
V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 368–383, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Slot Selection and Co-allocation for Economic Scheduling
in Distributed Computing

Victor Toporkov1, Alexander Bobchenkov1, Anna Toporkova2,
Alexey Tselishchev3, and Dmitry Yemelyanov1

1 Computer Science Department, Moscow Power Engineering Institute,
ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia

{ToporkovVV,BobchenkovAV,YemelyanovDM}@mpei.ru
2 Moscow State Institute of Electronics and Mathematics,

Bolshoy Trekhsvyatitelsky per., 1-3/12, Moscow, 109028, Russia
annastan@mail.ru

3 European Organization for Nuclear Research (CERN),
Geneva, 23, 1211, Switzerland

Alexey.Tselishchev@cern.ch

Abstract. In this paper, we present slot selection algorithms for job batch
scheduling in distributed computing with non-dedicated resources. Jobs are
parallel applications and these applications are independent. Existing
approaches towards resource co-allocation and job scheduling in economic
models of distributed computing are based on search of time-slots in resource
occupancy schedules. A launch of a parallel job requires a co-allocation of a
specified number of slots. The sought time-slots must match requirements of
necessary span, computational resource properties, and cost. Usually such
scheduling methods consider only one suited variant of time-slot set. This paper
discloses a scheduling scheme that features multi-variant search. Two
algorithms of linear complexity for search of alternative variants are proposed.
Having several optional resource configurations for each job makes an
opportunity to perform an optimization of execution of the whole batch of jobs
and to increase overall efficiency of scheduling.

Keywords: Scheduling, co-allocation, slot, resource request, job, batch, task..

1 Introduction

Economic models for resource management and scheduling are very effective in
distributed computing with non-dedicated resources, including Grid [1, 2], utility
computing [3], cloud computing [4], and multiagent systems [5]. There is a good
overview of some approaches to forming of different deadline and budget constrained
strategies of economic scheduling in [6]. In [7] heuristic algorithms for slot selection
based on user defined utility functions are introduced.

While implementing economic policy, resource brokers usually optimize the
performance of a specific application [1, 6, 7] in accordance with the application-level
scheduling concept [8]. When establishing virtual organizations (VO), the
optimization is performed for the job-flow scheduling [9, 10]. Corresponding

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 369

functions are implemented by a hierarchical structure that consists of the
metascheduler and subordinate resource managers or local batch-job management
systems [8-10]. In a model, proposed in [2] there is an interaction between users
launching their jobs, owners of computational resources, and VO administrators. The
interests of the said users and owners are often contradictory. Each independent user
is interested in the earliest launch of his job with the lowest costs (for example, the
resource usage fee) and the owners, on the contrary, try to make the highest income
from their resources. VO administrators are interested in maximizing the whole VO
performance in the way that satisfies both users and owners [8].

In this work, economic mechanisms are applied for job batch scheduling in VO. It
is supposed that resources are non-dedicated, that is along with global flows of
external users’ jobs, owner’s local job flows exist inside the resource domains
(clusters, computational nodes equipped with multicore processors, etc.). The
metascheduler [8-10] implements the VO economic policy based on local system
schedules. The local schedules are sets of slots coming from local resource managers
or schedulers in the node domains. A single slot is a time span that can be assigned to
a task, which is a part of a parallel job. We assume that job batch scheduling runs
iteratively on periodically updated local schedules [2]. The launch of any job requires
co-allocation of a specified number of slots. The challenge is that slots associated
with different resources may have arbitrary start and finish points that do not
coincide. In its turn, tasks of the parallel job must start synchronously. If the
necessary number N of slots with attributes matching the resource request is not
accumulated then the job will not be launched. This job is joined another batch, and
its scheduling is postponed till the next iteration.

We propose two algorithms for slot selection that feature linear complexity ()mO ,

here m is the number of available time-slots. Existing slot search algorithms, such as
backfilling [11, 12], do not support environments with heterogeneous and non-
dedicated resources, and, moreover, their execution time grows substantially with
increase of the number of slots. Backfilling is able to find an exact number of
concurrent slots for tasks with identical resource requirements and homogeneous
resources. We take a step further, so proposed algorithms deal with heterogeneous
resources and jobs with different tasks.

