
Z.S. Hippe et al. (Eds.): Human - Computer Systems Interaction, AISC 98, Part I, pp. 343–357.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

A Cooperative Approach to Web Crawler URL
Ordering

A. Chandramouli1, S. Gauch2, and J. Eno2

1 Department of Computer Science, University of Kansas, Lawrence, KS
 aravindc@ku.edu
2 Department of Computer Science, University of Arkansas, Fayetteville, AR
 {sgauch,jeno}@uark.edu

Abstract. Uniform Resource Locator (URL) ordering algorithms are used by Web
crawlers to determine the order in which to download pages from the Web. The
current approaches for URL ordering based on link structure are expensive and/or
miss many good pages, particularly in social network environments. In this paper,
we present a novel URL ordering system that relies on a cooperative approach be-
tween crawlers and web servers based on file system and Web log information. In
particular, we develop algorithms based on file timestamps and Web log internal
and external counts. By using this change and popularity information for URL or-
dering, we are able to retrieve high quality pages earlier in the crawl while avoid-
ing requests for pages that are unchanged or no longer available. We perform our
experiments on two data sets using the Web logs from university and CiteSeer
websites. On these data sets, we achieve a statistically significant improvement in
the ordering of the high quality pages (as indicated by Google’s PageRank) of
57.2% and 65.7% over that of a breadth-first search crawl while increasing the
number of unique pages gathered by skipping unchanged or deleted pages.

1 Introduction

Search engines use crawlers to collect Web pages from Web servers distributed
across the Internet. Crawlers are programs that automatically collect Web pages by
starting with a Uniform Resource Locator, URL, downloading the Web page at that
location, and recursively retrieving all the pages pointed to by the hyperlinks on the
page. In contrast to traditional crawlers based on link structure, recent efforts
[Brandman et al. 2000] have focused on providing support for crawlers by exploit-
ing Web server information like Web logs and file system to provide the list of
URLs on the website. Along similar lines, Google has developed site maps
(http://www.sitemaps.org) to allow web sites to provide hints to the Google crawler.

In contrast to providing the list of all URLs on a website, we proposed a coop-
erative architecture that uses Web log and file system timestamps to provide a

344 A. Chandramouli, S. Gauch, and J. Eno

ranked list of new, modified, and deleted pages since the last visit from a crawler.
In our Web services-based co-operative approach, the individual websites make use
of their own Web logs and file systems to gather this information. This information
can be used to increase the number of pages collected compared to traditional
crawling and achieve significant bandwidth savings for the same set of pages col-
lected over multiple crawls. Additionally, hidden web content accessible only
through forms can be added to the index based on the URL encoded arguments
from a GET form request.

Even with these improvements, the size of the Web combined with the necessar-
ily limited resources available to a crawler and the limited bandwidth on the web-
sites, crawlers do not collect all pages from the Web. As the size of the Web keeps
increasing, crawlers typically try to download the “important” pages for indexing
by search engines. To determine the important pages, crawlers make use of URL
ordering algorithms. The connectivity-based document quality ordering [Cho et al.
1998] and breadth-first search crawling [Nojork and Wiener 2001] are two such
well-known URL ordering algorithms. However, both techniques have drawbacks.
A connectivity-based metric penalizes new pages and is expensive to compute. On
the other hand, breadth-first ordering is relatively inexpensive to implement, but
this technique misses good pages deeper in the hierarchy of the site.

Social web content presents challenges for either connectivity-based or breadth-
first URL ordering strategies. Social media tends to be fast-moving and may be
out of date by the time it develops the robust link structure that would bring it to
prominence in a connectivity-based algorithms. Another problem is that many of
the links of interest will be shared on private social network profiles, limiting the
ability to use either connectivity or breadth-first crawls to identify resources.

As part of the co-operative file system approach, we have developed an URL
ordering algorithm based on popularity information extracted from Web logs. This
algorithm is inexpensive to compute because it distributes the URL ordering calcu-
lation overhead among the participating websites, and identifies pages that users of
the website find important enough to view. Because it does not rely on identifying
external links to resources to discover content pages, it can identify pages before
they are widely linked in the broader Web as well as within social networks. In this
paper, we present both timestamp-based and access count algorithms, discuss the
advantages and drawbacks of these approaches, and empirically compare them with
the computationally similar breadth-first search crawl using Google’s PageRank as
the metric to indicate each page’s importance.

