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Preface

The 11th event of the Industrial Conference on Data Mining (ICDM) was held in
New York (www.data-mining-forum.de) running under the umbrella of the world
congress “The Frontiers in Intelligent Data and Signal Analysis, DSA2011.”

For this edition the Program Committee received 104 submissions. After the
peer-review process, we accepted 33 high-quality papers for oral presentation,
and from these 24 are included in this proceedings book. The topics range from
theoretical aspects of data mining to applications of data mining such as on
multimedia data, in marketing, finance and telecommunication, in medicine and
agriculture, and in process control, industry and society. Extended versions of
selected papers will appear in the international journal Transactions on Machine
Learning and Data Mining (www.ibai-publishing.org/journal/mldm).

Fourteen papers were selected for poster presentation and five for industry
paper presentation, and they are published in the ICDM Poster and Industry
Proceedings by ibai-publishing (www.ibai-publishing.org).

In conjunction with ICDM four workshops were run focusing on special hot
application-oriented topics in data mining: Data Mining in Marketing (DMM),
Data Mining in Life Science (DMLS), the Workshop on Case-Based Reasoning for
Multimedia Data (CBR-MD), and the Workshop on Data Mining in Agriculture
(DMA). All workshop papers appear in the workshop proceedings published by
ibai-publishing (www.ibai-publishing.org).

A tutorial on Data Mining and a tutorial on Case-Based Reasoning were held
before the conference.

We were pleased to give out the best paper award for ICDM for the fifth time
this year. The final decision was made by the Best Paper Award Committee based
on the presentation by the authors and the discussion with the auditorium. The
ceremony took place at the end of the conference. This prize is sponsored by ibai
solutions (www.ibai-solutions.de), one of the leading companies in data mining
for marketing, Web mining and e-commerce.

The conference was rounded up by an outlook of new challenging topics in
data mining before the Best Paper Award Ceremony.

We thank the members of the Institute of Applied Computer Sciences, Leipzig,
Germany (www.ibai-institut.de) who handled the conference as secretariat. We
appreciate the help and understanding of the editorial staff at Springer, and in
particular Alfred Hofmann, who supported the publication of these proceedings
in the LNAI series.

Last, but not least, we wish to thank all the speakers and participants who
contributed to the success of the conference. See you in 2012 to the next world
congress on “The Frontiers in Intelligent Data and Signal Analysis, DSA2012”
(www.worldcongressdsa.com) in 2012, combining under its roof the three



VI Preface

following events: the International Conference on Machine Learning and Data
Mining (MLDM); the Industrial Conference on Data Mining (ICDM), and the In-
ternational Conference on Mass Data Analysis of Signals and Images in Medicine,
Biotechnology, Chemistry and Food Industry (MDA).

August 2011 Petra Perner
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Improvements over Adaptive Local Hyperplane

to Achieve Better Classification

Hongmin Cai�

School of Information Science and Technology,
The Sun Yat-sen University, P.R. China

Abstract. A new classification model called adaptive local hyperplane
(ALH) has been shown to outperform many state-of-the-arts classifiers
on benchmark data sets. By representing the data in a local subspace
spanned by samples carefully chosen by Fisher’s feature weighting
scheme, ALH attempts to search for optimal pruning parameters af-
ter large number of iterations. However, the feature weight scheme is
less accurate in quantifying multi-class problems and samples being rich
of redundance. It results in an unreliable selection of prototypes and
degrades the classification performance. In this paper, we propose im-
provement over standard ALH in two aspects. Firstly, we quantify and
demonstrate that feature weighting after mutual information is more ac-
curate and robust. Secondly, we propose an economical numerical algo-
rithm to facilitate the matrix inversion, which is a key step in hyperplane
construction. The proposed step could greatly low the computational cost
and is promising fast applications, such as on-line data mining. Exper-
imental results on both synthetic and real benchmarks data sets have
shown that the improvements achieved better performance.

Keywords: Classification, adaptive local hyperplane, feature weighting,
wrapper, mutual information, rank decomposition.

1 Introduction

Despite its age and simplicity, the Nearest Neighbor(NN) classification rule is
among the most successful and robust methods for many classification problems.
Many variations of this model have been reported by using various distance func-
tions. A very interesting revision was achieved by approximating each class with a
smooth locally linear manifold [20]. Recently, the authors [19] further generalized
this revision by considering the feature weighting in local manifold construction,
and the proposed model was called adaptive local hyperplane (ALH). The ALH
classifier[19,22] was compared with classical classifier in many real data sets. The
results were very promising.

� This work was supported by NSF of Guangdong Province, China under award num-
ber 9451027501002551, and the China Fundamental Research Funds for the Central
Universities under award number 10ykjcll.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 1–10, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 H. Cai

Feature weighting plays an important step in ALH classifer. In general, the
feature weights were obtained by assigning a continuous relevance value to each
feature in hoping to enhance the classification performance of a learning algo-
rithm by stressing on the context or domain knowledge. The feature weighting
procedure is particularly useful for in instance based learning models, which
usually construct the distance metrics by using all features [21]. Moreover, fea-
ture weighting could reduces the risk of over-fitting by removing noisy features
thereby improving the predictive accuracy. Existing feature selection methods
broadly fall into two categories, wrapper and filter methods. Wrapper methods
use the predictive accuracy of predetermined classification algorithms (called
base classifer), such as SVMs, as the criteria to determine the goodness of a sub-
set of features [5,9]. Filter methods select features based on discriminant criteria
that rely on the characteristics of data, independent of any classification algo-
rithm [4,10,12]. The commonly discriminant criteria includes entropy measure-
ment [13], Chi-squared measurement [15], correlation measurement [11], Fisher
ratio measurement [6], mutual information measurement[14], and RELIEF-based
measurement [18].

The key strength of the ALH classifier is in its incorporation of the feature
weighting method into its nearest neighbor selection and local hyperplane con-
struction. Thus, the data is represented in a weighted space by evaluating the fea-
ture importance in advance. However, the original feature weighting method in
ALH considers the class separation criteria for individual features independently
by using the ratio of between-group to within-group sum-of-squares (RBWSS).
This criterion is known for that it omits the dependence among the features, and
thus is less accurate when the tested data set being rich of redundant features.
Therefore, the classification performance of ALH will be degraded.

In this paper, we proposed improvement on the standard ALH model in two
aspects [19]. The first improvement is to evaluate the feature weighting scheme
by mutual information, which is shown to be more accurate and robust in multi-
classification problems [16,3]. The second improvement is to propose an econom-
ical numerical algorithm to low the computational cost during classification.

This paper is organized as follows. Sections 2 provides an introduction to
the basics of adaptive local hyperplane (ALH) method. The previous weighting
scheme was analyzed and replaced by new weighting function based on mutual
information. Section 3 proposed a correction of numerical algorithm to dramati-
cally low the computational cost during classification, thus facilitating its usage
in data of large dimension. Section 4 demonstrated the performance of proposed
method on benchmark data. Conclusion was presented in Section 5.

2 Adaptive Local Hyperplane and Feature Weighting
Scheme

Let {xi}l
i=1 be a d-dimensional training data set with known class label yi = c,

for i = 1, . . . , l and c = 1, . . . , J . In ALH algorithm, given a query sample, the
first step is to find for each class the training points nearest (called prototype)
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to the query. The metric between samples was defined dependent on the feature
weights. These selected prototype samples are then used to construct a local
linear manifold for each class in the training set. Finally the query sample is
assigned to the class associated with the closest manifold.

Adaptive Local Hyperplane. In the prototype selection stage, the feature
weight is estimated by the ratio of the between-group to within-group sums of
squares, called RBWSS scheme [19]:

rj =
∑

i

∑
c I(yi = c)(x̄cj − x̄j)2∑

i

∑
c I(yi = c)(xij − x̄cj)2

, (1)

where I(·) denotes the indicator function, x̄cj denotes the jth component of
class centroid of class c and x̄j denotes the jth component of the grand class
centroid. It is trivial to verify that the RBWSS weighting scheme ranks the fea-
ture importance by Fisher criterion, and thus is not accurate in multiple learning
problems. Given the ranked feature importance, one attempts to further amplify
their difference through an exponential normalization of the feature weights. This
Fisher’s method could rank the feature importance by a simple implementation
with economic computational cost [6]. However, it tends to outweight abundant
or easily separable classes if classes of the data sets are unevenly distributed [7].
To address this problem, the mutual information based criterion has been shown
to be an effective measurement [10].

Mutual Information. The relevant features contain important information
about the output whereas the irrelevant features contain little information re-
garding the output. Therefore, the task of feature weighting could be accom-
plished by measuring the “richness” of information concealed in data. For this
purpose entropy and mutual information are introduced in Shannon’s informa-
tion theory to measure the information of random variables [17].

Given a discrete random variable X with its probability density function de-
noted as p(x), the entropy of X can be defined as

H(X) = −
∑

p(x) log p(x) (2)

For the case of two discrete random variables, i.e., X and Y , the joint entropy
of X and Y is defined as follows:

H(X, Y ) = −
∑

x

∑
y

p(x, y) log p(x, y) (3)

where p(x, y denotes the joint probability density function of X and Y . The
common information of two random variables X and Y is defined as the mutual
information between them,

I(X ; Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(4)
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Quantitative measurement of feature importance for the classification task
based on mutual information is one of the most effective technique for feature
weighting. By resembling mutual information terms, one could obtain the quan-
tification of the features subsets, such as Redundancy and Relevance [16]. One
could use these terms to obtain features set catering to empirical needs. For in-
stance, the scheme based on minimal-redundancy-maximal-relevance (mRMR)
criterion has been developed to find a compact set of superior features at a low
computational cost [16].

In this paper, we adopt the feature weighting by the mutual information cri-
terion for the ALH classifier to overcome the limitations of the original RBWSS
scheme. Synthetic examples will be given later in Section 4 to support this cor-
rection.

In the second stage, the hyperplane of class c is constructed by:

LHc(q) = {s | s = V α}, (5)

where V is a d × n matrix composed by prototypes: V.i = pi, with pi being
the ith nearest neighbor (called prototype) of class c, The parameter of α =
(α1, . . . , αn)T are solved by minimizing the distance between training samples q
and the space of LHc(q) with regularization:

Jc(q) = min
α

(s − q)T W (s − q) + λαT α, (6)

where s ∈ LHc(q), W is the diagonal matrix with W (j, j) = wj and λ is the
regularization parameter.

The minimization of (7) could be achieved by solving a quadratic equation
for α:

(V T WV + λ In)α = V T Wq. (7)

At the last stage, the class label of the new comer is decided by the weighted
Euclidean distance between the new comer and the local hyperplane of each
class.

3 A Numerical Correction

The matrix in L.H.S of Eq. (7) is positively definite and thus classical algorithms
such as QR-decomposition could be employed to find its inverse matrix [8].
In order to obtain optimal pruning parameters, such as number of the proto-
types (nearest neighborhoods) and the regularizer λ, cross-validation scheme
was shown to be effective and fast, thus usually serving as top choice. However,
this incurs to large computation in ALH since many local hyperplane need to be
constructed in Eq. 5. This problem tends to be more worse if the sample feature
is in larger dimension as in many biomedical problems.

In this paper, we shall prove that the inverse matrix in L.H.S of Eq. (7)
could be obtained by series of matrix multiplication instead of inversing directly,
thus greatly saving the computational cost. In more details, we assume that we
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already derived the inverse matrix of V T
n WVn + λI, consisted by n prototypes.

By adding one more prototype, one is expecting to represent the local hyperplane
in a less biased way, hoping to enhance its discrimination power. It implies the
necessity of computing the inversion of matrix V T

n+1WVn+1 + λI. We will show
that the inversion of V T

n+1WVn+1 +λI could be updated consecutively by matrix
multiplication from V T

n WVn + λI. For clarity, we named this revised version as
MI-ALH.

Theorem 1. Suppose that An = V T
n WVn + λI, then the matrix of An+1 =

V T
n+1WVn+1 + λI could be formulated as:

An+1 =
(

l1 lT

l An

)
, (8)

and its inverse matrix is given by:

A−1
n+1 = Gn+1

(
l−1
1 0
0 A−1

n − A−1
n l̄lT A−1

n

1+lT A−1
n l̄

)
GT

n+1, (9)

where

l̄T = − lT

l1
(10)

Gn+1 =
(

1 l̄T

0 I

)
. (11)

The proof of this theorem is dependent on the following lemma and we would
like to prove it at first.

Lemma 1. Let An+1 be a symmetric positively definite matrix of order n + 1,
with form of:

An+1 =
(

l1 lT

l An

)
(12)

where l1 is a constant and lT1×n is a vector. An is a symmetric positively definite
matrix of order n. Then the inverse matrix of An+1 is given by:

A−1
n+1 = Gn+1

(
l−1
1 0
0 A−1

n − A−1
n l̄lT A−1

n

1+lT A−1
n l̄

)
GT

n+1 (13)

where l and Gn+1 are defined in Eq. (10-11).

Proof. Since the matrix An+1 is positively definite, it could be diagonalize by
series of Gaussian elimination. The permutation matrix G could be employed to
perform once Gaussian elimination. It is trivial to verify that

GT An+1G =
(

l1 0
0 l̄lT + An

)
. (14)
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According to the Sherman-Morrison-Woodbury formula [2], we know that

(An + l̄lT )−1 = A−1
n − A−1

n l̄lT A−1
n

1 + lT A−1
n l̄

. (15)

Therefore,

A−1
n = G

(
l−1
1 0
0 (l̄lT + An−1)−1

)
GT (16)

= G

(
l−1
1 0

0 A−1
n−1 −

A−1
n−1 l̄lT A−1

n−1

1+lT A−1
n−1 l̄

)
GT . (17)

Now we end the proof of the Lemma 1.

Given the Lemma 1, we now continue to prove the Theorem 1.

Proof. Let Vd = (P1, P2, · · · , Pn) denote the prototype matrix. Assuming that
one needs to add a new prototype P̄ to enhance the discrimination power, it will
result in a new prototype matrix Vn+1 = (P̄ , P1, P2, · · · , Pn).

It is trivial to verify that:

V T
n+1WVn+1 + λI (18)

=

⎛
⎜⎜⎜⎝

P̄T WP̄ + λ P̄T WP1 · · · P̄T WPn

PT
1 WP̄ PT

1 WP1 + λ · · · PT
1 WPn

...
...

. . .
...s

PT
n WP̄ PT

n WP1 · · · PT
n WPn + λ

⎞
⎟⎟⎟⎠

=
(

l1 lT

l V T
n WVn + λI

)
,

(19)

where l1 = P̄T WP̄ + λ and lT = (P̄T WP1, P̄
T WP2 · · · , P̄T WPn). Therefore,

the inversion of new prototype matrix could be obtained directly by Eq. (13),
and we have:

A−1
n+1 = (V T

n+1WVn+1 + λI)−1 = G

(
l−1
1 0
0 A−1

n − A−1
n l̄lT A−1

n

1+lT A−1
n l̄

)
GT . (20)

This concludes our proof.

In summary, better classification could be obtained by adding more prototypes.
However, the addition incurs to larger computational cost in solving the linear
equation of Eq. (7) through matrix inversion. We have shown that the inversion
of matrix could be updated directly from early inversion. This correction is fast
and efficient, thus is promising for classification, even for high dimensional data.
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4 Experimental Results

The mutual information based criteria has been widely applied in feature weight-
ing and feature selection, thus facilitating its usage in machine learning [6,7,10,3].
This criteria is more accurate than RBWSS in evaluating the feature importance
of multi-class data, or data being rich of redundance. We can show this by con-
structing a synthetic example.

In the first example, the tested data contains five feature variables in the
well-known diamond shape, shown in Fig. 1, and ten noise features following
standard normal distribution of N(0, 1). The class label Y is completely deter-
mined by variable X1 and X2, both following normal distribution of N(2, 1).
The variable X3 is dependent on X1 with noise degration, and X4 is dependent
solely on X2 with noise degration, X6, · · · , X15 are noise features. The vari-
able of X5 satisfies X5 = X3 + X4, thus contains more information on label Y
than X3 or X4, individually. The ideal order of the feature variable should be
X1 ≈ X2 > X3 ≈ X4 > X5 >> other noisy features. However, the top five fea-
tures ranked by RBWSS is X8, X12, X13, X10, X15, which are all noisy features.
In comparison, the top five features ranked by mutual information (Eq. (4))
is X1, X2, X3, X4, X5 with value of 1.0183, 0.9465, 0.7668, 0.6043, 0.4779, respec-
tively. The weighting scheme after mutual information demonstrate better accu-
racy and robustness to noises.

Fig. 1. A synthetic example having well-known diamond shape. The test data set is
consisted by fifteen features and its label is completely determined by feature X1 and
X2. The redundant feature X3 and X4 are s dependent on X2 and X1, respectively.
The fifth feature X5 is dependent on X3 and X4, degrated by noises. X6, · · · , X15 are
i.i.d noises following standard normal distribution.
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We further demonstrate the performance of the proposed MI-ALH in classifi-
cation by comparing it with ALH [19] on eleven real data sets. The tested nine
benchmark data sets were downloaded from the UCI Machine Learning Reposi-
tory [1], and they have been widely tested by various classification models. Three
validation procedures, including the leave-one-out(LOO), 10-folds, and 20-folds
cross validation, were carried out for hyperparameters estimation and accuracy
testing on each dataset.

The results were summarized in Table 1. If using LOOCV, the performance
of MI-ALH is slightly better than ALH. Moreover, with the decreasing of the
training sample size, the performance of MI-ALH tends to better. For example,
MI-ALH achieved higher classifications on 5 data sets vs lower classifications on
3 data sets under 10-fold cross validation, while 8 vs 3 in 20-fold cross valida-
tion. The outperformance obtained by MI-ALH was due to the accurate feature
weighting scheme.

Table 1. Classification accuracies (%) on 11 real data sets. The better results are high-
lighted in bold under three different cross-validation scheme. The MI-ALH outperforms
than standard one in most cases. Moreover, with the size of training sample decreasing
from LOOCV to 20-fold-CV, the performance of MI-ALH was better than standard
ALH, implying the accuracy and robustness of feature weighting scheme.

Validation Scheme LOOCV 10-fold CV 20-fold CV
Dataset ALH MI-ALH ALH MI-ALH ALH MI-ALH
Iris 98.00 97.33 96.00 96.00 96.52 95.90
Glass 75.23 76.64 57.40 58.36 61.45 63.18
Vote 96.98 96.98 96.56 96.56 96.52 96.93
Wine 98.88 99.44 96.63 97.75 98.83 98.89
Teach 75.50 74.83 68.00 66.71 70.23 70.00
Sonar 90.87 91.35 64.41 66.33 71.73 72.87
Cancer 82.83 82.32 80.21 79.71 81.56 81.06
Dermatology 97.27 97.81 97.00 97.54 96.18 96.74
Heart 60.27 59.60 57.92 57.92 57.31 57.95
Prokaryotic 91.68 91.68 81.153 81.35 88.36 88.47
Eukaryotic 85.08 85.50 75.33 75.37 80.31 80.60
Score 4 vs 5 3 vs 6 3 vs 8

5 Conclusion

The adaptive local hyperplane model has been shown to be a very effective clas-
sification model on various type of data sets. However, the feature weighting
scheme is less accurate in quantifying multi-class problems and samples being
rich of redundance. Therefore, it leads to less accurate prototypes selection and
unreliable local hyperplane construction. In this paper, we are proposing to two
improvements over the standard ALH model. The first improvement is to eval-
uate the feature weighting scheme through mutual information. Experimental
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results both on synthetic and real bench mark data sets have shown the revision
is more accurate and robust. The second improvement is to propose an econom-
ical numerical algorithm to facilitate the matrix inversion, which is a key step in
hyperplane construction. The proposed step could greatly low the computational
cost and is promising fast applications, such as on-line data mining.
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Abstract. Prognostic models are often designed on the basis of learning sets in 
accordance with multivariate regression methods. Recently, the interval regres-
sion and the ranked regression methods have been developed. Both these 
methods are useful in modeling censored data used in survival analysis. De-
signing the interval regression models as well as the ranked regression models 
can be treated similarly as the problem of linear classifier designing and linked to 
the concept of linear separability used in pattern recognition. The term linear 
separability refers to the examination of separation of two sets by a hyperplane in 
a given feature space. 

Keywords: linear prognostic models, interval regression, ranked regression, 
CPL criterion functions. 

1   Introduction 

We are considering prognostic models based on linear multivariate regression models 
[1], [2]. In this case, the value of dependent (target) variable is predicted on the basis of 
linear combination of some independent variables. Problems of regression models 
designing on the basis of data sets are considered in the paper. The term designing 
means here a computation of parameters of the considered linear combination from 
available data (learning) set. 

The classical and commonly used the last-square linear regression models are es-
timated on the basis of learning sequence in the form of feature vectors combined with 
exact values of the dependent (target) variable [1]. The exact value of target variable 
can be treated as an additional knowledge about a particular object represented by a 
given feature vector. The logistic regression is typically used when the target variable is 
a categorical one. If the target variable is a binary one, the logistic regression model is 
linked to a linear division  of a given set of feature vectors [2].   

The ranked regression models are designed on the basis of a set of feature vectors 
with an additional knowledge (information) in the form of an ordering relation in se-
lected pairs of these vectors [3]. The ranked model is the linear transformation (pro-
jection) of multidimensional feature vectors on such a line which preserves the ordering 
relations in selected pairs as precisely as possible. 
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The interval regression models are designed on the basis of a set of feature vectors 
with an additional knowledge about predicted (dependent) variable in the form of 
intervals [4]. Each interval determines the minimal and the maximal value of the de-
pendent variable which is linked to the given feature vector. The exact values of the 
predicted variable is a missing information in this case. 

Prognostic models developed in the framework of the survival analysis are impor-
tant in many biomedical applications. Such models are designed on the basis of the so 
called censored data sets. The Cox model plays a basic role in the survival analysis [5]. 
In the case of censored data sets, an additional information can be represented by in-
tervals with only one constraint (border). It can mean the infinite minimal value (left 
censoring) or the infinite maximal value (right censoring) of the target variable interval 
linked to selected feature vectors.  

Censored data set could be treated as a special case of interval data set. In conse-
quence, the interval regression models can be designed also on the basis of censored 
data sets by using the convex and piecewise linear (CPL)  criterion functions [6]. An 
ordering relation in selected pairs of feature vectors can be determined also on the basis 
of the censored data sets [7]. So, also the ranked regression models can be designed on 
the basis of censored data sets. 

The concept of linear separability is used in theory of neural networks or in pattern 
recognition methods [2], [8]. The term linear separability is referring to exploration of  
two sets separation by a hyperplane in a given feature space. It has been shown that the 
problem of designing of both ranked models as well as interval regression models can 
be represented and solved as the problem of examination of linear separability. Con-
sequences of this property are analyzed in the presented paper. 

2   Linear Regression Models and Learning Sets with Different 
Structure 

We take into considerations a set of m feature vectors xj[n] = [xj1,…,xjn]
T belonging to a 

given n-dimensional feature space F[n] (xj[n]∈ F[n]). Feature vectors xj[n] represent a 
family of m objects (events, patients) Oj (j = 1,...,m). Components xji of the vector xj[n] 
could be treated as the numerical results of n standardized examinations of the given 
object Oj (xji ∈ {0,1} or xji ∈ R1). Each vector xj[n] can be treated also as a point in the 
n-dimensional feature space F[n].  

We are considering regression models based on linear (affine) transformations of 
n-dimensional feature vectors x[n] (x[n]∈ F[n]) on the points y of the line (y∈R1): 

y(x) = w[n]Tx[n] + θ  (1)

where w[n] = [w1,…, wn]
T∈ Rn is the parameters (weight) vector and θ is the 

threshold (θ ∈ R1). 
Properties of the model (1) depend on the choice of the parameters w[n] and θ. The 

weights wi and the threshold θ are usually computed on the basis of the available data 
(learning) sets. In the classical regression analysis the learning sets have the below 
structure [1]: 
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C1 = {xj[n]; yj} =  {xj1,…., xjn,; yj},   where  j = 1,….., m  (2)

Each of m objects Oj is characterized in the set C1 by values xji of n independent 
variables (features) Xi, and by the observed value yj (yj ∈ R1) of the dependent (target) 
variable Y. 

In the case of classical regression, the parameters w[n] and θ are chosen in such a 
manner that the sum of the squared differences (yj - ŷj)

2 between the observed target 
variable yj and the modeled variable ŷj = w[n]Txj[n] + θ (1) is minimal [1]. 

In the case of interval regression, an additional knowledge about particular objects Oj 
is represented by the intervals [yj

-, yj
+] (yj

- <  yj
+) instead of the exact values yj (2) [4], [5]: 

C2 = {xj[n], [yj
-, yj

+]},  where  j = 1,….., m  (3)

where yj
- is the lower bound (yj

-∈ R1) and yj
+ is the upper bound (yj

+∈ R1) of unknown 
value  y of the target variable Y (yj

- < y < yj
+).  

Let us remark, the classical learning set C1 (2) can be transformed into the interval 
learning set C2 (3) by introducing the boundary values yj

- = yj - ε and yj
+ = yj

 + ε,  where 
ε is a small positive parameter (ε > 0). Imprecise measurements of dependent variable y 
can be represented in such a manner. 
 
Definition 1. The transformation (1) constitutes the interval regression model if the 
below linear inequalities are fulfilled in the best way possible for feature vectors xj[n] 
from the set C2 (3): 

yj
-  < w[n]Txj[n] + θ <  yj

+  (4)

In the case of ranked regression, additional knowledge about particular objects Oj and 
Ok (j ≠ k) represented by feature vectors xj[n] and xk[n] is given in the form of ordering 
relation ″xj[n] xk[n]″, which could be read as ″xj[n] is before xk[n]″. For example, the 
relation ″xj[n] xk[n]″ could mean that the event Oj represented by the feature vector 
xj[n] has occurred earlier, before the event Ok represented by the feature vector xk[n]. 
The relation ″xj[n] xk[n]″ between the feature vectors xj[n] and xk[n] mans that the pair 
{xj[n], xk[n]} has been ranked. It is natural to assume that the ordering relation 
″xj[n] xk[n]″ should be transitive:  

(xj[n] xk[n]) and (xk[n] xl[n]) ⇒ (xj[n] xl[n])  (5)

Example 1. Let us consider the relation ″Oj is less risky than Ok″ between selected 
patients Oj and Ok represented by the feature vectors xj[n] and xk[n]. Such relation 
between patients Oj and Ok, may reflect, for example, knowledge of medical experts. 
This relation between patients Oj and Oj can implicate the ranked relation ″xj[n] xk[n]″ 
between  adequate feature vectors xj[n] and xk[n]. 

(Oj is less risky than Ok) ⇒ (xj[n]  xk[n])  (6)
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The ranked learning set C3 is constituted from the set {xj[n]} of feature vectors xj[n] (j = 
1,….., m), and the set {xj[n] xk[n]} of ranked pairs {xj[n], xk[n]}:  

C3 = {{xj[n]}, {xj[n] xk[n]}},  (j, k) ∈ Ir  (7)

where Ir is the set of indices (j, k) of the ranked pairs {xj[n], xk[n]}. 
We can remark that usually not all the pairs {xj[n], xk[n]} are ranked and can be used 

in regression model designing. 
 

Definition 2. The transformation y(x) = w[n]Tx[n] (1) constitutes the ranked regression 
model if  exists such weight vector w′[n], that the below implication is fulfilled in the 
best way possible for ranked pairs {xj[n] xk[n]} from the set C3 (7): 

(xj[n] xk[n]) ⇒ (w′[n]Txj[n]  <  w′[n]Txk[n])  (8)

The above implication means that the feature vectors xj[n] preserve the ranked relations 
″xj[n] xk[n]″ also after their projection w′[n]Txj[n] on the line y(x) = w′[n]Tx[n] (1), 
where ||w′[n]|| = 1.  

3   Learning Sets in Survival Analysis 

Traditionally, the survival analysis data sets Cs have the below structure [5]: 

Cs = {xj[n], tj , δj}  (j  =  1,...., m) (9)

where tj
 is the observed survival time between the entry of the j-th patient Oj into the 

study and the end of the observation, δj is an indicator of failure of this patient 
(δj∈{0,1}): δj= 1 - means the end of observation in the event of interest (failure),     δj = 
0  - means that the follow-up on the j-th patient ended before the event (the right cen-
sored observation). In this case   (δj

 = 0) information about survival time tj is not 
complete. The real survival time Tj can be defined in the below manner on the basis of 
the set Cs (9): 

(∀ j  =  1,.......,m)       if  δj  = 1,  then  Tj = tj,  and 

                              if  δj  = 0,  then  Tj > tj 

(10)

Assumption: If the survival time Tj  of the j-th patients Oj is longer then the time Tk  of 
the k-th patients Ok, then the patients Oj was less risky then the patients Ok [7]: 

(Tj  > Tk)  ⇒ (Oj is less risky than Ok) ⇒ (xj[n]  xk[n])  (11)

This implication can be expressed also by using the observed survival times tj and tk :   

(tj  > tk  and δk = 1) ⇒ (Oj is less risky than Ok)  ⇒ (xj[n]  xk[n])  (12)
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The right censoring means that an unknown survival time Tj of the of the j-th patient 
Oj is longer than the observed time tj. The left censoring means that an unknown sur-
vival time Tj of the j-th patient Oj is shorter than the observed time tj .  

The censored survival times Tj  can be represented also by intervals (3) through in-
troducing two numbers (parameters) – the lower bound tj

- (tj
-∈ R1) and the upper bound 

tj
+ (tj

-∈ R1), where  tj
- <  tj

+. These parameters define the time interval [tj
-, tj

+] for an 
unknown survival time Tj (Tj∈ [tj

-, tj
+] (3)). In the case of the right censoring, an un-

known survival time Tj is greater than the given (known) lower bound tj
- (Tj > tj

-). It 
could mean, that Tj ∈ [tj

-, +∞). In the case of the left censoring, an unknown survival 
time Tj is less than the given (known) upper bound tj

+ (Tj < tj
+). It could mean, that Tj 

∈ (−∞, tj
+]. In accordance with such data representation, the right censoring  means the 

replacement of the upper bound tj
+ by the positive infinity +∞. Similarly, the left cen-

soring  means the replacement of the lower bound tj
- by the negative infinity −∞. In the 

context of the survival time tj
+ meaning, the more reasonable representation of the left 

censoring could be [0, tj
+] (Tj ∈ [0, tj

+]).  
Both the right censored and the left censored times Tj can be represented by using the 

interval data set C2 (3) with the below structure: 

C4 = {xj[n], [tj
-, tj

+], δj′}    (j = 1,….., m)  (13)

where δj′ is the indicator of censoring of the survival time Tj of the patient Oj 
(δj′∈{-1,0,1}): δj = -1 means the left censoring (Tj ∈ [0, tj

+]), δj = 1 means the right 
censoring (Tj∈ [tj

-,+∞)) , and  δj = 0 means that Tj∈ [tj
-, tj

+], where  0 < tj
- < tj

+ < ∞.   
Let us assume, that the prognostic model T(x) of an unknown survival time T is 

linear (1):  

       T(x) = w[n]Tx[n] + θ  (14)

In this case we can use the below linear inequalities for the purpose of the model (14) 
designing from the censored data C4 (13):  

   if  δj = -1, then  w[n]Txj[n] + θ < tj
+  (15)

   if  δj = 1, then  w[n]Txj[n] + θ > tj
-  (16)

   if  δj = 0, then  tj
- < w[n]Txj[n] + θ < tj

+  (17)

The term model (14) designing means finding such parameters w[n] and θ that the 
above linear inequalities are fulfilled in the best way possible for feature vectors xj[n] 
from the set C4 (13).  

The parameters w[n] and θ of the interval regression model (14) are typically esti-
mated from the data set Cs (9) by using the Expectation Maximization (EM) algorithms 
[4]. There are rather troublesome procedures with serious drawbacks concerning 
among others a low efficiency, particularly in the case of high dimensional feature 
space F[n]. 
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In the next section we examine the problem of prognostic models designing on the 
basis of the data  set C4 (13) by using the concept of the linear separability [2]. The 
linear separability of two data sets is evaluated through the minimisation of the convex 
and piecewise linear (CPL) criterion functions defined on these sets [8]. 

4   Linear Separability of Two Data Sets 

Let us take into considerations two data sets: the positive set G+ and the negative set G- 
which are composed of n-dimensional feature vectors xj[n] (xj[n]∈F[n]):  

G+ = {xj[n]: j ∈ J-} and  G-  = {xj[n]: j ∈ J-} (18)

where J+ and J- are disjoined sets (J+ ∩  J- =  ∅) of indices j. 
 

Definition 3. The data sets G+
 and G- (19) are linearly separable, if and only if there 

exists such a weight vector w[n] (w[n]∈ Rn) and a threshold θ (θ ∈ R), that all the below 
inequalities with the inner products w[n]Txj[n] are fulfilled: 

                         (∃ w[n], θ )  (∀xj[n]∈ G+)    w[n]Txj[n]   >  θ 

                                    and   (∀xj[n]∈ G-)     w[n]Txj[n]   <  θ        
(19)

The parameters w[n] and θ define the below hyperplane H(w[n],θ) in the feature space 
F[n] (x[n] ∈ F[n]):    

 

H(w[n],θ) = {x[n]: w[n]Tx[n] = θ} (20)

If all the inequalities (19) are fulfilled, then each feature vector xj[n] from the set G+ 

is situated on the positive side (w[n]Txj[n] > θ) of the hyperplane H(w[n],θ) (20) and 
each vector from the set G- is situated on the negative side (w[n]Txj[n] < θ) of this 
hyperplane. 

The concept of linear separability is used from many years in the theory of neural 
networks and in pattern recognition methods [2]. Among others, the linear separability 
has been used in the proof of the convergence of the error-correction algorithm – classic 
learning algorithm of neural networks. The linear classifiers can be designed through 
exploration of the linear separability of the data sets G+

 and  G- (19)  [8]. 
The augmented vectors zj

+[n+2] and zj
-[n+2] have been introduced for the purpose of 

interval regression [6]: 

(∀j ∈ {1,…., m})     

 if  (yj
- > - ∞), then  zj

+[n+2] = [xj[n]T, 1, -yj
-]T  else  zj

+[n+2] = 0, 

 and   

 if  (yj
+ < + ∞), then  zj

-[n+2] = [xj[n]T, 1, -yj
+]T  else  zj

-[n+2] = 0 

 (21)
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and  

           v[n+2] = [v1,…,vn+2]
T = [w[n]T, θ, β]T    (22)

where β is the interval weight (β ∈ R1). 
The linear separability of the augmented vectors zj

+[n+2] and zj
-[n+2] means, that    

(∃v[n+2])  (∀j ∈ {1,…., m}) 

(∀zj
+[n+2] ≠ 0)  v[n+2]T zj

+[n+2] > 0,   and   

(∀zj
-[n+2] ≠ 0)  v[n+2]T zj

-[n+2] <  0 

 (23)

or (23) 

(∃v′[n+2])  (∀j ∈ {1,…., m}) 

(∀zj
+[n+2] ≠ 0)  v′[n+2]T zj

+[n+2] ≥  1,   and 

(∀zj
-[n+2] ≠ 0)   v′[n+2]T zj

-[n+2] ≤ -1 

 (24)

Let us introduce the positive set H+ and the negative set H- composed of such vectors 
zj

+[n+2] and zj
-[n+2] (21) which are different from zero: 

H+ = {zj
+[n+2]}  and  H- = {zj

-[n+2]}   (25)

The positive set H+ is composed of m+ augmented vectors zj
+[n+2] (zj

+[n+2] ≠ 0) and 
the negative set H- is composed of m- augmented vectors zj

-[n+2] (zj
-[n+2] ≠ 0). 

 
Definition 4. The sets H+

 and H- (25) of the augmented feature vectors zj
+[n+2] and  

zj
-[n+2] are linearly separable, if and only if there exists such augmented vector of 

parameters v′[n+2], that all the inequalities (24) are fulfilled.  

Lemma 1. All the interval inequalities yj
- < w′[n]Txj[n] + θ′ < yj

+ (4) can be fulfilled by 
some parameters vector v′[n+2] = [w′[n]T, θ′,1] (25) if and only if the sets H+ and H- 
(25) are linearly separable (24).  

The ranked regression models (Definition 2) can be designed by using the ranked 
learning set C3 (7). The expected implications (8) allows to transform the set 
{(xj[n] xk[n])} of ranked pairs {xj[n], xk[n]} into the below set of desired linear ine-
qualities:    

(∃w′[n])  (∀(j, k) ∈ Ir)   (xj[n] xk[n]) ⇒ w′[n]Txj[n]  <  w′[n]Txk[n]   (26)

or 

(∃w′[n])  (∀(j, k) ∈ Ir)   (xj[n] xk[n]) ⇒ w′[n]T(xj[n] - xk[n]) < 0  (27)

Let us introduce the differential vectors rjk[n] for all the ranked pairs 
{xj[n] xk[n]} (7): 
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(∀(j, k) ∈ Ir)   (xj[n] xk[n]) ⇒ rjk[n] = xk[n] - xj[n]  (28)

The differential vectors rjk[n] can be divided in the below sets R+
 and R-: 

R+ = {rjk[n]: j < k} and  R-  = {rjk[n]: j > k} (29)

We can remark that one of the sets R+ or R- can be empty. The following Lemma has 
been proved [3].   

Lemma 2. All the ranked relations ″xj[n] xk[n]″ ((j, k) ∈ Ir) (7) can be preserved (8) by 
a linear model y(x) = w′[n]Tx[n] (1) defined by a parameter vector w′[n], if and only if 
the sets R+ and R- (29) are linearly separable (24).  

We can infer from the Lemma 1 and the Lemma 2 that the linear separability of two sets 
constitutes a basis both for the interval regression models as well as for the ranked 
regression models.  

5   CPL Penalty and Criterion Functions for Interval and Ranked 
Regression 

The augmented feature vectors zj
+[n+2] and zj

-[n+2] (21) and the augmented weight 
vector v[n+2] (22) have been introduced for the case of the interval regression model. 
The family of linear inequalities (24) represents the concept of linear separability of the 
sets H+ and H- (25).  

The convex and piecewise-linear (CPL) penalty functions ϕHj
+(v[n+2]) and  

ϕHj
-(v[n+2]) defined on the vectors  (21) are linked to the expected inequalities (24).  

 (∀zj
+[n+2] ≠ 0)                                                         

if  v[n+2]Tzj
+[n+2] < 1, then ϕHj

+(v[n+2]) = 1 -  v[n+2]Tzj
+[n+2], else 

ϕHj
+(v[n+2]) = 0    

(30)

 (∀zj
-[n+2] ≠ 0) 

if  v[n+2]Tzj
-[n+2] > -1, then ϕHj

-(v[n+2]) = 1 + v[n+2]Tzj
-[n+2], else 

ϕHj
-(v[n+2]) = 0 

(31)

The CPL criterion function ΦH(v[n+2]) is defined as the weighted sum of the penalty 
functions ϕHj

+(v[n+2]) (30) and ϕHj
-(v[n+2]) (31) [8]: 

ΦH(v[n+2]) = Σ βj ϕHj
+(v[n+2]) + Σ βj ϕHj

-(v[n+2])      
                                                                     j                                                j                                                           

(32)

where positive parameters βj (βj ≥ 0) determine an importance of the particular 
vectors zj

+[n+2] or zj
-[n+2]  (21).  

The vector vH
*[n+2] constitutes the minimum of the criterion function ΦH(v[n+2]): 

    (∀v[n+2])  ΦH(v[n+2]) ≥  ΦH(vH
*[n+2])  = ΦH

* ≥ 0  (33)
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where vH
*[n+2] = v*[n+2] = [w*[n]T, θ*, β*]T, and w*[n] = [w1

*,…., wn
*]T (22). 

The below theorem can be proved [8]: 

Theorem 1. The minimal value ΦH
* = ΦH(vH

*[n+2]) (33) of the non-negative criterion 
function  ΦH(v[n+2]) (32) is equal to zero (ΦH

* = 0) and the sets H+ and H- (25) are 
linearly separable (24) if and only if there exists such weight vector w′[n] and the 
threshold θ′, that the inequalities yj

- < w′[n]Txj[n] + θ′ < yj
+ (4) are fulfilled for each 

ranked pairs {xj[n] xk[n]} from the learning set C3 (7).  
 

Remark 1. If the minimal value ΦH
* = ΦH(v*[n+2]) (33) is equal to zero (ΦH

* = 0) in the 
point v*[n+2] = [w*[n]T, θ*, β*]T with β* > 0, then the optimal model                        ŷ = 
(w*[n] / β*)T x[n] + θ*/ β* fulfils all the constraints (4):  

 (∀j ∈ {1,..., m})      yj
- <  (w*[n] / β*)T xj[n] + θ*/ β* <  yj

+  (34)

If the minimal value ΦH
* (42) is greater than zero (ΦH

* > 0) in the point v*[n+2], then 
the optimal model does not fulfil all the above inequalities.  

In the case of the ranked models (Definition 2), the set of the expected linear ine-
qualities (27) has been defined by using the differential vectors rjk[n] = xk[n] - xj[n] (28) 
representing the ranked pairs {xj[n] xk[n]} (8). The positive set R+

 and the negative set 
R- (29) has been defined on the basis of the lexicographical order of the indices j and k 
in the ranked pairs {xj[n] xk[n]} (7). 

The sets R+
 and R- (29) of the differential vectors rjk[n] are linearly separable, if and 

only if there exists such vector of parameters w′[n1], that all the below inequalities are 
fulfilled:        

                   (∃w′[n])  (∀rjk[n] ∈ R+)   w′[n]Trjk[n] ≥  1 

                         and   (∀rjk[n] ∈ R-)    w′[n]Trjk[n] ≤ -1   
(35)

The below CPL penalty functions ϕjk
+(w[n]) and ϕjk

+(w[n]) are linked to the above 
inequalities:  

 (∀rjk[n] ∈ R+) 
if  w[n]Trjk[n]  < 1, then ϕjk

+(w[n]) = 1 - w[n]Trjk[n],  else ϕjk
+(w[n]) = 0   

(36)

 (∀rjk[n] ∈ R-) 
if  w[n]Trjk[n] > -1, then ϕjk

-(w[n]) = 1+ w[n]Trjk[n],  else ϕjk
-(w[n]) = 0   

(37)

The CPL criterion function ΦR(w[n]) is defined as the weighted sum of the penalty 
functions φjk

+(w[n]) (36) and φjk
-(w[n]) (37) [3]: 

ΦR(w[n]) = Σ γjk ϕ jk
+(w[n]) + Σ γjk ϕjk

-(w[n]) 
                                                                     R+                                        R-                                                           

(38)

where positive parameters γjk (γjk ≥ 0) determine an importance of particular ranked 
relations {xj[n] xk[n]} (7). 

The optimal vector wR
*[n] constitutes the minimum of the function ΦR(w[n]): 
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(∀w[n])  ΦR(w[n]) ≥  ΦR(wR
*[n])  = ΦR

* ≥ 0 (39)

The optimal vector wR
 *[n] (39) defines the ranked model: 

    ŷR = wR
*[n]T x[n] . (40)

 
Theorem 2. The minimal value ΦR

* = ΦR(wR
*[n]) (39) of the criterion function 

ΦR(w[n]) (38) is equal to zero (ΦR
* = 0) and the sets R+ and R- (29) are linearly sepa-

rable (33) if and only if there exists such weight vector w′[n], that the inequalities 
w′[n]Txj[n] < w′[n]Txk[n] (8) are fulfilled for each ranked pair {xj[n] xk[n]} from the 
learning set C3 (7) ([3], [9]).  
 
Remark 2. If the minimal value ΦR

* = ΦR(wR
*[n]) (39) is equal to zero (ΦR

* = 0), then 
the inequalities wR

*[n]Txj[n] < wR
*[n]Txk[n] (8) are fulfilled for each ranked pair 

{xj[n] xk[n]} from the learning set C3 (7). If the minimal value ΦR
* (39) is greater than 

zero (ΦR
* > 0) in the point wR

*[n], then the ranked model does not fulfil all the ine-
qualities (8).  

6   Relaxed Linear Separability (RLS) Method of Feature Selection 
for Prognostic Models  

The feature selection process could mean a reduction as large amount of features xi as 
possibly while assuring a high quality of the designed model (Remark 1).  

For the purpose of feature selection in the interval regression the CPL criterion 
function ΦH(v[n+2]) (32) has been modified by inclusion of feature penalty functions 
φi(v[n+2]) and the costs γi (γi > 0) related to particular features xi [10]:  

 (∀i ∈ {1,…..,n})    φi(v[n+2]) = |ei[n+2]Tv[n+2]| = |wi| (41)

where ei[n+2] are the unit vectors and v[n+2] = [w[n]T, θ, β]T. 
The modified CPL criterion function ΨH(v[n+1]) has the below form [9]:  

ΨH(v[n+2])  =  ΦH(v[n+2]) +  λ Σ γi φi (v[n+2])  
                                            i ∈{1,…,n}                                                            

(42)

where λ (λ ≥ 0) is the cost level and the   feature costs γi  are  typically equal to one. 
The criterion function ΨH(v[n+2) (42) similarly to the function ΦH(v[n+2]) (32) is 

convex and piecewise-linear (CPL). The basis exchange algorithms allow to find effi-
ciently the optimal vector of parameters (vertex) vHλ

*[n+2] of the criterion function 
ΨH(v[n+2]) (42) with different values of the cost level λ [10]:  

(∃vλ
*[n+ 2])  (∀v[n+2])  ΨH(v[n+2]) ≥ ΨH(vλ

*[n+2])  (43)

where vλ
*[n+2] = [wλ

*[n]T, θλ
*, βλ

*]T, and wλ
*[n] = [wλ1

*,…., wλn
*]T (22). 
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The optimal vector vλ
*[n+2] (43) allows to define both the interval regression model 

(4) as well as the below decision rule of the linear classifier which operates on elements 
of the sets H+ or H- (25) (z[n+2] = zj

+[n+2] or  z[n+2] = zj
-[n+2] (21)). 

if   vλ
*[n+2]Tz[n+2] ≥  0, then  z[n+2] is allocated to the category  ω+

 

                                     else  z[n+2] is allocated to the category  ω- 
 (44)

The element z[n+2] = zj
+[n+2] is wrongly classified by the rule (44) if it is allocated 

to the category  ω-. Similarly, the element z[n+2] = zj
-[n+2] is wrongly classified if it is 

allocated to the category  ω+. 
The quality of the linear classifier (44) can be evaluated by using the error estimator 

(apparent error rate) ea(vλ
*[n+2]) as the fraction of wrongly classified elements z[n+2] 

of the sets  H+ and H- (25): 

     ea(vλ
*[n+2]) =  ma(vλ

*[n+2]) / mH (45)

where mH is the number of all elements z[n+2] of the sets H+ and H- (25), and  
ma(vλ

*[n+2]) is the number of such elements z[n+2] which are wrongly allocated by the 
rule (44). 

The parameters vλ
*[n+2] of the linear classifier (44) are estimated from the sets H+ 

and H- (25) through minimization of the CPL criterion function ΨH(v[n+2]) (42) de-
fined on all elements z[n+2] of these sets. It is known that if the same vectors z[n+2] are 
used for classifier designing and classifier evaluation, then the evaluation results are too 
optimistic (biased). 

For the purpose of the bias reduction of the apparent error rate estimator ea(vλ
*[n+2]) 

(45), the cross validation procedures are applied [2]. The term p-fold cross validation 
means that data sets  H+ and H- (25) have been divided into p parts Pi, where i = 1,…, p 
(for example p = 10). The vectors z[n+2] contained in p – 1 parts Pi are used for the 
definition of the criterion function ΨH(v[n+2]) (42) and for finding (43) the parameters 
vλ

*[n+2].  The remaining vectors z[n+2] are used as the test set (one part Pi′) for 
computing (evaluation) of the error rate ei′(vλ

*[n+2]) (45). Such evaluation is repeated p 
times, and each time different part Pi′ is used as the test set. The cross-validation error 
rate eCVE(vλ

*[n+2]) (45) is estimated in the cross validation procedure as the mean 
value of the error rates ei′( vλ

*[n+2]) evaluated on various parts (test sets) Pi′. The cross 
validation procedure uses different vectors z[n+2] for the classifier designing and 
evaluation. In result, the bias of the error rate estimation (45) can be reduced. 

For the purpose of feature selection in the interval regression the CPL criterion 
function ΦR(w[n]) (38) has been modified in a similar manner to (42): 

ΨR(w[n])  =  ΦR(w[n]) +  λ Σ γi φi(w[n]) = ΦR(w[n]) + λ Σ γi |wi| 
                                                                                 i ∈{1,…,n}                                                    i ∈{1,…,n}                      

(46)

The minimization of the CPL criterion function ΨR(w[n]) (45) with the cost level λ  
allows to find the optimal vector of parameters wλ

*[n]:  

(∃wλ
*[n])  (∀w[n])  ΨR(w[n]) ≥ ΨR(wλ

*[n]) (47)
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The optimal vector wλ
*[n] (46) defines both the ranked model ŷR = wλ

*[n]Tx[n] (40) 
as well as the below decision rule of the linear classifier which operates on elements 
r[n] of the sets R+ or R- (29) (r[n] = rjk[n]). 

if   wλ
*[n]Tr[n] ≥  0, then  r[n] is allocated to the category  ω+, 

                           else r[n] is allocated to the category  ω- 
 (48)

The quality of the linear classifier (47) can be evaluated by using the error estimator 
(apparent error rate) ea(wλ

*[n]) as the fraction of wrongly classified elements  r[n] of 
the sets R+ and R- (29): 

     ea(wλ
*[n]) =  ma(wλ

*[n]) / mR (49)

where mR is the number of all elements r[n] of the sets R+ and R- (29), and  ma(wλ
*[n]) is 

the number of such elements r[n] which are wrongly allocated by the rule (47). 
We can remark, that such features xi which have the weights wλi

* equal to zero (wλi
* 

= 0) in the optimal vector vλ
*[n+2] (43) can be reduced without changing the decision 

rule (44). The weights wλi
* equal to zero (wλi

* = 0) does not change also the decision 
rule (47. The below feature reduction rule has been proposed basing on this property 
[10]:  

(wλi
*  =  0)  ⇒ (the feature xi is reduced) (50)

In accordance with the relaxed linear separability (RLS) method of feature subsets 
selection, a successive increase of the cost level λ in the minimized criterion function 
ΨH(v[n+2) (42) or the criterion function ΨR(w[n]) (45) reduces more weights wλi

* to 
zero (wλi

* = 0) and, in result, reduces  additional features xi (49). In this way, the less 
important features xi are eliminated and the descending sequence of feature subspaces 
Fk[nk] (nk > nk+1) is generated. Each feature subspace Fk[nk] in the below sequence can 
be linked to some value λk of the cost level λ in the criterion function ΨH(v[n+2) (42) or 
the criterion function ΨR(w[n]) (45):  

F[n] ⊃ F1[n1] ⊃ … ⊃ Fk[nk],  where  0 ≤ λ0 <  λ1 < …< λk (51)

Particular feature subspaces Fk[nk] in the sequence (50) can be evaluated by using 
the cross-validation error rate (CVE) of the optimal linear classifier (44) or (47)  
designed in a given subspace Fk[nk] [10]. Such subspace Fk i

*[nk] which is characterized 
by the lowest cross-validation error rate (CVE) is treated as the optimal subspace in 
accordance with the RLS approach. 

7   Concluding Remarks  

Designing linear prognostic models (1) on the basis of the interval learning set C2 (3) or 
the ranked learning set C3 (7) has been considered in the paper. It was pointed out, that 
designing the interval prognostic model (4) can be based on exploration of the linear 
separability of the data sets H+

 and H- (25). Similarly, designing the ranked prognostic 
model (8) can be based on the exploration of the linear separability of the data sets R+
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and R- (29). The linear separability of the data sets H+
 and H- (25) appears if and only if 

the minimal values ΦH(vH
*[n+2]) (33) of the CPL criterion function ΦH(v[n+2]) (32) is 

equal to zero. The linear separability of the data sets R+
 and R- (29) appears if and only 

if the minimal value ΦR(wR
*[n]) (39) of the CPL criterion function ΦR(w[n]) (38) is 

equal to zero. It can be assumed, that the vector vH
*[n+2] (33) defines the optimal 

interval model (34) both in the case of linearly separable data sets H+
 and H- (25), as 

well as in the case when these sets are not linearly separable (ΦH(vH
*[n+2]) > 0). 

Similarly, the vector wR
*[n] (40) defines the optimal ranked model (40) both in the case 

of linearly separable data sets R+
 and R- (35), as well as in the case when these sets are 

not linearly separable (ΦR(w R
*[n]) > 0). 

Exploration of the linear separability can be carried out through minimization of the 
convex and piecewise-linear (CPL) criterion functions defined on a given pair of  
data sets. The minimal value and the optimal vector of  particular CPL criterion  
functions can be computed efficiently even in the case of large high-dimensional data 
sets by applying the basis exchange algorithms, which are similar to the linear  
programming [10]. 

The designing process based on the linear separability allows to apply the relaxed 
linear separability (RLS) method of feature subset selection to the interval prognostic 
models (34) or to the ranked prognostic models (40) [10]. This possibility indicates 
practical significance as it allows to identify the most influential input patterns.  
For example, the identification of such subset of genes of a given patient which  
increase the risk of a cancer disease could be performed by using the methods described 
in the paper. 

More generally, choosing a subset of variables is a crucial step in designing prog-
nostic models. It is particularly important, when the number n of variables (features) Xi 
is high in comparison to the number m of objects Oj. Typically such situation occurs in 
the case of bioinformatics data sets.  
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Abstract. The Support Vector Data Description (SVDD) has been in-
troduced to address the problem of anomaly (or outlier) detection. It
essentially fits the smallest possible sphere around the given data points,
allowing some points to be excluded as outliers. Whether or not a point
is excluded, is governed by a slack variable. Mathematically, the values
for the slack variables are obtained by minimizing a cost function that
balances the size of the sphere against the penalty associated with out-
liers. In this paper we argue that the SVDD slack variables lack a clear
geometric meaning, and we therefore re-analyze the cost function to get
a better insight into the characteristics of the solution. We also introduce
and analyze two new definitions of slack variables and show that one of
the proposed methods behaves more robustly with respect to outliers,
thus providing tighter bounds compared to SVDD.

Keywords: One class classification, outlier detection, anomaly detec-
tion, support vector data description, minimal sphere fitting.

1 Introduction

In a conventional classification problem, the aim is to find a classifier that op-
timally separates two (or more) classes. The input to the problem is a labelled
training set comprising a roughly comparable number of exemplars from each
class. Howerever, there are types of problems in which this assumption of (ap-
proximate) equi-distribution of exemplars no longer holds. The prototypical ex-
ample that springs to mind is anomaly detection. By its very definition, an
anomaly is a rare event and training data will more often than not contain very
few or even no anomalous exemplars. Furthermore, anomalies can often only be
exposed when looked at in context, i.e. when compared to the majority of regular
points. Anomaly detection therefore provides an example of so-called one-class
classification, the gist of which amounts to the following: Given data points that
all originated from a single class but are possibly contaminated with a small
number of outliers, find the class boundary.

In this paper we will focus on an optimization approach championed by Tax
[8] and Schölkopf et.al. [4]. The starting point is a classical problem in quadratic
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programming: given a set of n points x1, . . . ,xn in a p-dimensional space, find
the most tightly fitting (hyper)sphere that encompasses all. Denoting the centre
of this sphere by a and its radius by R, this problem boils down to a constrained
minimization problem:

min
a,R

R2 subject to ‖xi − a‖2 ≤ R2, ∀i = 1, . . . , n. (1)

However, if the possibility exist that the dataset has been contaminated with
a small number of anomalies, it might prove beneficial to exclude suspicious
points from the sphere and label them as outliers. This then allows one to shrink
the sphere and obtain a better optimum for the criterion in eq.(1). Obviously,
in order to keep the problem non-trivial, one needs to introduce some sort of
penalty for the excluded points. In [8] and [4] the authors take their cue from
standard support vector machines (SVM) and propose the use of non-negative
slack variables meant to relax the inclusion criterion in eq.(1). More precisely,
for each point they introduce a variable ξi ≥ 0 such that

‖xi − a‖2 ≤ R2 + ξi. (2)

This relaxation of the constraints is then offset by adding a penalty term to the
cost function:

ζ(R, a, ξ) := R2 + C

n∑
i=1

ξi.

The constant C is a (pre-defined) unit cost that governs the trade-off between
the size of the sphere and the number of outliers. After these modifications the
authors in [8,4] arrive at the following constrained optimization problem: given
n data points x1, . . . ,xn and a pre-defined unit cost C, find

min
a,R,ξ

{R2 + C
n∑

i=1

ξi} s.t. ∀i = 1, . . . , n : ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0. (3)

The resulting data summarization segregates “regular” points on the inside from
“outliers” on the outside of the sphere and is called support vector data descrip-
tion (SVDD).
Aim of this paper. The starting point for this paper is the observation that
the slack variables in eq.(3) lack a straightforward geometrical interpretation.
Indeed, denoting di = ‖xi − a‖, it transpires that the slack variables can be
represented explicitly as:

ξi = (d2
i − R2)+ =

{
d2

i − R2 if di > R,
0 if di ≤ R.

(4)

However, except in the case where the dimension of the ambient space (p) equals
two or three, these slack variables don’t have an obvious geometric interpretation.
It would therefore be more natural to set the slack variable equal to ϕi = (di −
R)+ upon which the relaxed constraints can be expressed as:

∀i : ‖xi − a‖ ≤ R + ϕi, ϕi ≥ 0. (5)
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The corresponding penalized function would then take the form:

ζ2(a, R) := R2 + C
∑

i

ϕ2
i . (6)

(Notice that we can drop ϕ from the list of arguments as it can be computed as
soon as a and R are specified). For lack of space we will not be able to study this
alternative in detail. Suffice it to say that the solution includes non-acceptable,
trivial configurations. However, there is no obvious reason why the variables in
the cost function should appear as squares. This suggests that we also should
look at a second — completely linear — alternative:

ζ1(a, R) := R + C
∑

i

ϕi. (7)

The goal of this paper is therefore twofold. Firstly, we want to re-analyze the
original optimization problem (3) as introduced in [8] and [4]. However, in con-
tradistinction to these authors, we will refrain from casting it in its dual form,
but focus on the primal problem instead. This will furnish us with additional
insights into the geometry and behaviour of the solutions. Secondly, we will then
extend this analysis to the alternative ζ1 (see eq. 7) mentioned above and con-
clude that, in some respects, it is preferable to the original. In fact the difference
between these two solutions is not unlike the difference in behaviour between
the mean and median (for a quick preview of this result, we suggest to have a
peek at Fig. 2).

Related work. Although lack of space precludes a comprehensive revision of
all related work, it is fair to say that after the seminal papers [5,8] most activ-
ity focussed on applications, in particular clustering, see e.g. [1]. In particular,
a lot of research has gone into the appropriate choice of the Gaussian kernel
size when using the kernelized version of this technique [3,2], as well as efficient
methods for cluster labeling. In [6] a different direction of generalization is pur-
sued: rather than mapping the data into a high-dimensional feature space, the
spherical constraints are relaxed into ellipsoidal ones in the original data space,
thereby side-stepping the vexing question of kernel-choice.

2 Support Vector Data Description Revisited

In this section we will re-analyze the cost function (3) which lies at the heart of
the SVDD classifier. However, rather than recasting the problem in its dual form
(as is done in [8] and [4]), we will focus directly on the primal problem. This
allows us to gain additional insight in the qualitative behaviour of the solutions
(cf. section 2.2) as well as sharpen the bounds on the unit cost C (see item 3 of
Prop. 1).
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2.1 Outlier Detection as an Optimization Problem

Recall from (3) that the anomaly (a.k.a. outlier) detection problem has been
recast into the following constrained optimization problem. As input we accept
n points x1, . . . ,xn in p-dimensional space, and some fixed pre-defined unit cost
C. In addition, we introduce a vector ξ = (ξ1, . . . , ξn) of n slack variables in
terms of which we can define the cost function

ζ(a, R, ξ) := R2 + C
∑

i

ξi. (8)

The SVDD outlier detection (as introduced in [8] and [4]) now amounts to finding
the solution to the following constrained minimization problem:

min
a,R,ξ

ζ(a, R, ξ) s.t. ∀i = 1, . . . , n : ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0. (9)

If we denote the distance of each point xi to the centre a as di = ‖xi − a‖
then it’s straightforward to see that the slack variables can be explicified as
ξi := (d2

i − R2)+, where the ramp function x+ is defined by:

x+ :=
{

x if x ≥ 0,
0 if x < 0,

(10)

This allows us to rewrite the cost function in a more concise form:

ζ(a, R) = R2 + C
∑

i

(d2
i − R2)+. (11)

Notice that the cost function is now a function of a and R only, with all other
constraints absorbed in the ramp function x+. From this representation it im-
mediately transpires that ζ is continuous in its arguments, albeit not everywhere
differentiable.

2.2 Properties of the Solution

Proposition 1 The solution of the (unconstrained) optimization problem

(a∗, R∗) := arg min
a,R

ζ(a, R) where ζ(a, R) = R2 + C
n∑

i=1

(d2
i − R2)+

(12)
has the following qualitative properties:

1. Behaviour of the marginal functions:

(a) Keeping R fixed, ζ is a convex function of the centre a.
(b) Keeping a fixed, ζ is piecewise quadratic in R.
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2. Location of the optimal centre a∗: The centre of the optimal sphere
can be specified as a weighted mean of the data points

a∗ =
∑

i hixi∑
i hi

(13)

where

hi =

⎧⎪⎨
⎪⎩

1 if di > R∗

0 ≤ θi ≤ 1 if di = R∗

0 if di < R∗.

(14)

such that ∑
i

hi = 1/C. (15)

3. Dependency on penalty cost C:
The value of the unit cost C determines the qualitative behaviour of the
solution. More precisely:
– If C < 1/n then the optimal radius R∗ will be zero, i.e. all points will

reside outside of the sphere.
– If C ≥ 1/2 all points will be enclosed, and the sphere will be the minimum

volume enclosing sphere.
– For values 1/n ≤ C ≤ 1/2, the qualitative shape of the solution changes

whenever C = 1/k for k = 2, 3, . . . n.

PROOF

1. Behaviour of the marginal functions

– 1.a: Keeping R fixed, ζ is a convex function of the centre a. As-
suming that in eq. (12) the radius R and cost C are fixed, the dependency
of the cost functional is completely captured by second term:∑

i

(d2
i − R2)+ ≡

∑
i

max{d2
i − R2, 0}.

Convexity of ζ as a function of a is now immediate as each d2
i ≡ d2

i (a) =
‖xi − a‖2 is convex and both the operations of maximization and summing
are convexity-preserving.

– 1.b: Keeping a fixed, ζ is piecewise quadratic in R. Introducing
the auxiliary binary variables:

bi(R) =
{

1 if di > R,
0 if di ≤ R,

for a fixed, (16)

allows us to rewrite (d2
i − R2)+ ≡ bi(R)(d2

i − R2), from which

ζ(R) =

(
1 − C

n∑
i=1

bi(R)

)
R2 + C

n∑
i=1

bi(R)d2
i , (17)
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or again,
ζ(R) = β(R) R2 + Cγ(R). (18)

where
β(R) := 1 − C

∑
i

bi(R) and γ(R) :=
∑

i

bi(R)d2
i . (19)

As it is clear that the coefficients β and γ are piecewise constant, producing a
jump whenever R grows beyond one of the distances di, it follows that ζ(R)
is (continuous) piecewise quadratic. More precisely, if we assume that the
points xi have been (re-)labeled such that d1 ≡ ‖x1 −a‖ ≤ d2 ≡ ‖x2 − a‖ ≤
. . . ≤ dn ≡ ‖xn − a‖, then for 0 ≤ R < d1, all bi(R) = 1 and hence
β(R) = 1 − nC. On the interval d1 ≤ R < d2 we find that b1 = 0 while
b2 = b3 = . . . bn = 1 implying that β(R) = 1 − (n − 1)C, and so on. So
we conclude that β is a piecewise constant function, making an upward
jump of size C whenever R passes a di. This is illustrated in Fig. 1 where
the bottom figure plots the piecewise constant coefficient β for two different
values of C, while the corresponding ζ functions are plotted in the top graph.
Clearly, every β-plateau gives rise to a different quadratic part of ζ. More
importantly, as long as β(R) < 0 the resulting quadratic part in ζ is strictly
decreasing. Hence we conclude that the minimum of ζ occurs at the point
R∗ = arg min ζ(R) where β jumps above zero. Indeed, at that point, the
corresponding quadratic becomes strictly increasing, forcing the minimum
to be located at the jump between the two segments.

From the above we can also conclude that the optimal radius R∗ =
arg min ζ(R) is unique except when C = 1/k for some integer 1 ≤ k ≤ n.
In those instances there will be an R-segment on which

∑
bi = k, forc-

ing the corresponding β coefficient to vanish. This then gives rise to a flat,
horizontal plateau of minimal values for the ζ function. In such cases we
will pick (arbitrarily) the maximal possible value for R, i.e.: R∗ := sup{R :
ζ(R) is minimal}. Finally, we want to draw attention to the fact that the
optimal sphere always passes through at least one data point, as the optimal
radius R∗ coincides with at least one di.

2. Location of the optimal centre. Earlier we pointed out that the ζ(a, R) is
continuous but not everywhere differentiable. This means that we cannot simply
insist on vanishing gradients to determine the optimum, as the gradient might
not exist. However, we can take advantage of a more general concept that is
similar in spirit: subgradients. Recall that for a differentiable convex function f ,
the graph of the function lies above every tangent. Mathematically this can be
reformulated by saying that at any x:

f(y) ≥ ∇f(x) · (y − x), ∀y. (20)

If f is not necessarily differentiable at x then we will say that any vector gx is a
subgradient at x if:

f(y) ≥ gx · (y − x), ∀y. (21)
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Fig. 1. Top: Total cost ζ (for two slightly different values of the unit cost C) as a
function of the radius R for a simple data set comprising four points. This continuous
function is composed of quadratic segments β(R)R2 + Cγ(R). The piecewise constant
behaviour of the β coefficient (which determines whether the segment is increasing or
decreasing) is plotted in the bottom figure. Bottom: The quadratic coefficient β(R) =
1−C

∑
i bi(R) is a piecewise constant function for which the jumps occur whenever R

equals one of the distances di = ‖xi − a‖. For C = 0.31 this jump occurs around 0.7
resulting in a ζ-minimum at that same value. Increasing C slightly to C = 0.33 pushes
the 2nd β-segment below zero, resulting in a ζ-minimum equal to d2 ≈ 0.92.
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The collection of all subgradients at a point x is called the subdifferential of f at
x and denoted by ∂f(x). Notice that the subdifferential is a set-valued function!
It is now easy to prove that the classical condition for x∗ to be the minimum of
a convex function f (i.e. ∇f(x∗) = 0) can be generalized to non-differentiable
functions as:

0 ∈ ∂f(x∗). (22)

To apply the above the problem at hand, we first note that the subdifferential
of the ramp function x+ is given by:

∂x+ =

⎧⎪⎨
⎪⎩

0 if x < 0

[0, 1] if x = 0 (i.e. set-valued)

1 if x > 0

(23)

as at x = 0 any straight line with slope between 0 and 1 will be located under
the graph of the ramp function. To streamline notation, we introduce (a version
of) the Heaviside stepfunction

H(x) =

⎧⎪⎨
⎪⎩

1 if x > 0

0 ≤ h ≤ 1 if x = 0 (i.e. set-valued)

0 if x < 0

(24)

To forestall confusion we point out that, unlike when used as a distribution, this
definition of the Heaviside function insists its value at the origin is between zero
and one. Using this convention, we have the convenient shorthand notation:

∂x+ = H(x).

Computing the subgradients (for convenience we will drop the notational dis-
tinction between standard- and sub-gradients) we obtain:

∂ζ

∂R
= 2R − 2RC

∑
i

H(d2
i − R2) (25)

∇aζ = −2C
∑

i

H(d2
i − R2) (xi − a) (26)

where we used the well-known fact:

∇a(d2
i ) = ∇a||xi − a||2 = ∇a(xi · xi − 2xi · a + a · a) = −2(xi − a). (27)

Insisting that zero is indeed a subgradient means that we need to pick values
hi := H(d2

i − R2) such that:

0 ∈ ∂ζ/∂R ⇒
n∑

i=1

hi = 1/C (28)

0 ∈ ∇aζ ⇒
n∑

i=1

hi(xi − a) = 0 (29)
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The above characterization allows us to draw a number of straightforward
conclusions (for notational convenience we will drop the asterisk to indicate
optimality, and simply write a∗ = a and R∗ = R):

1. Combining eqs.(28) and (29) it immediately transpires that

a = C
∑

hi xi, (30)

or again, and more suggestively,

a =
∑

hi xi∑
hi

. (31)

Furthermore, the sums in the RHS can be split into three parts depending
on whether a point lies inside (di < R), on (di = R) or outside (di > R)
the sphere, e.g.:∑

i

hi =
∑

i:di<R

H(d2
i − R2) +

∑
i:di=R

H(d2
i − R2) +

∑
i:di>R

H(d2
i − R2)

= 0 +
∑

i:di=R

θi +
∑

i:di>R

1 (32)

where 0 ≤ θi ≡ H(di − R = 0) ≤ 1. Hence:

a =

∑
i:di=R

θixi +
∑

i:di>R

xi∑
i:di=R

θi +
∑

i:di>R

1
(33)

This representation highlights the fact that the centre a is a weighted mean
of the points on or outside the sphere (the so-called support vectors (SV),
[8]), while the points inside the sphere exert no influence on its position.
Notice that the points outside of the sphere are assigned maximal weight.

2. If we denote the number of points inside, on and outside the sphere by
nin, non and nout respectively, then by definition #SV = non+nout. Invoking
eq. (28) and combining this with the fact that 0 ≤ θi ≤ 1 it follows that

1/C =
∑

i

hi =
∑

i:di=R

θi +
∑

i:di>R

1 (34)

Hence, since 0 ≤ θi ≤ 1 it can be concluded that

nout =
∑

di>R

1 ≤ 1/C ≤ non + nout = #SV (35)

Put differently:
(a) 1/C is a lower bound on the number of support vectors (#SV ).
(b) 1/C is an upper bound on the number of outliers (nout).

The same result was obtained by Schölkopf [4], who introduced the parameter
ν = 1/nC as a bound on the fraction of support vectors (#SV/n) and
outliers (nout/n).
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3. Dependency on unit-cost C. In this section we try to gain further
insight into how the cost function determines the behaviour of the optimum. Let
us assume that we have already minimized the cost function (11) and identified
the optimal centre a∗ and corresponding radius R∗. For convenience’s sake, we
again assume that we have relabeled the data points in such a way that the
distances di = ‖xi −a∗‖ are ordered in ascending order: 0 ≤ d1 ≤ d2 ≤ . . . ≤ dn.
We now investigate how the total cost ζ depends on the unit cost C in the
neighbourhood of this optimum.

Figure 1 nicely illustrate the influence of the unit cost C on the qualitative be-
haviour of the optimal radius R∗. Indeed, increasing C slightly has the following
effects on the β-function:

– The values of the coefficients hi will change (cf. eq. 28) which in turn will
result in a shift of the optimal centre (through eq. 31). As a consequence
the distances di to the data points xi will slightly change, resulting in slight
shifts of the step locations of the β-function. Since the position of the optimal
radius R∗ coincides with one of these step locations (viz. the jump from a
negative to a positive β-segment), increasing C slightly will typically induces
small changes in R∗. However, from time to time, one will witness a jump-like
change in R∗ as explained below.

– Since the size of a β-step equals the unit cost, slightly increasing C will
push the each β-segment slightly downwards as the maximum of β remains
fixed at one (i.e. limR→∞ β(R) = 1). As a consequence, β-segments that are
originally positive, will at some point dip below the X-axis. As this happens,
the corresponding quadratic segment will make the transition from convex
and increasing to concave and decreasing forcing the minimum R∗ to make
a jump.

This now allows us to draw a number of straightforward conclusions about the
constraints on the unit cost C.