The paper is organized as follows. Section 2 introduces a scheduling scheme. In
section 3 two algorithms for search of alternative slot sets are considered. The
example of slot search is presented in section 4. Simulation results for comparison of
proposed algorithms are described in Section 5. Experimental results are discussed in
section 6. Section 7 summarizes the paper and describes further research topics.

2 Scheduling Scheme

Let { }nj,...,jJ 1= denote a batch consisting of n jobs. A job niji ,...,1, = , schedule

is formed as a set is of time slots. A job batch schedule is a set of slot sets (a slot

combination) ()nsss ,...,1=

for jobs composing this batch. The job resource

requirements are arranged into a resource request containing a wall clock time it and

characteristics of computational nodes (clock speed, RAM volume, disk space,

370 V. Toporkov et al.

operating system etc.). The slot set is fits the job ij , if it meets the requirements of

number and type of resources, cost and the job wall time it . We suppose that for each

job ij in the current scheduling iteration there is at least one suitable set is .

Otherwise, the scheduling of the job is postponed to the next iteration. Every slot set

is for the execution of the i -th job in the batch { }njjJ ,...,1= is defined with a pair

of parameters, the cost ()ii sc and the time () iii tst ≤ for the resource usage, ()ii sc

denotes a total cost of slots in the set is and ()ii st denotes a time elapsed from the

start till the end of the i -th job. Notice that different jobs
1i

j , Jji ∈
2

have different

resource requirements, and () ()scsc ii 21
≠ , () ()stst ii 21

≠ , { }n,...,i,i 121 ∈ , even if jobs

1i
j ,

2i
j

are allocated to the same slot set s . Here ()sci1 , ()sci2 are functions of a

cost C

of slot usage per time unit.

Two problems have to be solved for job batch scheduling. First, selecting
alternative slot sets for jobs of the batch that meet the requirements (resource, time,
and cost). Second, choosing the slot combination ()nsss ,...,1= that would be the

efficient or optimal one in terms of the whole job batch execution.
To realize the scheduling scheme described above, first of all, we need to propose

the algorithm of finding a set of alternative slot sets.
Slots are arranged by start time in non-decreasing order in a list (Fig. 1 (a)). In Fig.

1 (a), kd denotes a time offset of the slot ks in relation to the slot 1−ks .

In the case of homogeneous nodes, the set is of slots for the job ij is represented

with a rectangle window ()ii stN × . It does not mean that processes of any parallel

job would finish their work simultaneously. Here a time length of the window is the
time ()ii st

dedicated for the resource usage. In the case of nodes with varying

performance, that will be a window with a rough right edge, and the resource usage
time is defined by the execution time kt of the task that is using the slowest node (see

Fig. 1 (a)).

 Slots

1
2
3
4

5 kd

6

Time

 Window with a rough right edge

kt End Start

(a) (b)

Fig. 1. Slot selection for heterogeneous resources: an ordered list of available slots (a); slot
subtraction (b)

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 371

The scheduling scheme works iteratively, during the iteration it consecutively
searches for a single alternative for each job of the batch. In case of successful slot
selection for the i -th job, the list of vacant slots for the ()1+i -th job is modified. All

time spans that are involved in the i -th job alternative are excluded from the list of
vacant slots (Fig. 1 (b)). The selection of slots for the ()1+i -th job is performed on

the list modified with the method described above. Suppose, for example, that there is
a slot K′ among the slots belonging to the same window. Then its start time equals to
the start time of the window: K′.startTime = window.startTime and its end time equals
to K′.end=K′.start + 'k

t , where 'k
t is the evaluation of a task runtime on the

appropriate resource, on which the slot K′ is allocated. Slot K′ should be subtracted
from the original list of available slots. First, we need to find slot K – the slot, part of
which is K′ and then cut K′ interval from K. So, in general, we need to remove slot K′
from the ordered slot list and insert two new slots 1K and 2K . Their start, end times

are defined as follows: 1K .startTime = K.startTime, 1K .endTime = K′.startTime,

2K .startTime = K′.endTime, 2K .endTime = K.endTime. Slots 1K and 2K have to

be added to the slot list given that the list is sorted by non-decreasing start time order
(see Fig. 1 (a)). Slot 1K will have the same position in the list as slot K, since they