2 Related Works

Researchers have investigated several ways to provide improved support for
search engine crawlers. Most of these focus on exploiting Web server information
and processing power. [Brandman et al. 2000] suggest the creation of a file on the

A Cooperative Approach to Web Crawler URL Ordering 345

Web server that provides a list of all the URLs and their meta-data. In their ap-
proach, the crawler would download this file to identify modified pages. They
make use of the file system to create their meta-data file. Although the Web serv-
er is a partner in the crawling process by providing digested information, the bulk
of the processing to detect new, modified, and deleted pages is still left to the
crawler. In contrast to the pull strategy employed by crawlers today, [Gupta and
Campbell 2001] describe an algorithm that would push updates on popular pages
from Web servers to search engines. [Castillo 2004] discusses both pull and push
architectures to support cooperation between a Web server and a crawler. They al-
so implemented a cooperation scheme that created an XML file storing update in-
formation based on the file system, and demonstrated that a crawler making use of
this information would experience 40% bandwidth savings when compared to tra-
ditional crawling. [Buzzi 2003] describe a similar approach to [Castillo 2004] and
propose the creation of a text file that has information about Web pages such as
the last update time, file size, local request frequency, and local update frequency.
The paper discussed the type of information that should be provided, but they do
not discuss how this information would be gathered by the Web site, nor how it
would be used by the crawler. More recently, Google introduced Google sitemaps,
which is essentially an extension of the approach proposed in [Brandman et al.
2000]. Webmasters can install a program on their website that creates a text or
XML file containing the URLs on the website, called a sitemap. Google sitemaps
make use of both file system and Web logs to create the list of URLs.

The earliest work on URL ordering algorithms was by [Cho et al. 1998]. They
used connectivity-based metrics to identify the “important” pages to download,
and their experiments showed that using the PageRank metric downloaded impor-
tant pages earlier than the other algorithms. [Najork and Wiener 2001] extended
the work of [Cho et al. 1998] and demonstrated that it was possible to discover the
important pages early in the crawl by using a breadth-first ordering. However,
they do not compare breadth-first crawl with other techniques. More recent work
on URL ordering by [Castillo et al. 2004] compared different ordering techniques,
namely Optimal, Depth, Length, Batch, and Partial, for long term and short term
scheduling for crawling on the Web.

As discussed above, the breadth-first search and the PageRank are the two of
the most popular URL ordering techniques reported in literature. However, using
PageRank to compute the URL ordering can be very expensive. In fact, [Najork
and Weiner 2001] observe that performing the PageRank computations for all the
Web pages in real time is not feasible. [Cho and Schonfeld 2007] demonstrate a
more efficient method of computing a partial PageRank by relying on a vector of
trusted pages to compute a lower bound on the true rank of queued pages. For a
crawl of 80 million pages, the technique took only three times as long as a
breadth-first ordering. However, new pages and pages outside the trusted set and
pages without PageRank are still penalized by this metric. Recent work has

346 A. Chandramouli, S. Gauch, and J. Eno

focused on modifying PageRank to use last-modified date or more complex web
graph modeling to improve performance for new pages [Cho et al. 2005], but
these algorithms are still computationally expensive. On the other hand, a major
drawback with breadth-first ordering is that important pages deeper in the hierar-
chy of the websites will not be collected.

As an alternative to the above two techniques, we propose a URL ordering of
pages on individual websites calculated using popularity information extracted from
web logs. A major advantage of such an algorithm is that it is relatively inexpensive
to compute when compared to PageRank and, since the ordered list of URLs is
produced by the individual websites, the workload for the search engines is reduced.
Because the websites can process their own file systems and Web logs efficiently,
and the results of this effort can be shared with multiple search engine crawlers, the
burden on the individual websites is acceptable. This upfront work also decreases
the amount of effort the websites must spend serving pages to crawlers.

