– for any t ∈ T and disjoint pair of sets M1,M2 ⊆ B such that conc(M1∪M2),
f(M1) = •t, f(M2) = t, we have e := 〈t,M1 ∪M2〉 ∈ E, and for all p ∈ t•,
we have 〈p, e〉 ∈ B. Moreover, G and D are such that •e = M1, e = M2, and
e• = { 〈p, e〉 | p ∈ t• }.

Fig. 3 shows unfoldings of the nets from Fig. 2, where f is indicated by the labels
of conditions and events. In this case, the c-net is isomorphic to its unfolding;
crucially, it is smaller than the unfoldings of its two encodings. Call events la-
belled by b and c “readers”, and events labelled by d “consumers”. If, in Fig. 2,
we replaced b, c by n transitions reading from p, there would be n readers and
one consumer in the contextual unfolding; O(n!) readers and consumers in the
plain unfolding; and n readers but 2n consumers in the PR-unfolding.
UN represents all possible behaviours of N , and, in particular m is reachable

in N iff some m̂ with f(m̂) = m is reachable in UN . Intuitively, the plain unfold-
ing explodes because it represents the step {b, c} of the c-net by two runs; and the
cycles in the PR-encoding mean more consuming events for the PR-unfolding.

Definition 2. The causality relation on UN , denoted <, is the transitive closure
of G∪ { (e, e′) ∈ E ×E | e• ∩ e′ �= ∅ }. For x ∈ B ∪E, we write [x] for the set of
causes of x, defined as { e ∈ E | e ≤ x }, where ≤ is the reflexive closure of <.

In Fig. 1 (b), we have, e.g., c2 < e1, e1 < e2, and c2 < e2. The causality relation
between a pair of events e < e′ captures the intuition that e must occur before
e′ in any run that fires e′.
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Definition 3. A set X ⊆ E is called causally closed if [e] ⊆ X for all e ∈ X.
A prefix of UN is a net P = 〈B′, E′, G′, D′, m̂0〉 such that E′ ⊆ E is causally
closed, B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions of G,D to (B′ ∪ E′).

In other words, a prefix is a causally-closed subnet of UN . Surely, if P is a prefix
and m̂ a marking reachable in it, then f(m̂) is reachable in N . We are interested
in computing a prefix for which the inverse also holds.

Definition 4. A prefix P is called complete if for all markings m, m is reachable
in N iff there exists a marking m̂ reachable in P such that f(m̂) = m.

A complete prefix thus preserves all behavioural information about N , while be-
ing typically smaller than its reachability graph; yet its acyclic structure makes
the reachability problem easier than for N itself [11]. Moreover, as we saw in
Fig. 3, a contextual unfolding is more succinct than its corresponding Petri net
unfolding. Other papers, e.g., [17], consider a slightly stronger notion of com-
pleteness imposing that not only reachable markings, but also firable transitions
have a representative in the prefix. That would not affect the results in this
paper.

4 Constructing Finite Prefixes

In this section, we make inroads on how to construct a finite prefix. The material
from this section mostly recalls elements from [3], with minor modifications. We
fix a net N and its unfolding UN as in Section 3.

Consider events e2 and e3 in Fig. 1 (b). Clearly, e2 < e3 does not hold.
However, any run that fires both e2 and e3 will fire e2 before e3 (since e3 consumes
c3). This situation arises due to read arcs and motivates the next definition.

Definition 5. Two events e, e′ ∈ E are in asymmetric conflict, written e↗ e′,
iff (i) e < e′, or (ii) e ∩ •e′ �= ∅, or (iii) e �= e′ and •e ∩ •e′ �= ∅. For a set of
events X ⊆ E, we write ↗X to denote the relation ↗∩ (X ×X).

Asymmetric conflict can be thought of as a scheduling constraint: if both e, e′

occur in a run, then e must occur first. Note that in case (iii) this is vacuously
the case, as e, e′ cannot both occur. Thus, by condition (iii) ↗ subsumes the
symmetric conflicts known from Petri net unfoldings as loops of length two.

Definition 6. A configuration of UN is a finite, causally closed set of events C
such that ↗C is acyclic. Conf (UN ) denotes the set of all such configurations.

A set of events is a configuration iff all its events can be ordered to form a run
that respects the scheduling constraints given by ↗. We say that configuration
C evolves to configuration C′, written C � C′, iff C ⊆ C′ and ¬(e′ ↗ e) for all
e ∈ C and e′ ∈ C′ \ C. Intuitively, a run of C can be extended into a run of C′.

Configurations C, C′ are said to be in conflict, written C # C′, when there is
no configuration C′′ verifying C �C′′ and C′�C′′. Note that if two configurations
are not in conflict, then their union is a configuration.
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The cut of a configuration C is the marking reached in UN by a run of C.
We define Cut(C) := (m̂0 ∪ C•) \ •C. The marking of C is its image through f :
Mark(C) := f(Cut(C)).

Definition 7. Let e be an event. If C is a configuration with e ∈ C, we define
the configuration C[[e]] := { e′ ∈ C | e′(↗C)∗e } as the history of e in C. Moreover,
Hist(e) := { C[[e]] | C ∈ Conf (UN ) ∧ e ∈ C } is the set of histories of e.

While in Petri net unfoldings each event has exactly one history, a contextual
unfolding may have multiple (even infinitely many) histories per event. For in-
stance, in Fig. 1 (b) Hist(e3) = {{e1, e3}, {e1, e2, e3}}. To compute a complete
prefix, one annotates events with a finite subset of their histories.

Definition 8. An enriched event is a pair 〈e,H〉 where e ∈ E and H ∈ Hist(e).
A closed enriched prefix (CEP) of UN is a pair E = 〈P , χ〉 such that P =
〈B′, E′, G′, D′, m̂0〉 is a prefix and χ : E′ → 22E

satisfies for all e ∈ E′ (i) ∅ �=
χ(e) ⊆ Hist(e), and (ii) H ∈ χ(e) and e′ ∈ H imply H [[e′]] ∈ χ(e′). For an
enriched event 〈e,H〉, we write 〈e,H〉 ∈ E if e ∈ E′ and H ∈ χ(e).

In [3], a complete prefix of UN is constructed by a saturation procedure that
adds one enriched event at a time until there remains no addition that would
“contribute” new markings. We concretize this idea in the following:

Definition 9. Let E be a CEP. An enriched event 〈e,H〉 is a possible extension
of E iff 〈e′, H [[e′]]〉 ∈ E for all e′ ∈ H, e′ �= e, but 〈e,H〉 /∈ E.

Let ≺ be a partial order among configurations verifying that C � C′ and C �= C′
implies C ≺ C′. We extend ≺ to enriched events by 〈e,H〉 ≺ 〈e′, H ′〉 if H ≺
H ′. Given a fixed ≺, a tuple 〈e,H〉 is called cutoff iff there exists an enriched
event 〈e′, H ′〉 such that Mark(H ′) = Mark(H) and 〈e′, H ′〉 ≺ 〈e,H〉. Thus, ≺
parametrizes the following informal algorithm:

Algorithm 1.

– Start with the CEP that contains just m̂0;
– Then, in each iteration, add a non-cutoff ≺-minimal possible extension.
– If no non-cutoff possible extensions remain, terminate.

Whether Algorithm 1 terminates with a complete prefix depends on the choice
of ≺. It was shown in [3,2] that the procedure above yields a complete prefix if
≺ is the partial order due to McMillan [11]. However, it is known for Petri net
unfoldings that using a total, so-called adequate order as defined in [7] can result
in up to exponentially smaller complete prefixes.

Proposition 1. Let N be a 1-safe c-net. If ≺ is adequate, then Algorithm 1
terminates with a CEP E = 〈P , χ〉 such that P is a complete prefix of UN .
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5 Two Approaches to Possible Extensions and
Concurrency

We now turn to the question of how to implement Algorithm 1 efficiently, for
constructing unfoldings in practice. The main computational problem is to iden-
tify the possible extensions at each iteration of the procedure. Let N and UN be
as in the previous sections.

For Petri net unfolders (which do not deal with histories) this involves iden-
tifying sets M of conditions such that conc(M) and f(M) = •t for some t ∈ T
(compare Definition 1). For Petri nets, it is known that conc(M) holds iff
conc({c1, c2}) for all pairs c1, c2 ∈M . Possible extensions can therefore be iden-
tified by repeatedly consulting a binary relation on conditions. Moreover, this
binary relation can be computed efficiently and incrementally during prefix con-
struction. This idea is exploited by existing tools such as Mole [16] or Punf [10].

The above statement about conc(·) was shown to be invalid for contextual un-
foldings in [3]. However, one can define a binary relation with similar properties
on conditions enriched with histories.

Definition 10. Let c be a condition. A generating history of c is ∅ if c ∈ m̂0,
or H ∈ Hist(e), where {e} = •c. A reading history of c is any H ∈ Hist(e) such
that e ∈ c. A history of c is any of its generating or reading histories or H1∪H2,
where H1 and H2 are histories of c verifying ¬(H1 #H2). In the latter case, the
history is called compound.

If H is a history of c, we call 〈c,H〉 an enriched condition, called generating,
reading, or compound condition, according to H1. For a CEP E = 〈P , χ〉, we
say 〈c,H〉 ∈ E if H is built from histories in χ. The mapping f is extended to
enriched events and conditions by f(〈e,H〉) = f(e) and f(〈c,H〉) = f(c).

Definition 11. Two enriched conditions 〈c,H〉, 〈c′, H ′〉 are called concurrent,
written 〈c,H〉 ‖ 〈c′, H ′〉, iff ¬(H #H ′) and c, c′ ∈ Cut(H ∪H ′).

In Section 5.1, we discuss how ‖ helps to compute possible extensions. In Sec-
tion 5.2 we then discuss how to update ‖ during the unfolding construction.

5.1 Computing Possible Extensions

We discuss two ways of computing possible extensions. The first, called “lazy”,
avoids constructing compound conditions (see Definition 10), reducing the num-
ber of enriched conditions considered. The second, “eager” approach does use
compound conditions, saving work while computing possible extensions instead.
The lazy approach was introduced in [2] for the McMillan order, but holds also
for the total order of [7]. The eager approach is proposed for the first time here.

1 In [2], generating histories were called causal ; we find the term generating more
suggestive. The definition of compound histories is new and does not appear in [2].
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Lazy Approach. The lazy approach [2] is based on the observation that the
history associated with an event can be constructed by taking generating and
read histories for places in the pre-set and generating histories for places in the
context. This is expressed by the following proposition:

Proposition 2. [2] The pair 〈e,H〉 with f(e) = t is an enriched event iff there
exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;
2. Xp ∪Xc contains exactly one generating condition for every c ∈ (•e ∪ e);
3. Xp contains generating or reading conditions, Xc generating conditions;
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H =

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Proposition 2 allows to identify new possible extensions whenever a prefix is
extended with new enriched conditions. Compound conditions are avoided at
the price of combining generating and reading conditions as stated in items 2–4
for every possible extension.

Eager approach. The eager approach, instead of attempting to combine gen-
erating and reading histories when computing a possible extension, explicitly
produces all types of enriched conditions, including compound ones. This means
more enriched conditions, but on the other hand less work when computing
possible extensions.

Proposition 3. The pair 〈e,H〉 with f(e) = t is an enriched event iff there
exist sets Xp, Xc of enriched conditions such that

1. f(Xp) = •t and f(Xc) = t;
2. Xp ∪Xc contains exactly one enriched condition for every c ∈ (•e ∪ e);
3. Xp contains arbitrary enriched conditions, Xc generating conditions;
4. for all ρ, ρ′ ∈ Xp ∪Xc we have ρ ‖ ρ′;
5. finally, H =

⋃
〈c,H′〉∈Xp∪Xc

H ′.

Notice that |Xp| = |•t| in Proposition 3 whereas no such bound exists in Propo-
sition 2. Like the latter, Proposition 3 allows to identify new possible extensions
upon addition of new enriched conditions.

5.2 Updating the Concurrency Relation

We face the problem of keeping up to date the concurrency relation on enriched
conditions when the unfolding grows by the insertion of new enriched events.

In [2] an approach is proposed, based on the introduction of another binary
relation on enriched conditions, called subsumption. Intuitively, 〈c,H〉 subsumes
〈c′, H ′〉, written 〈c,H〉 ∝ 〈c′, H ′〉, when in the history H there is an event that
reads condition c′, with history H ′, and c′ is not consumed by H . This means
that when taking the enriched condition 〈c,H〉 we are also implicitly taking
〈c′, H ′〉. For instance, in Fig. 1(b), 〈c4, {e1, e2}〉 subsumes 〈c3, {e1, e2}〉. When
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a new enriched event is inserted in the unfolding, subsumption plays a role in
updating the concurrency relation. Assume that the inserted event is 〈e,H〉 and
that it is created using sets Xc, Xp (see Proposition 2 or Proposition 3). Then
the enriched conditions generated by 〈e,H〉 are concurrent with an enriched
condition ρ already in the prefix iff Xp ∪Xc ∪ {ρ} is pairwise concurrent and it
satisfies suitable closure properties w.r.t subsumption.

Here we show that for 1-safe nets the result below holds, which allows to up-
date the concurrency relation for a new generating or reading conditions inserted
in the unfolding, in a simpler way, without the need of computing subsumption.

Proposition 4. In Algorithm 1, let E be the current CEP, where 〈e,H〉 is the
last addition thanks to sets Xc, Xp as per Proposition 2 or Proposition 3. We
denote by Yp = e•×{H} and Yc = e×{H} the generating and reading conditions
created by the addition of 〈e,H〉. Let ρ ∈ Yp ∪ Yc, and let ρ′ = 〈c′, H ′〉 ∈ E be
any other enriched condition. Then ρ ‖ ρ′ iff

ρ′ ∈ Yp ∪ Yc ∨ (c′ /∈ •e ∧ ∀ρ1 ∈ Xp ∪Xc : (ρ1 ‖ ρ′) ∧ •e ∩H ′ ⊆ H)

Then the concurrency relation can be transferred to compound conditions on
the basis of the result below.

Proposition 5. Let ρ = 〈c,H1 ∪ H2〉 be a compound condition of E, where
ρ1 = 〈c,H1〉, ρ2 = 〈c,H2〉 are enriched conditions verifying ¬(H1 # H2). Let
ρ′ ∈ E be any enriched condition. Then ρ ‖ ρ′ iff ρ1 ‖ ρ′ ∧ ρ2 ‖ ρ′.

5.3 Discussion: Lazy vs. Eager Approach

In order to discover possible extensions of the form 〈e,H〉, both approaches
consider combinations of generating and reading histories for conditions c ∈ •e.

Consider Proposition 2. For every possible extension, the lazy approach takes
one generating and possibly multiple reading histories for c, all of which must
be concurrent. If the events in c have many different histories, or c is large, then
many different combinations need to be checked for concurrency.

The eager approach (Proposition 3) takes exactly one enriched condition of
arbitrary type, including compound, for c. Compound histories are a set of con-
current reading histories (Definition 10); thus a compound condition represents
pre-computed information needed to identify possible extensions.

We consider two examples where eager beats lazy and vice versa. In Fig. 4 (a),
condition c has a sequence of n readers and hence n+1 histories {e1, . . . , ei}, for
i = 0, . . . , n. For each history H of c′, eager simply combines H with the n+ 1
histories for c, while lazy checks all 2n subsets of e1, . . . , en to find these n + 1
compound histories. If c′ has many histories, eager becomes largely superior. Of
course, an intelligent strategy may help lazy to avoid exploring all 2n subsets one
by one. However, even with a good strategy, lazy still has to enumerate at least
the same combinations as eager; and since the problem of identifying the useful
subsets is NP-complete [8], there will always be instances where lazy becomes
inefficient, whatever strategy is employed.
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Fig. 4. Good examples for the eager (a) and the lazy (b) approach.

On the other hand, consider Fig. 4 (b). Again, c has n readers, this time
yielding 2n histories. Suppose that f(c) is an input place of some transition t.
Now, if t also has f(a) and f(b) in its preset, then no t-labelled event e will ever
be generated in the unfolding, and all histories of c are effectively useless. Since
those compound conditions also appear in the computation of the concurrency
relation, they become a liability in terms of both memory and execution time.
The lazy approach does not suffer from this problem here.

Both approaches therefore have their merits, and we implemented them both.
We shall report on experiments in Section 7. Concerning Section 5.2, we only
retained the new approach, which is clearly better than that of [2].

6 Efficient Prefix Construction

We implemented the procedure from Algorithm 1, using the methods proposed in
Section 5. The resulting tool, called Cunf, is publicly available [14]. Cunf expects
as input a 1-safe c-net and produces as output a complete unfolding prefix.

Notice that efficient tools exist for the unfolding of Petri nets such as Mole [16]
or Punf [10]. While we profited much from the experiences gained from devel-
oping Mole, Cunf is not a simple extension of Mole. The issues of asymmetric
conflict and histories permeate every aspect of the construction so that we went
for a completely new implementation in C, comprising some 4,000 lines of code.

Here, we review some features such as data structures and implementation
details, relevant to handling the complications imposed by contextual unfoldings,
that helped to produce an efficient tool. Experiments are reported in Section 7.

The history graph. Cunf needs to maintain enriched events and conditions, i.e.
tuples 〈e,H〉 or 〈c,H〉, where H is a history. We store these in a graph struc-
ture, maintained while the enriched prefix E evolves. Formally, the history graph
associated with E is a directed graph HE whose nodes are the enriched events
of E , and with edges 〈e,H〉 → 〈e′, H ′〉 iff e′ ∈ H and H ′ = H [[e′]] and either (i)
(e′• ∪ e′) ∩ •e �= ∅ or (ii) e′• ∩ e �= ∅. Each node 〈e,H〉 is labelled by e.

Intuitively, HE has an edge between two enriched events 〈e,H〉 and 〈e′, H ′〉 iff
some enriched condition 〈c,H ′〉 has been used to construct 〈e,H〉 (in the sense
of Proposition 2 or Proposition 3).
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This structure allows Cunf to perform many operations efficiently: every ad-
ditional enriched event enlarges the graph by just one node plus some edges;
common parts of histories are shared. We can easily enumerate the events in
H ∈ χ(e) by following the edges from node 〈e,H〉, and HE implicitly represents
the relation 	. Given an event e, we can enumerate the histories in χ(e) by keep-
ing a list of nodes in HE labelled by e. Given a condition c, we can enumerate
its generating and reading histories similarly.

Compound conditions are stored in a shared-tree-like structure, where leaves
represent reading histories and internal nodes compound histories. An internal
node has two children, one of which is a leaf, the other either internal or a leaf.
One easily sees that a compound history of c corresponds, w.l.o.g., to a union
H1 ∪ · · · ∪Hn of reading histories. Every internal node represents such a union,
and the structure allows sharing if one compound history contains another.

Possible extensions. Cunf behaves similar to Mole or other unfolders in its flow
of logic, but its actions are on enriched events and conditions. We start with
a prefix containing just m̂0 and identify the initial possible extensions. As long
as the set of possible extensions is non-empty, we choose a “minimal” extension
and add it unless it is a cutoff. For “minimal”, we use the adequate order ≺F

from [7]. Adding 〈e,H〉 means adding H to χ(e), creating e first if necessary. The
addition of 〈e,H〉 will give rise to various types of enriched conditions for whom
we compute the concurrency relation (see below). Whenever we add an enriched
condition ρ, we attempt to find possible extensions, i.e. sets Xp, Xc matching
the conditions in Propositions 2 or 3 such that Xp ∪ Xc includes ρ, where, in
order to implement condition 4, we use the precomputed binary concurrency
relation. Upon identifying a possible extension 〈e,H〉, we immediately compute
its marking, information relevant to deciding ≺F , and certain lists r(H), s(H)
during two linear traversals of H . Details on r(H) and s(H) are given below.

Concurrency relation. The relation ‖ on the enriched conditions E can be stored
and updated whenever new possible extensions are appended to E . We detail
now how Propositions 4 and 5 are used to efficiently compute this update.

Let c(ρ) denote the set of enriched conditions ρ′ verifying ρ‖ρ′. The relation ‖
is generally sparse, and Cunf stores c(ρ) as a list. However, for the purpose of
the following, c(ρ) could also be a row in a matrix representing ‖.

For reading and generating conditions ρ (Proposition 4), Cunf initially sets
c(ρ) to Yp ∪ Yc. Next, it computes the intersection of c(ρ′) for all ρ′ ∈ Xp ∪Xc,
and filters out those 〈c′, H ′〉 for which •e ∩H ′ �⊆ H holds. In order to compute
this condition without actually traversing H and H ′, we use the sets r(H) and
s(H) computed earlier (see above). These are defined as r(H) := { e′ ∈ H |
e′ ∩ Cut(H) �= ∅ } and s(H) := { e′ ∈ H | e′ ∈ •e }. Then •e ∩ H ′ �⊆ H holds
iff •e \ s(H) ∩ r(H ′) �= ∅, which can be computed traversing •e and s(H) one
time, and checking r(H ′) for every ρ′. Note that, while the other steps have
their counterparts in Petri net unfoldings, this step is new and specific to c-nets.
However, we find that this implementation keeps the overhead very small.

As for compound conditions ρ built using ρ1 and ρ2 (Proposition 5), Cunf
computes c(ρ) as the intersection of c(ρ1) and c(ρ2).
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Certain enriched conditions ρ = 〈c,H〉 need not to be included in the concur-
rency relation. It is safe, for instance, to leave c(ρ) empty if ρ is generating and
f(c)• ∪ f(c) = ∅, or if H is a cutoff. We can also avoid computing c(ρ) if ρ is
reading or compound and f(c)• = ∅, even if f(c) �= ∅.

7 Experiments

In order to experimentally evaluate our tool, we performed a series of experi-
ments. We were interested in the following questions:

– Is the contextual unfolding procedure efficient?
– What is the size of the unfoldings, compared to Petri net unfoldings?
– How do the various approaches (lazy, eager, PR, plain encoding) compare?

Concerning the second and third point, contextual unfoldings may be up to
exponentially more succinct than Petri net unfoldings, and we could contrive
examples showing arbitrarily large discrepancies. To get more realistic numbers,
we took a set of 1-safe nets provided in [4]. This collects nets with various
characteristics that allowed to test practically all aspects of our implementation.

For each net N in the set, we first obtained the c-net N ′ by substituting pairs
of arcs (p, t) and (t, p) in N by read arcs. Evidently, the plain encoding of N ′ is
N . Secondly, we obtained the PR-encoding N ′′ of N ′.

We first ran both Mole [16] and Cunf on the nets N and N ′′, which are ordi-
nary Petri nets without read arcs. Naturally, both tools compute the same result;
the object of this exercise was to establish whether Cunf was working reasonably
efficient on known examples. Indeed, its running times were always within 70%
and 140% of those of Mole, the differences due to minor implementation choices.
To abstract from these details, we used Cunf for all further comparisons.

We then used Cunf to produce complete unfoldings of the plain net N , the
PR-encoding N ′′, and of N ′ using both lazy and eager methods and the order ≺F

Table 1. Experimental results

Plain PR Contextual Ratios

Net Events tP Events tR Av. t Events tL tE tE/tP tE/tR tE/tL

bds 1.sync 12900 0.51 4302 0.26 1.22 1866 0.14 0.14 0.27 0.54 1.00
byzagr4 1b 14724 3.40 8044 5.30 0.92 8044 3.41 2.90 0.85 0.55 0.85
dpd 7.sync 10457 0.88 10457 0.99 0.77 10457 0.92 0.91 1.03 0.92 0.99
elevator 4 16856 2.01 16856 504.77 1.19 16856 1.27 1.26 0.63 >0.01 0.99
ftp 1.sync 83889 76.74 50928 113.38 1.05 50928 34.25 34.21 0.45 0.30 1.00
furnace 4 146606 40.39 100260 43.52 0.85 95335 23.48 18.34 0.45 0.42 0.78
key 4.fsa 67954 2.21 21742 4.30 0.37 4754 2036.66 6.33 2.86 1.47 >0.01
q 1.sync 10722 1.21 10722 2.18 0.90 10722 1.13 1.13 0.93 0.52 1.00
rw 12.sync 98361 3.95 98361 7.64 0.99 98361 4.52 3.10 0.78 0.41 0.69
rw 1w3r 15401 0.38 14982 0.69 0.48 14490 0.45 0.45 1.18 0.65 1.00
rw 2w1r 9241 0.30 9241 8.95 0.76 9241 0.43 0.40 1.33 0.04 0.93
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from [7]. Table 1 summarizes the results. For all approaches, we list the number
of events in the complete prefix and the running times (in seconds) of the eager
approach. For c-nets, we additionally list the running time tL of the lazy method,
since only in proper c-nets this time differs from eager. Notice that the number
of events in lazy and eager is the same; moreover, the number of enriched events
in lazy and eager equals the number of events in PR (compare the discussion in
the introduction). The average transition context size is provided for the c-nets,
as well as three ratios comparing our running times.

We make the following observations:

– In all examples that we tried, the eager approach was always at least as
fast as the lazy approach; an effect similar to the one in Fig. 4 (b) did not
happen. On the other hand, in many examples both approaches were nearly
equivalent, while in one case (key 4) lazy performed badly; see below.

– The eager approach handles all examples gracefully. It is significantly faster
than the plain approach in half the cases, and significantly slower in only
one case, key 4.

– The contextual methods produce smaller unfoldings than the plain approach
in 6 out of 11 cases. Interestingly, these are not the same as those on which
they run faster. For elevator 4 and rw 12.sync, the same number of events
is produced more quickly. Here, the read arcs are arranged in such a way
that each event still has only one history; the time saving comes from the
fact that the contextual approach produces fewer conditions and hence a
smaller concurrency relation. For key 4 and rw 1w3r, the contextual meth-
ods produce smaller unfoldings but take longer to run; see below for an
explanation.

– Comparing with PR, the eager approach is consistently more efficient except
for key 4. This clear tendency is slightly surprising given that the enriched
contextual prefix has essentially the same size as the PR-prefix. We experi-
mentally traced the difference to the enlarged presets of certain transitions
in the PR-encoding (see Fig. 2), causing combinatorial overhead and in-
creasing the number of conditions in the concurrency relation. Note that
the ratio between number of events in contextual and number of events
in PR is the average number of histories per event in the contextual ap-
proach.

We briefly discuss key 4, which causes problems for the contextual approaches.
In this net, there is one place p with a read arc to almost every transition
in the net, similar to Fig. 4 (a), with long sequences of readers. As discussed
in Section 5.3, the eager approach constructs a number of enriched conditions
linear in the length of each sequence whereas the lazy approach breaks down.
The plain encoding works fast because every event creates a new copy of p, and
every condition is concurrent with only one such copy. It remains to be seen
whether the eager approach can be adapted to handle this special case in the
same way.
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8 Conclusions

We made theoretical and practical contributions to the computation of unfold-
ings of contextual nets. To our knowledge, Cunf is the first tool that efficiently
produces these objects. The availability of a tool that produces contextual un-
foldings may trigger new interest in applications of c-nets and the algorithmics
of asymmetric event structures in general.

It will be interesting to explore the applications in verification. Unfolding-
based techniques need two ingredients: an efficient method for generating them,
and efficient methods for analyzing the prefixes. We have provided the first in-
gredient in this quest. We believe that traditional unfolding-based verification
techniques [5] (e.g., SAT-based techniques) can be extended to work with contex-
tual unfoldings and that their succinctness may help to speed up these analyses.
We find this topic to be an interesting avenue for future research.

Moreover, despite promising results, the present work will probably not be the
last word on the algorithmics of contextual unfoldings; we have some ideas on
how to further speed up the process. It would also be interesting to investigate
a mix between eager and lazy that tries to get the best of the two worlds. For
instance, one could start with the eager approach and switch (selectively for
some conditions) to lazy as soon the number of compound conditions exceeds a
certain bound. This, and other ideas, remain to be tested.
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15. Rodŕıguez, C., Schwoon, S., Baldan, P.: Efficient contextual unfolding. Tech. Rep.

LSV-11-14, LSV, ENS de Cachan (2011)
16. Schwoon, S.: Mole, http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
17. Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with

read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 501–516. Springer, Heidelberg (1998)

18. Winkowski, J.: Reachability in contextual nets. Fundamenta Informaticae 51(1-2),
235–250 (2002)

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/


Parameterized Complexity Results

for 1-safe Petri Nets

M. Praveen and Kamal Lodaya

The Institute of Mathematical Sciences, Chennai 600113, India

Abstract. We associate a graph with a 1-safe Petri net and study the
parameterized complexity of various problems with parameters derived
from the graph. With treewidth as the parameter, we give W[1]-hardness
results for many problems about 1-safe Petri nets. As a corollary, this
proves a conjecture of Downey et. al. about the hardness of some graph
pebbling problems. We consider the parameter benefit depth (that is
known to be helpful in getting better algorithms for general Petri nets)
and again give W[1]-hardness results for various problems on 1-safe Petri
nets. We also consider the stronger parameter vertex cover number. Com-
bining the well known automata-theoretic method and a powerful fixed
parameter tractability (Fpt) result about Integer Linear Programming,
we give a Fpt algorithm for model checking Monadic Second Order
(MSO) formulas on 1-safe Petri nets, with parameters vertex cover num-
ber and the size of the formula.

1 Introduction

Petri nets are popular for modelling because they offer a succinct representa-
tion of loosely coupled communicating systems. Some powerful techniques are
available but the complexity of analysis is high. In his lucid survey [8], Esparza
summarizes the situation as follows: almost every interesting analysis question
on the behaviour of general Petri nets is Expspace-hard, and almost every in-
teresting analysis question on the behaviour of 1-safe Petri nets is Pspace-hard.
By considering special subclasses of nets slightly better results can be obtained.
Esparza points out that T-systems (also called marked graphs) and S-systems
(essentially sequential transition systems) are the largest subclasses where poly-
nomial time algorithms are available. We therefore look for a structural parameter
with respect to which some analysis problems remain tractable.

Parameterized complexity. A brief review will not be out of place here. Let Σ be
a finite alphabet in which instances I ∈ Σ∗ of a problem Π ⊆ Σ∗ are specified,
where Π is the set of Yes instances. The complexity of a problem is stated in
terms of the amount of resources—space, time—needed by any algorithm solving
it, measured as a function of the size |I| of the problem instance. In parame-
terized complexity, introduced by Downey and Fellows [5], the dependence of
resources needed is also measured in terms of a parameter κ(I) of the input,
which is usually less than the input size |I|. A parameterized problem is said
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to be fixed parameter tractable (Fpt) if it can be solved by an algorithm with
running time f(κ(I))poly(|I|) where f is some computable function and poly is
a polynomial. (Similarly, a ParaPspace algorithm [10] is one that runs in space
f(κ(I))poly(|I|).)

For example, consider the problem of checking that all strings accepted by
a given finite state automaton satisfy a given Monadic Second Order (MSO)
sentence. The size of an instance of this problem is the sum of sizes of the au-
tomaton and the MSO sentence. If the size of the MSO sentence is considered as a
parameter, then this problem if Fpt, by Büchi, Elgot, Trakhtenbrot theorem [2].

There is a parameterized complexity class W[1], lowest in a hierarchy of
intractable classes called the W-hierarchy [5] (similar to the polynomial time
hierarchy). A parameterized problem complete for W[1] is to decide if there is
an accepting computation of at most k steps in a given non-deterministic Turing
machine, where the parameter is k [5]. It is widely believed that parameterized
problems hard for W[1] are not Fpt. To prove that a problem is hard for a
parameterized complexity class, we have to give a parameterized reduction from
a problem already known to be hard to our problem. A parameterized reduc-
tion from (Π,κ) to (Π ′, κ′) is an algorithm A that maps problem instances in
(resp. outside) Π to problem instances in (resp. outside) Π ′. There must be
computable functions f and g and a polynomial p such that the algorithm A on
input I terminates in time f(κ(I))p(|I|) and κ′(A(I)) ≤ g(κ(I)), where A(I) is
the problem instance output by A.

Results. Demri, Laroussinie and Schnoebelen considered synchronized transi-
tion systems, a form of 1-safe Petri nets [4] and showed that the number of
synchronizing components (processes) is not a parameter which makes analy-
sis tractable. Likewise, our first results are negative. All parameters mentioned
below are defined in Sect. 2.

– With the pathwidth of the flow graph of the 1-safe Petri net as parameter,
reachability, coverability, Computational Tree Logic (CTL) and the com-
plement of Linear Temporal Logic (LTL) model checking problems are all
W[1]-hard, even when the size of the formula is a constant. In contrast,
for the class of sequential transition systems and formula size as parameter,
Büchi’s theorem is that model checking for MSO logic is Fpt.

– As a corollary, we also prove a conjecture of Downey, Fellows and Stege that
the Signed Digraph Pebbling problem [6, section 5] is W[1]-hard when
parameterized by treewidth.

– With the benefit depth of the 1-safe Petri net as parameter, reachability,
coverability, CTL and the complement of LTL model checking problems are
W[1]-hard, even when the size of the formula is a constant.

We are luckier with our third parameter.

– With the vertex cover number of the flow graph and formula size as param-
eters, MSO model checking is Fpt.



360 M. Praveen and K. Lodaya

Perspective. As can be expected from the negative results, the class of 1-safe
Petri nets which are amenable to efficient analysis (i.e., those with small vertex
cover) is not too large. But even for this class, a reachability graph construction
can be of exponential size, so just an appeal to Büchi’s theorem is not sufficient
to yield our result.

Roughly speaking, our Fpt algorithm works well for systems which have a
small “core” (vertex cover), a small number of “interface types” with this core,
but any number of component processes using these interface types to interact
with the core (see Fig. 5). Thus, we can have a large amount of conflict and
concurrency but a limited amount of causality. Recall that S-systems and T-
systems have no concurrency and no conflict, respectively. Since all we need
from the logic is a procedure which produces an automaton from a formula, we
are able to use the most powerful, MSO logic. Our proofs combine the well known
automata-theoretic method [2,21,12] with a powerful result about feasibility of
Integer Linear Programming (Ilp) parameterized by the number of variables
[14,13,11].

Related work. Drusinsky and Harel studied nondeterminism, alternation and
concurrency in finite automata from a complexity point of view [7]. Their results
also hold for 1-bounded Petri nets.

The Signed Digraph Pebbling problem considered by Downey, Fellows
and Stege [6] can simulate Petri nets. They showed that with treewidth and the
length of the firing sequence as parameters, the reachability problem is Fpt.
They conjectured that with treewidth alone as parameter, the problem is W[1]-
hard.

Fellows et al showed that various graph layout problems that are hard with
treewidth as parameter (or whose complexity parameterized by treewidth is not
known) are Fpt when parameterized by vertex cover number [9]. They also used
tractability of Ilp and extended feasibility to optimization.

2 Preliminaries

2.1 Petri Nets

A Petri net is a 4-tuple N = (P, T,Pre,Post), P a set of places, T a set of
transitions, Pre : P × T → {0, 1} (arcs going from places to transitions) and
Post : P × T → {0, 1} (arcs going from transitions to places) the incidence
functions. A place p is an input (output) place of a transition t if Pre(p, t) = 1
(Post(p, t) = 1) respectively. We use •t (t•) to denote the set of input (output)
places of a transition t. In diagrams, places are shown as circles and transitions
as thick bars. Arcs are shown as directed edges between places and transitions.

Given a Petri net N , we associate with it an undirected flow graph G(N ) =
(P,E) where (p1, p2) ∈ E iff for some transition t, Pre(p1, t) + Post(p1, t) ≥ 1
and Pre(p2, t) + Post(p2, t) ≥ 1. If a place p is both an input and an output
place of some transition, the vertex corresponding to p has a self loop in G(N ).
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A marking M : P → N can be thought of as a configuration of the Petri
net, with each place p having M(p) tokens. We will only deal with 1-safe Petri
nets in this paper, where the range of markings is restricted to {0, 1}. Given a
Petri net N with a marking M and a transition t such that for every place p,
M(p) ≥ Pre(p, t), the transition t is said to be enabled at M and can be fired

(denoted M
t==⇒ M ′) giving M ′(p) = M(p) − Pre(p, t) + Post(p, t) for every

place p. This is generalized to a firing sequence M
t1==⇒M1

t2==⇒ · · · tr==⇒Mr, more
briefly M t1t2···tr=====⇒Mr. A firing sequence ρ enabled at M0 is said to be maximal

if it is infinite, or if M0
ρ

==⇒M and no transition is enabled at M .

Definition 1 (Reachability, coverability). Given a 1-safe Petri net N with
initial marking M0 and a target marking M : P → {0, 1}, the reachability prob-
lem is to decide if there is a firing sequence ρ such that M0

ρ
==⇒ M . The cov-

erability problem is to decide if there is a firing sequence ρ and some marking
M ′ : P → {0, 1} such that M0

ρ
==⇒M ′ and M ′(p) ≥M(p) for every place p.

2.2 Logics

Linear Temporal Logic (LTL) is a formalism in which many properties of tran-
sition systems can be specified [8, section 4.1]. We use the syntax of [8], in
particular the places P are the atomic formulae. The LTL formulas are inter-
preted on runs, sequences of markings π = M0M1 · · · from a firing sequence of a
1-safe Petri net. The satisfaction of a LTL formula φ at some position j in a run
is defined inductively, in particular π, j |= p iff Mj(p) = 1. Much more expressive
is the Monadic Second Order (MSO) logic of Büchi [2], interpreted on a maximal
run M0M1 · · · , with π, s |= p(x) iff Ms(x)(p) = 1 under an assignment s to the
variables. Boolean operations, first-order and monadic second-order quantifiers
are available as usual.

Computational Tree Logic (CTL) is another logic that can be used to specify
properties of 1-safe Petri nets. The reader is referred to [8, section 4.2] for details.

Definition 2 (Model checking). Given a 1-safe Petri net N with initial
marking M0 and a logical formula φ, the model checking problem (for that logic)
is to decide if for every maximal firing sequence ρ, the corresponding maximal
run π satisfies π, 0 |= φ.

Reachability, coverability and LTL model checking for 1-safe Petri nets are all
Pspace-complete [8]. Habermehl gave an automata-theoretic model checking
procedure for Linear Time μ-calculus on general Petri nets [12].

2.3 Parameters

The study of parameterized complexity derived an initial motivation from the
study of graph parameters. Many Np-complete problems can be solved in poly-
nomial time on trees and are Fpt on graphs that have tree-structured decom-
positions.
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Definition 3 (Tree decomposition, treewidth, pathwidth). A tree decom-
position of a graph G = (V,E) is a pair (T , (Bτ )τ∈nodes(T )), where T is a tree
and (Bτ )τ∈nodes(T ) is a family of subsets of V such that:

– For all v ∈ V , the set {τ ∈ nodes(T ) | v ∈ Bτ} is nonempty and connected
in T .

– For every edge (v1, v2) ∈ E, there is a τ ∈ nodes(T ) such that v1, v2 ∈ Bτ .

The width of such a decomposition is the number max{|Bτ | | τ ∈ nodes(T )}− 1.
The treewidth tw(G) of G is the minimum of the widths of all tree decomposi-
tions of G. If the tree T in the definition of tree decomposition is a path, we get
a path decomposition. The pathwidth pw(G) of G is the minimum of the widths
of all path decompositions of G.

From the definition, it is clear that pathwidth is at least as large as treewidth and
any problem that is W[1]-hard with pathwidth as parameter is also W[1]-hard
with treewidth as parameter. A fundamental result by Courcelle [3] shows that
graphs of small treewidth are easier to handle algorithmically: checking whether
a graph satisfies a MSO sentence is Fpt if the graph’s treewidth and the MSO
sentence’s length are parameters. In our context, the state space of a concurrent
system can be considered a graph. However, due to the state explosion problem,
the state space can be very large. Instead, we impose treewidth restriction on a
compact representation of the large state space — a 1-safe Petri net. Note also
that we are not model checking the state space itself but only the language of
words generated by the Petri net.

Definition 4 (Vertex cover number). A vertex cover V C ⊆ V of a graph
G = (V,E) is a subset of vertices such that for every edge in E, at least one of
its vertices is in V C. The vertex cover number of G is the size of a smallest
vertex cover.

Definition 5 (Benefit depth [18]). The set of places ben(p) benefited by a
place p is the smallest set of places (including p) such that any output place of
any output transition of a place in ben(p) is also in ben(p). The benefit depth
of a Petri net is defined as maxp∈P {|ben(p)|}.

Benefit depth can be thought of as a generalization of the out-degree in directed
graphs. For a Petri net, we take vertex covers of its flow graph G(N ). Any vertex
cover of G(N ) should include all vertices that have self loops. It was shown in
[18,17] that benefit depth and vertex cover number bring down the complexity
of coverability and boundedness in general Petri nets from exponential space-
complete [19] to ParaPspace.

3 Lower Bounds for 1-safe Petri Nets and Pebbling

3.1 1-safe Petri Nets, Treewidth and Pathwidth

Here we prove W[1]-hardness of reachability in 1-safe Petri nets with the path-
width of the flow graph as parameter, through a parameterized reduction from
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the parameterized Partitioned Weighted Satisfiability (p-Pw-Sat) problem. The
primal graph of a propositional CNF formula has one vertex for each propositional
variable, and an edge between two variables iff they occur together in a clause.
An instance of p-Pw-Sat problem is a triple (F , part : Φ → {1, . . . , k}, tg :
{1, . . . , k} → N), where F is a propositional CNF formula, part partitions the
set of propositional variables Φ into k parts and we need to check if there is
a satisfying assignment that sets exactly tg(r) variables to % in each part r.
Parameters are k and the pathwidth of the primal graph of F . We showed in an
earlier paper that p-Pw-Sat is W[1]-hard when parameterized by the number
of parts k and the pathwidth of the primal graph [16, Lemma 6.1].

Now we will demonstrate a parameterized reduction from p-Pw-Sat to reach-
ability in 1-safe Petri nets, with the pathwidth of the flow graph as parameter.
Given an instance of p-Pw-Sat, let q1, . . . , qn be the variables used. Construct
an optimal path decomposition of the primal graph of the CNF formula in the
given p-Pw-Sat instance (doing this is Fpt [1]). For every clause in the CNF
formula, the primal graph contains a clique formed by all variables occurring
in that clause. There will be at least one bag in the path decomposition of the
primal graph that contains all vertices in this clique [5, Lemma 6.49]. Order the
bags of the path decomposition from left to right and call the clause whose clique
appears first C1, the clause whose clique appears second as C2 and so on. If more
than one such such clique appear for the first time in the same bag, order the
corresponding clauses arbitrarily. Let C1, . . . , Cm be the clauses ordered in this
way. We will call this the path decomposition ordering of clauses, and use it to
prove that the pathwidth of the flow graph of the constructed 1-safe Petri net
is low (Lemma 7). For a partition r between 1 and k, we let n[r] be the number
of variables in r. Following are the places of our 1-safe Petri net.

1. For every propositional variable qi used in the given p-Pw-Sat instance,
places qi, xi, xi.

2. For every partition r between 1 and k, places t↑r, f↑r, tu0
r, . . . , tu

tg(r)
r and

f l
0
r, . . . , f l

n[r]−tg(r)
r .

3. For each clause Cj , a place Cj . Additional places Cm+1, s, g.

The construction of the Petri net is illustrated in the following diagrams. The
notation part(i) stands for the partition to which qi belongs. Intuitively, the
truth assignment of qi is determined by firing ti or fi in Fig. 1. The token in
xi/xi is used to check satisfaction of clauses later. The token in t↑part(i)/f↑part(i)

is used to count the number of variables set to %/⊥ in each part, with the part
of the net in Fig. 2. For each clause Cj between 1 and m, the part of the net
shown in Fig. 3 is constructed. In Fig. 3, it is assumed that Cj = q1 ∨ q2 ∨ q3.
Intuitively, a token can be moved from place Cj to Cj+1 iff the clause Cj is
satisfied by the truth assignment determined by the firings of ti/fi for each i
between 1 and n. The net in Fig. 4 checks that the target has been met in all
partitions.

The initial marking of the constructed net consists of 1 token each in the
places q1, . . . , qn, s, tu0

1, . . . , tu
0
k, f l

0
1, . . . , f l

0
k and C1, with 0 tokens in all other

places. The final marking to be reached has a token in the places s and g.
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•
s

•
qi

tifi

xi

t↑part(i)

xi

f↑part(i)

tdifdi

Fig. 1. Part of the net for each variable qi

•
tu0

r tu1
r tu

tg(r)
r

t↑r s

•
f l

0
r f l

1
r f l

n[r]−tg(r)
r

f↑r s

Fig. 2. Part of the net for each part r between 1 and k

Lemma 6 (*1). Given a p-Pw-Sat instance, constructing the Petri net de-
scribed above is Fpt. The constructed Petri net is 1-safe. The given instance of
p-Pw-Sat is a Yes instance iff in the constructed 1-safe net, the required final
marking can be reached from the given initial marking.

It remains to prove that the pathwidth of the flow graph of the constructed
1-safe net is a function of the parameters of the p-Pw-Sat instance.

Lemma 7 (*). Suppose a given instance of p-Pw-Sat has a CNF formula
whose primal graph has pathwidth pw and k parts. Then, the flow graph of the
1-safe net constructed as described above has pathwidth at most 3pw + 4k + 7.
1 Proofs of lemmas marked with * are omitted due to space constraints. They can be

found in the full version available at arxiv, under the same title as this paper.
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Fig. 4. Part of the net to check that target has been met

In the above reduction, it is enough to check if in the constructed 1-safe net, we
can reach a marking that has a token at the place g. This can be expressed as
reachability, coverability etc. Hence we get:

Theorem 8. With the pathwidth (and hence treewidth also) of the flow graph of
a 1-safe Petri net as parameter, reachability, coverability, CTL model checking
and the complement of LTL/MSO model checking (with formulas of constant
size) are W[1]-hard.

3.2 Graph Pebbling Problems, Treewidth and Pathwidth

The techniques used in the above lower bound proof can be easily translated
to some graph pebbling problems [6]. As conjectured in [6, section 5], we prove
that Signed Digraph Pebbling I, parameterized by treewidth is W[1]-hard.
An instance of this problem has a bipartite digraph D = (V,A) for which the
vertex set V is partitioned V = Red∪Blue, and also the arc set A is partitioned
into two partitions A = A+∪A−. The problem is to reach the finish state where
there are pebbles on all the red vertices, starting from a start state where there
are no pebbles on any of the red vertices, by a series of moves of the following
form:
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– If b is a blue vertex such that for all s such that (s, b) ∈ A+, s is pebbled,
and for all s such that (s, b) ∈ A−, s is not pebbled (in which case we say
that b is enabled), then the set of vertices s such that (b, s) ∈ A+ are reset by
making them all pebbled, and the set of all vertices s such that (b, s) ∈ A−
are reset by making them all unpebbled.

Corollary 9 (*). Parameterized by pathwidth (and hence by treewidth also),
Signed Digraph Pebbling is W[1]-hard.

The proof is by a parameterized reduction from p-Pw-Sat to reachability in 1-
safe Petri nets as in the last sub-section, and another reduction from reachability
in 1-safe Petri nets to Signed Digraph Pebbling.

3.3 1-safe Petri Nets and Benefit Depth

Here we show that the parameter benefit depth is not helpful for 1-safe Petri nets,
by showing W[1]-hardness using a parameterized reduction from the constraint
satisfaction problem (Csp).

Theorem 10 (*). With benefit depth as the parameter in 1-safe Petri nets, reach-
ability, coverability, CTL model checking and the complement of the LTL/MSO
model checking problems, even with formulas of constant size, are W[1]-hard.

4 Vertex Cover and Model Checking 1-safe Petri Nets

In this section, we will show that with the vertex cover number of the flow graph
of the given 1-safe Petri net and the size of the given LTL/MSO formula as
parameters, checking whether the given net is a model of the given formula is
Fpt. With vertex cover number as the only parameter, we cannot hope to get
this kind of tractability:

Proposition 11 (*). Model checking LTL (and hence MSO) formulas on 1-safe
Petri nets whose flow graph has constant vertex cover number is Co-Np-hard.

Since a run of a 1-safe net N with set of places P is a sequence of subsets of P ,
we can think of such sequences as strings over the alphabet P(P ) (the power
set of P ). It is known [2,21] that with any LTL or MSO formula φ, we can
associate a finite state automaton Aφ over the alphabet P(P ) accepting the set
of finite strings which are its models, as well as a finite state Büchi automaton
Bφ accepting the set of infinite string models.

Figure 5 shows the schematic of a simple manufacturing system modelled as
a 1-safe Petri net. Starting from p1, it picks up one unit of a raw material α
and goes to p2, then picks up raw material β, then γ. Transition t1 does some
processing and then the system starts from p1 again. Suppose we want to make
sure that whenever the system picks up a unit of raw material β, it is processed
immediately. In other words, whenever the system stops at a marking where no
transitions are enabled, there should not be a token in p3. This can be checked
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Fig. 5. An example of a system with small vertex cover

by verifying that all finite maximal runs satisfy the formula ∀x((∀y y ≤ x) ⇒
¬p3(x)). The satisfaction of this formula depends only on the number of units
of raw materials α, β and γ at the beginning, i.e., the number of tokens at the
initial marking. The naive approach of constructing the whole reachability graph
results in an exponentially large state space, due to the different orders in which
the raw materials of each type can be drawn. If we want to reason about only the
central system (which is the vertex cover {p1, p2, p3, p4} in the above system),
it turns out that we can ignore the order and express the requirements on the
numbers by integer linear constraints.

Suppose V C is a vertex cover for G(N ). We use the fact that if v1, v2 /∈ V C
are two vertices not in V C that have the same set of neighbours, v1 and v2 have
similar properties. This has been used to obtain Fpt algorithms for many hard
problems (e.g. [9]). The following definitions formalize this.

Definition 12. Let V C be a vertex cover of G(N ). The (V C-) neighbourhood
of a transition t is the ordered pair (•t∩V C, t•∩V C). We denote by l the number
of different V C-neighbourhoods.

Definition 13. Suppose N is a Petri net with l neighbourhoods for vertex cover
V C, and p /∈ V C. The (V C-) interface int [p] of p is defined as the function
int [p] : {1, . . . , l} → P({−1, 1}), where for every j between 1 and l and every
w ∈ {1,−1}, there is a transition tj of VC-neighbourhood j such that w =
−Pre(p, tj) + Post(p, tj) iff w ∈ int [p](j).

In the net in Fig. 5 with V C = {p1, p2, p3, p4}, all transitions labelled α have the
same VC-neighbourhood and all the corresponding places have the same VC-
interface. Since there can be 2k arcs between a transition and places in VC if
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|V C| = k, there can be at most 22k different VC-neighbourhoods of transitions.
There are at most 422k

VC-interfaces. The set of interfaces is denoted by Int .

Proposition 14. Let N be a 1-safe net with V C being a vertex cover of G(N ).
Let p1, p2, . . . , pi be places not in the vertex cover, all with the same interface.
Let M be some marking reachable from the initial marking of N . If M(pj) = 1
for some j between 1 and i, then M does not enable any transition that adds
tokens to any of the places p1, . . . , pi.

Proof. Suppose there is a transition t enabled at M that adds a token to pj′ for
some j′ between 1 and i. Then there is a transition t′ with the same neighbour-
hood as t (and hence enabled at M too) that can add a token to pj. Firing t′

from M will create 2 tokens at pj , contradicting the fact that N is 1-safe. ��

If the initial marking has tokens in many places with the same interface, then no
transition can add tokens to any of those places until all the tokens in all those
places are removed. Once all tokens are removed, one of the places can receive
one token after which, no place can receive tokens until this one is removed.
All these places have the same interface. Thus, a set of places with the same
interface can be thought of as an initial storehouse of tokens, after depleting
which it can be thought of as a single place. However, a formula in our logic can
reason about individual places, so we still need to keep track of individual places
that occur in the formula.

Proposition 15 (*). LetN be a 1-safe net and φ be an MSO formula. Let Pφ ⊆ P
be the subset of places that occur in φ. Let π = M0M1 · · · and π′ = M ′0M

′
1 · · · be

two finite or infinite runs of N such that for all positions j of π and for all p ∈ Pφ,
Mj(p) = M ′j(p). For any assignment s, we have π, s |= φ iff π′, s |= φ.

Let N be a 1-safe net such that G(N ) has a vertex cover V C of size k. Suppose
φ is a formula and we have to check if N satisfies φ. For each interface I, let PI ⊆
P be the places not in V C with interface I. If PI \Pφ �= ∅ (i.e., if there are places
in PI that are not in φ), designate one of the places in PI \Pφ as pI . Define the set
of special places S = V C∪Pφ∪{pI ∈ PI \Pφ | I is an interface and PI \Pφ �= ∅}.
Note that |S| ≤ k+ |φ|+ 422k

. Since this number is a function of the parameters
of the input instance, we will treat it as a parameter.

We need a structure that keeps track of changes in places belonging to S,
avoiding a construction involving all reachable markings. This can be done by a
finite state machine whose states are subsets of S. Transitions of the Petri net
that only affect places in S can be simulated by the finite state machine with
its usual transitions. To simulate transitions of the net that affect places outside
S, we need to impose some conditions on the number of times transitions of the
finite state machine can be used. The following definition formalizes this. For a
marking M of N , let M-S = {p ∈ S |M(p) = 1}.

Definition 16. Given a 1-safe net N with initial marking M0 and S defined
from φ as above, the edge constrained automaton AN = (QN , Σ, δN , u, FN )
is a structure defined as follows. QN = P(S) and Σ = Int ∪ {⊥} (recall that
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Int is the set of interfaces in N ). The transition relation δ ⊆ QN × Σ × QN
is such that for all P1, P2 ⊆ S and I ∈ Int ∪ {⊥}, (P1, I, P2) ∈ δ iff there are
markings M1,M2 and a transition t of N such that

– M1-S = P1, M2-S = P2 and M1
t==⇒M2,

– t removes a token from a place p ∈ PI \ S of interface I if I ∈ Int and
– t does not have any of its input or output places in P \ S if I = ⊥.

The edge constraint u : Int → N is given by u(I) = |{p ∈ PI \S |M0(p) = 1}|.
A subset P1 ⊆ S is in FN iff for every marking M with M-S = P1, the only
transitions enabled at M remove tokens from some place not in S.

Intuitively, the edge constraint u defines an upper bound on the number of times
those transitions can be used that reduce tokens from places not in S.

Definition 17. Let AN be an edge constrained automaton as in Def. 16 and let
π = P0P1 · · · be a finite or infinite word over P(S). Then π is a valid run of
AN iff for every position j ≥ 1 of π, we can associate an element Ij ∈ Σ such
that

– for every position j ≥ 1 of π, (Pj−1, Ij , Pj) ∈ δ and
– for every I ∈ Int, |{j ≥ 1 | Ij = I}| ≤ u(I).
– if π is finite and Pj is the last element of π, then Pj ∈ FN and for every

interface I ∈ Int and marking Mj-S = Pj enabling some transition that
removes tokens from some place in PI \ S, |{j ≥ 1 | Ij = I}| = u(I).

Next we have a run construction lemma.

Lemma 18 (*). Let N be a 1-safe net with initial marking M0, φ be a formula
and AN be as in Def. 16. For every infinite (maximal finite) run π = M0M1 · · ·
of N , there exists an infinite (finite) run π′ = M ′0M ′1 · · · such that the word
(M ′0-S)(M ′1-S) · · · is a valid run of AN and for every position j of π, M ′j-Pφ =
Mj-Pφ. If an infinite (finite) word π = P0P1 · · · over P(S) is a valid run of
AN and P0 = M0-S, then there is an infinite (finite maximal) run M0M1 · · · of
N such that Mj-S = Pj for all positions j of π.

Lemma 18 implies that in order to check if N is a model of the formula φ,
it is enough to check that all valid runs of AN satisfy φ. This can be done by
checking that no finite valid run of AN is accepted by A¬φ and no infinite valid
run of AN is accepted by B¬φ. As usual, this needs a product construction.
Automata A¬φ and B¬φ run on the alphabet P(Pφ). Let QA and QB be the set
of states of A¬φ and B¬φ respectively. Then, A¬φ = (QA,P(Pφ), δA, Q0A, FA)
and B¬φ = (QB,P(Pφ), δB, Q0B, FB).

Definition 19. AN × A¬φ = (QN × QA, Σ, δNA , {M0-S} × Q0A, FN × FA, u),
AN × B¬φ = (QN ×QB, Σ, δNB , {M0-S} ×Q0B, QN × FB, u) where

((q1, q2), I, (q′1, q
′
2)) ∈ δNA iff (q1, I, q′1) ∈ δN and (q2, q1 ∩ Pφ, q

′
2) ∈ δA

((q1, q2), I, (q′1, q
′
2)) ∈ δNB iff (q1, I, q′1) ∈ δN and (q2, q1 ∩ Pφ, q

′
2) ∈ δB

An accepting path of AN ×A¬φ is a sequence (q0, q′0)I1(q1, q′1) · · · Ir(qr, q′r) which
is δNA -respecting:
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– (q0, q′0), (q1, q′1), . . . , (qr, q′r) ∈ QN ×QA,
– the word I1 · · · Ir ∈ Σ∗ witnesses the validity of the run q0q1 · · · qr in AN (as

in Def. 17) and
– the word (q0∩Pφ) · · · (qr∩Pφ) is accepted by A¬φ through the run q′0q

′
1 · · · q′rq′F

for some q′F ∈ FA with (q′r , qr ∩ Pφ, q
′
F ) ∈ δA.

An accepting path of AN × B¬φ is defined similarly.

Proposition 20 (*). A 1-safe net N with initial marking M0 is a model of a
formula φ iff there is no accepting path in AN ×A¬φ and AN × B¬φ.

To efficiently check the existence of accepting paths in AN ×A¬φ and AN ×B¬φ,
it is convenient to look at them as graphs, possibly with self loops and parallel
edges. Let the set of states be the set of vertices of the graph and each transition
(q, Ij , q′) be an Ij-labelled edge leaving q and entering q′. If there is a path μ in
the graph from q to q′, the number of times an edge e occurs in μ is denoted by
μ(e). If s /∈ {q, q′} is some node occurring in μ, then the number of edges of μ
entering s is equal to the number of edges of μ leaving s. These conditions can
be expressed as integer linear constraints.∑

e leaves q

μ(e)−
∑

e enters q

μ(e) = 1

∑
e enters q′

μ(e)−
∑

e leaves q′
μ(e) = 1 (1)

s /∈ {q, q′} :
∑

e enters s

μ(e) =
∑

e leaves s

μ(e)

Lemma 21 (Theorem 2.1, [20]). In a directed graph G = (V,E) (possibly
with self loops and parallel edges), let μ : E → N be a function such that the
underlying undirected graph induced by edges e such that μ(e) > 0 is connected.
Then, there is a path from q to q′ with each edge e occurring μ(e) times iff μ
satisfies the constraints (1) above.

If the beginning and the end of a path are same (i.e., if q = q′), small modi-
fications of (1) and Lemma 21 are required. Finally we can prove our desired
theorem.

Theorem 22. Let N be a 1-safe net with initial marking M0 and φ be a MSO
formula. Parameterized by the vertex cover number of G(N ) and the size of φ,
checking whether N is a model of φ is Fpt.

Proof. By Prop. 20, it is enough to check that there is no accepting paths in
AN×A¬φ andAN×B¬φ. To check the existence of accepting paths in AN×B¬φ,
we have to check if from some initial state in {M0-S}×Q0B, we can reach some
vertex in a maximal strongly connected component induced by ⊥-labelled edges,
which contains some states from QN × FB. For every such initial state q and a
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vertex q′ in such a strongly connected component, check the feasibility of (1)
along with the following constraint for each interface I:∑

e is I− labelled

μ(e) ≤ u(I) (2)

To check the existence of accepting paths in AN ×A¬φ, check the feasibility
of (1) and (2) for every state q in {M0-S} × Q0A and every state (P1, q

′′) in
FN ×QA with some qF ∈ FA such that (q′′, P1 ∩Pφ, qF ) ∈ δA. If some marking
M with M-S = P1 enables some transition removing a token from some place
with interface I, then for each such interface, add the following constraint:∑

e is I− labelled

μ(e) = u(I) (3)

The variables in the above Ilp instances are μ(e) for each edge e. The number
of variables in each Ilp instance is bounded by some function of the parameters.
As Ilp is Fpt when parameterized by the number of variables [13,14,11], the
result follows. ��

The dependence of the running time of the above algorithm on formula size
is non-elementary if the formula is MSO [15]. The dependence reduces to single
exponential in case of LTL formulas [21]. The dependence on vertex cover number
is dominated by the running time of Ilp, which is singly exponential in the
number of its variables. The number of variables in turn depends on the number
of VC-interfaces (Def. 13). In the worst case, this can be triply exponential but
a given 1-safe Petri net need not have all possible VC-interfaces.

5 Conclusion

The main idea behind the Fpt upper bound for MSO/LTL model checking is
the fact that the problem can be reduced to graph reachability and hence to Ilp.
It remains to be seen if such techniques or others can be applied for branching
time logics such as CTL.

We have some negative results with pathwidth and benefit depth as parame-
ters and a positive result with vertex cover number as parameter. We think it is
a challenging problem to identify other parameters associated with 1-safe Petri
nets for which standard problems in the concurrency literature are Fpt. Another
direction for further work, suggested by a referee, is to check if the upper bound
can be extended to other classes of Petri nets such as communication-free nets.

The results of Sect. 3 proves hardness for the lowest level of the W-hierarchy. It
remains to be seen if the lower bounds could be made tighter. The parameterized
classes ParaNp and Xp include the whole W-hierarchy. Lower bounds or upper
bounds corresponding to these classes would be interesting.

Acknowledgements. We thank the anonymous Concur referees for providing
detailed comments that helped in improving the presentation.
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2. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Logic,
Methodology,PhilosophyandScience,pp.1–11.StanfordUniv.Press,Stanford(1962)

3. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation 85, 12–75 (1990)

4. Demri, S., Laroussinie, F., Schnoebelen, P.: A parametric analysis of the state-
explosion problem in model checking. J. Comput. Syst. Sci. 72(4), 547–575 (2006)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Downey, R.G., Fellows, M.R., Stege, U.: Parameterized complexity: A frame-
work for systematically confronting computational intractability. In: Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. DI-
MACS, vol. 49, pp. 49–100 (1999)

7. Drusinsky, D., Harel, D.: On the power of bounded concurrency I: Finite automata.
J. Assoc. Comput. Mach. 41(3), 517–539 (1994)

8. Esparza, J.: Decidability and complexity of Petri net problems — An introduction.
In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998)

9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008)

10. Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and
Computation 187(2), 291–319 (2003)

11. Frank, A., Tardos, E.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

12. Habermehl, P.: On the complexity of the linear-time μ-calculus for Petri-nets. In:
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Abstract. CCS! is a variant of CCS in which infinite behaviors are de-
fined by the replication operator. We show that the reachability problem
for CCS! is decidable by a reduction to the same problem for Petri Nets.

1 Introduction

Process calculi provide languages in which the structure of syntactic terms rep-
resents the structure of processes and the operational semantics represents steps
of computation or interaction. Among various process calculi, CCS remains a
standard representative.

Several variants of CCS have appeared in literature. The relative expressive
power of these variants is investigated in [5,6,7,11,10]. It seems that there are
two aspects which affect the expressive power significantly. One is the mechanism
adopted for extending finite processes in order to express infinite behaviors [5].
The other is the capability of producing and manipulating local channels [14].
According to this fact, five major variants of CCS are given in Fig. 1. In the dia-
gram an arrow ‘ �� ’ indicates the sub-language relationship. The five variants
of CCS are further divided into three classes. The first class contains CCSPdef , in
which infinite behaviors are specified by parametric definition [21,11] (or equiv-
alently dynamic-scoping recursion [5]). This mechanism offers a certain degree
of name-passing capability such that process copies can be nested at arbitrary
depth, which results in the Turing completeness of CCSPdef [11,5,23]. The sec-
ond class contains CCSμ and CCS!, in which the infinite behaviors are specified
by (static-scoping) recursion and replication, respectively. These two subcalculi
have the power of producing new local channels but not have the power of pass-
ing names around. They are not Turing complete because they are not expressive
enough to define ‘counter’ [10]. The third class contains CCSμ

• and CCS!
• in which

the local names are always static. In these two variants, localization operators
can only act as the outermost constructors to ensure that no local channels can
be produced during the evolution of processes.

Given a variant of CCS, a legitimate question is whether a certain process
property is decidable. This paper explores the reachability problem for the CCS
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CCSμ
• �� CCSμ �� CCSPdef

CCS!
• ��

��

CCS!

��

Fig. 1. CCS Variants

variants. This problem asks whether a given source process can evolve to a given
target process within finitely many steps of computation or interaction.

The reachability problem for CCSPdef is undecidable due to Turing complete-
ness. The reachability problem for CCSμ

• and CCS!
• is decidable, which is ob-

tained from the fact that CCSμ
• and CCS!

• can be embedded into Labeled Petri
Nets (LPN for short) with simple modification of U.Goltz’s encoding [12] by
C.He et al. [14], and from a prominent discovery for Petri Nets, by Ernst W.
Mayr [18], that the reachability problem for Petri Nets is decidable.

The contribution of this paper is to show that the reachability problem for
CCS! is decidable. The result is proved by a reduction to the reachability problem
for Labeled Petri Nets.

At first we notice that the way of deciding reachability problem for CCS!
• (or

CCSμ
• ) does not work for CCS!. The standard encodings from CCS to LPN [23,12]

share the guideline that the sequential processes are represented by places and
their parallel occurrences are counted by tokens. These encodings do nothing
with local names. This is why the encoding from CCS!

• (or CCSμ
• ) to LPN re-

lies heavily on static local names. Intuitively, in CCS! there are processes, for
instance of the form ! (. . . ‖ (a) !P ‖ (b) !Q ‖ . . .), in which nested local names
form a tree. The standard encodings may cause tokens for different component
confused. There are other evidences which suggest that no reasonable encoding
from CCS! to LPN exists. In [6], N.Busi et al. show that CCS! can model Min-
sky Machine non-deterministically, which confirms that CCS! is ‘nearly’ Turing
complete, while such a result seems not to hold for LPN, which is likely to be
‘far from’ Turing complete. A more convincing fact is that, for CCS! strong
bisimilarity with a given regular process is undecidable [14], while this problem
is decidable for LPN [15]. Even though CCS can indeed be encoded in terms
of LPN with infinite places or with inhibitor arcs [8], it is helpless in decid-
ing reachability problem for CCS, for these accessories make the corresponding
reachability problem for Petri Nets undecidable.

The key observation yielding the decidability result is the following property
of CCS!: When a replicated subprocess becomes ‘active’ (i.e. not guarded by a
prefix), this subprocess remains active evermore. Based on this observation, if
there exists an evolution path from source to target, the number of active occur-
rences of a certain replicated subprocess in any intermediate states is ‘bounded’
by that number in the target. Within these ‘bounds’, predefined in the target
process, a Labeled Petri Net is constructed recursively. These ‘bounds’ serve as
the requisite copies of subnets for representing every replicated subprocess. The
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Choice ∑n
i=1 λi.Pi

λi−→ Pi

Composition
P

λ−→ P ′

P ‖ Q
λ−→ P ′ ‖ Q

P
l−→ P ′ Q

l−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

Localization
P

λ−→ P ′ a not appear in λ

(a)P
λ−→ (a)P ′

Replication
P

λ−→ P ′

! P
λ−→ ! P ‖ P ′

Fig. 2. Semantics of CCS!

constructed net is strong enough to produce the evolution path in which the
numbers of active replicated subprocesses are ‘bounded’.

The rest of the paper is organized as follows. Section 2 lays down the pre-
liminaries. Section 3 expounds the main idea and formal definitions. Section 4
describes the construction of Labeled Petri Net. Section 5 states the whole al-
gorithm. Section 6 gives concluding remarks. Some technical details and proofs
are omitted. See [13] for complete coverage.

2 Preliminaries

2.1 The Calculus

To describe the interactions between systems, we need channel names. The set
of the names N is ranged over by a, b, c, . . . , and the set of the names and
the conames N ∪ N is ranged over by l, . . .. The set of the action labels A =
N ∪N ∪ {τ} is ranged over by λ.