have the same start time. If slots 1K and 2K have a zero time span, it is not

necessary to add them to the list. After the last of the jobs is processed, the algorithm
starts next search from the beginning of the batch and attempts to find other
alternatives on the modified slot list. Alternatives found do not intersect in processor
time, so every job could be assigned to some set of found slots without the revision of
other jobs assignments. The search for alternatives ends when on the current list of
slots the algorithm cannot find any suitable set of slots for any of the batch jobs.
Implementation of the single alternative search algorithm becomes a serious question
because characteristics of a resulting set of slots solely depend on it. Doing a search in
every scheduling iteration imposes a requirement of an algorithm having complexity
as low as possible. An optimization technique for choosing optimal or efficient slot
combinations was proposed in [2]. It is implemented by dynamic programming
methods using multiple criteria in accordance with the VO economic policy.

We consider two types of criteria in the context of our model. These are the
execution cost and time measures for the job batch J using the suitable slot
combination ()ns,...,ss 1= . The first criteria group includes the total cost of the job

batch execution () ()∑=
=

n

i
ii scsC

1
. The VO administration policy and, partially, users’

interests are represented with the execution time criterion for all jobs of the batch

() ()∑=
=

n

i
ii stsT

1
. In order to forbid the monopolization of some resource usage by

users, a limit *B is put on the maximum value for a total usage cost of resources in
the current scheduling iteration. We define *B as a budget of the VO. The total slots
occupancy time *T represents owners’ urge towards the balance of global (external)
and local (internal) job shares. If we consider the single-criterion optimization of the

372 V. Toporkov et al.

job batch execution, then every criterion ()sC or ()sT

must be minimized with given

constraints *T or *B for the interests of the particular party - the user, the owner and
the VO administrator [2].

Let ()ii sg be the particular function, which determines the efficiency of the slot

set is usage for the i -th job. In other words, () ()iiii scsg = or () ()iiii stsg = . Let

()ii Zf be the extreme value of the particular criterion using the slot combination

()nii s,...,s,s 1+ for jobs nii jjj ,...,, 1+ , having iZ as a total occupancy time or an

usage cost. Let us define an admissible time value or a slot occupancy cost as ()ii sz .

Then () *ZZsz iii ≤≤ , where *Z is the given limit. For example, if () ()iiii stsz = ,

then () *TTst iii ≤≤ , where iT is a total slots occupancy time nii ,...,1 , + and *T is

the constraint for values iT , that is chosen with the consideration of balance between

the global job flow (user-defined) and the local job flow (owner-defined). If, for
example, () ()iiii scsz = , then ()ii sc *BCi ≤≤ , where iC is a total cost of the

resource usage for the jobs nii ,...,1 , + , and *B is the budget of the VO. In the

scheme of backward run [2] *1 ZZ = , ()ii sz *ZZi ≤≤ , ()111 −−− −= iiii szZZ ,
having ni ≤<1 . Notice that () ()sgsg ii 21

≠ , () ()szsz ii 21
≠ , { }n,...,i,i 121 ∈ , even if

jobs
1i

j ,
2i

j

are allocated to the same slot set s .

The functional equation for obtaining a conditional (given ()ii sz) extremum of

()()iii szf for the backward run procedure can be written as follows:

() ()(){ }iiiiii
s

ii szZfsg)Z(f
i

−+= +1extr , ni ,...,1= , () 011 ≡++ nn Zf , (1)

where ()ii sg and ()()iiii szZf −+1 are cost or time functions.

For example, a limit put on the total time of slot occupancy by tasks may be
expressed as:

()[]∑ ∑=
=

n

i s
iii

i

l/st*T
1
 , (2)

where il is the number of admissible slot sets for the i -th job; []⋅ means the nearest to

() iii l/st not greater integer.

The VO budget *B may be obtained by formula (1) as the maximal income for
resource owners with the given constraint *T defined by (2):

*B () ()(){ }iiiiii
s

stTfsc
i

−+= +1max , (3)

where ()()iiii stTf −+1 is a cost function.

In the general case of the model [2], it is necessary to use a vector of criteria, for
example, < ()sС , ()sD , ()sT , ()sI >, where () ()sC*BsD −= , () ()sTTsI −= * and

*T , *B are defined by (2), (3).