– The first segment of the β function occurs for 0 ≤ R < d1. On this segment
bi = 1 for all i = 1, . . . , n and hence β(R) = 1−C

∑
i bi = 1−nC. If C < 1/n,

then β > 0 on this first segment and hence on all the subsequent ones. In
that case, ζ(R) is strictly increasing and has a single trivial minimum at
R∗ = 0. Put differently, in order to have a non-trivial optimization problem,
we need to insist on C ≥ 1/n (cf. item 3 in proposition 1 ). icicic

– If, on the other hand, we want to make sure that there are no outliers, then
the optimum R∗ has to coincide with the last jump, i.e. R∗ = dn. This implies
that the quadratic segment on the interval [dn−1, dn] has to be decreasing (or
flat), and consequently β(R) = 1 − C

∑
i bi ≤ 0. Since on this last segment

we have that all bi vanish except for bn, it follows that β(R) = 1 − C ≤ 0
(and vice versa). We therefore conclude that for values C ≥ 1 there will be
no outliers.

This result was also obtained in [8,5] but we can now further tighten
the above bound by observing that when the optimal sphere encloses all
points, it has to pass through at least two points (irrespective of the ambient
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dimension). This implies that dn−1 = dn and the first non-trivial interval
preceding dn is in fact [dn−2, dn−1]. Rerunning the above analysis, we can
conclude that C ≥ 1/2 implies that all data points are enclosed.

– Using the same logic, if we insist that at most k out of n are outside the cir-
cle, we need to make sure that the quadratic on [dn−k, dn−k+1] is convex and
increasing. On that interval we know that

∑
i bi = k. Hence we conclude that

on this interval β(R) = 1 − kC > 0 or again: C < 1/k. Hence, ν = 1/nC >
k/n is an upper bound on the fraction of points outside the descriptor
(cf. [4]).

– In fact, by incorporating some straightforward geometric constraints into the
set-up we can further narrow down the different possible configuration. As a
simple example, consider the case of a generic 2-dimensional data set. The
sphere then reduces to a circle and we can conclude that – since we assume
the data set to be generic – the number of points on the optimal circle (i.e.
non) either equals 1 (as the optimal circle passes through at least one point),
2 or 3. Indeed, there is a vanishing probability that a generic data set will
have 4 (or more) co-circular points (points on the same circle). In this case
we can rewrite the Schölkopf inequality (35) as:

nout ≤ 1/C ≤ nout + 3

For values C < 1/3 it then follows that

3 < 1/C ≤ nout + 3 ⇒ nout > 0.

So we arrive at the somewhat surprising conclusion that if the unit cost
is less than 1/3, we are guaranteed to have at least one outlier, no matter
what the data set looks like (as long as it is generic). This is somewhat
counter-intuitive as far as the usual concept of an outlier is concerned!

This concludes the proof. QED

3 Linear Slacks and Linear Loss

3.1 Basic Analysis

As announced earlier, this section busies itself with minimizing the linear func-
tion

ζ1(a, R) := R + C
∑

i

ϕi subject to ∀i : di ≡ ‖xi − a‖ ≤ R + ϕi, ϕi ≥ 0.

(36)
Again, we absorb the constraints into the function by introducing the ramp
function:

ζ1(a, R) = R + C
∑

i

(di − R)+ (37)
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Taking subgradients with respect to a and R yields:

∂ζ1

∂R
= 1 − C

∑
H(di − R)

∇aζ1 = −C
∑

H(di − R)
(xi − a)
‖xi − a‖

since it is straightforward to check that:

∇a(di) = ∇a

√
(‖xi − a‖2) = − (xi − a)

‖xi − a‖ .

Equating the gradient to zero and re-introducing the notation hi = H(di − R)
we find that the optimum is characterized by:

∂ζ1

∂R
= 0 ⇒

n∑
i=1

hi = 1/C (38)

∇aζ1 = 0 ⇒
n∑

i=1

hi
(xi − a)
‖xi − a‖ = 0 (39)

Notice how eq. (38) is identical to eq. (28) whereas eq. (39) is similar but subtly
different from eq.(29). In more detail:

1. Once again we can make the distinction between the nin points that reside
inside the sphere, the non points that lie on the sphere and the nout points
that are outside the sphere. The latter two categories constitute the support
vectors: #SV = non + nout. Hence,

1/C =
∑

i

hi =
∑

di<R

hi +
∑

di=R

hi +
∑

di>R

hi

=
∑

di=R

θi + nout.

So also in this case we get (cf. eq. (35)):

nout ≤ 1
C

≤ #SV. (40)

2. Comparing eqs. (39) and (29) we conclude that we can expect the solution
corresponding to linear loss function (36) to be more robust with respect to
outliers. Indeed, in Section 2 we’ve already argued that eq. (29) implies that
the sphere’s centre is the (weighted) mean of the support vectors. Noticing
that in eq. (39) the vectors have been substituted by the corresponding unit
vectors reveals that in the case of a linear loss function the centre can be
thought of as the weighted median of the support vectors. Indeed, for a set of
1-dimensional points x1, . . . , xn the median m is defined by the fact that it
separates the data set into two equal parts. Noticing that (xi−m)/|xi−m| =
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sgn(xi − m) equals −1, 0 or 1 depending on whether xi < m, xi = m or
xi > m respectively, we see that the median can indeed be defined implicitly
by: ∑

i

(xi − m)
‖xi − m‖ = 0.

This characterization of the median has the obvious advantage that the
generalization to higher dimensions is straightforward [7]. The improved ro-
bustness of the solution of the linear cost function (36) with respect to the
original one (7) is nicely illustrated in Fig. 2.

3.2 Further Properties

To gain further insight in the behaviour of solutions we once again assume that
the centre of the sphere has already been located, so that the cost function
depends solely on R. We also assume that the points have been labeled to produce
an increasing sequence of distances di = ‖xi − a‖. Hence:

ζ1(R) = R+C
∑

i

�(di−R) = R+C
∑

i

(di−R)H(di−R) = R+C
∑

i

bi(di−R),

where we have once again re-introduced the binary auxiliary variables bi defined
in eq.(16) Rearranging the terms we arrive at:

ζ1(R) =
(

1 − C
∑

bi(R)
)

R + C
∑

i

bi(R)di, (41)

which elucidates that the function is piecewise linear, with a piecewise constant
slope equal to 1 − C

∑
bi. For notational convenience, we define

β(R) = 1 − C
∑

i

bi(R) and δ(R) =
∑

bi(R)di,

resulting in ζ1(R) = β(R) R+Cδ(R). Furthermore, β(0) = 1−nC and increases
by jumps of size (multiples of) C to reach 1 when R = dn. Hence the minimum
R∗ is located at the distance di for which β jumps above zero.

These considerations allow us to mirror the conclusions we obtained for the
original cost function:

1. The optimal value of R∗ coincides with one of the distances di which means
that the optimal circle passes through at least one of the data points.

2. The optimal value R∗ changes discontinuously whenever the unit cost takes
on a value C = 1/k (for k = 2, . . . , n).

3. Non-trivial solutions exist only within the range:

1
n
≤ C ≤ 1

2
.

For other values of C either all or no points are outliers.
4. The Schölkopf bounds (35) (and the ensuing conclusions) prevail.
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Fig. 2. Comparison of the optimal sphere for the original SVDD-function (in blue, cf.
eq. (9), and the linear alternative (in black, cf. eq. (36)). The data sets in the top and
bottom figures are identical except for the starred point on the right which, in the
bottom figure (different scale!), has been moved far away from the rest of the cluster.
Clearly, the optimal circle based on the linear function is essentially unaffected whereas
the SVDD solution is dramatically inflated by this outlier.

4 Conclusions

In this paper we re-examined the support vector data descriptor (SVDD) (intro-
duced by [8] and [5]) for one-class classification. Our investigation was prompted
by the observation that the definition of slack variables as specified in the SVDD
approach, lacks a clear geometric interpretation. We therefore re-analyzed the
SVDD constrained optimization problem, focussing on the primal formulation,
as this allowed us to gain further insight into the behaviour of the solutions. We
applied the same analysis to two natural alternatives for the SVDD function.
The first one turned out to suffer from unacceptable limitations, but the second
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one produces results that are very similar to the original formulation, but enjoys
enhanced robustness with respect to outliers. We therefore think it could serve
as an alternative for the original.
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Abstract. Data mining methods are widely used across many disciplines to 
identify patterns, rules or associations among huge volumes of data. While in 
the past mostly black box methods such as neural nets and support vector  
machines have been heavily used in technical domains, methods that have ex-
planation capability are preferred in medical domains. Nowadays, data mining 
methods with explanation capability are also used for technical domains after 
more work on advantages and disadvantages of the methods has been done. De-
cision tree induction such as C4.5 is the most preferred method since it works 
well on average regardless of the data set being used. This method can easily 
learn a decision tree without heavy user interaction while in neural nets a lot of 
time is spent on training the net. Cross-validation methods can be applied to de-
cision tree induction methods; these methods ensure that the calculated error 
rate comes close to the true error rate. The error rate and the particular goodness 
measures described in this paper are quantitative measures that provide help in 
understanding the quality of the model. The data collection problem with its 
noise problem has to be considered. Specialized accuracy measures and proper 
visualization methods help to understand this problem. Since decision tree in-
duction is a supervised method, the associated data labels constitute another 
problem. Re-labeling should be considered after the model has been learnt. This 
paper also discusses how to fit the learnt model to the expert´s knowledge. The 
problem of comparing two decision trees in accordance with its explanation 
power is discussed. Finally, we summarize our methodology on interpretation 
of decision trees. 

1   Introduction 

Data mining methods are widely used across many disciplines to identify patterns, 
rules or associations among huge volumes of data. Different methods can be applied 
to accomplish this. While in the past mostly black box methods such as neural nets 
and support vector machines (SVM) have been heavily used in technical domains, 
methods that have explanation capability have been particularly used in medical do-
mains since a physician likes to understand the outcome of a classifier and map it to 
his domain knowledge; otherwise, the level of acceptance of an automatic system is 
low. Nowadays, data mining methods with explanation capability are also used for 
technical domains after more work on advantages and disadvantages of the methods 
has been done.  
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The most preferred method among the methods with explanation capability is deci-
sion tree induction method [1]. This method can easily learn a decision tree without 
heavy user interaction while in neural nets a lot of time is spent on training the net. 
Cross-validation methods can be applied to decision tree induction methods; these 
methods ensure that the calculated error rate comes close to the true error rate. A large 
number of decision tree methods exist but the method that works well on average on 
all kinds of data sets is still the C4.5 decision tree method and some of its variants. 
Although the user can easily apply this method to his data set thanks to all the differ-
ent tools that are available and set up in such a way that none computer-science spe-
cialist, can use them without any problem, the user is still faced with the problem of 
how to interpret the result of a decision tree induction method. This problem espe-
cially arises when two different data sets for one problem are available or when the 
data set is collected in temporal sequence. Then the data set grows over time and the 
results might change. 

The aim of this paper is to give an overview of the problems that arise when inter-
preting decision trees. This paper is aimed at providing the user with a methodology 
on how to use the resulting model of decision tree induction methods. 

In Section 2, we explain the data collection problem. In Section 3, we review how 
decision tree induction based on the entropy principle works. In Section 4, we present 
quantitative and qualitative measures that allow a user to judge the performance of a 
decision tree. Finally, in section 5 we discuss the results achieved so far with our 
methodology. 

2   The Problem 

Many factors influence the result of the decision tree induction process. The data 
collection problem is a tricky pit fall. The data might become very noisy due to some 
subjective or system-dependent problems during the data collection process. 

Newcomers in data mining go into data mining step by step. First, they will acquire 
a small data base that allows them to test what can be achieved by data mining meth-
ods. Then, they will enlarge the data base hoping that a larger data set will result in 
better data mining results. But often this is not the case. 

Others may have big data collections that have been collected in their daily practice 
such as in marketing and finance. To a certain point, they want to analyze these data 
with data mining methods. If they do this based on all data they might be faced with a 
lot of noise in the data since customer behavior might have changed over time due to 
some external factors such as economic factors, climate condition changes in a certain 
area and so on. 

Web data can change severely over time. People from different geographic areas 
and different nations can access a website and leave a distinct track dependent on the 
geographic area they are from and the nation they belong to. 

If the user has to label the data, then it might be apparent that the subjective decision 
about the class the data set belongs to might result in some noise. Depending on the 
form of the day of the expert or on his experience level, he will label the data properly 
or not as well as he should. Oracle-based classification methods [12][13] or similarity-
based methods [14][15] might help the user to overcome such subjective factors. 
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If the data have been collected over an extended period of time, there might be 
some data drift. In case of a web-based shop the customers frequenting the shop might 
have changed because the products now attract other groups of people. In a medical 
application the data might change because the medical treatment protocol has been 
changed. This has to be taken into consideration when using the data. 

It is also possible that the data are collected in time intervals. The data in time pe-
riod _1 might have other characteristics than the data collected in time period_2. In 
agriculture this might be true because the weather conditions have changed. If this is 
the case, the data cannot make up a single data set. The data must be kept separate 
with a tag indicating that they were collected under different weather conditions.  

In this paper we describe the behavior of decision tree induction under changing 
conditions (see Figure 1) in order to give the user a methodology for using decision 
tree induction methods. The user should be able to detect such influences based on the 
results of the decision tree induction process. 

TIME

n n+1 n+2 n+3 n+4 ...

   Data Stream

…
DS_n DS_n+1 DS_n+3

DS

Change in Data Collection 
ProtocolInfluence from Outside

Data Sampling (DS) Strategy
 

Fig. 1. The Data Collection Problem 

3   Decision Tree Induction Based on the Gain Ratio (Entropy-
Based Measure) 

The application of decision tree induction methods requires some basic knowledge of 
how decision tree induction methods work. This section reviews the basic properties 
of decision tree induction. 

Decision trees recursively split the decision space into subspaces based on the de-
cision rules in the nodes until the final stop criterion is reached or the remaining sam-
ple set does not suggest further splitting (see Figure 2). For this recursive splitting 
process, the tree building process must always pick from all attributes that one that 
shows the best result on the attribute selection criteria for the remaining sample set. 
Whereas for categorical attributes the partition of the attribute values is given a-priori, 
the partition (also called attribute discretization) of the attribute values for numerical 
attributes must be determined.  

Attribute discretization can be done before or during the tree building process [2]. 
We will consider the case where the attribute discretization is done during the tree 
building process. The discretization must be carried out before the attribute selection 
process since the selected partition regarding the attribute values of a numerical at-
tribute highly influences the prediction power of that attribute. 
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Fig. 2. Overall Tree Induction Procedure 

After the attribute selection criterion has been calculated for all attributes based on 
the remaining sample set, the resulting values are evaluated and the attribute with the 
best value for the attribute selection criterion is selected for further splitting of the 
sample set. Then the tree is extended by two further nodes. To each node the subset 
created by splitting based on the attribute values is assigned and the tree building 
process is repeated. Decision tree induction is a supervised method. It requires that the 
data is labeled by its class.  

The induced decision tree tends to overfit the data. In Figure 3 we have demonstrated 
this situation based on a tree induced based on the well-known IRIS data set. Overfit is 
typically due to noise in the attribute values and class information present in the training 
set. The tree building process will produce subtrees that fit this noise. This causes an 
increased error rate when classifying unseen cases. Pruning the tree, which means re-
placing subtrees with leaves, will help to avoid this problem (see Figure 4). In case of 
the IRIS data set the pruned tree provides better accuracy than the unpruned tree. How-
ever, pruning is often based on a statistical model assumption that might not always fit 
the particular data. Therefore, their might be a situation where the unpruned tree gives 
better results than the pruned tree even when checked with new data. 

Fig. 3. Decision Tree original Fig. 4. Decision Tree punend 

do while tree termination criterion failed

do for all features

feature numerical?
yes no 

splitting procedure

feature selection procedure

split examples

build tree 
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3.1   Attribute Splitting Criteria 

Following the theory of the Shannon channel, we consider the data set as the source and 
measure the impurity of the received data when transmitted via the channel. The trans-
mission over the channel results in partitioning of the data set into subsets based on 
splits on the attribute values J of the attribute A. The aim should be to transmit the signal 
with the least loss of information. This can be described by the following criterion:  
 

AAttributeSelectTHENMaxJCICIAIIF −=−= )/()()(  

 
where I(A) is the entropy of the source, I(C) is the entropy of the receiver or the ex-
pected entropy to generate the message C1, C2, ..., Cm, and I(C/J) is the lost entropy 
when branching on the attribute values J of attribute A. 

For the calculation of this criterion we consider first the contingency table in Table 
1 with m the number of classes, n the number of attribute values J, n the number of 
examples, Li the number of examples with the attribute value Ji, Rj the number of 
examples belonging to class Cj, and xij the number of examples belonging to class Cj 
and having attribute value Ai. 

Now, we can define the entropy of the class C by: 
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The best feature is the one that achieves the lowest value for (2) or, equivalently, 
the highest value of the "mutual information" I(C) - I(C/J). The main drawback of this 
measure is its sensitivity to the number of attribute values. In the extreme, a feature 
that takes N distinct values for  N examples achieves complete discrimination be-
tween different classes, giving I(C/J)=0, even though the features may consist of 
random noise and may be useless for predicting the classes of future examples. There-
fore, Quinlan [3] introduced a normalization by the entropy of the attribute itself:  

G(A)=I(A)/I(J) with 
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Other normalizations have been proposed by Coppersmith et. al [4] and Lopez de 
Montaras [5]. Comparative studies have been done by White and Lui [6]. 
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Table 1. Contingency Table for an Attribute 
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The behavior of the entropy is very interesting [7]. Figure 5 shows the graph for 
the single term –p ld p. The graph is not symmetrical. It has its maximum when 37% 
of the data have the same value. In that case this value will trump all other values. 

In case of a binary split, we are faced with the situation that there are two sources 
with the signal probability of p and 1-p. The entropy is shown in Figure 6. It has its 
maximum when all values are equally distributed. The maximum value for the split-
ting criterion will be reached if most of the samples fall on one side of the split. The 
decision tree induction algorithm will always favor splits that meet this situation. 
Figure 11 demonstrates this situation based of the IRIS data set. The visualization 
shows to the user the location of the class-specific data dependent on two attributes. 
This helps the user to understand what changed in the data.  
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Fig. 5. Diagram of – p ld p; The maximum 
is at p=1/e; H=0.5 is assumed for p=0.25 
and p=0.5 

Fig. 6. Behavior of H(p,1-p) under the condi-
tion that two sources are of the signal prob-
ability p and 1 - p 

4   How to Interpret the Results of a Decision Tree 

4.1   Quantitative Measures of the Quality of the Decision Tree Model 

One of the most important measures of the quality of a decision tree is accuracy. This 
measure is judged based on the available data set. Usually, cross-validation is used for 
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evaluating the model since it is never clear if the available data set is a good represen-
tation of the entire domain. Compared to test-and-train, cross-validation can provide a 
measure statistically close to the true error rate. Especially if one has small sample 
sets, the prediction of the error rate based on cross-validation is a must. Although this 
is a well-known fact by now, there are still frequently results presented that are based 
on test-and-train and small sample sets. In case of neural nets there is hardly any work 
available that judges the error rate based on cross-validation. If a larger data set is 
available, cross-validation is also a better choice for the estimation of the error rate 
since one can never be sure if the data set covers the property of the whole domain. 
Faced with the problem of computational complexity, n-fold cross-validation is a 
good choice. It splits the whole data set into blocks of n and runs cross-validation 
based theorem . 

The output of cross-validation is mean accuracy. As you might know from statis-
tics it is much better to predict a measure based on single measures obtained from a 
data set split into blocks of data and to average over the measure than predict the 
measure based on a single shot on the whole data set. Moreover the variance of the 
accuracy gives you another hint in regard to how good the measure is: If the variance 
is high, there is much noise in the data; if the variance is low, the result is much more 
stable. 

The quality of a neural net is often not judged based on cross-validation. Cross- 
validation requires setting up a new model in each loop of the cycle. The mean accu-
racy over all values of the accuracy of the each single cycle is calculated as well as 
the standard deviation of accuracy. Neural nets are not automatically set up but deci-
sion trees are. A neural network needs a lot of training and people claim that such a 
neural net – once it is stable in its behavior - is the gold standard. However, the accu-
racy is judged based on the test-and-train approach and it is not sure if it is the true 
accuracy. 

Bootstrapping for the evaluation of accuracy is another choice but it is much more 
computationally expensive than cross-validation; therefore, many tools do not provide 
this procedure. 

Accuracy and the standard deviation are an overall measure, respectively. The 
standard deviation of the accuracy can be taken as a measure to evaluate how stable 
the model is. A high standard deviation might show that the data are very noisy and 
that the model might change when new data become available. More detailed  
measures can be calculated that give a more detailed insight into the behavior of the 
model [8].  

The most widely used evaluation criterion for a classifier is the error rate fr.= Nf/N 
with Nf the number of false classified samples and N the whole number of samples. In 
addition, we use a contingency table in order to show the qualities of a classifier, see 
Table 2. The table contains the actual and the real class distribution as well as the 
marginal distribution cij. The main diagonal is the number of correct classified sam-
ples. The last row shows the number of samples assigned to the class shown in row 1 
and the last line shows the real class distribution. Based on this table, we can calculate 
parameters that assess the quality of the classifier. 
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Table 2. Contingency Table 
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For the investigation of the classification quality we measure the classification 
quality pki according to a particular class i and the number of correct classified sam-
ples pti for one class i: 

∑
=

m

j
ji

ii
ki

c

c
p

1

               

∑
=

= m

i
ji

ii
ti

c

c
p

1

 
(5)

Other criteria shown in Table 3 are also important when judging the quality of a 
model. 

Table 3. Criteria for Comparison of Learned Classifiers 

Generalization Capability of the Classifier Error Rate based on the Test Data Set 
Representation of the Classifier Error Rate based on the Design Data Set 
Classification Costs • Number of Features used for Clas-

sification 
• Number of Nodes or Neurons 

Explanation Capability Can a human understand the decision 
Learning Time Learning Performance 
Sensitivity to Class Distribution in the 
Sample Set 

 
One of these criteria is the cost for classification expressed by the number of fea-

tures and the number of decisions used during classification. The other criterion is the 
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time needed for learning. We also consider the explanation capability of the classifier 
as another quality criterion. It is also important to know if the classification method 
can learn correctly the classification function (the mapping of the attributes to the 
classes) based on the training data set. Therefore, we not only consider the error rate 
based on the test set, we also consider the error rate based on the training data set.  

4.2   Explanation Capability of the Decision Tree Model 

Suppose we have a data set X with n samples. The outcome of the data mining process 
is a decision tree that represents the model in a hierarchical rule-based fashion. One path 
from the top to the leave of a tree can be described by a rule that combines the decisions 
of each node by a logical AND. The closer  the decision is to the leave, the more noise 
is contained in the decision since the entire data set is subsequently split into two parts 
from the top to the bottom and in the end only a few samples are contained in the two 
data sets. Pruning is performed to avoid that the model overfits the data. Pruning pro-
vides a more compact tree and often a better model in terms of accuracy.  

The pruning algorithm is based on an assumption regarding the distribution of the 
data. If this assumption does not fit the data, the pruned model does not have better 
accuracy. Then it is better to stay with the unpruned tree. 

When users feel confident about the data mining process, they are often keen on 
getting more data. Then they apply the updated data set that is combined of the data 
set X and the new data set X´ containing n+t samples (n < n+t) to the decision tree 
induction. If the resulting model only changes in nodes close to the leaf of a decision 
tree, the user  understands why this is so.  

There will be confusion when the whole structure of the decision tree has been 
changed especially, when the attribute in the root node changes. The root node deci-
sion should be the most confident decision. The reason for a change can be that there 
were always two competing attributes having slightly different values for the attribute 
selection criteria. Now, based on the data, the attribute ranked second in the former 
procedure is now ranked first. When this happens the whole structure of the tree will 
change since a different attribute in the first node will result in a different first split of 
the entire data set. 

It is important that this situation is visually presented to the user so that he can 
judge what happened. Often the user has already some domain knowledge and prefers 
a certain attribute to be ranked first. A way to enable such a preference is to allow the 
user to actively pick the attribute for the node. 

These visualization techniques should allow to show to user the location of the 
class-specific data dependent on two attributes, as shown in Figure 11. This helps the 
user to understand what changed in the data. From a list of attributes the user can pick 
two attributes and the respective graph will be presented.  

Another way to judge this situation is to look for the variance of the accuracy. If 
the variance is high, this means that the model is not stable yet. The data do not give 
enough confidence in regard to the decision. 

The described situation can indicate that something is wrong with the data. It often 
helps to talk to the user and figure out how the new data set has been obtained. To 
give you an example: A data base contains information about the mortality rate of 
patients that have been treated for breast cancer. Information about the patients, such 
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as age, size, weight, measurements taken during the treatment, and finally the success 
or failure, is reported. In the time period T1, treatment with a certain cocktail of 
medicine, radioactive treatment and physiotherapy has taken place; the kind of treat-
ment is called a protocol. In the time period T2, the physicians changed the protocol 
since other medicine is available or other treatment procedures have been reported in 
the medical literature as being more successful. The physicians know about the 
change in protocol but they did not inform you accordingly. Then the whole tree 
might change and as a result the decision rules are changing and the physicians cannot 
confirm the resulting knowledge since it does not fit their knowledge about the dis-
ease as established in the meantime. The resulting tree has to be discussed with the 
physicians; the outcome may be that in the end the new protocol is simply not good. 

4.3   Revision of the Data Label 

Noisy data might be caused by wrong labels applied by the expert to the data. A re-
view of the data with an expert is necessary to ensure that the data labels are correct. 
Therefore, the data are classified by the learnt model. All data sets that are misclassi-
fied are reviewed by the domain expert. If the expert is of the opinion that the data set 
needs another label, then the data set is relabeled. The tree is learnt again based on the 
newly labeled data set. 

4.4   Comparison of Two Decision Trees 

Two data sets of the same domain that might be taken at different times, might result 
in two different decision trees. Then the question arises how similar these two deci-
sion trees are. If the models are not similar then something significant has changed in 
the data set. 

The path from the top of a decision tree to the leaf is described by a rule like “IF at-
tribute A<= x and attribute B<=y and attribute C<=z and … THEN Class_1”. The 
transformation of a decision tree in a rule-like representation can be easily done. The 
location of an attribute is fixed by the structure of the decision tree.  

Comparison of rule sets is known from rule induction methods in different domains 
[9]. Here the induced rules are usually compared to the human-built rules [10][11]. 
Often this is done manually and should give a measure about how good the con-
structed rule set is. 

These kinds of rules can also be automatically compared by substructure mining. 
The following questions can be asked: a) How many rules are identical? b) How 
many of them are identical compared to all rules? b) What rules contain part struc-
tures of the decision tree?  

We propose a first similarity measure for the differences of the two models as  
follows. 

1. Transform two decision trees d1 and d2 into a rule set. 
2. Order the rules of two decision tress according to the number n of attributes in a 

rule. 
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3. Then build substructures of all l rules by decomposing the rules into their      Sub-
structures. 

4. Compare two rules i and j of two decision trees d1 and d2 for each of the nj and ni 
substructures with s attributes. 

5. Build similarity measure SIMij  according to formula 6-8. 
 

The similarity measure is: 

)......(
1

21 nkij SimSimSimSim
n

SIM +++++=  (6)
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If the rule contains a numerical attribute A<=k1 and A´<=k2=k1+x then the similar-
ity measure is 
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with t a user chosen value that allows x to be in a tolerance range of s % (e.g. 10%) of 
k1. That means as long as the cut-point k1 is within the tolerance range we consider the 
term as similar, outside the tolerance range it is dissimilar. Small changes around the 
first cut-point are allowed while a cut-point far from the first cut-point means that 
something seriously has happened with the data. 

The similarity measure for the whole substructure is: 
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The overall similarity between two decision trees d1 and d2 is 
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for comparing the rules i of decision d1 with rules j of decision d2. Note that the simi-
larity Sim d1,d2 must not be the same.  
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The comparison of decision tree_1 in Figure 7 with decision tree_2 in Figure 8 
gives a similarity value of 0.75 based on the above described measure. The upper 
structure of decision tree_2 is similar to decision tree_1 but decision tree_2 has a few 
more lower leaves. The decision tree_3 in Figure 9 is similar to decision tree_1 and 
decision_tree_2 by a similarity value of 0.125. Decision tree_3 in Figure 10 has no 
similarity at all compared to all other trees. The similarity value is zero.  
 

 

Fig. 7. Decision_Tree_1, Simd1,d1=1 Fig. 8. Substructures of Decision Tree_1 to 
Decision Tree_2; Simd1,d2=0.9166 

 

Fig. 9. Substructures of Decision Tree_1 to 
Decision Tree_3; Simd1,d3=0,375; 
Simd2,d3=0.375 

Fig. 10. Decision Tree_4  dissimilar to all other 
Decision Trees, Simd1,d4=0 

Such a similarity measure can help an expert to understand the developed model 
and also help to compare two models that have been built based on two data set,  
wherein one contains N examples and the other one contains N+L samples. 

There are other options for constructing the similarity measure. It is left for our fur-
ther work. 
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5   Conclusions 

The aim of this paper is to discuss how to deal with the result of data mining methods 
such as decision tree induction. This paper has been prompted by the fact that domain 
experts are able to use the tools for decision tree induction but have a hard time  
interpreting the results. A lot of factors have to be taken into consideration. The quan-
titative measures give a good overview in regard to the quality of the learnt model. 
But computer science experts claim that decision trees have explanation capabilities 
and that, compared to neural nets and SVM, the user can understand the decision. 
This is only partially true. Of course, the user can follow the path of a decision from 
the top to the leaves and this provides him with a rule where the decisions in the node 
are combined by logical ANDs. But often this is tricky. A user likes rules that fit his 
domain knowledge and make sense in some way. Often this is not the case since the 
most favored attributes of the user do not appear at a high position. 

That makes the interpretation of a decision trees difficult. The user´s domain 
knowledge, even if it is only limited, is an indicator whether he accepts the tree or not. 
Some features a decision tree induction algorithm should have are mentioned in this 
paper. The decision tree induction algorithm should allow the user to interact with the 
induction algorithm. If two attributes are ranked more or less the same the user should 
be able to choose which one of the attributes to pick. The noise in the data should be 
checked with respect to different aspects. Quality measures of the model like mean 
accuracy, standard deviation and class-specific accuracy are necessary in order to 
judge the quality of a learnt decision tree right. The evaluation should be done by 
cross validation as test-and-train methods are not up-to-date anymore.  

Among other things, explanation features are needed that show the split of the at-
tributes and how it is represented in the decision space. Simple visualization tech-
niques, like 2-d diagram plots, are often helpful to discover what happened in the 
data.  

Wrong labels have to be discovered by an oracle-based classification scheme. This 
should be supported by the tool. 

The comparison of trees is another important issue that a user needs in order to un-
derstand what has changed. Therefore, proper similarity measures are needed that 
give a measure of goodness. 

This paper is a first step toward a more complex methodology on how to interpret 
decision trees. 
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Abstract. A metaclassifier is a technique that integrates multiple base
classifiers. In this paper a hybrid meta-classifier algorithm based on gen-
erative and non-generative methods is proposed. Five well-know strong
classifiers are used for the non-generative method and bagging was used
for generative method. The performances of the five base classifiers, their
ensembles based on bagging, and the proposed hybrid metaclassifier are
compared using classification error rates. Eight different datasets com-
ing from the UCI Machine Learning database repository are used in the
experiments.

Keywords: Classifiers, Ensembles.

1 Introduction

Data mining and knowledge discovery play an important role in engineering, sci-
entific, and medical databases. Different classifiers have been designed to solve
different problems in this area. However, the performance of some of them is
poor. For this reason, ensembles of base classifier algorithms, called metaclassi-
fiers, are considered.

Ensembles of multiple classifiers [12], are found in several fields, such as the
combination of estimators in econometrics, evidence in rule-based systems, and
multi-sensor data fusion. Meta-classifiers are studied because they improve the
efficiency of single classifiers, and also because they are robust.

In this paper a combination of two ensemble methods based on generative and
non-generative methods is introduced. Each of these algorithms is based on five
different base classifiers learned from centralized datasets. These classifiers are
Radial Basis Function networks (RBF), C4.5 decision trees (C45), Kernel Den-
sity (KD), Naive Bayes (NB), and K-Nearest Neighbors (KNN). Single bagging
for each of them and their combined bagging is carried out. The performance
of the proposed algorithm is compared with the five base classifiers and other
meta-classifiers. This performance is based on the classification error rate.

This paper is organized as follows: related works to this research are described
in section two. Section three describes the ensemble methods and the proposed
algorithm. Experimental results are presented in section four. Finally, conclu-
sions are discussed in section five.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 56–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

Roli et al. [11] and Tumer and Ghosh [12] presented and analyzed combiners
based on order statistics. They concluded that the combiner’s robustness helps
to improve the performance of certain individual classifiers. Their experimental
results showed that, if there is significant variability among the classifiers, the
order statistics-based combiners substantially outperform simple combiners.

Duin and Tax [5] concluded that combining classifiers trained in different fea-
ture sets is quite useful, especially when the probabilities are well estimated by
the classifier in these feature sets. On the other hand, combining different clas-
sifiers trained in the same data set may also improve the classifier performance,
but it is generally less useful. They concluded that there is no combiner win-
ning rule: mean, median, majority in case of correlated errors, and the product
of independent errors perform roughly as expected, but others may be good as
well.

Dietterich [4] concluded that in low-noise cases, Adaboost [6] gives a good
performance because it is able to optimize the ensemble without over-fitting.
However, in high-noise cases, Adaboost puts a large amount of weight in the
mislabeled examples, badly over-fitting the classifier. Bagging and randomization
perform well in both the noise and noise-free cases because they are focusing in
the statistical problem and noise increases this statistical problem. In very large
data sets, randomization can be expected to do better than bagging, because
bootstrap replications of a large training set are similar to the training set,
hence the learned decision tree may not be very diverse. Randomization creates
diversity under all conditions, but at the risk of generating low-quality decision
trees. The author [4] was interested to see if the local algorithms such as radial
basis functions and nearest neighbor methods can be profitably combined via
Adaboost to yield interesting new learning algorithms.

Oza et al. [9] surveyed applications of ensemble methods to problems that
present difficulties in classification such as: remote sensing, person recognition,
one-versus-all recognition, and medicine.

Amin et al. [1] presented ensemble approached in single-layered complex value
neural networks to solve classification problems. They applied two ensemble
methods based on negative correlation learning and bagging.

Hsieh et al. [8] proposed an ensemble classifier constructed by incorporating
data mining techniques, such as associate binning to discretize continuous values,
neural networks, support vector machine, and Bayesian networks to augment
the ensemble classifier. They applied their ensemble in a credit scoring system
to replace one existing hybrid system.

Goumas et al. [7] presented fusion methods of multiple classifiers through
multi-modular architectures to improve the classification results and to con-
tribute the robustness of the inspection system which is based on a technology
of surface mounted devices.
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3 Ensemble Methods

Experiments with classifier combining rules were described by Duin and Tax [5],
and Dietterich [4]. The latter used various fixed and trained combining rules.
Six methods for fusing multiple classifiers are presented by Roli et al. [11]. They
measured classifiers’s diversity and performance of such methods.

Meta-learning refers to learning from a prediction of base classifiers in a com-
mon validation dataset. The sequence of this process is as follows:

1. Classifiers are trained from the initial training sets.
2. A prediction is generated by the learned classifiers in a separate validation set.
3. A meta-level training set is composed from the validation set and the pre-

diction generated by the classifiers in the validation set.
4. The final classifier (meta-classifier) is trained from the meta-level training set.

Valentini and Masulli [13] quoted two general ensemble Methods: generative
and non-generative. The latter doesn’t generate new base classifiers, instead it
combines base classifiers in a suitable way to find the ensemble. An explanation
of both methods is given below.

– Non-generative Methods
These methods combine a set of base learning algorithms using a combiner
module, which depends in its adaptivity of input and output of its base clas-
sifiers. If labels or if continuous outputs are hardened, the majority voting
among the represented base classifiers are used. Weights can be assigned
to each classifier output to optimize the combined classifier of the training
set. Ensembles can be based in Bayes rule approach. For this purpose, the
Behavior Knowledge Space method considers each possible combination of
class labels. This method computes the frequency of each class correspond-
ing to each combination of the classifiers, but this technique requires a huge
size of training data. The base learners can be aggregated using operators
such as minimum, maximum, average, product, and ordered weight averag-
ing. Another method of combination is using second level learning machine.
This learning algorithm takes the base leaner outputs as features in the
intermediate space.

– Generative Methods
Resampling methods may be used to generate different training sets. In or-
der to produce multiple classifiers, base learning algorithms can be applied
in these sets. Bagging draws samples with replacement. On the other hand,
boosting uses different distribution or weighting over the training exam-
ples in each iteration. Another method to get training samples is leaving
one disjoint subset out. This method is called cross-validation, which is a
technique to sample without replacement. Randomized ensemble methods
generate classifiers using random initial values to construct the classifier.
For instance, in a radial basis function, the initial weights can be initialized
randomly to obtain different classifiers. In this paper a combination of gen-
erative and non-generative method is proposed. A comparison between the
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single base classifiers, their respective ensembles based on bagging, and the
proposed ensemble is carried out.

3.1 Combination of Generative and Non-generative Ensemble

In this paper a combination of two ensemble methods is proposed: a generative
method based on majority voting and a non-generative method based on bagging.

Five well-known base classifiers are used to build a meta-classifier algorithm
based on majority voting. These classifiers are the C4.5 decision trees (C45) [10],
Naive Bayes (NB) from Machine Learning, Kernel Density (KD) from statistics,
Radial Basis Functions (RBF) from neural networks, and K-Nearest Neighbors
(KNN).

The bagging algorithm was proposed by Breiman [3]. This algorithm consists
in taking B bootstrap samples with replacement £1, £2, ..., £B, generated from
a training sample £. A classifier Ci is built for each bootstrap sample £i. Finally,
a classifier CA is generated, containing the most frequent class estimated by the
Ci classifier.

In majority voting, an instance is classified in the most frequent class that
appears in the classifier output.

Combining bagging and majority voting consists in generating different base
classifiers for each bootstrap sample. Then a majority voting method is applied
to these classifiers. The final output is taken as the classifier output for each
bootstrap sample in the Bagging algorithm (Fig. 1).

Input training sample £, classifier C , bootstrap samples B
for i = 1 to B {
£′ = bootstrap sample from £
ECi = majority vote {BCj(£′)}
where BCj is a base Classifier,
j = 1, ..., # of base classifiers

}
ECA(x) = argmax

y∈Y

∑
i:ECi(x)=y

1, (the most frequent class)

Y = {1, 2, ..., g}
Output Classifier ECA.

Fig. 1. Proposed Ensemble Algorithm

4 Experimental Results

The implementation of the base algorithms and the ensembles were made in the
C++ language. For the decision tree classifier, a wrapper of the C4.5 software
was used. This software was developed by Quinlan [10] which is available in the
author’s web page. The RBF classifier uses the CPPLapack library to find the
pseudo inverse of a matrix using the general svd procedures from the LAPACK
library. This library is an open source C++ wrapper for BLAS and LAPACK
library and it is available on http://cpplapack.sourceforge.net/
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Table 1. Parameters of Base and Ensemble Algorithms

Dataset iris diabetes ionosphere breawst bupa vehicle segment landsat

NH 5 5 6 3 9 20 25 36
SCL 1 1 1 1 1 1000 100 10000
NN 4 7 3 7 7 3 3 11

Table 2. Classification Error Rates of Base and Ensemble Algorithms

Dataset C4.5 RBF KD NB KNN BC4.5 BRBF BKD BNB BKNN B1

Breawst 0.013 0.032 0.049 0.037 0.028 0.041 0.032 0.049 0.037 0.029 0.038
Bupa 0.171 0.359 0.359 0.420 0.359 0.335 0.348 0.379 0.414 0.358 0.368
Diabetes 0.259 0.277 0.264 0.246 0.255 0.242 0.257 0.265 0.247 0.261 0.238
Ionosphere 0.125 0.099 0.108 0.262 0.162 0.080 0.100 0.114 0.262 0.162 0.066
Iris 0.080 0.047 0.046 0.053 0.400 0.060 0.038 0.038 0.048 0.053 0.038
Landsat 0.262 0.189 0.134 0.219 0.207 0.211 0.157 0.129 0.219 0.199 0.161
Segment 0.062 0.142 0.134 0.230 0.111 0.056 0.122 0.136 0.230 0.110 0.067
Vehicle 0.271 0.335 0.373 0.508 0.353 0.262 0.245 0.347 0.507 0.357 0.241

Table 3. Ranking of Classifiers and Ensembles

Dataset 1st 2nd 3th 4th 5th 6th 7th 8th 9th 10th 11st

Breawst C4.5 KNN BKNN RBF BRBF NB BNB B1 BC4.5 KD BKD

Bupa C4.5 BC4.5 BRBF BKNN RBF KD KNN B1 BKD BNB NB
Diabetes B1 BC4.5 NB BNB BRBF C4.5 KNN BKNN KD BKD RBF

Ionosphere B1 BC4.5 RBF BRBF KD BKD C4.5 KNN BKNN NB BNB

Iris B1 BRBF BKD KNN KD RBF BNB NB BKNN BC4.5 C4.5
Landsat BKD KD BRBF B1 RBF BKNN KNN BC4.5 NB BNB C4.5
Segment BC4.5 C4.5 B1 BKNN KNN BRBF KD BKD RBF NB BNB

Vehicle B1 BRBF BC4.5 C4.5 RBF BKD KNN BKNN KD BNB NB

Eight data sets from the UCI Machine Learning Database Repository [2] were
used for the experiments. These datasets were iris, diabetes, ionosphere, breawst,
bupa, vehicle, segment, and landsat. The error rates of classifiers were estimated
using 10-fold cross validation technique. Table 2 shows these error rates, which
are the average of 10 runs.

The RBF and KNN algorithms have their own parameters for each dataset.
These parameters are chosen according to their lowest classification error rate by
cross validation. The RBF classifier has hidden nodes, tested from 2 to 30, and
a scale parameter used to normalize the values of distance matrices, tested from
1 to 10000. The KNN classifier used the number of neighbors for each dataset.
Table 1 shows these parameters for each dataset used in this research.

Table 2 shows the classification error rates for the proposed combined voting
algorithm (B1), five base classifiers (C4.5, RBF, KD, NB, and KNN) and their
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ensembles based on bagging (BC4.5, BRBF , BKD, BNB, BKNN). The results
show that for each classifier the bagging algorithm tends to reduce the classi-
fication error rate. In almost all datasets, the proposed algorithm gives better
results and is more robust when compared to single ones and their ensembles.
Table 3 shows a summary of ranking of each base classifier, their ensembles, and
the proposed combined voting scheme.

5 Conclusions

In this paper the performances based on classification error rate of five well-
known base classifier algorithms (C4.5 decision tree, Naive Bayes, Kernel Den-
sity, Radial Basis Functions and K-Nearest Neighbors) were compared, as well as
their ensemble bagging algorithms. A new ensemble algorithm (a combination of
generated and non generated ensembles) was introduced. The misclassification
error rate, based on ten-fold cross validation, was used to compare the perfor-
mances of the base classifiers and the ensembles. The proposed algorithm was
ranked first for diabetes, ionosphere, iris, and vehicle; third for segment; fourth
for landsat; and eighth for bupa and breawst datasets. It can be concluded that
the proposed algorithm yielded better results for almost all datasets, and it was
robust compared to the single ones and other ensemble algorithms.
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Appendix

In this paper, five base classifiers are used in order to build a meta-classifier algo-
rithm. They are the C4.5 decision trees [10], Naive Bayes from Machine Learning,
Kernel density from statistics, radial basis functions from neural networks, and
K-nearest neighbors.

These algorithms are the following:

A The C4.5 algorithm

It is a decision tree algorithm introduced by Quinlan [10]. Given a training sam-
ple with known labels; this algorithm constructs a decision tree. On each node a
test for each attribute is made. Finally, given an input vector x (unlabeled) the
decision tree determines to which class is assigned.

The following steps explain the C4.5 algorithm. Let T be the training sample
and let C1, C2, ..., Ck be the set of possible classes of the instances in T. The
decision tree construction is as follows:

1. If T contains instances belonging to a single class, then the decision tree for
T is a leaf identifying a class Cj .

2. If T doesn’t contain any samples, then T is a leaf.
3. If T contains instances with mixture classes. T is partitioned into Ti (mixture

classes). The decision tree of T consists in a decision node.
4. The same process of tree construction is applied recursively to each no leaf

node.
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In step 3 the criterion to select an attribute is given by the info-gain measure.

Info(T ) = −
k∑

i=1

((freq(Ci, T )/|T |)log2(freq(Ci, T )/|T |)

InfoX(T ) = −
n∑

i=1

((|Ti|/|T |)Info(Ti))

Gain(X) = Info(T ) − InfoX(T )

Where X is a vector of instance. For discrete attributes, frequencies are used to
find the maximum info-gain. For continuous attributes binary tests Y ≤ Z and
Y ≥ Z are defined. In the last case the training instances are first sorted; there
are only m-1 possible splits, each of them should be examined. Finally the value
with the highest information gain is selected.

B Radial Basis Function Networks

The radial basis functions (RBF neural networks) are defined as the combination
of radially symmetric linear basic functions. These functions transform an input
x ∈ Rp in a C dimensional space, it is

gj(x) =
m∑

i=1

wijφi(‖x − μi‖) + wj0

the parameters wij (j = 1, ..., C, C = number of classes) are called the weights
and μi the centers (i = 1, ..., m).

For instance two kind of basic functions are: Thin plate φ(z) = z2log(z) and
gaussian φ(z) = exp(−z2).

The centers ui can be obtained by the following procedures: 1) Random selec-
tion. 2) Using clustering algorithms like k-means. 3) Gaussian mixtures. 4) K-
nearest neighbors.

The weights wij can be found using minimum least squares procedure.
The classification rule using radial basis function is: Assign x to the class Ci

if:
gi(x) = max

j
gj(x) i = 1, ..., C

x is assigned to the class for which the discriminant function has the largest
value.

C The Kernel Density Classifier

Given a univariate data set x1, ... ,xn; its empirical distribution function can be
written as:

F̂ (x) =
# observations ≤ x

n
(1)
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Since the density function of a random variable X is the derivative of its
distribution function.

In the multivariate case (x ∈ Rp), the estimation of the density function is
given by:

f̂(x) =
1

nh1h2 · · ·hp

n∑
i=1

Kp

(
x1 − xi1

h1
, ...,

xp − xip

hp

)
(2)

Where the bandwidth parameters are estimated by:

hopt = s

{
4

n(p + 2)

} 1
p+4

(3)

The kernel product estimator is defined by:

Kp(x) =
p∏

v=1

K(xv) (4)

Where K(·) is a univariate density function. The estimation of density using a
variable bandwidth is:

f̂(x) =
1

nh1h2...hp

n∑
i=1

(
1
λi

)p p∏
v=1

K

(
xv − xiv

hvλi

)
(5)

Where λi is calculated as in the univariate case.
An object x is assigned to the class i where the πif̂(x/Ci) is maximum (the

πis are the priors, and f̂(x/Ci) is the class conditional function estimated by the
kernel product).

D The K-Nearest Neighbors Classifier

The probability that a point x falls in a volume V centered at a point x is given
by

θ =
∫

V (x)

p(x)dx

The integration is taken over the volume V. For small samples θ ∼ p(x)V , the
probability θ may be approximated by the proportion of samples falling within
V. If k is the number of instances, out of total n, falling within V , then θ ∼ k/n.
Now the density can be approximated by:

p(x) =
k

nV

If xk is the kth nearest neighbor point of x, then V may be taken to be a
sphere, centered at x, of radius ‖x−xk‖ (the volume of a sphere in n dimension
is 2rnπn/2/nΓ (n/2) , where Γ (x) denotes the gamma function).
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The classification rule of the k-nearest neighbor algorithm is as follows: Given
an instance of testing data sample, k nearest neighbors of a training data is
computed first. Then, the testing instance is assigned to the most similar class
of its k nearest neighbors.

E The Naive Bayes Classifier

Naive Bayes classifier relies in the classical Bayes theorem. The class posterior
probability given a feature vector x, is fi(x) = P (C = i|X = x). But, P (C =

i|X = x) =
P (X = x|C = i)P (C = i)

P (X = x)
by Bayes theorem. Therefore, fi(x) ∝

P (X = x|C = i)P (C = i). The Bayesian classifier is defined as:

h(x) = arg max
i

P (X = x|C = i)P (C = i) i = 1, ..., g(# of classes)

When the feature space is high dimensional, the Naive Bayes classifier assumes
that features are independent. Therefore, the discriminant function is given by:

fNB
i (x) =

n∏
j=1

P (Xj = xj |C = i)P (C = i) n : number of features
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Abstract. Data acquisition is the first and one of the most important steps in 
many data mining applications. It is a time consuming and costly task. Acquir-
ing an insufficient number of examples makes the learned model and future 
prediction inaccurate, while acquiring more examples than necessary wastes 
time and money. Thus it is very important to estimate the number examples 
needed for learning algorithms in machine learning. However, most previous 
learning algorithms learn from a given and fixed set of examples. To our 
knowledge, little previous work in machine learning can dynamically acquire 
examples as it learns, and decide the ideal number of examples needed. In this 
paper, we propose a simple on-line framework for fast data acquisition (FDA). 
FDA is an extrapolation method that estimates the number of examples needed 
in each acquisition and acquire them simultaneously. Comparing to the naïve 
step-by-step data acquisition strategy, FDA reduces significantly the number of 
times of data acquisition and model building. This would significantly reduce 
the total cost of misclassification, data acquisition arrangement, computation, 
and examples acquired costs. 

Keywords: data acquisition, cost-sensitive learning, machine learning, data 
mining, fast data acquisition 

1   Introduction 

Data mining techniques have been applied in many real-world applications, such as 
financial modeling and medical diagnosis. Most of previous works on data mining 
applications assume that a fixed set of training examples is given to build learning 
models. However, in reality, there may not be enough data to begin with. Data acqui-
sition is the first step, one of the most important steps in the data mining process. It is 
well recognized that data acquisition is time consuming and costly. Thus, it is very 
useful for data mining practitioners to be able to estimate how many training exam-
ples they need and acquire them quickly.  

As data acquisition is costly, it is natural to study it as a part of the cost-sensitive 
learning process. In the cost-sensitive learning, acquiring an additional example in-
curs a certain cost. Thus, it is very important to avoid acquiring more examples than 
necessary. On the other hand, from the learning point of view, the learned model is 
usually more accurate, and thus has lower misclassification cost, when it is built with 
more examples. If the learner starts with a small (or empty) set of examples, and is 
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allowed to acquire additional examples when needed, it is crucial that it knows when 
to stop acquiring more examples during learning.  

One obvious naïve strategy is to acquire one additional example at a time, and up-
date the learned model after each acquisition to see if it has reached the optimum (see 
later). However, this step-by-step naïve strategy can take a very long time and require 
many repetitions in data acquisitions and model updating. It is often impractical in 
real-world applications. In this paper, we propose an intelligent fast data acquisition 
strategy, called FDA in short. Basically, FDA is an extrapolation method. With a heu-
ristic assumption (explained later), it can estimate how many units of additional ex-
amples are needed. The FDA strategy will be shown to clearly speed up the process of 
data acquisition and model building, so that the related data mining projects can be 
deployed more quickly.  

The rest of paper is organized as follows. After we review related work, we de-
scribe our cost-sensitive data acquisition framework and the evaluation method, and 
propose an intelligent and fast data acquisition strategy FDA. Then we conduct ex-
periments and compare it with the naive step-by-step data acquisition strategy. The 
experimental results show that FDA is quite effective in reducing the number of ac-
quisitions while maintaining the optimality of the model built. Finally we conclude 
our work.  

2   Related Work 

Cost-sensitive learning is an inductive learning which takes costs into consideration. 
It is one of the most active and important areas in real-world data mining applications, 
in which there often exist different types of cost. Turney [14] provides a comprehen-
sive coverage of different types of costs in data mining and machine learning, such as 
misclassification costs, data acquisition cost (including example costs and attribute 
costs), active learning costs, computation cost, human-computer interaction cost, and 
so on. The misclassification cost and data acquisition cost are singled out as the most 
important costs in cost-sensitive applications. However, most previous works focus 
on misclassification cost only, such as [4], [5], [13], [1], [17] (not complete list). 
Those works can solve effectively classification problems where misclassification 
costs are non-uniform, but not data acquisition with costs.  

Some previous works study data acquisition cost, such as [10], [8], [18], [11]. 
Among them, [10] and [8] study how to acquire attribute values to build an optimal 
classifier with a certain budget. [18] and [11] study how to achieve a desired accuracy 
of a classifier by acquiring missing values in training examples with minimum cost. 
However, they do not minimize the total cost, which combined the acquisition cost 
and the misclassification cost. Our work integrates the data acquisition cost and mis-
classification cost together. 

Our work is close related to [16], which discusses the impact of training data size 
on the accuracy of classification trees based on the popular decision learning algo-
rithm C4.5 [12], through randomly sampling different sizes of training data from 
original data sets. Our work focuses on data acquisition process, not a sampling ap-
proach. Besides, our paper is to minimize the summation of misclassification cost 
(class dependent, disuniform) and data acquisition cost. However, misclassification 
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cost in [16] is uniformed, which is converted from the error rate directly. In addition, 
instead of the step-by-step data acquisition approach [16], our FDA estimates the 
number of examples needed in each acquisition step, and acquire them simultane-
ously.  

3   The Framework of Data Acquisition  

In this section, after we propose the generic cost-sensitive data acquisition framework, 
we will discuss the interesting issues on evaluating the total cost (i.e., the sum of the 
misclassification cost and the data acquisition cost).  

Framework. The framework of our cost-sensitive data acquisition algorithm is quite 
simple. It is a generic framework, like a “wrapper”. It can be applied to any  
cost-sensitive learning algorithm, such as ICET [15], MetaCost [4] and cost-sensitive 
decision tree [9], as the base learner. At a high level, the data acquisition is a simple 
on-line process. That is, it acquires examples at cost gradually while monitoring an 
evaluation criterion until it is met. The evaluation computes the sum of the acquisition 
cost and misclassification cost of test examples to see when it reaches the minimum 
(details are presented in next subsection). After examples are acquired and then ob-
tained, they will be added into training set to train a better model by a learning algo-
rithm. In the experiment of this paper (Section 5), the examples given to the learner 
are generated randomly according to a certain fixed distribution. As the effect of one 
extra example is often too small, the learner always acquires units of examples in each 
acquisition. In this paper we set a unit to have 10 examples.   

More specifically, each time, the learner acquires one unit or a number of units of 
examples, and includes them in the training set. Then a new cost-sensitive learning 
model is built by the base learner from the expanded training set, and is evaluated to 
see if the total cost of the example acquisition and misclassification of test examples 
is reduced. If it is, then the process repeats; if not, the learner stops acquiring more 
units of examples, and the current learned model is produced.  

The naïve step-by-step data acquisition approach (called NDA in this paper) would 
acquire one unit of examples at a time, and evaluate the intermediate learning models 
many times before the evaluation criterion is met. Our new algorithm FDA (Fast Data 
Acquisition) will estimate how many units of examples would be needed, and acquire 
them in one batch, thus reducing the number of times for data acquisition and model 
evaluation. It should be noted that NDA, though slow, would produce optimal models 
(with minimal total cost), as it never “skips” steps and makes extrapolations in data 
acquisition, while our FDA does. However, we will show that our FDA produces vir-
tually the same best models yet requires far few times of data acquisition and model 
evaluations, compared to the naïve method NDA (See Section 5).  

We will use cost-sensitive decision tree (called CSDT in short) as the base learner 
in the rest of the paper. This is because CSDT is itself cost sensitive. It is also very 
fast in building many decision trees needed in NDA and FDA (see later). The CSDT is 
very similar to C4.5 [12], except that it uses total cost reduction, instead of entropy 
reduction, as the attribute split criterion. We call this decision-tree based cost-
sensitive acquisition learning CATree (Cost-sensitive acquisition decision tree).   
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                      Algorithm. CATree 

                        Input: training set T, and a stopping criterion. 
                      1.Loop 

a. Acquire training examples at cost, adding them into T 
                             b. Call CSDT to build a cost-sensitive tree on T 
                             c. Evaluating the tree 

                             2. Until stopping criterion is met 
                        Output: a cost-sensitive decision tree 

Fig. 1. The CATree algorithm 

The pseudo-code of CATree is presented in Figure 1. We assume that the learner is 
given an initial set T of examples (T can be empty), and that each time some units of 
training examples are acquired and added into the training set. In the pseudo-code, 
step 1(a) acquires more units of training examples. The subroutine CSDT is a reim-
plementation of the cost-sensitive decision tree [9]. We will first discuss the evalua-
tion method in the next subsection.  

Evaluation Methods. One might think that it would be easy to calculate the total cost 
of misclassification and example acquisition – just sum them up. There are quite a 
few intriguing issues to be resolved, as we discuss as follows.  

To evaluate the tree (or any learned model) built in the acquisition procedure for 
future test performance, we must use a part of available training examples as (future) 
test examples. These examples are not used in building the models. However, from 
the cost-sensitive point of view, holding out some examples for testing excludes them 
from building the model, making some acquiring examples wasted. To reduce the 
waste of acquired training examples used for testing, we use leave-one-out cross-
validation (LOO in short) to evaluate the learned model, so only one example is 
“wasted”. As the decision tree learning algorithm is quite efficient, this would not be 
a major problem in most real-world applications. Thus all available examples except 
one are used to train the decision tree to estimate the average misclassification cost of 
a test example in LOO. 

The following procedure describes details on how to estimate the misclassification 
cost of a test example in LOO. For binary classification (used in this paper), we use 
the following notations: TP and FP are the cost of true and false positive, TN and FN 
are the cost of true and false negative, tp and fn are the number of true positive and 
false negative examples, and tn and fp are the number of true negative and false posi-
tive examples. For a leaf in the cost-sensitive decision tree, CP=tp×TP+fp×FP is the 
total misclassification cost of being a positive leaf, and CN=tn×TN+fn×FN is the total 
misclassification cost of being a negative leaf. Then the probability of being positive 
is estimated by the relative cost of CP and CN; the smaller the cost, the larger the 
probability (as minimum cost is sought). Thus, the probability of the leaf being posi-
tive is: 1-CP/(CP+CN)=CN/(CP+CN). Similarly, the probability of a leaf being a nega-
tive is CP/(CP+CN). However, these probabilities are not used directly in estimating 
misclassification costs, because the number of available training examples is usually 
very small, especially at the beginning of example acquisition. To reduce the effect of 
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extreme probability estimations, we apply the Laplace correction [3], [7] to smooth 
probability estimates in leaves.  

The next issue is how to integrate the misclassification cost of one test example 
(obtained above) with the cost of training examples acquired. A simple sum of the 
two would not be reasonable, as it depends on how many future test examples (or how 
often) the model will be used to predict in the future. Intuitively, if the model built 
will be seldom used (only once or twice), we can reduce the total cost through build-
ing a rough model with acquiring only a few examples. On the other hand, if the 
model built will be used very frequently (For instance, millions of times), it would be 
worthwhile to acquire more examples to build a good model with very low misclassi-
fication cost. However, we may not know how often the model will be used in the 
future during model building process. Thus, we introduce a variable t to represent the 
number of future test examples. As the cost of acquiring training examples is shared 
by all the test examples, each test example has to burden the share EC×Tr/t, where EC 

is the cost of acquiring one example, and Tr is the number of acquiring examples. The 
total cost, which is the sum of the share of the cost of acquiring training examples and 
the misclassification cost, is thus EC×Tr/t+MisCost, where MisCost is the misclassifi-
cation cost of one example. We will study the effect of different t values in the ex-
periment section.  
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Fig. 2. The ideal total cost curves with CATree. The vertical axis is the total cost, and the hori-
zontal axis is the number of example units acquired. This is actually the experimental results on 
the dataset Mushroom.  

The next issue is how to use the total cost as a stopping criterion in our CATree (as 
in Figure 1). Ideally, we may expect that total cost of CATree will decrease as more 
examples are acquired and added into the training set if we start with an empty (or 
very small) training set. It would reach a local minimum and then it would go up. 
That is, we can obtain a learning curve in terms of the total cost as more examples are 
required and added into the training set (see Figure 2). If the curve is smooth and the 
local minimum is also a global one, then indeed the learning algorithm has found the 
optimal number of training examples to acquire (actually one more than the optimal 
number, as one example is wasted in the LOO process). The algorithm would simply 
stop at the local minimum. However, as seen in our experiments (see later), the curve 
of the total cost is often not smooth, and the local minimum, if any, may not be the 
global one. Thus it is often necessary to “look ahead” and acquire more (units of) ex-
amples to ensure that the local minimum is a global one. 
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4   Fast Data Acquisition Strategy (FDA) 

As discussed earlier, the naïve data acquisition strategy (NDA) simply acquires one 
unit of additional examples at a time in every iteration step. Thus, NDA, being most 
conservative, iterates many times, especially when the number of examples required 
is large. It also builds many learning models, one after each acquisition.  

In this section, we describe our fast data acquisition strategy, FDA in short. The 
basic idea of FDA is quite simple; it extrapolates the number of units of examples 
needed, and acquires them in each iteration step. The main issue for FDA is how 
many units of examples it can acquire in one iteration step. FDA uses the knowledge 
obtained in the previous acquisitions, and extrapolates the future examples needed to 
reach the minimum point.  

Basically, FDA uses results of the previous three acquisitions, and extrapolates the 
maximum number of extra examples that it can safely acquire for its next acquisition. 
It makes a heuristic assumption that the cost reduction ratios (explained later) is not 
greater than current one. The algorithm is shown in Figure 3, which is an expansion of 
the algorithm shown in Figure 1. In order to compute the maximum number of units, 
FDA has to take three important steps. Its first step calculates the two continuous dif-
ferences (the two continuous reductions of average total costs). With the two differ-
ences, FDA can calculate the cost reduction ratio. Its final step is to estimate the 
maximum number of examples needed with the cost reduction ratio.  

The detailed process of FDA is explained as follows. First, FDA obtains two cost 
differences (total cost reduction), according to the evaluations of the three previous 
learning models. The first difference d1 is the value of the evaluation u1 of the first 
learning model minus the evaluation u2 of the second learning model. Similarly, the 
second difference d2 is the value of the evolution u2 of the second learning model mi-
nus the evaluation u3 of the third learning model. Then it calculates the ratio R1 of the 
change; i.e., R1=d2/d1. This is the ratio of the cost reduction. The ratio reflects the 
extent of the decrement (i.e., negative acceleration speed) of the velocity of the cost 
reduction. According to our observation, this ratio always deceases and tends towards 
0, as the velocity of cost reduction decreases when more and more examples are 
added into training set. This phenomenon is observed in many learning situations, 
measured by the probability estimation, accuracy, AUC, and average total cost. We 
will show this phenomenon on NDA in the experiment section. Thus, FDA takes ad-
vantage of this observation and heuristically assumes that the future ratio will be no 
greater than the current one. FDA thus extrapolates the critical point (i.e., the maxi-
mum number of examples to acquire in next acquisition iteration) with the assumption 
that the series of ratios comprises a geometric sequence. That is, FDA uses the ratio 
R1 to predicate the maximum number (K) of example units to acquire in next acquisi-
tion iteration by: 

1)ln(/)ln( 1 −= RhK                                                   (1) 

where h is a coefficient. This coefficient indicates the “level” of the goal FDA intends 
to achieve after this acquisition. Its value reflects how much the last improvement 
dK+2 (i.e., the cost reduction produced by the last unit of examples acquired) is, corre-
sponding to the first improvement. That is, dK+2 = h×d1. Generally, h is a very small 
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value (much less than 1.0). The lower the value h, the smaller cost reduction dK+2 is. If 
FDA acquires more examples, the value of dK+2 is smaller. Thus, h reflects the goal 
that FDA intends to achieve. The smaller the h, the higher level of the goal of FDA is. 
In our experiments, we vary h as 0.1, 0.01, 0.001, or 0.0001 (see the experiment sec-
tion). When h=0.0001, FDA intends to reach the point where its cost reduction is only 
0.0001×d1.  

We can prove that the maximum number of units of examples to be acquired (K) is 
the upper bound for the next acquisition. Thus, FDA will not acquire more examples 
than necessary when it acquires K units of examples.  

Theorem (Upper Bound): The maximum number (K) of units that FDA can safely 
acquire is bounded by ln(h)/ln(R1)-1, assuming the velocity of the cost reduction is 
always reduced.  

Proof: By definition, we have: 

  dK+2 = h×d1, that is: dK+2/d1 = h. 
As:  
       dK+2/d1 = (dK+2/dK+1)×( dK+1/dK) ×…×d2/d1. 
Thus: 
       (dK+2/dK+1)×( dK+1/dK) ×…×d2/d1 = h. 
We define:  
       RK = dK+1/dK, 
so we have  
       RK+1×RK×RK-1×…×R1 = h. 

Since the cost reduction ratio always decreases and tends to 0, if the velocity of the 
cost reduction is always reduced, we have: 

       RK+1≤RK≤RK-1≤…≤R1. 
Thus, we have: 
       hR K ≥+1

1 . 

We apply logarithm on both sides and then get: 
       (K+1)ln(R1) ≥ ln(h). 
As ln(R1)<0, we have 
       K+1 ≤ ln(h)/ln(R1) 
That is, K ≤ ln(h)/ln(R1) -1. 
Thus ln(h)/ln(R1) -1 is the upper bound. 

Note after the acquisition of K units of examples is done, FDA continues to evalu-
ate the cost-sensitive model built and determinates whether more units of extra exam-
ples are needed. It continues to compute the maximum K for the next acquisition until 
the stopping criterion (discussed earlier) is reached. Since FDA needs at least three 
consecutive points to extrapolate the next number of units to be acquired, it always 
looks ahead two steps. If the previous two cost reductions are both negative, FDA 
stops further data acquisition.   
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                 Algorithm. FDA 

Input: training set T, and a stopping criterion. 

z = 0 //keep the total number of units acquired 
array u[] // keep the average total cost of each learning models 
pd = 0 //the cost reduction of previous iteration 
cd = 0 //the cost reduction of current iteration 
Loop 
 Acquire K units of extra examples to add into T 
 Call CSDT to build a cost-sensitive decision tree on T 
 u[z] = evaluation the tree and return the average total cost  
 if (z >= 1){ 
   pd = cd 
  cd = u[t]-u[t-1] 
 }  
 K = 1 //default value: one unit  
 if (pd > cd > 0){ 
  R1 = cd/pd  //ratio of cost reductions 
   K = ln(h)/ln(R1) //h is a coefficient  
 } 
 z = z + K 
Until stopping criterion is met 
Output: a cost-sensitive decision tree 

Fig. 3. The FDA algorithm 

5   Experiments 

We conduct experiments on FDA and NDA on 10 datasets (ecoli, breast, heart, thy-
roid, australia, tic-tac-toe, mushroom, kr-vs-kp, voting and cars) downloaded from 
the UCI Machine Learning Repository [2]. These datasets are chosen because they 
have at least some discrete attributes, binary class, and a good number of examples. 
The numerical attributes in datasets are discretized first using minimal entropy 
method [6] as CSDT can only deal with discrete attributes. Since the misclassification 
costs of these datasets are not available, we assign them with values in a reasonable 
range, following [4], [9]. This is fair and reasonable as all experimental comparisons 
are conducted with the same cost assignments. We assign random numbers from 500 
to 2000 as the cost of one example acquisition, and FP/FN = 2000/6000 (we assume 
that TP=TN=0). We have tried other cost assignments and results are very similar. 
We also assume that the learned model will be tested on 1,000 test examples (i.e., 
t=1,000) for now.  

To investigate the performance of FDA and to compare it with NDA, we set the ini-
tialize training set empty for them. The original datasets listed in the above table are 
the natural pool of examples to be acquired. FDA and NDA randomly acquire units of 
extra examples from these original datasets to make their own training sets. As FDA 
has a parameter for its “goal level”, we investigate its performance under different 
values (h=0.1, 0.01, 0.001, and 0.0001). 
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Number of Acquisition Times. We first investigate the performance of FDA and NDA 
in terms of number of acquisition times it needs to achieve the global minimum total 
cost. The results are shown in Figure 4, which displays the number data acquisition 
times in each dataset using NDA and FDA with different goal levels. The last item in 
the figure represents the average of the ten datasets. The vertical axis is the average 
number of times of data acquisition (averaged over 10 runs). Smaller numbers are 
better (i.e., fewer data acquisition times).  
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Fig. 4. Number of times of data acquisition for FDA and NDA 

From Figure 4, we can see that FDA indeed significantly reduces the number of 
times of data acquisition compared to NDA. For most datasets (Ecoli, Breast, Heart, 
Tic-tac-toe, Mushroom, and Cars), the number of data acquisition times is reduced by 
half or more. We also notice that when FDA increases its goal levels (with a smaller 
h), it reduces the acquisition times further. However, from h=0.001 to h=0.0001, the 
improvement is less evident. Thus, the best h value should be set at 0.001.  

In terms of computation time, it is obvious that NDA is much worse than FDA, as it 
needs to build more intermediate learning models, and to evaluate them. In FDA, the 
time spent on estimation is negligible. Thus, if the total cost also includes the compu-
tation cost, the advantage of FDA is more evident than NDA.  

Average Total Cost. We have demonstrated that FDA only needs half or even less 
than half of the acquisition times than NDA. How about the total cost, as FDA 
“guesses” the number of examples needed, and may not capture exactly the global 
minimum? In this section, we conduct experiments on the ten datasets to investigate 
the performance (in average total cost) of FDA with different goal levels and compare 
it to NDA. Our experimental results are shown in Figure 5. The vertical axis repre-
sents the average total cost. Here the total cost is the sum of average misclassification 
cost, example acquisition cost, acquisition arrangement cost, and the computation 
cost. The misclassification cost and example acquisition cost are defined in Section 3. 
The acquisition arrangement cost equals to the multiplication of single acquisition 
arrangement cost and the acquisition times. In this experiment, the single acquisition 
arrangement cost is set as 10,000. The computation cost is the cost of building models 
after each acquisition. In this experiment, it is defined as the unit time cost (per sec-
ond) times the total time consumed in second. In this experiment, the unit time cost is 
set as 10/second. 
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Fig. 5. The average total cost of NDA and FDA 

From Figure 5, we can see that FDA has only a slightly higher total cost than NDA 
(the ideal case) in most datasets. On average (shown in the last part in Figure 5) their 
average total costs are very close. This indicates that although FDA skips many steps 
in data acquisition, it can still capture the global minimum very accurately. 

Different cost of each data acquisition arrangement. In the previous subsections, we 
study the performance of FDA and NDA under the assumption that each data acquisi-
tion arrangement cost sac = 10,000. In this subsection, we investigate their perform-
ance under different single data acquisition cost sac. The results of various sac values 
are very similar for different datasets, thus we only show the number of acquisition 
times and the average total cost in one typical dataset (Breast Cancer) with sac=0, 
1,000, 10,000, and 100,000, as shown in Figure 6. 

 

Fig. 6. The performance of FDA and NDA with different cost of each data acquisition arrange-
ment on the dataset Breast Cancer 

From Figure 6, we can conclude that the performance of FDA and NDA is highly 
affected to the each data acquisition arrangement cost. At the same time, the average 
total cost increases when each data acquisition arrangement cost increases. The higher 
each data acquisition arrangement cost, the better FDA is, comparing to NDA.  

Varying the Size of Future Test Sets. In the previous subsections, we study the  
performance of FDA and NDA under the assumption that the future test size t=1,000. 
Here we investigate their behavior with different t values. The results of various t  
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values are very similar for different datasets, thus we only show the number of acqui-
sition times and the average total cost in one typical dataset (Breast Cancer) with 
t=500, 1,000, and 2,000, as shown in Figure 7. 

From Figure 7, we can conclude that the performance of FDA and NDA is consis-
tent under different sizes of future test sets. We can also conclude that both FDA and 
NDA acquire more examples when the test set size increases. This is because the algo-
rithms intend to build a more accurate model for future prediction when the test set is 
larger. At the same time, the average total cost decreases when the future test set size 
increases, as more test examples burden the total acquisition cost and the model 
achieve lower average misclassification cost.  