The set PCCS! of CCS! processes, ranged over by P,Q, . . . , is generated in-
ductively by the grammar

P ::= 0 |
n∑

i=1

λi.Pi | P ‖ P ′ | (a)P | !P

A name a appeared in process (a)P is local. A name is global if it is not local.
We write gn(P ) for the set of global names of P .

The semantics of CCS! is given by labeled transition system (PCCS! ,A,−→),
where the elements of PCCS! are often referred to as states. The relation −→ ⊆
PCCS! ×A × PCCS! is the transition relation. The membership (P, λ, P ′) ∈ −→
is always indicated by P

λ−→ P ′. The relation −→ is generated inductively by
the rules defined in Fig. 2. The symmetric rules are omitted.

Standard notations and conventions in process calculi will be used throughout
the paper. The inactive process 0 is omitted in most occasions. For instance
a.b.0 is abbreviated to a.b. A finite sequence (or set) of names a1, . . . , an is
often abbreviated to ã. The guarded choice term

∑n
i=1 λi.Pi is usually written

as λ1.P1 + · · · + λn.Pn. Processes are not distinguished syntactically up to the
commutative monoid generated by ‘+’ and ‘‖’. We shall write

∏n
i=1 Pi for P1 ‖

· · · ‖ Pn. The notation ‘≡’ is used to indicate syntactic congruence. The set of



376 C. He

the derivatives of a process P , denoted by Drv(P ), is the set of the processes P ′

such that P λ1−→ · · · λn−→ P ′ for some n ≥ 0 and λ1, . . . , λn ∈ A.

2.2 The Petri Nets

Let N be the set of natural numbers. A Petri Net is a tuple N = (S, T, F,mInit)
and a Labeled Petri Net is a tuple N = (S, T, F, L,minit), where S and T are
finite disjoint sets of places and transitions respectively, F : (S×T )∪(T×S)→ N
is a flow function and L : T → A is a labeling. minit is the initial marking, where
a marking m is a function S → N assigning the number of tokens to each place.

A transition t ∈ T is enabled at a marking m, denoted by m t
�, if m(s) ≥

F (s, t) for every s ∈ S. A transition t enabled at m may fire yielding the marking
m′, denoted by m t

� m′, where m′(s) = m(s) − F (s, t) + F (t, s) for all s ∈ S.
For each λ ∈ A, we write m λ

�, respectively m λ
� m′ to mean that m t

�,
respectively m t

� m′ for some t with L(t) = λ. A labeled transition system
(M,A,�) can be generated from a Labeled Petri Net N , whereM is the set of
all markings of N .

In the remainder of this paper, Labeled Petri Nets are treated more alge-
braically. Let S = {si}|S|i=1 be the set of places of N . A marking m = {mi}|S|i=1 is
viewed as a vector with dimension |S|, or equivalently a multiset over S. A transi-
tion t will be specified by a label λ and two vectors v = {vi}|S|i=1 and w = {wj}|S|j=1.
The flow function F for t is defined by F (si, t) = vi and F (t, sj) = wj for every
i, j ∈ {1, . . . , |S|}. We will use labeled transition rules of the form

s
vi1
i1

s
vi2
i2

. . . s
vip

ip

λ
� s

wi1
j1

s
wi2
j2

. . . s
wiq

jq

to indicate a transition t with label λ, vectors {vi}|S|i=1 and {wj}|S|j=1, where vi

and wj is zero if i /∈ {i1, . . . , ip} or j /∈ {j1, . . . , jq}. Whenever m = r + v, m
can be replaced by m′ = r + w. The empty multiset is denoted by ε. Thus an
Labeled Petri Net N is specified by (S,A,�,minit), where �∈ M×A×M is
a set of labeled transition rules.

2.3 Reachability Problem

The formalization of the reachability problem depends on when two processes
are regarded syntactically equal. Let 
 be an equivalence relation on PCCS. We
have the following parameterized reachability problem:

Problem: Reachability(CCS, 
)

Instance: Two CCS processes P and Q.
Question: Does there exist Q′ such that Q 
 Q′ ∈ Drv(P )?

The relation 
 serves as the syntactical equality. The question here is how
shall we choose 
? The syntactic nature requires that 
 must be decidable, and
it also should validate that following harmonic property:



The Decidability of the Reachability Problem for CCS! 377

If P ′1 
 P1
λ−→ P2, then there exists P ′2 such that P ′1

λ−→ P ′2 
 P2.

The harmonic property is exactly the strong bisimulation property [20,22]. We
require that the inference of P ′1

λ−→ P ′2 can be effectively constructed.
The strong bisimilarity itself is not a good candidate of 
. Using the construc-

tion of Busi et al. [6], one can show Reachability(CCS!
, ∼) undecidable. On

the other hand, Reachability(CCS!
, 
) could be decided in an obvious way

if we not imposing requisite equations on 
. For example if P is not equated to
P ‖ 0, Reachability(CCS!

, 
) can be decided with the intuition that, dur-
ing the evolution, the number of unguarded composition operators (not appear
under guarded choice) cannot decrease, and every infinite evolution path must
eventually using the rule for replication, which increases this number strictly.

Definition 1. The strong structural congruence, ≡, is the smallest congruence
relation generated by the following laws:

P ‖ Q ≡ Q ‖ P (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R) P ‖ 0 ≡ P

The weak structural congruence,
�≡, is the smallest congruence generated by the

laws for ≡ together with the following laws:

(a1)(a2)P
�≡ (a2)(a1)P (a)(P ‖ Q)

�≡ P ‖ (a)Q if a /∈ gn(P ) (a)0
�≡ 0

In this paper, we treat 
 to be ≡ or
�≡. The reachability problem for CCS! always

refers to Reachability(CCS!
, ≡) or Reachability(CCS!

,

�≡).

3 Main Idea

3.1 Informal Description

We have mentioned in Section 1 that the reachability problem for CCS!
• can

be decided by a structural encoding to LPN. Each process P ∈ PCCS!• can be
assumed to be in the form (ã)

∏
i∈I Pi in which ã are all the local names of

P , and every Pi, called concurrent component, is localization free and is not
a composition. The encoding depends on the fact that local names are static,
and the number of the possible concurrent components of all derivatives of P is
finite. The encoding works for CCSμ

• as well [14]. However, this encoding is not
sound if local names can appear underneath replicators. In this situation, the
local names newly produced may be capable of preventing certain interactions
between components, which is unknown before running the process.

The basic idea of our deciding algorithm for the reachability problem of CCS!

is motivated by the following observation. Consider the following two processes

P
def= ! c. ! ((a. !P1 + b. !P2) ‖ !P3)

Q
def= ! c. ! ((a. !P1 + b. !P2) ‖ !P3) ‖

! ((a. !P1 + b. !P2) ‖ !P3) ‖ !P1 ‖ !P3 ‖
! ((a. !P1 + b. !P2) ‖ !P3) ‖ !P2 ‖ P ′2 ‖ !P3
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where P2
λ−→ P ′2. It is easy to check that Q ≡ ∈ Drv(P ). We find in the definition

of Q that the number of active (i.e. not guarded by a prefix) occurrences of the
replicated process !P1, !P2, and !P3 are one, one, and two, respectively. The key
observation is that, once a replicated subprocess becomes active, this subprocess
remains always active. Based on this observation, any intermediate states in any
evolution paths from P to Q have at most one active occurrence of !P1, one
active occurrence of !P2, and two active occurrences of !P3.

The main difficulty in translating CCS! to LPN is that the interplay of local-
ization and replication have the power of creating unbounded number of different
components (modulo ≡ or

�≡). Because each component is usually interpreted
as a place, it seems that infinite places are needed. The above observation en-
lightens us that some computation paths can be excluded, and in the remaining
computation paths, at most finite number of different components can emerge.
With this insight, a Labeled Petri Net is constructed recursively, in which every
component is translated into a certain copy of some sub-net.

3.2 Formal Definitions

In order to formalize the above intuition, we need some auxiliary notations.
Let P ∈ PCCS! , and P ′ ∈ Drv(P ). A component Pi of P ′ may be created

during the evolution by applying rule Replication. In this situation, it is helpful
for us to know the place Pi comes from. This suggests the following.

Definition 2. Let T be the set of tags, ranged over by u, v, . . . . The processes
of CCS! with tags is generated inductively by the grammar

P ::= 0 |
n∑

i=1

λi.Pi | P ‖ P ′ | (a)P | !P | 〈P 〉v

The process 〈P 〉v is in tagged form. The semantic rule for tag is

Tag
P

λ−→ P ′

〈P 〉v λ−→ 〈P ′〉v
The (weak) structural congruence is generated to tagged processes by letting
〈0〉v ≡ 0. By congruence we have 〈(a)0〉v

�≡ 0 and (a)〈0〉v
�≡ 0. Note that we do

not have equations such as 〈P ‖ Q〉v ≡ P ‖ 〈Q〉v in general.

Definition 3. A process P of CCS! is standard, if the subprocesses of P in
tagged form are exactly the ones just underneath replication operators, and every
tag in P is different.

Neither ! 〈a + b. ! c.d〉v nor ! 〈a〉v ‖ ! 〈a〉v is standard, because in the former
c.d is not in tagged form, and in the latter the same tag v appears twice. These
processes can be rectified to ! 〈a+ b. ! 〈c.d〉v2〉v1 and ! 〈a〉v1 ‖ ! 〈a〉v2 , which is now
standard.

The next notation is used to specify standard processes or their derivatives.
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Definition 4. The set C of context, ranged over by C, is generated inductively
by the grammar

C ::= v | 0 |
n∑

i=1

λi.Ci | C ‖ C′ | (a)C | 〈C〉v

We use C[v1, v2, . . . , vn] to indicate a context with tags exactly v1, v2, . . . , vn.
C[v1, v2, . . . , vn] are often abbreviated as C if no ambiguity arises. We use
C[P1, P2, . . . , Pn] to indicate the process by replacing each vi with ! 〈Pi〉vi . We
use C{R/vi} to indicate the process by replacing the hole vi with the process R.

A standard process P can be represented as:

C[Pv1 , Pv2 , . . . , Pvn ]

in which every vi occurs only once and every Pvi is standard for i = 1, . . . , n.
We will call C[v1, v2, . . . , vn] the characteristic context of P . The derivatives of
P can also be represented in this way where the same vi may occur several
times. For example, let P be the process b. ! 〈c.(a)( ! 〈a〉v1 ‖ d. ! 〈a〉v2)〉u. P can
be represented as C[Pu] with C[u] = b.u, and Pu is represented as Cu[Pv1 , Pv2 ]
with Cu[v1, v2] = c.(a)(v1 ‖ d.v2), Pv1 ≡ a and Pv2 ≡ a. When

P
b−→ c−→ P ′ ≡ ! 〈c.(a)( ! 〈a〉v1 ‖ d. ! 〈a〉v2)〉u ‖ 〈(a)( ! 〈a〉v1 ‖ d. ! 〈a〉v2)〉u,

we can represent P ′ as C′[Pu, Pv1 , Pv2 ] with C′[u, v1, v2] = u ‖ 〈(a)(v1 ‖ d.v2)〉u.

Definition 5. Let C[v1, v2, . . . , vn] be a context with tags v1, v2, . . . , vn. We say
that vi is active in C, denoted by C � vi, if vi is not under guarded choice. The
set of active tags in C is denoted by Act(C′).

Let P be standard and P ′ ∈ Drv(P ). When P ′ = C′[Pv1 , . . . , Pvn ] and C′ � vi,
we say that ! 〈Pvi〉vi is active in P ′, denoted by P ′� ! 〈Pvi〉vi .

The number of active occurrences of vi in C′ (or ! 〈Pvi〉vi in P ′) is denoted
by num(vi,C′) (or num( ! 〈Pvi 〉vi , P

′)).

For example, ! 〈b.c〉v is active in (b)( ! 〈b.c〉v ‖ d), while ! 〈b.c〉v is not active in
(b)d.( ! 〈b.c〉v ‖ e). Note also that it is meaningless to talk about whether ! 〈b.c〉v
is active in ! 〈 ! 〈b.c〉v〉u, for v does not occur in the characteristic context.

Now we are in a position to formalize the framework of the decision procedure
for Reachability(CCS!

, 
) where 
 can be either ≡ or
�≡.

Given two processes P,Q ∈ PCCS! . We want to decide whether Q 
 ∈ Drv(P ).
At first, P can be converted to P̂ which is standard by adding different tags to
every subprocess of P just under replicator. After that, we need to convert Q to
Q̂ and confirm that Q 
 ∈ Drv(P ) if and only if Q̂ 
 ∈ Drv(P̂ ). This is done by
rewriting Q to some Q′ via the structural congruence laws and then adding tags
on Q′ by guessing! By using some rewriting strategy (eliminating redundant 0
when possible), we insure that this can be done algorithmically.

For example, consider the process P and Q in Section 3.1. P can be converted
to P̂ ≡ ! 〈c. ! 〈(a. ! 〈Pu1〉u1 + b. ! 〈Pu2〉u2) ‖ ! 〈Pu3〉u3〉v2 〉v1 . By guessing the position
of tags, Q can be converted to Q̂ ≡ C′[Pv1 , Pv2 , Pu1 , Pu2 , Pu3 ] with
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C′[v1, v2, u1, u2, u3] = v1 ‖ 〈v2 ‖ 〈u1 ‖ u3〉v2〉v1 ‖ 〈v2 ‖ 〈u2 ‖ 〈P ′u2
〉u2 ‖ u3〉v2〉v1

where Pu2

λ−→ P ′u2
. Here we use the representation by characteristic context.

Note also that active occurrences of u1, u2, u3 in C′ are one, one, two, respectively.
The key assertion here is that through the transitions from P̂ to Q̂, P̂ can

never transit to the following C′′[Pv1 , Pv2 , Pu1 , Pu3 ] with

C′′[v1, v2, u1, u3] = v1 ‖ 〈v2 ‖ 〈u1 ‖ u3〉v2 ‖ 〈u1 ‖ u3〉v2〉v1

in which active occurrences of u1 is more than once.
In the following, we always assume that P is standard. The intuition described

in Section 3.1 is summarized as the next two lemmas.

Lemma 1 (Monotonicity Lemma). Let P be standard. If P ′ ∈ Drv(P ) and
P ′′ ∈ Drv(P ′), then num( ! 〈Pv〉v, P ′) ≤ num( ! 〈Pv〉v, P ′′).

Lemma 2 (Bounding Lemma). Let P be standard, and Q ∈ Drv(P ). Suppose
that num( ! 〈Pv〉v, Q) = k, then for every processes R which is an intermediate
process during the evolution from P to Q, num( ! 〈Pv〉v, R) ≤ k.

Based on Lemma 1 and Lemma 2, a Labeled Petri Net can be constructed.
Within this net, we can solve the reachability problem for CCS!.

Theorem 1. Reachability(CCS!
, ≡) and Reachability(CCS!

,

�≡) are both
decidable.

Before ending this section, we define the component of a context, which will
be used in the formal construction of the Labeled Petri Net in Section 4.

Definition 6. Let P be in standard form and C be the characteristic context of
P . The component of C, denoted by Comp(C), is defined inductively:

Comp(v) def= {v}

Comp(
n∑

i=1

λi.Ci)
def= {

n∑
i=1

λi.Ci} ∪
n⋃

i=1

Comp(Ci)

Comp(C1 ‖ C2) def= {C′1 ‖ C′2 | C′1 ∈ Comp(C1),C′2 ∈ Comp(C2)}

Comp((a)C) def= {(a)C′ | C′ ∈ Comp(C)}

Comp(〈C〉v) def= {〈C′〉v | C′ ∈ Comp(C)}

Note that Comp(C) is very similar to that of Sub(P ) in [6,7]. In Sub(P ), the
localization operators are completely neglected. When localization is taken into
account, the defining equation in the case C1 ‖ C2 also need to be modified.
Since we will treat the replication operator inductively, there is no need to de-
fine Comp( !P ). Intuitively, Comp(C) is understood as the finite set of possible
subprocesses in Drv(P ) which is not produced from replication.
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1. If Cv
λ−→C′, we have rule

[ ! Cv]v
λ
�v [ ! Cv]v [C′]v (B1)

2. If C
λ−→C′, we have rule

[C]v
λ
�v [C′]v (B2)

3. If m1
l

�v m′
1 and m2

l
�v m′

2 are rules defined by (B1) and (B2), we have rule

m1 m2
τ
�v m′

1 m′
2 (B3)

Fig. 3. Rules for the Base Step

4 The Construction of Petri Nets

This section is devoted to the technical part of the construction of Label Petri
Net N = (S,A�,�,minit) from the source process P and the target process
Q. A� is the set A ∪ {} in which  is the auxiliary label appearing in N and
not acting as a transition label of P . The construction is inductive. For every
subprocess of form ! 〈Pv〉v, a Labeled Petri Net Nv = (Sv,A ∪ {},�v,mv,init)
is constructed. Usually, a place of Nv corresponds to a context of Pv. Thus a
partial function Ctxt : Sv ⇀ C is maintained during the construction. By means
of Ctxt and the inductive procedure, we can compute Proc(Nv), a subprocess
of Pv, from a given place or marking of Nv. The function Ctxt will be used to
translate Q to a marking of N in Section 5. The formal definition of Proc is
omitted since it can be obtained from Ctxt and the inductive construction.

The construction of N includes three steps: base step, induction step, and final
step.

4.1 Base Step

In the base step, we treat the process in the form ! 〈Pv〉v with Pv replication free.
In this special case, Pv is the same as Cv, a context containing no tags. The net
for ! 〈Cv〉v is Nv = (Sv,A∪ {},�v,mv,init) defined as follows. The place set

Sv = [ ! Cv]v ∪ { [C]v | C ∈ Comp(Cv)}.

and Ctxt([ ! Cv]v) = ! 〈Cv〉v, and Ctxt([C]v) = 〈C〉v if C ∈ Comp(Cv). The initial
marking

mv,init = [ ! Cv]v.

The labeled transition rules �v is defined by the rules in Fig. 3.
Rule (B1) deals with the case that ! 〈Pv〉v λ−→ ! 〈Pv〉v ‖ 〈P ′v〉v caused by

〈Pv〉v λ−→ 〈P ′〉v. The derivatives of ! 〈Pv〉v must be of the form ! 〈Pv〉v ‖ 〈P1〉v ‖
. . . ‖ 〈Pm〉v, in which every Pr(1 ≤ r ≤ m) can be represented as some
C ∈ Comp(Cv). Rule (B2) deals with the behaviors of 〈Pr〉v’s. Rule (B3) deals
with the interaction between two 〈Pr〉v’s, or between ! 〈Pv〉v and 〈Pr〉v.
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4.2 Induction Step

In the induction step, we treat the process in the form ! 〈Pv〉v. The characteristic
context of Pv is Cv[v1, v2, . . . , vn], and Pv = Cv[Pv1 , Pv2 , . . . , Pvn ]. Notice also
that the base step is the special case of the induction step.

By hypothesis, the Labeled Petri Nets Nvi = (Svi ,A ∪ {},�vi ,mvi,init) has
already been constructed for every ! 〈Pvi 〉vi . From these nets, we shall define
Nv = (Sv,A ∪ {},�v,mv,init), the net for ! 〈Pv〉v.

Let ki be num( ! 〈Pvi 〉vi , Q). According to the Bounding Lemma, if Q ∈
Drv(P ), num( ! 〈Pvi〉vi , R) ≤ ki for any intermediate processes R. Because of
that, we need ki disjoint copies of Nvi , named Nvi,ji = (Svi,ji ,A ∪ {},�vi,ji

,mvi,init,ji) for ji = 1, 2, . . . , ki. During the evolution of ! 〈Pv〉v, whenever a cer-
tain ! 〈Pvi 〉vi come to be active, one of the copies of Nvi is triggered, and the
corresponding index ji is consumed. In this way, Nv is constructed, which can
partially mimic the process ! 〈Pvi〉vi .

Let C′v[v1, v2, . . . , vn] be a derivative of Cv[v1, v2, . . . , vn] in which a certain vi

becomes active. Then one of the ki copies of Nvi is designated to this active tag.
In this case we need to record which copy is designated to a given tag. Thus we
need a function lk which maps every vi to a number lk(vi) ∈ {⊥}∪{1, 2, . . . , ki}.
If lk(vi) = ji, then the copy with index ji is designated to tag vi in the context.
If lk(vi) = ⊥, it means no copy of Nvi has been designated to the tag vi. We
will use lk⊥ to indicate the function with lk⊥(vi) = ⊥ for every vi.

Now we begin to describe the definition of Nv = (Sv,A ∪ {},�v,mv,init).
The place set

Sv = [ ! Cv]v ∪
⋃
lk

{ [C]lkv | C ∈ Comp(Cv)} ∪
n⋃

i=1

ki⋃
ji=1

{Rji
vi
} ∪

n⋃
i=1

ki⋃
ji=1

{Svi,ji}.

and Ctxt([ ! Cv]v) = ! 〈Cv〉v, Ctxt([C]lkv ) = 〈C〉v if C ∈ Comp(Cv), Ctxt(Rji
vi

) =
Ctxt(Svi,ji) = 0. The places Rji

vi
’s act as the resources. Whenever a certain copy

of Nvi , say Nvi,ji , is triggered, the corresponding Rji
vi

’s are consumed. Meanwhile,
the superscript lk is changed to lk[vi �→ ji]i∈I whose value at vi, originally ⊥, is
changed to ji. The initial marking

mv,init = [ ! Cv]v
n∏

i=1

ki∏
ji=1

Rji
vi
.

The labeled transition rules �v is defined by the rules in Fig. 4.
Now we explain the rules in Fig. 4.
The initial process ! 〈Pv〉v is interpreted as the special marking [ ! Cv]v. The

behavior of ! 〈Pv〉v is specified by the semantic rules Replication. That is, the
transition ! 〈Pv〉v λ−→ ! 〈Pv〉v ‖ 〈P ′v〉v caused by 〈Pv〉v λ−→ 〈P ′〉v. Notice that
Pv is Cv[Pv1 , Pv2 , . . . , Pvn ], in which every subprocess ! 〈Pvi〉vi has been inter-
preted as the initial marking of an arbitrary copy of Nvi . Now the transitions
of Pv have four possibilities — 1a, 1b, 1c, and 1d. In the case 1a, the tran-
sition of Pv

λ−→ P ′ is caused by Cv
λ−→ C′, and P ′ is C′[Pv1 , Pv2 , . . . , Pvn ].

After this transition, some subprocesses ! 〈Pvi〉vi may be active in P ′, and for
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1a. If Cv
λ−→C′, Act(C′) = {vi}i∈I , we have rule

[ ! Cv]v
∏
i∈I

Rji
vi

λ
�v [ ! Cv]v [C′]lk⊥[vi �→ji]i∈I

v

∏
i∈I

mvi,init,ji (I1a)

for every ji such that 1 ≤ ji ≤ ki.

1b. If Cv{λ.0/vh} λ−→Cv{0/vh}, Act(Cv) = {vi}i∈I , and mvh,init
λ
�vh m′

vh
, we have

rule

[ ! Cv]v
∏
i∈I

Rji
vi

λ
�v [ ! Cv]v [Cv]

lk⊥[vi �→ji]i∈I
v m′

vh,jh

∏
i∈I
i�=h

mvi,init,ji (I1b)

for every ji such that 1 ≤ ji ≤ ki.

1c. If Cv{l.0/vh, l.0/vg} τ−→Cv{0/vh,0/vg}, Act(Cv) = {vi}i∈I , mvh,init
l

�vh m′
vh

,

and mvg ,init
l

�vg m′
vg

, we have rule

[ ! Cv]v
∏
i∈I

Rji
vi

τ
�v [ ! Cv]v [Cv]

lk⊥[vi �→ji]i∈I
v m′

vh,jh
m′

vg ,jg

∏
i∈I

i�=h,g

mvi,init,ji (I1c)

for every ji such that 1 ≤ ji ≤ ki.

1d. If Cv{l.0/vh} τ−→C′{0/vh}, Act(C′) = {vi}i∈I , and mvh,init
l

�vh m′
vh

, we have
rule

[ ! Cv]v
∏
i∈I

Rji
vi

τ
�v [ ! Cv]v [C′]lk⊥[vi �→ji]i∈I

v m′
vh,jh

∏
i∈I
i�=h

mvi,init,ji (I1d)

for every ji such that 1 ≤ ji ≤ ki.

2a. If C
λ−→C′, Act(C′) − Act(C) = {vi}i∈I , we have rule

[C]lkv
∏
i∈I

Rji
vi

λ
�v [C′]lk[vi �→ji]i∈I

v

∏
i∈I

mvi,init,ji (I2a)

for every ji such that 1 ≤ ji ≤ ki, and for every lk such that lk(vi) = ⊥ for i ∈ I .

2b. If C{λ.0/vh} λ−→C{0/vh}, and mvh

λ
�vh m′

vh
, we have rule

[C]lkv mvh,jh

λ
�v [C]lkv m′

vh,jh
(I2b)

for every lk such that lk(vh) = jh.

2c. If C{l.0/vh , l.0/vg} τ−→C{0/vh,0/vg}, mvh

l
�vh m′

vh
, and mvg

l
�vg m′

vg
, we have

rule
[C]lkv mvh,jh mvg,jg

τ
�v [C]lkv m′

vh,jh
m′

vg,jg
(I2c)

for every lk such that lk(vh) = jh and lk(vh) = jg .

2d. If C{l.0/vh} τ−→C′{0/vh}, Act(C′) − Act(C) = {vi}i∈I , and mvh

l
�vh m′

vh
, we

have rule

[C]lkv mvh,jh

∏
i∈I

Rji
vi

τ
�v [C′]lk[vi �→ji]i∈I

v m′
vh,jh

∏
i∈I

mvi,init,ji (I2d)

for every ji such that 1 ≤ ji ≤ ki,, and for every lk such that lk(vh) = jh and
lk(vi) = ⊥ for i ∈ I .
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3. If m1
l

�v m′
1 and m2

l
�v m′

2 are rules defined by (I1a)–(I1d) and (I2a)–(I2d), we
have rule

m1 m2
τ
�v m′

1 m′
2 (I3)

4. We have rules
Rji

vi

	−→ ε (I4)

for every vi and for every ji satisfying 1 ≤ ji ≤ ki.

Fig. 4. Rules for the Induction Step

every active subprocess, one of Nvi,ji is attached to the interpretation of P ′, and
the corresponding Rji

vi
’s are consumed. Now the process 〈P ′v〉v is interpreted as

[C′]lk⊥[vi �→ji]i∈I
v

∏
i∈I mvi,init,ji . Thus we have rule (I1a). Pay attention that the

attached ‘subnets’ can not evolve by the labeled transition rules of themselves.
However, these rules are used to produce labeled transition rules of Nv. In the
case 1b, Pv

λ−→ P ′ is caused by one of the active subprocess ! 〈Pvh
〉vh

λ−→ R. In
this case, we have Cv{ ! 〈Pvh

〉vh
/vh} λ−→ Cv{R/vh} (Cv is unchanged for only

guarded choices are concerned). By induction, ! 〈Pvh
〉vh

λ−→ R is interpreted by
a transition rule mvh,init

λ
�vh

m′vh
of Nvh

. By the same argument of 1a, we have
rule (I1b). The case 1c treats the situation that Pv

τ−→ P ′ is caused by inter-
action between two active subprocess ! 〈Pvh

〉vh
and ! 〈Pvg 〉vg . The case 1d treats

the situation that Pv
τ−→ P ′ is caused by interaction between one subprocess

! 〈Pvh
〉vh

and the environment Cv.
The derivatives of ! 〈Pv〉v must be of the form ! 〈Pv〉v ‖ 〈P1〉v ‖ . . . ‖ 〈Pm〉v,

in which every Pr(1 ≤ r ≤ m) can be represented as C{Ri/vi}ni=1 where Ri ∈
Drv( ! 〈Pvi〉vi). The cases 2a – 2d in Fig. 4 deal with the behaviors of 〈Pr〉v. The
process 〈Pr〉v is interpreted as one of the [C]lkv attached by certain markings of
Nvi , ji for every i satisfying C � vi. There are also four possibilities for transitions
of 〈Pr〉v. In the case 2a, 〈Pr〉v λ−→ P ′ is caused by C λ−→ C′. If some new tags,
say {vi}i∈I , become active, the copies of Nvi ’s are attached in the same way. This
leads to rule (I2a). Case 2b deals with the situation that 〈Pr〉v λ−→ P ′ is caused
by Rh

λ−→ R′h. In the case 2c, 〈Pr〉v τ−→ P ′ is caused by interaction between

Rh and Rg
λ−→, while in the case 2d, the transition 〈Pr〉v τ−→ P ′ is caused by

interaction between Rh and C.
Rule (I3) deals with the case that interaction happens between 〈Pr〉v’s, or

between ! 〈Pv〉v and 〈Pr〉v.
Rule (I4) says that the resource processes Rji

vi
’s can be consumed without

side-effect at any moment. The special label  is used here.
The correctness of the construction in base step and induction step is stated

in the next two lemmas.
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Trans!(Ou, Nu):
1. Find distinct sh ∈ Su such that Ctxt(sh) = Ch

u , and s ∈ S such that Ctxt(s) = Cu.
2. for each h for each ui active in Ch

u , find arbitrary one copy of Nui , say Nui,jh =
(Sui,jh ,A	, �ui,jh ,mvi,init, jh) which is constructed for !〈Pui〉ui , and bind sh with
Nui,jh . Let mh

ui
= Trans!(Oj

ui
, Nui,jh).

3. return s (
∏

h sh) (
∏

ui,h mh
ui

).

Trans(Q,N):
1. Find s ∈ S in N such that Ctxt(s) = CQ.
2. for each vi active in CQ, find Nvi = (Svi ,A ∪ {�}, �vi , mvi,init). Let mvi =

Trans(Ovi , Nvi )
3. return s

∏
vi

mvi .

Fig. 5. The target process as a marking

Lemma 3. If a marking m of Nv is reachable from mv,init, then Proc(m) is
reachable from ! 〈Pv〉v.

Lemma 4. If P ′ ≡ ! 〈Pv〉v ‖ 〈P1〉v ‖ 〈P2〉v ‖ . . . ‖ 〈Pn〉v is reachable from ! 〈Pv〉v,
and num( ! 〈Pvi 〉vi , P

′) ≤ num( ! 〈Pvi〉vi , Q), then there is a marking m of Nv

such that Proc(m) ≡ P ′ and m is reachable from mv,init.

4.3 Final Step

In the final step, we treat the process P in the form C[Pv1 , Pv2 , . . . , Pvn ], in which
C[v1, v2, . . . , vn] is the characteristic context of P . The final step is a simplified
version of the induction step for the absence of outermost replication operator.

By the induction step, the Labeled Petri Net Nvi = (Svi ,A∪{},�vi ,mvi,init)
has already been constructed for every ! 〈Pvi 〉vi . In the required Labeled Petri
Net N = (S,A�,�,minit), the place set

S = { [C′] | C′ ∈ Comp(C)} ∪
n⋃

i=1

{Svi}.

and Ctxt([C′]) = C if C′ ∈ Comp(C). The labeled transition rule of N can
be obtained by deleting rule (I1a) – (I1d) in the induction step, and do some
modifications on (I2a) – (I2d). The readers are referred to [13] for details.

5 Deciding Reachability Problem

In Section 4, a Labeled Petri Net N = (S,A�,�,minit) is constructed based
on both the source process P and the target process Q. P is interpreted as the
marking minit of N . If Q ∈ Drv(P ), we need to find in N the marking mQ of
Q, and confirm that mQ is reachable from minit if and only if Q ∈ Drv(P ). This
work is accomplished in a top-down fashion by procedure Trans(Q,N) in Fig. 5.
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If C[Pv1 , Pv2 , . . . , Pvn ] and Q ∈ Drv(P ), then, for some CQ ∈ Drv(C), Q
must be in the form of CQ[v1, . . . , vn]{Ovi/vi}ni=1, where Ovi is of the form
!〈Pvi〉vi ‖

∏
h〈Pvi,h〉vi . When CQ � vi, the subprocedure Trans!(Ovi , Nvi) is

called in order to get the sub-marking of Ovi .
The procedure Trans!(Ou, Nu) aims at the marking for is called, Ou must be

of the form
!〈Cu{Pui/ui}mi=1〉u ‖

∏
h

〈Ch
u{Oh

ui
/ui}mi=1〉u

After that, Trans! may be called recursively with parameters getting smaller
and smaller depending on the structure of Q. It is worth noting that, in case Q
does not have the desired structure, Q cannot be a derivative of P , and in this
situation Trans(Q,N) will terminate with no marking returned.

Lemma 5. If Q is a process for which Trans(Q,N) returns a marking m suc-
cessfully, then, m can be reached from minit if and only if Q ∈ Drv(P ).

6 Concluding Remark

We have presented a deciding procedure of the reachability problem for CCS!. In
order to focus on the main argument, the syntax and semantics are simplified:
The rule Replication is REPL1 in [5], while REPL2 is ignored; The guarded choice is
used instead of the general choice. The decidability result will not change for such
kinds of generalization of CCS!. The reachability problem can also be confined
by only considering τ -transitions. This confined problem is also decidable.

The interplay between replication and localization makes CCS! very expres-
sive. Some basic properties of CCS! are studied in [5,6,7]. The relative expres-
siveness of variants of CCS is further studied in [11,10]. It is proved in [6,11] that
CCS! and CCSμ are less expressive than CCSPdef . The two problems left open
in [11] are both answered positively in [10], which confirms the existence of an
encoding from CCSμ to CCS! that is codivergent branching bisimilar, and the
existence of an encoding from CCSμ to itself with only guarded recursion. The
expressiveness of CCS! is also studied in [3,4]. A unified approach to the study
of relative expressiveness is proposed in [9]. It is shown in [1,2] that CCS! can
express behavioral types for the π-calculus, while several safety properties are
still decidable.

Are there more direct ways to decide the reachability problem for CCS!? In liter-
ature some formalisms which is more powerful than LPN are studied, for example
PRS [19] and wPRS, whose reachability problem is decidable [19,16]. Afterward,
for these formalism the reachability of HM Property is also decidable [17]. These
facts suggest that encoding CCS! into PRS or wPRS directly is impossible.
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Joël Ouaknine, Hristina Palikareva, A.W. Roscoe, and James Worrell

Department of Computer Science, Oxford University, UK
{joel,hrip,awr,jbw}@cs.ox.ac.uk

Abstract. In a process algebra with hiding and recursion it is possible to
create processes which compute internally without ever communicating
with their environment. Such processes are said to diverge or livelock. In
this paper we show how it is possible to conservatively classify processes
as livelock-free through a static analysis of their syntax. In particular, we
present a collection of rules, based on the inductive structure of terms,
which guarantee livelock-freedom of the denoted process. This gives rise
to an algorithm which conservatively flags processes that can potentially
livelock. We illustrate our approach by applying both BDD-based and
SAT-based implementations of our algorithm to a range of benchmarks,
and show that our technique in general substantially outperforms the
model checker FDR whilst exhibiting a low rate of inconclusive results.

1 Introduction

It is standard in process algebra to distinguish between the visible and invisible
(or silent) actions of a process. The latter correspond to state changes arising
from internal computation, and their occurrence is not detectable or controllable
by the environment. A process is said to diverge or livelock if it reaches a state
from which it may forever compute internally through an infinite sequence of
invisible actions. This is usually a highly undesirable feature of the process,
described in the literature as “even worse than deadlock” [6, page 156]. Livelock
invalidates certain analysis methodologies, and is often symptomatic of a bug in
the modelling. However the possibility of writing down divergent processes arises
from the presence of two crucial constructs, recursion and hiding. The latter
converts visible actions into invisible ones and is a key device for abstraction.

We distinguish two ways in which a process may livelock. In the first, a pro-
cess may be able to communicate an infinite unbroken sequence of some visible
event, and this process then occurs inside the scope of an operator which hides
that event. Alternatively, a process may livelock owing to the presence of an
unguarded recursion. Roughly speaking, the latter means that the process may
recurse without first communicating a visible action.

This paper is concerned with the problem of determining whether a process
may livelock in the context of the process algebra CSP, although the principles
upon which our analysis is based should be transferable to other process algebras

� A full version of this paper, including all proofs, is available as [11].

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 389–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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as well. While it is straightforward to show that the problem is in general unde-
cidable1, we are still able to provide a conservative (i.e., sound but incomplete)
method of checking for the possibility of livelock: this method either correctly
asserts that a given process is livelock-free, or is inconclusive. The algorithm
is based on a static analysis2 of the given process, principally in terms of the
interaction of hiding, renaming, and recursion. This analysis naturally divides
into two parts according to the two sources of livelock outlined above.

The basic intuitions underlying our approach are fairly straightforward. In
part they mirror the guardedness requirements which ensure that well-behaved
CSP process equations have unique, livelock-free fixed points [13, Chap. 8]. How-
ever, we extend the treatment of [13] by allowing guarded recursions to include
instances of the hiding operator. Incidentally, Milner’s notion of guarded recur-
sions in CCS is similarly restricted by the requirement that variables not occur
inside parallel compositions [9]. Complications arise mainly because we want to
be able to fully incorporate hiding and renaming in our treatment, both of which
can have subtle indirect effects on guardedness.

We note that the idea of guarded recursions is standard in process algebra.
For instance, in Milner’s framework, a variable is ‘strongly guarded’ in a given
term if every free occurrence of the variable in the term occurs within the scope
of a prefixing operator [9]. This notion is introduced in order to justify certain
proof principles, such as that guaranteeing the uniqueness of fixed points up
to bisimilarity. Strong guardedness has also been extended to a calculus with
hiding and action refinement [2]. A key difference between our approach and
these notions is that we seek to guarantee livelock-freedom, rather than merely
the existence of unique fixed points.

In fact, there are few papers which deal with the problem of guaranteeing
livelock-freedom in the setting of concurrent process calculi.3 The existing work
on livelock-freedom has mostly been carried out in the context of mobile calculi.
[15] presents an approach for guaranteeing livelock-freedom for a certain frag-
ment of the π-calculus. Unlike the combinatorial treatment presented here, this
approach makes use of the rich theory of types of the π-calculus, and in partic-
ular the technique of logical relations. Another study of divergence-freedom in
the π-calculus appears in [20], and uses the notions of graph types.

Note that CSP is predicated upon synchronous (i.e., handshake) communi-
cation. In terms of livelock analysis, different issues (and additional difficulties)
arise in an asynchronous context (assuming unbounded communication buffers);
see, e.g., [7, 8].

Of course, one way to check a process for divergence is to search for reach-
able cycles of silent actions in its state space, which is a labelled transition
system built from the operational semantics. Assuming this graph is finite, this

1 For example, CSP can encode counters, and is therefore Turing-powerful.
2 Here static analysis is used to distinguish our approach from the state-space explo-

ration methods that underlie model checking or refinement checking.
3 In contrast, there are numerous works treating termination for the λ-calculus or

combinatory logic [5, 10, 4].
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can be achieved by calculating its strongly connected components. The latter
can be carried out in time linear in the size of the graph, which may however
be exponential (or worse) in the syntactic size of the term describing the pro-
cess. By circumventing the state-space exploration, we obtain a static analysis
algorithm which in practice tends to substantially outperform state-of-the-art
model-checking tools such as FDR—see Sect. 6 for experimental comparisons.

Naturally, there is a trade-off between the speed and accuracy of livelock
checking. It is not hard to write down processes which are livelock-free but which
our analysis indicates as potentially divergent. However, when modelling systems
in practice, it makes sense to try to check for livelock-freedom using a simple
and highly economical static analysis before invoking computationally expensive
state-space exploration algorithms. Indeed, as Roscoe [13, page 208] points out,
the calculations required to determine if a process diverges are significantly more
costly than those for deciding other aspects of refinement, and it is advantageous
to avoid these calculations if at all possible.

Recent works in which CSP livelock-freedom plays a key role include [3] as
well as [17, 16]; see also references within.

2 CSP: Syntax and Conventions

Let Σ be a finite set of events, with � /∈ Σ. We write Σ� to denote Σ ∪ {�}
and Σ∗� to denote the set of finite sequences of elements from Σ which may end
with �. In the notation below, we have a ∈ Σ and A ⊆ Σ. R denotes a binary
(renaming) relation on Σ. Its lifting to Σ� is understood to relate � to itself.
The variable X is drawn from a fixed infinite set of process variables.

CSP terms are constructed according to the following grammar:

P ::= STOP | a −→ P | SKIP | P1 � P2 | P1 � P2 | P1 ‖
A
P2 |

P1 � P2 | P \ A | P [R] | X | μX  P | DIV .

STOP is the deadlocked process. The prefixed process a −→ P initially offers
to engage in the event a, and subsequently behaves like P . SKIP represents
successful termination, and is willing to communicate � at any time. P � Q
denotes the external choice of P and Q, whereas P � Q denotes the internal
(or nondeterministic) alternative. The distinction is orthogonal to our concerns,
and indeed both choice operators behave identically over our denotational model.
The parallel composition P1 ‖

A
P2 requires P1 and P2 to synchronise on all events

in A, and to behave independently of each other with respect to all other events.
P � Q is the sequential composition of P and Q: it denotes a process which
behaves like P until P chooses to terminate (silently), at which point the process
seamlessly starts to behave like Q. P \ A is a process which behaves like P but
with all communications in the set A hidden. The renamed process P [R] derives
its behaviours from those of P in that, whenever P can perform an event a,
P [R] can engage in any event b such that a R b. To understand the meaning of
μX  P , consider the equation X = P , in terms of the unknown X . While this
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equation may have several solutions, it always has a unique least4 such, written
μX  P . Moreover, as it turns out, if μX  P is livelock-free then the equation
X = P has no other solutions. Lastly, the process DIV represents livelock, i.e.,
a process caught in an infinite loop of silent events.

A CSP term is closed if every occurrence of a variable X in it occurs within
the scope of a μX operator; we refer to such terms as processes.

Let us state a few conventions. When hiding a single event a, we write P \ a
rather than P \ {a}. The binding scope of the μX operator extends as far to the
right as possible. We also often express recursions by means of the equational
notation X = P , rather than the functional μX  P .

Let us also remark that CSP processes are often defined via vectors of mutually
recursive equations. These can always be converted to our present syntax, thanks
to Bekič’s theorem [19, Chap. 10]. Accordingly, we shall freely make use of the
vectorised notation in this paper.

3 Operational and Denotational Semantics

We present congruent (equivalent) operational and denotational semantics for
CSP. For reasons of space, many details and clauses are omitted; a full account
can be found in [11]. An extensive treatment of a variety of different CSP models
can also be found in [13, 14]. The semantics presented below only distill those
ideas from [13, 14] which are relevant in our setting.

The operational semantics is presented as a list of inference rules in SOS form;
we only give below rules for prefixing, recursion, parallel composition, and hiding.
In what follows, a stands for a visible event, i.e., belongs to Σ�. A ⊆ Σ and
A� = A∪{�}. γ can be a visible event or a silent one (γ ∈ Σ�∪{τ}). P γ−→ P ′

means that P can perform an immediate and instantaneous γ-transition, and
subsequently become P ′ (communicating γ in the process if γ is a visible event).
If P is a term with a single free variable X and Q is a process, [Q/X ]P represents
the process P with Q substituted for every free occurrence of X .

(a −→ P ) a−→ P μX  P
τ−→ [(μX  P )/X ]P

P1
γ−→ P ′1

P1 ‖
A
P2

γ−→ P ′1 ‖
A
P2

[ γ /∈ A� ]
P2

γ−→ P ′2
P1 ‖

A
P2

γ−→ P1 ‖
A
P ′2

[ γ /∈ A�]

P1
a−→ P ′1 P2

a−→ P ′2
P1 ‖

A
P2

a−→ P ′1 ‖
A
P ′2

[ a ∈ A� ]

P
a−→ P ′

P \ A τ−→ P ′ \ A
[ a ∈ A ]

P
γ−→ P ′

P \ A γ−→ P ′ \ A
[ γ /∈ A ] .

4 The relevant partial order is defined in Sect. 3.



Static Livelock Analysis in CSP 393

These rules allow us to associate to any CSP process a labelled transition
system representing its possible executions. We say that a process diverges if it
has an infinite path whose actions are exclusively τ ’s. A process is livelock-free
if it never reaches a point from which it diverges.

The denotational semantics ascribes to any CSP process a pair (T,D), where
T ⊆ Σ∗� is the set of visible event traces that the process may perform, and
D ⊆ T is the set of traces after which it may diverge.5 Following [14], we write
T ⇓ for the set of pairs (T,D) satisfying the following axioms (where � denotes
trace concatenation):

1. D ⊆ T .
2. s�〈�〉 ∈ D implies s ∈ D.
3. T ⊆ Σ∗� is non-empty and prefix-closed.
4. s ∈ D ∩Σ∗ and t ∈ Σ∗� implies s�t ∈ D.

Axiom 4 says that the set of divergences is postfix-closed. Indeed, since we are
only interested in detecting divergence, we treat it as catastrophic and do not
attempt to record any meaningful information past a point from which a process
may diverge; accordingly, our semantic model takes the view that a process
may perform any sequence of events after divergence. Thus the only reliable
behaviours of a process are those in T −D.

Given a process P , its denotation �P � = (traces(P ), divergences(P )) ∈ T ⇓ is
calculated by induction on the structure of P ; in other words, the model T ⇓ is
compositional. The complete list of clauses can be found in [13, Chap. 8], and
moreover the traces and divergences of a process may also be extracted from the
operational semantics in straightforward fashion.

Hiding a set of events A ⊆ Σ from a process P introduces divergence if P is
capable of performing an infinite unbroken sequence of events from A. Although
our model only records the finite traces of a process, the finite-branching nature
of our operators entails (via König’s lemma) that a process may perform an
infinite trace u ∈ Σω if and only if it can perform all finite prefixes of u.

We interpret recursive processes in the standard way by introducing a partial
order � on T ⇓. We write (T1, D1) � (T2, D2) if T2 ⊆ T1 and D2 ⊆ D1. In other
words, the order on T ⇓ is reverse inclusion on both the trace and the divergence
components. The bottom element of (T ⇓,�) is (Σ∗�, Σ∗�), i.e., the denotation
of the immediately divergent process DIV . The least upper bound of a family
{(Ti, Di) | i ∈ I} is given by

⊔
i∈I(Ti, Di) = (

⋂
i∈I Ti,

⋂
i∈I Di).

It is readily verified that each n-ary CSP operator other than recursion can be
interpreted as a Scott-continuous function (T ⇓)n → T ⇓. By induction we have
that any CSP expression P in variables X1, . . . , Xn is interpreted as a Scott-
continuous map (T ⇓)n → T ⇓. Recursion is then interpreted using the least fixed
point operator fix : [T ⇓ → T ⇓] → T ⇓. For instance �μX X� is the least fixed

5 Standard models of CSP also take account of the liveness properties of a process by
modelling its refusals, i.e., the sets of events it cannot perform after a given trace.
However, this information is orthogonal to our concerns: the divergences of a process
are independent of its refusals—see [13, Sect. 8.4].
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point of the identity function on T ⇓, i.e., the immediately divergent process.
Our analysis of livelock-freedom is based around an alternative treatment of
fixed points in terms of metric spaces.

Definition 1. A process P is livelock-free if divergences(P ) = ∅.

In what follows, we make repeated use of standard definitions and facts concern-
ing metric spaces. We refer the reader who might be unfamiliar with this subject
matter to the accessible text [18].

Let F (X) be a CSP term with a free variable X . F can be seen as a selfmap
of T ⇓. Assume that there exists some metric on T ⇓ which is complete and under
which F is a contraction6. Then it follows from the Banach fixed point theorem
that F has a unique (possibly divergent) fixed point μX  F (X) in T ⇓.

There may be several such metrics, or none at all. Fortunately, a class of suit-
able metrics can be systematically elicited from the sets of guards of a particular
recursion. Roughly speaking, the metrics that we consider are all variants of the
well-known ‘longest common prefix’ metric on traces7, which were first studied
by Roscoe in his doctoral dissertation [12], and independently by de Bakker and
Zucker [1]. The reason we need to consider such variants is that hiding fails to be
nonexpansive in the ‘longest common prefix’ metric. For instance, the distance
between the traces 〈a, a, b〉 and 〈a, a, c〉 is 1

4 . However, after the event a is hidden,
the distance becomes 1. The solution, in this particular case, is to change the
definition of the length of a trace by only counting non-a events. To formalise
these ideas let us introduce a few auxiliary definitions. These are all parametric
in a given set of events U ⊆ Σ.

Given a trace s ∈ Σ∗�, the U -length of s, denoted lengthU (s), is defined to
be the number of occurrences of events from U occurring in s. Given a set of
traces T ⊆ Σ∗� and n ∈ N the restriction of T to U -length n is defined by
T �U n =̂ {s ∈ T | lengthU (s) � n}. We extend this restriction operator to act
on our semantic domain T ⇓ by defining (T,D) �U n =̂ (T ′, D′), where

1. D′ = D ∪ {s�t | s ∈ T ∩Σ∗ and lengthU (s) = n}.
2. T ′ = D′ ∪ {s ∈ T | lengthU (s) � n}.

Thus P �U n denotes a process which behaves like P until n events from the
set U have occurred, after which it diverges. It is the least process which agrees
with P on traces with U -length no greater than n.

We now define a metric dU on T ⇓ by

dU (P,Q) =̂ inf{2−n | P �U n = Q �U n} ,

where the infimum is taken in the interval [0, 1].
Notice that the function U �→ dU is antitone: if U ⊆ V then dU � dV . In

particular, the greatest of all the dU is d∅; this is the discrete metric on T ⇓.
6 A selfmap F on a metric space (T ⇓, d) is a contraction if there exists a non-negative

constant c < 1 such that, for any P, Q ∈ T ⇓, d(F (P ), F (Q)) � c · d(P, Q).
7 In this metric the distance between two traces s and t is the infimum in [0, 1] of the

set {2−k | s and t possess a common prefix of length k}.
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Furthermore, the least of all the dU is dΣ ; this is the standard metric on T ⇓ as
defined in [13, Chap. 8].

Proposition 2. Let U ⊆ Σ. Then T ⇓ equipped with the metric dU is a complete
ultrametric space and the set of livelock-free processes is a closed subset of T ⇓.
Furthermore if F : T ⇓ → T ⇓ is contractive with respect to dU then F has a
unique fixed point given by limn→∞ Fn(STOP). (Note that this fixed point may
be divergent.)

In the rest of this paper, the only metrics we are concerned with are those
associated with some subset of Σ; accordingly, we freely identify metrics and
sets when the context is unambiguous.

4 Static Livelock Analysis

We present an algorithm based on a static analysis which conservatively flags
processes that may livelock. In other words, any process classified as livelock-free
really is livelock-free, although the converse may not hold.

Divergent behaviours originate in three different ways, two of which are non-
trivial. The first is through direct use of the process DIV ; the second comes from
unguarded recursions; and the third is through hiding an event, or set of events,
which the process can perform infinitely often to the exclusion of all others.

Roscoe [13, Chap. 8] addresses the second and third points by requiring that
all recursions be guarded, i.e., always perform some event prior to recursing, and
by banning use of the hiding operator. Our idea is to extend Roscoe’s requirement
that recursions should be guarded by stipulating that one may never hide all the
guards. In addition, one may not hide a set of events which a process is able to
perform infinitely often to the exclusion of all others. This will therefore involve
a certain amount of book-keeping.

We first treat the issue of guardedness of the recursions. Our task is compli-
cated by the renaming operator, in that a purported guard may become hidden
only after several unwindings of a recursion. The following example illustrates
some of the ways in which a recursion may fail to be guarded, and thus diverge.

Example 3. Let Σ = {a, b, a0, a1, . . . , an} and let R = {(ai, ai+1)|0 � i < n} and
S = {(a, b), (b, a)} be renaming relations on Σ. Consider the following processes.

1. μX X .
2. μX  a −→ (X \ a).
3. μX  (a −→ (X \ b)) � (b −→ (X \ a)).
4. μX  (a0 −→ (X \ an)) � (a0 −→ X [R]).
5. μX  SKIP � a −→ (X � (X [S] \ b)).

The first recursion is trivially unguarded. In the second recursion the guard a
is hidden after the first recursive call. In the third process the guard in each
summand is hidden in the other summand; this process will also diverge once it
has performed a single event. In the fourth example we cannot choose a set of
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guards which is both stable under the renaming operator and does not contain
an. This process, call it P , makes the following sequence of visible transitions:

P
a0−→ P \ an

a0−→ P [R] \ an
a1−→ P [R][R] \ an

a2−→ . . .
an−1−→ P [R][R] . . . [R] \ an.

But the last process diverges, since P can make an infinite sequence of a0-
transitions which get renamed to an by successive applications of R and are
then hidden at the outermost level.

A cursory glance at the last process might suggest that it is guarded in {a}.
However, similarly to the previous example, hiding and renaming conspire to
produce divergent behaviour. In fact the process, call it P , can make an a-
transition to P � (P [S] \ b), and thence to (P [S] \ b)[S] \ b via two τ -transitions.
But this last process can diverge.

Given a variable X and a CSP term P = P (X), we aim to define inductively a
collection CX(P ) of metrics for which P is contractive as a function ofX (bearing
in mind that processes may have several free variables). It turns out that it is
first necessary to identify those metrics in which P is merely nonexpansive as a
function of X , the collection of which we denote NX(P ). Intuitively, the role of
NX(P ) is to keep track of all hiding and renaming in P . A set U ⊆ Σ then induces
a metric dU under which P is contractive in X provided P is nonexpansive in U
and μX  P always communicates an event from U prior to recursing.

The collections of metrics that we produce are conservative, i.e., sound, but
not necessarily complete. As the examples above suggest, their calculation is
made somewhat complicated by the possibility of recursing under renaming. For
reasons that will soon become apparent, NX(P ) and CX(P ) consist of sets of
pairs of metrics, or in other words are identified with subsets of P(Σ)× P(Σ).
The key property of the function NX is given by the following:

Proposition 4. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a term whose free variables
are contained within the set {X,Y1, . . . , Yn}. If (U, V ) ∈ NX(P ), then for all
T1, T2, θ1, . . . , θn ∈ T ⇓, dU (T1, T2) ≥ dV (P (T1, θ), P (T2, θ)).

For R a renaming relation on Σ and U ⊆ Σ, let R(U) = {y | ∃x ∈ U x R y}.
NX(P ) ⊆ P(Σ)×P(Σ) is then computed through the following inductive clauses:

NX(P ) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

NX(a −→ P ) =̂ NX(P )
NX(P1 ⊕ P2) =̂ NX(P1) ∩NX(P2) if ⊕ ∈ {�,�, �, ‖

A
}

NX(P \ A) =̂ {(U, V ∪ V ′) | (U, V ) ∈ NX(P ) ∧ V ∩A = ∅}
NX(P [R]) =̂ {(U,R(V ) ∪ V ′) | (U, V ) ∈ NX(P )}

NX(X) =̂ {(U, V ) | U ⊆ V }
NX(μY  P ) =̂ {(U ∩ U ′, V ∪ V ′) | (U, V ) ∈ NX(P ) ∧ (V, V ) ∈ NY (P )}

if Y �= X .
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The proof of Prop. 4 proceeds by structural induction on P and can be found
in the full version of the paper [11].

Before defining CX(P ), we need an auxiliary construct denoted G(P ). Intu-
itively, G(P ) ⊆ P(Σ) lists the ‘guards’ of � for P . Formally:

Proposition 5. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a term whose free vari-
ables are contained within the set {X,Y1, . . . , Yn}. If U ∈ G(P ), then, with any
processes—and in particular DIV —substituted for the free variables of P , P
must communicate an event from U before it can do a �.

The inductive clauses for G are given below. Note that these make use of the
collection of fair sets F(Pi) of Pi, which is presented later on. The definition is
nonetheless well-founded since F is here only applied to subterms. The salient
feature of F(Pi) �= ∅ is that the process Pi is guaranteed to be livelock-free.

G(STOP) =̂ P(Σ)
G(a −→ P ) =̂ G(P ) ∪ {V | a ∈ V }

G(SKIP) =̂ ∅
G(P1 ⊕ P2) =̂ G(P1) ∩ G(P2) if ⊕ ∈ {�,�}

G(P1 � P2) =̂
{

G(P1) ∪ G(P2) if P1 is closed and F(P1) �= ∅
G(P1) otherwise

G(P1 ‖
A
P2) =̂

{
G(P1) ∪ G(P2) if, for i = 1, 2, Pi is closed and F(Pi) �= ∅
G(P1) ∩ G(P2) otherwise

G(P \ A) =̂

⎧⎨⎩
{V ∪ V ′ | V ∈ G(P ) ∧ V ∩A = ∅} if P is closed and

(∅, Σ −A) ∈ F(P )
∅ otherwise

G(P [R]) =̂ {R(V ) ∪ V ′ | V ∈ G(P )}
G(X) =̂ ∅

G(μX  P ) =̂ G(P ) .

We are now ready to define CX(P ) ⊆ P(Σ)×P(Σ), whose central property
is given by the following proposition.

Proposition 6. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a term whose free variables
are contained within the set {X,Y1, . . . , Yn}. If (U, V ) ∈ CX(P ), then for all
T1, T2, θ1, . . . , θn ∈ T ⇓, 1

2dU (T1, T2) ≥ dV (P (T1, θ), P (T2, θ)).

CX(P ) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

CX(a −→ P ) =̂ CX(P ) ∪ {(U, V ) ∈ NX(P ) | a ∈ V }
CX(P1 ⊕ P2) =̂ CX(P1) ∩ CX(P2) if ⊕ ∈ {�,�, ‖

A
}

CX(P1 � P2) =̂ CX(P1) ∩ (CX(P2) ∪ {(U, V ) ∈ NX(P2) | V ∈ G(P1)})
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CX(P \ A) =̂ {(U, V ∪ V ′) | (U, V ) ∈ CX(P ) ∧ V ∩A = ∅}
CX(P [R]) =̂ {(U,R(V ) ∪ V ′) | (U, V ) ∈ CX(P )}

CX(X) =̂ ∅
CX(μY  P ) =̂ {(U ∩ U ′, V ∪ V ′) | (U, V ) ∈ CX(P ) ∧ (V, V ) ∈ NY (P )}

if Y �= X .

Note that contraction guarantees a unique fixed point, albeit not necessarily
a livelock-free one. For instance, P (X) = (a −→ X \ b) � (μY  b −→ Y ) has a
unique fixed point which can diverge after a single event.

In order to prevent livelock, we must ensure that, whenever a process can
perform an infinite8 unbroken sequence of events from a particular set A, then
we never hide the whole of A. To this end, we now associate to each CSP term P
a collection of (pairs of) fair sets F(P ) ⊆ P(Σ)×P(Σ): intuitively, this allows us
to keep track of the events which the process is guaranteed to perform infinitely
often in any infinite execution of P .

Given a set W ⊆ Σ, we say that a process is W -fair if any of its infinite traces
contains infinitely many events from W . We now have:

Proposition 7. Let P (X1, . . . , Xn) = P (X) be a CSP term whose free variables
are contained within the set {X1, . . . , Xn}. If (U, V ) ∈ F(P ), then, for any collec-
tion of livelock-free, U -fair processes θ1, . . . , θn ∈ T ⇓, the process P (θ1, . . . , θn)
is livelock-free and V -fair.

F(STOP) =̂ P(Σ)× P(Σ)
F(a −→ P ) =̂ F(P )

F(SKIP) =̂ P(Σ)× P(Σ)
F(P1 ⊕ P2) =̂ F(P1) ∩ F(P2) if ⊕ ∈ {�,�, �}
F(P1 ‖

A
P2) =̂ (F(P1) ∩ F(P2)) ∪

{(U1 ∩ U2, V1) | (U1, V1) ∈ F(P1) ∧ (U2, A) ∈ F(P2)} ∪
{(U1 ∩ U2, V2) | (U2, V2) ∈ F(P2) ∧ (U1, A) ∈ F(P1)}

F(P \ A) =̂ {(U, V ∪ V ′) | (U, V ) ∈ F(P ) ∧ V ∩A = ∅}
F(P [R]) =̂ {(U,R(V ) ∪ V ′) | (U, V ) ∈ F(P )}

F(X) =̂ {(U, V ) | U ⊆ V }

F(μX  P ) =̂
{
{(U ∩ U ′, U ∪ V ′) | (U,U) ∈ CX(P ) ∩ F(P )} if μX  P is open
P(Σ)× {U ∪ V ′ | (U,U) ∈ CX(P ) ∩ F(P )} otherwise .

We now obtain one of our main results as an immediate corollary:

Theorem 8. Let P be a CSP process (i.e., closed term) not containing DIV in
its syntax. If F(P ) �= ∅, then P is livelock-free.
8 Recall our understanding that a process can ‘perform’ an infinite trace iff it can

perform all its finite prefixes.
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5 Structurally Finite-State Processes

The techniques developed in Sections 3 and 4 allow us to handle the widest range
of CSP processes; among others, it enables one to establish livelock-freedom
of numerous infinite-state processes including examples making use of infinite
buffers or unbounded counters—see [11] for examples. Such processes are of
course beyond the reach of explicit-state model checkers such as FDR. In order
to create them in CSP, it is necessary to use devices such as recursing under the
parallel operator. In practice, however, the vast majority of processes tend to be
finite state.

Let us therefore define a CSP process to be structurally finite state if it never
syntactically recurses under any of parallel, the left-hand side of a sequential
composition, hiding, or renaming.

More precisely, we first define a notion of sequential CSP terms: STOP , SKIP ,
and X are sequential; if P and Q are sequential, then so are a −→ P , P � Q,
P � Q, and μX P ; and if in addition P is closed, then P � Q, P \ A, and P [R]
are sequential. Observe that sequential processes give rise to labelled transition
systems of size linear in the length of their syntax.

Now any closed sequential process is deemed to be structurally finite state;
and if P and Q are structurally finite state, then so are a −→ P , P � Q, P � Q,
P ‖

A
Q, P � Q, P \ A, and P [R]. Note that structurally finite-state CSP terms

are always closed, i.e., are processes.
Whether a given process is structurally finite state can easily be established

by syntactic inspection. For such processes, it turns out that we can substantially
both simplify and sharpen our livelock analysis. More precisely, the computation
of nonexpansive and contractive data is circumvented by instead directly exam-
ining closed sequential components in isolation. Furthermore, the absence of free
variables in compound processes makes some of the earlier fairness calculations
unnecessary, thereby allowing more elaborate and finer data to be computed
efficiently, as we now explain.

Let u be an infinite trace over Σ, and let F,C ⊆ Σ be two sets of events. We
say that u is fair in F if, for each a ∈ F , u contains infinitely many occurrences
of a,9 and we say that u is co-fair in C if, for each b ∈ C, u contains only finitely
many occurrences of b.

Given a structurally finite-state process P , we compute a collection of fair/co-
fair pairs of sets Φ(P ) ⊆ P(Σ)×P(Σ), together with a Boolean-valued livelock
flag δ(P ) ∈ {true, false}, giving rise to our second main result:

Theorem 9. Let P be a structurally finite-state process. Write Φ(P ) =
{(F1, C1), . . . , (Fk, Ck)}. If δ(P ) = false, then P is livelock-free, and moreover,
for every infinite trace u of P , there exists 1 ≤ i ≤ k such that u is both fair in
Fi and co-fair in Ci.

9 Note that this notion of ‘fairness’ differs from that used in the previous section.
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The calculation of Φ(P ) proceeds inductively as follows. For P a closed se-
quential process, Φ(P ) is computed directly from the labelled transition system
associated with P .10 Otherwise:

Φ(a −→ P ) =̂ Φ(P )
Φ(P1 ⊕ P2) =̂ Φ(P1) ∪ Φ(P2) if ⊕ ∈ {�,�, �}
Φ(P1 ‖

A
P2) =̂ {(F1 ∪ F2, (C1 ∩A) ∪ (C2 ∩A) ∪ ((C1 −A) ∩ (C2 −A))) |

(Fi, Ci) ∈ Φ(Pi) for i = 1, 2} ∪
{(F,C) | (F,C) ∈ Φ(P1) ∧ F ∩A = ∅} ∪
{(F,C) | (F,C) ∈ Φ(P2) ∧ F ∩A = ∅}

Φ(P \ A) =̂ {(F −A,C ∪A) | (F,C) ∈ Φ(P )}
Φ(P [R]) =̂ {(F,C) | (F ′, C′) ∈ Φ(P ) ∧

C ⊆ {b ∈ Σ |R−1(b) ⊆ C′} ∧ F ⊆ R(F ′)} .

The calculation of δ(P ) similarly proceeds inductively, making use of the
fair/co-fair data, as follows. If P is a closed sequential process, then δ(P ) is
determined directly from the labelled transition system associated with P , ac-
cording to whether the latter contains a τ -cycle or not (using, e.g., Tarjan’s
algorithm). Otherwise:

δ(a −→ P ) =̂ δ(P )
δ(P1 ⊕ P2) =̂ δ(P1) ∨ δ(P2) if ⊕ ∈ {�,�, ‖

A
, �}

δ(P \ A) =̂
{

false if δ(P ) = false and, for each (F,C) ∈ Φ(P ), F −A �= ∅
true otherwise

δ(P [R]) =̂ δ(P ) .

Theorems 8 and 9 yield a conservative algorithm for livelock-freedom: given
a CSP process P (which we will assume does not contain DIV in its syntax),
determine first whether P is structurally finite state. If so, assert that P is
livelock-free if δ(P ) = false, and otherwise report an inconclusive result. If P
is not structurally finite state, assert that P is livelock-free if F(P ) �= ∅, and
otherwise report an inconclusive result.

10 It is worth pointing out how this can be achieved efficiently. Given a set L ⊆ Σ of
events, delete all (Σ −L)-labelled transitions from P ’s labelled transition system. If
the resulting graph contains a (not necessarily reachable) strongly connected com-
ponent which comprises every single event in L, include (L, Σ − L) as a fair/co-fair
pair for P .

Of course, in actual implementations, it is not necessary to iterate explicitly over
all possible subsets of Σ. The computation we described can be carried out sym-
bolically using a Boolean circuit of size polynomial in |Σ|, using well-known circuit
algorithms for computing the transitive closure of relations. Consequently, Φ(P ) can
be represented symbolically and compactly either as a BDD or a propositional for-
mula. Further implementation details are provided in Sect. 6.
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It is perhaps useful to illustrate how the inherent incompleteness of our pro-
cedure can manifest itself in very simple ways. For example, let P = a −→ Q
and Q = (a −→ P ) � (b −→ Q), and let R = (P ‖

{a,b}
Q) \ b. Using Bekič’s pro-

cedure, R is readily seen to be (equivalent to) a structurally finite-state process.
Moreover, R is clearly livelock-free, yet δ(R) = true and F(R) = ∅. Intuitively,
establishing livelock-freedom here requires some form of state-space exploration,
to see that the ‘divergent’ state (Q ‖

{a,b}
Q) \ b of R is in fact unreachable, but

that is precisely the sort of reasoning that our static analysis algorithm is not
geared to do.

Nonetheless, we have found in practice that our approach succeeded in estab-
lishing livelock-freedom for a wide range of existing benchmarks; we report on
some of our experiments in Sect. 6.

Finally, it is worth noting that, for structurally finite-state processes, Theo-
rem 9 is stronger than Theorem 8—it correctly classifies a larger class of pro-
cesses as being livelock-free—and empirically has also been found to yield faster
algorithms.

6 Implementation and Experimental Results

Computationally, the crux of our algorithm revolves around the manipulation
of sets. We have built both BDD-based and propositional-formula-based imple-
mentations, using respectively CUDD 2.4.2 and MiniSat 2.0 for computations.
Our resulting tool was christened SLAP, for Static Livelock Analyser of

Processes.
We experimented with a wide range of benchmarks, including parameterised,

parallelised, and piped versions of Milner’s Scheduler, the Alternating Bit Pro-
tocol, the Sliding Window Protocol, the Dining Philosophers, Yantchev’s Mad
Postman Algorithm, as well as a Distributed Database algorithm.11 In all our
examples, internal communications were hidden, so that livelock-freedom can be
viewed as a progress or liveness property. All benchmarks were livelock-free, al-
though the reader familiar with the above examples will be aware that manually
establishing livelock-freedom for several of these can be a subtle exercise.