Another factor that may affect the optimal ordering of URLs is the probability
that a new page will improve the existing index. [Pandey and Olston 2008] devel-
oped a model that uses sample queries and the existing index state, combined with
content clues such as URL text and anchor text words to order URLs for crawling.
Pages that have a high likelihood of being highly ranked and relevant to a topic
that is sparsely populated in the index are given greater priority in the crawl order.
Although this algorithm helps to alleviate some of the problems of other connec-
tivity-based ordering algorithms, such as focusing too much on popular topics to
the detriment of niche topics, it still relies on existing links. In some ways, the
existing link problem is exacerbated, since the existing links are used for both ref-
erence counts and topic discovery. Such an algorithm might struggle with the
common practice of using a link shortening service such as tinyurl or bit.ly in
social network links.

3 Approach and Implementation

The goal of any URL ordering algorithm is to produce an ordering of URLs so that
the Web crawler can collect the most important pages first. Our approach improves
this ordering by providing a web service that generates an XML document including
only new or modified URLs and ranking them based on popularity as measured by
access counts. During a crawl, a cooperative crawler will request a list of all new,
updated, or deleted URLs since the last request. The server will generate an XML
document with an entry for each qualifying URL, marking the URL as new, modi-
fied, or deleted. URLs that have not been modified will not need to be requested by
the crawler, so they are not included in the XML response.

For the popularity-based URL ordering algorithms, we exploit the popularity
information present in the Web logs on a website and look at a variety of ways to
produce this URL ordering. We classify these approaches broadly as non-learning

A Cooperative Approach to Web Crawler URL Ordering 347

algorithms that use a predetermined ordering function and learning algorithms that
order URLs adaptively based on a training set of URLs with quality information.

3.1 URL List Generation

The list of URLs for the web service may be generated based on the file system,
Web logs, or a combination of both. The file system approach has the advantage
of providing a comprehensive list of all accessible documents along with accurate
modification times. However, it will fail to discover or update dynamic pages,
multiple pages specified by URL arguments, or content that may have been modi-
fied in a database or content management system (CMS) without modifying the
base page. It also cannot flag deleted URLs, since they no longer exist on the file
system.

The Web log approach can mitigate these omissions in three ways. First, it can
recognize some dynamic pages based on URL-encoded arguments to the web
server. Second, by examining the number of bytes returned by a request, it can rec-
ognize when the size of a page has changed, indicating a change even when the file
system timestamp is unchanged. Finally, it can discover deleted pages based on 404
(Not Found) errors in the Web log. However, it can only recognize pages that have
been accessed within the time covered by the log file. In practice, a hybrid ap-
proach that gathers data from the file system and Web logs while maintaining a his-
tory of file system and Web log activity provides a means to get the most accurate
information from all possible sources without relying on long log histories.

Fig. 1 shows the architecture for our system. Periodically, the Web Log Har-
vester harvests the Web logs for processing. Currently, the Web server used ar-
chives its Web logs weekly, so the Web Log Harvester gathers data weekly using
the Web log file name provided in a configuration file. Similarly, the File System
Harvester uses a text file that contains the list of directory paths on the website
and the corresponding base URL for that directory. Every week, the File System
Harvester recursively retrieves the filenames. The harvesters pass their informa-
tion along to the Data Parsing Module. From the Web logs, the module extracts:
IP address, access time, URL, number of bytes, and status code. From the file sys-
tem, the module extracts: path, filename, date of last modification and maps the
filenames to its corresponding URLs. The information directly extracted is stored
in a URL Database that has the following entries: URL, created date, modified
date, deleted date, byte count, and the source. The first time the harvesting is per-
formed the modified date and the created date are set to be the same, while the de-
leted date is empty for all the URLs collected. However, during the subsequent
weeks, the Data Parsing Module uses the data gathered by the harvesters and the
information present in the database to infer the modified date and the deleted date
using the techniques discussed in section 3.

348 A. Chandramouli, S. Gauch, and J. Eno

Fig. 1 System Architecture

The information stored in the database is shared with enhanced crawlers via a
Web service implemented using the REST protocol. The crawler queries the Web
service for information about the Web site contents. The crawler can query the
Web service to find URLs that match based on the following criteria:

FileType - Text, Video, Audio, All types.
FromDate – This is the date from which it requires information.
ChangeType – Modified, Deleted, Created, All types.
Changes/Url – Give the changes to the file only or the URL of the entire file.