 

Fig. 7. The performance of FDA and NDA with different sizes of the future test sets on the data-
set Breast Cancer 

6   Conclusions and Future Work 

In this paper, we propose a simple and effective framework for intelligent fast data 
acquisition (FDA). It makes use of the evaluation results of the intermediate learning 
models to estimate the number of examples to be acquired simultaneously in the next 
acquisition. Thus, FDA speeds up the data acquisition process so that it potentially 
speeds up the data mining project process. Compared to the naïve step-by-step data 
acquisition, our experimental results show that the number of acquisitions times and 
the computation for building the intermediate models are greatly reduced, while the 
optimality of the final models is very similar. In future, we will apply it to real-world 
data mining applications. 

Acknowledgement. We thank the anonymous reviewers for the valuable comments. 
The work was supported by the National Science Foundation (IIS-1115417).  

References 

1. Abe, N., Zadrozny, B., Langford, J.: An iterative method for multiclass cost-sensitive 
learning. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Seattle, WA, pp. 3–11 (2004) 

2. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases (website). Univer-
sity of California, Department of Information and Computer Science, Irvine, CA (1998) 

3. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proceedings 
of the 9th European Conference on Artificial Intelligence, Sweden, pp. 147–149 (1990) 

0

5

10

15

20

25

t=500 t=1,000 t=2,000
Different future test  size t

N
um

be
r 

of
 A

cq
ui

si
tio

ns

NDA
FDA, h=0.1
FDA, h=0.01
FDA, h=0.001
FDA, h=0.0001

650

700

750

800

850

t=500 t=1,000 t=2,000
Different future test  size t

A
ve

ra
ge

 to
ta

l c
os

t

NDA
FDA, h=0.1
FDA, h=0.01
FDA, h=0.001
FDA, h=0.0001



 Fast Data Acquisition in Cost-Sensitive Learning 77 

 

4. Domingos, P.: MetaCost: A General Method for Making Classifiers Cost-Sensitive. In: 
Proceedings of the Fifth International Conference on Knowledge Discovery and Data Min-
ing, pp. 155–164. ACM Press, San Diego (1999) 

5. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proceedings of the Seventeenth 
International Joint Conference of Artificial Intelligence, pp. 973–978. Morgan Kaufmann, 
Seattle (2001) 

6. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-tributes 
for classification learning. In: Proceedings of the 13th International Joint Conference on 
Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann, France (1993) 

7. Good, I.J.: The estimation of probabilities: An essay on modern Bayesian methods. M.I.T. 
Press, Cambridge (1965) 

8. Kapoor, A., Greiner, R.: Learning and Classifying under Hard Budgets. In: Gama, J., 
Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), 
vol. 3720, pp. 170–181. Springer, Heidelberg (2005) 

9. Ling, C.X., Yang, Q., Wang, J., Zhang, S.: Decision Trees with Minimal Costs. In: Pro-
ceedings of the Twenty-First International Conference on Machine Learning. Morgan 
Kaufmann, Banff (2004) 

10. Lizotte, D., Madani, O., Greiner, R.: Budgeted Learning of Naive-Bayes Classi-fiers. In: 
Proceeding of the Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico 
(August 2003) 

11. Melville, P., Saar-Tsechansky, M., Provost, F., Mooney, R.J.: Active Feature Acquisition 
for Classifier Induction. In: Proceedings of the Fourth International Conference on Data 
Mining, Brighton, UK (2004) 

12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo 
(1993) 

13. Ting, K.M.: Inducing Cost-Sensitive Trees via Instance Weighting. In: Żytkow, J.M. (ed.) 
PKDD 1998. LNCS, vol. 1510, pp. 23–26. Springer, Heidelberg (1998) 

14. Turney, P.D.: Types of cost in inductive concept learning. In: Proceedings of the Work-
shop on Cost-Sensitive Learning at the Seventeenth International Conference on Machine 
Learning. Stanford University, California (2000) 

15. Turney, P.D.: Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Ge-netic 
Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research 2, 369–409 
(1995) 

16. Weiss, G.M., Tian, Y.: Maximizing Classifier Utility when Training Data is Costly. In: 
UBDM 2006, Philadelphia, Pennsylvania, USA, August 20 (2006) 

17. Zhou, Z.-H., Liu, X.-Y.: On multi-class cost-sensitive learning. In: Proceedings of the 21st 
National Conference on Artificial Intelligence, Boston, MA, pp. 567–572 (2006)  

18. Zhu, X., Wu, X.: Cost-constrained Data Acquisition for Intelligent Data Preparation. IEEE 
Transactions on Knowledge and Data Engineering 17(11) (November 2005) 



 

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 78–95, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Application of a Unified Medical Data Miner (UMDM) 
for Prediction, Classification, Interpretation and 
Visualization on Medical Datasets: The Diabetes  

Dataset Case  

Nawaz Mohamudally1 and Dost Muhammad Khan2 

1 Associate Professor & Head School of Innovative Technologies and Engineering,  
University of Technology, Mauritius 

alimohamudally@utm.intnet.mu 
2 PhD Student, School of Innovative Technologies and Engineering, University of Technology, 

{Mauritius,dostmuhammad_khan}@yahoo.com 

Abstract.  Medical datasets hold huge number of records about the patients, the 
doctors and the diseases. The extraction of useful information which will pro-
vide knowledge in decision making process for the diagnosis and treatment of 
the diseases are becoming increasingly determinant. Knowledge Discovery and 
data mining make use of Artificial Intelligence (AI) algorithms which are ap-
plied to discover hidden patterns and relations in complex datasets using intelli-
gent agents. The existing data mining algorithms and techniques are designed to 
solve the individual problems, such as classification or clustering. Up till now, 
no unifying theory is developed. Among the different algorithms in data mining 
for prediction, classification, interpretation and visualization, ‘k-means cluster-
ing’, ‘Decision Trees (C4.5)’, ‘Neural Network (NNs)’ and ‘Data Visualization 
(2D or 3D scattered graphs)’ algorithms are frequently utilized in data mining 
tools. The choice of the algorithm depends on the intended use of extracted 
knowledge. In this paper, the mentioned algorithms are unified into a tool, 
called Unified Medical Data Miner (UMDM) that will enable prediction, classi-
fication, interpretation and visualization on a diabetes dataset.  

Keywords:  Medicine, Clustering, Classification & Prediction, Visualization, 
Agent Data mining, Unified Medical Data Miner. 

1   Introduction 

The vast amount of data in medical datasets is generated through the health care proc-
esses, whereby, clinical datasets are more significant ones. The data mining tech-
niques help to find the relationships between multiple parental variables and the out-
comes they influence. The methods and applications of medical data mining are based 
on computational intelligence such as artificial neural network, k-means clustering, 
decision trees and data visualization [1][2][3][4][5][11][15][16][17]. The purpose of 
data mining is to verify the hypothesis prepared by the user and to discover or un-
cover new patterns from the large datasets. Many classifiers have been introduced for 
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prediction, including Logistic Regression, Naïve Bayes, Decision Tree, K-local hyper 
plane distance nearest neighbour classifiers, Random Decision Forest, Support Vec-
tor Machine (SVM) etc [21][23]. There are different data mining algorithms which 
can be applied for prediction, classification, interpretation and visualization but ‘k-
means clustering’, ‘decision trees’, ‘neural networks’ and ‘data visualization (2D or 
3D scattered graphs)’ algorithms are commonly adopted in data mining tools. In 
medical sciences, the classification of medicines, patient records according to their 
doses etc. can be performed by applying the clustering algorithms. The issue is how to 
interpret these clusters. To do so visualization tools are indispensable. Taking this 
aspect into account we are proposing a Unified Medical Data Miner which will unify 
these data mining algorithms into a single black box so that the user needs to provide 
the dataset and recommendations from specialist doctor as the input. Figure 1 depicts 
the inputs and outputs of Unified Medical Data Miner. 

 

Fig. 1. A Unified Medical Data Miner 

The following are sample questions that may be asked to a specialist medical  
doctor: 

1- What type of prediction, classification, interpretation and visualization is re-
quired in the medical databases particularly diabetes? 

2- Which attribute or the combinations of the attributes of diabetes dataset have 
the impact to predict diabetes in the patient? 

3- What are the future requirements for prediction of disease like diabetes? 
4- Relationship between the attributes which will provide some hidden pattern 

in the dataset. 

A multiagent system (MAS) is used in this proposed Unified Medical Data Miner, 
which is capable of performing classification and interpretation. This is a cascaded 
multiagent system i.e. the output of an agent is an input for the other agents where ‘k-
means clustering’ algorithm is used for classification and ‘decision tree C4.5’ algo-
rithm is applied for interpretation. For prediction and visualization, separately, neural 
networks and 2D scattered graphs are used [19]. The rest of the paper is organized as 
follows: In section 2 we present an overview of data mining algorithms used in 
UMDM, section 3 deals with the methodology whereas, the obtained results are 
discussed in section 4 and finally section 5 presents the conclusion. 

 
Medical Data Miner 

A Medical Dataset 
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2   Overview of Data Mining Algorithms Used in the Medical Data 
Miner 

Data mining algorithms are accepted nowadays due to their robustness, scalability and 
efficiency in different fields of study like bioinformatics, genetics, medicine and edu-
cation and many more areas. The classification, clustering, interpretation and data 
visualization are the main areas of data mining algorithms [9][18]. Table 1 shows the 
capabilities and tasks that the different data mining algorithms can perform.  

Table 1. Functions of Different Data Mining Algorithms 

DM Algos. Estimation Interpretation Prediction Classification Visualization 
Neural  

Network 
Y N Y N N 

Decision 
Tree 

N Y Y Y N 

K-Means Y N Y Y N 
Kohonen 

Map 
Y N Y Y N 

Data  
Visualization

N Y Y Y Y 

K-NN Y N Y Y N 
Link  

Analysis 
Y N Y N N 

Regression Y N Y N N 
Bayesian 

Classification
Y N Y Y N 

Overall  
Decision 

All Only 2 All Only 6 Only 1 

Most of the existing data mining tools emphasize on a specific problem and the 
tool is limited to a particular set of data for a specific application. These tools depend 
on the choice of algorithms to apply and how to analyze the output, because most of 
them are generic and there is no context specific logic that is attached to the applica-
tion. In this paper we present a unified model of data mining algorithms that performs 
clustering, classification, prediction and visualization using multiagent system on 
‘Diabetes’ dataset. The data can be used either to predict future behavior or to de-
scribe patterns in an understandable form within discover process. 

2.1   Neural Networks 

The neural networks are used for discovering complex or unknown relationships in 
dataset. They detect patterns from the large datasets for prediction or classification, 
also used in system performing image and signal processing, pattern recognition, 
robotics, automatic navigation, prediction and forecasting and simulations. The NNs 
are more effective and efficient on small to medium sized datasets. The data must be 
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trained first by NNs and the process it goes through is considered to be hidden and 
therefore left unexplained. The neural network starts with an input layer, where each 
node corresponds to a predictor variable. These input nodes are connected to a num-
ber of nodes in a hidden layer. Each input node is connected to every node in the 
hidden layer. The nodes in the hidden layer may be connected to nodes in another 
hidden layer, or to an output layer. The output layer consists of one or more response 
variables. Figure 2 illustrates the different layers of NNs [8][20]. 

 

Fig. 2. A Neural Network with one hidden layer 

Limitations of NNs: The process it goes through is considered to be hidden and 
therefore left unexplained. This lack of explicitness may lead to less confidence in the 
results and a lack of willingness to apply those results from data mining, since there is 
no understanding of how the results came about. It is obvious, as the number of 
variables of a dataset increases, it will become more difficult to understand how the 
NNs come to it conclusion. The algorithm is better suited to learning on small to 
medium sized datasets as it becomes too time inefficient on large sized datasets. 

2.2   Decision Tree (C4.5) Algorithm 

The decision tree algorithm is used as an efficient method for producing classifiers 
from data. The goal of supervised learning is to create a classification model, known 
as a classifier, which will predict, with the values of its available, input attributes and 
the class for some entity. In other words, classification is the process of dividing the 
samples into pre-defined groups. It is used for decision rules as an output. In order to 
do mining with the decision trees, the attributes have continuous discrete values, the 
target attribute values must be provided in advance and the data must be sufficient  
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so that the prediction of the results will be possible. Decision trees are faster to use, 
easier to generate understanding rules and simpler to explain since any decision that is 
made can be understood by viewing path of decision. They also help to form an accu-
rate, balanced picture of the risks and rewards that can result from a particular choice. 
The decision rules are obtained in the form of if-then-else, which can be used for the 
decision support systems, classification and prediction. Figure 3 illustrates how deci-
sion rules are obtained from decision tree algorithm. 

 

Fig. 3. Decision Rules from a C4.5 Algorithm 

The different steps of decision tree (C4.5) algorithm are given below: 

Step 1: Let ‘S’ is a training set. If all instances in ‘S’ are positive, then create 
‘YES’ node and halt. If all instances in ‘S’ are negative, create a ‘NO’ 
node and halt. Otherwise select a feature ‘F’ with values v1,...,vn and create 
a decision node.  

Step 2: Partition the training instances in ‘S’ into subsets S1, S2, ...,Sn according to 
the values of V.  

Step 3: Apply the algorithm recursively to each of the sets Si. 

The decision tree algorithm generates understandable rules, performs classification 
without requiring much computation, suitable to handle both continuous and categori-
cal variables and provides an indication for prediction or classification 
[24][25][26][8][6].  

Limitation of C4.5: It is good for small problems but quickly becomes cumbersome 
and hard to read for intermediate-sized problems. Special software is required to draw 
that tree. If there is a noise in the learning set, it will fail to find a tree. The data must 
be interval or categorical. Any other format of data should be converted into the re-
quired format. This process could hide relationships. Over fitting, large set of possible 
hypotheses, pruning of the tree is required. C4.5 generally represents a finite number 
of classes or possibilities. It is difficult for decision makers to quantify a finite amount 
of variables. This sometimes affects the accuracy of the output, hence misleading 
answer. If the list of variables increases the if-then statements created can become 
more complex. This method is not useful for all types of data mining, such as time 
series. 

2.3   k-Means Clustering Algorithm 

The ‘k’, in the k-means algorithm stands for number of clusters as an input and the 
‘means’ stands for an average, location of all the members of a particular cluster. The 
algorithm is used for finding the similar patterns, due to its simplicity and fast execu-
tion. This algorithm uses a square-error criterion in equation 1 for re-assignment of 
any sample from one cluster to another, which will cause a decrease in the total 
squared error.  

Data C4.5 Algorithm Decision Rules 
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Where (F - C)2 is the distance between the datapoints. It is easy to implement, and its 
time and space complexity are relatively small. Figure 4 illustrates the working of 
clustering algorithms.  

 

Fig. 4. The Function of the Clustering Algorithms 

The different steps of k-means clustering algorithm are given below: 

Step 1: Select the value of ‘k’, the number of clusters. 
Step 2: Calculate the initial centroids from the actual sample of dataset. Divide 

datapoints into ‘k’ clusters.  
Step 3: Move datapoints into clusters using Euclidean’s distance formula in equa-

tion 2. Recalculate new centroids. These centroids are calculated on the 
basis of average or means.  
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Step 4: Repeat step 3 until no datapoint is to be moved. 

Where d(xi, xj) is the distance between xi and xj. xi and xj are the attributes of a given 
object, where i, j and k vary from 1 to N where N is total number of attributes of that 
given object, indexes i, j, k and N are all integers [27][28][29][30][31][7]. The k-
means clustering algorithm is applied in number of areas like, Marketing, Libraries, 
Insurance, City-planning, Earthquake studies, www and Medical Sciences [18]. 

Limitations of k-means clustering algorithm: The algorithm is only applicable to 
datasets where the notion of the ‘mean’ is defined. Thus, it is difficult to apply to 
categorical datasets. There is, however, a variation of the k-means algorithm called k-
modes, which clusters categorical data. The algorithm uses the mode instead of the 
mean as the centroid. The user needs to specify the number of clusters k in advance. 
In practice, several k values are tried and the one that gives the most desirable result is 
selected. The algorithm is sensitive to outliers. Outliers are data points that are very 
far away from other data points. Outliers could be errors in the data recording or some 
special data points with very different values. The algorithm is sensitive to initial 
seeds, which are the initially selected centroids. Different initial seeds may result in 
different clusters. Thus, if the sum of squared error is used as the stopping criterion, 
the algorithm only achieves local optimal. The global optimal is computationally 

Dataset K-means Algorithm Clusters of Dataset
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infeasible for large datasets. The algorithm is not suitable for discovering clusters that 
are not hyper-ellipsoids or hyper-spheres.  

2.4   Data Visualization 

This method provides the better understanding of data to the users. Graphics and 
visualization tools better illustrate the relationship among data and their importance in 
data analysis cannot be overemphasized. The distributions of values can be displayed 
by using histograms or box plots. 2D or 3D scattered graphs can also be used. Visu-
alization works because it provides the broader information as opposed to text or 
numbers. The missing and exceptional values from data, the relationships and patterns 
within the data are easier to identify when graphically displayed. It allows the user to 
easily focus and see the patterns and trends amongst data [8][20].  

Limitations of Data Visualization: One major issue in data visualization is the fact 
that as the volume of the data increases it becomes difficult to distinguish patterns 
from datasets, another major issue is that the display format from visualization is 
restricted to two dimensions by the display device be it a computer screen or a paper. 

3   Methodology 

We will first apply the k-means clustering algorithm on a medical dataset ‘Diabetes’. 
This is a dataset/testbed of 790 records. Before applying k-means clustering algo-
rithms on this dataset, the data is pre-processed, called data standardization. The in-
terval scaled data is properly cleansed by applying the range method. The attributes of 
the dataset/testbed ‘Diabetes’ are: Number of Times Pregnant (NTP)(min. age = 21, 
max. age = 81), Plasma Glucose Concentration a 2 hours in an oral glucose tolerance 
test (PGC), Diastolic Blood Pressure (mm Hg) (DBP), Triceps Skin Fold Thickness 
(mm) (TSFT), 2-Hour Serum Insulin (m U/ml) (2HSHI), Body Mass Index (weight in 
kg/(height in m)^2) (BMI), Diabetes Pedigree Function (DPF), Age, Class (whether 
diabetes is cat 1 or cat 2) [10]. 

There are two main sources of data distribution, first is the centralized data source 
and second is the distributed data source. The distributed data source has further two 
approaches of data partitioning, first, the horizontally partitioned data, where same 
sets of attributes are on each node, this case is also called the homogeneous case. The 
second is the vertically partitioned data, which requires that different attributes are 
observed at different nodes, this case is also called the heterogeneous case. It is re-
quired that each node must contain a unique identifier to facilitate matching in vertical 
partition [1][9].   

The vertical partition is chosen for the dataset ‘Diabetes’ and four partitions are 
created. The attribute ‘class’ is a unique identifier in all partitions. The selection of 
attributes in each partitioned table is arbitrary, depends on the user, different combina-
tion of attributes will give different results. Tables from 2 to 5 show the vertical parti-
tions of dataset.  

 



 Application of a Unified Medical Data Miner (UMDM) 85 

 

Table 2. 1st Vertically partitioned Diabetes dataset  

NTP DPF Class 

4 0.627 -ive 

2 0.351 +ive 

2 2.288 -ive 

Table 3. 2nd Vertically partitioned Diabetes dataset  

DBP AGE Class 

72 50 -ive 

66 31 +ive 

64 33 -ive 

Table 4. 3rd Vertically partitioned Diabetes dataset 

TSFT BMI Class 

35 33.6 -ive 

29 28.1 +ive 

0 43.1 -ive 

Table 5. 4th Vertically partitioned Diabetes dataset 

PGC 2HIS Class 

148 0 -ive 

85 94 +ive 

185 168 -ive 

Each partitioned table is a dataset of 790 records; only 3 records are exemplary 
shown in each table.  

The parameters for the agent of k-means clustering algorithm are set for the above 
created vertical partitioned datasets. The value of ‘k’, number of clusters and the 
value of ‘n’, number of iterations is set to 4 and 100 respectively for each partition i.e. 
value of k =4 and value of n=100, where ‘k’ and ‘n’ are positive nonzero integers. ‘k’ 
and ‘n’ are the required inputs for the execution of k-means clustering algorithm. 
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Therefore, total 16 clusters are generated as an output. The agent of C4.5 (decision 
tree) algorithm gains these clusters as an input and produces the decision rules in the 
form of ‘if-then-else’. For further interpretation and visualization of the results of 
these clusters, 2D scattered graphs are drawn using data visualization.   

4   Results and Discussion 

The pattern discovery from large dataset is a three steps process. In first step, one 
seeks to enumerate all of the associations that occur at least ‘a’ times in the dataset. In 
the second step, the clusters of the dataset are created and the third and last step is to 
construct the ‘decision rules’ with (if-then statements) the valid pattern pairs. Associa-
tion Analysis: Association mining is concerned with whether the co-joint event 
(A,B,C,….) occurs more or less than would be expected on a chance basis. If it occurs 
as much (within a pre-specified margin), then it is not considered an interesting rule. 
Predictive Analysis: It is to generate ‘decision rules’ from the diabetes medical dataset 
using logical operations. The result of these rules after applying on the ‘patient re-
cord’ will be either ‘true’ or ‘false’ [14][12][13][22]. 

These four partitioned datasets of medical dataset ‘Diabetes’ are inputted to our 
proposed UMDM one by one respectively, total sixteen clusters are obtained, four for 
each partitioned dataset. The 2D scattered graphs of four of these clusters are shown 
in figures 5, 6, 7 and 8. The purpose of scattered graph is to identify the type of rela-
tionship if any between the attributes. The graph is used when a variable exists which 
is being tested and in this case the attribute or variable ‘class’ is a test attribute.  
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Fig. 5. 2D Scattered Graph of attributes ‘PGC’ and ‘2HIS’  

The graph in figure 5 shows that there is no relationship between the attributes 
‘PGC’ and ‘2HIS’ and both have the distinct values, which shows that the value of 
attribute ‘class’ does not depend on these two attributes, i.e. if one attribute gives 
diabetes of category 1 the other will show diabetes of category 2 in the patient.  
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Fig. 6. 2D Scattered Graph of attributes ‘NTP’ and ‘DPF’ 

The graph in figure 6 shows that the graph can be divided into two regions first is 
from 0 to 13 and the second is from 14 to 30. In the first region, there exists a rela-
tionship between the attributes ‘PGC’ and ‘2HIS’, consequently the value of attribute 
‘class’ depends on both attributes. In the second region, there is no relationship be-
tween these attributes, therefore, the value of attribute ‘class’ is independent of these 
attributes.  
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Fig. 7. 2D Scattered Graph of attributes ‘PGC’ and ‘2HIS’ 

The structure of this graph in figure 7 is similar to graph in figure 5. There is no re-
lationship between the attributes ‘PGC’ and ‘2HIS’ and both have the distinct values, 
which shows that the value of attribute ‘class’ does not depend on these two attrib-
utes, i.e. if one attribute gives diabetes of category 1 the other will show diabetes of 
category 2 in the patient.    
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Fig. 8. 2D Scattered Graph of attributes ‘TSFT’ and ‘BMI’ 

The graph in figure 8 shows that the graph has two regions; one region is that 
where no relationship between the attributes ‘TSFT’ and ‘BMI’ exist, so the value 
attribute ‘class’ does not depend on the attributes and the second region shows the 
relationship between these attributes, as a result, the value of attribute ‘class’ depends 
upon both attributes ‘TSFT’ and ‘BMI’. Similarly the other graphs can also be drawn. 

The proposed UMDM also produces the decision rules for each cluster of ‘Diabe-
tes’ dataset. We are taking only two, 1st and 3rd clusters’ rules for the interpretation, as 
shown below: 

The Rules of cluster 1 are: 

1. Rule: 1  if PGC = 165   then 
2. Class = Cat2 else  
3. Rule: 2  if PGC = 153   then 
4. Class = Cat2 else  
5. Rule: 3  if PGC = 157   then 
6. Class = Cat2 else  
7. Rule: 4  if PGC = 139   then 
8. Class = Cat2 else  
9. Rule: 5  if HIS = 545   then 
10.  Class = Cat2 else  
11.  Rule: 6 if HIS = 744   then 
12.  Class = Cat2 else  
13.  Class = Cat1 

Fig. 9. Rules of the first cluster 

There are six rules in the first cluster. The result for this cluster of ‘Diabetes’ data-
set is if the value of attribute ‘PGC’ is more than 130 and the value of attribute ‘HIS’ 
is more than 500, as the rules show, then the patient has diabetes of category 2 other-
wise category 1. The decision rules make it easy and simple for the user to interpret 
and predict this partitioned dataset of diabetes. 
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The Rules of cluster 3 are: 

1. Rule: 1 if DPF = 1.32   then 
2. Class = Cat1 else  
3. Rule: 2 if DPF = 2.29   then 
4. Class = Cat1 else  
5. Rule: 3 if NTP = 2   then 
6. Class = Cat2 else  
7. Rule: 4 if DPF = 2.42   then 
8. Class = Cat1 else  
9. Rule: 5 if DPF = 2.14   then 
10.  Class = Cat1 else  
11.  Rule: 6 if DPF = 1.39   then 
12.  Class = Cat1 else  
13.  Rule: 7 if DPF = 1.29   then 
14.  Class = Cat1 else  
15.  Rule: 8 if DPF = 1.26   then 
16.  Class = Cat1 

Fig. 10. Rules of the third cluster 

There are eight rules in the third cluster 3. The result of this cluster of ‘Diabetes’ 
dataset is if the value of the attribute ‘DPF’ is equal or more than 1.2 then the patient 
has diabetes of category 1 and if the value of attribute ‘NTP’ is equal or more than 2 
then the patient has diabetes of category 2, as the rules show. The interpretation and 
prediction is easy and simple for a user to take decision from these rules of partitioned 
dataset of diabetes. 

The importance of the attributes of dataset ‘Diabetes’ using the selected data min-
ing algorithms in UMDM is demonstrated in figures 11, 12 and 13. 

Importance of Variables using K-means Algorithm
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Fig. 11. Graph between Variables and Percentage value using k-means Algorithm 

The graph in figure 11 shows that the percentage value of attribute ‘PGC’ is 100 
percent, the percentage value of attributes ‘AGE’, ‘BMI’ and ‘NTP’ is 50 percent,  
the percentage value of attributes ‘TSFT’, ‘2HSI’ and ‘DPF’ is 30 percent and the 
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attribute ‘DBP’ has only 12 percent value. This gives an idea that the attribute ‘PGC’ 
is one of the most important attribute to predict the category of diabetes from ‘Diabe-
tes’ dataset, the attributes ‘AGE’, ‘BMI’ and ‘NTP’ can also be taken into account for 
prediction of diabetes category but the remaining attributes have no significant role in 
the prediction, using the k-means clustering algorithm.  

Importance of Variables using Neural Networks Algorithm
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Fig. 12. Graph between Variables and Percentage value using Neural Networks Algorithm 

The graph in figure 12 shows that percentage value of attributes ‘DPF’, ‘BMI’, 
‘PGC’, ‘AGE’, ‘DBP’ and ‘TSTF’ is more than 90 percent and the percentage value 
of other two attributes ‘NTP’ and ‘2HSI’ is 70 percent, which confirms that all attrib-
utes are important in the prediction of  the category of diabetes from ‘Diabetes’ data-
set, using Neural Networks. 

Importance of Variables using Decision Tree Algorithm
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Fig. 13. Graph between Variables and Percentage value using C4.5 Algorithm 

The graph in figure 13 shows that the percentage value of attribute ‘PGC’ is 100 
percent, the percentage value of attribute ‘BMI’ is more than 50 percent and the value 
of attributes ‘AGE’, ‘DPF’ is more than 30 percent. Conversely, the percentage value 
of attributes ‘NTP’, ‘TSFT’, ‘2HSI’ and ‘DBP’ is very low. This gives an idea that 
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two attributes ‘PGC’ and ‘BMI’ play important role in prediction of the category of 
diabetes from ‘Diabetes’ dataset and the other attributes due to their very low percent-
age have no impact in prediction, using C4.5 algorithm.  

Table 6. Percentage Importance of Diabetes Dataset Attributes using all three Algorithms 

Sr. # Variables k-Means C4.5 Neural Networks 
1 PGC 100.00 100.00 99.13 
2 AGE 51.57 36.47 96.59 
3 BMI 50.24 52.71 99.53 
4 NTP 49.15 4.05 69.90 
5 TSFT 33.82 9.92 90.01 
6 2HSI 28.45 5.88 74.53 
7 DPF 27.86 30.86 100.00 
8 DBP 12.34 27.10 95.66 

The table 6 summaries the percentage values of all attributes of dataset ‘Diabetes’ 
using the k-means clustering, the Neural Networks and the C4.5 algorithms. 

All three Data Mining Algorithms
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Fig. 14. Graph between Variables and percentage Importance Values for all three Algorithms 

The graph shows that the percentage values of all the attributes of the given dataset 
‘Diabetes’ are high from the Neural Networks as compared to C4.5 and the K-means 
clustering algorithms. The percentage values of all the attributes of the given dataset 
‘Diabetes’ are low from C4.5 as compared to the other two algorithms. The graph also 
illustrates that the percentage values of all the attributes obtained from k-means clus-
tering algorithm have intermediate values. The results of Neural Networks show that 
all the attributes of the given dataset are very important in prediction but when we 
draw a comparison between all these three algorithms then the attributes ‘PGC’, 
‘BMI’, ‘AGE’ and ‘DPF’ are very important in the prediction of diabetes of category 
1 or 2 in patients. 
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The results obtained from Neural Networks for prediction are illustrated in table 7.  

Table 7. Performance Metrics 

CLASS R Net-R Avg. Abs. Max. Abs. RMS Accuracy (20%) Conf. Interval (95%) 

All 0.66 0.66 0.26 0.95 0.35 0.52 0.69 

Train 0.65 0.65 0.26 0.95 0.36 0.52 0.70 

Test 0.68 0.68 0.25 0.89 0.35 0.52 0.68 

The prediction depends on the R (Pearson R) value, RMS (Root Mean Square) er-
ror, and Avg. Abs. (Average Absolute) error, on the other hand Max. Abs. (Maximum 
Absolute) error may sometimes be important. The R value and RMS error indicate 
how “close” one data series is to another, in our case, the data series are the Target 
(actual) output values and the corresponding predicted output values generated by the 
model. R values range from -1.0 to +1.0. A larger (absolute value) R value indicates a 
higher correlation. The sign of the R value indicates whether the correlation is posi-
tive (when a value in one series changes, its corresponding value in the other series 
changes in the same direction), or negative (when a value in one series changes, its 
corresponding value in the other series changes in the opposite direction). An R value 
of 0.0 means there is no correlation between the two series. In general larger positive 
R values indicate “better” models. RMS error is a measure of the error between corre-
sponding pairs of values in two series of values. Smaller RMS error values are better. 
Finally, another key to using performance metrics is to compare the same metric 
computed for different datasets. Note the R values highlighted for the Train and Test 
sets in the above table. The relatively small difference between values (0.65 and 0.68) 
suggests that the model generalizes well and that it is likely to make accurate predic-
tions when it processes new data (data not obtained from the Train or Test dataset). 

A graph is drawn between targeted and predicted outputs using Neural Networks. 
Figure 15 depicts this graph. 
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Fig. 15. A Graph between Targeted Output and Predicted Output using Neural Networks 
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The graph in figure 15 shows that the predicted outputs and the targeted outputs are 
close with each other which verify that the given dataset ‘Diabetes’ is properly 
cleansed and the predicted results using Neural Networks may be more accurate.   

5   Conclusion 

This research paper presents the prediction, classification, interpretation and visuali-
zation of ‘Diabetes’, a medical dataset, using k-means clustering, Decision tree 
(C4.5), Neural networks and Data visualization (2D graphs) data mining algorithms. 
In order to extract useful information and knowledge from medical datasets, these 
above mentioned tasks are crucial and play pivotal roles. It is clear that no single data 
mining algorithm is capable to perform all these tasks; therefore, a unified model of 
these algorithms is presented in this paper, called Unified Medical Data Miner 
(UMDM), which accomplishes all the described tasks. The vertical partitions of the 
given dataset, based on the similar values of the attributes are created as a first step. 
For the discovery of hidden patterns from the given dataset, data mining algorithms 
are cascaded i.e. the output of one algorithm is used as an input for another algorithm.  
The decision rules obtained from the decision tree algorithm can further be used as 
simple queries for any medical databases. One interesting finding from this case is 
that the pattern identified from the given dataset is “Diabetes of category 1 or 2 de-
pends upon ‘Plasma Glucose Concentration’, ‘Body Mass Index’, ‘Diabetes Pedigree 
Function’ and ‘Age’ attributes”.  We draw the conclusion that the attributes ‘PGC’, 
‘BMI’, ‘DPF’ and ‘AGE’ of the given dataset ‘Diabetes’ play important role in the 
prediction whether a patient is diabetic of category 1 or category 2. However, the 
results and model proposed in this paper require further validations and opinions from 
medical experts.  
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Abstract. In this paper, computer-aided diagnosing and classification
of melanoid skin lesions is briefly described. The main goal of our re-
search was to elaborate and to present new version of the developed
melanoma diagnosis support system, available on the Internet. It is a
subsystem of our complementary melanoma diagnosis and classification
web center system. Here, we present functionality, structure and oper-
ation of this subsystem. In its current version, five learning models are
implemented to provide five independent results of diagnosis. Then, a
specific voting algorithm is applied to select the correct class (concept)
of the diagnosed skin lesion. Developed tool enables users to make early,
non-invasive diagnosing of melanocytic lesions. It is possible using built-
in set of instructions that animate diagnosis of four basic lesions types:
benign nevus, blue nevus, suspicious nevus and melanoma malignant.

Keywords: diagnosis support system, machine learning, learning
model, computer aided diagnosis system, teledermatology, Total
Dermatoscopy Score, ABCD formula.

1 Introduction

Melanoma is the most deadly form of skin cancer. The World Health Organi-
zation estimates that more than 65000 people a year worldwide die from too
much sun, mostly from malignant skin cancer [1]. It is an increasingly common
tumour, it is the cutaneous tumour with the worst prognosis and its incidence
is growing, because most melanomas arise on areas of skin that can be easily
examined. Early detection and successful treatment often is possible, most der-
matologists can accurately diagnose melanoma in about 80% of cases according
to ABCD process [2]. Meanwhile the incorporation of dermatoscopic techniques,
reflectance confocal microscopy and multiespectral digital dermatoscopy have
greatly enhanced the diagnosis of this cutaneous melanoma. While these devices
and techniques cannot diagnose skin cancer, they give dermatologists a closer
look at suspicious skin lesions. This, in turn, can help dermatologists find suspi-
cious lesions earlier than before and better determine whether a biopsy is needed.
None of these devices can confirm that a suspicious lesion is melanoma. It is,
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however, not yet possible to tell if a patient has melanoma or any type of skin
cancer without a biopsy. It is important to combine the classically ABCDs and
biopsy to prevention and diagnosis of melanoma.

The five-year survival rate for people whose melanoma is detected and treated
before it spreads to the lymph nodes is 99 percent. Five-year survival rates
for regional and distant stage melanomas are 65% and 15%, respectively [3].
Thus the curability of this type of skin cancer depends essentially on its early
diagnosis and excision. For that reason the ABCD (asymmetry, border, color
and diversity of structure) clinical rule is commonly used by dermatologists in
visual examination and detection of early melanoma [4]. The visual recognition
by clinical inspection of the lesions by dermatologists is 75%. Experienced ones
with specific training can reach a recognition rate of 80% ([5], [6]).

Recently, some decrease of the illness was observed especially Australia, Scot-
land and Ireland [7]. Some reasons of this phenomenon can be guessed: (i) dis-
semination of methods for early, non-invasive diagnosing of health risk degree,
what creates possibility of self-diagnosing for society of Western Europe and
United States; (ii) fast access to vast hummer of information sources about
symptoms of melanoma malignant, access to the methods of calculating of pa-
rameters characterizing health risk degree (based on atypical pigment lesions on
the skin, frequency of contacts with solar or ultraviolet radiation, colour of eyes
or hair, etc.), or/and (iii) access to various methods of calculating chances to
survive years by given number of a the patient with diagnosed melanoma [8].

Results of European research in the field discussed have been usually focused
on methodology of classification of tumour types, description of selected symp-
toms and description of pigment lesions, in a phase preceding incurable condition
of illness or demanding surgical intervention ([5], [9]).

Our current research in the classification of medical images of skin lesions
presents developed internet-based system for diagnosing of four categories of
melanoma: benign nevus, blue nevus, suspicious nevus, and melanoma malignant
[10]. Our system supports five different methods (learning models) of diagnosing:
(i) classic ABCD rule (based on TDS parameter) ([11], [12]), (ii) optimized
ABCD rule, (based on our own New TDS parameter [13]), (iii) decision tree
(based on ID3 algorithm) [14], (iv) genetic dichotomization, based on a linear
learning machine with genetic searching for the most important attributes [15],
and (v) application of a new classifier from the family of belief networks. Based
on these five partial results, system suggests the final result, using the specific
evaluation and voting algorithm.

2 Structure and Operation of the System

Our diagnosing support system provides user interface in the form of a website
to get the access to its three main working modules (Fig. 1). The first module is
dedicated to persons without medical background, and serves to self-diagnosing.
This module allows to determine - in a very simple and clear way - all symptoms
required for correct classification of a given skin lesion (Fig. 2). Thus, using
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Fig. 1. The main structure of the system

this module, user can easily acquainted with the knowledge, required for correct
recognition of symptoms, related to a given lesion. Next, this module can be
treated as an advanced calculator for non-invasive diagnosing of melanocytic
lesions. Input values for this module create a vector containing values of 13
descriptive attributes: asymmetry, border, six colors (white, blue, black, red, dark
brown, light brown) and five different structures (pigment globules, pigment dots,
structureless areas, branched streaks, pigment network). These values, provided
by the user, are used to calculate the 14-th attribute known in medicine as TDS
parameter [7] (Total Dermatoscopy Score) and additionally also a NewTDS [8]

Fig. 2. Graphical interface of the diagnosis support subsystem
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(Fig. 3). Then, five different algorithms previously mentioned, are responsible for
development of five learning models (five partial classifiers). The classification
process based on these models is described in Section 3.

Fig. 3. Structure of the diagnosis support subsystem

The second module (Fig. 1), is based on automatic analysis and recognition of
medical images. This approach consists of a system solution designed to analyze
photographs of the patient’s injury by means of image processing techniques
where the dermatologists will capture the image of a melanoma using a digital
dermatoscope, and a set of algorithms will process the image and provide an
output diagnosis in an automated manner. The first results gathered along this
line were presented in other articles [16].

In turn, the third module enables to generate the exhaustive number of sim-
ulated images, which considerably broaden the informational source database,
and can be successfully used in the process of training less experienced medical
doctors. It contains algorithms of semantic conversion of textual description of
melanocytic lesion into respective image of the lesion. Detailed description of this
approach could be found in earlier publications [17]. This module is currently
developed as a component inside research project of polish Ministry of Science
and Higher Education.

3 Recognition Algorithms and Classification Process

During our previous studies, a wide range of different learning algorithms were
evaluated and tested. Thus, five different learning models were developed. Next,
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these models were implemented in form of a web services and embedded in our
system, inside first module. The details of each models are presented bellow.

3.1 Learning Model Based on a Classic and Optimized ABCD Rule

Logical values of symptoms, provided by user in the first module, are processed
using two different algorithms: (i) Calculation of TDS, and (ii) Calculation of
NewTDS. It is worth to say, that both algorithms are based on a constructive
induction mechanism [18], a very important methodology in machine learning.
Then, the enlarged solution space (13+1 dimensions) is defined using the classic
ABCD formula for calculation TDS parameter (see Equation 1),

TDS = (1.3 ∗ Asymmetry) + (0.1 ∗ Border) + (0.5 ∗ ΣColors)+
+(0.5 ∗ ΣDiversity) (1)

where A is a description of lesion’s asymmetry, B is a description of lesion’s
border, C is a description of colors that occur in investigated lesion, and D is a
specification of lesion’s diversity of structure. The variable Asymmetry has three
different values: symmetric spot (counted as 0 ), one-axial asymmetry (counted
as 1 ), two-axial asymmetry (counted as 2 ). Border is a numerical attribute, with
values from 0 to 8. A lesion is partitioned into eight segments. The border of
each segment is evaluated: the sharp border contributes 1 to Border, the gradual
border contributes 0. The total amount of border values should be between 0
and 8. Color has six possible values: black, blue, dark brown, light brown, red
and white. Similarly, Diversity has five values: pigment dots, pigment globules,
pigment network, structure-less areas and branched streaks. In our data set Color
and Diversity were replaced by binary single-valued variables: present (value is
equal to 1 ) or absent (value is equal to 0 ), for example, the pigment dots struc-
ture is absent, the black color is present, etc. In this way, our dataset contains
objects described by 13 descriptive attributes. Simultaneously optimized formula
was used to calculate the NewTDS (see Equation 2)

NewTDS = (0.8 ∗ Asymmetry) + (0.11 ∗ Border)+
+(0.5 ∗ ColorWhite) + (0.8 ∗ ColorBlue) + (0.5 ∗ ColorDarkBrown)+
+(0.6 ∗ ColorLightBrown) + (0.5 ∗ ColorBlack) + (0.5 ∗ ColorRed)+
+(0.5 ∗ PigmentNetwork) + (0.5 ∗ PigmentDots)+
+(0.6 ∗ PigmentGlobules) + (0.6 ∗ BranchedStreaks)+
+(0.6 ∗ StructurelessAreas)

(2)

Learning model, developed using standard TDS parameter, classified unseen
objects with average error rate equal 11%, however learning model, developed
using optimized NewTDS parameter, and classified the same set of unseen
objects with average error rate about 5%.

3.2 Learning Model in Form of Decision Tree

The third way to diagnose lesions is by using a decision tree (Fig. 4). This
model was developed using the source data set presented earlier. In the process
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of developing the decision tree the ID3/C4.5 algorithm was used. It was stated
that developed decision tree classified new, unseen melanoma cases with error
rate equal exactly 1.4%. The developed tree is shown below:

Fig. 4. Learning model in form of decision tree

3.3 Learning Model Based on the Genetic Dichotomization

This learning model contains n(n-1)/2 number of vectors of diagnosed
melanocytic lesions (where generally n is the number of identified concepts,
in our case n=4), capable to classify correctly four classes of melanoid lesions.
These vectors were developed in learning process, outside of described system.
These vector are able to correct classifications of lesions that always belongs to
two classes. Next, vectors are crossed to increase their classification quality. In
our research for four classes learning model contains six described dichotomous
vectors. Recognition process of unseen cases is executed automatically (see Table
1): system assigns to unseen case a category, pointed out by the maximal num-
ber of vectors. Classification process of unseen cases, is related to assigning to
category which was indicated by the biggest number of vectors. Implemented ge-
netic dichotomization learning model has optimal control parameters [19], which
make possible to obtain average error rate equal to 6%.

Table 1. Illustration of an example recognition process, realized by the genetic di-
chotomization model

Vector Capable to recognize Class assigned Final
no. unseen case: (Melanoma malignant) to example decision

1 Benign nevus or Blue nevus Benign nevus or Blue nevus
2 Benign nevus or Malignant Malignant
3 Benign nevus or Suspicious Benign nevus or Suspicious Melanoma
4 Blue nevus or Malignant Malignant Malignant
5 Blue nevus or Suspicious Blue nevus or Suspicious
6 Malignant or Suspicious Malignant
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3.4 Learning Model in Form of Belief Network

Bayesian classification machine describe interaction between nodes, that allow to
develop learning model in form of belief network presented on 5. This network has
average error rate equal to 4%. The most important attributes that directly im-
pact on decision were: pigment network (D PIGM NETW), classic TDS (TDS),
asymmetry (ASYMMETRY) and color blue (C BLUE). Classification process is
based on determining of all attributes, network nodes and achieving of probabil-
ity of decision categories. Unseen case is assigned to a category, which displays
the highest value of marginal likelihood.

Fig. 5. Learning model in form of belief network

3.5 Algorithm for Optimal Diagnosis Selection

Presented system suggests five independent diagnosis gathered from five learn-
ing models: classic ABCD rule, optimized ABCD rule, decision tree, genetic di-
chotomization and belief network. Achieved results are input data into optimized
diagnosis selection block (see Figure 3). Each result has own weight parameter
dependent on error rate assigned to given learning model (see Table 2). These
weight parameters are defined in Equation 3

W = (100% − ErrorRateOfTheModel)/100% (3)
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Table 2. Weight parameters for each learning model

Learning model Weight parameter

Classic ABCD formula W1=(100%-11%)/100%=0.89
Optimized ABCD formula W2=(100%-5%)/100%=0.95
Decision tree W3=(100%-1.4%)/100%=0.986
Genetic dichotomy process W4=(100%-6%)/100%=0.94
Belief network W5=(100%-4%)/100%=0.96

The final result is prepared depending on total amount of weight parameters
for suggested diagnosis. It should be stressed that learning models with lower
error rate have greater influence on final result.

On the following case (see Table 3), two from five learning models generate
Benign nevus result, two others generate Blue nevus result, and the last learning
model generates Suspicious nevus. Added weight parameters show that the most
credible result is Blue nevus which has the greatest total weight parameter equal
to 1.946. Thus, system suggests the Blue nevus as final diagnosis.

Table 3. Calculation of the weight parameters

Diagnosis Benign Blue Suspicious Melanoma
nevus nevus nevus malignant

Classic ABCD formula 0.89 0 0 0
Optimized ABCD formula 0.95 0 0 0
Decision tree 0 0.986 0 0
Genetic dichotomy process 0 0 0.94 0
Belief network 0 0.96 0 0

Total weight parameters 1.84 1.946 0.94 0

4 Conclusions and Future Remarks

Correct classification of pigment skin lesions is possible using histopatological
research of lesion. The newest trend of diagnosing devoted to using non-invasive
methods, has become cause of disseminating of information technology tools
supporting this process.

In this paper, practical development of a new internet information system
for classification of melanocytic lesions, are briefly described. This system has
also some teaching functions, improves analyzing of datasets based on calculat-
ing of values of Total Dermatoscopy Score parameter. Inside this system, a five
different methods were applied to determine correct diagnosis of skin lesions.
As it was stated, each method is characterized by different error rate. It was
indispensable to take its influence on final diagnose into consideration. Devel-
oped internet-based tool enables users to make early, non-invasive diagnosis of
melanocytic lesions. The latest version of our system is available in the Internet:
www.melanoma.pl.
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Future research focuses on overall implementation of all three functional sub-
systems described in Section 2. It should be also stressed that in the future
development of mobile version of our system is planned.
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18. Paja, W., Wrzesień, M.: Medical datasets analysis: A constructive induction ap-
proach. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 442–449.
Springer, Heidelberg (2010)
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Abstract. Expression profiles of all genes can aid in getting more insight
into the biological foundation of observed phenotypes or in identifying
marker genes for use in clinical practice. With the invention of high-
throughput DNA Microarrays profiling the expression state of cells on a
whole-genome scale became feasible.

Here, we propose a method based on model-based clustering to detect
marker gene clusters that are most important in classifying different cell
types. We show at the example of Acute Lymphoblastic Leukemia that
these modules capture the expression state of different sample classes
and that they give more biological insight into the different cell types
than using just marker genes. Additionally, our method suggests groups
of genes that can serve as clinical relevant markers.

Keywords: Marker Selection, Model-based Clustering, Gene
Expression Analysis, Acute Lymphoblastic Leukemia.

1 Introduction

Even though the cells in an organism are based on the same genetic material
various phenotypes are observed. Understanding how the genome is read in each
cell is a central question in molecular biology. High-throughput DNA Microarrays
made it possible to measure the global gene expression of an eukaryotic cell and
thus reveal the cell-specific expression pattern and the regulatory programs that
are active [1].

Using these patterns, Microarrays can serve as a diagnostic tool, for example,
to distinguish normal from disease cells or to find subtypes of diseases, as for
instance in the case of Acute Lymphoblastic Leukemia (ALL). ALL is an hetero-
geneous cancer of white blood cells. Patient’s subtypes are based on the genetic
lesion that is present in the cell and have different prognostic outcomes [2]. Thus
classifying the patient’s subtype is of great clinical value.

Microarray data is prone to various sources of noise that affects the mea-
surements including cross-platform, laboratory-dependent or experimental noise.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 106–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Different normalization methods have been proposed to circumvent this prob-
lem. Still the impact of these methods on the actual results of statistical methods
has been studied rarely.

Despite the potential drawback of noise, different studies [3,4,5] showed at the
example of ALL that using Microarray data an accurate classification of disease
subtypes is possible. Moreover, marker genes for which one can easily scan in
clinical practice and that discriminate between the different classes based on
their expression were detected.

A recent study [6] combined data of various sources to define a set of marker
genes. These marker genes were sufficient to accurately classify a set of samples
even from an independent experiment and distinct ethnic group. Further the au-
thors analyzed the marker gene set to give biological insight into the disease by
discovering enriched KEGG pathways. However, the interpretation of the results
of the functional enrichment analysis might be hampered by the fact that marker
gene sets contain solely the most differentially expressed genes but not neces-
sarily functionally related genes. Thus, statistical methods applied in functional
enrichment analysis might have problems in identifying enriched functional cat-
egories within the marker gene set. Further, clinical application of the marker
genes might be hindered due to the lack of simple experimental procedures for
detection.

Clustering methods have been used to detect groups of genes whose expression
is similar across different samples [7]. The assumption is that genes that share the
same expression pattern might be similar in their function. A cluster is thought
to reflect a regulatory module of genes, that is switched on or off in concert if
needed, within the cellular transcription network.

Detecting modules that discriminate the sample classes the most and using
them to describe and analyze an observed class would provide more insight into
the regulatory mechanisms underlying each class and more choices for select-
ing clinically relevant markers. In the following we call those modules marker
modules.

In this paper, we introduce a method that is based on a model-based cluster-
ing, to detect marker modules. The expression values of genes in the gene clusters
are summarized and a simple feature selection method using a Support Vector
Machine (SVM) is applied to this data summary to learn the marker modules.
Analyzing the marker modules we hope to find an enrichment of specific path-
ways or biological categories that give more insight into the biological foundation
of the classes. We validate the concept of our approach at the example of ALL
data collected from independent studies as in [6].

Model-based clustering has been applied to expression data from Microarray
studies before (e.g. [8,9]). These methods discriminate in their model formulation
for the specific tasks. Yeung et al. [8] attempt to cluster the genes without explic-
itly taking into account that the genes might be differently expressed according
to the known sample classes. Segal et al. [9] try to cluster genes and samples at
the same time and further learn the regulatory mechanism that could explain
the observed two-way clustering. The method that is closest to our approach
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is implemented in PCluster [10] which uses an heuristic procedure to detect a
local optimal clustering of genes with a fixed partition of samples. Our model
gives a better picture on the quality of a clustering since we are going to sample
different local optima.

To the best of our knowledge none of the model-based clustering approaches
has been used to detect marker modules. But the idea of summarizing gene
expression data based on clusters and to use these clusters to train a classifier
was applied before [11]. We apply a different learning procedure which learns
the optimal level of detail of the clusters directly from the data.

The remainder of this paper is organized as follows. In section 2 we introduce
the exemplary data and the pre-processing steps used in the analysis. Section 3
explains our model formulation and optimization method. The results are shown
in section 4. The paper is concluded with a summary and discussion.

2 Material

The gene expression data of the ALL subtypes used in this paper was collected
and pre-processed as described in [6]. It consists of four studies that were mea-
sured on various platforms (Affymetrix HU95a and HU133a GeneChips) and by
different laboratories. The sample numbers per class and study are depicted in
Tab. 1.

Additionally, we normalized the data set using different normalization meth-
ods. In log-2 transformation, each expression value was replaced with its loga-
rithm. For Rank-normalization, the expression values within one sample were
replaced by their normalized ranks such that they are uniformly distributed in
the interval [0, 1]. In Z-normalization the expression values within one sample
were scaled to have mean 0 and standard deviation 1. This resulted in three dif-
ferently normalized data sets to which we applied our approach independently.

We maintained only genes that are differentially expressed across the ALL-
subgroups to reduce the number of non-informative genes and to make the
subtype-specific expression pattern more obvious. Differentially expressed genes

Table 1. Number of samples in each subtype (class) per original study. First column
gives the name of the subtype.

Ross et al. [4] Hoffmann et al. [5] Yeoh et al. [3] Li et al. [6]

1 BCR-ABL 15 3 16 6

2 E2A-PBX1 18 3 27 7

3 Hyperdipl.>50 17 17 65 22

4 MLL 20 7 21 4

5 T-ALL 14 37 45 10

6 TEL-AML1 20 1 79 29

Total number 104 68 253 100
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were detected by applying the RankProd method [12] to each subclass separately
taking the remaining samples as reference. The 500 top up-regulated and 500
top down-regulated genes per class were chosen for further analysis. The lists
for each subclass were merged and the overlap in these lists decreased the to-
tal numbers of retained gene to the following depending on the normalization
method: Rank - 2310; Z-norm - 1657; log2 - 2244; unnormalized - 1550.

3 Methods

In order to detect and analyse a set of marker modules, we applied a 4 step
process including a) pre-processing (described in section 2), b) gene clustering,
c) marker module detection and d) biological analysis. These marker modules
should be such that they are sufficient for distinguishing samples from different
classes and genes within one module have similar expression patterns over the
different classes.

3.1 Model-Based Clustering

The noisiness of the data suggests to use a Model-based Clustering approach
where the expression values within the clusters are described by Gaussian Ran-
dom Variables. Similarity between genes is defined by the likelihood of observing
their expression values together under the assumption that they are random sam-
ples from the same Gaussian distribution. It is presumed that the whole data
set was generated by a mixture of cluster-specific distributions. The objective is
to find an assignment of genes g to a partition Gk such that the optimal set of
partitions C∗ is given by the set of partitions that maximizes the likelihood of
the data.

We extend the problem formulation by introducing a dependency of the ex-
pression values on the known sample class Sl. To find the optimal partitions we
want to maximize the likelihood

P (D|C, θ) =
K∏

k=1

L∏
l=1

∏
g∈Gk

∏
s∈Sl

p(egs|μkl, σkl) (1)

of the data given the clustering C = 〈G, S〉 and all the parameters θ of each
Gaussian distribution. As the expression values are assumed to be independent
given the clusters, the likelihood separates into local probabilities. The model
formulation stresses the fact that genes within one gene cluster should have
similar expression within one sample class but are allowed to have different
expression between sample classes.

For optimization we consider the Bayesian score that marginalizes the effect
of the parameters on the clustering and is defined as the logarithm of the pos-
terior probability of a clustering. The Bayesian score thereby incorporates the
uncertainty in the choice of the parameters by treating parameters and cluster
assignments as Random Variables as well and averages the likelihood over all
possible parameter choices.
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The posterior of a clustering C given the data D is defined as

P (C|D) ∝ P (D|C) ∗ P (C)

=

∫ ∫ ∏
k

∏
l

⎡
⎣p(μkl, σkl)

∏
g∈Gk

∏
s∈S(k,l)

p(egs|μkl, σkl)

⎤
⎦ dμkldσkl (2)

up to a constant factor and under certain assumptions (for details see [13]).
The Bayesian Score decomposes into a sum of cluster-specific scores. Further,
evaluating the score of a cluster can be done easily by computing the sufficient
statistics of the expression values in each cluster Ckl that summarizes the large
amount of data by a minimum of values per cluster and is independent of the
parameters of the cluster [14]. Note that we are not explicitly using a similarity
metric but rather minimize the variance of the expression values within a cluster
indirectly by using the sufficient statistics of the cluster and optimizing the closed
form of the double integral in 2. Please refer to [14] or [10] for details.

3.2 Gibbs Sampler Algorithm for Cluster Optimization

To get a good picture of the posterior probability and to capture many solutions
of high quality (i.e. local optima) the posterior probability can be sampled using
the Gibbs sampler approach which is a stochastic approximation technique. At
each sampling step just one variable assignment is changed and after burn-in the
Gibbs Sampler is thought to generate clusterings from the posterior distribution.

We adopt the Gibbs sampling procedure of Joshi et al. [14] but modify it to
incorporate the fixed sample partitions during learning and a fixed total number
of clusters K. The first modification is done because we know the sample classes
in advance and want the clusters to be able to have distinct expression between
these known classes. The second adjustment is introduced to get a better picture
of how the method attempts to cluster the data.

The implementation of the Gibbs sampling starts with initializing the clus-
tering by randomly distributing the genes across the K clusters. Afterwards, the
following three steps are iterated until burn-in: First, a random gene i is selected.
For this gene the difference in Bayesian score when assigning gene i to any other
cluster while keeping all other assignments fixed is calculated. Third, the reas-
signment of gene i to a new cluster is accepted with a certain probability based
on difference in Bayesian score. This procedure assures an iterative improvement
of the clustering. For details on the implementation please refer to [14].

4 Results

In the scope of this paper we are addressing methodological and biological ques-
tions. We studied whether the expression values within the observed modules are
following a normal distribution, what the impact of the different data normal-
ization methods on our method is and how the number of modules affects the
interpretation. The biological interpretation involves the detection of interesting
KEGG pathways and their initial analysis.
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We tested our approach under different conditions on the ALL data set de-
scribed in section 2. Each experiment was performed on 5 different numbers of
clusters K that correspond to an average of 5, 10, 15, 20 and 25 genes per cluster.
Note that the quality of the clustering solutions largely depends on the ability
of the Gibbs sampler to sample from the whole distribution [15]. We therefore
performed 10 runs starting from different initial random clusterings for each
experiment. The Gibbs sampler was run for 5000 iterations with a burn-in at
iteration 1000. From the iterations after burn-in we used the clustering with
highest score for further analysis.
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Fig. 1. (a) Average significance values of Lilliefors test for normality over decreasing
number of clusters and for different normalization methods. (b) Average Adjusted Rand
Index between the 10 runs with different number of clusters within one normalization
method. Colours: black - Rank normalization; red - Log2 transformation; blue - Z-
Normalization; green - No normalization.

4.1 Cluster Stability and Quality

Using the Lilliefors test for normality [16] we checked whether the normality
assumption is fulfilled by the expression values in the clusters. P-values were
computed for the expression values within each combination of gene cluster k
and sample class c and then averaged per run. With a p-value below 0.05 the
hypothesis that the observed population is sampled from a normal distribution
is rejected. These p-values hint to how pure the clusters are within one Gibbs
sampler run with respect to the normality assumption.

The adjusted Rand Index (ARI) [17] was used to give an idea of how similar
the resulting clusters are over multiple Gibbs sampler runs or over results on the
differently normalized data. We assume that we arrived at an optimal clustering
if the ARI is close to 1 indicating that a lot of genes consistently cluster together.

Experiments in this section were performed on all 425 available training
samples.
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Number of Modules. Figure 1(a) shows the average p-values and their stan-
dard deviation over 10 different Gibbs sampler runs plotted with decreasing
number of clusters K. The p-values for all normalization methods decrease when
allowing fewer clusters showing that the method is forced to do an unfavourable
union of genes into larger clusters or has to fit outliers into a cluster.

The average ARI comparing runs with the same number of clusters and same
normalization method are depicted in Fig. 1(b). The highest ARI is achieved
when using a large number of clusters and decreases when allowing less clusters
but levels out at a value around 0.6 starting at 15 genes per module. The reason
for this observation might be that until a number of 15 genes per module the
method fits outliers into the clusters where there are a lot more possibilities to
choose from than when it has to merge larger clusters together. This could make
the clusterings more diverse.

If we compare runs of one cluster count to the runs of the next smaller cluster
count we receive an average ARI of 0.4 - 0.56 which supports the idea that
clusters are merged/splitted but genes are not completely shuffled.

Normalization. The effect of the various normalization methods on the clus-
ters is also shown in Fig. 1(a). For Z-normalized and unnormalized data the
p-values are below 0.05 and hence we would assume that the expression val-
ues in each module are not following a Gaussian distribution. In contrast, Rank
normalized and log-transformed data could have been generated by a Gaussian
distribution. The reason for this observation might be that for Z-normalization
and unnormalized data the overall distribution of expression values in a sam-
ple is elongated towards high expression values and thus, it is difficult for the
method to find a suitable cluster for the highly expressed genes. These genes
might undergo only a small fold-change in expression in one sample but still will
hardly fit the normal distribution derived from the expression values of other
samples within the same sample class.

To check the consistency of the clusterings over differently normalized data we
computed the adjusted Rand Index between two clusterings using only genes that
are present in both datasets. Table 2 shows the average ARI over 10 runs between
different normalization methods. Runs within one normalization method have an
average ARI of approximately 0.66−0.73 depending on the normalization method

Table 2. Average Adjusted Rand Index between two runs on differently normalized
data. Agreement on clustering with on average 5 genes per cluster. Index was computed
on genes that were present in both data sets.

Rank Log2 Z-norm Unnorm

Rank 0.710 - - -

Log2 0.249 0.734 - -

Z-norm 0.112 0.207 0.666 -

Unnorm 0.121 0.194 0.245 0.709
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and are thus very similar. In contrast clusterings obtained with differently normal-
ized data are quite distinct from each other although the Gibbs sampler runs start
at the same initial clustering. There is some agreement with an adjusted Rand In-
dex of approximately 0.11−0.28. From that we deduce that there are certain genes
that cluster tightly together over different normalization methods and build a core
clustering while other genes are more variable.

Further, the clusterings between rank normalization and log2-transformation
or unnormalized and z-normalized data seem to be more consistent than the
other pairs. We assume that this is due to the similar effects of rank normalization
and log2-transformation on the data, as well as the fact that z-normalization is
just a scaled version of the unnormalized data.

4.2 Prediction Accuracy

For the detection of the marker modules we need to summarize the data within
the gene clusters (in the following called modules). This is done by averaging the
expression values of the genes falling within one of the K gene cluster per sample
such that each sample is now described by the K average expression values.

In this section, we show that by doing so we do not destroy any structure in the
data that is necessary to predict the sample class and hence show that the modules
are valuable in explaining the classes. For this purpose, we validated our approach
by calculating the 10-fold Cross-validation (CV) accuracy and the accuracy on the
test set from [6] using a linear SVM. We also compared the performance using SVM
to other classifiers but found that SVM performs best in terms of accuracy (data
not shown) and the results are comparable to the approach of Li et al. [6] who used
a marker gene selection method based on SVM.

For 10-fold CV we randomly distributed the available training samples into
10 sets of approximately the same size. We made sure that each set contained
more than one sample from each of the six subclasses. Nine out of ten sets were
used to train our model (modules and SVM) and the remaining set served for
validation.

Table 3. CV and test accuracy all genes vs. modules over different normalization meth-
ods. Second column gives number of genes in total. ”Clust.” gives the best performing
number of clusters. The mean accuracies and standard deviations of the SVM trained
on all genes or modules are given in the column denoted with ”Genes” or ”Modules”,
respectively.

Norm. #Genes
SVM - CV SVM - Test

Clust. Genes Modules Clust. Genes Modules

Rank 2310 462 99.05 (1.22) 99.09 (1.40) 231 100.00 98.21 (0.66)

Z-norm 1657 330 97.90 (2.54) 96.96 (2.57) 331 98.71 98.08 (0.68)

Log2 2244 224 99.07 (1.19) 98.67 (1.41) 448 98.71 100.00 (0.00)

Unnorm 1550 310 96.73 (3.15) 95.97 (3.12) 310 93.58 96.54 (1.22)
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(a) (b)

Fig. 2. (a) Average CV accuracy and standard deviation over the 10 CV-folds for
different number of clusters. (b) Average test accuracy and standard deviation over
multiple runs with different number of clusters. Colours: black - Rank normalization;
red - Log2 transformation; blue - Z-Normalization; green - No normalization.

To test how the method can generalize to unseen data from a different labo-
ratory and ethnic group we used all the 425 training samples for learning and
afterwards classified the Li data set [6].

Normalization and Accuracy. In the first part of Tab. 3 the best performing
average accuracy and standard deviation over the 10 CV-folds on the gene-by-
gene data and the module summary are given for every normalization method.
The CV results show that the classifier based on all genes gives slightly better
result than the module-based approach (max. 1% accuracy loss) but all mean
accuracies lie within standard deviation of the gene-by-gene approach. Based on
CV accuracy we can not detect any severe difference between the normalization
methods.

The results on the test set are presented in the second part of Tab. 3 showing
the mean accuracy and standard deviation over the 10 runs of our method for the
best performing number of clusters. Comparing the results of the gene-by-gene
approach to our method, we find that SVM on modules outperforms the SVM
using gene-by-gene data when using log2-transformed and unnormalized data.
Our approach using SVM on log-transformed data classifies all test samples per-
fectly in all runs. We attribute the increase in performance on unnormalized data
to the blurring of outliers by averaging the gene expression values in modules.
The accuracy drops slightly (max. 2%) when using modules on rank-normalized
or z-normalized data.

From the performance in the CV and on the test set we conclude that we are
not loosing information when summarizing the expression data according to our
modules.
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Number of Modules. Figure 2(a) and 2(b) show the prediction accuracies
with an increasing number of clusters for the 10-fold CV and on the test set,
respectively. The classification in the CV is stable over different cluster counts on
log-transformed and rank normalized data (loss in accuracy less than 1%). We
suspect that there is a hierarchy in the clusters. Thus genes that are fairly similar
might be separated in small clusters when allowing a high cluster number but are
clustered together when having fewer clusters to choose from. This hypothesis
is also supported by the findings in section 4.1.

For further analysis we use the number of modules that perform best in terms
of accuracy (Tab. 3) and cluster stability as we believe that they are the most
appropriate clustering of genes and result in the best summary of the genes
within the modules.

4.3 Marker Module Detection and Analysis

For the biological analysis of the modules we used one particular run and pa-
rameter setting based on the observation made in the last section. We analyze
the first run on all of the available log-transformed training samples with 149
clusters (refers to an average of 15 genes per cluster). This setting performed
best when looking at cluster purity and at the performance of the classifiers
based on modules. We selected the lowest best performing cluster number to get
meaningful groups of genes.

Marker Module Selection. Using the modules we summarized the expression
data for each sample by averaging over the expression values of the genes in
each module. For our particular run we have additionally checked the variance
of the clusters per sample before averaging and found that the clusters have
low variance (median variance per cluster and sample 0.005 after normalizing
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Fig. 3. (a) Number of top-ranked modules per class pair for classification plotted
against accuracy on test set. At k = 63 all modules are used. (b) Histogram of the
number of genes in the 33 selected marker modules.
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samples to variance 1). Thus the expression values define the valid regions of the
clusters and we can assume that the mean of the expression value population
per cluster resembles the true expected expression of the cluster.

Subsequently, this summary and the predefined class labels were used to train
a SVM with linear kernel. From the feature coefficients of the SVM the clusters
having highest impact on the classification were learned. We call this set of
modules ’marker modules’.

In detail, to obtain the marker modules we performed a 10-fold CV on the
training samples and collected the scaled coefficients for each one-vs.-one linear
SVM. Next, for each classifier discriminating two classes, we averaged the coef-
ficients per module over the different CV-folds and ranked the resulting average
coefficients.

The k (where k = 1, ..., 149) top-ranked modules per pair of classes were
selected to train a SVM on all training samples on the merged module set. The
accuracy when classifying the test set is shown in Fig. 3(a) for increasing k. The
figure shows that the accuracy stabilizes very quickly starting at k = 5.

Combining the 5 top-ranked clusters from each classifier we ended up with
33 marker modules that contained 1 to 13 genes (see Fig. 3(b)). All selected
modules together contained 141 genes. The heatmap of the selected modules in
Fig. 4 shows that the average expression of the modules clearly differs between
the classes. Further, we found that the genes within the modules are sufficient
to group the samples according to classes in an unsupervised fashion (data not
shown).

Comparison to Marker Genes. Using a SVM on all genes we selected marker
genes using the approach described above. These marker genes were compared
to the genes in the marker modules. Out of the 27 marker genes detected with
this procedure 17 genes were also present in the marker modules. These marker
genes are distributed over 14 modules and can be seen as representatives of the
genes within the marker modules.

Recently, Li et al. [6] also detected 62 marker genes using the same data set
and an iterative feature reduction approach based on SVM-RFE. Only 43 of
these are contained in our set of 2244 differentially expressed genes. The marker

Fig. 4. Heatmap of the average expression values within the marker modules and
classes. Colours range from red(no expression) to green(highly expressed).
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modules overlap to this set in 16 genes that are distributed over 13 modules.
Using their marker genes to classify the test data they achieved 99% accuracy
which is comparable to our classification performance.

Functional Similarity of Genes in Marker Modules. The marker mod-
ules were further analyzed to detect enrichment for KEGG pathways. We used
the GeneTrail Server [18] to perform an Over-/Under-Representation analysis
(ORA) on the genes in the marker modules.

A selection of the most significant KEGG annotations per module is shown in
Tab. 4. Among the detected KEGG pathways immune-system and haematopoi-
etic linage related pathways are overrepresented. Overall 13 marker modules were
found to have KEGG pathways enriched. Together we detected 24 KEGG path-
ways and overall 27 genes were responsible for the observed KEGG pathways.
When performing ORA on all 141 genes in the modules 18 KEGG pathways
were found. Only in a few cases these modules comprise more genes than when
performing ORA on each module separately. Thus genes in one KEGG path
seem to be condensed in one or two modules maximum.

We compared our results to the KEGG pathways detected in [6]. With their
marker genes they detected 12 pathways out of which 6 were also detected with
the marker modules. These 6 pathways comprise mostly immune system specific

Table 4. Exemplary KEGG pathways

KEGG Description Module p-value Genes detected

05320 Autoimmune thyroid disease 116 0.00006 HLA-DMB HLA-DQB1 HLA-
DMA

04514 Cell adhesion molecules
(CAMs)

116 0.00086 HLA-DMB HLA-DQB1 HLA-
DMA

121 0.00573 PECAM1 CD34

04512 ECM-receptor interaction 36 0.01828 COL6A3 LAMA3

04640 Hematopoietic cell lineage 92 0.00398 MME DNTT

64 0.00778 CD3E CD2

04672 Intestinal immune network
for IgA production

116 0.00006 HLA-DMB HLA-DQB1 HLA-
DMA

04670 Leukocyte transendothelial
migration

28 0.01804 MSN CD99

04650 Natural killer cell mediated
cytotoxicity

100 0.00197 CD247 ZAP70

05340 Primary immunodeficiency 69 0.00087 LCK CD3D

04660 T cell receptor signalling
pathway

69 0.00113 LCK CD3D

100 0.00197 CD247 ZAP70

64 0.00778 CD3E PRKCQ
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pathways and signalling pathways. Interestingly, only 14 genes account for the
KEGG pathways identified in [6] and most of the pathways are enriched because
of the contribution of only 4 genes, e.g. the gene PKI3R3 appears in 10 out
of 12 pathways. Looking at our KEGG pathways, although 11 of the pathways
are solely found due to module 116 and 124, the other pathways are found
based on different modules. Thus we detect the pathways through the support
of many different genes and in that way detect pathways that would not have
been observed using marker genes.

5 Summary

We have proposed a method to detect differentially expressed marker modules
in gene expression data across different cell types. The method is such that it
first clusters the data using a model-based approach to find groups of gene that
have a similar expression pattern across the sample classes. These modules are
thought to capture a significant number of functionally related genes. Next, the
data is summarized utilizing these modules and used to train a classifier from
which the most important modules in discriminating the classes were deduced.
These marker modules can then be further investigated for functional similarity
of the genes within the modules.

We analyzed our method at the example of classifying subtypes of Acute
Lymphoblastic Leukemia. In this process we answered different methodological
question. We have illustrated that the clusterings are stable. Further, normal-
ization seems to have a great impact onto the quality of the clusters in term of
their purity and stability but not in terms of the performance of the classifier.
Our finding shows that one has to choose carefully the normalization method
for each experiment to get biological relevant results.

Moreover, we showed that using the marker module approach one can detect
more significant functional annotations and hence get more biological insight
into the subgroups of ALL. Our marker modules compares well to the results of
a comparable marker gene approach or a recently published procedure [6]. We
conclude that we are not loosing the marker gene information but rather extend
the information by collecting more functional related genes for each marker gene.

Overall we conclude that marker modules are a promising approach to de-
tect functional similarity of class-discriminating genes and thereby giving more
biological insight into the underlying biological sources and regulatory mecha-
nisms behind the observed phenotype of a cell. Further, marker modules provide
a wealthy source for the selection of markers that can be applied in clinical
practice.