In all cases apart from the Distributed Database algorithm, SLAP was in-
deed correctly able to assert livelock-freedom (save for rare instances of timing
out). (Livelock-freedom for the Distributed Database algorithm turns out to be
remarkably complex; see [13] for details.) In almost all instances, both BDD-
based and SAT-based implementations of SLAP substantially outperformed the
state-of-the-art CSP model checker FDR, often completing orders of magnitude
faster. On the whole, BDD-based and SAT-based implementations performed
comparably, with occasional discrepancies. All experiments were carried out on
a 3.07GHz Intel Xeon processor running under Ubuntu with 8 GB of RAM.
11 Scripts and descriptions for all benchmarks are available from the website associated

with [14]; the reader may also wish to consult [11] for further details on our case
studies.
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Table 1. Times reported are in seconds, with * denoting a 30-minute timeout

Benchmark FDR SLAP SLAP
(BDD) (SAT)

Milner-15 0 0.19 0.16
Milner-20 409 0.63 0.34
Milner-21 948 0.73 0.22
Milner-22 * 0.89 0.25
Milner-25 * 1.63 0.55
Milner-30 * 7.34 1.14

ABP-0 0 0.03 0.03
ABP-0-inter-2 0 0.03 0.04
ABP-0-inter-3 23 0.03 0.06
ABP-0-inter-4 * 0.03 0.07
ABP-0-inter-5 * 0.03 0.08
ABP-0-pipe-2 0 0.03 0.08
ABP-0-pipe-3 2 0.04 0.12
ABP-0-pipe-4 175 0.04 0.23
ABP-0-pipe-5 * 0.05 0.34

ABP-4 0 0.11 0.92
ABP-4-inter-2 39 0.12 1.49
ABP-4-inter-3 * 0.13 1.71
ABP-4-inter-7 * 0.15 3.68
ABP-4-pipe-2 12 0.13 2.96
ABP-4-pipe-3 * 0.15 6.34
ABP-4-pipe-7 * 0.25 31.5

Benchmark FDR SLAP SLAP
(BDD) (SAT)

SWP-1 0 0.03 0.08
SWP-2 0 0.34 *
SWP-3 0 40.94 *

SWP-1-inter-2 0 0.04 0.12
SWP-1-inter-3 31 0.04 0.16
SWP-1-inter-4 * 0.05 0.19
SWP-1-inter-7 * 0.06 0.33
SWP-2-inter-2 170 0.47 *
SWP-2-inter-3 * 0.64 *
SWP-1-pipe-3 0 0.04 0.47
SWP-1-pipe-4 3 0.05 0.73
SWP-1-pipe-5 246 0.05 1.10
SWP-1-pipe-7 * 0.06 2.89

Philosophers-7 2 1.64 0.20
Philosophers-8 20 2.46 0.31
Philosophers-9 140 3.99 0.46

Philosophers-10 960 7.39 0.61

Mad Postman-2 0 0.06 0.04
Mad Postman-3 6 * 0.23
Mad Postman-4 * * 1.11
Mad Postman-5 * * 5.67
Mad Postman-6 * * 27.3

Times in seconds are given in Table 1, with * indicating a 30-minute timeout.
Further details of the experiments are provided in [11].

7 Future Work

A interesting property of our approach is the possibility for our algorithm to
produce a certificate of livelock-freedom, consisting among others in the various
sets supporting the final judgement. Such a certificate could then be checked in
polynomial time by an independent tool.

Other directions for future work include improving the efficiency of SLAP
by incorporating various abstractions (such as collapsing all events on a given
channel, or placing a priori bounds on the size of sets), or conversely increasing
accuracy at modest computational cost, for example by making use of algebraic
laws at the syntactic level, such as bounded unfoldings of parallel compositions.
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Abstract. State-transition systems communicating by shared variables have been
the underlying model of choice for applications of model checking. Such for-
malisms, however, have difficulty with modeling process creation or death and
communication reconfigurability. Here, we introduce “dynamic reactive mod-
ules” (DRM), a state-transition modeling formalism that supports dynamic re-
configuration and creation/death of processes. The resulting formalism supports
two types of variables, data variables and reference variables. Reference variables
enable changing the connectivity between processes and referring to instances of
processes. We show how this new formalism supports parallel composition and
refinement through trace containment. DRM provide a natural language for mod-
eling (and ultimately reasoning about) biological systems and multiple threads
communicating through shared variables.

1 Introduction

State-transition systems provide a natural formalism in many areas of computer sci-
ence. They provide a convenient framework for understanding programming languages
(cf. [21]), provide a natural executable modeling framework for reactive and concurrent
systems (cf., [11]), provide the most intuitive semantics for the application of model
checking (cf. [4]), and even proved to be useful to the development of biological mod-
els [7,10,8,9], where the straightforward semantics make these formalisms natural and
attractive for cell biologists. State-transition systems capture elegantly the concept of a
system with variables that change their values over time. The state-transition approach
to modeling concurrent systems can be fairly described as enormously successful, com-
bining executability, explorability, and analyzability. In the state-transition approach
communication is typically modeled via shared variables, while in the complementary
approach of process calculi communication is modeled via message passing [18].

In recent years, new application domains that stress mobility and dynamic reconfig-
urability gained importance. In mobile and ad-hoc networks, network elements come
and go, changing communication configuration according to their position. The
state-transition approach, however, does not model naturally reconfigurable systems.
Similarly, it has difficulty with dynamics features of biological systems, such as cell
movement, division, and death.
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In the process-calculi approach, the π-calculus has become the de facto standard
in modeling mobility and reconfigurability for applications with message-based com-
munication [19,20]. The power of the π-calculus comes from its ability to transmit
processes as messages, a mathematically natural and powerful construct. This idea im-
mediately allows the encoding of dynamic aspects and has been widely accepted by the
research community (cf. [17]). No analogous widely acceptable extension exists for the
state-transition approach, enabling the modeling of mobility and reconfigurability.

In this paper, we propose a state-transition formalism that supports reconfiguration of
communication and dynamic creation of new processes. We accomplish this by adapt-
ing to the state-transition approach three fundamental language mechanisms of modern
programming languages: encapsulation, composition, and reference. Encapsulation is a
language mechanism for bundling together related data and methods, while restricting
access to some of those. Composition is a language mechanism for composing such
bundles of data and methods. Finally, reference is a language mechanism for creating
such bundles dynamically. While the mechanisms of encapsulation and composition
have been used in state-transition formalisms, for example, in reactive modules [2],
which are the basis for our work here, it is striking that the concept of a reference is
missing in all state-based modeling formalisms, while it is present in every reasonable
imperative programming language. We show how this well known and widely used con-
cept in programming offers a powerful modeling concept in the state-transition context.

In the reactive-modules formalism, modules define behavior of a bundled set of vari-
ables. Behavior of a module is defined through that of its variables, partitioned to in-
ternal, interface, and external variables. The module controls its internal and interface
variables and reads the external variables from other modules. To allow executability,
an update round is partitioned to subrounds. Variables that are co-updated in the same
round are not allowed to depend on one another. Thus, the module mechanism essen-
tially supports encapsulation. Then, composition is supported by the ability to compose
modules in parallel, and the ability to make multiple copies of modules.

Modern imperative object-oriented programming languages combine our guiding
principles: encapsulation, composition, and reference. A class is a schema of encap-
sulated behavior. It has a well defined interface that cleanly supports composition. An
object has to be instantiated, returning a reference through which it can be accessed. It
then executes according to its prescribed behavior. Different instantiations of the same
class behave differently according to their individual histories, which are stored in their
own variables. References, in addition to enabling us to create multiple instances of the
same class, allow us to dynamically change the configuration of instances in memory.
Classes and references together allow us to organize the program in multiple levels of
abstraction and manage (to some extent) the complexity of software.

Here, we adapt these concepts to the world of state-transition modeling. In this con-
text, the instantiation of an object also assigns “dynamic computation power” to it: every
newly instantiated variable includes with it a recipe for behavior as a function of the val-
ues of some other variables. Our “objects” are independent processes each controlling
a set of variables. We impose encapsulation by assigning ownership to variables. Each
process has its own variables, which it and it alone can change; the update may depend
on the values of variables that it does not own. Thus, our variables are single-write
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multiple-read variables. These variables can be accessed either, traditionally, by direct
static sharing, or via references, by dynamic sharing, enabling dynamic communication
configurations. In addition, we model processes that join, leave, or emerge by a special-
ized creation command, which is analogous to allocating new memory from the heap.
Here, again, references are invaluable, as they allow communication in both directions:
for a newly instantiated process, this enables initial knowledge about its environment;
for an instantiating process this enables access to some of the newly created variables.

There have been few attempts to handle dynamicity in state-transition formalisms.
Dynamic I/O automata [3] are an extension of I/O automata [16]. In order to change
communication configuration, explicit state-based modeling of the reconfiguration is
needed (through changing alphabet signatures from state to state). Alur and Grosu ex-
tend reactive modules by creation through the usage of unbounded arrays [1]. Global
information regarding arrays and their length is required, as indeed exhibited in the
“reconfiguration controller” that controls the entire system. Updates are done via λ-
expressions on entire arrays and not locally. This makes it impossible to apply multiple
levels of abstraction, one of the main strengths of programming languages. This is akin
to viewing the heap as a linear sequence of memory locations and using integers as
pointers into the array. This gives a low level implementation of the heap, depriving the
programmer of the ability to abstract. Lucid-Synchrone is an extension of Lustre that
supports creation but restricts to a fixed topology [5]. There have been attempts to add
object-orientation to statecharts, an important state-transition formalism. For example,
in [13,12], the semantics of Rhapsody, an object-orientation extension of StateMate, is
described in terms of the underlying programming languages. Thus, they bypass the
need to reason about dynamic creation of processes. Damm et al. [6] give a specialized
semantics for UML Statecharts. Their formalism is cumbered by the need to support
directly many specialized features of Statecharts and does not offer a general solution.

Our main contribution is a new state-transition formalism, based on widely used
object-oriented programming paradigms, that supports communication via shared vari-
ables and dynamic reconfiguration and creation. We show that our formalism supports
a straightforward trace semantics, where refinement corresponds to trace containment
over appropriate projections and composition corresponds to a specialized form of in-
tersection. In addition, we allow partial specifications that translate to nondeterminism,
just like in standard state-transition settings, and their refinement, through a replacement
operator. We provide a rich modeling formalism that suggests many future directions.

2 High-Level Description of Dynamic Reactive Modules

We generalize reactive modules [2] to dynamic reactive modules by including reference
variables and the ability to create new modules. This is similar to modern object-oriented
languages, where a reference variable refers to an instance of a class. A class definition
describes the way to update multiple included variables and an instantiation leads to
allocation of memory. While in standard objects the data is updated only via explicit
method invocation; in dynamic reactive modules variables continually update their val-
ues according to update rules. Thus, instantiating a module leads to allocation of new
variables that are updated simultaneously in all instantiated modules. In this section,
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Fig. 1. A server/client system

we further motivate the need for- and introduce dynamic reactive modules through an
example of a simple server/client model. Definitions are made formal in Section 4.

Consider the diagram in Figure 1. It includes a server and a client. The client gen-
erates new client threads at arbitrary times. The server detects that a new client thread
has been generated and allocates a new server thread dedicated to serve the respective
client thread’s request. The server and the client need to produce a pair of threads and
connect them so that the server thread reads the client thread’s input in and the client
thread reads the server thread’s output out. For that, the server thread will initialize its
reference variable r in to refer to in and the client thread will initialize its reference
variable r out to refer to out. Once a pair of server thread and client thread have been
connected the server and the client can forget about them and create (and mutually ini-
tialize) a new pair. Every newly instantiated module gets a unique identifier and its own
reference to itself, through the special id variable (akin to this). The mutual references
between server thread and client thread variables are exchanged between the server and
the client through static communication and passed to the corresponding thread as pa-
rameter. This exchange of references is done by mutually accessing external variables
id cl and id srv that hold references to newly created client thread and server thread,
respectively. In addition, the server accesses client’s variable new cl that signals when
a new client thread is created. We generalize the notion of module to that of a dynamic
module. We distinguish between (a) a dynamic module class, which defines the module,
its variables, and how to update them and (b) a dynamic module, which is the actual
instantiation. A dynamic system defines a collection of dynamic-module classes.

In Figure 2, we include the code for the ServerClient dynamic reactive system that
models the above example. It consists of four modules depicted in Figure 2, together
with the (initial) module Server || Client that denotes the composition of Server and
Client modules. Every module in the system consists of a declaration, that defines the
variables owned by the module, and a body that specifies initialization and update rules
for these variables. The module body has a finite set of typed variables that are par-
titioned into controlled and external variables and either range over finite domains or
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system ServerClient =
〈{Server, ServerT, Client, ClientT, Server ‖Client}, Server ‖Client〉

class Server
external id cl : R, new cl : B
control id srv : R

atom id srv
init

[] true → id srv′ := 0
update

[] new cl → id srv′ :=
new ServerT(id cl′)

class ServerT
param id cl : R
control out : B, r in : R

atom r in
init

[] id cl′ = 0 → r in′ := 0
[] id cl′ �= 0 → r in′ :=

ref(id cl′.in)
update

[] true →
atom out

initupdate

[] r in′ �= 0 → out′ :=
f(deref (r in′))

class Client
external id srv : R
control id cl : R, new cl : B

atom new cl
initupdate

[] true → new cl′ := true
[] true → new cl′ := false

atom id cl
init

[] true → id cl′ := 0;
update

[] new cl → id cl′ :=
new Client(id srv′)

class ClientT
param id srv : R
control in : B, r out : R

atom r out
init

[] id srv′ = 0 → r out′ := 0
[] id srv′ �= 0 → r out′ :=

ref(id srv′.out)
update

[] true →

Fig. 2. Server/client system modeled with dynamic reactive modules

are reference variables. Additionally, a module has a set of parameters and a special
variable id, which holds the identifier of an instance of the module. Parameter vari-
ables are used for initialization of the module according to some information from its
environment.

Reference variables establish dynamic communication between module instances.
When a module is instantiated, its variable id is assigned a unique identifier. For exam-
ple, id.m and id.n use the variable id to indirectly access many variables of the same
module. We add the two basic functionalities of references. First, the ability to take the
address of a variable through ref(x), which returns a reference to x. Second, the ability
to dereference a variable and access the value of the variable that it references.

The variable id srv (id cl) holds a reference to a server (client) thread, it is controlled
by Server (Client) and is external to Client (Server). In addition, Client controls new cl
(external to Server) that signals the instantiation of a new client in the system. Client and
Server communicate statically over these three variables, and mutually exchange refer-
ences between newly created client and server threads. The communication between
the server thread and the client thread has to be dynamic (via reference variables) as the
two are instantiated independently. For that, server (client) thread holds reference r in
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(r out) to the client (server) thread’s variable in (out). The server (client) thread’s iden-
tifier is passed to the client (server) thread through the parameter id srv (id cl) upon its
instantiation. We use the dereference operation to update out of the server thread based
on the value of in of the client, through the expression f(deref (r in)).

The module body consists of a set of atoms that group rules for setting values to
variables owned by the module. Atoms of the module control precisely its controlled
variables, and every controlled variable declared in the module is controlled by exactly
one atom. We distinguish between the current value of a variable, denoted x, and its
next value x′. Atoms contain initialization and update rules, or commands, that define
the value of x′ based on current and next values of variables declared in the module.
When a module is instantiated, its variables do not have current values. Thus, initial
commands may use only next values of variables in the same module, or the values of
parameters passed to it. Update commands may refer to both current and next values
of variables and can either define an instantiation of a new instance of a module, or a
classic update of a variable as a function of current and next values of other variables.

The atom that controls new cl in the Client sets the next value new cl′ to either
true or false, nondeterministically. An instantiation is a special type of update, using
the command new . It can update the reference variables of the instantiating mod-
ule to refer to the newly instantiated module and uses parameters to pass informa-
tion to the instantiated module for proper initialization. For example, the update in the
atom that controls id cl either takes no action (if new cl is false) or instantiates a new
ClientT. The instantiation updates the reference variable id cl′ to refer to the variable
id of the newly instantiated ClientT, which holds the unique identifier of this client
thread. When the new client thread is created it receives the value of the identifier of
the ServerT instance in variable id srv′ through the parameter id cl. Passing the iden-
tifier to an instance of a module enables access to all variables of that instance. For
example, in the initial command in the atom r out, if parameter id srv is null (0) it ini-
tializes r out to null and otherwise to refer to out (using the indirect access id srv′.out).
Overall, the co-instantiation of a ClientT and ServerT modules will initialize the value
of r out′ of the client thread to refer to the out variable of the server thread and the
value of r in′ of the server thread to refer to the in variable of the client thread. To
avoid infinite instantaneous creation, we disallow instantiation of new modules in initial
commands.

A state of a dynamic reactive system carries the unique identifiers and variable val-
uations of instantiates modules. In the initial state, the only instantiated module is the
initial one. In every subsequent round, the state variables are updated according to the
specified commands, which may, in addition, instantiate new modules. Initialization of
instantiated modules depends on transferred parameter values.

3 Dynamic Discrete Systems

Dynamic reactive modules is a modelling language. In this section, we introduce a
semantic model, which is interesting in its own right, to give a formal semantics to dy-
namic reactive modules. We extend fair discrete systems (FDS) [14], which are “bare
bones” transition systems including a set of variables and prescribed initial states and
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transition relations by logical formulas. The simplicity of FDS and their resemblance
to BDDs, have made them a convenient tool for defining symbolic transition systems.
FDSs support composition but not encapsulation and here we extend them with dynam-
icity. We then use this new model to define the semantics of dynamic reactive modules.

Our template for creating a process is a simple dynamic discrete system (SDDS) and
the collection of SDDSs is a dynamic discrete system (DDS). An SDDS defines a process,
its variables, their initializations, and their updates. To create multiple instances of an
SDDS, each instantiation has a unique identifier. Accordingly, when instantiating an
SDDS we allocate all its variables with the same identifier. As mentioned, DDS do not
support encapsulation. Thus, the model has a set of variables coming from multiple
SDDS and possibly multiple instantiations of the same SDDS. We prefix the variables of
the SDDS with the identifier of its instantiation, thus making the variables unique. For
that we will use identified variables. For example, if the definition includes the variable
n, the instantiation with identifier i uses the variable i.n.

Let N be the universal set of variables such that id ∈ N . The variables in N are
going to be used in the definitions of SDDSs. Let I be the universal set of identifiers.
The identifiers in I are going to be used to identify instances of SDDSs. Apart from
the universal set of variables, all sets of variables N ⊂ N are finite. For example, in
Figure 2, the set {id cl, new cl, id srv} is the set of variables for the server. When an
SDDS is instantiated, all its variables are going to be prefixed with an identifier i. For
that, given a set of variables X , let i.X denote {i.n | n ∈ X}. When a server thread,
from Figure 2, is instantiated with identifier i, the set of identified variables for that
instance is {i.out, i.r in}. So when there are multiple active instances of server thread,
e.g., with identifiers i and j, their variables can be distinguished, e.g., as i.out and
j.out. Variables range either over some finite domain (for the sake of concreteness we
use Booleans denoted B) or over the set R = I ∪ (I × N ) ∪ {0} of references. A
reference is either the identifier of an instantiated SDDS (i ∈ I), an identified variable
(i.n ∈ I×N ), or null (0). We denote by type(x) the type of a variable x. For a variable
x ∈ X , we denote by x′ its primed copy, and naturally extend this notation for a set
X .

Let X = I × N be the universal set of identified variables. A state s is a valuation
function s : X→ R∪B∪{⊥} such that for every i ∈ I we have s(i.id) ∈ {⊥, i}. That
is, a state interprets all variables as either Booleans, identifiers, identified variables,
or ⊥. The id of i is either i or ⊥. The value ⊥ is used for two purposes. First, if
s(i.n) = ⊥, then i.n is not allocated in s. Second,⊥ is used as a third value in 3-valued
propositional logic. This allows to formally represent impossible dereferencing. The
type of a variable x in state s is denoted as types(x). A variable x such that s(x) ∈ B is
said to be Boolean, denoted types(x) = B. A variable x such that s(x) ∈ R is said to
be a reference, denoted types(x) = R. Let s⊥ denote the state such that s(x) = ⊥ for
every x ∈ X. An identified variable x ∈ X is inactive in state s if s(x) = ⊥ and active
otherwise. If i.id is inactive in state s then for every variable n we have i.n is inactive
in s. An identifier i is inactive in state s if i.id is inactive in s and active otherwise.

Reference variables require us to be able to take the reference of a variable and to
dereference. Through a reference variable that holds an identifier of an SDDS, we need
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(s, t)(x)=

{
s(x) if x ∈ X

t(x) if x ∈ X′

(s, t)(x.m)=

⎧⎨⎩
⊥ if (s, t)(x) /∈ I
(s, t)((s, t)(x).m) if (s, t)(x) ∈ I and x ∈ X

(s, t)((s, t)(x).m′) if (s, t)(x) ∈ I and x ∈ X′

(s, t)(ref(i.n))=(i, n)
(s, t)(ref(i.n′))=(i, n)

(s, t)(ref(x.m))=

{⊥ if (s, t)(x) /∈ I
((s, t)(x).m) if (s, t)(x) ∈ I

(s, t)(deref (x))=

{⊥ if (s, t)(x) /∈ I ×N
(s, t)((s, t)(x)) if (s, t)(x) ∈ I ×N

(s, t)(deref (x.m))=

{⊥ if (s, t)(x) /∈ I
(s, t)(deref ((s, t)(x).m)) if (s, t)(x) ∈ I

(s, t)(deref (τ))=

{⊥ if (s, t)(τ) /∈ I ×N
(s, t)((s, t)(τ)) if (s, t)(τ) ∈ I ×N

Fig. 3. Evaluation of terms on a state pair (s, t)

to be able to access the variables of this SDDS. Given a set of variables X ⊂ N , we
define indirect accesses (π), terms (τ ) and expressions (ϕ) over X as follows.

π ::= x ∈ X ∪X ′ | x.m for x ∈ X ∪X ′,m ∈ N
τ ::= π | ref(π) | deref (τ)
ϕ ::= τ | τ = τ | τ = 0 | ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ

(1)

We give values to both x and x′ by interpreting indirect accesses, terms, and expressions
over pairs of states, which stand for current and next values.

In Figure 2, the term ref(id srv.out) in ClientT’s atom r out, transforms to the term
ref(id srv′.out) after substitution of the variable id srv′ for the parameter id srv during
instantiation of the client. The term ref(id srv′.out) indirectly accesses the variable out
of the server thread instance whose identifier is stored in the variable id srv.

An expression that does not use primed variables is current. An expression that does
not use unprimed variables is next. Thus, expressions are logical characterization of
possible assignments to variables. As usual, using two copies of a variable x and x′ we
can use expressions to define the relations between current and next assignments. We
assume familiarity Kleene’s strongest regular 3-valued propositional logic over the set
3 = {t,⊥, f} [15]. For example, f ∧ ⊥ = f, ⊥ ∨ true = true, and ¬⊥ = ⊥.

Given two states s and t, we denote by (s, t) the mapping (s, t) : X ∪ X′ → R ∪
B∪{⊥} such that for every x ∈ X we have (s, t)(x) = s(x) and (s, t)(x′) = t(x). The
definition of type(s,t)(x) is extended as expected.

The value of a term τ in pair (s, t) is defined in Figure 3. For example, consider
the value of the indirect access x.m. We start by evaluating (s, t)(x). If (s, t)(x) is
not an identifier, then clearly we cannot access its m variable and return ⊥. Otherwise,
(s, t)(x) is an identifier i. If x is unprimed, then we access the value of i.m in s. Other-
wise, we access the value of i.m in t. Other evaluations of the indirect access are similar.
Consider the value of deref (x) for a variable x. We first evaluate (s, t)(x) and ensure
that it indeed holds an identified variable (i.n). Then we check the value of that vari-
able (s, t)(i.n). The value of an expression ϕ in pair (s, t) denoted (s, t)(ϕ), is defined
as follows. For a term τ we have already defined (s, t)(τ). We define (s, t)(τ1 = τ2)
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to be t if (s, t)(τ1) = (s, t)(τ2) and f otherwise. For instance, in Figure 2, the ex-
pression r out′ = ref(id srv′.out) (with substitution of id srv for parameter id srv) is
satisfied, if t interprets r out as i.out, where id srv = i. Similarly, (s, t)(τ = 0) is t iff
(s, t)(τ) = 0. The definition of (s, t)(ϕ) for expressions using the Boolean connectives
∧, ∨, and ¬ is as expected, where every α ∈ R is treated like ⊥. Finally, a pair (s, t)
satisfies an expression ϕ if (s, t)(ϕ) = t. Note that the definitions in Figure 3 takes into
account both the current and next versions of variables. Thus, it is defined over a pair of
states (s, t). The definition for current expressions and single state is a specialization,
where we care only about the state s on the left.

3.1 Definitions

A DDS is K = 〈D,D0〉, where D is a finite set of SDDS and D0 ∈ D is an initial SDDS.
An SDDS is a tuple D = 〈X,Y,Θ, ρ〉 consisting of the following components.

– X ⊆ X is the finite set of variables of D and Y is the finite set of its parameters.
– Θ: The initial condition is a next expression over X ∪Y characterizing all states in

which D can be created. These are the initial states of D at the time of creation.
– ρ: The transition relation. We extend expressions in Equation (1) to creation expres-

sions. Given Di = 〈Xi, Yi, Θi, ρi〉, for i ∈ {1, 2}, a creation of D2 by D1 is either
n′1 = new D2(τ1, . . . , τl) or (n′1, . . . , n

′
k) = (new D2(τ1, . . . , τl)).[m1, . . . ,mk],

where {n1, . . . , nk} ⊆ X1, {m1, . . . ,mk} ⊆ X2, {y1, . . . , yl} = Y2, and τ1, . . .,
τl are terms over X1. Intuitively, the new expression returns the identifier i of the
newly created module. Thus, the first new command stores the identifier of the
newly created SDDS in n′1. The second new command uses the multiple assign-
ment (n′1, . . . , n

′
k) = i.[m1, . . . ,mk] and updates the nj variables of D1 to the

newly created variables mj of D2. In both cases, the parameters of D2 are initial-
ized with the values of the expressions τj passed by D1. Let C(D,D) be the set of
all possible creations of SDDS D′ by D such that D′ ∈ D. Let ϕ denote the set of
expressions over X , then creation expressions by D in the context of D are:

ϕc ::= ϕ | c ∈ C(D,D) | ϕc ∧ ϕc |ϕc ∨ ϕc,

The transition relation ρ is a creation expression by D in the context of D.
We now define the possible traces of an SDDS. This is a sequence of states such that
every pair of adjacent states satisfy the transition of the SDDS. However, as creation
is involved, the transition relation needs to be augmented with the rules that govern
the newly created variables. For that, we add to traces the maps of creations that are
performed along them and the update of the transition that governs these new creations.

Given a transition relation ρ, let subnew(ρ) be the subformulas of ρ that are cre-
ations. A creation-map m for ρ is a partial one-to-one function m : subnew(ρ) → I.
A creation map tells us which creations are actually invoked (those for which m is
defined) and what is the identifier of the instantiated process.

A pair of states (s, t) satisfies a transition ρ with creation map m and producing
transition ρ̃, denoted (s, t) |= (ρ,m, ρ̃) if all the following conditions hold.
1. For every creation c ∈ subnew(ρ) ofD1, if m(c) = i then i is inactive in s and for

every n ∈ X1 we have i.n is active in t. That is, instantiated SDDS are activated.
2. For every i.n such that i is active in s we have i.n is active in s iff it is active in t

and types(i.n) = typet(i.n). That is, existing instantiations do not change.
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3. For every creation c ∈ subnew(ρ) of D1, where c is
(i.n1, . . . , i.nk) = (new D1(τ1, . . . , τl)).[m1, . . . ,mk],

if m(c) = j then all the following hold:
(a) (s, t) |= Θ1[j][τ1/y1, . . . , τl/yl], where Θ1[j][τ1/y1, . . . , τl/yl] is obtained

from Θ1 by replacing every mention of n by j.n and every input y′b by τb.
(b) For every 1 ≤ o ≤ k we have (s, t)(i.n′o) = (j.mo),
That is, the pair (s, t) satisfies the initialization of the instantiated SDDS using the
inputs sent by the creating SDDS. Furthermore, reference variables of the creating
SDDS now reference the newly created variables.

4. (s, t) |= ρ, where ρ is obtained from ρ by replacing the creation sub-formulas
c ∈ subnew(ρ) such that m(c) = i by t, and c ∈ subnew(ρ) such that m(c) is
undefined by f.
That is, the pair (s, t) satisfies the transition relation. We ensure that enough SDDS
were instantiated by evaluating those that were not instantiated as f.

5. ρ̃ = ρ∧
∧

{c | m(c)=i}
ρc[m(c)], where ρc[m(c)] is the transition relation of the SDDS

created by c with every mention of n replaced by m(c).n.
That is, we update the transition relation with the rules that govern the updates of
the newly created SDDSs.

We are now ready to define traces of DDS. Traces are going to include the states, transi-
tion relations, and creation maps that match them. Consider a finite or infinite sequence
σ = s0, ρ0,m0, s1, ρ1,m1 . . ., where for every j ≥ 0 we have sj is a state, ρj is a
creation expression, and mj is a creation map for ρj . If σ is infinite we write |σ| = ω.
If σ is finite it ends in an expression ρn−1 and we write |σ| = n. A sequence σ is a
creation trace for an SDDS D = 〈X,Y,Θ, ρ〉 with identifier i at time 0 ≤ t < |σ| and
valuations v1, . . . , vl for {y1, . . . , yl} = Y if all the following hold.

1. For every t′ < twe have ρt′ = t andmt′ is the empty map. Furthermore, ρt = ρ[i].
2. If s−1 = s⊥ then (st−1, st) |= Θ[i][v1/y1, . . . , vk/yk].
3. For every 0 ≤ t′ < |σ| − 1 we have (st′ , st′+1) |= (ρt′ ,mt′ , ρt′+1).
4. The identifier i is inactive in st−1 and for every n ∈ X , i.n is active in st.

We write in short (σ, i, t, v1, . . . , vk) is a CT of D.
Intuitively, the SDDS D is created at time t by initializing its inputs to v1, . . ., vl.

All the variables of D (and possibly more) identified by i become active in t; And the
(mutable according to the creation maps) transition of D holds on the entire sequence.
Prior to the creation ofD the transitions are t and accordingly creation maps are empty.

A finite CT σ ends in a deadlock if it cannot be extended to a longer CT. Intuitively,
there can be two reasons for deadlocks. First, a contradiction in the transition, such
as requiring that x = y and y = ¬x. Obviously, this can be made more interesting
by accessing x and y through their references. Second, the option to dereference null,
dereference a Boolean variable, or trying to access a wrong name through an identifier.

3.2 Properties

Here we define parallel composition, refinement, and replacement. Parallel composition
allows to create models of increasing complexity from smaller parts. It enables static
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communication through external variables. Refinement says when one DDS is more
general than another. Then, replacement is the action of replacing creation of abstract
SDDS by SDDS that refine it. Composition corresponds to intersection of traces and
refinement to inclusion of traces (both with appropriate adjustments).

We start with parallel composition, which essentially allows to “run” two SDDS side
by side. Consider a set of SDDS D and two SDDS Di ∈ D, where Di = 〈Xi, Yi, Θi, ρi〉
for i ∈ {1, 2}. Then, D1‖2 is the SDDS 〈X1‖2, Y1‖2, Θ1‖2, ρ1‖2〉 where X1‖2 = X1 ∪
X2, Y1‖2 = Y1 ∪ Y2, Θ1‖2 = Θ1 ∧Θ2, and ρ1‖2 = ρ1 ∧ ρ2.

Consider a CT μ = (σ, i, t, v1, . . . , vk), where σ = s0, ρ0,m1, . . .. We say that
CTs (σ1, i, t, vj1 , . . . , vjl1

) and (σ2, i, t, vp1 , . . . , vpl2
) partition μ if {vj1 , . . . , vjl1

} ∪
{vp1 , . . . , vpl2

} = {v1, . . . , vk} and for every t ≥ 0 we have st = s1t = s2t , ρt =
ρ1

t ∧ ρ2
t , and mt is the disjoint union of m1

t and m2
t .

Theorem 1. A creation trace μ is a creation trace ofD1‖2 iff there exist μ1 and μ2 that
partition μ such that μi is a creation trace of Di, for i ∈ {1, 2}.

We define refinement as having the same set of traces with specialized creations.
Consider a set of SDDS D and two SDDS Di ∈ D, where Di = 〈Xi, Yi, Θi, ρi〉 for i ∈
{1, 2}. Consider two CTs μ1 = (σ1, i, t, vj1 , . . . , vjl1

) and μ2 = (σ2, i, t, v1, . . . , vl2),
where σi = si

0, ρ
i
0,m

i
0, . . ., for i ∈ {1, 2}. We say that μ2 specializes μ1 if for every

t′ ≥ 0 we have ρ2
t′ = ρ1

t′ ∧ ρ∗t′ and m2
t′ is the disjoint union of m1

t′ and m∗t′ for some
ρ∗t′ and m∗t′ . We say that D2 refines D1, denoted D2 � D1, if X2 ⊇ X1, Y2 ⊇ Y1, and
every creation trace μ2 of D2 is a specialization of some CT μ1 of D1.

Theorem 2. The refinement relation � is a preorder.

In order to replace the creation of D2 by D3 we have to ensure that D3 does “more”
than D2. Consider a set of SDDS D. We say that transition relation ρ2 refines transition
relation ρ1 if ρ2 = ρ1 ∧ ρ∗ for some ρ∗, where ρ1 is obtained from ρ1 by replacing
every creation (. . . , nk) = (new D3(. . . , τl)).[. . . ,mk] in ρ1 by creation

(. . . , nk, nk+1, . . . , nk+r) =
(new D4(. . . , τl, τl+1, . . . , τl+b).[. . . ,mk,mk+1, . . . ,mk+r],

whereD4 refinesD3. As for every SDDSD � D, some creations can remain unchanged.

Theorem 3. For all SDDS D1 and D2, if the initial condition Θ2 refines the initial
condition Θ1 and the transition relation ρ2 refines the transition relation ρ1, thenD2 �
D1.

Theorem 4. For all SDDS D1, D2, and D3, we have D1‖2 � D1 and D(1‖2)‖3 =
D1‖(2‖3).

Finally, when an SDDS refines another, we can replace creations of the second by
creations of the first. Consider SDDS Di = 〈Xi, Yi, Θi, ρi〉, for i ∈ {1, 2, 3}, where
D3 � D2. The SDDS D1[3/2] is given by 〈X1, Y1, Θ1, ρ1〉 where ρ1 is obtained from ρ1

by replacing every creation (. . . , nk) = (new D2(. . . , τl)).[. . . ,mk] by a creation

(. . . , nk, nk+1, . . . , nk+r) =
(new D3(. . . , τl, τl+1, . . . , τl+b)).[. . . ,mk,mk+1, . . . ,mk+r].

Theorem 5. For all SDDS D1, D2 and D3 where D3 � D2, we have D1[3/2] � D1.
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4 Formal Dynamic Reactive Modules

We give the formal definition of dynamic reactive modules. As mentioned, a module
class is the recipe of behavior that may be instantiated multiple times. A dynamic reac-
tive system is a collection of reactive-module classes, where one is identified as initial.

A dynamic reactive system M = (S, S0) consists of a finite set of module classes S
and an initial class S0 ∈ S. A class S = (X,Y,A) consists of a finite set X of typed
variables, a finite set Y of typed parameters and a finite set A of atoms. The set X is
partitioned into two sets: (1) a set ctr of controlled variables and (3) a set ext of external
variables. The set of atoms A partitions further the controlled variables, where each
atom A ∈ A controls the initialization and the updates of a subset ctr(A) ⊆ ctr. Note
that we allowA to be empty, in which case all the variables inX can have unconstrained
behavior. If A is not empty, every atom A ∈ A consists of two finite sets Init(A) and
Update(A) of guarded commands γ that define rules for initializing and updating vari-
ables in ctr(A), respectively. We distinguish between initial and update guarded com-
mands. A guarded command γ ∈ A is a pair (pγ ,Actγ), where pγ is a guard, i.e. a next
expression ϕ over X ∪Y if γ is initial, or an expression over X if γ is update, and Actγ
consists of a finite set of actions that can have the following form: (1) n′ := ϕ;, where
n ∈ ctr(A) and ϕ is a future expression over X ∪Y if γ is initial, or an expression over
X if γ is update, or (2) (n′1, . . . , n

′
k) := (new S′(τ1, . . . , τl)).[m1, . . . ,mk];, where

S′ ∈ S, for all i ∈ [1, k], ni ∈ ctr(A) and mi ∈ X(S′), param(S′) = {y1, . . . , yl}
and for all i ∈ [1, l], we have τi is a term over X . A guarded command γ is said to be
creation-free if Actγ contains no creation action. We require that for all classes S ∈ S,
all atoms A ∈ A(S), the set Init(A) contains only creation-free guarded commands.

Renaming avoids conflicts when statically creating different instances of a class.

Definition 1 (Class Renaming). For a class S with X = {n1, . . . , nk} then S[m1 =
n1, . . . ,mk = nk] is the class that results from S by replacing nj by mj for every j.

The composition operation between two classes results in a single class whose be-
havior captures the interaction between two classes. Two classes S1 and S2 are com-
posable if they do not share controlled variables. Parallel composition encodes the static
and hard-coded input/output connections between S1 and S2. We naturally extend com-
position from classes to systems M1 and M2.

Definition 2 (Parallel Composition). Let S1 = (X1,A1) and S2 = (X2,A2) be two
classes. We say that S1 and S2 are composable if ctr(S1) ∩ ctr(S2) = ∅. Given two
composable classes S1 and S2, we denote by S = S1 ||S S2 the parallel composition of
S1 and S2, where S = (X,A), such that X(S) is partitioned into ctr(S) = ctr(S1) ∪
ctr(S2), ext(S) = (ext(S1)∪ext(S2))\ctr(S) and param(S) = param(S1)∪param(S2)
and A = A1 ∪ A2.

Let M1 = (S1, S
0
1) and M2 = (S2, S

0
2) be two dynamic reactive systems. We say

that M1 and M2 are composable if S1 ∩S2 = ∅ and S0
1 and S0

2 are composable. Given
two composable systems M1 and M2, we define their parallel composition, denoted by
M = M1 || M2 as the system M = (S, S0), such that S = S1 ∪ S2 ∪ {S0} and
S0 = S0

1 ||S S0
2 .

We define the extending operator between classes S1 and S2 to capture specialization
at the syntactic level. Informally, a class S1 extends S2 if S1 and S2 have the same
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updates for the joint controlled variables, but S1 is allowed to constrain more control
variables than S2 and can read more variables (external and input) from its environment.

Definition 3 (Extending Classes). Let S1 and S2 be two classes. We say that S1 ex-
tends S2, denoted by S1 � S2 if ctr(S2) ⊆ ctr(S1), ext(S2) ⊆ ext(S1), Y (S2) ⊆
Y (S1) and A(S2) ⊆ A(S1).

Definition 4 (Replacement of Classes). Let S1 and S2 be two classes. We say that S2

is replaceable by S1 if S1 � S2.
Let S1, S2 and S3 be three classes such that S3 � S2. We denote by S1[S3/S2] the

replacement of S2 by S3 in S1, that consists in replacing every occurrence of a creation
(n′1, . . . , n

′
k) := (new S2(. . . , τl)).[m1, . . . ,mk]; in S1 by a creation (n′1, . . . , n

′
k) :=

(new S3(. . . , τl, τl+1, . . . , τl+q)).[m1, . . . ,mk];.
We extend this operator to systems, and given two systems MA = (SA, S

0
A) and

MB = (SB , S
0
B) and two classes S2 and S3 such that S2 ∈ SA and S3 � S2, we say

that MB replaces S2 by S3 in MA, denoted by MB = MA[S3/S2], if the following
conditions hold: (1) SB = SA ∪ {S3}; (2) if S0

A = S2, then S0
B = S3, and S0

B = S0
A

otherwise; and (3) every S in S(MA) is replaced by S[S3/S2] in MB .

We define the semantics of a reactive dynamic system M in terms of an associated
dynamic discrete system [[M ]]. We now formalize the translation from M to [[M ]].

Definition 5 (Semantics: from DRM to DDS). Let M = (S, S0) be a dynamic reac-
tive system. Then, its associated DDS is [[M ]] = 〈D,D0〉, where D =

⋃
S∈S μ(S) and

D0 = μ(S0) and for a given S, μ(S) = 〈XS , YS , θS , ρS〉, such that

– XS = X(S(M)) and YS = Y (S(M))
– θS is the expression

∧
A∈A(S(M))

∨
γ∈Init(A)(pγ → (

∧
α∈Actγ eα)), where eα is the

expression n′ = ϕ obtained from the assignment action α = (n′ := ϕ)
– ρS is the expression

∧
A∈A(S(M))

∨
γ∈Update(A)(pγ → (

∧
α∈Actγ eα)), where eα is

either the expression n′ = e if α = (n′ = e) or the creation (n′1, . . . , n
′
k) =

(new Di(τ1, . . . , τl)).[m1, . . . ,mk] if α is the creation action (n′1, . . . , n
′
k) :=

(new Si(τ1, . . . , τl).[m1, . . . ,mk].

The following theorem establishes some derived properties from the operations on
modules and the properties shown in Section 3.2

Theorem 6. Given three classes S1, S2, and S3, we have
1. if S2 � S1, then μ(S2) � μ(S1);
2. if S1 and S2 are composable classes, then μ(S1 ||S S2) � μ(S1);
3. if S2 � S3, then μ(S1[S3\S2]) � S1.

Biological Example: As another example, shown in Figure 4, we model a simple sys-
tem CellModule of cells (Cell class) arranged in a row. Cells can divide at arbitrary
times. This is modeled by creation of a new Cell instance by an existing one. A newly
created cell always appears to the right of its parent. The parent then updates its right
neighbor by updating its variable right to refer to its daughter cell. Similarly, the daugh-
ter cell updates its left neighbor by updating its variable left to refer to the parent cell’s
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system CellModule = 〈{Cell}, Cell〉
class Cell
control create, left, prev l, right : R
param pid : R
atom create

init

[] true → create′ := 0
update

[] true → create′ := new Cell(id)
[] true →

atom prev l
init

[] true → prev l′ := 0
update

[] true → prev l′ := left;

atom right
init

[] pid′ = 0 → right′ := 0
[] pid′ �= 0 → right′ := pid′.right

update

[] create �= create′ → right′ := create′

atom left
init

[] pid′ �= 0 → left′ := pid′

[] pid′ = 0 → left′ := 0
update

[] (left.create) �= (left p′.create) →
left′ := left p′.create
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Fig. 4. Dynamic reactive system CellModule and dividing cells

id (passed in the parameter pid). The cell to the right of the parent cell in the current
round, updates its left neighbor in the next round by updating variable left to refer to
the id of the new child cell that appeared on its left. The system runs creating new cells
non-deterministically, updating the cell-cell communication pattern with each creation.

5 Conclusions and Future Work

We introduced here dynamic reactive modules, a formalism for modeling dynamic
state-transition systems communicating via shared variables. Our formalism supports
the three basic features of programming languages: composition, encapsulation, and
dynamicity. Previous formalisms supported only the first two and by adding references
and creation we achieve dynamicity. The resulting formalism supports instantiation of
new “active” variables and reconfiguration of communication.

The resulting formalism is quite powerful and it is clear that many questions, such as
deadlock freedom, reachability, and model checking, are going to be undecidable. As
dynamicity has been generally missing from state-transition formalisms communicat-
ing via shared variables, we hope that this formalism will motivate further research into
its modeling capacity and the availability of analysis techniques for it. We state a few
obvious such directions. We are interested in techniques from software model checking
that could be adapted for its analysis. Similarly, pointer analysis, techniques for under-
standing the structure of the heap, and static analysis in general, could be applied in
this context as well. Another interesting direction is the identification of fragments for
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which such questions are “well behaved”. One very important type of well behaved-
ness is deadlock avoidance. We are searching for simple rules for deadlock avoidance
through by combining (a) avoiding cyclic dependencies between variables and (b) ref-
erence safety through typing and access protection.
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Abstract. We revisit the complexity of the model checking problem for
formulas of linear-time temporal logic (LTL). We show that the classic
PSPACE-hardness result is actually limited to a subclass of the Kripke
frames, which is characterized by a simple structural condition: the model
checking problem is only PSPACE-hard if there exists a strongly con-
nected component with two distinct cycles. If no such component exists,
the problem is in coNP. If, additionally, the model checking problem
can be decomposed into a polynomial number of finite path checking
problems, for example if the frame is a tree or a directed graph with
constant depth, or the frame has an SCC graph of constant depth, then
the complexity reduces further to NC.

1 Introduction

Model checking, the automatic verification of a finite-state structure against
a formula of a temporal logic, is one of the key advances in systems theory
over the past decades. Many artifacts in modern computers, including hardware,
protocols, and operating system components, can be described as finite-state
structures. Model checking algorithms have also found numerous applications
beyond computer-aided verification, including XML data bases, planning, and
computational biology.

The complexity of the model checking problem has been the subject of inten-
sive investigation. The fundamental result, by Sistla and Clarke in 1985, is that
the model checking problem for linear-time temporal logic (LTL) is PSPACE-
complete [21]. A first refinement of this result, due to Lichtenstein and Pnueli,
separates the complexity in the length of the formula from the complexity in
the size of the Kripke structure. It turns out that the problem really is PSPACE-
complete only in the size of formula and linear in the size of the Kripke structure.
Much of the subsequent work has therefore focused on detailing the complexity
with respect to different classes of formulas [21,14,8,4,3].

However, the linear complexity in the size of the Kripke structure does not
mean that the impact of the Kripke structure should be neglected. Consider, for
example, Kripke structures that consist of a single state. The model checking
problem for such Kripke structures corresponds to the problem of evaluating
Boolean formulas, which is NC1-complete [6]. The PSPACE-hardness result relies
on the possibility to encode the computations of a Turing machine as paths in
the Kripke structure. What happens if the frame of the Kripke structure does
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not allow for such an encoding? Examples of such restricted frames occur in
many different domains.

– Paths: The problem of checking whether a given finite path satisfies an
LTL formula plays a key role in monitoring and runtime verification (cf. [9]),
where individual paths are checked either online, during the execution of
the system, or offline, for example based on an error report. Similarly, path
checking occurs in testing [1] and in several static verification techniques,
notably in Monte-Carlo-based probabilistic verification, where large numbers
of randomly generated sample paths are analyzed [22].

– Trees: Model checking trees occurs in assertion checking, querying, debug-
ging, and searching in all kinds of parse trees, class hierarchies, thread or
process trees, abstract data types, file systems, and XML documents and
XML databases (cf. [5]).

– Restricted loops: Control and scheduling programs often enter, after some
initialization, an infinitely executed static loop [2]. The frame of the Kripke
structure thus is a lasso path. If the system proceeds in stages, where each
stage consists of the nondeterministically many iterations of a static loop,
then the Kripke frame has several loops, but no nested loops.

In this paper, we abstract from the possible LTL formulas and the possible
labelings of the Kripke structure, and instead focus entirely on the structure of
the frame. A key role in our analysis is played by the path checking problem
[19], i.e., the model checking problem where the frame is restricted to a single
path. We recently showed that, for LTL formulas, path checking is in NC [13].
We generalize this result to Kripke structures for which the model checking
problem can be deterministically reduced to a polynomial number of parallel
path checking problems: Kripke structures that are trees or directed graphs with
constant depth, or that have an SCC graph of constant depth, all have model
checking problems in NC.

Our main result is that the separation between Kripke structures with a
PSPACE hard model checking problem and Kripke structures with a model check-
ing problem in coNP is a strict dichotomy. The borderline between PSPACE and
coNP can in fact be characterized by a simple structural condition: We call a
Kripke structure weak if there are no two distinct cycles within a single strongly
connected component. The model checking problem for weak Kripke structures
can be decomposed into the path checking problems for an exponential number
of relevant paths. If a Kripke structure is weak then the model checking problem
is therefore in coNP; otherwise, the model checking problem is PSPACE hard.

Related Work. The subject of this paper, the model checking problem for
restricted classes of Kripke frames, is an extension of the path checking problem,
which was introduced as an open problem by Demri and Schnoebelen in [8]. In
addition to our recent work [13] on LTL path checking, Markey and Schnoebelen
investigate the path checking problem for various extensions and restrictions of
LTL [19] and also show that the complexity of the (finite) path checking problem
for the μ-calculus is P-hard [20]. Markey and Raskin [18] study the complexity



Weak Kripke Structures and LTL 421

of the model checking problem for restricted sets of paths for extensions of LTL
to continuous time.

Another area of investigation that is closely related is the study of the state
explosion problem. The state explosion problem occurs in compositional model
checking when the Kripke structure is represented as some kind of product
Kripke structure. Demri, Laroussinie, and Schnoebelen study the complexity
of model checking parameterized by the number of factors of the product Kripke
structure [7].

In classical modal logic, systems are defined via frame conditions. Starting
with Ladners seminal results in [16] there is a line of research about the com-
plexity of problems for modal logics systems under certain frame conditions
(cf. [11,10] for recent results and overview on past work).

2 Computation Paths and Kripke Structures

Linear-time temporal logic reasons about linearly ordered sequences of states,
which we call computation paths. In the following we define the semantic frame-
work for the logic: propositions, states, computation paths, Kripke frames, and
Kripke structures. Kripke structures symbolically represent sets of computations
paths in a compact way. Kripke frames represent the topology of transition re-
lation of a Kripke structure.

Given a set of atomic propositions AP. A state s ∈ 2AP is an evaluation of
the atomic propositions in AP. For p ∈ AP we say that p holds in s if and only
if p ∈ s. We write s(p) to denote the value of p in s with s(p) = 1, if p holds in
s, and s(p) = 0 otherwise. An ordered sequence ρ = ρ0, ρ1, . . . of states is called
a computation path over AP. The length of ρ is denoted by |ρ|. If ρ is infinite,
we set |ρ| = ∞; i < ∞ for all i ∈ N. For a computation path ρ and 0 ≤ i < |ρ|
we write ρi for the state at position i; ρi,j , where 0 ≤ i ≤ j < |ρ|, denotes the
computation path ρi, ρi+1, . . . , ρj of length |ρi,j | = j − i + 1; ρi,... denotes the
suffix of ρ at position i. The empty sequence is denoted ε with |ε| = 0. We denote
concatenation of computation paths as a product and write either σρ or σ · ρ
for the concatenation of the computation paths σ and ρ, where σ is finite. For
a finite computation path σ we set σn =

∏n−1
0 σ, σ∗ =

{∏n−1
0 σ | n ∈ N

}
, and

σω =
∏∞

0 σ. In the context of automata we will treat computation paths over
AP as words over the alphabet Σ = 2AP, where a letter is a state. The set of
all finite words over Σ is denoted as Σ∗. The set of infinite words is denoted
as Σω. A language over Σ is a subset of Σ∗ ∪ Σω. A computation path (or a
word) ρ = ρ0, ρ1, . . . , ρn, n ∈ N canonically defines a (graph theoretic) path. In
the following we view ρ as a path whenever adequate.

A Kripke structure K is a four-tuple 〈K, ki, R, λ〉 where K is a set of vertices,
ki ⊆ K are the initial vertices, R ⊆ K ×K is a transition relation, and λ : K →
2AP is a labeling function on the vertices of K. The directed graph 〈K,R〉 is
called the frame of the Kripke structure K. By abuse of notation we sometimes
identify a state k ∈ K with its labeling λ(k), where we assume that λ−1(k) is
determined from the context.
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The SCC graph of a Kripke frame F is the graph that is obtained by collapsing
every strongly connected component of F into a single vertex.

The language of a Kripke structure K = 〈K, ki, R, λ〉, denoted as lang(K), is
the set of (finite and infinite) computation paths

{λ(s0), λ(s1), · · · | s0 ∈ ki, 〈si, si+1〉 ∈ R}

for i ∈ N with 0 ≤ i or 0 ≤ i < n for some n ∈ N.
A Kripke structure (respectively a Kripke frame) is called weak, if there are

no two distinct cycles within a single strongly connected component; in other
words: all cycles are pairwise disjoint. This implies that the cycles of a weak
Kripke strucutre (Kripke frame, respectively) are partially ordered with respect
to reachability.

3 Linear-Time Temporal Logic – LTL

We consider linear-time temporal logic (LTL) with the usual finite-path seman-
tics, which includes a weak and a strong version of the Next operator [17]. Let
AP be a set of atomic propositions. The LTL formulas are defined inductively as
follows: every atomic proposition p ∈ AP is a formula. If φ and ψ are formulas,
then so are

¬φ, φ ∧ ψ, φ ∨ ψ, X∃ φ, X∀ φ, φ U ψ, and φRψ .

Let p ∈ AP. We use true to abbreviate p ∨ ¬p and false as an abbreviation for
p ∧ ¬p. For a formula φ we write Gφ to abbreviate falseRφ and Fφ as an
abbreviation for trueUφ. The size of a formula φ is denoted by |φ|.

LTL formulas are evaluated over computation paths over the set of states 2AP.
Given an LTL formula φ, a nonempty computation path ρ satisfies φ at position
i (0 ≤ i < |ρ|), denoted by (ρ, i) |= φ, if one of the following holds:

– φ ∈ AP and φ ∈ ρi,
– φ = ¬ψ and (ρ, i) �|= ψ,
– φ = φl ∧ φr and (ρ, i) |= φl and (ρ, i) |= φr,
– φ = φl ∨ φr and (ρ, i) |= φl or (ρ, i) |= φr,
– φ = X∃ ψ and i+ 1 < |ρ| and (ρ, i+ 1) |= ψ,
– φ = X∀ψ and i+ 1 = |ρ| or (ρ, i+ 1) |= ψ,
– φ = φl Uφr and ∃i ≤ j < |ρ| s.t. (ρ, j) |= φr and ∀i ≤ k < j, (ρ, k) |= φl, or
– φ = φl Rφr and ∀i ≤ j < |ρ|.(ρ, j) |= φr or ∃i ≤ k < j s.t. (ρ, k) |= φl.

For |ρ| = ∞ and for any i ∈ N it holds that (ρ, i) |= X∃ ψ if and only if
(ρ, i) |= X∀ψ. An LTL formula φ is satisfied by a nonempty path ρ (denoted by
ρ |= φ) if and only if (ρ, 0) |= φ. A Kripke structure K satisfies the formula φ
(denoted by K |= φ) if and only if for all ρ ∈ lang(K) it holds that ρ |= φ. Two
LTL formulas φ and ψ are said to be equivalent (φ ≡ ψ) if and only if for all
paths ρ it holds that ρ |= φ if and only ρ |= ψ.
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An LTL formula φ is said to be in positive normal form if in φ only atomic
propositions appear in the scope of the symbol ¬. The following dualities ensure
that each LTL formula φ can be rewritten into an equivalent formula φ′ in
positive normal form with |φ′| = O(|φ|).

¬¬φ ≡ φ ;

¬X∀φ ≡ X∃ ¬φ ;
¬(φl ∧ φr) ≡ (¬φl) ∨ (¬φr) ;
¬(φl Uφr) ≡ (¬φl) R(¬φr) .

Given a class of Kripke structures K . The model checking problem of LTL
over K (MC[LTL, K ]) is defined by

MC[LTL, K ] =
{
K |=? φ | K ∈ K , φ ∈ LTL

}
.

In the following we often use classes of Kripke structures that are defined
through a class of Kripke frames. E.g. path denotes the class of all Kripke struc-
tures with a frame that is a (finite) path.

Model Checking a Path. Automata-based techniques have proved very suc-
cessful in establishing upper bounds on complexity of LTL model checking prob-
lems. However, there seems to be a barrier on proving sub-polynomial bounds
via automata constructions. In [13], we gave a construction that uses monotone
Boolean circuits in place of the usual automata-based constructions in order to
prove that the LTL path checking problem is in NC.

Theorem 1 (Kuhtz and Finkbeiner (2009)).
MC[LTL, path] is in AC1(logDCFL). ��

Generalized Stutter Equivalence. It is a well known property of the star
free regular languages, which is precisely captured by LTL, that those languages
can only count up to a threshold but are unable to do modulo counting. In
[15] Kučera and Strejček introduce the notion of generalized stutter equivalence
which reflects the disability to count of LTL on a syntactic level.

Definition 1 (Generalized Stutter Equivalence). Given a computation
path ρ, a subsequence ρi,j of ρ is (m,n)-redundant if ρ(j+1),(j+1)+m·(j−i)−m+1+n

is a prefix of ρω
i,j.

We say that two computation paths ρ and σ are (m,n)-stutter equivalent if ρ
is obtained from σ by removing non-overlapping (m,n)-redundant subsequences,
or vice versa.

Kučera and Strejček prove the following generalized stuttering theorem for
LTL. Intuitively the theorem states that an LTL formula can not distinguish
between words that differ through repeated occurrence (stuttering) of a sub-word
beyond a certain threshold that depends on the nesting depth of the different
temporal operators.
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Theorem 2 (Kučera and Strejček (2005)). Given an LTL formula φ with
maximal nesting depth of U and R modalities of m and with maximal nesting
depth of X∃ and X∀ modalities of n, the set of {ρ | ρ |= φ} is closed under (m,n)-
stutter equivalence. ��

Using this theorem, we will establish upper bounds for model checking of weak
Kripke structures.

Model Checking LTL with a single variable. In their seminal paper [21]
Sistla and Clarke prove general LTL model checking to be PSPACE-complete.
The result is obtained via a reduction of the satisfiability problem to the co-
model checking problem. In the same paper, LTL satisfiability is proved PSPACE-
complete by encoding the computations of a PSPACE Turing machine into an
LTL formula. In [8], Demri and Schnoebelen strengthen this result by showing
that satisfiability is hard even for the fragment of LTL with a single atomic
proposition.

Theorem 3 (Demri and Schnoebelen (2002)). Satisfiability of LTL with a
single atomic proposition is PSPACE-complete. ��

Restricting our attention only to formulas with a single variable, we can represent
the class of all possible models in a Kripke structure with just two vertices
and two different labels. When proving PSPACE-hardness of model checking of
non-weak Kripke frames, we will use the fact that this simple structure can be
embedded into any non-weak Kripke frame.

4 LTL Model Checking Problems in NC

We start with some theorems that are corollaries from Theorem 1. In general, any
class of Kripke structures for which the model checking problem can be deter-
ministically reduced to a polynomial number of parallel path checking problems
can be model checked in NC. In particular, trees can be decomposed into a linear
number of paths:

Theorem 4. MC[LTL, tree] is in AC1(logDCFL). ��

DAGs of constantly bounded depth can be unfolded into trees with only poly-
nomial blowup:

Theorem 5. MC[LTL, DAG of depth O(1)] is in AC1(logDCFL). ��

Markey and Schnoebelen present in [19] a reduction from the problem of checking
ultimately periodic paths to the finite path checking problem. We provide a more
general reduction. We start with an observation about weak Kripke structures:

Lemma 1. Let K be a weak Kripke structure. Any (finite or infinite) computa-
tion path ρ ∈ lang(K) is of the form

(∏n−1
i=0 ui · vαi

i

)
with
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– n ≤ |K|,
– αi ∈ N for i < n− 1 and αn−1 ∈ N ∪ {∞}, and
– ui, vi are finite paths in K

for 0 ≤ i < n.

Proof. The statement of the lemma follows from the fact that for a weak Kripke
structure all cycles are disjoint and the SCC graph is a directed acyclic graph.

��

The lemma implies that we can represent a computation path ρ in a weak Kripke
structure K as a path R in the SCC graph of K together with the coefficient αi for
each cycle vi that occurs in ρ. We denote this representation of ρ by Rα0,...,αn−1 .

Lemma 2. Given an LTL formula φ and a weak Kripke structure K. If there
is a computation path ρ = Rα0,...,αn−1 ∈ lang(K) with ρ |= φ then there is
a computation path ρ′ = Rβ0,...,βn−1 with βi ≤ |φ| + 1 such that ρ′ |= φ. In
particular it holds that |ρ′| = O(|φ| · |K|).

Proof. Represent the computation path ρ according to Lemma 1 and apply the
generalized stuttering theorem (Theorem 2) from Kučera and Strejček. ��

Lemma 2 subsumes the reduction from [19]. By reducing the problem of check-
ing an ultimately periodic path to the finite path checking problem we get the
following theorem:

Theorem 6. MC[LTL, ultimately periodic path] is in AC1(logDCFL).

Proof. The computation path ρ can be represented as R∞. Due to Lemma 2 it
is sufficient to enumerate and check all computation paths Rα for α ≤ |φ| + 1.
By Theorem 1 each check can be done in AC1(logDCFL). Since all checks are
independent we can do them all in parallel.

Remark: A more careful interpretation of Theorem 2 would reveal that a single
check for α = |φ|+ 1 is actually sufficient. ��

We can use Lemma 2 to generalize the result to Kripke structures with SCC
graphs of constantly bounded depth.

Theorem 7. MC[LTL, weak, SCC graph of depth O(1)] is in AC1(logDCFL).

Proof. Unfold the Kripke structure into a tree of polynomial size and constant
depth. Each computation path in the unfolded structure can be represented as
Rα0,...αn where n ∈ N is a constant. Due to Theorem 2, it sufficient to enumerate
(in L) and check all computation paths for αi ≤ |φ|+1 (0 ≤ i ≤ n). In total there
is a polynomial number of computation paths to be checked. Using Theorem 1,
all checks can be done in parallel in AC1(logDCFL). ��

We can generalize the previous result a bit further: let G be the SCC graph of
a Kripke structure K. For a vertex v ∈ V (G) let

ζ(v) = α(v) +
∑

〈w,v〉∈E(K)

β(v) · ζ(w)
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where

α(v) =

{
1 if v is initial in K and
0 otherwise,

β(v) =

{
2 if v represents a cycle of K and
1 otherwise, and

the empty sum equals zero. Intuitively, the function ζ(v) counts the number of
paths that lead from an initial state to v, where each cycle occurs either zero or
one times in a path. Let ζ(K) = maxv∈V (G) ζ(v).

Theorem 8. For any class C of weak Kripke structures such that ζ is polyno-
mial in the size of the structure it holds that MC[LTL, C ] is in AC1(logDCFL).

��

5 coNP-Complete LTL Model Checking Problems

In favor of a more concise presentation, we exclusively consider LTL over infinite
paths throughout the remainder of this paper.

Theorem 9. LTL model checking of weak Kripke structures is coNP-complete.

Proof. We prove the upper bound by guessing a possibly infinite path and then
using Lemma 2 to reduce the problem to the finite path checking problem. Let
K be a weak Kripke structure. In order to decide if K �|= φ guess a path R in
the SCC graph of K such that there is a path ρ = Rα0,...,αn−1 ∈ lang(K) with
ρ |= ¬φ. Use Lemma 2 to reduce this to checking ρ′ |= ¬φ for a finite path ρ′

of polynomial length. Do this check by use of Theorem 1 in AC1(logDCFL) ⊆ P.
Hence the model checking problem for weak Kripke structures is in coNP.

The proof of the lower bound reduces the satisfiability problem of proposi-
tional logic to the co-model checking problem of weak Kripke structures. The
reduction is very similar to the reduction used by [21] to show that the co-model
checking problem for the fragment of LTL that has F as the only modality is
NP-hard.

Given a propositional logic formula f over the set of variables {v0, . . . , vn},
n ∈ N. We obtain the LTL formula φ from f by substituting for all 0 ≤ i ≤ n each
occurrence of the variable vi by the LTL formula X∃2i+1

p, where p ∈ AP. The
formula f is satisfiable if and only if ¬φ does not hold on the Kripke structure
K shown in Figure 1. ��

The above proof actually provides a slightly stronger result than stated in The-
orem 9:

Corollary 1. The problem of model checking LTL on planar acyclic graphs is
coNP-hard. ��
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Fig. 1. Kripke structure used to reduce propositional SAT to LTL model checking

The hardness result from Theorem 9 can be sharpened to more restricted
classes with a coNP lower bound on the model checking problem. In order
to prepare the proof of the next theorem we show here the construction for
Kripke structures with an SCC graph that is a path. In fact self loops, i.e. state-
stuttering, is sufficient. The idea is similar to the lower bound from the previous
theorem, but the diamond shaped substructures are replaced by self loops. For a
propositional formula f with variables v0, . . . , vn−1 we build a Kripke structure
K that is a sequence of n self loops as shown in Figure 2 where each vertex is
labeled with a unique state (represented as a propositional formula) pi. The LTL
formula φ is obtained by substituting in f each variable vi with the LTL formula
F(pi ∧X∃ pi). It is easy to check that f is satisfiable if and only if K �|= ¬φ.

p0 p1 p2 pn−2 pn−1

Fig. 2. Kripke structure used to reduce SAT to LTL model checking of Kripke struc-
tures for which the SCC graph is a path

The next theorem is a refined (though more technical) version of Theorem 9.
Recall that the function ζ from Section 4 counts the number of paths in a weak
Kripke structure where each cycle occurs at most once.

Theorem 10. For any class C of weak Kripke structures for which ζ is ex-
ponential in the size of the structure it holds that MC[LTL, C ] is complete for
coNP.

The upper bound remains the same as in Theorem 9; the lower bound is
refined through a stronger constraint on the classes of structures.

Proof. The proof for the lower bound combines the proof for the lower bound
for planar DAGs and the lower bound for paths Kripke structures with an SCC
graph that is a path. Again, we reduce SAT to the co-model checking problem on
C . Let f a propositional formula with variables v0, . . . , vn−1. There is a Kripke
structure K in C such that the SCC graph of K contains sequence of vertices
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v0, . . . , vn−1, where vi is reachable from vi−1. Due to the exponential growth of
ζ there are O(n) many i with ζ(vi) = O(2 ·vi−1). Moreover, we know that either
there are two distinct paths from vi−1 to vi with two distinguishing vertices v0

i

and v1
i , or vi represents a cycle. In the former case we label v0

i with a unique label
pi (represented by a propositional formula) and substitute vi in f with the LTL
formula F pi. In the latter case we label vi with a unique label pi (represented
as a propositional formula) and substitute any occurrence of vi with the LTL
formula F(pi ∧X∃(trueU pi)). We call the resulting LTL formula φ. Again, it is
easy to check that K �|= ¬φ if and only if f is satisfiable. ��

The classification of Kripke structures between NC and coNP-hardness is not
a complete dichotomy. There is a gap concerning the structures with nO(1) �
ζ(k)� O(2n). This is illustrated via the following theorem.

Theorem 11. For any class C of weak Kripke structures with ζ = O(nlogO(1) n),
where n is the size of a Kripke structure, it holds that MC[LTL, C ] is in polyL.

Proof. We can enumerate all computation paths of polynomial length that are
relevant according to Lemma 2 in polyL. Each computation path can be checked
in AC1(logDCFL) ⊆ polyL. ��

6 PSPACE-Complete LTL Model Checking Problems

We now investigate the borderline between the frames whose model checking
problems are in coNP and those whose model checking problems are PSPACE-
hard. It turns out that LTL model checking is PSPACE-complete for any non-
weak Kripke frame. In contrast to the previous PSPACE hardness results, we get
a lower bound that does not depend on the asymptotic behavior of a class of
Kripke structures, but holds for each non-weak Kripke frame. Moreover, together
with Theorem 9 we obtain a dichotomic classification.

Theorem 12. The LTL model checking problem is PSPACE-complete for any
non-weak Kripke frame.

Proof. Given a non-weak Kripke frame F . We reduce the validity problem for
LTL to the co-model checking problem on a structure K with frame F .

We start by choosing an adequate labeling for K. Let s, t, u ∈ 2AP be pairwise
disjoint states represented as Boolean formulas. Because F is non-weak we know
that there are two distinct cycles that share a common vertex x. Label x with
state s. There is a vertex y that is present in only one of the two cycles. Label
y with state t. Label all remaining vertices of K with u. Figure 3 provides a
schematic view of K.