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 373

3 Slot Search Algorithms

Let us consider one of the resource requests associated with any job in the batch J .
The resource request specifies N concurrent time-slots reserved for time span t with
resource performance rate at least P and maximal resource price per time unit not
higher, than С .

Class Slot is defined to describe a single slot:
public class Slot{
 public Resource cpu; //resource on which the slot

is allocated
 public int cash; // usage cost per time unit
 public int start; // start time
 public int end; // end time
 public int length; // time span

 …
}

Class Window is defined to describe a single window:
public class Window {
 int id; // window id
 public int cash; // total cost
 public int start; // start time
 public int end; // end time
 public int length; // time span
 int slotsNumber; // number of required slots
 ArrayList<Slot> slots; // window slots
 …

}

Here a slot set search algorithm for a single job and resource charge per time unit is
described. It is an Algorithm based on Local Price of slots (ALP) with a restriction to
the cost of individual slots. Input data include available slots list, and slots being
sorted by start time in ascending order (see Fig. 1(a)). The search algorithm
guarantees examination of every slot of the list. If the necessary number N of slots is
not accumulated, then the job scheduling is postponed until the next iteration.

1°. Sort the slots by start time in ascending order - see Fig. 1 (a).
2°. From the resulting slot list the next suited slot ks is extracted and examined.

The slot ks suits, if following conditions are met:

a) resource performance rate () PsP k ≥ ;

b) slot length (time span) is enough (depending on the actual performance of the
slot's resource) () () PstPsL kk /≥ (see the condition a));

c) resource charge per time unit () CsC k ≤ .

If conditions a), b), and c) are met, the slot ks is successfully added to the window

list.

374 V. Toporkov et al.

3°. The expiration of the slot length means that remaining slot length ()ksL′ ,

calculated like shown in step 2°b, is not enough assuming the k -th slot start is equal
to the last added slot start: () ()()() () PsPsTTtsL kklastk /−−<′ , where ()ksT is the

slot's start time, lastT is the last added slot's start time. Notice, in Fig. 1 (a),

()klastk sTTd −= .

Slots whose time length has expired are removed from the list.
4°. Go to step 2°, until the window has N slots.
5°. End of the algorithm.

We can move only forward through the slot list. If we run out of slots before having
accumulated N slots, this means a failure to find the window for a job and its
scheduling is postponed by the metascheduler until the next batch scheduling
iteration. Otherwise, the window becomes the alternative slot set for the job. ALP is
executed for every job in the batch { }njjJ ,...,1= . Having succeeded in the search for

window for the ij -th job, the slot list is modified with subtraction of formed window

slots (see Fig. 1 (b)). Therefore slots of the already formed slot set are not considered
in processing the next job in the batch.

In the economic model [2] a user's resource request contains the maximal resource
price requirement, that is a price which a user agrees to pay for resource usage. But
this approach narrows the search space and restrains the algorithm from construction
of a window with more expensive slots. The difference of the next proposed
algorithm is that we replace maximal price C requirement by a maximal budget of a
job. It is an Algorithm based on Maximal job Price (AMP). The maximal budget is
counted as CtNS = , where t is a time span to reserve and N is the necessary
number of slots. Then, as opposed to ALP, the search target is a window, formed by
slots, whose total cost will not exceed the maximal budget S . In all other respects,
AMP utilizes the same input data as ALP.

Let us denote additional variables as follows: SN – current number of slots in the

window; NM – total cost of first N slots.

Here we describe AMP approach for a single job.

1°. Find the earliest start window, formed by N slots, using ALP excluding the
condition 2°c (see ALP description above).

2°. Sort window slots by their cost in ascending order.
Calculate total cost of first N slots NM . If SM N ≤ , go to 4°, so the resulting

window is formed by first N slots of the current window, others are returned to the
source slot list. Otherwise, go to 3°.

3°. Add the next suited slot to the list following to conditions 2°a and 2°b of ALP.
Assign the new window start time and check expiration like in the step 3° of ALP.

If we have NNS < , then repeat the current step. If NNS ≥ , then go to step 2°.

If we ran out of slots in the list, and NNS < , then we have algorithm failure and

no window is found for the job.
4°. End of the algorithm.

