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Preface

The PaCT 2011 (Parallel Computing Technologies) conference was a four-day
conference held in Kazan. This was the 11th international conference in
the PaCT series. The conferences are held in Russia every odd year. The first
conference, PaCT 1991, was held in Novosibirsk (Academgorodok), September
7-11, 1991. The next PaCT conferences were held in Obninsk (near Moscow),
August 30-September 4, 1993; in St. Petersburg, September 12-15, 1995; in
Yaroslavl, September, 9-12 1997; in Pushkin (near St. Petersburg), September,
6-10, 1999; in Academgorodok (Novosibirsk), September 3-7, 2001; in Nizhni
Novgorod, September, 15-19, 2003; in Krasnoyarsk, September 5-9, 2005; in
Pereslavl-Zalessky, September 3-7, 2007; in Novosibirsk, August 31-September
4, 2009. Since 1995 all the PaCT proceedings have been published by Springer
in the LNCS series. PaCT 2011 was jointly organized by the Institute of Compu-
tational Mathematics and Mathematical Geophysics of the Russian Academy of
Sciences (RAS), Institute of Informatics (Academy of Sciences of the Republic
of Tatarstan), and Kazan Federal University. The purpose of the conference was
to bring together scientists working on theory, architecture, software, hardware
and the solution of large-scale problems in order to provide integrated discus-
sions on parallel computing technologies. The conference attracted about 150
participants from around the world. Authors from 13 countries submitted 68 pa-
pers. Of those submitted, 44 papers were selected for the conference as regular
ones; there were also two invited papers. All the papers were reviewed by at least
three international referees. A demo session was organized for the participants.
Different tools were submitted for demonstration and tutorials. One of them
is WinAlt (Windows Animated Language Tool). Many thanks to our sponsors:
Russian Academy of Sciences, Kazan Federal University, Academy of Sciences of
the Republic of Tatarstan, Russian Fund for Basic Research, Lufthansa Official
Airlines.

September 2011 Victor Malyshkin
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Classical and Quantum Parallelism in the

Quantum Fingerprinting Method

Farid Ablayev1,2 and Alexander Vasiliev1,2

1 Institute for Informatics, Kazan, Russian Federation
2 Kazan Federal University, Kazan, Russian Federation

Abstract. In this paper we focus on how the classical and quantum
parallelism are combined in the quantum fingerprinting technique we
proposed earlier. We also show that our method can be used not only to
efficiently compute Boolean functions with linear polynomial presenta-
tions but also can be adapted for the functions with nonlinear presenta-
tions of bounded “nonlinearity”.

1 Introduction

Nowadays computer science has a strong focus on parallel computing technolo-
gies and much effort is being put into parallelizing computational algorithms. On
the other hand, there is another promising approach for speeding up computa-
tions – the theory of quantum computations, whose power is based on so-called
quantum parallelism. This effect can be described as evaluating the function for
multiple inputs simultaneously, by exploiting the ability of a quantum register to
be in superpositions of different states [10]. In some sense the same quantum bits
store the results of different evaluations of a function which are performed inde-
pendently in different subspaces of a state space. Informally, computing classi-
cally in parallel means “at the same time”, while the quantum parallelism means
“using the same space”, which also means there is no need in time synchroniza-
tion for quantum parallelism.

Nevertheless, classical parallelization is also extremely important for quantum
information processing, since the decoherence in quantum computers limits the
number of computational steps. Thus, the classical and quantum parallelism
should be used to complement each other in order to perform high-productivity
computations (in both time and space). In this paper we exhibit how this is done
in the generalized quantum fingerprinting technique presented in [2].

There are many models of computation based on the quantum paradigm.
These models are

– discrete deterministic reversible linear models due to their transformations;
– possessing an ability to perform massive parallel computations;
– probabilistic models due to the measurement result extraction.

Due to severe limits of existing physical implementations of quantum computer
it is natural to consider the restricted models of quantum computations. The one

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 F. Ablayev and A. Vasiliev

we consider in this paper is based upon quantum branching programs. Two vari-
ants of quantum branching programs were introduced by Ablayev, Gainutdinova,
Karpinski [1] (leveled programs), and by Nakanishi, Hamaguchi, Kashiwabara
[9] (non-leveled programs). Later it was shown by Sauerhoff [11] that these two
models are polynomially equivalent. The most commonly used restricted variant
of quantum branching programs is the model of Ordered Read-Once Quantum
Branching Programs. In computer science this model is also known as Ordered
Binary Decision Diagrams (OBDDs). This restriction implies that each input
variable may be read at most once, which is the least possible for any function
essentially depending on it’s variables. Thus, the read-once restriction corre-
sponds to minimizing of computational steps for quantum algorithms.

For this model we develop the fingerprinting technique, which is generally used
to perform space-efficient computations in randomized and quantum models of
computation. At the heart of our technique lies the polynomial presentation of
Boolean functions, which we call characteristic. The polynomial presentations of
Boolean functions are widely used in theoretical computer science. For instance,
an algebraic transformation of Boolean functions has been applied in [7] and [4]
for verification of Boolean functions. In the quantum setting polynomial repre-
sentations were used for proving lower bounds on communication complexity in
[5] as well as for investigating query complexity in [13]. Our approach combines
the ideas similar to the definition of characteristic polynomial from [7], [4] and
to the notion of zero-error polynomial (see, e.g. [13]).

In [2], [3] we have shown that Boolean functions with linear polynomial pre-
sentations can be efficiently computed in the model of quantum OBDDs. In this
paper we generalize this result outlining the class of functions with nonlinear
presentations that can be efficiently computed via our fingerprinting method.

2 Preliminaries

We use the notation |i〉 for the vector from Hd, which has a 1 on the i-th
position and 0 elsewhere. An orthonormal basis |1〉,. . . ,|d〉 is usually referred
to as the standard computational basis. In this paper we consider all quantum
transformations and measurements with respect to this basis.

Definition 1. A Quantum Branching Program Q over the Hilbert space Hd is
defined as

Q = 〈T, |ψ0〉 , Accept〉 , (1)

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
is determined by

the variable xij tested on the step j, and Uj(0), Uj(1) are unitary transformations
in Hd.

Vectors |ψ〉 ∈ Hd are called states (state vectors) of Q, |ψ0〉 ∈ Hd is the
initial state of Q, and Accept ⊆ {1, 2, . . . d} is the set of indices of accepting
basis states.

We define a computation of Q on an input σ = σ1 . . . σn ∈ {0, 1}n as follows:

1. A computation of Q starts from the initial state |ψ0〉;
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xj1 • �������	 · · ·

xj2 • �������	 · · ·
...

xjl · · · • �������	

|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)


�
���

|φ2〉 · · ·

�

���|ψ0〉

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
...

|φq〉 · · ·

�

���

Fig. 1. Circuit presentation of a quantum branching program. Here xi1 , . . . , xil is the
sequence of (not necessarily distinct) variables denoting classical control (input) bits.
Using the common notation single wires carry quantum information and double wires
denote classical information and control.

2. The j-th instruction of Q reads the input symbol σij (the value of xij ) and
applies the transition matrix Uj = Uj(σij ) to the current state |ψ〉 to obtain
the state |ψ′〉 = Uj(σij ) |ψ〉;

3. The final state is

|ψσ〉 =

⎛

⎝
1∏

j=l

Uj(σij )

⎞

⎠ |ψ0〉 . (2)

4. After the l-th (last) step of quantum transformation Q measures its config-
uration |ψσ〉 = (α1, . . . , αd)T , and the input σ is accepted with probability

Praccept(σ) =
∑

i∈Accept

|αi|2 . (3)

Circuit Representation. Quantum algorithms are usually given by using quantum
circuit formalism [6], [14], because this approach is quite straightforward for
describing such algorithms.

We propose, that a QBP represents a classically-controlled quantum system.
That is, a QBP can be viewed as a quantum circuit aided with an ability to read
classical bits as control variables for unitary operations.

Example. As an example consider the Boolean function MODm(x1, . . . , xn)
which tests whether the number of ones in it’s input is a multiple of m. For
this function the simple algorithm can be proposed (see Figure 2).

The algorithm starts with a qubit in basis state |0〉. At j-th step the value of
xj is tested. Upon input symbol 0 identity transformation I is applied. But if
the value of xj is 1, then the state of the qubit is transformed by the operator
R, rotating it by the angle proportional to π/m.
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x1 • ···

x2 • ···
...xn ··· •

|0〉 R R ··· R

�

���

|  

|0  

|1  

 

Fig. 2. Quantum branching program for MODm Boolean function. Here R denotes
the rotation by an angle θ = π/m about the ŷ axis of the Bloch sphere.

The final state is measured in the standard computational basis. The input
σ = σ1 . . . σn is accepted if the result is the basis state |0〉, otherwise the input
σ is rejected. For arbitrary input σ the acceptance probability equals to

Praccept(σ) = cos2
(

π
∑

i σi

m

)
. (4)

Thus, if MODm(σ) = 1 then Praccept(σ) = 1. If MODm(σ) = 0 then the
probability of erroneously obtaining the |0〉 can be close to 1, but this can be
improved by applying the fingerprinting techniques described in the next section.

Complexity Measures. The width of a QBP Q, denoted by width(Q), is the
dimension d of the corresponding state space Hd, and the length of Q, denoted
by length(Q), is the number l of instructions in the sequence T .

In this paper we’re mostly interested in another important complexity for a
QBP Q – a number of quantum bits, denoted by qubits(Q), physically needed
to implement a corresponding quantum system with classical control. From def-
inition it follows that log width(Q) ≤ qubits(Q).

Acceptance Criteria. A QBP Q computes the Boolean function f with bounded
error if there exists an ε ∈ (0, 1/2) (called margin) such that for all inputs the
probability of error is bounded by 1/2 − ε.

In particular, we say that a QBP Q computes the Boolean function f with one-
sided error if there exists an ε ∈ (0, 1) (called error) such that for all σ ∈ f−1(1)
the probability of Q accepting σ is 1 and for all σ ∈ f−1(0) the probability of Q
erroneously accepting σ is less than ε.

Read-Once Branching Programs. Read-once BPs is a well-known restricted vari-
ant of branching programs [12].

Definition 2. We call a QBP Q a quantum OBDD (QOBDD) or read-once
QBP if each variable x ∈ {x1, . . . , xn} occurs in the sequence T of transforma-
tions of Q at most once.

For the rest of the paper we’re only interested in QOBDDs, i.e. the length of all
programs would be n (the number of input variables).
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3 Algorithms for QBPs Based on Fingerprinting

Generally [8], fingerprinting is a technique that allows to present objects (words
over some finite alphabet) by their fingerprints, which are significantly smaller
than the originals. It is used in randomized and quantum algorithms to test
equality of some objects (binary strings) with one-sided error by simply compar-
ing their fingerprints.

In the next subsection we show the basic idea of fingerprinting from [2], [3]
and compare the usage of classical and quantum parallelism for this method.

3.1 Basic Idea

Let σ = σ1 . . . σn be an input string and g is the mapping of {0, 1}n onto Zm

that “encodes” some property of the input we’re about to test. We consider g to
be the polynomial over Zm such that g(σ) = 0 mod m ⇐⇒ σ has the property
encoded by g. For example, if we test the equality of two n-bit binary strings
x1 . . . xn and y1 . . . yn, we can choose g equal to the following polynomial over
Z2n :

n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1 . (5)

Trivial Approach. To test the property encoded by g we rotate the initial
state |0〉 of a single qubit by an angle θ = πg(σ)/m:

|0〉 → cos θ |0〉 + sin θ |1〉 . (6)

Obviously, this quantum state is exactly |0〉 ⇐⇒ g(σ) = 0 mod m. In the
worst case this algorithm gives the one-sided error of cos2 π(m − 1)/m, which
can be arbitrarily close to 1. Figure 3 illustrates the rotated qubit with real
amplitudes.

Classical Parallelism. To improve this construction we increase the number
of qubits and introduce additional parameters. Let k1, . . . , kt ∈ {1, . . . , m − 1}.
Then we rotate t isolated qubits in the state |0〉 by angles θi = πkig(σ)/m (see
Figure 4):

|0〉 → cos θi |0〉 + sin θi |1〉 . (7)

|  

|0  

|1  

 

Fig. 3. A single qubit rotated by an angle θ



6 F. Ablayev and A. Vasiliev

|0

|1

|0

|1

|0

|1

|0

|1

Fig. 4. t single qubits rotated by an angle θi

|0

|1

Fig. 5. A qubit rotated in parallel by t different angles θi

If we measure these qubits we obtain the state |0〉 of i-th qubit with probability
cos2 πkig(σ)

m , which is 1 when g(σ) equals 0 modulo m.
On the other hand there exists a set K = {k1, . . . , kt} with t = O(log m),

such that Prerror < 1/m for all σ with g(σ) 
= 0 mod m.

Quantum Parallelism. Using quantum effects like entanglement, quantum
parallelism and interference [10], we can decrease the number of qubits to log t+
1:

|0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉
︸ ︷︷ ︸

log t=O(log log m)

⊗ |0〉 −→ 1√
t

t∑

i=1

|i〉
(

cos θi |0〉 + sin θi |1〉
)

, (8)

where θi = 2πkig(σ)
m and the set K = {k1, . . . , kt} is chosen in order to guarantee

the small probability of error [2], [3].
That is, the last qubit is simultaneously rotated in t different subspaces by

corresponding angles. This approach is informally illustrated by the Figure 5.
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Fig. 6. l parallel qubits rotated in parallel by t different angles

Generalized Approach. Generalizing this approach, we can combine the clas-
sical and quantum parallelism to compute more complex Boolean functions. For
illustration of the generalized fingerprinting technique see Figure 6, the detailed
description of this approach is given in subsection 3.3.

3.2 Quantum Algorithms Based on Fingerprinting

Summarizing, our method may be applied in the following manner:

1. The initial state of the quantum register is |0〉⊗ log t |0〉.
2. The Hadamard transform creates the equal superposition of the basis states

1√
t

t∑

j=1

|j〉 |0〉
3. Based on the input σ it’s fingerprint is created:

1√
t

t∑

j=1

|j〉
(

cos 2πkjg(σ)
m |0〉 + sin 2πkjg(σ)

m |1〉
)

4. The Hadamard transform turns the fingerprint into the superposition(
1
t

t∑

l=1

cos 2πklg(σ)
m

)
|0〉⊗ log t |0〉 + . . .

5. The quantum register is measured and the input is accepted iff the result is
|0〉⊗ log t |0〉.

3.3 Fingerprinting Technique

The fingerprinting technique described in [2], [3] allows us to test the conjunction
of several conditions encoded by a group of characteristic polynomials which we
call a characteristic of a function.

Definition 3. We call a set χf of polynomials over Zm a characteristic of a
Boolean function f if for all polynomials g ∈ χf and all σ ∈ {0, 1}n it holds that
g(σ) = 0 iff σ ∈ f−1(1).

We use this definition to formulate our fingerprinting technique.
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Fingerprinting Technique. For a Boolean function f we choose an error rate
ε > 0 and pick a characteristic χf = {g1, . . . , gl} over some ring Zm. Then for
arbitrary binary string σ = σ1 . . . σn we create its fingerprint |hσ〉 composing t · l
(t = 2�log((2/ε) ln 2m)�) single qubit fingerprints

∣
∣hi

σ(j)
〉

∣∣hi
σ(j)

〉
= cos

πkigj(σ)
m

|0〉 + sin
πkigj(σ)

m
|1〉 (9)

into entangled state of log t + l qubits:

|hσ〉 =
1√
t

t∑

i=1

|i〉 ∣
∣hi

σ(1)
〉 ∣
∣hi

σ(2)
〉
. . .

∣
∣hi

σ(l)
〉

. (10)

Here the transformations of the last l qubits in t different subspaces “simulate”
the transformations of all of the

∣
∣hi

σ(j)
〉

(i = 1, . . . , t, j = 1, . . . , l). That is, these
l qubits are used in parallel (classically) and each of them is in parallel (quan-
tumly) rotated by t different angles about the ŷ axis of the Bloch sphere. Figure
6 informally demonstrates this interpretation of our fingerprinting technique.

The set of parameters ki ∈ {1, . . . , m − 1} for i ∈ {1, . . . , t} is chosen in a
special way in order to bound the probability of error [2]. That is, it allows to
distinguish with high probability those inputs whose image is 0 modulo m from
the others.

We say that a characteristic is linear if all of its polynomials are linear. In [2]
we have shown that Boolean functions with linear characteristics of logarithmic
size can be efficiently computed in the quantum OBDD model.

In the next subsection we show how this result can be extended to the case
of Boolean functions with nonlinear polynomial presentations.

3.4 Computing Functions with Nonlinear Characteristics

In this subsection we describe a class of effectively computable Boolean functions
with characteristics of small “nonlinearity”, but first we introduce the measure
of this quantity.

Let f(x1, . . . , xn) be a Boolean function we are about to compute and χf be
it’s characteristic over some ring Zm. Denote Xn = {x1, . . . , xn} and let X ⊆ Xn

be some subset of variables used by f .

Definition 4. We call χf the X-nonlinear characteristic of f if X is the min-
imal set, containing all of the variables that appear in any multilinear term of
any polynomial g ∈ χf .

As a special case of this definition we obtain the notion of linear characteristic,
when X = ∅.

In this notation we can prove the following theorem.

Theorem 1. If χf is an X-nonlinear characteristic for Boolean function f then
for any ε ∈ (0, 1) f can be computed with one-sided error 1/2 +

√
ε/2 by a

quantum OBDD Q with qubits(Q) = O(|χf | + |X | + log log m).
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x1 •
...xn •

|ψ1〉

R′
1

···

R′
n R′′

1

···

R′′
s

��
��

|ψ2〉 ··· ···
��

��
...∣∣ψ|X|

〉
··· ···

��
��

|φ1〉 H

R′
0

··· ···
��

��

|φ2〉 H ··· ···
��

��
...

|φ log t〉 H ··· ···
��

��
∣
∣φ1

target

〉
··· ···

��
��

∣
∣φ2

target

〉
··· ···

��
��

...∣
∣φl

target

〉
··· ···

��
��

Fig. 7. The schematic circuit for computing Boolean function with nonlinear polyno-
mial presentation

Proof. The main idea of the algorithm is to save the values of variables in X
using |X | qubits and reconstruct the algorithm from [2] so it will use quantum
rather than classical control on those values.

Let χf = {g1, g2, . . . , gl} and gj = cj
0 + cj

1x1 + . . . + cj
nxn +

∑sj

r=1 qr, where qr

are multilinear terms. The construction of a fingerprint is split in three major
steps illustrated in Figures 7, 8, 9, 10:

1. The operator R′
0 computes the constant part of all polynomials, that is the

terms cj
0.

2. Each operator R′
i, corresponding to the i-th input variable, computes the

linear terms cj
ixi. Additionally, it saves the value of xi if it belongs to the

set X .
3. Finally, for each multilinear term of every polynomial in χf there is an

operator R′′
i computing it based on the values saved at the previous step.

All of these steps use essentially the same controlled operation Ri(c) = Rŷ

(
2πkic

m

)
,

which is the rotation about the ŷ axis of the Bloch sphere by the corresponding
angle.

The computation of the function f itself is as following:

1. Upon the input σ = σ1 . . . σn we create it’s fingerprint |hσ〉 which has the
form of Equation 10.
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|φ1〉 �����	
� ··· •
|φ2〉 �����	
� ··· •

...
|1〉 |t〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭|φ log t〉 �����	
� ··· •
∣
∣φ1

target

〉
R1(c10) ··· Rt(c

1
0)

∣
∣φ2

target

〉
R1(c20) ··· Rt(c

2
0)

...∣
∣φl

target

〉
R1(cl0) ··· Rt(c

l
0)

Fig. 8. The circuit for operator R′
0, computing the constant part (cj0) of all polynomials

xi • • •
...

|ψj〉 = |0〉 U ···
...|φ1〉 �����	
� ··· •

|φ2〉 �����	
� ··· •
...

|1〉 |t〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭|φ log t〉 �����	
� ··· •
∣
∣φ1

target

〉
R1(c1i ) ··· Rt(c

1
i )

∣
∣φ2

target

〉
R1(c2i ) ··· Rt(c

2
i )

...∣
∣φl

target

〉
R1(cli) ··· Rt(c

l
i)

Fig. 9. The circuit for operators R′
i, computing the linear terms cjixi of all polynomials.

The operator U is the NOT operation if xi ∈ X and identity operator otherwise.

2. We measure |hσ〉 in the standard computational basis and accept the input
if the outcome of the last l qubits is the all-zero state. Thus, the probability
of accepting σ is

Praccept(σ) =
1
t

t∑

i=1

cos2
πkig1(σ)

m
· · · cos2

πkigl(σ)
m

.

If f(σ) = 1 then all of gi(σ) = 0 and we will always accept.
If f(σ) = 0 then there is at least one such j that gj(σ) 
= 0 and the choice
of the set K guarantees [2] that the probability of the erroneously accepting
is bounded by
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|ψi1〉 • ··· •
...

∣
∣ψisi

〉 • ··· •
...|φ1〉 �����	
� ··· •

|φ2〉 �����	
� ··· •
...

|1〉 |t〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭|φ log t〉 �����	
� ··· •
...∣

∣φj
target

〉
R1(ci) ··· Rt(ci)

...

Fig. 10. The circuit for operators R′′
i , computing the multilinear term cixi1xi2 · · · xisi

of the j-th polynomial

Praccept(σ) = 1
t

t∑

i=1

cos2 πkig1(σ)
m · · · cos2 πkigl(σ)

m

≤ 1
t

t∑

i=1

cos2 πkigj(σ)
m = 1

t

t∑

i=1

1
2

(
1 + cos 2πkigj(σ)

m

)

= 1
2 + 1

2t

t∑

i=1

cos 2πkigj(σ)
m

≤ 1
2 +

√
ε

2 .

The number of qubits used by this QBP Q is qubits(Q) = O(log log m+ |χf |+
|X |). ��
As an immediate corollary we obtain that we can efficiently compute any Boolean
function f with X-nonlinear characteristic χf over Zm, whenever |X | = |χf | =
O(log n) and m = 2nO(1)

.
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Abstract. In this paper we present a parallelization method for numer-
ical simulation of incompressible flows in regular domains on multicore
computers in frame of the OpenMP programming model. The method is
based on natural splitting of a computational domain for the main part of
the algorithm, and on two-dimensional splitting and application of a spe-
cial tridiagonal parallelization procedure for pressure Poisson equation
and other implicit parts. This method is suitable for running on shared
memory computer systems with non-uniform memory and demonstrates
good parallelization efficiency for up to 16 threads.

1 Introduction

It is well known that numerical simulations of convective interactions and insta-
bilities in crystal growth applications require huge computational resources [1].
For example, modeling of oscillating behaviour of non-axisymmetric flow in a
cylindrical domain with one million grid points for one million time steps takes
more than 10 days on a single-core processor of 2004-year generation [2]. Serial
performance of modern microprocessors is only 2 to 3 times higher, therefore
parallelization is required for further acceleration of the simulation process.

Previously, only distributed memory computer systems (clusters) were gen-
erally available for parallel computations. Such systems were built on computer
nodes having usually two single-core processors. Thus, the only practical way
of parallelization was the MPI distributed-memory approach. Significant experi-
ence was acquired with MPI parallelization of codes for simulating incompress-
ible flows [3,4].

Currently multicore processors become widely available. Typical processor
has now 4 to 6 cores and looks as a high-performance shared memory computer
system. A small bi-processor server (or cluster node) can have 8 to 12 cores.
Because of wide availability of multicore processor systems, performance criteria
and methods have now to be revisited, together with reconsideration of paral-
lelization. The latter becomes important because now parallelization is no more
an option as before. Currently it is a must because there is no other way to
fully utilize the computational potential of a processor. With parallelization, an
inexpensive quad-core desktop computer in 2010 becomes about 10 times faster
than a typical computer in 2005.

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 13–22, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Changing the sort of target computer systems and parallelization criteria
should result in changing a parallelization approach. For shared memory sys-
tems, the OpenMP model is more simple and natural [5]. This model can be
used for developing new computational codes, as well as for smooth conversion
of existing ones. At last, it ensures higher parallel efficiency than the less natural
MPI approach.

Modern shared memory computers can be subdivided into several classes:
single-processor desktop systems, bi-processor servers (nodes) and more expen-
sive multiprocessor servers. Multiprocessor and (partly) bi-processor systems
possess the property of non-uniform memory organization (NuMA). Unlike tra-
ditional computers with uniform memory, NuMA systems need special program-
ming of parallel applications because of requirement for each thread to access
only (mostly) data resided in a processor’s local memory. The NuMA-specific
approach to OpenMP programming was considered in the previous work [6]
devoted to the parallelization of a full-physical model for forest fire simulation.

The present work combines and extends the previous experience [4,6]. Its goal
is to develop and analyze the OpenMP approach for modeling of incompressible
flows in regular domains. Target computer systems for this investigation are
desktops and small servers (cluster nodes) having up to 12-16 processor cores.
These values determine the reasonable level of parallelization and, therefore,
selection of a parallelization method.

Thereby, in the presented paper we will describe mathematical model and nu-
merical method, strategy of OpenMP parallelization and comparison of parallel
efficiency for several types of computers systems.

2 Numerical Method

A numerical problem considered in this paper is the solution of 3D non-stationary
Navier-Stokes equations in Boussinesq approximation for incompressible viscous
flows in cylindrical domains. This sort of simulation is used in crystal growth
applications, like semiconductor melt flows in a Czochralski apparatus, and in
modeling of natural convection in space experiments. The velocity-pressure for-
mulation is employed, with the decoupled solution of momentum (V ), pressure
(p) and temperature (θ) equations using the Fractional step method:

∂V

∂t
+ ∇ · (V V ) = −∇p + ∇2V − Ra

Pr
g θ

∇ · V = 0

∂θ

∂t
+ ∇ · (V θ) =

1
Pr

∇2θ

The Finite Volume method (FVM) discretization is applied to the regular
staggered grid, with accurate treatment of the cylinder axis for essentially non-
axisymmetric flows. Second-order spatial discretizations are used, with the quad-
ratic upstream interpolation of advective terms (QUICK scheme) and optional
flux limiter for the scalar transport with high Peclet number.



OpenMP Parallelization of a CFD Code for Multicore Computers 15

The time integration scheme is partially implicit, with the implicit treatment
of the most critical terms. The pressure Poisson equation is solved by the novel
highly efficient direct method based on the decomposition of a matrix on the basis
of its eigenfunctions (considered below). Using this new method instead of the
traditional Fourier approach is necessary in order to apply a highly nonuniform
grid in the axial direction for the simulation of convective processes in very thin
boundary layers (e.g. near the surface of a growing crystal).

This numerical method is fully direct and doesn’t involve costly iterative steps.
Therefore it is applicable for accurate and efficient simulations of transitional and
turbulent flows with the good spatial and temporal resolution.

Figure 1 shows a cylindrical computational domain for Czochralski hydrody-
namic model (left) and examples of isolines and trajectories in a typical non-
axisymmetric flow simulation (right).

z

r
ϕ

Rx

Rc

H

crystal
melt surface

crucible

Fig. 1. Computational model of a Czochralski apparatus (left) and examples of simu-
lated flow pictures (right)

3 Solving the Pressure Poisson Equation

For the solution of the pressure Poisson equation, a new direct method was
developed. This method is based on the concept of separation of variables.

The Laplace operator possesses the property of separability, when each di-
rectional part depends only on one coordinate, e.g. L(i, j) = Lxx(i) + Lyy(j)
(2D case). This property can be used as a basis for constructing the method of
separation of variables. An elliptic equation with a separable operator looks as

Lxx(i)q(i, j) + Lyy(j)q(i, j) = f(i, j)

We will find the solution of this equation using the series expansion on the
basis of eigenfunctions of the first part of the Laplace operator:

q(i, j) =
∑

m

q̃m(j)ϕm(i)

f(i, j) =
∑

m

f̃m(j)ϕm(i)
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Each eigenfunction ϕm(i) has its own eigenvalue λm such that:

Lxx(i)ϕm(i) = λmϕm(i)

Since all eigenfunctions are orthogonal, the original discrete 2D equation can
be transformed into a set of independent 1D equations:

λmq̃m(j) + Lyy(j)q̃m(j) = f̃m(j)

This technique is called a matrix decomposition approach and is used for
reducing the number of dimensions in a separable linear system. The algorithm
consists of 3 steps: expansion of the function f(i, j) from the right hand side of
a 2D equation into the series f̃m(j), solution of independent 1D equations, and
synthesis of the unknown q(i, j) from the series q̃m(j). Both expansion (analysis)
and synthesis can be performed by matrix multiplication, using the matrix of
eigenfunctions and its inverse (prepared preliminarily in the beginning of a run).

The well-known Fourier method for solving the Poisson equation is a partic-
ular case of the general matrix decomposition technique. In this method, very
efficient Fast Fourier transform (FFT) is used instead of more costly matrix
multiplication. However, the Fourier method imposes severe restrictions on grid
size and uniformity. As a result, it can’t be used in more general cases.

In 3D case, it is possible to apply the matrix decomposition technique twice in
order to obtain finally a set of separate 1D equations. In the current cylindrical
coordinate approach, an FFT is applied first for the azimuthal direction. Then,
a general matrix decomposition is used for the axial direction. Finally, resulting
tridiagonal linear systems are solved for the remaining radial direction.

Formally, the new method is much more expensive than other direct methods.
Its cost is O(N) operations per grid point, where N is the corresponding dimen-
sion. In comparison, operation count for the Fourier method is only O(log(N)).
Another competitive direct method, 1-way dissection (1-WD), that is based on
the splitting of a region into narrow stripes and renumbering of grid nodes, costs
O(sqrt(N)). However, matrix multiplications (as a main part of the new method)
can be executed very fast on modern processors: highly optimized procedures of
BLAS-3 library achieve up to 80% of peak processor performance. In contrast,
FFT and 1-WD methods have very complicated memory access patterns and are
unable to run as fast.

As a result, the new method becomes very competitive: it is only about 1.5
times more expensive than FFT. At the same time it doesn’t impose restrictions
on the grid uniformity. Additionally, the method of separation of variables is
more suitable for parallelization than another non-restrictive direct methods
(like 1-WD) because it consists in solving independent 1D equations and doesn’t
require to discover parallelization potential as in the case of multidimensional
linear solvers (example of a similar problem is considered in [7]).

It should be noted that direct methods are generally much more efficient
for solving Poisson equations than iterative ones (though more restrictive). For
example, the method above works on SGI Altix computer at least 10 times
faster (depending on grid size and parallelization level) than the advanced LU-
preconditioned Conjugate gradient solver [7].
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4 Parallelization Method

OpenMP approach [5] used in the current work is very convenient for portable
parallelization of many algorithms. If a computational domain is of regular shape
(cylinder, rectangular parallelepiped) then the natural splitting can be used:
each 3D array being processed throughout the algorithm is divided by the last
spacial dimension (last index in Fortran notation). This splitting is performed
automatically, a user should only apply an !$OMP DO directive to each outermost
do-loop concerned [6]. Splitting by outermost loop iterations corresponds to one-
dimensional geometric decomposition of a computational domain (Fig. 2, left).
This decomposition is natural and efficient with respect to the requirements of
data distribution for systems with hierarchical memory organization. Addition-
ally, one-dimensional splitting allows to fulfil the requirement for non-uniform
memory (NuMA) computers that all (most) data accessed by a processor must
reside in its local memory. The easiest way to achieve this is to initialize all data
arrays in parallel loops with the same splitting as processing loops. In this case,
physical pages of data arrays are allocated in corresponding local memories [6].
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Fig. 2. Splitting of a computational domain for simple (non-algebraic) and complex
(algebraic) parts of the algorithm

However, automatic OpenMP parallelization can be applied only if there are
no recursive dependences between outer loop iterations. Generally, a program
may contain the following sorts of outer loops (with respect to this requirement):
without recursive dependences (1), with false dependences (2), and with real
dependences (3).

The first sort of loops is typical for calculation of explicit steps of algorithms,
as well as for steps with implicit dependences in other directions than the outer
one. The same applies to the second sort of loops: false dependences appear, for
example, in optimized algorithms when numerical flux is calculated only for one
face of each computational cell (in every direction) and this value is used later
as a corresponding face value of the adjacent cell. Such false dependences can
be easily eliminated by introducing flag values indicating whether an outer loop
iteration is the first one for the current thread. In this case all necessary cell
values must be additionally calculated. The overhead of this technique is low:
e.g. if the outer dimension N = 120 is split into 8 subdomains, then only every
15’th face value for the corresponding direction must be recalculated.
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The case with real dependences between outer loop iterations is the most com-
plex one. This case appears in implicit algorithms and, in particular, in solving
the pressure Poisson equation. In the current implementation both algorithm
steps (ADI-implicit and Poisson) need to solve tridiagonal linear systems along
the outer dimension.

In order to solve a tridiagonal system, the Gauss elimination method is usu-
ally used. However, this procedure is intrinsically recursive. The easiest way to
overcome recursion is to perform elimination simultaneously from two ends of
a tridiagonal system. This method is called twisted factorization. In order to
increase the level of parallelization to 4, a hierarchical extension of this tech-
nique can be used, when twisted factorizations are applied to both halves of a
tridiagonal system [3]. In this case, some fill-in appears, that requires an ad-
ditional step of the algorithm. This is a two-way parallel partition method.
Figure 3 represents twisted factorization after elimination step (left), and two-
way method after elimination and backsubstitution steps (center and right,
respectively).
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Fig. 3. Illustration of the two-way method of parallelization for 2 and 4 threads

Generally, the two-way method can be extended to 8 threads and more. How-
ever, this extension greatly complicates the algorithm. In the current approach,
splitting of a computational domain by the last (radial) dimension is limited
to 4 for recursive algorithms, and additional splitting is performed by another
(axial) dimension. For 8-thread parallelization, it is enough to additionally split
a domain into 2 parts. For 12 or 16 processor cores, splitting into 3 or 4 parts
is used (Fig. 2, right). Further extension to 24 or 32 threads is possible and
straightforward, but in this case the parallel efficiency will be limited because of
narrowness of subdomains in one-dimensional splitting of the main part of the
algorithm (see Fig. 2, left as an illustration of narrow splitting).