The ToDate is implicitly set to the current date. Currently, our system only gives
the URL for the Web page, but, in future, we will explore a mechanism to provide
only the changes made to a page. The crawler then parses the supplied XML file
in order to identify the list of URLs that need to be collected. Finally, the Web
pages are collected and passed along to the search engine for indexing.

During the experiments, the list was generated using three algorithms: file sys-
tem, Web log, and file system hybrid. The file system and Web log methods used
data exclusively from the file system or Web logs, respectively. However, the
Web log data tended to be less reliable both because users sometimes requested
pages that no longer existed and some pages were not requested at all, making
them unavailable to the Web log-based system. The file system hybrid approach
started with the file system list, then supplemented it with Web log data to
discover hidden web content. This led to a larger list that still had high reliability.

A Cooperative Approach to Web Crawler URL Ordering 349

3.2 Non-learning Algorithms for URL Ordering

The Web logs on the website register the access made to every Web page on the
site. Thus, from the Web logs, the total access count for each Web page can be
calculated. Then, the Web pages are sorted based on their Total Access Count
(TAC). However, pages with high total access count need not necessarily indicate
highly popular pages. For example, a Web page might be accessed often by its
owner thus inflating the access count value. It may be possible to more accurately
identify important pages by incorporating information about the number of differ-
ent IP addresses from which a page is accessed.

In addition to unique IP address metrics, the hierarchical nature of IP addresses
enables us to differentiate between internal and external page accesses. Hence, in
order to explore a variety of URL ordering algorithms, we extract four different
types of access information from the Web logs, namely, the Total External Count
(TEC), the Unique External Count (UEC), the Total Internal Count (TIC), and the
Unique Internal Count (UIC) where the external count refers to the requests made
to a URL on the website from outside the local network and the internal count re-
fers to the local requests made to a URL. Different URL orderings are then pro-
duced by ordering the Web pages based on different combinations of these factors.
One limitation to this approach is its inability to differentiate multiple accesses
originating from behind a single proxy server. However, obtaining session-level
data would require more knowledge than can be derived from a typical Web ac-
cess log an is beyond the scope of this paper.

The non-learning algorithms discussed so far order the URLs based on four dif-
ferent factors. However, they do not take into account the relative importance of
each factor. Are all the parameters equally important or should they be weighed
differently? To address these issues, a simple approach would be to calculate the
accuracy of the different parameters to predict high quality pages and then use
these accuracy values to assign different weights for the parameters. This ap-
proach, the Weighted Access Count (WAC) algorithm, has the advantage that the
parameters are weighed differently based on their ability to predict high quality
pages. The weighted score for each URL is calculated as shown in Equation 1 and
an URL ordering is produced by sorting the URLs based on this weighted score.

Totalacc

UICacc

Totalacc

TICacc

Totalacc

UECacc

Totalacc

TECacc
WS **** δγβα +++= (1)

where
WS = Weighted Score
TECacc = TEC algorithm accuracy
UECacc = UEC algorithm accuracy
TICacc = TIC algorithm accuracy
UICacc = UIC algorithm accuracy
Totalacc = TECacc + UECacc + TICacc + UICacc
and α, β, γ and δ = raw external, unique external, internal, and unique internal
counts for the URL.

350 A. Chandramouli, S. Gauch, and J. Eno

3.3 Learning Algorithms for URL Ordering

The non-learning algorithms either make use of four different factors or a combi-
nation of these factors. In order to learn the best combination of factors, and to de-
velop an adaptive algorithm that would work on any website, we implemented two
learning algorithms, Total Access Count-Learning (TAC-L) and Split Access
Count-Learning (SAC-L). The TAC-L algorithm takes the total access count for
each URL as the attribute while the SAC-L algorithm takes the four different pa-
rameters discussed in Section 3.2 as the attributes for the data and they predict the
PageRank categories for new URLs based on their attribute(s). Both algorithms
have a training and a testing phase. In the training phase, a set of URLs with their
access counts and quality information are given as input to a learning algorithm
like decision trees or k-Nearest Neighbor algorithm and a model is learned. The
quality information is determined using PageRank. PageRank has been used for
URL ordering algorithms [Cho et al. 1998] to measure the quality of a page, that
is, higher the PageRank, higher the quality of the page. In addition, by relying on
the global Google PageRank value as an indicator of the 'true' importance of a
page, we are able to verify our results against a much broader metric even though
we only use local information to compute our ranking.