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 375

We can state three main features that distinguish the proposed algorithms. First, both
algorithms consider resource performance rates. This allows forming time-slot
windows with uneven right edge (we suppose that all concurrent slots for the job must
start simultaneously). Second, both algorithms consider maximum price constraint
which is imposed by a user. Third, both algorithms have linear complexity ()mO ,

where m is the number of available time-slots: we move only forward through the
list, and never return or reconsider previous assignments.

The backfill algorithm [11, 12] has quadratic complexity ()2mO , assuming that

every node has at least one local job scheduled. Although backfilling supports parallel
jobs and is able to find a rectangular window of concurrent slots, this can be done
provided that all available computational nodes have equal performance (processor
clock speed), and tasks of any job have identical resource requirements.

4 AMP Search Example

In this example for the simplicity and ease of demonstration we consider the problem
with a uniform set of resources, so the windows will have a rectangular shape without
the rough right edge. Let us consider the following initial state of the distributed
computing environment. In this case there are six computational nodes cpu1 - cpu6
(resource lines) (Fig. 2 (a)). Each has its own unit cost (cost of its usage per time
unit). In addition there are seven local tasks p1 - p7 already scheduled for the
execution in the system under consideration. Available system slots are drawn as
rectangles 0...9 - see Fig. 2 (a). Slots are sorted by non-decreasing time of start and
the order number of each slot is indicated on its body. For the clarity, we consider the
situation where the scheduling iteration processes the batch of only three jobs with the
following resource requirements.

Job 1 requirements:
• the number of required computational nodes: 2;
• runtime: 80;
• maximum total “window” cost per time: 10.

Job 2 requirements:
• the number of required computational nodes: 3;
• runtime: 30;
• maximum total “window” cost per time: 30.

Job 3 requirements:
• the number of required computational nodes: 2;
• runtime: 50;
• maximum total “window” cost per time: 6.

According to AMP alternatives search, first of all, we should form a list of available
slots and find the earliest alternative (the first suitable window) for the first job of the
batch. We assume that Job 1 has the highest priority, while Job 3 possesses the
lowest priority. The alternative found for Job 1 (see Fig. 2 (b)) has two rectangles on
cpu1 and cpu4 resource lines on a time span [150, 230] and named W1. The total
cost per time unit of this window is 10. This is the earliest possible window satisfying

376 V. Toporkov et al.

(a) (b)

Fig. 2. AMP search example: initial state of environment (a); alternatives found after the first
iteration (b)

Fig. 3. The final chart of all alternatives found during AMP search

the job’s resource request. Note that other possible windows with earlier start time are
not fit the total cost constraint. Then we need to subtract this window from the list of
available slots and find the earliest suitable set of slots for the second batch job on the
modified list.

Further, a similar operation for the third job is performed (see Fig. 2 (b)).
Alternative windows found for each job of the batch are named W1, W2, and W3
respectively. The earliest suitable window for the second job (taking into account
alternative W1 for the first job) consists of three slots on the cpu1, cpu2 and cpu4
resource lines with a total cost of 14 per time unit. The earliest possible alternative for
the third job is W3 window on a time span of [450, 500]. Further, taking into account
the previously found alternatives, the algorithm performs the searching of next
alternative sets of slots according to the job priority. The algorithm makes an attempt
to find alternative windows for each batch job.

Figure 3 illustrates the final chart of all alternatives found during search.

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 377

Note that in ALP approach the restriction to the cost of individual slots would be
equal to 10 for Job 2 (as it has a restriction of total cost equals to 30 for a window
allocated on three nodes). So, the computational resource cpu6 with a 12 usage cost
value is not considered during the alternative search with ALP algorithm. However it
is clear that in the presented AMP approach eight alternatives have been found. They
use the slots allocated on the cpu6 resource line, and thus fit in the limit of the
window total cost.

5 Simulation Studies

The experiment consists in comparison of job batch scheduling results using different
sets of suitable slots founded with described above AMP and ALP approaches. The
alternatives search is performed on the same set of available vacant system slots.
The generation of an ordered list of vacant slots and a job batch is performed during
the single simulated scheduling iteration. To perform a series of experiments we
found it more convenient to generate the ordered list of available slots (see Fig. 1 (a))
with preassigned set of features instead of generating the whole distributed system
model and obtain available slots from it.