Thus, the considered approach uses two techniques: natural parallelization on
any number of threads with one-dimensional splitting for simple non-algebraic
parts of the algorithm, and special parallelization of tridiagonal linear systems
with particular splittings (2, 4, 8, 12, 16 threads) for algebraic parts. In solving
the pressure Poisson equation, this approach combines easiness and effectiveness
of parallelization with absence of restrictions on grid size and uniformity.
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5 Results and Analysis

The developed parallelization method was tested and evaluated on several shared
memory computer systems. Five of these systems were selected for a comparative
analysis:

– cluster node with two 4-core processors Intel Xeon of the Core 2 Quad family
(3 GHz, memory 4×DDR2-800);

– 6-core processor Intel Core i7-980X (3.33 GHz, memory 3×DDR3-1333);
– 4-core processor Intel Core i7-920 (2.66 GHz, memory 3×DDR3-1333);
– NuMA-server SGI Altix 350 built on nodes with two Itanium processors in

each (1.5 GHz, memory 2×DDR2-533 per node) [6];
– NuMA-server Bull S6030 built on 8-core processors Intel Xeon X7560 as

shared-memory nodes (2.27 GHz, memory 4×DDR3-1066 per processor).

Results of measurement are presented on Fig. 4. For this evaluation, a CFD
application program with the grid size 128 × 100 × 120 was used.
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Fig. 4. Parallelization speedup for five computer systems
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Each system is characterized by particular properties. For example, Core i7-
9xx family processor is the most suitable one for the considered problems: it has
4 to 6 fast cores and powerful memory subsystem with high throughput. The
latter property is important for memory-bound applications. As a result, this
processor demonstrates good speedup and efficiency of parallelization: 3.5 and
87% for 4 threads. However, with 6 threads (Core i7-980X), scalability is not so
good because of saturation of the memory subsystem: speedup and efficiency are
4.33 and 72% in this case.

There exist two-processor configurations built on similar processors (Xeon
55xx/56xx families). They belong to the NuMA class because each processor
has its own local memory. Due to this, memory throughput increases twice and
scales with the number of processor cores. Prediction of the parallel performance
for bi-processor Xeon system is shown on Fig. 4 (Core i7-920) by dashed line.

On the contrary, the system with two Xeon processors of the Core 2 Quad
family behaves poor because of the old-fashioned bus-based system organization.
This organization severely limits memory throughput and, consequently, multi-
threaded performance. Solid line on the graph for Core 2 Quad demonstrates
degradation of parallel efficiency for 8 threads to only 46%. Dashed line repre-
sents speedup when only a corresponding part of the system is allocated to a job
(one processor for 4 threads, one dual-core chip of the two-chip processor for 2
threads). This is an additional illustration of limited scalability of this system.

Scalability of Itanium-based SGI Altix non-uniform memory system was ex-
pected to be not high for 2 threads because this system is built on bi-processor
nodes with limited throughput of their local memories. In fact, it happened to
be reasonable: speedup and efficiency are 1.82 and 91% in this case. For 4 and
8 threads, memory subsystem scales linearly that results in good scaling of the
parallel performance (by 1.87 for 2 to 4 threads, by 1.86 for 4 to 8 threads).
Further increase to 12 and 16 processors doesn’t demonstrate so good scalability
because additional splitting of a computational domain in axial direction into
3 or 4 parts leads to non-optimal allocation of data and increases data access
overhead (due to bi-processor nature of shared-memory nodes). Nevertheless,
SGI Altix still demonstrates additional acceleration with 20 and 24 processors.

The best results were obtained for Bull S6030 NuMA-server (Table 1). This
system demonstrates superlinear speedup for up to 12 threads. It can be ex-
plained by the properties of hierarchical cache and memory subsystems. In par-
ticular, large L3-cache (24 MByte) with scalable multibank organization as well
as scalable memory controllers distinguish this processor as very suitable for
parallelization. Organization of a multiprocessor system with individual memory
controllers ensures good parallelization efficiency when more than one processor
is used (i.e. for more than 8 threads). Slight degradation of parallel efficiency is
observed only for 16 threads and more. Partly this degradation can be explained
by non-ideal load balance after splitting of a domain into large number of subdo-
mains (for example, splitting of dimension 120 by 16 gives 7.5 as a subdomain’s
thickness). Despite this, Bull server demonstrates good parallel efficiency even
for 24 threads (86.2%) and reasonable efficiency for 32 threads (71.7%).
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Table 1. Parallelization results for Bull S6030 multiprocessor server (computational
times are presented for one unit of work equal to 26 time steps)

# threads 1 2 4 6 8 12 16 24 32

total time
(sec) 19.85 10.52 4.605 3.415 2.44 1.64 1.335 0.96 0.865

speedup – 1.89 4.31 5.81 8.14 12.10 14.87 20.68 22.95

efficiency – 94.3% 107.8% 96.9% 101.7% 100.9% 92.9% 86.2% 71.7%

pressure part
(sec) 3.74 1.96 0.92 0.74 0.51 0.35 0.29 0.23 0.20

pressure part
(% of total) 18.8% 18.6% 20.0% 21.7% 20.9% 21.3% 21.7% 24.0% 23.1%

Table 1 also presents computational times for pressure/velocity correction
procedure (mostly for solving the pressure Poisson equation). It can be seen that
proportion of total time spent in this procedure increases with the number of
threads due to complexity of parallelization of the tridiagonal solver. Additional
increase occurs for 24 and 32 threads because parallelization level for tridiagonal
systems is limited to 16 in the current implementation of the algorithm.

Thus, most of the systems above can be efficiently used for parallel computa-
tions of this class of numerical problems. In particular, single- and dual-processor
computers built on Intel i7-9xx family processors are good and inexpensive candi-
dates for 8-12 thread parallelization, while more expensive multiprocessor NuMA
computers with scalable memory subsystems can be considered as target plat-
forms for running 16 threads and more. Very soon, new desktop and small-server
processors will appear, such as AMD Bulldozer and Intel Sandy Bridge E. The
latter, for example, will have up to 8 processor cores and very powerful memory
subsystem with four DDR3 controllers. Forthcoming availability of these sys-
tems again justifies simple and efficient OpenMP-based parallelization methods
for 12-16 threads.

6 Conclusion

In this work we have developed an OpenMP parallelization method for mod-
eling of incompressible flows. The new method is suited for modern multicore
processors and multiprocessor shared memory systems of moderate class (with
up to 16 processor cores). It employs new efficient direct method for solving
Poisson equation and other optimization techniques. The method is adapted to
non-uniform memory computers (NuMA) and demonstrates good parallelization
efficiency. With the new method, computational speed of a modern inexpensive
desktop computer can exceed the speed of a typical computer in 2005 by about
10 times. This method was used for performing massive parametric numerical in-
vestigations of hydrodynamic interactions and instabilities in Czochralski model
in parallel regimes with up to 16 threads.
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Abstract. We introduce a formal framework to specify and enforce
quantitative security policies. The framework consists of: (i) a stochas-
tic process calculus to express the measurable space of computations in
terms of Continuous Time Markov Chains; (ii) a stochastic modal logic
(a variant of CSL) to represent the bound constraints on execution speed;
(iii) two enforcement mechanisms of our quantitative security policies:
potential and actual. The potential enforcement computes the probability
of policy violations, thus providing a sort of static evaluation of when the
policy is obeyed. This supports the user to accept/discard a component
when the probability of the security violation is below/above a suitable
chosen threshold. The actual enforcement computes at run-time the de-
viation of the execution speed from the acceptable rate. This specifies
the execution monitor and drives it to abort unsafe executions.

Introduction

In the last few years a new trend is emerging, that exploits the network for
computing in a different manner. Applications are no longer built as monolithic
entities, rather they are constructed by plugging together computational facili-
ties and resources offered by (possibly) untrusted providers. Illustrative examples
of this approach are the Service Oriented, GRID and CLOUD paradigms. Since
applications have little or no control of network facilities, security issues be-
came even more acute. The literature has several proposals that address these
problems. They can be roughly divided into dynamic, that monitor executions
possibly stopping them when unsecure; and static, that analyse at binding time
the published behavioural interfaces to avoid risky executions.

A language based approach supporting the static analysis of security has been
developed in [12,11,10,9]. Its main ingredients are: local policies, call-by-contract
invocation, type-effect systems, model checking and secure orchestration. How-
ever, this approach only takes into account qualitative aspects of behaviour,
neglecting quantitative ones, typically the rates at which the different activities
are performed. The importance of describing also quantitative aspects of systems
is witnessed by several quantitative models and analysis tools that have recently
been put forward in the literature. To cite only a few, the stochastic process
algebras PEPA[23], the Stochastic π-calculus [30], EMPA [14], the stochastic
model checker PRISM[25].
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In this paper we extend the approach of [10] to also deal with quantitative
aspects. Our starting point is the abstraction of system behaviour, called history
expression, that are processes of a suitable process calculus.

We extend history expressions by associating a rate with actions, so landing in
the world of stochastic process calculi. In this way, we obtain stochastic history
expressions (HEμ). Our first goal is to give them a quantitative semantics in
terms of continuous-time Markov chains (CTMC), so making usable well-known
techniques for quantitative analysis [8,26,18]. We use a variation of the stochastic
kernels over measurable spaces [15,29] to represent CTMC in the style of [17,16].
To overcome the difficulties with recursion, we restrict stochastic history ex-
pressions to a disciplined iteration, namely binary Kleene star (for a different
approach, see [17]). As a matter of fact, HEμ turn out to be a stochastic extension
of BPA∗

δ [22,7].
Our second main contribution is sharpening security policies with quantitative

constraints. Roughly, quantitative security policies are safety properties that
enforce bounds on the speed at which actions have to be performed. These
policies are first class operators inside HEμ, so that security can be taken into
account from the very beginning of application development. To express policies
we consider CSLS , a linear subset of CSL [8,4].

Because of the inherent stochasticity of our programming model, policies are
to be controlled in two complementary modalities: potential or actual. The first
one applies to the CTMC semantics, hence the check is on the expected behaviour
— rates in the CTMC associated with the an HEμ expression e represent the
average speed of the actions in e. Potential analysis then measures the proba-
bility of policy violations. This kind of verification can be carried out through a
probabilistic model checker, e.g. PRISM [25].

The actual control can only be done dynamically, because in a specific, unlikely
computation, the actual speed of an action can greatly deviate from its rate.
Security is then enforced during the execution through an execution monitor
aborting such a unlikely, unsafe computation.

Potential verification enables a user to accept/discard an application when
the probability of a security violation is below/above a certain threshold he feels
acceptable. Complementary, actual monitoring will stop the unwanted execution,
so guaranteeing security.

To clarify our formal development, we introduce below a simple example. A
more detailed one will be illustrated in Section 4. We want to analyze a system,
the behavior of which is specified by the following process. The system starts a
race between actions a and c. In the case a is the first to complete, b is performed
and then the whole process restarts. Otherwise, if c wins the race, the process
restarts right after c completion. We model the expected execution speed by
associating to each action a rate, used then as the parameter of an exponentially
distributed random variable. Section 1 reviews the basic notions about random
variables and probability theory. For simplicity, suppose that here the action a
has rate 0.5, while the actions b and c have both rates 1.
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hstart (b, 1) · h

(a, 0.5)

(c, 1)

(b, 1)

Fig. 1. CTMC associated with h

We model the system above through the following HEμ expression h =
(((a, 0.5) · (b, 1)) + (c, 1)) ∗ δ. The operator ∗ is the binary Kleene star, that
expresses the iteration of the process (the δ is the deadlock process preventing
the iteration to terminate). As said, the long term behavior of HEμ expressions
is conveniently specified by a CTMC. In our case, we give a graphical represen-
tation of the semantics of h in Figure 1. The syntax and the semantics of the
stochastic history expressions are formally defined in Section 2.

Assume now that the system has to respect a quantitative actual policy φ
saying that “action a must never last more than 1 second”. This policy is to
be reflected into a potential requirement, expressing that, in the long-run, the
system will violate φ with low probability. A suitable CSLS formula that repre-
sents this potential quantitative policy is ψ = C≤1%(φ). We omit here the details
and only read ψ as: the computations violating φ are less than 1% of the total.
Section 3 presents the way we specify and enforce policies.

We now verify whether the expression h respects the potential policy ψ or not.
To this purpose, we compute the vector of the steady state distribution of the
CTMC associated with h. Each entry of the vector expresses the portion of time
spent in each part of the computation. The steady distribution of the CTMC in
Figure 1 is [0.6̄, 0.3̄]. The first entry is related with the part where a and c are
racing, the second one with the part when b is executing. By standard reasoning
on the properties of exponential random variables, the probability that a lasts
longer than 1 second is p = 0.36, the probability that the action a wins the race
is q = 0.3̄. Hence, we obtain that ψ is violated because the probability that φ is
violated is about 8%. Indeed, multiplying 0.6̄, the first entry of the vector (when
action a is executing), by q (the probability that a is the one that completes)
and by p (the probability that the duration of a violates φ) we get about 0.08.

This analysis suggests to deploy the system equipped with a monitoring mech-
anism that abort an execution when it is about to violate φ. More details are in
Section 3.

1 Preliminaries

We review the main notions and notations about measure theory and we refer
the reader to [3,2] for more details.

Given the support set M �= ∅, a σ-algebra Σ over M is a set of subsets of M ,
the measurable sets, containing ∅ and closed under complement and countable
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union. The structure M = (M, Σ) is a measurable space and a measure over it
is a function κ : Σ → R+ ∪ {∞} such that:

1. κ (∅) = 0
2. Given a countable collection {Ni}i∈I of pairwise disjoint sets in Σ then:

κ (∪i∈INi) =
∑

i∈I κ (Ni) (σ-additivity)

The class of measures on a measurable space M will be denoted by Δ(M, Σ) or
Δ(M) when the support set and the σ-algebra are clear from the context.

Given a class of sets G, called generator, σ(G) is the minimal σ-algebra con-
taining G. If G contains all pairwise disjoint sets then G is a base of σ(G).
Note that σ(G) always exists since ℘(G) contains G and the intersection of an
arbitrary collection of σ-algebras is a σ-algebra.

Given two measurable spaces (M1, Σ1), (M2, Σ2) a function f : M1 → M2

is measurable iff ∀A ∈ Σ2.f
−1(A) ∈ Σ1. The class ‖M1 → M2‖ contains the

measurable functions between (M1, Σ1) and (M2, Σ2) omitting Σ1, Σ2 when un-
ambiguous. A measurable function is structure-preserving.

Hereafter, whenever using a measurable space of measures κ ∈ Δ(M, Σ), we
will consider the σ-algebra generated by the sets {κ ∈ Δ(M, Σ) | κ(S) ≥ r} for
arbitrary S ∈ Σ, r > 0, .

Given an arbitrary set Ω �= ∅, the sample space, a σ-algebra on it and a mea-
sure P s.t. P(Ω) = 1, we can build a probability space (Ω, Π, P) so interpreting
standard probability theory in the measure theoretic context. For instance P(A)
is the “probability of the events in A” with A measurable, i.e. A ∈ Π .

The random variables of probability theory can be defined and generalized in
measure theory. A random variable X is a measurable function between (Ω, Π)
and the measurable space formed by intervals in R. The measure P governs
the probability of X−1([a, b]). Given a comparison symbol �∈ {≤,≥, <, >}, we
abbreviate P(X−1({x | x � z})) with P(X � z).

A random variable of parameter λ has an exponential distribution if

P(X ≤ t) =

{
1 − e−λt if t ≥ 0
0 otherwise

Only exponentially distributed random variables enjoy the memoryless property
P (X > s + t | X > t) = P (X > s) for all s, t ≥ 0; they have mean 1

λ ; if {Xi}i∈I

is a finite set of such variables with parameter λi then M = min{Xi}i∈I is an
exponential random variable with parameter

∑
i∈I λi.

We now introduce Continuous-Time Markov chains on a countable state space.
We refer to [28,24,3,8] for details.

Definition 1.1. Let S be a denumerable set, a Continuous-Time Stochastic
Process is an indexed (by t ∈ R+) family of random variables X(t) : Ω → S
with (Ω, B, P) probability space.

The value of the variable Xt can be interpreted as the state of the process at
time t. A continuous-time system evolves performing transitions between states.
We limit ourself to specific class of processes with the Markov property.
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Definition 1.2. A Continuous-Time Markov Chain (CTMC) is a stochastic
process X(t) with t ≥ 0 such that for any s, t ≥ 0 and i, j, xu ∈ S the Markov
property holds :

P (X(t + s) = j | X(s) = i, X(u) = xu, 0 ≤ u < s) = P (X(t + s) = j | X(s) = i)

The CTMC is said to have homogeneous transition probabilities if:

P(X(t + s) = i | X(s) = j) = P(X(t) = i | X(0) = j)

Hereafter we will only use homogeneous CTMC.
Because of the Markov property, we denote with a random variable Lj , de-

pending only on the current state j, the sojourn time: the amount of time spent
in j before performing a new transition. Also we have that:

P (Li > s + v | Li > s) = P (Li > v) memoryless property of Li

Hence, it turns out that Li must be exponentially distributed. When the process
leaves state i, it can reach another state with a certain probability. This prob-
ability does not depend on the time spent in i. Hence we will indicate with pij

the probability that the process reach state j from state i.
As a consequence, a CTMC is completely characterized by the parameters λi

of the exponentially distributed random variables Li and by pij . A well-know
representation of a CTMC is the rate-matrix R = [rij ] with rij = pijλi.

This representation suggests another interpretation of the evolution of a
CTMC. Since the minimum of a set {Ci}i∈I of exponentially distributed random
variables with rate ci is again an exponentially distributed random variable with
rate

∑
i∈I ci, we can interpret Li as the minimum min{Rij} of a set of random

variables with rate rij . Hence, a CTMC models a process that, while entering
in state i, enables a set of action, whose durations is modelled by the random
variables {Rij}j∈S . These actions are competing (racing) for completion. If the
action with duration Rij is the faster, then the next state will be j.

Another common and useful characterization of CTMC is through the in-
finitesimal generator matrix Q, given in terms of the rate matrix:

Definition 1.3. Let D = [dij ] be a matrix with dij = 0 if i �= j and dii =∑
j∈S rij otherwise. Then the infinitesimal generator matrix is Q = R − D.

All previous definitions smoothly extend considering a function L : S × S → A
labelling transitions between states.

Let pij(t) = P(X(t) = j | X(0) = i) and P (t) = [pij(t)] its matrix representa-
tion, a steady distribution π is a vector such that π = πP (t) for all t ≥ 0. The
meaning is that if we use π as distribution of X(0) then this will remain the
same for all t > 0:

P(X(t) = j) =
∑

i∈S

P(X(t) = j | X(0) = i)·P(X(0) = i) =
∑

i∈S

pij(t)πi = [πP (t)]j = πj

It is well know that the infinitesimal generator matrix plays almost the same
role (in Continuous-Time) of the probability matrix of a Discrete-Time Markov
Chain finding a steady distribution:
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Fact. Given a CTMC let Q be its infinitesimal generator matrix, then π is its
steady distribution iff πQ = 0 and

∑
i∈S πi = 1

Such π always exists for a finite CTMC and it is unique if the CTMC is irre-
ducible (if every state can be reached by a sequence of transitions from all other
states). A steady distribution is important because a CTMC will reach it “on
the long run” as shown by the following theorem:

Fact. If a CTMC has a steady distribution π, then ∀i : limt→∞ pij(t) = πj

The notion of steady distribution is very important to analyse reliability and
performance of a system modelled as a CTMC. In fact, πj represents the pro-
portion of time spent in state j on the long run. This information can be used
to infer the typical behaviour of the system.

2 Stochastic History Expressions

A language-based framework for managing security issues in a distributed con-
texts has been proposed in [12,11,10,9]. The starting point of these works is a
functional programming language supporting remote service invocation and the
enforcing of security policies. The execution of a distributed application comprise
local and remote computations. Security relevant events generated during the
executions of the application are collected in sequences, called histories. Security
policies express constraints over these histories. Enforcing security can be done
statically and dynamically. The dynamic mechanism uses a runtime monitor that
blocks executions about to violate a security requirement. The static one uses a
formalism, called history expressions, to represent all the histories that can be
generated. These are then model checked to verify whether the constraints will
be always satisfied. Their approach is qualitative only, here we present a first
step towards a quantitative extension.

We first extend histories into timed histories. A timed history is a possibly
empty sequence ((a, ta), (b, tb), . . . ) of occurred events, with tx duration of event
x. Also security policies are extended to express timing constraints on timed
histories. The values tx are unpredictable on a single run of a program but we
assume these duration to be exponentially distributed.

Under this assumption, we extend history expressions and obtain stochas-
tic history expressions (HEμ). These express in a finite way potentially infinite
timed histories and enable us to model check quantitative policies using well-
known techniques. Indeed, the semantics of a HEμ process is given in terms of
a CTMC, that implicitly describes both the timed histories and the long run
behaviour of a program. It is convenient to use a functional representation of
CTMC called Markov kernel (see Definition 2.4).

2.1 Syntax

The building blocks of HEμ are stochastic events. Given an alphabet of event
names A, a stochastic event is a pair (a, α) ∈ A × Q+, where α is the rate of a,
i.e. the parameter of the exponential random variable modelling its duration.
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Definition 2.1. A stochastic history expressions (HEμ ) h ∈ H is a term gen-
erated by the following grammar:

h1, h2 ::= (a, α) (stochastic event) | δ (deadlock) |
ψ[e1] (policy framing) | h1 · h2 (sequentialization) |
h1 + h2 (stochastic choice) | (h1

∗ h2) (binary Kleene star)

A stochastic event (a, α) performs action a and then successfully terminates.
Deadlock δ is a non terminated process that cannot perform any action. The
stochastic choice operator + simultaneously enables two or more actions of pro-
cesses h1, h2. We consider the enabled actions as competing: this means that
the system is in a race condition and it hangs waiting for the fastest action to
occur, while discarding the slower ones. We also consider a disciplined form of
iteration: the binary Kleene star. It takes two processes and let them race. If
the left process wins then it executes and the race starts again, otherwise the
right executes and the iteration is over. We can express infinite behaviour as the
no-exit iteration (h1

∗ δ) [13] that describes a process continuously doing h1. For
an overview about expressiveness of iteration, recursion, replication and a com-
parison between unary and binary star in classical process algebras see [21,6].
The sequentialization operator is often present in stochastic process algebras
in its restricted variant of action prefix. However in [10] it is crucial to define
the type-and-effect system that associates programs to history expressions. To
manage sequentialization we will need the concept of terminated process, indi-
cated with �, that cannot fire any action, still being different from δ. Indeed
intuitively � · a = a while we will make sure that δ · h = δ, see [1,5]. We re-
mark that we will deal with � into the semantic definitions and not in the syn-
tax. In this we follow [1] where termination is treated as a meta-predicate over
processes. Similarly to history expressions we attach policies ψ to expressions
through the framing construct. We will define formally quantitative policies in
Section 3.

We choose to stick on exponential distribution because the resulting mathe-
matical theory enjoys elegant properties, e.g. the way we use to break the race
condition. Other distributions can also be accommodated in our framework with-
out much effort, especially because we neglect here an explicit parallel operator.

Note that the stochastic choice operator enables us to cast pure probabilis-
tic branching in a stochastic setting. This behaviour can be simulated using
stochastic choice in combination with high rate events s.t. the time consumed
for their completion is negligible in the analysis, while providing the intended
probabilistic behaviour.

In the literature there are many stochastic process algebras: PEPA [23],
EMPA [14], stochastic π-calculus [30] and the stochastic version of CCS in [16],
just to cite a few. Our HEμ algebra differs from these mainly because we offer
full sequentialization, quantitative policy framing and the binary Kleene star. As
a matter of fact, HEμ with no policy framing turns out to be to be a stochastic
extension of BPA∗

δ [22,7].
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2.2 Structural Equivalence

We first define a structural congruence over the set of processes H.

Definition 2.2. We define the relation ≡ as the smallest relation over H such
that:

– It is an equivalence relation and a congruence with respect to ·, +, ψ, ∗.
– It respects the following laws:

δ · h1 ≡ δ h1 + δ ≡ h1 h1 + h2 ≡ h2 + h1

h1 + (h2 + h3) ≡ (h1 + h2) + h3 h1 · (h2 · h3) ≡ (h1 · h2) · h3

(h1 · h3) + (h2 · h3) ≡ (h1 + h2) · h3 h1
∗ (h2 · h3) ≡ (h1

∗ h2) · h3

Note that the law h1 · (h2 + h3) ≡ (h1 · h2) + (h1 · h3) is missing. Indeed (a, α) ·
((b, β) + (c, γ)) �≡ (a, α) · (b, β) + (a, α) · (c, γ) because b and c are in a race
condition within the left process.

We define now some quotient spaces with respect to the structural equivalence
that will be used in the semantics:

Definition 2.3. We define H≡ to be the set of ≡-equivalence classes of H and
[h]

≡
the equivalence class of h ∈ H. Given the minimal σ-algebra Ξ≡ generated

by H≡ (i.e. Ξ≡ = σ(H≡), the measurable space H≡ is H≡ = (H, Ξ≡). Finally,
H� indicates H∪ {�} and H≡

� = (H�, Ξ≡
�) with Ξ≡

� the σ-algebra generated by
H≡ ∪ {�}.

2.3 Semantics

We give semantics of HEμ following the approach of [16,17]. We start with a
slight variant of the Markov Kernel to accommodate termination and iteration.
As a matter of fact, Markov Kernel is a labelled version of Stochastic Kernel
introduced in [15,29].

Definition 2.4. Given a measurable space M = (M, Σ) and the denumerable
set A of event names, let Σ′ = σ(Σ ∪ {�}) be the smallest σ-algebra over M ′ =
M ∪ {�} containing the sets in Σ and the singleton {�}. A Markov kernel is a
triple (A,M, θ) where θ : A → ‖M → Δ(M ′, Σ′)‖ is its transition function. A
Markov Process is a quadruple (A,M, θ, m) where m ∈ M is the initial state.

To give a compact definition of semantics to HEμ, it is convenient to introduce
some auxiliary notations. Recall that it suffices to define a measure on G to
obtain its extension on σ(G), which follows by σ-additivity.

– The r-Dirac measure on N is defined: δr
N (N ′) :=

{
r if N ′ = N

0 otherwise
∀N ′ ∈ G

– The null measure is defined: ω(N ′) := 0 ∀N ′ ∈ G
– Given an alphabet A we define the function ωA : A → Δ(H≡

�) such that
ωA(x) = ω, with ω null measure on H≡

�.
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– Given a ∈ A the function [aκ] : A → Δ(H≡
�) is such that

[aκ](x) = if x = a then κ else ω

In the following we will use this operator instantiated in [aδα
� ], with δα

� α-
Dirac delta measure on �.

– Given h ∈ H, any function in the class of h-operator �h : Δ(H≡
�)A →

Δ(H≡
�)A is defined as follows:

[�hμ](a)(H) =
∑

k∈H

⎧
⎪⎨

⎪⎩

μ(a)([l]
≡

) if ∃l ∈ H.k ≡ l · h
μ(a)(�) if k ≡ h, k �≡ δ

0 otherwise

– The binary operator ⊕ : Δ(H≡
�)A×Δ(H≡

�)A → Δ(H≡
�)A is defined as follows:

(μ ⊕ μ′)(a)(H) = μ(a)(H) + μ′(a)(H)

The operators are well-defined and enjoy the following properties.

Lemma 2.1 (Properties of the operators)

1. �hω = ω
2. μ ⊕ μ′ = μ′ ⊕ μ
3. (μ ⊕ μ′) ⊕ μ′′ = μ ⊕ (μ′ ⊕ μ′′)
4. μ ⊕ ωA = μ

5. �hμ = �h′μ if h ≡ h′

6. �h(μ ⊕ μ′) = (�hμ) ⊕ (�hμ′)

7. �(h1·h2)μ = �h2 �h1 μ

In our semantic context, as in [16], Structural Operational Semantics (SOS)
rules are not used to give a pointwise semantics (P → Q), rather they define a
function that map processes to rate distributions (the Markov kernel).

We now introduce SOS rules to map HEμ processes to functions in Δ(H≡
�)A.

Indeed we are defining a relation �⊆ H × [A → Δ(H≡
�)]. If (h, μ) ∈�, the

intended meaning of μ(a)(K) is the total apparent rate (sum of all rates) of an
a-transition from h to a state in K.

Definition 2.5. The relation �⊆ H × [A → Δ(H≡
�)] is the smallest relation

satisfying the following rules:

(ddk)
δ � ωA

(act)
(a, α) � [aδα

� ]
(cho)

h1 � μ1 h2 � μ2

h1 + h2 � μ1 ⊕ μ2

(seq)
h1 � μ

h1 · h2 � �h2(μ)
(cnt)

h � μ

ψ[h] � μ
(star)

h1 � μ1 h2 � μ2

h1
∗ h2 � [�(h1∗h2)μ1] ⊕ μ2

We briefly comment on the above rules. The semantics of δ is a function that
associates the null measure with any action in A; therefore δ only has transition
with rate 0, i.e. it can fire no transition. Instead, (a, α) has an a-transition to-
wards � with rate α, while the others have rate 0. Sequentialization of h1, h2

builds the associated function following a sort of continuation semantics. The
quantitative policy ψ is neglected at this semantic level, yet maintaining at a
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Table 1. SOS derivation of ((a, 2) + (b, 1.5)) · (c, 3)

(seq)
(cho)

(act)
μ1 = [aδ2�

]

(a, 2)� μ1

(act)
μ2 = [bδ1.5�

]

(b, 1.5)� μ2

((a, 2) + (b, 1.5))� μ1 ⊕ μ2

((a, 2) + (b, 1.5)) · (c, 3)� �(c,3)[μ1 ⊕ μ2]

syntactic level, so paving the way to subsequent security check. Our semantics
of the choice operator diverges from known approaches (e.g. multi transition
systems in PEPA [23], EMPA [14] and stochastic π-calculus [30]) because the
non-determinism of SOS rules is substituted by a weighted functional approach,
where single possibilities are rated and encoded in a function. This functional
approach directly associates the correct rate with racing actions, while others
need an additional normalization phase. For instance, an external observer look-
ing at the racing process (a, α) + (a, α) would see action a occurring at rate
2α, while a non-normalized transition system associates with a the rate α. Our
SOS correctly associates to this process the function μ = [aδα

� ]⊕ [aδα
� ] such that

μ(a)(�) = 2α. Back to the operational rules, the semantics of the Kleene star is
a composition of � and ⊕.

The following properties will be useful to build a Markov kernel for HEμ.

Theorem 2.1. For any h ∈ H there exists a unique μ ∈ Δ(H≡
�) such that

P � μ.

Example 1. Taken h = ((a, 2) + (b, 1.5)) · (c, 3), Table 1 shows the derivation of
h � �(c,3)[μ1 ⊕μ2], that indeed is a function. Then, we use the classical tabular
representation of functions in Table 2 to represent the meaning of h. We show
entries only for non-zero values or non-null measures for singleton set of process.

We states that our semantics is correct with respect to structural equivalence.

Theorem 2.2. If h ≡ h′ then h � μ and h′ � μ.

Now we use the construction given in Definition 2.4 to eventually build the
Markov Kernel for HEμ.

Theorem 2.3. Let h ∈ H, a ∈ A, H ∈ Ξ≡, H ∈ Ξ≡, ρ be a function such that
ρ(a)(h)(H) = ξ(h)(a)(H), where ξ(h) = μ whenever h � μ, and H≡, Ξ≡ are as
in Def. 2.3. Then (A,H≡, ρ) is the Markov kernel associated with the HEμ.

Table 2. Tabular representation of semantics

μ1 =

a

[�]≡ 2

...
...

...
...

μ2 =

b

[�]≡ 1.5

...
...

...
...

μ1⊕μ2 =

a

[�]≡ 2

...
...

b

[�]≡ 1.5

...
...

...
...

�(c,3) [μ1⊕μ2] =

a

[(c, 3)]≡ 2

...
...

b

[(c, 3)]≡ 1.5

...
...

...
...
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Eventually we associate a Markov Process with a HEμ h as follows:

Definition 2.6. P [[h]] is the Markov Process (A,H≡, ξ, h).

2.4 Rate Bisimulation of HEμ

The notion of behavioural equivalence is of primary importance because it high-
lights what really matters focusing objects at the right distance, and allows one
to substitute equivalent processes preserving the overall behaviour. Addition-
ally, some model checking techniques exploits behavioural equivalence to reduce
the state space dimension and this is particularly important for our purpose
verifications.

Structural equivalence is too weak. For instance consider the expressions
(a, 2α) and (a, α) + (a, α). They represents two process doing action a with
the same apparent rate. Hence from an external point of view their behaviour is
identical, but clearly (a, 2α) �≡ (a, α) + (a, α).

In this work we will use a specific type of bisimulation, globally recognized as
the finest equivalence notion [31]. Rate bisimulation used here appears in [16]
and generalise rate aware bisimulation [19] and probabilistic bisimulation [27].

Definition 2.7 (Rate bisimulation of HEμ). A rate bisimulation is an equiv-
alence relation R ⊆ H≡ × H≡ such that if (h1, h2) ∈ R then for all a ∈ A and
for all measurable subset H that are R-closed in Ξ≡

�:

ρ(a)(h1)(H) = ρ(a)(h2)(H)

Two histories h, h′ are rate bisimilar (h ∼ h′) iff there exist a rate bisimulation R
such that (h, h′) ∈ R, thus ∼ (bisimilarity) is the union of all rate-bisimulations.

As expected, rate bisimilarity is compatible with structural congruence and with
the SOS semantics; also it is preserved under all the operator of HEμ, namely it
is a congruence.

Theorem 2.4

– If h � μ and h′ � μ then h ∼ h′.
– If h ≡ h′ then h ∼ h′.
– The relation ∼ is a congruence.