Our approach is open for different modifications and extensions. First, other
optimization methods, e.g. hill-climbing or simulated annealing techniques, for
the model-based clustering could be tested. Second, the model formulation is
flexible and one could incorporate other data sources that can aid the detection
of modules. This could be known transcription binding sites or RNA-knockout
scans. Third, the different clusterings resulting from several Gibbs Sampler runs



Differentially Expressed Gene Clusters 119

could be used to find core clusters that comprise genes that are constantly clus-
tered together and thus might be more coherent in their function. Moreover, the
marker module selection method is rather simple but easy to interpret. One could
try other more advanced feature selection methods on the cost of interpretability.
Finally, our method can be adopted for RNA-Sequencing data.
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Abstract. In the paper, we investigate a problem of hybridization and
optimization of the knowledge base for the Copernicus system. Coper-
nicus is a tool for computer-aided diagnosis of mental disorders based
on personality inventories. Currently, Copernicus is used to analyze and
classify patients’ profiles obtained from the Minnesota Multiphasic Per-
sonality Inventory (MMPI) test. The knowledge base embodied in the
Copernicus system consists of, among others, classification functions,
classification rule sets as well as nosological category patterns. A spe-
cial attention is focused on selection of a suitable set of rules classifying
new cases. In experiments, rule sets have been generated by different
data mining tools and have been optimized by generic operations imple-
mented in the RuleSEEKER system.

Keywords: classification, attribute reduction, attribute extension,
rough sets, MMPI profiles.

1 Introduction

For several decades, an increasing attention has been focused on various meth-
ods and algorithms of data mining and data analysis. Research in the area of
the so-called computational intelligence is strongly developed. A lot of computer
tools for data mining and analysis have been proposed. However, the majority
of such tools are the general-purpose systems requiring some users’ credentials
in computer science. This also concerns graphical user interfaces. In the case of
tools supporting a medical diagnosis, there is a need to develop dedicated and
specialized computer systems with suitable graphical user interfaces permitting
their use in the medical community [16]. Therefore, the tool called Coperni-
cus [12], for analysis of the MMPI data in the form of profiles of patients with
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mental disorders, has been developed. A clinical base for this tool is the Min-
nesota Multiphasic Personality Inventory (MMPI) test (cf. [8], [20]) delivering
psychometric data on patients with selected mental disorders. MMPI is one of
the most frequently used personality tests in clinical mental health as well as
psychopathology (mental and behavioral disorders).

In years 1998-1999, a team of researchers, consisting of W. Duch, T. Kucharski,
J. Gomu�la, R. Adamczak, created two independent rule systems, devised for the
nosological diagnosis of persons, that may be screened with the MMPI-WISKAD
test [9]. The MMPI-WISKAD personality inventory is a Polish adaptation of the
American inventory (see [6], [28]). The knowledge base was created on the basis
of a set of rules induced from the C4.5 decision tree algorithm [29] and from a
resulting FSM neurofuzzy network. The Copernicus system is the continuation
and expansion of that research.

Until now, there have not been designed universal data mining methods which
could be applied for each kind of data, giving expected results. Each kind of data
requires an individual approach to them, and what follows, designing suitable,
specialized methods for them. Classification rules can be obtained in various
ways, for example, using direct algorithms, decision tree based algorithms, belief
network based algorithms, neural network based algorithms, etc. Each approach
leads to obtaining a set of rules characterized by different coefficients describing
their classification ability/quality. In the paper, we show results of experiments
concerning a problem of using various methods for rule set generation. The
knowledge base embodied in the Copernicus system consists of a number of sets
of rules generated by known data mining and machine learning techniques. We
try to optimize such rules using the RuleSEEKER system. The main optimizing
process in this system is based on an exhaustive application of a collection of
generic operations [25]: finding and removing redundancy, finding and remov-
ing incorporative rules, merging rules, finding and removing unnecessary rules,
finding and removing unnecessary conditions, creating missing rules, discovering
hidden rules, rule specification, selecting final set of rules.

The rest of the paper is organized as follows. Section 2 gives a description of the
analyzed data, i.e., patients’ MMPI profiles. In section 3, the Copernicus system
is briefly characterized. The rules knowledge base embodied in the Copernicus
system is presented in section 4. In section 5, the process of optimization of
the rules knowledge base is shown. Next, in section 6, we present results of
experiments with optimization of the rules knowledge base. Finally, section 7
consists of some conclusions and directions for further work.

2 MMPI Profiles

In the case of the MMPI test, each case (patient) x is described by a data vector
a(x) consisting of thirteen descriptive attributes: a(x) = [a1(x), a2(x), ..., a13(x)].
If we have training data, then to each case x we additionally add one decision
attribute d determining a class to which a patient is classified.
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In our research, we have obtained the input data which have classes (nosolog-
ical types) assigned to patients by specialists. We distinguish nineteen nosolog-
ical classes and the reference (norm) class (norm). The nosological classes are
the following: neurosis (neur), psychopathy (psych), organic (org), schizophrenia
(schiz ), delusion syndrome (del.s), reactive psychosis (re.psy), paranoia (paran),
(sub)manic state (man.st), criminality (crim), alcoholism (alcoh), drug addiction
(drug), simulation (simu), dissimulation (dissimu), and six deviational answer-
ing styles (dev1, dev2, dev3, dev4, dev5, dev6 ).

For the training data (which are used to learn or extract relationships between
data), we have a tabular form (see example in Table 1) which is formally called
a decision system (decision table) S = (U, A, d) in the Pawlak’s form [26]. U is a
set of cases (patients), A is a set of descriptive attributes corresponding to scales,
and d is a decision attribute determining a nosological type (class, category).

Table 1. An input data for Copernicus (fragment)

Patient ID a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 class

#1 55 65 50 52 65 57 63 56 61 61 60 51 59 norm

#2 50 73 53 56 73 63 53 61 53 60 69 45 61 org

#3 56 78 55 60 59 54 67 52 77 56 60 68 63 paran

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

In data vectors, a1 corresponds to the scale of laying L, a2 corresponds to the
scale of atypical and deviational answers F , a3 corresponds to the scale of self
defensive mechanisms K, a4 corresponds to the scale of Hypochondriasis (1.Hp),
a5 corresponds to the scale of Depression (2.D), a6 corresponds to the scale of
Hysteria (3.Hy), a7 corresponds to the scale of Psychopathic Deviate (4.Ps), a8

corresponds to the scale of Masculinity/Femininity (5.Mf), a9 corresponds to the
scale of Paranoia (6.Pa), a10 corresponds to the scale of Psychasthenia (7.Pt),
a11 corresponds to the scale of Schizophrenia (8.Sc), a12 corresponds to the
scale of Hypomania (9.Ma), a13 corresponds to the scale of Social introversion
(0.It). The scales L, F , and K are the validity scales. The remaining scales are
the clinical scales. Values of attributes are expressed by the so-called T-scores.
The T-scores scale, which is traditionally attributed to MMPI, represents the
following parameters: offset ranging from 0 to 100 T-scores, average equal to 50
T-scores, standard deviation equal to 10 T-scores.

Data vectors can be represented in a graphical form as the so-called MMPI
profiles. The profile always has a fixed and invariable order of its constituents
(attributes, scales). Let a patient x be described by the data vector a(x) =
[56, 78, 55, 60, 59, 54, 67, 52, 77, 56, 60, 68, 63]. Its profile is shown in Figure 1.

The data set examined in the Copernicus system was collected by T. Kucharski
and J. Gomu�la from the Psychological Outpatient Clinic.
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Fig. 1. MMPI profile of a patient (example); suppressors +0.5K, +0.4K, +1K, +0.2K
- a correction value from raw results of scale K added to raw results of selected clinical
scales

3 The Copernicus System

The Copernicus system [12] is a tool for computer-aided diagnosis of mental dis-
orders based on personality inventories. The tool was designed for the Java plat-
form. There have been selected and implemented different quantitative groups
of methods useful for differential interprofile diagnosis.

A general structure of the Copernicus system is shown in Figure 2. We can
distinguish three main parts of this tool:

– Knowledge base. The organization of knowledge is fundamental to all pursuits
of data mining. The knowledge base embodied in the Copernicus system
consists of:
• Classification functions. The classification function technique is one of

the most classical forms of classifier design [7]. After calculating classi-
fication values for a given case, we assign to it a category for which a
classification function has the greatest value.

• Classification rule sets. In the Copernicus system, a number of rule sets
generated by different data mining and machine learning algorithms is
embodied (for example: the RSES system [4], the WEKA system [31], Be-
liefSEEKER [18]). In the most generic format, medical diagnosis rules are
conditional statements of the form: IF conditions (symptoms), THEN
decision (diagnosis). The rule expresses the relationship between symp-
toms determined on the basis of examination and diagnosis which should
be taken for these symptoms before the treatment. In our case, symp-
toms are determined on the basis of results of patient’s examination
using the MMPI test and they are expressed in ten T-scores clinical
scales described earlier.

• Nosological category patterns. They are pattern vectors determined
for each nosological class. First of all, in the Copernicus system,
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nosological patterns are used in distance-based classification methods.
In this case, we can make a quantitative comparison of a given patient’s
profile with each of patterns of nosological types (reference profiles) using
both standard and specialized distance measures.

– Multiway classification engine. One of the main tasks of building expert sys-
tems is to search for efficient methods of classification of new cases. There
is a lack of universal data mining and machine learning methods which can
be used for any kind of data and which deliver the acceptable results. In
modern computer decision support systems, a more certain way is to use
several techniques based on different methodologies. In this case, we obtain
the combination of classifiers (hybridization). Classifier combining methods
are a popular tool for improving the quality of classification (cf. [19]). In-
stead of using just one classifier, a team of classifiers is created, and the
predictions of the team are combined into a single prediction. In the Coper-
nicus system, this paradigm is adopted. In classifier combining, predictions
of classifiers should be aggregated into a single prediction in order to im-
prove the classification quality. The Copernicus system delivers a number of
aggregation functions. Classification in Copernicus is made on the basis of
several methodologies. We can roughly group them into the following cate-
gories: rule-based classifiers, distance-based classifiers, statistics-based clas-
sifiers. For each methodology, the most popular classifiers have been selected
and implemented.

– Visualization engine. Current status of research supports the idea that visu-
alization plays an important role in professional data mining. Some pictures
often represent data better than expressions or numbers. Visualization is
very important in dedicated and specialized software tools used in different
(e.g., medical) communities. In the Copernicus system, a special attention
has been paid to the visualization of analysis of MMPI data for making a
diagnosis decision easier. A unique visualization of classification rules in the
form of stripes put on profiles has been designed and implemented. A vi-
sualization surface comprises two-dimensional space which will be called a
profile space. The horizontal axis is labeled with ordered validity and clini-
cal scales whereas the vertical axis is labeled with T-scores. An exemplary
visualization of a classification rule in the profile space is shown in Figure 3.
Moreover, the Copernicus system enables the user to visualize:

• Classification functions.
• Specialized diagrams: Diamond’s diagram, Leary’s diagram.
• Dendrograms.

In the following part of this paper, we will concentrate on the rules knowledge
base. Selecting a proper set of rules is very important in classification tasks.
Some investigations in this area have been carried out earlier, see [10], [13], [14]
and [11].
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Fig. 2. A general structure of Copernicus

Fig. 3. Visualization of rules and profiles in Copernicus (example)
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4 The Rules Knowledge Base Hybridization

Organizing available domain knowledge, as well as dealing with the knowledge
acquired through data mining methods, can be realized in many different ways
[7]. We can consider the main categories of knowledge representation schemes
such as, rules, frames, graphs and networks. Knowledge representation in the
form of rules is the closest method to the human activity and reasoning, among
others, in making the medical diagnosis. Therefore, in the Copernicus system,
rule-based analysis of MMPI data is one of the most important parts of the tool.
The knowledge base embodied in the Copernicus system consists of a number
of rule sets generated by different data mining and machine learning tools, such
as:

– The Rough Set Exploration System (RSES) - a software tool featuring a
library of methods and a graphical user interface supporting a variety of
rough set based computations [1], [4].

– WEKA - a collection of machine learning algorithms for data mining tasks
[2], [31].

– RuleSEEKER - a belief network and rule induction system.

For classification of new cases we can use a hybrid rule set, which consists of
rules coming from all tools above-mentioned. The hybrid rule set is optimized
using methods described in section 5.

In our experiments described in section 6, we test classification rule sets in-
duced using five different approaches:

– the direct methods:
• the LEM2 algorithm,
• the covering algorithm,

– the decision tree based methods:
• via the C4.5 algorithm,
• via the CART algorithm,

– the belief network based method:
• via the K2 algorithm.

The first two algorithms, included in the RSES system, are based on a covering
approach. The LEM2 algorithm was proposed by J. Grzymala-Busse in [17]. A
covering algorithm is described in [3] and [32]. Covering-based algorithms pro-
duce less rules than algorithms based on an explicit reduct calculation. They are
also (on average) slightly faster. It seems to be important if we extend a number
of attributes in a decision table. Next two algorithms are well known machine
learning approaches to generation of decision trees. Each decision tree delivers
a set of classification rules. C4.5 is an algorithm used to generate a decision tree
developed by R. Quinlan [29]. C4.5 builds decision trees from a set of training
data using the concept of information entropy. The CART (Classification and
Regression Trees) algorithm was proposed by Breiman et al. [5]. A CART tree
is a binary decision tree that is constructed by splitting a node into two child
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nodes repeatedly. The last approach is available in the BeliefSEEKER system
[18], [24]. This tool is able to generate belief networks and also to generate sets
of belief rules on the basis of these networks. For inconsistent decision tables, in-
ternal mechanism based on the theory of rough sets [26] is used. In the rough set
theory approach, inconsistencies are not removed from consideration. Belief net-
works can be developed using various basic algorithms like K2, Naive Bayesian
Classifier, and Reversed Naive Bayesian Classifier.

Values of all scales (validity and clinical) can be treated as continuous quan-
titative data. The total number of values covers a specific interval (from 0 to
100 T-scores). Building classification rules for such data can be difficult and/or
highly inefficient. Therefore, for a number of rule generation algorithms, the
so-called discretization is a necessary preprocessing step [7]. Its overall goal is
to reduce the number of values by grouping them into a number of intervals.
In many cases, discretization enables obtaining a higher quality of classification
rules. Some discretization techniques based on rough sets and Boolean reasoning
have been presented in [3]. Moreover, some algorithms (especially based on de-
cision trees) applied for continuous data lead to rules with conditions in a form
of intervals.

For conditions in the form of intervals, we sometimes obtain that their lower
and upper bounds are, for example, −∞ and ∞, respectively. Such values cannot
be rationally interpreted from the clinical point of view. Therefore, ranges of
classification rule conditions in the Copernicus system can be restricted. We can
replace ∞ by:

– a maximal value of a given scale occurring for a given class in our sample,
– a maximal value of a given scale for all twenty classes,
– a maximal value of a given scale for a normalizing group (i.e., a group of

women, for which norms of validity and clinical scales have been determined),
– a maximal value for all scales for a normalizing group, i.e., 120 T-scores.

A procedure of restricting ranges of classification rule conditions with the value
−∞ is carried out similarly, but we take into consideration minimal values.
Minimal values for all scales of normalizing group of women are equal to 28
T-scores.

5 The Rules Knowledge Base Optimization

Among various techniques in data mining, classification rule mining is one of the
major and most traditional technique.

Inductive learning algorithms, in general, perform well on data that have been
pre-processed to reduce their complexity. However, they are not particularly ef-
fective in reducing data complexity while learning complicated cases [27]. For
a classifier, besides the classification capability, its size is another vital aspect.
In pursuit of high performance, many classifiers do not take into consideration
their sizes and contain numerous both essential and significant rules. This, how-
ever, may bring an adverse situation for a classifier, because its efficiency will



Experiments with Hybridization and Optimization 129

be put down greatly by redundant decision rules. So, it is necessary to eliminate
those unwanted rules [22]. Inductive learning algorithms used commonly for the
development of sets of decision rules can cause the appearance of some specific
anomalies in learning models [30]. These anomalies can be devoted to redun-
dancy, consistency, reduction and completeness of learning models in the form
of a decision rule set [21], [23]. These anomalies are often investigated in post-
processing operations [15], and may be fixed (and sometimes removed) using
some schemes generally known as verification and validation procedures [15].

The main optimizing algorithm used in the research was implemented in the
RuleSEEKER system, and was based on an exhaustive application of a collection
of generic operations [25]:

1. Finding and removing redundancy. Data may be overdetermined, that is,
some rules may explain the same cases. Here, redundant (excessive) rules
are analyzed, and next they are removed. This operation does not increase
the error rate.

2. Finding and removing incorporative rules. This is another example when
the data may be overdetermined. Here, some rules being incorporated by
another rule(s) are analyzed, and the incorporative rules are removed. This
operation does not increase the error rate.

3. Merging rules. In some circumstances, especially when continuous attributes
are used for the description of cases being investigated, generated learning
models contain rules that are more specific than they should be. In these
cases, more general rules are applied, so that they cover the same investigated
cases, without making any incorrect classifications.

4. Finding and removing unnecessary rules. Sometimes rules are unnecessary,
that is, there are no cases classified by these rules. Unnecessary rules are
removed. This operation does not increase the error rate.

5. Finding and removing unnecessary conditions. Sometimes rules contain un-
necessary conditions, that are removed. This operation does not increase the
error rate.

6. Creating missing rules. Sometimes the developed models do not classify all
cases from a learning set. Missing rules are generated using a set of unclas-
sified cases.

7. Discovering hidden rules. This operation generates a new rule by combina-
tion of similar rules, containing the same set of attributes and the same
attribute values except one.

8. Rule specification. Some rules cause correct and incorrect classifications of
selected cases, this operation divides a considered rule into a few rules by
adding additional conditions.

9. Selecting of the final set of rules. There are some rules that classify the same
set of cases but have different composition, a simpler rule remains in the set.

In our experiments described in the next section, we have sequentially used
all mentioned methods excluding those generating new rules.



130 J. Gomu�la et al.

6 Experiments

Our experiments were carried out on a data set with over 1000 MMPI profiles
of women. For this data set five sets of classification rules were induced using
approaches mentioned in section 4. Additionally, we have combined all of the
obtained sets of rules together. Each set of rules has been subjected to the
optimization process described in section 5. In our research, we are interested in
obtaining an optimal set of classification rules fulfilling a problem of supporting a
nosological diagnosis of patients with mental disorders on the basis of the MMPI
test. In Tables 2 and 3, results of individual optimization of each set of rules are
presented. The first table includes information about reducing a number of rules
in each investigated set after applying the optimization procedures. The second
table is the collation of information about changing the classification quality
of the sets of rules subjected to the optimization process. In Table 3, labels of
columns have the following meaning:

– ncc - a number of cases correctly classified by a given set of rules,
– nic - a number of cases incorrectly classified by a given set of rules,
– nnc - a number of cases non-classified by a given set of rules,
– acc - a classification accuracy for a given set of rules.

Optimization should lead to decreasing a number of rules and increasing their
classification abilities/qualities. The first requirement is especially important
from the point of view of diagnosticians. The smaller the set of rules is, the
better the clinical comprehension and interpretation of rules are.

Table 2. Results of experiments of individual optimization: number of rules

Algorithm No. of rules before optimization No. of rules after optimization

LEM2 246 199

Covering 283 192

C4.5 52 50

CART 20 11

K2 119 70

LEM2 + Covering 529 237

LEM2 + C4.5 298 129

Combined 720 134

Experiments have shown that putting together all possible sets of rules, in-
duced using different algorithms, does not make sense from the point of view of
classification accuracy. A number of rules has significantly increased, but it has
not improved the classification accuracy. It is worth noting that optimization
is an important step in building the rules knowledge base for the expert and
decision support systems. In our experiments, in each case, we could reduce a
number of rules and simplify rules by removing some conditions from their pre-
decessors. In the majority of cases, this process raises the classification accuracy.
Rule generation algorithms very often give us superfluous rules, which can be
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Table 3. Results of experiments: classification accuracy

A set of rules Before optimization After optimization
ncc nic nnc acc ncc nic nnc acc

LEM2 1478 0 232 0.864 1519 1 190 0.888

Covering 698 0 1012 0.408 659 28 1023 0.385

C4.5 890 704 116 0.520 897 697 116 0.525

CART 487 1154 69 0.285 494 1147 69 0.289

K2 658 24 1028 0.385 536 35 1139 0.314

LEM2 + Covering 1539 0 171 0.900 1541 12 157 0.901

LEM2 + C4.5 1029 656 25 0.602 1038 648 24 0.607

Combined 592 1117 1 0.346 606 1103 1 0.354

removed. Experiments have shown that sometimes a rule set can be reduced
by 30%. Solving a problem of selecting a suitable set of rules for creating the
rules knowledge base for the Copernicus system is not simple. On the one hand,
experiments have shown that the best results are obtained for the sets of rules
induced using direct methods (in our case included in the RSES system), on the
other hand, approaches based on decision trees deliver smaller sets of rules and
that is important for diagnosticians and clinicians.

7 Conclusions

In the paper, we have examined a problem of hybridization and optimization of
the rules knowledge base for the Copernicus system - a tool for computer-aided
diagnosis of mental disorders based on personality inventories. The knowledge
base has been built on the basis of five sets of classification rules induced by
different data mining and machine learning algorithms. An important thing is
the optimization process of the obtained sets of rules. Our main goal is to deliver
to diagnosticians and clinicians an integrated tool supporting the comprehensive
diagnosis of patients with mental disorders.
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Abstract. Traditional statistical models for remote sensing data have
mainly focused on the magnitude of feature vectors. To perform clus-
tering with directional properties of feature vectors, other valid models
need to be developed. Here we first describe the transformation of hyper-
spectral images onto a unit hyperspherical manifold using the recently
proposed spherical local embedding approach. Spherical local embedding
is a method that computes high-dimensional local neighborhood preserv-
ing coordinates of data on constant curvature manifolds. We then pro-
pose a novel von Mises-Fisher (vMF) distribution based approach for
unsupervised classification of hyperspectral images on the established
spherical manifold. A vMF distribution is a natural model for multivari-
ate data on a unit hypersphere. Parameters for the model are estimated
using the Expectation-Maximization procedure. A set of experimental
results on modeling hyperspectral images as vMF mixture distributions
demonstrate the advantages.

Keywords: spherical manifolds, mixture models, directional data, hy-
perspectral image clustering.

1 Introduction

For several years, spectral unmixing techniques have been widely used for hy-
perspectral data analysis and quantification. Many novel applications have been
developed from the unmixing point of view, including surface constituent identi-
fication for land use mapping, geology and biological process analysis[1]. Feature
extraction methods in the form of best band combinations have been the most ap-
plied standards in such analysis. The best band approach relies on the presence
of narrowband features which may be the characteristic of a particular category
of interest or on known physical characteristics of broad classes of data, e.g.,
vegetation indices [2]. On the other hand, the underlying assumptions of fea-
ture extraction methods are that: each pixel in a scene may be decomposed into
a finite number of constituent endmembers, which represent the purest pixels
in the scene. A number of algorithms have been developed and have become
standards; these include the pixel purity index and iterative spectral unmixing
[3]. Although the use of endmembers and indexes based on narrowband features
have yielded very useful results, these approaches largely ignore the inherent
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nonlinear characteristics of hyperspectral data. There are multiple sources of
nonlinearity. One of the more significant sources, especially in land-cover classi-
fication applications, stems from the nonlinear nature of scattering as described
in the bidirectional reflectance distribution function [4]. In land-cover applica-
tions, bidirectional reflectance distribution function effects lead to variations in
the spectral reflectance of a particular category as a function of position in the
landscape, depending on the local geometry. Factors that play a role in deter-
mining bidirectional reflectance distribution function effects include the optical
characteristics of the canopy, canopy gap function, leaf area index, and leaf an-
gle distribution [4]. It also has been observed that wavelengths with the smallest
reflectance exhibit the largest nonlinear variations [4]. Another source of nonlin-
earity, especially in coastal environments such as coastal wetlands, arises from
the variable presence of water in pixels as a function of position in the land-
scape. Water is an inherently nonlinear attenuating medium. Classification of
hyperspectral image data that exhibits these non-linearities poses a huge chal-
lenge to linear methods. Therefore increased better modeling of such data can be
aided by use of better transformation methods. Recently, there has been ongoing
work in the field of manifold learning to develop methods that capture the low
dimensional embedding of high-dimensional data from which the non-linearity
properties of observed data can easily be captured and incorporated into the
model with all the redundant information eliminated.

Many of the manifold learning methods embed objects into a lower dimen-
sional vector-space using techniques such as Multidimensional Scaling[5], Diffu-
sion Maps [7], Locally Linear Embedding [8], or Principal Component Analysis
[10]. Recently, a new method for embedding data onto a spherical manifold was
proposed in [11]. The spherical embedding approach maps the dissimilarity of
shape objects onto a constant curvature spherical manifold. It embeds data onto
a metric space while optimizing over the kernel distance matrix of positional
vectors. Each of these approaches represents an attempt to derive a coordinate
system that resides on (parameterizes) the nonlinear data manifold itself. The
methods represent a very powerful new class of algorithms that can be brought
to bear on many high-dimensional applications that exhibit nonlinear structure,
e.g., the analysis of remote sensing imagery. Once embedded in such a space, the
data points can be characterized by their embedding co-ordinate vectors, and
analyzed in a conventional manner using traditional tools. Models can be devel-
oped for the low dimensional embedded data. However, the challenge remains on
how to interpret the geometrical characteristics of the new space so that decision
making tools can take advantage of these properties.

In this paper we exploit the nonlinear structure of hyperspectral imagery us-
ing the spherical embedding method as a feature transformational tool. The
approach seeks a constant curvature coordinate system that preserves geodesic
distances in high-dimensional hyperspectral feature spaces. A With data em-
bedded onto a spherical manifold, modeling techniques can now be developed.
We first outline the intuition and motivation explaining why a spherical mani-
fold is relevant for remote sensing data. Traditional supervised and unsupervised
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classification algorithms involve multivariate data that is drawn from Rd with all
emphasis attached to the magnitude of the feature vectors while the directional
element of the feature vectors is usually not considered. For some non-linearities
observed in remote sensing imagery data,e.g. presence of water in pixels viewed as
a function of position in the landscape, it makes sense to transform the observed
data onto manifolds on which the coordinate system allows for the directional
nature of the features to be significant. It has been observed that for most high-
dimensional remote sensing feature vectors, the cosine similarity measure which
is a function of an angle between a pair of vectors, performs better than the Eu-
clidean distance metric [13]. Such an observation suggests pursuing a directional
model for hyperspectral images. With the above insight, we develop a novel von
Mises-Fisher (vMF) distribution based approach for unsupervised classification
of hyperspectral images on spherical manifolds. This is an approach for unsuper-
vised classification of embedded hyperspectral data based on a mixture model,
where the distribution of the entire data is considered to be a weighted summa-
tion of the von-Mises Fisher class conditional densities. The vMF distribution is
a generalization of the von Mises distribution to higher dimensions [15,16]. This
distribution arises naturally for directional data with few parameters requiring
estimation.

The main aim of this study is to introduce spherical manifolds to remote sens-
ing data using the spherical embedding approach and also to propose a model
for identifying cluster components of similar land cover usage. Unsupervised
classification of AVIRIS data is performed with each pixel allocated a class la-
bel with the highest posterior probability. Cluster components are mapped to
corresponding classes using the best permutation mapping obtained from the
Kuhn-Munkres algorithm [6]. In the next section, we first discuss the embed-
ding space and the method of transforming hyperspectral images to a constant
curvature manifold. We then present the model based clustering on a spherical
manifold. Experimental results are provided with discussions on why spherical
manifolds with neighborhood preserving properties have a potential impact on
future models for hyperspectral images. The last section concludes with a brief
discussion and ideas future work.

2 Spherical Embedding of Image Pixels

A spherical manifold defines the geometry of a constant curvature surface. The
spherical embedding procedure we apply has neighborhood preserving properties
meaning that transformed feature vectors of similar pixel vectors are embedded
in the neighborhood of each other. The outline of the embedding algorithm as
recently proposed in [11], is shown in Figure 1. In the following sections, we
first set up the Bayes rule for a single component model based approach for
classifying image pixels on a spherical surface and then we will apply the same
rule to a spherical mixture model for image pixels.
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Input: Dissimilarity matrix Dn×n, where n is the number of pixels.
Output: X�, whose rows are pixel coordinates and whose inner-product
X�X�T has the same neighborhood as D. Procedure:

1. If the spherical point positions are given by Xi, i = 1, · · · , n, then
〈Xi, Xj〉 = r2 cos βij , with βij =

dij

r
.

2. If X in unknown, compute for X such that XXT = Z, where Zij =
r2 cos βij and dij ∈ D. Find the radius of sphere as r� = arg minr λ1{Z(r)}.
λ1 is the smallest eigenvalue of Z(r).

3. Set Ẑ = Z
r� and X� = arg minX,xT x=1 ‖XXT = Ẑ‖

4. Decompose Ẑ, Ẑ = UΛUT . Set the embedding positional matrix to be X� =
Un×kΛ

1/2
k×k, where k is chosen such that the elements of Un×k corresponds

to the largest k eigenvalues of Λk×k.

Fig. 1. Outline of Spherical Embedding

3 von Mises-Fisher Model and Bayes Rule

The Bayes rule approach to supervised classification is a fundamental technique,
and it is recommended as a starting point for most pattern recognition appli-
cations. The rule bases its classification in terms of probabilities. As such all
probabilities must be known or estimated from the data. We adapt this rule
and apply it on data that has been mapped to a spherical manifold. Traditional
Gaussian models cannot be applied on spherical manifolds as the properties of
the data have been manipulated to have a unit magnitude while the feature
angles are different. The analysis of such data will require models that can only
depend on the direction of the vectors and not their magnitudes. Such models
for handling directional data have been used in literature [15]. We assume that
each embedded pixel vector was generated from a von Mises-Fisher distribution.

Given directional data sample {xi}n
i=1 such that each xi has the property,

‖x‖ = 1, that is, xi ∈ Sd−1, with S a unit hypersphere of dimension (d − 1), the
assumed corresponding von Mises-Fisher density is defined by

f(x|μ, κ) =
κ

d
2−1

(2π)
d
2 I d

2−1(κ)
exp{κμT x} (1)

where Ir(·) denotes the modified Bessel function of the first kind and order r.
The parameters μ and κ, denotes the mean direction and concentration param-
eter of the distribution, respectively. The greater the value of κ, the higher the
concentration of the distribution around the mean direction μ. The distribution
is uni-modal for κ > 0, and is uniform on the sphere for κ = 0. The posterior
probability for choosing class membership is defined by

P (cj |x0), j = 1, . . . , J (2)
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The above equation describes the probability that the test vector belongs to the
j-th class given the observed feature vector x. Making use of the Bayes’ Theorem
we can find the posterior probabilities by

P (cj |x0) =
P (cj)P (x0|cj)

P (x0)
(3)

where P (x0) =
∑J

j=1 P (cj)P (x0|cj). P (cj) can be inferred from prior knowledge
of the application, estimated from the data by defining it to be P (cj) = Nj

N ,
where Nj is the number of training samples with class label j and N is the
total number of training samples. The class conditional P (x0|cj) represents the
probability distribution of the features of each class. Thus, for parametric density
estimation, one has to assume a form of distribution for the class conditionals and
then proceed to estimate the parameters for that distribution. As noted above,
we have made the assumption that the feature vectors were generated from a
von Mises-Fisher distribution. The next task is then to estimate the parameters
of a von Mises-Fisher distribution for each class of the labeled data.

3.1 Maximum Likelihood Estimation

Maximum likelihood estimation on a spherical manifold is simply carried out in
a conventional manner, i.e given a sample space X of unit random pixel vectors
drawn independently according to f(x|μ, κ), the likelihood of the sample space
is given by

L(X|μ, κ) =
n∏

i=1

f(xi|μ, κ) (4)

We can write the above in the log-likelihood form to get

log L(X|μ, κ) = n log cdκ + nκμx̄ (5)

where x̄ = 1
n

∑n
i=1 xi and cdκ = κd/2−1

(2π)d/2Id/2−1(κ)
. To obtain the maximum likeli-

hood estimates of μ and κ, we maximize equation (5) subject to the constraint
μT μ = 1 and κ ≥ 0. For a classification task, we consider the training instances
of each class separately in estimating the model parameters. Given j = 1, . . . , J
classes, the derivations of the MLE solutions μ̂j and κ̂j for each class conditional
are given by

μ̂j =
x̄j

‖x̄j‖ (6)

and

A(κ̂j) =
Id/2(κ̂j)

Id/2−1(κ̂j)
= x̄j (7)
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where x̄j =
∑

xi∈Cj
xi and ‖x̄j‖ is the length of the average resultant vector

for class j. A closed form solution of equation (7) is not possible and one can
use numerical techniques to solve for κ̂j . A reasonable approximation to the
solution is obtained by following the approach used in [16] from which κ̂j is set
to ‖x̄j‖d−‖x̄j‖3

1−‖x̄j‖2 .

Bayes Decision Rule: Given a feature vector x ∈ Sd−1, we assign it to class
cj if:

P (cj |x) > P (ck|x); k = 1, . . . , J ; k �= j. (8)

That is, we classify an observation x as belonging to the class that has the
highest posterior probability. In the next section, we consider a case where class
labels are not available for all sample observations.

4 Mixture of von Mises-Fisher Model

When the data sample space is considered to be incomplete due to the absence of
class labels, it is not so easy to make an assumption that each sample belongs to
a specific model. So a commonly used approach is to consider that the observed
samples, {xi}N

i=1, were generated from a mixture of J components and each
component corresponds to a class which is modeled by a probability distribution
that is a member to the assumed family of distributions. We make the assumption
that the directional data samples are generated from a mixture of von Mises-
Fisher models f(xi|θj), each with parameter vector θj = (μ, κ) for 1 ≤ j ≤ J . A
mixture of von Mises-Fisher has a joint density of the form

f(xi|Θ) =
J∑

j=1

αjfj(xi|θj) (9)

where Θ = {α1, . . . , αJ , θ1, . . . , θJ} and the αj ’s are constrained to
∑J

j=1 αj =
1. For a given embedded hyperspectral image we let X={x1, . . . , xn} be the
set of spherical pixel vectors, with each vector sampled according to equation
(9). Let Y={y1, . . . , yn} be the corresponding set of latent variables with each
yn ∈ {1, . . . , J}. For example, yi = j if xi is sampled from fj(·|θj). The log-
likelihood of the observed embedded pixel vectors is a random quantity given
by

log P (X ,Y|Θ) =
n∑

i=1

log αyifyi(xi|θyi) (10)

Obtaining the maximum likelihood parameters of the above expression would
have been easy if the values of yi were known just like in the case of supervised
classification of section 3.2. Since the label yi for each coordinate pixel xi is
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unknown, the solution to the derivatives of equation (10) can be found using the
expectation-maximization (EM) algorithm [14].

On the (t + 1)th iteration of the EM algorithm, the E step is equivalent to
replacing the unobserved random quantities in Y by their current conditional
expectations, which are the current conditional probabilities of Y = j given
X = xi:

p
(t)
ij =

α
(t)
j f(xi; θ

(t)
j )∑J

k=1 π
(t)
k f(xi; θ

(t)
k )

= p(Y = j|X = xi; θ) (11)

with 1 ≤ i ≤ n; 1 ≤ j ≤ J .
The M step requires finding the value of Θ at the (t+1) iteration. Thus Θ(t+1)

would be the value that globally maximizes the objective function

Q(Θ, Θ(t)) =
∑
Y

p(Y|X , Θ(t)) ln p(X ,Y|Θ)

Thus, in the M step, the quantity that is being maximized is the expectation of
the complete-data log likelihood. This effectively requires the calculation of the
component distribution maximum likelihood estimates. The updated component
parameter estimates for the (t + 1) iteration, θ

(t+1)
j , are obtained by solving the

weighted log-likelihood equation

n∑
i=1

p
(t)
ij ∂ log f(xi; θj)/∂θj = 0. (12)

After applying calculus to this equation, we obtain the following required update
parameters for each cluster component distribution:

αj =
1
n

n∑
i=1

p(j|xi, Θ), μ̂j =
x̄j

‖x̄j‖ , (13)

A(κ̂j) =
Id/2(κ̂j)

Id/2−1(κ̂j)
⇒ κ̂j = A−1(‖x̄j‖) (14)

=
‖x̄j‖ d − ‖x̄j‖3

1 − ‖x̄j‖2 (15)

where

‖x̄j‖ =
‖∑n

i=1 xip(j|xi, Θ)‖∑n
i=1 p(j|xi, Θ)

, p(j|xi, Θ) =
αjfjxi∑K

k=1 αkfkxi

(16)

The maximum likelihood estimates ensure that the inequality

Q(Θ(t+1); Θ(t)) ≥ Q(Θ(t); Θ(t))

is true for each Θ(t+1). This is sufficient to ensure that the likelihood is not
decreased.
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5 Experiments

We consider a random unit vector X , whose elements are positional coordinates
of the intensity values (pixel bands values) of a pixel sample from the correspond-
ing spectral bands of a hyperspectral image. The randomness in the vector is
introduced by physical, scattering effects and atmospheric features. As such, it
makes sense to consider the physical properties of an area as being characterized
more by the distribution of the vector of directional positional intensities than
by the magnitude of the vector. We make the assumption that sample directional
unit pixel positional vectors were generated by selecting the class cj , with prior
probability αj and then selecting X , according to f(X |θj) so that the mixture
model derived in (9) can be applied.

5.1 Data

AVIRIS Hyperspectral West Lafayette 1992 Image:- To establish the
effectiveness of the proposed hyperspectral feature transformation onto spheri-
cal manifold, and the application of the proposed mixture model, we generate
results from the AVIRIS multispectral image. The West Lafayette image was
used in the experiments. This data is a multispectral image that was obtained
from the Airborne/Infrared Imaging Spectrometer that was built by Jet Propul-
sion Laboratory and flown by NASA/Ames on June 12, 1992 [12]. The scene is
over an area that is 6 miles west of West Lafayette. It contains a subset of 9
bands from a significantly larger image with 220 bands. The bands considered
have wavelengths 0.828− 0.838, 0.751− 0.761, and 0.663− 0.673 μm. The image
has 17 classes (background, alfalfa, corn-notill, corm-min,corn, grass/pasture,
grass/trees, grass/pasture-mowed, hay-windrowed, oats, soybeans-notill,
soybean-min, soybean-clean, wheat, woods, dldg-grass-tree-drives, and stone-
steel-towers). The image size is 145× 145 pixels. The pixel resolution is 16 bits,
corresponding to 65536 gray levels. 3403 pixels were selected to generate the
ground-reference data. For the experiments, each sample pixel is of dimension
81 consisting of the pixel’s values from the 9-bands and the 9-bands values for
each of its 8 neighbors. In Figure 2, we show the actual land cover usage from
the AVIRIS image together a subset of the land cover cosine coordinates for with
each pixel embedded onto a spherical manifold. Where we chose the embedding
space to be a 2-dimensional sphere for representational purposes.

AVIRIS Hyperspectral Tippecanoe County Image 1986:- This is a small
segment (169 lines x 169 columns of pixels) of a Thematic Mapper scene of
Tippecanoe County, Indiana gathered on July 17, 1986 [12]. The subset consist
of 7 bands of a significantly 220 bands. The image has 7 classes (background,
corn, soybean, wheat, alfalfa/oats, pasture, and sensor/distortion). Two thou-
sand pixels were selected to generate the ground-reference data. For the experi-
ments, each sample pixel is of dimension 63 consisting of the pixel’s values from
the 7-bands and the 7-bands values for each of its 8 neighbors. In Figure 3, we
show the actual land cover usage from the AVIRIS image and a subset of land
cover cosine coordinates for test pixel embedded onto a spherical manifold.
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Fig. 2. (Left)-AVIRIS 1992 West Lafayette land cover usage, color coded on ground
truth. (Right)-corresponding cosine pixel coordinates on a spherical manifold.
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Fig. 3. (Left)-AVIRIS 1986 Tippecanoe County land cover usage color coded on ground
truth. (Right)-corresponding cosine pixel coordinates on a spherical manifold.

5.2 Results

To evaluate the performance of the von Mises-Fisher mixture model on hyper-
spectral data clustering, we use a metric-accuracy proposed in [17]. The dataset
consist of N samples, all with labeled clusters. With each sample’s predicted
cluster label denoted ti and the corresponding ground truth labelled gi, the
clustering accuracy is defined by

accuracy =
∑N

i=1 δ(gi, map(ti))
N

(17)

where δ(gi, map(ti)) is a delta function equal to 1 if the label gi is equal to the
label ti, otherwise it is 0. The function map(ti) is the best permutation mapping
obtained from the Kuhn-Munkres algorithm [6]. The function maps the predicted
cluster labels to the corresponding best permuted representational cluster.

The clustering accuracy of the proposed von Mises-Fisher mixture model is
compared to the results obtained using the spherical K-means algorithm [18]. It
can be seen from Table 1 that both methods achieve above random guessing ac-
curacy when classes are well separated. This indicates that when a hyperspectral
image is embedded onto a spherical manifold, pixel vectors with similar prop-
erties tend to have directional properties that are related. The non-linearities
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observed in images with water medium results in pixel vectors following a par-
ticular directional distribution. For both methods higher accuracy was observed
for fewer cluster components. We make a note to compare our results with those
obtained in [9], from which the authors used an independent component mix-
ture model to study the same data set but for only four clusters. We applied
our proposed method to a small subset image with four clusters and observe the
clustering accuracy to be 67%. This value is 7% above the best accuracy value
which was reported in [9] for the same ground truth. This indicates that our pro-
posed method has additional capability to carry out better classification over an
independent component analysis(ICA) mixture model. In order to give a further
quantitative performance evaluation of the proposed model, we collected 2000
cosine pixel coordinates from the spherically mapped Tippecanoe County image.
With the selected pixels coordinates, confusion matrix was built based on the
relationship between the mapping obtained from the Kuhn-Munkres algorithm
[6] and the ground-truth labels shown in Figure 3. The statistical accuracies are
shown in Table 2. The mixture model exhibited better accuracy on clustering
the pixel coordinates.

The accuracy is however sensitive to an introduction of new sample points
from cluster components with overlapping structures. In Figure 4, we show a
result of AVIRIS-West Lafayette image clustering accuracy degrading with the
introduction of new cluster components. This artifact could be expected from
most unsupervised learning methods. The argument being that as more and more
overlapping structures are introduced, sample points that are located at the clus-
ter component boundaries are more likely to present more ambiguity as to which
cluster they belong to, as a result degrading the performance of the algorithm.
However, the results clearly supports a motivation for exploring a new coordi-

Table 1. Clustering accuracy(%)- AVIRIS 1992 Indian Pine Site

number of clusters spherical-Kmeans von Mises-Fisher mixture

2 55.10 ± 0.3 68.35 ± 0.1
3 68.72 ± 2.3 88.23 ± 3.2
4 58.06 ± 0.1 75.33 ± 1.8
5 46.52 ± 0.1 68.16 ± 0.6
6 49.77 ± 2.7 67.90 ± 1.6
7 51.19 ± 1.4 63.16 ± 1.89
8 49.05 ± 0.9 64.40± 2.06
9 50.95 ± 0.8 63.31 ± 3.8
10 50.57 ± 0.5 59.91 ± 2.4
11 48.20 ± 1.6 60.9 ± 2.8
12 48.10 ± 1.1 54.74 ± 0.8
13 48.96 ± 1.2 53.12 ± 0.4
14 47.66 ± 1.16 50.53 ± 0.1
15 45.35 ± 0.5 48.53 ± 0.8
16 45.37 ± 0.6 46.53 ± 0.7
17 43.88 ± 0.4 45.07 ± 0.5

Avg accuracy 50.25 61.38
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Table 2. Clustering accuracy(%)- AVIRIS 1986 Tippecanoe County

number of clusters spherical-Kmeans von Mises-Fisher mixture

2 77.46 ± 0.1 75.89 ± 0.3
3 73.77 ± 1.5 76.22 ± 1.7
4 54.65 ± 0.03 68.95 ± 3.1
5 44.77 ± 0.2 66.47 ± 0.7
6 39.33 ± 1.5 63.19 ± 2.3
7 38.13 ± 1.1 55.81 ± 1.0

Avg accuracy 46.87 58.08
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Fig. 4. Clustering accuracy on AVIRIS-West Lafayette Image

nate space from which to model hyperspectral images. As we mentioned earlier,
a von Mises-Fisher distribution is similar to a constrained covariance Gaussian
distribution. As such, all cluster components are constrained to have constant
concentric countour shapes. The overall result of modelling hyperspectral image
pixels as cosine spherical coordinates using a mixture of von Mises-Fisher model
appears to fit the clusters with an oval shape inaccurately. Elliptic or oval shaped
cosine coordinate data can be better modelled using Kent distributions [15]. The
advantage of the Kent distribution over the von Mises-Fisher distribution on a
spherical manifold is that the equal probability contours of the density are not
restricted to be circular, they can be elliptical as well. Our future goal is to
explore such models and their impact on spherically embedded remote sensing
images.

6 Conclusions

In this paper, we have discussed a constant curvature nonlinear coordinate
description of hyperspectral remote sensing data citing example data with a
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number of sources of nonlinearity such as subpixel heterogeneity and multiple
scattering, bidirectional reflectance distribution function effects and the presence
of nonlinear media such as water. The direct result of such non-linearities is a
fundamental limit on the ability to discriminate, for instance, spectrally similar
vegetation such as forests when a linear spectral coordinate system is assumed.
Our approach was to seek a constant curvature manifold on which hyperspectral
images could be represented by their angle information and proceed to develop
an unsupervised algorithm for analysis of the data. The motivation of using
cosine coordinates was due to observing the success of the cosine similarity met-
ric in image retrieval systems in Euclidean spaces. We have proposed a novel
approach derived from embedding hyperspectral images onto a spherical man-
ifold using the spherical embedding method. The approach models embedded
image pixels as random directional quantities generated from a mixture of von
Mises-Fisher distributions. The results presented indicate the benefits of seeking
spherical coordinates for analysis of hyperspectral images.
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Abstract. The size and configuration of pores are key features for wood
identification. In this paper, these features are extracted and then used
for construction of a decision tree to recognize three different kinds of
pore distributions in wood microscopic images. The contribution of this
paper lies in three aspects. Firstly, two different sets of features about
pores were proposed and extracted; Secondly, two decision trees were
built with those two sets by C4.5 algorithm; Finally, the acceptable recog-
nition results of up to 75.6% were obtained and the possibility to improve
was discussed.

Keywords: wood identification, porosity of wood, wood microscopic
image, C4.5.

1 Introduction

Intelligent systems for recognition of wood species have been developed to iden-
tify woods according to some features, particularly wood anatomy features such
as vessels, perforation plates, parenchyma and so on. It is expected that such a
process can be done automatically by a computer without any manual interven-
tion. Some of the latest intelligent recognition systems are based on macroscopic
features such as color and texture in macroscopic images. About 30 different
kinds of woods have been recognized by using these systems [1] [2]. The advan-
tage of these systems is due to the simple process. Neither special equipment
such as a microscope nor wood slicing is required. Nevertheless, information ob-
tainable from macroscopic images is limited and is not sufficient for identifying
a wide range of woods. Therefore, information from microscopic features is nec-
essary for accurate classification of species in a wide range of woods [3]. Indeed,
the International Association of Wood Anatomists (IAWA) published a list of
microscopic features for hardwood identification [4]. From the list published by
IAWA, we can find over 100 features that are used to identify hard wood. On the
other hand, for human inspectors, much training time is necessary for gaining
sufficient ability to use such complicated features. The same thing happens even
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to a computer if all the features are given. It is also known that too many fea-
tures degrade the classification performance in general, so that feature selection
has been discussed in a long history of pattern recognition [5]. Feature selection
also helps to reduce time and labor for measuring the values of the features. We
therefore focus first on the most important features according to the domain
knowledge. One of these features is vessels.

The vessels of hard wood appear as pores in a cross section of wood slide. The
size, distribution, combination and arrangement of pores are important features
to recognize the species of hard wood [6], and the pore distribution in particular
contributes most to recognition. Pores have three kinds of different distribution
shapes which are also known as porosity according to their early wood/late wood
transition as depicted in Fig. 1: ring, semi-ring and diffuse. In ring porous wood,
each region surrounded by two growth rings has large pores in the early wood
zone and small vessels in the late wood zone. The large pores can be observed
with naked eyes, but the small vessels can only be observed by a microscope. In
semi-ring porous wood, the pores in the early wood zone have a large diameter
and gradually decrease in size toward the late wood zone. In some cases, semi-
ring porous woods also have pores of the same sizes in early wood and late wood,
but the frequency of pores in early wood is higher than that in late wood. In
diffuse porous wood, pores of almost the same sizes are distributed uniformly
across the entire zone [7].

Pattern recognition technique and digital image analysis technology have been
successfully integrated into a strong tool for dealing with many aspects of agricul-
ture, such as inspection and grading of agriculture and food products [8][9][10],
tracking animal movements [11], machine vision based guidance systems [12][13],
analysis of vertical vegetation structure [14], green vegetation detection [15][16],
and weed identification [17][18]. However, in the case of wood species recogni-
tion by microscopic information, there hardly exists any work on discussing how
to recognize these features by computers, although IAWA published the list of
microscopic features for hardwood identification about 20 years ago. This paper

(a) ring porous (b) semi ring porous (c) diffuse porous

Fig. 1. Typical configurations of three different kinds of wood porosity
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gives an algorithm to recognize the three kinds of porosity in hard woods. Sec-
tion 2 presents the samples and the methods used in the paper. Section 3 gives
the results and discusses them. Finally, the conclusion is given in Section 4.

2 Materials and Methods

In the following, the information about images used in this paper is introduced
firstly, then the proposed process for distinguishing three kinds of hard wood
species is described in three parts in order: segmentation, feature extraction and
classification.

2.1 Image Data

Wood microscopic images were collected as basic research materials in this
study. We selected 135 microscopic cross sectional images from the database of
Japanese woods (http://f030091.ffpri.affrc.go.jp/index-E1.html) that
include three different kinds of wood pore distribution. These 135 images are
divided into 45 diffuse-porous images, 45 ring-porous images and 45 semi ring-
porous images. In the database of Japanese woods, every wood image has an
identification key named TWTwNo. Besides the original image, we can find
more detailed information such as wood species, collection date, collection place
and collectors in the database according to the TWTwNo. The TWTwNo infor-
mation of all the images used in this paper can be found in Table 1.

All of the images have the same size of 1500 × 997, which means a height of
1500 pixels and width of 997 pixels, and, they were saved in JPEG image format.
A scale bar of 1 mm is marked at the right bottom corner of each image. One
image of ring porous wood is shown in Fig. 2. It is a microscopic cross-sectional
image of Araliaceae Kalopanax pictus which was taken by a Nikon D100 camera
in 2002.

Table 1. TWTwNo of every image

Porosity TWTwNo

diffuse 13908 16201 16016 15927 5691 18155 15129 16944 15098 1307
18072 4340 14822 4356 4397 15860 16082 17072 6377 18134
12829 6369 419 14291 13899 12831 12846 14352 13879 14911
12836 12909 15094 12820 15087 12907 15223 757 521 16063
43 416 12916 14256 15168

ring 17512 13971 17535 2669 15934 15504 14866 15494 4000 13900
14334 3385 19817 4334 9308 16954 17525 4337 5774 9323
423 15897 14174 739 13874 18074 17050 13421 16941 17969
5775 9321 25 6363 13966 3373 4818 4000 13956 18025
516 2874 6329 14887 17545

semi ring 14281 14289 14277 18565 16268 15486 16976 15671 16315 14367
6365 18394 15910 12843 3407 14810 14904 17321 640 4343
14759 14368 2228 460 14275 16952 2578 14279 18602 18011
14766 2873 13925 17559 15942 16282 14888 16294 426 2556
15515 15527 15800 17544 18549

http://f030091.ffpri.affrc.go.jp/index-E1.html
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Fig. 2. One image of ring porous wood: Araliaceae Kalopanax pictus

2.2 Segmentation Algorithm

In a microscopic cross sectional image, we can recognize many tissues other than
pores such as xylem ray, parenchyma, growth rings, fibers and other tissues
(Fig. 3). Therefore only pores have to be spotted.

There are two difficulties to be solved in pore segmentation. The first difficulty
is due to the variety of sizes and the variety of shapes. For example, large pores
have tangential diameters of more than 300 μm, while those of small pores are
less than 100 μm. Some pores exist solitarily, while others are multiple or even
arranged in a chain, cluster or band. The other difficulty comes from the existence
of fibers and longitudinal parenchyma. The parenchyma and pore are similar in
color and shape but different in size. Thus, taking such a slight difference into
consideration is necessary to improve the accuracy of segmentation.

Fig. 3. Many tissues including pores found in an microscopic image
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The authors gave already an effective algorithm based on mathematical mor-
phology to solve the above problem [19]. The algorithm uses a disk shape struc-
turing element that can change its radius according to the size of pores. All the
pores information are saved as pi = (xi, yi, si), after getting an accurate result
of segmentation, where pi means the ith pore, xi and yi are the center posi-
tions of the pore, si represents the area of the pore. The range of positions is
0 ≤ xi ≤ 997, 0 ≤ yi ≤ 1500. The unit of area si is pixel and si > 0. It is
worth noting that there are some inaccuracy in pi = (xi, yi, si) because mathe-
matical morphology cannot provide very precise edges of pores in segmentation
results. For example, the erosion operation will cause reduction of pores area.
Fortunately this slight inaccuracy will not cause serious problem to the following
process.

2.3 Feature Extraction

The individual pore information pi = (xi, yi, si) is not directly useful for recog-
nizing the three kinds of porosity. The configuration also has to be taken into
consideration. A promising feature seems to be the diameter change along to the
vertical direction (early to late zones) as explained before. Therefore we use such
features as the first feature set. In addition, we prepare another feature set. In
general, features are desirable to be invariant to rotation, scale and translation of
images. In our material, scale seems almost the same because of the microscopic
measurement, but rotation and translation should be considered. Therefore, we
focus on local features determined by the nearest pairs of pores. For each pore,
we find the nearest pore and measure the size difference, the relative direction
and the distance between them. After that, we construct a histogram over these
values so that the histogram features are invariant to rotation and translation.
Strictly speaking, the rotation makes change the values but it is only within the
change of histogram bin numbers.

In this section, we will show two feature sets: one is of the features connected
to diameter change of pores along to the vertical direction and another is of the
features that are invariant to rotation and translation.

The features of vertical direction. It is noted that the difficulty in rec-
ognizing the growth rings leads to the difficulty in detecting the local diameter
change of pores; however, it is not difficult to consider the global diameter change
of all the pores in the whole image along the vertical direction. The following
procedure is applied to extract such a global diameter change.

Step1. Divide the image into 30 equally-sized divisions Dj , j ∈ [1, 2, ..., 30],
along by the vertical direction. A sub-image Dj is a strip with a size of
50 × 997.

Step2. Normalize all the areas of pores into [0 1] by the maximum value of pore
areas.

Step3. Calculate the average Sj of areas of pores in each Dj.
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Step4. In order to inspect the global diameter change of pores, we sort Dj by
the value Sj , so that D1 can be regarded as the begin of the early zone and
D30 can be regarded as the end of the late zone.

We sort Dj because there are always more than one growth ring in an image
and the internal varies. After sorting, we can treat all the pores as those between
two growth rings (Fig. 4).

Fig. 4. Sort Dj by the value Sj

As a result, we have a graph feature set of 30 values.
The results are shown in Fig. 5 for one example of each class. We can observe

that the average areas (thus the radii) of pores decrease gradually from early
zones to late zones and some degree of difference between these three classes is
detectable.

The variety in graph of diffuse porosity is the least among three kinds of
porosity. Indeed, the size of pores in diffuse porous wood is almost the same
regardless of position. The ring porosity has the largest variety because there
are tremendous changes in pore size between early wood and late wood. The
variety of semi ring porosity is between diffuse and ring porosity.

(a) diffuse porous (b) ring porous (c) semi ring porous

Fig. 5. Area change of pores along to the vertical line (1 to 30 according to the early
to late zones)
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Invariant features to rotation and translation. Next, a feature set invari-
ant to rotation and transition is extracted as follows:

Step1. For each pi, quantize the value si of area into one of three values accord-
ing to the rule {1 : si ∈ [0, 0.15); 2 : si ∈ [0.15, 0.35); 3 : si ∈ [0.35, 1.0)}.
Here, si is normalized to (0, 1].

Step2. Find the nearest neighbor pj of each pi with the same quantized size.
Step3. Calculate the angle θi and distance di between pi = (xi, yi) and pj =

(xj , yj):

θi(pi, pj) = arctan
yj − yi

xj − xi
(1)

di(pi, pj) =
√

(yi − yj)2 + (xi − xj)2 (2)

Step4. Quantize the normalized distance di ∈ (0, 1] into one of three values
according to {1 : di ∈ [0, 0.25); 2 : di ∈ [0.25, 0.45); 3 : di ∈ [0.45, 1.0)}.
Similarly, the angle θi is quantized according to {1 : θi ∈ [0, π

3 ); 2 : θi ∈
[π
3 , π

2 ); 3 : θi ∈ [π
2 , 2π

3 ); 4 : θi ∈ [ 2π
3 , π)}.

Step5. Construct a histogram H over 36(= 3 × 4 × 3) bins by quantizing the
(pi, pj) pair for every pi, where pj is the nearest to pi and both have the same
size. Here, H [a, b, c] corresponds to the frequency of pairs (pi, pj) producing
ath size, bth angle and cth distance.

(a) components

(b) diffuse porous (c) ring porous (d) semi ring porous

Fig. 6. Histogram of invariant features.
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Fig. 6 shows three different histograms for three different porosities. From
Fig. 6, we can observe that different porosity types have different histograms
of invariant features. For diffuse porosity, almost every bin in histogram has a
non-zero value. It means that pores in diffuse porosity have different sizes, angles
and distances. It is reasonable because pores are distributed uniformly without
any order in diffuse porosity. For ring porosity, we can find some near-zero values
of components in the histogram, especially in the middle area of the histogram.
A possible reason is that the translation of pore size from early wood zone to
late wood zone is rapid, so that only large and small pores are observable. We
also notice that close pairs of pores (#bin=1,4,7,· · · ) are much more found in
ring porosity. Semi ring porosity shows an intermediate characteristic between
two others.

2.4 Porosity Recognition

The decision tree with features of vertical direction. In order to analyze
the discriminative information of those feature sets, we use C4.5 algorithm [20].
C4.5 algorithm generates a set of classification rules as a decision tree.

First, we used the first set of features of vertical direction. The decision tree
is shown in Fig. 7. We can see some simple rules from the tree. For example, if
the average pore area is larger than 0.05 in the 24th band (of 30 bands), and the
average pore area is larger than 0.1553 in the 26th band, then the image will be
classified to ’D’ (diffuse porosity). In the total 135 images, there are 41 images
classified to ’D’ by this rule, however, the other 3 images are misclassified to ’D’.
For the decision tree, the dominant rules are three. For diffuse porous woods, the
pore area in late wood zone such as the 24th and 26th bands should be relatively
large. For ring porous woods, the average pore area in late zone (the 24th band)
should be very small. The semi-ring porosity should not satisfy either of these
two rules. These rules are almost consistent to our knowledge of porosity.

The decision tree with invariant features. Next, in order to know the
detailed relationship between the invariant features and the porosity, we use
C4.5 again with the second set of features.

Fig. 7. Decision tree with features of vertical direction. The node such as ′n ≤ v :
k(a/b)′ means a samples are classified as porosity k, k ∈ {′D′,′ R′,′ S′}, if the value of
the nth feature is less than or equal to v, while b samples are misclassified.
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Fig. 8 is the decision tree for porosity recognition given by C4.5 algorithm.
Each node corresponds to the decision at one component in the histogram. From
this figure, we find that most ring porosity images (circled in the decision tree)
satisfy the condition [2,3,1]≤8, [2,1,3] ≤4, [2,4,2]≤3 and [2,1,2]≤2. It means
roughly that middle size pores ([2,∗,∗]) should be less regardless of the angle
and distance. This is consistent to the observation seen in the rule for ring
porous images with the first set of features. For most semi-ring porous images
(circled in the decision tree) satisfy the condition [2,3,1]>8,[1,4,1]>19,[3,2,1]≤32
and [3,4,1]> 4. It means that this porosity is decided by pairs with small distance
([∗, ∗, 1]). The change of pore size is smooth in semi-ring porosity, and therefore
same size neighbors tend to be found in short distances. For the same reason,
’[3,2,1]≤32’ says that large and close pairs in vertical direction should be not so
many. For most diffuse porous images (circled in the decision tree), the length
of condition part of the most dominant rule is shorter than those of two others
([2,3,1]>8 and [1,4,1]≤19). Such a simpler rule implies that the diffuse porosity
is easy to be separated from the other two porosities.

Fig. 8. The decision tree with invariant features. The node such as ′n ≤ v : k(a/b)′

means a samples are classified as porosity k, k ∈ {′D′,′ R′,′ S′}, if the value of the nth
feature is less than or equal to v, while b samples are misclassified.



156 S. Pan and M. Kudo

3 Results and Discussion

3.1 Classification Performance

We obtained an estimate of correct recognition by 10-fold cross-validation [21].

Confusion matrix with vertical direction features. The confusion matrix
of 10-fold cross-validation comes as below when the features of vertical direction
are used:

D R S <-classified as
38 0 7 D=diffuse
0 37 8 R=ring
10 8 27 S=semi

In the confusion matrix, the numbers in diagonal are the number of samples
correctly classified; the others are the numbers of incorrectly classified samples.
There are totally 102 samples classified correctly, bringing the accuracy of 75.6%.
Especially no misclassification occurred between diffuse porosity and ring poros-
ity . For the other combinations, the accuracy is not so high.

Confusion matrix with invariant features. The confusion matrix when in-
variant features are used is given as below:

D R S <-classified as
30 3 12 D=diffuse
4 35 6 R=ring
13 6 26 S=semi

In total, 91 samples were classified correctly at recognition rate of 67.4%. The
classification between ring porous and semi-ring porous is improved from the pre-
vious result, while the classification rate between ring porous and diffuse porous
is worse.

Judging from this result and the description of the decision rule, this set of clas-
sification rules seems a little too complicated than necessary and cause over-fitting
to the training data.

3.2 Discussion

Either 75.6% or 67.4% is not so good when we compare these values with those
of many applications of pattern recognition. However, it should be noted that
even a well-trained inspector sometimes fails to recognize the porosity of given
sample images. It implies that the attainable classification rate might be not so
high. For example, the image of Fig. 2 is allowed to assign to both of ring porosity
and semi-ring porosity according to Microscopic Identification of Japanese Woods
(http://f030091.ffpri.affrc.go.jp/fmi/xsl/IDB01-E/home.xsl). In other
words, there are some cases in which no one knows the correct answer or more
than one correct answer exists.

http://f030091.ffpri.affrc.go.jp/fmi/xsl/IDB01-E/home.xsl


Recognition of Porosity in Wood Microscopic Anatomical Images 157

Ring porosity and diffuse porosity are two opposite porosity types, so that we
cannot find any wood species belongs to both porosity types at the same time in
practice. Indeed, it is not difficult for human to distinguish them because there is
clear difference in their appearance of pore distribution in images. Our decision
trees also succeeded to recognize them with high accuracy. Most of misclassified
samples are between the other porosity pairs, one is ring and semi ring porosity
pair, the other is diffuse and semi ring porosity pair. These porosity pairs are not
easy to distinguish even by a well-trained inspector. Fig. 9 demonstrates this.

(a) semi-ring image (b) vertical features (c) invariant features

Fig. 9. A case in which semi-ring porous sample is misclassified as ring porosity

From the microscopic image (Fig. 9(a)), it is hard to classify the image correctly
from the pore distribution. Indeed, there are some pores whose sizes are between
large and small. The correct porosity is ’semi-ring’ but we might think it as ’ring’
because there are large pores in early zone and small pores in late wood zone. The
graph of vertical features also detected a rapid change of pore size from large to
small (Fig. 9(b)). As a result, the rule found the fact that the pore size in late wood
(the 24th component in the graph) is small enough (≤0.05), thus classified it as
ring porosity. The decision tree of invariant features also misclassified because the
number of middle size pores is very small.

The diffuse and semi ring porosity pair is also confusing. Fig. 10 gives an exam-
ple of this case.

From the above microscopic image (Fig. 10(a)), we can find that the frequency
of pores in early wood is higher than that in the late wood. It is a strong evidence
for the image to be semi-ring porous. However, the graph of vertical features tells
us that the pore size is almost the same, so the rule classified the image as dif-
fuse porosity. The decision tree of invariant features also fails because the 19th
component is larger than 8 and the 10th component is smaller than 19.

In case of invariant features, there are also some misclassification between dif-
fuse porosity and ring porosity. In some diffuse porous samples, most of the pores
have almost the same size. Fig. 11 shows a diffuse porous sample and its histogram.
Most of the pores are large (concentrating on the right of the histogram) and
the number of middle size pores ([2,∗,∗]) is very small (less than 10). It caused
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(a) semi-ring image (b) vertical features (c) invariant features

Fig. 10. A case in which semi-ring porous sample is misclassified as diffuse porosity

(a) diffuse image (b) invariant features

Fig. 11. A case in which diffuse porous sample is misclassified as ring porosity

(a) ring image (b) invariant features

Fig. 12. A case in which ring porous sample is misclassified as diffuse porosity

misclassification from diffuse to ring porous. A reverse case (from ring to diffuse) is
shown in Fig. 12. Undoubtedly, Fig. 12(a) looks ring porous, but the corresponding
histogram satisfied a rule for diffuse porous with condition [2, 3, 1] > 8, [1, 4, 1] >
19, [3, 2, 1] ≤ 32, [3, 4, 1] ≤ 4.
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4 Conclusion

In this paper, a novel procedure has been introduced to recognize three kinds of
porosity in wood microscopic images. In the procedure, mathematical morphology
is used to segment pores from an image; then two different kinds of feature sets
are extracted; those features are used with C4.5 algorithm to generate decision
trees. The estimator of 10-fold cross-validation is used to verify the classification
performance of the decision trees. As a result, we found that both decision trees
distinguish well between diffuse and ring porosity, but do not between semi-ring
porosity and the other two kinds of porosity. Although some reasons of failure
were investigated from the domain knowledge, it is still necessary to do more work
on understanding the decision trees and analyzing the reason of over-fitting. On
the other hand, since vertical feature set has a better result in recognizing diffuse
porosity and ring porosity, invariant feature set has a better result in recognizing
ring porosity and semi-ring porosity. Combining these two feature sets may be an
other method to improve the accuracy of the three classes.

Acknowledgement. The core program of C4.5 is realized by Weka [22]. The fea-
ture extraction program is coded by Matlab.The wood microscopic images used
in this study were obtained from the database of Japanese woods that are copy-
righted by the Forestry and Forest Products Research Institute.
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Abstract. Precision Agriculture has become an emerging topic over the
last ten years. It is concerned with the integration of information tech-
nology into agricultural processes. This is especially true for the ongoing
and growing data collection in agriculture. Novel ground-based sensors,
aerial and satellite imagery as well as soil sampling provide large georef-
erenced data sets with high spatial resolution. However, these data lead
to the data mining problem of finding novel and useful information in
these data sets.

One of the key tasks in the area of precision agriculture is management
zone delineation: given a data set of georeferenced data records with high
spatial resolution, we would like to discover spatially mostly contiguous
zones on the field which exhibit similar characteristics within the zones
and different characteristics between zones. From a data mining point
of view, this task comes down to a variant of spatial clustering with a
constraint of keeping the resulting clusters spatially mostly contiguous.

This article presents a novel approach tailored to the specifics of the
available data, which do not allow for using an existing algorithm. A
variant of hierarchical agglomerative clustering will be presented, in con-
junction with a spatial constraint. Results on available multi-variate data
sets and subsets will be presented.

1 Introduction

In recent years, the agriculture domain has seen a vast amount of information tech-
nology being introduced. On the one hand, this is due to technological advances,
such as cheaper GPS technology, novel remote sensing equipment and improved
satellite and aerial imaging technology. On the other hand, there is also an eco-
nomical advantage becoming more and more emergent. Based on the above tech-
nology, using the acquired data, farmers can optimize their fertilizer and pesticide
applications (among other controls) to achieve an optimized outcome in terms of
yield and/or economic profits. However, with the large-scale collection of georef-
erenced and high-resolution data sets, agriculture has turned into a data-driven
discipline. Therefore, the aforementioned optimization task requires sophisticated
data mining techniques tailored to the specifics of the data sets.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 161–173, 2011.
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The available data sets which are nowadays collected are usually spatially
dense, up to one data record per 10 × 10-metres square. Some of the imagery
sensors yield even higher resolutions. Given the fact that measurements of differ-
ent soil and vegetation properties as well as controllable inputs such as fertilizer
can be acquired at more than just one point in time into the growing season, the
data sets grow quickly, both on the temporal as well as the spatial scale. Nat-
urally, each data record in these sets is georeferenced, i.e. has a specific spatial
position on the field and has fixed neighbors. This, in turn, leads to neighboring
data records being not independent of each other, a phenomenon known as spa-
tial autocorrelation. Furthermore, from the physical and biological perspective
there are certain assumptions as to which factors influence plant growth and
yield, for example. These may now be validated using such data sets.

A task commonly occurring in agriculture is the so-called management zone
delineation. Based on the biologically valid assumption that certain soil minerals
are necessary for healthy plant growth, these minerals must be made available
to the plants. Often, these minerals exist in sufficient quantities in the soil,
but are not in a chemical state which allows the plants to easily tap into the
mineral reservoirs. Furthermore, they may not be available at all. Therefore,
basic fertilization is applied, which aims to make the minerals available. However,
since the fields are usually heterogeneous, different parts of the field may require
different amounts of basic fertilization. Determining these so-called management
zones is therefore an important task.

In terms of data mining and knowledge discovery, the above task may be rec-
ognized as a variant of spatial clustering. The data sets consist of geo-referenced
data records which have a number of attributes attached to them. Given these
data sets, we aim to find, in an exploratory way, spatial clusters which exhibit
the cluster property: the data records within a cluster are similar, while the sim-
ilarity between clusters is low. As of now, there are only few approaches towards
this problem given the type of data sets occurring in precision agriculture. We
will present those approaches, outline their main issues and will develop a rather
simple and straightforward approach to solving the problem of management zone
delineation by adapting a constraint-based clustering algorithm.

1.1 Article Structure

First, this article will give an overview about the existing literature on spatial
clustering. Since the existing algorithms are usually closely coupled with the
available data sets, the type of data sets this article is concerned with is presented
at the very beginning of the following Section 2. We present our two-stage, divide-
and-conquer hierarchical spatial clustering approach in Section 3. We present
the results on the data set as well as the limitations and parameter settings of
our approach in Section 4. This article finishes with a conclusion and further
discussion of the results.



Exploratory Hierarchical Clustering for Management Zone Delineation 163

2 Data Set and Existing Literature on Spatial Clustering

Clustering algorithms are usually closely interwoven with the data they are being
applied to. Therefore, a data description which outlines the key characteristics
of the precision agriculture data encountered here will be presented first. Based
on these data, the shortcomings of the existing algorithms will be pointed out.
There are also a few agricultural approaches to solving the problem which will
be briefly outlined.

2.1 Precision Agriculture Data Description

The data available in this work were obtained on a precision agriculture ex-
perimental site in Northern Germany in 2004 with additional attributes from
2003 and 2007. The data are spatially distributed in regular hexagonal grid cells
25 metres in diameter, such that 16 of these grid cells represent one hectare.
Overall, the data set consists of 1,080 data records, which (at the above resolu-
tion) represent a field 67.5 hectares in size.

Each data record consists of a number of attributes, which are recorded as
mentioned above, using special sensors. Further details on the data are provided
in [24]. The attributes are sorted chronologically and shown in the timeline in
Figure 1. The temporal aspects are not considered.

Due to the origins of the data, spatial autocorrelation exists in the natural
attributes of the data [21], but is less pronounced in the human-controllable fer-
tilizer attributes. It can be easily seen from the plots in Figures 2(a) to 2(d) that
spatially adjacent values for the depicted attributes are likely to be much more
similar the closer they are. In a later stage of this work (Section 3.1), spatial
autocorrelation will be exploited, it is therefore necessary to gain a basic under-
standing of this concept here. It can be shown that modeling techniques which
neglect the spatial information in the data sets produce misleading results [20],
which is clear from a statistical point of view [3].