Given some formula ζ with only a single variable. By Theorem 3, deciding
validity for an LTL formula with only a single atomic proposition is PSPACE-
hard. ζ is valid if and only if ¬ζ is not satisfiable. To decide if φ = ¬ζ is satisfiable
is the co-model checking problem on a universal Kripke structure. We will reduce
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s t

u

Fig. 3. Non-weak Kripke structure with the labeling used in the proof of Theorem 12

the latter for φ to the co-model checking problem on the Kripke structure K with
the labeling given above for a formula φ∗ that can be constructed from φ in L.
Since PSPACE is closed under complement, the model checking problem for K is
thus PSPACE hard.

We assume that the unique atomic proposition that occurs in φ is p. A Kripke
structure with two states, namely p and ¬p, that represents the universal lan-
guage {p,¬p}ω is shown in Figure 4.

¬p p

Fig. 4. The Kripke structure that represents the universal language {p,¬p}ω

In the following we call a suffix of a computation path an a-suffix if the first
state of the suffix is a. We call a cycle in a Kripke structure an a-cycle if it starts
in an a-state. We identify the cycle with the corresponding state sequence.

The construction of φ∗ is as follows: First, transform φ into positive normal
form in L. Next, we define inductively a formula φ′. For the cases that φ is either
an atomic proposition or a negated atomic proposition let

– p′ = s ∧X∃ (uU s) and
– (¬p′) = s ∧X∃

(
uU
(
t ∧X∃ (uU s)

))
.

The idea is that the formula p′ holds exclusively on an s-cycle that does not
include the t state, whereas (¬p)′ holds on any s-cycle that visits the t state.
This way, each s-cycle encodes a state of the original Kripke structure. The
formula will translate each single step in the original Kripke structure into an
s-cycle in K. The remaining cases for φ′ are defined inductively as follows:

– ψ′ ∧ χ′ for φ = ψ ∧ χ,
– ψ′ ∨ χ′ for φ = ψ ∨ χ,
– s ∧X∃ (¬sUψ′) for φ = X∃ ψ,
– s ∧ ((s→ ψ′) Uχ′) for φ = ψUχ, and
– s ∧ (ψ′ R (s→ χ′)) for φ = ψRχ.

For any formula φ we want that a computation path that models φ′ is “meaning-
ful” in the sense that it can be mapped to a computation path having only p and
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¬p states. Therefore we defined ′ such that a formula φ′ holds on a computation
path ρ only if ρ starts in the s state.

Finally, we set φ∗ = (G F s) ∧ (¬sUφ′). By requiring that any computation
path ρ with ρ |= φ∗ returns to s infinitely often, we prevent that ρ “gets stalled”
in some “meaningless” loop. The formula allows the computation to reach s
initially, and then it forces the remaining computation path to satisfy φ′ which
encodes on K the original meaning of φ.

We claim that for each computation path ρ it holds that ρ |= φ if and only if
there is a computation path ρ∗ ∈ lang(K) such that ρ∗ |= φ∗. Let c be a s-cycle
in K that does not visit t and let d an s-cycle in K that visits t. For proving the
“only if” part of the claim assume that ρ |= φ. Let ρ′ be defined as follows:

ρ′ =

{
c · ρ′1,... if ρ0(p), and
d · ρ′1,... otherwise.

It holds that ρ′ ∈ lang(K), every suffix of ρ′ contains an s-state, and ρ′ starts
with s. Further ′ induces a surjective mapping from the suffixes of ρ to s-suffixes
of ρ′. This mapping is monotonic with respect to the order of start position of
the suffixes.

Let e be the (possibly empty) sequence of states on a shortest path in K that
leads from an initial state to s. Let ρ∗ = e · ρ′. Every suffix of ρ∗ contains an s
state and therefore it holds that ρ∗ |= G F s. Since all states in e contradict s
from the definition of ρ∗ it follows directly that ρ∗ |= (¬s) Uφ′ if ρ′ |= φ′. We
prove this by induction over φ:

– For φ = p it holds that if ρ starts with p then ρ′ starts with c followed by
an s state. Hence ρ′ |= s ∧X∃ (uU s).

– For φ = ¬p it holds that if ρ starts with ¬p then ρ′ starts with d followed
by an s state. Hence ρ′ |= s ∧X∃

(
uU
(
t ∧X∃ (uU s)

))
.

– For φ ∈ {ψ ∧ χ, ψ ∨ χ} the claim follows directly from the induction hypoth-
esis and the semantics of LTL.

– For φ = X∃ ψ it holds that ρ1,... |= ψ. By induction hypothesis (ρ1,...)′ |= ψ′

and by definition of ρ′ it holds that ρ′ |= s ∧X∃ (¬sUψ′).
– For φ = ψUχ there is a position i such that ρi,... |= χ and ρj,... |= φ for all
j < i. By induction hypothesis there is an l such that ρ′l,... |= χ′. Since ′ is
surjective and monotonic on the s-suffixes of ρ′ from the induction hypothesis
it follows that ρ′j,... |= ψ′ for all s-suffixes with j < l. Further recall that ψ′

holds only on computation paths that start with s. Hence, for all non-s-suffix
ρ′j,... with j < l the formula (s → ψ′) holds trivially. Thus, for all j < l it
holds that ρ′j,... |= (s→ ψ′) and we get ρ′ |= s ∧ (s→ ψ′) Uχ′.

– The case for φ = ψRχ is analogous to the previous case.

We now prove the “if” part of the claim. Given a computation path in σ ∈
lang(K) such that σ |= φ∗. There is a position i0 such that for all j < i0 it holds
that σj,... |= ¬s and σi0,... |= φ′. Let σ0 = σi0,.... We show that σ0 |= φ′ implies
that there is a computation path σ′ with σ′ |= φ. We know that σ0 contains only
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s, t, and u states. Moreover, we know from the definition of φ∗ that any suffix
of σ0 contains an s state. The computation path σ′ is defined as follows:

σ′ =

{
p · σ′s0,... if σ0

0,s0
contains no t state, and

¬p · σ′s0,... otherwise,

where s0 is the position of the first s-state in σ1,.... Note that ′ induces a mono-
tonic and surjective mapping from the s-suffixes of σ0 to the suffixes of σ. We
show by induction over φ that σ′ |= φ:

– For φ = p we have σ0 |= s ∧ X∃ (uU s). This implies that σ0
0,s0

does not
contain any t state and therefore σ′0(p).

– For φ = ¬p we have σ0 |= s ∧ X∃
(
uU
(
t ∧X∃ (uU s)

))
. Therefore σ0

0,s0

contains a t state and hence σ′0(¬p).
– For φ ∈ {ψ ∧ χ, ψ ∨ χ} the claim follows directly from the induction hypoth-

esis and the semantics of LTL.
– For φ = X∃ ψ we have σ0 |= s ∧X∃ (¬sUψ′). This implies that σ0

s0,... |= ψ′.
From the induction hypothesis it follows that σ′1,... |= ψ and thus σ′ |= X∃ ψ.

– For φ = ψUχ we have that σ0 |= s ∧ ((s→ ψ′) Uχ′). Therefore there is an
i ∈ N such that σ0

i,... |= χ′ and for all j < i it holds that σ0
j,... |= (s→ ψ′). By

induction hypothesis there is an l ∈ N such that σ′l,... |= χ. For all s-suffixes
σ0

j,... with j < i it holds that σ0j, . . . |= ψ′. Recall that ′ induces a monotonic
and surjective function from the s-suffixes of σ0 to the suffixes of σ′.
Together with the induction hypothesis we deduce that for all j < l it holds
that σ′j,... |= ψ. We conclude that σ′ |= ψUχ.

– The case for φ = ψRχ is analogous to the previous case. Note, however,
that there are infinitely many s-states in σ0. ��

7 Conclusions

We have developed a classification of Kripke structures with respect to the com-
plexity of the model checking problem for LTL. We showed that the model check-
ing problem for a Kripke frame is PSPACE-complete if and only if the frame is
not weak. The problem is coNP-complete for the class of all weak Kripke struc-
tures. The problem is in NC for any class of Kripke structures for which the
model checking problem can be reduced to a polynomial number of path check-
ing problems. Examples of such classes include finite paths, ultimately periodic
path, finite trees, directed graphs of constant depths, and classes of Kripke struc-
tures with an SCC graph of constant depth.

Open questions and future work. There are several open questions that
deserve further study. Albeit small, there is a gap between AC1(logDCFL) and
the best known lower bound, NC1 for LTL path checking. There is some hope to
further reduce the upper bound towards NC1, the currently known lower bound,
because the construction in [13] relies on the algorithms for evaluating monotone
planar Boolean circuits with all constant gates on the outer face. The circuits
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that appear in the construction actually exhibit much more structure. Another
way to improve the upper bounds of the path and tree checking algorithms would
be to prove a better upper bound for the problem of evaluating one-input-face
monotone planar Boolean circuits.

Another area that requires more attention is the model checking problem on
restricted frames for branching-time temporal logic. In the first author’s the-
sis [12], it is shown that the model checking problem for CTL on finite trees
is in NC (more precisely, in AC2(logDCFL)). The gap between NC as an upper
bound and L as a lower bound for tree structures and P for general structures is
comparably small. Still, beyond finite trees we do know very little about other
classes for which the model checking problem for CTL is in NC. What are the
properties of Kripke structures that allow for efficiently parallel model checking
for CTL? What is the complexity of tree checking for CTL+past and CTL with
a sibling axis? What is the complexity of CTL* tree checking?

Finally, an important question concerns the translation of the improved com-
plexity bounds for restricted sets of frames into efficient practical model check-
ing algorithms. The proofs in this paper and the underlying proofs for the path
checking problem [13] are based on a variety of different computational mod-
els: Boolean circuits, space-restricted Turing machines, time-restricted Turing
machines, Turing machines with push-down store, and parallel random access
memory machines (PRAM). Are there practical parallel implementations for
parallel path and tree checking?

Complexity classes that are characterized by efficient parallel algorithms and
complexity classes that are characterized by space-efficient algorithms are tightly
coupled through simulation theorems. Considering that in modern hardware ar-
chitectures cache-efficiency and I/O-efficiency matter more than the simple num-
ber of computation steps, the following question seems even more important than
the previous one: Can we derive practical space-efficient implementations from
parallel path and tree checking algorithms? With the fast growing number of
available cores in modern computing devices, on the one hand, and the tight re-
source restrictions on mobile devices, on the other hand, good trade-offs between
cache-efficiency, I/O-efficiency, and CPU-usage become increasingly important.
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Abstract. Pushdown systems (PDS) are well adapted to model sequential pro-
grams with (possibly recursive) procedure calls. Therefore, it is important to have
eÆcient model checking algorithms for PDSs. We consider in this paper CTL
model checking for PDSs. We consider the “standard” CTL model checking prob-
lem where whether a configuration of a PDS satisfies an atomic proposition or
not depends only on the control state of the configuration. We consider also CTL
model checking with regular valuations, where the set of configurations in which
an atomic proposition holds is a regular language. We reduce these problems to
the emptiness problem in Alternating Büchi Pushdown Systems, and we give an
algorithm to solve this emptiness problem. Our algorithms are more eÆcient than
the other existing algorithms for CTL model checking for PDSs in the literature.
We implemented our techniques in a tool, and we applied it to di�erent case stud-
ies. Our results are encouraging. In particular, we were able to find bugs in linux
source code.

1 Introduction

PushDown Systems (PDS for short) are an adequate formalism to model sequential,
possibly recursive, programs [10,13]. It is then important to have verification algorithms
for pushdown systems. This problem has been intensively studied by the verification
community. Several model-checking algorithms have been proposed for both linear-
time logics [1,13,9,14,17], and branching-time logics [1,2,6,24,18,19,14,17].

In this paper, we study the CTL model-checking problem for PDSs. First, we con-
sider the “standard” model-checking problem as was considered in the literature. In this
setting, whether a configuration satisfies an atomic proposition or not depends only on
the control state of the configuration, not on its stack content. This problem is known
to be EXPTIME-complete [25]. CTL corresponds to a fragment of the alternation-free
�-calculus and of CTL*. Existing algorithms for model-checking these logics for PDSs
could then be applied for CTL model-checking. However, these algorithms either al-
low only to decide whether a given configuration satisfies the formula i.e., they can-
not compute all the set of PDS configurations where the formula holds [5,6,24,18], or
have a high complexity [19,2,1,12,11,14,17]. Moreover, these algorithms have not been
implemented due to their high complexity. Thus, there does not exist a tool for CTL
model-checking of PDSs.

In this work, we propose a new eÆcient algorithm for CTL-model checking for
PDSs. Our algorithm allows to compute the set of PDS configurations that satisfy a

� Work partially funded by ANR grant ANR-08-SEGI-006.

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 434–449, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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given CTL formula. Our procedure is more eÆcient than the existing model-checking
algorithms for �-calculus and CTL* that are able to compute the set of configurations
where a given property holds [19,2,1,12,11,14,17]. Our technique reduces CTL model-
checking to the problem of computing the set of configurations from which an Alter-
nating Büchi Pushdown System (ABPDS for short) has an accepting run. We show that
this set can be e�ectively represented using an alternating finite automaton.

Then, we consider CTL model checking with regular valuations. In this setting, the
set of configurations where an atomic proposition holds is given by a finite state automa-
ton. Indeed, since a configuration of a PDS has a control state and a stack content, it is
natural that the validity of an atomic proposition in a configuration depends on both the
control state and the stack. For example, in one of the case studies we considered, we
needed to check that whenever a function call hpsb send phy config is invoked, there is
a path where call hpsb send packet is called before call hpsb send phy config returns.
We need propositions about the stack to express this property. “Standard” CTL is not suf-
ficient. We provide an eÆcient algorithm that solves CTL model checking with regular
valuations for PDSs. Our procedure reduces the model-checking problem to the problem
of computing the set of configurations from which an ABPDS has an accepting run.

We implemented our techniques in a tool for CTL model-checking for pushdown
systems. Our tool deals with both “standard” model-checking, and model-checking with
regular valuations. As far as we know, this is the first tool for CTL model-checking
for PDSs. Indeed, existing model-checking tools for PDSs like Moped [21] consider
only reachability and LTL model-checking, they don’t consider CTL. We run several
experiments on our tool. We obtained encouraging results. In particular, we were able
to find bugs in source files of the linux system, in a watchdog driver of linux, and in an
IEEE 1394 driver of linux. We needed regular valuations to express the properties of
some of these examples.

Outline. The rest of the paper is structured as follows. Section 2 gives the basic def-
initions used in the paper. In section 3, we present an algorithm for computing an al-
ternating automaton recognizing all the configurations from which an ABPDS has an
accepting run. Sections 4 and 5 describe the reductions from “standard” CTL model-
checking for PDSs and CTL model-checking for PDSs with regular valuations, to the
emptiness problem in ABPDS. The experiments are provided in Section 6. Section 7
describes the related work.

2 Preliminaries
2.1 The Temporal Logic CTL

We consider the standard branching-time temporal logic CTL. For technical reasons,
we use the operator Ũ as a dual of the until operator for which the stop condition is not
required to occur; and we suppose w.l.o.g. that formulas are given in positive normal
form, i.e., negations are applied only to atomic propositions. Indeed, each CTL formula
can be written in positive normal form by pushing the negations inside.

Definition 1. Let AP � �a� b� c� ���� be a finite set of atomic propositions. The set of CTL
formulas is given by (where a � AP):

� ::� a � �a � ��� � ��� � AX� � EX� � A[�U�] � E[�U�] � A[�Ũ�] � E[�Ũ�]�
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The closure cl(�) of a CTL formula � is the set of all the subformulas of �, including
�. Let AP�(�) � �a � AP � a � cl(�)� and AP�(�) � �a � AP � �a � cl(�)�. The size
��� of � is the number of elements in cl(�). Let T � (S ��	� c0) be a transition system
where S is a set of states, �	
 S � S is a set of transitions, and c0 is the initial state.
Let s� s� � S . s� is a successor of s i� s �	 s�. A path is a sequence of states s0� s1� � � �
such that for every i � 0, si �	 si�1� Let � : AP 	 2S be a labelling function that
assigns to each atomic proposition a set of states in S . The validity of a formula � in a
state s w.r.t. the labelling function �, denoted s ��� �, is defined inductively in Figure
1. T ��� � i� c0 ��� �. Note that a path � satisfies �1Ũ�2 i� either �2 holds everywhere
in �, or the first occurrence in the path where �2 does not hold must be preceeded by a
position where �1 holds.

s |=λ a ⇐⇒ s ∈ λ(a).
s |=λ ¬a ⇐⇒ s � λ(a).
s |=λ ψ1 ∧ ψ2 ⇐⇒ s |=λ ψ1 and s |=λ ψ2.

s |=λ ψ1 ∨ ψ2 ⇐⇒ s |=λ ψ1 or s |=λ ψ2.

s |=λ AX ψ ⇐⇒ s′ |=λ ψ for every successor s′ of s.
s |=λ EX ψ ⇐⇒ There exists a successor s′ of s s.t. s′ |=λ ψ.
s |=λ A[ψ1Uψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∃i ≥ 0

s.t. si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ E[ψ1Uψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t.
∃i ≥ 0, si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ A[ψ1Ũψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∀i ≥ 0 s.t. si �|=λ ψ2,

∃0 ≤ j < i, s.t. s j |=λ ψ1.

s |=λ E[ψ1Ũψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t. ∀i ≥ 0 s.t. si �|=λ ψ2,

∃0 ≤ j < i s.t. s j |=λ ψ1.

Fig. 1. Semantics of CTL

2.2 PushDown Systems
Definition 2. A PushDown System (PDS for short) is a tuple  � (P� �� 	� 
), where P
is a finite set of control locations, � is the stack alphabet, 	 
 (P � �) � (P � ��) is a
finite set of transition rules and 
 � � is a bottom stack symbol.

A configuration of  is an element �p� �� of P � ��. We write �p� �� 	 �q� �� instead
of ((p� �)� (q� �)) � 	. For technical reasons, we consider the bottom stack symbol 
,
and we assume w.l.o.g. that it is never popped from the stack, i.e., there is no transition
rule of the form �p� 
� 	 �q� �� � 	. The successor relation ��
 (P � ��) � (P � ��)
is defined as follows: if �p� �� 	 �q� ��, then �p� ������ �q� ���� for every �� � ��.

Let c be a given initial configuration of . Starting from c,  induces the transition
system T c

�
� (P � ������ c). Let AP be a set of atomic propositions, � be a CTL

formula on AP, and � : AP 	 2P���

be a labelling function. We say that (� c) ��� � i�
T c
�
��� �.

2.3 Alternating Büchi PushDown Systems

Definition 3. An Alternating Büchi PushDown System (ABPDS for short) is a tuple
� � (P� �� 	� F), where P is a finite set of control locations, � is the stack alphabet,
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F 
 P is a finite set of accepting control locations and 	 is a function that assigns to
each element of P � � a positive boolean formula over P � ��.

A configuration of an ABPDS is a pair �p� ��, where p � P is a control location and
� � �� is the stack content. We assume w.l.o.g. that the boolean formulas are in
disjunctive normal form. This allows to consider 	 as a subset of (P � �) � 2P���

.
Thus, rules of 	 of the form1 �p� �� 	

�n
j�1
�mj

i�1�p
j
i � �

j
i � can be denoted by the

union of n rules of the form �p� �� 	 ��p j
1� �

j
1�� ���� �p

j
mj
� �

j
mj
��, where 1 � j � n. Let

t � �p� �� 	 ��p1� �1�� ���� �pn� �n�� be a rule of 	. For every � � ��, the configuration
�p� ��� (resp. ��p1� �1��� ���� �pn� �n���) is an immediate predecessor (resp. successor)
of ��p1� �1��� ���� �pn� �n��� (resp. �p� ���).

A run � of � from an initial configuration �p0� �0� is a tree in which the root is
labeled by �p0� �0�, and the other nodes are labeled by elements of P � ��. If a node of
� is labeled by �p� �� and has n children labeled by �p1� �1�� ���� �pn� �n�, respectively,
then necessarily, �p� �� has ��p1� �1�� ���� �pn� �n�� as an immediate successor in �. A
path c0c1��� of a run � is an infinite sequence of configurations such that c0 is the root of
� and for every i � 0, ci�1 is one of the children of the node ci in �. The path is accepting
from the initial configuration c0 if and only if it visits infinitely often configurations with
control locations in F. A run � is accepting if and only if all its paths are accepting.
Note that an accepting run has only infinite paths; it does not involve finite paths. A
configuration c is accepted (or recognized) by � i� � has an accepting run starting
from c. The language of �, �(�) is the set of configurations accepted by �.

The reachability relation ����
 (P � ��) � 2P���

is the reflexive and transitive
closure of the immediate successor relation. Formally ���� is defined as follows: (1)
c ���� �c� for every c � P���, (2) c ���� C if C is an immediate successor of c, (3)
if c ���� �c1� ���� cn� and ci ���� Ci for every 1 � i � n , then c ����

�n
i�1 Ci.

The functions Pre��� Pre�
��

and Pre�
��

: 2P���

�	 2P���

are defined as fol-
lows: Pre��(C) � �c � P � �� � �C� 
 C s.t. C� is an immediate successor of c�, (2)
Pre�

��
(C) � �c � P � ����C� 
 C s�t� c ���� C��, (3) Pre�

��
(C) � Pre�� Æ Pre�

��
(C).

To represent (infinite) sets of configurations of ABPDSs, we use Alternating Multi-
Automata:

Definition 4. [1] Let � � (P� �� 	� F) be an ABPDS. An Alternating Multi-Automaton
(AMA for short) is a tuple � � (Q� �� Æ� I� Q f ), where Q is a finite set of states that
contains P, � is the input alphabet, Æ 
 (Q � �) � 2Q is a finite set of transition rules,
I 
 P is a finite set of initial states, Q f 
 Q is a finite set of final states.

A Multi-Automaton (MA for short) is an AMA such that Æ 
 (Q � �) � Q.

We define the reflexive and transitive transition relation �	Æ
 (Q���)�2Q as follows:

(1) q
�
�	Æ �q� for every q � Q, where � is the empty word, (2) q

�
�	Æ Q�, if q

�
�	 Q� � Æ,

(3) if q
�
�	Æ �q1� ���� qn� and qi

�
�	Æ Qi for every 1 � i � n, then q

��
�	Æ

�n
i�1 Qi.

The automaton � recognizes a configuration �p� �� i� there exists Q� 
 Q f such that

p
�
�	Æ Q� and p � I. The language of �, L(�), is the set of configurations recognized

by �. A set of configurations is regular if it can be recognized by an AMA. It is easy

1 This rule represents �(p� �) �
�n

j�1

�m j

i�1(pj
i � �

j
i ).
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to show that AMAs are closed under boolean operations and that they are equivalent
to MAs. Given an AMA, one can compute an equivalent MA by performing a kind of
powerset construction as done for the determinisation procedure. Similarly, MAs can
also be used to recognize (infinite) regular sets of configurations for PDSs.

Proposition 1. Let � � (Q� �� Æ� I� Q f ) be an AMA. Deciding whether a configuration
�p� �� is accepted by � can be done in O(�Q� � �Æ� � ���) time.

3 Computing the Language of an ABPDS

Our goal in this section is to compute the set of accepting configurations of an Alter-
nating Büchi PushDown System � � (P� �� 	� F). We show that it is regular and that it
can e�ectively be represented by an AMA. Determining whether � has an accepting
run is a non-trivial problem because a run of � is an infinite tree with an infinite num-
ber of paths labelled by PDS configurations, which are control states and stack contents.
All the paths of an accepting run are infinite and should all go through final control lo-
cations infinitely often. The diÆculty comes from the fact that we cannot reason about
the di�erent paths of an ABPDS independently, we need to reason about runs labeled
with PDS configurations. We proceed as follows: First, we characterize the set of con-
figurations from which � has an accepting run. Then, based on this characterization,
we compute an AMA representing this set.

3.1 Characterizing�(��)

We give in this section a characterization of �(�), i.e., the set of configurations from
which � has an accepting run. Let (Xi)i�0 be the sequence defined as follows: X0 �

P � �� and Xi�1 � Pre�(Xi � F � ��) for every i � 0. Let Y�� �
�

i�0 Xi. We show that
�(�) � Y��:

Theorem 1. � has an accepting run from a configuration �p� �� i� �p� �� � Y��.

To prove this result, we first show that:

Lemma 1. � has a run � from a configuration �p� �� such that each path of � visits
configurations with control locations in F at least k times i� �p� �� � Xk.

Intuitively, let c be a configuration in X1. Since X1 � Pre�(X0 � F � ��), c has a
successor C that is a subset of F � ��. Thus, � has a run starting from c whose paths
visit configurations with control locations in F at least once. Since X2 � Pre�(X1 �

F � ��), it follows that from every configuration in X2, � has a run whose paths visit
configurations in X1 � F � �� at least once, and thus, they visit configurations with
control locations in F at least twice. We get by induction that for every k � 1, from
every configuration c in Xk, � has a run whose paths visit configurations with control
locations in F at least k times. Since Y�� is the set of configurations from which �

has a run that visits control locations in F infinitely often, Theorem 1 follows.
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3.2 Computing �(��)

Our goal is to compute Y�� �
�

i�0 Xi, where X0 � P � �� and for every i � 0,
Xi�1 � Pre�(Xi � F � ��). We provide a saturation procedure that computes the set
Y��. Our procedure is inspired from the algorithm given in [7] to compute the winning
region of a Büchi game on a pushdown graph.

We show that Y�� can be represented by an AMA � � (�� �� Æ� I� � f ) whose set
of states � is a subset of P��� �q f �, where q f is a special state denoting the final state
(� f � �q f �). ¿From now on, for every p � P and i � �, we write pi to denote (p� i).

Intuitively, to compute Y��, we will compute iteratively the di�erent Xi’s by applying
the saturation procedure of [1]. The iterative procedure computes di�erent automata.
The automaton computed during the iteration i uses states of the form pi having i as
index. To force termination, we use an acceleration criterion. For this, we need to define
two projection functions ��1 and �i defined as follows: For every S 
 P � � � �q f �,

��1(S ) �

�
����
����

�qi � qi�1 � S � � �q f � if q f � S or �q1 � S �

�qi � qi�1 � S � else.

�i(S ) � �qi � �1 � j � i s�t� q j � S � � �q f � q f � S ��

The AMA � is computed iteratively using Algorithm 1:

Algorithm 1: Computation of Y��
Input: An ABPDS �� � (P� �� ��F)�

Output: An AMA � � (	� �� Æ� I� 	 f ) that recognizes Y�� �

1�Initially: Let i � 0� Æ � 
(qf � �� 
qf �) for every � � ��� and for every control state p � P� p0
� qf �

2� Repeat (we call this loop loop1)

3� i :� i � 1;

4� Add in Æ a new transition rule pi �
� pi�1� for every p � F;

5� Repeat (we call this loop loop2)

6� For every �p� �� 	 
�p1 � �1�� ���� �pn � �n�� in �

7� and every case where pi
k

�k
�Æ Qk � for every 1 � k � n;

8� Add a new rule pi �
�

�n
k�1 Qk in Æ;

9� Until No new transition rule can be added.

10� Remove from Æ the transition rules pi �
� pi�1� for every p � F;

11� Replace in Æ every transition rule pi �
� R by pi �

� 
i(R)� for every p � P� � � �� R � 	;

12� Until i � 1 and for every p � P� � � �� R � P � 
i� � 
qf �; pi �
� R � Æ �� pi�1 �

� 
�1(R) � Æ

Let us explain the intuition behind the di�erent lines of this algorithm. Let Ai be the
automaton obtained at step i (a step starts at Line 3). For every p � P, the state pi is

meant to represent state p at step i, i.e., Ai recognizes a configuration �p� �� i� pi �
�	Æ

q f . Let A0 be the automaton obtained after the initialization step (Line 1). It is clear that
A0 recognizes X0 � P���. Suppose now that the algorithm is at the beginning of the i-th

iteration (loop1). Line 4 adds the �-transition pi �
�	 pi�1 for every control state p � F.

After this step, we obtain L(Ai�1)�F���. loop2 at lines 5�9 is the saturation procedure
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of [1]. It computes the Pre� of L(Ai�1)�F ���. Line 10 removes the �-transition added
by Line 4. After this step, the automaton recognizes Pre�(L(Ai�1) � F � ��), i.e., Xi.
Let us call Algorithm B the above algorithm without Line 11. It follows from the
explanation above that if Algorithm B terminates, it will produce Y��. However, this
procedure will never terminate if the sequence (Xi) is strictly decreasing. Consider for
example the ABPDS � � (�q�� ���� 	� �q�), where 	 � ��q� �� 	 �q� ���. Then, for
every i � 0, Xi � ��q� �i�� � � � ���. It is clear that Algorithm B will never terminate
on this example.

The substitution at Line 11 is the acceleration used to force the termination of the
algorithm, tested at Line 12. We can show that thanks to Line 11 and to the test of Line
12, our algorithm always terminates and produces Y��:

Theorem 2. Algorithm 1 always terminates and produces Y��.

Proof (Sketch): Termination. Let us first prove the termination of our procedure. Note
that due to the substitution of Line 11, at the end of step i, states with index j � i are not
useful and can be removed. We can then suppose that at the end of step i, the automaton
Ai uses only states of index i (in addition to state q f ). Thus, the termination tested at
Line 12 holds when at step i, the transitions of Ai are “the same” than those of Ai�1.

We can show that at each step i, loop2 (corresponding to the saturation procedure)
adds less transitions than at step i � 1, meaning that Ai has less transitions than Ai�1.
Intuitively, this is due to the fact that at step i, we obtain after the saturation procedure
Pre�(L(Ai�1) � F � ��). Since Pre� is monotonic, and since we start at step 0 with
an automaton A0 that recognizes all the configurations P � ��, we get that for i � 0,
L(Ai) 
 L(Ai�1). More precisely, we can show by induction on i that:

Proposition 2. In Algorithm 1, for every � � �� p � P� S 
 �; at each step i � 2, if

pi �
�	 S � Æ, then pi�1 �

�	 ��1	�i(S )


� Æ.

Thus, the substitution of Line 11 guarantees that at each step, the number of transitions
of the automaton Ai is less than the number of transitions of Ai�1. Since the number of
transitions that can be added at each step is finite, and since the termination criterion of
Line 12 holds if the transitions of Ai are “the same” than those of Ai�1, the termination
of our algorithm is guaranteed.

Correctness. Let us now prove that our algorithm is correct, i.e., it produces Y��. As
mentionned previously, without Line 11, the algorithm above would have computed the
di�erent Xi’s. Since Y�� �

�
i�0 Xi, we need to show that Line 11 does not introduce

new configurations that are not in Y��, nor remove ones that should be in Y��.
Suppose we are at step i, and let p � P, � � �, and R 
 � be such that Line 11 adds

the transition pi �
�	 �i(R) and removes the transition pi �

�	 R. This substitution adds
a new transition i� R contains at least one state of the form qi�1 (otherwise, �i(R) � R
and Line 11 does not introduce any change for this transition). Let then S 
 � be
such R � S � �qi�1�. Let us first show that this substitution does not introduce new

configurations. Let u � �� such that pi �
�	Æ �

i(R)
u
�	Æ q f is a new accepting run of the

automaton. Then, due to Proposition 2, we can show that there exists already (before

the substitution) a run pi �
�	Æ R

u
�	Æ q f in the automaton that accepts the configuration

�p� �u�.
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Let us now show that the substitution above does not remove configurations that are
in Y��. Let �p� �� be a configuration removed by the substitution above, i.e., �p� �� is

no more recognized by Ai due to the fact that pi �
�	 R is removed. We show that �p� ��

cannot be in Y��. Let v � �� such that � � �v and � � pi �
�	Æ qi�1 � S

v
�	Æ �q f � is

a run accepting �p� �� whereas there is no run of the form qi v
�	Æ �q f �. Suppose for

simplicity that � is the only run recognizing �p� ��, the same reasoning can also be

applied if this is not the case. Since pi �
�	 qi�1 � S , we can show that there exist states

q1� � � � � qn, and words �1� � � � � �n such that �p� �� ���� ��q� ��� �q1� �1�� � � � �qn� �n��.
Then, due to the fact that �p� �� is removed from the automaton and that � is the only
path accepting �p� ��, we can show that all the possible runs from the configuration
�p� �� go through the configuration �q� v�. Since �q� v� � Y�� (because there is no run

of the form qi v
�	Æ �q f �), � has no accepting run from the configuration �q� v�. It

follows that � cannot have an accepting run from �p� ��. �

Complexity: Given an AMA A with n states, [23] provides a procedure that can imple-
ment the saturation procedure loop2 to compute the Pre� of A in time O(n � �	� � 22n).
Since at each step i, Algorithm 1 needs to consider only states of the form pi and pi�1

(in addition to q f ), the number of states at each step i should be 2�P� � 1. Thus, loop2

can be done in O(�P� � �	� � 24�P�). Furthermore, Line 11 and the termination condition are
done in time O(��� � �P� �22�P�) and O(��� � �P� �2�P�), respectively. We know that the number
of transition rules of Ai is less than those of Ai�1. Since the number of transition rules
of the AMA is at most ��� � �P� � 2�P��1, loop1 can be done at most ��� � �P� � 2�P��1 times.
Putting all these estimations together, the algorithm runs in O(�P�2 � �	� � ��� � 25�P�) time.

Thus, since �(�) � Y��, we get :

Theorem 3. Given an ABPDS � � (P� �� 	� F), we can e�ectively compute an AMA
� with O(�P�) states and O(�P� � ��� � 2�P�) transition rules that recognizes �(�). This
AMA can be computed in time O(�P�2 � �	� � ��� � 25�P�).

Example: Let us illustrate our algorithm by an ex-
ample. Consider an ABPDS � � (�q�� ���� 	�
�q�), where 	 � ��q� �� 	 �q� ���. The automa-
ton produced by Algorithm 1 is shown in Figure
2. The dashed lines denote the transitions removed

q
fq1q2

γ
γ

γ

γ
ε ε

γ

Fig. 2. The result automaton.

by Lines 10 and 11. In the first iteration, t1 � q1 �
�	 q f is added by Line 4, the satu-

ration procedure (lines 5 � 9) adds two transitions q1 �
�	 q f and q1 �

�	 q1. Then the
transition t1 is removed by Line 10. In the second iteration, t2 � q2 �

�	 q1 is added
by Line 4. The saturation procedure adds the transitions t3 � q2 �

�	 q1 and q2 �
�	 q2.

Finally, t2 is removed by Line 10 and t3 is replaced by q2 �
�	 q2 (this transition already

exists in the automaton). Now the termination condition is satisfied and the algorithm
terminates. In this case, � has no accepting run.

EÆcient implementation of Algorithm 1. We show that we can improve the com-
plexity of Algorithm 1 as follows:
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Improvement 1. For every q � � and � � �, if t1 � q
�
�	 Q1 and t2 � q

�
�	 Q2 are

two transitions in Æ such that Q1 
 Q2, then remove t2. This means that if � contains

two transitions t1 � p
�
�	 �q1� q2� q3� and t2 � p

�
�	 �q1� q2�, then we can remove t1

without changing the language of �. Indeed, if a path q
�
�	Æ q f uses the transition rule

t1, then there must be necessarily a path q
�
�	Æ q f that uses the transition rule t2 instead

of t1.

Improvement 2. Each transition qi �
�	 R added by the saturation procedure will be

substituted by qi �
�	 �i(R) in Line 11. Transitions of the form qi �

�	 �qi
1� q

i�1
1 � �

R and qi �
�	 �qi�1

1 � � R have the same substitution qi �
�	 �qi

1� � �i(R). We show

that each transition qi �
�	 �qi

1� q
i�1
1 � � R can be replaced by qi �

�	 �qi�1
1 � � R in the

saturation procedure (i.e., during loop2). Moreover, we show that if both t1 � qi �
�	

�qi�1
1 � ���� qi�1

n � � R and t2 � qi �
�	 �qi

1� ���� q
i
n� � R exist during loop2, then t2 can be

removed. This is due to the fact that they both have the same substitution rule.

4 CTL Model-Checking for PushDown Systems

We consider in this section “standard” CTL model checking for pushdown systems as
considered in the literature, i.e., the case where whether an atomic proposition holds
for a given configuration c or not depends only on the control state of c, not on its
stack. Let  � (P� �� 	� 
) be a pushdown system, c0 its initial configuration, AP a set of
atomic propositions, � a CTL formula, f : AP 	 2P a function that associates atomic
propositions to sets of control states, and � f : AP 	 2P���

a labelling function such
that for every a � AP, � f (a) � ��p� �� � p � f (a)� � � ���. We provide in this section
an algorithm to determine whether (� c0) ��� f �. We proceed as follows: Roughly
speaking, we compute an Alternating Büchi PushDown System � that recognizes the
set of configurations c such that (� c) ��� f �. Then (� c0) ��� f � holds i� c0 � �(�).
This can be e�ectively checked due to Theorem 3 and Proposition 1.

Let �� � (P�� �� 	�� F) be the ABPDS defined as follows: P�
� P � cl(�); F �

�[p� a] � a � cl(�)�AP and p � f (a)���[p��a] � �a � cl(�)� a � AP and p � f (a)��P�
clŨ(�), where clŨ(�) is the set of formulas of cl(�) of the form E[�1Ũ�2] or A[�1Ũ�2];
and 	� is the smallest set of transition rules such that for every control location p � P,
every subformula � � cl(�), and every � � �, we have:

1. if � � a, a � AP and p � f (a); �[p� �]� �� �� �[p� �]� �� � ��,
2. if � � �a, a � AP and p � f (a); �[p� �]� �� �� �[p� �]� �� � ��,
3. if � � �1 � �2; �[p� �]� �� �� �[p� �1]� �� � �[p� �2]� �� � ��,
4. if � � �1 	 �2; �[p� �]� �� �� �[p� �1]� �� 	 �[p� �2]� �� � ��,
5. if � � EX�1; �[p� �]� �� ��

�
�p������p� ������[p�� �1]� �� � ��,

6. if � � AX�1; �[p� �]� �� ��
�

�p������p� ������[p�� �1]� �� � ��,
7. if � � E[�1U�2]; �[p� �]� �� �� �[p� �2]� �� 	

�
�p������p������(�[p� �1]� �� � �[p�� �]� ��) � ��,

8. if � � A[�1U�2]; �[p� �]� �� �� �[p� �2]� �� 	
�

�p������p������(�[p� �1]� �� � �[p�� �]� ��) � ��,
9. if � � E[�1Ũ�2]; �[p� �]� �� �� �[p� �2]� �� � (�[p� �1]� �� 	

�
�p������p� ������[p�� �]� ��) � ��,

10. if � � A[�1Ũ�2]; �[p� �]� �� �� �[p� �2]� �� � (�[p� �1]� �� 	
�

�p������p� ������[p�� �]� ��) � ��.
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The ABPDS �� above can be seen as the “product” of  with the formula �.
Intuitively, �� has an accepting run from �[p� �]� �� if and only if the configuration
�p� �� satisfies �. Let us explain the intuition behind the di�erent items defining 	�.

Let � � a � AP. If p � f (a) then for every � � ��, �p� �� satisfies �. Thus, ��

should accept �[p� a]� ��, i.e., have an accepting run from �[p� a]� ��. This is ensured by
Item 1 that adds a loop in �[p� a]� ��, and the fact that [p� a] � F.

Let � � �a, where a � AP. If p � f (a) then for every � � ��, �p� �� satisfies
�. Thus, �� should accept �[p��a]� ��, i.e., have an accepting run from �[p��a]� ��.
This is ensured by Item 2 and the fact that [p��a] � F.

Item 3 expresses that if � � �1��2, then for every � � ��,�� has an accepting run
from �[p� �1 � �2]� �� i� �� has an accepting run from �[p� �1]� �� and �[p� �2]� ��;
meaning that �p� �� satisfies � i� �p� �� satisfies �1 and �2. Item 4 is similar to Item 3.

Item 5 means that if � � EX�1, then for every � � ��, �p� �� satisfies � i� there
exists an immediate sucessor �p�� ��� of �p� �� such that �p�� ��� satisfies �1. Thus,
�� should have an accepting run from �[p� �]� �� i� it has an accepting run from
�[p�� �1]� ���. Similarly, item 6 states that if � � AX�1, then for every � � ��, �p� ��
satisfies � i� �p�� ��� satisfies �1 for every immediate sucessor �p�� ��� of �p� ��.

Item 7 expresses that if � � E[�1U�2], then for every � � ��, �p� �� satisfies � i�
either it satisfies �2, or it satisfies �1 and there exists an immediate sucessor �p�� ��� of
�p� �� such that �p�� ��� satisfies �. Item 8 is similar to Item 7.

Item 9 expresses that if � � E[�1Ũ�2], then for every � � ��, �p� �� satisfies � i�
it satisfies �2, and either it satisfies also �1, or it has a successor that satisfies �. This
guarantees that �2 holds either always, or until both �1 and �2 hold. The fact that the
state [p� �] is in F ensures that paths where �2 always hold are accepting. The intuition
behind Item 10 is analogous.

Formally, we can show that:

Theorem 4. Let  � (P� �� 	� 
) be a PDS, f : AP �	 2P a labelling function, � a
CTL formula, and �p� �� a configuration of . Let �� be the ABPDS computed above.
Then, (� �p� ��) ��� f � i� �� has an accepting run from the configuration �[p� �]� ��.

It follows from Theorems 3 and 4 that:

Corollary 1. Given a PDS  � (P� �� 	� 
), a labeling function f : P �	 2AP, and a
CTL formula �, we can construct an AMA� in time O(�P�2 � ���3 �(�P� � ���� �	�)���� �25�P����)
such that for every configuration �p� �� of, (� �p� ��) ��� f � i� the AMA� recognizes
the configuration �[p� �]� ��.

The complexity follows from the complexity of Algorithm 1 and the fact that �� has
O(�P����) states and O

	
(�P����� �	�)���



transitions.

5 CTL Model-Checking for PushDown Systems with Regular
Valuations

So far, we considered the “standard” model-checking problem for CTL, where the va-
lidity of an atomic proposition in a configuration c depends only on the control state of
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c, not on the stack. In this section, we go further and consider an extension where the set
of configurations in which an atomic proposition holds is a regular set of configurations.

Let  � (P� �� 	� 
) be a pushdown system, c0 its initial configuration, AP a set of
atomic propositions, � a CTL formula, and � : AP 	 2P���

a labelling function such
that for every a � AP, �(a) is a regular set of configurations. We say that � is a regular
labelling. We give in this section an algorithm that checks whether (� c0) ��� �. We
proceed as previously: Roughly speaking, we compute an ABPDS ��

� such that ��
�

recognizes a configuration c i� (� c) ��� �. Then (� c0) satisfies � i� c0 is accepted by
��

�. As previously, this can be checked using Theorem 3 and Proposition 1.
For every a � AP, since �(a) is a regular set of configurations, let Ma �

(Qa� �� Æa� Ia� Fa) be a multi-automaton such that L(Ma) � �(a), and M�a �

(Q�a� �� Æ�a� I�a� F�a) such that L(M�a) � P � �� � �(a) be a multi-automaton that rec-
ognizes the complement of �(a), i.e., the set of configurations where a does not hold.
Since for every a � AP and every control state p � P, p is an initial state of Qa and
Q�a; to distinguish between all these initial states, for every a � AP, we will denote in
the following the initial state corresponding to p in Qa (resp. in Q�a) by pa (resp. p�a).

Let ��
� � (P��� �� 	��� F�) be the ABPDS defined as follows2: P��

� P � cl(�) �
�

a�AP�(�) Qa �
�

a�AP�(�) Q�a; F�
� P � clŨ(�) �

�
a�AP�(�) Fa �

�
a�AP�(�) F�a; and 	��

is the smallest set of transition rules such that for every control location p � P, every
subformula � � cl(�), and every � � �, we have:

1. if � � a, a � AP; �[p� �]� �� �� �pa� �� � ���,
2. if � � �a, a � AP ; �[p� �]� �� �� �p�a� �� � ���,
3. if � � �1 � �2; �[p� �]� �� �� �[p� �1]� �� � �[p� �2]� �� � ���,
4. if � � �1 	 �2; �[p� �]� �� �� �[p� �1]� �� 	 �[p� �2]� �� � ���,
5. if � � EX�1; �[p� �]� �� ��

�
�p������p� ������[p�� �1]� �� � ���,

6. if � � AX�1; �[p� �]� �� ��
�

�p������p� ������[p�� �1]� �� � ���,
7. if � � E[�1U�2]; �[p� �]� �� �� �[p� �2]� �� 	

�
�p������p� �����(�[p� �1]� �� � �[p�� �]� ��) � ���,

8. if � � A[�1U�2]; �[p� �]� �� �� �[p� �2]� �� 	
�

�p������p� �����(�[p� �1]� �� � �[p�� �]� ��) � ���,
9. if � � E[�1Ũ�2]; �[p� �]� �� �� �[p� �2]� �� � (�[p� �1]� �� 	

�
�p������p� ������[p�� �]� ��) � ���,

10. if � � A[�1Ũ�2]; �[p� �]� �� �� �[p� �2]� �� � (�[p� �1]� �� 	
�

�p������p� ������[p�� �]� ��) � ���.

Moreover:

11. for every transition q1
�
�	 q2 in (

�
a�AP�(�) Æa)�(

�
a�AP�(�) Æ�a); �q1� �� 	 �q2� �� �

	��,
12. for every q � (

�
a�AP�(�) Fa) � (

�
a�AP�(�) F�a); �q� 
� 	 �q� 
� � 	��.

The ABPDS ��
� has an accepting run from �[p� �]� �� if and only if the config-

uration �p� �� satisfies � according to the regular labellings Ma’s. Let us explain the
intuition behind the rules above. Let p � P, � � a � AP, and � � ��. The ABPDS
��

� should accept �[p� a]� ��, i� �p� �� � L(Ma). To check this, ��
� goes to state pa,

the initial state corresponding to p in Ma (Item 1); and then, from this state, it checks
whether � is accepted by Ma. This is ensured by Items 11 and 12. Item 11 allows ��

�

to mimic a run of Ma on �: if ��
� is in state q1 with � on top of its stack, and if

q1
�
�	 q2 is a rule in Æa, then ��

� moves to state q2 while popping � from the stack.

2 AP�(�) and AP�(�) are as defined in Section 2.1.
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Popping � allows to check the rest of the word. The configuration is accepted if the run
(with label �) in Ma reaches a final state, i.e., if ��

� reaches a state q � Fa with an
empty stack, i.e., a stack containing only the bottom stack symbol 
. Thus, Fa is in F��.
Since all the accepting runs of ��

� are infinite, we add a loop on every configuration
in control state q � Fa and having 
 as content of the stack (Item 12).

The intuition behind Item 2 is similar. This item applies for � of the from �a. Items
3–10 are similar to Items 3–10 in the construction underlying Theorem 4. We get:

Theorem 5. (� �p� ��) ��� � i� ��
� has an accepting run from the configuration

�[p� �]� ��.

From this theorem and Theorem 3, it follows that:

Corollary 2. Given a PDS  � (P� �� 	� 
), a regular labelling function �, and a CTL
formula �, we can construct an AMA � such that for every configuration �p� �� of ,
(� �p� ��) ��� � i� the AMA � recognizes the configuration �[p� �]� ��. This AMA can
be computed in time O(�P�3 � ���2 � ���3 � k2 � �	� � d � 25(�P�����k)), where k �

�
a�AP�(�) �Qa� ��

a�AP�(�) �Q�a� and d �
�

a�AP�(�) �Æa� �
�

a�AP�(�) �Æ�a�.

The complexity follows from the complexity of Algorithm 1 and the fact that ��
� has

O(�P���� � k) states and O
	
(�P����� �	�)��� � d



transitions.

Remark 1. Note that to improve the complexity, we represent the regular valuations
Ma’s using AMAs instead of MAs. This prevents the exponential blow-up when com-
plementing these automata to compute M�a.

6 Experiments

We implemented all the algorithms presented in the previous sections in a tool. As far
as we know, this is the first tool for CTL model-checking for PDSs. We applied our
tool to the verification of sequential programs. Indeed, PDSs are well adapted to model
sequential (possibly recursive) programs [10,13]. We carried out several experiments.
We obtained interesting results. In particular, we were able to find bugs in linux drivers.
Our results are reported in Figure 3. Column formula size gives the size of the formula.
Column time(s) and mem(kb) give the time (in seconds) and memory (in kb). Column
Recu. gives the number of iterations of loop1. The last Column result gives the result
whether the formula is satisfied or not (Y is satisfied, otherwise N). The first eleven lines
of the table describe experiments done to evaluate Algorithm 1. that computes the set
of configurations from which an ABPDS has an accepting run. The second part of the
table describes experiments for “standard” CTL model-checking in which most of the
specifications cannot be expressed in LTL. The last part considers CTL model-checking
with regular valuations.

Plotter controls a plotter that creates random bar graphs [21]. We checked three
CTL properties for this example (Plotter1, Plotter2 and Plotter3). ATM is an auto-
matic teller machine controller. We checked that if the pincode is correct, then the ATM
will provide money (ATM1), and otherwise, it will set an alarm (ATM2). ATM3 checks
that the ATM gives the money only if the pincode is correct, and if it is accessed from
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Examples
|P |+ |Γ| Formula

Recu Time(s) Mem(kb) Result
+|Δ| size

A
lg
o
rith

m
1

1 3+3+4 - 3 0 22.34 Y
2 17+5+24 - 4 0 33.23 N
3 73+5+73 - 4 0.02 128.28 Y
4 75+6+75 - 5 0.02 81.36 N
5 3+4+4 - 4 0 22.36 N
6 3+4+5 - 3 0 21.54 Y
7 3+4+4 - 3 0 20.11 Y
8 3+4+4 - 4 0 27.40 Y
9 74+6+76 - 5 0.02 87.54 Y
10 17+5+24 - 3 0 28.46 Y
11 18+5+28 - 3 0 26.15 Y

S
ta

n
d
a
rd

Plotter.1 1+19+24 2 3 0.02 41.56 Y
Plotter.2 1+19+24 2 3 0 43.52 N
Plotter.3 1+19+24 14 9 0.03 241.32 Y
ATM.1 2+18+45 8 6 0.03 169.64 Y
ATM.2 2+18+45 10 6 0.03 192.53 Y
Lock.1 6+37+82 7 11 0.11 387.15 Y
Lock.2 6+37+82 7 11 0.11 379.46 N
Lock-err 6+37+82 3 9 0.00 186.52 N
M-WO.1 1+7+12 6 2 0 40.20 Y
M-WO.2 1+7+12 6 7 0 37.28 N
File.1 1+5+9 2 3 0 34.77 Y
File.2 1+5+9 2 4 0.02 32.51 N

W.G.C. 16+1+40 23 2 0.05 202.01 Y
btrfs/file.c 2+14+20 3 10 0 64.32 N

btrfs/file.c-fixed 2+15+22 3 9 0.02 82.52 Y
bluetooth 32+12+294 5 8 0.12 821.03 N
w83627ehf 1+20+20 5 9 0.02 132.76 N

w83627ehf-fixed 1+21+22 5 4 0.03 121.69 Y
w83697ehf 1+56+57 6 11 0.35 394.61 Y
advantech 2+16+31 7 6 0.05 120.41 Y
at91rm9200 4+15+64 7 5 0.06 234.42 N

at91rm9200-fixed 4+16+67 7 6 0.12 255.62 Y
at32ap700x 4+25+105 7 8 0.15 356.04 N

at32ap700x-fixed 4+25+109 7 9 0.22 334.42 Y
pcf857x 1+98+106 10 18 0.23 541.35 Y

R
e
g
u
la
r
V
a
lu
a
tio

n

ATM.3 2+18+45 8 6 0.20 352.47 Y
File.3 1+5+9 5 5 0 33.21 Y
RSM1 1+8+11 25 4 0.06 438.23 Y
RSM2 1+8+12 30 4 0.48 1231.45 Y
RSM3 1+11+17 45 4 12.11 6206.73 Y
RSM4 1+11+18 45 4 0.72 1269.26 Y
RSM5 1+11+16 35 4 12.14 6212.2 Y

ieee1394 core 1 1+104+108 12 14 0.20 413.69 Y
ieee1394 core 2 1+104+108 13 14 0.19 422.17 Y
ieee1394 core 3 1+104+108 14 17 0.19 438.42 N
ieee1394 core 4 1+104+109 14 14 0.19 414.27 Y

Fig. 3. The performance of our tool



EÆcient CTL Model-Checking for Pushdown Systems 447

the main session. Regular valuations are needed to express this property. Lock is a lock-
unlock program. We checked di�erent properties that ensure that the program is correct.
Lock-err is a buggy version of the program. M-WO is a Micro-Wave Oven controller.
We checked that the oven will stop once it is hot, and that it cannot continue heating
forever. File is a file management program. W.G.C. checks to solve the Wolf, Goat and
Cabbage problem. btrfsfile.c models the source file file.c from the linux btrfs file sys-
tem. We found a lock error in this file. Bluetooth is a simplified model of a Bluetooth
driver [20]. We also found an error in this system. w83627ehf, w83697ehf and advan-
tech are watchdog linux drivers. at91rm9200 and at32ap700x are Real Time Clock
drivers for linux. pcf857x corresponds also to a driver. IEEE1394 is the IEEE 1394
driver in Linux. As described in Figure 3, we found errors in some of these drivers. We
needed regular valuations to express the properties of the IEEE 1394 driver. For exam-
ple, we needed to check that whenever a function call hpsb send phy config is invoked,
there is a path where call hpsb send packet is called before call hpsb send phy config
returns. We need propositions about the stack to express this property. “Standard” CTL
is not suÆcient. RSM are examples written by us to check the eÆciency of the regular
valuations part of our tool.

7 Related Work

Alternating Büchi Pushdown Systems can be seen as non-deterministic Büchi Push-
down Systems over trees. Emptiness of non-deterministic Büchi Pushdown Systems
over trees is solved in triple exponential time by Harel and Raz [15]. Our algorithm
is less complex. [2] considers the emptiness problem in Alternating Parity Pushdown
Automata. The emptiness problem of nondeterministic parity pushdown tree automata
is investigated in [16,3,4]. ABPDSs can be seen as a subclass of these Automata. For
ABPDSs, our algorithm is more general than the ones in these works since it allows
to characterize and compute the set of configurations from which the ABPDS has an
accepting run, whereas the other algorithms allow only to check emptiness

Model-checking pushdown systems against branching time temporal logics has al-
ready been intensively investigated in the literature. Several algorithms have been pro-
posed. Walukiewicz [25] showed that CTL model checking is EXPTIME-complete for
PDSs. The complexity of our algorithm matches this bound. CTL corresponds to a frag-
ment of the alternation-free �-calculus and of CTL*. Model checking full �-calculus
for PDSs has been considered in [5,6,24,18]. These algorithms allow only to determine
whether a given configuration satisfies the property. They cannot compute the set of all
the configurations where the formula holds. As far as CTL is concerned, our algorithm
is more general since it allows to compute a finite automaton that characterizes the set
of all such configurations. Moreover, the complexity of our algorithm is comparable to
the ones of [5,6,24,18] when applied to CTL, it is even better in some cases.

[19,17] considers the global model-checking �-calculus problem for PDSs, i.e., they
compute the set of configurations that satisfy the formula. They reduce this problem
to the membership problem in two-way alternating parity tree automata. [17] consid-
ers also �-calculus model-checking with regular valuations. These algorithms are more
complex, technically more complicated and less intuitive than our procedure. Indeed,
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the complexity of [19,17] is (��� � �P� � �	� � ���)O(�P���������)2
, whereas our complexity is

O(�P�2 � ���3 � (�P� � ��� � �	�) � ��� � 25�P����).
In [1], Bouajjani et al. consider alternating pushdown systems (without the Büchi ac-

cepting condition). They provide an algorithm to compute a finite automaton represent-
ing the Pre� of a regular set of configurations for these systems. We use this procedure
in loop2 of Algorithm 1. [23] showed how to eÆciently implement this procedure. We
used the ideas in [23] while implementing Algorithm 1. In their paper, Bouajjani et
al. applied their Pre� algorithm to compute the set of PDS configurations that satisfy a
given alternation-free �-calculus formula. Their procedure is more complex than ours.
It is exponential in �P� � ���2 whereas our algorithm is exponential only in �P� � ���, where
�P� is the number of states of the PDS and ��� is the size of the formula.

It is well known that the model-checking problem for �-calculus is polynomially
reducible to the problem of solving parity games. Parity games for pushdown systems
are considered in [8,22] and are solved in time exponential in (�P����)2. As far as CTL
model-checking is concerned, our method is simpler, less complex, and more intuitive
than these algorithms.

Model checking CTL* for PDS is 2EXPTIME-complete (in the size of the for-
mula) [2]. Algorithms for model-checking CTL* specifications for PDSs have been
proposed in [14,12,11,2]. [14] considers also CTL* model checking with regular val-
uations. When applied to CTL formulas, these algorithms are more complex than our
techniques. They are double exponential in the size of the formula and exponential in
the size of the system; whereas our procedure is only exponential for both sizes (the
formula and the system).

LTL model-checking with regular valuations was considered in [12,11]. Their algo-
rithm is based on a reduction to the “standard” LTL model-checking problem for PDSs.
The reduction is done by performing a kind of product of the PDS with the di�erent
regular automata representing the di�erent constraints on the stack. Compared to these
algorithms, our techniques for CTL model-checking with regular valuations are direct,
in the sense that they do not necessitate to make the product of the PDS with the di�er-
ent automata of the regular constraints.
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11. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for
pushdown systems. In: Kobayashi, N., Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215,
pp. 316–339. Springer, Heidelberg (2001)

12. Esparza, J., Kucera, A., Schwoon, S.: Model checking ltl with regular valuations for push-
down systems. Inf. Comput. 186(2), 355–376 (2003)

13. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In: Berry,
G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 324. Springer, Heidelberg
(2001)

14. Finkel, A., Willems, B., Wolper, P.: A Direct Symbolic Approach to Model Checking Push-
down Systems. In: Infinity 1997. ENTCS, vol. 9. Elsevier Sci. Pub., Amsterdam (1997)

15. Harel, D., Raz, D.: Deciding emptiness for stack automata on infinite trees. Inf. Com-
put. 113(2), 278–299 (1994)

16. Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In: Baaz, M., Voronkov,
A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 262–277. Springer, Heidelberg (2002)

17. Kupferman, O., Piterman, N., Vardi, M.Y.: An automata-theoretic approach to infinite-
state systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200,
pp. 202–259. Springer, Heidelberg (2010)

18. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-
state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52.
Springer, Heidelberg (2000)

19. Piterman, N., Vardi, M.Y.: Global model-checking of infinite-state systems. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer, Heidelberg (2004)

20. Qadeer, S., Wu, D.: Kiss: Keep it simple and sequential. In: PLDI 2004: Programming Lan-
guage Design and Implementation, pp. 14–24 (2004)

21. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Universität
München (2002)

22. Serre, O.: Note on winning positions on pushdown games with [omega]-regular conditions.
Inf. Process. Lett. 85(6), 285–291 (2003)

23. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: EÆcient algorithms for alternating push-
down systems with an application to the computation of certificate chains. In: Graf, S.,
Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer, Heidelberg (2006)

24. Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger,
T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)

25. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S.,
Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)



Reasoning about Threads with Bounded Lock Chains
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Abstract. The problem of model checking threads interacting purely via the
standard synchronization primitives is key for many concurrent program anal-
yses, particularly dataflow analysis. Unfortunately, it is undecidable even for the
most commonly used synchronization primitive, i.e., mutex locks. Lock usage in
concurrent programs can be characterized in terms of lock chains, where a se-
quence of mutex locks is said to be chained if the scopes of adjacent (non-nested)
mutexes overlap. Although the model checking problem for fragments of Lin-
ear Temporal Logic (LTL) is known to be decidable for threads interacting via
nested locks, i.e., chains of length one, these techniques don’t extend to programs
with non-nested locks used in crucial applications like databases. We exploit the
fact that lock usage patterns in real life programs do not produce unbounded lock
chains. For such a framework, we show, by using the new concept of Lock Causal-
ity Automata (LCA), that pre∗-closures of regular sets of states can be computed
efficiently. Leveraging this new technique then allows us to formulate decision
procedures for model checking threads communicating via bounded lock chains
for fragments of LTL. Our new results narrow the decidability gap for LTL model
checking of threads communicating via locks by providing a more refined char-
acterization for it in terms of boundedness of lock chains rather than the current
state-of-the-art, i.e., nestedness of locks (chains of length one).

1 Introduction

With the increasing prevalence of multi-core processors and concurrent multi-threaded
software, it is highly critical that dataflow analysis for concurrent programs, similar to
the ones for the sequential domain, be developed. For sequential programs, Pushdown
Systems (PDSs) have emerged as a powerful, unifying framework for efficiently en-
coding many inter-procedural dataflow analyses [15, 5]. Given a sequential program,
abstract interpretation is first used to get a finite representation of the control part of
the program while recursion is modeled using a stack. Pushdown systems then provide
a natural framework to model such abstractly interpreted structures. Analogous to the
sequential case, inter-procedural dataflow analysis for concurrent multi-threaded pro-
grams can be formulated as a model checking problem for interacting PDSs. While for
a single PDS the model checking problem is efficiently decidable for very expressive
logics, it was shown in [18] that even simple properties like reachability become un-
decidable for systems with only two threads but where the threads synchronize using
CCS-style pairwise rendezvous.

However, it has recently been demonstrated that, in practice, concurrent programs
have a lot of inherent structure that if exploited leads to decidability of many important
problems of practical interest. These results show that there are important fragments of
temporal logics and useful models of interacting PDSs for which efficient decidability

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 450–465, 2011.
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results can be obtained. Since formulating efficient procedures for model checking in-
teracting PDSs lies at the core of scalable data flow analysis for concurrent programs,
it is important that such fragments be identified for the standard synchronization prim-
itives. Furthermore, of fundamental importance also is the need to delineate precisely
the decidability boundary of the model checking problem for PDSs interacting via the
standard synchronization primitives.

Nested locks are a prime example of how programming patterns can be exploited to
yield decidability of the model checking problem for several important temporal logic
fragments for interacting pushdown systems [13, 11]. However, even though the use
of nested locks remains the most popular lock usage paradigm there are niche applica-
tions, like databases, where lock chaining is required. Chaining occurs when the scopes
of two mutexes overlap. When one mutex is acquired the code enters a region where
another mutex is required. After successfully locking that second mutex, the first one is
no longer needed and is released. Lock chaining is an essential tool that is used for en-
forcing serialization, particularly in database applications. For instance, the two-phase
commit protocol [14] which lies at the heart of serialization in databases uses lock
chains of length 2. Other classic examples where non-nested locks occur frequently
are programs that use both mutexes and (locks associated with) Wait/Notify primitives
(condition variables). It is worth pointing out that the lock usage pattern of bounded lock
chains covers almost all cases of practical interest encountered in real-life programs.

We consider the model checking problem for pushdown systems synchronizing via
bounded lock chains for LTL properties. Decidability of a sub-logic of LTL hinges
on whether it is expressive enough to encode, as a model checking problem, the dis-
jointness of the context-free languages accepted by the PDSs in the given multi-PDS
system - an undecidable problem. This, in turn, depends on the temporal operators al-
lowed by the sub-logic thereby providing a natural way to characterize LTL-fragments
for which the model checking problem is decidable. We use L(Op1, ..., Opk), where

Opi ∈ {X,F,U,G,
∞
F}, to denote the fragment comprised of formulae of the form Ef ,

where f is an LTL formula in positive normal form (PNF), viz., only atomic proposi-
tions are negated, built using the operatorsOp1, ..., Opk and the boolean connectives ∨
and ∧. Here X “next-time”, F “sometimes”, U, “until”, G “always”, and

∞
F “infinitely-

often” denote the standard temporal operators and E is the “existential path quantifier”.
Obviously, L(X,U,G) is the full-blown LTL.

It has recently been shown that pairwise reachability is decidable for threads interact-
ing via bounded lock chains [10]. In this paper, we extend the envelope of decidability
for concurrent programs with bounded lock chains to richer logics. Specifically, we
show that the model checking problem for threads interacting via bounded lock chains
is decidable not just for reachability but also the fragment of LTL allowing the temporal

operators X, F,
∞
F and the boolean connectives ∧ and ∨, denoted by L(X,F,

∞
F ). It is

important to note that while pairwise reachability is sufficient for reasoning about sim-
ple properties like data race freedom, for more complex properties one needs to reason
about richer formulae. For instance, detecting atomicity violations requires reasoning
about the fragment of LTL allowing the operators F, ∧ and ∨ (see [14]).

Moreover, we also delineate precisely the decidability/undecidability boundary for
the problem of model checking dual-PDS systems synchronizing via bounded lock
chains. Specifically, we show the following.
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1. The model checking problem is undecidable for L(U) and L(G). This implies that
in order to get decidability for dual-PDS systems interacting via bounded lock chains,

we have to restrict ourselves to the sub-logic L(X,F,
∞
F ). Since systems comprised of

PDSs interacting via bounded lock chains are more expressive than those interacting
via nested locks (chains of length one) these results follow immediately from the unde-
cidability results for PDSs interacting via nested locks [11].

2. For the fragment L(X,F,
∞
F ) of LTL we show that the model checking problem is

decidable.
This settles the model checking problem for threads interacting via bounded lock

chains for LTL. The prior state-of-the-art characterization of decidability vs. undecid-
ability for threads interacting via locks was in terms of nestedness vs. non-nestedness
of locks. We show that decidability can be re-characterized in terms of boundedness
vs. unboundedness of lock chains. Since nested locks form chains of length one, our
results are strictly more powerful than the existing ones. Thus, our new results narrow
the decidability gap by providing a more refined characterization for the decidability of
LTL for threads interacting via locks.

A key contribution of the paper is the new notion of a Lock Causality Automaton
(LCA) that is used to represent sets of states of the given concurrent program so as
to allow efficient temporal reasoning about programs with bounded lock chains. To
understand the motivation behind an LCA, we recall that when model checking a single
PDS, we exploit the fact that the set of configurations satisfying any given LTL formula
is regular and can therefore be captured via a finite automaton or, in the terminology of
[5], a multi-automaton. For a concurrent program with two PDSs T1 and T2, however,
we need to reason about pairs of regular sets of configuration - one for each thread. An
LCA is a pair of automata (M1,M2), where Mi accepts a regular set of configurations
of Ti. The usefulness of an LCA stems from the fact that not only does it allow us to

reason about L(X,F,
∞
F) properties for concurrent programs with bounded lock chains,

but that it allows us to do so in a compositional manner. Compositional reasoning allows
us to reduce reasoning about the concurrent program at hand to each of its individual
threads. This is crucial in ameliorating the state explosion problem. The main challenge
in reducing model checking of a concurrent program to its individual threads lies in
tracking relevant information about threads locally that enables us to reason globally
about the concurrent program. For an LCA this is accomplished by tracking regular
lock access patterns in individual threads.

To sum up, the key contributions of the paper are
1. The new notion of an LCA that allows us to reason about concurrent programs

with bounded lock chains in a compositional manner.

2. A model checking procedure for the fragmentL(X,F,
∞
F ) of LTL that allows us to

narrow the decidability gap for model checking LTL properties for threads communi-
cating via locks.

3. Delineation of the decidability boundary for the LTL model checking problem for
threads synchronizing via bounded lock chains.

2 System Model

We consider concurrent programs comprised of threads modeled as Pushdown Systems
(PDSs) [5] that interact with each other using synchronization primitives. PDSs are a
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natural model for abstractly interpreted programs used in key applications like dataflow
analysis [15]. A PDS has a finite control part corresponding to the valuation of the
variables of a thread and a stack which provides a means to model recursion.

Formally, a PDS is a five-tuple P = (Q,Act, Γ, c0, Δ), where Q is a finite set of
control locations, Act is a finite set of actions, Γ is a finite stack alphabet, and Δ ⊆
(Q× Γ )×Act× (Q× Γ ∗) is a finite set of transitions. If ((p, γ), a, (p′, w)) ∈ Δ then

we write 〈p, γ〉 a
↪→ 〈p′, w〉. A configuration of P is a pair 〈p, w〉, where p ∈ Q denotes

the control location and w ∈ Γ ∗ the stack content. We call c0 the initial configuration
of P . The set of all configurations of P is denoted by C. For each action a, we define a
relation

a→⊆ C × C as follows: if 〈q, γ〉 a
↪→ 〈q′, w〉, then 〈q, γv〉 a→ 〈q′, wv〉 for every

v ∈ Γ ∗ – in which case we say that 〈q′, wv〉 results from 〈q′, γv〉 by firing the transition

〈q, γ〉 a
↪→ 〈q′, w〉 of P .