SlotGenerator and JobGenerator classes are used to form the ordered slot list
and the job batch during the experiment series. Here is the description of the input
parameters and values used during the simulation. All job batch and slot list options
are random variables that have a uniform distribution inside the identified intervals.

SlotGenerator
• number of available system slots in the ordered list varies in [120, 150];

• length of the individual slot is in [50, 300] - here we propose that the length of
initial slot are varies greatly, and it will be more during the search procedure;

• computational nodes performance range is [1, 3], so that the environment is
relatively homogeneous;

• the probability that the nearby slots in the list have the same start time is 0.4;
this property represents that in real systems resources are often reserved and
occupied in domains (clusters), so that after the release, the appropriate slots
have the same start time;

• the time between neighboring slots in the list is in [0, 10], so that at each
moment of time we have at least five different slots ready for utilization;

• the price of the slot is randomly selected from [0.75p, 1.25p], where p = (1.7)
to the (Node Performance); here we propose that the price is a function of
performance with some element of randomness.

JobGenerator
• number of jobs in the batch is in [3, 7]; the batch is not very big because we

have to distribute all the jobs in order to carry out the experiment;

• number of computational nodes to find is in [1, 6];

378 V. Toporkov et al.

• length (representing the complexity) of the job is in [50, 150]; this value is
corresponds to the initial values of the generated slots;

• the minimum required nodes’ performance is in [1, 2]; some jobs will require
slots, allocated on resources with high (2≥P) performance - it is a factor of
job heterogeneity.

Let us consider the task of slot allocation during the job batch execution time
minimization: ()sT

is
min

with the constraint *B .

The number of 25000 simulated scheduling iterations was carried out. Only those
experiments were taken into account when all of the batch jobs had at least one
suitable alternative of execution. AMP algorithm exceeds ALP by 35% with respect
to ()sT . An average job execution time for alternatives found with ALP was 59.85,

and for alternatives found with AMP - 39.01 (Fig. 4 (a)).

(a) (b)

Fig. 4. Job batch execution time minimization: average job execution time (a); average job
execution cost (b)

Fig. 5. Average job execution time comparison for ALP and AMP for the first 300 experiments
in the job batch execution time minimization

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 379

It should be noted, that an average job execution cost for ALP method was 313.56,
while using AMP algorithm the average job execution cost was 369.69, that is 15%
more – see Fig. 4 (b).

Figure 5 illustrates scheduling results comparison for the first 300 experiments (the
horizontal axis). It shows an observable gain of AMP method in every single
experiment. The total number of alternatives found with ALP was 258079 or an
average of 7.39 for a job. At the same time the modified approach (AMP) found
1160029 alternatives or an average of 34.28 for a single job. According to the results
of the experiment we can conclude that the use of AMP minimizes the batch
execution time though the cost of the execution increases. Relatively large number of
alternatives found increases the variety of choosing the efficient slot combination [2]
using the AMP algorithm.

Now let us consider the task of slot allocation during the job batch execution cost
minimization: ()sC

is
min with the constraint *T . The results of 8571 single

experiments in which all jobs were successfully assigned to suitable slot combinations
using both slot search procedures were collected.

(a) (b)

Fig. 6. Job batch execution cost minimization: average job execution cost (a); average job
execution time (b)

The average job execution cost for ALP algorithm was 313.09, and for alternatives
found with AMP - 343.3. It shows the advantage of only 9% for ALP approach over
AMP (Fig. 6 (a)). The average job execution time for alternatives found with ALP
was 61.04. Using AMP algorithm the average job execution time was 51.62, that is
15% less than using ALP (Fig. 6 (b)).

The average number of slots processed in a single experiment was 135.11. This
number coincides with the average number of slots for all 25000 experiments, which
indicates the absence of decisive influence of the available slots number to the
number of successfully scheduled jobs.

The average number of jobs in a single scheduling iteration was 4.18. This value is
smaller than average over all 25000 experiments. With a large number of jobs in the

380 V. Toporkov et al.

batch ALP often was not able to find alternative sets of slots for certain jobs and an
experiment was not taken into account.

The average number of alternatives found with ALP is 253855 or an average of
7.28 per job. AMP algorithm was able to found the number of 115116 alternatives or
an average of 34.23 per job. Recall that in previous set of experiments these numbers
were 7.39 and 34.28 alternatives respectively.