It is furthermore application-dependent which of the data attributes are ac-
tually required. For elementary applications such as yield prediction, research in
this area is ongoing [23], mostly in the direction of feature selection approaches,
though observing the spatial nature of the data requires some additional ef-
fort [22]. Therefore, not all of the attributes are to be used in a specific task
at once, but rather a smaller selection based on user experience and expert
guidance.

REIP32 / N2

REIP49 / N3

Yield 2007

pH / P / K / M
g

EC25
Yield 2003

N1 Yield 2004

time20042003 2007

Fig. 1. Timeline for data set (not to scale)
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2.2 Review of Existing Spatial Clustering Algorithms

Given the data set presented in the preceding section, the task is to establish
an algorithm which is able to delineate the field into spatially (mostly) con-
tiguous clusters, so-called management zones. Personal experience shows that
management zone delineation in practice usually relies on one attribute only be-
cause of the lack of appropriate algorithms which are able to deal with multiple
attributes.

From a data mining point of view, the task is the following: given a set of
data records consisting of a spatial location and a certain number of attached
attributes, find a spatial tessellation of these data records such that the resulting
zones can readily be used for basic fertilization. Since it is as of now unclear which
of the available attributes contribute to the physical and biological underpinnings
of management zones [12], the above broad task should be narrowed to the
following: develop an algorithm for the above type of data sets which returns a
spatially (mostly) contiguous tessellation and which can be easily parameterized
by a human expert.

In precision agriculture, there are a number of approaches using standard clus-
tering algorithms such as fuzzy c-means clustering [13,14,16]. However, these rely
solely on the data records’ attributes and totally neglect the spatial structure
of the data records. This results in zones which are non-contiguous and spread
over the whole field, as well as small islands of outliers and insignificant records
which must be smoothed out manually after the clustering. A similar approach
is undertaken by fuzzy classification of the data records, which exhibits the same
problems [15]. In addition, there is no clear guidance available as to which input
attributes enable a successful management zone delineation [4,18]. It seems, how-
ever, clear that management zones must rely on more than just yield data [12].
Based on our experience with using non-spatial models on spatial data sets, it
is clear that the spatial component must not be neglected. Furthermore, as [7]
points out, the farmers’ long-time experience produces good results – therefore,
this experience should be captured in an exploratory data mining approach.

In the area of computer science, there are, to the best of the authors’ knowl-
edge, no standard clustering algorithms which would allow tackling the above
task on the given type of data sets. Density-based algorithms like DBSCAN [5],
CLIQUE [1] or STING [28] usually rely on a non-uniform distribution of the data
records (density differences) to find clusters. With our data sets, the records are
spatially uniformly distributed, which renders the aforementioned algorithms
useless. Algorithms like SKATER [2] and REDCAP [9] are different in that
they explicitly incorporate spatial contiguity constraints into the clustering pro-
cess. However, these algorithms may fail to report adjacent clusters correctly
(SKATER) or are too strict in terms of management zone contiguity (RED-
CAP). In addition, they both rely on the fact that data records are spatially
non-uniformly distributed, which is not the case here. This last assumption is also
used by ICEAGE [10], which is therefore not applicable either. CLARANS [17]
is a further algorithm designed for clustering spatial data sets but is based on
the assumption that the structure to be discovered is hidden exclusively in the
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spatial part of the data, which is not the case here. Finally, AMOEBA [6] works
on two-dimensional spatial data by building a hierarchy of spatial clusters using
a Delaunay triangulation, but lacks the extension to non-spatial attributes and
also assumes that the 2D points are non-uniformly distributed in space.

One of the more common approaches to spatial clustering is a hierarchical
agglomerative one: start with each point in a single cluster and subsequently
merge clusters according to some criterion or constraint. Further research into
constraints-based clustering [26] reveals that it may in principle be applied here.
The author of [26] explicitly describes the “spatial contiguity” constraint for
spatial data as a type of global clustering constraint using neighborhood infor-
mation, albeit for image segmentation. The constraints are presented as “hard”
or “soft”, meaning that the final clustering outcome “must” or “can” consider
these constraints. The task encountered in this article, namely generating mostly
contiguous clusters, could therefore be tackled by using a soft spatial contiguity
constraint. An additional feature of constrained clustering algorithms is the ex-
istence of “must-link” and “cannot-link” pairwise constraints for data records.
Although an algorithm can usually be constructed this way or the other, it seems
more appropriate to model the spatial contiguity requirement as a “cannot-link”
(soft) constraint for spatially non-adjacent data records or clusters. In addition,
the work of [27] encounters a similar agricultural problem to the one in this
article, but the focus is slightly shifted to yield prediction on a county scale with
low-resolution data, rather than using high-resolution data for management zone
delineation. Since the focus in this work is more on exploratory data mining in
an unsupervised setup we postpone the performance question.

Additionally, hierarchical agglomerative clustering seems like a rather natural
approach since the solution ultimately has to be presented to domain experts who
typically prefer easy-to-understand solutions over black-box models. Therefore,
our focus will be on developing a hierarchical agglomerative algorithm for zone
delineation which takes the special properties of the data sets into account. Our
data sets are different from the ones in existing work since the data records are
located on a uniformly spaced hexagonal grid and exhibit spatial autocorrelation.
This autocorrelation will be used explicitly in our approach.

3 Hierarchical Clustering with Spatial Constraints

This section will present an extended and refined version of the hierarchical,
divide-and-conquer approach to delineating spatially mostly contiguous man-
agement zones based on precision agriculture data presented in [24,25]. Our
approach can best be described as hierarchical agglomerative clustering with a
spatial contiguity constraint and an additional (optional) initialization step which
exploits the spatial autocorrelation in the data. It consists of two phases, in a
divide-and-conquer manner. First, the field is tessellated into a fixed number of
(spatial) clusters. Second, these clusters are merged iteratively, using a similarity
measure and adhering to a spatial contiguity constraint, which shifts from being
a hard constraint to a soft constraint throughout the algorithm.
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3.1 Phase 1: Spatial Field Tessellation via k-Means (Optional)

A hierarchical agglomerative clustering starts at small clusters or single objects
and consecutively merges those according to some criteria. The question whether
a näıve tessellation of the field into N clusters is sufficient, where N is the num-
ber of data records, i.e. each data records occupies its own cluster. Certainly,
this assumption would hold true, but due to spatial autocorrelation, spatially
neighboring data records are likely to be very similar in their attributes. There-
fore, by tessellating the field into a fixed number of spatial clusters n ≤ N , the
clusters are still very likely to contain similar (adjacent) data records while some
of the ensuing computational effort of the merging step can be saved. Further-
more, the merging step requires a list of spatial neighbors for each cluster – if
this can be easily computed in the tessellation step, it saves further computation
time. With the above prerequisites, the simplest tessellation approach fulfilling
the requirements is to perform a k-means clustering on the data records’ spa-
tial coordinates. This creates a basic tessellation, while explicitly assuming that,
due to spatial autocorrelation, the resulting spatial clusters contain similar data
records. Furthermore, the k-means tessellation returns a voronoi diagram of the
data records’ coordinates, of which the dual representation is the Delaunay tri-
angulation. This allows for easy computation of the list of neighbors for each
cluster [8]. This phase may be omitted, such that the second phase starts with
each point in a single cluster.

3.2 Phase 2: Merging Clusters

Once the small contiguous clusters have been created in phase 1, the task is to
merge these clusters consecutively into larger clusters, similar to classical agglom-
erative hierarchical clustering. However, in addition to the standard similarity
or distance measure, a spatial constraint must be taken into account. Since the
final result of the clustering is assumed to be a set of spatially mostly contiguous
clusters, only those clusters should be merged which are a) similar (with regard
to their attributes’ values) and b) spatial neighbors (adjacent).

In classical hierarchical clustering, the standard measures for cluster similarity
are single linkage, complete linkage and average linkage [11]. However, when
considering the spatial data encountered here, these three criteria merit some
explanation. Single linkage determines cluster similarity based on the smallest
distance between objects from adjacent clusters. Due to spatial autocorrelation,
it is likely that there are always some points at the borders of the clusters which
are very similar, for each neighbor. Therefore, single linkage will not provide us
with a good measure for which neighbor to choose. Complete linkage determines
the similarity of neighboring clusters based on the distance of those objects which
are farthest away from each other. Since we are considering spatially adjacent
clusters, this would lead to very dissimilar clusters being merged. Due to spatial
autocorrelation, these objects would also be spatially rather far away from each
other, which leads to a chaining effect and less meaningful clusters. Average
linkage determines the similarity of adjacent clusters based on the average of the
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(Euclidean or other) distances between all objects in the clusters. A combination
of the aforementioned arguments for single and complete linkage may be applied
here: points in adjacent clusters which are spatially close/far apart are likely to
also be very similar/dissimilar. Therefore, an appropriate distance for adjacent
clusters may be determined by average group linkage: we compute an average
vector for each cluster and determine the distance between these vectors.

It is not required that one zone is strictly contiguous, i.e. consists of just one
spatially contiguous area on the field. It is a valid result if one zone comprises
those data records which are similar but is made up of two or more larger areas
on the field. This would still be considered immensely useful in practice. Since
the focus of this clustering approach is on exploratory data mining rather than
providing a fixed clustering, this “mostly contiguous” description should be seen
as a soft constraint in the final merging steps. To prevent the algorithm from
producing too many scattered zones, we propose to set it as a hard constraint
during the beginning of the merging phase. As long as adjacent clusters are
similar enough, these are merged. If this is not the case, clusters which are not
direct neighbors of each other may be merged if they are similar enough. This
also provides us with a user-influencable condition for when to switch from a
hard to a soft constraint. Hence, we introduce a contiguity factor cf : we may
begin merging non-adjacent clusters once the minimum average-linkage distance
for adjacent clusters is cf times the minimum distance for non-adjacent clusters.
In the results for Figure 3, the algorithm performs well with the hard constraint
in the beginning and would switch to a soft constraint only after the bottom
plot, which has 28 clusters left, with cf set to 2.

4 Experimental Setup and Results

We now aim to demonstrate the algorithm on multi-variate data. In order to
show some of the parameter settings and the inner workings, we decide to start
with a subset of the original data set: we choose the four soil sampling attributes
(pH-value, P, K, Mg content). From the four plots in Figure 2 it can be seen that
a certain spatial structure is emergent, with four to six visible areas, separated
by another cross-shaped area in the middle. This structure is the one we would
like our algorithm to discover.

The data set has 1080 spatial data records. As mentioned in the algorithm de-
scription, a hierarchical agglomerative clustering procedure may start with each
of the data records forming one cluster. However, due to spatial autocorrela-
tion, spatially neighboring data records are likely to be similar and are therefore
grouped by using a k-means clustering on the spatial part only. This is depicted
in the top left figure of Figure 3: we choose k to be 350, such that on average
three neighboring data records are in one cluster initially. The algorithm then
proceeds to consecutively merge adjacent, similar clusters. This is depicted in
Figure 3, top right and bottom left plot, with 250 and 150 clusters left, respec-
tively. The final plot in Figure 3 shows the outcome with 28 clusters left. We
can roughly see six zones. Those at the borders are, of course, not (yet) zones in
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Fig. 2. Four chosen attributes for which the management zone delineation is applied:
pH value, P, Mg, K concentration (top to bottom)

the sense of the algorithm, but they are easily visually distinguishable. For an
exploratory data mining task, this result is what the algorithm is supposed to
deliver.

Upon further examination of the resulting six zones, it turns out that these
are actually just three zones. This requires but a quick look at the four figures
in Figure 2: the largest zone which covers roughly 80% of the field could be
described with low pH, low P, medium/low Mg, low K. The border zones on
the top left, the left and the bottom left of the field can be described with high
pH, high P, high Mg, high K. The small zone at the right field border and the
one extending from the left border mostly horizontally into the middle would
be high pH, high P, low Mg, high K. For practical purposes of basic fertilization
this simple characterization of a field’s principal zones is very convenient.

4.1 Limitations and Parameter Guidelines

One of the limitations (and, at the same time, a strength) of our algorithm is
the assumption that the data records are spatially autocorrelated. Since this



Exploratory Hierarchical Clustering for Management Zone Delineation 169

assumption has been built explicitly into the k-means tessellation step of the
algorithm, a violation would lead to invalid results. This is depicted in Figure 4.
Among the data set’s attributes we have a few variables which can be human-
controlled, namely the fertilizer applications N1, N2, N3. Since the field on which
the data set has been collected also serves as a test site for fertilization strate-
gies, the fertilizer data are not spatially autocorrelated – there are strips where
different strategies were carried out and N1 was more or less uniformly applied.
What happens when these data are used in our clustering algorithm can be seen
in the bottom figure of Figure 4: the resulting zones are not meaningful. This is
due to the first step of our algorithm, which assumes that the data are spatially
autocorrelated. Therefore, data which violate this assumption must not be used
with the algorithm or the first phase of the algorithm should be skipped.

Setting the parameter k for the k-means tessellation depends on the data
set. For rather homogeneous fields, this can be set to a lower value such as N

10 ,
where N is the number of available data records. For rather heterogeneous data
sets such as the one encountered here, we may set it to as low as N

3 , thereby
combining roughly three adjacent data records into one initial cluster. If the

g g

g g

Fig. 3. Clustering on the attributes shown in Figure 2, beginning of clustering (350
clusters), after 100/200 merging steps, with 28 clusters left (left to right, top to bottom)
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Fig. 4. The three farmer-manageable variables of nitrogen fertilizer (N1, N2, N3), along
with a failed clustering approach of our algorithm (top to bottom). The data violate
the algorithm’s spatial autocorrelation assumption. cf is set to 2 here, but has close to
no influence. k is set to 350 initial clusters.

number k of initial clusters is set to N , we obtain a setting which may be used
for data where no spatial autocorrelation exists.

Setting the contiguity factor cf is rather straightforward: a value much higher
than 1 leads to a later switch from a hard to a soft constraint – therefore, the
spatial contiguity is higher. A value larger than, but closer to 1 further weakens
this hard constraint. A value smaller than 1 favors the merging of non-adjacent
clusters early in the algorithm, probably resulting in rather scattered zones.
The average-linkage similarity computation using Euclidean distance may be
replaced by a different distance measure. For higher numbers of attributes, the
Cosine distance measure may be employed.
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5 Conclusion and Discussion

This article presented a hierarchical agglomerative clustering approach with a
spatial constraint for the task of management zone delineation in precision agri-
culture. Based on the specifics of the data sets from precision agriculture, namely
the uniform spatial distribution of the data records on a hexagonal grid and the
existence of spatial autocorrelation, we established and recognized the shortcom-
ings (or the lack) of existing approaches. Henceforth, we specified the require-
ments of a novel approach: the spatial contiguity of the resulting zones and the
explicit assumption of spatial autocorrelation.

This research lead to a two-phase divide-and-conquer approach. In the first
phase we tessellated the field using k-means on the data records’ 2D coordinates.
In the second phase, we iteratively merged those spatially adjacent clusters that
are similar. This was done in two sub-phases: in the first sub-phase, the spatial
contiguity was a hard constraint, meaning that only adjacent clusters may be
merged. In the second sub-phase, this was relaxed to a soft constraint. Switch-
ing from the hard to the soft constraint can be user-influenced by a contiguity
factor cf . Proceeding like this provided us with a hierarchical structure which
can then be examined by a human expert for guidance on the management zone
delineation. Our focus was on providing an exploratory and easy-to-understand
approach rather than a fixed, black-box solution. Our approach worked success-
fully for spatially autocorrelated precision agriculture data sets. The parameter
setting for k (initial tessellation) was explained. An additional parameter cf was
suggested for further analysis on the spatial contiguity of the resulting clusters.
The algorithm was shown to return erroneous results when the assumption of
spatial autocorrelation is violated.

5.1 Future Work

Once the clustering algorithm finishes, a certain clustering should usually be ex-
amined further. This is likely to be towards the end of the merging stage, when
a human-manageable number of around ten clusters is left. These clusters may
easily be examined using frequent itemset mining. Numerical attributes can be
converted to a three- or five-value categorical scale and the resulting frequent
sets could be generated as we did manually for the bottom plot of Figure 3. Al-
though the average linkage similarity calculation turns out to work rather well in
practice, it may be further researched whether different linkage criteria in combi-
nation with other similarity measures could be more appropriate. A drawback of
our work is the lack of reference data sets from precision agriculture and similar
domains in conjunction with a similar task. We are currently investigating the
possibility of making our data sets publicly available for this purpose.
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Abstract. In precision livestock farming, spotting cows in need of extra
attention due to health or welfare issues are essential, since the time a
farmer can devote to each animal is decreasing due to growing herd sizes
and increasing efficiency demands. Often, the symptoms of health and
welfare state changes, affects the behavior of the individual animal, e.g.,
changes in time spend on activities like standing, lying, eating or walking.
Low-cost and infrastructure-less GPS positioning sensors attached to the
animals’ collars give the opportunity to monitor the movements of cows
and recognize cow activities. By preprocessing the raw cow position data,
we obtain high classification rates using standard machine learning tech-
niques to recognize cow activities. Our objectives were to (i) determine
to what degree it is possible to robustly recognize cow activities from
GPS positioning data, using low-cost GPS receivers; and (ii) determine
which types of activities can be classified, and what robustness to expect
within the different classes. To provide data for this study low-cost GPS
receivers were mounted on 14 dairy cows on grass for a day while they
were observed from a distance and their activities manually logged to
serve as ground truth. For our dataset we managed to obtain an average
classification success rate of 86.2% of the four activities: eating/seeking
(90.0%), walking (100%), lying (76.5%), and standing (75.8%) by opti-
mizing both the preprocessing of the raw GPS data and the succeeding
feature extraction.

1 Introduction

Due to intense competition in the domain of precision livestock farming, the
farmers need assistance from either qualified extra man power or modern tech-
nology to overview and attend the herd, in order to effectively find focus cows
that for some reason needs special attention or relief care. It requires full atten-
tion to do so, in order to prevent false positives or, what may be even worse,
overlooking a true positive causing an animal to suffer.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 174–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A global navigation satellite system, like for instance the Global Positioning
System (GPS), is a widely used technology for various position based applica-
tions. The main reason for considering GPS for monitoring cows is that locally
the positioning technology is infrastructure-less, in contrast to an alternative like
a local sensor network, e.g., as used by Nadimi et al. [9]. However, an infrastruc-
ture may be required for comunication.

Pattern recognition and machine learning are widely used techniques to recog-
nize patterns in data. In this paper we present high classification rates obtained
by preprocessing position data and extracting a broad variety of features that
serve as input to standard machine learning algorithms for classification of spe-
cific cow activities. The classification results outputted by the standard machine
learning algorithm are optimized by adjusting the input features, i.e., adjusting
the preprocessing of data as well as the succeeding feature extraction.

The dataset used to evaluate the proposed method combines continuous po-
sition data from 14 dairy cows on grass rigged with low-cost GPS receivers with
continuous manual observations of the cows’ activities. We use position data
from more than just one cow since the individual cows have a tendency of be-
having differently and finding their own routines in their way of performing
their activities as described by Phillips et al. [10]. We therefore subdivide cow
behaviors into activities with cross cow commonalities and classify the behavior
with regards to these. A restriction in our study is, that we only consider the
activities independently and not the transitions between them. The individual
combination of activities defines each animal’s normal behavior. The goal is that
the activity recognition can be used to observe when an animal start behaving
abnormally, i.e., when the activities performed diverges from the normal behav-
ior of the individual cow, since it often indicates a change in the state of health
and/or welfare.

2 Related Work

Previous research shows that feed intake depends on a cow’s health condition
[3], and time spent at the feeding area correlates with feed intake [4], moreover,
abnormal lying behavior correlates with lameness amongst cows [5].

A study, by Agouridis et al. [1] examines GPS collar capabilities and limi-
tations in regards to tracking animal movement in grazed watersheds, conclude
that the position accuracy decreases as cows move under a tree or so, and thereby
loose line of sight towards the GPS satellites. That GPS performance degrades
in terms of both coverage and accuracy when experiencing problematic signal
conditions due to attenuation is analyzed by Kjærgaard et al. [6].

Schwager et al. [12] measure cows’ moving speed via hi-end GPS receivers. In
addition they measure head roll and head tilt with accelerometers. They apply
the measurements to a simple K-means classification algorithm without a priory
information. This leads to a repeatable categorization of the animals’ behaviors
into periods of activity and inactivity. Though, using hi-end GPS receivers would
give better position quality, we use low-cost GPS receivers in an attempt to meet
the basic requirements of scalability when monitoring a bigger herd.
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Nadimi et al. [9] use a local ZigBee based sensor network to track and classify
cow behavior. They too derive the moving speed, head roll and head tilt, and
by using a simple classification tree they too succeed to classify both activity
and inactivity. In comparison, our approach has limited maintenance due the
infrastructural independence. In addition, better scalability is achieved firstly,
as there are no upper limit for neither the number of receivers nor the size of
the area being monitored and secondly, achieving good results by using low-cost
receivers in the experiments instead of hi-end equipment, makes monitoring of
bigger herds affordable.

Robert et al. [11] use three dimensional accelerometers and video based ob-
servations for classifying behavior patterns in cattle, and classify lying (99.2%),
standing (98.0%), and walking (67.8%). In comparison, we manage to recognize
the activity of a cow walking in 100% of the occasions. However, we are unable
to match the succes rates of both lying (76.5%) and standing (75.8%), which
indicate that introducing other types of sensors, e.g., an accelerometer, might
improve our results. In addition and unlike their work, we recognize the activity
of a cow eating and seeking and obtain a succes rate of 90.0%.

3 Collection of Position Data for Cow Activities

The GPS receivers used for the experiment are i-gotU GT-600 − a commercial
low-cost receiver [7] with a SiRF Star III Low Power chipset scheduled to log a
GPS position every second. The receivers were installed in a plastic housing as
depicted in Fig. 1(a), and mounted on the cow collars as illustrated in Fig. 1(b).

The 14 cows used in the experiment are arbitrarily picked out from a herd of
28 dairy cows, i.e., they were selected with no regards to their expected behavior
during the experiment. The reason for using 14 cows instead of the entire herd is
based in the practical challenge in observing the animals manually, while taking
useful and trustworthy notes to be used as ground truth in the analysis. Though,
the observers where stationed at static observation points using field glasses to
watch the animals from a distance, it was unavoidable to disturb the animals
in some sense, as the observation points had to be in the middle of each of the
two consecutive fields in order to guarantee visual contact with the animals at

(a) Receiver and housing (b) Mounted receiver (c) Manual observations

Fig. 1. Setting up an performing the experiment
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all times, as Fig. 1(c) depicts. However, our focus in this work is on recognizing
particular cow activities in contrast to recognizing the normal behavior of each
cow. Therefore, should a cow stop and stare at an observer for a while, the
sequence is simply annotated as the cow performing the standing activity.

Organizing Data. The different behavioral changes, that may be used to point
out a possible focus cow candidate are many. Typically, the normal behavior
of cows in a herd diverges from one animal to another. However, by detailing
the behavior into lower levels of cow activities like: walking, lying, standing and
eating seeking, the cows’ way of performing these detailed activities becomes
similar. From the duration, combination, frequency, etc. of these detailed activ-
ities performed by any normal behaving cow, it would be possible to define its
normal behavior. In this work, we strive to recognize such immediate cow activi-
ties, to assist a domain expert in the work of detecting behavioral abnormalities
amongst cows. In order to meet the cross-animal physiological variations, the
many different behaviors are divided into common activities of a lower level of
abstraction, which all may serve as abnormal behavior indicators, e.g. jump-
ing, toddling, lying and eating. However, using a low-level GPS receiver cause
some limitation in terms of the position information provided. The information
is limited to: time of measurement, latitude, longitude, elevation, and speed. In
addition, the sample rate has a maximum of 1 sample per second. Therefore, not
all indicators are detectable from the provided position data, i.e., the activity
has to affect the movement taking place from one measurement to another. This
excludes indicators like toddling and jumping, and leaves a subset of activities
detectable when using position data. From this subset we define four activities
to look for:

Walking defines the activity of the cow walking towards a goal, e.g., from A to
B without stopping or simply tagging along other cows. Should the cow stop for
any reason, it is no longer considered to be walking. This often takes place when
the cow moves from one field to the consecutive one, or when the cow moves to
the drinking vessel.

Eating seeking defines when a cow shows eating behavior, i.e., it either eats
or seeks for grass, and possibly the cow stops from time to time chewing. The
eating/seeking activity is the hardest to recognize, since the cow either is walk-
ing around seeking for grass or standing still eating, and therefore tends to be
confused with the other activities.

Standing defines when a cow stands still for a longer period of time, e.g., thirty
seconds or more without showing neither eating nor seeking behavior. It may be
hard to distinct this activity from lying. However, a standing cow tends to be
moving just a little more than one lying down, causing the measured position to
move in contrast to a cow lying still.

Lying defines when a cow lies down for a longer period of time, e.g. thirty
seconds or more. When the cow lifts its head and looks around this activity may
easily be confused with standing.

Selecting data sequences. Sequences of data where cows are doing one of the four
activities were handpicked from the full dataset. Any sequence selection is based
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upon a manual observation of high quality stating that the cow is performing an
activity of interest. The sequences are selected in a manner so that they together
represent all 14 cows doing all 4 activities of interest for a period of at least 4
minutes. In that way we get a dataset where each cow performs each activity at
least once and for a minimum of four minutes.

Due to the data sequences selection strategy there may be both time and
distance gaps between two sequences. To prevent these gaps from influencing
on the results, the sequences are treated as atomic datasets instead of one as-
sembled dataset with adjacent sequences, i.e., the last measurement from the
previous sequence is discarded when loading a new sequence. A drawback of this
approach is that the transition between two activities is neglected. In this work
it is considered a trade off in order to work with noise free data, however, we
will consider this issue in our future work.

4 Recognition of Cow Activities

We approach the activity recognition problem from a software perspective and
leave the classification to a machine learning toolkit in this case the Weka Toolkit
[14]. We present a method for obtaining the highest classification success rate
by optimizing the preprocessing of raw GPS position data and the extraction
of features that serves as input to the machine learning algorithm, instead of
optimizing the machine learning algorithms themselves.

Figure 2 shows how the activity recognition module is divided into three an-
alyzing blocks: (1) the Movement Analyzer (MA) process the raw GPS position
data, determines the movement taking place between two adjacent measure-
ments and represents it in a Movement Data Structure (MDS); (2) the Segment
Analyzer (SA) groups the MDSs into segments of a certain size, all the move-
ment information are processed and as a result a broad variety of features are
extracted and represented in a Segment Data Structure (SDS); (3) the Activity
Analyzer (AA) use the SDSs as input to the machine learning algorithm and
represents the classified activity in an Activity Data Structure (ADS).

Designing the module with three analyzers each with different data structures
as output is to some extent inspired by research done by Zheng et al. [15] where
they recognize commuters’ different transportation modes like walking, bicycling
and driving from raw GPS data. They assemble a number of measurements in
segments, which are constituted by a starting point where the current mode of
transportation is initiated and an ending point where the transportation mode
changes. By extracting numerous features e.g. heading change rate from the
GPS data within such a segment and processing these features via machine
learning, they extract the information from raw GPS data through data mining
without using neither a priori information nor on-time user inputs - except from
information on where the transportation mode changes takes place.

Each of the three analyzers consume and produce specific data structures;
the data structures are illustrated as white squares on the right side of Fig. 2.
Each analyzer is individually adjustable so that the optimal feature extraction
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Movement (MDS)

Segment (SDS)

[measurements,previous movement, movement type, velocity, heading, relative angle...]

[movements, featurea, featureb, featurec, featured, featuree, ...]

[segment, 
classificationx]

Activity (ADS)

[time, speed, 
latitude, 

longitude, 
elevation]

GPS Measurement Movement Analyzer (MA)

Minimum speedHistory lengthHeading threshold
Measurement previous
Measurement current calculatemovementfrom previous to current measurement

Segment Analyzer (SA)
Movement n
Movement N... segment calculate features
Segmentation strategy

Activity Analyzer (AA)
classify activityFeature m

Feature M...
Machine learning algorithm

Fig. 2. The activity recognition module with three analyzers, the data structures to
the right, and blue boxes illustrating the input parameters for adjusting the feature
extraction.

can be obtained causing the best activity recognition results; the dashed boxes
show the specific parameters used for adjusting the individual analyzer. The
grayed square on the bottom-left side of the figure shows the incoming GPS
measurement provided by the low-cost GPS receivers. The three analyzers and
their corresponding data structures are described in details in the following.

Analyzing movements. The main goal for the MA is to extract information
about, what happen between two adjacent GPS measurements, e.g., how far did
the cow travel from measurementt−1 to measurementt, at what velocity and in
which direction. The MA takes incoming GPS measurements and produce MDSs,
which represent the relation between the last two received measurements. The
movement makes the foundation of the succeeding feature extraction.
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Besides providing information like: speed, acceleration, absolute heading, and
distance traveled, a discrete representation of the movement is categorized as be-
ing either: left turn, right turn, forward, u turn, or non moving. This approach
is inspired by the domain of various sports, where athletes’ movement patterns
have been used to analyze their physical fitness and performance. Mohr et al.
[8] used such a discrete representation when classifying activities into stand-
ing, walking, jogging, sprinting etc. to analyze the performance of high-standard
soccer players. Also Spencer et al. [13] analyze elite field hockey players’ per-
formance during a game by filming the players during the game and discretize
the time-motion information into movements for classification into more or less
the same discrete representations as above. A condensation of the information
contained by a MDS is listed in Table 1.

Table 1. A condensed list of information regarding each individual movement

Parameter Description Example

movement type a discrete representation left,
of the latest type of right,
movement performed forward,

u turn,
non moving

angle angle relative to the [deg] and [rad]
previous movement

magnitude distance traveled between [m]
the two measurements

speed estimated speed [m/s]

heading absolute heading [deg]

acceleration based on estimated speed [m/s2]
of the last two measurements

As illustrated in Fig. 2, the MA can be adjusted via one or more of three
input parameters. Whether a cow is moving or not is determined using a naive
Bayesian filter, as illustrated with pseudo code in Fig. 3. Each of the three
input parameters have different influence on the MA: minimum speed defines
the threshold between non moving and moving; heading threshold defines the
threshold for whether the current movement type is forward, left, right or u-turn;
and finally History length is the number of old movements taken into account in
the Bayesian filter when deciding whether the current movement type is moving
or non moving. The selection of the likelihoodnonmoving constants 0.1 and 0.6 in
the pseudo code is based on experience from previous lab work with detection
of bicyclist and pedestrian movements.

Selection of the MA input parameter values was based on intuition and ex-
periences from observing cow behavior. Hence, the minimum speed was set to
0.3 m/s as cows walking towards a certain goal tends to move at that pace or
faster, history length was set to 4 by pure intuition and heading threshold was
set to 40 degrees for the same reason.
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priornonmoving = 0.5
priormoving = 1.0 − priornonmoving

accuracyGPS = 0.4

uncertainty =

{
1.0 if distancemovementt < accuracyGPS(

accuracyGPS
distance

)2
else

for each movement in listhistory :
{

likelihoodnonmoving =

⎧⎪⎨
⎪⎩

0.10 if minSpeed ≤ vmovement

(0.60 × uncertainty)2 else if uncertainty < 1.0

0.60 else

likelihoodmoving = 1.0 − likelihoodnonmoving

pnonmoving =
priornonmoving×likelihoodnonmoving

(priornonmoving×likelihoodnonmoving)+(priormoving×likelihoodmoving)

priornonmoving = pnonmoving

priormoving = 1.0 − priornonmoving

}
isMoving = priornonmoving < 0.5

Fig. 3. Pseudo code for determining motion for a movement instance

Analyzing segments. The main purpose of the SA is to extract features from
movements and pass the feature information on as segments. The SA assembles
incoming movements, and extracts a broad variety of features from the movement
assembly, once a certain number of movements has been assembled. The criteria
for segment completion is customizable via the segmentation strategy parameter,
as depicted in Fig. 2. Depending on the domain usage, such a segmentation
strategy may vary, e.g., segment when the timespan between the timestamps of
the first and the last measurement reaches a certain limit.

With inspiration from research done by Zheng et al. [15], we extract a broad
variety of features from the movement data, e.g. HeadingChangesDegreesFor-
wardRate, which represents the rate of heading changes in degrees for all move-
ments in the segment moving straight forward.

The SA computes fifty six different features represented in the SDS. As many
of these features tend to be variants of each other, they are grouped for clarity
and listed in Table 2.

Selecting the segmentation strategy to use as input parameter for the SA was
based on experiences from observing cow behavior. We found that cows often do
the same activity for two to three minutes or more, hence, segmentation strategy
was set to segment every 160 seconds. Also we assume that too small a timespan
might lead to large variations between the segments. However, the segmentation
strategy remains to be tested properly, as we in this work omit to consider the
transition between activities.
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Table 2. A list of features extracted for each segment

Parameter Feature

movement type Distribution (% of forward, left, right, etc.)
Change rate between moving and non moving
Change rate between any type of movement

heading Changes accumulated (forward, left, etc.)
Change rate (forward, left, etc.)
Changes max (forward, left, etc.)

speed Max, min and mean

acceleration Max and min
Mean and accumulated (both positive and negative)
Changes between positive and negative

distance Accumulated for 2D and 3D (moving and non moving)
Max for 2D and 3D (moving and non moving)

time Accumulated (moving and non moving)

Analyzing activities. The AA is responsible for processing the incoming features
provided via the SDSs, and classify the current activity using a machine learn-
ing algorithm. The segments are processed by providing the incoming feature
instances to standard machine learning techniques implemented by the Weka
Toolkit [14]. We approach the cow activity recognition problem from a soft-
ware perspective, hence we use a standard machine learning API, and omit to
optimize the machine learning algorithms and techniques. The machine learn-
ing algorithm parameter provides the ability to change the algorithm used, as
illustrated in Fig. 2. The classification result and the corresponding SDS are
represented in an ADS. Based on experience from previous lab work with classi-
fication of bicyclist activities, we used a random classifiers committee (END) as
machine learning algorithm in this work. In addition, we compare these results
with the classification rates of other well performing algorithms.

5 Results

The relevant sequences of data selected for the following analysis consist of po-
sition tracks where a cow performs one of the following activities: lying, walking,
eating seeking or standing, as described in Sect. 3. The sequences sums up to
a total of 16 hours of unbalanced data, where the walking activity represented
by 50 minutes of data is the one activity with the least data available, followed
by lying with 136 minutes, standing with 165 minutes and finally eating seeking
with 613 minutes.

Setting the configuration parameters initially was based on intuition and expe-
riences from observing cow behavior. Consequently, the input parameters where
set as follows: minimum speed was set to 0.3 m/s, history length was set to 4,
heading threshold was set to 40 degrees, segmentation strategy was set to seg-
ment every 160 seconds and finally an END random classifier committee was
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selected as machine learning algorithm. The background for selecting these fea-
tures is explained in Sect. 4. By using this parameter configuration we obtain a
success rate of 86.2%, and the result was evaluated against various combinations
of different input parameter values as listed in Tables 3 and 4.

Table 3. The MA and SA input parameter values used for the evaluation

Parameter min max step

movement analyzer (MA):
minimum speed [m/s] 0.1 0.5 0.1
heading threshold [deg] 10 50 10
history Length 1 10 1

segment analyzer (SA):
segmentation strategy:
- Timespan in seconds 30 180 10

The individual classification rates of one thousand iterations of each combi-
nation evaluated using an END random classifier committee reaches from 71.8%
to 86.5%. The END classifier is used with its default configuration, i.e., 10 com-
mittee members and is evaluated using 10 folds cross validation. In addition, we
tested several machine learning algorithms also provided by the Weka Toolkit
[14], and in Table 4 we present the results of the best performing ones having
set the input parameters as stated above. We found END to be best performing
in terms of average success rates. In addition, the table shows the mean time
of processing one instance after running the one thousand iterations of 361 in-
stances on a Intel(R) Core(TM)2 Duo CPU T8300 (2.40GHz,2.40GHz) with 3.00
GB RAM, on a 32 bit Windows 7 Enterprise operating system.

Table 4. Results of the evaluation of the algorithms performing best in the test

Machine learning algorithm avg success rate % milliseconds/instance

- END 86.2 5.5
- SMO (SVM) 85.7 10.3
- Classification Via Regression 85.7 13.8
- Random Forest 85.5 1.8
- J48 85.4 1.0

By evaluating the results of the END based classifications, with only one of
the four input parameters varying at a time, we found, that selection of any of
the tested values for minimum speed, heading threshold and history length has
very little impact on the success rate for the given data.

In contrast, the results of testing the segmentation strategy shows a raising
tendency of the classification rates as the segment size increases, as depicted
in Fig. 4. However, the graphs seems to stagnate after reaching the selected
strategy, where the timespan between the timestamps of the first and the last
measurement is 160 seconds. The same characteristics tends to match all the
algorithms listed in Table 4.
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Fig. 4. Graph showing the configuration with variable segmentation strategy

For some features, an inspection of their characteristics leads to an explanation
of the mutual difference in success between the four activities. For instance,
Figure 5 depicts the distribution of the heading change rate in degrees while the
cow is moving forward. The figure indicates that the walking activity dissociates
itself from the other activities, which may explain the success rate of 100%.
Moreover, the figure shows the same tendency for approximately 2/3 of the
cases of performing the eating seeking activity. However, for the 30% fractile it
tends to hide behind the lying distribution graph. In addition and similar for
all feature distributions, it looks like this feature is of no help in the distinction
between lying and standing activities as they collide for almost all values of the
heading change rate in degrees while moving forward. It explains by the fact that
the three activities are composed by either none or limited forward movements in
contrast to the walking activity. The search for features making the distributions
diverge will be challenged in future work.

The number of false classifications exposed in the confusion matrix in Table
5 verifies, that both the definitions of the activities of lying and standing are
similar, and that the definition of the eating seeking activity cause for it to be
confused with the for two activities, due to the many and long periods of time
where the cow is standing still chewing and grassing.

Table 6 sums the number both false positives and false negatives and lists the
success rates. In the domain of precision livestock farming the number of both
false positives and false negatives are severe, as they may lead to animals to
suffer unattended. Moreover, the combination of false positives and negatives is
important, as an eating and seeking cow classified as a lying cow, will appear as
if the feed intake is decreased and the resting activity is increased, which may
indicate the cow as being in need of extra attention, i.e., a focus cow.
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Fig. 5. Distribution of heading change rate in degrees while moving forward

Table 5. Confusion matrix of the cross validation

classified as: lying standing walking eating seeking

observation:
lying 76.5% (39/51) 13.7% (7/51) 0.0% 9.8% (5/51)
standing 3.2% (2/62) 75.8% (47/62) 0.0% 21.0% (13/62)
walking 0.0% 0.0% 100% (19/19) 0.0%
eating seeking 3.0% (7/230) 6.5% (15/230) 0.4% (1/230) 90.0% (207/230)

Table 6. Summed false negatives and false positives

false negatives false positives success

lying 23.5% (12/51) 2.9% (9/311) 76.5% (39/51)
standing 24.2% (15/62) 7.3% (22/300) 75.8% (47/62)
walking 0.0% 0.3% (1/343) 100% (19/19)
eating seeking 10.0% (23/230) 13.6% (18/132) 90.0% (207/230)

Summary. We find that varying the input parameter configuration has very little
impact on the given dataset. For instance, the tested values and combinations
of both history length, minimum speed and heading threshold has very little
influence on the classification rate. However, the segmentation strategy used in
this work shows a tendency of an increasing success rate as the segment size
increases. Moreover, it is not thoroughly tested as the detection of transitions
between activities are omitted in this work.
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6 Discussion

In this section we will discuss improvements in hardware, collection of additional
datasets and the recognition of abnormal behavior.

Improving the Hardware. An issue with the low-cost GPS receiver used for this
experiment is that they stop calculating new GPS positions to save power after
remaining still for an unspecified period of time. This functionality is unman-
ageable when using the GPS receiver’s scheduling mechanism, however it seems
to become an advantage for the machine learning algorithm in the distinction
between the two activities of standing and lying, as the GPS positions seems
to drift a little when a cow is standing still in contrast to when a cow is lying
still. However, for these two activities we are unable to match the results by
Robert et al. [11], which indicates that we might improve our success rates by
fusing measurements from other types of sensors like an accelerometer with the
low-cost GPS receiver. Given the achieved classification rates using a low-cost
GPS receiver as sensor, one can only expect even better classification rates in
the future as the existing positioning technologies mature and new promising
global navigation satellite systems like Galileo [2] becomes operational.

Collection of Additional Datasets. This work was based on sequences of data
with manual observations as ground truth. The benefit of manual observations
is that we were able to monitor fourteen cows moving around freely over two
consecutive fields. Given fourteen animals also means that physiological variation
is represented in the data which will decrease along with the number of animals.
However, the manual method also limits our dataset because we had to select
particular tracks from it which may cause the activity recognizing model to
be trained and tested with less noisy data. Moreover, we treated each of the
selected sequences of position data as atomic datasets. An obvious approach for
future work would be to use datasets including transitions between activities,
e.g. a dataset where a cow after standing still for a period of time, it walks until
it reaches a location, where it starts to eat and seek for a while before lying
down. This also enables us to apply, e.g., a hidden Markov model to model the
transitions among the activities over time.

Another method for capturing ground truth would be to use video recording to
document ground truth, especially, this would remove uncertainty in situations
where the manual observation diverges from the position data, e.g., if a cow is
observed to be lying down while the position data reveals that the cow is actually
moving around. However, video recording both limits the number of animals
that can be monitored and the size of the field to keep the animals in view.
Therefore given the same human effort the video-based method can produce
data for fewer animals thereby decreasing the physiological variation. In our
future work we plan to experiment with introducing video based observations
because this would enable us to better study transitions between activities which
is difficult to capture accurately with manual observations.

Recognizing Abnormal Behavior. Recognizing specific cow activities is the first
step towards spotting focus cows. The next step is to define normal and abnormal
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behavior based on the classified activities which would enable the system to
provide information on the individual cow’s health and welfare condition.

The severity of false positives and false negatives may vary from one domain
to another. For pointing out focus cows, it is of high importance to avoid such
false classifications as they may lead an animal to suffer from either bad health
or welfare conditions without anyone noticing it. As a consequence, it leads to
lower production and often an increase of medical expenses. We found, that
except for a few values the standing distribution tends to collide with the lying
distribution for all feature distributions. In addition, for the 30% fractile of the
eating seeking distribution it collides with both lying and standing distributions.
Therefore in a future work we will be searching for features that diverge for the
three activities in an attempt to decrease the number of false classifications.

The activity of a cow drinking is a useful additional activity to recognize, and
it would serve as an important input to recognize abnormal behavior, along with
the four activities recognized in this work. By assuming that a cow spending time
at a drinking vessel is actually drinking, it would be possible to recognize drinking
activity when a cow is in the proximity of a drinking vessel, e.g., by introducing a
location model with specific meta information annotated with specific locations.
In our future work we plan to include this activity when trying to recognize
abnormal behavior.

7 Conclusion

We managed to obtain an average classification success rate of 86.2% for the four
activities, by preprocessing position data from cows collected via low-cost GPS
receivers, followed by extraction of several features used as input to a standard
machine learning technique. The average success rate is higher than we initially
expected it to be. The relative high average is reached thanks to the two ac-
tivities defined as walking and eatingSeeking, which we recognize in 100.0% and
90.0% of the cases respectively. A challenge for future work lies within the recog-
nition of and distinction between the two activities defined as standing and lying,
where we recognize only 75.8% and 76.5% of the cases respectively. Furthermore,
recognizing the transitions between activities will be a future challenge.
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Abstract. In this paper, we present a technique to help the experts in
agricultural monitoring, by mining Satellite Image Time Series over cul-
tivated areas. We use frequent sequential patterns extended to this spa-
tiotemporal context in order to extract sets of connected pixels sharing a
similar temporal evolution. We show that a pixel connectivity constraint
can be partially pushed to prune the search space, in conjunction with
a support threshold. Together with a simple maximality constraint, the
method reveals meaningful patterns in real data.

Keywords: Satellite Image Time Series, Spatiotemporal Patterns,
Constraints, Agricultural Monitoring.

1 Introduction

Current environmental and economic problems require better large scale agricul-
tural monitoring. Continuous development of acquisition techniques of satellite
images provides ever growing volumes of data containing precious information
for environmental and agricultural remote sensing. It is now possible to gather
series of images concerning a given geographical zone at a reasonable cost. This
kind of datasets, termed as a Satellite Image Time Series (SITS), offers a great
potential, but raises new analysis challenges as data volumes to be processed are
large and noisy (e.g., atmospheric variations, presence of clouds), and as both
the temporal and the spatial dimensions have to be taken into account.

We present an unsupervised technique to support SITS analysis in agricultural
monitoring. The approach relies on frequent sequential pattern extraction [1]
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along the temporal dimension, combined with a spatial connectivity criterion. It
permits to exhibit sets of pixels that satisfy two properties of cultivated areas:
being spatially connected/grouped and sharing similar temporal evolutions. The
approach does not required prior knowledge of the objects (identified regions)
to monitor and does not need user-supplied aggregate functions or distance def-
initions. It is based on the extraction of patterns, called Grouped Frequent Se-
quential patterns (GFS-patterns), satisfying a support constraint and a pixel
connectivity constraint.

In this paper, we extend the general framework of GFS-patterns we proposed
in [16], in two directions, when applied to agricultural monitoring.

Firstly, we show that, even though the connectivity constraint does not be-
long to a typical constraint family (e.g., monotonic, anti-monotonic), it can be
pushed partially in the search space exploration, leading to significant reduction
of execution times on real Satellite Image Time Series of cultivated areas.

Secondly, we show that a simple post-processing using a maximality constraint
over the patterns is very effective, in the sense that it restricts the number of
patterns to a human browsable collection, while still retaining highly meaningful
patterns for agro-modelling, even on a poor quality input (rough image quanti-
zation, raw noisy images).

The new extended approach seems particularly appropriated in exploratory
mining stages on this kind of data. Indeed, we show than the method can isolate
cultivated fields vs. non-cultivated areas (city, path, field border), can find areas
of homogeneous crop, and even highlight particular variety of a crop, and irri-
gation/fertilization differences. To our knowledge, no such coarse to fine grained
results have been reported using a single other unsupervised method.

The technique does not aim to be exhaustive (e.g., identifying groups for all
crops or varieties), but requires no domain knowledge (except the use of the well
known Normalized Difference Vegetation Index [19]) and needs only a simple
preprocessing of the SITS.

2 Grouped Frequent Sequential Patterns

In this section, the grouped frequent sequential patterns are introduced. They are
dedicated to the extraction of groups of pixels, in which the pixels in a group
share a common temporal pattern and satisfy a minimum average connectivity
over space. Firstly, some preliminary definitions are given so as to view a SITS
as a set of temporal sequences. Secondly, we recall and adapt in this context a
common kind of local patterns, the so-called sequential patterns. Then, in the
third part of this section, the connectivity measure used to define the grouped
frequent sequential patterns is introduced.

2.1 Preliminary Definitions

Let us consider a SITS, i.e., a satellite image time series that covers the same area
at different dates. Within each image, each pixel is associated to a value, e.g.,
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the reflectance intensity of the geographical zone it represents. We transform
these pixel values into values belonging to a discrete domain, using labels to
encode pixel states. These labels can correspond to ranges obtained by image
quantization or to pixel classes resulting from an unsupervised classification (e.g.,
using K-means or EM-based clustering).

Definition 1. (label and pixel state) Let L = {i1, i2, . . . , is} be a set con-
taining s distinct symbols termed labels, and used to encode the values associated
to the pixels. A pixel state is a pair (e, t) where e ∈ L and t ∈ N, and such that
t is the occurrence date of e. The date t is simply the time stamp of the image
from which the value e has been obtained.

Then, we define a symbolic SITS as a set of pixel evolution sequences, each
sequence describing the states of a pixel over time.

Definition 2. (pixel evolution sequence and symbolic SITS) For a pixel
p, the pixel evolution sequence of p is a pair ((x, y), seq), where (x, y) are the co-
ordinates of p and seq is a tuple of pixel states seq = 〈(e1, t1), (e2, t2), ..., (en, tn)〉
containing the states of p ordered by increasing dates of occurrences. A symbolic
SITS (or SITS when clear from the context) is then a set of pixel evolution
sequences.

For a typical symbolic SITS, we thus get a set of millions of pixel evolution
sequences, each sequence containing the discrete descriptions of the values asso-
ciated to a given pixel over the time.

2.2 Sequential Patterns

A typical base of sequences is a set of sequences of discrete events, in which each
sequence has a unique sequence identifier. For SITS, if we take the pairs (x,y)
of coordinates of the pixels as identifiers of their evolution sequences, then a
symbolic SITS is a base of sequences, and the standard notions [1] of sequential
patterns and sequential pattern occurrences can be easily defined as follows1.

Definition 3. (sequential pattern) A sequential pattern α is a tuple 〈α1, α2,
. . . , αm〉 where α1, . . . , αm are labels in L and m is the length of α. Such a pattern
is also denoted as α1 → α2 → . . . → αm.

Definition 4. (occurrence and support) Let S be a symbolic SITS, and α =
α1 → α2 → . . . → αm be a sequential pattern. Then ((x, y), 〈(α1, t1), (α2, t2), . . . ,
(αm, tm)〉), where t1 < t2 < . . . < tm, is an occurrence of α in S if there exists
((x, y), seq) ∈ S such that (αi, ti) appears in seq for all i in {1, . . . , m}. Such a
pixel evolution sequence ((x, y), seq) is said to support α. The support of α in S,
denoted by support(α), is simply the number of sequences in S that support α.

1 Notice that in the original definitions several elements can occur at the same time
in a sequence, while in our context a timestamp is associated to a single element.
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Example 1. A toy symbolic SITS containing the states of four pixels.

((0, 0), 〈(1, A), (2, B), (3, C), (4, B), (5, D)〉),
((0, 1), 〈(1, B), (2, A), (3, C), (4, B), (5, B)〉),
((1, 0), 〈(1, D), (2, B), (3, C), (4, B), (5, C)〉),
((1, 1), 〈(1, C), (2, A), (3, C), (4, B), (5, A)〉)

This dataset describes the evolution of four pixels throughout five images with
L = {A, B, C, D}. For example, the successive discrete labels associated to the
values of the pixel located at (0, 0) are A, B, C, B and D. In this dataset, the
sequential pattern A → C → B has the four following occurrences (notice that
the elements in an occurrence do not need to be contiguous in time):

((0, 0), 〈(1, A), (3, C), (4, B)〉),
((0, 1), 〈(2, A), (3, C), (4, B)〉),
((0, 1), 〈(2, A), (3, C), (5, B)〉),
((1, 1), 〈(2, A), (3, C), (4, B)〉)

The pattern has four occurrences, but appears in only three different pixel evo-
lution sequences, and thus its support is support(A → C → B) = 3. Finally,
it should be pointed out that a label can be repeated within a pattern, and for
instance, pattern C → C has two occurrences, one in the third and one in the
fourth sequence.

Definition 5. (frequent sequential pattern) Let σ be a strictly positive in-
teger termed a support threshold. Let α be a sequential pattern, then α is a
frequent sequential pattern if support(α) ≥ σ. The support threshold can also
be specified as a relative threshold σrel ∈ [0, 1]. Then a pattern α is frequent if
support(α)/|S| ≥ σrel, where S is the dataset and |S| is the number of sequences
in S.

Reusing the definitions of sequential patterns and of sequential patterns occur-
rences will enable to take advantage of the great research effort made in this
domain to develop efficient extraction techniques (e.g., [1,28,21,10,31,30,25,27]).

2.3 Spatial Connectivity

The way sequential patterns are applied to SITS analysis leads to a natural
interpretation of the notion of support. In fact, for a pattern α, the support
of α is simply an area, i.e., the total number of pixels in the image having an
evolution in which α occurs. These pixels are said to be covered by α.

Definition 6. (covered pixel) A pixel associated to the evolution sequence
((x, y), seq) is covered by a sequential pattern α if α has at least one occurrence
in seq. The set of the coordinates of the pixels covered by α is denoted by cov(α).
By definition, |cov(α)| = support(α).
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However, a threshold on the covered area is not sufficient, because, most of the
time, interesting parts in images are made of pixels forming regions in space.
Thus, an additional criterion, the average connectivity measure, based on the
8-nearest neighbors (8-NN) convention [8], is introduced. This measure enables
to select patterns that cover pixels having a tendency to form groups in space.
It is defined as follows:

Definition 7. (local connectivity) For a symbolic SITS S, let occ((x, y), α) be
a function that, given the spatial coordinates (x, y) and a sequential pattern α,
indicates whether α occurs in S at location (x, y). More precisely, occ((x, y), α)
is equal to 1 if and only if there is a sequence seq in S at coordinates (x, y)
and α occurs in ((x, y), seq). Otherwise occ((x, y), α) is equal to 0. If α occurs
in ((x, y), seq), then its local connectivity at location (x, y) is LC((x, y), α) =
[
∑i=1

i=−1

∑j=1
j=−1 occ((x + i, y + j), α)] − 1.

The value LC((x, y), α) is the number of pixels in the 8-neighborhood of (x, y)
that have an evolution supporting α. The reader should notice that the sum is
decremented by one, so as not to count the occurrence of α at location (x, y)
it-self. In Example 1, for sequential patterns A → C → B and C → C we have:

LC((0, 0), A → C → B) = 2
LC((0, 1), A → C → B) = 2
LC((1, 1), A → C → B) = 2

LC((0, 1), C → C) = 1
LC((1, 1), C → C) = 1

Definition 8. (average connectivity) The average connectivity of α is de-
fined as:

AC(α) =
∑

(x,y)∈cov(α) LC((x,y),α)

|cov(α)|

This measure gives, for the pixels supporting α, the average number of neighbors
in their 8-NN that also support α. In Example 1, AC(A → C → B) = 6/3 = 2
and AC(C → C) = 2/2 = 1. Finally, we define the grouped frequent sequential
patterns as follows.

Definition 9. (GFS-pattern) Let S be a symbolic SITS, given a sequential
pattern α frequent in S, and a positive real number κ termed average connectivity
threshold, α is said to be a Grouped Frequent Sequential pattern (GFS-pattern)
if AC(α) ≥ κ in S.

For instance, in Example 1, if σ = 2 and if κ = 2, then A → C → B is a grouped
frequent sequential pattern while C → C is not.

3 Grouped Frequent Sequential Pattern Extraction

As mentioned in Section 2, several efficient techniques are available to extract
sequential patterns in a base of sequences and can be used in our context. A naive
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solution is to extract frequent sequential patterns and then, in a post-processing
step, to select among them the ones satisfying the average connectivity constraint
AC(α) ≥ κ. In this section, we show that this constraint can be pushed partially
in the extraction process to prune the search space and reduce the extraction
time, as reported in the experiment presented in Section 4.2.

The average connectivity constraint does not correspond to a class of con-
straints that have been identified in sequential pattern mining, and for which
pruning techniques have been proposed. The two main classes of constraints
are the anti-monotonic constraints (if a pattern does not satisfy the constraint
then its super-patterns cannot satisfy it) and monotonic constraints (if a pattern
satisfies the constraint then all its super-patterns satisfy it).

For the simple form of sequential patterns used in this paper, the notion of
super-patterns can be defined as follows.

Definition 10. (super-pattern) A sequential pattern β = β1 → β2 → . . . →
βm is a super-pattern of a sequential pattern α = α1 → α2 → . . . → αn if there
exist integers 1 ≤ i1 < i2 < . . . < in ≤ m such that α1 = βi1 , α2 = βi2 , . . .,
αn = βin .

It is straightforward that the average connectivity constraint is neither anti-
monotonic, nor monotonic, and it is easy to show that it is neither prefix anti-
monotonic, nor prefix monotonic [27]. Moreover it does not belong to classes of
constraints used for frequent pattern mining in general, such as succinct [24],
convertible [26] or loose anti-monotone [2].

The key hints to push partially the average connectivity constraint is to ob-
serve that for any frequent sequential pattern α since |cov(α)| ≥ σ, then

AC(α) =
∑

(x,y)∈cov(α) LC((x,y),α)

|cov(α)| ≤
∑

(x,y)∈cov(α) LC((x,y),α)

σ

Thus a frequent pattern α that does not satisfy
∑

(x,y)∈cov(α) LC((x,y),α)

σ ≥ κ
cannot be a GFS-pattern. And, if we consider the conjunction of constraints C =
support(α) ≥ σ∧

∑
(x,y)∈cov(α) LC((x,y),α)

σ ≥ κ, this conjunction is anti-monotonic,
since the value

∑
(x,y)∈cov(α) LC((x, y), α) cannot increase for super-patterns of

α, and thus this conjunction can be used actively to prune the search space.
There is no real need for a new extraction algorithm, since many, if not all, of

the sequential pattern mining algorithms can handle and push in the extraction
process anti-monotonic constraints. We decided to integrate the anti-monotonic
conjunction C into the PrefixGrowth algorithm [27], that is a recent and efficient
algorithm for sequential pattern mining under constraints, and that can easily
handle anti-monotonic constraints among others. Beside checking C to prune
the search space, the only modification required is to verify before outputting
a pattern α that AC(α) ≥ κ, since satisfying C does not imply satisfying the
average connectivity constraint. The implementation of the whole algorithm has
been done in C using our own data structures.



Mining Pixel Evolutions in Satellite Image Time Series 195

4 Experiments

We report experiments on the ADAM (Data Assimilation by Agro-Modeling)
SITS [6], a SITS dedicated to the assessment of spatial data assimilation tech-
niques within agronomic models. This dataset and its preprocessing are pre-
sented in Section 4.1, and result in a set of one million of sequences of size 20. In
Section 4.2, we show that pushing the average connectivity measure constraint,
during GFS-pattern extraction, is effective to reduce the search space. Then, in
Section 4.3, we show that together with a maximality constraint, the approach
is useful to find meaningful patterns in real data. All experiments have been run
on a standard PC (Intel Core 2 @3GHz, 4 GB RAM, Linux kernel 2.6), using
our own extractor engine developed in C (see Section 3).

a) b)

Fig. 1. Satellite NDVI images examples a) original image b) quantization of the image
with 3 intervals

4.1 The ADAM SITS: Presentation, Selection and Preprocessing

We build a dataset of one million of sequences of size 20, using 20 images (1000
× 1000) of the ADAM SITS taken between October 2000 and July 2001, so as
to make sure that enough data is available to observe agricultural cycles, from
autumn ploughing and seeding to harvest. These images have been acquired with
three bands by SPOT satellites: B1 in green (0.5 - 0.59 μm), B2 in red (0.61 -
0.68 μm) and B3 in near infrared (NIR 0.78 - 0.89 μm). The spatial resolution
is 20m×20m and the observed scene is a rural area located in East Bucharest,
Romania.

A sub-scene (containing 1000 × 1000 pixels) depicting a given area, namely
Fundulea, has been selected. The resulting dataset contains noise (mainly at-
mospheric perturbations), and has a size (20 images 1000 × 1000) typical in
the domain of per-pixel SITS analysis. This sub-scene mainly shows agricultural
fields whose dimensions are larger than the spatial resolution. Various types of
crops such as wheat, corn, barley, chickpea, soya, sunflower, pea, millet, oats
or lucerne are present. Other objects can be categorized into ’roads’, ’rivers’,
’forests’ and ’towns’. The topography of this region is generally flat with a very
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limited fraction of the area corresponding to slopes bordering a river and to sev-
eral micro-depressions. A ground truth is available for the period 2000-2001 for
the fields that belong to the Romanian National Agricultural Research and De-
velopment Institute. It represents 5.9% of the scene, and can be used to evaluate
our results.

For each pixel, and for each date, we compute a synthetic band B4 correspond-
ing to the Normalized Difference Vegetation Index (NDVI) [19] and defined as
B4 = B3−B2

B3+B2 . The NDVI index is widely used to detect live green plant canopies in
multispectral remote sensing data. An example of an original image of the ADAM
SITS encoded in the B4 band is presented in Figure 6a. The image quantization
is performed by splitting the B4 value domain in 3 intervals that are equally pop-
ulated. In order to minimize the influence of possible calibration defaults, quan-
tization is separately done for each image. For a given acquisition date, a pixel is
described by a single label that indicates which interval this pixel value belongs
to. Label 1 relates to low NDVI values, label 2 represents mid NDVI values and
label 3 denotes high NDVI values. The result of the quantization of the image of
Figure 6a is shown in Figure 6b. When encoded as sequences, we obtain a set of
one million of sequences of size 20 over an alphabet of 3 symbols.

4.2 Quantitative Results

The two parameters that can be set by the user are σ, the minimum support
and κ, the minimum average connectivity. The values of the minimum support
are taken in the range [0.25%, 2%] so as to ask for minimum areas covering from
2500 pixels (1 km2) to 20000 pixels (8 km2). Those values allow us either to
consider all fields including the smallest ones (low σ values) or to extract quite
large fields (high σ values). In order to assess the impact of κ, values between
0 and 7 are considered. As the definition of the average connectivity measure
relies on the 8-nearest neighbors convention, and makes no distinction between
pixels on image borders and the other ones, the average connectivity measure
indeed belongs to [0, 8).

The experiments show that the number of frequent sequential patterns that
are discarded thanks to the minimum average connectivity constraint is impor-
tant, and that pushing partially this constraint leads to a significant reduction
of the execution times (from 10 to 20%).

The number of output patterns Np can be several orders of magnitude lesser
than the total number of frequent patterns. This is represented in Figure 2a. If no
minimum average connectivity constraint is applied (κ = 0), then all frequent
sequential patterns are extracted, and Np rises up to 78885 patterns, and as
expected, the higher κ is, the lower is Np. In the worst case scenario, i.e., for
σ = 0.25%, if κ = 4, then Np = 7623 while if κ = 7 then Np = 21. The minimum
average connectivity constraint is a very selective one, as it can be observed, for
a given value of κ such that κ �= 0, Np has rather limited variations with respect
to σ. For example, for κ = 4, Np rises from 4042 (σ = 2%) to 7623 GFS-patterns
(σ = 0.25%) while for κ = 6, Np rises from 454 (σ = 2%) to 479 GFS-patterns
(σ = 0.25%). Np is even stable for κ = 7 with 21 GFS-patterns.
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As presented in Figure 2b, the extraction times are the same for all values
of κ if the average connectivity constraint is not pushed (one single curve). If
the constraint is pushed, then extraction times are reduced for all settings, from
10% up to 20%. For example, for σ = 0.75% and κ = 7, it takes 756 seconds to
perform an extraction without constraint pushing while it only takes 599 seconds
with constraint pushing.
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Fig. 2. For different values of κ a) Np vs. σ b) Extraction times vs. σ, with and without
constraint pushing

The corresponding pruning can be quantified using the number Nchecked of
frequent sequential patterns that are considered during the extraction and for
which the average connectivity constraint is checked. The values obtained for
Nchecked are given Figure 3a. If no constraint pushing is performed, then, for
example, Nchecked rises up to 78885 patterns for σ = 0.25 (whatever κ might be).
At the same support threshold, if the constraint pushing is performed, then, for
instance, with κ = 7, Nchecked goes down to 50227. For a given σ and a given κ,
when the constraint is pushed, Nchecked is reduced in all settings. This reduction
(in %) is depicted in Figure 3b. It varies between 7.7% (σ = 2%,κ = 4) and 36.3%
(σ = 0.25%,κ = 7). The pruning is more effective (large relative reduction) in
the most difficult extraction settings (low values of σ).

4.3 Qualitative Results

In this section, σ is set to 1% in order to ask for GFS-patterns relating to areas
covering at least 4 km2 (the whole image covers 400 km2). Main crops are thus
focused on, which will help us in characterizing our results. The ground truth
that has been made available by the experts and that covers 5.9% of the image
indeed contains representative crops of that region.

We show that using a typical maximality constraints on these patterns is a
very effective way to focus on a small number of meaningful GFS-patterns, still
carrying key information for agro-modelling experts.
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Fig. 3. For different values of κ a) Nchecked vs. σ b) Nchecked reduction vs. σ

The maximality constraint used is very simple, it consist in selecting the
patterns in the output having no super-pattern also present in the output. These
patterns are in some sense the most specific.

To visualize the result, for each of these maximal patterns we draw an image
where the pixels covered by the pattern are highlighted. Since we obtain only a
few tens of such images, the visual inspection can be quickly done by the expert.
Notice that if we extract all frequent sequential patterns (without taking into
account the spatial connectivity of the pixels) at σ = 1%, then 23038 patterns
are obtained, among which 4684 are maximal, forming a collection that cannot
reasonably be handle by the expert.

It should also be pointed out, that in these experiments, the image quanti-
zation does not seem to be a critical issue, as well as the presence of intrinsic
noise in SITS (mainly atmospheric variations and clouds). Indeed, though the
image quantization in 3 levels leads to patterns built over a small alphabet of 3
labels, and though no dedicated noise preprocessing is performed, the joint use
of the spatial and temporal information still allows to find meaningful patterns.
So the technique is likely to be applicable to poor quality image series (e.g., due
to limitations of the measuring device) and to require little preprocessing.

For the first experiment we set κ to 7, that is a very selective value of the
threshold. In this case, 21 GFS-patterns are obtained. They relate to general
evolutions as their length does not exceed 12. Only 7 are maximal, and among
them we have for example, pattern 3 → 3 → 3 → 3 → 3 → 3. The pixels covered
by that pattern are depicted in white in Figure 4a over the area for which the
ground truth is available. It covers 96.2% of the pixels of the ground truth that
correspond to cultivated fields, and 98.3% of the pixels it covers in this area
correspond to cultivated fields.

In order to get more specific evolutions, i.e., longer patterns, we set κ to
a less selective value and use κ = 6. We obtain 31 maximal patterns out of
the 474 GFS-patterns that are extracted. One of these maximal patterns is
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a) b)

Fig. 4. a) Localization of pattern 3 → 3 → 3 → 3 → 3 → 3 b) Localization of pattern
2 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 1 → 1 → 1 → 1

2 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 1 → 1 → 1 → 1. The pixels
covered by that pattern are represented in Figure 4b. According to the ground
truth, it covers 61.4% of the pixels of the ground truth that relate to wheat crop,
and 96.3% of the pixels it covers in the area where the ground truth is available,
correspond to wheat crop.

Interesting information can be drawn from such patterns. For instance, as it
can be observed, some holes (small black areas) appear within the fields (large
polygon almost completely filled in white) in Figure 4a and in Figure 4b. The
pixels of those holes are not covered by the pattern covering the ones in the
white areas. Their temporal behavior is thus different from their surrounding
pixels though they should be related to the same crops. Some of those holes
match pedological differences that have been reported by the experts while other
holes are likely to be due to different fertilization and/or irrigation conditions.
Such information is particularly interesting as it can be used to adapt locally
soil fertilization or irrigation.

Furthermore, it is possible to extract patterns corresponding to a single variety
of a given crop. For example, with κ = 5.5 we have 1074 GFS-patterns, and 66 of
them are maximal. Among these maximal ones, we have pattern 3 → 3 → 3 →
3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 1 → 1 → 1 → 1. Figure 5a
gives its localization. While the previous pattern relates to wheat crop in general,
that one relates to a particular variety. Indeed, 98.8% of the pixels it covers in
the ground truth area are all of a same variety of wheat. Two rectangular fields
are clearly identified (right part of the picture), the upper one corresponds to an
area partially covered by the previous pattern, while this is not the case for the
other rectangle, that exhibits another field of wheat. Both rectangles are covered
by the general pattern corresponding to cultivated fields and shown Figure 4a.

The pixels covered by the patterns do not always correspond to cultivated
areas, for instance, for κ = 6 we also obtained as a maximal GFS-pattern 2 →
2 → 2 → 2 → 2 → 2 → 2 → 2 that corresponds to paths, fallows, cities and field
borders. Its localization is depicted in Figure 5b.
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a) b)

Fig. 5. a) Localization of pattern 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 →
3 → 3 → 3 → 1 → 1 → 1 → 1 b) Localization of pattern 2 → 2 → 2 → 2 → 2 → 2 →
2 → 2

5 Related Work

SITS can be processed at a higher level than the pixel one, after having iden-
tified objects or groups of pixels forming regions of interest (e.g., [12,13]). This
family of approaches, needs as input identified objets/regions. If not known, ob-
jects/regions are hard to select in SITS since groups of pixels do not always form
objects in a single image2 (e.g., because of atmospheric perturbations, shading
phenomenon).

Per-pixel analysis of SITS have also retained attention as they do not
require prior object identification. These techniques are essentially clustering
techniques to form clusters of pixels (e.g., [23,9,17] These approaches are the
closest to the one presented in this paper, in the sense that they perform per-
pixel analysis without prior knowledge of the objects (identified regions) to
monitor. However, they required to incorporate domain knowledge in the form
of feature/aggregation/distance definitions and and they do not find overlap-
ping areas, and areas that refine other areas, such as the ones presented in
Section 4.

Other approaches, based on change detection, generate a single image in which
changes are plotted (e.g., [15,29]). They require prior information about the
type of changes and are targeted to a specific phenomenon, e.g., earthquakes or
biomass accumulation. They can be applied at the pixel level (e.g., [7], [20]), at
the texture level [18] or at the object level (e.g., [3]).

Other works (e.g., [4,5,22,14,11]) rely on local patterns for analyzing tra-
jectories and neighborhoods in spatio-temporal datasets. Nevertheless, to our
knowledge, they reported no application to satellite image time series.

2 This cannot be easily overcome, for instance, by averaging pixel values over consec-
utive images, since the aspect of an object is likely to change from a image to the
next one.
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a) b)

Fig. 6. Satellite NDVI images examples a) original image b) quantization of the image
with 3 intervals

6 Conclusion

In this paper, we applied the GFS-patterns to extract sets of pixels sharing
similar evolution from Satellite Image Time Series over cultivated areas. Beside
having a common temporal evolution, such a set of pixels must be populated
enough (support constraint) and connected enough (average connectivity con-
straint). We showed that the connectivity constraint can be partially pushed to
prune the search space and that using a simple maximality constraint allows to
focus on small collections of patterns that are easy to browse and interpret.

The experiments also showed that, even on poor quality input (i.e., noisy
images, rough quantization), the method can exhibit various level of details of
primary interest in agro-modelling (i.e., cultivated vs. non-cultivated areas, types
of crops, varieties).
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Abstract. Thousands of variables are measured in line during the man-
ufacture of central processing units (cpus). Once the manufacturing pro-
cess is complete, each chip undergoes a series of tests for functionality
that determine the yield of the manufacturing process. Traditional sta-
tistical methods such as ANOVA have been used for many years to find
relationships between end of line yield and in line variables that can be
used to sustain and improve process yield. However, a large increase in
the number of variables being measured in line due to modern manufac-
turing trends has overwhelmed the capability of traditional methods. A
filter is needed between the tens of thousands of variables in the database
and the traditional methods. In this paper, we propose using true mul-
tivariate feature selection capable of dealing with complex, mixed typed
data sets as an initial step in yield analysis to reduce the number of
variables that receive additional investigation using traditional methods.
We demonstrate this approach on a historical data set with over 30,000
variables and successfully isolate the cause of a specific yield problem.

Keywords: feature selection, yield analysis and improvement, random
forest, gradient boosting.

1 Introduction

Modern semiconductor manufacturing trends have led to a large increase in the
number of variables available with which to diagnose process yield. The increase
has been primarily due to:

• System on a Chip(SoC): More components of a computer being built into
a single chip. For example, rather than produce a cpu and a graphics chip
separately, they are combined into a single chip. This usually adds to the
total number of process steps required to build the product and the number
of process control variables measured.

• Fault Detection and Classification (FDC): Almost all equipment used in pro-
ducing cpus now has the capability to record information on how the tool
is performing. For example, an etcher may record pressure, temperature,
power consumption, and the states of various valves while it is processing.
FDC alone has doubled the number of variables that can be potentially
measured in line.

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 204–217, 2011.
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• Subentity Traceability: Most tools used in semiconductor factories (fabs)
now record the path taken through them. For example, an etcher (entity)
may have two chambers (subentities) being used in parallel, so it is no longer
sufficient to simply record ”Etcher1”, now we must also record chamber as
well, ”ChamberA”, in order to have a complete account of what entities
processed specific material. Some tools have as many as 15 subentities.

The result is that the capability of the traditionally used ANOVA and graphical
methods has been overwhelmed. The total number of variables measured on
production material as it travels through the factory is approaching 50,000. It
isn’t plausible to try and mine such a large number of variables using only scatter
plots and F-tests. However, the traditional methods have served well for many
years and business processes and expertise have become well developed as to
what statistical tests and supporting graphics are required to take a tool down
from production or make a change to the manufacturing process. A filter is
needed to reduce the number of variables that receive additional investigation
with traditional methods.