We model a concurrent program with n threads and m locks1 l1, ..., lm as a tuple of
the form CP = (T1, ..., Tn, L1, ..., Lm), where T1,...,Tn are pushdown systems (repre-
senting threads) with the same set Act of non-acquire and non-release actions, and for
each i, Li ⊆ {⊥, 1, ..., n} is the possible set of values that lock li can be assigned.
A global configuration of CP is a tuple c = (t1, ..., tn, l1, ..., lm) where t1, ..., tn
are, respectively, the configurations of threads T1, ..., Tn and l1, ..., lm the values of
the locks. If no thread holds the lock li in configuration c, then li =⊥, else li is
the index of the thread currently holding li. The initial global configuration of CP is
(c1, ..., cn,⊥, ...,⊥), where ci is the initial configuration of thread Ti. Thus all locks
are free to start with. We extend the relation

a−→ to pairs of global configurations of CP
in the standard way by encoding the interleaved parallel composition of T1, ..., Tn (see
the full paper [1] for the precise definition).

Correctness Properties. We consider correctness properties expressed as double-
indexed Linear Temporal Logic (LTL) formulae. Here atomic propositions are inter-
preted over pairs of control states of different PDSs in the given multi-PDS system.

Conventionally, CP |= f for a given LTL formula f if and only if f is satisfied along
all paths starting at the initial state of CP. Using path quantifiers, we may write this as
CP |= Af . Equivalently, we can model check for the dual property ¬Af = E¬f = Eg.
Furthermore, we can assume that g is in positive normal form (PNF), viz., the negations
are pushed inwards as far as possible using DeMorgan’s Laws: (¬(p ∨ q)) = ¬p ∧ ¬q,
¬(p ∨ q) = ¬p ∧ ¬q, ¬Fp ≡ Gq, ¬(pUq) ≡ G¬q ∨ ¬qU(¬p ∧ ¬q).

For Dual-PDS systems, it turns out that the model checking problem is not decid-
able for the full-blown double-indexed LTL but only for certain fragments. Decidability
hinges on the set of temporal operators that are allowed in the given property which, in
turn, provides a natural way to characterize such fragments. We use L(Op1, ..., Opk),

whereOpi ∈ {X,F,U,G,
∞
F}, to denote the fragment of double-indexed LTL comprised

of formulae in positive normal form (where only atomic propositions are negated)
built using the operators Op1, ..., Opk and the boolean connectives ∨ and ∧. Here X

“next-time”, F “sometimes”, U, “until”, G “always”, and
∞
F “infinitely-often” denote the

standard temporal operators (see [8]). Obviously, L(X,U,G) is the full-blown double-
indexed LTL.

1 We do not allow recursive/re-entrant locks.
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Outline of Paper. In this paper, we show decidability of the model checking problem

for the fragmentL(X,F,
∞
F ) of LTL for concurrent programs with bounded lock chains.

Given an L(X,F,
∞
F ) formula f , we build automata accepting global states of the given

concurrent program satisfying f . Towards that end, we first show how to construct au-

tomata for the basic temporal operators F,
∞
F and X, and the boolean connectives ∧ and

∨. Then to compute an automaton for the given property f , we start by building for each
atomic proposition prop of f , an automaton accepting the set of states of the given con-
current program satisfying prop. Leveraging the constructions for the basic temporal
operators and boolean connectives we then recursively build the automaton accepting
the set of states satisfying f via a bottom-up traversal of the parse tree for f . Then if
the initial state of the given concurrent program is accepted by the resulting automaton,
the program satisfies f . The above approach, which is standard for LTL model check-
ing of finite state and pushdown systems, exploits the fact that for model checking it
suffices to reason about regular sets of configurations of these systems. These sets can
be captured using regular automata which then reduces model checking to computing
regular automata for each of the temporal operators and boolean connectives. However,
for concurrent programs the sets of states that we need to reason about for model check-
ing are not regular and cannot therefore be captured via regular automata. We therefore
propose the new notion of a Lock Causality Automaton (LCA) that is well suited for
reasoning about concurrent programs with bounded lock chains. A key contribution of
the paper lies is showing how to construct LCAs for the basic temporal operators and
the boolean connectives.

The constructions of LCAs for the various temporal operators depend on computing
an LCA accepting the pre∗-closure of the set of states accepted by a given LCA. This
in turn, hinges on deciding pairwise CFL-reachability (see sec. 3) of a pair c1 and c2 of
configurations from another pair d1 and d2 of configurations of T1 and T2, respectively.
Our decision procedure for pairwise CFL-reachability relies on the notion of a Bidi-
rectional Lock Causality Graph introduced in the next section. This leads naturally to
the notion of an LCA defined in sec. 4. Finally the constructions of LCAs for the basic
temporal operators are given in sec. 5 which leads to the model checking procedure for

L(X,F,
∞
F) formulated in sec. 5.1.

3 Pairwise CFL-Reachability

A key step in the computation of pre∗-closure of LCAs is deciding Pairwise CFL-
Reachability.

Pairwise CFL-Reachability. Let CP be a concurrent program comprised of threads
T1 and T2. Given pairs (c1, c2) and (d1, d2), with ci and di being control locations of
Ti, does there exist a path of CP leading from a global state with Ti in ci to one with
Ti in di in the presence of recursion and scheduling constraints imposed by locks.

It is known that pairwise CFL-reachability is undecidable for two threads interacting
purely via locks but decidable if the locks are nested [12] and, more generally, for
programs with bounded length lock chains [10], where a lock chain is defined as below.

Lock Chains. Given a computation x of a concurrent program, a lock chain of thread
T is a sequence of lock acquisition statements acq1, ..., acqn fired by T along x in the
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Algorithm 1. Bi-Directional Lock Causality Graph

1: Input: Local paths x1 and x2 of T1 and T2 leading from c1 and c2 to d1 and d2, respectively
2: for each lock l held at location di do
3: If c and c′ are the last statements to acquire and release l occurring along xi and xi′ ,

respectively, Add edge c′ � c to G(x1,x2).
4: end for
5: for each lock l held at location ci do
6: If c and c′ are the first statements to release and acquire l occurring along xi and xi′ ,

respectively, add edge c � c′ to G(x1,x2).
7: end for
8: repeat
9: for each lock l and each edge di′ � di of G(x1,x2) do

10: Let ai′ be the last statement to acquire l before di′ along xi′ and ri′ the matching
release for ai′ and let ri be the first statement to release l after di along xi and ai the
matching acquire for ri

11: if l is held at either di or di′ then
12: if there does not exist an edge bi′ � bi such that ri′ lies before bi′ along xi′ and ai

lies after bi along xi then
13: add edge ri′ � ai to G(x1,x2)

14: end if
15: end if
16: end for
17: until no new statements can be added to G(x1,x2)

18: for i ∈ [1..2] do
19: Add edges among locations of xi in G(x1,x2) to preserve their relative ordering along xi

20: end for

order listed such that for each i, the matching release of acqi is fired after acqi+1 and
before acqi+2 along x.

However, the decision procedures for programs with bounded lock chains [10] only
apply to the case wherein c1 and c2 are lock-free, i.e., no lock is held by Ti at ci. In
order to decide the pairwise CFL-reachability problem for the general case, we propose
the notion of a Bi-directional Lock Causality Graph which is a generalization of the
(unidirectional) lock causality graph presented in [10].

Bidirectional Lock Causality Graph (BLCG). Consider the example concurrent pro-
gram comprised of threads T1 and T2 shown in fig. 1. Suppose that we are interested in
deciding whether a7 and b7 are pairwise reachable starting from the locations a1 and
b1 of T1 and T2, respectively. Note that the set of locks held at a1 and b1 are {l1} and
{l3, l5}, respectively. For a7 and b7 to be pairwise reachable there must exist local paths
x1 and x2 of T1 and T2 leading to a7 and b7, respectively, along which locks can be
acquired and released in a consistent fashion. We start by constructing a bi-directional
lock causality graph G(x1,x2) that captures the constraints imposed by locks on the or-
der in which statements along x1 and x2 need to be executed in order for T1 and T2

to simultaneously reach a7 and b7. The nodes of this graph are (the relevant) lock-
ing/unlocking statements fired along x1 and x2. For statements c1 and c2 of G(x1,x2),
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void T1(){
a1: lock(l4);
a2: lock(l5);
a3: unlock(l4);
a4: unlock(l5);
a5: unlock(l1);
a6: lock(l3);
a7: Race0;
}

void T2(void){
b1: lock(l4);
b2: unlock(l5);
b3: unlock(l3);
b4: lock(l1);
b5: lock(l2);
b6: unlock(l4);
b7: Race1;
}

b2

b3

a1

a2

b1

a3

b7

a5

a6

a7

b4

b6

a1

a2
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Fig. 1. An Example Program and its Bi-directional Lock Causality Graph

there exists an edge from c1 to c2, denoted by c1 � c2, if c1 must be executed before
c2 in order for T1 and T2 to simultaneously reach a7 and b7.
G(x1,x2) has two types of edges (i) Seed edges and (ii) Induced edges.

Seed Edges: Seed edges, which are shown as bold edges in fig. 1(c), can be further
classified as (a) Backward and (b) Forward seed edges.

(a) Forward Seed Edges: Consider lock l1 held at b7. Note that once T2 acquires l1
at location b4, it is not released along the path from b4 to b7. Since we are interested
in the pairwise CFL-reachability of a7 and b7, T2 cannot progress beyond location
b7 and therefore cannot release l1. Thus we have that once T2 acquires l1 at b4, T1

cannot acquire it thereafter. If T1 and T2 are to simultaneously reach a7 and b7, the last
transition of T1 that releases l1 before reaching a7, i.e., a5, must be executed before b4.
Thus a5 � b4.

(b) Backward Seed Edges: Consider lock l5 held at b1. In order for T1 to acquire l5
at a2, l5 must first be released by T2. Thus the first statement of T1 acquiring l5 starting
at a1, i.e., a2, must be executed after b2. Thus b2 � a2.

The interaction of locks and seed causality edges can be used to deduce further
causality constraints that are captured as induced edges (shown as dashed edges in the
BLCG in fig. 1(c)). These induced edges are key in guaranteeing both soundness and
completeness of our procedure.

Induced Edges: Consider the constraint b2 � a2. At location b2, lock l4 is held which
was acquired at b1. Also, once l4 is acquired at b1 it is not released till after T2 exits b6.
Thus since l4 has been acquired by T2 before reaching b2 it must be released before a1
(and hence a2) can be executed. Thus, b6 � a1.

Computing the Bidirectional Lock Causality Graph. Given finite local paths x1 and
x2 of threads T1 and T2 starting at control locations c1 and c2 and leading to con-
trol locations d1 and d2, respectively, the procedure (see alg. 1) to compute G(x1,x2)

adds the causality constraints one-by-one (forward seed edges via steps 2-6, backward
seed edges via steps 7-11 and induced edges via steps 12-24) till we reach a fixpoint.
Throughout the description of alg. 1, for i ∈ [1..2], we use i′ to denote an integer in
[1..2] other than i. Note that condition 18 in alg. 1 ensures that we do not add edges
representing causality constraints that can be deduced from existing edges.

Necessary and Sufficient Condition for CFL-Reachability. Let x1 and x2 be local
computations of T1 and T2 leading to c1 and c2. Since each causality constraint in
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G(x1,x2) is a happens-before constraint, we see that in order for c1 and c2 to be pairwise
reachableG(x1,x2) has to be acyclic. In fact, it turns out that acyclicity is also a sufficient
condition (see [1] for the proof).

Theorem 1. (Acyclicity). Locations d1 and d2 are pairwise reachable from locations
c1 and c2, respectively, if there exist local paths x1 and x2 of T1 and T2, respectively,
leading from c1 and c2 to d1 and d2, respectively, such that (1) LT1(c1) ∩ LT2(c2) =
∅ (disjointness of backward locksets), (2) LT1(d1) ∩ LT2(d2) = ∅ (disjointness of
forward locksets), and (3)G(x1,x2) is acyclic. Here LT (e) denotes the set of locks held
by thread T at location e.

Synergy Between Backward and Forward Lock Causality Edges. Note that in order
to deduce that a7 and b7 are not pairwise reachable it is important to consider causality
edges induced by both backward and forward seed edges. Ignoring either of these may
cause us to incorrectly deduce that a7 and b7 are reachable. In the above example if we
ignore the backward seed edges then we will construct the unidirectional lock causality
graph L(x1,x2) shown in fig. 1(d) which is acyclic. Thus the lock causality graph con-
struction of [10] is inadequate in reasoning about bi-directional pairwise reachability.

Bounding the Size of the Lock Causality Graph. Under the assumption of bounded
lock chains, we show that the size of the bidirectional lock causality graph is bounded.
From alg. 1 it follows that each causality edge is induced either by an existing induced
causality edge or a backward or forward seed edge. Thus for each induced causality
edge e, there exists a sequence e0, ..., en of causality edges such that e0 is a seed edge
and for each i ≥ 1, ei is induced by ei−1. Such a sequence is referred to as a lock
causality sequence. Under the assumption of bounded lock chains it was shown in [10]
that the length of any lock causality sequence is bounded. Note that the number of seed
edges is at most 4|L|, where |L| is the number of locks in the given concurrent program.
Since the number of seed edges is bounded, and since the length of each lock causality
sequence is bounded, the number of induced edges in each bi-directional lock causality
graph is also bounded leading to the following result.

Theorem 2. (Bounded Lock Causality Graph). If the length of each lock chain gen-
erated by local paths x1 and x2 of threads T1 and T2, respectively, is bounded then the
size (number of vertices) of G(x1,x2), is also bounded.

4 Lock Causality Automata

When model checking a single PDS, we exploit the fact that the set of configurations
satisfying a given LTL formula is regular and can therefore be captured via a finite
automaton also called a multi-automaton [5]. For a concurrent program with two PDSs,
however, we need to reason about pairs of regular sets of configurations. Thus instead
of performing pre∗-closures over multi-automata, we need to perform pre∗-closures
over automata pairs.

Suppose that we are given a pair (R1, R2) of sets, where Ri is a regular set of con-
figurations of thread Ti. The set Si of configurations of Ti that are (locally) backward
reachable from Ri forms a regular set [5]. However, given a pair of configurations
(a1, a2), where ai ∈ Si, even though ai is backward reachable from some bi ∈ Ri in
Ti, there is no guarantee that a1 and a2 are pairwise backward reachable from b1 and
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b2 in the concurrent program CP. That happens only if there exist local paths x1 and x2

of threads T1 and T2, respectively, from ai to bi such that G(x1,x2) is acyclic. Thus in
computing the pre∗-closure Si of Ri in thread Ti, we need to track relevant lock access
patterns that allow us to deduce acyclicity of the lock causality graph G(x1,x2).

In order to capture the set of global states of CP that are backward reachable from
(R1, R2), we introduce the notion of a Lock Causality Automaton (LCA). An LCA is
a pair of automata L = (L1,L2), where Li accepts the regular set of configurations
of Ti that are backward reachable from Ri. For L to accept precisely the set of global
states (a1, a2) that are pairwise backward reachable from (b1, b2) ∈ (R1, R2), we en-
code the existence of a pair of local paths xi from ai to bi generating an acyclic lock
causality graph in the acceptance condition of L. For concurrent programs with nested
locks, this was accomplished by tracking forward and backward acquisition histories
and incorporating a consistency check for these acquisition histories (a necessary and
sufficient condition for pairwise reachability) in the acceptance condition of L [12]. A
key feature of acquisition histories that we exploited was that they are defined locally
for each thread and could therefore be tracked during the (local) computation of the
pre∗-closure of Ri. In contrast, the lock causality graph depends on lock access pat-
terns of both threads. Thus we need to locally track relevant information about lock
accesses in a manner that allows us to re-construct the (global) lock causality graph.
Towards that end, the following result is key. Let L be the set of locks in the given con-
current program and letΣL = ∪l∈L{al, rl}, where al and rl denote labels of transitions
acquiring and releasing lock l, respectively, in the given program.

Theorem 3. (Regular Decomposition) Let G be a directed bipartite graph over nodes
labeled with lock acquire/release labels from the (finite) set ΣL. Then there exist reg-
ular automata G11, ..., G1n, G21, ..., G2n over ΣL such that the set {(x1, x2)|x1 ∈
Σ∗L, x

2 ∈ Σ∗L, G(x1,x2) = G} can be represented as
⋃

i L(Gi1) × L(Gi2), where
L(Gij) is the language accepted by Gij .

To prove this result, we introduce the notion of a lock schedule. The motivation be-
hind the definition of a lock schedule is that not all locking events, i.e., lock/unlock
statements, along a local computation x of a thread T need occur in a lock causality
graph involving x. A lock schedule u is intended to capture only those locking events
u : u0, ..., um that occur in a lock causality graph. The remaining locking events, i.e.,
those occurring between ui and ui+1 along x are specified in terms of its complement
set Fi, i.e., symbols from ΣL that are forbidden to occur between ui and ui+1. We re-
quire that if ui is the symbol al, representing the acquisition of lock l and if its matching
release rl is executed along x then that matching release also occurs along the sequence
u, i.e., uj = rl for some j > i. Also, since l cannot be acquired twice, in order to
preserve locking semantics the letters al and rl cannot occur between ui and uj along
x. This is captured by including al and rl in each of the forbidden sets Fi, ..., Fj−1.

Definition (Lock Schedule). A lock schedule is a sequence u0, ..., um ∈ Σ∗L having
for each i, a set Fi ⊆ ΣL associated with ui such that if ui = al and uj its matching
release, then for each k such that i ≤ k < j we have rl, al ∈ Fk. We denote such a lock
schedule by u0F0u1...umFm.

We say that a sequence x ∈ Σ∗L satisfies a given lock schedule sch = u0F0u1...umFm,
denoted by sch |= x, if x ∈ u0(ΣL \ F0)∗u1...um(ΣL \ Fm)∗. The following is an
easy consequence of the above definition.
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Lemma 4. The set of sequences in Σ∗L satisfying a given lock schedule is regular.

The proof of thm. 3 then follows easily from the following (see [1] for all the proofs).

Theorem 5. Given a lock causality graph G, we can construct a finite set SCHG of
pairs of lock schedules such that the set of pairs of sequences in Σ∗L generating G is
precisely the set of pairs of sequences in Σ∗L satisfying at least one schedule pair in
SCHG, i.e., {(x1, x2)|x1, x2 ∈ Σ∗L, G(x1,x2) = G} = {(y1, y2)| y1, y2 ∈ Σ∗L, for some
(sch1, sch2) ∈ SCHG, sch1 |= y1 and sch2 |= y2}.

Lock Causality Automata. We now formally define the notion of a Lock Causality
Automaton. Since for programs with bounded lock chains the number of lock causality
graphs is bounded (thm. 2), so is the number of acyclic lock causality graphs. With each
acyclic lock causality graph G we can, using thm. 5, associate a finite set ACYCG of
automata pairs that accept all pairs of sequences inΣ∗L×Σ∗L generatingG. By taking the
union over all acyclic lock causality graphsG, we construct the set of all automata pairs
that accept all pairs of sequences in Σ∗L ×Σ∗L generating acyclic lock causality graphs.
We denote all such pairs by ACYC. Let (G11,G21), ..., (G1n,G2n) be an enumeration
of all automata pairs of ACYC.

We recall that a key motivation in defining LCAs is to capture the pre∗-closure,
i.e., the set of pairs of configurations that are pairwise backward reachable from a
pair of configurations in (R1, R2), where Ri is a regular set of configurations of Ti.
We therefore define an LCA to be a pair of the form L = (L1,L2), where Li is a
multi-automaton accepting the set of configurations of Ti that are backward reachable
from configurations in Ri. Note that if (a1, a2) is pairwise backward reachable from
(b1, b2) ∈ (R1, R2) then ai is accepted by Li. However, due to constraints imposed
by locks not all pairs of the form (c1, c2), where ci is accepted by Li, are pairwise
backward reachable from (b1, b2). In order for L to accept precisely the set of global
configurations (a1, a2) that are pairwise backward reachable from (b1, b2), we encode
the existence of local paths xi from ai to bi generating an acyclic lock causality graph
in the acceptance condition of L. Towards that end, when performing the backward
pre∗-closure in computing Li we track not simply the set of configurations c of Ti that
are backward reachable from Ri but also the lock schedules encountered in reaching c.

In deciding whether configurations c1 and c2 are pairwise backward reachable from
b1 and b2, where (b1, b2) ∈ (R1, R2), we only need to check whether for each i ∈ [1..2],
there exist lock schedules schi from ci to bi such that G(sch1,sch2) is acyclic, i.e., for
some j, (sch1, sch2) ∈ L(G1j)× L(G2j). Since, in performing backward pre∗-closure
for each thread Ti, we track local computation paths and hence lock schedules in the
reverse manner, we have to consider the reverse of the regular languages accepted by
Gij . Motivated by this, for each i, j, we let Gr

ij be a regular automaton accepting the
language resulting by reversing each word in the language accepted by Gij . Then c1
and c2 are pairwise backward reachable from b1 and b2 if there exists for each i, a
(reverse) lock schedule rschi along a path yi from bi to ci, such that for some j, rsch1

is accepted by Gr
1j and rsch2 is accepted by Gr

2j . Thus when computing the backward
pre∗-closure in thread Ti, instead of tracking the sequence zi of lock/unlock statements
encountered thus far, it suffices to track for each j, the set of possible current local
states of the regular automaton Gr

ij reached by traversing zi starting at its initial state.
Indeed, for each i, j, let Gr

ij = (Qij , δij , inij , Fij), where Qij is the set of states of
Gr

ij , δij its transition relation, inij its initial state and Fij its set of final states. Let



460 V. Kahlon

Sij(rschi) = δij(inij , rschi). Then the above condition can be re-written as follows: c1
and c2 are pairwise backward reachable from b1 and b2 if there exists for each i, a lock
schedule rschi along a path yi from bi to ci, such that for some j, S1j(rsch1)∩F1j �= ∅
and S2j(rsch2) ∩ F2j �= ∅.

Thus in performing pre∗-closure in thread Ti, we augment the local configurations
of Ti to track for each i, j, the current set of states of Gij induced by the lock/unlock se-
quence seen so far. Hence an augmented configuration of Ti now has the form 〈(c, FLS,
BLS,GSi1, ..., GSin), u 〉, where FLS and BLS are the forward and backward lock-
sets (see thm. 1) at the start and end points and GSij is the set of states of Gr

ij induced
by the lock/unlock sequences seen so far in reaching configuration 〈c, u〉. To start with
GSij is set to {inij}, the initial state of Gr

ij .

Lock Augmented Multi-Automata. Formally, a lock augmented multi-automaton can
be defined as follows: Let Ti be the pushdown system (Qi, Acti, Γi, ci0, Δi). A Lock
Augmented Ti-Multi-Automaton is a tupleMi = (Γi, Pi, δi, Ii, Fi), where Pi is a finite
set of states, δi ⊆ Pi × Γi × Pi is a set of transitions, Ii = {(c, FLS,BLS,GSi1, ...,
GSin) | c ∈ Qi, BLS, FLS ⊆ L,GSij ⊆ Qij} ⊆ Pi is a set of initial states and Fi ⊆
Pi is a set of final states.Mi accepts an augmented configuration 〈(c, FLS,BLS,GSi1,
..., GSin)), u 〉 if starting at the initial state (c, FLS,BLS,GSi1, ..., GSin)) there is a
path inMi labeled with u and leading to a final state ofMi. Note that the only differ-
ence between a lock augmented multi-automation and the standard multi-automaton as
defined in [5] is that the control state is augmented with the lockset information BLS
and FLS, and the subsets GSij used to track lock schedules.

A lock causality automaton is then defined as follows:

Definition (Lock Causality Automaton) Given threads T1 = (Q1, Act1, Γ1, c1, Δ1)
and T2 = (Q2, Act2, Γ2, c2, Δ2), a lock causality automaton is a pair (L1,L2) where
Li is a lock augmented Ti-multi-automaton.

The acyclicity check (thm. 1) for pairwise reachability is encoded in the acceptance
criterion of an LCA.

Definition (LCA-Acceptance). We say that an LCA L = (L1,L2) accepts the pair
(c1, c2), where ci = 〈ci, ui〉 is a configuration of Ti, if there exist lock sets BLSi and
FLSi, and sets GSij ⊆ Qij , such that

1. for each i, the augmented configuration 〈(ci, FLSi, BLSi, GSi1, ..., GSin), ui〉
is accepted by Li,

2. FLS1 ∩ FLS2 = ∅ and BLS1 ∩BLS2 = ∅, and
3. there exists k such that GS1k ∩ F1k �= ∅ and GS2k ∩ F2k �= ∅.

Intuitively, condition 1 checks for local thread reachability, condition 2 checks for dis-
jointness of lock sets and condition 3 checks for acyclicity of the lock causality graph
induced by the lock schedules leading to 〈c1, u1〉 and 〈c2, u2〉.

5 Computing LCAs for Operators

We now show how to construct LCAs for (i) boolean Operators: ∨ and ∧, and (ii)

Temporal Operators: F,
∞
F and X.
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Computing LCA for F. Given an LCA L = (L1,L2) our goal is to compute an LCA
M, denoted by pre∗(L), accepting the pair (b1,b2) of augmented configurations that
is pairwise backward reachable from some pair (a1, a2) accepted by L. In other words,
M must accept the pre∗-closure of the set of states accepted by L. We first show how
to compute the pre∗-closure of a lock augmented Ti-multi-automaton.

Computing the pre∗-closure of a Lock Augmented Multi-Automaton. Given a lock
augmented Ti-multi-automaton A, we show how to compute another lock augmented
Ti-multi-automaton B, denoted by pre∗(A), accepting the pre∗-closure of the set of
augmented configurations of Ti accepted by A. We recall that each augmented config-
uration of A is of the form 〈(c, FLS,BLS,GSi1, ..., GSin), u〉, where c is a control
state of Ti, u its stack content, FLS andBLS are locksets, andGSij is the set of states
of Gij induced by the lock schedules seen so far in reaching configuration 〈c, u〉. We set
A0 = A and construct a finite sequence of lock-augmented multi-automata A0, ...,Ap

resulting in B = Ap. Towards that end, we use→i to denote the transition relation of
Ai. For every i ≥ 0, Ai+1 is obtained from Ai by conserving the sets of states and
transitions ofAi and adding new transitions as follows

1. for each stack transition (c, γ) ↪→ (c′, w) and state q such that (c′, FLS,BLS,
GSi1, ...., GSin) w−→i q we add (c, FLS,BLS, GSi1, ..., GSin)

γ−→i+1 q.

2. for each lock release operation c
rl
↪→ c′ and for every state (c′, FLS,BLS,

GSi1, ...., GSin) of Ai, we add a transition (c, FLS,BLS′, GS′i1, ..., GS
′
in) ε→i+1

(c′, FLS, BLS, GSi1, ...., GSin) to Ai+1, where ε is the empty symbol; BLS′ =
BLS ∪ {li}; and for each j, GS′ij = δij(GSij , rl).

3. for every lock acquire operation c
al
↪→ c′ and for every state (c′, FLS,BLS GSi1,

...., GSin) ofAi we add a transition (c, FLS′, BLS′ GS′i1, ..., GS
′
in) ε→i+1 (c′, FLS,

BLS, GSi1, ...., GSin) to Ai+1, where ε is the empty symbol; BLS′ = BLS \ {l};
FLS′ = (FLS ∪ {l}) \BLS; and for each j, GS′ij = δij(GSij , al).

In the above pre∗-closure computation, the stack transitions do not affect the ‘lock-
augmentations’ and are therefore handled in the standard way. For a lock acquire (re-
lease) transition labeled with al(rl) we need to track the access patterns in order to
determine acyclicity of the induced LCGs. Thus in steps 2 and 3 for each GSij , we
compute the set δij(GSij , al) of its successor states via the symbol rl(al) in the regu-
lar automaton Gr

ij tracking reverse schedules. Moreover, the backward lockset in any
configuration is simply the set of locks for which release statements have been encoun-
tered during the backward traversal but not the matching acquisitions. Thus if a release
statement rl for lock l is encountered, l is included in BLS (step 2). If later on the ac-
quisition statement al is encountered then l is dropped from the BLS (step 3). Finally,
the forward lockset is simply the set of locks acquired along a path that are not released.
Thus a lock is included in FLS if a lock acquisition symbol is encountered during the
backward traversal such that its release has not yet been encountered, i.e., rl �∈ BLS.
Thus FLS′ = (FLS ∪ {l}) \BLS (step 3).

LCA for F. Given an LCAA=(A1,A2), we define pre∗(A) to be the LCA (pre∗(A1),
pre∗(A2)).

Computation of ∧. Let A and B be sets of pairs of configurations accepted by LCAs
A = (A1,A2) and B = (B1,B2), respectively. We show how to construct an LCA
accepting A ∩B via the standard product construction.
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For 1 ≤ i ≤ 2, let Ti = (Qi, Acti, Γi, ci, Δi), Ai = (ΓAi , P
A
i , δ

A
i , I

A
i , F

A
i ) and

Bi = (ΓBi , P
B
i , δ

B
i , I
B
i , F

B
i ). Note that for 1 ≤ i ≤ 2, ΓAi = ΓBi = Γi and IAi = IBi =

Ii. Then we define the LCA N = (N1,N2), where Ni is a multi-automaton accepting
A ∩B, as the tuple (ΓNi , PNi , δNi , I

N
i , FNi ), where

(i) ΓNi = Γi, (ii) PNi = PAi × PBi , (iii) INi = Ii, (iv) FNi = FAi × FBi , and (v)
δNi = {(s1, s2) a−→ (t1, t2)| s1 a−→ t1 ∈ δAi , s2

a−→ t2 ∈ δBi }.
A minor technicality is that in order to satisfy the requirement in the definition of a

lock-augmented multi-automaton that Ii ⊆ PNi , we ‘re-name’ states of the form (s, s),
where s ∈ IAi as simply s. The correctness of the construction follows from the fact
that it is merely the standard product construction with minor changes.

Computation of ∨. Similar to the above case (see [1]).

Dual Pumping. Let CP be a concurrent program comprised of the threads T1 =
(P1, Act, Γ1, c1, Δ1) and T2 = (P2, Act, Γ2, c2, Δ2) and let f be an LTL property. Let
BP denote the Büchi system formed by the product of CP and B¬f , the Büchi automa-
ton corresponding to ¬f . Then LTL model checking reduces to deciding whether there
exists an accepting path of BP.

The Dual Pumping Lemma allows us to reduce the problem of deciding whether
there exists an accepting computation of BP, to showing the existence of a finite
lollipop-like witness with a special structure comprised of a stem ρ which is a finite
path of BP, and a pseudo-cycle which is a sequence v of transitions with an accepting
state of BP having the following two properties (i) executing v returns each thread of
the concurrent program to the same control location with the same symbol at the top of
its stack as it started with, and (ii) executing it does not drain the stack of any thread,
viz., any symbol that is not at the top of the stack of a thread to start with is not popped
during the execution of the sequence. For ease of exposition we make the assumption
that along all infinite runs of BP any lock that is acquired is eventually released. This
restriction can be dropped in the same manner as in [12].

Theorem 6. (Dual Pumping Lemma).BP has an accepting run starting from an initial
configuration c if and only if there exist α ∈ Γ1, β ∈ Γ2; u ∈ Γ ∗1 , v ∈ Γ ∗2 ; an accepting
configuration g; configurations lf 0, lf 1, lf 2 and lf 3 in which all locks are free; lock
values l1, ..., lm, l′1, ..., l

′
m; control states p′, p′′′ ∈ P1, q′, q′′ ∈ P2; u′, u′′, u′′′ ∈ Γ ∗1 ;

and v′, v′′, v′′′ ∈ Γ ∗2 satisfying the following conditions

1. c⇒ (〈p, αu〉, 〈q′, v′〉, l1, ..., lm)
2. (〈p, α〉, 〈q′, v′〉, l1, ..., lm)⇒ lf 0 ⇒ (〈p′, u′〉, 〈q, βv〉, l′1, ..., l′m)
3. (〈p′, u′〉, 〈q, β〉, l′1, ..., l′m)
⇒ lf 1 ⇒ g⇒ lf 2

⇒ (〈p, αu′′〉, 〈q′′, v′′〉, l1, ..., lm)⇒ lf 3

⇒ (〈p′′′, u′′′〉, 〈q, βv′′′〉, l′1, ..., l′m)

Let ρ, σ, ν be the sequences of global configurations realizing conditions 1, 2 and
3, respectively (see fig. 2). We first define sequences of transitions spliced from ρ, σ
and ν that we will concatenate to construct an accepting path of BP: (1) l11: the local
sequence of T1 fired along σ. (2) l12: the local sequence of T1 fired along ν between
c21 = (〈p′, u′〉, 〈q, β〉, l′1, ..., l′m) and lf 1. (3) l13: the local sequence of T1 fired along
ν between lf 2 and c12 = (〈p, αu′′〉, 〈q′′, v′′ 〉, l1, ..., lm). (4) l21: the local sequence of
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Fig. 2. Pumpable Witness

T2 fired along ν between c21 = (〈p′, u′〉, 〈q, β〉, l′1, ..., l′m) and lf 1. (5) l22: the local
sequence of T2 fired along ν between lf 2 and c22 = (〈p′′′, u′′′〉, 〈q, β v′′′ 〉, l1, ..., lm).
(6) ν′: the sequence of global transitions fired along ν till lf 2. (7) ν′′: the sequence of
global transitions fired along ν between lf 1 and lf 2.

Then π : ρ σ ν′ ( l13 l11 l12 l22 l21 ν′′ )ω is a scheduling realizing an accepting valid
run of BP. Intuitively, thread T1 is pumped by firing the sequence l13l11l12 followed by
the local computation of T1 along ν′′. Similarly, T2 is pumped by firing the sequence
l22l21 followed by the local computation of T2 along ν′′. The lock free configurations
lf 0, ..., lf 3 are breakpoints that help in scheduling to ensure that π is a valid path. In-
deed, starting at lf 2, we first let T1 fire the local sequences l31, l11 and l12. This is valid
as T2 which currently does not hold any lock does not execute any transition and hence
does not compete for locks with T1. Executing these sequences causes T1 to reach the
local configuration of T1 in lf 1 which is lock free. Thus T2 can now fire the local se-
quences l22 and l21 to reach the local configuration of T2 in lf 1 after which we let CP
fire ν′′ and then repeat the procedure.

It is worth noting that if the lock chains are unbounded in length then the existence
of breakpoints as above is not guaranteed.

Constructing an LCA for
∞
F . Conditions 1, 2 and 3 in the statement of the Dual Pump-

ing Lemma can easily be re-formulated via a combination of ∩, ∪ and pre∗-closure
computations for regular sets of configurations. This immediately implies that the com-

putation of an LCA for
∞
F can be reduced to that for F, ∧ and ∨ (see [12] for details).

Computation of X can be handled exactly as in [12].

5.1 The Model Checking Procedure for L(X, F,
∞
F )

Given an LCA Lg accepting the set of states satisfying a formula g of L(X,F,
∞
F ), we

formulated for each operator Op ∈ {X,F,
∞
F}, a procedure for computing an LCA LOpg

accepting the set of all configurations that satisfy Opg. Given a property f , by recur-
sively applying these procedures starting from the atomic propositions and proceeding
inside out in f we can construct the LCA Lf accepting the set of states of CP satisfying
f In composing LCAs for different operators a technical issue that arises is of maintain-
ing consistency across the various operators. This has already been handled before in
the literature (see [1]). Finally, CP satisfies f if the initial global state of CP is accepted
by Lf .



464 V. Kahlon

6 Conclusion

Among prior work on the verification of concurrent programs, [7] attempts to generalize
the techniques given in [5] to model check pushdown systems communicating via CCS-
style pairwise rendezvous. However, since even reachability is undecidable for such a
framework, the procedures are not guaranteed to terminate, in general, but only for
certain special cases, some of which the authors identify. The key idea here is to restrict
interaction among the threads so as to bypass the undecidability barrier. Another natural
way to obtain decidability is to explore the state space of the given concurrent multi-
threaded program for a bounded number of context switches among the threads both
for model checking [17, 3] and dataflow analysis [16] or by restricting the allowed set
of schedules [2].

The framework of Asynchronous Dynamic Pushdown Networks has been proposed
recently [6]. It allows communication via shared variables which makes the model
checking problem undecidable. Decidability is ensured by allowing only a bounded
number of updates to the shared variables. Networks of pushdown systems with vary-
ing topologies for which the reachability problem is decidable have also been studied
[4]. Dataflow analysis for asynchronous programs wherein threads can fork off other
threads but where threads are not allowed to communicate with each other has also been
explored [19, 9] and was shown to be EXPSPACE-hard, but tractable in practice.

In this paper, we have identified fragments of LTL for which the model checking
problem is decidable for threads interacting via bounded lock chains thereby delin-
eating precisely the decidability boundary for the problem. A desirable feature of our
technique is that it enables compositional reasoning for the concurrent program at hand
thereby ameliorating the state explosion problem. Finally, our new results enable us to
provide a more refined characterization of the decidability of LTL model checking in
terms of boundedness of lock chains as opposed to nestedness of locks.
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Abstract. We propose an extension to ATL (alternating-time logic), called BSIL
(basic strategy-interaction logic), for the specification of interaction among the
strategies of agents in a multi-agent system. BSIL allows for the specifications
of one system strategy that can cooperate with several strategies of the environ-
ment for different requirements. We argue that such properties are important in
practice and rigorously show that such properties are not expressible in ATL∗,
GL (game logic), and AMC (alternating μ-calculus). Specifically, we show that
BSIL is more expressive than ATL but incomparable with ATL∗, GL, and AMC
in expressiveness. We show that a memoryful strategy is necessary for fulfill-
ing a specification in BSIL. We also show that the model-checking problem of
BSIL is PSPACE-complete and is of lower complexity than those of ATL∗, GL,
AMC, and the general strategy logics. This may imply that BSIL can be useful
in closing the gap between real-world projects and the game-theoretical results.
We then show the plausibility and feasibility of our techniques by reporting our
implementation and experiment with our PSPACE model-checking algorithm for
BSIL. Finally, we discuss an extension of BSIL.

Keywords: games, turn-based, logic, model-checking, expressiveness.

1 Introduction

The specification and verification of open systems focuses on the design of system inter-
faces that allow for the fulfillment of various functions and prevent other bad behaviors
from happening. The theoretical challenges in designing such systems have drawn the
attention of researchers in game theory. From the perspective of game theory, the de-
sign problem of such open systems can be modeled as a multi-agent game. Some players
represent the system while other players represent the environment (or the users). The
system wins the game in an execution (or a play in the jargon of game theory) if all the
system specifications are fulfilled along the execution. The goal of the system design,
from the perspective of game theory, is to design a computable strategy of the system
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that enforces all the system specifications. Such a strategy is called a winning strategy
for the system.

At the moment, there are various game-theoretical languages, including ATL
(alternating-time logic), ATL∗, AMC (alternating μ-calculus), GL (game logic) [1], and
SL (strategy logics) [4, 3, 6], for the specification of open systems. Each language also
comes with a verification algorithm that helps in deciding whether a winning strategy
for the system exists. However, there is a gap between the need of the industry and the
technology to offer from the previous research. Frankly speaking, none of those lan-
guages represents a proper combination of expressiveness for close interaction among
agent strategies and efficiency for specification verification. ATL, ATL∗, AMC, and
GL [1] allow us to specify that some players together have a strategy to fulfill some-
thing. This is far from what the industry need in specification. Consider the following
example of a banking system.

Example 1. Banking system A bank needs to specify that their banking system, em-
bodied as a system strategy, allows a client to use a strategy to withdraw money, to use
a strategy to deposit money, and to use a strategy to query for balance. Moreover, the
same system strategy should forbid any illegal operation on the banking system. Specif-
ically, the same system strategy must accommodate all the client’s strategies for good
behaviors while prevent client’s strategy for bad behaviors from damaging the system.
We actually prove in this work that ATL (alternating-time logic), ATL∗, AMC (alter-
nating μ-calculus), and GL (game logic) [1] do not support the specifications in this
regard. For example, it is not possible to specify with those languages that the system
strategies used both in a withdrawal transaction and in a deposit transaction must be the
same. As a result, the verification algorithms of those languages actually do not help as
much as we wish in verifying real-world open systems. �

To solve the expressiveness problem in the above example, strategy logics were pro-
posed in [4, 3, 6] that allow for the flexible quantification of high-order strategy vari-
ables in logic formulas. However, their verification complexities are prohibitively high
and hinder them from practical application. In retrospection, the specification problem
of the above-mentioned properties has a deep root in game theory. Consider a game
among 3 prisoners initially in jail.

Example 2. Prisoners’ dilemma A prisoner may deny charges or may cooperate with
the police. If all deny, they are all acquitted of the charges. If more than one choose to
cooperate, all will stay in jail. If all but one deny, then all will be in jail except the sole
cooperating one will be a dirty witness and be acquitted. We may want to specify that
the three prisoners may collaborate with each other, will all deny, and will not be in jail.
Let ja be the proposition for prisoner a in jail. This can be expressed respectively in
Alur, Henzinger, and Kupferman’s ATL, ATL∗, GL, and AMC [1] as follows.1

ATL, ATL∗: 〈{1, 2, 3}〉
∧

a∈[1,3] ♦¬ja
GL: ∃∃{1, 2, 3}.

∧
a∈[1,3] ∀♦¬ja

AMC: lfpX.〈{1, 2, 3}〉©
∧

a∈[1,3](X ∨ ¬ja)

1 Note that the three example formulas are not equivalent.
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Here “〈{1, 2, 3}〉" and “∃∃{1, 2, 3}" are both existential quantifiers on the collaborative
strategy among prisoners 1, 2, and 3. Such a quantifier is called a strategy quantifier
(SQ) for convenience. “lfp" is the least fixpoint operator. Even though we can specify
strategies employed by sets of prisoners and there is a natural relationship (containment)
between sets with such logics, there is no way to relate strategies to each other. For
example, if prisoners 1 and 2 are really loyal to prisoner 3, they can both deny the
charges, make sure that prisoner 3 will not be in jail, and let prisoner 3 to decide whether
they will be in jail. The research of strategies for related properties has a long history in
game theory. If we recall example 1, it is easy to see the similarity and link between this
example and the banking system specification problem. This observation may suggest
that finding a language with an appropriate balance between the expressiveness and the
verification complexity is still a central challenge yet to be overcome. �

To meet the challenge, we propose an extension to ATL, called BSIL (basic strategy-
interaction logic), by introducing a new modal operator called strategy interaction
quantifier (SIQ). In the following, we use several examples in the prisoners’ dilemma
to explain BSIL. A formula for the property in example 2 follows.

〈{1, 2}〉((〈+∅〉♦¬j3) ∧ (〈+{3}〉♦¬(j1 ∨ j2)) ∧ 〈+{3}〉�(j1 ∧ j2))

Here “〈+{3}〉" is an existential SIQ on strategies of prisoner 3 for collaborating with the
strategies of prisoners declared in the parent formula. Similarly, “〈+∅〉" means that no
collaboration of any prisoner is needed. We also call an SIQ an SQ. In BSIL formulas,
we specifically require that no SIQ can appear as a topmost SQ in a path subformula.

If prisoner 1 really hates the others, he can always cooperate with the police, make
sure that prisoners 2 and 3 will be in jail, and let them decide whether he will be in jail.
This property can be expressed in BSIL as follows.

〈{1}〉((〈+∅〉�(j2 ∧ j3)) ∧ (〈+{2, 3}〉♦¬j1) ∧ 〈+{2, 3}〉�j1)

At last, we can also use BSIL to express the deterministic Nash equilibrium, a sce-
nario in which a unilateral change of actions by a prisoner does not improve her/his
payoff. In the example, an equilibrium is that all prisoners keep on cooperating with the
police. Such an equilibrium results in the following property in BSIL.

〈{1, 2, 3}〉((
∧

a∈[1,3]〈+∅〉�ja) ∧
∧

a∈[1,3]〈+{a}〉�
∧

b∈[1,3];b�=a jb)

Note that we let the inner quantifications “〈+{1}〉", “〈+{2}〉", and “〈+{3}〉" to over-
rule the strategy binding by “〈{1, 2, 3}〉."

In this work, we establish that BSIL is incomparable with ATL∗, GL, and AMC in
expressiveness. Although strategy logics proposed by Costa, Laroussinie, Markey ite-
CLM10, Chatterjee, Henzinger, Piterman [3], Mogavero, Murano, and Vardi [6] are su-
perclasses to BSIL with their flexible quantification of strategies and binding to strategy
variables, their model-checking2 complexity are all doubly exponential time hard. In
contrast, BSIL enjoys a PSPACE-complete model-checking complexity for turn-based
game graphs. This may imply that BSIL could be a better balance between expressive-
ness and verification efficiency than ATL∗, GL, AMC [1], and SL [3, 6]. Moreover, the

2 A model-checking problem is to check whether a given model (game graphs in this work)
satisfies a logic formulas (in ATL and its extensions in this work).
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deterministic Nash equilibria expressed in BSIL in the above may also imply that BSIL
could be a valuable and useful subclass of strategy logics [3, 6].3

We also establish some other properties of BSIL. We show that the strategies for
BSIL properties against turn-based games need be memoryful. We prove that the BSIL
model-checking problem is PSPACE-complete. We have also implemented our model-
checking algorithm and carried out experiments. Finally, by lifting the restriction that
no SIQ may appear as a topmost SQ in a path subformula, we can extend BSIL to
strategy interaction logic (SIL) by allowing the SIQs to be used directly after temporal
modal operators. For example, we may have the following SIL formula.

〈{1}〉�((p→ 〈+{2}〉© q) ∧ (¬p→ [+{2}]©¬q))

SIL has the expressiveness for the interaction of a player’s stratregy with infinitely
many strategies used by players at different states along a play. We also show that
SIL is strictly more expressive than ATL∗ and its model-checking problem is doubly
exponential time hard.

Here is our presentation plan. Section 2 explains turn-based game graphs for the de-
scription of multi-agent systems and presents BSIL. Section 3 shows that BSIL is more
expressive than ATL [1] but not comparable with ATL∗, AMC, and GL [1] in expres-
siveness. Section 4 shows that BSIL model-checking problem needs memoryful strate-
gies and is PSPACE-hard. Section 5 presents a PSPACE algorithm for BSIL model-
checking and establishes that BSIL model-checking problem is PSPACE-complete.
Section 6 extends BSIL to SIL. Section 7 is the conclusion.

2 System Models and BSIL

2.1 Turn-Based Game Graphs

A turn-based game is played by many agents. Assume that the number of agents is m
and we index the agents with integers 1 through m. It is formally presented as a tuple
A = 〈m,Q, q0, ω, P, λ,R〉 with the following restrictions. m is the number of agents
in the game. Q is a finite set of states. q0 ∈ Q is the initial state of A. ω : Q �→ [1,m]
is a function that specifies the owner of each state. Only the owner of a state makes
choice at the state. P is a finite set of atomic propositions. λ : Q �→ 2P is a proposition
labeling function.R ⊆ Q×Q is the set of transitions. In figure 1, we have the graphical
representation of a turn-based game graph with initial state v. The ovals and squares
represent states while the arcs represent state transitions. We also put down the λ values
inside the corresponding states.

A state predicate of P is a Boolean combination of elements in P . We let SP(P ) be
the set of state predicates of P . The satisfaction of a state predicate η at a state q, in
symbols q |= η, is defined in a standard way.

For convenience, given a game graph A = 〈m,Q, q0, ω, P, λ,R〉, we denote
m,Q, q0, ω, P, λ, and R respectively as mA, QA, q0A, ωA, PA, λA, and RA.

3 Another work worthy of mentioning is the stochastic game logic (SGL) by Baier, Brázdil
Gröser, and Kucera [2] with limited expressiveness for strategy interaction. However, for
memoryful strategies, the model-checking problem of SGL is undecidable.
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Fig. 1. A turn-based game graph

A play is an infinite path in a game graph. A play is initial if it begins with the initial
state. Given a play ρ = q̄0q̄1 . . ., for every k ≥ 0, we let ρ(k) = q̄k. Also, given h ≤ k,
we let ρ[h, k] denote ρ(h) . . . ρ(k) and ρ[h,∞) denote the infinite tail of ρ from ρ(h).
A play prefix is a finite segment of a play from the beginning of the play. Given a play
prefix ρ = q̄0q̄1 . . . q̄n, we let |ρ| = n + 1. For convenience, we use last(ρ) to denote
the last state in ρ, i.e., ρ(|ρ| − 1).

For an agent a ∈ [1,m], a strategy σ for a is a function from Q∗A to QA such that
for every ρ ∈ Q∗A, σ(ρ) ∈ QA with (last(ρ), σ(ρ)) ∈ RA. A set of agents is called an
agency. A congregate strategy (or C-strategy) Σ of an agency M ⊆ [1,m] is a partial
function from [1,m] to the set of strategies such that for every a ∈ [1,m], a ∈ M
iff4 Σ(a) is defined. The composition of two C-strategies Σ,Π , in symbols Σ ◦Π , is
defined with the following restrictions for every a ∈ [1,m].
• If Π(a) is defined, then Σ ◦Π(a) = Π(a).
• If Σ(a) is defined and Π(a) is undefined, then Σ ◦Π(a) = Σ(a).
• If Σ(a) and Π(a) are both undefined, then Σ ◦Π(a) is also undefined.

Later, we will use composition of C-strategies to model inheritance of strategy bindings
from ancestor formulas.

A play ρ is compatible with a strategy σ of an agent a ∈ [1,m] iff for every k ∈
[0,∞), ω(ρ(k)) = a implies σ(ρ[0..k]) = ρ(k + 1). The play is compatible with a
C-strategy Σ of agency M iff for every a ∈M , the play is compatible with Σ(a) of a.

2.2 BSIL Syntax

For a turn-based game graphA of m agents, we have three types of formulas: state for-
mulas, tree formulas, and path formulas. State formulas describe properties of states.
Tree formulas describe interaction of strategies. Path formulas describe properties of
traces. A BSIL formula φ is constructed with the following three syntax rules, respec-
tively for state formula φ, tree formula θ, and path formula ψ.

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈M〉θ | 〈M〉ψ
θ ::= ¬θ1 | θ1 ∨ θ2 | 〈+M〉θ1 | 〈+M〉ψ
ψ ::=©φ | φ1Uφ2 | φ1Wφ2

Here p is an atomic proposition in PA. M is a subset of [1,m]. 〈M〉ψ means that there
exist strategies of the agents in M that make all plays satisfy ψ. Formulas 〈+L〉θ1 and
〈+L〉ψ must happen as subformulas of a state formula 〈M〉θ. Intuitively, they mean
that there exist strategies of L that work with the strategies bound to 〈M〉θ to make θ1
and ψ true respectively.

4 “iff" is a shorthand for “if and only if."
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Formulas φ are called BSIL formulas. Note that we strictly require that strategy in-
teraction cannot cross path modal operators. This restriction is important and allows us
to analyze the interaction of strategies locally in a state and then enforce the interaction
along all paths from the state. For convenience, we also have the following shorthands.

g
true ≡ p ∨ (¬p) false ≡ ¬true

φ1 ∧ φ2 ≡ ¬((¬φ1) ∨ (¬φ2)) φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2

♦φ1 ≡ true Uφ1 �φ1 ≡ φ1Wfalse
[M ]© φ1 ≡ ¬〈M〉 © ¬φ1 [+M ]© φ1 ≡ ¬〈+M〉 © ¬φ1

[M ]φ1Uφ2 ≡ ¬〈M〉¬φ2W¬(φ1 ∨ φ2) [+M ]φ1Uφ2 ≡ ¬〈M 〉¬φ2W¬(φ1 ∨ φ2)
[M ]φ1Wφ2 ≡ ¬〈M〉¬φ2U¬(φ1 ∨ φ2) [+M ]φ1Wφ2 ≡ ¬〈M 〉¬φ2U¬(φ1 ∨ φ2)

Operators 〈. . .〉 and [. . . ] are all SQs. Operators 〈+ . . .〉 and [+ . . . ] are SIQs. All
BSIL formulas are well-formed since all their SIQs occur inside an SQ beginning with
〈M〉 for some M .

2.3 BSIL Semantics

BSIL subformulas are interpreted with respect to C-strategies. A state or a tree formula
φ is satisfied at a state q with C-strategy Σ, in symbols A, q |=Σ φ, if and only if the
following inductive constraints are satisfied.
• A, q |=Σ p iff p ∈ λ(q).
• For state or tree formula φ1, A, q |=Σ ¬φ1 iff A, q |=Σ φ1 is false.
• For state or tree formulas φ1 and φ2, A, q |=Σ φ1 ∨ φ2 iff either A, q |=Σ φ1 or
A, q |=Σ φ2.
• A, q |=Σ 〈M〉θ iff there exists a C-strategy Π of M with A, q |=Π θ.
• A, q |=Σ 〈+M〉θ iff there exists a C-strategy Π of M with A, q |=Σ◦Π θ. Here

function composition Σ ◦ Π models inheritance of strategy bindings Σ from an-
cestor formulas.
• A, q |=Σ 〈M〉ψ iff there exists a C-strategy Π of M such that for all plays ρ from
q compatible with Π , ρ |=Π ψ which means that ρ satisfies path formula ψ with
C-strategy Π .
• A, q |=Σ 〈+M〉ψ iff there exists a C-strategy Π of M such that for all plays ρ

from q compatible with Σ ◦Π , ρ |=Σ◦Π ψ.

Note that we also let a play ρ satisfy a path formula ψ with the inheritance of a C-
strategy. This is in fact not necessary for BSIL semantics since all such inheritance will
be overruled by SQs immediately following the temporal modal operators. However,
this is necessary when we later extend BSIL by allowing for the inhertance of strategies
across the temporal modal operators.

A play ρ satisfies a path formula ψ with C-strategy Σ, in symbols ρ |=Σ ψ, iff the
following restrictions hold.
• ρ |=Σ ©φ1 iff A, ρ(1) |=Σ φ1.
• ρ |=Σ φ1Uφ2 iff there exists an h ≥ 0 with A, ρ(h) |=Σ φ2 and for all j ∈ [0, h),
A, ρ(j) |=Σ φ1.
• ρ |=Σ φ1Wφ2 iff either ρ |=Σ φ1Uφ2 or for all h ≥ 0, A, ρ(h) |=Σ φ1.
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For convenience, we let ⊥ be a null C-strategy, i.e., a function that is undefined on
everything. If φ1 is a BSIL (state) formula and A, q |=⊥ φ1, then we may simply write
A, q |= φ1. If A, q0 |= φ1, then we also write A |= φ1.

3 Expressiveness of BSIL

In this section, we establish that BSIL is incomparable with ATL∗, AMC, GL [1] in
expressiveness. It is easy to see that BSIL is a super-class of ATL. Thus we have the
following lemma.

Lemma 1. BSIL is at least as expressive as ATL. �

Lemmas 2 and 3 establish that ATL∗ and BSIL are incomparable.

Lemma 2. For every ATL∗ formula φ, there are two game graphs that φ cannot distin-
guish while 〈{1}〉((〈+{2}〉�p) ∧ 〈+{2}〉�q) can.
Proof : The proof is by an inductive construction of two families A0, . . . , Ak, . . . and
B0, . . . , Bk, . . . of game graphs such that no ATL∗ formula with k SQs can distinguish
Ak and Bk. �

Lemmas 1 and 2 together establish that ATL is strictly less expressive than BSIL.

Lemma 3. ATL∗ formula 〈{1}〉�♦p is not equivalent to any BSIL formula.
Proof : The proof is similar to the proof for the inexpressibility of 〈{1}〉�♦p with
ATL [1]. �

The following two lemmas show the relation between GL and BSIL.

Lemma 4. For every GL formula φ, there are two game graphs that φ cannot distin-
guish while
〈{1}〉((〈+{2}〉�p)∧ 〈+{2}〉�q) can.
Proof : The proof is similar to the one for lemma 2. �

Lemma 5. GL formula ∃∃{1}.((∃�p) ∧ ∃�q) is not equivalent to any BSIL formula.
Proof : The proof basically follows the same argument in [1] that ∃∃{1}.((∃�p)∧∃�q)
is not equivalent to any ATL∗ formula. �

To establish that AMC is not as expressive as BSIL, we basically follow the proof
style for lemma 2 and use the same two families of game graphs. The statement of the
lemma requires notations for proposition variables and other details in AMC.

Lemma 6. For every AMC formula φ, there are two game graphs that φ cannot distin-
guish while 〈{1}〉((〈+{2}〉�p) ∧ 〈+{2}〉�q) can.
Proof : The proof is similar to the one for lemma 2. �

By the same argument in [1], for one-agent game, BSIL coincides with CTL and is
not as expressive as AMC.

Lemma 7. For game graphs of one agent, AMC is strictly more expressive than BSIL.
Proof : For one-agent games, AMC is equivalent to μ-calculus and BSIL is equivalent
to CTL which is strictly less expressive than μ-calculus. �

A comment on lemmas 2, 4, and 6 is that the path modal formulas in the lemmas can
be changed independently to ♦p and ♦q without affecting the validity of the lemma.
This can be used to show that the example properties in the introduction are indeed
inexpressible in ATL∗, GL, and AMC.
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4 Some Properties of BSIL Model Checking Problem

In this section, we first show that a strategy synthesizing a BSIL formula needs memory.
A strategy σ is memory-less iff for every two play prefixes ρ and ρ′, last(ρ) = last(ρ′)
implies σ(ρ) = σ(ρ′).

Lemma 8. There is a BSIL model-checking problem instance that cannot be satisfied
with a memory-less strategy of an agent.
Proof : Consider the 2-agent game graph in figure 1. Again we use ovals to represent
those nodes owned by agent 1 and squares to represent those by agent 2. We want
to check property 〈{1}〉((〈+{2}〉♦p) ∧ (〈+{2}〉♦q)). It is clear that no memory-less
strategy of agent 1 satisfies this property. However, a strategy of agent 1 that chooses arc
(v, u) at least once and eventually chooses arc (v, w) satisfies the BSIL property. �

In the following, we establish the complexity lower-bound of the model-checking
problem of BSIL formulas. This is done by reducing the QBF (quantified Boolean
formula) satisfiability problem [5] to BSIL model-checking problem of 3-agent game
graphs. We assume a QBF property η ≡ Q1p1 . . .Qlpl(C1 ∧C2 ∧ . . . ∧Cn) with a set
P = {p1, . . . , pl} of atomic propositions and the following restrictions.
• For each k ∈ [1, l],Qk is either ∃ or ∀.
• For each k ∈ [1, n], Ck is a clause lk,1 ∨ . . .∨ lk,hk

where for each j ∈ [1, hk], lk,j

is a literal, i.e., either an atomic proposition or a negated atomic proposition.
Intuitively, the reduction is to translate the QBF formula to a game graph and a BSIL
formula for a traversal requirement on the game graph. The game graph has some spe-
cial components corresponding to the truth values of each atomic proposition. Sup-
pose that Γp and Γ¬p respectively represent the subgraphs for the truth and false-
hood of an atomic proposition p. The rest of the game graph is partitioned into sub-
graphs Ωp responsible for the interpretation of atomic proposition p for all p ∈ P .
Then the QBF formula actually can be interpreted as a requirement for covering those
Γp’s and Γ¬p’s with the decisions in those Ωp’s. For example, the following formula
η ≡ ∃p∀q∃r((p∨ q ∨ r)∧ (¬p∨¬r)) can be read as “there exists a decision inΩp such
that for every decision in Ωq, there exists a decision in Ωr such that
• one of Γp, Γq , and Γr is covered; and
• one of Γ¬p and Γ¬r is covered.

Of course, we have to make sure that Γp and Γ¬p cannot be covered in the same play
for each p. The details of constructing those Γp’s, Γ¬p’s, and Ωp’s can be found in the
proof of the following lemma that establishes the PSPACE complexity lower-bound.

Lemma 9. BSIL model-checking problem for turn-based game graphs is PSPACE-
hard. �

5 BSIL Model-Checking Algorithm

There are two restrictions on BSIL formulas that enable us of the design of a PSPACE
model-checking algorithm. Firstly, similar to ATL and CTL, each path modal operator
must occur immediately after an SQ. Secondly, an SIQ cannot occur as a topmost SQ
in a path formula. These two restrictions together suggest that as in the model-checking
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algorithms of ATL [1], we can evaluate the proper subformulas of path modal formulas
independently and then treat them as auxiliary propositions. Moreover, as in the evalua-
tion of 〈{. . .}〉♦-formulas in ATL model-checking, if a ♦-formula can be enforced with
a strategy, it can be enforced in a finite number of steps along every play compatible
with the strategy in a computation tree. Once the bound b of this “finite number" of steps
is determined, then we can enumerate all the strategies embedded in the computation
tree up to depth b and try to find one that enforces a BSIL formula.

One thing in exploring a computation tree for BSIL different from that for ATL [1]
is that we have to consider the interaction of strategies. For example, we may have a
subformula 〈{1}〉((〈+{2}〉♦p)∧〈+{2}〉�q) to enforce. Then in exploring the compu-
tation tree, we may follow two strategies of agent 2, one to enforce ♦p and the other to
enforce �q, that always make the same decision until we reach a tree node v owned by
agent 2. This can be conceptualized as passing the obligations of ♦p and �q along the
path from the root to v. Then at node v, the two strategies may differ in their decisions
and pass down the two obligations to different branches. In subsection 5.1, we explain
some basic concepts in labeling the children with path obligations passed down from
their parent in a computation tree to obey the interaction among strategies declared in a
BSIL formula.

Then in subsection 5.2, we present our algorithm into two parts, one for the checking
of BSIL state formulas and the other for that of BSIL tree formulas. In subsection 5.3,
we prove the correctness of the algorithm. In subsection 5.4, we show that our algorithm
is in PSPACE.

5.1 Computing Path Obligations Passed Down Computation Tree

We need some special techniques in checking tree formulas. We adopt the concept of
strategy variables from [3, 6]. Given {a1, . . . , an} ⊆ [1,m], we use {a1 �→ s1, . . . , an

�→ sn} to denote the strategy variable binding (SV-binding for short) that binds agents
a1, . . . , an respectively to strategy variables s1, . . . , sn. Given an SV-binding B, B ◦
{a1 �→ s1, . . . , an �→ sn} is the SV-binding that is identical to B except that agent ai

is bound to si for every i ∈ [1, n]. Given an agencyM ⊆ [1,m], B¬M is defined as the
subset ofB defined on [1,m]−M . Specifically,B¬M is {a �→ s | a �→ s ∈ B, a �∈M}.
Also, we let def(B) be the index set of agents with a binding in B.

Given an SV-binding B, and a state, tree, or path formula φ, Bφ is called a bound
formula. Bφ is a bound literal if φ is a path formula. A Boolean combination of bound
literals is called a Boolean bound formula (BB-formula). The strategy variables in BB-
formula are only used to tell whether two path properties are to be enforced with the
same strategy. For example, property 〈{1}〉((〈+{2}〉♦p)∧〈+{2}〉♦q) can be rewritten
as BB-formula ({1 �→ s1, 2 �→ s2}♦p) ∧ {1 �→ s1, 2 �→ s3}♦q which says that agent
1 must use the same strategy to fulfill both ♦p and ♦q while agent 2 may use different
strategies to fulfill the two path properties.

Suppose that we are given a BB-formula φ, with strategy variables s1, . . . , sn, and a
function π that assigns each of s1, . . . , sn a strategy. Similar to the semantics of strategy
logics [6] with strategy variables, we can also define the satisfaction of φ at a state q
with π, in symbols A, q |=π φ, as follows.
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Table 1. Rewriting rules for BB-formulas

bf(B¬¬φ) ≡ bf(Bφ)
bf(¬B(φ1 ∨ φ2)) ≡ bf(B¬φ1) ∧ bf(B¬φ2)
bf(¬B(φ1 ∧ φ2)) ≡ bf(B¬φ1) ∨ bf(B¬φ2)
bf(B¬〈M〉φ) ≡ bf(B[M ]¬φ)
bf(B¬[M ]φ) ≡ bf(B〈M〉¬φ)
bf(B[M ]φ) ≡ bf(B〈[1, m] − M〉φ)
bf(B〈{a1, . . . , an}〉φ) ≡ bf({a1 �→ newvar(), . . . , an �→ newvar()}φ)
bf(B¬〈+M〉φ) ≡ bf(B[+M ]¬φ)
bf(B¬[+M ]φ) ≡ bf(B〈+M〉¬φ)
bf(B[+M ]φ) ≡ bf(B¬M ◦ {a1 �→ newvar(), . . . , an �→ newvar()}φ),

if [1, m] − (def(B) ∪ M) = {a1, . . . , an}
bf(B〈+{a1, . . . , an}〉φ) ≡ bf(B ◦ {a1 �→ newvar(), . . . , an �→ newvar()}φ)
bf(B © φ) ≡ B © bf(∅φ)
bf(Bφ1Uφ2) ≡ Bbf(∅φ1)Ubf(∅φ2)
bf(Bφ1Wφ2) ≡ Bbf(∅φ1)Wbf(∅φ2)
bf(Bp) ≡ p ; bf(B¬p) ≡ ¬p
bf(Btrue) ≡ true ; bf(Bfalse) ≡ false

• A, q |=π φ1 ∨ φ2 iff either A, q |=π φ1 or A, q |=π φ2.
• A, q |=π φ1 ∧ φ2 iff both A, q |=π φ1 and A, q |=π φ2.
• Given an SV-bindingB and a path formula φ1 with a C-strategy Σ = {a �→ π(s) |
a �→ s ∈ B}, A, q |=π Bφ1 iff for all plays ρ compatible with Σ from q, ρ |=Σ φ1.

In table 1, we present equivalence rules to rewrite state, tree, and path formulas to
BB-formulas with procedure bf(). For convenience, we need a procedure newvar() that
returns a strategy variable that has not been used before. The following lemma shows
the correctness of the rules in table 1.

Lemma 10. Given a state q and a BSIL formula φ with strategy variables s1, . . . , sn

in bf(∅φ), A, q |=⊥ φ iff there is a function π such that A, q |=π bf(∅φ). �

For convenience of algorithm presentation, we also assume that there is a procedure
that rewrites a BB-formula to an equivalent BB-formula in disjunctive normal form.
Specifically, a disjunctive normal BB-formula (DNBB-formula) is the disjunction of
conjunctions of bound literals. The rewriting of a BB-formula φ to a DNBB-formula
can be done with repetitive application of distribution law of conjunction to disjunction
until no more change is possible.

Example 3. DNBB-formula rewriting: We have the following rewriting process for a
BSIL formula for five agents.

bf

(
∅〈{1}〉

(
〈+{2}〉([+{3}](〈+{4}〉�p)∨ [+{2}]♦q)
∧ [+{3}](〈+2〉♦r ∧ 〈+{5}〉�q)

))
≡ bf

(
{1 �→ s1}

(
〈+{2}〉([+{3}](〈+{4}〉�p)∨ [+{2}]♦q)
∧ [+{3}](〈+{2}〉♦r ∧ 〈+{5}〉�q)

))
≡
(

bf({1 �→ s1}〈+{2}〉([+{3}](〈+{4}〉�p)∨ [+{2}]♦q))
∧ bf({1 �→ s1}[+{3}](〈+{2}〉♦r ∧ 〈+{5}〉�q))

)
≡
(

bf({1 �→ s1, 2 �→ s2}([+{3}](〈+{4}〉�p)∨ [+{2}]♦q))
∧ bf({1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s5}(〈+{2}〉♦r ∧ 〈+{5}〉�q))

)
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≡

⎛⎜⎜⎝
(
{1 �→ s1, 2 �→ s2, 4 �→ s13, 5 �→ s7}�p
∨ {1 �→ s1, 3 �→ s8, 4 �→ s9, 5 �→ s10}♦q

)
∧ {1 �→ s1, 2 �→ s11, 4 �→ s4, 5 �→ s5}♦r
∧ {1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s12}�q

⎞⎟⎟⎠

≡

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝ {1 �→ s1, 2 �→ s2, 4 �→ s13, 5 �→ s7}�p
∧ {1 �→ s1, 2 �→ s11, 4 �→ s4, 5 �→ s5}♦r
∧ {1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s12}�q

⎞⎠
∨

⎛⎝ {1 �→ s1, 3 �→ s8, 4 �→ s9, 5 �→ s10}♦q
∧ {1 �→ s1, 2 �→ s11, 4 �→ s4, 5 �→ s5}♦r
∧ {1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s12}�q

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ; distribution of ∧ over ∨

This DNBB-formula sheds some light in analyzing BSIL formulas. As can be seen, the
formula is satisfied iff one of the outermost disjuncts is satisfied. Without loss of gener-

ality, we examine the first disjunct: η1 ≡

⎛⎝ {1 �→ s1, 2 �→ s2, 4 �→ s13, 5 �→ s7}�p
∧ {1 �→ s1, 2 �→ s11, 4 �→ s4, 5 �→ s5}♦r
∧ {1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s12}�q

⎞⎠
There are the following three C-strategies involved in the satisfaction of the formula.