3 Stochastic Security Policies

In this section we will introduce our notion of quantitative securities policy as
constraints on the timed behaviour of processes along with two complementary
ways to check them. Our first manner is potential : the check is made on the
CTMC associated with a HEμ process h. This is because, if h � μ, the function
μ records the rates of the actions in h, and because these rates express the
probability that the actions have to fire within a certain time interval.
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Since probabilities are computed on the long run, in principle we would like
to perform a security check on an always running system. The infinite behaviour
of such system is indeed represented by the long run behaviour of the associated
CTMC. Then we assume the semantics of the process h under analysis be an
irreducible CTMC with a unique steady state. The potential check of security
policies is therefore performed on steady states.

However, the duration of actions in an unlikely execution may greatly differ
from the speed expresses by their rates. An actual check is therefore performed
on the execution history (a, ta)(b, tb) . . . by a monitor, which can abort the ex-
ecution, when about to violate the security policy in hand. For this we assume
that timed histories encompass all security relevant events. We shall formalise
the above intuition below.

Below we assume as given a CTMC O. Recall that we let si ∈ S be the set of
states of O, R = [rij ] be its rate matrix, Q = [qij ] be its infinitesimal generator
matrix, π be its steady state vector and D = [dij ] be the matrix in Definition 1.3,
where, for notational convenience we let D(i) = dii. In addition I = [a, b] is an
interval in R+ , when inf I = a ≤ b = sup I, with possibly b = ∞.

3.1 Abstracting Executions

A CTMC implicitly represents a set of timed histories associated with the paths
we define below.

Definition 3.1 (Paths) A path σ ∈ Path over O is an infinite sequence σ =

s0
t0−→ s1

t1−→ s2 . . .
ti−→ si+1 . . . with ∀i ∈ N, si ∈ S and ti ∈ R+ such that ri,i+1 > 0.

Given a labelling function L : S×S → A, the path σ is associated with the timed
history (a0, t0), (a1, t1), . . . with ai = L(si, si+1). We write σ[i] for si, δ(σ, i) for
ti and σ@t for the state σ at time t.

We construct the following σ-algebra over paths in order to measure the proba-
bility of sets of timed histories.

Definition 3.2 Let p = (s0, I0, . . . , In−1, sn) ∈ PI be a sequence of “intervals of
paths”, i.e. states and intervals, and let C(p) be the cylinder set: consisting of
all paths σ ∈ Path such that ∀i ≤ n.σ[i] = si and ∀i < n.δ(σ, i) ∈ Ii. Final let
ΣPath be the σ-algebra generated by the base of cylinder sets {C(p)}p∈PI .

Assume as given a cylinder set C(p) and let τ be the initial probability distri-
bution over states of the CTMC O. We measure the probability of all paths
σ ∈ C(s0, I0, . . . , In−1, sn) assuming to be in state s0 with probability τ(s0).
The sojourn time in state si is an exponentially distributed random variable
with parameter D(sk) =

∑
k∈S rik. The probability of leaving sk in the interval

Ik is
∫

I

D(sk) · e−D(sk)·t dt = e−D(sk)·inf(Ik) − e−D(sk)·sup(bk) with e−D(sk)·∞ = 0

and the probability of choosing as next state sk+1 is pk,k+1 = rk,k+1
D(sk) .
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Finally, the probability to follow a path in C(s0, I0, . . . , Ik−1, sk) is inductively
defined on the length of cylinder as:

Pτ (C (s0)) = τ(s0)

Pτ (C (. . . , sk, Ik, sk+1)) =
rk,k+1

D(sk)
·
(
e−D(sk)·ak − e−D(sk)·bk

)
· Pτ (C (. . . , sk))

Let π be the steady state distribution of O. The value of the probability
Pπ(C(p)) is the portion of time spent by following the paths in the cylinder set
p on the long run. In the following we will use Ps to denote Pτ , with τ(s) = 1.

3.2 Actual and Potential Checks of Quantitative Policies

Here we define our stochastic security policies through a variant of Continu-
ous Stochastic Logic (CSL) [20,8], that extends CTL. Our logic, called CSLS ,
comprises path formulas and state formulas. Path formulas denote measurable
unions of cylinder sets, while state formulas are propositions, the atoms of which
constraint the given measure Pτ .

Definition 3.3 State and path formulas are defined by:

– State formulas: υ, υ′ ::= tt | �a | ¬υ | υ ∧ υ′ | υ ∨ υ′ | C≤c(ι)
– Path formulas: ι, ι′ ::= XIυ | υU Iυ′

The semantics of formulas is defined below over the given CTMC O. Path for-
mulas are evaluated over paths and state formulas are evaluated over states.
Informally, C≤c(ι) states that, on the long run, the portion of time spent doing
any of the paths denoted by ι is bound by p. For simplicity we only use a ≤
bound, but of course we could add at no cost any other symbol of compari-
son, e.g. >,≥. Moreover, since we focus on transitions rather than on states, in
CSLS we “label” states with their outgoing transition using a class of predicates
�a, a ∈ A.

The operator next XIυ describes paths that start with a transition leading
to a state where υ holds, and with duration in the interval I. The until operator
υU Iυ′ describes paths along states where υ does not hold until a transition leads
to a state where υ′ holds after a time in the interval I.

Definition 3.4 The semantics of state formulas is evaluated over states s ∈ S
of O; below let Prb(s, ι) = Ps ({σ | σ |= ι}):

s |= tt always true s |= υ ∧ υ′ iff s |= υ and s |= υ′

s |= ¬υ iff s �|= υ s |= C≤c(ι) iff πs × Prb(s, ι) � p

s |=�a iff a transition from s labelled a exists

Path formulas are evaluated over the paths of O:

σ |= XIυ iff σ[1] is defined ∧ σ[1] |= υ ∧ δ(σ, 0) ∈ I

σ |= υU Iυ′ iff ∃t ∈ I.σ@t |= υ′ ∧ (∀t′ ∈ [0, t).σ@t′ |= υ)
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As proved in [20], the set {σ | σ |= ι} turns out to be measurable, hence ι denotes
a measurable set of paths (this also implies that the definition of Prb is correct).

We briefly comment on the definition for C≤c(ι), recalling that ι represents a
set of paths, πs the portion of time spent in state s on the long run, while Prb(s, ι)
is the probability, once in s, of doing a path belonging to ι. Their product gives
the portion of time spent doing a path denoted by ι on the long-run.

We do not present here a procedure for verifying a state formula. We refer
the interested reader to [8], that gives a fixpoint characterization of Prb.

We define now quantitative policy ψ as a CSLS formula of the form

ψ = C≤c(ι) with operator C no longer occurring in ι

A policy of this form endows a path formula ι, denoting a measurable set of unde-
sired paths, wrapped up by the operator C≤c. Obviously c bounds the probability
of all paths denoted by ι.

Summing up, with the above definitions we can explain how actual and poten-
tial checks works. The actual check requires an execution monitor that watches
the computation and aborts it whenever the generated timed history is about
to fall in the set described by ι. This kind of monitoring causes a performance
degradation because it should be always enabled.

The potential control is done by checking the semantics P [[h]] of a process h,
the model, against the policies to be obeyed. We say that h respects all policies
occurring in it if and only if for all sub-expressions of the form ψi[hi].ψi[hi] |= ψ.
Needless to say, the generation of the CTMC and of its steady state can be
easily done by following the semantic definitions of Section 2.3 and by using
standard packages for numerical computations. The verification is then com-
pleted by a suitable combination of the algorithms in [8] with standard model
checking tools [25].

We now suggest a complementary usage of the two different ways of verifying
policies put forward above. The result of a potential check can be interpreted
as a bound on the probability of a monitor intervention. Indeed, suppose that
C≤c(ι) is verified true. The system will then execute an offending run, belonging
to ι, in a percentage of its time smaller than c. A user can consciously decide
to activate the run-time monitor, based on this information, as well as on the
risks that a possible violation may cause. If the risk is acceptable, the user can
instead deactivate the monitor, so freeing the system from the induced overhead.
Additionally, as potential analysis bounds the time spent in unsafe computations,
one can evaluate the performance and reliability of his system, by bounding the
time lost in computations that will be aborted. Finally, by decreasing the value
of the parameter c, we can determine the minimum value for C≤c to be true —
and give hints to the designer on the parts of the system need security-improving
refinements.

4 A Working Example

A shop in Milan, called Vestiti, is part of dress brand chain. The shop database
is mirrored in two servers: one in Milan and one in Rome. The shop is connected



On Quantitative Security Policies 37

to both: to the one in Milan through a private MAN and to the one in Rome
through Internet. The shop can communicate with the server in Milan with low
latency, but sometimes it could happen that the one in Rome performs better.

When an item is sold, the shop updates a single remote database, as they are
autonomously mirrored. The manager of Vestiti requires the payment system to
ask, at the moment of a payment, both servers and then to choose the fastest to
answer. Then a cash transaction occurs: the client inserts her fidelity card; the
payment system asks for offers reserved to that client; and a remainder of the
offer is printed at the top of the receipt. Then the system asks both servers for
a new transaction to update the database with the items sold. This race is won
by the first server that answers.

Assuming as given the set of actions and rates in Table 3, we formalize the
above as follows:
hVestiti =

(
(CIC, 1) ·(RO, 2) ·(POT, 3) ·ψ

[(
(RTM, 2) ·(BMT, 1)+(RTI, 1.5) ·(BIT, 1)

) ·(DT, 2) ·(ET, 1)
]) ∗

δ

Table 3. Events and their description

Event Description Event Description
CIC,1 Customer insert card RO,2 Ask for offers remotely
POT,3 Print offer on the ticket RTM,2 Request MAN transaction
RTI,1.5 Request Internet transaction BIT,1 Opening Internet transaction
BMT,1 Opening MAN transaction DT,2 Executing transaction operations
ET,1 Closing transaction

However, the CEO of the dress brand is scared by using an Internet connec-
tion, that he considers much more unreliable than their own MAN. To stay on
the safe side, the CEO asks the manager of Vestiti to enforce a security policy,
so to abort internet transaction lasting more than three seconds.

The policy ψ expressing the requirement of the manager is formally rendered
by the CSLS expression:

ψ = C≤0.01

(
¬(�BMT ∨ �CIC) U [3,∞] �CIC

)

This policy states that we require a system not to spend more than 1% portion
of time doing an Internet transaction longer than 3 seconds. In other words, only
1% of computational time will be spent by a run that the security monitor will
abort.

After some easy calculations, involving the computation of the steady state
distribution π of the CTMC associated with hVestiti , we obtain that

ψ[. . . ] |= C≤0.01(¬(�BMT ∨ �CIC) U [3,∞] �CIC) iff

πS4 × Prb(ψ[. . . ],¬(�BMT ∨ �CIC) U [3,∞] �CIC) ≤ 0.01

Now Prb(ψ[. . . ],¬(�BMT ∨ �CIC) U [3,∞] �CIC) = 0.12 and πS4 = 0.06
hence, the policy is respected, because 0.06 × 0.12 = 0.0072 ≤ 0.01.
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Then, our analysis shows that the manager of Vestiti did a good job: the pay-
ment system of his shop always uses the fastest server available at the moment.
The static check guarantees that system is quite reliable even without a security
monitor switched on, because there is a low probability of violating the policy,
i.e. 0.0072%. If the manager still feels unsecure and activates a security monitor,
we can estimate that in a period of one hour, approximately less that 30 seconds
are lost serving a payment that will result in a security exception.

5 Conclusions

We addressed the problem of expressing and enforcing non-functional security
policies on programs. In particular we focused on quantitative security policies
which constraint program behaviour over time. Our approach is based on the
stochastic process algebra HEμ to abstract programs behaviour. The calculus
endows the binary Kleene star iteration operator and a full-fledged sequential-
ization operator. The semantics of HEμ has been given in terms of CTMC using
the approach of [17,16]. Security policies are expressed as formulae of CSLS

predicates over CTMCs. We plan to integrate our quantitative security poli-
cies in the language-based security framework of [12,11,10,9]. In this approach
programs are typed as functions with a side effect that abstractly describes the
possible run-time executions of the program. Security policies are properties over
effects and model-checking techniques are used to control statically whether or
not the program satisfied the security policies on demands. We plan to exploit
HEμ to represent quantitative effects of programs.

Acknowledgement. The authors would like to thank the anonymous referees
for their comments that guided us to improve the quality of the paper.

References

1. Aceto, L., Hennessy, M.: Termination, deadlock and divergence. In: Mathematical
Foundations of Programming Semantics, pp. 301–318. Springer, Heidelberg (1989)

2. Ash, R., Doléans-Dade, C.: Probability and measure theory. Academic Press,
London (2000)

3. Athreya, K., Lahiri, S.: Measure theory and probability theory. Springer-Verlag
New York Inc. (2006)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic (TOCL) 1(1), 170
(2000)

5. Baeten, J.: Process algebra with explicit termination. Tech. rep. (2000)
6. Baeten, J., Corradini, F.: Regular expressions in process algebra. In: Proceedings

of 20th Annual IEEE Symposium on Logic in Computer Science, LICS 2005, pp.
12–19 (2005)

7. Baeten, J., Weijland, W.: Process algebra. Cambridge University Press, Cambridge
(1990)

8. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6),
524–541 (2003)



On Quantitative Security Policies 39

9. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service or-
chestration. In: CSFW, pp. 57–69. IEEE Computer Society, Los Alamitos (2006)

10. Bartoletti, M., Degano, P., Ferrari, G.: Planning and verifying service composition.
Journal of Computer Security 17(5), 799–837 (2009)

11. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for
secure web services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)

12. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Local policies for resource
usage analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS) 31(6), 23 (2009)

13. Bergstra, J., Ponse, A., Smolka, S.: Handbook of process algebra. Elsevier Science
Ltd., Amsterdam (2001)

14. Bernardo, M., Gorrieri, R.: Extended markovian process algebra. In: Sassone, V.,
Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer,
Heidelberg (1996)

15. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled
Markov processes (1997)

16. Cardelli, L., Mardare, R.: The measurable space of stochastic processes. In: QEST,
pp. 171–180. IEEE Computer Society, Los Alamitos (2010)

17. Cardelli, L., Mardare, R.: Stochastic pi-calculus revisited (2010) (unpublished),
http://lucacardelli.name

18. Clark, G., Gilmore, S., Hillston, J.: Specifying performance measures for PEPA.
In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999.
LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)

19. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-Based Transition Systems
for Stochastic Process Calculi. Automata, Languages and Programming (2009)

20. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimu-
lation of continuous-time Markov processes. Journal of Logic and Algebraic Pro-
gramming 56(1-2) (2003)

21. Fokkink, W.: Axiomatizations for the perpetual loop in process algebra. In: Au-
tomata, Languages and Programming, pp. 571–581

22. Fokkink, W., Zantema, H.: Basic process algebra with iteration: Completeness of
its equational axioms. The Computer Journal 37(4), 259 (1994)

23. Hillston, J.: A compositional approach to performance modelling. Cambridge Univ.
Pr., Cambridge (1996)

24. Kemeny, J., Snell, J., Knapp, A.: Denumerable markov chains. Springer, Heidelberg
(1976)

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Computer Performance Evaluation: Modelling Techniques and Tools
(2002)

26. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

27. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and
Computation 94(1), 1–28 (1991)

28. Norris, J.: Markov chains. Cambridge Univ. Pr., Cambridge (1998)
29. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
30. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578 (1995)
31. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Transactions

on Programming Languages and Systems (TOPLAS) 31(4), 1–41 (2009)

http://lucacardelli.name


A Formal Programming Model of
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Firstname.Lastname@univ-orleans.fr

Abstract. Orléans Skeleton Library (OSL) is a library of parallel al-
gorithmic skeletons in C++ on top of MPI. It provides a structured
approach to parallel programming. Skeletons in OSL are based on the
bulk synchronous parallelism model. In this paper we present a formal
semantics of OSL: its programming model formalised with the Coq proof
assistant.

Keywords: parallel programming, algorithmic skeletons, formal pro-
gramming model, the Coq proof assistant.

1 Introduction

If parallel architectures are now widespread, it is not yet the case for parallel pro-
gramming. For distributed memory or shared memory machines, quite low level
techniques such as PThreads or MPI are still widely used. To ease the program-
ming of parallel machines, more structured approaches are needed. Algorithmic
skeletons [8,9,23,24] that can be seen as higher-order functions implemented in
parallel, offer a programming style in which the user combines patterns of paral-
lel algorithms to build her application. Bulk synchronous parallelism [27,22,25,5]
is another structured approach that provides a simple and portable performance
model.

Our Orléans Skeleton Library [16] is a library of data parallel algorithmic
skeletons that follows the BSP model. OSL is a library for the C++ language
and it uses expression template techniques as an optimisation mechanism.

In order to make this kind of library more reliable, and to be able to prove
the correctness of programs written in OSL, we plan to provide formal semantics
of OSL. In this context we need two semantics: one for the programming model
of OSL (i.e. the semantics that is presented to the user of the library), and
one for the execution model of OSL (i.e. the semantics of the implementation of
the library). We we will prove the equivalence of these semantics using the Coq
proof assistant [26,3]: this will increase the confidence in the correctness of the
implementation of OSL.

In this paper we first present informally the OSL library (section 2) before we
compare this work with related papers (section 3). Then we describe the formal
programming model of OSL using the Coq proof assistant (section 4) before we
conclude (section 5). We also give a tiny introduction to the Coq proof assistant
in appendix (section A).
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2 An Overview of Orléans Skeleton Library

Orléans Skeleton Library is a library for the C++ language that provides a set
of data-parallel algorithmic skeletons. The underlying communication library is
currently MPI. The implementation of OSL takes advantage of the expression
templates technique [28] to be very efficient yet allowing programming in a func-
tional style.

2.1 Bulk Synchronous Parallelism

From the point of view of the user, parallel applications are developed by building
the appropriate combination of skeletons. All the skeletons of OSL are bulk
synchronous parallel (BSP) programs.

In the BSP model, the number of memory-processor pairs is fixed during ex-
ecution. These pairs are interconnected in such a way that point-to-point com-
munications are possible. A global synchronisation unit is available in a BSP
computer. The execution of a BSP program is a sequence of super-step, each
one being composed of a phase where each processor computes using only the
data it holds, a phase where processors exchange data and a synchronisation
barrier that guarantees the completion of data exchange before the start of a
new super-step.

The programmer has also access to the BSP parameters: osl::bsp p (number
of processor-memory pairs), osl::bsp g (network bandwidth), osl::bsp l (synchro-
nisation time), and osl::bsp r (processors computing power). These parameters
could be obtained by benchmarking.

2.2 OSL Skeletons

OSL programs are similar to sequential programs but operate on a distributed
data structure called distributed array. At the time of the creation of the array,
data is distributed among the processors. Distributed arrays are implemented
as a template class DArray<T>. A distributed array consists of bsp p partitions,
each being an array of elements of type T.

Figure 1, gives an informal semantics for the main OSL skeletons together
with their signatures. In this figure, bsp p is noted p. A distributed array of type
DArray<T> can be seen “sequentially” as an array [t0, . . . , tt.size−1] where t.size
is the global size of the distributed array t.

The two first skeletons are the usual combinators to apply a function to each
element of a distributed array (resp. of two distributed arrays). The first argu-
ment of both map and zip could be either a pointer function, or a C++ functor
either extending std::unary function or std::binary function. There are two vari-
ants: mapIndex and zipIndex. Each of these variants takes a function with an
additional argument: an integer representing the global index of each element in
the distributed array.

It is possible to expose how a distributed array is distributed among the
processors using the getPartition skeleton. It transforms a distributed array of
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Skeleton
Signature

Informal semantics

map
DArray<W> map(W f(T), DArray<T> t)
map(f, [t0, . . . , tt.size−1]) = [f(t0), . . . , f(tt.size−1)]

zip
DArray<W> zip(W f(T,U), DArray<T> t, DArray<U> u)
zip(f, [t0, . . . , tt.size−1], [u0, . . . , ut.size−1]) = [f(t0, u0), . . . , f(tt.size−1, ut.size−1)]

reduce
<T> reduce(T⊕(T,T), DArray<T> t)
reduce(⊕, [t0, . . . , tt.size−1]) = t0 ⊕ t1 ⊕ . . .⊕ tt.size−1

getPartition
DArray<Vector<T> > getPartition(DArray<T> t)

getPartition([t0, . . . , tt.size−1]) = [ [t00, . . . , t
0
l0−1] , . . . , [tp−1

0 , . . . , tp−1
lp−1−1] ]

flatten
DArray<T> flatten(DArray<Vector<T> > t)

flatten([ [t00, . . . , t
0
l0−1] , . . . , [tp−1

0 , . . . , tp−1
lp−1−1] ]) = [t0, . . . , tt.size−1]

permute
DArray<T> permute(int f(int), DArray<T> t)
permute(f, [t00, . . . , t

0
l0 ]) = [t0f−1(0), . . . , t

0
f−1(l0−1)]

shift
DArray<T> shift(int dec, T f(T), DArray<T> t)
shift(d, f, [t00, . . . , t

0
l0

]) = [f(0), . . . , f(d− 1), t0, . . . , tt.size−1−d]

bcast
DArray<T> bcast(DArray<T> t)

bcast [ t00, . . . , t
0
l0−1, . . . , t

p−1
0 , . . . , tp−1

lp−1−1 ] = [ t00, . . . , t
0
l0−1, . . . , t

0
0, . . . , t

0
l0−1 ]

balance
DArray<T> balance(DArray<T> t)
balance [t0, . . . , tt.size−1] = [t0, . . . , tt.size−1]

gather
DArray<T> gather(DArray<T> t)
gather [t0, . . . , tt.size−1] = [t0, . . . , tt.size−1]

Fig. 1. OSL Skeletons

type DArray<T> into a distributed array of type DArray<Vector<T> > and
of size bsp p. In the resulting distributed array, each processor contains only
one element: a C++ vector, the former partition on this processor. The flatten
skeleton is the inverse operation of getPartition.

Parallel reduction with a binary associative operator ⊕ is performed using the
reduce skeleton. Communications are needed to execute a reduce. permute and
shift are also communication functions. permute redistributes the array, according
to a function f, bijective on the interval [0, t.size−1]. The shift skeleton allows to
shift elements on the right (the case shown in the figure) or the left depending
on the sign of its first argument. The missing values, at the beginning or the
end of the array, are given by function f. bcast copies the content of the root
processor to all other processors.

The two next functions only modify the distribution of the distributed array,
not its content. balance distributes evenly the content of the distributed array if
it is not evenly distributed. gather gathers the content of the distributed array
at root processor, the partitions on the remaining processor become empty.

3 Related Work

There exist many algorithmic skeleton libraries and languages: [14] is a recent
survey. Here we focus on work on formal semantics. Eden [20] and BSML [12,21]
are two parallel functional languages that are often used for implementing algo-
rithmic skeletons. The former has a formal semantics on paper [15] whereas the
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latter has a mechanised formal semantics [6]. Moreover a new algorithmic skele-
ton called BH as been implemented and its implementation proved correct using
the Coq proof assistant. This BH skeleton is used in a framework for deriving
programs written in BH from specification [13].

Some other work focus on algorithmic skeleton libraries, to our knowledge
none is formalised and the properties of the semantics verified using a proof
assistant. [10] presents a data-parallel calculus of multi-dimensional arrays, but
it is a formal semantics without any related implementation. The Lithium [2]
algorithmic skeleton library for Java differs from OSL as it is stream-based. [1]
proposes in a single formalism a programming model and a (high-level) exe-
cution model for Lithium. The skeletons of [11] are also stream-based but the
semantics is used rather as a guideline for the design of the meta-programmed
optimisation of the skeletons in C++.

The semantics of the Calcium library is described in [7] and further extended
in a shared memory context to handle exceptions [19]. In [7], the focus in on
a programming model semantics (operational semantics) as well as a static se-
mantics (typing) and the proof of the subject reduction property (the typing
is preserved during evaluation). In this work the semantics of the skeletons are
detailed, but not the semantics of what the authors call the “muscles” i.e. the
sequential arguments of the skeletons (the semantics of the host language of the
library, in the particular case Java). The set of skeletons of Calcium includes a
set of task parallel skeletons, which contains, among others, skeletons that give
a sequential control but at the global level of all the parallel program. These
skeletons are parallel because their branches or bodies are parallel (conditionals
and while/for loops). In OSL we mix the skeletons with the usual constructs of
the host C++ language to write the sequential control flow at the global level
of the parallel program. The remaining skeletons in Calcium are data-parallel
skeletons including map, and divide-and-conquer skeletons. The map skeleton,
for example, is however different from our map. The OSL map is more similar to
map functions in functional programming as it takes two arguments: a function f
to be applied to each element of the collection l which is the second argument. In
functional programming this collection is a list, in OSL it is a distributed array.
In Calcium the map skeleton takes two additional functions: one that describes
how the input collection is cut into pieces and another function that describes
how the pieces (obtained by applying f to the previous pieces) are combined
together to form the output collection.

4 OSL Mechanised Semantics: Programming Model

We now present how we modelled the programming model of OSL using the
Coq proof assistant. We first explain how the modelling of the data structure
of distributed arrays and of the syntax is done. We then present a big-step
semantics and its properties.
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4.1 Distributed Arrays

First of all we need to model the parallel data structure of our OSL library: the
distributed arrays. The content of a distributed array can be seen as a usual
sequential array plus information about its distribution. In Coq we model the
content of the arrays by lists. The distribution is modelled by a data structure
similar to lists but with the size of the collection inside the type: vectors. A vector
of type vector A n has size n and contains values of type A. A distribution is a
vector of natural numbers: each natural number is the number of elements per
processor. The size of a vector of distribution is bsp p, the number of processor
of the BSP machine. bsp p is strictly positive. To cleanly formalise the fact that
the syntax and semantics are parametrised by the number of processors of the
parallel machine, the semantics is a functor, i.e. a module that takes as argument
another module. This argument module has the following type:

Module Type BSP PARAMETERS.
Parameter lastProcessor : nat.

End BSP PARAMETERS.

lastProcessor is supposed to be the processor identifier of the last processor. We
then define:

Definition bsp p := S Bsp.lastProcessor.

This allows to instantiate the functor with a module containing a specific value
for lastProcessor in order to write examples and execute our semantics within
Coq.

The type of distributed array is a record type:

Record distributedArray (A:Type) := mkDistributedArray {
distributedArray data : list A;
distributedArray distribution: vector nat bsp p;
distributedArray invariant:

List.length distributedArray data = sum distributedArray distribution
}.
This type contains the two fields already described: the content of the parallel
vector (distributedArray data), and the distribution of this content on the pro-
cessors (distributedArray distribution).

However there is a third field: a proof that the two fields form indeed a coherent
representation of a distributed array. The sum of the elements of the distribution
(computed using the function sum, omitted here) should be the length of the
content list.

Values of this type are a kind of inner representation of distributed arrays
that the user of the Orleans Skeleton Library could not used directly. She will
be given a syntax for writing OSL programs.

4.2 Syntax and Typing

As in [7], we would like to model the semantics of our library without being
obliged to model the whole syntax of the host language. The language of the
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Coq proof assistant can be seen as a pure functional programming language plus
ways to express logical properties. Therefore the sequential values and functions
of the host language (here C++) can be written as Coq values and functions. In
the case of functions we thus model only their input/output behaviour.

The result of a computation, a value, could be either a usual sequential value,
for example the result of the application of the reduce skeleton, or a distributed
array, for example the result of the application of the map skeleton.

There are several ways of formalising the syntax of OSL programs. We shall
illustrate this by two short examples dealing only with the construct for dis-
tributed arrays and the map skeleton. The first solution follows:

Inductive expression :=
| DistributedArray: ∀A:Type, list A →expression
| Map : ∀A B, (A→B) →expression →expression

To simplify the example, a distributed array is just modelled as a list of values.
All values being typed in Coq, the constructor for this case of the inductive type
expression should also take as argument the type of the elements of the list. For
the Map constructor, the first argument is the “muscle” argument, the function
f to be applied to each element of the distributed array, the second expression.
Here again the input and output types of the function should be given.

This grammar however models possibly ill-typed expressions of our language
of skeletons. It is possible to define the following Coq term:

Definition e : expression :=
Map string string (append ”!”) (DistributedArray nat [1;2;3]).

In Coq it is possible to indicate than some arguments may be implicit: it is the
case here for the types arguments of the two constructors Map and
DistributedArray and we could write:

Definition e : expression := Map (append ”!”) (DistributedArray [1;2;3]).

The expression e is well typed for Coq but it represents an ill-typed expression of
our skeleton language as the muscle function append operates on strings instead
of natural numbers. We could as in [7] define a type system and prove that the
operational semantics we will define follows the subject reduction property (i.e.
it preserves the typing).

However there is another solution: we could model the grammar in such a way
that only well-typed (in the skeleton language point of view) expressions could
be modelled in Coq:

Inductive typedExpression (A:Type) :=
| TDistributedArray : list A →typedExpression A
| TMap: ∀B, (B→A) →typedExpression B →typedExpression A.

Here the grammar is typed. An expression of type typedExpression A represents
an expression whose value is a distributed array whose elements have type A.
The expression e could not be defined in Coq as a typedExpression: the input
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Inductive seqExpr : Type →Type :=
| SeqValue: ∀A, A →seqExpr A
| Reduce: ∀A, seqExpr (A→A→A) →seqExpr A →parExpr A →seqExpr A
| SeqApply: ∀A B, seqExpr (A→B) →seqExpr A →seqExpr B
with parExpr : Type →Type :=
| ParValue: ∀A, distributedArray A →parExpr A
| Replicate: ∀A, seqExpr A →seqExpr nat →parExpr A
| Init: ∀A, seqExpr (nat→A) →seqExpr nat →parExpr A
| CreateAtRoot: ∀A, seqExpr (list A) →parExpr A
| Map: ∀A B, seqExpr (A→B) →parExpr A →parExpr B
| Zip: ∀A B C, seqExpr (A→B→C) →parExpr A →parExpr B →parExpr C
| MapIndex: ∀A B, seqExpr (nat→A→B) →parExpr A →parExpr B
| ZipIndex: ∀A B C, seqExpr (nat→A→B→C) →parExpr A →parExpr B →parExpr C
| Shift: ∀A, seqExpr Z →seqExpr(nat→A) →parExpr A →parExpr A
| GetPartition: ∀A, parExpr A →parExpr(list A)
| Flatten: ∀A, parExpr(list A) →parExpr A
| Permute: ∀A, seqExpr (nat→nat) →parExpr A →parExpr A
| Balance: ∀A, parExpr A →parExpr A
| Gather: ∀A, parExpr A →parExpr A
| Bcast: ∀A, parExpr A →parExpr A.

Inductive expr : Type →Type :=
| Seq: ∀A, seqExpr A →expr A
| Par: ∀A, parExpr A →expr (distributedArray A).

Fig. 2. OSL Syntax in Coq

type of the muscle function in the Map constructor should be the type of the
elements of the second argument of Map.

Therefore by defining the operational semantics by a function or a relation
that relates only expressions that represent skeleton expressions of the same
type, then we have the subject reduction for free.

The syntax of OSL is actually a bit more complicated as we distinguish be-
tween expressions whose values have a sequential type and expressions whose
values have parallel types, these two kinds of expressions being mutually recur-
sive. The whole syntax is in figure 2. In order to be able to apply a “sequential”
program to the result of the evaluation of a skeleton expression, we provide a
SeqApply constructs. The SeqValue constructors is simply used to provide “mus-
cles” to the skeletons.

The three first Coq constructors of the parExpr type are the usual OSL C++
class constructors: we can build a distributed array by specifying its size and
a value that will be replicated everywhere (Replicate), or the content of the
distributed array could be specified by a function from array indices to values
(Init). In these two cases, the data is distributed evenly on the processors. The
third constructor is used to build a distributed array containing values only
at the root processor (CreateAtRoot). The other Coq constructors model the
skeleton informally presented in section 2.
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4.3 Big-Step Semantics

For the formalisation of the big-step semantics of OSL, we define three functions,
the two first begin mutually recursive:

– seqEvaluation: forall A : Type, seqExpr A → result A
– parEvaluation: forall A : Type, parExpr A → result (distributedArray A)
– evaluation: forall A : Type, expr A → result A

The result type is used in a monadic style [29] in order to model possible errors
during evaluation, without being too cumbersome to use compared to a solution
with optional values and pattern-matching. As in [18] for example, we use a
convenient Coq feature that allows to define notations:

Inductive result (A: Type) : Type :=
| Ok: A →result A
| Error: string →result A.

Definition bind (A B: Type) (f: result A) (g: A →result B) : result B :=
match f with
| Ok x ⇒g x
| Error msg ⇒Error msg
end.

Notation ”’do’ X <− A ; B” := (bind A (fun X ⇒B)).

With this notation, the big-step semantics functions are quite readable. For
example the case for the evaluation of the reduce skeleton in the seqEvaluation
function is written as follows:

| Reduce A op neutral pe ⇒
do op <− seqEvaluation op;

do neutral <− seqEvaluation neutral;
do da <− parEvaluation pe ;

Ok(List.fold right op neutral (distributedArray data da))

We first evaluate the “muscles” of the skeletons. If one of these calls raises an
error, then the function immediately returns this error, otherwise it binds the
obtained value with the variable before the <− arrow and continues to evaluate
the expression after the ;.

The parEvaluation function produces values of type distributedArray. In order
to keep this function short, we defined auxiliary functions that transforms dis-
tributed arrays. The parEvaluation function thus first recursively calls itself and
seqEvaluation on the arguments of the expression it evaluates, and obtains val-
ues, in particular in the parallel case, values of type distributedArray. Then it
calls the appropriate auxiliary function. For example:

| Replicate se se’ ⇒
do v <− seqEvaluation se;

do size <− seqEvaluation se’;
Ok (replicate v size)
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The replicate function, and all the auxiliary functions, are defined using the
Program feature of Coq:

Program Definition replicate(A:Type)(value:A)(size:nat) : distributedArray A :=
mkDistributedArray
(List.map (fun index⇒value) (List.seq 0 size))
(evenDistribution size)
.