Although true PageRank values are floating-point values that provide a total
ordering of URLS, we are somewhat restricted in our access to Google's PageR-
ank values. In order to determine the true PageRank for a URL, we use the free-
ware Parameter tool that determines the PageRank of a URL on a 1 to 10 scale.
Since learning algorithms typically predict a category, we make use of the integer
PageRank values as the categories for classification. During the testing phase, a
set of URLs with their access counts are given as input and the learned model is
then used to place each URL in the best matching category. The confidence factor
for these assignments are used to rank order the URLs within each category, pro-
ducing total ordering of the URLs.

4 Evaluation Method

In this section, we describe our experimental evaluation method used to compare
popularity-based URL ordering algorithms to a breadth-first search crawl, using a
PageRank ordering as a benchmark.

4.1 Data Collection

We make use of two data sets for our experiments. Data set 1 (DS1) contains the
Web logs of the ITTC website over 5 weeks (http://www.ittc.ku.edu), to which we
had access. Data set 2 (DS2) contains the Web logs of the CiteSeer website
(http://citeseer.ist.psu.edu/) whose Web logs for a five week period was shared
with us. For DS1, using the home page as a start page, we produced an URL

A Cooperative Approach to Web Crawler URL Ordering 351

ordering based on the breadth-first search crawl. In contrast, since CiteSeer does
not have an exposed tree hierarchy, a breadth-first crawl is essentially a random
crawl. Hence, the random crawl is used as a baseline for DS2. For our popularity-
based URL ordering algorithms, access count information from Web logs cover-
ing a five week period were extracted. Some of the URLs collected using a
breadth-first search crawl for DS1 did not have popularity information (i.e., were
not accessed during this five week period) and, similarly, breadth-first search
crawl was unable to collect the hidden Web pages that were accessed but were not
linked explicitly on the site. Thus, our experiments used a total of 5,480 URLs for
DS1 and 102,360 URLs for DS2 that could be collected by the breadth-first
search/random crawl for which we also had access information from the Web
logs. It is useful to note that one of the benefits of the proposed approach is the
ability to find pages that are accessible by means other than links, which is not
possible with a link-graph or breadth-first approach.

4.2 Metrics

As discussed briefly in Section 3.2, PageRank has been used in literature to meas-
ure the quality of a page. PageRanks for a page are calculated recursively based
on the link structure on the Web, with pages linked from many highly ranked pag-
es receiving the highest scores. In order to enable categorization, PageRanks are
assigned from a scale of 0-10, with 10 being the most important page. To find the
PageRank, as outlined in Section 3.3, we make use of a freeware Parameter
version 1.2.

One problem with using PageRank categories as an evaluation metric is that a
URL ordering algorithm produces a total ordering on the list of URLs whereas a
discretized PageRank does not. That is, although URLs with different PageRank
categories can be ordered, URLs with the same PageRank is essentially an unor-
dered set. Hence, for our evaluation, the pages with higher PageRank should be
ranked higher than pages with lower PageRank but the order among the URLs
with the same PageRank does not matter.

100*1

n

Match
Accuracy

n

i i == (2)

Equation 2 is the evaluation metric we use, where
n = total number or URLs,
Matchi = 1 if PPRi = APRi, and 0 otherwise,
PPRi = PageRank category of URL i produced by the ordering algorithm,
APRi = Actual PageRank category for i.

In order to illustrate this metric, consider the following URLs (denoted A-E) with
their associated PageRank categories: A-6, B-6, C-5, D-5 and E-5. Since PageR-
ank categories do not distinguish among elements in the two sets {A, B} and {C,
D, E}, A and B can be in any of the first 2 slots while C, D and E can be in any of

352 A. Chandramouli, S. Gauch, and J. Eno

the next 3 slots to produce an accuracy of 100%. Hence, a rank order of ABCDE
will be given an accuracy of 100% while a rank order of ACDBE will be given an
accuracy of 60% since B should be in one of the first 2 slots while C should be in
any of the final 3 slots.

5 Results

Results are presented for both URL list generation and URL ordering systems.
The URL lists are evaluated in terms of request and bandwidth savings over time,
while the URL orderings are compared with PageRank rankings to determine or-
dering accuracy.