6 Experimental Results Analysis

Considering the results of the experiments it can be argued that the use of AMP
approach on the stage of alternatives search gives clear advantage compared to the
usage of ALP. Advantages are mostly in the large number of alternatives found and
consequently in the flexibility of choosing an efficient schedule of batch execution, as
well as that AMP provides the job batch execution time less than ALP.

AMP allows searching for alternatives among the relatively more expensive
computational nodes with higher performance rate. Alternative sets of slots found
with ALP are more homogeneous and do not differ much from each other by the
values of the total execution time and cost. Therefore job batch distributions obtained
by optimizations based on various criteria [2] do not differ much from each other
either.

The following factors should explain the results. First, let us consider the
peculiarities of calculating a slot usage total cost PCtNCt /= , where C is a cost of

slot usage per time unit, P is a relative performance rate of the computational node
on which the slot is allocated, and t is a time span, required by the job in assumption
that the job will be executed on the etalon nodes with 1=P . In the proposed model,
generally, the higher the cost C of slot the higher the performance P of the node on
which this slot is allocated. Hence, the job execution time Pt / correspondingly less.
So, the high slot cost per time unit is compensated by high performance of the
resource, so it gets less time to perform the job and less time units to pay for. Thus, in
some cases the total execution cost may remain the same even with the more
“expensive” slots. The value PC / is a measure of a slot price/quality ratio. By
setting in the resource request the maximum cost C of an individual slot and the
minimum performance rate P of a node the user specifies the minimum acceptable
value of price/quality. The difference between ALP and AMP approaches lies in the
fact that ALP searches for alternatives with suitable price/quality coefficient among
the slots with usage cost no more than C . AMP performs the search among all the
available slots (naturally, both algorithms still have the restriction on the minimum
acceptable node performance). This explains why alternatives found with AMP have
on the average less execution time. Second, it should be noted that during the search
ALP considers available slots regardless of the entire window. The ALP window
consists of slots each of which has the cost value no more than C . At the same time
AMP is more flexible. If at some step a slot with cost on δ cheaper than C was

added to the desired window, then AMP algorithm will consider to add slots with cost
on the δ more expensive than C on the next steps. Naturally, in this case it will take

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 381

into account the total cost restriction. That explains, why the average job execution
cost is more when using the AMP algorithm, it seeks to use the entire budget to find
the earliest suitable alternative.

Another remark concerns the algorithms’ work on the same set of slots. It can be
argued that any window which could be found with ALP can also be found by AMP.
However, there could be windows found with AMP algorithm which can’t be found
with a conventional ALP. It is enough to find a window that would contain at least
one slot with the cost more than C .

This observation once again explains the advantage of AMP approach by a number
of alternatives found. The deficiency of AMP scheme is that batch execution cost on
the average always higher than the execution cost of the same batch scheduled using
ALP algorithm. It is a consequence of a specificity of determining the value of a
budget limit and the stage of job batch scheduling [2]. However, it is possible to
reduce the job batch execution cost reducing the user budget limit for every
alternative found during the search, which in this experiment was limited to CtNS = .
This formula can be modified to CtNS ρ= , where ρ is a positive number less than

one, e.g. 0.8. Variation of ρ allows to obtain flexible distribution schedules on

different scheduling periods, depending on the time of day, resource load level, etc.

7 Conclusion and Future Work

In this paper, we address the problem of independent batch jobs scheduling in
heterogeneous environment with non-dedicated resources.

The scheduling of the job batch consists of two steps. First of all, the independent
sets of suitable slots (alternatives of execution) have to be found for every job of the
batch. The second step is selecting the efficient combination of alternative slot sets,
that is the set of slot sets for the batch. The feature of the approach is searching for a
number of job alternative executions and consideration of economic policy in VO and
financial user requirements on the stage of a single alternative search. For this
purpose ALP and AMP approaches for slot search and co-allocation were proposed
and considered. According to the experimental results it can be argued that AMP
allows to find on the average more rapid alternatives and to perform jobs in a less
time. But the of job batch execution using AMP is relatively higher. AMP exceeds
ALP significantly during the batch execution time minimization. At the same time
during the execution cost minimization the gain of ALP method is negligible. It is
worth noting, that on the same set of vacant slots AMP in comparison with ALP finds
several time more execution alternatives.