Next Obligation.
autorewrite with length; rewrite sumEvenDistribution; trivial.

Defined.

For building a value of type distributedArray, we need three components:

– the content of the distributed array, in this case it is defined on the third
line (we apply a constant function to all the elements of a list of natural
numbers, of the specified size),

– the distribution, in this case it is defined on the fourth line, by a call to the
function evenDistribution,

– a proof that the content and the distribution are coherent.

The two first components are written very similarly to functional programs. For
the proof however, it is easier to use the interactive proof mode. Thus we do not
give this third component: we use the wildcard instead. Coq then generates
proof obligations that should be proved in order for the value replicate to be
defined. The proof is here quite simple because most of the work is done in the
lemma sumEvenDistribution that it itself proved using several other lemmas.

This replicate function could not directly raise an error. Few skeletons can:
the zip skeleton if the two parallel arguments do not have the same distribution,
the permute skeleton if the function in argument is not bijective, and the flatten
skeleton if the distribution of its argument is not one element (of type list) per
processor.

By construction the type of the expressions are preserved during evaluation:
we have subject reduction for free.

evaluation, seqEvaluation and parEvaluation are functions. They can be applied
to OSL program examples in Coq. The results of such evaluations can be output.
This allows to design and implement automatic tests to check if the formal
semantics and the implementation are coherent. This can serve to debug both:
the formal semantics may be erroneous because we were wrong in the modelling,
or the implementation may contain bugs.

All the Coq source code of this formalisation is available at:

http://traclifo.univ-orleans.fr/OSL.

5 Conclusion and Future Work

In this paper we have presented a formal semantics of the programming model of
the Orléans Skeleton Library, modelled using the Coq proof assistant. A formal

http://traclifo.univ-orleans.fr/OSL
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programming model is necessary to reason about OSL programs in Coq. Writing
such a formal semantics and checking its properties using a proof assistant make
necessary to look into all the details of the semantics. Based on this work we
improved the reliability of the current implementation of the OSL library in
C++. It is a first step: we plan to design and implement a formal semantics of
the execution model and prove its equivalence with the programming model.

One limitation of this approach is that we are modelling the programs rather
than trying to prove directly the code. This this mainly due to the fact that C++
is a complex programming language and, to our knowledge, there is no support
for the proof of correctness of C++ programs with theorem provers or other tools.
However to fill the gap between what is modelled and what is proved correct,
we plan in the PaPDAS project (http://traclifo.univ-orleans.fr/PaPDAS)
to design a skeletal parallel programming language, extension of C (not C++),
and to implement and prove correct a compiler for this language, building on
the CompCert compiler [17,18].
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A A Short Introduction to Coq

The Coq proof assistant [26,3,4] is based on the calculus of inductive construc-
tions. This calculus is a higher-order typed λ-calculus. The Curry-Howard corre-
spondence is at the core of Coq: Theorems are types and their proofs are terms
of the calculus. The Coq system provides a language of tactics to help the user
to build proof terms.

We illustrate quickly all these notions on a short example. We first define a
new inductive type, the type of natural numbers in the Peano style:

Inductive nat : Set :=
| O : nat
| S : nat →nat.

nat has type Set: it is similar to a usual data-type in a functional language.
We also define the plus recursive function on natural numbers:

Fixpoint plus (n1 n2:nat) {struct n1} : nat :=
match n1 with
| O ⇒n2
| S n ⇒S(plus n n2)

end.

In this recursive definition we should specify which argument is structurally
decreasing (n1 in the example). This is because all functions must be terminating
in Coq. In both definitions, we gave the type of the new name we wanted to define
as well as a term of this type. We then define a lemma:

Lemma plus n O : ∀n, plus n O = n.
Proof.

induction n.
(∗ case n=0 ∗) simpl. reflexivity.
(∗ case n>0 ∗) simpl. rewrite IHn. reflexivity.

Qed.

If we check (using the Check command of Coq) the type of expression, we would
obtain Prop. This definition is a proposition. It belongs to the logical realm. To
define plus n O we should not only provide a type, but also a term of this type:
a proof of the lemma. We could write directly such a term, but it is usually
complicated. Coq provides a language of tactics to help the user to build proof
terms. In the top-level of Coq, entering line beginning with Lemma activates the
interactive proof mode. The Coq proof assistant indicates that we should prove
the following goal:

============================

forall n : nat, plus n O = n

We prove this goal by induction on n using the tactic induction n. The system
indicates now two goals to prove:
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============================

plus O O = O

subgoal 2 is:

plus (S n) O = S n

The first one is proved using the definition of plus using the tactic simpl which
yields the goal 0 = 0 and this case is ended by the application of the tactic
reflexivity. The second one is the inductive case:

n : nat

IHn : plus n O = n

============================

plus (S n) O = S n

After simplification, we obtain the goal S(plus n O) = S n. We solve it first by
rewriting plus n O in n using the IHn hypothesis and then we conclude by reflex-
ivity. Actually, Coq has some automation. The plus n O lemma could be proved
using one tactic: auto.

Mixing logical and computational parts is possible in Coq. For example a
function of type A→B with a precondition P and a post-condition Q corresponds
to a constructive proof of type: ∀x:A, (P x) →exists y:B →(Q x y). This could be
expressed in Coq using the inductive type sig:

Inductive sig (A:Set) (P:A→Prop) : Set := | exist: ∀(x:A), (P x) →(sig A P).

It could also be written, using syntactic sugar, as {x:A|(P x)}.
This feature is used in definition of the function pred:

Require Import Program.

Program Definition pred (n:nat | n<>O) : {q:nat|(S q)=n} :=
match n with
| O ⇒
| S n ⇒n

end.

The specification of this function is: ∀n : {m : nat | m<>O}, {q : nat | S q = ‘n}
where ‘n represents the natural number part of n (the other part being a proof
that this natural number is not zero). We define pred using the Program feature
of Coq. This feature allows the user to write a function with post-conditions as if
there were no post-condition. Program generates proof obligations to be proved
to ensure that the function result indeed meets the post-condition. Moreover in
this example the proof obligations are proved automatically by the system.
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Abstract. The peculiarities of the LuNA run-time subsystem implementation 
are considered. LuNA is the language and system of fragmented programming. 
The peculiarities are conditioned by the properties of numerical algorithms, to 
implementation and execution of which the LuNA is mainly oriented.  
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1    Introduction 

The idea of data and algorithms fragmentation has been exploited in programming at 
least since the early 1970-s [1–8]. This approach to computation organization with the 
use of a run-time subsystem is used if the solutions on how to execute a program or its 
parts, how to distribute the resources should be done dynamically. Different modifica-
tions of this approach were embodied in programming systems [2–5]. Many pro-
gramming systems use the run-time subsystems for the organization of computation 
[5–13]. In [2] instead of commonly used run-time system for program execution, a 
special hardware and operating system were developed. Our project of the LuNA 
fragmented programming system is oriented to the creation of a parallel numerical 
subroutine library. 

2   Introductory Definitions 

A general model of a program in the above mentioned systems can be described as 
computational model [3]. 

2.1   General Model Definition 

Given: 

• The finite set X={x, у, ..., z} of variables for representation of different computed 
values; 
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• The finite set F={а, b, ..., с} of functional symbols (operations, Fig. 1.a), m≥0 is 
the number of input variables, n≥0 is the number of output variables; 

• in(a)=(x1, ...,xm) is a set of input variables, out(a)=(y1, …,yn) is a set of output va-
riables (Fig. 1), if i≠j → yi ≠ yj.& xi ≠ xj 

Model С=(X,F) is called simple computational model (SCM). Operation а∈F de-
scribes the possibility to compute the variables out(а) from the variables in(a), for 
example, with the use of a procedure. The model can be graphically depicted (fig. 1.b, 
1.c) 

 

 a 

 y1   y2    . . .     yn 

 x1    x2      . . .     xm 
 x

 y

 a  b

 x

 y

 a  b

 x

 y

 a  b 

a) b) c) 
 

Fig. 1. Examples of operations, variables and models 

Let V⊆X, F⊆F be given. A set of functional terms T(V,F) is defined as follows: 

1. If х∈V, then х is a term t, t∈T(V,F); in(t)={х}; out(t)={х}. 
2. Let {t1, ..., ts} ⊆ T(V,F) and а∈F, in(a)=(x1,...,xs) be given. The term t=a(t1,...,ts) is 

included into T(V,F) if ∀i(xi∈out(ti)), in(t)=
1

s

i=U in(ti), out(t)=out(a). Here 

t=a(t1,...,ts) denotes that t is the term a(t1,...,ts). 
A term is depicted as a tree that contains both operations and variables of the term, 
see Fig. 2.a. 

We say that a term t computes a variable у, if у∈out(t). The set of terms T(V,F) de-
fines all the variables of the SCM, that can be computed from V variables. A set of 

terms W
VT ={t∈T(V,F)⎜out(t)∩W≠∅} computes all the variables from W that can be 

computed from V variables. 

Any such subset R⊆ W
VT  that ∀x∈W∃t∈R(x∈out(t)) is called (V,W)-plan and de-

fines an algorithm computing the variables W from the variables V. Here V and W 
denote the sets of input and output variables of the algorithm respectively. Every-
where further a set of recursively countable functional terms is considered as a repre-
sentation of an algorithm. 



 LuNA Fragmented Programming System, Main Functions and Peculiarities 55 

a 

x1 x2 xn... 

a1 a2 an... 

y1,1 y1,k1 y2,1 y1,k2 yn,1 yn,kn

... ... ... 

y 

ai 

yi 

xi,1 xi,2 xi,n 

... 

a) b) 
 

Fig. 2. Depicted terms 

2.2   Interpretation 

Let V⊆X be given. Interpretation I in the domain D is the function that assigns to: 

• every variable x∈V an entry dx=I(x)∈D, dx is a value of the variable x in the inter-
pretation I, 

• to every operation a∈F, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, a computable 
function fa: D

m →Dn, 
• to every term t=a(t1,t2,...,tm) a superposition of the functions accordingly to the rule 

I(a(t1,t2,...,tm))=fa(I(t1),I(t2),...,I(tm)). 

If t=a(t1,t2,...,tm) is an arbitrary term, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, then 
I(out(a))=val(t)=(d1,d2,...,dn)=fa(valx1(t1),valx2(t2),...,valxn(tn)). 

Further it is assumed that for every function fa=I(a) there exists a module (proce-
dure) moda that can be used in a program to compute the function fa. 

2.3   Correct Interpretation 

If there exist two different terms t1 and t2, y∈out(t1)∩out(t2), in(t1)∪in(t2)⊆V, then 
valy(t1)=valy(t2) in the interpretation I, the interpretation I is called correct interpreta-
tion. In the correct interpretation for any variable y, any pair of terms t1 and t2, 
y∈out(t1)∩out(t2)  yields the same value, valy(t1)=valy(t2). 

For definition of mass computations this model is extended by the inclusion in-
dexed operations and indexed variables (arrays), fig. 2.b. This technical work can be 
easily done. Obviously, in this extended model, a mass algorithm is represented by a 
potentially infinite recursively countable set of functional terms [3]. 

A program that implements an algorithm, represented by a set of functional terms, 
can be constructed with the procedure calls to moda done in the order that does not 
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contradict to the information dependences between the operations imposed by the 
terms structures. Usually, a run-time subsystem is used to implement all the calls in 
the proper order. 

3   The LuNA Fragmented Programming System 

3.1   Model Modifications 

The LuNA fragmented programming system implements the above model. In order to 
provide the reachability of high performance of a fragmented program execution the 
above model was essentially transformed [14]: 

• data and computation fragmentations were included into the model [15–17]; the 
subsets of functional terms are aggregated into bundles, forming aggregated va-
riables (data fragments – DF) and aggregated operations (fragments of computa-
tions – FC), 

• multiple assignment variables were included, whereas every FC is permitted to be 
executed once only, 

• the users’s  recommendation are introduced into an algorithm description, that are 
used by the LuNA run-time subsystem for improvement of the fragmented algo-
rithm execution. 

Additionally, LuNA applications are restricted by the numerical algorithms. Regular 
structure of mesh numerical algorithms essentially simplifies the algorithms of the 
LuNA run-time subsystem implementation.  As result, the algorithms of LuNA run-
time subsystem provide high performance execution of numerical algorithms and 
don’t  guarantee good execution of the algorithms from the another application area. 
The above modifications allowed essential improvement of the algorithms of the Lu-
NA run-time subsystem implementation providing high performance of the LuNA 
programs. All the above modifications preconditioned the main features and peculiari-
ties of the LuNA run-time subsystem implementation. 

3.2   Scheme of the LuNA Implementation 

LuNA program (FP – fragmented program) is constructed in two main stages: 

a). an application algorithm fragmentation [15–17] and its representation by the set 
of fragments of computations (operations in the above model), the set of data frag-
ments and partial order relation ρ in order to define the information dependences be-
tween fragments of computations (FC). Representation of the algorithms with the 
LuNA input language, including user’s  recommendations. 

b). such a representation is already considered as an executable FP. The execution 
is organized in next 3 steps: 

 
FP Compiler Generator Platform-

independent LFP 
LFP Run-time 

system  

Fig. 3. The 3 steps of FP execution 
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• Compilation. On this step all the decisions (construction of the initial resources 
allocation and control), that can be done statically, are made. Also the compiler 
analyses the FP and proposes one or more preliminary schemes of the FP execution 
and resources assignment. For example, several DFs can be assigned to a one 
memory slot in order to save the memory; or a number of CFs can be folded into a 
loop by defining additional direct control. The initial resources allocation is not 
fully constructed on this stage in order to provide the desirable level of asynchron-
ism in the course of the FP execution. The compiler also checks the FP in order to 
recognize the syntax errors and to accomplish some other traditional compilation 
tasks too. The compiler has no information about hardware configuration or input 
data. The result of the compilation is the platform-independent FP. 

• Generation. On this step all the decisions whose making depends on the computer 
system architecture and its configuration are generated. The generator takes the 
platform-independent FP as input and a description of a certain computer system 
configuration. The generator defines the parameters of the FP, such as DF size, in 
order to fit better the hardware. It also selects one of schemes of FP execution  
(if the compiler has provided more than one), which better fits the given hardware 
configuration. The result of generation is FP, executable by the run-time  
subsystem. 

• Execution is provided by the LuNA run-time subsystem. The set TV
W

 of the func-

tional terms is not really constructed, the necessary term is constructed if necessary 
only. The run-time subsystem provides dynamic properties of the FP execution, 
such as dynamic workload balancing. In the course of the FP execution the run-
time subsystem is capable to change the order of the FC execution and resources 
allocation schemes in order to optimize the efficiency of FP execution in run-time. 

In order to provide the high performance of an FP execution two main problems 
should be solved by the LuNA run-time subsystem: to choose and to assign for execu-
tion a certain FC  and to construct the rest of resources allocation.  

3.3   LuNA Input Language 

As usual [3], the LuNA input language contains the facilities for FC, DF and control ρ 
description. Also it contains the user’s recommendations, which provide the compiler 
and the run-time subsystem with the additional information on how to improve the 
execution of the FP. More detailed description of the FP representation and its pecu-
liarities are considered in [14]. 

Consider an example of DF, FC and ρ definitions, written with the input LuNA 
language: 

LuNA run-time subsystem utilizes the following types of recommendations. 

Priority. Priority is a real-valued function, defined on the set of FCs. If there is an 
ability for run-time subsystem to fetch for execution a number different FCs, then the 
ones with the highest priority are fetched. Definition of the priorities allows control-
ling the flow of FCs execution in order to optimize performance (see profiling subsec-
tion below). Like the rest recommendations, execution of the FP according to the 
priorities is not mandatory. Depending on different factors of a certain situation, run-
time subsystem can accept or not the defined recommendations. 
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Table 1. Example of DF, FC and ρ definitions in LuNA language 

Definitions of a FP Description 

df x[i] : block(real, M) | i=1..N; Definition of N DFs x[i], each containing 
M entities of real type. 

cf a[i] : func_a(in: x[i]; out: y[i], z[i]) | 
i=1..N; 

Definition of N FCs a[i] with specified 
input and output DFs. For implementation 
of FCs a[i] the func_a procedure is as-
signed. 

a[i] < a[i+1] | i=1..N-1; A set of pairs <a[i], a[i+1]> is  included 
into ρ. 

Neighborhood Relation. Binary relation called neighborhood relation is defined on the 
set of DFs. Two DFs are defined to be neighbor-related if it is recommended to keep 
them close to each other, for example, in the memory of the same PE. Usually this is 
done for DFs, which are the input variables of the same FC, and location of them in the 
same PE leads to reduction of the total communication overhead. Neighborhood relation 
is used by run-time subsystem in the process of dynamic workload balancing. If some 
workload has to be transferred from one PE to another, the run-time subsystem tries to 
minimize the number of neighbor-related DFs in different PEs after workload migration. 
Neighborhood relation provides the use of regularity of data and computation structures 
of numerical algorithms for the optimization of their execution. 

Execution Template. To optimize the performance of the most time- and resource-
consuming parts of the FP an execution template (ET) can be defined. The ET is an 
oriented graph, ET=<N,E>, where N is the set of ET nodes, and E is the set of ET 
oriented edges, E={<n1,n2>|n1,n2∈N}. The nodes N are execution units, connected with 
each other by edges, which transfer values from one node to another. A number of FCs 
can mapped to ET nodes. Consider an example (fig. 4). FCs ai are mapped to node A, bi – 
to node B and FC c is mapped to node C. Execution of the part of FP, mapped to the ET 
is organized as follows. When a node has a value on each of the incoming edges, it ex-
ecutes corresponding FC without any additional checks. After execution the output val-
ues are promoted via output edges to other nodes. In such a way, ET specifies inflexibly 
the scheme of FCs execution, which reduces the run-time subsystem overhead of choos-
ing FC for execution. 

Profiling. Profiling is a process of gathering a profile, which is the run-time informa-
tion about an FP execution. This information includes real order of FCs execution, 
FCs execution times, PEs workload over time information, etc. The profile is used by 
run-time subsystem to optimize next executions of the FP. For example, if during the 
FP execution some PEs were idle because the value of some DF x was not calculated 
in time, then this information will be extracted from the profile, and during the next 
execution of the FP the FCs, which provide yielding the value of x will be assigned 
for execution earlier (if possible). It can be achieved, for example, by increasing the 
priority of these FCs. In such a way, each next execution of the FP will be done more 
efficiently (up to some limit, of course), if the FP is run on the same multicomputer 
and with the similar input data. 
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Fig. 4. FP to ET mapping 

3.4   Testing 

The performance of the LuNA run-time subsystem was tested on the implementation of a 
numerical model of self-gravitating stardust cloud using Particle-In-Cell method [18]. 
The parallel MPI-based implementation of the model was compared to the same imple-
mentation in LuNA programming system. The model was implemented as a fragmented 
program, using approach, described in [15]. The FP was executed by the LuNA run-time 
subsystem. The testing was performed on a cluster of the Siberian Supercomuter Center 
[19]. The testing results are shown in fig. 5. 
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There were two versions of the test, which differ by problem size. In the version 1 
mesh size was 100×100×100 and the number of particles was 106. In the version 2 
mesh size was 200×200×200 and the number of particles was 107. In both versions the 
problem size was increased with the PEs count increase (in the same proportion). In 
such a way, the execution time was approximate the same for the same version of the 
test. 

As it is seen in the fig. 5 the difference in execution time between MPI and LuNA 
implementation is minor, which means, that the efficiency of hand-made MPI pro-
grams is reachable using LuNA programming system. However, to reach that effi-
ciency, a FP has to be tuned up by the properly defined recommendations. 

4   Conclusion 

Taking into account the peculiarities of numerical algorithm provided low level of 
LuNA overhead, high performance of numerical algorithms implementation. Some 
additional LuNA modification are also planned to be implemented soon. 
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Abstract. Systems biology is a multidisciplinary research area aimed at inves-
tigating biological systems by developing mathematical models that approach
the study and the analysis of both the structure and behaviour of a biological
phenomenon from a system perspective. The dynamics described by such math-
ematical models can be deeply affected by many parameters, and an extensive
exploration of the parameters space in order to find crucial factors is most of the
time prohibitive since it requires the execution of a huge number of computer
simulations. Sensitivity analysis techniques can help in understanding how much
the uncertainty in the model outcome is determined by the uncertainties, or by
the variations, of the model input factors (components, reactions and respective
parameters). In this work we exploit the European Grid Infrastructure to manage
the calculations required to perform the SA on a stochastic model of bacterial
chemotaxis, using an improved version of the first order screening method of
Morris. According to the results achieved in our exploratory analysis, the Euro-
pean Grid Infrastructure is a useful solution for distributing the stochastic simu-
lations required to carry out the SA of a stochastic model. Considering that the
more intensive the computation the more scalable the infrastructure, grid com-
puting can be a suitable technology for large scale biological models analysis.

1 Introduction

Systems biology is a multidisciplinary research area aimed at investigating biological
systems by developing mathematical models that approach the study and the analysis of
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both the structure and behaviour of a biological phenomenon from a system perspective.
Recent experimental investigations at the single-cell level [1] have highlighted the pres-
ence of noise, due to the inherently stochastic interactions between molecular species
occurring in low amounts inside the cell. Therefore, standard modelling approaches
based on ordinary differential equations cannot effectively capture the effects of biolog-
ical random processes, such as those that can lead the system to different states starting
from the same initial conditions (e.g. lysis or lysogeny in phage-infected bacteria [2]).
In recent years, many algorithms that perform stochastic simulations of biochemical
reaction systems have proved their intrinsic suitability for reproducing the dynamics of
many cellular processes [3].

Mechanistic mathematical models which represent real biological systems are usu-
ally composed of large numbers of components, which interact through many biochem-
ical processes. In the analysis of such kind of systems, the dynamics can be deeply
affected by many parameters, and an extensive exploration of the parameters space in
order to find crucial factors is most of the time prohibitive since it requires the execution
of a huge number of computer simulations. Moreover, in the field of stochastic simula-
tions, several outcomes of the same parameter settings are needed to enquire statistical
properties of the system dynamics.

There are several techniques devoted to the analysis of a model dynamics. For in-
stance, steady state analysis concerns the identification of points in the space of reach-
able states where some properties of the system does not change over time (e.g. where
the behaviour of the system is constant over time); bifurcation analysis studies the qual-
itative variation of the steady states (e.g. transition from oscillating to non oscillating
regime) as a consequence of the variation of the parameters; parameter sweep applica-
tion explores the parameters space of a system by means of independent experiments;
sensitivity analysis relates the uncertainty of the input of a model (i.e. variations on pa-
rameters or initial conditions) to its output (namely, the resulting behaviour). Sensitivity
analysis of biological models requires the execution of at least one simulation for each
variation of an input variable. Moreover, all the different initial settings generated by
modifying the input parameters lead to independent simulations of the system dynam-
ics, and this makes a distributed architecture suitable for the execution of sensitivity
analysis methods.

While in the state of the art some implementations of parameter sweep applications
in the context of biological models analysis are available on grid infrastructure [4], to
the best of our knowledge there are no sensitivity analysis tools developed on distributed
platform. In this work we present a grid computing approach to sensitivity analysis
of biological models, which is realised by distributing a large numbers of stochastic
simulations performed by using tau-DPP [5] stochastic simulator on the European Grid
Infrastructure (EGI). This infrastructure is the largest grid in Europe and the opportunity
of using an effective production platform for our experiments is of great importance to
critically analyse its performance by distributing the stochastic simulations aimed at the
sensitivity analysis of biological models.
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2 Sensitivity Analysis of Stochastic Models

In the mathematical modelling of biological systems, sensitivity analysis (SA) tech-
niques can help in understanding how much the uncertainty in the model outcome is
determined by the uncertainties, or by the variations of the model input factors (com-
ponents, reactions and respective parameters). Moreover, the SA of the model output
can also reveal which input factors bring about the most striking effects on the sys-
tem behavior, and thus can be assumed to be good control points for its dynamics.
Therefore, the knowledge on sensitive parameters can guide the design or facilitate the
choice of which validation experiments are the most suitable to carry out, to reduce lab-
oratory costs and efforts. Traditionally, SA has been diffusely applied to deterministic
continuous models, by means of (derivative-based) local or global methods [6], though
theories and tools for parametric sensitivity of discrete stochastic systems have recently
been defined. In stochastic systems, these methods have to account for the inherent ran-
dom effects over the simulations outcome, and demand the evaluation of the mean, or
distribution/variance-based distances of many independent simulations [7,8].

2.1 Elementary Effects and Optimized Sampling of the Input Space

The method we used in this work relies on the calculation for each input factor of a
number of incremental ratios, called Elementary Effects (EE) [9], from which basic
statistics are computed to derive sensitivity information. We choose the EE method
since it has been proven to be a very good compromise between accuracy and efficiency,
especially for SA of large models.

In this method, we consider a model with k input factors Xi, i = 1, . . . , k which
varies in a k dimensional unit cube across p selected levels. This means that the input
space is discretized into a p-level lattice Ω. For a given value of the input factors vector
X , the elementary effect of the ith input factor is defined as:

EEi =
[Y (X1, X2, . . . , Xi−1, Xi + Δ, . . . , Xk)− Y (X1, X2, ..., Xk)]

Δ
(1)

where p is the number of levels and Δ, the variation of the input factors, is a value in
{1/(p− 1), . . . , 1− 1/(p− 1)}.

The distribution of elementary effects associated with the ith input factor is obtained
by sampling different X from Ω. In order to optimize the exploration of the input
space we used here a refined sampling strategy proposed by Campolongo et al. [10]. By
using this method, r trajectories of (k + 1) points in the input space are generated, each
trajectory providing k elementary effects, one per input factor, for a total of r(k + 1)
sample points. In order to create the trajectories, a base value x∗ for the vector X is
randomly selected in Ω. x∗ is not part of the trajectories but it is used to generate all
the trajectory points, which are obtained starting from x∗. The first trajectory point x1,
is obtained by increasing one or more components of x∗ by Δ, so that x1 is still in Ω.
The second trajectory point x2, is generated from x∗ with the requirement that it differs
from x1 in the ith component, which has been either increased or decreased by Δ, the
index i is randomly selected in the set {1, 2, . . . , k}. The third sampling point x3, is
generated from x∗ with the property that x3 differs from x2 for only one component
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j, for any j �= i, where the component j can be either increased or decreased by Δ.
The procedure continues following the same rules until (k + 1) points are generated.
The trajectory produced with (k + 1) sampling points x1,x2, . . . , xk+1 has the key
property that two consecutive points differ in only one component and that any value of
the base vector x∗ has been selected at least once to be modified by Δ.

Once we have created a pool of N trajectories it is possible to select r trajectories
with the aim to maximize their spread in the input space. The concept of spread D is
based on the following definition of distance dml, between two trajectories m and l:

dml =

{∑k+1
i=1

∑k+1
j=1

√∑k
z=1 [X(i)

z (m)−X
(j)
z (l)] if m �= l

0 otherwise
(2)

where k is the number of the input factors and xi
z(m) indicates the zth coordinate of the

ith point of the mth trajectory. The distance dml represents the sum of the geometric
distance between all the pairs of points of the two trajectories under analysis. Given
this trajectory to trajectory distance, it is then possible to quantify the concept of spread
D in a set of r trajectories as the squared sum of all the dml distances generated by
all the possible couples within the set. Stated in other words, we need to evaluate the

distance dml between all the possible
1
2
N(N − 1) couples of trajectories in the pool

and then enumerate the

(
N

r

)
possible subset of trajectories. So doing, it is possible to

choose the best set of r trajectories from the N generated by maximizing D, in order
to optimize the exploration of the input space.For instance, given three trajectories a, b
and c (i.e. r = 3) the spread among them is defined as:

Dabc =
√

d2
a,b + d2

a,c + d2
b,c (3)

Following this strategy, we can select the combination of trajectories with the maximum
spread in order to optimize the exploration of the input space.

2.2 Comparison of Stochastic Models Output: The Histogram Distance

In the context of stochastic modelling, each set of parameters generates qualitatively
identical dynamics but quantitatively different. Indeed, to enquire statistical proper-
ties of the system we need to simulate a high number of times the system for each
parametrisation; and if we need to compare the simulations results for the calculation
of sensitivity measures, we have to cope with the comparison of distributions.

In this work, we used the histogram distance, which is computed as follows:

δ(S, T ) =
h∑

i=1

∣
∣
∣

∑|S|
j=1 χ(sj , Ii)
|S| −

∑|T |
j=1 χ(tj , Ii)
|T |

∣
∣
∣ (4)

where h is the number of histogram bins, sj ∈ S and tj ∈ T are model outputs (e.g.
the number of molecules of a specific type at a given time instant), |S| and |T | are the
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cardinalities of the multisets S and T and correspond to the number of simulations exe-
cuted, the function χ returns 1 if the element sj belongs to the interval Ii, 0 otherwise.

Ii is the ith interval in the range, which runs from mmin + (i−1)L
h to mmax + iL

h , where
mmin = min {S ∪ T }, mmax = max {S ∪ T } and L = mmax −mmin. With suf-
ficient simulations runs, the use of the histogram distance is able to precisely describe
the difference between the reference output of a model and another output (of the same
model) obtained with one or more input factors varied [11].
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Fig. 1. Histogram plots obtained from 100 runs of the stochastic algorithm used to simulate the
model with two different parametrisations taken from a trajectory obtained with the Morris sam-
pling strategy

From a computational point of view, we need to perform many simulations with
different model configurations in order to explore the input space factors and for each
model configuration we need to repeat several simulations in order to calculate the
histogram distribution of the output. In Fig. 1, an example of two histograms obtained
from stochastic outcomes is plotted.

Given the fact that the simulations are independent, the task we want to perform is
highly parallelizable and therefore the grid computing technology is a suitable approach
to reduce the computational time needed to perform SA on large stochastic biological
models.

3 The Bacterial Chemotaxis Case Study

As a case study, the SA was performed by using an improved version [10] of the first
order screening method of Morris [9], on a stochastic model of bacterial chemotaxis.
We choose this model because it represents a test of a realistic size compared to models
currently available in systems biology literature: in fact, the bacterial chemotaxis model
includes 59 parameters (i.e., the stochastic constants of the reactions) which represent
the input factors in the context of SA.
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From the biological point of view, chemotaxis is an efficient signal transduction
pathway which allows bacterial cells to respond and adapt to their surrounding envi-
ronment, by alternating random walks in homogeneous environments and longer direc-
tional running in presence of attractants or repellents [12,13]. A mechanistic model of
the chemosensory system of E. coli bacteria, accounting for all protein-protein interac-
tions and the feedback control mechanisms regulating the pathway, has been previously
defined and used to analyze the temporal evolution of the pivotal chemotactic protein,
CheYp, under different conditions [14].

4 The European Grid Infrastructure

In this work we exploit the EGI, a wide area grid platform for scientific applications
composed of thousands of CPUs, which implements the Virtual Organisation (VO)
paradigm [15]. The production framework is a large multi-science grid infrastructure,
federating 250 resource centres worldwide, which provides comprehensively 20.000
CPUs and several Petabytes of storage. This infrastructure is used daily by thousands
of scientists federated in over 200 VOs.

The EGI uses the gLite middleware [16], which was developed through the collab-
oration of a number of projects, like DataGrid, DataTag, Globus, GriPhyN, and LCG.
The gLite software is an integrated set of tools designed to permit the sharing of com-
putational resources and must be installed on a local server, defined as User Interface
(UI), to allow the management of computations on the EGI. In particular, employing
gLite, it is possible to submit grid jobs, monitor their state of advancement, and retrieve
the output when the computations are successful or to resubmit them in case of failure.
This grid infrastructure is highly scalable and allows computationally intensive chal-
lenges to be accomplished, but users must cope with the continuous dynamic reshape
of the available resources, which is typical of loosely coupled distributed platforms.

To enable a secure connection to the remote resources, the grid middleware offers a
well-established security system. The system relies on the Grid Security Infrastructure
(GSI), which uses public key cryptography to recognise users. The access to remote
clusters is granted by a Personal Certificate encoded in the X.509 format, which ac-
companies each job to authenticate the user. Moreover, users must be authorised to job
submission by a VO, a grid community having similar tasks that vouches for them.
In this test we joined the Biomed VO, which shares on average 2000 CPUs and wel-
comes applications in the bioinformatics field, in medical image processing, and more
generally in biomedical data processing.

The resources available on the EGI are composed of a network of several Computing
Elements (CEs), which are gateways for computer clusters where jobs are actually per-
formed and an equal number of Storage Elements (SEs) that implement a distributed
filesystem to store temporary files. The computational resources are connected to a
Resource Broker (RB) that routes each job on a specific CE, taking into account the
directives of the submission script, coded using the Job Description Language (JDL).
In detail, the Workload Management System (WMS) is the RB service which schedules
jobs by delivering them to the resource that best fits the requirements, balancing the
computational load [17]. Although this brokering policy is not configurable by the user,
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it provides high performance: bulk submission enables the sending of sets of indepen-
dent jobs up to a rate of 50Hz for job submission and 0.5Hz for job dispatching to the
CEs. Finally, each CE routes the incoming jobs to a batch queue system (PBS or LFS),
which hides the farm of Working Nodes (WNs) where computations are effectively
performed.

4.1 Performance Indexes

We will focus on two measures, hereby defined, to discuss the performances of EGI:
the crunching factor and the overhead ratio. The crunching factor is a commonly used
metric of the parallelisation gain achieved during a grid computation; it is defined as
the ratio between the total expected CPU time over a single CPU and the duration of
the grid computation, i.e. the time needed to accomplish the longest job:

c =
nt

max (τj)
, j = 1, 2, . . . , n (5)

where t is the expected time required for the computation of a single job using a single
CPU, τj is the grid job time for job j and n is the number of grid jobs. Basically, the
crunching factor c represents the average number of CPUs used simultaneously along
the whole computation, taking into account the longest job.