• Σ1 for {1 �→ s1, 2 �→ s2, 4 �→ s13, 5 �→ s7} of {1, 2, 4, 5} used to satisfy �p.
• Σ2 for {1 �→ s1, 2 �→ s11, 4 �→ s4, 5 �→ s5} of {1, 2, 4, 5} used to satisfy ♦r.
• Σ3 for {1 �→ s1, 2 �→ s3, 4 �→ s4, 5 �→ s12} of {1, 2, 4, 5} used to satisfy �q.

This disjunct says the following interaction restrictions.

• Σ1, Σ2, and Σ3 must agree in their choices at nodes owned by agent 1.
• Σ2 and Σ3 must agree in their choices at nodes owned by agent 4.

In the following, we use the observation in this example to construct structures from
DNBB-formulas for the model-checking of conjunctive DNBB-formulas. �

For the convenience of our algorithm presentation, we represent a conjunctive DNBB-
formula η as a set of bound literals. Our goal is to design a computation tree exploration
procedure that given a set Ψ of bound literals, labels each node in the tree with a subset
of Ψ for the set of path formulas that some C-strategies have to enforce without violat-
ing the restrictions of strategy interaction imposed in Ψ through the strategy variables.
In the design of the procedure, one central component is how to label the children of a
node with appropriate subsets of Ψ as inherited path obligations. This is accomplished
with the procedure Suc_set(A, q, Ψ) in the following. Given a node q in the computa-
tion tree and a set Ψ , the procedure nondeterministically returns an assignment of bound
literals to children of q to enforce the bound literals in Ψ without violating the strategy
interaction of bound literals.

Suc_set(A, q, Ψ) // λ() has been extended with satisfied child subformulas at each
state.

1: Let Δ be {(q′, ∅) | (q, q′) ∈ R} and Φ be Ψ .
2: while Φ is not empty do
3: Pick an element Bψ ∈ Φ and let Φ be Φ− {Bψ}.
4: if (ψ is either φ1Uφ2 or φ1Wφ2) with φ2 ∈ λ(q) then continue.
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5: else if (ψ is either φ1Uφ2 or φ1Wφ2) with φ1 �∈ λ(q) then return ∅.
6: end if
7: if ω(q) �∈ def(B) then
8: if ψ is not©φ1 then
9: for (q′, Ψ ′) ∈ Δ do replace (q′, Ψ ′) with (q′, Ψ ′ ∪ {Bψ}) in Δ. end for

10: else if there is an (q, q′) ∈ R with φ1 �∈ λ(q′) then
11: return ∅.
12: end if
13: else if ∃B′ψ′ ∈ Ψ − Φ, ∃(q′, Ψ ′) ∈ Δ(B′ψ′ ∈ Ψ ′ ∧ ω(q) ∈ def(B) ∩ def(B′))

then
14: if ψ is not©φ1 then replace (q′, Ψ ′) with (q′, Ψ ′ ∪ {Bψ}) in Δ;
15: else if φ1 �∈ λ(q′) then return ∅. end if
16: else
17: Nondeterministically pick a (q′, Ψ ′) ∈ Δ.
18: if ψ is not©φ1 then replace (q′, Ψ ′) with (q′, Ψ ′ ∪ {Bψ}) in Δ;
19: else if φ1 �∈ λ(q′) then return ∅. end if
20: end if
21: end while
22: return Δ.

The loop at statement 2 iterates through all the path obligations at the current node and
passes them down to the children if necessary. Statements 4 checks if Bψ is fulfilled.
Statements 5 checks if Bψ is violated. When a violation happens, the assignment of
path obligations to children fails and we return ∅. The if-statement at line 7 is for nodes
where no strategy choice is to be made. Statement 13 is for the case when we have
already made a choice for a B′ψ′ that should share the same strategy decision with
Bψ at q. Thus the choice for Bψ has to be consistent with that for B′ψ′. Statement 16
handles the case when there is no such B′ψ′.

5.2 Procedures for Checking BSIL Properties

The procedure in the following checks a BSIL state property φ at a state q of A.

Check_BSIL(A, q, φ)
1: if φ is p then
2: if φ ∈ λ(q) then return true. else return false. end if
3: else if φ is φ1 ∨ φ2 then
4: return Check_BSIL(A, q, φ1) ∨ Check_BSIL(A, q, φ2)
5: else if φ is ¬φ1 then
6: return ¬Check_BSIL(A, q, φ1)
7: else if φ is 〈M〉θ for a tree or path formula θ then
8: return Check_tree(A, q, 〈M〉θ)
9: end if
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The procedure is straightforward and works inductively on the structure of the input
formula. For convenience, we need procedure Check_set(A,Q′φ1) in the following
that checks a BSIL property φ1 at each state in Q′.

Check_set(A,Q′, φ1)
1: if φ1 �∈ PA ∪ {true, false} then
2: for each q′ ∈ Q′ do
3: if Check_BSIL(A, q′, φ1) then
4: Let λ(q′) be (λ(q′) ∪ {φ1})− {¬φ1}.
5: else
6: Let λ(q′) be (λ(q′)− {φ1}) ∪ {¬φ1}.
7: end if
8: end for
9: end if

Then we use procedure Check_tree(A, q, 〈M〉θ) in the following to check if a state
q satisfies 〈M〉ψ.

Check_tree(A, q, 〈M〉θ)
1: Rewrite bf(∅〈M〉θ) to DNBB-formula η1 ∨ . . . ∨ ηn.
2: for i ∈ [1, n] do
3: Represent ηi as a set Ψ of bound literals.
4: for each Bψ in Ψ . do
5: if ψ is©φ1 then
6: Check_set(A, {q′ | (q, q′) ∈ RA}, φ1).
7: else if ψ is either φ1Uφ2 or φ1Wφ2 then
8: Check_set(A,QA, φ1).
9: Check_set(A,QA, φ2).

10: end if
11: end for
12: if Rec_tree(A, q, Ψ) then return true. end if
13: end for
14: return false.

We first rewrite 〈M〉θ to its DNBB-formula at statement 1 by calling bf(∅〈M〉θ) and
using the distribution law of conjunctions over disjunctions. We then iteratively check
with the loop starting from statement 2 if 〈M〉θ is satisfied due to one of its conjunctive
DNBB-formula components of 〈M〉ψ. At statement 3, we construct the set Ψ of bound
literals of the component. We evaluate the subformulas with the inner loop starting at
statement 4. Finally at statement 12, we explore the computation tree, with procedure
Rec_tree(A, q, Ψ) in the following, and pass down the path obligations to the chil-
dren according to the restrictions of the SV-binding in Ψ .
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Rec_tree(A, q, Ψ)
1: if (q, Ψ) coincides with an ancestor in the exploration then
2: if there is no Bφ1Uφ2 in Ψ then return true; else return false. end if
3: end if
4: Let Suc_set(A, q, Ψ) be Δ.
5: if Δ = ∅ then return false end if
6: for each (q′, Ψ ′) ∈ Δ with Ψ ′ �= ∅ do
7: if Rec_tree(A, q′, Ψ ′) is false then return false. end if
8: end for
9: return true.

Note that procedure Rec_tree(A, q, Ψ) is nondeterministic since it employs
Suc_set(A, q, Ψ) to nondeterministically calculate an assignment Δ of path obligations
to the children of q.

5.3 Correctness Proof of the Algorithm

For the proof of the correctness of the algorithm, we define strategy interaction trees
(SI-trees) in the following. An SI-tree for a set Ψ of bound literals and a game graphA =
〈m,Q, I, ω, P, λ,R〉 from a state q ∈ Q is a labeled computation tree 〈V, r, α,E, β〉
with the following restrictions.
• V is the set of nodes in the tree.
• r ∈ V is the root of the tree.
• α : V �→ Q labels each tree node with a state. Also α(r) = q.
• E ⊆ V × V is the set of arcs of the tree such that for each (q, q′) ∈ R, there exists

an (v, v′) ∈ E with α(v) = q and α(v′) = q′.
• β : V �→ 2Ψ labels each node with a subset of Ψ for path formulas in ψ that need

to be fulfilled at a node. Moreover, we have the following restrictions on β.
− β(r) = Ψ .
− For every v ∈ V , there exists aΔ = Suc_set(A,α(v), β(v)) such that for every

(q′, Ψ ′) ∈ Δ, there exists a (v, v′) ∈ E with α(v′) = q′ and β(v′) = Ψ ′.
The SI-tree is fulfilled iff for every path v0v1 . . . vk . . . along the tree from the root, there
exists an h ≥ 0 such that for every j ≥ h, there is no Bφ1Uφ2 ∈ β(vj).

We have the following property between an SI-tree and execution of procedure
Rec_tree(A, q, Ψ) from the root of an SI-tree.

Lemma 11. For a set Ψ of bound literals, Rec_tree(A, q, Ψ) returns true iff there
exists a fulfilled SI-tree for Ψ and A from q. �

Lemma 12. Given a conjunctive DNBB-formula η represented as a set Ψ of bound
literals, there exists a function π on strategy variables in η with A, q |=π η iff there
exists a fulfilled SI-tree for A and Ψ from q. �

The correctness of procecure Rec_tree(A, q, Ψ) then directly follows from lem-
mas 11 and 12. Then with a structure induction on a given BSIL formula and the cor-
rectness of procedure Rec_tree(A, q, Ψ), we have the following lemma for the cor-
rectness of procedure Check_BSIL(A, q, φ).
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Lemma 13. Given a game graph A, a state q in A, and a BSIL formula φ,
Check_BSIL(A, q, φ) iff A, q |=⊥ φ. �

5.4 Complexities of the Algorithm

The algorithm that we presented in subsections 5.1 and 5.2 can run in PSPACE mainly
because we can implement procedure Rec_tree(A, q, Ψ) with a stack of polynomial
height. To see this, please be reminded that we use procedure Suc_set(A, q, Ψ) to cal-
culate the assignment of bound literals to the children to q in the computation tree.
Specifically, procedure Suc_set(A, q, Ψ) nondeterministically returns a set Δ with ele-
ments of the form (q′, Ψ ′) such that (q, q′) ∈ R and Ψ ′ ⊆ Ψ . Thus along any path in the
SI-tree, the sets of literal bounds never increase. Moreover, when there is a node in the
exploration of SI-tree that coincides with an ancestor, we backtrack in the exploration.
This implies that along any path segment longer than |Q|, either one of the following
two conditions hold.
• A backtracking happens at the end of the segment.
• The sets of bound literals along the segment must decrease in size at least once.

These conditions lead to the observation that with procedure Suc_set(A, q, Ψ), the re-
cursive exploration of a path can grow no longer than 1 + |Ψ | · |Q|. This leads to the
following lemma.

Lemma 14. The BSIL model-checking algorithm in subsections 5.1 and 5.2 is in
PSPACE. �

Following lemmas 9 and 14, we then get the following lemma.

Lemma 15. The model-checking problem of a BSIL formula against a turn-based game
graph is PSPACE-complete. �

A rough analysis of the time complexity of our algorithm follows. Let |φ| be the
length of a BSIL formula φ. At each call to Suc_set(), the size of Ψ is at most |φ|.
The number of root-to-leaf paths in an SI-tree is at most |ψ| since we only have to
pass down |ψ| bound literals. We can use the positions of the common ancestors of
the leaves of such paths to analyze the number of the configurations of such SI-trees.
The common ancestors can happen anywhere along the root-to-leaf paths. Thus, there
are (1 + |φ| · |Q|)|φ| ways to arrange the positions of the common ancestors since the
length of paths are at most 1 + |φ| · |Q|. The number of ways that the bound literals can
be assigned to the leaves is at most |φ||φ|. The number of state labeling of the nodes
on the paths is at most |Q||φ|·(1+|φ|·|Q|). Thus, given a Ψ , the total number of differ-
ent SI-trees is O(|Q||φ|·(1+|φ|·|Q|)|φ||φ|(1 + |φ| · |Q|)|φ|) = O(|Q||φ|·(2+|φ|·|Q|)|φ|2|φ|).
There are O(2|φ|) different possible values of Ψ . There are at most |φ| SI-trees to con-
struct for the model-checking task. Thus the total time complexity of our algorithm is
O(|φ|2|φ||Q||φ|·(2+|φ|·|Q|)|φ|2|φ|).

6 Strategy Interaction Logic

In a BSIL formula, the topmost SIQ inside a path modal formula must not be a pure
SQ. Lifting this restriction, we get SIL (Strategy Interaction Logic). For a game of m
agents, an SIL formula φ has the following syntax.



A Temporal Logic for the Interaction of Strategies 481

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈M〉φ1 | 〈M〉 © φ1 | 〈M〉φ1Uφ2 | 〈M〉φ1Wφ2

| 〈+M〉φ1 | 〈+M〉 © φ | 〈+M〉φ1Uφ2 | 〈+M〉φ1Wφ2

The shorthands and semantics of SIL are exactly as those of BSIL. SIL is more ex-
pressive than ATL∗ for turn-based games. The reason is that SIQ “〈+∅〉” can be used to
inherit strategies from parent modal operators to child ones. For example, 〈{1}〉�♦p is
equivalent to 〈{1}〉�〈+∅〉♦p.

Lemma 16. SIL is strictly more expressive than ATL∗ for turn-based games. �

One implication of lemma 16 is that the model-checking problem of SIL is at least
as hard as that of ATL∗, which is doubly exponential time complete.

7 Conclusion

BSIL can be useful in describing close interaction among strategies of agents in a multi-
agent system. Although it can express properties that ATL∗, GL, and AMC cannot, its
model-checking problem incurs a much lower complexity. Future work in this direction
may include further extension to BSIL.

Acknowledgment. The authors would like to thank Professor Moshe Vardi and the
anonymous reviewers of CONCUR 2011 for their valuable comments and suggestions.
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Abstract. We study the computational complexity of Nash equilibria in
concurrent games with limit-average objectives. In particular, we prove
that the existence of a Nash equilibrium in randomised strategies is un-
decidable, while the existence of a Nash equilibrium in pure strategies is
decidable, even if we put a constraint on the payoff of the equilibrium.
Our undecidability result holds even for a restricted class of concurrent
games, where nonzero rewards occur only on terminal states. Moreover,
we show that the constrained existence problem is undecidable not only
for concurrent games but for turn-based games with the same restriction
on rewards. Finally, we prove that the constrained existence problem for
Nash equilibria in (pure or randomised) stationary strategies is decidable
and analyse its complexity.

1 Introduction

Concurrent games provide a versatile model for the interaction of several com-
ponents in a distributed system, where the components perform actions in par-
allel [17]. Classically, such a system is modelled by a family of concurrent two-
player games, one for each component, where one component tries to fulfil its
specification against the coalition of all other components. In practice, this mod-
elling is often too pessimistic because it ignores the specifications of the other
components. We argue that a distributed system is more faithfully modelled by a
multiplayer game where each player has her own objective, which is independent
of the other players’ objectives.

Another objection to the classical theory of verification and synthesis has been
that specifications are qualitative: either the specification is fulfilled, or it is vi-
olated. Examples of such specifications include reachability properties, where
a certain set of target states has to be reached, or safety properties, where a
certain set of states has to be avoided. In practice, many specifications are of
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a quantitative nature, examples of which include minimising average power con-
sumption or maximising average throughput. Specifications of the latter kind
can be expressed by assigning (positive or negative) rewards to states or transi-
tions and considering the limit-average reward gained from an infinite play. In
fact, concurrent games where a player’s payoff is defined in such a way have been
a central topic in game theory (see the related work section below).

The most common solution concept for games with multiple players is that
of a Nash equilibrium [20]. In a Nash equilibrium, no player can improve her
payoff by changing her strategy unilaterally. Unfortunately, Nash equilibria do
not always exist in concurrent games, and if they exist, they may not be unique.
In applications, one might look for an equilibrium where some players receive
a high payoff while other players receive a low payoff. Formulated as a decision
problem, given a game with k players and thresholds x, y ∈ (Q∪{±∞})k, we want
to know whether the game has a Nash equilibrium whose payoff lies in-between
x and y; we call this decision problem NE.

The problem NE comes in several variants, depending on the type of strate-
gies one considers: On the one hand, strategies may be randomised (allowing
randomisation over actions) or pure (not allowing such randomisation). On the
other hand, one can restrict to stationary strategies, which only depend on the
last state. Indeed, we show that these restrictions give rise to distinct decision
problems, which have to be analysed separately.

Our results show that the complexity of NE highly depends on the type of
strategies that realise the equilibrium. In particular, we prove the following re-
sults, which yield an almost complete picture of the complexity of NE:

1. NE for pure stationary strategies is NP-complete.
2. NE for stationary strategies is decidable in Pspace, but hard for both NP

and SqrtSum.
3. NE for arbitrary pure strategies is NP-complete.
4. NE for arbitrary randomised strategies is undecidable and, in fact, not re-

cursively enumerable.

All of our lower bounds for NE and, in particular, our undecidability result hold
already for a subclass of concurrent games where Nash equilibria are guaranteed
to exist, namely for turn-based games. If this assumption is relaxed and Nash
equilibria are not guaranteed to exist, we prove that even the plain existence
problem for Nash equilibria is undecidable. Moreover, many of our lower bounds
hold already for games where non-zero rewards only occur on terminal states,
and thus also for games where each player wants to maximise the total sum of
the rewards.

As a byproduct of our decidability proof for pure strategies, we give a
polynomial-time algorithm for deciding whether in a multi-weighted graph there
exists a path whose limit-average weight vector lies between two given thresh-
olds, a result that is of independent interest. For instance, our algorithm can be
used for deciding the emptiness of a multi-threshold mean-payoff language [2].

Due to space constraints, most proofs are either only sketched or omitted
entirely. For the complete proofs, see [27].
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Related Work. Concurrent and, more generally, stochastic games go back to
[23], who proved the existence of the value for discounted two-player zero-sum
games. This result was later generalised by [13] who proved that every dis-
counted game has a Nash equilibrium. [16] introduced limit-average objectives,
and [19] proved the existence of the value for stochastic two-player zero-sum
games with limit-average objectives. Unfortunately, as demonstrated by [12],
these games do, in general, not admit a Nash equilibrium (see Example 1). How-
ever, [29, 30] proved that, for all ε > 0, every two-player stochastic limit-average
game admits an ε-equilibrium, i.e. a pair of strategies where each player can gain
at most ε from switching her strategy. Whether such equilibria always exist in
games with more than two players is an important open question [21].

Determining the complexity of Nash equilibria has attracted much interest
in recent years. In particular, a series of papers culminated in the result that
computing a Nash equilibrium of a finite two-player game in strategic form is
complete for the complexity class PPAD [6, 8]. The constrained existence prob-
lem, where one looks for a Nash equilibrium with certain properties, has also
been investigated for games in strategic form. In particular, [7] showed that de-
ciding whether there exists a Nash equilibrium where player 0’s payoff exceeds
a given threshold and related decision problems are NP-complete for two-player
games in strategic form.

For concurrent games with limit-average objectives, most algorithmic results
concern two-player zero-sum games. In the turn-based case, these games are
commonly known as mean-payoff games [10, 32]. While it is known that the
value of such a game can be computed in pseudo-polynomial time, it is still open
whether there exists a polynomial-time algorithm for solving mean-payoff games.
A related model are multi-dimensional mean-payoff games where one player tries
to maximise several mean-payoff conditions at the same time [5]. In particular,
[28] showed that the value problem for these games is coNP-complete.

One subclass of concurrent games with limit-average objectives that has been
studied in the multiplayer setting are concurrent games with reachability objec-
tives. In particular, [3] showed that the constrained existence problem for Nash
equilibria is NP-complete for these games (see also [25, 14]). We extend their re-
sult to limit-average objectives. However, we assume that strategies can observe
actions (a common assumption in game theory), which they do not. Hence, while
our result is more general w.r.t. the type of objectives we consider, their result
is more general w.r.t. the type of strategies they allow.

In a recent paper [26], we studied the complexity of Nash equilibria in stochas-
tic games with reachability objectives. In particular, we proved that NE for pure
strategies is undecidable in this setting. Since we prove here that this problem
is decidable in the non-stochastic setting, this undecidability result can be ex-
plained by the presence of probabilistic transitions in stochastic games. On the
other hand, we prove in this paper that randomisation in strategies also leads
to undecidability, a question that was left open in [26].
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2 Concurrent Games

Concurrent games are played by finitely many players on a finite state space.
Formally, a concurrent game is given by

– a finite nonempty set Π of players, e.g. Π = {0, 1, . . . , k − 1},
– a finite nonempty set S of states,
– for each player i and each state s a nonempty set Γi(s) of actions taken from

a finite set Γ ,
– a transition function δ : S × ΓΠ → S,
– for each player i ∈ Π a reward function ri : S → R.

For computational purposes, we assume that all rewards are rational numbers
with numerator and denominator given in binary. We say that an action profile
a = (ai)i∈Π is legal at state s if ai ∈ Γi(s) for each i ∈ Π . Finally, we call a
state s controlled by player i if |Γj(s)| = 1 for all j �= i, and we say that a game
is turn-based if each state is controlled by (at least) one player. For turn-based
games, an action of the controlling player prescribes to go to a certain state.
Hence, we will usually omit actions in turn-based games.

For a tuple x = (xi)i∈Π , where the elements xi belong to an arbitrary set X ,
and an element x ∈ X , we denote by x−i the restriction of x to Π \ {i} and by
(x−i, x) the unique tuple y ∈ XΠ with yi = x and y−i = x−i.

A play of a game G is an infinite sequence s0a0s1a1 . . . ∈ (S · ΓΠ)ω such that
δ(sj , aj) = sj+1 for all j ∈ N. For each player, a play π = s0a0s1a1 . . . gives rise
to an infinite sequence of rewards. There are different criteria to evaluate this
sequence and map it to a payoff. In this paper, we consider the limit-average
(or mean-payoff ) criterion, where the payoff of π for player i is defined by

φi(π) := lim inf
n→∞

1
n

n−1∑

j=0
ri(sj).

Note that this payoff mapping is prefix-independent, i.e. φi(π) = φi(π′) if π′ is a
suffix of π. An important special case are games where non-zero rewards occur
only on terminal states, i.e. states s with δ(s, a) = s for all (legal) a ∈ ΓΠ .
These games were introduced by [12] under the name recursive games, but we
prefer to call them terminal-reward games. Hence, in a terminal-reward game,
φi(π) = ri(s) if π enters a terminal state s and φi(π) = 0 otherwise.

Often, it is convenient to designate an initial state. An initialised game is
thus a tuple (G, s0) where G is a concurrent game and s0 is one of its states.

Strategies and Strategy Profiles. For a finite set X , we denote by D(X) the
set of probability distributions over X . A (randomised) strategy for player i
in G is a mapping σ : (S · ΓΠ)∗ · S → D(Γ ) assigning to each possible his-
tory xs ∈ (S · ΓΠ)∗ · S a probability distribution σ(xs) over actions such that
σ(xs)(a) > 0 only if a ∈ Γi(s). We write σ(a | xs) for the probability assigned to
a ∈ Γ by the distribution σ(xs). A (randomised) strategy profile of G is a tuple
σ = (σi)i∈Π of strategies in G, one for each player.
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A strategy σ for player i is called pure if for each xs ∈ (S · ΓΠ)∗ · S the
distribution σ(xs) is degenerate, i.e. there exists a ∈ Γi(s) with σ(a | xs) = 1.
Note that a pure strategy can be identified with a function σ : (S · ΓΠ)∗ ·S → Γ .
A strategy profile σ = (σi)i∈Π is called pure if each σi is pure, in which case we
can identify σ with a mapping (S · ΓΠ)∗ · S → ΓΠ . Note that, given an initial
state s0 and a pure strategy profile σ, there exists a unique play π = s0a0s1a1 . . .
such that σ(s0a0 . . . aj−1sj) = aj for all j ∈ N; we call π the play induced by σ
from s0.

A strategy σ is called stationary if σ depends only on the last state: σ(xs) =
σ(s) for all xs ∈ (S · ΓΠ)∗ ·S. A strategy profile σ = (σi)i∈Π is called stationary
if each σi is stationary. Finally, we call a strategy (profile) positional if it is both
pure and stationary.

The Probability Measure Induced by a Strategy Profile. Given an initial
state s0 ∈ S and a strategy profile σ = (σi)i∈Π , the conditional probability of
a ∈ ΓΠ given the history xs ∈ (S · ΓΠ)∗ ·S is σ(a | xs) :=

∏
i∈Π σi(ai | xs). The

probabilities σ(a | xs) induce a probability measure on the Borel σ-algebra over
(S · ΓΠ)ω as follows: The probability of a basic open set s1a1 . . . snan · (S · ΓΠ)ω

equals the product
∏n
j=1 σ(aj | s1a1 . . . aj−1sj) if s1 = s0 and δ(sj , aj) = sj+1

for all 1 ≤ j < n; in all other cases, this probability is 0. By Carathéodory’s
extension theorem, this extends to a unique probability measure assigning a
probability to every Borel subset of (S · ΓΠ)ω, which we denote by Prσs0 . Via
the natural projection (S · ΓΠ)ω → Sω, we obtain a probability measure on the
Borel σ-algebra over Sω. We abuse notation and denote this measure also by Prσs0 ;
it should always be clear from the context to which measure we are referring to.
Finally, we denote by Eσs0 the expectation operator that corresponds to Prσs0 , i.e.
Eσs0 (f) =

∫
f dPrσs0 for all Borel measurable functions f : (S · ΓΠ)ω → R∪{±∞}

or f : Sω → R ∪ {±∞}. In particular, we are interested in the quantities pi :=
Eσs0 (φi). We call pi the (expected) payoff of σ for player i and the vector (pi)i∈Π
the (expected) payoff of σ.

Drawing Concurrent Games. When drawing a concurrent game as a graph,
we will adhere to the following conventions: States are usually depicted as circles,
but terminal states are depicted as squares. The initial state is marked by a
dangling incoming edge. An edge from s to t with label a means that δ(s, a) = t
and that a is legal at s. However, the label amight be omitted if it is not essential.
In turn-based games, the player who controls a state is indicated by the label
next to it. Finally, a label of the form i : x next to state s indicates that ri(s) = x;
if this reward is 0, the label will usually be omitted.

3 Nash Equilibria

To capture rational behaviour of selfish players, Nash [20] introduced the notion
of — what is now called — a Nash equilibrium. Formally, given a game G and an
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s1 1: 12: 1
(a, b), (b, a)(b, b)

(a, a)

Fig. 1. A terminal-reward game that has no Nash equilibrium

initial state s0, a strategy τ for player i is a best response to a strategy profile σ
if τ maximises the expected payoff for player i, i.e.

Eσ−i,τ
′

s0 (φi) ≤ Eσ−i,τs0 (φi)

for all strategies τ ′ for player i. A strategy profile σ = (σi)i∈Π is a Nash equi-
librium of (G, s0) if for each player i the strategy σi is a best response to σ.
Hence, in a Nash equilibrium no player can improve her payoff by (unilaterally)
switching to a different strategy. As the following example demonstrates, Nash
equilibria are not guaranteed to exist in concurrent games.

Example 1. Consider the terminal-reward game G1 depicted in Fig. 1, which is
a variant of the game hide-or-run as presented by [9]. We claim that (G1, s1)
does not have a Nash equilibrium. First note that, for each ε > 0, player 1 can
ensure a payoff of 1 − ε by the stationary strategy that selects action b with
probability ε. Hence, every Nash equilibrium (σ, τ) of (G1, s1) must have payoff
(1, 0). Now consider the least k such that p := σ(b | (s1(a, a))ks1) > 0. By
choosing action b with probability 1 for the history (s1(a, a))ks1 and choosing
action a with probability 1 for all other histories, player 2 can ensure payoff p,
a contradiction to (σ, τ) being a Nash equilibrium.

It follows from Nash’s theorem [20] that every game whose arena is a tree (or a
DAG) has a Nash equilibrium. Another important special case of concurrent
limit-average games where Nash equilibria always exist are turn-based games.
For these games, [24] proved not only the existence of arbitrary Nash equilibria
but of pure finite-state ones.

To measure the complexity of Nash equilibria in concurrent games, we intro-
duce the following decision problem, which we call NE:

Given a game G, a state s0 and thresholds x, y ∈ (Q ∪ {±∞})Π , decide
whether (G, s0) has a Nash equilibrium with payoff ≥ x and ≤ y.

Note that we have not put any restriction on the type of strategies that realise the
equilibrium. It is natural to restrict the search space to profiles of pure, stationary
or positional strategies. These restrictions give rise to different decision problems,
which we call PureNE, StatNE and PosNE, respectively.

Before we analyse the complexity of these problems, let us convince ourselves
that these problems are not just different faces of the same coin. We first show
that the decision problems where we look for equilibria in randomised strategies
are distinct from the ones where we look for equilibria in pure strategies.
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0
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2: 2

1: 1 2: 1

Fig. 2. A game with no pure Nash equilibrium
where player 0 wins with positive probability

s0

1

s1

2

0: 1

1: 1 s2

0

2: 1

Fig. 3. A game with no station-
ary Nash equilibrium where player 0
wins with positive probability

Proposition 2. There exists a turn-based terminal-reward game that has a sta-
tionary Nash equilibrium where player 0 receives payoff 1 but that has no pure
Nash equilibrium where player 0 receives payoff > 0.

Proof. Consider the game depicted in Fig. 2 played by three players 0, 1 and 2.
Clearly, the stationary strategy profile where from state s2 player 0 selects both
outgoing transitions with probability 1

2 each, player 1 plays from s0 to s1 and
player 2 plays from s1 to s2 is a Nash equilibrium where player 0 receives payoff 1.
However, in any pure strategy profile where player 0 receives payoff > 0, either
player 1 or player 2 receives payoff 0 and could improve her payoff by switching
her strategy at s0 or s1, respectively. 	

Now we show that it makes a difference whether we look for an equilibrium in
stationary strategies or not.

Proposition 3. There exists a turn-based terminal-reward game that has a pure
Nash equilibrium where player 0 receives payoff 1 but that has no stationary Nash
equilibrium where player 0 receives payoff > 0.

Proof. Consider the game G depicted in Fig. 3 and played by three players 0,
1 and 2. Clearly, the pure strategy profile that leads to the terminal state with
payoff 1 for player 0 and where player 0 plays “right” if player 1 has deviated
and “left” if player 2 has deviated is a Nash equilibrium of (G, s0) with payoff 1
for player 0. Now consider any stationary equilibrium of (G, s0) where player 0
receives payoff> 0. If the stationary strategy of player 0 prescribes to play “right”
with positive probability, then player 2 can improve her payoff by playing to s2
with probability 1, and otherwise player 1 can improve her payoff by playing
to s2 with probability 1, a contradiction. 	

It follows from Proposition 2 that NE and StatNE are different from PureNE and
PosNE, and it follows from Proposition 3 that NE and PureNE are different from
StatNE and PosNE. Hence, all of these decision problems are pairwise distinct,
and their decidability and complexity has to be studied separately.
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4 Positional Strategies

In this section, we show that the problem PosNE is NP-complete. Since we
can check in polynomial time whether a positional strategy profile is a Nash
equilibrium (using a result of [18]), membership in NP is straightforward.

Theorem 4. PosNE is in NP.

A result by [5], Lemma 15 implies that PosNE is NP-hard, even for turn-based
games with rewards taken from {−1, 0, 1} (but the number of players is un-
bounded). We strengthen their result by showing that the problem remains NP-
hard if there are only three players and rewards are taken from {0, 1}.
Theorem 5. PosNE is NP-hard, even for turn-based three-player games with
rewards 0 and 1.

Proof. We reduce from the Hamiltonian cycle problem. Given a graph G =
(V,E), we define a turn-based three-player game G as follows: the set of states
is V , all states are controlled by player 0, and the transition function corresponds
to E (i.e. Γ0(v) = vE and δ(v, a) = w if and only if a0 = w). Let n = |V | and
v0 ∈ V . The reward of state v0 to player 1 equals 1. All other rewards for player 0
and player 1 equal 0. Finally, player 2 receives reward 0 at v0 and reward 1 at
all other states. We claim that there is a Hamiltonian cycle in G if and only if
(G, v0) has a positional Nash equilibrium with payoff ≥ (0, 1/n, (n− 1)/n). 	

By combining our reduction with a game that has no positional Nash equilibrium,
we can prove the following stronger result for non-turn-based games.

Corollary 6. Deciding the existence of a positional Nash equilibrium in a con-
current limit-average game is NP-complete, even for three-player games.

5 Stationary Strategies

To prove the decidability of StatNE, we appeal to results established for the
existential theory of the reals, the set of all existential first-order sentences that
hold in the ordered field R := (R,+, ·, 0, 1,≤). The best known upper bound for
the complexity of the associated decision problem is Pspace [4], which leads to
the following theorem.

Theorem 7. StatNE is in Pspace.

The next theorem shows that StatNE is NP-hard, even for turn-based games
with rewards 0 and 1. Note that this does not follow from the NP-hardness of
PosNE, but requires a different proof.

Theorem 8. StatNE is NP-hard, even for turn-based games with rewards
0 and 1.
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Proof. We employ a reduction from SAT, which resembles a reduction in [25].
Given a Boolean formula ϕ = C1 ∧ · · · ∧ Cm in conjunctive normal form over
propositional variables X1, . . . , Xn, where w.l.o.g. m ≥ 1 and each clause is
nonempty, we build a turn-based game G played by players 0, 1, . . . , n as follows:
The game G has states C1, . . . , Cm controlled by player 0 and for each clause C
and each literal L that occurs in C a state (C,L), controlled by player i if
L = Xi or L = ¬Xi; additionally, the game contains a terminal state ⊥. There
are transitions from a clause Cj to each state (Cj , L) such that L occurs in Cj
and from there to C(j mod m)+1, and there is a transition from each state of the
form (C,¬X) to ⊥. Each state except ⊥ has reward 1 for player 0, whereas
⊥ has reward 0 for player 0. For player i, each state except states of the form
(C,Xi) has reward 1; states of the form (C,Xi) have reward 0. The structure
of G is depicted in Fig. 4. Clearly, G can be constructed from ϕ in polynomial
time. We claim that ϕ is satisfiable if and only if (G, C1) has a stationary Nash
equilibrium with payoff ≥ 1 for player 0. 	

By combining our reduction with the game from Example 1, which has no Nash
equilibrium, we can prove the following stronger result for concurrent games.

Corollary 9. Deciding the existence of a stationary Nash equilibrium in a con-
current limit-average game with rewards 0 and 1 is NP-hard.

So far we have shown that StatNE is contained in Pspace and hard for NP,
leaving a considerable gap between the two bounds. In order to gain a better
understanding of StatNE, we relate this problem to the square root sum prob-
lem (SqrtSum), an important problem about numerical computations. Formally,
SqrtSum is the following decision problem: Given numbers d1, . . . , dn, k ∈ N,
decide whether

∑n
i=1
√
di ≥ k. Recently, [1] showed that SqrtSum belongs to

the fourth level of the counting hierarchy, a slight improvement over the previ-
ously known Pspace upper bound. However, it has been an open question since

C1

0
... C2

0

. . . Cm

0

...

⊥

Fig. 4. Reducing SAT to StatNE
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the 1970s as to whether SqrtSum falls into the polynomial hierarchy [15, 11].
We give a polynomial-time reduction from SqrtSum to StatNE for turn-based
terminal-reward games. Hence, StatNE is at least as hard as SqrtSum, and show-
ing that StatNE resides inside the polynomial hierarchy would imply a major
breakthrough in understanding the complexity of numerical computations. While
our reduction is similar to the one in [26], it requires new techniques to simulate
stochastic states.

Theorem 10. SqrtSum is polynomial-time reducible to StatNE for turn-based
8-player terminal-reward games.

Again, we can combine our reduction with the game from Example 1 to prove a
stronger result for games that are not turn-based.

Corollary 11. Deciding whether a concurrent 8-player terminal reward game
has a stationary Nash equilibrium is hard for SqrtSum.

Remark 12. By appealing to results on Markov decision processes with limit-
average objectives (see e.g. [22]), the positive results of Sects. 4 and 5 can be
extended to stochastic games (with the same complexity bounds).

6 Pure Strategies

In this section, we show that PureNE is decidable and, in fact, NP-complete. Let
G be a concurrent game, s ∈ S and i ∈ Π . We define

pvalGi (s) = infσ supτ Eσ−i,τs (φi),

where σ ranges over all pure strategy profiles of G and τ ranges over all strategies
of player i. Intuitively, pvalGi (s) is the lowest payoff that the coalition Π \ {i}
can inflict on player i by playing a pure strategy.

By a reduction to a turn-based two-player zero-sum game, we can show that
there is a positional strategy profile that attains this value.

Proposition 13. Let G be a concurrent game, and i ∈ Π. There exists a posi-
tional strategy profile σ∗ such that Eσ

∗
−i,τ
s (φi) ≤ pvalGi (s) for all states s and all

strategies τ of player i.

Given a payoff vector z ∈ (R∪{±∞})Π , we define a directed graphG(z) = (V,E)
(with self-loops) as follows: V = S, and there is an edge from s to t if and only
if there is an action profile a with δ(s, a) = t such that (1) a is legal at s and
(2) pvalGi (δ(s, (a−i, b))) ≤ zi for each player i and each action b ∈ Γi(s). Following
[3], we call any a that fulfils (1) and (2) z-secure at s.

Lemma 14. Let z ∈ (R ∪ {±∞})Π. If there exists an infinite path π in G(z)
from s0 with zi ≤ φi(π) for each player i, then (G, s0) has a pure Nash equilibrium
with payoff φi(π) for player i.
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Proof. Let π = s0s1 . . . be an infinite path in G(z) from s0 with zi ≤ φi(π) for
each player i. We define a pure strategy profile σ as follows: For histories of the
form x = s0a0s1 . . . sk−1ak−1sk, we set σ(x) to an action profile a with δ(sk, a) =
sk+1 that is z-secure at sk. For all other histories x = t0a0t1 . . . tk−1ak−1tk,
consider the least j such that sj+1 �= tj+1. If aj differs from a z-secure action
profile a at sj in precisely one entry i, we set σ(x) = σ∗(tk), where σ∗ is a (fixed)
positional strategy profile such that Eσ

∗
−i,τ
s (φi) ≤ pvalGi (s) for all s ∈ S (which is

guaranteed to exist by Proposition 13); otherwise, σ(x) can be chosen arbitrarily.
It is easy to see that σ is a Nash equilibrium with induced play π. 	


Lemma 15. Let σ be a pure Nash equilibrium of (G, s0) with payoff z. Then
there exists an infinite path π in G(z) from s0 with φi(π) = zi for each player i.

Proof. Let s0a0s1a1 . . . be the play induced by σ. We claim that π := s0s1 . . . is
a path in G(z). Otherwise, consider the least k such that (sk, sk+1) is not an
edge in G(z). Hence, there exists no z-secure action profile at s := sk. Since ak is
certainly legal at s, there exists a player i and an action b ∈ Γi(s) such that
pvalGi (δ(s, (a−i, b))) > zi. But then player i can improve her payoff by switching
to a strategy that mimics σi until s is reached, then plays action b, and after that
mimics a strategy τ with Eσ−i,τδ(s,(a−i,b))(φi) > zi. This contradicts the assumption
that σ is a Nash equilibrium. 	


Using Lemmas 14 and 15, we can reduce the task of finding a pure Nash equilib-
rium to the task of finding a path in a multi-weighted graph whose limit-average
weight vector falls between two thresholds. The latter problem can be solved in
polynomial time by solving a linear programme with one variable for each pair
of a weight function and an edge in the graph.

Theorem 16. Given a finite directed graph G = (V,E) with weight functions
r0, . . . , rk−1 : V → Q, v0 ∈ V , and x, y ∈ (Q ∪ {±∞})k, we can decide in
polynomial time whether there exists an infinite path π = v0v1 . . . in G with
xi ≤ lim infn→∞ 1

n

∑n−1
j=0 ri(vj) ≤ yi for all i = 0, . . . , k − 1.

We can now describe a nondeterministic algorithm to decide the existence of a
pure Nash equilibrium with payoff ≥ x and ≤ y in polynomial time. The algo-
rithm starts by guessing, for each player i, a positional strategy profile σi of G
and computes pi(s) := supτ Eσ

i
−i,τ
s (φi) for each s ∈ S; these numbers can be

computed in polynomial time using the algorithm given by [18]. The algorithm
then guesses a vector z ∈ (R∪ {±∞})Π by setting zi either to xi or to pi(s) for
some s ∈ S with xi ≤ pi(s), and constructs the graph G′(z), which is defined as
G(z) but with pi(s) substituted for pvalGi (s). Finally, the algorithm determines
(in polynomial time) whether there exists an infinite path π in G(z) from s0
with zi ≤ φi(π) ≤ yi for all i ∈ Π . If such a path exists, the algorithm accepts;
otherwise it rejects.

Theorem 17. PureNE is in NP.
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Proof. We claim that the algorithm described above is correct, i.e. sound and
complete. To prove soundness, assume that the algorithm accepts its input.
Hence, there exists an infinite path π in G′(z) from s0 with zi ≤ φi(π) ≤ yi.
Since pvalGi (s) ≤ pi(s) for all i ∈ Π and s ∈ S, the graph G′(z) is a subgraph of
G(z). Hence, π is also an infinite path in G(z). By Lemma 14, we can conclude
that (G, s0) has a pure Nash equilibrium with payoff ≥ z ≥ x and ≤ y.

To prove that the algorithm is complete, let σ be a pure Nash equilibrium
of (G, s0) with payoff z, where x ≤ z ≤ y. By Proposition 13, the algorithm
can guess positional strategy profiles σi such that pi(s) = pvalGi (s) for all
s ∈ S. If the algorithm additionally guesses the payoff vector z′ defined by
z′i = max{xi, pvalGi (s) : s ∈ S, pvalGi (s) ≤ zi} for all i ∈ Π , then the graph G(z)
coincides with the graph G(z′) (and thus with G′(z′)). By Lemma 15, there ex-
ists an infinite path π in G(z) from s0 such that z′i ≤ zi = φi(π) ≤ yi for all
i ∈ Π . Hence, the algorithm accepts. 	

The following theorem shows that PureNE is NP-hard. In fact, NP-hardness
holds even for turn-based games with rewards 0 and 1.

Theorem 18. PureNE is NP-hard, even for turn-based games with rewards
0 and 1.

Proof. Again, we reduce from SAT. Given a Boolean formula ϕ = C1∧· · ·∧Cm in
conjunctive normal form over propositional variables X1, . . . , Xn, where w.l.o.g.
m ≥ 1 and each clause is nonempty, let G be the turn-based game described in
the proof of Theorem 8 and depicted in Fig. 4. We claim that ϕ is satisfiable if
and only if (G, C1) has a pure Nash equilibrium with payoff ≥ 1 for player 0. 	

It follows from Theorems 17 and 18 that PureNE is NP-complete. By combining
our reduction with a game that has no pure Nash equilibrium, we can prove the
following stronger result for non-turn-based games.

Corollary 19. Deciding the existence of a pure Nash equilibrium in a concur-
rent limit-average game is NP-complete, even for games with rewards 0 and 1.

Note that Theorem 18 and Corollary 19 do not apply to terminal-reward games.
In fact, PureNE is decidable in P for these games, which follows from two facts
about terminal-reward games: (1) the numbers pvalGi (s) can be computed in
polynomial time (using a reduction to a turn-based two-player zero-sum game
and applying a result of [31]), and (2) the only possible vectors that can emerge
as the payoff of a pure strategy profile are the zero vector and the reward vectors
at terminal states.

Theorem 20. PureNE is in P for terminal-reward games.

7 Randomised Strategies

In this section, we show that the problem NE is undecidable and, in fact, not
recursively enumerable for turn-based terminal-reward games.
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Fig. 5. Incrementing a counter

Theorem 21. NE is not recursively enumerable, even for turn-based 14-player
terminal-reward games.

Proof (Sketch). The proof is by a reduction from the non-halting problem for
two-counter machines: we show that one can compute from a deterministic two-
counter machine M a turn-based 14-player terminal-reward game (G, s0) such
that the computation ofM is infinite if and only if (G, s0) has a Nash equilibrium
where player 0 receives payoff ≥ 0.

To get a flavour of the full proof, let us consider a one-counter machine M
that contains an increment instruction. A (simplified) part of the game G is
depicted in Fig. 5. The counter values before and after the increment operation
are encoded by the probabilities c1 = 2−i1 and c2 = 2−i2 that player 0 plays
from t1, respectively t2, to the neighbouring grey state. We claim that c2 = 1

2c1,
i.e. i2 = i1 + 1, in any Nash equilibrium σ of (G, s0) where player 0 receives
payoff ≥ 0. First note that player 0 has to choose both outgoing transitions with
probability 1

2 each at s1 and s2 because otherwise player D or player E would
have an incentive to play to a state where player 0 receives payoff < 0. Now
consider the payoffs a = Eσs0 (φA) and b = Eσs0 (φB) for players A and B. We have
a, b ≥ 2 because otherwise one of these two players would have an incentive to
play to a state where player 0 receives payoff < 0. On the other hand, the payoffs
of players A and B sum up to at most 4 in every terminal state. Hence, a+b ≤ 4
and therefore a = b = 2. Finally, the expected payoff for player A equals

a = 1
2
(
c1 · 2 + (1− c1) · 3)+ 1

4 · c2 · 4 + 1
4 · 2 = 2− 1

2c1 + c2 .

Obviously, a = 2 if and only if c2 = 1
2c1. 	


For games that are not turn-based, by combining our reduction with the game
from Example 1, we can show the stronger theorem that deciding the existence
of any Nash equilibrium is not recursively enumerable.
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Corollary 22. The set of all initialised concurrent 14-player terminal-reward
games that have a Nash equilibrium is not recursively enumerable.

8 Conclusion

We have analysed the complexity of Nash equilibria in concurrent games with
limit-average objectives. In particular, we showed that randomisation in strate-
gies leads to undecidability, while restricting to pure strategies retains decidabil-
ity. This is in contrast to stochastic games, where pure strategies lead to un-
decidability [26]. While we provided matching and lower bounds in most cases,
there remain some problems where we do not know the exact complexity. Apart
from StatNE, these include the problem PureNE when restricted to a bounded
number of players.
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Abstract. Verification tasks have non-elementary complexity for prop-
erties of linear traces specified in first-order logic, and thus various lim-
ited logical languages are employed. In this paper we consider two re-
stricted specification logics, linear temporal logic (LTL) and two-variable
first-order logic (FO2). LTL is more expressive, but FO2 is often more
succinct, and hence it is not clear which should be easier to verify. In this
paper we take a comprehensive look at the issue, giving a comparison of
verification problems for FO2, LTL, and the subset of LTL expressively
equivalent to FO2, unary temporal logic (UTL). We give two logic-to-
automata translations which can be used to give upper bounds for FO2

and UTL; we apply these to get new bounds for both non-deterministic
systems (hierarchical and recursive state machines, games) and for prob-
abilistic systems (Markov chains, recursive Markov chains, and Markov
decision processes). We couple this with lower-bound arguments for FO2

and UTL. Our results give both a unified approach to understanding the
behavior of FO2 and UTL, along with a nearly comprehensive picture of
the complexity of verification for these logics.

1 Introduction

The complexity of verification problems clearly depends on the specification lan-
guage for describing properties. Arguably the most important such language is
linear temporal logic (LTL). LTL has a simple syntax, one can verify LTL prop-
erties over Kripke structures in polynomial space, and one can check satisfiability
within the same complexity. Kamp [Kam68] showed that LTL has the same ex-
pressiveness as first-order logic over words. For example, the first-order property
“since we are born, we live until we die”:

∀x. (born(x)→ ∃y ≥ x. die(y) ∧ ∀z. (x ≤ z < y → live(z)))

is expressed in LTL by the formula (born→ live U die).
In contrast with LTL, model checking first-order queries has non-elementary

complexity [Sto74]—thus LTL could be thought of as a tractable syntactic frag-
ment of FO. Another approach to obtaining tractability within first-order logic is
by maintaining first-order syntax, but restricting the number of variables in sub-
formulas to two. The resulting specification language FO2 has also been shown to
have dramatically lower complexity than full first-order logic. In particular, Etes-
sami, Vardi and Wilke [EVW02] showed that satisfiability for FO2 is NEXPTIME-
complete and that FO2 is strictly less expressive than FO (and, thus less than LTL

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 497–511, 2011.
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also). Indeed, [EVW02] shows that FO2 has the same expressive power as unary
temporal logic (UTL): the fragment of LTL with only the unary operators “previ-
ous”, “next”, “sometime in the past”, “sometime in the future”.

Although FO2 is less expressive than LTL there are some properties that are
significantly easier to express in FO2 than in LTL. Indeed, it is easy to show
that there can be an exponential blow-up in transforming an FO2 formula into
an equivalent UTL formula, or even to an LTL formula. We thus have three
languages UTL ⊆ LTL and FO2, with UTL and FO2 equally expressive, and
with FO2 incomparable in succinctness with LTL.

Are verification tasks easier to perform in LTL, or in FO2? This is the main
issue we review in this paper. There are well-known examples of problems that
are easier in LTL than in FO2: in particular satisfiability, which is PSPACE-
complete for LTL and NEXPTIME-complete for FO2 [EVW02]. We will show
that there are also tasks where FO2 is more tractable than LTL.

We conduct a comprehensive analysis of the complexity of FO2 and UTL veri-
fication problems. We begin with model checking problems for Kripke structures
and for recursive state machines (RSMs), giving the complexity for UTL, and
FO2, which we compare to the (known) results for LTL. We then turn to two-
player games where the winning conditions are given by UTL or FO2 formula —
here we isolate the complexity of determining which player has a winning strat-
egy. We then move from non-deterministic systems to probabilistic systems. We
start with Markov chains and recursive Markov chains, the analogs of Kripke
structures and RSMs in the probabilistic case. Finally we consider one-player
stochastic games, looking at the question of whether the player can devise a
strategy that is winning with a given probability.

Complete proofs of the results described below will be given in a long version
of this paper.

Organization: Section 2 contains preliminaries. Section 3 presents the two fun-
damental translations used in our upper bounds. The first is a translation of
FO2 formulas to parity automata, which extends an argument of Etessami,
Vardi and Wilke [EVW02] bounding the number of types in words that sat-
isfy a given formula. This argument will be used in many of our upper bounds
for non-deterministic systems. A second translation takes a UTL formula and
produces a large disjoint union of Büchi automata with special properties. The
latter translation will be particularly useful for probabilistic systems. Section
4 gives upper and lower bounds for non-deterministic systems. Section 5 gives
results for probabilistic systems.

2 Logics and Models

We consider a first-order signature with unary predicates P0, P1, . . . and binary
predicates < (less than) and suc (successor). An ω-word u = u0u1 . . . over al-
phabet Σ = 2{P1,...,Pm} represents a first-order structure 〈N, <, suc,P1, . . . ,Pm〉
where predicate Pi is interpreted by the set Pi = {n ∈ N : Pi ∈ un}. Fixing two
distinct variables x and y, we denote by FO2 the set of first-order formulas over
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the above signature involving only the variables x and y. We denote by FO2[<]
the sublogic in which the binary predicate suc is not used.

The formulas of linear temporal logic (with past operators) LTL are built
from atomic propositions using boolean connectives and the temporal operators
 (next),  (previously),  (eventually),  (sometime in the past), U (Until),
and S (Since). Formally, LTL is defined by the following grammar:

ϕ ::= Pi | ϕ ∧ ϕ | ¬ϕ | ϕ U ϕ | ϕ S ϕ | ϕ | ϕ | ϕ | ϕ ,

where P0, P1, . . . are propositional variables. Unary temporal logic (UTL) de-
notes the subset without U and S, while TL[,] denotes the stutter-free subset
of UTL without  and . For the semantics of LTL see, e.g., [Eme90].

For ϕ a temporal logic formula or an FO2 formula with one free variable, we
denote by L(ϕ) the set {w ∈ Σω : (w, 0) |= ϕ} of infinite words that satisfy ϕ at
the initial position.

The quantifier depth of an FO2 formula ϕ is denoted qdp(ϕ) and the operator
depth of a UTL formula ϕ is denoted odp(ϕ). In either case the length of the
formula is denoted |ϕ|. Etessami, Vardi and Wilke gave a linear translation of
UTL into FO2. In the other direction, they showed the following:

Theorem 1 ([EVW02]). Every FO2 formula ϕ(x) can be converted to an
equivalent UTL formula ϕ′ with |ϕ′| ∈ 2O(|ϕ|(qdp(ϕ)+1)) and odp(ϕ′) ≤ 2 qdp(ϕ).
The translation runs in time polynomial in the size of the output.

Next we collect together definitions of the various different types of state
machine that we consider in this paper. For non-deterministic machines we will
be interested in the existence of an accepting path through the machine that
satisfies a formula, while for probabilistic models we want to know the probability
of such paths.

Hierarchical and Recursive State Machines. A recursive state machine
(RSM) A over a set of propositions P is given by a tuple (A1, . . . , Ak) where
each component state machine Ai = (Ni ∪Bi, Yi, Xi, Eni, Exi, δi) contains (i) a
set Ni of nodes and a disjoint set Bi of boxes; (ii) an indexing function Yi : Bi 7→
{1, . . . , k} that assigns to every box an index of one of the component machines,
A1, . . . , Ak; (iii) a labelling function Xi : Ni 7→ 2P ; (iv) A set of entry nodes
Eni ⊆ Ni and a set of exit nodes Exi ⊆ Ni; (v) A transition relation δi, where
transitions are of the form (u, v) where the source u is either a node of Ni, or a
pair (b, x), where b is a box in Bi and x is an exit node in Exj for j = Yi(b). We
require that the destination v be either a node in Ni or a pair (b, e), where b is
a box in Bi and e is an entry node in Enj for j = Yi(b).

The semantics can be found in [ABE+05]. A hierarchical state machine (HSM)
is an RSM in which the dependency relation between boxes is acyclic.

Markov Chains. A (labelled) Markov chain M = (Σ,X, V,E, P, p0) consists
of an alphabet Σ, a set X of states; a valuation V : X → Σ; a set E ⊆ X ×X
of edges; a transition probability Pxy for each pair of states (x, y) ∈ E such that
for each state x,

∑
y Pxy = 1; an initial probability distribution p0 on the set of

states X.
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Given a language L ⊆ Σω, we denote by PM (L) the probability of the set of
trajectories of M whose image under V lies in L. We consider the complexity of
the following model checking problem: Given a Markov chain M and a UTL- or
FO2-formula ϕ, calculate PM (L(ϕ)).

Recursive Markov Chains. Recursive Markov chains (RMCs) are defined as
RSMs, except that the transition relation consists of triples (u, pu,v, v) where u
and v are as with RSMs, pu,v are non-negative reals with Σvpu,v = 1 or 0 for
every u. The semantics of an RMC can be found in [EY05].

Markov Decision Processes. A Markov decision process (MDP) M =
(Σ,X,N,R, V,E, P, p0) consists of an alphabet Σ, a set X of states, which is
partitioned into a set N of non-deterministic states and a set R of randomising
states; a valuation V : X → Σ, a set E ⊆ X×X of edges, a transition probability
Pxy for each pair of states (x, y) ∈ E, x ∈ R such that

∑
y Pxy = 1; an initial

probability distribution p0. This model is considered in [CY95] under the name
Concurrent Markov chain.

We can view non-deterministic states as being controlled by a scheduler, which
given a trajectory leading to a non-deterministic state s chooses a transition out
of s. There are two basic qualitative model checking problems: the universal
problem asks that a given formula be satisfied with probability 1 for all sched-
ulers; the existential problem asks that the formula be satisfied with probability 1
for some scheduler. The latter corresponds to the problem of designing a system
that behaves correctly in a probabilistic environment.

In the quantitative model checking problem, we ask for the maximal probability
for the formula to be satisfied on a given MDP when the scheduler chooses
optimal moves in the non-deterministic states.

Two-player Games. A two-player game G = (Σ,X,X1, X2, V, E, x0) consists
of an alphabet Σ; a set X of states, which is partitioned into a set X1 of states
controlled by Player I and a set X2 controlled by Player II ; a set of E ⊆ X×X
of transitions; a valuation V : X → Σ; an initial state x0.

The game starts in the initial state and then the player who controls the
current state, taking into account the whole history of the game, chooses one of
the possible transitions. The verification problem of interest is whether Player I
has a strategy such that for all infinite plays the induced infinite word u ∈ Σω

satisfies a given formula ϕ.

3 Translating UTL and FO2 to Automata

We give two translations that will be the core of our upper bound techniques,
capturing key insights about FO2 and UTL formulas.

3.1 From FO2 to Deterministic Parity Automata

We begin with a translation of FO2 formulas to “small” deterministic parity
automata. The translation relies on a small-model property of FO2 that underlies
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the NEXPTIME satisfiability result of Etessami, Vardi, and Wilke [EVW02]. We
give the translation first for the fragment FO2[<] without successor and show
later how to handle the full logic.

We consider strings over alphabet Σ = 2P , where P is the set of unary
predicates appearing in the input FO2[<] formula. We write u ∼n v for two
strings u, v ∈ Σ∗ ∪ Σω if for all FO2[<]-formulas ϕ(x) of quantifier depth at
most n we have (u, 0) |= ϕ iff (v, 0) |= ϕ. We refer to ∼n-equivalence classes as
n-types.

The following small-model theorem is given in [EVW02]. It is also implicit in
Theorem 6.2 of [WI09].

Theorem 2. (i) For any string u ∈ Σ∗ and positive integer n there exists v ∈
Σ∗ such that u ∼n v and |v| ∈ 2O(|P |n); (ii) for any infinite string u ∈ Σω and
positive integer n there are finite strings v and w, with |v|, |w| ∈ 2O(|P |n), such
that u ∼n vwω.

We prove the following related result.

Lemma 1. For any string u ∈ Σω and positive integer n there exists v ∈ Σ∗
with |v| ∈ 2O(|P |n) such that v ∼n u′ for infinitely many prefixes u′ of u, and
u ∼n vwω, where w is a list of the letters occurring infinitely often in u.

By Lemma 1 to know whether u ∈ Σω satisfies an FO2[<]-formula of quantifier
depth n it suffices to know some n-type which occurs infinitely often among
prefixes of u and which letters occur infinitely often in u.

Theorem 3. Given an FO2[<] formula ϕ with quantifier depth n, there exists a
deterministic parity automaton Aϕ accepting the language L(ϕ) such that Aϕ has
22O(|P |n)

states, 2O(|P |) priorities, and can be computed from ϕ in time |ϕ|O(1) ·
22O(|P |n)

.

Proof (Sketch). As Aϕ reads an input string u it stores a representative of the n-
type of the prefix read so far. By Theorem 2(i) the number of such representatives
is bounded by 22O(|P |n)

. Applying Lemma 1, we use a parity acceptance condition
to determine whether u satisfies ϕ, based on which representatives and input
letters occur infinitely often.

Extension to FO2 with successor. By Theorem 1, given an FO2 formula ϕ of
quantifier depth n there is an equivalent UTL formula ϕ′ of at most exponential
size and operator depth at most 2n. Moreover, ϕ′ can be transformed to a normal
form such that all next-time  and last-time  operators are pushed inside the
other operators. Now we can look at ϕ′ also as a TL[,]-formula over an
extended set of predicates P ′ = {kp,kp | p ∈ P, k ≤ n}. By a straightforward
transformation we get an equivalent FO2[<] formula ϕ′ over P ′. Overall, this
transformation creates exponentially larger formulas, but the quantifier depth is
only doubled and the set of predicates is quadratic. Applying Theorem 3 for ϕ′

over set of predicates P ′ gives:

Theorem 4. Given an FO2 formula ϕ with quantifier depth n, there is a de-
terministic parity automaton having 22O(n2|P |)

states and 2O(n|P |) priorities that
accepts the language L(ϕ).
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3.2 From UTL to Büchi Automata

A Büchi automaton A is said to be deterministic in the limit if all accepting
states and their descendants are deterministic; A is unambiguous if for each
state s each word is accepted along at most one run that starts at s.

Let ϕ be a formula of TL[,] over set of atomic of propositions P . Define
cl(ϕ), the closure of ϕ, to consist of all subformulas of ϕ (including ϕ) and their
negations, where we identify ¬¬ψ with ψ. Furthermore, say that s ⊆ cl(ϕ) is
a subformula type if for each formula ψ ∈ cl(ϕ) precisely one of ψ and ¬ψ is a
member of s, ψ ∈ s impliesψ,ψ ∈ s, and ψ1∧ψ2 ∈ s iff ψ1 ∈ s and ψ2 ∈ s.
Given subformula types s and t, write s ∼ t if s and t agree on all formulas
whose outermost connective is a temporal operator, i.e., for all formulas ψ we
have ψ ∈ s iff ψ ∈ t, and ψ ∈ s iff ψ ∈ t.

Fix an alphabet Σ ⊆ 2P and write tpΣϕ for the set of subformula types
s ⊆ cl(ϕ) with s ∩ P ∈ Σ. (In subsequent applications Σ will arise as the set
of propositional labels in a structure to be model checked.) Following [Wol01]
we define a generalised Büchi automaton AΣϕ = (Σ,S, S0, ∆, `,F) such that
L(AΣϕ ) = {w ∈ Σω : (w, 0) |= ϕ}. The set of states is S = tpΣϕ , with the set
S0 of initial states comprising those s ∈ tpΣϕ such that ϕ ∈ s and ψ ∈ s only
if ψ ∈ s for any formula ψ. The state labelling function ` : S → Σ is defined
by `(s) = s ∩ P . The transition relation ∆ consists of those pairs (s, t) such
that (i) ψ ∈ t iff either ψ ∈ t or ψ ∈ s; (ii) ψ ∈ s and ψ 6∈ s implies
ψ ∈ t; (iii) ¬ψ ∈ s implies ¬ψ ∈ t. The collection of accepting sets is
F = {Fψ :ψ ∈ cl(ϕ)}, where Fψ = {s : ψ ∈ s or ψ 6∈ s}.

A run of AΣϕ on a word u ∈ Σω yields a function f : N → 2cl(ϕ). Moreover
if the run is accepting it can be shown that for all formulas ψ ∈ cl(ϕ), ψ ∈
f(i)⇒ (u, i) |= ψ [Wol01, Lemma 2]. But since f(i) contains each formula or its
negation, we have ψ ∈ f(i)⇔ (u, i) |= ψ for all ψ ∈ cl(ϕ). We conclude that AΣϕ
is unambiguous and accepts the language L(ϕ).

Consider the automaton AΣϕ as a directed graph with set of vertices S and
set of edges ∆. Then it is easy to check that: (i) states s and t are in the same
strongly connected component iff s ∼ t; (ii) each strongly connected component
has size at most |Σ|; (iii) the dag of strongly connected components has depth
at most |ϕ| and outdegree at most 2|ϕ|; (iv) AΣϕ is deterministic within each
strongly connected component, i.e., given transitions (s, t) and (s,u) with s, t
and u in the same strongly connected component, we have t = u or `(t) 6= `(u).

Theorem 5. Let ϕ be a UTL formula over set of propositions P with operator
depth n with respect to  and . Given an alphabet Σ ⊆ 2P , there is a family of
at most 2|ϕ|

2
automata {Ai}i∈I such that (i) {w ∈ Σω : w |= ϕ} is the disjoint

union of the languages L(Ai); (ii) Ai has at most O(|ϕ||Σ|n+1) states; (iii) Ai
is unambiguous and deterministic in the limit; (iv) there is a polynomial-time
procedure that outputs Ai given input ϕ and index i ∈ I.

Proof. We first treat the case n = 0, i.e., ϕ does not mention  or .
Let AΣϕ = (Σ,S, S0, ∆,F) be the automaton corresponding to ϕ, as defined

above. For each path π = C0, C1, . . . , Ck of SCC’s in the SCC dag of AΣϕ we define
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a sub-automaton Aπ as follows. Aπ has set of states Sπ = C0 ∪C1 ∪ · · · ∪Ck; its
set of initial states is S0 ∩ Sπ; its transition relation is ∆π = ∆∩ (Sπ × Sπ), i.e.,
the transition relation of AΣϕ restricted to Sπ; its collection of accepting states
is Fπ = {F ∩ Ck : F ∈ F}.

It follows from observations (ii) and (iii) preceding Theorem 5 that Aπ has
at most |ϕ||Σ| states and from observation (iii) that there are at most 2|ϕ|

2

such automata. Since AΣϕ is unambiguous, each accepting run of AΣϕ yields an
accepting run of Aπ for a unique path π, and so the L(Aπ) partition L(AΣϕ ).

Finally Aπ is deterministic in the limit since all accepting states lie in a bot-
tom strongly connected component, and it follows from observation (iv) that all
states in such a component are deterministic. Therefore we can use a standard
transformation of generalised Büchi automata to regular Büchi automata, which
preserves both unambiguity and being deterministic in the limit. The transfor-
mation touches only the bottom strongly connected component of Aπ, which
size will become at most quadratic. This completes the proof in case n = 0.
The general case can be handled using a similar technique to the proof of Theo-
rem 3, that is, by regarding a UTL formula ϕ of operator depth n as a TL[,]
formula ϕ′ over an extended set of propositions {ip,ip : 0 ≤ i ≤ n, p ∈ P}.

4 Verifying Non-Deterministic Systems

Model checking for traditional Kripke Structures is fairly well-understood. All of
our logics subsume propositional logic, and the model checking problems we deal
with generalize propositional satisfiability – hence they are all NP-hard. Tempo-
ral logic without Next and Previously (TL[,]) is known to be NP-complete,
UTL and LTL are PSPACE-complete [SC82], and—as shown by Etessami, Vardi,
and Wilke in [EVW02]—FO2 model-checking is complete for NEXPTIME.

Below we extend these results to give a comparison of the complexity of
model checking for recursive state machines and two-player games, applying
the translations in the previous section.

Recursive State Machines. We show that FO2 model checking for RSMs can
be done as efficiently as for ordinary Kripke structures.

Theorem 6. FO2 model checking of RSMs can be done in NEXPTIME.

Proof. We describe a NEXPTIME algorithm that checks satisfiability of an FO2

sentence ϕ on the language of RSM A. We can convert ϕ to an exponential-sized
formula ϕ′ in UTL whose operator depth equals the quantifier rank of ϕ. By
Theorem 5 it suffices to check that one of the automata Ai is satisfied on a
word accepted by A. We can thus guess such an Ai (by guessing a path in the
component DAG) and can then check intersection of Ai with A in polynomial
time in Ai and A, by forming the product and checking that we can reach an
accepting bottom strongly connected component of the product using [ABE+05].
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Two-player games with FO2 winning condition. Two-player games are
known to be in 2EXPTIME for LTL [PR89]. We now show that the same is
true for FO2, making use of the first translation in the previous section. We also
utilise the fact that a parity game with n vertices, m edges and d priorities can
be solved in time O(dmnd) [Jur00].

From this we easily conclude the 2EXPTIME upper bound:

Theorem 7. Two-player games with FO2 winning conditions are solvable in
2EXPTIME.

Proof. Using Theorem 4, we construct in 2EXPTIME a deterministic parity
automaton for the FO2 formula ϕ with doubly exponentially many states and
at most exponentially many priorities. By taking the product of this automaton
with the graph of the game, we get a parity game with doubly exponentially
many states but only exponentially many priorities. (In fact if we define the
automaton over an alphabet Σ ⊆ 2P containing only sets of propositions that
occur as labels of states in the game, then polynomially many priorities suffice.)
We can then determine the winner in double exponential time.