Mining is typically being done to decrease the cost of manufacture by increas-
ing the yield, performance, and reliability of the chips. Higher yields result in
lower cost by reducing the amount of equipment needed to be purchased in order
for the factory to meet a specific capacity and also lowers the amounts of con-
sumables (chemicals and gases) needed to be used to meet the required output
of good chips. Hundreds of chips are manufactured on 300mm diameter silicon
wafers which are processed in batches of 25 called lots. Each lot travels through
the line in a lot box, which has 25 slots. Once lots reach end of line, many tests
of functionality, performance, and reliability are performed. Fabs are constantly
looking for relationships between end of line yield and in line variables that can
be used to maintain and improve the process yield.

1.1 History of Analysis Approach

Early in the 1990s, data storage and analysis software were Vax based. At this
time, there were approximately 500 total variables measured in line. These vari-
ables were mostly SPC measurements (e.g. physical thickness of a deposited
film), run card (entity that processed the lot and out date at each operation),
and electrical test (e.g. electrical thickness of a film). It was possible to have
nightly batch jobs run on the Vax which produced the output required for the
analysis seen in Figure 1.

Early 2000s saw the switch to Oracle databases from Vax and increased data
storage capacity. Analysis was now done on desktops and laptops. Around 2005,
automation capability was added that allowed subentity traceability (the com-
plete path of a wafer through a process tool at each operation). This dramatically
increased the amount of information available in the run card. No longer did we
only know that the lot went through Tool1 and the date and time it did so,
now we also knew each subentity that it visited inside the tool (e.g. what cham-
bers, tracks, chucks, load locks, wafer transfer robots, and so forth) and the date
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Fig. 1. Analysis in early 1990s

and times for each. Run cards went from a few hundred columns, to over two
thousand. Also at this time, more operations were required to build the chip
as graphics and other functionality was added to the cpu (called SoC). About 2
years later, FDC data was added to each tool set in the factory. The combination
of SoC, FDC, and subentity traceability had increased the number of variables
available into the tens of thousands. The analysis approach in Figure 1 was no
longer practical.

The reaction to the large increase in variables led to the entity based ap-
proach shown in Figure 2. This approach emphasizes finding a suspect process
tool, usually done by comparing with its peers at the same operation using con-
tingency tables for categorical responses and ANOVA for continuous ones. If a
suspect tool can be found, it acts as a filter, as now only variables associated
with that tool and process operation need to be investigated. The approach has
the advantage of reducing the initial search back to around 500 hundred vari-
ables (process operations), however, there are drawbacks. Historically, only 53%
of yield issues can be traced to a single entity, so too often, a single entity at
a single operation may not be able to be isolated. Several entities across sev-
eral process operations may be suspect, so many variables may still need to be
reviewed. Or, the yield problem may not be caused by a single tool. For exam-
ple, it may be a sub optimal recipe being run across all tools at an operation.
Or, there may be operations where only one tool is operating, so there are no
peer tools to compare to. Also, while yield sustaining is typically about finding
and fixing problem process tools, yield improvement is often a response surface
problem where the goal is finding settings of inline parameters which provide
higher yield. An entity filter approach is less useful for yield improvement. And
finally, if a single tool at an operation can be found, there will still be 100 to 200
variables to search that are associated with that operation.

The approach we propose, shown in Figure 3, is to use a feature selection
algorithm as the initial step. In this way, not only can process tools be searched
during the initial step, but also every other variable in the data set. We have
used this approach in production for the past 2 years, analyzing over 20 data sets
ranging in size from 10,000 to 50,000 variables (in line measurements) and 1,000
to 10,000 rows (wafers). The data sets usually have more than one target variable
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Fig. 2. Analysis in early 2000s

(unique yield problems), ranging between 2 to 12 target variables. The algorithm
generally has reduced the number of variables requiring further investigation to
50 or less (per target), and greater reductions to between 5 and 10 (per target)
are not uncommon. The advantage of this approach is that it searches more
variables in less time and returns fewer and more likely to be relevant variables
than does the entity based filter approach. It is also works equally well for yield
sustaining (finding problems tools) as it does for yield improvement (find the
best settings of relevant variables). There are other advantages as well, such as
how it handles mixed variable types, missing data, and hierarchial variables that
will be discussed further in the next section.

Fig. 3. Analysis with Feature Selection
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2 Feature Selection

In theory, our goal in using a feature selection algorithm is to find a Markov
Boundary (a minimum length list of only strongly relevant as well as non redun-
dant, weakly relevant variables) for further investigation. But in practice, we are
satisfied with a list of most of the relevant variables (strongly or weakly) with
some redundancy. This is because we are using feature selection as an initial
step, not to provide the final answer. We are looking for good leads to follow
and expect that in the process of investigating these leads, we will learn more
that will influence our search for the root cause of the yield problem. For more
discussion of relevancy and redundancy please see [1],[2],[3].

The properties of our data sets make it necessary to have a feature selection
algorithm that can successfully handle the following challenges:

• Mixed Data Types: Our data sets contain categorical variables, such as the
recipe name that a lot received, as well as continuous variables such as the
length of a transistor channel.

• Missing Data: Sometimes due to automation errors, but usually due to sam-
pling. For example, only a few wafers in a lot might be sampled to measure
the thickness of a deposited layer.

• Nested Variables: The most common way wafers are selected for analysis
is to simply take all wafers that reached end of line in the past 30 days.
The result of this method of selecting material for analysis is that we also
now have roughly 30 days worth of material through all fab operations,
thus process tools. This influences the way we want to search entities and
subentities since time is nested within tool. By searching not only for a bad
tool, but also the affected time period, we significantly increase our ability
to find the correct signal over, say, a simple count of bad lots run on a tool
over the entire 30 days.

• Multivariate: Interactions are not uncommon in our manufacturing process.
For example, a lithography tool than tends to print metal lines wider than it
peers combined with an etcher that tends to etch the line less than its peers
is a combination that could push material out of spec and cause it to fail at
end of line.

• Outliers: Not only caused by unusual material, but also because it is un-
fortunately common for metrology equipment to write nonsensical values to
the database under certain conditions. For example, writing ”999” to the
database when an upper limit for a variable is reached, or writing ”-100”
for the wafer count through a tool when the actual wafer count can’t be
determined.

• Nonlinear Relationships: Very common. Due to the large number of vari-
ables, it isn’t practical to try and determine a transformation that works for
all of them unless doing something very basic like converting to ranks.

• Target Misclassification: Whether a specific wafer has the yield issue of in-
terest or not is a judgement call and there will be inaccuracy in the label
assigned to a wafer (e.g. GFA versus No GFA).
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• Large Fraction Irrelevant: Our data sets may contain 50,000 variables, of
which perhaps 5 are related to a specific yield problem.

• Multicolinearity: A large percentage of the variables in our data sets are
highly correlated. For example, the time through the previous process oper-
ation is highly correlated with the time through the next process operation.

Algorithm 1. Ensemble-Based Feature Selection, Classification

1. set Φ ← {}; Gk(F ) = 0, Wk = 0
2. for k = 1, . . . , K do
3. set V = 0.
4. for r = 1, . . . , R do

{Z1, . . . , ZM} ← permute{X1, . . . , XM}
set F ← X ∪ {Z1, . . . , ZM}
Compute class proportion pk(x) = exp(Gk(x))/

∑K
l=1 exp(Gl(x))

Compute pseudo-residuals Y k
i = I(Yi = k) − pk(xi)

Vr. = Vr. + gI(F, Y k);
endfor

5. Element wise v = Percentile1−α(V[·, M + 1, . . . , 2M ])

6. Set Φ̂k to those {Xk} for which V.k > v
with specified paired t-test significance (0.05)

7. Set Φ̂k = RemoveMasked(Φ̂k, Wk + gI(F, Y k))

8. Φ ← Φ ∪ Φ̂k;
for k = 1, ..., K do

9. Gk(F ) = Gk(F ) + gY (Φ̂k, Y k)

10. Wk(Φ̂k) = Wk(Φ̂k) + gI(Φ̂k, Y k)
endfor

endfor

11. If Φ̂k for all k = 1, . . . , K is empty, then quit.
12. Go to 2.

We will review the general concepts of the algorithm that we use, but for a
full discussion of it, please see [4]. In general, the algorithm eliminates variables
whose variable importance is determined to not be significantly greater than
the importance of a random variable of the same distribution. This removes
irrelevant variables. To eliminate redundant variables, the algorithm determines
if masking is significant between two variables by comparing to that of a known
random variable of the same distribution. If masking is significant, the variable
with the highest importance is kept and the variables with significant masking
scores to it are eliminated.

The most important concept of the algorithm is that it uses random contrasts
with which to create a threshold to determine if a variable is important enough
to keep. For each original variable, Xi, in the data set, a random contrast variable
Zi is created by permuting Xi. That way, there is a set of contrast variables that
we know are from the same distribution as the original variables and should have
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no relationship with our target variable Y (since Zi is a ’shuffled’ Xi). A random
forest [5] is then built using original and random contrast variables and the vari-
able importance is calculated for all variables. The 90th percentile (say) of the
random contrasts variable importances is calculated. This process is replicated
R times. For each replicate, we keep the variable importance of each original
variable, and the 90th percentile (say) of the importance across the contrasts.
Now we have a distribution with which to calculate the mean for each original
variables importance and a distribution with which to calculate the mean for the
90th percentile of the random contrasts importance. A t-test is then conducted
for each original variable with the null hypothesis that the mean variable impor-
tance for Xi is less than or equal to the mean of the 90th percentile (say) of the
variable importances of the contrast variables. Only original variables for which
the null hypothesis is rejected are kept. This removes irrelevant variables. Please
see Algorithm 1 for reference, with notation defined in Table 1.

To remove redundant variables, a very similar process is used. A modified
surrogate score (called a masking score) is calculated between all pairs of vari-
ables. Masking scores between original variables and contrast variables are used
for the same purpose as random contrast variable importances were used pre-
viously. That is, an upper percentile (say 75th is calculated and kept for each
replicate and after several replications a mean is calculated and this is the thresh-
old against which all masking scores between original variables is compared to
using a t-test. If the null hypothesis that the masking score between two original
variables is less than or equal to the mean of the 75th (say) is rejected, then
that masking score is kept. One notable difference is that a gradient boosted
tree (GBT) [6] is used to calculate surrogate scores instead of a random forest
since a GBT tests each variable in each node, so richer, more effective masking
information is obtained. To remove redundancy, the Xi with the highest im-
portance score is kept and every other Xi with a significant masking score to
it is eliminated. Please see Algorithm 2 for reference, with notation defined in
Table 1. At this point, a GBT model is built using original variables that were
kept, residuals are calculated to remove the affect of the variables found in this
iteration, and the entire process begins over on the residuals with all original
variables included for possible selection again. In this way, the algorithm can
find weaker variables. The process stops when an iteration doesn’t produce any
important variables (or a predetermined upper bound).

Since the algorithm is based on ensembles of trees (random forests and gradi-
ent boosted trees), it easily handles mixed data types, missing data, interactions,
outliers, and nonlinear relationships [7]. Nested variables are handled by an in-
terval search algorithm. To deal with the large fraction of irrelevant variables, we
sample between 5 to 10 times more variables per split in the random forest than
the usual

√
p rule of thumb given in [5], although a system of learned weights

like that proposed in [9] could also be used. Multicolinearity of the output is
reduced by using Algorithm 2. We have found this feature selection algorithm
to be very effective and will demonstrate our approach to using it in the next
section.
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Algorithm 2. RemoveMasked(F,W)

1 Let m = |F |.
2. for r = 1, . . . , R do
3. {Z1, . . . , Zm} ← permute{X1, . . . , Xm}
4. set FP ← F ∪ {Z1, . . . , Zm}
5. Build GBT model Gr = GBT (FP ).
6. Calculate masking matrix Mr = M(Gr) (2m × 2m matrix).

endfor
7. Set Mr

i,αm
= Percentile1−αm (Mr[i, m + 1, . . . , 2m]), r = 1, . . . , R

8. Set M∗
ij = 1 for those i, j = 1 . . . m for which Mr

ij > Mr
i,αm

, r = 1, . . . , R
with specified paired t-test significance (0.05), otherwise set M∗

ij = 0
9. Set L = F, L∗ = {}.
10. Move Xi ∈ L with i = argmaxi Wi to L∗.
11. Remove all Xj ∈ L from L, for which M∗

ij = 1.
12. Return to step 10 if L = {}.

3 Analysis

Our data set has 31,600 variables and 9,300 rows (wafers). The variables are
approximately one third subentity, one third FDC, and one third SPC, electrical
test, and PM counters (wafer count since last preventative maintenance was
performed). There are several target variables in the data set, but our analysis
will focus on one specific yield issue, shown in Figure 4. Failing die are shown
in black and the yield problem, known as a gross failure area (GFA), has a dark
band of failing die in a single row near the top of the wafer. Wafers which have
the GFA are classified as ”1” and wafers with out the GFA are classified as
”0”. Our goal is to sift through the 31,600 variables and find a relevant, non
redundant set of predictors for whether a wafer will have the GFA or not. Of
the 9,300 wafers in the data set, 2,200 are classified as ”1”. For more on how
we search large numbers of wafer maps for common spatial patterns and classify
them, please see [8].

The entity based filter approach, shown previously in Figure 2, does not work
for this GFA. No individual process tool can be isolated as the cause of this
problem. To demonstrate this, we will look at the operation and tool set which
was identified as most likely to be at fault (using the methods in [8]). Figure 5 is
a time trend for all tools running at this operation. The green dots are lots with
out the GFA (classified as ”0”), the red dots are lots with the GFA (classified
as ”1”). The graph shows the 5 tools at a specific operation across a time span
of about 1 month. A lot can only have a y axis value of ”1” or ”0”, but to make
the graph friendly to the eye, jitter has been added. Figure 6 shows box plots of
similarity (a measure of how much a wafer looks like the GFA wafers) for each
tool. Tool4 ran 63% of the total number of bad lots and 31% of the material it ran
is affected. Tool4 ran 50% of the lots, so having 63% of the bad lots is not that
unusual, also, several other tools at the operation ran a significant amount of the
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Table 1. Notation in Algorithms 1-3

K Number of classes (if classification problem)
X set of original variables
Y target variable
M Number of variables
R Number of replicates for t-test
α quantile used for variable importance estimation
αm quantile used for variable masking estimation
Z permuted versions of X
W cumulative variable importance vector.
Wk cumulative variable importance vector for k-th class in classification.
F current working set of variables
Φ set of important variables
V variable importance matrix (R × 2M)
Vr. rth row of variable importance matrix V, r = 1 . . . R
V.j jth column of matrix V
gI(F, Y ) function that trains an ensemble of L trees based on

variables F and target Y , and returns a row vector
of importance for each variable in F

gY (F, Y ) function that trains an ensemble based on variables F
and target Y , and returns a prediction of Y

Gk(F ) current predictions for log-odds of k-th class
GBT (F ) GBT model built on variable set F
M(G) Masking measure matrix calculated from model G

Mk Masking matrix for k-th GBT ensemble Gt.
M∗ Masking flags matrix

affected material. Combining this information, it isn’t convincing that Tool4 is
the cause of the GFA. Since even the best candidate to use as an entity filter does
not look likely to be the cause, an analyst would then revert to the approach
shown in Figure 1, which is tedious and time consuming given the large number
of variables. Variables will need to be filtered for outliers, transformations may
be needed, and different statistical models will be needed for continuous versus
categorical explanatory variables. Also, no redundancy elimination is embedded
into the traditional methods, so the output is likely to contain a large number
of highly correlated variables, which clutter the output. For example, electrical
test measurements are often reported on their natural, but also log scale and
similar measurements are often taken on different test structures on the wafer.
This can cause what is basically a single variable (say a leakage measurement)
to show up many times in the output in slightly different forms and cause the
analyst to errantly pass over other important variables in the list.

Using the approach in Figure 3, we will use the feature selection algorithm
described earlier. No outlier removal, transformations, or pre filtering of the data
is required. The output shown in Figure 7 is the cumulative variable importance
reported by the algorithm. Seven variables have importance above 1%. From a
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Fig. 4. Wafers demonstrating fail pattern

Fig. 5. Time trend for tools at a specific process operation. Red dots are affected lots
classified as ’1’. Jitter has been added.

large list of variables, we have filtered it to less than 10 to investigate further.
The algorithm ran in under 10 minutes on a desktop computer running 32 bit
Windows XP.

Queue time between two specific process operations has the largest variable
importance. This is the time between when a lot finished processing at operation
i and started processing at operation j. A bubble plot is shown in Figure 8 with
the trend between the fraction of wafers with the GFA and the queue time. The
size of the bubble indicates the number of wafers with the specific queue time.
Clearly, once queue time decreases below 100, the fraction of wafers affected with
the GFA rapidly rises.

The position of the wafer in the lot box has the next largest variable impor-
tance. Wafers travel through the fab in batches of 25 in lot boxes with 25 slots.
Slot indicates the position a wafer was in the lot box. A bubble plot is shown
in Figure 9 with the trend of fraction of wafers with the GFA versus the slot
position. The size of the bubble indicates the number of wafers from each slot.
As slot position increases, so does the fraction of wafers affected with the GFA,
peaking around slot 17 and then declining, but still high, toward slot 25.

Of the remaining variables with importances above 1%, none have interesting
trends. We won’t show plots of all the remaining variables, but will show of
variable 3 to demonstrate that the remaining variables do not have as strong of
trends as did the queue time and slot position variables. Figure 10 shows fraction
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Fig. 6. Box plots of similarity to the affected wafers for each process tool at a specific
operation

Fig. 7. Cumulative variable importance from feature selection algorithm

Fig. 8. Fraction of wafers affected by queue time. Bubble size varies with number of
wafers.
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Fig. 9. Fraction of wafers affected by slot position. Bubble size varies with number of
wafers.

Fig. 10. Fraction of wafers affected versus variable 3. Bubble size varies with number
of wafers.

of wafers affected with the GFA versus variable 3. The trend is uninteresting
since it seems that the feature selection algorithm picked up on it due to a small
cluster of wafers in the upper right hand corner of the graph.

4 Discussion of Results

Like many other industries, we struggle to make use of the almost overwhelming
amount of information that we collect. The example shown previously is typical
of the challenge we face. Prior to the use of feature selection as a filter, it would
take multiple analysts using scatter plots, box plots, linear models, and ANOVA,
weeks to find the 2 of over 30,000 variables that can be used to eliminate the
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yield issue. Now, including time to extract the data, it can be done in 2 or 3
days by one person.

As a result of this analysis, a delay was implemented in production control to
ensure that wafers sat the required time before the next operation so that the
impact of the GFA could be contained. Once the containment was implemented,
the GFA was no longer seen at end of line. The information is also fed back to
the process designers for a possible process change and a potential long term
solution that would eliminate the need for the containment.

While our example focused on a single yield issue, there are usually multiple
yield issues affecting a fab at any given time. Through the use of feature selection,
we can now find important clues for 4 or 5 yield issues in the time that it
used to take us to do just one. This has allowed us to meet the ever increasing
yield goals set at our fabs and is key in being able to continue to meet these
goals.

5 Conclusions

The significant increase in the number of variables measured in line during the
production of cpus has made ANOVA based and graphical methods impractical
to use as tools for the initial search of variables that contain information about
yield issues. The entity based filter approach which came into use as a reaction to
this increase addresses the need for a filter, but only for cases where yield issues
can be isolated to a small number of process tools. Our proposed approach of
using a feature selection algorithm to filter variables addresses the need for a
filter and works for all cases. We demonstrated the effectiveness of this approach
on a historical data set by finding the 2 variables in a data set of 30,000 variables
that could be used to contain the yield issue.
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Abstract. The quality of a product is important to the success of an enterprise. 
In process designs, statistical process control (SPC) charts provide a compre-
hensive and systematic approach to ensure that products meet or exceed  
customer expectations. The primary function of SPC charts is to identify the as-
signable causes when the process is out-of-control. The unusual control chart 
patterns (CCPs) are typically associated with specific assignable causes which 
affect the operation of a process. Consequently, the effective recognition of 
CCPs has become a very promising research area. Many studies have assumed 
that the observed process outputs which need to be recognized are basic or sin-
gle types of abnormal patterns. However, in most practical applications, the ob-
served process outputs could exhibit mixed patterns which combine two basic 
types of abnormal patterns in the process. This seriously raises the degree of 
difficulty in recognizing the basic types of abnormal patterns from a mixture of 
CCPs. In contrast to typical approaches which applied individually artificial 
neural network (ANN) or support vector machine (SVM) for the recognition 
tasks, this study proposes a two-step integrated approach to solve the recogni-
tion problem. The proposed approach includes the integration of independent 
component analysis (ICA) and ANN. The proposed ICA-ANN scheme initially 
applies ICA to the mixture patterns for generating independent components 
(ICs). The ICs then serve as the input variables of the ANN model to recognize 
the CCPs. In this study, different operating modes of the combination of CCPs 
are investigated and the results prove that the proposed approach could achieve 
superior recognition capability. 

Keywords: Statistical process control, Independent component analysis,  
Artificial neural network, Control chart pattern. 

1   Introduction 

Statistical process control (SPC) charts are one of the most popular tools in monitor-
ing and improving the quality of manufacturing processes. A process is considered to 
                                                           
* Corresponding author. 
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be out-of-control either when a sample point falls outside the control limits or a series 
of sample points exhibit abnormal patterns. The research issue of recognition of the 
abnormal control chart patterns (CCPs) is very important in SPC applications since 
those abnormal CCPs are usually associated with specific assignable causes. Those 
assignable causes or disturbances are the main causes to upset the process. If the 
process personnel are able to identify those assignable causes and remove them in real 
time, the process would be quickly brought to a state of in statistical control. 

However, the use of SPC chart often encounters a problem in which the interpreta-
tion of the abnormal control chart patterns is difficult. While most of the existing 
studies have reported the recognition of the single abnormal control chart patterns 
(i.e., shown in Figure 1) [1-3], few studies have been investigated on determining 
CCPs in a mixture patterns in which two CCPs may be mixed together [4-5]. Conse-
quently, even if the generation of signal implies that the underlying process is out-of-
control, the recognition of the mixture CCPs to this signal is difficult to determine.  

Figure 2 shows five mixture CCPs which are respectively mixed by one basic ab-
normal pattern and the natural pattern. It can be apparently observed from Figure 2  
 

 
(a) Normal Patterns (NOR) 

 
(b) Stratification Patterns (STA) 

 
(c) Systematic Patterns (SYS) 

 
(d) Cyclic Patterns (CYC) 

 

Fig. 1. Eight basic control chart patterns 
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(e) Increasing Trend Patterns (IT) 

 
(f) Decreasing Trend Patterns (DT) 

 
(g) Upward Shift Patterns (US) 

 
(h) Downward Shift Patterns (DS) 

Fig. 1. (Continued) 

that the mixture CCPs are difficult to be recognized. Consequently, how to effectively 
recognize the mixture CCPs is an important and challenging task.  

In this study, an integrated independent component analysis (ICA) and artificial neu-
ral network (ANN) scheme, called ICA-ANN model, is proposed for recognizing mix-
ture CCPs. ICA is a novel feature extraction technique and aims at recovering inde-
pendent sources from their mixtures, without knowing the mixing procedure or any 
specific knowledge of the sources [6]. The proposed ICA-ANN scheme initially uses 
ICA to the mixture patterns for generating independent components. The estimated ICs 
then serve as the independent sources of the mixture patterns. The hidden basic patterns 
of the mixture patterns could be discovered in these ICs. Therefore, the ICs are used to 
be the input variables of the ANN for construction of the CCP recognition model.  

The structure of this study is organized as follows. Section 2 addresses the meth-
odologies which are used in this study. Section 3 proposes a useful approach for rec-
ognizing the CCPs in a process. In this section, the experimental example is addressed 
and the simulation results are also discussed. The final section presents the research 
findings and draws the conclusion to complete this study. 
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(a) NOR+STA 
 

(b) NOR+SYS 

(c) NOR+CYC 
 

(d) NOR+IT 

(e) NOR+US 

 
 

Fig. 2. Five Mixture CCPs: (a) Stratification+Normal, (b) Systematic+Normal, (c) Cyclic+ 
Normal, (d) Increasing Trend+Normal, (e) Upward Shift+Normal 
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2   The Methodologies 

This study aims at applying ICA to enhance the classification capability of ANN. 
There are some applications of using ICA in process monitoring. The idea of process 
monitoring based on the observation of ICs instead of the original measurements was 
successfully demonstrated by [7]. In their work, a set of devised statistical process 
control charts have been developed effectively for each IC. The utilization of kernel 
density estimation to define the control limits of ICs that do not satisfy Gaussian dis-
tribution was study by [8-9]. In order to monitor the batch processes which combine 
independent component analysis and kernel estimation, the work of [10] extended 
their original method to multi-way ICA. A spectral ICA approach was developed to 
transform the process measurements from the time domain to the frequency domain 
and to identify major oscillations [11]. The methodologies which are used in this 
study are described as follows. 

2.1   Independent Component Analysis 

In the basic conceptual framework of ICA algorithm [6], it is assumed that m meas-

ured variables, T
mxxx ] , , ,[ 21=x  can be expressed as linear combinations of n 

unknown latent source components T
ns ]s , ,s ,[ 21=s : 

Asax ==∑
=

n

j
jj s

1

                                                       (1) 

where ja  is the j-th row of unknown mixing matrix A. Here, we assume nm ≥  for A 

to be full rank matrix. The vector s is the latent source data that cannot be directly 
observed from the observed mixture data x. The ICA aims to estimate the latent 
source components s and unknown mixing matrix A from x with appropriate assump-
tions on the statistical properties of the source distribution. Thus, ICA model intents 
to find a de-mixing matrix W such that  

Wxwy ==∑
=

n

j
jj x

1

,                                                 (2) 

where T
nyyy ] , , ,[ 21=y  is the independent component vector. The elements of y 

must be statistically independent, and are called independent components (ICs). The 
ICs are used to estimate the source components, js . The vector jw  in Equation (2) is 

the jth row of the de-mixing matrix W.  
The ICA modeling is formulated as an optimization problem by setting up the 

measure of the independence of ICs as an objective function followed by using some 
optimization techniques for solving the de-mixing matrix W. Several existing  
 

 



 Integrated Use of ICA and ANN to Recognize the Mixture Control Chart Patterns 223 

 

algorithms can be used for performing ICA modeling [6]. In this study, the FastICA 
algorithm proposed by [6] is adopted in this paper. 

2.2   Artificial Neural Network 

An artificial neural network is a parallel system comprised of highly interconnected, 
interacting processing elements, or units that are based on neurobiological models. 
ANNs process information through the interactions of a large number of simple proc-
essing elements or units, also known as neurons. Knowledge is not stored within 
individual processing units, but is represented by the strength between units [12]. 
Each piece of knowledge is a pattern of activity spread among many processing ele-
ments, and each processing element can be involved in the partial representation of 
many pieces of information. 

ANN can be classified into two different categories, feedforward networks and 
feedback networks [12]. The nodes in the ANN can be divided into three layers: the 
input layer, the output layer, and one or more hidden layers. The nodes in the input 
layer receive input signals from an external source and the nodes in the output layer 
provide the target output signals. 

The output of each neuron in the input layer is the same as the input to that neuron.  
For each neuron j in the hidden layer and neuron k in the output layer, the net inputs 
are given by 
 

 
and  ,  * ∑=

i
ijij ownet ,  * ∑=

j
jkjk ownet  

 (3) 

where i (j) is a neuron in the previous layer, oi (oj) is the output of node i (j) and wji 

(wkj) is the connection weight from neuron i (j) to neuron j (k). The neuron outputs 

are given by  
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where netj (netk) is the input signal from the external source to the node j (k) in the 

input layer and )( kj θθ  is a bias. The transformation function shown in Equations (4) 

and (5) is called sigmoid function and is the one most commonly utilized to date. 
Consequently, sigmoid function is used in this study. 
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3   The Proposed Approach and the Example 

3.1   The Proposed ICA-ANN Scheme 

This study proposes an integrated approach to effectively recognize the mixture control 
chart patterns. The proposed scheme has two stages, training and monitoring. In the 
training stage, the purpose of the proposed approach is to find the best parameter setting 
for the ANN model. The basic CCPs are used as training sample to establish ANN pat-
tern recognition. There are no general rules for the choice of parameters (i.e., numbers 
of hidden nodes and learning rate). The trained ANN model with the best suitable pa-
rameter set is preserved and used in the monitoring stage for CCP recognition.  

In the monitoring stage, the proposed model initially collects two observed data se-
ries from monitoring the process. Then, the ICA model is used to the observed data 
series to estimate two ICs. Finally, for each IC, use trained ANN model for CCP rec-
ognition. As an example, Figs. 3(a) and (b) show two observed data collected from 
the monitoring the process. It is assumed that the data are mixed by normal and sys-
tematic patterns. Then, the ICA model is used to the data to generate two ICs which 
are illustrated in Figs. 3(c) and (d). It can be found that Figs. 3(c) and (d) can be used 
to represent normal and systematic patterns, respectively. For each IC, the trained 
ANN model is used to recognize the pattern exhibited in the IC. According to the 
ANN results, the process monitoring task is conducted to identify which basic pat-
terns are exhibited in the process. 

0 20 40 60 80 100
 

(a)  

0 20 40 60 80 100
 

(b) 

0 20 40 60 80 100
 

(c)  

0 20 40 60 80 100
 

(d)  

Fig. 3. (a) and (b) the observed data mixed by normal and systematic patterns; (c) the IC repre-
sents normal pattern; (d) the IC represents systematic pattern 
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3.2   Simulated Experiments 

This study uses eight basic CCPs and five mixture CCPs, shown in Figs. 1 and 2, to 
train and test the proposed ICA-ANN model. The eight basic patterns are generated 
according to the suggestion by [2]. The values of different parameters for abnormal 
patterns are randomly varied in a uniform manner between the limits. It is assumed 
that, in the current approach for pattern generation, all the patterns in an observation 
window are complete. In this study, the observation window is 24 data points as sug-
gested by [5]. In addition, the model of [4] was employed to generate five mixture 
patterns. The proposed ICA-ANN model directly uses the 24 data points of observa-
tion window as inputs of the ANN model. 

After performing stage 1, the best parameter sets for the ICA-ANN are chosen as 
the numbers of input nodes=6 and learning rate=0.001. The testing results of the 
ICA-ANN model is illustrated in Table 1. Observing Table 1, it can be found that 
the average accurate classification rates of the ICA-ANN model is 93.12%. In gen-
eral, this result is satisfactory. However, we can observe that the accurate classifica-
tion rate is 78.83% for the condition of IT+DT. It implies that the accurate classifi-
cation rate can be further improved. This study is therefore to perform classification 
tasks again. Consequently, this study considers three groups in Table 1 need to be 
further classified again. Those three groups include the NOR+STA, IT+DT and 
US+DS, respectively. Since those three groups only contain two CCPs, they can be 
easily classified by ANN. The corresponding classified results are illustrated by 
Tables 2, 3, and 4. 

Table 1. Confusion matrix of testing results with the use of ICA-ANN model 

Identified patterns class 
True pattern class 

NOR+STA SYS CYC IT+DT US+DS 

NOR+STA 95.40% 0.22% 0.50% 3.85% 0.03% 

SYS 0.14% 99.86% 0.00% 0.00% 0.00% 

CYC 0.00% 0.00% 100.00% 0.00% 0.00% 

IT+DT 0.20% 0.00% 0.00% 78.83% 20.97% 

US+DS 0.00% 0.00% 0.00% 1.70% 98.30% 

Average 93.12% 
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Table 2. Re-classification results in the case of NOR+STA 

Identified patterns class 
True pattern class 

NOR STA 

NOR 98.76% 1.24% 

STA 1.32% 98.68% 

Average 98.72% 

Table 3. Re-classification results in the case of IT+DT 

Identified patterns class 
True pattern class 

IT DT 

IT 100.00% 0.00% 

DT 0.00% 100.00% 

Average 100% 

Table 4. Re-classification results in the case of US+DS 

Identified patterns class 
True pattern class 

US DS 

US 100.00% 0.00% 

DS 0.00% 100.00% 

Average 100% 

4   Conclusion 

The issue of how to effectively recognize the mixture CCPs in a process is important. 
This study proposes a useful ICA-ANN scheme to recognize the CCPs for a process. 
The proposed scheme initially applied ICA to the mixture patterns to generate ICs. 
Subsequently, the ANN model is employed to classify those ICs. 

Five mixture CCPs were used in this study for evaluating the performance of the 
proposed ICA-ANN approach. The simulated experimental results reported that the 
proposed ICA-SVM scheme can produce a high average accurate classification rate in 
the testing datasets. According to the experimental results, it can be concluded that the 
proposed scheme can effectively recognize mixture control chart patterns. 
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Abstract. Manufacturing organizations are striving to remain competitive in an 
era of increased competition and every-changing conditions. Manufacturing 
technology selection is a key factor in the growth of an organization and a fun-
damental challenge is effectively managing the computation of data to support 
future decision-making. Classification is a data mining technique used to pre-
dict group membership for data instances. Popular methods include decision 
trees and neural networks. This paper investigates a unique fuzzy reasoning 
method suited to engineering applications using fuzzy decision trees. 

The paper focuses on the inference stages of fuzzy decision trees to support 
decision-engineering tasks. The relaxation of crisp decision tree boundaries 
through fuzzy principles increases the importance of the degree of confidence 
exhibited by the inference mechanism. Industrial philosophies have a strong in-
fluence on decision practices and such strategic views must be considered. The 
paper is organized as follows: introduction to the research area, literature review, 
proposed inference mechanism and numerical example. The research is con-
cluded and future work discussed. 

Keywords: Fuzzy Decision Tree (FDT), Classification and Prediction, Knowl-
edge Management, Manufacturing Technology Selection, Intelligent Decision-
Making. 

1   Introduction 

Decision-making in the manufacturing sector is a complex and imperative practice 
that requires accurate judgment and precise classification. It consists of the wide 
evaluation of alternatives options against an intolerable set of conflicting criteria. The 
rapid development of available technologies and complexity manufacturing technolo-
gies offer has made the task of technology selection difficult. Rao [1] notes how 
manufacturing technologies have continually gone through gradual and sometimes 
revolutionary changes. Fast changing technologies on the product front cautioned the 
need for an equally fast response from the manufacturing industries. To meet the 
challenges, manufacturing industrials have to select appropriate strategies, product 
designs, processes, work piece and tool materials, machinery and equipment, etc. The 
selection decisions are complex, as decision-making is more challenging today. 
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Classification problems have aroused interest of many researchers in recent years. 
In general, a classification problem is to assign certain membership classes to objects 
(events, phenomena), described by a set of attributes. In practice, classification algo-
rithms involve obtaining some data on input and putting appropriate classes on output, 
mostly assuming a given object attribute and class set [2]. Fuzzy Decision Trees 
(FDTs) are a form of induced decision trees that combine the theory of fuzzy to soften 
sharp decision boundaries, which are inherent in traditional decision tree algorithms. 
A fuzzy region represents each node in the decision tree and the firing to some degree 
of each node forms the inference technique to produce the final classification.  

FDTs are an effective data-mining technique that support classification based on 
historical data through a case repository of previous decisions. Knowledge acquisition 
is regarded as the bottleneck of expert system development in the artificial intelli-
gence field. Knowledge is difficult to capture and express, it is also extensive and 
costly to conduct. Human experts may be able to master their respective task, but 
unable to communicate such activities into an intelligent system. Capturing knowl-
edge through historical cases is potentially a suitable and easier to conduct task. Initial 
studies suggest that previous evaluated technologies stored in the form of cases can 
enable quick classifications based on new project requirements by adopting the FDT 
technique. 

Each node in a FDT is represented by a fuzzy set, itself defined by a fuzzy mem-
bership function. An unclassified example, based on the input of fuzzy requirements, 
pass through the tree and result in all branches firing to some degree. It is common for 
membership grades throughout the tree to be combined using pre-selected inference 
techniques to produce an overall classification. Shortcomings of existing techniques 
are the lack of consideration for the value of attributes that can account for changes in 
the expected classification. In addition, summing the respective values is not appro-
priate for FDTs. When performing the selection process for engineering domains, 
certain factors are deemed essential for the validity of choice and should have a bear-
ing on the outcome, which in turn relates the organizational strategy and vision. 

This paper presents a discussion of inference techniques to support fuzzy decision 
tree classification. The paper notes on the unique factors of engineering applications 
and draws on key challenges essential to the reasoning algorithm. A unique inference 
mechanism is proposed in section three and section four provides a numerical exam-
ple for further clarity. Finally, the research is concluded and future research discussed 
in section five. 

2   Literature Review 

In our daily life we always face situations where we have to make decisions. We often 
use our past experience to decide on current events, where experience can be thought 
of as experimental data. Some applications are very complex such that it is very hard 
for us to deduce good decision models based on our experience. Furthermore,  
experimental approaches to decide on new cases may be too expensive and  
time-consuming. Machine learning represents an efficient and automated approach to 
construct decision models from previously collected data (known cases) and apply the 
constructed models to unknown, similar cases to make a decision [3]. Machine  
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learning has received extensive interest from researchers in classification and predic-
tion problems. Many have been successfully applied and bring improvements com-
pared with existing decision support practices. 

Anand and Buchner [4] define data mining as the discovery of non-trivial, implicit, 
previously unknown, and potentially useful and understandable patterns from large 
data sets. It is an extremely useful theoretical application and broad ranges of tech-
niques applied to problems exist. The aim is to identify useful patterns within a data-
set to predict suitable outcomes for decision makers. Decision trees are one of the 
most popular machine-learning techniques [5]; they are praised for their ability to 
represent the decision support information in a human comprehensible form [5, 6]. 
However, they are recognized as a highly unstable classifier with respect to small 
changes in training data [3, 7]. Decision tree rule induction is a method to construct a 
set of rules that classify objects from knowledge of a training set of examples, whose 
classes are previously known. The process of classification can be defined as the task 
of discovering rules or patterns from a set of data. The objectives of any classification 
task is to at least equal and essentially exceed a human decision maker in a consistent 
and practical manner [8]. 

A fundamental problem associated with decision trees to support classification is 
the sharp boundaries that exist in separating the attributes within the tree. The parti-
tioning is strict and small changes can lead to different classifications being sought. 
To overcome some of the deficiencies of crisp decision trees, the relaxation of these 
boundaries can be achieved through the creation of fuzzy regions at each node. Un-
known cases travel through all paths with a certain degree of confidence, instead of 
maintaining one definite path. The degree of confidence exhibited by a specific attrib-
ute value is determined by a fuzzy membership grade.  

Janikow [5] best summaries and describes the four steps of a fuzzy decision tree 
induction mechanism: 

 

1. Data fuzzification. 
2. Building a fuzzy decision tree. 
3. Converting the fuzzy decision tree into a set of fuzzy rules. 
4. Applying the fuzzy rules to make classification and/or prediction (inference). 

 
Data fuzzification is applied to numerical data. The purpose is to reduce the infor-

mation overload in the decision support process. Fuzzy membership functions are 
selected to represent the partitioning attributes and are crucial to the performance of 
fuzzy decision trees. The tree building procedure recursively partitions the training 
dataset based on the value of a select splitting feature. Several information measures 
exist in the literature with the purpose of identifying influential branching features. A 
node in the tree is considered a leaf node, when all the objects at the node belong to 
the same class, the number of objects in the node is less than a certain threshold, the 
ratio between objects membership in different classes is greater than a given thresh-
old, or no more features are available.  

The building procedure will often initiate with the most informative attribute be-
ginning the initial splitting and continuing with the second most instructive, etc. This 
continues till all objects are classified within the data set. If the dataset were exten-
sive, unique classifications would create a large tree. Pruning can examine the  
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performance of a particular branch within the tree to decide whether or not to stop the 
growth down that specific branch, reducing the size of the tree. The final stage of an 
induction mechanism is the inference procedure. 

Inference has long been a method for reasoning and thus deducing an outcome 
from a set of facts. The technique involves combining the mathematical information 
generated from firing a number of IF-THEN rules from a knowledge base. The 
knowledge base consists of a series of fuzzy IF-THEN rules extracted from each path 
of the tree. Keeley [8] discusses the technique in four stages: (i) Combining the in-
formation of the antecedent of a particular rule, (ii) Applying the resultant value to the 
consequence of that particular rule, (iii) Combing the resultants from all rules, (iv) 
interpreting the outcome. 

The rules in fuzzy decision trees are fuzzy rather than crisp, and therefore have an-
tecedents, consequences, or both. The chosen fuzzy inference paradigm is applied to 
combine the information generated from firing the rules, and produce a fuzzy set of 
fuzzy value outcome [8]. Typical decision tree IF-THEN rules produce a singleton as 
the outcome; however, fuzzy models usually produce a fuzzy region. 

The latest study of fuzzy inference reasoning mechanisms suitable for decision tree 
rules require a singleton output as discussed by Abu-halaweh [3]. As the test object 
falls down the numerous paths and through each attribute within the tree, a level of 
certainty can be concluded at each partitioning point. The first method discussed by 
Abu-halaweh [3] corresponds to labeling the leaf node with the class that has the 
greatest membership value, whilst the second labels the leaf node with all class names 
along with their membership values 

In the first method, as the object propagates down the fuzzy decision tree, its mem-
bership value in all of the decision leaf nodes is calculated. Then the object is as-
signed the class label of the leaf node that has the greatest membership value. In other 
words, it is assigned the same label of the fuzzy rule with the maximum firing 
strength (max-min). In the second method, it will reach each leaf node with some 
certainty or membership value. However, since the leaf nodes are labeled with all 
class names and their membership values, the class proportion in the leaf node multi-
plies the certainties. Then the certainties of each class are summed, and the test object 
is assigned the class label with the greatest certainty [3]. 

In terms of manufacturing technology selection, data mining has been identified as 
a potential key factor that can support manufacturing decision-making practices. 
Harding et al [9] recognized that knowledge is the most valuable asset of a manufac-
turing enterprise, as it enables a business to differentiate itself from competitors, and 
to compete efficiently and effectively to the best of its ability. Data mining for manu-
facturing began in the 1990s [10-12] and it has gradually progressed by receiving 
attention from the production community. Data mining is now used in many different 
areas of manufacturing to extract knowledge for use in predictive maintenance, fault 
detection, design, production, quality assurance, scheduling, and decision support 
systems [9] 

Shortcomings of the two noted reasoning mechanisms are firstly that objects can be 
classified as unsuitable solutions based on a single membership value within a path 
that has received the highest fuzzy membership grade. An unknown object may then 
not adhere to requirements and be incorrectly classified. Secondly, the attribute  
splitting points within a tree often signify different levels of importance related to 
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activities such as corporate vision and strategy. It is possible that low importance 
factors placed high within the decision tree can classify decisions that do not meet the 
appropriate requirements. Finally, the summation of each membership value, inde-
pendent of weighting by proportion, can classify solutions that contain longer paths to 
received higher scores and therefore be recommended for selection. It is likely that 
longer paths with smaller values will be classified compared to shorter paths that have 
higher values. 

To overcome these shortcomings, section three of this paper describes a new ana-
lytical methodology that aims to generate a dependable and flexible fuzzy reasoning 
mechanism suitable for engineering applications where the impact of criteria weight-
ing is of paramount importance. 

3   Proposed Inference Mechanism 

In a fuzzy rule-based classification system, two main components can be recognized: 
1) the Knowledge Base (KB), composed of a Rule Base (RB) and a Data Base (DB), 
which is specific for a given classification problem, and 2) a fuzzy rule-based reason-
ing mechanism. The classification system coherently combines both components that 
start with a set of correctly classified examples (historical case examples). The aim is 
to assign class labels to new examples with minimum error and acceptable similarity. 
This process is described in Figure 1 and the detailed structure of the components is 
discussed in the following subsections. 

A fuzzy reasoning method is an inference procedure that derives a set of conclu-
sions from a fuzzy rule set and a case example. The method combines the information 
of the rules fired with the pattern to be classified for an unknown case. This model is 
described in the following. 

  
Knowledge Base 

 
a) Extracted rules from the fuzzy decision tree form an IF-THEN rule base 

and a coterie of fuzzy sets. Each rule is extracted and varies in length de-
pending upon the purity of the decision tree. They are formed as: 

“IF a set of conditions are satisfied, AND a different set of conditions are 
satisfied, THEN a set of consequences is deduced”. 

 
Rk1…kn :  IF  x1…n is Ax1…n  AND  xn is Axn  THEN  solution  is  Lj1…jn 

 
 Where: 
  Rk1…kn   is a rule with a unique case identified number 
  x1…n   is an attribute in the tree 
  Ax1…n  is the rating of the attribute x1…n 
  Lj1…jn  is the case solution (end leaf) 
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Fuzzy Rule Base

Data Base

Knowledge Base

Fuzzy Reasoning Method

Testing Data

Testing Results

Fuzzy Rule Based 
Classification System

Classification Process

 

Fig. 1. Design of a Fuzzy Rule-based Classification System 

Fuzzy Reasoning Method 

b) Weighting of parameters enables a level of quantitative property to be as-
signed to each splitting attribute within the tree. In engineering applications, 
different attributes have alternative levels of importance that can affect the 
expected outcome. An appropriate process of identifying quantitative scoring 
for alternative parameters is to use the pair-wise comparison technique. Each 
attribute is considered and decision makers express their preference between 
two mutually distinct alternatives. For example, if the alternatives are Attrib-
ute1 and Attribute2, the following are the possible pairwise comparisons. 

Attribute1 is preferred over Attribute2:    “Att.1 > Att.2” 
Attribute2 is preferred over Attribute1:    “Att.2 > Att.1” 
Preference is indifferent between both alternatives:    “Att.1 = Att.2” 

To calculate the final scoring, a normalized quantitative property is deter-
mined for each of the alternatives within the comparison table. Each attribute 
weight is calculated and expressed wxn.as a percentage. 

c) Probability is an important technique for decision analysis where the level 
of certainty can play a role in classification. The probability is shown at each 
attribute within the decision tree and identifies the amount of objects that lie  
below that particular attribute. Probability can provide an insight into the 
strength of a solution appearing within a rule when a class object is repeated 
on a number of occasions. The advantage of incorporating probability into 
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the reasoning algorithm is the ability to consider a single path on a number of 
occasions that may contain more than one identical final object. 

The probability of an object relating to an attribute is shown as: 

Px = probability of Lj1…jn within x1…n for Ax1…n 

d) New object classification allows the requirements of an unknown case to be 
classified. Starting at the root node, the tested object is defined in fuzzy 
terms and expressed as an optimal position within a fuzzy membership set. 
The input is expressed for each criteria rating and the output fuzzy member-
ship value is allocated for each of the fuzzy functions within the membership 
set. The output fuzzy membership value is expressed as FMV for each attrib-
ute partition. 

For each attribute partition, the selected position along the fuzzy member-
ship set forms a numerical output value as shown for each function in Figure 
2. The input value of 3.5 concludes a score of 0.8 and 0.2 for the linguistic 
terms ‘ManyConstraints’ and ‘PossibleConstraints’. 

 

Fig. 2. Fuzzy Membership Function Example 

e) The weighted fuzzy membership value (wMV) is calculated at each attrib-
ute within the decision tree to conclude interim scores for use in the final  
calculation of a rule. The weight fuzzy membership value identifies the prob-
ability of the final leaf object appearing in a particular attribute. An attribute 
information set is shown as: 

 
Attribute xn 

 

    Category                   (%)             n 
 
  Alternative L1              50             25 
  Alternative L2                     20             10 
  Alternative Ln                     20             10 
         Probability (Px)     x                x 
                                              wxn  = x 
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The final weighted attribute expressed as: 
 

wMV = Px x wxn x FMV. 
 

f) End leaf calculation for rule class object. For each rule, as the object 
propagates down the tree, the wMV is noted at each of the decision tree 
nodes. The number of noted wMV depends entirely on the length of the rule 
and the average is calculated by summing each wMV and dividing it by the 
number of wMV. The average is expressed as: 

  
Where: 
 
  n = number of wMV within the rule. 
 
By calculating the average score reflects that the length of a rule may vary. 
Long and short rules are deemed equal and each leaf node is given an equal 
opportunity for identifying a similarity score. The consideration of weighting 
each attribute replicates human reasoning where particular attributes are 
deemed more or less important, and affects the final result dependent on the 
level of importance.  

 
g) Summary. The final phase is to summaries the results of the calculated 

scores for each rule. Firstly, for rules that contain the same object class name 
(i.e. the solutions are identical), the maximum rule score will represent that 
object. The object classification that received the highest score is deemed to 
be the most appropriate and a suitable solution based on the new project in-
put requirements. Therefore, the classification is the highest scoring solution. 

 
To conclude the proposed inference mechanism, the seven stages aim to provide a 
methodical approach that is considerate to the value of alternative attributes and the 
form in which the fuzzy decision tree generates the rule base for engineering  
applications. This paper will now present a brief numerical example to illustrate the 
approach. 

4   Numerical Example 

In this section, we present a numerical example to demonstrate the applicability of the 
approach within its intended domain. Using a fictitious dataset, a case repository of 
twenty cases containing four alternative class objects was applied. The dataset was 
fuzzfied and contained seven attributes. Each case contained a unique identification 
number and linguistic term to represent the performance of the class label within the 
case. The case repository is shown in Table 1. 
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From the dataset, we form a knowledge representation system for J = (U, C  D) 
where: U = {1,….20}, C = {TL, PT, SL, CM, SC, PC, MO}, D  = {Fixed_Tooling, 
Laser_Scanner, Photogrammetry, Robot}. Using the fuzzy decision tree building 
procedure proposed by Wang and Lee [13], the following information gain scores 
were concluded for each of the attributes: 
 
Gain (SL) = 0.6344, Gain (TL) = 0.4958, Gain (PT) = 0.4336, Gain (CM) = 0.1174, 
Gain (SC) = 0.2693, Gain (PC) = 0.3379, and Gain (MO) = 0.3757. 
 
Since skill level received the highest information gain among the seven attributes, it is 
selected as the initial partitioning of the tree and placed at the top. Upon initial split-
ting of the tree, it became apparent that skill level does not uniquely classify each 
alternative; the tree is not pure. We therefore select the second highest attribute to 
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Fig. 3. Partial Fuzzy Decision Tree 

split the tree further until it is fully classified. We present a partial section of the fuzzy 
decision tree in Figure 3 to demonstrate the fuzzy splitting of data. In addition, the 
figure represents the output fuzzy membership values for each of the attributes for the 
new project classification. These have been selected as optimal positions within each 
fuzzy set in order to classify the new example. 

In order to calculate the resultant score for each of the end nodes, we follow the 
equation in step five of the methodology. For example, we will demonstrate using the 
dashed rule for ‘Laser Scanner, Case No.4’. 
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Rk4:  IF  ProcessTime is VeryLow AND SkillLevel is SemiSkilled AND Tech-
nicalLongevity is High AND ProcessCost is RelativelyLow THEN Solution is 
LaserScanner 

 = 

  =  0.03715 
 

If we follow the same algorithm for the eight different class objects within the tree, we 
can conclude that Fixed Tooling Case No.3 & 18 received the highest similarity score 
and therefore is the classification object. The case is then represented as a new case in 
the repository and stored for future use. As the decision maker wishes to determine the 
appropriate classification result among the objects within the repository, the highest 
scoring technology is deemed appropriate and a ranking of the solutions is not shown. 

5   Conclusion 

In this paper, we have proposed a fuzzy reasoning method for fuzzy decision tree 
inference of engineering applications. The approach considers each rule within a tree 
independent of the length determined by the tree builder algorithm. Although most 
fuzzy reasoning using IF-THEN rules determine a fuzzy region as the output, fuzzy 
decision tree rules consist of fuzzy partitioning at each attribute and not for the end 
nodes. Therefore the rules are multiple input, single output equations that output a 
numerical score. The output rule receiving the highest score is deemed the most suit-
able classification. 

Existing publications tend to lack consideration for the value of attributes, which 
relate directly to an organization and have an influence on the outcome. The well-
publicized max-min method identifies the weakest membership function in a rule and 
uses that value to represent the object class. Identifying the lowest score is not ideal 
because a rule may be well represented by other attributes. The methodology pro-
posed in this paper combines the importance of different attribute values by determin-
ing a normalized level of importance through the pair-wise comparison technique. 
The average fuzzy membership value of each rule is calculated to act as the final 
object class to consider stronger and weak similarity scores. To conclude, the pro-
posed model is deemed as more effective compared with existing algorithms and well 
suited to applications where levels of importance can change over time to allow the 
decision-maker to input different requirements. 

The work described in this paper is part of a research project that is investigating 
how fuzzy decision trees can support manufacturing technology selection within the 
engineering domain. Future work will investigate the effectiveness of the proposed 
approach in a corporate environment for comparison with existing practices. 
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Abstract. There are a growing number of data-mining techniques that model 
and analyze data in the form of graphs. Graphs can link otherwise disparate data 
to form a holistic view of the dataset. Unfortunately, it can be challenging to 
manage the resulting large graph and use it during data analysis. To facilitate 
managing and operating on graphs, the Core-Facets model offers a framework 
for graph-based data warehousing. The Core-Facets model builds a heterogene-
ous attributed core graph from multiple data sources and creates facet graphs 
for desired analyses. Facet graphs can transform the heterogeneous core graph 
into various purpose-specific homogeneous graphs, thereby enabling the use of 
traditional graph analysis techniques. The Core-Facets model also supports new 
opportunities for multi-view data mining. This paper discusses an implementa-
tion of the Core-Facets model, which provides a data warehousing framework 
for tasks ranging from data collection to graph modeling to graph preparation 
for analysis. 

Keywords: data warehousing, graph mining, OLAP. 

1   Introduction 

This paper presents a graph-based data warehousing model called Core-Facets, which 
is designed to merge, store, and prepare relevant data in the form of graphs. The Core-
Facets model can be used to support the growing field of graph mining, as well as 
traditional data mining. Modeling and analyzing data in the form of graphs has be-
come prevalent in many areas, such as webmining, social network analysis, and 
chemistry informatics [1]. Graphs are useful because they are an intuitive representa-
tion for information characterized by numerous relationships, and they handle hetero-
geneous data well. Graphs also enable fast retrieval of related data (which can be 
expensive in relational database queries involving numerous joins) and allow analysis 
to focus on particular interrelated subsets of data. Since traditional data warehousing 
tools that help collect, transform, and load data do not leverage the data relationships 
that are inherent in graph models, their ability to provide the same benefits as graph 
models is limited. Specifically, the structure and characteristics of subgraphs (e.g., 
star graphs, centrality, cohesion) and indirect relationships between data entities (i.e., 
multi-hop paths between nodes) are not readily available in non-graph models. 
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The Core-Facets model facilitates fusing heterogeneous data into a single graph 
representation (the core graph) and enables faceting (i.e., extraction of purpose-
specific views of the core graph from different perspectives) for further analysis by 
graph-based or traditional data-mining techniques. The core graph itself is heteroge-
neous (different types of nodes and edges exist in the same graph) and attributed 
(each node and edge can have a different set of attributes). All modeled data is stored 
in the core graph, and various interpretations or “facets” can be extracted and trans-
formed into a subset of data for analysis. Facet graphs facilitate analysis of the data by 
reorganizing, abstracting, and formatting it as required for a given purpose-specific 
analysis. 

The Core-Facets model was created to address the following application-domain 
characteristics: 

• Heterogeneous data – Data is available from multiple sources, which typically 
provide different types of data. The terminology and semantics of the data are 
likely to vary by source. For example, in a malware detection application (fur-
ther described in Section 4), network traffic data refers to computers by their IP 
addresses, whereas file activity data may use the hostname. Depending on the 
analysis to be performed, one type of data may be more useful than others. Ad-
ditionally, the data collected for a given application may be produced at differ-
ent levels of abstraction. For example, one data source may refer to process IDs 
and threads while another refers to application names. The capability to recon-
cile and merge data can reveal relationships that would not be apparent in  
isolated datasets. For example, associating a local file with a network file can 
reveal the file history across many computers. 

• Indeterminate set of analyses – The complete set of analyses to be applied to 
the data is undetermined—that is, it is unknown a priori what data should be fil-
tered out or which assumptions the data must conform to. A common assump-
tion for graph data is that the graph is homogeneous. For example, an analyzer 
may want nodes representing computers connected by edges representing file 
transfers. Another analyzer may want a bipartite graph associating computers 
with visited web pages. If the specific input data that should be used for analysis 
is unknown or incompletely identified (such is the case when exploring new ap-
plications), then the faceting approach can quickly provide data from the core 
graph that satisfies the assumptions of new analyzers, either for dynamic de-
ployment or “what-if” exploration. 

• Large amounts of data – There is a lot of data and it accumulates quickly. 
Most or all of the data should be stored, as it may be relevant for future analysis. 
The challenge becomes retrieving only the data that is relevant to a desired 
analysis. Similar to on-line analytical processing (OLAP), which provides dif-
ferent views of large amounts of data, faceting offers a flexible approach to fil-
tering and transforming the large core graph into relevant, and typically smaller, 
facet graphs for analysis.  Unlike OLAP, facet graphs can handle nodes and 
edges with heterogeneous attributes. 

The limited set of existing tools that specifically operate on graphs, such as Graph 
OLAP [2] and DEX [3], provide partial solutions to address a subset of these domain 
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characteristics. The Core-Facets model provides a more comprehensive data ware-
housing framework, starting from data gathering and progressing to facet graph crea-
tion for various analyses (as illustrated in Fig. 1). Its novelty is the use of a graph as 
the underlying model for merged heterogeneous data and the use of faceting to build 
purpose-specific graphs for analysis. The faceting process, in particular, opens up new 
opportunities for research in areas such as multi-view data-mining—that is, discover-
ing new patterns by viewing the data from multiple different perspectives. 

 

Fig. 1. Core-Facets Model Overview 

Section 2 of this paper reviews related work. Section 3 describes the Core-Facets 
model. Section 4 discusses a Core-Facets implementation, which provides a data 
warehousing framework for tasks starting from data collection and including facet 
graph creation for analysis. Section 5 summarizes current and future work. 

2   Related Work 

There is a growing interest in mining data stored in graphs. For example, a recent 
textbook on graph mining [1] lists several areas of research on mining graphs from 
many different areas of application, including bioinformatics, chemistry informatics, 
the web, social networks, and others. However, as mentioned by Tang et al. [4], most 
approaches assume that nodes in graphs are homogeneous or that edges between 
nodes are homogeneous. Only a few approaches (e.g., [5]) leverage information avail-
able in node or edge attributes. In the last few years, research on heterogeneous nodes 
[6] and heterogeneous relationships between nodes ([7][8]) shows new interest in 
mining graphs that store complex, heterogeneous information. Unfortunately, there 
have been few data warehousing tools to support merging, storage, exploration, 
analysis, and mining of graph data (see [9] for a review of data warehousing for data 
that is not structured as graphs). 
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Although there are many individual efforts focusing on graph-based data fusion 
[3], graph exploration [1, 10], and graph mining [1], there has been little work that 
prescribes a comprehensive method for graph-based data warehousing, starting spe-
cifically with the merging and transformation of data into a graph model and includ-
ing the extraction of relevant parts of the graph to be fed as input to data analysis. The 
closest related work is Martínez-Bazan et al.’s DEX [3], which enables the integration 
of multiple data sources into large graphs. However, while DEX focuses on providing 
a high-performance graph database to be used for exploration and data retrieval, it 
does not offer multi-faceted views of the graph.  

To support OLAP on graphs, Chen et al.’s Graph OLAP [2] offers efficient algo-
rithms to generalize or specialize attributed graphs. Their major contribution is the 
definition of dimensions and measures used to slice, dice, and roll up the graph OLAP 
cube. They do not address how data is gathered and transformed into a graph, and 
currently, they provide only limited transformation operations on the graph for analy-
sis. By contrast, the Core-Facets model leverages domain knowledge to transform 
input data into a graph and provides a robust framework to transform, filter, and ab-
stract the graph into relevant facet graphs for exploration and various analyses. 

The Core-Facets model aims to provide a framework for data warehousing for 
graphs, accounting both for heterogeneity and for node and edge attributes. The Core-
Facets model follows most closely the top-down (or “normalized”) data warehousing 
approach of Inmon [11], which focuses on modeling a consistent, centralized data 
repository, from which data marts are created as needed for some business process. In 
contrast, Kimball’s bottom-up (or “dimensional”) approach [12], where data marts 
and their dimensions are defined first, demands that data gathering and preprocessing 
be adapted for each data mart. There is more initial cost in the top-down approach 
because terminology regarding data entities from different data sources is merged into 
a common set of domain concepts. In the Core-Facets model, where graphs are the 
underlying representation, the user must understand the relationships among domain-
specific data entities in order to construct the merged core graph. This common se-
mantics (i.e., ontology) encourages a formal approach to graph-based data modeling 
and contributes to defining the data space on which analyses can be performed. 

3   Core-Facets Model 

The Core-Facets approach builds a heterogeneous attributed core graph and uses a 
technique called faceting to dynamically extract appropriate data for a variety of 
analyses. Each node or edge may have a different set of attributes that represent the 
semantic details. As depicted in Fig. 1, facet graphs are created by extracting, filter-
ing, abstracting, and transforming the core graph based on time or based on semantics 
of the data (e.g., a graph containing only certain nodes and edges at an appropriate 
level of abstraction for a particular analysis). Multiple facets can be leveraged to per-
form analysis at multiple temporal and semantic scopes. 

As shown in Fig. 2, the Core-Facets model consists of the following three phases 
(each phase is associated with layers in the data warehousing architecture [13]): 
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1. Data Gathering (operational layer) – From each data source, a Data Gatherer re-
trieves desired data as specified by the user. Data can be gathered in its entirety, 
incrementally, or periodically as it becomes available. The data is then format-
ted to be imported by the Graph Data Manager in the next phase.  

2. Data Interpretation (data access and metadata layers) – The Graph Data Man-
ager applies user-defined import and inference rules to the gathered data to build 
a graph. The rules map data entities to graph elements and attributes. The inter-
mediate graph is then merged with the core graph in a database. 

3. Data Preparation (informational access layer) – User-defined Facet Builders 
create facet graphs from the core graph. The Facet Manager coordinates the in-
terface between Facet Builders and the core graph. As shown in Fig. 2, a facet 
graph can be used by multiple analyzers, minimizing the data preparation over-
head for each analyzer. 

 

Fig. 2. Dataflow Diagram of Core-Facets Approach 

3.1   Data Gathering 

Each data source can be regarded as a specific sensor with limited scope. Examples of 
data sources range from basic log files to sophisticated databases. For each data 
source, a Data Gatherer is defined to retrieve the data from that source. With several 
Data Gatherers, data across multiple sources can be linked in the next phase. The 
retrieval mechanism may be a basic network log file transfer or a more complex peri-
odic database query that joins several tables. The Data Gatherers also convert the data 
into a common generic format regardless of the type of data so that the next phase can 
be independent of data source format variations. 
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3.2   Data Interpretation 

The objective of data interpretation is to build the core graph. Gathered data is inter-
preted by the Graph Data Manager, which uses Importers and Inferencers to build a 
graph and a Database Loader to merge the intermediate graph into the core graph as 
shown in Fig. 3. A domain ontology is essential for interpreting gathered data and 
building the graph because it establishes consistent concepts, terminology, and se-
mantic relationships among concepts. 

Each Importer contains a set of data-source-specific import rules that map data en-
tities to Graph Elements and their attributes. A Graph Element maps directly to an 
ontological concept or relationship. Each Graph Element is assigned a type (based on 
the domain ontology), a timestamp of its occurrence, and a set of attribute-value pairs 
that capture detailed data. A data entity may map to several Graph Elements. For 
example, a data entity that represents a file copy event may produce Graph Elements 
for the source and destination file, the process that performed the file copy, and the 
workstation on which the event occurred. 

Next, Inferencers transform each Graph Element into a node or edge and add it to 
an intermediate graph, which will later be merged with the core graph. To build the 
intermediate graph, each Inferencer uses the same set of inference rules. Each infer-
ence rule is a domain-specific rule describing how a Graph Element is converted 
directly into a node or edge and where in the graph it should be added. These rules 
must produce a graph that conforms to the domain ontology. Changes to ontology, 
such as adding or removing concepts or relationships, involve updating the import and 
inference rules. Previously processed data may need to be reprocessed such that the 
core graph remains consistent with the ontology. 

 

Fig. 3. Graph Data Manager 
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To support flexible modeling, the representation and storage of graphs must: 

• Allow more than one edge between the same pair of nodes (multiple relation-
ships may exist between the same two nodes). 

• Support more than one graph component (several unconnected graphs may be 
created depending on the ontology). 

• Allow for composite nodes that encapsulate a subgraph into a single node. 
• Support very large quantities of data (billions of nodes). 

A Database Loader is responsible for merging the intermediate graph with the core 
graph in the database. Typically, node identifiers are deterministically generated so 
that several occurrences of a data entity (within a single data source or across many 
data sources) map to a single node representing that data entity. A potential challenge 
for the Importers is not having enough data to create a canonical node identifier. For 
example, a data source containing network traffic data may not have the full originat-
ing path of a file being transferred over the network. Some assumptions can be made 
by the Inferencers such that equivalent data entities are mapped to a single node. In 
the example, timestamps and filenames can be used to link or merge the originating 
file (with full file path) to the transferred file. If a node or edge already exists in the 
core graph, the attributes are merged so that there is a single node or edge. If an at-
tribute value already exists, then both values are stored with their associated time-
stamps so that variations in attribute values can be tracked across time. 

At the end of this phase, the core graph is populated with data from all specified 
data sources, and it is ready to be used. While current data is being analyzed, the core 
graph may be updated with new data. When needed, synchronization of these con-
sumer-producer operations can be implemented to ensure that certain parts of the core 
graph are not consumed until all relevant updates have been processed. 

3.3   Data Preparation 

Analyzers typically do not need all the heterogeneous data stored in the core graph. 
To addresses this, faceting is used to extract only the data relevant for a given analy-
sis, and hence prepare the core graph data for the analyzer. Facet Builders are used to 
create separate facet graphs that capture different temporal durations and different 
semantic information as required by analyzers. A Facet Builder creates a facet graph 
by traversing the core graph and performing extraction, abstraction, filtering, and 
other transformations on the core graph’s nodes and edges. The Facet Builders inter-
pret the semantics that are encoded in the graph as node/edge types and attributes. 
Formal semantic relationships (defined for the domain) specify hierarchical or com-
positional concepts and other relationships among the data. Such semantic informa-
tion is critical for filtering and abstracting the core graph data. 

Facet Builders can collapse a path between nodes consisting of several hops into a 
single edge, or collapse a subgraph into a single node to remove unnecessary details 
(e.g., by translating several low-level file modification event data points into high-
level behavior described as “sending emails”). This faceting process is particularly 
useful in preparing input for the majority of graph analysis and data mining tech-
niques, which assume that graph data is homogeneous. More sophisticated analyzers 
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may process several facets at one time to learn new patterns that are not apparent in a 
single facet. Depending on how a Facet Builder is defined, several facet graphs (e.g., 
one graph for each computer’s file activities) may be created by a single Facet 
Builder. 

Facet graphs are useful for partitioning the data by structural clusters or by time 
(e.g., a separate graph for each week) and for modeling specific semantic topics (e.g., 
process-to-file operations or computer-to-computer file transfers) that are relevant to a 
specific analyzer. In particular, faceting can be used to abstract low-level event data 
(as captured by monitoring tools) into higher-level process models that are more eas-
ily reviewed by human users.  

4   Implementation and Application of Model 

This section describes a Java implementation of the Core-Facets model and exempli-
fies the utility of the model on a malware detection example application. 

The implementation was designed in a manner that separates processing and logic 
from domain-specific information. The following software components must be con-
figured for new application domains: 

• Data Gatherers – The data format and retrieval mechanism will vary depending 
on the data sources. 

• Importers – Data must be mapped to domain-specific concepts to ensure that 
terminology across data sources is consistent. 

• Inferencers – Inference rules determine how nodes and edges are created from 
the mapped data. 

• Facet Builders – Facets are defined based on data needed for analysis. 
• Analyzers – Analyzers are highly application-dependent and user-driven. 

Section 4.1 describes an ontology for the example malware detection domain. Section 
4.2 walks through conversion of sensor data into a graph using import and inference 
rules. Section 4.3 describes how Facet Builders create facet graphs from the core 
graph. Section 4.4 describes sample results from analyzers operating on facet graphs. 

4.1   Ontology 

The example application domain is detection of computer malware. Malware can 
infect a host computer via multiple vectors (web links, file transfers, etc.), and it dem-
onstrates specific negative behavior, such as gathering and exfiltration of sensitive 
data, that is hard to detect. The domain ontology shown in Fig. 4 is built around the 
concept of tracking files and file activity on a computer, including network interac-
tions. Ontology concepts are defined based on the type of sensor data available. 

The ontology itself can be represented as a graph so that it serves as a template for 
building the core graph during inferencing. The ontology graph consists of nodes and 
edges, representing ontological concepts and relationships between these concepts, 
respectively. In general, it is intuitive and concise to model resources and objects as 
nodes, and actions and events as edges. Each ontological concept may have a unique 
set of attributes that provide more detail about the concept. For example, a File  
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concept would typically have ‘filename’ and ‘file_path’ attributes. When defining the 
ontology, if a path exists between two nodes, then an explicit relationship need not be 
defined since the relationship can be inferred by traversing the graph.  

 

Fig. 4. Computer System Ontology 

Following is an explanation of each ontology concept: 

• Network – Represents the computer network, such as a LAN. 
• Workstation – Represents a host residing in (or contained in) a Network. 
• Device – Represents a storage device which may be “contained” in a work-

station. If the device is removable (e.g., CD, floppy, USB storage), then no edge 
to a Workstation will exist. Instead, when the device is mounted, there will be a 
path from the Workstation to the Device via the Process nodes. 

• File – Represents a file stored on a Device. The File may be created, read, writ-
ten, or deleted by a Process, or it may be copied or moved. When a File is de-
leted, the node still remains in the graph but an attribute is added that states that 
the file was deleted at a certain timestamp. When a File is copied, another File 
node is created along with a new edge from the original File node. When a File 
is moved or renamed, its identifier changes and the old filename (including 
path) is stored as an attribute.  

• Process – Represents a process or execution thread. The Process can create child 
Processes and can be associated with an Application. The Process (if it is web 
capable) may access Websites. 

• Application – Represents a software program stored as an executable File. 
• Website – Represents a URL that is “contained” in a Domain. A Website may 

be referred by another Website. 

• Domain – Represents a web domain containing Websites. 
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Ontology concepts and relationships map to nodes and edges in the core graph. Com-
posite nodes may also be defined as a way of organizing nodes or subgraphs into 
groups, thereby providing a means to abstract away the details of the sensor data.  

4.2   Gathering and Interpreting Sensor Data (Phases 1 and 2) 

For a user-specified time span (e.g., January to December 2010), Data Gatherers 
query their respective data source. In order to keep a manageable load, Data Gatherers 
can periodically retrieve data within a smaller time interval (e.g., 1-week intervals). 
When data for a time interval is retrieved (e.g., a ResultSet is returned as a result of a 
database query), the data is saved in JSON (JavaScript Object Notation) files. A Data 
Gatherer does minimal processing of the data; hence it holds very little state informa-
tion besides the current time interval. Data Gatherers can be run independently of the 
Graph Data Manager (GDM), in which case the resulting JSON files can be collected 
and loaded by the GDM at another time. Alternatively, a GDM can watch for a direc-
tory for JSON files to be created and process them as they appear. 

An Importer converts sensor-specific data from JSON files into a set of Graph 
Elements. Since the sensor data is specific to the data source, there is a separate Im-
porter to interpret the data for each type of data source. Sensor data interpretation is 
implemented as import rules that create Graph Elements and populate their attributes. 
The responsibility of an import rule is to ensure that all ontological concepts present 
in the gathered data are instantiated as Graph Elements. For example, if event data is 
received that contains a specific file and workstation, then a File and Workstation 
Graph Element must be created, in addition to a Graph Element representing the 
event. The File and Workstation Graph Elements are referenced by attributes in the 
event Graph Element for later use in creating edges. Edges are not created until data 
from all sources are available for consideration in building the graph. 