The second index is the overhead ratio, which is defined for a job j as the ratio of
the difference between the grid job time and the grid CPU time τ cpu

j with the grid CPU
time

oj =
τj − τ cpu

j

τ cpu
j

(6)

The quantity oj is an indicator of the time spent “on the grid” with respect to the actual
τ cpu
j .

5 Results

We performed the sensitivity analysis of the bacterial chemotaxis model presented
in Section 3, in particular we computed the elementary effects by considering as in-
put factors of the model, all the 59 stochastic constants associated to the biochemical
reactions.

The trajectories generation process has been accomplished by using a lattice having
p = 4 levels. Starting from a randomly generated point in the k dimensional lattice
(where k = 59 is the number of input factor), we generated N = 40 trajectories and
then we computed all the distances between each pair of trajectories. The distances have

been used to compute the spread of the

(
N

r

)
possible subset of trajectories (where

r = 10), and then the r trajectories with the highest spread have been used to compute
the the elementary effects of the input factors of the model.

The r trajectories have been converted into r(k+1) parametrisations for the stochas-
tic simulations using ranges for stochastic constants which span two orders of magni-
tude above and below the reference values used to obtain a correct dynamics of the
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system [14]. For each parametrisation, 100 simulations have been executed using the
τ -DPP algorithm in order to build the histograms used to compute the elementary ef-
fects; hence, a total of 100r(k+1) = 6 ·104 simulations were required to perform a run
of SA.

We distributed over the EGI four runs of SA in which we modified the granularity of
grid jobs, ranging from 60 to 6000 simulations per job. All the jobs were submitted to
the grid through a User Interface, which periodically queries the RBs in order to retrieve
the output in case jobs are correctly finished or to resubmit them in case of failure. Data
about the time required to accomplish the whole computation are reported in Table 1,
against the 13 days required when using a single CPU. The best crunching factor was
20.1 and was obtained during the run 2, in which we split the set of 6·104 simulations
in 100 grid jobs, as reported in Table 1. The granularity used during run 2 resulted in
grid job times ranging from 211.9min to 397.8min, Fig.2. Taking into account also the
overhead ratio, reported in Fig. 3, it is evident that the best performance achieved in run
2 corresponded to the best granularity: in fact, a further increase of the number of jobs
(run 1) yielded a lower percentage of job successfully completed at the first submission
and a higher overhead ratio (which increases as the the grid job cpu time decreases),
while the reduction of the job number (runs 3 and 4) determined better job success rate
and better overhead ratio, but, due to the lower parallelism, the overall performance is
worse.

Table 1. Setting and performances of the four runs of SA distributed over the EGI;n is the number
of jobs, success rate is the percentage of the jobs successfully finished at the first submission and
c is the crunching factor

Run n Simulations / Job Success rate [%] max (τj) [min] c
1 1000 60 76 1171.0 17.1
2 100 600 84 994.6 20.1
3 20 3000 90 1742.5 11.5
4 10 6000 100 2646.5 7.6

As a matter of fact, once we obtained the results of the simulations of the r(k + 1)
parametrisations, we built the histograms associated to each set of input factors and we
used the histogram distance described in Section 2 to identify the input factor having
the highest effect on the model dynamics. In particular, the histogram distance has been
computed between the outcomes referred to adjacent points of each trajectory. So doing,
we calculated r elementary effects for each stochastic constant.

The elementary effects computed as histogram distances have been then used to eval-
uate the mean and standard deviation of the input factor effects. Following the method
described in [10] we computed the values of μ∗ and σ of the 59 parameters of the bac-
terial chemotaxis model; in Fig. 4 we plot these results: the log-scale plot of μ∗ and σ
(top left), the zoom in linear scale of the input factors with μ∗ and σ in the intarvals
[0, 1] (top right), [1, 100] (bottom left) and [100, 40000] (bottom right). For the sake of
readability, we did not labelled the points of the graphs with the corresponding stochas-
tic constant index. However, we reported in Table 2 the 10 most influential input factors
of the model.
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Fig. 2. Scatter plots of grid job times τj (vertical axes) and gid job cpu times (horizontal axes)
τ cpu

j for (a) run 1, (b) run 2, (c) run 3 and (d) run 4
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Table 2. μ∗ and σ values of the most influential input factors of the bacterial chemotaxis model

Reaction no. μ∗ σ

13 37204.7 24776.7
5 36061.1 27723.5

18 6231.71 7407.27
25 5758.29 7288.1
37 3637.65 2897.85
30 2649.92 2857.51
42 1803.36 1461.62
49 1175.78 1277.24
54 792.272 840.66
15 124.342 102.439
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graphs the elementary effects (points) are plotted along with the bisector.

The results of the sensitivity analysis of the bacterial chemotaxis model show that
among the 10 most influential input factors, the stochastic constants of reactions 13, 5,
37, 42 and 15 have a linear effect since μ∗ values are higher than σ, while the other
constants have non-linear effects. Moreover, there are 20 stochastic constants whose μ∗

and σ values are smaller than one; hence, they have negligible effect on the model and
can be discarded during a successive exhaustive analysis.
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We do not give here an interpretation of the biological meaning of this analysis be-
cause in this paper we focus on the evaluation of the performance of the grid for the
application of sensitivity analysis methods.

6 Conclusions

We performed an exploratory analysis to evaluate the reliability of the EGI in perform-
ing a large number of simulations of a stochastic model, which is requested by the EE
approach to SA. More precisely, we highlighted critical factors, bottlenecks and scala-
bility of this platform, focusing on the issues related to stochastic simulations.

A crucial factor in performing a grid computation is the identification of a suitable
strategy for splitting it into a set of grid jobs, which means defining the granularity of
the computation. The computation of long jobs on the grid may cause significant data
loss in case of system failure or problems related to data transfer. On the other hand,
the execution of a large number of short jobs raises the total latency time in the batch
queues, affecting the global performance of the system (see Tab. 1 and Fig. 3).

Concerning the job granularity, once the optimal grid job computational time is
found, the determination of the optimal number of simulations per job is not an easy
task, because the model simulation time varies according to the values of the input fac-
tors. This is due to the fact that the dynamics is not uniformly sampled and that the
number of points in the dynamics is affected both by the stochastic constants value and
by the molecular amounts occurring in the system.

The strategy that we apply in order to increase the accuracy of the SA is by itself time
consuming. It is possible to reveal the related computational effort, by reviewing the
main steps of this strategy. First, a high number (N ) of trajectories has to be generated.
Then, the r trajectories that have the greatest spread are selected, where the spread is
measured as the sum of the r trajectory-trajectory distances. This means that we first

need to evaluate the distance dml between all the possible
1
2
N(N − 1) couples of

trajectories in the pool and then enumerate the

(
N

r

)
possible subset of trajectories.

To compute the spread of each of these subsets, a sum of
1
2
r(r − 1) terms is finally

performed.
A key point in which the grid technology is a reliable approach to improve the ac-

curacy of the SA, it is the possibility to increase the number of dynamics executions to
compute the histogram distance. In this exploratory work, the number of simulations
that we performed for each point of the trajectory can be considered a lower bound, as
it can be seen in Fig. 1.

In conclusion, the EGI proved to be a useful solution for distributing the stochastic
simulations required to carry out the SA of a stochastic model. This platform proved its
efficiency in the context of our test and considering that the more intensive the compu-
tation the more scalable the infrastructure, grid computing can be a suitable technology
for large scale biological models analysis.
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Abstract. As introduced by Taubenfeld, a contention-sensitive implementation
of a concurrent object is an implementation such that the overhead introduced by
locking is eliminated in the common cases, i.e., when there is no contention or
when the operations accessing concurrently the object are non-interfering. This
paper, that can be considered as an introductory paper to this topic, presents a
methodological construction of a contention-sensitive implementation of a con-
current stack. In a contention-free context a push or pop operation does not rest
on a lock mechanism and needs only six accesses to the shared memory. In
case of concurrency a single lock is required. Moreover, the implementation is
starvation-free (any operation is eventually executed). The paper, that presents
the algorithms in an incremental way, visits also a family of liveness conditions
and important concurrency-related concepts such as the notion of an abortable
object.

Keywords: Abortable object, Asynchronous shared memory system, Atomic reg-
ister, Compare&Swap, Contention manager, Contention-sensitiveness,
Deadlock-freedom, Linearizability, Liveness, Lock-freedom, Non-blocking,
Obstruction-freedom, Progress condition, Starvation-freedom, Synchronization.

1 Introduction

1.1 Concurrent Objects

From mastering sequential algorithms to mastering concurrency. The study of algo-
rithms lies at the core of informatics and participates in establishing it as a science
with strong results on what can be computed (decidability) and what can be efficiently
computed (complexity). It is consequently unanimously accepted by the community
that any curriculum for undergraduate students has to include lectures on sequential
algorithms. This allows the students not only to better master the basic concepts, mech-
anisms, techniques, difficulties and subtleties that underlie the design of algorithms, but
also understand the deep nature of computer science and computer engineering.

A challenge is now to attain the same goal in the context of concurrency. A concur-
rent object is an object that can be concurrently accessed by several processes. As any
object, a concurrent object is defined by a set of operations that processes can invoke
to cooperate through this object. These operations are the only way to access the in-
ternal representation of the object (that remains otherwise invisible to processes). We
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are interested here in concurrent objects that have a sequential specification and supply
processes with total operations. A total operation is an operation that always returns
a result (e.g., instead of blocking the invoking process, a dequeue() operation on an
empty queue returns it the value empty).

Linearizability. The most popular safety property associated with concurrent objects is
called linearizability [10]. This consistency condition extends atomicity to all objects
defined by a sequential specification on total operations. More precisely, an implemen-
tation of an object satisfies linearizability (and we say that the object implementation is
linearizable) if the operation invocations issued by the processes appear (from an exter-
nal observer point of view) as if they have been executed sequentially, each invocation
appearing as being executed instantaneously at some point of the time line between
its start event and its end event. Said differently, an implementation is linearizable if it
could have been produced by a sequential execution.

An important property associated with linearizable object implementations is that
they compose for free. This means that, if both of the implementation of an object A
and the implementation of an object B (each taken independently) are linearizable,
then these implementations without any modification constitute a linearizable imple-
mentation of the composite object (A, B). (It is important to notice that, in contrast
to linearizability, other consistency conditions such as sequential consistency [14] or
serializability [2] cannot be composed for free.)

Traditional lock-based shared memory synchronization. One of the most popular way
to obtain linearizable implementations of concurrent objects is to use locks. Associating
a single lock with an object prevents several processes/threads from accessing it simul-
taneously. This approach is based on the classical notion of mutual exclusion [3,18,24].
Interestingly, locks can take different shapes according to the abstraction level at which
they are considered. The most known example of locks is certainly the semaphore ob-
ject [3], on top of which more friendly (i.e., high level) lock-based abstractions (such as
monitors [12] or serializers [11]) can be built. This approach has proved its usefulness in
providing simple lock-based solutions to basic paradigms of shared memory synchro-
nization (such as the producer-consumer problem, or the readers-writers problem). One
of the main difficulties when designing a lock-based solution lies in ensuring deadlock
prevention, and more generally, provable liveness guarantees. Moreover, from an im-
plementation point of view, lock implementations can be costly in terms of underlying
shared memory accesses [19].

Contention-sensitive objects. The notion of contention-sensitive implementation of a
concurrent object has been recently introduced [26]. The contention-sensitiveness prop-
erty means that the overhead due to locking has to be eliminated when there is no con-
currency or when the operations that concurrently access an object are not interfering
(e.g., enqueuing and dequeuing on a non-empty queue). In these cases (absence of con-
tention or interference), a contention-sensitive implementation has to ensure that an
operation on the object completes in a small (possibly constant) number of steps and
without locks. Resorting to locks has to be restricted to concurrent conflicting opera-
tions only.



76 A. Mostéfaoui and M. Raynal

The first paper (to our knowledge) that introduced contention-sensitiveness (without
giving it a name) is [16] where is presented a mutual exclusion algorithm in which, in
a contention-free context, a process has to execute only seven shared memory accesses
to enter the critical section. When there is contention, the number of shared memory
accesses depends on the number of processes and the actual concurrency pattern.

1.2 Content of the Paper

Abortable objects. An abortable concurrent object behaves like an ordinary object
when accessed sequentially, but may abort operations when accessed concurrently (in
that case the aborted operation has no effect and returns a default value denoted ⊥).
This definition is inspired from, but stronger than, the definition of abortable objects
introduced in [1] (in that paper, an aborted operation returns also ⊥, but may or not
take effect and this is not known by the invoking process). The important point (in both
definitions) is that the state of the object is never left inconsistent.

As far as we know, the notion of abortable objects has first been discussed in [13]
where is presented an abortable mutual exclusion object. At any time while it is execut-
ing its entry code, a process can stop competing for the critical section and this halting
has not to alter the liveness of the other critical section requests.

Progress conditions. While it always considers linearizability as the implicit safety
condition, this paper considers three progress conditions for concurrent objects:
obstruction-freedom, non-blocking and starvation-freedom.

The obstruction-freedom progress condition [8] states that an operation is required to
terminate only if it executes in a concurrency-free context (i.e., when there is no opera-
tion invoked concurrently which is also called solo execution). Hence, an obstruction-
free implementation of an object does not prevent concurrent operation invocations
from never terminating. Let us notice that the notion of an abortable object is stronger
than obstruction-freedom: while both ensure object consistency, they differ in the live-
ness they provide to users. More precisely, both guarantee operation termination in
concurrency-free context, obstruction-freedom does not guarantee operation termina-
tion in case of concurrency. Differently, all operation invocations of an abortable object
do terminate (possibly returning the value ⊥ in case of concurrency). Hence, an im-
plementation of an abortable object trivially satisfies the obstruction-freedom progress
condition while the opposite is not true.

An implementation of a concurrent object is non-blocking if it is obstruction-free and
additionally guarantees that, in presence of concurrency, at least one concurrent opera-
tion terminates. In a failure-free context, non-blocking is the same as deadlock-freedom.
Finally, an implementation of a concurrent object is starvation-free if any operation in-
voked by a process terminates1. Hence, we have a hierarchy of progress conditions:
obstruction-freedom is strictly weaker than non-blocking that in turn is strictly weaker
than starvation-freedom. This hierarchy defines a family of qualities of service for live-
ness properties.

1 In presence of process crashes, starvation-freedom becomes t-resilience where t is the maxi-
mum number of process that may crash. Moreover, in a set of n processes, wait-freedom [7] is
(n− 1)-resilience.
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Content and roadmap. This paper investigates the contention-sensitive approach for
the implementation of concurrent objects as advocated by Taubenfeld in [26]. To that
end, it considers a simple concurrent object, namely a shared stask (let us remark that a
lock-based starvation-free implementation of such an object is trivial). Three algorithms
implementing such an object are presented. The first algorithm provides the processes
with an abortable stack. As already said, this means that concurrent push and pop op-
erations are allowed to abort (i.e., return ⊥), while a push or pop operation executed
in a concurrency-free context has to terminate and return a non-⊥ value. This algo-
rithm does not use locks and is consequently lock-free. The second algorithm, which is
also lock-free and provides the processes with a non-blocking shared stack is a simple
extension of the previous one.

Considering an underlying abortable shared stack, the third algorithm provides the
processes with a contention-sensitive shared stack. When an operation is executed in
a concurrency-free context, this algorithm uses no lock and, whatever the number of
processes and the size of the stack, it requires only seven shared memory accesses. This
means that the algorithm is particularly efficient in contention-free patterns. It resorts
to a lock only when there are concurrent operations. Moreover, this algorithm ensures
the starvation-freedom progress condition.

The algorithms are built incrementally. This helps better understand the mechanisms
that are used to go from an abortable shared object to a contention-sensitive implemen-
tation that satisfies the starvation-freedom progress condition. Interestingly, the mech-
anism employed to ensure starvation-freedom constitute a contention manager that can
be used to solve other fairness-related problems.

The paper is made up of 5 sections. Section 2 presents the computation model. Then
Section 3 presents an algorithm implementing an abortable stack object and its ex-
tension to obtain a non-blocking implementation of a stack [22]. Section 4 presents a
contention-sensitive algorithm that implements a starvation-free stack. This algorithm
is based on a mechanism introduced in [26]. Finally, Section 5 concludes the paper. Last
but not least, it is important to say that the aim of this paper is to promote the notion
of contention-sensitive implementation of a concurrent object as an efficient alterna-
tive to fully lock-based implementations. The interested reader will find more general
developments on the contention-sensitive approach in [26].

2 Computation Model

2.1 System Model

Asynchronous processes and communication model. The system is made up of n se-
quential processes denoted p1, p2, . . ., pn. The integer i is the identity of pi. Each
process proceeds to its own speed, which means that the processes are asynchronous.

Processes communicate by accessing a shared memory that consists of atomic regis-
ters. The base operations on a register are read, write and Compare&Swap (see below).
“Atomic” means that all operations on a register R appear as if they have been exe-
cuted sequentially, and if operation op1 terminates before operation op2 starts, then op1
appears before op2 in the sequence.
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Atomicity and linearizability denote the same consistency condition. The word
“atomicity” is usually employed for read/write registers [15] while the word “lineariz-
ability” is employed for objects built on top of registers or other objects [10].

Notation. Shared registers are denoted with uppercase letters. In contrast, variables that
are local to a process are denoted with lowercase letters.

Failure model. It is assumed that both processes and atomic registers are reliable. This
helps better understand how the algorithms work. They actually can cope with process
crash failures. This is shortly discussed in Section 5.

2.2 Compare and Swap Operation

Definition. The Compare&Swap operation, that is on an atomic register X is denoted
X.C&S(old, new). It is a conditional write that does atomically the following: if the
current value of X is old, it assigns new to X and returns true; otherwise, it returns
false .

primitive X.C&S(old, new):
if (X = old) then X ← new; return(true) else return(false) end if.

This base operation exists on some machines such as Motorola 680x0, Intel, Sun,
IBM 370 and SPARC architectures. In some cases, the returned value is not a boolean,
but the previous value of X .

The ABA problem. When using Compare&Swap, a process pi usually does the follow-
ing. It first reads the atomic register X (obtaining value a) and later wants to update
X to a new value c only if X has not been modified by another process since it has
been read by pi. Hence, pi invokes X.C&S(a, c). Unfortunately, the fact that this in-
vocation returns true to pi does not allow it to conclude that X has not been modified
since the last time it read it. This is because between the read of X and the invocation
X.C&S(a, c) issued by pi, X may have been updated twice, first by a process pj that
has successfully invoked X.C&S(a, b) and then by a process pk that has successfully
invoked X.C&S(b, a), thereby restoring the value a into X . This is called the ABA
problem.

This problem can be solved by associating a new (tag) sequence number with each
value that is written. The atomic register X is then composed of several fields such as
〈v, sn〉 where v is the current value of X and sn its associated sequence number. When
it reads X a process pi obtains consequently the pair 〈v, sn〉. When later it wants to
conditionally writes v′ into X , it invokes X.C&S(〈v, sn〉, 〈v′, sn+ 1〉). It is easy to see
that the write succeeds only if X has continuously been equal to 〈v, sn〉.

3 Implementing an Abortable Stack and a Non-blocking Stack

The algorithm described in Figure 1 implements an abortable stack. It is a simpli-
fied version of the non-blocking algorithm introduced in [22] (which is presented in
Figure 2).
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Operations. An abortable stack has two operations denoted here weak push(v)
(where v is the value to be added at the top of the stack) and weak pop(). An operation
always succeeds when executed in a contention-free context. In that case weak push(v)
returns done if v has been pushed on the stack and full if the stack is full; weak pop()
returns the value that was at the top of the stack (and suppresses it from the stack) or
returns empty if the stack is empty. In the other cases, an operation may abort, in which
case it returns ⊥.

Shared data structures. The stack is implemented with an atomic register denoted TOP
and an array of k + 1 atomic registers denoted STACK [0..k].

– TOP has three fields that contain an index (to address an entry of STACK ), a
value and a counter. It is initialized to 〈0,⊥, 0〉.

– Each atomic register STACK [x] has two fields: STACK [x].val that contains a
value, and STACK [x].sn that contains a sequence number (used to prevent the
ABA problem as far as STACK [x] is concerned).
The capacity of the stack is k and for 1 ≤ x ≤ k the register STACK [x] is ini-
tialized to 〈⊥, 0〉. STACK [0] is a dummy entry initialized to 〈⊥,−1〉 that always
contains the default value ⊥.

The array STACK is used to store the content of the stack, and the register TOP is used
to store the index and the value of the element at the top of the stack. The content of both
TOP and STACK [x] is modified with the help of the Compare&Swap operation. This
operation is used to prevent erroneous modifications of the stack internal presentation.

The implementation is lazy in the sense that a stack operation assigns its new value to
TOP and leave the corresponding modification of STACK to the next stack operation.
Hence, while on the one hand a stack operation is lazy, on the other hand it has to help
terminate the previous stack operation.

The operation weak push(v) When a process pi invokes weak push(v), it first reads the
content of TOP (that contains the last non-aborted operation on the stack) and stores
its three fields in its local variables index, value and seqnb (line 01).

Then, pi helps terminate the previous non-aborted stack operation (line 02). That
operation (be it a successful weak push() or a successful weak pop() as we will see
later) required to write 〈value, seqnb〉 into STACK [index]. To that end pi invokes
STACK [index].C&S.

(
old, new

)
with the appropriate values old and new in order the

write be executed only if not yet done (lines 15-16).
After its help (that was successful if not yet done by another stack operation) to move

the content of TOP into STACK [index], pi returns full if the stack is full (line 03). If
the stack is not full, it tries to modify TOP to register its push operation. This operation
has to succeed if no other process modified TOP since it was read by pi at line 01. In
that case, TOP takes its new value and weak push(v) succeeds. Otherwise it aborts
(lines 06-07).

The triple of values associated with this push try(v) and to be written in TOP if
successful, is computed at lines (lines 04-05). Process pi first computes the last se-
quence number sn of next used in STACK [index + 1] and then defines the new
triple, namely, newtop = 〈index + 1, v, sn of next + 1〉 to be written first in TOP
and later in STACK [index+1] thanks to the help provided by the next stack operation
(let us remember that sn of next + 1 is used to prevent the ABA problem).
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operation weak push(v):
(01) (index, value, seqnb) ← TOP ;
(02) help(index, value, seqnb);
(03) if (index = k) then return(full) end if;
(04) sn of next← STACK [index+ 1].sn;
(05) newtop← 〈index+ 1, v, sn of next+ 1〉;
(06) if TOP .C&S

(〈index, value, seqnb〉, newtop)
(07) then return(done) else return(⊥) end if.

operation weak pop():
(08) (index, value, seqnb) ← TOP ;
(09) help(index, value, seqnb);
(10) if (index = 0) then return(empty) end if;
(11) belowtop← STACK [index− 1];
(12) newtop← 〈index− 1, belowtop.val, belowtop.sn+ 1〉;
(13) if TOP .C&S

(〈index, value, seqnb〉, newtop)
(14) then return(value) else return(⊥) end if.

procedure help(index, value, seqnb):
(15) stacktop← STACK [index].val;
(16) STACK [index].C&S

(〈stacktop, seqnb− 1〉, 〈value, seqnb〉).

Fig. 1. An abortable stack [22]

The operation weak pop(). The algorithm implementing this operation has exactly the
same structure as the previous one and is nearly the same. Its explanation is conse-
quently left to the reader.

Linearization points of successful weak push() and weak pop() operations. The oper-
ations that do not abort are linearizable, i.e., they can be totally ordered on the time line,
each operation being associated with a single point of the time line that is after its start
event and before its end event. More precisely, a non-aborted operation appears as if it
has been atomically executed

– when it reads TOP (at line 01 or 08) if it returns full or empty (at line 03 or 10),
– or at the time at which it successfully executes TOP .C&S

(−,−) (line 06 or 13
according to the operation).

From an abortable stack to a non-blocking stack. A very simple algorithm that builds a
non-blocking stack on top of an abortable stack is described in Figure 2. It is easy to see
that this algorithm satisfies the obstruction-freedom property: an operation executed in
a contention-free context returns always a non-⊥ value. It is also easy to see that no op-
eration aborts: instead of aborting, an operation can loop forever. The interested reader
will find in [22] a proof that, whatever the contention pattern, at least one operation
always terminates (i.e., the algorithm is non-blocking).
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operation non blocking push(v):
repeat res← weak push(v) until res 	= ⊥ end repeat;
return(res).

operation non blocking pop():
repeat res← weak pop() until res 	= ⊥ end repeat;
return(res).

Fig. 2. A linearizable non-blocking stack

4 A Contention-Sensitive Implementation of Stack

Let us remember that the aim is here the design of a contention-sensitive that imple-
ments a starvation-free stack, which means that the algorithm (a) is allowed to use a
lock only when there is contention, and (b) has to execute a small and constant-bounded
number of shared memory accesses when there is no contention.

The stack provides the processes with the operations denoted strong push(v) and
strong pop(). As the implementation of the contention-sensitiveness property is inde-
pendent of the fact that the stack operation is strong push() or strong pop(), we de-
scribe a generic algorithm denoted strong push or pop(par) where par = v if the
operation is strong push(v) and par = ⊥ if the operation is strong pop(). More-
over, in the text of the algorithm weak push or pop(par) stands for weak push(v) or
weak pop() according to the context.

4.1 Data Structures

The implementation of the contention-sensitiveness property is based on two atomic
registers, an array of atomic registers and a lock.

– The lock, denoted LOCK , is accessed by the operations lock() and unlock(). It
is used to ensure that a single process executes the part of code bracketed by
LOCK .lock() and LOCK .unlock(). This lock is assumed to be deadlock-free but
it is not required to be starvation-free (see the remark below).

– CONTENTION is a boolean register (initialized to false) that is set to true by
a process when it executes the underlying weak operation(par) operation. This
allows a process that starts executing an operation to know that there is contention.

– FLAG[i ] boolean, is a boolean (initialized to false) that process pi sets to true
when it wants to execute a stack operation and there is contention. In that way,
pi allows the other processes to know it is competing for the lock. Process pi sets
FLAG[i ] to false when it has executed its base weak operation(par) operation.

– TURN contains a process identity. TURN = i means that process pi has priority
to use the lock. Its initial value is any process identity. In order to ensure starvation
freedom, the next value of TURN is (TURN mod n) + 1. Such a round-robin
mechanism is used in several mutual exclusion algorithms such as [17,23].
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Remark. If the lock is starvation-free (i.e., it ensures that any requesting process will
obtain the lock) the algorithm can be simplified. More precisely, the array FLAG[1..n]
and the register TURN become useless and consequently the lines 04-05 and 10-11 can
be suppressed from algorithm. Those are actually shared variables and the associated
statements that transform a deadlock-free lock into a starvation-free lock.

operation strong push or pop(par): % par = v for push() and ⊥ for pop() %
(01) if (¬CONTENTION )
(02) then res← weak push or pop(par); if (res 	= ⊥) then return(res) end if
(03) end if;
(04)* FLAG[i] ← true ;
(05)* wait

(
(TURN = i) ∨ (¬FLAG [TURN ])

)
;

(06)* LOCK .lock();
(07) CONTENTION ← true ;
(08) repeat res← weak push or pop(par) until res 	= ⊥ end repeat;
(09) CONTENTION ← false;
(10)* FLAG[i] ← false;
(11)* if (¬FLAG [TURN ]) then TURN ← (TURN mod n) + 1 end if;
(12)* LOCK .unlock();
(13) return(res).

Fig. 3. A linearizable contention-sensitive starvation-free stack (code for pi)

4.2 The Algorithm

The algorithm is described in Figure 3. It is made of two parts. A lock-free part and a
lock-based part. (The lock-free part is called shortcut in [26].)

In the first part (lines 01-03), the invoking process pi reads CONTENTION and,
if this boolean is false, invokes the underlying weak operation() operation. As we
have seen if there is no contention this invocation returns a non-⊥ value and pi ter-
minates. The number of shared memory accesses is then 6 (5 within the successful
weak push or pop() + 1 for the read of CONTENTION ).

If CONTENTION is equal to true or weak push or pop() returns ⊥, pi knows
there is contention. In that case, pi enters the second part (lines 04-13) which is made
up of two phases.

– In the first phase (lines 04-05), pi first sets FLAG [i] to true to inform the other
processes that it is competing for the critical section protected by the lock. Then,
pi waits until either it is the process that is currently given priority (TURN = i)
or the process that is currently given priority (namely pTURN ) is not competing
(FLAG[TURN ] = false). When one of these predicates becomes true, pi invokes
LOCK .lock().

– The second phase (lines 06-13) starts when pi has gained mutual exclusion and is
consequently the only process executing the lines 07-12.

Process pi executes then repeatedly weak push or pop(par) until a successful
invocation (line 08). When, this occurs it resets CONTENTION and FLAG[i] to
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false . Then if the process pTURN that is currently given priority is not competing
(FLAG[TURN ] = false), pi gives priority to p(TURN mod n)+1 (line 11) before
releasing the lock and returning its (non-⊥) result.

It is important to notice that, due to asynchrony and the code of lines 01-03,
while a process pi is repeatedly executing weak push or pop() at line 08, other
processes can be executing weak push or pop() at line 02 (because they read false
from CONTENTION ) and the execution of weak push or pop() by these pro-
cesses can be successful. As we will see in the proof, this does not cause a problem
because (a) the number of strong push or pop() invocations concurrent with the
one of pi is bounded and (b) the future invocations of strong push or pop() will
read true from CONTENTION ) and will consequently enter the second part of
the algorithm in which they cannot bypass pi.

4.3 Proof

Lemma 1. If a process pi returns from its strong push(v) or strong pop() invocation,
it returns a non-⊥ value.

Proof. The proof follows immediately from the predicate res �= ⊥ tested at line 02 if
pi returns at that line, or tested at line 08 if pi returns line 13. �Lemma 1

Lemma 2. If a process pi eventually succeeds in locking, it eventually terminates its
current strong push() or strong pop() operation.

Proof. Let us assume that a process pi succeeds in locking at time t1. There is a con-
sequently a finite time t2 > t1 from which CONTENTION is true.

It follows that all the processes that invoke strong push(v) or strong pop() after
time t2 skip the lock-free part and start competing for the lock after it has been acquired
by pi. Hence these processes cannot prevent pi from terminating its operation.

It follows that at most x processes, 0 ≤ x ≤ n− 1, can be executing weak push() or
weak pop() at line 02 while pi is executing weak push() or weak pop() at line 08. Let
X the corresponding set of processes. If X = ∅, the execution by pi of weak push()
or weak pop() is concurrency-free and the the lemma trivially follows. Hence, let us
consider the case X �= ∅, As we have seen in Section 3, the processes in X eventually
terminate their executions of weak push() or weak pop(). In the worst case, pi loops
executing weak push() or weak pop() (at line 08) until all the processes in X have
returned from their current invocation of weak push() or weak pop() at line 02. Let
t3 be such a time instant. If pi has not returned from its weak push() or weak pop()
operation with a non-⊥ value before t3, it follows from the previous observation that its
first invocation of weak push() or weak pop() after t3 will return a non-⊥ value, and
consequently pi eventually terminates. �Lemma 2

Lemma 3. If, while executing a strong push(v) or strong pop() operation, a process
pi reads true from CONTENTION at line 01 or obtains res = ⊥ at line 02, it
eventually obtains the lock.

Proof. Let us consider a process pi that sets FLAG [i] to true (line 04). Hence, pi is a
process as defined by the lemma assumption. We consider three cases.
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1. Process pi exits the loop of line 05 because TURN = i.
Let us observe that, in this case, TURN remains equal to i until pi resets FLAG[i]
to false (line 10) and increases TURN to (i mod n) + 1 (line 11).
It follows from the previous observation that any process pj (j �= i) that executes
the loop of line 05 after TURN has been set to i, loops until pi executes the lines
10-11. Let Y be this (possibly empty) set of processes.
Hence, at most x processes, 0 ≤ x ≤ n − (|Y | + 1), can compete with pi for
obtaining the lock. As the lock is deadlock-free, it follows that, in the worst case,
each of these processes obtains the lock before pi. After they have obtained (and
released) the lock, pi is the only process requesting the lock and necessarily obtains
it, which completes the proof of the lemma for this case.

2. Process pi exits the loop of line 05 because TURN = k �= i and FLAG[k ] is equal
to false . We have to show that pi eventually obtains the lock.
Let us assume by contradiction that pi never obtains the lock. In the worst case,
all processes are competing with pi to obtain the lock. Let pj be the process that
obtains the lock (as the lock is deadlock-free, such a process does exist). Due to
Lemma 2, it follows that pj eventually releases the lock. If FLAG [TURN ] =
false , pj advances TURN to its successor p� (line 11) along the oriented logical
ring j, j + 1, . . . , n, 1, . . .. We have then TURN = 	. If 	 �= i, the reasoning is
repeated replacing pj by p� (let us observe that, due a reasoning similar to Item 1,
p� eventually obtains the look). As no process is skipped when TURN is advanced
to its successor, it follows that TURN progresses from process to process until w
have TURN = i. When this occurs, all processes that execute line 05 are blocked
at that line until pi executes FLAG[i]← false (line 10).
It follows than, from then on, the number of processes competing with pi to obtain
the lock is bounded. A reasoning similar to the used one in Item 1 shows that pi

eventually obtains the lock, which contradicts the initial assumption and concludes
the proof of the lemma for that case.

3. Process pi never exits the loop of line 05. We show that this case cannot occur.
Let us assume by contradiction that pi loops forever at line 05. This means that each
time it evaluates the predicate at line 05 we have TURN �= i ∧ FLAG[TURN ].
Let TURN = k1 when read by pi.
According to Item 1 and Item 2, it follows that pk1 eventually exits the loop line
at 05 because it finds TURN �= k1 (Item 1) or FLAG [TURN ] is false (Item 2) and
consequently it eventually obtains the lock. Hence pk1 later executes FLAG[k1]←
false (line 10) and TURN ← (k1 mod n) + 1 (line 11). Let k2 be that process
identity. If k2 = i, pi exits the loop. Hence, let us assume that k2 �= i. If pi reads
false from FLAG [k2] it stops looping and we are in one of the two previous items.
If pi reads always true from FLAG[k2], we are in the same case as previously,
replacing k1 by k2. We consider then process pk3 such that k3 = (k2 mod n) + 1.
Etc.
If follows from the fact that no process is skipped when TURN is modified at
line 10 that eventually pi either is such that TURN = i or reads false from
FLAG[kx] for some process identity such that TURN = kx. When this happens
we are in the case described in Item 1 or Item 2.