5.1 Evaluating the Effectiveness of URL List Generation

The list of URLs may be effective in two ways. First, it can identify additional
pages that are part of the hidden web or have not been linked yet by other pages.
Second, it can reduce the amount of bandwidth used to gather unmodified content.
Fig. 2 shows the effect of the URL list generator in terms of additional pages col-
lected. The results show that while the number of pages available through links
was fairly constant and occasionally dropped from week to week, the file system,
Web log, and file system hybrid approaches gathered significantly more pages,
and increased the size of the collection from week to week. Because the pure Web
log approach could only discover pages that had already been requested, it had
lower performance than the approaches which included file system information.
However, the combined approach was able to discover hidden web pages that
were not visible to a pure file system approach.

Fig. 2 Number of URLs Collected Over Time

A Cooperative Approach to Web Crawler URL Ordering 353

In terms of bandwidth savings, the set of pages that were collected by the tradi-
tional crawl were largely static throughout the eight week experiment. As a result,
after the first week, the cooperative approach required less than 0.2% as much
bandwidth to collect the modified pages from the set of pages gathered by the tra-
ditional crawler. Because the hybrid approach discovered more pages, it gathered
159 MB compared to the 13.5 MB collected by the traditional crawler. In the
process, it collected six times as many pages overall.

5.2 Evaluating the Accuracy of URL Ordering Algorithms

We evaluate the performance of our URL ordering algorithms by using a five-fold
cross validation on DS1. First, the 5,480 URLs were randomly divided into 5 sets.
Next, the training and testing was carried out 5 times, each time using 4 sets for
training and the remaining set for testing. The numbers reported in this section are
the averages obtained over the 5 trials.

We first establish the baseline with the breadth-first search crawl using the test-
ing sets. We found that the breadth-first crawl URL ordering had a 38.8% match
with the PageRank category ordering (as calculated using formula 2). Also, a ran-
dom ordering of the URLs produced an accuracy of 32.9% using the same metric.
Next, we used the same test sets for the popularity-based URL ordering algorithms
described in Section 3. The results in Fig. 3 show that, even after 5 weeks, the to-
tal internal count (TIC) (28.7%) algorithm performs poorly when compared to the
baseline. The unique internal count had similarly poor results of 28.5% accuracy.
However, the total external count (TEC) (45.7%) performs better. Similarly, the
total access count (TAC) algorithm also perform better than the baseline, produc-
ing an accuracy of 44.7%. The weighted access count did not improve the TAC
algorithm, and neither outperformed the exclusively external count algorithm.

Fig. 3 also shows the accuracy values obtained using the total access count
learning algorithms (TAC-L) and the split access count learning algorithms (SAC-
L). As discussed in Section 3.3, we make use of decision trees (TAC-L_DT and
SAC-L_DT) and k-Nearest Neighbors (TAC-L_kNN and SAC-L_kNN) as our
learning algorithms. At the end of 5 weeks, both the TAC and SAC k-Nearest
Neighbor algorithms performed slightly worse than the decision tree algorithms
shown in fig. 3. The TAC-L_kNN algorithm produces an accuracy of 57.4%,
compared to the TAC-L_DT algorithm produces an accuracy of 58.2%. The high-
est accuracy is produced by the split access count learning (SAC-L_DT)
algorithm, at 64.3%. The SAC-L_kNN algorithm was also good, producing an
accuracy of 63.3%. We performed a two-tailed t-test with α =0.05 for the SAC-
L_DT algorithm and found a statistically significant improvement (p=5.40E-12) of
63.1% over that of a breadth-first crawl.

354 A. Chandramouli, S. Gauch, and J. Eno

Fig. 3 URL Ordering Accuracy for DS1

5.3 Analysis of Results Obtained Using DS1

Table 1 gives the number and the average access counts of URLs/PageRank.
From Table 1, we can see that the total number of URLs with PageRank 5 and 6
are much lower when compared to the number of URLs with other PageRanks. In
addition, the average access counts do not increase linearly with the PageRank
values. Table 1 also provides the average accuracy values/PageRank for all the
popularity based URL ordering algorithms after Week 5.