Combining this with the result by Alur, La Torre, and Madhusudan, who
showed that two-player games are 2EXPTIME-hard [ATM03] already for the
simplest TL[,], along with the fact that we can convert UTL formula to
FO2 formula in polynomial time, we get 2EXPTIME-completeness:

Corollary 1. Deciding two-player games with FO2 winning conditions is
2EXPTIME-complete.

The following table summarises both the known results and the results from this
paper (in bold) concerning non-deterministic systems.

TL[,] UTL FO2 LTL
Kripke structure NP PSPACE NEXP PSPACE
HSM NP PSPACE NEXP PSPACE
RSM NP EXPTIME NEXP EXPTIME
Two-player games 2EXP 2EXP 2EXP 2EXP

The PSPACE bound for model checking LTL on HSMs follows by expanding
the HSMs to ‘flat’ Kripke structures and recalling that model checking LTL
on Kripke structures can be done in space polynomial in the logarithm of the
model size. Additionally, the complexity of model checking UTL and LTL on
RSMs is EXPTIME-complete [BEM97] and model checking TL[,] on RSMs
is NP-complete [LTP07].

5 Verifying Probabilistic Systems

Markov chains. We begin with model checking the most basic probabilistic
system, Markov chains. Courcoubetis and Yannakakis [CY95] showed that one
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can determine if an LTL formula holds with non-zero probability in a Markov
chain in PSPACE. This gives a PSPACE upper bound for TL[,] and an
EXPSPACE upper bound for FO2. We will show how to get better bounds,
even for approximating the probability of a formula holding, using the second
translation from Section 3.

Our improved complexity bounds involve the counting classes #P and #EXP.
#P is the class of functions f for which there is a non-deterministic polynomial-
time Turing Machine M such that f(x) is the number of accepting computation
paths of M on input x. A complete problem for #P is #SAT, the problem
of counting the number of satisfying assignments of a given boolean formula.
The class of functions #EXP is defined analogously, except with M a non-
deterministic exponential-time machine. A decision version of #EXP was previ-
ously considered in [BFT98].

Some care is needed in characterising the complexity of probabilistic model
checking problems in terms of counting classes. Such problems typically involve
computing fractional values, whereas counting classes, by definition, involve
integer-valued functions. The approach we take is to consider the approximation
problem for model checking a formula ϕ of temporal logic or first-order logic
on a Markov chain M . The approximation problem takes an integer accuracy
parameter k as input, in addition to M and ϕ. The output of the approximation
problem is the unique integer n such that n/2k ≤ PM (L(ϕ)) < (n+ 1)/2k.

Following [CSS03] we note the following property of unambiguous automata:

Lemma 2. Given a Markov chain M = (Σ,X, V,E, P, p0) and a generalised
Büchi automaton A = (Σ,S, S0, `,∆,F) that is unambiguous, PM (L(A)) can be
computed in time polynomial in M and A.

Proof. We define a directed graph M ⊗A representing the synchronised product
of M and A. The vertices of M ⊗ A are pairs (x, s) ∈ X × S with the same
propositional labels, i.e., such that V (x) = `(s); the set of directed edges is
{((x, s), (y, t)) : (x, y) ∈ E and (s, t) ∈ ∆}. We say that a bottom strongly
connected component (BSCC) of M ⊗A is accepting if for each set of accepting
states F ∈ F it contains a pair (x, s) with s ∈ F .

Let L(A, s) denote the set of words accepted by A starting in state s. For
each vertex (x, s) of M ⊗A we have a variable ξx,s representing the probability
PM,x(L(A, s)) of all runs of M starting in state x that are in L(A, s). These
probabilities can be computed as the unique solution of the following linear
system of equations:

ξx,s = 1 (x, s) in an accepting BSCC
ξx,s = 0 (x, s) in a non-accepting BSCC

ξx,s =
∑

(s,t)∈∆

∑
y:V (y)=`(t)

Pxy · ξy,t otherwise.



506 M. Benedikt, R. Lenhardt, and J. Worrell

The correctness of the third equation follows from the following calculation:

PM,x(L(A, s)) = PM,x(
⋃

(s,t)∈∆

`(s) · L(A, t) )

=
∑

(s,t)∈∆

PM,x(`(s) · L(A, t)) (since A is unambiguous)

=
∑

(s,t)∈∆

∑
y:V (y)=`(t)

Pxy · PM,y(L(A, y))

We show how this helps with model checking a very minimal temporal lan-
guage:

Corollary 2. The approximation problem for model checking a TL[,] for-
mula ϕ on a Markov chain M is in #P if the accuracy parameter k is given in
unary.

Proof. Let Σ ⊆ 2P be the set of propositional labels appearing in M . Using
Theorem 5, we have that for formula ϕ there is a family {Ai} comprising at
most 2|ϕ|

2
unambiguous generalised Büchi automata whose languages partition

{w ∈ Σω : w |= ϕ}. Moreover, each Ai has at most |ϕ||Σ| states and can be
generated in polynomial time from ϕ and index i. By Lemma 2 we can further
compute the probability pi of M satisfying Ai in polynomial time in the sizes of
M and Ai.

We can approximate each pi a by dyadic rational ai/2b, where b is large
enough so that

∑
i ai/2

b is within 2−k of
∑
i pi. Since each ai is computable in

polynomial time we can compute
∑
i ai in #P .

The same technique applies to FO2 by first translating FO2 formulas to equiv-
alent UTL formulas using Theorem 1. In fact the extra expressiveness of #EXP
allows us to give the accuracy parameter in binary.

Theorem 8. The approximation problem for model checking an FO2 formula ϕ
on a Markov chain M is in #EXP if the accuracy parameter is given in binary.

We can get corresponding tight lower bounds.

Theorem 9. The approximation problem for model checking TL[,] on
Markov chains is #P-hard.

Theorem 10. The approximation problem for model checking FO2 on Markov
chains is #EXP-hard.

Proof. #P -hardness is proven by reduction from #SAT. Given a propositional
formula ϕ one has a Markov chain generate a uniform distribution over strings
that code possible truth assignments for ϕ. The temporal logic formula simply
checks whether ϕ is satisfied by the assignment encoded in a given string.

#EXP-hardness is by reduction from the problem of counting the number
of accepting paths of a NEXPTIME Turing machine M . The Markov chain
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generates a uniform distribution over strings of the appropriate length and the
formula checks whether a given string encodes an accepting computation of M .
The ability of FO2 to check validity of such a string was already exploited in the
NEXPTIME-hardness proof for FO2 satisfiability in [EVW02].

Hierarchical and Recursive Markov Chains. For an RMC A, we can com-
pute reachability probabilities q(u,ex) of exiting a component Ai starting at state
u ∈ Vi going to exit ex ∈ Exi. Etessami and Yannakakis [EY05] show that
these probabilities are the unique solution of a system of non-linear equations
which can be found in polynomial space using a decision procedure for the ex-
istential theory of the reals. Following [EY05] for every vertex u ∈ Vi we let
ne(u) = 1−

∑
ex∈Exi

q(u,ex) be the probability that a trajectory beginning from
node u never exits the component Ai of u. Etessami and Yannakakis [YE05] also
show that one can check properties specified by deterministic Büchi automata
in PSPACE, while for non-deterministic Büchi automata they give a bound of
EXPSPACE. Thus the prior results would give a bound of EXPSPACE for UTL
and 2EXPSPACE for FO2. We will improve upon both these bounds. We ob-
serve that the technique of [YE05] can be used to check properties specified by
non-deterministic Büchi automata that are unambiguous in the same complexity
as deterministic ones. This will then allow us to apply our second translation
from Section 3 to both UTL and FO2.

Theorem 11. Given an unambiguous Büchi automaton B and a RMC A, we
can compute the probability that B accepts a trajectory of A in PSPACE.

Proof. Let B be an unambiguous Büchi automaton with set of states Q, transi-
tion function ∆ and labelling function `. Let A be an RMC with valuation V . We
define a product RMC A ⊗ B with component and call structure coming from
A whose states are pairs (x, s), with x a state of A and s a state of B such that
V (x) = `(s) (i.e., x and s have the same label). Such a pair (x, s) is accepting
if s is an accepting state of B. A run through the product chain is accepting if
at least one of the accepting states is visited infinitely often. Note that a path
through A may expand to several runs in A⊗B since B is non-deterministic.

For each i, for each vertex x ∈ Vi, exit ex ∈ Exi and states s, t ∈ Q we
define p(x, s → ex, t) to be the probability that a trajectory in RMC A that
begins from a configuration with state x and some non-empty context (i.e. not
at top-level) expands to an accepting run in A⊗B from (x, s) to (ex, t).

Just as in the case of deterministic automata, we can compute p(x, s→ ex, t)
as the solution of the following system of non-linear equations:

If x ∈ Vi is not entrance of the box we have:

p(x, s→ ex, t) =
∑

x′:(x,Pxx′ ,x
′)∈δi

Pxx′
∑

s′:(s,s′)∈∆∧`(s′)=V (x′)

p(x′, s′ → ex, t)

If x ∈ Vi is entrance of the box b ∈ Bi then we include the equations:

p(x, s→ ex, t) =
∑
j,s′∈Q

p((b, en), s→ (b, exj), s′)p((b, exj), s′ → ex, t)



508 M. Benedikt, R. Lenhardt, and J. Worrell

where p((b, en), s→ (b, exj), s′) = p(enYi(b), s→ exj , s
′) and exj ∈ ExYi(b).

The justification for these equations is as follows. Since B is unambiguous,
each trajectory of A expands to at most one accepting run of A ⊗ B. Thus in
summing over automaton states s′ in the two equations above we are summing
probabilities over disjoint events which correctly gives us the probability of the
union of these events.

We now explain how these probabilities can be used to compute the proba-
bility of acceptance. We assume without loss of generality that the transition
function of B is total.

We construct a finite-state summary chain for the product A⊗B exactly as in
the case of deterministic automata [YE05]. For each component Ai of A, vertex
x of Ai, exit ex ∈ Exi and for each pair of states s, t of B the probability to
transition from (x, s) to (ex, t) in the summary chain is calculated from p(x, s→
ex, t) after adjusting for probability ne(x) that A never exits Ai starting at
vertex x. Note that since automaton B is non-blocking, the probability of never
exiting the current component of A ⊗ B starting at (x, s) is the same as ne(x)
(the probability of never exiting the current component from vertex x in the
RMC A alone).

To summarise, we first compute reachability probabilities q(u,ex) and proba-
bilities ne(u) for the RMC A. Then we consider the product A ⊗ B and solve
a system of non-linear equations to compute the probabilities of summary tran-
sitions p(x, s → ex, t). From these data we build the summary chain, identify
accepting SCCs and compute the resulting probabilities in the same way as in
[YE05]. All these steps can be expressed as a formula and its truth value can be
decided using existential theory of the reals in PSPACE.

Using the translation from Theorem 5 and Theorem 11 we immediately obtain
upper bounds for FO2 and for TL[,]:

Theorem 12. The probability of an FO2 formula holding on an RMC can be
computed in EXPSPACE.

Theorem 13. The probability of a TL[,] formula holding on an RMC can
be computed in PSPACE.

Proof. By Theorem 5 we can convert a TL[,] formula ϕ into an equivalent
disjoint union of 2|ϕ|

2
unambiguous automata of polynomial size in |ϕ| and the

RMC. Using polynomial space we can therefore generate each automaton, cal-
culate the probability that the RMC generates an accepting trajectory, and sum
these probabilities for each automaton.

For an ordinary Markov chain, calculating the probability of an LTL formula
can be done in PSPACE [Yan10], while we have seen previously that we can
calculate the probability of an FO2 formula in #EXP. One can achieve the
same bounds for LTL and FO2 on hierarchical Markov chains. In each case we
expand the HMC into an ordinary Markov chain and then use the model checking
algorithm for a Markov chain. This does not impact the complexity, since the
space complexity is only polylog in the size of the machine for LTL and the time
complexity is only polynomial in the machine size for FO2. We thus get:
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Theorem 14. The probability of a FO2 formula holding on a HMC can be com-
puted in #EXP, while for an LTL formula it can be computed in PSPACE.

Markov Decision Processes. Courcoubetis and Yannakakis [CY95] have
shown that the maximal probability with which a scheduler can achieve an UTL
objective on an MDP can be computed in 2EXPTIME. It follows from results
of [ATM03] that even the qualitative problem of determining whether every
scheduler achieves probability 1 is 2EXPTIME-hard. Combining the 2EXPTIME
upper bound with the exponential translation from FO2 to UTL [EVW02] yields
a 3EXPTIME bound for FO2. Below we see that using our FO2-to-automaton
construction we are able to do “exponentially better”.

We begin with universal formulation of qualitative model checking MDPs.
Here we can apply the second translation to get bounds:

Theorem 15. Determining whether for all schedulers a TL[,]-formula ϕ
holds on a Markov decision process M with probability 1 is in co-NP.

Proof. The corresponding complement problem asks whether there exists a
scheduler σ such that the probability is greater than 0. For this problem, there
is an NP algorithm. We can just guess a particular Ai from Theorem 5 corre-
sponding to one of the automata for ϕ.

It is easy to see that the bound is tight, since qualitative model checking for
MDPs generalizes validity for TL[,] formulas, which is co-NP hard.

Theorem 16. Determining whether for all schedulers a UTL-formula ϕ holds
on a Markov decision process M with probability 1 is in EXPTIME. For FO2

the problem is in co-NEXPTIME.

Proof. In [CY95], there is a polynomial algorithm for qualitative model checking
deterministic Büchi automata on MDPs. As noted there, the algorithm applies
to automata that are deterministic in the limit as well. Applying Theorem 5, we
can apply the algorithm to each Ai, giving a single exponential algorithm.

The result for FO2 follows along the lines of the proof of Theorem 15.

Note that here the FO2 problem is easier than the corresponding LTL problem,
which is known to be 2EXPTIME-complete.

Turning to lower bounds, note that co-NEXPTIME-hardness for FO2 is in-
herited from the lower bound for Markov chains. On the other hand, we can
show that the EXPTIME bound for UTL is tight:

Theorem 17. Determining whether for all schedulers a UTL-formula ϕ holds
on a Markov decision process M with probability 1 is EXPTIME-hard.

Proof. The argument is based on the idea of Courcoubetis and Yannakakis for
lower bounds in the LTL case. We reduce from the problem of determining
whether an alternating PSPACE machine M accepts, to the problem of existence
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of a scheduler that enforces that a UTL formula holds with non-zero probability
— clearly the latter is equivalent to qualitative model checking. The probabilistic
environment will play the role of one player in the alternating PSPACE compu-
tation, proposing moves of one player with equal probability. The scheduler will
play the role of the other player, proposing responses non-deterministically. The
main difference between the MDP game structure and the configuration graph
of M is that when the configuration reaches an acceptance state, it moves back
to the initial state — this ensures that the game is played repeatedly, which can
be used to amplify any positive probability of non-acceptance. We can give a
UTL formula that will check that the full run is winning for the scheduler. If the
alternating machine accepts, the winning strategy for the computation results in
a scheduler for the game that can enforce the formula with probability 1. If the
alternating machine does not accept, then any scheduler will have probability 0
of enforcing the probability.

For the existential case of the qualitative model-checking problem, an upper
bound of 2EXPTIME for all of our languages will follow from the quantitative
case below. On the other hand the arguments from [ATM03] can be adapted to
get a 2EXPTIME lower bound even for qualitative model-checking TL[,] in
the existential case. Hence we have:

Theorem 18. Determining if there is a scheduler that enforces a formula with
probability one is 2EXPTIME-complete for each of TL[,],UTL,LTL,FO2.

We now turn to the quantitative case. We apply the translation from FO2 to
deterministic parity automata from Section 3, along with the result that the value
of a Markov decision process with parity winning objective can be computed in
polynomial time [CH11]. Using Theorem 3 we immediately get bounds for FO2

which match the known bounds for LTL:

Theorem 19. We can compute the maximum probability of an FO2 formula ϕ
over all schedulers on a Markov decision processes M in 2EXPTIME.

The table to follow summarizes the known results and the results from this
paper (in bold) on probabilistic systems. An asterisk indicates bounds that are
not known to be tight.

TL[,] UTL FO2 LTL
Markov chain #P PSPACE #EXP PSPACE
HMC PSPACE∗ PSPACE #EXP PSPACE
RMC PSPACE∗ EXPSPACE∗ EXPSPACE∗ EXPSPACE∗

MDP (∀) co-NP EXP co-NEXP 2EXP
MDP (∃) 2EXP 2EXP 2EXP 2EXP
MDP (quant) 2EXP 2EXP 2EXP 2EXP
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[Jur00] Jurdziński, M.: Small progress measures for solving parity games. In: Re-
ichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301.
Springer, Heidelberg (2000)

[Kam68] Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis,
UCLA (1968)

[LTP07] La Torre, S., Parlato, G.: On the complexity of LTL model-checking of recur-
sive state machines. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
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Abstract. Given a system A and objective Φ, the general task of con-
troller synthesis is to design a decision making policy that ensures Φ
to be satisfied. This paper deals with LTS-like system models and con-
trollers that make their decisions based on the observables of the actions
performed so far. Our main contribution is a compositional framework
for treating multiple linear-time objectives inductively. For this purpose,
we introduce a novel notion of strategies that serve as generators for
observation-based decision functions. Our compositional approach will
rely on most general (i.e., most permissive) strategies generating all de-
cision functions that guarantee the objective under consideration. Finally
we show that for safety and co-safety objectives Φ, most general strate-
gies are realizable by finite-state controllers that exogenously enforce Φ.

1 Introduction

The starting point of the classical controller synthesis problem is a formal model
A for an open system (often called plant) and an objective Φ that formalizes
the desired system properties and is typically given as a temporal formula. The
model describes the possible interactions of the plant with its environment and
typically relies on some nondeterministic automata model such as labeled tran-
sition systems (LTS). The task is then to design a controller that restricts the
possible behaviors of A (i.e., discards certain nondeterministic alternatives) such
that the controlled system meets the specification. Several instances of the con-
troller synthesis problem have been studied in the literature that differ in the
type of system models and objectives, the assumptions on what is visible to
the controller and the way how the environment and controller interact with
A. For example, the problem of realizability of specifications, i.e., the synthe-
sis of a stand-alone controller directly from a specification, has been treated in
[1,12,15,8]. The synthesis problem has been studied for various types of systems
including discrete event systems [16], hybrid systems [2], and timed systems [3].
We address here the case where the system A is described by some nondeter-
ministic LTS-like automaton that models the parallel composition of controllable
components and their (partly observable, but uncontrollable) environment. The
controller C is again an automaton representing a component that decides on
the “legal” nondeterministic options in an exogenous manner, i.e., controls A
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Fig. 1. Illustrating examples

from outside by running in parallel to A with synchronization over the sched-
uled actions. Given A and an objective Φ, soundness of the controller means that
C �� A |= Φ where �� denotes parallel composition. Similar scenarios have been
studied in the literature. For instance, in [10] the synthesis problem is studied
for open systems with complete information in reactive environments and CTL∗

objectives. In distributed controller synthesis [13,11], the focus is on local con-
trollers with no global knowledge for the individual components making up the
system, working together to enforce the objective.

Our focus is to find a compositional approach for constructing a controller
for a single component within a partially observable environment and partial
control. Compositionality means that our approach is suitable to treat cascades
of linear-time objectives Φ1, Φ2, . . . , Φk in an online manner, i.e., first construct a
controller C1 for system A enforcing Φ1, then a controller C2 for system C1 �� A
enforcing objective Φ2, and so on, such that

Ck �� . . . �� C2 �� C1 �� A |= Φ1 ∧ Φ2 ∧ . . . ∧ Φk

if the conjunction can be enforced for A. It is crucial for compositionality that
each controller Ci enforces Φi in a most general manner, i.e., being as permis-
sive as possible and thus not ruling out ways to enforce Φi that may be needed
to enforce subsequent objectives. Kuiper and van de Pol [9] consider most gen-
eral strategies in a partial observation setting, but their approach is limited to
safety objectives. Bernet et al. [4] introduce the notion of permissive strategies
in a complete information setting and show that such permissive strategies only
exist for safety objectives. Bouyer et al. [6] consider a different notion of permis-
siveness in a quantitative setting where a penalty value for non-permissiveness
is minimized, calculated from weights on actions.

Safety objectives can be straightforwardly enforced in a most general man-
ner by offering all the “legal actions” that do not lead to the violation of the
objective. Fig. 1a illustrates by way of a well-known example why the standard
notion of strategies relying on such a concept of “legal actions” are not sufficient
to deal with objectives beyond safety in a most general manner. Suppose that
actions α, β are controllable and α and β agree with their observables. Clearly,
first scheduling α for a finite amount of time and then scheduling β enforces the
reachability objective ♦q1 (“eventually q1”). Thus, both α and β are “legal” in
state q0 for the objective ♦q1. However, offering both α and β in state q0 does
not guarantee ♦q1 to hold as it does not avoid the computation that always takes
α and stays forever in state q0.

Our main contribution is a compositional framework for objectives beyond
safety in a partial information setting, relying on a novel notion of strate-
gies as generators of decision functions. Each decision function represents one
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particular way in which an objective can be enforced in an observation-based
manner. Most general strategies are then those strategies that generate all deci-
sion functions that enforce a given objective, and controllers are realizations of
strategies with finite memory. The strategies and controllers are equipped with a
fairness condition and generate the decision function instances in an observation-
based manner by choosing from all the sets of “legal actions” in a fair way. We are
not aware of any other paper where a similar definition of most general strategies
as generators for decision functions has been studied. We show the composition-
ality of most general strategies and their controllers for arbitrary objectives that
can be enforced by controllers realizing most general strategies. Furthermore, we
show the existence of most general strategies and the compositional construction
of controllers realizing them for conjunctions Φ = Φ1 ∧ . . . ∧ Φk of safety and
co-safety objectives if Φ is enforceable.

Reconsider the automaton in Fig. 1a. The decision functions enforcing ♦q1
are those that schedule the singleton {β} for at least one of the observations in
α∗. A most general strategy that generates exactly these decision functions will
offer the alternatives {α}, {β} and {α, β} at all times and imposes the fairness
constraint that eventually the singleton {β} will be scheduled. As there is no
global bound k ∈ N for the number of observed α before a decision function
enforcing ♦q1 has to schedule {β}, strategies relying on a counting mechanism
are not sufficient. In the context of realizability of specifications in Linear Tem-
poral Logic (LTL), Filiot et al. [8] rely on such a counting mechanism to obtain
safety objectives for all parts of the specification, using a bound depending on
the whole specification. Our approach utilizes strategies and controllers that
are truly most general and are thus independent of the additional objectives
considered subsequently.

One of the challenges in any compositional approach is the treatment of ter-
mination, as different components may block each other. For the most general
handling of only safety objectives, such finite behavior can be handled implic-
itly, as all prefixes of safe executions are safe themselves. For objectives beyond
safety as treated in this paper, we have to take termination into account to ensure
compositionality. The strategies and controllers enforcing subsequent objectives
have to ensure that they do not cause termination when previously applied con-
trollers require that no termination occurs to enforce their objectives, e.g., for
reachability objectives. For this purpose, we suppose that the controllers and the
controllable component may synchronize over special suspend actions that push
the controllable component into a sleep mode, deactivating the controllable ac-
tions. The controller still observes visible actions by the environment and has the
option to reactivate the controllable component. A suitable notion of admissi-
bility then ensures that a controller must not cause termination in non-terminal
states, unless it is in sleep mode.

Outline. Section 2 introduces the formal notions of decision functions, strate-
gies and controllers used in our compositional framework. Section 3 then shows
the adequacy for compositional reasoning. Section 4 outlines the game-based
approach for constructing controllers for safety and co-safety objectives.
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2 Decision Functions, Strategies and Controllers

Let Σ be an alphabet. Then Σ∞ = Σ∗∪Σω denotes the set of finite and infinite
words over Σ. f(x) = ⊥ denotes that function f is undefined for argument x.

Automata. An automaton is a tuple A = (Q,Act ,−→, Q0), where Q is a finite
set of states, Q0 ⊆ Q is the set of initial states, Act is a finite set of actions, and
−→⊆ Q × Act × Q the transition relation. Action α is enabled in state q ∈ Q
iff q

α−→ q′ for some q′ ∈ Q. Act(q) denotes the set of enabled actions in state q.
An execution in A is a finite or infinite sequence built by consecutive transitions
π = q0

α1−→ q1
α2−→ q2

α3−→ . . .. If π is finite then last(π) denotes its last state and
|π| the total number of transitions. Execution π is called initial if q0 ∈ Q0.

Throughout the paper, A = (Q,Act ,−→, Q0) denotes an automaton repre-
senting the behavior of the controllable component and the environment. The
actions in Act are classified as being either controllable or uncontrollable and as
either visible or invisible for the controllable component. Let Actvis ⊆ Act be the
set of visible actions and let Actctr ⊆ Actvis be the set of controllable actions, i.e.,
we assume that all controllable actions are visible. The subset Act# ⊆ Actctr

of the controllable actions contains the actions that signal the suspension of
the controllable component, which deactivates the controllable actions until an
uncontrollable, visible action occurs and the controllable component resumes.

Observables, observations. The visible actions can be observed via their ob-
servables. Let Obs be a finite set of observables and let obs : Actvis → Obs be
a function assigning an observable to each visible action α ∈ Actvis such that
there are sets Obs# ⊆ Obsctr ⊆ Obs with obs(α) ∈ Obsctr iff α ∈ Actctr and
obs(α) ∈ Obs# iff α ∈ Act#. We naturally extend obs for action sequences by
concatenating the observables, i.e., obs : Act∞ → Obs∞ with obs(α1α2α3 . . .) =
obs(α1)obs(α2)obs(α3) . . ., where obs(α) is the empty word ε for invisible actions
α. We refer to the elements of Obs∞ as observations. The observation obs(π) of a
finite or infinite execution π in A is the observation obs(α1α2α3 . . .) of its action
sequence. An observation σ ∈ Obs∞ is called A-schedulable, briefly schedulable,
if there exists an initial execution π in A with obs(π) = σ.

Annotated observables, observations. Later, in the definitions of strate-
gies and controllers, we label the observables in Obs with annotations from a
finite, non-empty set Ann. Let Obs = Obs × Ann denote the set of annotated
observables. An annotation function represents a policy to decorate observables
with annotations in a history-dependent manner. Formally, an annotation func-
tion is a function ann : Obs∗ × Obs → Ann. It induces an inductively defined
transformation ann∗ : Obs∗ → Obs∗ of observations into their annotated ver-
sions: ann∗(ε) = ε and ann∗(σβ) = ann∗(σ)〈β, ann(σ, β)〉 for all σ ∈ Obs∗ and
β ∈ Obs. To strip the annotations, we write 〈β, a〉|Obs = β, σ′|Obs = β1β2 . . . for
σ′ = 〈β1, a1〉〈β2, a2〉 . . . ∈ Obs∞ and O|Obs = {β′|Obs : β′ ∈ O} for O ∈ 2Obs.

OOO-compliance. For O ∈ 2Obs , action α is called O-compliant if either α is
invisible or it is visible with an observable in O. The set of O-compliant actions
in state q is Act(q,O) =

{
α ∈ Act(q) : obs(α) ∈ O or α /∈ Actvis

}
.
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Non-blocking, passive. To ensure that the controllable component can not
refuse actions in Actvis\Actctr, it must always offer observables for these actions.
This condition can be understood as “input enabledness” for the visible, but un-
controllable actions. For this purpose, we use a partition UObs = {U1, . . . , Uk}
of Obs \ Obsctr that groups the observations of the visible, but uncontrollable
actions and require that decision functions must offer at least one observable of
each group. Intuitively, each group Ui stands for some visible, but uncontrol-
lable action that might be annotated by the controller in different ways, yielding
different observables for the same action. The latter will be crucial for composi-
tionality. Initially, there are no annotations and each visible, but uncontrollable
action constitutes its own group, i.e., UObs =

{
{obs(α)} : α ∈ Actvis \Actctr

}
.

A set O ∈ 2Obs is non-blocking if U ∩O �= ∅ for each U ∈ UObs . We say a set
O ∈ 2Obs is passive if O is non-blocking and O ∩Obsctr = ∅.

Decision functions describe observation-based scheduling policies for the con-
trollable component to “offer” sets of interactions. A decision function is a func-
tion d : Obs∗ → 2Obs such that d(σ) is non-blocking for all σ ∈ Obs∗ and d(σ)
is passive for all σ ∈ Obs∗Obs#. The first condition ensures that the control-
lable component cannot avoid visible but uncontrollable actions to be taken.
The second condition ensures that after being suspended, the controllable com-
ponent becomes passive. As soon as the next visible and uncontrollable action
is performed, it switches back to the normal mode.

To illustrate why we have to deal with decision functions that schedule sets of
observables rather than single observables, consider the automaton in Fig. 1b.
Suppose that α, β1, β2 are controllable actions and that they agree with their
observables. The reachability objective ♦q3 (“eventually q3”) can be enforced
by the decision function that first offers observable α and then offers both ob-
servables β1 and β2, while there is no decision function enforcing ♦q3 that offers
single observables only.

Executions and paths. The notion of a path captures “complete” behavior,
relying on a maximal progress assumption for the environment and the control-
lable component, with special treatment for the suspend mode. An execution π
in A is called a path in A if one of the following three conditions (1), (2) or
(3) holds: (1) π is infinite, or (2) π is finite and ends in a terminal state, i.e.,
Act(last(π)) = ∅, or (3) π is finite and the last observable is a suspend signal
(i.e., obs(π) ∈ Obs∗Obs#) and Act(last(π)) \Actctr = ∅. Later, in Section 3, we
will augment the automata with a suitable fairness condition and will update
the definition of paths to take this fairness into account.

Given a decision function d, an execution π = q0
α1−→A q1

α2−→A q2
α3−→A . . . in

A is a d-execution if, for all i < |π|, αi+1 ∈ Act(qi, d(obs(α1 . . . αi))), i.e., that
αi+1 is a d(obs(α1 . . . αi))-compliant action in state qi. A d-path denotes either an
infinite d-execution or a finite d-execution as above with Act(last(π), d(obs(π)))=
∅. An observation σ ∈ Obs∞ is said to be d-schedulable if there exists an
initial d-execution π such that σ = obs(π). An annotated observation σ′ =
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β′1 . . . β
′
n ∈ Obs∗ with Obs = Obs × Ann is called d′-schedulable for a function

d′ : Obs∗ → 2Obs if σ′|Obs is A-schedulable and β′i+1 ∈ d′(β′1 . . . β
′
i) for i < n.

Admissibility. Clearly, each d-execution is an execution in A. However, the
corresponding statement for paths does not hold in general. If the last obser-
vation is not a suspend signal, then a finite d-path might not be a path in
A. Decision function d is called admissible if there is no finite, initial d-path
π = q0

α1−→A . . .
αn−→A qn, with obs(α1 . . . αn) /∈ Obs∗Obs# and Act(qn) �= ∅.

Obviously, d is admissible iff each d-path is a path in A. We will later adapt
the notion of admissibility (and the notions that rely on admissibility) to take
fairness conditions of A into account.

We introduce strategies as generators of decision functions. The notion of a
most general strategy for some objective then corresponds to the inclusion of
all decision functions enforcing the objective in the strategy. In our approach,
strategies and controllers may label the observables in Obs with annotations
from a set Ann, yielding the set of annotated observables Obs = Obs×Ann. The
annotations can be used to switch between phases. E.g., a most general strategy
for an objective ♦�Φ (eventually always Φ) might operate in two phases. In the
first phase, it ensures that it remains possible to eventually ensure �Φ, while
the second phase actually enforces �Φ. The switch from the first to the second
phase is realized using fairness assumptions on the annotations, see Example 3.

Definition 1 (Strategy). A strategy is a tuple S = (D,Fair,Ann) where

– D : Obs∗ → 22Obs

is a decision function template such that the following
conditions (i)-(iv) hold for all annotated observations σ′ ∈ Obs∗:
(i) D(σ′) �= ∅,
(ii) 〈β, a1〉, 〈β, a2〉 ∈ O implies a1 = a2, for all O ∈ D(σ′) and all β ∈ Obs,
(iii) O|Obs is non-blocking for all O ∈ D(σ′) and
(iv) O|Obs is passive for all O ∈ D(σ′) if σ′|Obs ∈ Obs∗Obs#.

– Fair =
{
F1, . . . ,F�

}
is a fairness condition consisting of finitely many subsets

Fj of Obs∗ × 2Obs such that O ∈ D(σ′) for all (σ′,O) ∈ F1 ∪ . . . ∪ F�.
– Ann is a finite set of annotations.

For F ∈ Fair and σ′ ∈ Obs∗, we write F(σ′) for the set
{
O ∈ 2Obs : (σ′,O) ∈ F

}
.

A function d′ : Obs∗ → 2Obs is called an annotated instance of S if d′ can be
generated by the template D in a fair way, i.e., if conditions (I1) and (I2) hold:

(I1) d′(σ′) ∈ D(σ′) for all d′-schedulable annotated observations σ′ ∈ Obs∗

(I2) d′ respects Fair, i.e., for each infinite d′-schedulable annotated observation
σ′ = β′1β

′
2β
′
3 . . . ∈ Obsω and for each F ∈ Fair, either (I2.1) or (I2.2) holds:

(I2.1) There are only finitely many positions i � 1 where F(β′1 . . . β
′
i) �= ∅.

(I2.2) There are infinitely many i � 1 with d′(β′1 . . . β′i) ∈ F(β′1 . . . β′i).

A decision function d̂ : Obs∗ → 2Obs is called a plain instance of a strategy S
if there exists an annotated instance d′ : Obs∗ → 2Obs of S and an annotation
function ann such that for all σ ∈ Obs∗

d′(ann∗(σ)) =
{
〈β, ann(σ, β)〉 ∈ Obs : β ∈ d̂(σ)

}
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A decision function d : Obs∗ → 2Obs is said to be an A-instance, or briefly
instance, of S, if there exists a plain instance d̂ : Obs∗ → 2Obs of S such that
for each d-schedulable observation σ ∈ Obs∗ and each observable β ∈ Obs:

If σβ is A-schedulable then β ∈ d(σ) iff β ∈ d̂(σ).

An execution in A is called an S-execution if it is a d-execution for some instance
d of S. S-paths are defined accordingly. S is called admissible if all S-paths are
paths in A, i.e., if all instances of S are admissible. A decision function d enforces
objective Φ ⊆ Q× (Act ×Q)∞ if d is admissible and all d-paths π satisfy Φ, i.e.,
π ∈ Φ. A strategy S enforces Φ if all instances d of S enforce Φ. An objective Φ
is called enforceable if there is a decision function/strategy that enforces Φ.

Example 1. Reconsider the automatonA in Fig. 1a, with visible and controllable
(non-suspend) actions α and β and objective ♦q1 (“eventually q1”). We identify
the visible actions and their observables. A strategy that enforces ♦q1 is S1 =
(D,Fair)1, with D(σ) =

{
{β}
}

for all σ ∈ Obs∗ and Fair = ∅. The instances
d of S1 are the decision functions d with d(β∗) = {β}. Observations σ that are
not of the form β∗ are not S1-schedulable and thus irrelevant, the instances can
offer any subset of Obs for those σ, i.e., d(σ) ⊆ {α, β} for σ /∈ β∗.
Another strategy enforcing ♦q1 is S2 = (D,Fair) with D(σ) =

{
{α}, {β}, {α, β}

}
for all observations σ ∈ Obs∗ and Fair = {F} with F = {(αn, {β}) : n � 0}. Note
that ∅ /∈ D(σ) as this would violate admissibility. Due to Fair, all instances of S
have to eventually offer {β}, leading to q1. The instances of S2 are the decision
functions d such that d(σ) ∈

{
{α}, {β}, {α, β}

}
for all d-schedulable observations

σ and d(αk) = {β} for some k ∈ N. Again, for the irrelevant non-schedulable
observations, the instances may choose any subset of Obs . Clearly, all instances
of S1 are instances of S2. In fact, all the decision functions that enforce ♦q1 are
instances of S2, making it a most general strategy enforcing ♦q1:

Definition 2 (Most general strategy). A strategy S is called a most general
strategy enforcing objective Φ iff S enforces Φ and each decision function d that
enforces Φ is an instance of S.

A strategy S enforcing Φ is a most general strategy enforcing Φ iff for each
strategy S′ that also enforces Φ, all instances of S′ are instances of S. A most
general strategy enforcing Φ generates all decisions functions that enforce Φ, in
particular all decision functions that enforce Φ ∧ Ψ for an arbitrary objective Ψ .

Controllers are finite-state machines that realize finite-memory strategies:

Definition 3 (Controller).
A controller is a tuple C = (M,m0, Δ, μ, fair,Ann) consisting of
– a finite set M of modes and an initial mode m0 ∈M,
– a decision function template Δ : M→ 22Obs

and
1 We simply write (D, Fair) if no annotations are needed. I.e., (D,Fair) stands for the

triple (D, Fair, Ann) where Ann is a singleton {a} and each annotated observation
β′ = 〈β, a〉 is identified with β. Controllers can be treated in a similar fashion.
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– a partial next-mode function μ : M×Obs→M,
– a fairness condition fair =

{
F1, . . . ,F�

}
consisting of finitely many subsets

Fj of M× 2Obs,
– and a finite set of annotations Ann.

We extend μ to the partial function μ∗ : M ×Obs∗ → M by μ∗(m, ε) = m and
μ∗(m, β′1β

′
2 . . . β

′
n) = μ∗

(
μ(m, β′1), β′2 . . . β

′
n

)
. For all modes m ∈ M, we require

that all of the following conditions (i)-(v) hold:

(i) Δ(m) �= ∅ and O|Obs is non-blocking for all O ∈ Δ(m),
(ii) 〈β, a1〉, 〈β, a2〉 ∈ O implies a1 = a2, for all O ∈ Δ(m) and all β ∈ Obs,
(iii) μ(m, β′) �= ⊥ if β′ ∈ O for some O ∈ Δ(m),
(iv) O|Obs is passive for all O ∈ Δ(μ(m, β′)) if β′|Obs ∈ Obs# and β′ ∈ O for

some O ∈ Δ(m),
(v) O ∈ Δ(m) for all (m,O) ∈ F1 ∪ . . . ∪ F�.

Formally, the strategy realized by controller C = (M,m0, Δ, μ, fair,Ann) with
fair = {F1, . . . ,F�} is SC = (D,Fair,Ann) where

D(σ′) = Δ(μ∗(m0, σ
′)) and Fair =

{
F′1, . . . ,F

′
�

}
with F′j =

{
(σ′,O) ⊆ Obs∗ × 2Obs : μ∗(m0, σ

′) = m and (m,O) ∈ Fj

}
for

1 ≤ j ≤ �. The definition of D(σ′) supposes μ∗(m0, σ
′) ∈ M. If μ∗(m0, σ

′) = ⊥
then σ′ is not D-schedulable and the value of D(σ′) is irrelevant.

A controller C induces an automaton AC = (M,Obs × Ann,−→C, {m0}) in
a natural way, with −→C derived as follows:

m
β′
−→C m′ iff β′ ∈ O for some O ∈ Δ(m) and m′ = μ(m, β′).

In the sequel, we identify controller C with its induced automaton AC.

Example 2. Consider the most general strategy S2 enforcing ♦q1 from Example
1. This strategy can be realized by a controller with modes m0 and m1 and the
induced automaton shown in Fig. 2a with fair = {F} and F = {(m0, {β})}.
As another example, consider the system given by the automaton in Fig. 1c and
the safety objective “whenever γ, immediately afterwards α”, where actions α, β
are controllable, γ is visible but uncontrollable and suspend action #. We again
identify the actions and their observables. A most general strategy S = (D,Fair)
for this objective has D given by

D(ε) = D(σα) = D(σβ) =
{
O : {γ} ⊆ O ⊆ {#, α, β, γ}

}
,

D(σγ) = {{α, γ}} and D(σ#) = {{γ}} for σ ∈ Obs∗

and Fair = ∅. The uncontrollable action γ is always offered. When γ occurs,
the strategy disallows β and #, forcing α to occur. After #, observation of γ
wakes the suspended controllable component. S is realized by the controller with
induced automaton shown in Fig. 2b and fair = ∅.



520 C. Baier, J. Klein, and S. Klüppelholz
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Fig. 2. Examples for most general strategies and controllers

Example 3. To illustrate the use of annotations, consider the system automaton
A in Fig. 2c with controllable (non-suspend) actions α, β and the objective
Φ = ♦�q1 (eventually always q1), i.e., Φ = (Q × Obs)∗ × ({q1} × Obs)ω. A
controller realizing a most general strategy enforcing Φ uses annotations Ann =
{1, 2}. In a first phase,Δ(m0) =

{
{〈α, 1〉}, {〈β, 1〉}, {〈β, 2〉}, {〈α, 1〉, 〈β, 1〉}

}
, in a

second phaseΔ(m1) =
{
〈β, 2〉}. The induced automaton is shown in Fig. 2d. The

fairness condition fair = {F} with F = {(m0, {〈β, 2〉})} ensures that eventually
{〈β, 2〉} is scheduled and the switch from the first to the second phase occurs.
From that point on, only β is allowed and only q1 is visited.

The concept of annotations is crucial to capture most general strategies:

Lemma 1. There is no most general strategy S = (D,Fair,Ann) for A from
Example 3 that does not utilize annotations, i.e., where Ann is a singleton set,
and that enforces Φ = ♦�q1.

3 Compositionality

To allow the compositional treatment of cascades of objectives Φ1, Φ2, . . . , Φk for
a system A in an online manner, we first construct a controller C1 for system
A realizing a most general strategy enforcing Φ1, i.e., such that the composition
of C1 and A satisfies Φ1, C1 �� A |= Φ1. We then construct a controller C2

realizing a most general strategy enforcing objective Φ2 for the system C1 �� A,
a controller enforcing Φ3 for the system C2 �� (C1 �� A), and so on, such that

Ck �� . . . �� C2 �� C1 �� A |= Φ1 ∧ Φ2 ∧ . . . ∧ Φk

if Φ is enforceable in A. For this approach, it is crucial that the strategies realized
by the controllers Ci are most general, as they must not prematurely rule out
any of the decision functions that enforce Φi which may be necessary to enforce
the conjunction Φi ∧ Φi+1 or with other subsequent objectives.

The controlled system, i.e., the composition C �� A of the system A and the
controller automaton C, is obtained by a product construction where the two
automata are synchronized via the observables. As noted in the previous section,
a controller C = (M,m0, Δ, μ, fair,Ann) induces an automaton AC = (M,Obs ×
Ann,−→C,m0) which we identify with C, with an action alphabet consisting of
the annotated observables. Let A = (Q,Act ,−→A, Q0) be the automaton for
the system.

The composed system is defined as C �� A = (M×Q,Act ′,−→��, {m0}×Q0),
with action alphabet Act ′ obtained from Act by annotating the visible actions,
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i.e., Act ′ = Act ′vis ∪ (Act \ Actvis) and Act ′vis = Actvis × Ann. The controllable
and suspend actions of the composed system are the corresponding annotated
actions, i.e., Act ′ctr = Actctr × Ann and Act ′# = Act# × Ann. The transition
relation −→�� is given by

q
α−→A q′ ∧ α ∈ Actvis ∧ m

〈β,a〉−−−→C m′ ∧ obs(α) = β

〈m, q〉 〈α,a〉−−−→�� 〈m′, q′〉
q

α−→A q′ ∧ α /∈ Actvis

〈m, q〉 α−→ 〈m, q′〉

The rule on the left synchronizes a visible action of A with the correspond-
ing observable allowed by the controller C. Note that the controller can not
inhibit uncontrollable actions, as it is required to be non-blocking (condition (i)
in Def. 3), while the rule on the right ensures that invisible actions occur inde-
pendent of the controller. The observables of C �� A then consist of the anno-
tated observables Obs = Obs × Ann of A, with obs ′ : Act ′vis → Obs given by
obs ′(〈α, a〉) = 〈obs(α), a〉. The partition UObs =

{
{〈obs(α), a〉 : a ∈ Ann} : α ∈

Actvis \ Actctr

}
groups the annotated observables of the uncontrollable actions

such that O ∈ 2Obs is non-blocking if there is at least one annotated observable
β′ ∈ O for each uncontrollable action.

For an execution πC in C �� A, let πC|A be the corresponding execution
in A that is obtained by stripping the controller modes in all states and the
annotations in the actions. πC is said to satisfy objective Φ ⊆ Q× (Act ×Q)∞,
denoted πC |= Φ, if πC|A ∈ Φ.

Fairness. To be able to capture the fairness imposed by the controller on the
controlled system at the automaton level, we augment our concept of automata
with a suitable fairness condition, syntactically similar to the fairness condition
used for strategies: A fairness condition Fair[A] for an automaton A is a finite
set Fair[A] = {F1, . . . ,F�} consisting of subsets F of Obs∗ × 2Obs such that O is
non-blocking for all F ∈ Fair[A] and (σ,O) ∈ F. We require #-admissibility of
Fair[A], i.e., for all observations σ ∈ Obs∗ and F ∈ Fair[A]:

(1) For all β ∈ Obs# and O ∈ F(σβ), O is passive.
(2) If σ /∈ Obs∗Obs# and π an initial execution in A with obs(π) = σ such that

last(π) is non-terminal then ActA(last(π), O) �= ∅ for all O ∈ F(σ).

As before, F(σ) denotes {O : (σ,O) ∈ F}. An observation σ = β1β2 . . . ∈ Obs∞

is called Fair[A]-schedulable if σ is finite or σ is infinite and, for each F ∈ Fair[A],
either the number of positions i � 1 with F(β1β2 . . . βi) �= ∅ is finite or there
are infinitely many positions i such that βi+1 ∈ O for some O ∈ F(β1β2 . . . βi).

We adapt the concepts of paths and admissibility to take fairness into account:
An execution π is a path in A with Fair[A] if it is a path in A and if obs(π) is
Fair[A]-schedulable. A decision function d is admissible for A with Fair[A] if it
is admissible for A and if all d-schedulable observations are Fair[A]-schedulable,
i.e., all d-paths in A are fair according to Fair[A]. The notion of a decision func-
tion or strategy enforcing an objective Ψ forA with Fair[A] requires admissibility
and thus also takes fairness into account.

Let A be a system automaton with fairness condition Fair[A] (with observ-
ables Obs), let C be a controller realizing an admissible strategy and let Fair
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Fig. 3. Automaton A, controller C for objective ♦q1 and product automaton C �� A

(with observables Obs) be the fairness condition of the strategy SC realized by
the controller. The fairness condition Fair[C �� A] = Fair ∪ Fair[A] for the con-
trolled system is then the conjunction of the fairness conditions, with Fair[A]
appropriately lifted from Obs to Obs. Note that, as C is admissible and thus
takes Fair[A] into account, the fairness Fair of the controller subsumes Fair[A]
and it is sufficient to consider Fair[C �� A] = Fair only.

Lemma 2 (Soundness of C �� A). Let C be a controller such that its induced
strategy SC is admissible. Then, for every initial SC-path π in A, there exists
an initial path πC in C �� A such that πC|A = π, and vice versa.

Note that decision functions d′ for C �� A can be regarded as strategies for A
with annotations Ann, where Ann is the set of annotations of C. The notion of
controllers realizing most general strategies, capturing all the decision functions
that enforce a given objective, allows the compositional treatment of conjunctive
objectives.

Theorem 1 (Compositionality). Let Φ and Ψ be arbitrary objectives and let
C be a controller such that its induced strategy SΦ = SC is most general enforcing
Φ for A.

(1) For every decision function d enforcing Φ ∧ Ψ for A, there is a decision
function d′ for C �� A that enforces Ψ for C �� A such that d is an instance
of d′, when d′ is viewed as a strategy.

(2) Let SΨ be a most general strategy enforcing Ψ for C �� A. Then there exists
a strategy SΦ∧Ψ for A that is most general enforcing Φ ∧ Ψ .

(3) Let CΨ be a controller such that its induced strategy SΨ = SCΨ is most
general enforcing Ψ for C �� A. Then there exists a controller CΦ∧Ψ for A
such that its induced strategy is most general enforcing Φ ∧ Ψ .

As a direct consequence of (1) in Theorem 1, if Φ ∧ Ψ is enforceable in A, then
Ψ is enforceable in C �� A.

Example 4. Consider the automaton A in Fig. 3, with controllable actions α and
β and suspend action #. We identify actions and their observables. Controller
C in Fig. 3 with Δ(m0) =

{
{α}, {β}, {α, β}

}
, ∅ �= Δ(m1) ⊆ Obs and Δ(m#) =

{∅} realizes a most general strategy for the reachability objective Φ = ♦q1.
The composition C �� A depicted in Fig. 3 with the fairness condition derived
from C then serves as the system automaton for a second objective Ψ , to be
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enforced in conjunction with Φ. For an objective like Ψ = �¬q1 (“never q1”),
where Ψ is enforceable for A on its own, but Ψ ∧ Φ is not enforceable, Ψ is
not enforceable for C �� A: A decision function enforcing �¬q1 for C �� A
would have to either force termination before β is scheduled, which would violate
admissibility as the suspend action is not available in state 〈m0, q0〉, or schedule
{α} continuously, which likewise violates admissibility as the fairness condition
Fair[C �� A] would be violated. Objectives that can be enforced in conjunction
with Φ can be enforced in C �� A. E.g., to enforce the objective that all executions
have to be finite, a decision function could first schedule {β} and then force
admissible termination by scheduling {#}.

4 Game-Based Controller Synthesis

We now provide a game-based characterization of the controller synthesis prob-
lem and adapt known algorithms for observation-based games [14,7] with reach-
ability and invariance objectives using a powerset construction and fixed point
computations to our setting. The required modifications are non-trivial since
we have to extract controllers realizing most general strategies rather than just
computing the winning regions. Among other technical differences to previous
approaches we have to deal with fairness assumptions and ensure admissibil-
ity. In the sequel, we provide an overview of the game based construction of
controllers realizing most general strategies for a given objective.

Objectives. We treat here the case where the automaton A arises from the
product of an automaton Actr for the controllable component and an automaton
Aenv for the environment and the automata for previously applied controllers.
We can project from the states Q of A to the set of (local) states Qctr of Actr

and assume that the local state of Actr does only change in A on visible actions.
We treat here linear-time objectives Φ ⊆ Qctr × (Obs ×Qctr)∞ that just refer
to the observables and (local) states of Actr. A path π in A satisfies Φ iff the
sequence obtained by removing invisible actions, replacing the visible actions by
their observables and projecting the states from Q to Qctr is contained in Φ.

Observation-based game. In essence, we use the automaton A, slightly mod-
ified to reflect the effect of the suspend signal, as the game arena of a turn-based
two-player game where the controllable component is viewed as one player (P1)
and the environment as its opponent (P2). The states of A serve as game con-
figurations. The initial game configuration of a play is chosen by P2 from Q0.
Each round of a play consists of two steps. First, P1 chooses some non-blocking
O ∈ 2Obs . In case the previous observable was the suspend signal, it has to
choose a passive O. Second, P2 selects a transition from the current game con-
figuration q to some state q′ with an O-compliant action α ∈ Act(q,O). State
q′ becomes the game configuration for the next round. The play terminates if
Act(q,O) = ∅. The game is viewed to be a partial-information game for P1,
i.e., it has to choose its O ∈ 2Obs on the basis of the observation generated by
the actions that have been chosen in the previous rounds. Each play generates



524 C. Baier, J. Klein, and S. Klüppelholz

an initial execution π in A. Objective Φ is viewed as winning criterion for P1,
winning a play if the execution π is a path in A and π |= Φ.
Complete-information game. We adapt the well-known powerset construc-
tion [14] to turn this partial-information game into a turn-based two-player game
with complete information for both players. By abstracting from the invisible
actions and only regarding the observables, the vertices belonging to the control-
lable component in the game graph then consist of the set of all states consistent
with the observation of the history. Special vertices deal with the possibility of
termination, divergence (the environment chooses to only schedule invisible ac-
tions) and failure to ensure admissibility in some game configuration q. The
initial vertex of the game, [Q0]∗ is the set of initial states closed under invisible
moves.

Reachability objectives without fairness. We first deal with the case of A
without a fairness condition and consider reachability objectives Φ = ♦F where
with F ⊆ Qctr. The goal is to design a controller realizing a most general strategy
S enforcing Φ, i.e., that ensures that at some point the local state of Actr will
be in F along all S-paths. We add a gadget to A to track whether a game
configuration has been reached via an execution π with π |= Φ. The goal vertices
F are then those sets of game configurations where each one has been reached
via some π |= Φ, as well as the special vertices for termination and divergence
that occur in a state that has been reached via an execution that satisfies Φ.
We obtain the set of winning vertices Win(♦F ) using the standard fixed point
characterization of reachability games with goal vertices F , as well as winning re-
gionsW(i) containing the vertices where the controllable component can enforce
reaching F in at most i observations. If the initial vertex [Q0]∗ ∈Win(♦F ), we
conclude that ♦F is enforceable for A and construct from these sets a controller
enforcing ♦F in a most general manner. The modes of the controller consist of
the vertices in Win(♦F ), with initial mode [Q0]∗. The decision function tem-
plate allows all choices for O that ensure staying in Win(♦F ). The next-mode
function tracks the successor mode for the observables. Crucially, the fairness
condition of the controller ensures eventual progress from the modes in W(i+1)

to the modes in W(i), by requiring fairness for those O in the decision function
template that lead to modes that are “closer” to the goal.

Invariance objectives without fairness of the form Φ = �I, with I ⊆ Qctr

are handled similarly. The set of safe vertices I are those vertices where the
local state in Actr of all contained game configurations is in I. We apply the
standard fixed-point characterization for invariances and obtain the winning
region Win(�I). If [Q0]∗ ∈ Win(�I), we extract a controller realizing a most
general strategy enforcing �I the same way as for reachability, except that no
fairness condition is used.

Reachability, invariance with fairness. If A has a fairness condition Fair[A],
we have to adapt our techniques. We require that each F ∈ Fair[A] satisfies the
following conditions:

(F1) If F(σ) �= ∅ then F′(σ) = ∅ for all σ ∈ Obs∗ and F′ ∈ Fair[A] \ {F}.
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(F2) If π1, π
′
1, π2, π

′
2 are initial executions in A such that last(π1) = last(π′1),

last(π2) = last(π′2) and obs(π′1) = obs(π′2) then F(obs(π1)) = F(obs(π2)).
(F3) For each Fair[A]-schedulable observation obs(π) = β1β2 . . . there exists a

positive integer i0 such that F(β1 . . . βi) = ∅ for all i � i0.

(F2) holds for the fairness assumptions for any controller since they have been
defined mode-wise and the controller behaves deterministically for a given ob-
servation. (F1) and (F2) allow us to relate game vertices to the relevant fairness
conditions. (F3) asserts that the fairness condition is “finitary”. For all the con-
trollers constructed in this section, the fairness condition Fair induced by the
controller enjoys (F1)-(F3) and, as the fairness condition Fair of the controller
subsumes the fairness Fair[A], it is thus sufficient to consider Fair[C �� A] = Fair,
which then again satisfies (F1)-(F3).

For Φ = ♦F and automatonA with Fair[A], we construct a controller as before
for A and Φ, which is then adapted to ensure Fair[A]-fairness after F has been
reached. For Φ = �I, we first calculate Win(�I) as before, ignoring the fairness
condition Fair[A]. We then compute the set T of vertices in Win(�I) that have
no associated fairness condition. Again we apply the techniques for invariances
without fairness to obtain the set X = Win(�T ) of vertices where it is possible
to enforce �I while staying in T . Finally, we calculate the set Win(I U X )
(where U denotes the standard until operator), by slightly modifying the fix-
point calculation for reachability. If [Q0]∗ ∈ Win(I U X ) then we construct
a controller realizing a most general strategy enforcing �I for A with Fair[A]
operating in two phases marked by annotations. First, the controller ensures
that the plays stay in Win(I U X ) but eventually, via a fairness condition on
the annotations, switches to the second phase, where it ensures that the plays
eventually reach X and forever stay in X .

Regular safety and co-safety objectives, i.e., Φ = [[L]]I and Φ = 〈〈L〉〉F ,
where L is a regular language over the observables, 〈〈L〉〉F requires that F is
reached via some observation in L and for [[L]]I all states reachable with obser-
vations in L are in I, are then handled using a product automata approach and
the controller construction for invariance and reachability.

Conjunctions of objectives. Combining the compositional approach to treat-
ing conjunctions of objectives (Theorem 1) with the game-based construction
of controllers realizing most general strategies for regular safety and co-safety
objectives in this section yields the following theorem:

Theorem 2. Let Φ = Φ1 ∧ Φ2 ∧ . . . ∧ Φk be a conjunction of regular safety and
co-safety objectives Φi. If Φ is enforceable for A then there exists a controller C
that realizes a most general strategy enforcing Φ for A.

As our algorithmic approach relies on a powerset construction to obtain a complete-
information game, there can be an exponential blow-up in the size of the au-
tomaton under consideration. This is to be expected, as the problem of deciding
whether there is a decision function enforcing an objective in such a partial-
information setting is known to be EXPTIME-complete for reachability objec-
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tives [14,7] as well as for safety objectives [5]. The controller C of Theorem 2
that realizes a most general strategy enforcing Φ1 ∧ . . .∧Φk for reachability and
invariance objectives Φi has at most 4k · 2|Q| reachable modes, where |Q| is the
number of states of A. The factor 4 per objective arises from a factor 2 for cor-
rectly treating the suspend actions and a factor 2 for the tracking of reachability
or the two phases for invariance objectives with fairness. For regular (co-)safety
objectives, the sizes of the DFA recognizing the regular languages L are addi-
tional factors. Due to the idempotence of the powerset construction and the fact
that the controllers are deterministic and synchronize over the observables, the
factor 2|Q| is only incurred once.

5 Conclusion

Our main contribution is the presentation of a novel framework for strategies
under partial observability that is adequate for compositional reasoning. For
this purpose, we introduced the notion of most general strategies that generate
all decision functions enforcing a given linear-time objective. Furthermore, we
showed how to adapt the standard powerset construction to obtain finite-memory
controllers realizing most general strategies for safety and co-safety objectives.
We currently work on extending our results to generate controllers realizing most
general strategies for the full ω-regular objectives.
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Abstract. We investigate normed commutative context-free processes
(Basic Parallel Processes). We show that branching bisimilarity admits
the small response property : in the Bisimulation Game, Duplicator al-
ways has a response leading to a process of size linearly bounded with
respect to the Spoiler’s process. The linear bound is effective, which
leads to decidability of branching bisimilarity. For weak bisimilarity, we
are able merely to show existence of some linear bound, which is not
sufficient for decidability. We conjecture however that the same effective
bound holds for weak bisimilarity as well. We believe that further elab-
oration of novel techniques developed in this paper may be sufficient to
demonstrate decidability.

1 Introduction

Bisimulation equivalence (bisimilarity) is a fundamental notion of equivalence of
processes, with many natural connections to logic, games and verification [10,13].
This paper is a continuation of the active line of research focusing on decidability
and complexity of decision problems for bisimulation equivalence on various
classes of infinite systems [12].

We investigate the class of commutative context-free processes, known also
under name Basic Parallel Processes (BPP) [1]. By this we mean the labeled
graphs induced by context-free grammars in Greibach normal form, with a pro-
viso that non-terminals appearing on the right-hand side of a productions are
assumed to be commutative. For instance, the production X −→ a Y Z, written

X
a−→ Y Z,

says that X performs an action a and then executes Y and Z in parallel. Formally,
the right-hand side is a multiset rather than a sequence.

Over this class of graphs, we focus on bisimulation equivalence as the primary
type of semantic equality of processes. It is known that strong bisimulation
equivalence is decidable [2] and PSPACE-complete [11,8]; and is polynomial
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for normed processes [6]. Dramatically less is known about weak bisimulation
equivalence, that abstracts from the silent ε-transitions: we only know that it
is semi-decidable [3] and that it is decidable in polynomial space over a very
restricted class of totally normed processes [4]. The same applies to branching
bisimulation equivalence, a variant of weak bisimulation that respects faithfully
branching of equivalent processes. The only non-trivial decidability result known
by now for weak bisimulation equivalence is [14], it applies however to a very
restricted subclass.

During last two decades decidability of weak bisimulation over context-free
processes became an established long-standing open problem. This paper is a
significant step towards solving this problem in confirmative.

It is well known that bisimulation equivalences have an alternative formula-
tion, in terms of Bisimulation Game played between Spoiler (aiming at showing
non-equivalence) and Duplicator (aiming at showing equivalence) [13]. One of
the main obstacles in proving decidability of weak (or branching) bisimulation
equivalence is that Duplicator may do arbitrarily many silent transitions in a
single move, and thus the size of the resulting process is hard to bound.

In this paper we investigate branching bisimilarity over normed commutative
context-free processes. Our main technical result is the proof of the following
small response property, formulated as Theorem 1 in Section 3: if Duplicator has
a response, then he also has a response that leads to a process of size linearly
bounded with respect to the other (Spoiler’s) process. Importantly, we obtain an
effective bound on the linear coefficient, which enables us to prove (Theorem 2)
decidability of branching bisimulation equivalence. The proof of Theorem 1 is
quite complex and involves a lot of subtle investigations of combinatorics of BPP
transitions, the main purpose being elimination of unnecessary silent transitions.

A major part of the proof works for weak bisimulation equally well (and,
as we believe, also for any reasonable equivalence that lies between the two
equivalences). However, for weak bisimulation we can merely show existence of
the linear coefficient witnessing the small response property, while we are not able
to obtain any effective bound. Nevertheless we strongly believe (and conjecture)
that a further elaboration of our approach will enable proving decidability of
weak bisimulation. We plan to pursue this as a future work. In particular, we
actually reprove decidability in the subclass investigated in [14].

2 Preliminaries

The commutative context-free processes (known also as Basic Parallel Processes)
are determined by the following ingredients (called a process definition): a finite
set V = {X1, . . . , Xn} of variables, a finite set A of letters, and a finite set T of

transition rules, each of the form X
ζ−→ α where X is a variable, ζ ∈ A ∪ {ε}

and α is a finite multiset of variables.
A process, is any finite multiset of variables, thus of the form Xa1

1 . . .Xan
n , and

may be understood as the parallel composition of a1 copies of X1, ... , and an

copies of Xn. In particular the empty process, denoted ε, when a1 = · · · = an = 0.
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For any W ⊆ V we denote by W⊗ the set of all processes where only variables
from W occur, that is, W⊗ is the set of all finite multisets over W .

By αβ we mean the composition of processes α and β, understood as the mul-
tiset union. The behavior, i.e., the transition relation, is defined by the following
extension rule:

if X
ζ−→ α ∈ T then Xβ

ζ−→ αβ, for any β ∈ V ⊗.

Remark 1. Commutative context-free processes are precisely labeled communi-
cation free Petri nets, where the places are variables and transitions X

ζ−→ α
are firing rules. A process Xa1

1 . . . Xan
n represents the marking with ai tokens on

the place Xi.

The transition relation ε−→ models silent steps and will be written −→. We
write α =⇒ β if a process β can be reached from α by a sequence of ε−→
transitions. To simplify definitions, we assume that α −→ α for any α.

Definition 1. A binary symmetric relation B over processes is a branching
bisimulation iff for every pair α B β and ζ ∈ A ∪ {ε} satisfies: if α

ζ−→ α′ then

β =⇒ β′′
ζ−→ β′ such that α B β′′ and α′ B β′.

We say that two processes α and β are branching bisimilar, denoted α ≈ β,
if there exists a branching bisimulation B such that α B β.

In the proofs we will use the characterization of bisimilarity in terms of Bisim-
ulation Game [10,13]. The game is played by two players, Spoiler and Duplica-
tor, over an arena consisting of all pairs of processes, and proceeds in rounds.
Each round starts with a Spoiler’s move followed by a Duplicator’s response.
In position (α, β), Spoiler chooses one of processes, say α, and one transition

α
ζ−→ α′. As a response, Duplicator has to do a sequence of transitions of the

form β =⇒ β′′
ζ−→ β′, and then Spoiler chooses whether the play continues from

(α, β′′) or (α′, β′).
If one of players gets stuck, the other wins. Otherwise the play is infinite and

in this case it is Duplicator who wins. A well-known fact is that two processes
are branching bisimilar iff Duplicator has a winning strategy in the game that
starts in these two processes.

For the rest of this paper we assume that each variable X has a sequence
of transitions X

ζ1−→ . . .
ζm−→ ε leading to the empty process. A process defini-

tion that fulfills this requirement is usually called normed. By the norm of X ,
denoted norm(X), we mean the smallest possible number of visible transitions
that appears in some sequence as above. Formally speaking, the norm of X is
the length of the shortest word a1 . . . an ∈ A∗ such that

X =⇒ a1−→=⇒ . . . =⇒ an−→=⇒ ε.

We additively enhance the definition of norm to processes and write norm(α)
for any α ∈ V ⊗. Note that the norm is weak in the sense that silent transitions
do not count.
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3 Decidability via Small Response Property

It was known before that branching bisimilarity is semi-decidable [3]. A main
obstacle for a semi-decision procedure for inequivalence is that commutative
context-free processes are not image finite with respect to branching bisimilarity:
a priori Duplicator has infinitely many possible responses to a Spoiler’s move.
The main insight of this paper is that commutative context-free processes are
essentially image-finite, in the following sense. Define the size of a process as
its multiset cardinality: size(Xa1

1 . . . Xan
n ) = a1 + · · ·+ an. Then Duplicator has

always a response of size bounded linearly with respect to a Spoiler’s process
(cf. Theorem 1 below).

Definition 2. Let c ∈ N. By a c-branching bisimulation we mean a relation B
defined as in Definition 1 with the additional requirement

size(β′), size(β′′) ≤ c · size(α′). (1)

Let the size d of a process definition be the sum of lengths of all production
rules. Our main technical result is an efficient estimation of c, with respect to d:

Theorem 1 (small response property). For each normed process definition
of size d with n variables, branching bisimilarity ≈ is a (2dn−1 + d)-branching
bisimulation.

The proof of Theorem 1 is deferred to Sections 4–6.
In consequence, a Spoiler’s winning strategy, seen as a tree, becomes finitely

branching. This observation leads directly to decidability:

Theorem 2. Branching bisimilarity ≈ is decidable over normed commutative
context-free processes.

Proof. We sketch two semi-decision procedures (along the lines of [9]): one for
branching bisimilarity and the other for (2dn−1 + d)-branching bisimilarity.

For the positive side we use a standard semi-linear representation, knowing
that each congruence, including ≈, is semi-linear [5,7]. The algorithm guesses
a base-period representation of a semi-linear set and then checks validity of a
Presburger formula that says that this set is a branching bisimulation containing
the input pair of processes.

For the negative side, we observe that due to Theorem 1 Duplicator has only
finitely many possible answers to each Spoiler’s move. Thus, if Spoiler wins then its
winning strategy may be represented by a finitely-branching tree. Furthermore,
by König Lemma this tree is finite. The algorithm thus simply guesses a finite
Spoiler’s strategy. This can be done effectively: for given β, β′, β′′ and ζ it is de-
cidable if β =⇒0 β

′′ ζ−→ β′, as the =⇒0 relation is effectively semilinear [3]. �
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Proof strategy. The rest of this paper is devoted to the proof of Theorem 1.
Consider a fixed normed process definition from now on. In Section 4 we define a
notion of normal form nf(α) for a process α and provide linear lower and upper
bounds on its size:

size(α) ≤ size(nf(α)) ≤ c · size(α) (2)

(the lower bound holds assumed that α is minimal wrt. multiset inclusion in its
bisimulation class). However, the linear coefficient c is not bounded effectively.
The computable estimation of the coefficient is derived in Section 5. Finally, in
Section 6 we show how the bounds (2) are used to prove Theorem 1. Due to
space limitations we omit some proofs in Sections 4–6.