�Lemma 3
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Theorem 1. Any invocation of strong push() or strong pop() operation returns a non-
⊥ value, and all invocations are linearizable. Moreover, the algorithm is contention-
sensitive: any strong push() or strong pop() operation invoked in a contention-free
context is lock-free and accesses six times the shared memory.

Proof. The fact any strong push() or strong pop() operation invoked in a contention-
free context is lock-free and accesses six times the shared memory follows directly from
the text of the algorithm.

The fact that no operation returns⊥ follows from Lemma 1.
All invocations of strong push() or strong pop() that return at line 02 trivially ter-

minate. The fact that all other invocations of strong push() or strong pop() terminate
follows from Lemma 2 and Lemma 3.

The linearization point of a strong push() (resp., strong pop()) operation is the lin-
earization point of the last weak push() (resp., weak pop()) operation it has executed
(as defined in Section 3). �Theorem 1

4.4 From a Non-blocking Lock to a Starvation-Free Lock

When considering Figure 3, let us call starvation free lock(i) the code defined by the
starred lines 04-06 and starvation free unlock(i) the code defined by the starred lines
10-12. The reader can notice that these two operations construct a starvation-free lock
from a non-blocking one. The interested reader will find similar constructions in [23,26].

5 Concluding Remarks

Process crashes and unreliable registers. When describing the previous algorithms
which implement a concurrent task, we have considered that the processes where asyn-
chronous but reliable. The reader can easily verify that these algorithms still work de-
spite process crashes if no process crashes while holding the lock.

We have also assumed that the registers are reliable. Techniques to extend these al-
gorithms to cope with unreliable registers have been studied in several works (e.g., [6]).

Contention managers. Contention managers have recently become a hot research topic.
The interested reader will find in [4,25] techniques to extends obstruction-free or non-
blocking algorithms to wait-free algorithms (wait-freedom is starvation-freedom in
presence of any number of process crashes [7]). She will also find a failure detector-
based approach to boost obstruction-freedom or non-blocking to wait-freedom in [5].

More generally, the interested reader will find developments on concurrent objects
in [9,20,21,24].
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Abstract. Two electrical engineering applications from industry part-
ners dealing with sparse matrices were analyzed regarding cache
efficiency and scalability on modern multi core systems. Two different
contemporary multi-core architectures have been investigated, namely
Intel’s Westmere and AMD’s Magny-Cours. This paper can be regarded
as a continuation of the investigations presented in [14] and [15].

In addition, the SuiteSparseQR library for efficiently computing QR
factorizations of sparse matrices was evaluated regarding scalability and
cache efficiency.
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1 Introduction

In today’s world, most computer systems, including those being used for numer-
ical simulations, are based on multi- or many-core processors. This is due to the
fact that in recent years microprocessor development has undergone fundamental
changes.

Until few years ago, the straight way to speed up performance was to increase
clock rates with every new generation, leading to faster program execution with-
out any modifications required. However, power consumption increases propor-
tionally with the clock rate. On the other hand, due to Moore’s Law, the number
of available transistors on a chip doubles every one and a half years.

Hence, due to the above-mentioned reasons, the only way to provide increasing
compute power without increasing clock frequency is to provide parallelism on
chip, i.e. by placing multiple processor cores on the same die – typically around
8–12 at the time of this writing. With an increasing number of cores memory
hierarchies are becoming more complex and adaptations of the code might be
necessary to obtain maximum performance.

A description of the investigated applications as well as the hardware and
software environment and tools used for the evaluation is given in section 2.
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Section 3 shows the observations regarding the scalability of the applications
on different systems and how it is influenced by e.g. different distribution of
threads to cores and internal data structure layouts. Finally, section 4 concludes
and provides a forecast to future work.

2 Software and Hardware Environment

2.1 Investigated Applications

Two electrical engineering applications from industry partners dealing with
sparse matrices were analyzed regarding cache efficiency and scalability on mod-
ern multi-core systems. Both applications are parallelized using OpenMP [1].

Application 1. The first application is completely written in FORTRAN and
uses no external libraries at all. It is based on a tool which was developed several
years ago, is continuously improved ever since and which is deployed in several
real-life environments.

Recently, efforts were made to parallelize this tool to benefit from the increas-
ing number of cores in modern processors. For a more detailed description refer
to [13,14,15].

Application 2. The second application is written in C/C++ and uses the
SuiteSparseQR [4] library to compute QR factorizations of sparse matrices.

SuiteSparseQR is part of the extensive SuiteSparse [3] package for sparse ma-
trices, which is developed by Timothy A. Davis at the department of Computer
& Information Science & Engineering at the University of Florida. It implements
the multifrontal method [11,7,12] and then relies on BLAS/LAPACK libraries
to do most of the compute intensive work, like e.g. Householder reflections.

SuiteSparseQR supports several different methods to compute a fill-reducing
ordering of the original matrix to reduce undesired fill-in during QR factor-
ization. It also supports rank-detection during factorization and, finally, QR
factorization can be split into a symbolic and numeric part. As long as the non-
zero structure of a sparse matrix is not changed, its symbolic factorization can
be reused for several numeric factorizations of the sparse matrix with updated
values.

However, because of the structure of the used sparse matrices and the internal
algorithms, the built in parallelization of various BLAS/LAPACK libraries does
not achieve a significant performance improvement when using multiple cores.
Therefore, parallelization is instead done at a higher level by creating several
smaller tasks. The order in which these tasks may be processed is modeled as a
dependency tree and tasks are then processed in parallel according to that tree.

2.2 Investigated Hardware and System Libraries

The investigated hardware systems were

– Westmere: 2 x Intel X5670 (Gulftown; 6 cores; 2.93 GHz; 6 x 256 KB
L2 cache; 12 MB L3 cache); 32 GB DDR3 RAM.
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– Magny-Cours: 2 x AMD Opteron 6174 (Magny-Cours; 12 cores; 2.20 GHz;
12 x 512 KB L2 cache; 2x6 MB L3 cache); 64 GB DDR3 RAM.

The Intel Compiler 11.1 was used to compile all C/C++ and FORTRAN code
on all systems. We also did some comparisons – especially on the AMD system
– using the GCC, as the Intel Compiler is often criticized for deliberately creat-
ing slower code for AMD processors. However, our tests showed, that the code
compiled by the Intel Compiler always performed better on all systems.

Both ACML (AMD Core Math Library) [5] by AMD as well as MKL (Math
Kernel Library) [9] by Intel were used as BLAS/LAPACK libraries and compared
against each other. As we will show in section 3.1, our evaluation showed clearly,
that it is crucial to select the appropriate BLAS/LAPACK implementation to
get optimal performance – particularly if one wants to scale to a large number
of threads.

3 Results

In this section we detail our various results. We start with pure scalability ex-
periments in 3.1 and highlight the influence of different pinnings/distributions
of threads to processor cores in 3.2. The growing impact of mostly sequential
pre– and post–processing phases is discussed in 3.3 and, finally, different internal
data structure layouts of one of the applications are compared in 3.4.

3.1 Scalability

At first, we executed both applications with an increasing number of threads on
all systems to get get some simple scalability results and a first impression on
how promising the parallelization of both applications is.

Figure 1 and 2 show the runtime and speedup of both applications on all
evaluated systems. As one can easily see, the results differ noticeably on every
system. The Westmere system is clearly faster, especially when using a smaller
number of threads. This was to be expected, as the core clock frequency of
2.93 GHz of the Westmere processor is significantly higher than the 2.2 GHz
of the Magny-Cours processor. On the other hand, starting from around 8–10
threads on the Magny-Cours speedup factors are considerably higher. However,
even with all available 24 threads the total execution time on Magny-Cours is
higher than with 12 threads on Westmere.

BLAS/LAPACK Implementations. Finally, figure 3 shows a comparison
of the two different BLAS/LAPACK implementations used for the evaluation.
Up to 6–8 threads performance is pretty much the same, with ACML having a
small advantage. However, if the number of threads is further increased, ACML
continues to improve performance while MKL pretty much stagnates.

Behavior on Westmere is similar, with MKL having a small advantage. How-
ever, the effect is more prominently visible on Magny-Cours, as there are more
cores available for evaluation.
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(a) Runtime in s (b) Speedup

Fig. 1. Runtime and speedup of application 1

(a) Runtime in ms (b) Speedup

Fig. 2. Runtime and speedup of application 2

All in all, the overall speedup still leaves room for improvement, especially
when using a very high number of threads. This is mostly due to the sequential
pre– and post–processing phases of both applications and an imperfect load
balancing within application 2, caused by an imbalance of the dependency tree.
See section 3.3 for a more detailed analysis of the impact of the sequential phases.

3.2 Thread-To-Core Assignment Issues

We also evaluated the influence of different pinning strategies on overall per-
formance. The first application for example achieves best performance on the
Westmere system, when using only 10 of the available 12 cores. However, when
using fewer cores than available, there are several possibilities to assign threads
to cores and different assignments result in different performance, especially on
multi-socket systems.

Two assignment or pinning strategies were evaluated:
– compact : all threads are placed as closely together as possible
– scatter : all threads are distributed as evenly on all packages as possible
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(a) Runtime in ms (b) Speedup

Fig. 3. Comparison of runtime and speedup of application 2 on Magny-Cours with
ACML and MKL

When for example running 8 threads on the Westmere system, the compact
strategy would place 6 threads on the first package – thereby occupying every
available core – and the remaining 2 threads on the second package. The scatter
strategy on the other hand would place 4 threads on each of the 2 packages.

As one can see in figure 4 the strategy scatter results in noticeably better
performance. Overall shortest runtime is achieved with 10 threads and the scatter
strategy and is about 12% faster than 10 threads using the compact strategy and
just over 2.5% faster than using 12 threads.

When using the scatter strategy, the available processor caches are pretty
much evenly available to the running threads, i.e. every cache is accessed by
the same number of threads. There is only very little communication between
separate threads within application 1, so they don’t need a cache which is shared
among all threads. Instead, they benefits from an evenly distribution of threads
as it is less likely that threads force eviction of another thread’s data from
the cache. Indeed, the number of total cache-misses for a complete run on the
Westmere system dropped about 19%, while the variation of cache-misses for
different runs with the same configuration is below 0.2%.

However, this result depends on the behavior of the application and the proces-
sor – especially the processor caches –, so it is not universally applicable. Applica-
tion 2 for example shows no significant difference in performance when using dif-
ferent strategies – presumably because most work is done using BLAS/LAPACK
libraries which are very carefully optimized and extremely cache-efficient.

3.3 Impact of Sequential Portions

As already mentioned in section 3.1, sequential pre– and post–processing phases
limit the possible speedup of an application. This is a well known fact, often
called Amdahl’s Law [6], which is already more than 40 years old but still valid
today.
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(a) Runtime in ms (b) Speedup

Fig. 4. Runtime and Speedup of application 1 with compact and scatter pinning
strategy

Especially when parallelizing existing code which was developed, improved
and tested over the course of several years, it is often hard to achieve a good
parallelization with a very low sequential part without completely rewriting the
application. However, a complete rewrite might take considerable time for coding
and especially testing, which is usually hard to sell to business managers.

Yet, even newly developed code often has pre– and post–processing phases,
which are caused by the underlying algorithms. Application 2 for example has
such phases, which become very dominant when using a lot of threads, as can
be seen in figure 5. Starting from 8 threads, total speedup only marginally in-
creases, even though speedup within the parallelized section of code continues
to improve noticeably. The sequential pre– and post–processing phases of appli-
cation 2 account for only about 8% when running with just a single thread, but
amount to about 54% when running with 24 threads.

(a) Runtime in ms (b) Speedup

Fig. 5. Comparison of parallel and total runtime and speedup of application 2 on
Magny-Cours
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3.4 Cache Behavior

Finally, an evaluation using performance counters was carried out for both ap-
plications to e.g. identify excessive cache misses, which can slow down an ap-
plication significantly. To do this, we used the perf [2] tool, which is developed
as part of the Linux kernel and uses the Linux Performance Counter subsystem
that is part of newer Linux kernels.

For this evaluation we mainly concentrated on the event Last Level Cache
Misses which is one of the Pre-defined Architectural Performance Events [8] with
the following official definition: This event counts each cache miss condition for
references to the last level cache. The event count may include speculation, but
excludes cache line fills due to hardware-prefetch.

Application 1. An evaluation of application 1 using perf shows a summary of
cache misses like the following:

# Events: 8M cache-misses

#

# Overhead Samples Cmd Shared Object Symbol

# ........ ........ ... ............. ......................

#

16.20% 1317563 app app [.] wflowb_

15.37% 1250298 app app [.] uregu1_

10.47% 852031 app app [.] qflowb_

6.34% 515889 app app [.] __intel_new_memset

4.70% 382739 app app [.] rsmfus_

4.31% 350538 app app [.] __intel_new_memcpy

3.51% 285567 app app [.] qflow2_

3.23% 262368 app app [.] rsmftu3_

3.17% 257736 app app [.] bnout3_

As one can see, about 10–11% of cache-miss events are encountered during
compiler generated memory initialization and copying ( intel new memset &

intel new memcpy). All other listed methods are part of the numerical algo-
rithms within application 1 and often occur within varying loops.

The industry partner also provided a slightly modified version of the applica-
tion, which effectively does the same work, but had its internal data structures
partly redesigned. The intent of the modification was to increase memory access
locality, which can increase processor cache efficiency, i.e. performance.

If a program accesses a value from memory, which is not already stored within
the cache, the processor usually does not only load this single value, but instead
fetches a continuous block of memory – a so-called cache-line –, which includes
the value accessed by the program. If the program accesses two or more values
located very closely together in memory, chances are good, that they are part
of the same cache-line and only one memory access is necessary to retrieve the
values. If those values are scattered within memory, more memory accesses might
be necessary – one for each value in the worst case.

Indeed, our analysis has shown that the cache optimized version create about
6% less total cache-misses for a complete run on the Westmere system. The
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(a) Runtime in s (b) Speedup

Fig. 6. Runtime and Speedup of application 1 with and without cache optimization

standard deviation of cache-misses between different runs of the same version is
below 0.05%, so the improvement is really due to the modification of the internal
data structures. This results in an improvement of wall-clock runtime of about
5–6%.

Application 2. An evaluation of application 2 using perf shows a summary of
cache misses like the following:

# Events: 6M cache-misses

#

# Overhead Samples Cmd Shared Object Symbol

# ........ ....... ... ............. .................................

#

24.64% 1495865 app app [.] __intel_new_memset

24.20% 1469025 app ld-2.10.1 [.] 760de

16.84% 1022093 app app [.] void spqr_stranspose2<double>()

12.09% 733932 app app [.] void spqr_assemble<double>()

6.39% 387624 app 7fd6be81e6b0 [.] 7fd6be81e6b0

3.56% 216276 app libmkl_lapack [.] mkl_lapack_dlamch@plt

2.05% 124681 app app [.] spqr_fsize()

2.02% 122618 app app [.] void spqr_hpinv<double>()

1.97% 119840 app libmkl_mc3 [.] mkl_blas_dnrm2

1.35% 82167 app app [.] __intel_new_memcpy

0.89% 54241 app app [.] void spqr_kernel<double>()

0.46% 27625 app app [.] long spqr_front<double>()

Again, compiler generated memory initialization and copying accounts for a
noticeable amount of cache-miss events – this time for about 25%. However,
the most interesting part are lines 2 and 5 with 24.20% and 6.39% respectively.
Even though perf is unable to properly identify the method where these cache-
miss events occurred, experiments strongly indicate, that this is due to compiler
generated code for OpenMP and part of the synchronization mechanism. This
suggests, that there are load balancing issues and threads often have to wait for
results of other threads before they can continue working for themselves.
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4 Conclusion and Future Work

In the previous section we have seen, that there are several obstacles to writing
an efficient parallel application. One has to take care to keep sequential phases
as small as possible – especially when trying to use a lot of threads. Proper
load balancing across all used threads is also very important, as is the single
core performance of the processor, as we have seen at the comparison of the
Westmere and the Magny-Cours system. Internal data structures have to be
carefully arranged to use processor caches as efficiently as possible.

And, finally, one has to resist the urge to always run an application with
as many threads as cores are available. Instead, one has to carefully test the
application with different threads and thread-to-core distributions, if optimal
performance is to be achieved.

The last two – optimal number of threads and thread-to-core distribution –
could be automated by tools like autopin [10], which is developed at Lehrstuhl
für Rechnertechnik und Rechnerorganisation, Institut für Informatik, Technische
Universität München.

Future investigations will comprise extensive test runs on 256-bit AVX1 based
architectures including Intel’s Sandy Bridge as well as AMD’s new Bulldozer ar-
chitecture. We also intend to investigate the feasibility of Intel’s MIC2 processor
once it will become available.
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Abstract. Model checking is a new techology developed to ensure the
correctness of concurrent systems. In this paper we consider one of the al-
gorithms included in this techology, an algorithm for constructing Büchi
automaton from a given LTL formula. This algorithm uses an alternating
automaton as an intermediate model while translating the LTL formula
to a generalized Büchi automaton. We represent data structures and
data manipulations with BDD to increase algorithm effectiveness. The
algorithm is compared on time and resulting Büchi automaton size with
well known LTL to Büchi realizations (SPIN, LTL2BA), and it shows its
effectiveness for wide class of LTL formulas.

Keywords: concurrent system verification, model checking, LTL, BDD,
alternating automaton, transition acceptance, Büchi automaton.

1 Introduction

The complexity of modern software constantly grows. As a consequence, the
number of errors in programs grows too, especially in systems with parallel and
distributed architecture.

It is well known that error detection in parallel, distributed, and multithreaded
programs is not easy. Even when algorithms of each interacting process of parallel
system are absolutely clear, it is difficult to understand the behavour of the entire
system. While developing a parallel program a programmer should monitor the
possible combinations of partially ordered events, which is much harder than
to control completely ordered events in sequential programs. Parallel systems
working correctly “almost always” may keep subtle errors over the years. Those
errors may reveal in rare and critic situations. As a rule such errors cannot be
found out by testing.

In recent years, a new approach to program verification, model checking, was
developed. Model checking is a technology wich is the most effective for formal
verification of parallel and distributed systems [7]. It provides a method to verify
whether a given formula (usually a formula of temporal logic, in particular linear
temporal logic — LTL) is true on a model of the system. A formula describes the
desired requirements to the system behavior. Model checking algorithms carry
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out a full analasys of all possible system’s runs. This method has great potential
to increase the quality of distributed software systems.

One method of LTL model checking is based on a theoretical-automata ap-
proach. For this purpose, the LTL formula negation expressing a given system
property is translated to a corespondent Büchi automaton. After that a parallel
composition of this Büchi automaton and the system model represented by a
Kripke structure is constructed. Our paper presents an effective algorithm of
LTL formula to Büchi automaton translation.

2 Background

LTL formulas are built over a set AP of atomic propositions, logical connectives
and temporal operators U, X. All LTL formulas are formed according to the
following grammar:

ϕ ::= p|¬ϕ|ϕ ∧ ϕ|Xϕ|ϕUϕ

where p ∈ AP . Deliverable temporal operators are Fϕ = TrueUϕ and Gϕ =
¬F(¬ϕ).

In general, the complexity of constructing Büchi automaton grows exponen-
tially on the length of the LTL formula. Such complexity is not an obstacle for
checking small LTL formulas. But in practice, there are cases when the size of
LTL formulas are enormous. In particular it is the case when the property ϕ
is verified according to some assumptions about the verified system behavior
(so-called fairness constraints).

Here is an example of such property: “If infinitely often an alternator state will
be consistent, than always by pressing the protection button the vessel power
supply becomes active sometime in future”. LTL formula which corresponds to
this property is: GFp → G(q → Fr), where p stands for “the alternator is in
the consistent state”, q stands for “the protection button is pressed”, r stands
for “the vessel power supply is active”. It is obvious that a state of a vessel
power supply system depends on many parametres (such as pressure in the
diesel engine, diesel engine temperature etc.). So such kind of constraints are
fairly easily expressed in LTL by adding additional subformulas, but the size of
the whole LTL formula for this property is growing:

(GFp1 ∧ . . . ∧GFpk)→ ϕ

In SPIN, which is specially designed for verification of parallel algorithms and
protocols, generation of Büchi automaton from such LTL formula for n = 6 takes
about one hour and a half. And for n = 9 the translation algorithm used in SPIN
could not construct Büchi automaton at all.

The aim of this paper is to develop an effective algorithm for generation
of Büchi automaton from an LTL formula. We use alternating automaton as
intermediate model while translating the LTL formula to a generalized Büchi
automaton. The main stages of our algorithm are (a) translation of the given
LTL formula to an alternating automaton, (b) constructing a generalized Büchi
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automaton with transition acceptance and (c) generation ordinary Büchi au-
tomaton from generalized one. We present states and transitions of all interme-
diate automata, as well as logical operations over them as Boolean functions
using Binary Decision Diagrams. The algorithm is compared on time and re-
sulting Büchi automaton size with well known LTL to Büchi realizations (SPIN,
LTL2BA), and it shows its effectiveness for wide class of LTL formulas. The
theoretical basis of using alternating automata for LTL formula representation
is developed in [2,3].

3 Alternating Automata on Infinite Words

Unlike finite nondeterministic ordinary automata, alternating automata have
existential and universal choices of a set of states in transition function. An
existential choice (OR choice) implies a non-deterministic transition into one of
the possible states. A universal choice (AND choice) means that a transition
occurs simultaneously into all states corresponding to this choice.

Definition 1. An alternating Büchi automaton is a tuple A = (Q, Σ, q0, δ, F ),
where Q = {q0, q1, · · · , qn} is a finite nonempty set of states, Σ is a finite
nonempty input alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of ac-
cepting states, and δ : Q × Σ → L(Q) is a transition function, L(Q) is a free
distributive lattice generated by Q.

L(Q) has two binary operations: ∧ for universal choice, and ∨ for existential
choice. The operations satisfy the usual laws: commutativity, associativity, dis-
tributivity, idempotency, and merging.

L(Q) may be represented by a set of positive Boolean formulas over S (without
negation) B+(S) [1], if each state qi is accociated with a propositional variable
si:

si =
{

1 , qi ∈ Q̃, where Q̃ is a given subset of Q
0 , else

(1)

Henceforth we use propositional variables s instead of states q.
Positive Boolean formulas express universal and existential choices combina-

tions unambiguously. If a transition δ(s, a) is nonempty then the automaton
accepts a being in the state s. Transition function δ(s, a) = s1 ∨ (s2 ∧ s3) means
that being in the state s the automaton accepts a word aw, if it accepts the
word w from the state s1 or from both s2 and s3.

Existential and universal choices of alternating automata transitions has the
only interpretation in the disjunctive normal form over positive Boolean formulas
(PDNF).

The disjunctive normal form over positive Boolean formulas (PDNF) is used
for the only interpretation of existential and universal choices of alternating
automata. In PDNF a term C is a conjunction of formulas B+(S) : C = ∧ksk,
where no sk occurs more than once. Each element e ∈ B+(S) has a unique



Symbolic Algorithm for Generation Büchi Automata from LTL Formulas 101

representation in a disjunctive normal form (up to the order of terms), e = ∨iCi,
where no term Ci subsumes a Cj , i �= j. It could be rewritten as e = ∨i ∧ki ski .

A run of an alternating automaton is a tree rather than a sequence as it is for
a nondeterministic Büchi automaton. Let β is an infinite branch of a run σ. A
set of states occurring infinitely often in the branch β is inf(β).

Definition 2 (Büchi acceptance condition). An infinite branch β of a run
σ is accepting, if inf(β)∩ F �= 0. A run σ accepts an infinite word w, if any its
infinite branch is accepting.

4 Symbolic Realization of LTL to Büchi Automaton
Translation

The main idea of the symbolic approach to algorithms processing finite data
structures consists in using Boolean characteristic functions representing finite
sets. A characteristic function defined on a subset Ã ⊆ A of a finite set A
is a Boolean function which indicates membership of an element in a subset
Ã. All operations over finite sets are corresponding to Boolean operations over
characteristic functions.

In our algorithm subsets of automaton states, transition functions, transi-
tion labels, labels of accepting states are all specified by Boolean characteristic
functions. Alternating automaton definition is suitable for symbolic apporach.
Alternating automaton states are encoded according to (1). Transition func-
tions describing state sets in which transitions are carried out are presented by
Boolean functions. Symbolic algorithms of main LTL to Büchi translation stages
are stated in the next sections in detail.

In our algorithm we use Binary Decision Diagrams (BDD) as an effective
form of Boolean functions representation. BDD is a directed acyclic binary graph
without redundancy in its structure. More details about BDDs may be found,
for example, in [7].

5 Generation an Alternating Automaton from LTL
Formula

We construct an alternating automaton Büchi with input alphabet 2AP for a
given LTL formula ϕ over a set AP of atomic propositions, which accepts exactly
all infinite words satisfying the formula and only them. Our algorithm is based
on the theoretical background given in [2].

Theorem 1. [2]. Given a LTL formula ϕ, one can build an alternating Büchi
automaton Aϕ = (S, Σ, s0, δ, F ), where Σ = 2AP and |S| is in O(|ϕ|), such that
Lω(Aϕ) is exactly the set of computations satisfying the formula ϕ.

All states of an alternating automaton Aϕ are labeled by subformulas of the given
LTL formula ϕ. Next states are obtained supplying transition rules recursively
for every state. Transitions are labeled with elements of 2AP .
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As far as alternating automaton transitions are defined in positive Boolean
functions, we transform a LTL formula into a canonical form, so-called negation
normal form (NNF), where all negations are adjacent to atomic propositions:
¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ, ¬(Xϕ) = X¬ϕ, ¬(ϕUψ) = ¬ϕR¬ψ. The grammar of LTL
formulas in NNF is the following:

ϕ ::= p|¬p|ϕ ∨ ϕ|ϕ ∧ ϕ|Xϕ|ϕUϕ|ϕRϕ

During syntactic analysis any subformula ϕi of the temporal formula ϕ is
corresponded to a Aϕ state si. So there is a function τ : ϕ → S labeling states
with subformulas such that τ(ϕi) = si.

Example 1. Let’s consider a part of the property given above: ϕ = G(q → Fr).
The NNF of this formula is the following: ϕ = false R (¬q ∨ (true U r)). As
the result of syntactic analysis the following subformulas would be extracted:
ϕ1 = r, ϕ2 = trueUϕ1, ϕ3 = ¬q, ϕ4 = ϕ3 ∨ ϕ2, ϕ5 = ϕ = falseRϕ4, and
constructed propositional variables s1, . . . , s5 corresponding to states of an al-
ternating automaton Bϕ.

Let Σ = 2AP . Transitions rules of automaton Aϕ are defined for logical connec-
tives and temporal operators. For example, a state corresponding to a proposition
p ∈ AP accepts a symbol a ∈ Σ if p is included in this set:

δ
(
τ(p), a

)
= true, if p ∈ a (2)

δ
(
τ(p), a

)
= false, if p /∈ a (3)

The transiton from a state with a proposition negation is defined similarly.
A transition function for a state labeled with a disjunction of formulas ϕ and

ψ define a set of states in which transitions on a from ϕ or from ψ are defined:

δ
(
τ(ϕ ∨ ψ), a

)
= δ
(
τ(ϕ), a

) ∨ δ
(
τ(ψ), a

)
(4)

A state corresponding to a temporal formula ϕUψ accepts a if a is accepted
by a set of states in which a transition from ψ exists or, otherwise, a transition
from a set of states ϕ and ϕUψ exists, because in this case Until obligation is
not realized:

δ
(
τ(ϕUψ), a

)
= δ
(
τ(ψ), a

) ∨ (δ(τ(ϕ), a
) ∧ τ(ϕUψ)

)
(5)

This definition corresponds to a recursive formula for Until: ϕUψ = ψ ∨ ϕ ∧
X(ϕUψ).

Similarly, transition functions for ϕ ∧ ψ, ϕRψ, Xϕ are defined as follows:

δ
(
τ(ϕ ∧ ψ), a

)
= δ
(
τ(ϕ), a

) ∧ δ
(
τ(ψ), a

)
(6)

δ
(
τ(ϕRψ), a

)
= δ
(
τ(ψ), a

) ∧ (δ
(
τ(ϕ), a

) ∨ τ(ϕRψ)) (7)

δ
(
τ(Xϕ), a

)
= τ(ϕ) (8)

Joining all transitions from a state s over Σ we get a function δ(s) = ∨a∈Σ

δ(s, a). If s = τ(p) then δ(s) = δ(τ(p)) = p. The change of rules (4-8) is obvious,
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Fig. 1. Transition functions for Bϕ constructed from G(q → Fr)

Fig. 2. The alternating automaton of LTL formula G(q → Fr)

for example, δ
(
τ(ϕUψ)

)
= δ
(
τ(ψ)

) ∨ (δ(τ(ϕ)
) ∧ τ(ϕUψ)

)
. Transition functions

obtained from the rules (2-8) for Bϕ states (Example 1) are given on the Fig.1.
As a result of specifying the transition functions described above we construct

a very weak alternating automata (VWAA) [6]. This VWAA contains states
labeled by those subformulas of ϕ which includes temporal operators, and those
which labeled with true, and ϕ.

Definition 3. An alternating automaton is called very weak alternating automa-
ton, if a requirement of the partial order on S is added to the Def. 1.

As a consequence of Def. 3 there are no cycles formed by transitions between
different states in VWAA.

Definition 4 (co-Büchi acceptance condition). A run of Aϕ σ is accepting
if any infinite branch in σ has only a finite number of nodes labeled by states
from F (in terms of Def. 2 if inf(β) ∩ F = 0).

For VWAA Büchi and co-Büchi acceptance conditions are equivalent up to re-
definition of F . The final states for the co-Büchi condition are labeled with
formulas with the temporal operator Until. The resulting VWAA Bϕ (Exam-
ple 1) is shown on the Fig. 2, where the accepting co-Büchi state is labeled by a
bold line.

6 From Alternating Automata to Generalized Büchi
Automata with Transition-Based Acceptance

The next step of the algorithm is constructing a generalized Büchi automaton
from the derived alternating one.
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Definition 5. A generalized Büchi automaton is a tuple GBA = (Z, Σ, z0, δ′, T ),
where:

– Z is a finite set of states,
– Σ is an finite alphabet,
– z0 ∈ Z is an initial state,
– δ′ : Z → Σ × Z is a transition function,
– T = {T1, · · · , Tr} is a set of accepting transitions.

At this step we developed a symbolic algorithm based on the algorithm proposed
and proved in [3]. Construction of GBA from an alternating automaton is similar
to the classical algorithm for constructing a finite deterministic automaton from
a finite nondeterministic one.

Each GBA state z is a product of VWAA states, so Z ⊆ 2S. Its transition
function is a product of corresponding VWAA transitions. The initial state of
the GBA coincides with the initial VWAA state: z0 = s0.

Since F is the set of VWAA co-Büchi accepting states then a set of GBA
accepting transitions groups are defined as following:

T = {Tk | fk ∈ F, 1 ≤ k ≤ r}, (9)

where

Tk = {(z, a, z′) ∈ Z ×Σ × Z | fk /∈ z′

∨ ∃(b, z′′) ∈ δ(fk) : (a ⊆ b ∧ fk /∈ z′′ ∧ z′′ ⊆ z′)}. (10)

The symbolic algorithm constructing the set Δ of GBA transitions is presented
on Fig. 3. Consider some algorithm steps in detail.

Products of VWAA states forming GBA states are obtained from unique con-
junctions entering into the disjunctive normal form of transition functions, start-
ing from the initial state. To obtain these conjunctions from ordinary Boolean
functions we add few operations.

A solution of a Boolean function δ(s) is a vector:

ξ =
(
ξ(p1), . . . , ξ(pm); ξ(s1), . . . , ξ(sn)

)
,

where ξ(x) is an assignment of a Boolean variable x, pi ∈ AP , si ∈ S.
Consider a set of solutions ζ(δ) of a transition function δ(s), such that:

ζ(δ; x) =

⎧
⎨

⎩

0 , ∀ξ ∈ ζ : ξ(x) = 0,
1 , ∀ξ ∈ ζ : ξ(x) = 1,
−1 , ∃ξ1 : ∃ξ2 : ξ1(x) = 1 and ξ2(x) = 0, ξ1 �= ξ2

(11)

Using sets of solutions ζ(δ) a GBA transition function δ′(s) is calculated as:

∧i,ζ(δ,si)=1 δ(si). (12)

Constructed transitions functions (12) may contain redundant transitions. For
example, for a transition function like s1 ∨ s2 the disjunctive normal form over
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ordinary Boolean functions would be s1 ∧¬s2 ∨¬s1 ∧ s2 ∨ s1 ∧ s2. However, the
use of a disjunctive normal form over positive Boolean functions assumes that
there is a transition in one of states s1 or s2 only. After removing redundant
transitions on steps 19-21 (Fig. 3) the reverse function is used to obtain GBA
transitions finally:

reverse
(
ζ
)

=
m∧

i=1

ρ
(
ζ(δ; pi)

) ∧
n∧

i=1

ρ
(
ζ(δ; si)

)
,

where

ρ
(
ζ(δ; x)

)
=

⎧
⎨

⎩

¬x , ζ(δ; x) = 0,
x , ζ(δ; x) = 1,
1 , ζ(δ; x) = −1

buildGBA(δ(z0)) // δ(z0) = δ(s0) — transition function of initial state of GBA
1 δ0 ← δ(z0)
2 Δ′ ← {δ}
3 foreach ζ(δ0) :
4 δ1 ← ∧i,ζ(δ0 ;si)=1δ(si)
5 Δ′ ← Δ′ ∪ {δ1}
6 old size← 0
7 new size← |Δ′|
8 while new size 	= old size
9 old size← new size
10 foreach δ0 ∈ Δ′

11 similar steps 3-5
14 new size← |Δ′|
15 Δ ← {}
16 foreach δ0 ∈ Δ′ // remove redundant transitions
17 δ1 ← false
18 foreach ζ(δ0) :
19 for i← 1 to n
20 if ζ(δ0; si) = −1 then
21 ζ(δ0; si) ← 0
22 δ1 ← δ1 ∨ reverse(ζ(δ0)

)

23 Δ ← Δ ∪ {δ1}

Fig. 3. Algorithm for constructing the generalized Büchi automaton from a given
VWAA

Example 2. The initial state of the alternating automaton Bϕ is s5 (Fig. 2),
so the initial state of the corresponding GBA is z0 = s5. According to δ(s5)
there are a transition to s5 and a transition with universal choice to s2 and
s5, so z1 = s5 ∧ s2. There are no new states occurring from the conjunction of
transitions s2 and s5. The GBA constructed by our symbolic algorithm is shown
in Fig. 4.
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Fig. 4. The generalized Büchi automaton with accepting transitions for the formula
G(q → Fr)

According to the conditions (9-10) accepting transition labeles are defined as:

λk = ¬fk ∨ ∃fk : (δ(fk) ∧ ¬fk) (13)

We use these labels to mark degeneralizer transitions in the algorithm of
degeneralizer construction at the next step.