Each Importer creates and maintains its own set of Graph Elements. As each Data 
Importer completes processing sensor data for a given time interval, it notifies the 
GDM. Once all Data Importers have notified the GDM that they are complete for a 
given time interval, the GDM initiates an Inferencer on each Graph Element set (for 
the given time interval). This synchronization ensures that each Inferencer is operat-
ing on the same time interval when nodes and edges are being created in the current 
graph. This is motivated by the desire to reduce data duplication and merge sensor 
data. If sensor data from different sources refers to the same object, then only one 
graph object is created, and duplication is avoided if all Inferencers are operating on 
the same graph in the same time interval. Additionally, data merging is facilitated—
i.e., if two sensors provide different attributes to the same graph object, the attributes 
will be combined within a single graph object. 

To build an intermediate graph given the Graph Element set, each Inferencer uses 
the same set of inference rules. Though inference rules are not specific to a data 
source, they are domain-specific. That is, the inference rules rely on a domain ontol-
ogy that specifies the graph objects and how they relate to each other. Inference rules 
can also create a composite node that groups several nodes (and incident edges) to-
gether. For example, files residing on the same storage device may be grouped into a 
single device composite node. This can be used later to simplify graph exploration 
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and analysis. Three different stages of inferencing are defined so that all nodes, edges, 
or attributes created in previous stages are available in the current stage: 

1. Build graph structure by creating graph objects (i.e., nodes and edges) and at-
tributes from Graph Elements. 

2. Enhance graph objects by adding inferred attributes (as a result of basic graph 
analysis that uses the newly create edges). 

3. Add composite nodes to group nodes according to domain-specific ontology or 
for organizing the graph. 

An intermediate graph is created as a result of import and inference rules, and the 
graph is merged into the core graph database by SQL merge statements. Currently, a 
relational database is used. Future implementation extensions will support a distrib-
uted, column-oriented database that is more suitable for storing graph structures and 
scaling to extremely large graphs. 

An example core graph for a sample subset of data is shown in Fig. 5. 

 

Fig. 5. Sample of a Core Graph 

4.3   Creating Facets (Phase 3) 

In a heterogeneous attributed core graph, semantic data is encoded as types and attrib-
utes of nodes and edges. Faceting is used to extract aspects of the core graph data that 
are relevant to the analysis being performed. For example, a Facet Builder can be de-
fined to temporally partition the core graph into separate graphs for each day of the 
week so that weekend activity can be analyzed separately from weekday activity. A 
Facet Builder can use semantics to create, for each workstation, a graph that shows 
activity involving files that reside in a particular directory. Faceting not only creates 
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graphs that are smaller and more computationally tractable than the core graph but also 
enables analysis techniques to traverse only semantically relevant aspects of the graphs. 
Additionally, different facets that contain semantically disjoint data can be combined to 
provide the specific reduced subsets of data required for various analyses. 

A Facet Builder traverses the core graph in search of certain node and edge types 
and certain attribute values. For example, a file node may have attributes such as 
filename, file path, device on which the file resides, and creation and modification 
timestamps. An edge may be of type “file operation” and have attributes such as ac-
tion (e.g., open, copy, or delete), target file, source file, and process. A Facet Builder 
can be defined that creates a facet graph, for each workstation, that captures all file 
delete activity performed on that workstation. To create such a graph, domain-specific 
interpretation of a core graph is required to determine whether a node representing a 
deleted file is reachable via particular edges from the workstation node.  

When working with low-level sensor data, there is often a need to abstract many 
low-level events into a higher-level description of the activity. Leveraging the Core 
Graph structure and content, nodes and subgraphs can be grouped into a single node 
in a facet graph. This is particularly useful if a signature is described in terms of high-
level processes (e.g., IRC bots registering themselves with a botnet server) and the 
sensor data consists of detailed logs of computer system events. By correlating sensor 
data and abstracting it to high-level processes in a facet, signatures can be detected 
more easily. Furthermore, facets allow for different views of the same collected data, 
and hence, may provide insight into other approaches to detect a signature. 

4.4   Using Facets in Analysis 

Facet graphs may be used in a manual exploratory process or by automated analyzers. 
Individual facet graphs or groups of facet graphs can be analyzed by summarizing the 
graph (e.g., count of node types and distribution of certain attribute values), creating 
charts (e.g., histograms, line charts, time series), applying traditional machine learn-
ing to features derived from the nodes/edges in a facet graph, and detecting signatures 
and anomalies. This section demonstrates using facets for filtering data and detecting 
graph signatures. 

When visualized, facet graphs are particularly useful for exploring data and under-
standing its characteristics, which are two important steps in developing any type of 
analysis. Since the core graph is generally too large to comprehend in its entirety, 
facets can break down this graph into manageable partitions or show certain abstrac-
tions of the graph where nodes and edges represent domain concepts that are custom-
ized to support user interpretation and review. 

Additionally, since data from several sources may be fused, a comprehensive view 
can be provided. For example, if one data source contained activity performed on 
computer hosts and another data source contained network traffic activity, then a facet 
can show activities performed on specific files as they are copied, renamed, modified, 
and transferred across different hosts within the network. Fig. 6 illustrates an example 
graph signature (shown as boxes with large italic text and arrows connecting the 
boxes) superimposed on a matching subgraph. The graph signature represents an 
application that is downloaded from a website and is being applied (perhaps  
unbeknownst to the computer user) to a file that originates from a network server.  
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The result of executing the application is the creation of an output file. The matching 
subgraph shows a downloaded application (i.e., foreignApp.sh) that operates on a file 
originating from a network device and produces an output file. 

 

Fig. 6. Example Result from Combining Events from Two Types of Data Sources 

By making all related data available from a single access point and using faceting 
to extract required information, the Core-Facets model facilitates the preparation of 
data for analyzers. The Core-Facets model has been demonstrated with several types 
of analyzers, from basic analyzers that count node types or calculate centrality  
measures for each node to analyzers that identify anomalous subgraphs. The faceting 
capability supports new opportunities in multi-view data mining, wherein the data is 
analyzed from several different perspectives. For example, Greene [14] uses a multi-
view approach to separately examine different types of relationship edges in a social 
network. Given the small number of existing graph mining approaches that can handle 
heterogeneous nodes and edges, a multi-view (i.e., multi-faceted) analyzer that can 
leverage the variety of existing single-facet analyzers can be very useful. 

5   Summary 

Graphs are used to represent data in many application domains, and there are a grow-
ing number of graph-based data-mining techniques. A major benefit of modeling data 
as a graph is that it connects pieces of a puzzle to form a more comprehensive picture, 
whereby relationships between data items may be discovered by following those  
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connections. The challenge is then managing the resulting large graph and using it 
during data analysis. To facilitate managing and operating on graph-structured data, 
the Core-Facets model offers a framework for data warehousing of such data. This 
paper shows how the Core-Facets model builds a heterogeneous attributed graph from 
multiple data sources and how the core graph can be adapted into facet graphs that 
meet assumptions for desired analyses. Not only can faceting enable the use of tradi-
tional graph analysis techniques by transforming heterogeneous graphs into homoge-
neous graphs, the Core-Facets model also supports multi-view data mining and facili-
tates ensemble approaches to graph mining. 

Table 1 presents a comparison of capabilities among existing graph-based data 
warehousing solutions. DEX facilitates gathering data from multiple sources and 
modeling the data in a graph database that supports efficient data access [3]. (DEX 
also provides other useful capabilities, such as graph visualization, that are tangential 
to data warehousing capabilities and are not listed in the table.) Graph OLAP offers 
efficient graph roll-up/drill-down and slice/dice operations on a heterogeneous graph 
[2]. The Core-Facets model provides a more comprehensive data warehousing 
framework, from data gathering to accessing the core graph data in a variety of ways 
using facet graphs. This does not preclude the use of DEX’s database or Graph OLAP 
algorithms in a Core-Facets implementation.  

Table 1. Capability Comparison 

Capability DEX Graph OLAP Core-Facets 
data gathering X  X 
graph construction X  X 
graph data access X X X 
graph roll-up / drill-down  X X 
graph slice /dice  X X 
multiple graph views   X 

 
Future work on the Core-Facets model includes exploring multi-view graph min-

ing, scaling storage and processing capabilities to support massive graphs, and lever-
aging Resource Description Framework (RDF) research in modeling semantic graph 
data. The use of graphs and ontologies overlaps with research on modeling and rea-
soning with RDF. Future work on the Core-Facets model could use RDF directly to 
better integrate with the domain ontology and to facilitate ontology updates without 
re-processing the source data. 

With the availability of heterogeneous structured graph data, there is motivation for 
improving machine learning beyond data-mining techniques that consider only a 
single semantic facet of the data. As a new area of research, multi-faceted graph 
analysis can account for multiple semantic topics and temporal and semantic abstrac-
tion levels. Data at higher abstraction levels can provide context for data analysis at 
lower abstraction levels.  

As more data is collected, scalability becomes a major factor in managing graph 
data. Preliminary work [15] has shown that non-attributed graphs can be stored and 
efficiently processed in a distributed framework such as Apache Hadoop [16]. Further 
effort is needed to enable efficient processing of attributed graphs.  
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Abstract. In this paper, various enhanced sales forecast methodologies
and models for the automobile market are presented. The methods used
deliver highly accurate predictions while maintaining the ability to ex-
plain the underlying model at the same time. The representation of the
economic training data is discussed, as well as its effects on the newly
registered automobiles to be predicted. The methodology mainly consists
of time series analysis and classical Data Mining algorithms, whereas the
data is composed of absolute and/or relative market-specific exogenous
parameters on a yearly, quarterly, or monthly base. It can be concluded
that the monthly forecasts were especially improved by this enhanced
methodology using absolute, normalized exogenous parameters. Decision
Trees are considered as the most suitable method in this case, being both
accurate and explicable. The German and the US-American automobile
market are presented for the evaluation of the forecast models.

Keywords: Sales Forecast, Time Series Analysis, Data Mining,
Automobile Industry, Decision Trees.

1 Introduction

Strategic planning based on reliable forecasts is an essential key ingredient for a
successful business management within a market-oriented company. This is espe-
cially true for the automobile industry, as it is one of the most important sectors
in many countries. Reliable forecasts cannot only be based on intuitive economic
guesses of the market development. Mathematical models are indispensable for
the accuracy of the predictions as well as for the efficiency of their calculations,
which is also supported by the increase of powerful computer resources.
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The application of time series models to forecasts of the registrations of new
vehicles was originally established by Lewandowski [1,2] in the 1970s. After-
wards, a general equilibrium model for the automobile market concerning both
new car sales and used car stocks was presented by Berkovec [3]. Thereby, equi-
librium means that the demand equals the supply for every vehicle type. Later
on, Dudenhöffer and Borscheid [4] published a very important application of
time series methods to the German automobile market. However, the number of
efforts undertaken in this field of research is quite small to date.

Methods based on statistical learning theory [5] are powerful instruments to
get insight into internal relationships within huge empirical datasets. Therefore,
they are able to produce reliable and even highly accurate forecasts. However,
Data Mining algorithms have become more and more complex over the last
decades. In this work, the accuracy of the prediction has the same importance
as the explicability of the model. Hence, only classical Data Mining methods [6]
are applied here.

In a previous contribution [7], basic time series methods were used together
with a trend estimation performed by Multivariate Linear Regression (MLR) or
a Support Vector Machine (SVM) with a Gaussian kernel [5,17]. The associated
models were able to produce reliable forecasts and at the same time easy to ex-
plain. However, in this work, even enhanced models are presented which increase
both the accuracy and to some extent also the explicability. As in [7], the dis-
tinction between yearly, quarterly, and monthly economic data is made. Again,
it turns out that quarterly data is the most suitable and stable collection of data
points, although here, the focus lies on the improvement of monthly predictions.
Due to the higher amount of data, the economic explicability of the model is
best in the case of monthly data, which is shown in this work.

Both the German and US-American automobile market were considered. The
limitations of the forecasts are mainly due to the poorness or lack of estimates
for the market-specific special effects, which will be figured out as well.

2 Data and Workflow

Newly registered automobiles as well as exogenous indicators are considered for
both the German and the US-American automobile market. In the case of the
German market, all data were adopted from [7], which also holds for their units
and sources. The latter were the Federal Statistical Office, the German Federal
Bank, and BDW Automotive, whereas the new registrations were taken from the
Federal Motor Transport Authority. The feature selection performed in [7] is not
taken into account here, i.e. all ten exogenous parameters are considered. The
reason for this is the fact that the parameter reduction consistently delivered
worse results in the case of a non-linear model. For the quarterly model, all
exogenous parameters were chosen to be relevant, i.e. no parameter reduction
was made. As the non-linear model turned out to be superior to the linear one,
it was decided not to perform a feature selection in this work. The enhancements
here are based on different approaches. However, it is not excluded that a feature
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Table 1. Explanation of the economic indices used as exogenous data for the models
in this work. In the case of the German automobile market, the DAX and IFO indices
were chosen, and in the case of the US-American market, the Dow Jones and BCI
indices were taken.

Country Index Explanation

Germany DAX most important German stock index reflecting the development of the 30
biggest and top-selling companies listed at the Stock Exchange in Frank-
furt (so-called blue chips), published as performance or exchange rate in-
dex; in this work, the performance index was taken meaning that all div-
idends and bonuses of the stocks are directly reinvested; the abbreviation
DAX comes from the German name Deutscher AktienindeX

IFO business climate index published monthly by the German Institute for
Economic Research (IFO), known as an early indicator for the economic
development in Germany

USA Dow Jones actually Dow Jones Industrial Average (DJIA), known as Dow Jones
Index in Europe, created by the Wall Street Journal and the company of
Charles Dow and Edward Jones, most important US-American stock index
reflecting the development of the 30 biggest and top-selling companies
listed at the New York Stock Exchange (NYSE), analog to the German
DAX

BCI Business Confidence Index measuring the level of optimism that people
who run companies have about the performance of the economy and how
they feel about the prospects of their organizations, comparable to the
German IFO

selection could even improve the predictions of some of the Data Mining methods
applied.

Again, the German market was chosen to be used for the assessment of the
modeling algorithms. Thereby, all three data intervals, i.e. yearly, quarterly, and
monthly data, were employed because the assessment also included the data
representation. Also the units of the exogenous data were modified: In [7], there
was a mixture of absolute parameters and relative deviations in relation to the
previous period. On the first hand, this mixture makes the explicability of the
model more difficult, and on the other hand, it intuitively makes more sense to
use absolute values only. As an example, the gasoline prices may have a signif-
icant influence on the car sales only after having exceeded a certain threshold.
This threshold may be recognized by the underlying model whenever absolute
exogenous parameters are involved. Using relative deviations, this hidden infor-
mation cannot be discovered at all. This heuristic consideration was the reason
for a comparison between a model based on absolute values only and a model
based on a mixture of absolute and relative values.

Furthermore, it seemed to be interesting to study the effects of some economic
indices. For the German market, both the DAX and IFO indices were taken.
Their explanations are given in Table 1. Their units and data sources are given
in Table 2.

In the case of the US-American market, nearly the same exogenous parameters
as for the German market were taken because general economic descriptors like
Gross Domestic Product, Personal Income, Unemployment and Interest Rate,
Consumer and Gasoline Prices, as well as Private Consumption are also very
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Table 2. Data units and sources for all exogenous parameters used in this work. The
units and sources for the German exogenous parameters (except for DAX and IFO)
are listed in [7]. The three data sources were the Federal Statistical Office (FSO), the
German Federal Bank (GFB), and BDW Automotive. Please note that in the case of
the US-American market, only quarterly data were taken. Here, the main data sources
were the Bureau of Economic Analysis (BEA), the Bureau of Labor Statistics (BLS),
and the Organisation for Economic Cooperation and Development (OECD) database
[9]. If only the term deviation rates is indicated, this refers to the previous quarter.
Title and ownership of the data remain with OECD.

Country Parameter Data Unit and Source

Germany DAX monthly: indices (1987=1000), dataset from the GFB
quarterly: deviation rates of monthly averages
yearly: deviation rates of monthly averages

IFO monthly: indices (2000=100), dataset from the CESifo GmbH [8]
quarterly: deviation rates of monthly averages
yearly: deviation rates of monthly averages

USA New Car Registrations in thousands, dataset from the BEA

Gross Domestic Product deviation rates, OECD [10]

Personal Income billions of chained 2000 dollars, dataset from the BEA

Unemployment Rate in % of the total population, OECD [11]

Interest Rate in %, OECD [12],

Consumer Prices deviation rates of monthly averages (price indices), dataset from
the BLS

Gasoline Prices deviation rates of monthly averages (price indices), dataset from
the BLS

Private Consumption deviation rates, OECD [11]

Dow Jones deviation rates of monthly averages (index points), dataset from
Yahoo! Finance [13]

BCI deviation rates of monthly averages (indices, 1985=100), OECD
[14]

important for the US-American market. The indices used here are the Dow
Jones Industrial Average and the Business Confidence Index. Their units and
data sources are given in Table 2.

The workflow for the evaluation of the models based on the data listed above
has been described in [7]. There are only three differences in this work:

1. No feature selection was performed for the reasons mentioned above.
2. The estimation of the calendar component in the case of monthly data was

made before the estimation of the seasonal and trend components. The rea-
son for this was that it seemed more reliable to estimate the seasonal compo-
nent of a time series without calendar effects because otherwise, the seasonal
component could be falsified. Hence, the calendar component was eliminated
before.

3. No ARMA model [15] was built because it could be detected that the Data
Mining algorithm used for the trend estimation had already included the
ARMA component in the model. Hence, it did not make any sense to perform
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an additional ARMA estimation. The results were improved whenever the
ARMA estimation was left out.

3 Methodology

The superior model is an additive time series model: If xt, t = 1, ..., L, with L
being the length of the observed time window used for training the model, are
the new registrations of automobiles in the past, i.e. the main time series, then
the equation

xt = ct + st + mt + et, t = 1, ..., T,

holds, where ct is the calendar component, st is the seasonal component, and
mt is the trend component, which have to be estimated in a reliable way. Please
note that ∀t=1,...,L ct = 0 for yearly and quarterly data as well as ∀t=1,...,L st = 0
for yearly data. The last component et is the error component.

3.1 Calendar Component Estimation

In the case of monthly data, the calendar component ct is estimated as follows:
Let Wt be the number of working days in a period t, Ai(t) the average number
of working days in all according periods (e.g. i(t) ∈ {1, ..., 12} in the case of
monthly data), and Nt the total number of days. Consider the coefficient

λt :=
Wt − Ai(t)

Nt
, t = 1, ..., L,

which is positive, whenever there are more working days in a period than on
average, and negative, whenever there are less. Let x̄t := st+mt+et the calendar-
adjusted time series. Then ct := λtx̄t, and λt > 0 ⇔ ct > 0. Hence,

xt = x̄t + ct = x̄t + λtx̄t

⇒ x̄t =
xt

1 + λt
, ct = λt

xt

1 + λt
.

3.2 Seasonal Component Estimation

Phase Average Method. As described in [7], the phase average method [16] is
a suitable way to estimate the seasonal component and at the same time easy to
interpret. Thereby, as the underlying time series must be trendless, a univariate
trend ut has to be eliminated first, which is estimated by moving averages. It shall
be pointed out again that the explicability of the model is of outmost interest.
As it corresponds to one’s intuition that periods which are situated too far away
in the past or the future will not have a significant influence on the actual period,
only the n nearest neighbors were included in the average calculations. In this
work, three different univariate moving averages were considered:
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Fig. 1. Typical shape of a quadratic error function E(α) between a calendar-adjusted
time series x̄t and its univariate trend ut estimated by exponential smoothing, as a
function of the smoothing parameter α. The global minimum for α ∈ [0, 1] is reached
at α = 1 with E(1) = 0, since ∀t=1,..,L ut = x̄t, which is a completely overfitting
univariate trend. As there is no local minimum in (0, 1), the parameter α was manually
adjusted in this work so that the Mean Average Percentage Error (MAPE) of the time
series model applied to a test time series was as small as possible.

1. Past Moving Average (PMA), i.e. a moving average only considering periods
of the past:

uPMA
t :=

1
n

n−1∑
i=0

x̄t−i, n < t.

2. Classical Moving Average (CMA), i.e. a symmetric moving average consid-
ering both periods of the past and the future:

uCMA
t :=

1
2n + 1

n∑
i=−n

x̄t−i, n < min(t, L − t + 1).

3. Exponential Smoothing Moving Average (ESMA), i.e. a moving average
based on an exponential smoothing formula only considering periods of the
past:

uESMA
t := α

n−2∑
i=0

(1 − α)ix̄t−i + (1 − α)n−1x̄t−n+1, n < t, α ∈ [0, 1].

Actually, the smoothing parameter α is determined by minimizing the
quadratic error function

E(α) :=
L∑

t=1

(
uESMA

t − x̄t

)2
,

cf. [1]. Figure 1 shows a typical shape of such an error function for the present
application: The global minimum is reached at α = 1 with E(α) = 0, which
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means that the trend overfits the time series completely, since ∀t=1,..,L ut =
x̄t. As this is not desired and there is no local minimum in between, i.e. in
the open interval (0, 1), the parameter α would have to be determined by
cross-validation or bootstrapping so that the test error on a validation set is
minimized. However, for this validation set, the real univariate trend would
have to be available but it is not. Hence, all univariate trend parameters—
the same holds for the size n of the time window—were adjusted manually
so that the so-called Mean Average Percentage Error (MAPE), which is an
error estimating the quality of a prediction of time series values based on a
complete time series model [7], was as small as possible.

Fourier Method. If x̄t is a periodic time series with period P , it can be
expressed by the following discrete Fourier series:

x̄t = α0 +
m∑

j=1

αj cos (jωt) +
m∑

j=1

βj sin (jωt) ,

where ω = 2π
P is the fundamental frequency of the Fourier series. The idea behind

this is that the seasonal component can be expressed as a sum of cosine and sine
oscillations of a certain frequency, if there is some periodicity in the time series.
The 2m+1 < L coefficients αj , j = 0, ..., m, and βj , j = 1, ..., m, are determined
by linear regression. In the case of quarterly data, m = 2 and P = 4, and in the
case of monthly data, m = 2 and P = 12 are reasonable choices leading to good
estimations of the seasonal component.

3.3 Trend Component Estimation

As it was assumed that the trend of the new car registrations were influenced
by the exogenous parameters indicated in Tables 1 and 2, a multivariate trend
model had to be created. The multivariate trend estimation was performed by
Data Mining methods. The simplest ones considered here were linear models like
Ordinary Least Squares (OLS) [18] and Quantile Regression (QR) [19]. However,
more reliable algorithms were applied because they mostly performed signifi-
cantly better without being too complex. It was decided to use a Support Vector
Machine (SVM) with ε–regression and Gaussian kernel [5,17], Decision Trees
(DT) [20], k–Nearest Neighbor (KNN) [21], and Random Forest (RF) [22].

4 Results

4.1 Comparison of Data Mining Methods

The predicted and real new car registrations of the German automobile market
are plotted in Figure 2. The predictions result from the best performing Data
Mining methods. The results of all Data Mining methods are indicated in Table
3. In the case of yearly data, the spread of the relative errors within the columns
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Yearly data, Method: Random Forest
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Quarterly data, Method: K-Nearest-Neighbor
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Monthly data, Method: Decision Trees
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Yearly data, Method: Quantile Regression

Mean Average Percentage Error (MAPE) 2007-2008: 0.51%
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Quarterly data, Method: K-Nearest-Neighbor
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Monthly data, Method: Decision Trees
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Fig. 2. Predictions for the German automobile market in comparison to real data using
the same exogenous parameters as in [7], i.e. without DAX and IFO. In each plot, the
results of the best performing Data Mining method are indicated (cf. Table 3) for
yearly, quarterly, and monthly data. In the case of monthly data, only the results of
DT are plotted, as this method turned out to be the most robust and explicable one
for this kind of data. In all cases, the training period was 1992–2006. In the first three
plots, the test set was 2007 only, and in the last three, it was 2007–2008. The rugs
indicate the amount of special effects. Rugs on the bottom stand for positive and rugs
on the top stand for negative special effects. Please note that the first three models
differ from the last three, as the exogenous parameters were updated by the FSO in
2008.
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Table 3. Yearly, quarterly, and monthly MAPEs in % between the predicted and real
new car registrations of the German automobile market for all Data Mining methods
and test periods. The results of the best methods are plotted in Figure 2 for each
of the first six applications. In the case of RF, the average values of ten statistically
independent replicates are indicated, with the standard deviations in parentheses. In
the last rows, the univariate trends for the seasonal component estimation together
with their specific parameters are shown.

Test period 2007 2007–2008 2007–2009

Method/Data Y Q M Y Q M Y Q M
OLS 16.73 17.81 8.41 8.12 8.23 9.85 7.93 10.88 12.66
QR 16.45 9.07 7.74 0.51 6.08 7.95 0.96 7.12 11.40
SVM 1.75 3.66 7.33 1.86 3.60 12.84 3.15 5.04 16.72
DT 4.5 3.25 6.93 2.89 3.56 8.60 4.32 4.83 13.22
KNN 0.37 3.00 8.36 1.65 2.57 18.18 2.70 4.83 20.70
RF 0.23 3.82 12.70 2.50 2.99 17.80 2.74 4.77 20.94

(0.15) (0.09) (1.56) (0.26) (0.08) (0.93) (0.20) (0.04) (0.76)

Univariate – PMA ESMA – ESMA CMA – ESMA CMA
Trend n = 3 n = 12 n = 4 n = 4 n = 4 n = 4

α = 0.1 α = 0.3 α = 0.3

is the highest, when the test period was 2007 only. This is because the yearly
MAPEs can be considered as completely random results, as the test data only
consisted of one data point. For the last two test sets, QR turned out to be the
best method. However, this was only the case for τ = 0.55, qτ being the τth
quantile of the response values, i.e. the new car registrations in the training set.
For τ �= 0.55, the results were much worse in comparison to the other methods.
The yearly results of all applications and the quarterly results in the case of the
first test period (2007, only four test points) can be considered as random results
as well. From the other applications, it can be seen that the quarterly spreads
are always lower than the monthly spreads within the columns, which indicates
that quarterly data are the most stable data interval. This could already be
concluded in [7] as well. In that publication, it was also discussed that the best
results can be achieved in the case of yearly data (<1%), followed by quarterly
data (2–3%) and monthly data (<10%). This can be confirmed again in this
work.

The most suitable and robust Data Mining algorithms are SVM, DT, KNN,
and RF, whereas OLS and QR mostly deliver poor results. This is because their
underlying models are linear, which is not reliable for the present application
[7]. It is natural that QR always performs better than OLS because there always
exists a τ ∈ [0, 1] for which the τth quantile leads to a model with a smaller test
error than the mean. One of the methods DT, KNN, and RF mostly outper-
formed the SVM, which was the only nonlinear method used in [7]. In the case
of monthly data, DT turned out to be the most suitable method for two reasons:
First, it delivered a MAPE which was significantly lower than 10%, except in
the case of the third test period (2007–2009). Second, its application led to very
reliable decision trees, which makes DT an exceedingly explicable method in the
case of monthly data. The explicability of the algorithms will be discussed later.
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Fig. 3. Box plots corresponding to the results indicated in Table 3 using monthly and
yearly data (test period: 2007–2008) in order to show the best and the worst case with re-
spect to robustness. The MAPEs using the special training set 1992–2006 either lie within
the lower whisker domain or are outliers in most cases. The most robust method is clearly
the SVM. DT, KNN, and RF are also quite robust in comparison to OLS and QR.

The MAPEs in the case of the second test period (2007–2008) are similar to
or higher than the ones in the case of the first test period (2007). This is because
of the special effects in 2008 due to the financial crisis. In the last half of 2008,
the number of new car registrations was decreased, which can only be predicted
if the special effects are estimated and considered within the prediction. For
quarterly data, the decrease in 2008 could be predicted by the most suitable
methods DT, KNN, and RF. For KNN and DT, cf. Figure 2. For monthly data,
there are no special effects as they are difficult to estimate on a monthly basis,
and for yearly data, only the balance of quarterly special effects is taken into
account. Hence, the decrease in 2008 can only be predicted at random in the case
of yearly or monthly data. In the first quarter of 2009, the car-scrap bonus in
Germany led to an enormous increase of new registrations of automobiles. This
cannot be predicted by any forecast method. The results in the case of the third
test period (2007–2009) are much worse than in the case of the first two. They
would even be much worse if the artificial special effect for the car-scrap bonus
was not included. This fact shows the limitations of such economic forecasts.

The last three rows of Table 3 show the univariate trends used for the es-
timation of the seasonal component together with their specific parameters. It
is interesting to see that in most cases, exactly the data of one quarter or one
year were taken into account in order to calculate the moving averages. It was
desisted from setting n > 12 for monthly and n > 4 for quarterly data because
taking more data into account could lead to overfitting and reduce the explica-
bility of the models. Please note that the phase average method was consistently
used in all applications of this work, as the Fourier method did not deliver any
noticeable improvements. For the comparison, the parameters for both methods
were manually adjusted so that the MAPEs were as small as possible.
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The box plots in Figure 3 show the MAPEs resulting from 50 statistically
independent bootstrap replicates: Thereby, the training and test periods were
merged into one data set. Then, this data set was divided randomly into a new
training and a new test set. This procedure was repeated 50 times. Only two
examples are indicated using monthly and yearly data for the test period 2007–
2008, which shows the best and the worst case with respect to robustness of
all applications. Mostly, the results indicated in the table lie within the lower
whisker domain or are outliers showing that the time information is of very high
importance here. The models must always learn from the past and cannot be
based on random data points corresponding to random time periods. The SVM
is the most robust method followed by KNN, RF, and DT. Also the box plots
show that OLS and QR are not reliable for the present problem.

4.2 Absolute and Relative Exogenous Parameters

Table 4 shows the results using absolute exogenous parameters only instead
of a mix of absolute and relative parameters. This time, all exogenous data
indicated in Table 2 was taken in order to study the influence of the two German
indices DAX and IFO. As the range of the absolute values of the indices differed
exceedingly from the range of the other parameters, the data had to be scaled.
The test period was 2007–2008. In all three applications, the SVM was the best
method. In the case of yearly and quarterly data, no significant improvement
compared to the results in Table 2 could be detected. Using monthly data, all
Data Mining methods delivered a MAPE smaller than 10%. Hence, the absolute
data sets were easier to model for the algorithms, which is also explicable because
of the motivation given in the section 2. The improvements were not caused
by the incorporation of DAX and IFO, which only had a low impact on the
predictions. The reason for this is the fact that they are highly correlated with

Table 4. Yearly, quarterly, and monthly MAPEs in % between the predicted and real
new car registrations of the German automobile market for all Data Mining methods
using absolute exogenous parameters. The test period was 2007–2008. In the case of
RF, the average values of ten statistically independent replicates are indicated, with
the standard deviations in parentheses. In the last rows, the univariate trends for the
seasonal component estimation together with their specific parameters are shown. The
SVM was the best method in all three applications.

Method/Data Y Q M
OLS 6.15 6.16 9.37
QR 1.82 3.37 6.73
SVM 4.99 4.61 7.65
DT 8.08 4.75 8.66
KNN 1.95 3.71 9.7
RF 2.94 4.02 8.64

(0.14) (0.12) (0.33)

Univariate – ESMA PMA
Trend n = 4 n = 12

α = 0.5
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the GDP and the Consumer Prices. Furthermore, the DAX is correlated with
the Industrial Investment Demand and the IFO is correlated with the Private
Consumption. However, they were taken because they both appeared in the
decision trees in Figure 4.

4.3 Explicability of the Results

The algorithms used for the present application are standard Data Mining meth-
ods and hence do not hurt the requirement of explicability. The underlying mod-
els are understandable and descriptive. The most explicable methods is by far
DT as besides delivering predictions for test data, the method also analyzes
the training data and draws trees depicting the impact of the most important
exogenous parameters. Figure 4 shows two of them, one for quarterly and one
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918900 
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Fig. 4. Decision trees for the training set 1992–2006 using normalized absolute exoge-
nous parameters including DAX and IFO for quarterly and monthly data. In the case
of monthly data, the decision trees are more explicable than in the case of quarterly
data.
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for monthly data. Thereby, the training set was 1992–2006 and the exogenous
parameters were normalized absolute values including DAX and IFO. The root
nodes are labeled with the most important parameters determined by the algo-
rithm. In the case of monthly data, it is Consumer Prices. The tree indicates
that the new registrations decrease with increasing consumer prices, which is
meaningful. Most of the leaf nodes are explicable as well: The new registrations
increase with decreasing gasoline prices, with increasing latent replacement de-
mand, and with increasing GDP. In comparison to this, the decision tree for
quarterly data is less explicable. The root note indicates that the highest num-
ber of new car registrations is achieved, when the personal income has a very
low value, and when its value is higher, the number of new car registrations is
lower. This does not make any sense. As motivated above, the usage of absolute
parameters increases the explicability. In the case of monthly data, it also leads
to meaningful decision trees. Furthermore, the amount of data is much lower for
quarterly data, which leads to the fact that only little reasonable information
can be extracted from the data. Hence, it can be concluded that the method
DT together with normalized absolute exogenous parameters on a monthly data
basis is the most reasonable choice in order to get explicable results. Please note
that the numbers in Figure 4 are normalized values. They can easily be inverted
so that interpretable thresholds can be achieved.

Quarterly data, Method: Support Vector Machine
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Quarterly data, Method: K-Nearest-Neighbor

Mean Average Percentage Error (MAPE) 2006-2008: 20.41%
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Fig. 5. Predictions for the US-American automobile market in comparison to real data
using the exogenous parameters indicated in Table 2 for quarterly data. The training
period was 1970–2005 and the test period was 2006–2008, where the last quarter of
2008 was omitted. Only the SVM could reproduce the collective multivariate trend
of the time series in a proper way. All other methods predicted an increasing trend
after 2002 remaining until 2008. As an example, the results of KNN are shown. The
univariate average for the seasonal component was PMA with n = 4.

4.4 Application to the US-American Automobile Market

The forecast workflow was additionally applied to the US-American automobile
market, where meaningful data were available for a longer training period than
for the German market. For reasons of brevity, only quarterly data were taken
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here. The training set was 1970–2005, whereas the test set was 2006–2008. Unfor-
tunately, no special effect estimates could be obtained, which made the modeling
procedure much more difficult. The last quarter of 2008 was not included in the
test set because of the financial crisis, whose occurrence and impact could not be
foreseen. However, the principal difficulties to build reliable models were due to
the lack of estimates for the special effects in the past, like the Vietnam War last-
ing until the early 1970s, the oil crisis in 1973, the economic booms in 1972/73
and from 1977 to 1979, the energy crisis of 1979, the internet bubble burst in
2000, the aftermath of September 11th, the financial crisis in 2008, as well as the
US-American scrappage program Car Allowance Rebate System (CARS) after
July 2009. The decreasing sales due to the last crisis and the increasing sales due
to the subsequent boom in 2010 could not be detected by any of the methods.
Figure 5 shows the results of two methods applied to the US-American market.
The predictions were based on the exogenous data indicated in Table 2. Only
the SVM was capable to detect the special effects mentioned above as outliers,
which can be seen from the course of the multivariate trend. All other methods
overfitted the training data. As an example, KNN is indicated in Figure 5. Then,
intuitively, the trend should go up after 2002, following the shape of the time
series from 1970 to 2005, which was predicted by all method, also by the SVM.
Owing to the robustness of the SVM with respect to outliers, the collective de-
creasing trend of the time series could be reproduced correctly leading to the
low MAPE of 4.71% for the test period. However, the example shows that good
estimates for the special effects are indispensable for reliable time series models.

5 Conclusions

In this work, the performance and limitations of general sales forecast models for
automobile markets based on time series analysis and Data Mining techniques
were presented. The models were applied to the German and the US-American
automobile markets. As in a recent work [7], the Support Vector Machine turned
out to be a very reliable method due to its non-linearity. In contrast, linear
methods like Ordinary Least Squares or Quantile Regression are not suitable
for the present forecasting workflow. Owing to some modifications concerning
the time series analysis procedure including the estimation of the calendar and
seasonal components, the results of [7] could even be improved. However, other
Data Mining methods like Decision Trees, K-Nearest-Neighbor, and Random
Forest were considered leading to similar and in some cases even better results.
Using absolute exogenous data instead of a mixture of absolute and relative
data in the case of monthly data, the prediction errors of all suitable Data
Mining methods were less than 10%, which was another enhancement. The most
explicable method was the Decision Trees, which delivered meaningful models
using absolute monthly exogenous parameters. In the case of monthly data, this
method turned out to be the most reliable and explicable one. As in [7], quarterly
data were the most stable ones. As expected, the Support Vector Machine was the
most robust method, also with respect to outliers, i.e. special effects. However,
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useful and accurate predictions for the future cannot be achieved without reliable
estimates of special effects, which could particularly detected in the case of the
German car-scrap bonus and the irregular behavior of the US-American market.
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16. Leiner, B.: Einführung in die Zeitreihenanalyse. R. Oldenbourg Verlag, München

(1982)
17. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
18. Chambers, J.M., Hastie, T.J.: Statistical Models in S. CRC Press, Boca Raton

(1991)
19. Koenker, R.W.: Quantile Regression. Cambridge University Press, Cambridge

(2005)
20. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. CRC Press, Boca Raton (1984)
21. Hechenbichler, K., Schliep, K.P.: Weighted k-Nearest-Neighbor Techniques and Or-

dinal Classification, Discussion Paper 399, SFB 386, Ludwig–Maximilians Univer-
sity Munich (2004)

22. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

http://www.cesifo-group.de
http://stats.oecd.org
http://www.finance.yahoo.com


Towards a Spatial Instance Learning Method for

Deep Web Pages

Ermelinda Oro and Massimo Ruffolo

Institute of High Performance Computing and Networking of the Italian CNR
Via. P. Bucci, 41/C, 87036, Rende CS, Italy

{oro,ruffolo}@icar.cnr.it

Abstract. A large part of information available on the Web is hidden
to conventional research engines because Web pages containing such in-
formation are dynamically generated as answers to query submitted by
search form filled in by keywords. Such pages are referred as Deep Web
pages and contain huge amount of relevant information for different ap-
plication domain. For these reasons there is a constant high interest in
efficiently extracting data from Deep Web data sources. In this paper
we present a spatial instance learning method from Deep Web pages
that exploits both the spatial arrangement and the visual features of
data records and data items/fields produced by layout engines of web
browsers. The proposed method is independent from the Deep Web pages
encoding and from the presentation layout of data records. Furthermore,
it allows for recognizing data records in Deep Web pages having multi-
ple data regions. In the paper the effectiveness of the proposed method
is proven by experiments carried out on a dataset of 100 Web pages
randomly selected from most known Deep Web sites. Results obtained
by using the proposed method show that the method has a very high
precision and recall and that system works much better than MDR and
ViNTS approaches applied to the same dataset.

Keywords: Web Information Extraction, Deep Web, Instance
Learning, Web Wrapping.

1 Introduction

The Deep Web is the part of the Internet that is not accessible by conventional
search engines. Deep Web pages are dynamically generated from databases in
response to queries submitted via search forms filled in by keywords. The Deep
Web continue to grow as organizations and companies make available their large
amounts of data by providing Web-access facilities to their databases. Conse-
quently, there is a constant high interest in efficiently extracting data from Deep
Web data sources.

A large body of work on approaches for extracting data from Deep Web
sources is already available in literature. Existing approaches, for the scopes of
this paper, can be classified in two main groups: (i) approaches that mainly
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use the internal representation of Deep Web pages [6,10,7,16,17,13], and (ii) ap-
proaches that exploit the visual appearance of Deep Web pages [18,8].
Approaches in both groups are still limited in many aspects. In particular, ap-
proaches based on the internal structure of Deep Web pages suffer of the com-
plexity of today Web pages encodings. In fact, they need to be updated for facing
the adoption of new standards and tags. In particular, the growing adoption of
scripts and CSS style sheets, for presenting data to human users, makes Web
pagers more complex than ever. Approaches that exploit the visual appearance
of Web pages do not use the spatial arrangement and the visual features of data
records and data items produced by layout engines of Web browsers completely
and directly. So they exploit partially visual cues created by Web designers in
order to help human users to make sense of Web pages contents.

In this paper we present a novel spatial instance learning method for Deep
Web pages that exploits both the spatial arrangement and the visual features of
data records and data items/fields produced by layout engines of web browsers.
The proposed approach is founded on:

– The Positional Document Object Model (PDOM) that represents the spatial
arrangement and the visual features of data records and data items produced
by layout engines of Web browser for presenting Deep Web pages.

– A spatial similarity measure that computes visual similarity between PDOM
nodes by using spatial model called rectangular cardinal relation [11]. Such
a similarity measure takes into account visual cues, available after docu-
ment rendering, that help human readers to make sense of page contents
independently from the internal structure of Web pages;

– The definition of a very efficient and effective instance learning algorithm,
based on a hierarchical clustering technique and heuristic aggregation meth-
ods, that allows for recognizing data records and data items in Deep Web
pages independently from their visual arrangement.

Main contribution of this paper are:

– The definition of a data model well suited for representing the spatial struc-
ture and the visual features of layouted Deep Web pages.

– The definition of an instance learning algorithm ables to identify data records
and items spread on multiple (data) regions of a single page. It is noteworthy
that the algorithm allows for recognizing data records and items having any
spatial arrangement (e.g. data records arranged either as lists or matrices
where data items are indifferently organized in vertical or horizontal way).

The paper is organized as follows. Section 2 describes the related work. Section
3 presents the positional document object model used for representing spatial
layout and presentation features of Deep Web Pages. Section 4 introduces a
novel visual similarity measure based on rectangular cardinal direction spatial
model that takes into account both spatial and visual features of Deep Web
Pages. Section 5 presents and discusses the instance learning algorithm. Section
6 describes experimental results. Finally, Section 6 concludes the paper.



272 E. Oro and M. Ruffolo

2 Related Work

Several approaches have been proposed in the literature for extracting data
records from Deep Web pages. For the scopes of this paper, existing approaches
can be classified in two main groups: (i) approaches that mainly use the internal
representation of Deep Web pages, and (ii) approaches that exploit the visual ap-
pearance of Deep Web pages. HTML-based approaches can be further classified
in manual and automatic.

In manual approaches, like W4F [14], the programmer finds patterns, ex-
pressed for example by XPath, from the page and then writes a program/wrapper
that allows for identifying and extracting all the data records along with their
data items/fields. Manual approaches are not scalable and not usable in the
current Web because of the very large number of different arrangement of data
records in available Deep Web pages.

Automatic approaches exploit three main types of algorithms, wrapper in-
duction, instance learning and automatic extraction. In wrapper induction ap-
proaches, like SoftMealy [6], Stalker [10], etc. extraction rules are learnt, by
using supervised machine learning algorithms, from a set of manually labeled
pages. Learned rules are used for extracting data records from similar pages.
Such kind of approaches still require a significative manual effort for selecting
and labeling Web pages in the training set. The method proposed in this paper
is completely automatic and no manual effort is required to the user. Instance
learning approaches exploit regularities available in Deep Web pages in terms of
DOM structures for detecting data records and their data items. In this fam-
ily of approaches fall methods like MDR [7], DEPTA [16,17], STAVIES [13].
These approaches exploit unsupervised machine learning algorithms based on
tree alignment techniques, hierarchical clustering, etc. Approaches falling in this
category are strongly dependent from the HTML structure of Deep Web Pages.
Our approach is completely independent form the HTML structure of Web pages
because it uses a spatial representation of Web pages obtained from page pre-
sentations produced by layout engines of Web browsers. In automatic extraction
approaches, like Roadrunner [4], patterns or grammars are learnt from set of
pages containing similar data records. In this kind of approaches pages to use
for learning wrappers have to be found manually or by another system then a set
of heuristic rules based on highest-count tags, repeating-tags or ontology match-
ing, etc. is used for identifying record boundaries. Furthermore many approaches
falling in this category need two or more Web pages for learning the wrapper,
while our method works on each single Deep Web page.

By analyzing a huge number of Deep Web pages we have observed that: (i)
HTML is continuously evolving. When new versions of HTML or new tags are
introduced, approaches based on previous versions have to be updated. (ii) Web
designers use presentation features and spatial arrangement of data items for
helping human user to identify data records. They do not take into account the
complexity of underlying HTML encoding. So, (iii) the complexity of the source
code of Web pages is ever-increasing. In fact, the final appearance of a Deep Web
page depends from a complex combination of HTML, XML (XHTML), scripts



Towards a Spatial Instance Learning Method for Deep Web Pages 273

Fig. 1. Examples of layout models of data records on deep web pages

(javaScript), XSLT, and CSS. (iv) Data records are laid out either as lists or ma-
trices where data items are indifferently organized in vertical or horizontal way
(for instance, some layout models are shown in Figure 1). (v) Data records can
be contained in not contiguous portions of a Web page (multiple data regions).
These aspects make very difficult for existing approaches to learn instances and
wrappers by using the internal encoding of Web pages so they constitute a source
of strong limitations for approaches already proposed in literature [12].

Visual-based approaches, like LixTo [1,5,2], ViNTS [18], ViPERS [15], and
ViDE [8], exploit some visual features of the Deep Web pages for defining and
learning wrappers. In LixTo the programmer is helped in manually designing
the wrapper by using the visual appearance of the Deep Web pages. In this case
the programmer doesn’t have to write code, s/he can design the wrapper by
using only mouse click on the target Deep Web page. The user visually selects
data items and records, then the system computes HTML patterns associated
to visual area selected by the user and writes a wrapper that allow for applying
such patterns in similar pages. LixTo is essentially a manual approach based on
the HTML encoding of Web Pages. ViNTS uses visual features in order to learn
wrappers that extract answers to queries on search engines. The approach de-
tects visual regularities, i.e. content lines, in search engine answers, and then uses
HTML tag structure to combine content lines into records. ViPER incorporates
visual information on a web page for identifying and extracting data records by
using a global multiple sequence alignment technique. Both last two approaches
are strongly dependent from the HTML structure of Web page, whereas visual
information play a small role, so they suffer from previously described limita-
tions. Furthermore ViPER is able to identify and extract only the main data
region missing records contained in multiple data regions. ViDE is the most
recent visual-based approach. It make use of the page segmentation algorithm
ViPS. Such algorithm takes in input a web page and returns a Visual Block tree,
i.e. a hierarchical visual segmentation of a web page in which children blocks are
spatially contained in ancestor blocks. The algorithm exploits some heuristics in
order to identify similar groups of blocks that constitutes data records in which
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constituent blocks represent data items. The ViDE approach suffer from some
limitations. First it strongly depends from the page segmentation algorithm ViPS
that in turn depends from the HTML encodings of Web Pages and from the set
of assumptions made for segmenting Web pages. The ViPS algorithm, in fact,
tries to compute a spatial representation in terms of Visual Block of a Web page
by considering the DOM structure and visual information of a Web page pro-
duced by the layout engine of a Web browser. In particular, page segmentation
algorithm strongly exploits the concept of separator. Separators are identified,
in ViPS, by heuristic rules that make use of weights experimentally set. More-
over, the ViPS algorithm and then the ViDE approach suffer when data records
are spread in multiple data regions each contained in different page segments,
and also when data records are arranged as a matrix. The approach proposed
in this paper only construct a spatial and visual model (PDOM) of Deep Web
pages by considering presentation information returned by layout engined of
Web browsers. To construct the PDOM our approach explores the DOM and
acquires positions assigned by the layout engine to each node on the visualized
Web page, and presentation features assigned to nodes. Data region, records and
items recognition is then performed on the PDOM by using an heuristic algo-
rithm that allows for discovering data records spread on multiple data regions,
and data records having all possible spatial arrangement.

3 Positional Document Object Model

In this section we introduce the notion of Positional Document Object Model
(PDOM) of Web pages. Then we describe how PDOMs are created starting
from the traditional DOM by considering Web pages rendered by Web browsers.
Usually, a Web page designer would organize the content of a Web page to
make it easy for reading. However, the logical structure is encoded in a very
intricate hierarchical HTML structure, in fact tag-nesting is used for representing
presentation features, other than layout of Web Pages. As described in Section 2,
some existing approaches first use heuristic document segmentation algorithms,
e.g. work presented in [3,9] that use visual and/or content information (such as:
separators, lines, blank areas, images, font sizes, colors, etc.), in order to point
out the Web content structure, and then they try to recognize data records.
So, the success of such approaches depends from the segmentation algorithms.
Whereas, we adopt the PDOM that is based on the intrinsic segmentation hidden
in the HTML structure and produced by Web browser.

3.1 Preliminary Definitions

A Web page can be seen as a 2-dimensional Cartesian plane on which are placed
2-dimensional objects (e.g. data records and items) surrounded by Minimum
Bounding Rectangles (MBRs). MBRs are the most common approximations in
spatial applications of 2-dimensional objects because they need only two points
for their representation in the Cartesian space. The concept of MBr is defined
as follows.
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Definition 1 (Minimum Bounding Rectangle). Let o be a 2-dimensional
object, the minimum bounding rectangle (MBR) of o is the minimum rectangle
r that surrounds o and has sides parallel to the axes (x and y) of the Cartesian
plane. We call rx and ry the segments that are obtained as the projection of
r on the x-axis and the y-axis respectively. Then, each side of the rectangle is
represented by the segments (r−x , r+

x ) and (r−y , r+
y ), where r−x (resp. r−y ) denote

the infimum on the x-axis (y-axis) and r+
x (resp. r+

y ) denote the supremum on
the x-axis (y-axis) of the segments rx and ry.

Considering MBRs, directional and containment relations among 2-dimensional
objects can be simply modeled. For representing directional relations we adopt
the Rectangular Cardinal Relation (RCR) spatial reasoning model [11]. RCRs
are computed by analyzing the 9 regions (cardinal tiles) formed, as shown in
Fig. 2, by the projections of the sides of the reference MBR (i.e. r). The atomic
RCRs are: belongs to (B), South (S), SouthWest (SW), West (W), NorthWest
(NW), North (N), NorthEast (NE), East (E), and SouthEast (SE). Using the
symbol “:” it is possible to express conjunction of atomic RCRs. For instance,
by considering Fig. 2, r E:NE r1 means that the rectangle r1 lies on east and
(symbol “:”) north-east of the rectangle r. Moreover, the RCR model allows for
expressing uncertain (disjunction of) directional relations: for example r E|E:NE
r1 means that r1 lies on E or (symbol “|”) on E:NE of r.

r
2

r
1

r B

N

S

W E

SE

NENW

SW

Fig. 2. Cardinal tiles

Definition 2 (Containment Relation). Let r=〈(r−x , r−y ), (r+
x , r+

y )〉 and 〈(r′−x ,
r′−y ), (r′+x , r′+y )〉 be two MBRs, we can say that r contains r′ iff r−x � r′−x � r′+x �
r+
x , and r−y � r′−y � r′+y � r+

y , and at least one inequality is strict. It is notewor-
thy that if no inequality are strict, then the MBRs are equivalent (i.e. r = r′).

Given a set of no-intersecting 2-dimensional objects, it can be spatially ordered
from left to right and from top to bottom considering their MBRs. In order to
compute a spatial order among MBRs, we define the relations above and before
and the concept of horizontal aligned MBRs.

Definition 3 (Above and Before relations). Let a, b be two MBRs, we have
a above b (a before b) iff a−

y < b−y (a−
x < b−x respectively).

Definition 4 (Horizontal aligned MBRs). Let a, b be two MBRs, they are
on the same line iff a−

y � b−y � a+
y or b−y � a−

y � b+
y .

The Algorithm 1 allows for sorting no-intersecting MBRs on the base of the
order in which they appear on the Cartesian plane (i.e. from left to right and
from top to bottom).
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Algorithm 1. Sort
Input: A set of MBRs R = (r1, . . . , rm);
Output: The ordered set of MBRs R′.
1.1: for all (ri, rj ∈ R ∧ 1 � i < j � |R|) do
1.2: if (ri, rj /∈ same line) then
1.3: if(rj above ri) then swap(ri, rj);
1.4: else
1.5: if (rj before ri) then swap(ri, rj);
1.6: end if
1.7: end for
1.8: return R;

Finally, we define the function closest that takes as input an MBR r and a
set of MBRs R and returns the closest MBR r1 ∈ R to r. Closeness is computed
by considering the distance between the center of the MBRs.

3.2 PDOM Definition

In this section we define the Positional Data Object Model (PDOM) of Web
pages which the proposed instance learning method is based on. A PDOM is a
tree structure where each node, named positional node (PNode), represents one
or more DOM nodes laid out by the layout engine of a Web browser. PNodes
and the PDOM are defined as follows.

Definition 5 (PNode). Let Λ be a set of tag names, a PNode is a 3-tuple of
the form: PNode = 〈value, mbr, Style〉
where:
– value is the value of the node (such as strings, images, etc).
– mbr = 〈(r−x , r−y ), (r+

x , r+
y )〉 is a minimum bounding rectangle as defined in

Definition 1.
– Style represents the set of presentation features of the node.

Definition 6 (PDOM). A PDOM is a 3-tuple of the following form:

PDOM = 〈V, root, C〉
where:
– V is a set of PNodes (as defined in Definition 5).
– root is an unary relation, which contains the root PNode of the tree.
– C ⊆ V × V is the containment relation among PNodes. Let u and w be

PNodes in V , u C w holds iff mbr(u) contains mbr(w) and there is not a
third node v such that mbr(u) contains mbr(v) and mbr(v) contains mbr(w).

On PDOMs are defined the following functions:

Definition 7 (Children function). Let v ∈ V be a PNode, the function chil-
dren : V → 2V is defined as children(v) := {w ∈ V |v C w}.

Definition 8 (Leaf function). Let u ∈ V be a PNode, the function leaf : V →
2V is defined as leaf(v) := {w ∈ V |(mbr(v) contains mbr(w) ∨ mbr(v) =
mbr(w)) ∧ (�u ∈ V : w C u)}.
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3.3 PDOM Building

In this section, we describe how PDOMs are created starting from the traditional
DOM and considering the rendered Web pages by Web browsers. Layout engines
of Web browsers consider the area of the screen aimed at visualizing a Web
page, as a 2-dimensional Cartesian plane. They adopt rendering rules that take
into account the page DOM structure and the associated cascade style sheets
(CSS). In the rendered page each DOM node is visualized in a rectangle having
sides parallel to the axes of the Cartesian plane. For computing the PDOM,
the implemented system embeds the Mozilla browser by exploiting the Mozilla
XULRunner1 application framework that allows for implementing the function
mbr (see Def. 1). The layout engine assign to each visible DOM node an MBR.

A PNode P can be equivalent to one or more DOM nodes N = {n1 . . . nk},
where k � 1. Let D be a DOM, a PDOM P is built on the base of the containment
relations among the MBRs of nodes in D, starting from the root D. For each
pair of nodes u and v in D, we have:

– iff mbr(u) = mbr(v), then u and v correspond to a same PNode p.
– iff mbr(u) contains mbr(v), then u corresponds to a PNode p1 and v corre-

spond to a PNode p2 and mbr(p1) contains mbr(p2).
– iff mbr(v) contains mbr(u), then v corresponds to a PNode p1 and u corre-

spond to a PNode p2 and mbr(p1) contains mbr(p2).
– else, there exists two PNodes p1 and p2 such that mbr(p1) do not intersect

mbr(p2)

Let p be a PNode that corresponds to a set of DOM node N = {n1 . . . nk},
where k � 1, then p.value, p.mbr and p.Style are computed as follows:

– p.mbr = mbr(N), where the function mbr returns the MBR that surrounds
one or a set of 2-dimensional objects (N).

– p.Style is the set of attributes and stylistic features contained in CSS that
visually describe nk

– p.value is: (i) the string value of nk, if k = 1 and nk is a leaf node of string
type; (ii) the url of of nk, if k = 1 and nk is a leaf node of IMG type; (iii) ∅
otherwise.

In Figure 3 are represented different DOMs (3.a and 3.b) that encode the same
logical structure, which is caught by the PDOM derived by the
DOMs (3.c).

4 Visual Similarity

In this section we present the novel visual similarity measure between two sets
of PDOM nodes which the instance learning algorithm proposed in this paper
is founded on. The visual similarity measure is founded on the idea that set
1 https://developer.mozilla.org/en/XULRunner 1.9.2 Release Notes
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Fig. 3. Tree DOMs of fragments of Web Pages representing friend lists of social net-
works (a) Bebo and (b) Care sites. (c) The corresponding underlying layout structure
that is caught by the PDOM derived by the DOMs.

of PNodes are visually similar if they have the same presentation features and
contain the same leaf nodes arranged in the same way. In order to describe the
algorithm that computes the visual similarity between two set of PNodes, we first
formally define the concepts of presentation similarity between two PNodes, and
then introduce the concepts of visual content of a PNode, and spatial context of
a set of PNodes, as follows.

Definition 9 (Presentation Similarity). Let n1 and n2 be two PNodes, their
presentation similarity is computed by the following formula:

|n1.Style ∩ n2.Style|
max(|n1.Style|, |n2.Style|)

.

Definition 10 (Visual Content). Let n ∈ V be a PNode, the visual content
of n is the set of leaf nodes spatially contained in n, computed by means of the
function Leaf (see Definition 8).

Definition 11 (Spatial Context). Let Vn ⊆ V be a set of PNodes, the spatial
context of Vn is the set of 4-tuples of the form 〈u, w, ρ, ρ−1〉 where u, w ∈ Vn,
u �= w and ρ, ρ−1 are the RCRs that link u and w, where (u ρ w) and (u ρ−1 w)
hold respectively.

The spatial context represents for each pair of PNodes in the input set of PN-
odes reciprocal RCRs. It is computed by means the function Context : 2V →
2V ×V ×RCR×RCR, which for each pair of PNodes in the input set of PNodes
compare coordinates and computes the RCR relations.

Now we are ready to present Algorithm 2 that computes the visual similarity.



Towards a Spatial Instance Learning Method for Deep Web Pages 279

Algorithm 2. visualSim
Input: Two set of PNodes V1 ∈ V , and V2 ∈ V and threshold λ;
Output: Spatial similarity between V1, and V2, having value between [0, 1].

2.1: L1 :=
⋃

vi∈V1
leaf(vi);

2.2: L2 :=
⋃

vi∈V2
leaf(vi);

2.3: if(|L1| = 1 ∧ |L2| = 1) then return presentationSim(L1[1], L2[1]);
2.4: s1 := Context(L1);
2.5: s2 := Context(L2);
2.6: M [][] = ∅
2.7: for all (〈u, w, ρ, ρ−1〉 ∈ s1) do
2.8: for all (〈u′, w′, ρ′, ρ′−1〉 ∈ s2) do
2.9: sim1 := presentationSim(u, u′);
2.10: sim2 := presentationSim(w, w′);
2.11: if(ρ = ρ′) do α := 1 else α := 0;
2.12: if(ρ−1 = ρ′−1) do β := 1 else β := 0;
2.13: if (sim1 ≥ λ ∧ sim2 ≥ λ) then
2.14: M [〈u, w, ρ, ρ−1〉][〈u′, w′, ρ′, ρ′−1〉] := ( sim1+sim2

2
) ∗ α+β

2
;

2.15: else
2.16: M [〈u, w, ρ, ρ−1〉][〈u′, w′, ρ′, ρ′−1〉] := 0;
2.17: end if
2.18: end for
2.19: end for
2.20: simV alue := 0;
2.21: while ((vmax := maxm∈M ) > 0) do
2.22: removeRow(M, vmax.rowIndex);
2.23: removeCol(M, vmax.colIndex);
2.24: simV alue := simV alue + vmax;
2.25: end while
2.26: return

√
simV alue

max(|s1|,|s2|) ;

The algorithm takes as input two sets of PNodes (V1 and V2) and the pre-
sentation similarity threshold λ. It considers visually similar two PNodes if they
contain similar leafs (same presentation features) spatially arranged in similar
way. If V1 and V2 have only one leaf, the visual similarity is given in term of
the leaf presentation similarity (instruction 2.3). Else, we consider the spatial
contexts of leaf PNodes in V1 and V2 (L1 and L2). More in details, we computes:

– The spatial contexts s1 and s2 (instructions 2.4 and 2.5).
– A partial similarity between all elements in s1 and s2 (instructions 2.6-2.19).

The partial similarity between elements of the spatial contexts is computed
if and only PNodes in the considered elements of the spatial contexts have
presentation similarity above the threshold λ (instructions 2.13-2.14).

– The final visual similarity that considers best partial similarity values by
using a greedy strategy (instructions 2.20-2.26).

5 Instance Learning Algorithm

In this section we present the instance learning algorithm that extracts data
records and items from Deep Web pages by exploiting visual patterns created
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by Web designers in order to help human readers in make sense of Deep Web
pages contents. The Algorithm 3 takes as input a PDOM and returns a set of
data records instances with aligned data items.

Algorithm 3. InstanceLearner
Input: A PDOM P ;
Output: A set I of data records instances with aligned data items.

3.1: Rs := findDataRegions(P, λ);
3.2: R := maxRegion(Rs, μ);
3.3: Rs′ := similarRegions(R, (Rs − R));
3.4: for all (R ∈ Rs′) do rs := rs ∪ R.records;
3.5: I:= getDataItems(rs);
3.6: return I;

The Algorithm 3 is constituted by two steps described below:

1. Data region and data record identification. In this step, the PDOM of a Deep
Web page is taken as input and a set of data regions that are portions of Deep
Web page containing list or matrices of similar data records are returned
(instructions 3.1-3.3). The procedure findDataRegions collects PNodes that
represent data regions performing a depth-first search along the PDOM in
input. The procedure maxRegion takes as input found data regions and a
threshold μ that represents the minimum number of records that compose a
data region, and chooses the region R that has the greatest area. In fact, the
size of the most important data region is usually larger than the size of the
area of the other data regions. The method similarRegions founds similar
regions to R. Two regions are considered similar if they are composed by
visually similar records, similarity is computed by using the Algorithm 2.
This way the algorithm allows for finding data records spread in multiple
regions.

2. Data records and data item extraction. In this step, the algorithm detects the
desired data records and items. Data records are recognized and data items
of the same semantics are aligned together (instructions 3.4-3.6) by means
of the procedure getDataItems.

5.1 Data Region and Data Record Identification

In this section we present the procedure findDataRegions that consists in a
depth-first search along the PDOM in input. During the depth-first search the
procedure calls the createDataRegion that is described in the following.

The Procedure 1allows for checking if a PNode representsa data region. If the an-
alyzed PNode represents a data region, the procedure recognizes the list of its sim-
ilar data records by exploiting the Procedures cluster and potentialRecords.

Procedure 1. createDataRegion
Input: A PNode u of a PDOM P , and a threshold λ;
Output: A data region R that consists of a list of records if u represents a data region,
null otherwise.
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1.1: F := {{c}|c ∈ children(u)};
1.2: C := cluster(F, λ);
1.3: while (∀c ∈ C, |c| = 1) do
1.4: F := {{c}|c ∈ children(F )};
1.5: if (F = ∅) then return ∅;
1.6: C := cluster(F, λ);
1.7: end while
1.8: D := potentialRecords(C);
1.9: C′′ := cluster(D.nodesets, λ);
1.10: if (|C′′|>1) then return ∅;
1.11: end if
1.12: Dr := D;
1.13: F := {{c}|c ∈ children(

⋃i=|D|
i=1 D[i].nodes)};

1.14: while (F = ∅) do
1.15: C′ := cluster(F, λ);
1.16: D′ := potentialRecords(C′);
1.17: C′′ := cluster(D′.nodesets, λ);
1.18: if (|C′′| = 1 ∨ |D′| < |D|) then return Dr;
1.19: if (|D′| > |D|) then Dr := D′;
1.20: D := D′;
1.21: F := {{c}|c ∈ children(

⋃i=|D|
i=1 D[i].nodes)};

1.22: end while
1.23: return Dr;

The Procedure 1 consists of three steps. In the first step (instructions 1.1-1.7)
the procedure computes the level of the PDOM containing groups of similar
nodes starting from the input node u. In this step the algorithm uses the proce-
dure cluster that takes as input a list of sets of PNodes (possibly composed by
a single node) and clusters them in order to obtain clusters of PNodes, by using
the single linkage clustering strategy and the spatial similarity measure defined
in Algorithm 2. In the second step, (instruction 1.8) potential data records are
computed exploiting the Procedure 2. If obtained data records are similar, then
they can be clustered in the same group, otherwise the input PNode u do not
represents a data region (instruction 1.10). In the third step, the procedure de-
cides if the current set of potential data records D is the best set of data records
contained in the input PNode u (instructions 1.12-1.23). It considers the next
level of the PDOM (instructions 1.13 and 1.21) and checks if the new set of po-
tential data records D′ represents a better choice of the current set of potential
data records D (instruction 1.19). This inspection is repeated until leaf PNodes,
in the portion of PDOM in u, are reached (F = ∅) or similar potential data
records (|C′′| �= 1), or D′ are worse than D (|D′| < |D|).

The Procedure 2, takes as input clusters of similar PNodes and regroups
PNodes in order to point out nodes that belong to same candidate data records.

Procedure 2. potentialRecords
Input: A set of Clusters C = {C1, . . . , Cm} of sets of PNodes;
Output: The set of groups of PNodes D representing potential Data Records.

2.1: for all (Ci ∈ C) do sort(Ci); end for
2.2: Cseed := {Ci||Ci| = max({|C1|, . . . , |Cm|})};
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2.3: D[] := ∅
2.4: for all (i = 1 to |Cseed|) do D[i] := 〈Cseed[i], mbr(Cseed[i])〉; end for
2.5: C := C − Cseeds;
2.6: for all (Ci ∈ C) do
2.7: for all (c ∈ Ci) do
2.8: D[i] := 〈{D[i].nodes ∪ c}, mbr(mbr(c),D.mbrs)〉
2.9: where (D[i] ∈ D ∧ D[i].mbr = closest(mbr(c),D.mbrs));
2.10: end for
2.11: end for
2.12: return D;

Procedure 2 consists of three steps: (i) PNodes contained in each cluster of
C are sorted in according to their MBR positions in the Web page, from top
to bottom and from left to right exploiting the Algorithm 1 (instruction 2.1 in
Section 3.1). (ii) The Cseed that contains a representative item for each potential
data record is chosen. It is the cluster with the maximal cardinality, when more
clusters with maximal cardinality exist, the first is chosen (instruction 2.2). Then,
the set of groups of PNodes D that represents the set of potential Data Records,
is initialized. Each record in D is composed by a PNode in the seed cluster
Cseed and its MBR (instructions 2.2-2.4). (iii) Each PNode belonging to non-
seed clusters are put in the closest potential data record exploiting the closest
function defined between MBRs (instructions 2.6-2.10).

5.2 Data Records and Data Item Extraction

Up to this point, a set of data regions containing similar data records are rec-
ognized. Now, the aim of the Procedure 3 is to recognize and align data items
having the same semantics, which compose different data records.

Procedure 3. getDataItems
Input: A set of data record D = {R1, . . . , Rm}, where each data record Ri ∈ D is
represented by a list of leaf PNodes that represents data items;
Output: Aligned records in a m∗n matrix I of leaf PNodes, where m is the number of
records retrieved in the web page, n is the number of items belonging to each record.

3.1: Rseed := R ∈ D, whose |R| is max{|R1| . . . |Rm|};
3.2: for all (i:= 1 to |Rseed|) do I [1][i] := Rseed[i]; end for
3.3: D := D − Rseed;
3.4: for all (Rj ∈ D) do
3.5: M [][] = ∅;
3.6: for all (nk ∈ Rj) do
3.7: for all (ni ∈ Rseed) do
3.8: synSim := syntacticSim(nk, ni);
3.9: valueSim := 1 − editDist(nk.value, ni.value);
3.10: M [j][i] := synSim+valueSim

2
;

3.11: end for
3.12: end for
3.13: while ((vmax := maxm∈M ) > 0) do
3.14: I [j][vmax.colIndex] := vmax;
3.15: removeRow(M, vmax.rowIndex);
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3.16: removeCol(M, vmax.colIndex);
3.17: end while
3.18: end for
3.19: return I ;

The Procedure 3 takes as input a set of data records D = {R1, . . . , Rm}, and
aligns records in a m∗n matrix I of leaf PNodes, where m is the number of records
retrieved in the web page, and n is the number of items belonging to each record.
Because some optional data items can occur, the records having the maximal
number of data items is chosen as the representative record (instructions 3.1-
3.2). As shown experimentally, this simple method allows for aligning data items,
even if it is not completely correct when there are not quite complete records.
After that the representative data record is chosen, for each other data record
Rj the best data items alignment is found by exploiting a similarity matrix M
among the target type of data items (ni) and the items of the current data record
(nk) (instructions 3.3-3.17).

6 Empirical Evaluation

The instance learning method presented in the paper has been experimentally
evaluated on a dataset of 100 Deep Web Pages randomly selected from most
known Deep Web Sites. Table 1 reports the precision, recall and F-measure
calculated for the proposed method. The table compares results obtained by the
approach with results obtained on the same dataset by MDR [7] and ViNTs [18]
systems. It is noteworthy that versions of MDR and ViNTs available on the Web
allow for performing only data record extraction.

Table 1. Precision, Recall and F-Measure of the Proposed Instance Learning Method

Records Items
P R F P R F

Proposed Instance Learning Method 96.01% 94.33% 95.16% 93.62% 99.01% 96.24%
MDR 24.26% 42.85% 30.98% – – –
ViNTs 51.52% 47.46% 49.41% – – –

7 Conclusions and Future Work

In this paper has been presented a novel spatial instance learning method for
Deep Web pages. The method is based on: (i) a novel positional document ob-
ject model that represents both spatial and visual features of data records and
data items/fields produced by layout engines of Web browser in rendered Deep
Web pages; (ii) a novel visual similarity measure that exploit the rectangular
cardinal relation spatial model for computing visual similarity between nodes
of the PDOM. Experiments carried out on 100 Deep Web pages randomly se-
lected from well known Deep Web sites, show very high precision and recall.
Most importantly, experiments show that the wrapper induction algorithm en-
ables to identify data records and items spread on multiple (data) regions of
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a single page, and to recognize data records and items having many different
spatial arrangement (i.e. data records arranged either as lists or matrices having
data items indifferently organized in vertical and horizontal way). Future work
will be aimed at extending the method towards spatial wrappers learning. This
way information will be extracted from Deep Web pages by applying spatial
wrappers on PDOM representations directly.
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Abstract. Fraud in telecommunications is increasing dramatically with
the expansion of modern technology, resulting in the loss of billions of dol-
lars worldwide each year. Although prevention technologies are the best
way to reduce fraud,. Fraudsters are adaptive, searching systematically
for new ways to commit fraud and, in most of the cases, will usually find
some way to circumvent companies prevention measures. In this paper
we expose some of the ways in which fraud is being used against orga-
nizations, evaluating the limitations of existing strategies and methods
to detect and prevent it in todays telecommunications companies. Addi-
tionally, we expose a data mining profiling technique based on signatures
that was developed for a real mobile telecommunications network oper-
ator and integrated into one of its Fraud Management Systems (FMS),
currently under operation.
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1 Introduction

Everyday we deal with aggressive campaigns of telecommunications companies
that advertise and promote new products and services. The offer and variety of
these products are so big that we end up paying them some attention. Marketing
strategies of telecommunications companies are very important in the process of
surviving in a competition market. The technological level and product sophis-
tication have contributed very significantly for the adoption process to be quite
easy. Business created by telecommunications is crucial for the world economy.
They provide money and market stability as a product of themselves, creating
a more connected community, allowing the sharing of information, and greater
responsiveness in a given period of time. According to a study conducted by
Boonton [19], global telecommunications revenue is projected to increase from
roughly $1.7 trillion in 2008 to more than $2.7 trillion in 2013.

Despite the current economic climate, there is a pent-up demand for telecom-
munications services in certain markets. Areas such as Latin America and Asia
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Pacific will boom markets in the upcoming years. Through the study in question
and according to Gartner Inc [11], the Asia/Pacific region will reach the highest
growth rate in the next five years, about 16%. Countries with high population
density, such as China and India, will be leading the charge. Telecommunica-
tions providers are likely to take a hit from economic pressures in the short
term. But there will be major growth in some areas, such as wireless. Accord-
ing to the Insight study, wireless revenues will have an annual growth rate of
14.4% until 2013. Despite everything, things in this area are not so simple. With
the appearance of new products and services, new ways of using them illegally
also have emerged. We are dealing with typical situations of fraud, which affect
significantly telecommunications companies. Losses are enormous requiring that
companies take urgent measures to overcome or at least attenuate the effects of
this problem. Due to the increasing difficulty to detect fraud situations, com-
panies are forced to invest more financially and on human resources in order to
find methods to fight effectively the phenomenon of fraud.