As observed e.g. in [14], a crucial obstacle in proving decidability is so called
generating transitions of the formX −→ XY , as they may be used by Duplicator
to reach silently XY m for arbitrarily large m. A great part of our proofs is
an analysis of combinatorial complexity of generating transitions and, roughly
speaking, elimination of ’unnecessary’ generations.

Weak bisimilarity. Branching bisimilarity is more discriminating than the well
known weak bisimilarity. The whole development of Section 4 is still valid if weak
bisimilarity is considered in place of branching bisimilarity. Furthermore, except
one single case, the entire proof of estimation of the coefficient in Section 5
remains valid too. Interestingly, this single case is obvious under assumptions
of [14], thus our proof remains valid for weak bisimilarity over the subclass
studied there. We conjecture that the single missing case is provable for weak
bisimilarity and thus Theorem 1 holds just as well. This would imply decidability.

4 Normal Form by Squeezing

In the sequel we often implicitly use the well-known fact that branching bisimi-
larity is substitutive, i.e., α ≈ β implies αγ ≈ βγ.

In this section we develop a framework useful for the proof of Theorem 1
in the following sections. We define a normal form nf(α) of a process α that
identifies the bisimulation class of α uniquely. Moreover, we provide estimations
of the size of nf(α) relative to the size of α, from both sides, in Corollary 1 and
Lemma 11, which culminate this section.

A transition α
ζ−→ β is norm preserving if |α| = |β| and norm reducing if

|α| = |β| + 1. In the sequel we will pay special attention to norm preserving
ε-transitions. Therefore we write α −→0 β, respectively α =⇒0 β, to emphasize
that the transitions are norm preserving.

Lemma 1. If α =⇒0 β =⇒0 α
′ and α ≈ α′ then β ≈ α.

We call the transition α
ζ−→ β decreasing if either ζ ∈ A and the transition is

norm-reducing; or ζ = ε and the transition is norm preserving. Note that every
variable has a sequence of decreasing transitions leading to the empty process ε.
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Lemma 2 (decreasing response). Whenever α ≈ β and α
ζ−→ α′ is de-

creasing then any Duplicator’s matching sequence of transitions from β contains
exclusively decreasing transitions.

Due to Lemma 1, instantiated to single variables, we may assume wlog. that
there are no two distinct variables X,Y with X =⇒0 Y =⇒0 X . Indeed, since
reachability via the =⇒0 transitions is decidable [3], in a preprocessing one may
eliminate such pairs X,Y . Relying on this assumption, we may define a partial
order induced by decreasing transitions.

Definition 3. Let X >0 Y if there is a sequence of decreasing transitions lead-
ing from X to Y . Let > denote an arbitrary fixed total order extending >0.

In the sequel we assume that there are n variables, ordered X1 > X2 > . . . > Xn.
Directly from the definition of > we deduce:

Lemma 3 (decreasing transition). If a decreasing transition Xa1
1 . . .Xan

n
ζ−→

Xb1
1 . . .Xbn

n is performed by Xk, say, then b1 = a1, . . . , bk−1 = ak−1.

Consider a norm preserving silent transition X −→0 δ. If X appears in δ, i.e.
δ = Xδ̄, we call the transition generating. We use the name generating also for a
general transition α −→0 β as a single transition is always performed by a single
variable.

Lemma 4 (decreasing transition cont.). If a decreasing transition as in
Lemma 3 is not generating then bk = ak − 1.

Following [14], we say that X generates Y if X =⇒0 XY . Thus if X −→ Xδ̄ then
X generates every variable that appears in δ̄. In particular,X may generate itself.
Note that each generated variable is of norm 0. More generally, we say that α
generates β if α =⇒0 αβ. This is the case precisely iff every variable occurring in
β is generated by some variable occurring in α. As a direct corollary of Lemma 1
we get (	 stands for the multiset inclusion of processes):

Lemma 5. If α generates β then α ≈ αβ̄ for any β̄ 	 β.

Lemma 5 will be especially useful in the sequel, as a tool for eliminating unnec-
essary transitions and thus decreasing the size of a resulting process.

A process Xa1
1 . . . Xan

n may be equivalently presented as a sequence of ex-
ponents (a1 . . . an) ∈ Nn. In this perspective, 	 is the point-wise order. The
sequence presentation (a1 . . . an) ∈ Nn induces additionally the lexicographic or-
der on processes, denoted 
. We will exploit the fact that this order is total, and
thus each bisimulation class exhibits the least element. (A bisimulation class of
a process α is the set of all processes β with β ≈ α.)

The sequence presentation allows us to speak naturally of prefixes of a process:
the k-prefix of Xa1

1 . . . Xan
n is the process Xa1

1 . . . Xak

k , for k = 0 . . . n.
We now go to one of the crucial notions used in the proof: unambiguous

processes and their greatest extensions.
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Definition 4 (unambiguous processes). A process Xa1
1 . . .Xan

n , is called k-
unambiguous if for every 1 ≤ i ≤ k, α, β ∈ {Xi+1, . . . , Xn}⊗ and b, c ∈ N such
that

Xa1
1 Xa2

2 . . .X
ai−1
i−1 X

b
i α ≈ Xa1

1 Xa2
2 . . .X

ai−1
i−1 X

c
i β

we have either b, c ≥ ai or b = c. When k = n we write simply unambiguous.

Note that being k-unambiguous is a property of the k-prefix: a process is k-un-
ambiguous iff its k-prefix is so.

Example 1. Consider following process definition:

X1
a−→ X1 X2

b−→ X3 X3
b−→ ε

X1 −→ ε X2 −→ X3 X3 −→ ε

and an order X1 > X2 > X3 on variables. We observe that X2
1 ≈ X1, therefore

the process X2
1 is not (1-)unambiguous. On the other hand X1 �≈ α for any

α ∈ {X2, X3}⊗ (because neither X2 nor X3 can perform an a transition), so X1

is unambiguous. Furthermore X1X2 ≈ X1X
2
3 , hence X1X2 is not (2-)unambi-

guous. Finally we observe that X1X
2
3 �≈ X1X3. Therefore X1X

2
3 is unambiguous,

but also X1X3 is so. �

Note that a prefix of a k-unambiguous process is k-unambiguous as well. More-
over, k-unambiguous processes are downward closed wrt. 	: whenever α 	 β
and β is k-unambiguous, then α is k-unambiguous as well.

Directly by Definition 4, if γ = Xa1
1 . . . X

ak−1
k−1 is (k − 1)-unambiguous then

it is automatically k-unambiguous (in fact j-unambiguous for any j ≥ k). Ac-
cording to the sequence presentation, this corresponds to extending the process
(a1 . . . ak−1) with ak = 0. We will be especially interested in the greatest value
of ak possible, as formalized in the definition below.

Definition 5 (the greatest extension). The greatest k-extension of a (k−1)-
unambiguous process γ = Xa1

1 . . .X
ak−1
k−1 ∈ {X1 . . . Xk−1}⊗ is that process among

k-unambiguous processes γXa
k that maximizes a.

Clearly the greatest extension does not need exist in general, as illustrated below.

Example 2. Consider the processes from Example 1. The process X1 is the great-
est 1-extension of the empty process as X2

1 is not 1-unambiguous. X1 is also
its own greatest 2-extension. Furthermore, X1 does not have the greatest 3-
extension. Indeed, X1X

a
3 is not bisimilar to X1X

b
3, for a �= b, therefore X1X

a
3 is

3-unambiguous for any a. �

Definition 6 (unambiguous prefix). By an unambiguous prefix of a process
Xa1

1 . . .Xan
n we mean any k-prefix Xa1

1 . . .Xak

k that is k-unambiguous, for k =
0 . . . n. The maximal unambiguous prefix is the one that maximizes k.

Example 3. For the process definition from Example 1, the maximal unambi-
guous prefix of X1X

2
2 is X1, and the maximal unambiguous prefix of X2

1X2 is
the empty process. �
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The following lemma is a crucial observation underlying our subsequent de-
velopment.

Lemma 6. Let γ ∈ {X1 . . . Xk−1}⊗ be (k−1)-unambiguous and assume that
γXa

k is its greatest k-extension. Let b > a and let α, β ∈ {Xk+1, . . . , Xn}⊗ be
arbitrary processes such that

γ Xb
k β ≈ γ Xa

k α.

Then for any decreasing transition Xb
k β

ζ−→ Xb′
k β′, that gives rise to a Spoiler’s

move
γ Xb

k β
ζ−→ γ Xb′

k β′

there are some α′, α′′ ∈ {Xk+1, . . . , Xn}⊗ and a sequence α =⇒0 α
′′ ζ−→ α′ of

transitions that gives rise to a Duplicator’s response

γ Xa
k α =⇒0 γ X

a
k α
′′ ζ−→ γ Xa

k α
′,

as required by Definition 1.

Note 1. According to the assumptions, γXa
k is an unambiguous prefix of γXa

kα.
The crucial consequence of the lemma is that Duplicator has a response that
preserves γXa

k being a prefix, as only α is engaged in the response.

Proof. Consider a Duplicator’s response (all transition are necessarily decreasing
by Lemma 2):

γ Xa
k α =⇒0 γ

′′Xa′′
k α′′

ζ−→ γ′Xa′
k α′ (3)

where γ′, γ′′ ∈ {X1 . . . Xk−1}⊗ and α′, α′′ ∈ {Xk+1, . . . , Xn}⊗. Wlog. we may
assume that

γ′′Xa′′
k α′′ �≈ γ′Xa′

k α′ (4)

as otherwise lemma holds trivially. A fast observation is that

γ Xa
k 
 γ′Xa′

k . (5)

Indeed, suppose γ′Xa′
k ≺ γ Xa

k . Knowing γ Xb′
k β
′ ≈ γ′Xa′

k α
′ and b′ ≥ a we get

to a contradiction with the fact that γ Xa
k is k-unambiguous.

Our aim is to demonstrate that Duplicator has a matching response (3) that
uses only transition rules of variables Xk+1 . . . Xn; in particular, by Lemma 3
this will imply γ′Xa′

k = γ Xa
k . We will describe below a transformation of the

Duplicator’s response to the required form.
Assume that some of variables X1 . . . Xk was engaged in (3) and let Xi be the

greatest of them wrt. >. By (5) and by Lemma 4 we learn that at least one of
transitions performed by some Xi must be generating, say

Xi −→ Xiδ. (6)



536 W. Czerwiński, P. Hofman, and S. Lasota

We will show how to remove one of these transitions from (3) but still preserve
the bisimulation class of processes appearing along (3), and thus keep satisfying
the requirements of Definition 1.

All variables that appear in δ are necessarily of norm 0, and thus they may par-
ticipate later in the sequence (3) only with further norm preserving ε-transitions.
Informally speaking, we consider the tree of norm preserving ε-transitions initi-
ated by (6), that are performed along (3), say:

Xi =⇒0 X
j
i δ
′, (7)

for some j ≥ 0 and δ′ ∈ {Xi+1 . . . Xn}⊗.
Formally, the sequence (7) is defined by the following coloring argument. As a

process may contain many occurrences of the same variable we consider variable
occurrences as independent entities. Assume that every variable occurrence in
γ Xa

k has been initially colored by a unique color. Assume further that colors
are inherited via transitions: every transition in (3) is colored with the color of
the occurrence of its left-hand side variable that is engaged; and likewise are
colored all the right-hand side variables occurrences. The sequence (7) contains
all transitions colored with the color of (6).

The sequence (7) forms a subsequence of (3). There can be many such se-
quences, but at least one witnesses j > 0, by (5) and by the choice of Xi as the
greatest wrt. >. Let us focus on removing this particular subsequence from (3).

As δ′ is generated by Xi, by Lemma 5 we obtain Xi ≈ Xj
i δ
′. By our assump-

tion (4) we deduce that the sequence (7) can not contain the last transition of (3).
Thus, by substitutivity of ≈, the sequence (3), after removing transitions (7),
yields a process bisimulation equivalent to that yielded by (3). By continuing
in the same manner we arrive finally at the Duplicator’s response that does not
engage variables X1 . . . Xk at all. This completes the proof. �

Lemma 7 (squeezing out). Let γ ∈ {X1 . . . Xk−1}⊗ be (k − 1)-unambiguous
and assume that γXa

k is its greatest k-extension. Then for some δ ∈ {Xk+1 . . . Xn}⊗
it holds:

γ Xa+1
k ≈ γ Xa

k δ. (8)

Definition 7. If a (k − 1)-unambiguous process γ ∈ {X1 . . .Xk−1}⊗ has the
greatest k-extension, say γXa

k , then the variable Xk is called γ-squeezable and
any δ ∈ {Xk+1 . . .Xn}⊗ satisfying (8) is called a γ-squeeze of Xk.

By the very definition, Xk has a γ-squeeze only if it is γ-squeezable. Lemma 7
shows the opposite: a γ-squeezable Xk has a γ-squeeze, that may depend in
general on γ and k. The squeeze is however not uniquely determined and in
fact Xk may admit many different γ-squeezes. In the sequel assume that for
each (k− 1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗ and Xk, some γ-squeeze of Xk is
chosen; this squeeze will be denoted by δk,γ .

Definition 8 (squeezing step). For a given process α, assuming it is not n-
unambiguous, let γ be its maximal unambiguous prefix. Thus there is k ≤ n such
that

α = γ Xa
k δ,
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γ ∈ {X1 . . . Xk−1}⊗, δ ∈ {Xk+1 . . . Xn}⊗, and γ Xa
k is not k-unambiguous. Note

that a is surely greater than 0. We define squeeze(α) by

squeeze(α) = γ Xa−1
k δk,γ δ.

Otherwise, i.e. when α is n-unambiguous, for convenience put squeeze(α) = α.

By Lemma 7 and by substitutivity of ≈ we conclude that α ≈ squeeze(α) and
if α is not unambiguous then squeeze(α) ≺ α.

We have the following characterization of unambiguous processes:

Lemma 8. A process α is n-unambiguous if and only if it is the least one in its
bisimulation class wrt. 
.

Lemma 7, applied in a systematic manner sufficiently many times on a process
α, yields a kind of normal form, as stated in Lemma 9 below. A process α we
call shortly 	-minimal if there is no β � α with β ≈ α.

Definition 9 (normal form). For any process α let nf(α) denote the unam-
biguous process obtained by consecutive alternating applications of the following
two steps:

– the squeezing step: replace α by squeeze(α),
– the 	-minimization step: replace α by any 	-minimal ᾱ 	 α with ᾱ ≈ α.

As α ≈ squeeze(α) then α ≈ nf(α) and thus using Lemma 8 we conclude that
bisimulation equivalence is characterized by syntactic equality of normal forms:

Lemma 9. α ≈ β if and only if nf(α) = nf(β).

Finally we are able to formulate lower and upper bounds on the size of nf(α),
with respect to the size of α, that will be crucial for the proof of Theorem 1.
The first one applies uniquely to 	-minimal processes.

Lemma 10. If α is 	-minimal then size(α) ≤ size(ᾱ), for any ᾱ 	 squeeze(α)
such that ᾱ ≈ squeeze(α).

Corollary 1 (lower bound). If α is 	-minimal then size(nf(α)) ≥ size(α).

Lemma 11 (upper bound). There is a constant c, depending only on the
process definition, such that size(nf(α)) ≤ c · size(α) for any process α.

Concerning the upper bound, in the following section we demonstrate a sharper
result, with the constant c estimated effectively.

5 Small Normal Form

Denote the size of the process definition by d.

Lemma 12 (upper bound). For any α, size(nf(α)) ≤ dn−1 · size(α).
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Lemma 12 follows immediately from Lemma 13 that says that squeezing does
not increase a weighted measure of size, defined as:

d-size(Xa1
1 . . .Xan

n ) = a1 · dn−1 + a2 · dn−2 + . . .+ an−1 · d+ an.

Lemma 13. For every k and (k − 1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗, if Xk

is γ-squeezable then it has a γ-squeeze δ with d-size(δ) ≤ d-size(Xk).

Indeed, Lemma 13 implies d-size(nf(α)) ≤ d-size(α) and then Lemma 12 follows:

size(nf(α)) ≤ d-size(nf(α)) ≤ d-size(α) ≤ dn−1 · size(α).

Before embarking on the proof of Lemma 13, we formulate a slight general-
ization of Lemma 6 from Section 4. For two processes α, β ∈ {X1 . . .Xl}⊗ we
say that α is l-dominating β if α is bisimilar to some α′ � β.

Lemma 14. Let α be an arbitrary process, β1 ∈ {X1 . . . Xl}⊗ be m-unambi-

guous and β2 ∈ {Xl+1 . . . Xn}⊗ such that α ≈ β1β2. Let α
ζ−→ α′ be an arbitrary

decreasing transition such that the l-prefix of α′ is l-dominating β1. Then there
is a sequence of transitions β2 =⇒0 β

′′
2

ζ−→ β′2 that gives rise to a Duplicator’s
response

β1β2 =⇒0 β1β
′′
2

ζ−→ β1β
′
2,

as required by Definition 1.

Lemma 14 is proved in exactly the same way as Lemma 6. Recalling Lemma 6
observe that it is indeed a special case of Lemma 14: γXb′

k is surely k-dominating
γXa

k as b′ ≥ b− 1 ≥ a.
Now we return to the proof of Lemma 13, by induction on k. For k = n it

trivially holds. Fix k < n and assume the lemma for all greater values of k. Fix
a (k−1)-unambiguous γ ∈ {X1 . . .Xk−1}⊗ and consider its greatest k-extension
γXa

k . The proof is split into three cases:

– a > 0,
– a = 0 and Xk has a γ-squeeze δ such that Xk =⇒0 δ,
– a = 0 and Xk has no γ-squeeze δ such that Xk =⇒0 δ.

In the rest of this section we prove the last case only. The other cases are omitted
due to space limitations.

Simplifying assumption. Variables Xk+1 . . . Xn may be split into those gen-
erated by Xk, an those not generated by Xk. A simple but crucial observation
is that the order > on variables Xk+1 . . .Xn may be rearranged, without losing
generality, so that all variables generated by Xk are smaller than all variables
not generated by Xk. Clearly, if we provide a γ-squeeze of Xk for the rearranged
order, it is automatically a γ-squeeze of Xk for the initial order.

Thus for some l ≥ k we know that variables Xl+1 . . . Xn are all generated by
Xk, and all the remaining variables Xk+1 . . . Xl are not generated by Xk. To
emphasize this we will write [α · β] for the composition of α and β, instead of
αβ, whenever we know that α ∈ {Xk+1 . . .Xl}⊗ and β ∈ {Xl+1 . . . Xn}⊗.
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Lemma 15. No γ-squeeze of Xk contains a variable generated by Xk.

Proof. Assume the contrary, that is,

γ Xk ≈ γ δ′ Y, (9)

with δ′ Y ∈ {Xk+1 . . . Xn}⊗ and Y generated by Xk. Consider the Bisimulation
Game for γXk ≈ γ δ′ Y and an arbitrary sequence of −→0 transitions Y =⇒0 ε
from Y to the empty process ε, giving rise to the sequence of Spoiler’s moves

γ δ′ Y =⇒0 γ δ
′.

By Lemma 14 we know that there is a Duplicator’s response that does not engage
γ at all:

γ Xk =⇒0 γ ω,

i.e. Xk =⇒0 ω. Now substituting γω in place of γδ′ in (9) we obtain a γ-squeeze
of Xk

γ Xk ≈ γ ω Y,

such that Xk −→0 XkY =⇒0 Xk ω Y . This is in contradiction with the assump-
tion that no γ-squeeze is reachable from Xk by =⇒0. Thus the claim is proved.
�

Using Lemma 15 we deduce that the normal form nf(γ Xk) = γ δ contains
no variable generated by Xk, i.e., nf(γ Xk) = γ [δ · ε]. We will show that the
weighted size of δ satisfies the required bound.

Consider the Bisimulation Game for γ Xk ≈ γ δ and the Spoiler’s move from
the smallest variable occurring in δ wrt. >, say Xm. Process δ contains no
variable generated by Xk, hence m ≤ l. Thus δ = δ′Xm, and let the Spoiler’s
move be induced by a decreasing non-generating transition Xm

ζ−→ ω:

γ δ′Xm
ζ−→ γ δ′ ω.

By Lemma 14 we know that there is a Duplicator’s response that does not
engage γ. As no γ-squeeze of Xk is reachable from Xk by =⇒0, the response has
necessarily the following form

γ Xk =⇒0 γ Xk η
ζ−→ γ σ η,

where η is generated by Xk:

Xk =⇒0 Xk η and Xk
ζ−→ σ,

as otherwise at some point in the =⇒0 sequence a γ-squeeze would appear. We
obtain γ σ η ≈ γ δ′ ω and thus

nf(γ σ η) = nf(γ δ′ ω). (10)
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From the last equality we will deduce how the sizes of nf(γ σ) and nf(γ δ′) are
related, in order to conclude that the weighted size of δ is as required.

Let’s inspect the l-prefix of the left processes in (10). Process η can not con-
tribute to that prefix of the normal form, thus if we restrict to the l-prefixes we
have the equality

l-prefix(nf(γ σ η)) = l-prefix(nf(γ σ)). (11)

Similarly, let’s inspect the m-prefix of the right process in (10). Again, ω can not
contribute to that prefix of the normal form, thus if we restrict to the m-prefixes
we have the equality

m-prefix(nf(γ δ′ ω)) = m-prefix(nf(γ δ′)).

As γ δ is the normal form, the process γ δ′ is unambiguous and thus clearly
nf(γ δ′) = γ δ′. Substitute this to the last equality above:

m-prefix(nf(γ δ′ ω)) = m-prefix(γ δ′) = γ δ′. (12)

Using induction assumption we obtain d-size(nf(γ σ)) ≤ d-size(γ σ). As m ≤ l,
by (10), (11) and (12) we conclude that

d-size(γ δ′) ≤ d-size(nf(γ σ)) ≤ d-size(γ σ)

and thus d-size(δ′) ≤ d-size(σ). By the last inequality together with size(σ) ≤
d− 1 and σ ∈ {Xk+1 . . . Xn}⊗ we get the required bound on weighted size of δ:

d-size(δ) = d-size(δ′) + d-size(Xm) ≤ d-size(σ) + dn−m ≤
(d− 1) dn−k−1 + dn−m ≤ dn−k = d-size(Xk).

6 Proof of the Small Response Property

Now we show how Theorem 1 follows from the estimations given in Corollary 1
and Lemma 12. We will need a definition and two lemmas.

We write α ≈=⇒0 β if α =⇒0 β and α ≈ β. A process α is called ≈=⇒0-minimal
if there is no β ≺ α with α

≈=⇒0 β.

Lemma 16. For any α there is a ≈=⇒0-minimal process ᾱ with α ≈=⇒0 ᾱ of size
bounded by size(ᾱ) ≤ size(nf(α)).

Lemma 17. If α is ≈=⇒0-minimal and α ≈=⇒0 β then α 	 β.

Proof of Theorem 1. Consider α ≈ β, a Spoiler’s move α
ζ−→ α′ and a

Duplicator’s response: β =⇒0 β1
ζ−→ β2, with α ≈ β1 and α′ ≈ β2. The basic

idea of the proof is essentially to eliminate some unnecessary generation done
by transitions β =⇒0 β1.

As the first step we apply Lemma 16 to β, thus obtaining a sequence of
transitions β =⇒0 β̄, for some ≈=⇒0-minimal process β̄, in order to consider the
pair (α, β̄) instead of (α, β). Knowing α ≈ β̄ we obtain a Duplicator’s response
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β =⇒0 β̄ =⇒0 β
′
1

ζ−→ β′2 (13)

with α ≈ β′1 and α′ ≈ β′2. Note that by Lemma 17 we know β̄ 	 β′1.
As the second step extend (13) with any sequence β′2

≈=⇒0 β̄
′
2 leading to a

	-minimal process β̄′2 	 β′2. Our knowledge may be outlined with the following
diagram (the subscript in =⇒0 is omitted):

β̄ �
≈ �� β′1

ζ

		
β̄′2 β′2�

≈��

Both left-most processes in the diagram are size bounded. Indeed, Corollary 1
applied to β̄ and β̄′2 yields

size(β̄) ≤ size(nf(α)) and size(β̄′2) ≤ size(nf(α′)).

Then applying Lemma 12 to α and α′ we obtain:

size(β̄) ≤ size(α) · dn−1 and size(β̄′2) ≤ size(α′) · dn−1. (14)

As the third and the last step of the proof, we claim that β′1 and β′2 may be
replaced by processes of size bounded, roughly, by the sum of sizes of β̄ and β̄′2.

Claim. There are some processes β′′1 ≈ β′1 and β′′2 ≈ β′2 such that

β̄ =⇒0 β
′′
1

ζ−→ β′′2 (15)

and
size(β′′1 ), size(β′′2 ) ≤ size(β̄) + size(β̄′2) + d. (16)

The claim is sufficient for Theorem 1 to hold, by inequalities (14). Thus to
complete the proof we only need to demonstrate the claim. The idea underlying
the proof of the claim is illustrated by the following diagram:

β̄

�
�
≈ �� β′1

ζ

		�
≈

  �
�

�
�

�
�

�
�

β′′1

ζ

		

β′2

�
≈

  ��
��

��
�

��
��

��
�

β̄′2 β′′2�
≈��

We use a coloring argument, similarly as in the proof of Lemma 6. Let us color
uniquely every variable occurrence in β′1 and let every transition preserve the
color of the left-hand side variable. Obviously at most size(β̄′2) of these colors will

be still present in β̄′2, name them surviving colors. Let the β′1
ζ−→ β′2 transition

be performed due to a transition rule X
ζ−→ δ, color this particular X , say,

brown.
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Let β′′1 consists of all variables which either belong to β̄ or are colored surviving
or brown color. Thus clearly β̄ 	 β′′1 	 β′1. One easily observes that after the

brown transition X
ζ−→ δ from β′′1 we get β′′2 such that β̄′2 	 β′′2 	 β′2, because

all surviving colored variables are still present. By Lemma 1 one has β′′1 ≈ β′1
and β′′2 ≈ β′2.

Finally we obtain the size estimation size(β′′1 ) ≤ size(β̄) + size(β̄′2) + 1 as in
β′′1 there can be at most size(β̄′2) + 1 surviving and brown colored variables that
do not belong to β̄. This easily implies the estimation for size(β′′2 ). �

Acknowledgments. We are grateful to the reviewers for valuable comments, in
particular for encouraging us to restrict the paper to branching bisimilarity.
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Abstract. In his seminal paper, R. Mayr introduced the well-known Process
Rewrite Systems (PRS) hierarchy, which contains many well-studied classes of
infinite systems including pushdown systems, Petri nets and PA-processes. A
seperate development in the term rewriting community introduced the notion of
Ground Tree Rewrite Systems (GTRS), which is a model that strictly extends
pushdown systems while still enjoying desirable decidable properties. There have
been striking similarities between the verification problems that have been shown
decidable (and undecidable) over GTRS and over models in the PRS hierarchy
such as PA and PAD processes. It is open to what extent PRS and GTRS are
connected in terms of their expressive power. In this paper we pinpoint the exact
connection between GTRS and models in the PRS hierarchy in terms of their ex-
pressive power with respect to strong, weak, and branching bisimulation. Among
others, this connection allows us to give new insights into the decidability re-
sults for subclasses of PRS, e.g., simpler proofs of known decidability results of
verifications problems on PAD.

1 Introduction

The study of infinite-state verification has revealed that unbounded recursions and un-
bounded parallelism are two of the most important sources of infinity in the programs.
Infinite-state models with unbounded recursions such as Basic Process Algebra (BPA),
and Pushdown Systems (PDS) have been studied for a long time (e.g. [2,21]). The same
can be said about infinite-state models with unbounded parallelism, which include Basic
Parallel Processes (BPP) and Petri nets (PN), e.g. [10,14]. While these aforementioned
models are either purely sequential or purely parallel, there are also models that simul-
taneously inherit both of these features. A well-known example are PA-processes [3],
which are a common generalization of BPA and BPP. It is known that all of these mod-
els are not Turing-powerful in the sense that decision problems such as reachability is
still decidable (e.g. see [9]), which makes them suitable for verification.

In his seminal paper [18], R. Mayr introduced the Process Rewrite Systems (PRS)
hierarchy (see leftmost diagram in Figure 1) containing several models of infinite-state
systems that generalize the aforementioned well-known models with unbounded recur-
sions and/or unbounded parallelism. The idea is to treat models in the hierarchy as a
form of term rewrite systems, and classify them according to which terms are permit-
ted on the left/right hand sides of the rewrite rules. In addition to the aforementioned
models of infinite systems, the PRS hierarchy contains three new models: (1) Process

J.-P. Katoen and B. König (Eds.): CONCUR 2011, LNCS 6901, pp. 543–558, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Rewrite Systems (PRS), which generalize PDS, PA-processes, and Petri nets, (2) PAD-
processes, which unify PDS and PA-processes, and (3) PAN-processes, which unify
both PA-processes and Petri nets. Mayr showed that the hierarchy is strict with respect
to strong bisimulation. Despite of its expressive power PRS is not Turing-powerful
since reachability is still decidable for this class. Before the PRS hierarchy was intro-
duced, another class of infinite-state systems called Ground Tree/Term Rewrite Systems
(GTRS) already emerged in the term rewriting community as a class with nice decid-
ability properties. While extending the expressive power of PDS, GTRS still enjoys
decidability of reachability (e.g. [8,11]), recurrent reachability [15], model checking
first-order logic with reachability [12], and model checking the fragments LTLdet and
LTL(Fs,Gs) of LTL [24,23]. Due to the tree structures that GTRS use in their rewrite
rules, GTRS can be used to model concurrent systems with both unbounded parallelism
(a new thread may be spawned at any given time) and unbounded recursions (each
thread may behave as a pushdown system).

When comparing the definitions of PRS (and subclasses thereof) and GTRS, one
cannot help but notice their similarity. Moreover, there is a striking similarity between
the problems that are decidable (and undecidable) over subclasses of PRS like PA/PAD-
processes and GTRS. For example, reachability, EF model checking, and LTL(Fs,Gs)
and LTLdet model checking are decidable for both PAD-processes and GTRS
[7,15,18,19,23,24]. Furthermore, model checking general LTL properties is undecid-
able for both PA-processes and GTRS [7,24]. Despite these, the precise connection
between the PRS hierarchy and GTRS is currently still open.

Contributions: In this paper, we pinpoint the precise connection between the expres-
sive powers of GTRS and models inside the PRS hierarchy with respect to strong,
branching, and weak bisimulation. Bisimulations are well-known and important no-
tions of semantic equivalences on transition systems. Among others, most properties
of interests in verification (e.g. those expressible in standard modal/temporal logics)
cannot distinguish two transition systems that are bisimilar. Strong/weak bisimulations
are historically the most important notions of bisimulations on transition systems in
verification [20]. Weak bisimulations extend strong bisimulations by distinguishing ob-
servable and non-observable (i.e. τ ) actions, and only requiring the observable behavior
of two systems to agree. In this sense, weak bisimulation is a coarser notion than strong
bisimulation. Branching bisimulation [25] is a notion of semantic equivalence that is
strictly coarser than strong bisimulation but is strictly finer than weak bisimulation. It
refines weak bisimulation equivalence by preserving the branching structure of two pro-
cesses even in the presence of unobservable τ -actions; it is required that all intermediate
states that are passed through during τ -transitions are related.

Our results are summarized in the middle and right diagrams in Figure 1. Our first
main result is that the expressive power of GTRS with respect to branching and weak
bisimulation is strictly in between PAD and PRS but incomparable with PAN. This
result allows us to transfer many decidability/complexity results of model checking
problems over GTRS to PA and PAD-processes. In particular, it gives a simple proof of
the decidability of model checking the logic EF over PAD [19], and decidability (with
good complexity upper bounds) of model checking the common fragments LTLdet and
LTL(Fs,Gs) of LTL over PAD (this decidability result was initially given in [7] with-
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out upper bounds). In fact, we also show that Regular Ground Tree Rewrite Systems
(RGTRS) [15] — the extension of GTRS with possibly infinitely many GTRS rules
compactly represented as tree automata — have the same expressive power as GTRS
up to branching/weak bisimulation. Our proof technique also implies that PDS is equiv-
alent to prefix-recognizable systems (e.g. see [9]), abbreviated as PREF, up to branch-
ing/weak bisimulation. On the other hand, when we investigate the expressive power of
GTRS with respect to strong bisimulation, we found that PAD (even PA) is no longer
subsumed in GTRS. Despite this, we can show that up to strong bisimulation GTRS is
strictly more expressive than BPP and PDS, and is strictly subsumed in PRS. Finally,
we mention that our results imply that Mayr’s PRS hierarchy is also strict with respect
to weak bisimulation equivalence.

Related work: Our work is inspired by the work of Lugiez and Schnoebelen [16] and
Bouajjani and Touili [6], which study PRS (or subclasses thereof) by first distinguish-
ing process terms that are “equivalent” in Mayr’s sense [18]. This approach allows them
to make use of techniques from classical theory of tree automata for solving interest-
ing problems over PRS (or subclasses thereof). Our translation from PAD to GTRS is
similar in spirit.

There are other models of multithreaded programs with unbounded recursions that
have been studied in the literature. Specifically, we mention Dynamic Pushdown Net-
works (DPN) and extensions thereof (e.g. see [5]) since an extension of DPN given
in [5] also extends PAD-processes. We leave it for future work to study the precise
connections between these models and GTRS.

Organization: Preliminaries are given in Section 2. We provide the models of infinite
systems (PRS, GTRS, etc.) in Section 3. Our containment results (e.g. PAD is sub-
sumed in GTRS up to branching bisimulation) can be found in Section 4. Section 5
gives the separation results for the refined PRS hierarchies. Finally, we briefly discuss
applications of our results in Section 6.

PRS

PANPAD

PDS

PA

PN

BPA BPP

FIN

PRS

PANGTRS PAD

PDS

PA
PN

BPA BPP

FIN

PRS

PAN
GTRS = RGTRS

PAD

PDS = PREF PA PN

BPA BPP

FIN

Fig. 1. Depictions of Mayr’s PRS hierarchy and their refinements via GTRS as Hasse diagrams
(the top being the most expressive). The leftmost diagram is the original (strict) PRS hierarchy
where expressiveness is measured with respect to strong bisimulation. The middle (resp. right) di-
agram is a strict refinement via GTRS with respect to strong (resp. weak/branching) bisimulation.
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2 Preliminaries

By � = {0, 1, 2, . . .} we denote the non-negative integers. For each i, j ∈ � we define
the interval [i, j] = {i, i+ 1, . . . , j}.

Transition systems and weak/branching/strong bisimulation equivalence: Let us
fix a countable set of action labels Act. A transition system is tuple T = (S,�, { a−→|
a ∈ �}), where S is a set of states, � ⊆ Act is a finite set of action labels, and where

a−→⊆ S × S is a set of transitions. We write s
a−→ t to abbreviate (s, t) ∈ a−→. We

apply similar abbreviations for other binary relations over S. For each R ⊆ S × S, we
write sR to denote that there is some t ∈ S with (s, t) ∈ R. For each Λ ⊆ �, we define

Λ−→=
⋃

a∈Λ
a−→ and we define −→= �−→. Whenever T is clear from the context and

U ⊆ S, we define post∗Λ(U) = {t ∈ S | ∃s ∈ U : s Λ−→
∗
t}. In case U = {s} is a

singleton, we also write post∗Λ(s) for post∗Λ(U).
A pointed transition system is a pair (T , s), where T is a transition system and s

is some state of T . Let T = (S,�, { a−→| a ∈ �}) be a transition system. A relation
R ⊆ S × S is a strong bisimulation if R is symmetric and for each (s, t) ∈ R and for
each a ∈ � we have that if s

a−→ s′, then there is t
a−→ t′ such that (s′, t′) ∈ R. We

say that s is strongly bisimilar to t (abbreviated by s ∼ t) whenever there is a strong
bisimulation R such that (s, t) ∈ R.

Next, we define the notions of branching bisimulation and weak bisimulation. For
this, let us fix a silent action τ �∈ � and let �τ = � ∪ {τ}. Moreover let T =
(S,�τ , { a−→| a ∈ �τ}) be a transition system. We define the binary relations

τ=⇒=
( τ−→)∗ and

a=⇒= ( τ−→)∗◦ a−→ ◦( τ−→)∗ for each a ∈ �.
A binary relation R ⊆ S × S is a branching bisimulation if R is symmetric and if

for each (s, t) ∈ R the following two conditions hold: (i) if s
τ−→ s′, then (s′, t) ∈ R

and (ii) if s
a−→ s′ for some a ∈ �, then there is t

τ=⇒ t′ a−→ t′′ τ=⇒ t′′′ such that
(s, t′), (s′, t′′), (s′, t′′′) ∈ R. We say that s is branching bisimilar to t (abbreviated by
s � t) whenever there is a branching bisimulation R such that (s, t) ∈ R.

A binary relation R ⊆ S × S is a weak bisimulation if R is symmetric and for each
(s, t) ∈ R and for each a ∈ �τ we have that if s

a−→ s′, then there is t
a=⇒ t′ such

that (s′, t′) ∈ R. We say that s is weakly bisimilar to t (abbreviated by s ≈ t) whenever
there is a weak bisimulation R such that (s, t) ∈ R.

Each of the three introduced bisimulation notions can be generalized between states
s1 and s2 where s1 (resp. s2) is a state of some transition system T1 (resp. T2), by
simply taking the disjoint union of T1 and T2.

Let C1 and C2 be classes of transition systems and let ≡∈ {∼,�,≈} be some notion
of equivalence. We write C1 ≤≡ C2 if for every pointed transition system (T1, s1) with
T1 ∈ C1 there exists some pointed transition system (T2, s2) with T2 ∈ C2 such that
s1 ≡ s2. We write C1 ≡ C2 in case C1 ≤≡ C2 and C2 ≤≡ C1.

These above-mentioned equivalences can also be characterized by the standard
Attacker-Defender game, see e.g. [13] and the references therein.

Ranked trees: Let
 denote the prefix order on �∗, i.e. x 
 y for x, y ∈ �∗ if there is
some z ∈ �∗ such that y = xz, and x ≺ y if x 
 y and x �= y. A ranked alphabet is a
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collection of finite and pairwise disjoint alphabetsA = (Ai)i∈[0,k] for some k ≥ 0. For
simplicity we identify A with

⋃
i∈[0,k]Ai. A ranked tree (over the ranked alphabet A)

is a mapping t : Dt → A, where Dt ⊆ [1, k]∗ satisfies the following:Dt is non-empty,
finite and prefix-closed and for each x ∈ Dt with t(x) ∈ Ai we have x1, . . . , xi ∈ Dt

and xj �∈ Dt for each j > i. We say that Dt is the domain of t – we call these elements
nodes. A leaf is a node x with t(x) ∈ A0. We also refer to ε ∈ Dt as the root of t. By
TreesA we denote the set of all ranked trees over the ranked alphabet A. We also use
the usual term representation of trees, e.g. if t is a tree with root a and left (resp. right)
subtree t1 (resp. t2) we have t = a(t1, t2).

Let t be a ranked tree and let x be a node of t. We define xDt = {xy ∈ [1, k]∗ | y ∈
Dt} and x−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote the subtree of t with root
x, i.e. the tree with domainDt↓x = x−1Dt defined as t↓x(y) = t(xy). Let s, t ∈ TreesA

and let x be a node of t. We define t[x/s] to be the tree that is obtained by replacing
t↓x in t by s; more formally Dt[x/s] = (Dt \ xDt↓x) ∪ xDs with t[x/s](y) = t(y) if
y ∈ Dt \ xDt↓x and t[x/s](y) = s(z) if y = xz with z ∈ Ds.
Define |t| = |Dt| as the number of nodes in a tree t.

Regular tree languages: A nondeterministic tree automaton (NTA) is a tuple A =
(Q,F,A,Δ), where Q is a finite set of states, F ⊆ Q is a set of final states, A =
(Ai)i∈[0,k] is a ranked alphabet, andΔ ⊆

⋃
i∈[0,k] Q

i×Ai×Q is the transition relation.
A run ofA on some tree t ∈ TreesA is a mapping ρ : Dt → Q such that for each x ∈ Dt

with t(x) ∈ Ai we have (ρ(x1), . . . , ρ(xi), t(x), ρ(x)) ∈ Δ. We say ρ is accepting if
ρ(ε) ∈ F . By L(A) = {t ∈ TreesA | there is an accepting run of A on t} we denote
the language of A. A set of trees U ⊆ TreesA is regular if U = L(A) for some NTA
A. The size of an NTA A is defined as |A| = |Q|+ |A|+ |Δ|.

3 The Models

3.1 Mayr’s PRS Hierarchy

In the following, let us fix a countable set of process constants (a.k.a. process variables)
� = {A,B,C,D, . . .}. The set of process terms is given by the following grammar,
where X ranges over �:

t, u ::= 0 | X | t.u | t||u

The operator . is said to be sequential composition, while the operator ‖ is referred to as
parallel composition. In order to minimize clutters, we assume that both operators . and
‖ are left-associative, e.g., X1.X2.X3.X4 stands for ((X1.X2).X3).X4. The size |t| of
a term is defined as usual. Mayr distinguishes the following classes of process terms:

� Terms consisting of a single constant X ∈ �.
� Process terms without any occurrence of parallel composition.
� Process terms without any occurrence of sequential composition.
� Arbitrary process terms possibly with sequential or parallel compositions.
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By �(Σ), �(Σ), �(Σ), respectively �(Σ) we denote the set �, �, �, respectively �
restricted to process constants from Σ, for each finite subset Σ ⊆ �.

A process rewrite system (PRS) is a tuple P = (Σ,�, Δ), where Σ ⊆ � is a finite
set of process constants, � ⊆ Act is a finite set of action labels, and Δ is a finite
set of rewrite rules of the form t1 �→a t2, where t1 ∈ �(Σ) \ {0}, t2 ∈ �(Σ) and
a ∈ �. Other models in PRS hierarchy are Finite Systems (FIN), Basic Process Algebra
(BPA), Basic Parallel Processes (BPP), Pushdown Systems (PDS), Petri Nets (PN),
PA-processes (PA), PAD-processes (PAD), and PAN-processes (PAN). They can be
defined by restricting the terms that are allowed on the left/right hand side of the PRS
rewrite rules as specified in the following tables.

Model L.H.S. R.H.S
FIN �(Σ) �(Σ)
BPA �(Σ) �(Σ)
BPP �(Σ) �(Σ)

Model L.H.S. R.H.S
PDS �(Σ) �(Σ)
PN �(Σ) �(Σ)

Model L.H.S. R.H.S
PAD �(Σ) �(Σ)
PAN �(Σ) �(Σ)

We follow the approach of [16,6] to define the semantics of PRS. While Mayr [18] di-
rectly works on the equivalence classes of terms (induced by some equivalence relation
≡ defined by some axioms including associativity and commutativity of ‖) to define the
dynamics of PRS, we shall initially work on term level. More precisely, given a PRS
P = (Σ,�, Δ), we write T0(P) to denote the transition system (�(Σ),�, { a−→| a ∈
�}) where

a−→ is defined by the following rules:

t1
a−→ t′1

t1‖t2 a−→ t′1‖t2
t2

a−→ t′2

t1‖t2 a−→ t1‖t′2
t1

a−→ t′1

t1.t2
a−→ t′1.t2 u

a−→ t
(u �→a t) ∈ Δ

We now define Mayr’s semantics of PRS in terms of T0(P). First of all, let us define
the equivalence relation ≡ on terms using the following proof rules:

t.0 ≡ t
R0.

t1.(t2.t3) ≡ (t1.t2).t3
A.

t1 ≡ u1 t2 ≡ u2

t1.t2 ≡ u1.u2
Con.

0.t ≡ t
L0.

t1‖(t2‖t3) ≡ (t1‖t2)‖t3 A‖ t1 ≡ u1 t2 ≡ u2

t1‖t2 ≡ u1‖u2
Con‖

t‖0 ≡ t
R0‖

t1‖t2 ≡ t2‖t1 C‖ u ≡ u′ u′ ≡ u′′

u ≡ u′′ Trans

0‖t ≡ t
L0‖

u ≡ u Ref
t ≡ u
u ≡ t

Sym

Here, u, t, ti, ui range over all terms in �. Intuitively, the axioms defining≡ say that 0 is
identity, while the operator . (resp. ‖) is associative (resp. associative and commutative).
The rules (Con.) and (Con‖) are standard context rules in process algebra saying that
term equivalence is preserved under substitutions of equivalent subterms. Finally, Trans,
Sym, and Ref state that ≡ is an equivalence relation. In the sequel, we also use the
symbol≡1 to denote the equivalence relation on process terms that allows all the above
axioms except for (A‖) and (C‖). Obviously,≡1⊆≡. Given a term t ∈ �, we denote by
[t]≡ (resp. [t]≡1 ) the ≡-class (resp.≡1-class) containing t.
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Mayr’s semantics on a PRS P = (Σ,�, Δ) such that T0(P) = (�(Σ),�, { a−→| a ∈
�}) is a transition system T (P) = (S,�, {Ea | a ∈ �}), where S = {[t]≡ | t ∈ �(Σ)}
and where (C,C′) ∈ Ea iff there exist t ∈ C and t′ ∈ C′ such that t

a−→ t′. An
important result by Mayr [18] is that the PRS hierarchy is strict with respect to strong
bisimulation.

3.2 (Regular) Ground Tree Rewrite Systems and Prefix-Recognizable Systems

A regular ground tree rewrite system (RGTRS) is a tuple R = (A,�, R), where A is
a ranked alphabet, � ⊆ Act is a finite set of action labels and where R is finite set of
rewrite rules L

a
↪→ L′, where L and L′ are regular tree languages over A given as NTA.

The transition system defined by R is T (R) = (TreesA,�, { a−→| a ∈ �}), where for
each a ∈ �, we have t

a−→ t′ if and only if there is some x ∈ Dt and some rule
L

a
↪→ L′ ∈ R such that t↓x = s and t′ = t[x/s′] for some s ∈ L and some s′ ∈ L′.
A ground tree rewrite system (GTRS) is an RGTRSR = (A,�, R), where for each

L
a
↪→ L′ ∈ R we have that both L = {t} and L′ = {t′} is a singleton; we also write

t
a
↪→ t′ ∈ R for this.
A prefix-recognizable system (PREF) is an RGTRS R = (A,�, R), where only A0

andA1 may be non-empty. We note that analogously pushdown systems can be defined
as GTRSR = (A,�, R), where only A0 and A1 may be non-empty.

4 Containment Results

In this section, we prove the following containment results: PAD ≤� GTRS (Section
4.1), BPP ≤∼ GTRS and GTRS ≤∼ PRS, and finally RGTRS =� GTRS (Section
4.2).

4.1 PAD ≤� GTRS

Theorem 1 (PAD ≤� GTRS). Given a PAD P = (Σ,�, Δ) and a term t0 ∈ �(Σ),
there exists a GTRS R = (A,�τ , R) and a tree t′0 ∈ TreesA such that (T (P), [t0]≡)
is branching bisimilar to (T (R), t′0). Furthermore,R and t′0 may be computed in time
polynomial in |P|+ |t0|.

Before proving this theorem, we shall first present the general proof strategy. The main
difficulty of the proof is that the domain S′ of T (P) consists of ≡-classes of process
terms, while the domain of T (R) consists of ranked trees. On the other hand, observe
that the other semantics T0(P) is more close to a GTRS since the domain S of T0(P)
consists of process terms (not equivalence classes thereof). Therefore, the first hurdle
in the proof is to establish a connection between T (P) and T0(P). To this end, we will
require that t0 and all process terms in P have a minimum number of zeros and have no
right-associative occurrence of the sequential composition operator. We will then pick
a small subset of the axioms of ≡ as τ -transitions, which we will add to T0(P). These
axioms include those that reduce the occurrences of 0 from terms, and the rule that
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turns a right-associative occurrence of the sequential composition operator into a left-
associative occurrence. The resulting pointed transition system (T0(P), t0) will become
branching bisimilar to (T (P), [t0]≡). In fact, fixing t0 as the initial configuration, we
will see that further restrictions to the axioms for≡ (e.g. associativity of .) may be made
resulting in a pointed transition system that can be easily captured in the framework of
GTRS.

Adding the τ -transitions to T0(P): We define the relation
τ−→ on arbitrary process

terms given by the following proof rules:

0.t
τ−→ t t‖0

τ−→ t

t1
τ−→ t′1

t1.t2
τ−→ t′1.t2

t.0
τ−→ t t1.(t2.t3)

τ−→ (t1.t2).t3

t2
τ−→ t′2

t1‖t2 τ−→ t1‖t′2

0‖t τ−→ t

t1
τ−→ t′1

t1‖t2 τ−→ t′1‖t2
t2

τ−→ t′2

t1.t2
τ−→ t1.t

′
2

Here, t is allowed to be any process term. Observe that these τ -transitions remove
redundant occurrences of 0 and turns a right-associative occurrence of the sequen-
tial composition into a left-associative one. Observe that we do not allow associativ-
ity/commutativity axioms for ‖ in our definition of

τ−→. It is easy to see that
τ−→⊆≡1⊆

≡. We now note a few simple facts about
τ−→ in the following lemmas.

Lemma 2. For all terms t, there exists a unique term t↓ such that t
τ−→
∗
t↓ and t↓ � τ−→.

Furthermore, all paths from t to t↓ are of length at most O(|t|2), and moreover t↓ is
computable from t in polynomial time.

Lemma 3. The following statements hold: (1) If t ≡1 t
′, then t↓ = t′↓, (2) If 0 ≡ v,

then v
τ−→
∗

0, and (3) If X1.X2 . . . Xn ≡ v, then v
τ−→
∗
X1.X2 . . . Xn.

Lemma 2 is a basic property of a rewrite system commonly known as confluence and
termination (e.g. see [1]). In fact, it does not take long to terminate. Lemma 3 gives the
form of the unique “minimal” term with respect to

τ−→ given various different initial
starting points. The proofs of these lemmas are standard. For the rest of the proof of
Theorem 1, we assume the following conventions:

Convention 4 The term t0 and all process terms in P are minimal with respect to
τ−→.

That is, each of such terms t satisfies t = t↓.

We now add these τ -transitions into T0(P). So, we will write T0(P)=(�(Σ),�τ , { a−→:
a ∈ �τ}). Our first technical result is that the equivalence relation≡ is indeed a branch-
ing bisimulation on T0(P).

Lemma 5. ≡ is a branching bisimulation on T0(P).

The proof of this lemma is not difficult but tedious. As an immediate corollary, we
obtain that (T0(P), t0) is equivalent to (T (P), [t0]≡) up to branching bisimulation.
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Corollary 6. The relation R = {(C, t) ⊆ S′ × S : t ∈ C} is a branching bisimulation
between T (P) and T0(P).

Removing complex τ -transitions: Corollary 6 implies that we may restrict ourselves
to the transition system T0(P). At this stage, our τ -transitions still contain some rules
that cannot easily be captured in the framework of GTRS, e.g., left-associativity rule
of the sequential composition. We will now show that fixing an initial configuration t0
allows us to remove these τ -transitions from our systems.

Recall that our initial configuration t0 satisfies t0 = (t0)↓. Denote by W the set of
all subtrees (either of t0 or of a left/right side of a rule in P) rooted at a node that is
a right child of a .-labeled node. It is easy to see that Convention 4 implies that each
t ∈ W satisfies t = t↓. Consequently, each t ∈ W cannot be of the form t1.t2 or 0
since t is a right child of the sequential composition. Furthermore, |W | is linear in the
size of P .

Lemma 7. Fix a term t ∈ post∗(t0) with respect to T0(P). Then, any subtree of t which
is a right child of a .-labeled node is in W .

This lemma can be easily proved by induction on the length of the witnessing path that
t ∈ post∗(t0) and that this invariant is always satisfied. This lemma implies that some
of the rules for defining

τ−→ may be restricted when only considering post∗(t0) as the
domain of our system, resulting in the following simplified definition:

0.t
τ−→ t

t ∈ W
t‖0

τ−→ t

t1
τ−→ t′1

t1.t2
τ−→ t′1.t2

t2 ∈ W

0‖t τ−→ t

t2
τ−→ t′2

t1‖t2 τ−→ t1‖t′2
t1

τ−→ t′1

t1‖t2 τ−→ t′1‖t2

Observe that the rule t.0 τ−→ t may be omitted since no subtree of t ∈ post∗(t0) of the
form u.0 exists. Moreover, the rule t1.(t2.t3) τ−→ (t1.t2).t3 is never applicable since no
subtree of t ∈ post∗(t0) of the form t1.(t2.t3) exists. Other rules are omitted because
any subtree of t of the form t1.t2 must satisfy t2 ∈ W , and that each u ∈ W satisfies
u = u↓ (which implies u � τ−→).

Finally, in order to cast the system into GTRS framework, we will further restrict
rules of the form t‖0 τ−→ t or 0‖t τ−→ t. Let l-prefix(P) be the set of all prefixes
of words w appearing on the left hand side of the rules in P treated as left-associative
terms. More formally, l-prefix(P) contains 0 (a term representation of the empty word)
and all subterms u of a term appearing on the left hand side of a rule in P rooted at a
node location of the form 1∗. We define �τ to be the restriction of

τ−→, where rules of
the form 0‖t τ−→ t and t‖0 τ−→ t are restricted to t ∈ l-prefix(P). We let T ′0 (P) to be
T0(P) with

τ−→ replaced by �τ .

Lemma 8. (T ′0 (P), t) is branching bisimilar to (T0(P), t).

Constructions of the GTRS: It is now not difficult to cast T ′0 (P) into GTRS frame-
work. To construct the GTRS, we let A be the ranked alphabet containing: (i) a nullary
symbol for each process variable occuring in P , (ii) a binary symbol for the binary op-
erator ‖, and (iii) a unary symbol t̂ for each term t ∈ W . Since each subtree u of a tree
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t ∈ post∗(t0) of the form t1.t2 satisfies t2 ∈ W , we may simply substitute u with the
tree t̂2(t1) and perform this substitution recursively on t1. Denote by λ(t) the resulting
tree over the new alphabetA after this substitution is performed on a process term t. The
desired GTRS isR = (A,�τ , R), where R is defined as follows. For each rule t �→a t

′

in P , where a ∈ �, we add the rule λ(t)
a
↪→ λ(t′) to R. For each t ∈ l-prefix(P),

we add 0‖t τ
↪→ t and t‖0 τ

↪→ t to R. Finally, we add the transition rule t̂(0) τ−→ t for
each t ∈ W . It is now not difficult to show that (T ′0 (P), t) � (T (R), λ(t)), which
immediately implies Theorem 1.

4.2 Further Containment Results

Theorem 9. BPP ≤∼ GTRS.

Proof (sketch). The idea is to construct from some BPP a GTRS, where each leaf cor-
responds to a process constant. A leaf is either marked or unmarked. An unmarked
leaf X can become marked with the fresh symbol $ via the action a in case the rule
X �→a 0 is present in the BPP. Rules of the kind X �→a Y1‖ . . . ‖Yn are realized via

X
a
↪→ •(Y1, . . . , Yn) in the GTRS. Moreover the GTRS does not contain any rules,

where a marked leaf is on the left-hand side of a rule. �

Theorem 10. GTRS ≤∼ PRS.

Proof (sketch). Let k be the maximal rank of the alphabet of some GTRS. Although
parallel composition is interpreted commutatively we can simulate order by using k
additional symbols in a PRS. �

Theorem 11. RGTRS � GTRS.

Proof (sketch). A GTRS can simulate via τ -transitions the bottom-up computation of
an NTA. In addition, one provides τ -transitions that allow to undo these transitions. �

In analogy to Theorem 11 one can prove the following.

Corollary 12. PDS � PREF.

5 Separation Results

In this section, we provide the separation results in the two refined hierarchies. We first
note two known separation results: (1) BPA �≤≈ PN (e.g. see [10]), and (2) BPP �≤≈
PDS since there is a BPP trace language that is not context-free (e.g. see references in
[4]) and trace equivalence is coarser than weak bisimulation equivalence.

5.1 PA �≤∼ GTRS

Some properties of GTRS: We introduce some notions that were also used in [15].
Let R = (A,�, R) be an arbitrary GTRS. For each t ∈ TreesA, we define height(t) =
max{|x| : x ∈ Dt}. We define the number hR = max{height(t) | ∃t′ ∈ TreesA ∃σ ∈
� : t

σ
↪→ t′ ∈ R or t′

σ
↪→ t ∈ R} and |R| = |A|+ |�|+

∑
t

σ
↪→t′∈R

|t|+ |t′|.
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Lemma 13. Let Λ ⊆ �. For every t0 ∈ TreesA there is some N = exp(|R| +

height(t0)) such that t0
Λ−→

N

implies t0
Λ−→

n

for infinitely many n ∈ �.

The separating PA: Consider the PA P = (Σ,�, Δ) with Σ = {A,B,C,D}, � =
{a, b, c, d} and where Δ consists of the following rewrite rules:

A �→a 0 B �→b 0 C �→c 0 D �→d 0 A �→a A||B||C

U

V

tB

y

x

Fig. 2. The tree T 1 = U [V [tB]]

For the rest of this section, we wish to prove
that the state α = A.D in T (P) is not strongly
bisimilar to any pointed GTRS. So for the sake
of contradiction, let us assume some GTRS R =
(A,�, R) and some tα ∈ TreesA(R) with tα ∼
α. We note that e.g. by [15] it is known that the
set of maximal sequences executable from α (the
language of αwhen P is interpreted as a language
acceptor) are recognizable by some GTRS [15].

We call U [x] a context if U ∈ TreesA and x ∈
DU is a leaf of U . Given a tree t ∈ TreesA and a
contextU [x], we write U [t] for U [x/t]. We define
Un[t] inductively as follows: U0[t] = t and Un =
U [Un−1[t]] for each n > 0.

Let us consider post∗{a}(tα). First, there is
some NTA A with L(A) = {tα}. A folklore re-
sult states that there is some NTA B with L(B) =
post∗{a}(L(A)) = post∗{a}(tα), see e.g. [15]. Note that L(B) is infinite since α can
reach infinitely many pairwise non-bisimilar states and tα ∼ α by assumption. By ap-
plying the Pumping Lemma for regular tree languages, there is some tree tB ∈ TreesA

and there are contexts U [x], V [y] ∈ TreesA such that (i) U [V [tB]] ∈ L(B), (ii)
height(U [V [tB]]) ≤ 2 · |B|, (iii) height(V [tB]) ≤ |B|, (iv) |y| > 0, i.e. V is not a
singleton tree, and (v) U [V n[tB]] ∈ L(B) for each n ≥ 0.

The tree U [V [tB]] is displayed in Figure 2. We define the tree T n = U [V n[tB]]
for each n ≥ 0. Moreover we define the consant γ = � · (hR + 1) with � =
2|{t∈TreesA|height(t)≤hR}|, i.e. � denotes the number of different subsets of the set of all
trees in TreesA of height at most hR.

The following lemma states that if V γ [tB] can reach some tree of height at most hR
by only executing the action σ, then there is already some tree tσ of height at most hσ

such that for all i ≥ 0 we have V θ+i·δ[tB] σ−→
R
∗
tσ.

Lemma 14. There exist θ, δ ≥ 1 such that if V γ [tB] σ−→
∗
t for some t ∈ TreesA with

height(t) ≤ hR, then V θ+i·δ[tB] σ−→
R
∗
tσ for all i ≥ 0 for some tσ ∈ TreesA.

For the rest of this section, we fix θ and δ from Lemma 14. Note that due to tα ∼ α we

have that for every t ∈ post∗{a}(tα) there is some unique k ∈ � with tα
a−→

k
t. Thus,

for each tree t ∈ post∗{a}(tα) we define k(t) to be the unique k with tα
a−→

k
t.
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Lemma 15. {k(T n) | n ∈ �} is an infinite set.

Let us immediately apply Lemma 15. Let us fix some residue class r modulo δ such
that there are infinitely many n with n ≡ r mod δ all having pairwise distinct k(T n)
values. Among these infinitely many n we will choose a sufficiently large N ≥ θ for
the following arguments to work. The tree TN is depicted in Figure 3. Recall that by
definition TN ∈ post∗{a}(tα).

The following lemma states that one can never shrink the subtree V γ [tB] of TN to
some tree of height at most hR by only executing b’s or only executing c’s.

Lemma 16. If V γ [tB] σ−→
∗
t, then we have height(t) > hR for each t ∈ TreesA and

each σ ∈ {b, c}.

Let yN denote the unique node of TN where the subtree tB is rooted at. We call a
node z ∈ DT N of TN off-path if z �
 yN . For each tree t ∈ TreesA and each σ ∈ �,

we define supσ(t) = sup
{
j ∈ � | t σ−→

j
}

.

...

...

Dγ(tB)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ yN

Fig. 3. The tree T N

Intuitively speaking, the following lemma states that
from the subtree V γ [tB] of TN and subtrees of TN that
are rooted at off-path nodes one only execute a constantly
long sequences from b∗c∗ or from c∗b∗ (unless tα ∼ α is
violated). Let us define b = c and c = b. We note that γ
and B only depend onR and on tα but not on N .

Lemma 17. Let σ ∈ {b, c}. Then there is some constant
J = J(R, tα) such that supσ(t) ≤ J whenever either

t = V γ [tB] or TN↓z σ−→
∗
t for some off-path z.

We can now prove the main result of this section.

Theorem 18. PA �≤∼ GTRS.

Proof. We give a simple winning strategy for Attacker that

contradicts tα ∼ α. First Attacker plays tα
a−→k(T N )

TN .
We remark since N is chosen sufficiently large, it follows
that k(TN ) is sufficiently large for the following arguments
to work. It has to hold for some s ∈ {0, 1}

TN ∼

⎛⎜⎝A1−s‖B‖B · · · ‖B︸ ︷︷ ︸
k(T N )−s

‖C‖C · · · ‖C︸ ︷︷ ︸
k(T N )−s

⎞⎟⎠ .D (�)

We only treat the case s = 1 (the case s = 0 can be proven analogously). Recall that
γ is a constant that only depends on R and tα. On the one hand we cannot modify the
subtree V γ [tB] of TN to any tree of height at most hR by executing b’s only by Lemma
16. On the other hand we cannot execute more than J many b’s from the subtree V γ [tB],

where J is the constant of Lemma 17. Thus, since TN b−→
k(T N )−1

holds, Attacker can
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play k(TN )−1−J many b’s outside the subtree V γ [tB]. We recall that k(TN)−J can
be arbitrarily large since J is a constant that only depends on R and tα. By definition
of TN all of these k(TN)−1−J many b’s can be played on subtrees initially rooted at
off-path nodes of TN outside the subtree V γ [tB]. However from each of these subtrees
that are initially rooted at off-path nodes outside the subtree V γ [tB], we can execute at
most J many b’s.

Analogously Attacker can execute k(TN)−1−J many c’s from TN all on subtrees
initially rooted at off-path nodes of TN outside the subtree V γ [tB].

Attacker now has the following winning strategy. First he plays k(TN)−1−J many
b’s on subtrees rooted at off-path nodes of TN outside V γ [tB]. After playing these b’s
the height each of these subtrees is bounded by a constant that only depends on R and
tα by Lemma 17. Next, Attacker plays k(TN) − 1 − J many c’s at positions outside
the subtree V γ [tB] and still, by Lemma 17, the height of all subtrees rooted at off-path
nodes outside V γ [tB] have a height bounded by a constant that only depends onR and

tα. Let us call the resulting tree T ′. We note that T ′ bJcJd−−−−→, i.e. from T ′ the sequence
bJcJ is executable thus reaching a tree where a d-labeled rule is executable. But this

implies that TN wd−−→ for some w ∈ {b, c}∗ where |w| is bounded by a constant that
only depends onR and tα, clearly contradicting (�). �

5.2 GTRS �≤≈ PAD

By Theorem 11 it suffices to prove that there is some RGTRS that is not weakly bisim-
ilar to any PAD.

Consider the RGTRS R = (A,�, R), with A0 = {X0, Y0, Z0}, A1 = {X1, Y1},
A2 = {•}, and � = {a, b, c, d, e, f}. First, we add to R the following singleton rewrite

rules: (i) X0
a
↪→ X1(X0), (ii) X1(X0)

b
↪→ X0, (iii) Y1

c
↪→ Y1(Y0), (iv) Y1(Y0)

d
↪→ Y0,

and (v) •(X0, Y0)
e
↪→ Z0.

Z0

t(0, 0)

t(0, 1)

t(0, 2)

t(1, 0)

t(1, 1)

t(2, 0)

a a

b b

a

b

c
d

c
d

cd

e

f

f

f

f

f

...

...
· · ·

...

Fig. 4. The transition system T (R)

We note that so far all rewrite rules
are standard ground tree rewrite rules.
Also note that the singleton tree Z0 is a
dead-end. It is easy to see that for ev-
ery tree in t ∈ TreesA that is reach-
able from •(X0, Y0) we have t = Z0 or
t is of the form t = •(tX , tY ), where
tX = Xm

1 [X0] and tY = Y n
1 [Y0] for

some m,n ≥ 0. In the latter case we
denote t by t(m,n). Finally, we add to
R the regular tree rewrite rule {t(m,n) |
n ≥ 1 or m ≥ 1} f

↪→ Z0. The transition
system T (R) is depicted in Figure 4.

It is easy to see that the set of maximal
sequences executable from t(0, 0) is not
a context-free language. We claim that
there is no PAD that is weakly bisimilar
to t(0, 0) = •(X0, Y0).
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Let us assume by contradiction that for some PAD P = (Σ,Aτ , Δ) and for some
term α0 ∈ �(Σ) we have α0 ≈ t(0, 0). We call a term α ∈ �(Σ) inactive if α � σ=⇒ for
all σ ∈ �. We note that α

τ=⇒ might be possible even though α is inactive.

Lemma 19. Assume some term α with α ≈ t(m,n) for some m,n ∈ � and α contains
an enabled subterm β1‖β2. Then β1 or β2 is inactive.

Theorem 20. GTRS �≤≈ PAD.

Proof (sketch). The proof idea is to show that any PAD that satisfies the property of
Lemma 19 is already weakly bisimilar to a pushdown process.

5.3 PDS �≤≈ PAN and PN �≤≈ GTRS

Theorem 21. PDS �≤≈ PAN.

Proof (sketch). The proof idea is an adaption of an idea from [18] separating PAN
from PDS with respect to strong bisimulation, but is technically more involved. The
separating pushdown process behaves as follows: First, it executes a sequence of actions
w = {a, b}∗ and then executes either of the following: (1) The action c, then the reverse
of w and finally an e. (2) The action d, then the reverse of w and finally an f . �

Theorem 22. PN �≤≈ GTRS

The proof can be done by observing that {anbncn | n ∈ �} is a PN language (e.g. see
[22]), while this language is not a trace language of GTRS (e.g. see [15]).

6 Applications

In this section, we provide applications of the connections that we establish between
GTRS and the PRS hierarchy. Instead of attempting to exhaust all possible applications,
we shall only highlight a few of the key applications. In particular, Theorem 1 allows
us to transfer decidability/complexity upper bounds on model checking over GTRS to
model checking over PA/PAD-processes.

The first application is the decidability of EF-logic over PAD. The logic EF (e.g. see
[13,23]) is the extension of Hennessy-Milner logic with reachability operators (possi-
bly parameterized over subsets of all possible actions). The decidability of EF model
checking over GTRS has been known for a long time, e.g., it follows from the results of
[8,12]. Together with Theorem 1, this easily gives another proof of the following result
of Mayr.

Theorem 23 ([19]). Model checking EF-logic over PAD is decidable.

The second application is the decidability/complexity of model checking the com-
mon fragments LTLdet (called deterministic LTL) and LTL(Fs,Gs) [7,17] of LTL over
PAD. These fragments are suffciently powerful for expressing interesting properties like
safety, fairness, liveness, and also some simple stuttering-invariant LTL properties. The
following two theorems follow from the results for GTRS [23,24]; decidability with no
upper bounds was initially proven in [7].
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Theorem 24. Model checking LTLdet over PAD is decidable in exponential time in the
size of the formula and polynomial in the size of the system. Model checking LTL(Fs,Gs)
over PAD is decidable in time double exponential in the size of the formula and poly-
nomial in the size of the system.
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Bruni, Roberto 312

Chen, Yu-Fang 187
Clemente, Lorenzo 187
Cook, Byron 235
Crafa, Silvia 124
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