Table 1 Accuracy, URL Count, and Hits per PageRank

PageRank Avg.

Accuracy

URL

Count

Avg.

External

Hits

Avg.

Unique

Ext. Hits

Avg.

Internal

Hits

Avg.

Unique

Int. Hits

0 68.7 2672 20.8 14.8 3.6 2.2

1 0.6 240 8.9 8.4 1.1 1.1

2 29.5 993 22.7 19.5 2.4 1.9

3 38.7 1183 86.9 31.7 2.0 1.1

4 17.9 345 83.8 56.3 9.5 7.4

5 3.2 38 97.6 83.0 12.6 9.7

6 14.8 9 652.8 510.1 524.8 270.1

One observation from Table 1 is that all the algorithms seem to do well or badly

on the same PageRank. For example, all the algorithms seem to perform better on

A Cooperative Approach to Web Crawler URL Ordering 355

URLs with PageRank 0, 2 and 3 than they do on pages with higher PageRank be-
cause there are so few pages with high PageRank (only 2808 of the 5480 URLs
have PageRank higher than 0 and only 392 URLs have a PageRank of 4 or higher).
On the pages with moderate PageRank values, the popularity-based learning algo-
rithms outperform the other algorithms, leading to their high overall accuracy. It is
worth noting that all these PageRanks have a high number of URLs. In contrast,
none of the algorithms do well for URLs with PageRanks 1, 5 and 6. For URLs
with PageRank 1, we see that their average access count is much lower than the ac-
cess count for URLs with PageRank 0 and 2. Although the average counts for
URLs with PageRank 5 and 6 is higher than the access counts for URLs with lower
PageRank, the poor performance of the popularity-based techniques may be due to
the low number of URLs in this category. This is not surprising for techniques us-
ing learning algorithms since it is consistent with the axiom that the accuracy of a
learning algorithm increases with more number of examples per category.

5.4 Discussion

From the results obtained in Sections 5.2 and 5.3, we conclude that, in general, the
popularity-based learning algorithms order important URLs higher than breadth-
first crawlers, a statistically significant result. Furthermore, our experiments show
that page accesses from external domains are more important for URL ordering
than page accesses from internal domains. Moreover, among the popularity-based
URL ordering techniques, the methods that used learning algorithms out-
performed the methods that used raw access counts. This shows that although the
access count is correlated to the importance of the pages, they are not directly pro-
portional as shown by the improved accuracy obtained by our learning algorithms
(highest accuracy of 64.3%) when compared to techniques that make use of raw
access counts (highest accuracy of 45.7%). In addition, this correlation may be
different on different websites and learning algorithms may be able to identify this
correlation and hence, find “important” pages better than non-learning algorithms.

In order to evaluate the effect of a different website, we used the best performing
non-learning (TEC) and learning (SAC-L_DT) algorithms on a larger data set, the
CiteSeer data set (DS2) with 102,360 URLs. Similar to DS1, we perform a five-fold
cross validation and report the averages obtained. Recall that the CiteSeer data set
does not have a hierarchical linking system, so we must use a random crawl to obtain
a baseline. Using a random crawl baseline, we obtained an accuracy of 28.1%.

Fig. 4 provides the results obtained for TEC algorithm and the SAC-L_DT al-
gorithm. From Fig. 4, we see that the accuracy of SAC-L-DT is 44.2% versus
28.1% for random crawl. We performed a two-tailed t-test with α = 0.05. We
achieve a statistically significant improvement (p =6.4E-17) of 57.2% in our URL
ordering algorithm over that of a random crawl on a large data set. This demon-
strates that, once again, popularity-based URL ordering techniques outperforms a
baseline (random) crawl.

356 A. Chandramouli, S. Gauch, and J. Eno

Fig. 4 URL Ordering Accuracy on DS2

6 Conclusions and Future Work

In this paper, we propose a new class of URL list creation and ordering algorithms
based on file modification and popularity information from file systems and Web
logs. Specifically, we present different strategies to discover new or modified pag-
es and perform URL ordering using popularity information and compare our ap-
proaches to a breadth-first search crawls. Our evaluations show improved per-
formance of these algorithms when compared to breadth-first search crawl.