7 From Generalized Büchi Automata with Accepting
Transitions to Büchi Automata

A Büchi automaton is built as a product of GBA with accepting transitions
and an automaton-template, so-called a degeneralizer [5]. The number of de-
generalizer states depends linearly on the number of GBA accepting labels. The
structure of the degeneralizer guarantees that the word is accepting by automata
composition if and only if transitions from every GBA accepting group are used.
The degeneralizer is used to transfer accepting labels from transitions to states
so that there was only one group of accepting labels in the final Büchi automa-
ton. We use the algorithm of degeneralizer construction given in [5] and proved
in [3].

The Büchi automaton for the formula G(q → Fr) coincides with GBA where
the state z0 is accepting (Fig. 4).

8 Results and Related Works

In spite of the fact that in the worst case the number of states of a Büchi au-
tomaton is growing exponentially from the LTL formula length, in many cases
algorithms based on alternating automaton lead to a very compact Büchi au-
tomaton.

For example, the LTL to Büchi algorithm based on atoms (sets of LTL sub-
formulas) and obligations is desrcibed in [7]. For the formula (p ∨ q)U(p ∧ q)
the resulting Büchi automaton generated according to the algorithmin [7] has 6
states, while for our algorithm it has only 2 states (Fig. 5).

The idea of using the alternating automata as an intermediate step of
building Büchi automata for LTL formula is presented in some another
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(p | q) U pq !p.q | p!q

T

p.q

T

Fig. 5. The Büchi automaton constucted by symbolic algorithm for LTL formula
(p ∨ q)U(p ∧ q)

algorithms [3,4]. The LTL2BA algorithm [3] use explicit presentation of states
and transitions of VWAA, GBA and Büchi automata in memory. It uses various
rules to minimize the automata by merging the equivalent states and removing
the redundant transitions on-the-fly on each step. Also it provides a posteriori
Büchi automata simplification. In our symbolic algorithm these simplifications
are reached automatically thank to the BDD representation of Boolean charac-
teristic functions. The paper [4] presents a generalized definition of alternating
automata with fin- and inf-accepting conditions, which requires new rules for
on-the-fly simplification.

Our realization is written in C++ using BuDDy v2.4 library [11] used for
operations over BDD. We compare our realization with the Büchi generator of
Spin model checker [8], one of the most popular software for LTL verification,
developed by Bell Labs, and the LTL2BA program, which realizes an explicit
version of the algorithm based on alternating automata described in [3]. Those
both programs are written in C too. All tests were done on Intel Core 2 Duo
CPU (2.33 GHz) with 2 GB of RAM.

Consider a formula G(q → Fr), which means that a request q always leads a
response r in the future. This kind of formulas refining with fairness conditions
are often encountered in practice:

Φn = ¬((GFp1 ∧ ... ∧GFpn)→ G(q → Fr)
)
.

The experiments results are presented in Table 1. It is practically impossible
to use Spin to generate Büchi automata for this kind of formulas with more than
four fairness conditions. Moreover, the number of states and transitions of Büchi
automata generated by Spin is significantly greater than automata generated
with algorithms based on alternating automata. The LTL2BA program reaches
unreasonable time of work after nine fairness conditions.
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Table 1. Time results for the formula Φn for 1 ≤ n ≤ 11, time is in sec

n Spin LTL2BA Symbolic

1 0.05 < 0.01 < 0.01

2 0.19 < 0.01 < 0.01

3 4 < 0.01 < 0.01

4 155 < 0.01 < 0.01

5 4607 0.05 0.03

6 5232 0.57 0.11

7 8113 4 0.33

8 11212 45 2

9 + 375 11

10 + 4500 16

11 + > 36000 36

The same results has been shown by tests with the following kind of formulas
(Table 2):

Ψn = ¬(p1U(p2U(...Upn)...
)
.

Table 2. Time results in sec on the formula Ψn for 2 ≤ n ≤ 10

n Spin LTL2BA Symbolic

2 0.02 < 0.01 < 0.01

3 0.03 < 0.01 < 0.01

4 0.17 < 0.01 < 0.01

5 1.23 < 0.01 < 0.01

6 38 0.02 < 0.01

7 127 1.15 0.02

8 + 150 0.03

9 + > 3600 0.17

10 + + 0.63

The Büchi generator of the Spin model checker fails out of memory on
formula Ψ8.

The paper [3] presents the results of comparison LTL2BA program with al-
gorithms LTL2AUT [9] and Wring [10], which improve Spin’s algorithm. Spin
and LTL2AUT use the optimization ideas: to generate states by demand only
and use state labels rather than transition labels. In addition Wring simplifies
formulas before translation using NNF. LTL2BA has shown the best results in
described comparison. According to our experiments (Tables 1 and 2) the sym-
bolic algorithm works more than in a thousand times faster than LTL2BA for
some n.
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9 Conclusion

In recent years, the model checking as the method for improving the quality of
parallel and distributed programs is actively developed to find more effective
algorithms and to apply it to real practical software systems. In this paper we
consider one of the algorithms included in the LTL model checking.

The theoretical basis for using alternating automata for translation of linear
time logic (LTL) formulas in Büchi automata is given in [1,2,3]. The advantage
of this approach stems from the fact that in most cases the resulting Büchi
automaton is rather compact. However, the translation algorithm itself poses
exponential requirements on processing time and memory.

We used binary decision diagrams (BDD) to represent all data structures and
all operations performed on them as binary functions. This representation led to
significantly reduced complexity of the process of Büchi automaton construction
for some types of LTL formulas.
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Abstract. This paper contains a short introduction of Sisal language
and an overview of features introduced by Sisal 3.2 version compared
to Sisal 3.1 version. Sisal 3.2 features a multidimensional array support,
new abstractions like parametric types and generalized procedures, more
flexible user-defined reductions, an improved interoperability with other
programming languages and a specification of several optimizing source
text annotations. Sisal 3.x version is used as an input language of a
system of functional programming (SFP).
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1 Introduction

Imperative programming languages and their traditional extensions like OpenMP
[1] are not very convenient for a parallel program development because they re-
quire a low level specification of parallelism that can lead to subtle program
errors that are hard to detect and fix. In addition, existing popular technolo-
gies for a parallel program specification such as OpenMP and nVidia CUDA [2]
often rely on a specific machine architecture (e.g. OpenMP is designed to pro-
duce SMP1 friendly code and CUDA was designed for nVidia GPUs) thus these
technologies are not suitable for a portable specification of parallelism.

To overcome the above mentioned limitations in imperative languages other
extensions such as OpenCL [3] and Intel Parallel Building Block are introduced.
For example Intel Parallel Building Blocks augment C++ language with tech-
nologies like Threading Building Blocks [4] library for task-centric parallelism,
Array Building Blocks for data-centric parallelism and Intel Ct [5] that com-
bines task and data flow parallelism. These technologies allow developer to be
more independent of hardware architecture as for example some work can be
seamlessly offloaded to GPU.

There are several areas where parallelism is very important. One is game pro-
gramming (visualization, physics) and other is scientific computations. C/C++
language that is targeted by most parallel extensions is quite suitable for pro-
gramming games however scientific world is much more conservative and Fortran
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1 Acronym SMP stands for Symmetric Multiprocessing.
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programming language [6] is still quite popular there. Since Fortran is also an
imperative language that is designed to specify computations for a sequential
Von Neumann architecture it is not easy to write parallel programs in Fortran
even despite some its inherently parallel features such as built-in arrays.

Sisal programming language [7] was created to be a successor of Fortran lan-
guage and to be more suitable for a parallel programming [8]. To achieve this
Sisal was designed to be functional programming language with types and con-
structions that allow easy parallelization (that is why it is often called a dataflow
language) on variety of machine architectures including quite exotic dataflow su-
percomputers. To ease transformation of imperative style Fortran programs Sisal
contains different kinds of loop expressions that in fact are quite unusual in a
world of functional languages. Sisal computations are always deterministic and
can be described in a form of acyclic dataflow graph where nodes represent op-
erations and edges represent data. Sisal supports exception handling in a form
of special error value that every type contains.

It was demonstrated that Sisal performance need not be worse than pro-
grams written in imperative languages [8, 9] as it was for example demonstrated
with controlled comparison on real-world image processing benchmark code [10]
and other applications such as a Gauss-Jordon linear equation solver, a parti-
cle in cell simulation, a protein simulation program [11], the Lawrence Liver-
more Loops [12], a SIMPLE hydrodynamics code [13] and a one level barotropic
weather simulation [14]. The acceptable Sisal performance was reached after
some experiments with different forms of algorithms in Sisal language that take
into account Sisal implemented compiler optimizations, not with different par-
allelization techniques. In contrast the imperative program exposes a variety of
different parallelization techniques which are independent of algorithm. In addi-
tion it was showed that parallel code in imperative language was considerably
large then the Sisal code since a large component of parallel imperative code is
related to control overheads.

Sisal 3.2 programming language [15] introduced by this paper is a successor of
Sisal 3.1 [16] language that was developed in IIS SB RAS. Sisal 3.1 integrated the
most important features of Sisal 90 [17] and Sisal 3.2 integrated features of Sisal
2.0 [18] version. This paper contains an overview of features introduced by Sisal
3.2 version compared to Sisal 3.1 version. Sisal 3.x version is used as an input
language of a system of functional programming (SFP) [19]. SFP aims to provide
programmer with a convenient parallel program development environment on
his personal computer and seamless transfer of his program to supercomputer
environment without need for its adaptation.

This paper is organized in a following way. The section 2 describes the general
features of Sisal language. The section 3 describes multidimensional arrays that
came from Sisal 2.0 language. The section 4 describes new language abstractions
such as parametric types and generalized functions and operations. The section 5
describes new way to specify user-defined reductions that were introduced in
Sisal 90. The section 6 describes the way Sisal 3.2 programs can interoperate
with other programming languages. The section 7 describes existing optimizing
annotations or pragma statements.
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2 Sisal Language Overview

This section describes general features of Sisal 3.x language without going to
details which can be found in corresponding reference manuals.

2.1 Program Structure

An Sisal program consists of one or more separately compilation units called
modules. Each module consists of definition and declaration files. Module decla-
ration file corresponds to one module definition and each module definition can
not have more than one module declaration.

Sisal module contains definition and declaration of procedures (functions and
operations), types and contract definitions. Module declaration contains proce-
dure declarations which are defined by the corresponding module definition and
are visible outside it. In addition module declaration contains externally visible
declarations and definitions of types and contracts.

Any function in any module may be the starting point of program execu-
tion. At this outermost level, function parameters are values obtained from the
operating system level, an function results are produced at that level.

Since Sisal compiler translates Sisal programs into C programming language,
all Sisal function definitions have corresponding C language equivalent definitions
which in turn have corresponding declaration in C language which allows a
software not written in Sisal to have subsidiary parts written in Sisal. Special
foreign module declarations declares the relationship between Sisal and a set of
subsidiary code written in other languages. This allows Sisal software to access
libraries of already written code.

2.2 Types

Data types include the usual scalar types (boolean, character, integer, real, dou-
ble), structured types (records and unions, arrays and streams) and functions.
Structured types may have values of any type as components; records and unions
have heterogeneous components and arrays and streams have homogeneous com-
ponents. Unions can be recursive like in the following example:

type l i s t [T] := union [ empty ;
item : record [ va lue : T; next : l i s t ] ]

The language supports user defined types with their custom operations thus
for example allowing programmer to implement complex number types. This is
an example of a definition of a complex number type and its additive operation:

type complex := record [ r e a l p a r t , imag part : r e a l ]
operation +(complex , complex returns complex )

A module declaration may specify the name of a record or union type for
public use, but may prevent exportation of the components.
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In the previous versions of Sisal language a type may be declared to be one
of a set of alternatives. This is useful for writing functions with formal param-
eter types not given concretely. A function reference will supply known actual
parameter types, which are used to complete the compilation of this instance of
the function. This facility for typesets was used to simplify production of code
that operates on different arithmetic types. However in Sisal 3.x version type-
sets were replaced by a parametric types described in section 4 because they
provide greater flexibility and do not require delayed compilation. Functionality
of recursive typesets can be specified via recursive unions.

Function values may be parameters to functions and the results of expression
evaluation, so function types may be declared by giving the types of all param-
eters and results. Therefore Sisal does not use a complete type inference system
wherein the types of all values are inferred from their contexts. As a result com-
plete compile-time typing is possible for all Sisal programs. For example here
is declaration of two function types which explicitly specify types of function
arguments and return values:

// fu n c t io n type o f two i n t e g e r v a l u e s
// t h a t re turn two i n t e g e r s r e s u l t s
type footype1 = function [ i n t ege r , i n t e g e r returns

i n t eg e r , i n t e g e r ]
// fu n c t io n type wi thout arguments
// and one i n t e g e r r e s u l t ( cons tant )
type footype2 = function [ returns i n t e g e r ]

2.3 Functions

A function is declared by listing its name, the names and types of its formal
parameters, and types of its result values. The content of a function is one
or more expressions (a multi-expression) whose type correspond to the result
types. Values are available to the expressions via formal parameters, not through
globally accessed names.

Higher-order function operations are part of Sisal. Functions can be passed to
and returned from functions and be the values of expressions.

2.4 Expressions

Expressions are, of course, the heart of the language. Syntax is designed to be
as familiar to more traditional procedural languages like Pascal as possible.

Simple Expressions and Name Scoping. Conventional infix operations com-
bine scalar arithmetic values. Sisal supports some type promotion automatically
and provides some predefined type conversion functions.

One can assign the value of any expression to a name and use the name as
shorthand for the expression throughout the scope of the definition. This scoping
is done with the let construct. For example:
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// mult i−e x p r e s s i o n e q u a l s to 3.0 ∗ G ∗ 3 . 0 , 3 .0
l e t X := 3 . 0 ; A := X ∗ G in A ∗ X, X end let
// t h i s e x p r e s s i o n e q u a l s to 4
l e t A := 3 in let A := A + 1 in A end let end let

Arrays. Sisal has comprehensive facilities for defining and manipulating array
values. An array generator allows the definition of a multidimensional object
whose parts form a “tiling” of the overall structure. Arbitrary subarray selection
is provided beyond the rectangular subsets available in some other notations.
Many infix operations operate element-by-element on array operands and a use-
ful set of functions on arrays is defined. A subarray update facility allows safe
alteration of array values. Many applications are expressible succinctly with these
features. Array generation, selection and update may use vector subscripts to
refer to arbitrary, non geometric sections of arrays.

Streams. A stream is a sequence of values produced in order by one expression
evaluation and consumed in the same order by one or more other expression eval-
uations. Producers and consumers are usually for expressions but short forms
for simple streams are also available. To expose the pipelined parallelism that
streams make possible, they must be implemented non-strictly. That is consumer
expressions must be started whether or not the producer expression has finished.

2.5 Control by Selection

Two constructs for selection are provided in Sisal: if and case expressions.
The results of if expression are guarded by boolean expressions, while the case
expression is guarded by the values of the selecting expression. The arms of a
single if or case expression must agree in arity and type unless the selection is
being used for type inquiry.

This example of if expression computes roots of a square equation:

l e t d := b∗∗2 − 4∗a∗ c
in i f d > 0 then (−b+d ∗∗0 .5 )/ (2∗a ) , (−b−d ∗∗0 .5 )/ (2∗a )

e l s e i f d = 0 then −b/(2∗ a ) , −b/(2∗ a )
else error [ r e a l ] , error [ r e a l ]
end i f

end let

This is example of some case expression:

case d i e 1 + d i e 2
of 2 . . 3 , 12 then “ l o s e “
of 7 , 11 then “win“
of 4 . . 6 , 8 . . 1 0 then “no d e c i s i o n “
else error [ array of cha rac te r ]

end case



Sisal 3.2 Language Features Overview 115

2.6 Control by Distribution and Iteration

A single for construct has two forms for potentially parallel, as well as sequential,
evaluation. In the first form values are distributed to the bodies of the construct
and each body defines values to contribute to the overall result. The second form
has dependencies (determined by old keyword before loop value name) between
values defined in one body and used in the successor body. In either form the
values from the bodies are collectable into an array or a stream or reducible to
a single value. Array construction in for expressions allows permutation of the
individual body values.

For example this for expression computes π value iteratively:

for Approx := 1 . 0 ; Sign := 1 . 0 ; Denom := 1 . 0 ; i := 1
while i <= Cycles do

Sign := − old Sign ;
Denom := old Denom + 2 . 0 ;
Approx := old Approx + Sign / Denom;
i := old i + 1

returns va lue of Approx ∗ 4 .0
end for

This for expression also computes π value but can do it in parallel (since
there are no old keywords used):

for i in 1 . . Cycles /2 do
va l := 1 .0 / (4∗ i −3): r ea l− 1 . 0 / (4∗ i −1): r e a l

returns sum of va l
end for ∗ 4 .0

2.7 Errors

Sisal includes standard error processing semantics for managing erroneous com-
putations. However, a Sisal implementation may elect to stop execution when
an error is encountered. Each Sisal type has a distinguished value, error. Any
failed expression evaluation results in error of the appropriate type. Error values
propagate in a well-defined way when they are operands in computations. Error
values can be tested for and even explicitly assigned to signify other anomalous
conditions.

3 Multidimensional Arrays

Sisal 3.1 has multidimensional arrays in a form of nested one-dimensional arrays
of free form (with not specified bounds) which complicates effective array imple-
mentation via contiguous array memory layout with direct access. Sisal language
was designed to describe scientific computations so after analysis of features of
other languages with scientific orientation such as Fortran and Sisal 2.0 it was
decided to introduce multidimensional arrays and arrays with fixed form to Sisal
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3.2 language as well as extended means for their construction. Multidimensional
arrays allow more effective optimizations compared to nested arrays because
their rectangular form can be taken into account for array element out-of-bound
access checks, which are essential for Sisal language determinism guarantee, as
well as for data dependence analysis and transformation [20]. In additional rect-
angular form of multidimensional arrays is very well suited for representation of
such common objects as matrices and images.

Array type is described as “array array form of array element type”. Array
can have free “[ list of double dots ]” or fixed “[ list of duplets ]” form. Duplet
is a construction that looks like “lower bound .. upper bound”, where lower and
upper bounds are unary expressions of an integer type. The lower bound can be
omitted and it is assumed to be equal to one by default. The upper bound must
be more or equal to the lower bound. Array form can be omitted and is assumed
to be “ [..] ” by default. An array dimension is determined by a dimension of
array form which equals to a number of double dots or duplets in it.

Here are some examples of array type declarations:

// one−dim array o f i n t e g e r s
type Arr1 = array of i n t e g e r
// two−dim array o f i n t e g e r s
type Arr2 = array [ . . , . . ] of i n t e g e r
// 2 × 3 array o f i n t e g e r s
type Arr3 = array [ . . 2 , . . 3 ] of i n t e g e r

Array value constructors2 were also extended to handle arrays of fixed form:

// two−dim array [ [ 1 , 0 , 3 ] , [ 4 , 0 , 6 ] ]
array [ 1 . . 2 , 1 . . 3 ] of [ 1 , 1 := 1 ; 1 ,3 := 3 ;

2 ,1 := 4 ; 2 ,3 := 6 ; else := 0 ]

To ease construction of large arrays, Sisal 3.2 supports range-based element
specification:

// range o f e l ements can be s p e c i f i e d by a l i s t o f v a l u e s
// l i k e in t h i s array [ 1 , 2 , 3 ]
array [ 1 . . 3 ] of [ 1 . . 3 := 1 , 2 , 3 ] ,
// array range can be s p e c i f i e d by i n t e g e r arrays o f i nd i c e s
// l i k e in t h i s array [ 0 , 2 , 1 ]
array [ 1 . . 3 ] of [ [ 3 , 2 ] := 1 , 2 ; else := 0 ] ,
// va l u e s can be a l s o taken from other array
// l i k e in t h i s array [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ]
array [ . . 2 , . . 3 ] of [ 1 , . . := [ 1 , 2 , 3 ] ; 2 , . . := [ 4 , 5 , 6 ] ]

2 Since Sisal is a functional language, all its values including arrays are constructed at
once and, for example, any array element update conceptually leads to creation of a
new array value. Array elements not specified by a constructor equal to error values
and their ambiguous definition leads to erroneous array.
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Sisal 3.2 supports specification of ranges with dimensions tied by dot
operator3:

// array [ [ 1 , 0 , 0 ] , [ 0 , 2 , 0 ] , [ 0 , 0 , 3 ] ]
array [ . . 3 , . . 3 ] of [ . . dot . . := 1 , 2 , 3 ; else := 0 ]

Dimension range indices can be named and reused later even in the same
range (making it triangular):

// array [ [ 2 , 0 , 0 ] , [ 0 , 4 , 0 ] , [ 0 , 0 , 6 ] ]
array [ . . 3 , . . 3 ] of [ i in . . dot j in . . := i+j ; else := 0 ]

4 New Language Abstractions

To increase level of its algorithmic abstractions, Sisal 3.2 was augmented by new
conceptions of parametric types, contracts and generalized procedures (functions
and operations). A parametric type defines a set of types that allows finer control
compared to already existing typesets4.

A contract is another form of abstraction that allows binding a set of oper-
ations over types listed as contract parameters to a contract name. Contracts
are used in generalized procedures to specify what kind of operations their para-
metric types are expected to have. Parametric types, contracts and generalized
procedures together specify abstract types with partly defined structure and set
of operations. Abstract types such as matrixes and vectors are quite common in
mathematics and new functionality allowed to write Sisal 3.2 support libraries for
them. Comparing new functionality with other programming languages one can
note that parametric type is similair to C++ language class templates without
methods, contracts are similair to abstract classes (classes with virtual methods
only) and generalized procedures are similair to functions that use classes with
virtual methods.

For example let’s define a parametric type of matrix over some element type:

type matrix [T] := array [ . . , . . ] of T

For a matrix multiplication operation, that we are going to declare, a matrix
element type must support addition and multiplication operations, so we define
a contract with name “additive” for all such types:

contract a d d i t i v e [T]
operation + (T, T returns T)
operation ∗ (T, T returns T)

end contract

3 Operator dot takes two dimension indices A1..m and B1..n that normally produce
a Cartesian product of indices and produces a tied sequence of indices (A1, B1),
(A2, B2), . . . , (As, Bs), where s = min(n,m).

4 For example a classic typeset cannot define set of records with two fields of equal type
while this is possible with parametric type. In addition type names in parametric
type can be used in generalized procedures and their contract attachments.
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And now we can declare a generalized operation of our matrix multiplication:

operation ∗ of a d d i t i v e [T] ( matrix [T] , matrix [T]
returns matrix [T] )

Generalized procedures require additional runtime support in a form of addi-
tional hidden parameter that contains array of pointers to the contract opera-
tions (similar to the C++ virtual function tables) that can became known only
that generalized procedure call site. As with C++ language this additional over-
head was considered an acceptable tradeoff for the increased language flexibility.

5 Reusable User-Defined Reductions

In Sisal 3.1 a user-defined reduction was a function definition of a very special
form that is used to transform loop values into loop results. Because of its special
syntax form a reduction function cannot be reused outside loops. In Sisal 3.2
user-defined reductions are defined as a combination of several usual functions
thus allowing them to be reused as normal functions.

A general form of reduction invocation in a loop return statement looks as
follows: “reduction name N ( list of initial values ) of ( list of loop values
)” where initial values of reduction must be loop constants. Reduction name N
corresponds to functions with prototypes described below.

The first function (function I) computes an initial reduction state in a type
T which is any type that can hold a reduction internal state:

function N ( types of initial reduction parameters returns T )

The following function (function L) recomputes the reduction state using loop
values of the subsequent loop iteration:

function N ( T, types of loop reduction parameters returns T )

The following optionally present function (function J) determines how some
two reduction states (obtained after parallel loop execution) can be merged.
This function can be omitted if the reduction does not allow such things. Sisal
3.1 reductions were not able to represent this function J , which is essential for
parallel reduction computation, so it can be said that Sisal 3.2 introduces parallel
reductions if corresponding optimizing annotations are in place5.

function N ( T, T returns T )

The last function (function R) computes reduction results from its internal
state:

function N ( T returns types of return reduction values )

For example these declarations can be used to define sum reduction that adds
all loop values and returns zero in case of zero-trip loop6:
5 For more details about optimizing annotations please refer to section 7.
6 A zero-trip loop is a loop that ends without performing any single iteration.
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type sum red [T] := T
contract add1 [T]

operation + (T, T returns T)
function zero ( returns T)

end contract
//$ i d e n t i t y
function sum of add1 [T] ( returns sum red [T] )
function sum of add1 [T] ( sum red [T] , T returns sum red [T] )
/∗$ commutative ∗/ /∗$ a s s o c i a t i v e ∗/
function sum of add1 [T] ( sum red [T] , sum red [T]

returns sum red [T] )
function sum of add1 [T] ( sum red [T] returns T)
function zero ( returns i n t e g e r )
function zero ( returns r e a l )

Despite the fact that normally a Sisal 3.2 program became large because
monolithic Sisal 3.1 reduction is now represented by four more simple functions,
this is compensated by increased flexibility as for example some of these functions
be foreign function coded in other programming language. Also language became
simpler because reductions now do not require special handling.

6 Improved Interoperability with Other Languages

Sisal 3.2 language extends Sisal 2.0 language by adding support of foreign lan-
guage functions from already written programs and libraries (written in C/C++
or Fortran). A foreign functions support is based on a concept of foreign types.

Foreign types in Sisal 3.2 language are specified by their string representation
on their native programming language. Values of foreign types are constructed
via foreign operations and functions that are written on a foreign programming
language and use a special interface to access values of Sisal 3.2 types if necessary.
For example with help of foreign types one can define machine specific integer
and define operations of implicit type cast between it and built-in Sisal integer
type:

type i n t32 = “ i n t 3 2 “
operation ( i n t e g e r returns i n t32 )
operation ( in t32 returns i n t e g e r )

Foreign types do not have any built-in operations so Sisal program must define
them to make use of them. If a foreign type T has an operation “operation (T
returns T)” defined then this operation is used to create a foreign type value
copy. For a foreign type T one can prohibit a copy operation at all by using
“no operation (T returns T)” declaration. If a copy operation is not defined
and is not prohibited then a bit-by-bit copy approach is used. If a foreign type
T has an operation “operation (T returns null )” defined then it is used to
free copy of the foreign type T otherwise no additional actions are performed
then a foreign type T value is no longer needed. An error value of a foreign
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type T corresponds to it undefined value unless “operation (null returns T)”
operation, that returns an error value of the foreign type, is defined.

This example demonstrates a declaration of a foreign type that corresponds
to a matrix type of variable dimensions in C language:

// pe p o i n t s to a dynamic memory
type c matr ix = “ s t r u c t { i n t w, h ; i n t ∗ pe ; }“
operation (array [ . . , . . ] of i n t e g e r returns c matr ix )
operation ( c matr ix returns array [ . . , . . ] of i n t e g e r )
operation ( c matr ix returns c matr ix ) // copying i s p o s s i b l e
// here we f r e e pe memory
operation ( c matr ix returns n u l l )
// e r r o r [ c matr ix ] i s matrix wi th zero w and h
operation ( n u l l returns c matr ix )

A declaration of a foreign function looks like “function function name ( list
of formal parameters returns type of return value )” where at least one formal
parameter type or return value type belongs to a typeset S. The typeset S
contains foreign types, user-defined types based on types from S, arrays with
elements of type from the typeset S, records and non-recursive unions based on
types from the typeset S. Formal parameters of foreign function can be prefixed
by in, out and raw keywords and type of return value can be prefixed by out
and raw keywords.

The keyword in can prefix any type T from the typeset S. The keyword in
means that a foreign function receives a pointer to a dynamic memory that
contains a copy of value of the type T . The keyword out can be used together
with keyword in for the types from a typeset S2. The typeset S2 contains foreign
types, arrays with elements of type from the typeset S2, records based on types
from the typeset S2. The keyword out means that upon return from a foreign
function call a new return value is formed from the dynamic memory pointed
by pointer passed to the foreign function. If a foreign function has at least one
keyword out (with or without keyword in) then returns statement (and a type
of return value) can be omitted.

The keyword out without the keyword in can prefix type T from a typeset
S3. The typeset S3 contains foreign types, fixed form arrays with elements of
type from the typeset S3 and records based on types from the typeset S3. The
keyword out before a type T means that a foreign function receives a pointer
to a dynamic, not initialized memory of size enough to hold a value of the type
T and upon return from the foreign function call a new return value is formed
from the dynamic memory pointed by the pointer passed to the foreign function.
For the keyword out without the keyword in the corresponding argument of a
foreign function should be omitted.

The keyword raw can prefix a type T from a typeset S4. The typeset S4

contains foreign types, records and non-recursive unions based on types from
the typeset S4. The keyword raw for a foreign type can be used only together
with the keyword in and it means that this foreign type should be considered as
a pointer and it should be passed to the foreign function without any additional
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indirection7. The keyword raw for a record or union means that it will be passed
to a foreign function without any extra information that comes with normal Sisal
types (such as an error value information). For example the following declarations
correspond to C language functions that operate on c matrix type.

// corresponds to the f o l l o w i n g C d e c l a r a t i o n :
// t y p e d e f s t r u c t { i n t w, h ; i n t ∗ pe ; } M;
// M mul3 (M, M) ;
function mul3 ( c matr ix , c matr ix returns c matr ix )
// corresponds to the f o l l o w i n g C d e c l a r a t io n ,
// where r e s u l t i n g matrix i s recomputed
// in the f i r s t argument : void mul2 (M, M) ;
function mul2 (raw in out c matr ix , c matr ix )
// corresponds to the f o l l o w i n g C d e c l a r a t i o n :
// void mul2p (M∗ , M) ;
function mul2p ( in out c matr ix , c matr ix )

Although improved interoperation with other languages does not directly con-
tribute to Sisal performance it for example enables usage math libraries that are
optimized for target hardware which can greatly contribute to Sisal program
effectiveness. It worth to note that Sisal computation results that depend on
foreign function calls can no longer has deterministic property.

7 Optimizing Annotations

Sisal 3.2 language is the first version of Sisal language that specifies optimizing
annotations in a form of pragma statements. A pragma statement is a special
form of comment that starts with dollar sign “$”. This section describes all
currently recognized pragma statements. Other pragmas are yet to be introduced
to improve Sisal 3.2 compiler optimizations that are not yet implemented.

Every expression can be prefixed by a pragma “assert = Boolean expression”,
that can be controlled for truth after the expression evaluation during program
debugging and can be then used for program optimizing transformations. A
result of the expression can be denoted as underscore symbol “ ” and if the
expression is n-ary (where n<1), then its components can be denoted as an array
with name “ ”: “ [1]”, . . . , “ [n]”. In addition, the pragma “assert = Boolean
expression” can be placed before returns keyword in procedure declarations
and can be used to control results of this procedure after its invocation. As
an example of the assert pragma statement usage please consider this factorial
function declaration and definition:

7 The keyword raw actually makes sense only when keywords in and out are used
together because without keyword out keywords raw and in do not have any effect
and can be omitted.
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// f a c t o r i a l o f number n
forward function f a c t (n : i n t e g e r
/∗$ a s s e r t = n >= 1∗/ /∗$ a s s e r t = >= n∗/

returns i n t e g e r )
function f a c t (n : i n t e g e r returns i n t e g e r )

i f n = 1 then 1
else /∗$ a s s e r t = > 0∗/ f a c t (n−1)∗n end i f

end function

Another pragma “parallel” can be used before a case expression in Sisal (anal-
ogous to a switch expression in C language). This pragma can be specified if it is
known that only one test can be true or in case of pragma “parallel = Boolean
expression” only one test is true if the specified Boolean expression is true.

Functions that are used to form a reduction value (see section 5) can be asso-
ciated with special pragmas that can be used to parallel loops more efficiently.
A function I that computes an initial reduction state can be marked by pragma
“identity” if it specifies an identity value, relative to functions L and J , that
merges reduction states of a type T : J(t, L(I(I1), L1)) = L(t, L1)8, where t is in
T , I1 is initial values and L1 is loop values. If the function I is not marked by
the identity pragma then it does not make much sense to define the function J
because it would not be able to correctly merge reduction states.

The function J marked by “associative” pragma is assumed to be associative:
J(J(a, b), c) = J(a, J(b, c)). The function J marked by “commutative” pragma
is assumed to be commutative: J(a, b) = J(b, a). If the function J is associative
then it may be used for parallel computation of reduction values9. Therefore it
does not make much sense to define non-associative function J . If the function
J is associative and commutative then it can be used for a potentially more
effective asynchronous parallel computation of reduction values. Asynchronous
parallel computation is then function J is used for values Ln and Lm computed
in any order (where |n −m| ≥ 1): J(L(I(I1), Ln), L(I(I1), Lm)). The example
which covers usage of “identity”, “associative” and “commutative” pragmas can
be found in the section 5.