In our future work we will address the problem of slot selection for the whole job
batch at once and not for each job consecutively. Therewith it is supposed to optimize
the schedule “on the fly” and not to allocate a dedicated phase during each scheduling
iteration for this optimization. We will research pricing mechanisms that will take into
account supply-and-demand trends for computational resources in virtual
organizations.

The necessity of guaranteed job execution at the required quality of service causes
taking into account the distributed environment dynamics, namely, changes in the
number of jobs for servicing, volumes of computations, possible failures of

382 V. Toporkov et al.

computational nodes, etc. [13]. As a consequence, in the general case, a set of
versions of scheduling, or a strategy, is required instead of a single version [13, 14].
In our further work we will refine resource co-allocation algorithms in order to
integrate them with scalable co-scheduling strategies.

Acknowledgments. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Leading Scientific
Schools (SS-7239.2010.9), the Russian Foundation for Basic Research (grant no. 09-
01-00095), the Analytical Department Target Program “The higher school scientific
potential development” (projects nos. 2.1.2/6718 and 2.1.2/13283), and by the Federal
Target Program “Research and scientific-pedagogical cadres of innovative Russia”
(State contracts nos. P2227 and 16.740.11.0038).

References

1. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling Parallel Applications on Utility Grids:
Time and Cost Trade-off Management. In: 32nd Australasian Computer Science
Conference (ACSC 2009), pp. 151–159 (2009)

2. Toporkov, V.V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.:
Economic Models of Scheduling in Distributed Systems. In: Walkowiak, T.,
Mazurkiewicz, J., Sugier, J., Zamojski, W. (eds.) Monographs of System Dependability.
Dependability of Networks, vol. 2, pp. 143–154. Oficyna Wydawnicza Politechnki
Wroclawskiej, Wroclaw (2010)

3. Degabriele, J.P., Pym, D.: Economic Aspects of a Utility Computing Service. Technical
Report HPL-2007-101, Trusted Systems Laboratory, HP Laboratories, Bristol (2007)

4. Pandey, S., Barker, A., Gupta, K.K., Buyya, R.: Minimizing Execution Costs when Using
Globally Distributed Cloud Services. In: 24th IEEE International Conference on Advanced
Information Networking and Applications, pp. 222–229. IEEE Press, New York (2010)

5. Bredin, J., Kotz, D., Rus, D.: Economic Markets as a Means of Open Mobile-Agent
Systems. In: Mobile Agents in the Context of Competition and Cooperation (MAC3), pp.
43–49 (1999)

6. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and
Scheduling in Grid Computing. J. of Concurrency and Computation: Practice and
Experience 5(14), 1507–1542 (2002)

7. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

8. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid
Resource Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid resource
management. State of the art and future trends, pp. 271–293. Kluwer Academic Publishers,
Dordrecht (2003)

9. Toporkov, V.: Application-Level and Job-Flow Scheduling: An Approach for Achieving
Quality of Service in Distributed Computing. In: Malyshkin, V. (ed.) PaCT 2009. LNCS,
vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

10. Toporkov, V.V.: Job and Application-Level Scheduling in Distributed Computing.
Ubiquitous Computing and Communication J. 3(4), 559–570 (2009)

 Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing 383

11. Mu’alem, A.W., Feitelson, D.G.: Utilization, Predictability, Workloads, and User Runtime
Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Transactions on Parallel and
Distributed Systems 6(12), 529–543 (2001)

12. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core Algorithms of the Maui Scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer,
Heidelberg (2001)

13. Toporkov, V.V., Tselishchev, A.: Safety Scheduling Strategies in Distributed Computing.
International Journal of Critical Computer-Based Systems 1/2/3 (1), 41–58 (2010)

14. Toporkov, V.V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Scalable Co-
Scheduling Strategies in Distributed Computing. In: 5th ACS/IEEE Int. Conference on
Computer Systems and Applications, pp. 1–8. IEEE CS Press, New York (2010)

	Slot Selection and Co-allocation for Economic Scheduling in Distributed Computing
	Introduction
	Scheduling Scheme
	Slot Search Algorithms
	AMP Search Example
	Simulation Studies
	Experimental Results Analysis
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