This approach seems well-suited to social media settings where URLs may be
shared in a variety of forms beyond links embedded in other web pages. In
particular, the approach mitigates some of the difficulties in determining page
popularity when the URL is shared in RSS feeds, text messages, or through URL
shortening services. The combination of URL list generation and ordering in the
system could keep up with quickly evolving social network media much more
efficiently than traditional connectivity-based or breadth-first approaches.

One drawback with our approach is that new pages that have not been accessed
are penalized. Adding last modified dates as a factor along with popularity infor-
mation may address this issue. Another improvement to the experiment would be
to rely on a larger collection where we could compute our own PageRank values,
rather than relying on the discrete categories provided by Google. This would al-
low us to compare two full ordering algorithms to further discover how well the
two methods' rankings match.

One concern with an approach that relies on web server logs for popularity
ranking is the danger of manipulation to boost rankings. In the context of URL or-
dering, this is less of a concern, since the ordering on a site will primarily be used
to modify the order of a crawl within a site rather than to request more pages from
the server. In a result ranking context, one approach to mitigate the manipulation

A Cooperative Approach to Web Crawler URL Ordering 357

problem would be to establish a similar ranking budget for each site, so that boost-
ing one page only cannibalizes other resources on the site. Another option is to
develop tools that can digitally sign logs and log harvesting tools to prevent exter-
nal manipulation.

A final area of future work is to expand the scope of the information used for
the URL list and ordering system. The URL ordering algorithms proposed in this
paper are for ordering pages on a single website based only on file system and
web log information. Understanding how to combine the popularity information
from different logs to order pages from various websites could be another interest-
ing problem to explore. Another possible source of information is directly from
content management systems on large websites. This would allow dynamic or
hidden web pages to be discovered before they appeared in Web logs.

Acknowledgment

This work was partially supported by NSF ITR 0225676 (SEEK).

References

[Brandman et al. 2000] Brandman, O., Cho, J., Garcia-Molina, H., Shivakumar, N.:
Crawler friendly Web servers. In: Proc Workshop on Performance and Architecture of
Web Servers (PAWS), Santa Clara, California (2000)

[Buzzi 2003] Buzzi, M.: Cooperative crawling. In: Proc. Latin American Conference on
World Wide Web (LA-Web), Santiago, Chile, pp. 209–211 (2003)

[Castillo 2004] Castillo, C.: Effective Web crawling PhD Thesis, University of Chile, Chile
(2004)

[Castillo et al. 2004] Castillo, C., Marin, M., Rodriguez, A., Baeza-Yates, R.: Scheduling
algorithms for web crawling. In: Proc. Latin American Web Conference, Brazil,
pp. 10–17 (2004)

[Cho et al. 1998] Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL or-
dering. In: Proc. 7th World Wide Web Conference, Brisbane, Australia, pp. 161–172
(1998)

[Cho et al. 2005] Cho, J., Roy, S., Adams, R.E.: Page quality: In search of an unbiased web
ranking. In: Proc. 2005 ACM SIGMOD International Conference on Management of
Data, Baltimore, Maryland, pp. 551–562 (2005)

[Cho and Schonfeld 2007] Cho, J., Schonfeld, U.: RankMass crawler: A crawler with high
PageRank coverage guarantee. In: Proc. 33rd International Conference on Very Large
Data Bases, Vienna, Austria, pp. 375–396 (2007)

[Najork and Wiener 2001] Najork, M., Wiener, J.L.: Breadth-first search crawling yields
high-quality. In: Proc. 10th International World Wide Web Conference, Hong Kong,
pp. 114–118 (2001)

[Pandey and Olston 2008] Pandey, S., Olston, C.: Crawl ordering by search impact. In:
Proc. of the International Conference on Web Search and Data Mining, Palo Alto, Cali-
fornia, pp. 3–14 (2008)

	A Cooperative Approach to Web Crawler URL Ordering
	Introduction
	Related Works
	Approach and Implementation
	URL List Generation
	Non-learning Algorithms for URL Ordering
	Learning Algorithms for URL Ordering

	Evaluation Method
	Data Collection
	Metrics

	Results
	Evaluating the Effectiveness of URL List Generation
	Evaluating the Accuracy of URL Ordering Algorithms
	Analysis of Results Obtained Using DS1
	Discussion

	Conclusions and Future Work
	References