In the following sections we outline some of the most important issues related
to signature-based methods and its application in the telecommunications indus-
try. Section 2 describes the meaning of fraud, fraud losses in telecommunications
companies, possible fraud cases, and how they are used against organizations.
Next, in section 3, we explain profiling techniques and how signatures are built
and maintained through time. Also, it is explained how these methods are used
on fraud detection and their advantages over other methods. Section 4 presents
the work that has been done with a mobile network operator and improvements
made on [9]. In this work, unlike [9,10], models of fraudulent and legitimate
behavior are also used in the tasks of detection and creation of signatures. We
explain how the distance formulas and the process responsible for selecting the
correct measures and weights were improved. The most important steps of im-
plementation and integration of a signature-based component are also explained.
Finally, we present our conclusions and some criticisms of the approaches used.

2 Fraud in Telecommunications Networks

Fraud can be simply described as an intentional deception or misrepresentation
that an individual knows to be false that results in some unauthorized benefit
to himself or another person [13]. It is very common to see organizations cal-
culating how much money they lost through fraud by defining it as the money
that is lost on accounts where payment is not received. Thus, for detection pur-
poses, fraud can only be detected once it has occurred. Now, it is useful to
distinguish between fraud detection and fraud prevention. Fraud prevention de-
scribes measures to avoid fraud occurrence. In contrast, fraud detection is the
process of identifying fraud as quickly as possible. Fraud detection comes into
play once fraud prevention has failed. However, it must be used continuously. No
prevention method is perfect and usually there is a problem with its efficiency
[12]. Fraud detection is a discipline that is constantly evolving. The development
of new methods is becoming more difficult due to the limitation that exists on
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information exchange. Frequently, data is not available and results, in most cases,
are not revealed to public.

2.1 Fraud Losses

Fraud losses across the telecommunications industry are approximately five per-
cent of their revenue. Today, fraud is undoubtedly the major factor responsible
for losses that occur in telecommunications companies. According to Next Gen-
eration Billing and Revenue Management [14], a global survey released in March
2008 places telecommunications fraud losses at $54.4 to $60 billions – 52% of
increase against the latest survey in 2003; 85% of respondents say fraud losses
are increasing; 65% confirmed and upward trend in telecommunications fraud;
and the top 5 countries where fraud is concentrated are: Pakistan, Philippinies,
Cuba, India and Bangladesh.

2.2 Possible Fraud Cases

Essentially, fraud can be divided into two categories: subscription fraud and
superimposition fraud. The subscription fraud occurs when fraudsters get an
account without any intention of paying it. In these cases, abnormal wear occurs
throughout the active period of the account. The account is typically used for
selling calls or for intensive self-usage. Cases where customers do not necessarily
have fraudulent intentions, and do not pay any bill also fall into this category.
Superimposed fraud occurs when fraudsters ”take” a legitimate account. In these
cases, abnormal wear is superimposed on the normal use of legitimate customers.
The most common technique for identifying superimposition fraud is to compare
the current customers calling behavior with a profile of his past, using techniques
for detecting misuse and anomaly detection [8].

The nature of fraud has a direct impact on the identification, preservation
and analysis of electronic evidence. When fraud comes from an external source,
we dont know much about the criminal’s identity and potential sources of ev-
idence. This requires more resources and research time for the organization,
which is particularly evident in cases of online fraud where there is no geo-
graphical limitation. When fraud is committed within an organization, time and
effort is smaller and investigation is simpler. This is mainly due to the ease of
access to the electronic evidence, which resides within the infrastructure of the
organization. Moreover, the jurisdictional issues that may have impact on the
investigation of external fraud are very low. Next, we can find some examples of
the most common types of internal fraud [15] [6] [18]:

– Ghosting - Obtaining free or cheap rate through technical means of deceiving
the network.

– Sensitive Information Disclosure - Gathering valuable information and sell-
ing it to external entities.

– Secret Commissions - Undeclared benefits, such as gifts, are received or paid
in return for maintaining or establishing the sale or purchase of goods or
services.
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and external fraud [15] [6] [18]:

– Surfing - Use of other person’s service without consent which can be achieved,
for example, through SIM card cloning or when fraudsters obtain a password
for PABX service.

– Premium Rate Fraud - Abuse of the premium rate services.
– Roaming Fraud - The fraudster makes use of the delays in the transference

of Call Detail Records (CDR) through roaming on a foreign network.

3 User Profiling Based on Signatures

3.1 Profiling

Several fraud scenarios can be characterized in telecommunications networks,
which basically are described how the fraudster obtained illegitimate access to
the network. Methods of detection that are designed for a specific scenario are
likely to be unsuitable for other cases. The nature of fraud, with technology
evolution, has changed from cloning fraud to subscription fraud, which makes
most of the specialized detection methodologies inadequate. Detection method-
ologies to detect cloned instances of mobile phones probably will not catch any
subscription fraud case. Therefore, the main focus is on detection methodologies
related to the calls activity, which in turn can be divided into two categories:
absolute and differential analysis [1].

In absolute analysis, the detection is mainly based on the calling activity of
fraudulent and normal behavior. Differential analysis addresses the problem of
fraud detection by detecting sudden changes in behavior. Using differential anal-
ysis, methods typically alarm differences in established patterns of usage. When
the current behavior differs from the behavior model set, an alarm is triggered.
In both cases, analysis methods are usually implemented through probabilistic
models, neural networks or rule-based systems for example. The main idea, when
it comes to user profiling, is that users past behavior can be accumulated in order
to build a profile or a ”user dictionary” of what is expected to be the attributes
of his normal or typical usage. This profile contains summaries of numeric values
that reflect the appearance of a behavior or a multivariate behavior pattern. The
users future behavior can thus be compared to his profile to check if everything
is normal or if there was any abnormal deviation, which can mean fraudulent
activity. An important issue that must always bear in mind is that we can never
be sure whether fraud actually occurred or not. As a result there should always
be a careful and thoughtful investigation on what is observed.

There are some data mining techniques of machine learning which can be used
on telecommunications data for fraud detection. They can be divided in Super-
vised and Unsupervised Learning. In supervised techniques, samples of normal
and fraudulent behavior are used to construct models, which allows the system
to assign new observations to each class. It is only possible to detect fraud of a
type that was previously registered. In contrast, unsupervised techniques seek
for fraud types which where not discovered previously and can now be detected.
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Usually, they are looking for abnormal observations. Both methods only give us
an indication of fraud likelihood. Any statistical analysis by itself cannot assure
that a particular situation is fraudulent. It can only indicate that it is more likely
to be fraudulent than other cases. Often, both techniques are used together to
build a hybrid system capable of improving the expected results [12]. User pro-
files can be constructed using appropriate usage characteristics. The aim is to
distinguish a normal user from a fraudster. All the necessary data to be studied
by the systems is contained in CDR, where each record translates a call made on
a telecommunications network and has enough information to minutely describe
it. The CDR contains data such as: call duration, caller ID, date and time of the
call, etc.

3.2 About Signatures

Real-time detection of fraudulent behavior facilitates its preliminary identifica-
tion and allows timely development of appropriate prevention strategies. Due to
the large volume of information that is processed in online systems, sometimes it
is difficult to understand and correctly analyze, in real-time, large datasets that
result from daily transactions. As a possible solution, signatures can be used to
describe the diversity of behavioral patterns. These signatures are essentially a
mathematical representation of fraudulent activity or other abnormal behavior.
They can be used to detect fraudulent activity by one of the following methods
[1] [5] [8]: profile-based detection methods, and anomaly detection methods. In
the first method fraudulent profiles are stored in a database.

The resulting summaries of recent transactions are then compared with the
illegitimate profiles to detect fraudulent behavior. In contrast, anomaly detec-
tion compares behavior of current transactions with legitimate past behavior.
Signatures can represent quite well this behavior. Each variable that belongs to
a signature is obtained directly from CDR records. Both signatures and sum-
maries consist of a set with all variables. The main difference between both is
the temporal window that each represents. Normally, a summary always reflects
a shorter time window - the processing period can be one hour or one day for
example. As is reported in [9], variables can be simple, if they contain a single
atomic value, or can be complex, when they contain two co-dependent variables,
usually the mean and standard deviation.

Two common processing models can be used to update signatures: time-driven
and event-driven [5]. In time-driven updating, records are collected and tem-
porarily stored for a certain period of time. At the end of that time, records
are summarized and the signatures are updated. In event-driven updating, de-
pending on the entry of new records, signatures are constantly updated. Each
of these methods has its limitations and they become evident when considering
the significance of updating. The update of a signature consists of three steps:
reading the signature from the disk or memory, changing the value of the signa-
ture using a statistical algorithm, and finally re-write the signature on the disk
or memory. This process is accomplished through the evaluation of new transac-
tional instances and recalculation of the associated signature components within
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the defined processing time. The event-oriented method provides a real time up-
date. However, the I/O (input/output) demands can be considerable when the
signature database is too large to be stored in memory. Time-driven processing
method requires less I/O, but disk space that is temporarily needed can be a
problem since records have to be stored over certain period of time. Performance
remains a critical problem due to the time window needed to perform computa-
tional functions and policy evaluation while maintaining optimal levels of service
delivery [7].

In fraud detection systems where time factor is critical, the event-driven pro-
cessing method is preferred, high costs resulting from fraud dictated this model
as the best. According to [5] [6], both processing methods, event-driven and
time-driven, follow the same computational model. Let us consider St a signa-
ture and R a record or a set of records that are available at a given period of
time t. The signature St consists of a set of variables that can be probability
distributions of features of interest, such as the total number of calls for example.
Records R should be processed before the signature is updated, its format should
be identical to St, the result of the transformation of R will be represented by
TR. At time t + 1 it is necessary to form the new signature St+1, an update of
St in conjunction with TR, traveling all the elements, must be done using the
following formula:

St+1 = β · St + (1 − β) · TR (1)

The β variable indicates the weight of new TR transactions in the value of the
new signature, it determines the amount of weight given to new data or whether
it was given little weight to old data. For time-driven update the value of β is
normally constant. We can adjust the value of β in accordance with the value
of the defined time window. With the information obtained so far we get two
vectors of different parameters, they are TR and S. According to [9], these vectors
can be compared and the distance between them can be calculated. Thus, it is
possible to update the signature if a certain threshold Ω, defined by the analysts,
is reached. If dist(St, TR) ≥ Ω the signature is updated, otherwise an alert is
generated and the case must be further analyzed and validated. If a user at any
moment deviates the typical behavior expressed by his signature, this may be a
reason to launch an alarm indicating that he needs to be investigated.

Often, the ongoing activities of certain users reflect behaviors that, in most
cases, appear fraudulent. Unfortunately, not always these situations should be
alarmed, even if the activity in question is completely different from what is saved
in history. Therefore, it is necessary to reduce the number of false positives. One
possible solution is to maintain legitimate and fraudulent signatures of active
network entities. Thus, it is possible to apply probabilistic algorithms where
after receiving the call, the system computes the probability of observing the
call assuming it comes from a legitimate account, relative to the probability
of observing the call assuming it comes from a fraudulent account. Below the
formula that reflects the exposed idea:

isFraud(call) =
P (call | legitimate signature)
P (call | fraudulent signature)

(2)
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4 Signatures in Telecommunications Fraud

One of the objectives of this work was to apply and validate, in practice, the
research performed previously about the use of signatures in telecommunication
fraud [9]. Together with one of the most important mobile operators in Portugal,
we tried to increase the functionalities of their FMS and consequently reduce
the loss of revenue. Through the emerging types of fraud, it was concluded
that the best solution would be to integrate the technique of signatures. During
the following subsections we explain some of the most important steps in the
development and integration of the prototype. Finally, an experiment made with
a sample provided by the mobile operator is presented.

4.1 Distance Functions

Initially the system was tested with the distance functions proposed in [9], Nor-
mal distribution and Poisson distribution respectively. However, some problems
were found with the latter one. The Poisson distribution is represented by the
following formula:

P (N = k) =
eλλk

k!
, (3)

After making some tests, we discovered that the existing types of data in the
used language (PL/SQL) could not represent values of factorial integers bigger
than 83, rounding them to 1× 10126. This is a very serious problem considering
that many customers have more than 83 SMS or voice transactions per day (e.g.
call centers). Another problem found on this formula was the denominator value
of the division, when it is too big the distance result is rounded to 0. In order
to try to overcome the problem we made some transformations on the factorial
function. We achieved better results with large numbers, nevertheless, they were
not as we wanted. To calculate the distance between models of fraudulent or
legitimate signatures and summaries resulting from the processing of records
inside a time window, the chosen formula was the Hellinger distance. It is based
on a differential analysis of user profiles. The distance is defined between vectors
with positive elements or with the value 0. Generally, this formula is used to
compare profiles. According to [17], some advantages of the Hellinger distance
are:

– the measure only depends on the profile attributes. It is not changed when
there is an extension of the attributes;

– the measure does not depend on the size of a profile in which the attributes
are estimated;

– if a different representation of the attributes is necessary, X =
√

Q′ for
example, the elements of X are the root of the elements of Q′ where Q was
previously defined.

dist(s, a) = [
n∑

i=1

(
√

si −√
ai)]

1
2 (4)
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For the purpose of this work, the variable s is a summary that translates the ag-
gregation of CDR from a defined time window. The variable a is the fraudulent
or legitimate model and i represents each measure of the profile. This formula
offers great stability in the obtained results and provides increased safety when
different sizes of profiles are considered. To calculate the distance between sum-
maries and their signatures, the chosen formula was the Euclidean distance. It
is one of the oldest distance formulas and mostly it is used to solve similar prob-
lems. This formula captures two items and compares each one of their attributes
in order to calculate the degree of closeness and to understand how they are
related.

dist(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (5)

However, the type of some attributes was complex. So it was necessary to insert
a variable for standard deviation. The situation was resolved by normalizing
the distance formula (5). The normalization was done dividing the square of
each result of the difference between attributes by the square of the standard
deviation, keeping the sum of the resulting values and calculating the square
root in the end at same.

dist(p, q) =

√√√√ n∑
i=1

(pi − qi)2

σ2
(6)

The variable p is a summary that translates the aggregation of CDR from a
defined time window, q is the associated signature, σ corresponds to the standard
deviation and i represents each measure of the profile.

4.2 Measures and Weights

To choose the measures for the signatures, it was made a study in order to achieve
a balance between performance and fraud requirements. Due to constant changes
in the emerging fraud types and market trends, it was necessary to include
measures related to SMS, voice and roaming transactions. We decided to create
a signature as complete as possible. All measures were created with the complex
type to identify different variations, thus we can achieve more accurate results.
In the future, it is possible to add or reduce the number of measures and edit
their type depending on the processing results and the detection objectives. The
implemented prototype also allows editing the weight of each measure in the
distance formula (6), some attributes can be more important or there may be a
need to analyze a specific kind of fraud. For this experiment, together with the
responsible entities, we gave precedence to measures related to roaming fraud.
Since the provided sample had mainly this type of users and roaming fraud is
the most costly fraud for the operator, this decision seemed quite correct.
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4.3 System’s Architecture and Prototype Integration

The FMSs architecture where the prototype was integrated is organized in three
tiers: data, logic and presentation. The data tier is responsible for managing all
the structures of basic data and setting up the connections to the database, thus,
it provides persistence services. It isolates from the remaining tiers any direct
access to data resources of the system. The logic (or business) tier is responsi-
ble for running the main processing algorithm, manage the entire program and
manipulate the data tier. Inside this tier there should also be advanced data
structures (data structures that not only use the basic data structures of the
data layer, but also handle them and make important operations of the main
algorithm). It represents the core of the application in terms of processing. The
presentation tier includes the various Graphical User Interfaces (GUI). This tier,
as well as the data tier, do not run any important part of the algorithm, they pass
the control to the business tier. It is also responsible for providing interaction
between users and the application. Figure 1 presents the 3-tier architecture of
the FMS with the introduction of the detection component based on signatures:

Fig. 1. Systems Architecture with the Signatures Component

4.4 Summaries Processing

Daily, new summaries are created through the aggregation of CDR. Initially,
the system calculates the summaries related to the previous day. If any account
has suspicious cases unsolved, its summaries are saved in a temporary table for
future processing if necessary. The summaries of clients who do not have suspi-
cious cases to solve are compared with their signatures. When the signature of a
client does not exist in the database its summary is immediately compared with
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the existing fraud models. If no fraud model matches the summary, it is com-
pared with the existing equivalence classes of legitimate signatures, after that, a
new signature is created with the same values of the equivalence class. To create
new signatures it is also necessary to maintain the equivalence classes updated
according to the existing signatures. For cases where a similar fraud model is
detected, they are saved in the suspicious case table and an alarm is triggered.
If the signature exists, the distance between it and the recent summary is cal-
culated. The defined value of threshold can be exceeded, in this case an alarm
is triggered and a new record is saved in the suspicious case table. When the
distance value does not exceed the threshold, summaries are compared with the
existing fraud models and can still be added to the suspicious case table. If there
is no match with any fraud model, signatures are finally updated considering the
summaries values. In order to understand how all this information is processed
and forwarded over time, figure 2 shows the most important events triggered on
such process.

Fig. 2. The most important events that occur with signatures

Depending on the event, information may reach different states. Cases where
an alarm is not triggered, information is updated or created according to the
different inputs. Otherwise, the client is added to the list of suspicious cases
and must be investigated by fraud analysts. When the situation is solved, if it
is a false alarm, temporary records are processed and the customer achieves an
active state again. In case of fraud the account is suspended, if records of that
customer appear they are not processed.
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4.5 Experiments and Results

For the examples of fraud used in this experiment the mobile operator provided
us some samples of real transactions. Usage data were from a sample of 37 days,
consisting of 507 accounts and totaling 7057489 records, 4285758 of which were
SMS and 1107708 were voice. We chose users who made many international
calls or with a high percentage of national calls or SMS. Data contains a total
of five fraudulent accounts that the FMS, without the signatures component,
successfully detected. These cases occurred inside the time window where the
daily processing was tested, and were confirmed by analysts as being cases of
fraud. The date when the alarms were triggered and the type of fraud associated
was also provided. The remaining 502 users, it is not known whether these cases
are fraud or not, however, a reduced number of triggered alarms was expected
to appear. Through the non-fraudulent data, parameters describing normal be-
havior were estimated. Signatures were initialized with data of the first 27 days.
After having customers normal behavior on the database, legitimate signatures
were created using the EM algorithm through unsupervised learning. The same
process was used to create fraud models, however, in this case, the data sample
was associated to a larger set of users classified as fraud during a time window
of 40 days. Processing was done with the sample data of the last 10 days. We
tested different thresholds for the distance functions. After studying many cases
individually, in order to understand the relevance of the alarms, we ended up
with the threshold value of 10.5 for the distance between daily summaries and
signatures, and the value 4 for the distance between summaries and models of
fraudulent signatures. To begin the analysis, we will first present two charts.
The first one (figure 3) demonstrates the amount of alarms that were triggered
during the processing time window and the second one (figure 4) illustrates the
percentage of occurrences that each attribute obtained. This type of informa-
tion can be very useful for analysts because it helps to understand customers
behavior. Thus, it is possible to adjust the thresholds and improve the detection
process.

By studying each alarm more closely, we found 3 suspicious cases of summaries
similar to fraud models and 28 cases related to the distance between summaries
and signatures. The implemented prototype, not only detected all the cases of
fraud provided by the mobile operator, but also triggered the alarms sooner. In
the ordered list with all the alarms obtained, four of five cases known to be fraud
appeared in the first eight positions and have a very high alarm value (> 99).
Another important fact is the compatibility that exists in the usage variation
of each account. Attributes with the highest value of distance correspond to the
types of fraud associated to the provided cases.

To check whether the remaining cases, which were not detected by the FMS,
are not false alarms, the behavior of some cases were studied in greater detail in
order to understand if the deviations justify such situation. Thus, it is possible to
resume the type of behavior that the prototype is detecting, see if the weights are
well tuned and check if the thresholds values are high or low. We conclude that
the obtained cases deserve, in fact, a deeper investigation by the analysts. From
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Fig. 3. Number of alarms triggered
during a processing time window

Fig. 4. Occurences of each measure
during a processing time window

the set of alarms that were not detected by the FMS, an example of a customer,
chosen at random, was analyzed. Figure 5 shows the normal behavior of the
chosen customer and the deviation detected from the alarm date (28-06-2010).

The vertical dashed line marks the beginning of the processing time window.
Before the detection date, the user presents SMS transactions in 9 days and
voice records every day. His activity during the weekends and working days is
very regular. He never made calls or sent SMS using roaming services. Without
considering the processing results, we could conclude that the costumer usage
was mainly through voice calls. Considering the processing window, looking at
figure 5, we can easily verify that the customers behavior not only remained
different from his normal usage as deviated more comparing to alarm date (28-
06-2010). The average of SMS increased a lot and the number of voice calls
decreased considerably. This change may be related to ”Surfing” fraud.

Fig. 5. Percentage of occurrences of each measure during the processing time window
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5 Conclusions and Future Work

Although the technique of signatures is somewhat ”tied” in the research area,
we conclude that with some improvements and changes on the existing ideas,
particularly in the work done by [9] and [5], it is possible to achieve very satis-
factory results. As intended, suspicious cases that were not alarmed previously
by the FMS, without the signatures component, were successfully detected with
this new component. The alarms triggered by the prototype proved to be very
relevant for a future analysis by the analysts. We found that the behavior of some
users varies in a very unusual way and this was demonstrated by a detailed study
during the initialization period and the processing of signatures/summaries pe-
riod. For the cases provided by the mobile operator and classified as fraud, they
were all alarmed sooner than the previous system, alarm values and the at-
tributes with greatest impact confirmed the obtained results. The prototype got
100% of efficiency when detecting these cases. The impact that the component
achieved when integrated with the FMS has motivated us to continue our work
and improve it in the future. The use of profiling to compare normal behavior
with current usage is a great advantage. By choosing this kind of approach it
is possible to detect subscription fraud and new types of fraudulent behavior,
the method of supervised detection is reinforced decreasing the number of false
alarms. The remaining components of the FMS can also be used to help on the
construction of fraud models. Both complement each other creating an intelli-
gent hybrid system. During the analysis and validation of results, we found some
cases of clients with behavioral changes different than those that were expected.
Typically, fraud cases are related to a significant increase in the mean of one
or more attributes. Since the system was implemented to detect any type of
variation, it is also possible to detect cases of customers who suddenly decrease
the average of calls or SMS. These cases are not associated to fraud. Instead,
they are related to another phenomenon commonly referred as Churn. In simple
terms, Churn is the proportion of customers who subscribed to a service pro-
vided by an organization, and, at a particular moment, stopped using them to
enjoy, eventually, services of a competing organization [16]. As future work, it
might be useful to study this area and consider an evolution in the prototype in
order to enhance the detection capabilities.
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Abstract. Bioinformatics datasets are often used to compare classification algo-
rithms for highly dimensional data. Since genetic data are becoming more and 
more routinely used in medical settings, researchers and life scientists alike are 
interested in answering such questions as finding the gene signature of a dis-
ease, classifying data for diagnosis, or evaluating the severity of a disease. 
Since many different types of algorithms have been applied to this domain, of-
ten with comparable, although slightly different, results, it may be cumbersome 
to determine which one to use and how to make this determination. Therefore 
this paper proposes to study, on some of the most benchmarked datasets in bio-
informatics, the performance of K-nearest-neighbor and related case-based  
classification algorithms in order to make methodological recommendations for 
applying these algorithms to this domain. In conclusion, K-nearest-neighbor 
classifiers perform as or among the best in combination with feature selection 
methods. 

Keywords: bioinformatics, feature selection, classification, survival analysis. 

1   Introduction 

Bioinformatics has become a domain of application of choice for data mining and 
machine learning scientists due to the promises of translational medicine. Indeed 
genetic information about patients has often proved very valuable for the diagnosis, 
severity and risk assessment, treatment, and follow-up of many diseases (Cohen 
2004). As a matter of fact, the range of diseases better known through genetic data is 
growing every day. Beyond the typical oncology realm, emergency medicine and 
primary practice are next in line for benefitting from its advances. 

One of the classical tasks in bioinformatics is to analyze microarray. These data 
provide information about the genetic characteristics of patients in terms of which 
genes are expressed at a certain point in time, and repeated measures also allow to 
evaluate evolution of diseases as well as response to treatment. In terms of data min-
ing, the data are known to be highly dimensional, with a number of features ranging 
between thousands and several tens of thousands of features, and a number of samples 
being comparatively scarce, ranging from tens of samples to one hundred or a few 
hundreds of samples. This is due to both the cost of the studies and the small size of 
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the populations studied. Although the availability of data is increasing, publications 
about algorithmic methods often compare themselves on benchmarked datasets. 

Microarray data are often visualized through heat maps (see Fig.1) where rows 
represent individual genes and columns represent samples (Wilkinson and Friendly 
2009). A cell in the heat map represents the level of expression of a particular gene in 
a particular sample. The color green usually represents high expression level, while 
the color red represents low expression level. 

This article proposes to evaluate major methods related to similarity-based classifi-
cation on some of the most studied datasets in microarray classification and to answer 
several important methodological questions when applying in particular case-based 
classification to these types of data. The main questions addressed concern the rela-
tive performance of K nearest neighbor (KNN) and other case-based classification 
methods compared with some other machine learning algorithms (Jurisica and Glas-
gow 2004) presented as superior on certain datasests, the importance of feature  
selection methods to preprocess the data, and the choice of cross validation versus 
independent test and training sets in evaluation. The results obtained can serve the 
reader when conducting analyses of data involving microarray. 

 

Fig. 1. A heatmap of microarray data 

The results presented in this article confirm that combining feature selection me-
thods with KNN – and with other supervised classifiers – provides the best strategy 
for classifying highly dimensional data, and that gene signatures of 16-20 genes yield 
better accuracy than classifying on thousands of genes on the datasets studied –  
although the results on these were quite encouraging. 
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This article is organized as follows. The second section presents the methods used, 
namely the different algorithms compared, with a special emphasis on case-based 
classifiers and feature selection algorithms. The third section details the results, in-
cluding the datasets used, comparative performance results with and without feature 
selection, and evaluation set-up choices. A conclusion follows the discussion. 

2   Methods 

The main focus of this article is on instance-based classification, referred to here as 
case-based classification. Five of these case-based classification algorithms are pre-
sented in this section. Each can be in turn applied to samples pre-processed by a fea-
ture selection algorithm. This provides another set of five algorithms for each feature 
selection method. In turn, the feature selection methods chosen provide weights, in 
the form of probabilities, which can be included in the distance measure. This yields 
another set of five algorithms. Additionally, alternate classifiers have been used for 
comparison purposes with the case-based classifiers (see Fig. 2). This is to demon-
strate the usefulness of the experiments conducted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Process-flow diagram illustrating the use of feature selection and supervised machine 
learning on gene expression data 

2.1   Classification Algorithms 

The algorithms chosen are the KNN algorithm and its weighted variations and the 
class-based algorithm and its variations. 

Gene Expression Level Dataset 

Application of Feature Selection 
Algorithm (for filtering down to a 
subset of relevant predictor genes) 

Continuous Sample Output: 
Supervised Machine Learning 
and Model Construction 
through Regression (survival 
analysis is in this category) 

Discrete Sample Output: 
Supervised Machine Learning 
and Model Construction 
through Classification 



 Methods in Case-Based Classification in Bioinformatics: Lessons Learned 303 

 

K Nearest Neighbor. The KNN algorithm, underlying case-based classification, 
bases its classification recommendations on similar examples or cases in memory. 
Based on a defined distance measure – or its corresponding similarity measure – the 
algorithm selects the K samples from the training set being closest, according to a 
distance measure, such as the Euclidian distance (1), to an example to classify and 
associates to this new sample a class based on the majority vote of the similar exam-
ples (2). When the classes are relabeled in an ordinal manner, another variant is to 
sum all the distances dist from these nearest neighbors and to calculate the class by 
rounding the sum of distances (3). Given a training set of n examples, TrainSet = {1 ≤ 
i ≤ n, (xi, ci)}, where xi is a vector of N features and ci its corresponding class, and a 
test set of m examples, TestSet = {1 ≤ j ≤ m, yj}, a new example yj is attributed a class 
cj through equations (2) and (3). 

 

Weighted K Nearest Neighbor. The weighted K nearest neighbor or weighted KNN 
introduces a notion of weight for neighbors in the predicted class calculation. Feature 
weighting can also be introduced, however this is a very different concept. 

For feature weighting, weights can be either imported from another algorithm, such 
as posterior probabilities from a Bayesian algorithm such as the one presented in the 
next sub-section, or from an expert. The distance formula would be the same and 
describes the calculation of a weighted sum in which wk represents the weight asso-
ciated with the kth feature (4). The mechanisms for calculating the classes on the test 
set would continue to be schemes (2) or (3). 

                                      
(4)

 

For neighbor weighting, the algorithm, known as weight adjusted KNN, learns 
weights for each neighbor to advantage closest neighbors and penalize farthest neigh-
bors. For example, one possible formula, used in this article, is provided in equation 
(5) for the weight wj associated to the jth nearest neighbor in the calculation of the 
average in equation (3). This version of the nearest neighbor is close to a kernel based 
classification, since the weight function is equivalent to a kernel, except that not all 
training examples are used in the calculation of the class but only the nearest neigh-
bors – which amounts to setting the kernel function to zero outside of the nearest 
neighbors.  

                                                 (5) 

Class-based. The class-based algorithm is a variation of the KNN. The distance 
measure provided in equation (1) affords the measure of the distance between each 
training example and each test example. The class for a given test example is pre-
dicted by averaging all distances within each class then determining which of these 
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averages is the largest. The test sample is classified in the class z, of cardinality nz in 
the training set, among C classes, with the largest average.  

                                 (6) 

Weighted Class-based. As for the weighted nearest neighbor, the weighted class-
based algorithm resorts to a weighted distance measure (4) or associates weights to 
the neighbors (5). The class for a test example is provided by equation (6). 

Other classifiers. For comparison purposes, several other machine learning  
algorithms were used such as support vector machines (SVM), naïve Bayes (NB), 
decision trees (DT), and neural networks (NN), in addition to the classical logistic 
regression (LR). 

2.2   Feature Selection Algorithms 

The feature selection algorithms (Liu and Motoda 2008) selected, per their results, are 
the between-group to within-group sum of squares (BSS/WSS) algorithm and the 
Bayesian model averaging (BMA) algorithm. 

BSS/WSS. This feature weighting method, developed by Dudoit et al. (2002), ranks 
features according to a ratio such that features with large variation between classes 
and small variations within classes are given higher ratings. This univariate feature 
selection algorithm determines features having higher discriminating power between 
classes. For feature k, , denotes the value of feature k for training example i, ,  the 
average value of feature k over the examples of class z, and  the average value of 
feature k over all the examples. The BSS/WSS ratio of gene k is provided by equation 
(7) where ,  is equal to 1 if example i belongs to class z, and 0 otherwise. 

                                            (7) 
Accordingly, features can be ranked by decreasing order of BSS/WSS ratio. 

BMA. BMA affords an interesting method to further select a small number of genes 
for classification. It attempts to solve this problem by building a subset of all possible 
Bayesian models and providing the parameters for making statistical inferences using 
the weighted average of these models’ posterior distributions. Regression is then a 
method of choice to leverage the information returned by BMA. 

The core of the BMA algorithm is depicted in Equation (8) below (Hosmer et al. 
2008). Let  denote the quantity of interest, and let S = {M1, M2, …, Mn} 
represent the subset of models selected for inclusion in the analysis. Then the post-
erior probability of  given the training data TrainSet (TD) is the weighted aver-
age of the posterior probability of  given TrainSet and model Mi, multiplied by 
the posterior probability of model Mi given TrainSet. Summing over all the models 
in set S, we get: 

                                 
 (8)

 

Ψ

Ψ
Ψ
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There are three issues to consider before Equation (8) can be applied: obtaining the 
subset S of models to be included, estimating the value of prob(  | TD, Mi), and 
estimating the value of prob(Mi | TD) – which will be addressed in this section. 

One challenge with BMA is the sheer number of models that could potentially be 
explored by the algorithm, especially when dealing with microarray data. If there are 
G candidate explanatory genes in the expression set, then there are 2G possible models 
to consider. When working with tens of thousands of genes, such an undertaking is 
computationally intractable. Raftery (1995) proposed to use the regression by leaps 
and bounds algorithm from Furnival and Wilson (1974). This algorithm takes a user-
specified input “nbest” and efficiently returns the top nbest models of each size (max-
imum 30 variables). Following application of the leaps and bounds algorithm, the 
Occam’s window method of Madigan and Raftery (1994) can be used to reduce the 
set of models. After identifying the strongest model returned by the leaps and bounds 
algorithm, the procedure can eliminate any model whose posterior probability is be-
low the cutoff point in relation to the best model. The cutoff point can be varied, but 
the default is 20; that is, a model must be at least 1/20 as likely as the strongest model 
in order to be retained. Once this step is complete, the remaining group of models 
constitutes the set S to be used in Equation (8). 

Prob(  | TD, Mi) is calculated by approximation using the maximum likelihood 
estimate (MLE), which has been deemed sufficient for the purpose of averaging over 
contending models (Volinsky at al. 1997): 

Finally, a calculation of the posterior probability of model Mi given the training da-
ta TrainSet involves an integral whose solution is impossible to evaluate exactly. 
However the Bayesian Information Criterion (BIC) can be used to approximate this 
integral using the Laplace method (Raftery 1996) (see (Raftery 1996) for discussion). 

While this section has focused on the posterior probabilities of the models included 
in the BMA analysis, it is most beneficial for feature selection to obtain the posterior 
probabilities for each of the individual features (genes) involved. This information is 
helpful in facilitating biological discussion as it reveals which of the genes are rele-
vant predictors. Let the expression (bi ≠ 0) indicate that the regression parameter for 
gene ki exists in the vector of regression parameters for at least one model M. In other 
words, at least one model in the subset S includes gene ki. Then the posterior probabil-
ity that gene ki is a relevant predictor can be written as:  

                           (9) 

In Equation (9), Ms refers to the set of all models within the subset S that include 
gene ki. The posterior probability of gene ki is a summation of the posterior probabili-
ties of all models in Ms. This computation ensures that all statistically relevant predic-
tor genes will be a part of at least one model in the subset.  

Yeung et al. (2005) extended BMA to handle any number of genes in an iterative 
algorithm and Annest et al. (2009) to survival analysis. 

BMA algorithm returns, for the training set, the following important information: 

• The number of features retained, their names (namesx), and the posterior prob-
ability that they are not zero (probne0) - see equation (9). 

• The number of models retained (length(postprob)). 

Ψ

Ψ
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• The posterior probability of each model selected (postprob). 

• For each model selected, the maximum likelihood estimate of each coefficient 
(mle), which can be used as one regression coefficient. 

2.3   Evaluation Methods 

The evaluation methods are the independent training and test sets and the cross vali-
dation methods.  

One question studied will be whether cross validation is predictive of behavior on 
an independent test set. 

Independent Training and Test Sets. This method is favored in bioinformatics 
where benchmarked datasets are often provided in the form of independent training 
and test sets. 

Cross Validation. Cross validation can be used when independent training and test 
sets are not available. It consists in dividing a single dataset in a certain number K of 
folds, often 10. Each fold is a random partition of the dataset and the algorithm is run 
K times, each time consisting in choosing one subset as the test set, and the other K-1 
subsets as the training set. The results of the algorithm are obtained by averaging or 
combining the results from each fold. K-fold cross-validation can be stratified, which 
means that each class is equally represented in each fold. Another variant is the leave-
one-out cross-validation (LOOCV), in which the test set is reduced to a single exam-
ple during each fold, and is equivalent to a K-fold cross-validation where K is equal 
to the size of the dataset. 

3   Results 

The results presented in this section need to be taken in the context of the datasets, 
hardware, and software chosen. The algorithms evaluated are recalled before present-
ing the performance results of these algorithms on the datasets selected. A summary 
of results closes this section. 

3.1   Datasets 

For comparison purposes, three datasets among the most benchmarked have been 
selected: the Leukemia dataset with 2 classes, the Leukemia dataset with 3 classes, 
and the Hereditary Breast Cancer dataset with 3 classes. 

Table 1. Summary of Datasets 

Dataset Total Number 
of Samples 

# Training 
Samples 

# Test 
Samples 

Number 
of Genes 

Leukemia 
2 classes 

72 38 34 3051

Leukemia 
3 classes 

72 38 34 3051

Breast 
cancer 

22 22 0 3226
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The Leukemia dataset originally consisted of 7129 genes, 38 samples in the train-
ing set, and 34 in the test set, and exists in two formats – 2 classes or 3 classes. Golub 
et al. describe the process they applied to filter out the genes not exhibiting significant 
variation across the training samples, leaving a dataset with 3051 genes (Golub et al. 
1999) (see Table 1). The samples belong to either Acute lymphoblastic leukemia 
(ALL), or Acute myeloid leukemia (AML). In the 3 classes dataset, the ALL class 
was further divided into two subtypes of ALL: B-cell and T-cell (see Tables 2 and 3). 

Table 2. Classes of Leukemia dataset with 2 classes 

Class  Training Set Test set  
ALL 0 27 20  
AML 1 11

------- 
14

-------  
Total  38 34  

 

The Hereditary Breast Cancer dataset consisted of 3226 genes and 22 samples. 
There is no test set (see Table 1). The sample comprises 15 samples of hereditary 
breast cancer, 7 with the BRCA1 mutation and 8 with the BRCA2 mutation, and 7 
samples of primary breast cancer (see Table 4).  

Table 3. Classes of Leukemia dataset with 3 classes 

Class  Training Set Test set  
AML 0 11 14  
ALL-B cell 1 19 19  
ALL-T cell 2 8

------- 
1

-------  
Total  38 34  

Table 4. Classes of Hereditary Breast Cancer dataset with 3 classes 

Class  Training Set Test set  
BRCA1 0 7 0  
BRCA2 1 8 0  
Primary 2 7

------- 
0

-------  
Total  22 0  

3.2   Software and Hardware 

The experiments were conducted on an Intel Pentium P8600 Core™ 2 Duo CPU at 
2.40 GHz with 2GB of RAM. 

Software used under Windows 7 professional has been R version 2.12.0 and Weka 
version 3.6.3 (Witten 2005). The case-based algorithms were developed under R 
while the other algorithms were available either in R or in Weka. 
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3.3   Algorithms 

The different algorithms evaluated and their combinations are summarized in Table 5. 
The first five are the case-based methods and the last five are the non case-based. 

For each of these, tests were performed on the complete set of features, and on a 
subset of features. In each case, weights learned from the feature selection algorithms 
were also injected in the algorithms that allowed for it – namely the five case-based 
methods – the logistic regression also makes use of the weights in the form of its 
regression coefficients. In addition, tests were performed either on independent train-
ing and test sets, or with cross validation – whenever applicable. 

Table 5. Algorithms evaluated 

Abbreviation Description 

KNNV KNN algorithm with voting
KNNA KNN algorithm with averaging
KNNWA 
CNNA 
CNNWA 
DT 
LR 
NB 
NN 
SVM 

KNN algorithm with averaging and weight adjusted 
Class based algorithm with averaging 
Class based algorithm with averaging and weight adjusted 
Decision tree 
Logistic regression 
Naïve Bayes 
Neural network 
Support vector machine

3.4   Performance on All Features 

The evaluation methods are the independent training and test sets and the cross vali-
dation methods. Performance is measured with accuracy, which is the percentage of 
correctly classified instances. 

On independent training and test sets, the hereditary breast cancer could not be 
evaluated since this dataset only has one training set. 

Table 6. Summary of performance on all 3051 features with independent training and test sets 

Algorithm #errors 
Leukemia2 

(/34) 

Average accuracy 

KNNV 
KNNA 
KNNWA 
CNNA 
CNNWA 
DT 
LR 
NB 
NN 
SVM 

2 
2 
2 
3 
3 
3 
1 
1 
- 
2 

94% 
94% 
94% 
91% 
91% 
91% 
97% 
97% 

- 
94%
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Table 7. Summary of performance on all 3226 features with LOOCV cross validation 

Algorithm # errors 
Breast cancer 

(/22) 

Average accuracy 

KNNV 
KNNA 
KNNWA 
CNNA 
CNNWA 
DT 
LR 
NB 
NN 
SVM 

5 
5 
5 
9 
8 

17 
- 

11 
- 
6 

77%
77% 
77% 
59% 
64% 
23% 

- 
50% 

- 
73% 

 
Table 6 presents the performance of the ten algorithms from Table 5. Logistic regres-

sion and Naïve Bayes perform better on this dataset with 3051 features (97% classifica-
tion accuracy). Neural networks algorithm does not provide an answer in the context of 
these experiments, due to time limitations, which is denoted by the character ‘-‘. 

Table 8. Summary of performance on 16-20 selected features with independent training and 
test sets 

Algorithm #errors 
Leukemia2 

(/34) 

# errors 
Leukemia3 

(/34) 

Average accuracy 

BMA+KNNV 
BMA+KNNA 
BMA+KNNWA 
BMA+CNNA 
BMA+CNNWA 
BMA+DT 
BMA+LR 
BMA+NB 
BMA+NN 
BMA+SVM 
BSS/WSS+KNNV 
BSS/WSS +KNNA 
BSS/WSS +KNNWA 
BSS/WSS +CNNA 
BSS/WSS +CNNWA 
BSS/WSS +DT 
BSS/WSS +LR 
BSS/WSS +NB 
BSS/WSS +NN 
BSS/WSS +SVM 

2 
2 
1 
3 
2 
3 
1 
4 
1 
1 
1 
1 
1 
1 
1 
3 
2 
3 
2 
0

2 
3 
1 
3 
3 
5 
4 
3 
2 
2 
1 
1 
1 
1 
1 
3 
4 
5 
1 
1

94% 
93% 
97% 
91% 
93% 
88% 
93% 
89% 
96% 
96% 
97% 
97% 
97% 
97% 
97% 
91% 
91% 
88% 
96% 
99% 

 
Table 7 presents the results on hereditary breast cancer on all 3226 features and 

with LOOCV. The best results obtained were 77% with the KNN algorithms. KNNV, 
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KNNA, and KNNWA showed the same performance. Two algorithms - neural net-
works and logistic regression – did not provide results in the context of these experi-
ments again due to time limitations. 

3.5   Performance on Selected Features 

Feature selection algorithms, either BMA or BSS/WSS, were used to select features 
before running the same ten algorithms on the reduced dataset with, in this case, 20 
features. The 20 features for Leukemia 2 and 16 features for Leukemia 3 were se-
lected by BMA with nbest=20 and p=1000 (Yeung et al. 2005). For hereditary breast 
cancer, 18 genes were selected with nbest=50 and p=3226.  

Yeung et al. report best results of 2 classification errors on the Leukemia 2 dataset 
and 1 error on the Leukemia 3 dataset with BMA averaging and regression on all the 
models selected. The combination BMA+KNNWA reached the best accuracy with 
97% average and only 1 error for Leukemia 2 and 1 error for Leukemia 3 (Table 8). 

With BSS/WSS, which ranks all the features, we selected the top 16-20 genes, de-
pending on the algorithm. All the BSS/WSS and case-based classification algorithms 
provide the best results with 97% classification accuracy and 1 error on either Leu-
kemia 2 or Leukemia 3. SVM provides 0 classification errors on Leukemia 2, which 
is surprising given that literature has reported that one of the examples is mis-labeled 
(Table 8). 

Overall, the combination of a feature selection algorithm and KNNWA consistent-
ly provides best results. 

Table 9 reports cross validation results on the three datasets with genes selected 
with BSS/WSS. While the literature reports 6 classification errors on the hereditary 
breast cancer (Yeung et al. 2005), several algorithms produce no error. On average, 
the best performing algorithms were CNNWA, NN, and SVM. 

Table 9. Summary of performance on 16-20 selected features with LOOCV cross validation 

Algorithm #errors 
Leukemia2 

(/38) 

# errors 
Leukemia3 

(/49) 

# errors 
Breast cancer 

(/22) 

Average accuracy 

KNNV 
KNNA 
KNNWA 
CNNA 
CNNWA 
DT 
LR 
NB 
NN 
SVM 

0 
0 
0 
3 
0 
2 
0 
2 
0 
0 

0 
0 
0 
0 
0 
2 
1 
1 
0 
0

1 
2 
2 
0 
0 

14 
1 
0 
0 
0

  99% 
  98% 
  98% 
  97% 
100% 
 83% 
  98% 
  97% 
100% 
100% 

 
It is notable that Table 9 results are much improved in comparison with Table 7, 

however Table 8 shows little improvement over Table 6 for some algorithms, but a lot 
of improvement for most algorithms. 
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These results demonstrate the usefulness of feature selection, whatever the method 
chosen. 

Table 10. Summary of performance on 16-20 selected features with feature weighting and with 
independent training and test sets 

Algorithm #errors 
Leukemia2 

(/34) 

# errors 
Leukemia3 

(/34) 

Average accuracy 

KNNV 
KNNA 
KNNWA 
CNNA 
CNNWA 

1
1 
1 
3 
3 

3
3 
3 
3 
3 

94% 
94% 
94% 
91% 
91% 

 
Feature weighting on Table 10 does not provide improvement. 

3.6   Summary of Results and Discussion 

In conclusion these experiments show the usefulness of feature selection to both im-
prove the efficiency and effectiveness of classification on highly dimensional data. 
However, some algorithms like logistic regression and Naïve Bayes performed quite 
well on thousands of features.  

Whatever the feature selection method selected, classifying on 16, 18, or 20 fea-
tures yielded improved results in most cases. Best performers were the case-based 
classifiers and particularly weighted KNN.  

With feature selection and LOOCV, perfect results were obtained for one version 
of KNN, neural networks, and support vector machines. Another result is that 
LOOCV was not able to consistently predict performance on independent training and 
test sets. For example, Table 9 lent to think that CNNWA, NN, and SVM would be 
best algorithms. However on independent training and test sets, the best algorithms 
were KNNA, KNNV, KNNWA, CNNA, CNNWA, and SVM. More experiments 
could be conducted though to compare cross validation beyond LOOCV, which is a 
particular case. 

Bioinformatics is particularly interested in finding gene signatures for diseases, 
therefore appreciates feature selection over other methods (Jurisica and Glasgow 
2004). For selecting features, although the performance of BSS/WSS is at least com-
parable with that of BMA, one of its advantage is that it automatically determines the 
optimal number of genes selected, thus providing a gene signature. By contrast, 
BSS/WSS only ranks genes according to their discriminating power. However, by 
considering many models, BMA entails an additional cost in terms of efficiency. 

The experimental setting of this article is based on comparing average classifica-
tion accuracy – or error rate - on datasets benchmarked in recent publications in 
prominent bioinformatics journals. This experimental choice respects the experimen-
tal settings chosen by the authors of these publications (Golub 1999, Yeung et al. 
2005, Annest et al. 2009). However we would like to apply different experimental 
settings such as the ones presented by Demsar (2006) and in bioinformatics by Trunt-
zer et al. (2007).  
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In addition, we plan to expand our tests to the set of microarray datasests ben-
chmarked at the RSCTC 2010 Discovery Challenge (Wojnarski et al. 2010). We also 
plan to broaden the performance measures utilized in particular for cost-sensitivity 
since in biomedical domains, the cost of a false-negative is higher than the cost of a 
false-positive. Another interesting measure of performance could be the Relative 
Operating Characteristic (ROC) analysis. 

3.7   Related Works 

To summarize, the combination of feature selection and case-based classification 
performed at the same level or better than the published literature using BMA in 
combination with regression as described by Yeung et al. (2005). These authors com-
pared advantageously their results with those of the literature, therefore case-based 
classification performs at least as well as current literature on these datasets. For Leu-
kemia 2 dataset , best results were 2 classification errors, and we produced only 1, 
with the same number of genes. For Leukemia 3 dataset, best results were 1 classifi-
cation error, and we produced 1 as well. For Hereditary Brest Cancer dataset, best 
results were 6 errors and we produced no error.  

However, the clear advantage of BMA is to automatically determine the number of 
genes selected, while with BSS/WSS we set the number of genes manually. As a 
matter of fact, BMA relies on BSS/WSS rankings as a preprocessing step, before 
generating a large number of models in order to determine the best one. 

4   Conclusion 

In conclusion, case-based classifiers combined with feature selection performed either 
as the best or among the best classifiers in comparison with the literature on bioin-
formatics benchmarked datasets. These results are encouraging for the future integra-
tion of genetic data and medical data in case-based decision support systems. 
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Abstract. In this paper, an inferential sensor for the final viscosity of
an industrial batch polymerization reaction is developed using multivari-
ate statistical methods. This inferential sensor tackles one of the main
problems of chemical batch processes: the lack of reliable online quality
estimates.

In a data preprocessing step, all batches are brought to equal lengths
and significant batch events are aligned via dynamic time warping. Next,
the optimal input measurements and optimal model order of the infer-
ential multiway partial least squares (MPLS) model are selected. Finally,
a full batch model is trained and successfully validated. Additionally,
intermediate models capable of predicting the final product quality af-
ter only 50% or 75% batch progress are developed. All models provide
accurate estimates of the final polymer viscosity.

Keywords: Industrial batch process, quality prediction, Partial Least
Squares.

1 Introduction

In chemical industry, batch processes are widely used for flexible production of
high-value products (e.g., specialty polymers, pharmaceuticals, and biochemi-
cals). Batch processes are characterized by a fixed recipe, which prescribes a set
of processing operations over time. The recipe is followed as closely as possible
to ensure a satisfactory product quality. Monitoring batch processes is difficult
due to the lack of available online product quality measurements. In most cases,
quality measurements are only available after batch completion, often hours late.
This makes quality control very difficult: only minor –if any– corrective actions
can be taken after batch completion. In the worst case, the just-produced (off-
spec) batch must be wasted and the batch run again.

Hence, there is definitely a need for inferential sensors, capable of predicting
the final product quality during the batch run, enabling a close monitoring of

P. Perner (Ed.): ICDM 2011, LNAI 6870, pp. 314–328, 2011.
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the production process, through which off-spec batches can be detected in an
early stage. This early prediction allows corrective actions to be performed dur-
ing the batch if the expected final product quality is not within specifications.
Consequently, less off-spec batches are produced, saving valuable production
time, lowering operational costs and reducing waste material. Multivariate sta-
tistical methods, originally designed for monitoring continuous processes, have
successfully been extended to batch processes [5,6,14,15,16,17,18,20], but actual
industrial validation is rare.

In this work, an inferential sensor for predicting the batch-end
quality of an industrial polymerization reaction is constructed and
validated using such multivariate methods. The industrial installation is
described in Section 2. Section 3 details the data pre-processing using a hybrid
derivative dynamic time warping scheme, and Section 4 discusses the identi-
fication of a partial least squares model on the industrial data. To allow on-
line estimations of the final product quality, intermediate models are trained in
Section 5. The inferential sensors are validated in Section 6. Final conclusions
are drawn in Section 7.

2 Industrial Installation

The industrial batch reactor studied in this work is depicted in Figure 1, and
a schematic overview of the different events during the production process is
given in Figure 2. For reasons of confidentiality, specific process details are not
disclosed, and all results will be made dimensionless.

Before the batch run, the raw materials are stored and mixed in the premix
vessel P . Approximately half of these raw materials are then fed to the batch
reactor R in the first loading phase. Next, hot water is circulated through the
spiral S, heating the reactor content. When the reactor reaches a specific tem-
perature, the initiator activates and the polymerization reaction starts. Shortly
after the start of the reaction, the remaining premixer content is added to the
reactor in the second loading phase. During the course of the batch, gasses rising

Fig. 1. Schematic view of the industrial batch reactor, consisting of a premixer P ,
reactor R, condenser C, cooling or heating spiral S and gas vent V
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up from the reacting mixture are condensed in the top cooler C, and recirculated
to the reactor. Uncondensed gasses escape through the vent V , but this process
stream is negligible. To keep the reaction rate at an acceptable level, new initia-
tor is added by the operator after approximately 25%, 50% and 75% of the total
production time tf . Finally, the batch is terminated and cooled down, and the
reactor is emptied.

Measurements are started as soon as the premixer is loaded. Sometimes the
premixer is prepared as soon as it becomes available, and sits idle for several
hours, while another chemical reaction is still running in the reactor. Other times
the premixer is prepared just prior to the start of the first loading phase. Hence,
the time between the loading of the premixer and the first loading of the reactor
(i.e., the actual start of the process) varies greatly from batch to batch. After
the batch is terminated, logging is stopped manually by the operator during the
cooldown of the reactor, before the polymer is removed from the reactor.

As a result, the amount of available data varies greatly from batch to batch.
This variation is mainly caused by the difference in (i) the duration between
the loading of the premixer and the start of the first loading phase, (ii) the
duration of the heating phase, and (iii) the amount of time the measurements
continue after the start of the cooldown phase. If these phases are not taken
into account, all batches have comparable durations. Therefore, the data set is
constructed using the detection of the polymerization reaction as the first point.
The final point of the data set is the moment at which the cooldown starts.
During this period, 30 sensors record various temperatures, pressures, flow rates,
and weights; approximately 2000 samples are available for every sensor.

The retained part of the batch operation can be divided in six stages based
on the batch recipe. The first stage runs from the detection of the polymeriza-
tion until the start of the second loading step. The second stage coincides with
this second feeding step, after which the third stage starts. The initiator shots
are the transitions to the fourth, fifth and sixth stage. From the measurement
data, however, not all stages can be identified. At the end of the second feeding
step, a temperature drop is sometimes, but not always, observed in the vapor
temperature. Both events mark the end of the feeding step but do not always
coincide. This makes the unambiguous determination of the end of this stage
impossible. Therefore, the stage transition is not taken into account. Further-
more, the first initiator shot (occurring at tf/4) is not observed in all batches

Fig. 2. Schematic overview of the batch recipe and the four identified phases
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and is likewise discarded. The final result is that the following four phases are
retained: (i) from the detection of the polymerization reaction until the start of
the second feeding phase, (ii) from the start of the second feeding phase until
the second initiator shot, 4 hours after the reaction detection, (iii) between the
second and third initiator shots, and (iv) from the third initiator shot until the
start of the reactor cooling. The first phase lasts only a few minutes, while the
second batch phase lasts approximately tf/2. Each of the following two batch
phases take about tf/4 to complete. A schematic overview of the batch recipe
events and the final four identified batch phases is given in Figure 2.

Data of 72 batches is available for training. For each batch, the polymer’s vis-
cosity is measured offline via lab analysis. The viscosity is upper and lower bound
by specification. Of the 72 training batches, two exhibit a too high viscosity. The
validation set consists of 10 additional batches.

3 Data Preprocessing

Before a mathematical model can be identified on the measurement data, all
batches or profiles are required to be of identical length. Furthermore, similar
events should occur at the same moment in all batches in order to improve model
performance. First, the data alignment technique is explained in Section 3.1, after
which the alignment results are discussed in Section 3.2.

3.1 Data Alignment Procedure

Dynamic time warping (DTW) has been adopted with success in various fields of
research to align measurement profiles of different lengths [1,3,6,11,12,21]. The
variant derivative DTW (DDTW) has been demonstrated to yield fewer warping
singularities [12].

In (D)DTW, the difference between two profiles (i.e., a test and a reference
profile) is minimized by dynamically stretching and/or compressing the time of
the test profile. This nonlinear transformation is obtained by first constructing
the distance matrix D between the test profile (x1 x2 . . . xM ) and reference
profile (y1 y2 . . . yN ). The original DTW algorithm uses the Euclidean distance
measure, while DDTW uses the difference between the derivatives of both profiles
as distance measure [12].

D (m, n) =
(

dx
dt

∣∣∣∣
m

− dy
dt

∣∣∣∣
n

)2

(1)

Next, the warping path P is defined as the continuous path of P different (m, n)-
pairs from D(1, 1) to D(M, N) which minimizes the total distance between both
profiles. The warping path is often subject to local slope constraints, a Sakoe-
Chiba adjustment window [23], or an Itakura parallelogram [10].

P = arg min
P

{
P∑

p=1

D (mp, np)

}
(2)
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Fig. 3. (a) Original profiles of the reference temperature measurement. Significant
batch events clearly occur at different times, and all batches have different lengths. (b)
Aligned reference temperature measurement profiles. All temperature jumps clearly oc-
cur at the same moment, and all batches have an equal length. The axes are unlabelled
for confidentiality reasons.

Taking the numerical derivative of noisy data is inherently unstable. To solve
this issue, a hybrid DDTW (HDDTW) scheme is proposed: a piece-wise linear
approximation of the measurement profile is used to compute its derivative.
Because the derivative now has piecewise constant shape, the distance matrix D
contains rectangular zones where the distance between test and reference profile
remains constant. When the warping path passes through such a zone, it follows
a diagonal path, resulting in a local linear resampling of the test profile.

The main features of a profile are characterized by rapid changes in derivative,
while featureless zones are characterized by an approximately constant deriva-
tive. The discretization intervals of the piecewise approximation are very short in
feature-rich zones, and the very high warping resolution of traditional (D)DTW
is obtained. In featureless zones (e.g., a long period with a constant level or a
gradual increase), the discretization intervals are much longer. The net result is
a lower warping resolution in these zones and a much simpler (linear) warping.
This makes the procedure more robust with respect to measurement noise.

3.2 Data Alignment Results

Before HDDTW is applied, a reference variable and reference trajectory are
selected for each phase. All events are clearly observable in the vapor temperature
at the entrance of the top cooler. Hence, this variable is selected as the reference
variable. A representative batch is taken as the reference profile.

Next, each batch phase is aligned using the hybrid DDTW algorithm described
in Section 3.1. The warping paths for each of the four batch phases are combined
into a single global warping path, which is used to align all measurement profiles
for each batch. The parameters for the Sakoe-Chiba, Itakura and local slope
constraints for the DTW algorithm are determined using process knowledge.
It is observed that the size of the Sakoe-Chiba adjustment window can be set
significantly smaller than the commonly used value of 10% of the profile length.
This observation corroborates the results reported in [22].
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Figure 3(a) displays the vapor temperature for all batches. As can be seen, the
major events (temperature drops) occur at different times. Figure 3(b) depicts
the aligned vapor temperatures at the top cooler entrance for all batches. Clearly,
all batches now have identical lengths, and all major events coincide.

Finally, the data alignment procedure described in Section 3.1 is assessed.
The warping path for the third phase of one batch is depicted in Figure 4;
similar warping paths are obtained for the other batches and batch phases. In the
beginning of the phase, where the temperature measurement profile exhibits a
clear drop (see Figure 3(b)), the warping path indicates a more complex warping.
This is required to match the new temperature profile as closely as possible to
the reference. A simple linear resampling is obtained in the relatively featureless
zone near the end of the phase, as evidenced by the linear relation between
warped and original time.

4 Model Identification

The structure of the mathematical model used for the inferential sensor is dis-
cussed in Section 4.1. The selection of the optimal inputs and optimal model
order for this mathematical sensor is detailed in Sections 4.2 and 4.3. Finally,
the inferential sensor is trained in Section 4.4.

4.1 Partial Least Squares Modelling

A multiway partial least squares (MPLS) model is used to infer the relation-
ship between the online process measurements and the quality measurements
[13,18,20,24]. MPLS is an extension of basic PLS [8]. It is able to handle the
three-dimensional data matrices (tensors) characteristic for batch processes. As
shown in Figure 5, the data tensor X, consisting of I batches with J sensors per
batch and K samples per sensor, is unfolded to a I ×JK data matrix X [18,19].

Before the model is trained, both X and Y are mean centered and normalized
to unit variance. This centering around the nominal trajectories removes the
major nonlinear behavior of the process from the data [18,19].

PLS is a latent variable modelling approach, which decomposes the matrices
X and Y into R latent variables that each describe an aspect of the batch
operation relevant to the final product quality.{

X = TPT + EX

Y = TQT + EY
. (3)

The I × R scores matrix T is the low-dimensional approximation of the input
space X. The JK × R matrix P and L × R matrix Q are the loading matrices
in in- and output space, respectively. The matrices E represent the residuals.

The projection of the input space X onto the scores space T is obtained as

T = XW
(
PTW

)−1
. (4)
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Fig. 4. Warped time profile for the third phase of one batch. The solid lines (—)
indicate the Sakoe-Chiba and Itakura constraints; the transition between eventful and
featureless zones is marked by the dashed lines (- -). Other batches exhibit similar
profiles.

Fig. 5. The original I×J ×K data tensor X of I batch runs, J sensors and K samples
is unfolded into a I × JK data matrix X
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Fig. 6. Average crossvalidation error as a function of the number of inputs for the
optimal input set of (i) the temperature of the reactor, (ii) the temperature of the
vapor leaving the reactor, and (iii) the vapor temperature at the entry of the condenser
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The JK × R weight matrix W has orthonormal columns such that
(
PT W

)−1

is upper triangular, with ones as diagonal elements.
Via the covariance matrix of the measurement trajectories, MPLS utilizes not

only the deviation of each process variable from its mean trajectory, but also the
simultaneous and temporal correlation between the measurements [19].

4.2 Optimal Input Selection

To select the optimal inputs for the MPLS model, a forward branch-and-bound
technique is used. First, J MPLS models are trained, each using one possible
measurement variable as input and with a number of latent variables R between
1 and 10. Crossvalidation is used to find model with the best overall performance.
To reduce the computational requirements, 10-fold crossvalidation is used here.
Model performance is characterized by the root mean squared error (RMSE).

RMSE
	
=

√√√√1
I

I∑
i=1

(ŷi − yi)
2 (5)

The final product viscosity for batch i is yi, the model prediction is ŷi.
Next, the input variable of the best single-input model is combined with each

of the remaining input variable candidates. On each of these (J−1) input variable
pairs, a new MPLS model is trained and crossvalidated. Again, the inputs for
the model with the best performance is retained. This process is repeated until
all input variables are ranked from most to least important. Because the batches
are randomly distributed into training and validation subsets, the ranking of
the input variables and the optimal number of inputs varies between each run.
Therefore, the selection is performed multiple times, and the variables scoring
the best over all runs are selected as the optimal model inputs.

Two different sets of 3 input variables are retained via this procedure. Both
sets share the reactor temperature and the temperature of the vapor leaving the
reactor. The third input variable is either the vapor temperature at the entry of
the condenser or the flow rate of the cooling water in the condenser. In order to
discriminate between both sets, their crossvalidation performance is compared.
The former set has a crossvalidation RMSE of 0.533 ± 0.015, while the latter
has an RMSE equal to 0.605 ± 0.015. Based on these observations, the following
three input variables are retained: (i) the temperature of the reactor, (ii) the
temperature of the vapor leaving the reactor, and (iii) the vapor temperature
at the entry of the condenser. Figure 6 depicts the evolution of the validation
error for an increasing number of model inputs.

A physical interpretation can be provided for the selection of these input vari-
ables. The reaction rate is directly tied to the reactor temperature, and influences
the polymer’s viscosity. The difference between the two vapor temperatures is
an expression of the amount of heat removed from the batch reactor. The total
amount of heat removed from the reactor is, in steady state, equal to the amount
of heat produced by the polymerization reaction. Therefore, this is an indirect
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Fig. 7. Modelling error as a function of the number of latent variables (model order)

measurement of the reaction rate, assuming the heat removed from the reactor
through the cooling spiral remains constant.

4.3 Model Order Determination

To select the optimal number of latent variables R for the MPLS model, the
number of latent variables (i.e., the model order) is varied, and the influence on
the performance is observed. To ensure the best model accuracy, leave-one-out
(LOO) crossvalidation is used instead of 10-fold crossvalidation.

As depicted in Figure 7, the performance initially increases when the model
order increased. If the model order is increased further, the performance curve
passes through a shallow optimum, after which the performance degrades as
overfitting occurs. Based on this graph, it is clear that adding extra latent vari-
ables beyond the fourth has a negative impact on the model performance gain.
Hence, four latent variables are used for the inferential MPLS sensor.

4.4 Model Training

Before the model is identified, the performance of the model structure with three
input variables and four latent variables is investigated. Figure 8 depicts the LOO
crossvalidation predictions for the training batches (RMSE equals 0.532). It is
clear that model predictions and laboratory measurements of the polymer vis-
cosity show good agreement. It is therefore concluded that the identified MPLS
model structure makes accurate predictions of the final polymer viscosity.

Next, the final full model is identified by training on all 72 available batches.
The model captures 82.3% of the variance in the quality variable Y.

Outliers in the training data set are identified via the T 2 and Q2 statistics.
The T 2 analyses the similarity between the batches. A large value indicates that
a batch is different from the batches from the normal operating conditions.

T 2
i = Ti Σ−1

T TT
i (6)
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Fig. 8. Comparison of model predictions and lab measurements of the viscosity

The matrix ΣT is the covariance matrix of the scores T from the training batches
and is obtained via LOO crossvalidation. T 2 is F(R,Itr−R)-distributed; its upper
control limit uT at a specified tolerance level α is given by [4,19,20,25]

uT =
R(I2

tr − 1)
Itr(Itr − R)

F (R, Itr − R; α) . (7)

Here, Itr is the total number of training batches, and F (R, Itr − R; α) is the
upper critical value of the F -distribution with R numerator degrees of freedom
and Itr − R denominator degrees of freedom, and tolerance α.

The T 2-statistic for the training batches is depicted in Figure 9. From this
plot, it can be seen that only one batch exceeds the 99% confidence value, and
is identified as abnormal by the MPLS model. This batch corresponds with
the highest observed viscosity value in the training data. Because the correct
prediction of this too high viscosity value is preferred over a simple identification
as off-spec, this outlying batch is nonetheless retained in the training data set.

The Q2 indicates how well the MPLS model fits each batch by analyzing the
residuals EX for each batch i: a large Q2 indicates the model is invalid.

Q2
i = EXEX

T =
(
Xi − TiPT

) (
Xi − TiPT

)T
(8)

The Q2 statistic follows a gχ2
k distribution, where g and k are determined via

LOO crossvalidation. The control limit with tolerance α is [4,19,20,25]

uQ =
σ2

Q

2μQ
χ2

(
2μ2

Q

σ2
Q

; α

)
(9)

where μQ and σQ are the mean and standard deviation of the LOO Q2 statistics
for the training batches, and χ2

(
2μ2

Q

/
σ2

Q; α
)

is the upper critical value of the
χ2 distribution with 2μ2

Q/σ2
Q degrees of freedom.

The Q2 for all training batches is located well below the control limit with
99% confidence. This indicates that the MPLS model is a good fit for all batches.
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Fig. 9. T 2-statistic for the training batches. The horizontal lines indicate the 99% (– –)
and 99.9% (–·–) confidence limits.

Fig. 10. MPLS model loadings P for all variables for the first principal component

The loadings P of the MPLS model are also investigated. Because the columns
of the input data matrix X are not independent but contain profiles of only three
variables, the elements of the loadings matrix P also represent profiles. Figure 10
depicts the loading profiles for each of the three input variables.

The negative loading values for the reactor temperature indicate a negative
correlation between the reactor temperature and the polymer’s viscosity. This
negative correlation is explained physically: an increase in the reactor temper-
ature leads to a higher polymerization rate, when monomer concentrations are
equal. The higher reaction rate causes a decrease in overall polymer chain length,
which in turn causes a decrease in the polymer’s viscosity. For the two vapor
temperature measurements, a similar negative correlation with the final viscosity
is observed, and identical conclusions can be drawn.

During the initiator shots, however, a positive –or less negative– correlation
between the vapor temperatures and the viscosity is observed. At these times,
the reaction heat used for evaporation is instead used for activating the initia-
tor. Hence, the vapor phase cools down while the reaction rate increases, again
leading to a lower viscosity. At the same time, a sudden increase in the negative
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correlation can also be seen for the reactor temperature. A higher reactor tem-
perature means a quicker activation of the added initiator, again leading to a
higher polymerization rate and the corresponding decrease in polymer viscosity.

Finally, the training performance of the full model is studied by comparing
the model predictions with the lab measurements. The graphical comparison
yields a plot similar to Figure 8.

5 Intermediate Model Identification

The MPLS model identified in Section 4 takes completed profiles as inputs.
Therefore, it is only capable of predicting the polymer viscosity after completion
of the batch. This prediction can be made as soon as the cooling of the batch
starts, well before lab analysis results are obtained. However, in order to better
control batch operation, model predictions must be available during the batch
run. While different techniques are available for making MPLS predictions using
only partially known inputs, as is the case during batch operation, these methods
all assume aligned profiles are available [2,7].

Because (HD)DTW requires the final point of the new profile to be known to
determine the warping path. Hence, it can only be applied once a batch phase is
completed. Although an online implementation of HDDTW is presented in [9],
an intermediate model approach is adopted in this work to minimize the online
computational requirements. A first intermediate model takes only the data from
the first and second batch phase as input, and can be used to make a viscosity
prediction at approximately tf/2 (50% batch completion). A second model takes
the first three phases as inputs, making a prediction at 75% completion.

Using the same procedure as detailed in Sections 4.2 and 4.3, the optimal
input variables and number of latent variables for each of the intermediate MPLS
models are identified. The optimal input variables are identical to those obtained
in Section 4.2, while the optimal number of latent variables increases to five.

Next, the crossvalidation performance of these intermediate models is studied.
Table 1 compares the average crossvalidation RMSE values of the intermediate
models with those of the full model. From this table, it is clear that the two
intermediate models exhibit a performance similar to the full model. This implies
that accurate viscosity estimations can be obtained already at tf/2, only halfway
throughout the batch process.

Table 1. Crossvalidation and validation performance comparison of the full and partial
models

RMSE
Input phases Crossvalidation Validation

Intermediate model #1 1-2 0.549 0.621
Intermediate model #2 1-2-3 0.557 0.572
Full model 1-2-3-4 0.532 0.568
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Fig. 11. Comparison of model predictions and laboratory measurements of the polymer
viscosity for the full model and both intermediate models.

Finally, the final model weights for the intermediate models are identified by
training on all available batches.

6 Validation Results

Finally, the three MPLS models identified in Sections 4 and 5 are validated on
10 additional batches. The comparison between the model predictions and lab
viscosity measurements is listed in Table 1 and depicted in Figure 11.

All validation batches have T 2 and Q2 values below the the 99% control limit.
Hence, all model predictions of the polymer viscosity are considered reliable.

This result might suggest that the final 25% or even 50% of the batch op-
eration has no significant impact on the final polymer viscosity, and could be
removed from the data set without compromising the model performance. How-
ever, this observation is only valid if the final batch phases exhibit no abnormal
behavior. Hence, by including the second half of the batch in the second inter-
mediate model and the full model, abnormal operation of the chemical batch
reactor can be detected.

It is clear that all three models give accurate viscosity predictions, in line
with the observations of Section 5. Hence, it is concluded that all three models
perform equally well.

7 Conclusions

In this paper, an inferential sensor capable of predicting the final viscosity of
a polymer produced in a chemical batch reactor was identified, to alleviate the
problem of difficult batch process control. By enabling the early prediction of
final product quality, corrective actions can be taken during the batch run, re-
sulting in better quality control and the production of less off-spec batches.

A hybrid dynamic time warping algorithm was implemented to bring all
batches to equal length and to align significant events. The algorithm yielded
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very good results and was robust with respect to measurement noise. The opti-
mal input and model order of the partial least squares model were selected during
the identification of the full batch model. In addition, intermediate models were
developed to predict the final product quality after 50% or 75% completion.
The accuracy of these intermediate models was equal to that of the full model.
Finally, the performance of the three models was validated on extra industrial
data. Again, all models yielded similar prediction qualities, comparable with the
results obtained during training.

This leads to the conclusion that the developed inferential sensor is indeed
capable of making accurate predictions of the final polymer viscosity well before
the end of the batch run. Because of this valuable result, it is possible to exploit
the estimation provided by the sensor to control the batch, resulting in fewer
off-spec (wasted) batches. With the results obtained in this work, the financial
losses associated with an off-spec batch are reduced by 30%.

While the inferential sensor developed in this work yields accurate final poly-
mer viscosity predictions, estimations are not available online. Hence, control
of the batch remains difficult. Therefore, future work will consist of the imple-
mentation of an online HDDTW algorithm. This will allow the estimation of
the final product viscosity at more regular intervals, enabling the operator to
actively monitor a running batch, and adjust process parameters to control the
final product viscosity.
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