A declaration of a foreign procedure can be prefixed by a pragma “weight =
integer expression”, where a value of integer expression defines an approximate
number of cycles of some abstract machine required to execute this procedure.
A weight ratio is used for better load balancing of foreign procedures between
several processing units.

8 This equality comes from the requirement to represent sequential computation of
two loop values L(L(I(I1), L1), L2) as composition of two computations that can be
executed in parallel: J(L(I(I1), L1), L(I(I1), L2)).

9 If function I specifies identity value and function J is associative then we can di-
vide sequential computations of any length L(. . . L(L(L(I(I1), L1), L2), . . . , L3), L4)
into J . . . (J(L(I(I1), L1), L(I(I1), L2)), . . . , J(L(I(I1), L3), L(I(I1), L4)) . . .) compu-
tation that can be computed in parallel in a tree-like manner.
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8 Conclusion

Sisal 3.2 language is a significant improvement over previous Sisal 3.1 version.
Sisal 3.2 became closer to modern programming languages after introduction of
multidimensional arrays, parallel reductions, new type and algorithmic abstrac-
tions, improved interoperability with other programming languages and specifi-
cation of optimizing annotations. Multidimensional arrays with fixed form allow
more effective implementation via contiguous array memory layout with direct
access. New type and algorithmic abstractions are introduced to specify abstract
types with partlydefined structure and set of operations which are quite common
in mathematics. Improved interoperability with other programming languages
allow to better and at fuller extent reuse already written libraries of scientific
source code. As a result Sisal 3.2 became more convenient for a scientific pro-
gramming and Sisal optimizing compiler.
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Abstract. The simulation of pedestrian dynamics is a consolidated area of appli-
cation for cellular automata based models: successful case studies can be found in
the literature and off-the-shelf simulators are commonly employed by end-users,
decision makers and consultancy companies. These models represent pedestrians
as agents, but the overall system dynamics is determined simplistically: agents
uniformly tend to reach the destination without colliding with obstacles and other
pedestrians. Aspects like (i) the impact of cultural heterogeneity among indi-
viduals and (ii) the effects of the presence of groups and particular relation-
ships among pedestrians are generally neglected or underestimated. This work
describes a cellular automata based model, introducing an innovative behavioral
model that encapsulates the theory of proxemics and a simplified representa-
tion of the influences determined by the presence of groups of pedestrians in the
crowd. A simple scenario is reproduced to observe the influences on the pedes-
trian dynamics determined by the presence of groups in the crowd and to evaluate
the implications of some modeling choices. Results are discussed and compared
to experimental observations and to data available in the literature.

1 Introduction

There are several features of crowds of pedestrians suggesting that they can be consid-
ered as complex entities: the mix of competition for a shared space and the collaboration
due to the (not necessarily explicit but generally implied) social norms, the dependency
of individual choices on the past actions of other individuals and on the current per-
ceived state of the system, the possibility to detect self-organization and emergent phe-
nomena, they are all indicators of the intrinsic complexity of a crowd. The activities
of architects, designers and urban planners are deeply influenced by the study of the
movement of pedestrians in built environments (see, e.g., [2] and [13]), which is, in
turn, determined by numerous elements both human and environmental. It is also nec-
essary to study how different situations, both normal and extraordinary, influence the
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human behavior, especially considering dramatic episodes such as terrorist attacks, riots
and fires, but also due to the growing issues in facing the organization and management
of public events (ceremonies, races, carnivals, concerts, parties/social gatherings, and
so on) and in designing naturally crowded places (e.g. stations, arenas, airports). Com-
putational models for the simulation of crowds are thus growingly investigated in the
scientific context, and these efforts led to the realization of commercial off-the-shelf
simulators often adopted by firms and decision makers1. Even if research on this topic
is still quite lively and far from a complete understanding of the complex phenomena
related to crowds of pedestrians in the environment, models and simulators have shown
their usefulness in supporting architectural designers and urban planners in their de-
cisions by creating the possibility to envision the behaviour/movement of crowds of
pedestrians in specific environments, to elaborate what-if scenarios and evaluate their
decisions with reference to specific metrics and criteria.

Cellular Automata [14] have been widely adopted as a conceptual and computational
instrument for the simulation of complex systems (see, e.g., [12]); in this specific con-
text several CA based models (see, e.g., [10,3]) have been adopted as an alternative to
particle-based approaches [6], and they also influenced new approaches based on au-
tonomous situated agents (see, e.g., [5,7,1]). The main aim of this work is to present
GA-Ped (Group Aware pedestrians), a CA based model for pedestrian and crowd dy-
namics for a multidisciplinary investigation of the complex dynamics that characterize
aggregations of pedestrians and crowds. This work is set in the context of the Crystals
project2, a joint research effort between the Complex Systems and Artificial Intelligence
research center of the University of Milano–Bicocca, the Centre of Research Excellence
in Hajj and Omrah and the Research Center for Advanced Science and Technology
of the University of Tokyo. The main focus of the project is on the adoption of CA
and agent based approaches to pedestrian and crowd modeling to investigate meaning-
ful relationships between the contributions of anthropology, cultural characteristics and
existing results on the research on crowd dynamics, and how the presence of heteroge-
neous groups influence emergent dynamics in the context of the Hajj and Omrah. The
last point is in fact an open topic in the context of pedestrian modeling and simulation
approaches: the implications of particular relationships among pedestrians in a crowd
are generally not considered or treated in a very simplistic way by current approaches.
In the specific context of the Hajj, the yearly pilgrimage to Mecca that involves over 2
millions of people coming from over 150 countries, the presence of groups (possibly
characterized by an internal structure) and the cultural differences among pedestrians
represent two fundamental features of the reference scenario. Studying implications of
these basic features is the main aim of the Crystals project.

The paper is organized as follows: the following we will introduce the CA based
pedestrian and crowd model considering the possibility of pedestrians to be organized
in groups, while Sect. 3 summarizes the results of the application of this model in a
simple simulation scenario. Conclusions and future developments will end the paper.

1 See, e.g., Legion Ltd. (http://www.legion.com), Crowd Dynamics Ltd.
(http://www.crowddynamics.com/), Savannah Simulations AG (http://www.
savannah-simulations.ch).

2 http://www.csai.disco.unimib.it/CSAI/CRYSTALS/

http://www.legion.com
http://www.crowddynamics.com/
http://www.savannah-simulations.ch
http://www.savannah-simulations.ch
http://www.csai.disco.unimib.it/CSAI/CRYSTALS/
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Fig. 1. The separation of the environment into three layers in a L-shaped corridor configuration

2 Definition of the GA-Ped Model

We now introduce some principles considered during the definition of the GA-Ped
model. We decided to simulate the interactions between pedestrians in an environment
that is discrete both in space and in time. We introduced a two-dimensional cellular
automata (CA) structure with local interactions, and a discrete-time dynamical system
to model the movements of pedestrians inside a structured environment. We chose a
discrete approach in order to achieve an efficient implementation for fast computer sim-
ulation, while maintaining a sufficient expressiveness in the definition of the rules for
pedestrian movement. Moreover, the model employs floor fields (see, e.g., [4]) to sup-
port pedestrian navigation in the environment: each relevant final or intermediate target
contained in the scenario is associated to a floor field, a sort of gradient indicating the
most direct way towards the associated point of interest.

Our system is composed of the triple: Sys = 〈Env , Ped , Rules〉. The first element to
be introduced is the environment: it contains the representation of different objects (e.g.
walls, obstacles, etc.) and, during the simulation, pedestrians. Pedestrians can observe
their neighborhood, looking for the best path to reach the targets specified in a schedule.
Every pedestrian is endowed of an internal state, that is a memory used to save the
schedule, feelings, past actions and their characterization. The last element of our model
is a set of transition rules, determining the evolution of the system.

Now we introduce our model in detail, starting from the representation of space and
environment. Then we focus the attention on the modeling of pedestrians, concluding
with details on the update rules necessary to determine the dynamics of the system.

2.1 Space and Environment

The representation of the space in our model is based on the Cellular Automata the-
ory. It is split into squared cells with fixed width, obtaining a two-dimensional grid.
Namely, in our model the space is discretized into small cells which may be empty
or occupied by exactly one pedestrian. At each discrete time step it is possible to
analise the state of the system by observing the state of each cell (and, consequently, the
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position of each pedestrian into the environment). In our model the environment is de-
fined as Env = 〈Space, Fields , Generators〉, where the Space is a physical, bounded
bi-dimensional area where pedestrians and objects are located; the size of the space is
defined as a pair of values (xsize, ysize) and it is specified by the user. In our model we
consider only rectangular-shaped scenarios (but it is possible to define different shapes
suitably employing non walkable cells). The space in our model is modeled using a
three-layer structure: Space = 〈l1 , l2 , l3 〉 where each layer represents details related to
a particular aspect of the environment. As represented in Fig. 1, each layer is a rect-
angular matrix sharing the same size of the other two. The first layer (l1), contains all
the details about the geometry of the environment and the properties of each cell. A
cell may be a generator (i.e. a cell that can generate new pedestrians according to some
associated parameters), and can be walkable or not. A cell is thus characterized by a
cellID , an unique key for each cell, and, if the cell can generate pedestrians it can be
associated to a generating spot (a set of generator cells located in the same area). The
second layer, denoted as l2, contains information about the values of the floor fields of
each cell. Each cell contains an array of pairs (floorID, value), one for each target.
The third layer, l3, is made up of cells that may be empty or occupied by one pedes-
trian. This layer stores the position of each pedestrian. The aim of this partitioning is
to branch three different domains of information into three different views in order to
keep our model cleaner, easier to understand and implement.

Generators and Targets. Information about generators and targets are saved into the
first and second layer. Generators are cells that, at any iteration, may generate new
pedestrians according to predetermined rules. Generating spots are groups of generator
cells located in the same area and driven by the same set of rules of generation. In our
model a generating spot is defined as follows:

spot = 〈spotID , maxPed , positions , groups , itineraries , frequency〉
where spotID is an identifier for the generator; maxPed is the maximum amount of
pedestrians that the spot can generate during the entire simulation; positions indicate
the cells belonging to that generating spot; groups being the set of group types that can
be generated, each associated with a frequency of generation; itineraries that can be
assigned to each pedestrian, considering the fact that group members share the same
schedule but that different groups may have different schedules, each associated with a
frequency; frequency is a value between 0 and 100, specifying the frequency of pedes-
trian generation (0 means never generate pedestrians, 100 means generate pedestrians
at each iteration, if free space is available and if the desired maximum population has
not been reached).

A target is a location in the environment that the pedestrians may desire to reach, due
to its position or to the presence of a particular object. Examples of targets in a train
station are ticket machines, platforms, exits, lounges and so on. A traveller may have a
complex schedule composed of different targets like: (a) I have to buy a ticket, then (b)
I want to drink a coffee and (c) reach platform number 10 to board the train to Berlin.
This plan can be translated in the following schedule made of points of interest located
inside the environment: (i) ticket machine, (ii) lounge, (iii) platform 10. From now on
the words schedule and itinerary are used interchangeably as (in our framework) they
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define the same concept. We will describe how pedestrians will be able to move towards
the target later on.

Floor Fields. As stated previously, the floor field can be thought of as values saved in
a grid underlying the primary grid of the environment. Each target has a floor field and
the corresponding values are saved into the l2 of the environment. A floor field contains
information suggesting the shotest path to reach the associated destination. Floor field
values are distributed in every cell of the environment. In our model each cell contains
information about every target defined in the model. Given the cell at position (x, y),
the corresponding floor field values are saved in l2(cx,y) as a list of pairs with the
following structure: (floorID, value). Values of a floor field are integers between 0
and 256. Given a target, if a cell has a floor field value 0 for that particular destination,
means that no indications to reach the target is available. On the contrary, if the value
of the cell is 256 means that the target has been accomplished (because the target is in
that cell).

We can distinguish between two classes of floor fields: static and dynamic. The static
floor field does not evolve with time and it is not influenced by the presence of pedes-
trians. The dynamic floor field is modified by the presence of pedestrians and it is up-
dated using two procedures called diffusion and decay. In our model we have only static
floor fields, specifying the shortest path to destinations and targets. Interactions between
pedestrians that in other models are described by the use of dynamic floor fields, in our
model are modeled through a perception model based on the idea of observation fan,
which will be introduced in Sect. 2.3. An example of floor field is presented in Fig. 1.b.
A greyscale is used to visually show its values: darker cells have higher floor field val-
ues, the position of the target is highlighted in red. It is possible to observe that cells near
the target have higher values. Floor field values influence the transition probabilities of
a pedestrian, as a person usually will try to follow the shortest path to the target.

2.2 Time and Update Type

Our model is a discrete-time dynamical system, and update rules are applied to all
pedestrians following an update method called shuffled sequential update [8]. At each
iteration, pedestrians are chose following a random sequence and then updated. This
choice was made in order to implement our method of collision avoidance based on cell
reservation. In the shuffled sequential update, a pedestrian, when choosing the destina-
tion cell, has to check if this cell has been reserved by another pedestrian within the
same time step. If not, the pedestrian will reserve that cell, ant it will move into at the
end of the iteration. If the cell is already reserved, an alternative destination has to be
chosen.

Each iteration corresponds to an amount of time directly proportional to the size
of the cells of the environment and to the reaction time: given a squared cell of 40 ×
40cm2, the corresponding timescale is approximately of 0.3sec of real time, obtained
by transposing the empirically observed value of average velocity of a pedestrian, that
is 1.3m/s to the maximal walking speed of one cell per time step [11].
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Fig. 2. Example of the shape of an observation fan for a diagonal direction (in this case south-east)
and for a straight direction (in this case south): (a and c) in light cyan the cells that are observable
by the pedestrian and are used for the evaluation, in green the observable backward area; (b and d)
the weight matrix applied for the evaluation, in this case objects or pedestrians near the pedestrian
have more weight than farther ones (e.g. this fan is useful for evaluating walls).

2.3 Pedestrians

We now focus the attention on the modeling of pedestrians: first we introduce how
they are represented. Pedestrians are modeled as the state of cells in a bidimensional
grid. Each pedestrian is provided with some attributes describing details such as group
membership, ID, schedules. Then we introduce the perception model: each pedestrian
is endowed with a set of observation fans that determines how they see and evaluate
the environment. Attributes, internal state and environment influence the behavior of
our pedestrians: movement decisions are modeled using a Finite State Automata and a
set of rules. In detail, a pedestrian can move in one of the cells belonging to its Moore
neighborhood, and to any possible movement is associated a revenue value, called lik-
ability, representing the desirability of moving into that position. While in the previous
Sect. we introduced the notion and structure of simulation turn, we will now show how
a single pedestrian action is performed. In the following we will introduce how pedestri-
ans decide their movements, but we already clarify that the two main tasks they perform
to choose their destinations: they observe the environment and internal state to obtain
the spatial awareness; then they evaluate the likability of the possible movements to
choose the solution that maximizes the benefits.

Pedestrian Characterization. We decided to reduce the characterization of our pedes-
trians to a small set of essential attributes and, in particular:

pedestrian = 〈pedID , groupID , schedule〉
with pedID being an identifier for each pedestrian, groupID (possibly null, in case

of individuals) the group the pedestrian belongs to and schedule a list of goals to be
accomplished by the pedestrian (one of the above introduced itineraries).

Perception model. In our model every pedestrian has the capability to observe the
environment around him, looking for other pedestrians, walls and objects. Perception
capabilities are modeled with the idea of observation fan. An observation fan can be
considered as the formalization of physical and conceptual perceptive capabilities: it
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determines how far a pedestrian can see and how much importance has to be given to
the presence of obstacles and other pedestrians. An observation fan is similar to the idea
of neighborhood of a cell in the CA theory as it defines the shape of the observable area,
and how to evaluate the observed things according to their distance from the pedestrian.
An observation fan is defined as follows:

ζ = 〈type, xsize, ysize, weight , xoffset , yoffset〉

where:

– type identifies the direction of the fan: it can be 1 for diagonal directions and 2 for
straight directions (the fan has different shapes and it may be asymmetric);

– sizes and offsets are defined as shown in Fig. 2. Sizes (xsize and ysize) define
the maximum distance to which the pedestrian can see. The shape of the fan is
influenced by both the direction and the sizes. The offsets are used to define if the
pedestrian can see backward and the size of the lateral view (only type 2, see Fig
2.c);

– weight is a matrix of values wx,y ∈ R+ defined in the interval [0, 1]. These val-
ues determine the relationship between the thing that has been observed and the
distance (e.g. the distance of a wall influences differently the movement of a pedes-
trian).

For each class of pedestrians is possible to define multiple observation fans; each fan
can be applied when evaluating walls, pedestrians belonging to the same group, to other
groups or, lastly, to particular groups. For instance, this feature is useful when model-
ing situations like football matches: it is possible to define two classes of groups, one
made of supporters of the first team and the other of supporters of the second team.
Groups belonging to the first class will interact differently if dealing with other groups
belonging to the first class or bel onging to the second one.

Behavior and Transition Rules. In this Sect. we introduce the evaluation phases and
the transition rules that model the pedestrian behavior. First, we introduce our concept
of pedestrians modeled as Deterministic Finite Automata3 (DFA). Then we focus the
attention on the behavior of the pedestrians in our model. It is determined by different
aspects, like the minimization of the time necessary to reach the destination, the need
to maintain a significative distance from strangers while preserving the cohesion of the
group and the necessity to avoid obstacles. The decision of a movement is taken after
an evaluation of the environment and the internal state, choosing the best tradeoff of the
aspects previously introduced.

Pedestrian states and transitions. The behavior of a pedestrian is represented as a flow
made of four stages: sleep, context evaluation, movement evaluation, movement.

When a new iteration is started, each pedestrian is in a sleeping state. This state is
the only possible in this stage, and the pedestrian does nothing but waits for a trigger
signal from the system. The system wakes up each pedestrian once per iteration and,

3 We are not modeling all the features of a Deterministic Finite Automaton: we are not recog-
nizing languages and we do not have accepting states.
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then, the pedestrian passes to a new state of context evaluation. In this stage, the pedes-
trian tries to collect all the information necessary to obtain spatial awareness. When the
pedestrian has collected enough data about the environment around them, it reaches a
new state. In this state behavioral rules are applied using the previously gathered data
and a movement decision is taken. When the new position is notified to the system, the
pedestrian returns to the initial state and waits for the new iteration.

In our model, pedestrian active behavior is limited to only two phases: in the second
stage pedestrians collect all the information necessary to recognize the features of the
environment around him and recall some data from their internal state about last actions
and desired targets. A first set of rules determine the new state of the pedestrian. The
new state, belonging to the stage of movement evaluation, depicts the current circum-
stances the pedestrian is experiencing: e.g. the situation may be normal, the pedestrian
may be stuck in a jam, it may be compressed in a dense crowd or lost in an unknown
environment (i.e. no valid floor field values associated to the desired destination). This
state of awareness is necessary to the choice of the movement as different circumstances
may lead to different choices: a pedestrian stuck in a jam may try to go in the opposite
direction in search for an alternative path, a lost pedestrian may start a random walk or
look for other significant floor fields.

We represent pedestrian behavior with a DFA; in particular, our automaton M is a
4-tuple (Q, E, δ, q0), where:

– Q a list of states;
– E a list of events;
– δ : Q× E → Q a transition function;
– q0 ∈ Q an initial state.

The set of states Q is partitioned into four subsets:

1. Sleeping: only one state (sleeping);
2. ContextEvaluation: only one state, the pedestrian is collecting data to achieve

spatial awareness;
3. MovementEvaluation: the pedestrian is aware of its situation and it is evaluating

all the possible alternatives;
4. Movement: nine states belong to this subset, one for each direction;

Also the events belonging to E are partitioned into four subsets, as every event can be
associated to only one pair of states.

Pedestrian Movements. We now focus the attention on the modeling of how our
pedestrians evaluate the possible movements and how they choose the best movement.

Direction and speed of movement. At each time step, pedestrians can change their po-
sition along nine directions (keeping the current position is considered a valid option),
into the cells belonging to their Moore neighborhood of range r = 1. Each possible
movement has a value called likability that determines how much the move is good in
the terms of the criteria previously introduced.

In order to keep our model simple and reduce complexity, we do not model different
movement speeds. At each iteration a pedestrian can move only in the cells belonging
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to the Moore neighborhood, reaching a speed value of 1 or it can maintain the position
(in this case speed is 0)4.

Functions and notation. In order to fully comprehend the pedestrian behavior intro-
duced in the following paragraphs, it is necessary to premise the notational conventions
and the functions we have introduced in our modelization:

– cx,y defines the cell with (valid) coordinates (x, y);
– Floors is the set of the targets instantiated during the simulation. Each target has a

floor field and they share the same floorID (i.e. with t ∈ Floors we define both the
target and the associated floor field);

– Groups the set containing the groupID of the groups instantiated during the simu-
lation dynamics;

– Classes is the set containing all the group classes declared when defining the sce-
nario;

– Directions is the set of the possible directions. Are nine, defined using cardinal
directions: {N, NE, E, SE, S, SW, W, NW, C}.

Given x ∈ [0, xsize − 1] and y ∈ [0, ysize− 1], we define some functions useful to
determine the characteristics and the status of the cell cx,y:

– cell walkability: this function determines if the cell cx,y is walkable or not (e.g. if
there is a wall). If the cell is walkable the function returns the value 1, otherwise it
returns 0. It is defined as follows:

l1(cx,y) = [0, xsize− 1]× [0, ysize− 1]→ {0, 1} :
0 if the cell is not walkable,1 otherwise; (1)

– floor field value: this function determines the value of the floor field t in the cell
cx,y. If the cell contains the target associated to the target t, the function returns the
value 256. If there is no floor field available for the target t the function returns the
value 0. If a valid floor field is present the function return its value, which is defined
in the interval [1, 255]:

l2(cx,y, t) = [0, xsize− 1]× [0, ysize− 1]× t ∈ Floors→ [0, 256] :
0 if the floor field for t is not available, 256 if

the cell is the target, the floor field value for t otherwise; (2)

– presence of pedestrians belonging to a particular group this function determines
if in the cell cx,y contains a pedestrian belonging to a particular group g specified
as input. If a pedestrian belonging to that group is contained in the cell, the function
returns 1, otherwise it returns 0:

l3(cx,y, g) = [0, xsize− 1]× [0, ysize− 1]× g ∈ groups→ [0, 1] :
0 if the cell does not contain a pedestrian

belonging to the group g, 1 otherwise. (3)

4 Our pedestrians can move only to the cells with distance 1 according to the Tchebychev dis-
tance.
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Observation fan. We define ζx,y,d as the set of cells that are observable according to
the characteristics of the observation fan ζ, used by a pedestrian located in the cell at
coordinates (x, y) and looking in the direction d.

The overall likability of a possible solution can be thought as the desirability of
one of the neighboring cells. The more a cell is desirable, the higher is the probability
that a pedestrian will choose to move into that position. In our model the likability is
determined by the evaluation of the environment and it is defined as a composition of
the following sequence of characteristics:

likability =
goal driven + group + proxemic + geometrical + stochastic
component cohesion repulsion repulsion contribution

Formally, given a pedestrian belonging to the group class g ∈ Groups, in the state
q ∈ Q and reaching a goal t ∈ Floors, the likability of a neighbouring cell cx,y is
defined as li(cx,y) and is obtained evaluating the maximum benefit the pedestrian can
achieve moving into this cell (following the direction d ∈ Directions) using the ob-
servation fan ζ. The value of the characteristics that influence the likability are defined
as follow:

– goal driven component: it is the pedestrian wish to quickly reach its destination
and it is represented by the floor field. Our model follows the least effort theory:
pedestrians will move on the shortest path to the target which needs the least effort.
This component is defined as l2(cx,y, t): it is the value of the floor field in the cell
at coordinates (x, y) for the target t;

– group cohesion: we want to preserve group cohesion, minimizing the distances
between the members of the group. This component is defined as the pedestrians
belonging to the same group in the observation fan ζ, evaluated according to the
associated weight matrix:

ζ(group, d, (x, y), g) =
ci,j∈ζx,y,d∑

wζ
i,j · l3(ci,j , g) (4)

– geometrical repulsion: it represents the presence of walls and obstacles. Usually
a pedestrian wishes to avoid the contact with these objects and the movement is
consequently influenced by their position. This influence is defined as the presence
of walls (located in layer l1) inside the observation fan ζ, according to the weight
matrix for walls specified in the same observation fan:

ζ(walls, d, (x, y)) =
ci,j∈ζx,y,d∑

wζ
i,j · l1(ci,j) (5)

– proxemic repulsion: it is the repulsion determined by the presence of strangers,
both individuals or belonging to other groups. A pedestrian whishes to maintain a
safe distance from these pedestrians and this desire is defined as the sum of these
people in the observation fan ζ, according to the weight matrix for the group of
these pedestrians:

ζ(strangers, d, (x, y), g) =
ci,j∈ζx,y,d∑

wζ
i,j · (1 − l3(ci,j , g)); (6)
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Fig. 3. Representation of the corridor scenario: environment geometry, generators and floor fields

– stochasticity: similarly to some traffic simulation models (e.g. [9]), in order to
introduce more realism and to obtain a non deterministic model, we define ε ∈
[0, 1] as a a random value that is different for each likability values and introduces
stochasticity in the decision of the next movement.

Formally, these four environmental influences, plus the fifth element of stochasticity,
compose the likability of a movement as follows:

li(cx,y, d, g, t) = jwζ(walls, d, (x, y)) + jffield(t, (x, y))−
jgζ(group, d, (x, y), g) − jnζ(strangers, d, (x, y), g) + ε. (7)

Group cohesion and floor fields are positive components because they positively in-
fluence a decision as a pedestrian wishes to reach the destination quickly, keeping the
group cohese at the same time. On the contrary, the presence of obstacles and other
pedestrians has a negative impact as pedestrians usually tend to avoid this contingency.

The formula 7 summarizes the evaluation of the aspects that characterize the likabil-
ity of a solution. A pedestrian opens an observation fan for each possible movement,
and it examines the environment in the corresponding directions, evaluating the ele-
ments that may make that movement opportune (e.g. the presence of other pedestrians
belonging to the same group or an high floor field value and data that may discourage
as the presence of walls or pedestrians belonging to other groups).

3 Simulation Scenario

The simulated scenario consists in a rectangular corridor, 5m wide and 10m long. We
assume that the boundaries are open and that walls are present in the north and south
borders. The width of the cells is 40cm and the sizes of the corridor are represented
with 14 cells and 25 cells respectively. Pedestrians are generated at the east and west
borders and their goal is to reach the opposite exit. Floor fields, environment geometry
and generators are graphically represented in Fig. 3.

We investigated the capability of our model to fit the fundamental diagram proposed
in the literature. As shown in Figure 4 our model correctly represents the nature of
pedestrian dynamics: if the frequency of generation is low, consequently the flow is
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Fig. 4. Fundamental diagram for the rectangular corridor with groups of size 3. The density is
specified as frequency of generation. The ratio between members of groups and alone pedestrians
is 40/60.

low. Increasing the frequency leads to a higher throughput until a critical density has
been reached. If the system density is increased beyond that value, the flow begins
to decrease significantly as the friction between pedestrians makes movements more
difficult. Observing the same figure we can state that, before the critical density has
been reached, the flow is fluid, similar to the laminar flow that can be see in the models
of traffic simulation. After the value of critical density has been reached, the simulations
underline a greater variability in the fundamental diagram. In fact, at higher density the
possibility of events that may disrupt the flow are more frequent causing a sensible
variation of the throughput.

We also performed additional qualitative observations of the dynamics generated by
the model and we can state that it is capable to generate the following phenomena:

– lane formation at high densities;
– the higher is the number and the size of the groups into the environment, the lower

will be the total flow, due to the higher degree of friction between different groups.

3.1 Large Group vs. Small Group Counterflow

We were interest in studying the dynamics of friction and avoidance that are verified
when two groups with different size, traveling in opposite directions, are facing each
others in a rectangular shaped corridor. We simulated the 5m× 10m corridor with one
large group traveling from the left (west) to the right (east), opposed to one small group
traveling in the opposite direction. The aim of this particular set up was to investigate
the differences in the dispersion of the smaller group with respect of the size of the large
group and the overall time necessary to walk through the corridor. From now on we call
the small group as the challenging group and the large group as the opponent group.
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Fig. 5. Images representing the state of the simulation taken at different time steps. The opponent
group is composed of 50 pedestrians, while the challenging group size is 5.

We considered opponent group of five different sizes: 10, 20, 30, 40 and 50. Chal-
lenging groups were defined with only two sizes: 3 and 5. The results are consistent
with the observable phenomena as the model can simulate all the three possible cases
that can be spotted in the real world:

– the challenging group remains compact and moves around the opponent group;
– one or more members of the challenging group moves around the larger group in

the other side with respect to the other members of the group;
– one or more members of the challenging group remain stuck in the middle of the

opponent group and then the small group temporarily breaks up.

It is also interesting to point out that in our model, if a split is verified in the challenging
group, when their members overcome the opponent group, they aim to form again a
compact configuration. The actual size of the simulation scenario is however too small
to detect this reforming of the group5. Figure 5 shows some images representing the
state of the simulation at different time steps. As stated before, it is possible to observe
the range of different circumstance that our model is able to simulate: for example in
the simulation #1 the challenging groups can overcome the opponent one simply by
moving around it, the same situation is represented in simulation #2 and #4 but the
challenging group experiences more friction generated by the opponents. In the same

5 We carried out additional simulations in larger environments and we qualitatively observed the
group re-union.
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figure, the simulation #3 and #5 show a challenging group that splits in two and their
members moving around the opponent group on both the two sides.

Finally, we investigated the relationships between the time necessary to the members
of the challenging group to reach the opposite end of the corridor in relation with the
size of the opponent group. As expected, and in tune with the previous observations,
the larger the size of the opponent group, the higher time necessary to the members of
the challenging group to reach their destination is. The difference of size in the chal-
lenging group only slightly influences the performances: it is easier to remain stuck in
the opponent group but the difference between three and five pedestrians is insufficient
to obtain significant differences.

4 Conclusions and Future Developments

The paper presented a CA based pedestrian model considering groups as a first-class
element influencing the overall system dynamics. An original model considering a sim-
ple notion of group (i.e. a set of pedestrians sharing the destination of their movement
and the tendency to stay close to each other) has been presented and applied to a sim-
ple scenario, gathering results that are in tune with the existing literature on this topic.
Validation against real data is being conducted and preliminary results show a promis-
ing correspondence between simulated and observed data. Future works are aimed at
a concrete application of the model in the context of the Crystals project and further
extensions of the notion of group and related dynamics.

Acknowledgments. This work is a result of the Crystals Project, funded by the Cen-
tre of Research Excellence in Hajj and Omrah (Hajjcore), Umm Al-Qura University,
Makkah, Saudi Arabia.
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Abstract. A concept of cellular automata system (CA-system) is intro-
duced as a model of comp[lex phenomena in which several interacting
species are involved. CA system suggests a common work of several CA
where each processes its own cellular array using in its transition rules
cell states of others CA of the system. Taking into account that multi
core computers with shared memory are nowadays widely used, a temp-
tation to accelerate the computation by allocating each CA of the system
onto one of computer cores is quite natural. Hence, it would be helpful to
know what speedup can be obtained by such a parallelization. The paper
is aimed to get an answer to this question by determining the conditions,
when multicore parallel implementation of CA systems is expedient and
correct, and develop the parallelization algorithms for typical CA sys-
tems. The results are illustrated by simulation experiments.

1 Introduction

Cellular Automata (CA) being regarded as a model of spatial dynamics, gradu-
ally changes its status of object of study for the status of the method for study-
ing natural processes. CA properties such as nonlinearity of transition functions
and irreversibility of evolution made them particularly useful for investigating
the behavior of complex systems [1], exhibiting self organization and emergency.
The number of such investigations increases rapidly, comprising the study of
new more complicated phenomena in biology, physics and chemistry [2]. Many
of such phenomena are simulated by parallel composition of several CA [3], the
evolution of each CA component simulating the corresponding species behavior.
Parallel CA composition is a set of CA, operating in common in such a way that
each CA transition functions variables are cell states of any CA of the system. By
analogy to partial differential equations of traditional numerical analysis, paral-
lel composition of CA are further called CA systems. Nowadays CA systems are
used mostly in scientific investigation being implemented on personal comput-
ers, many computational experiments on one and the same CA being performed
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with many different parameters, which should be easily and promptly changed.
Although the computational time is wanted to be as small as possible, there
is no need to run the programs on remote powerful clusters, each time waiting
for the results. But, having a two-, four- or eight-core computer with a shared
memory on the table, it is reasonable to make the cores operate in parallel, in
correspondence with the parallel composition of CA in the system. Whether it
is worth to be done and what are the conditions for such a parallelization be
efficient, is the subject of the paper.

The paper is organized as follows. Next section presents the method of parallel
composition which provides correctness conditions conservation. In the third sec-
tion parallel algorithms for two-core implementation of a single reaction-diffusion
process simulation is given. Fourth section is devoted to parallel multi-core im-
plementation of a CA system, simulating several interacting reaction-diffusion
processes. In the Conclusion the results are summarized and application per-
spectives are outlined.

2 Formal Definition of a Cellular Automata System

In general case CA-system suggests any number n of CA working in common.
But since formal definitions for arbitrary n are very cumbersome and hardly
comprehensive, for clearness and without loss of generality, the system ℵ =
Υ(ℵ1,ℵ2) with n = 2 is further considered. Each component ℵk, k = 1, 2, is
determined by three sets, ℵk = 〈Ak, Xk, Θk〉, where Ak is a state alphabet, Xk

- a set of cell names (coordinates in finite discrete space), and Θk – a local
operator. The alphabets A1, A2 may be different and of any type (Boolean, real,
symbolic). Both synchronous and asynchronous modes of operation are allowed.

Between X1 and X2, i = 1, 2 . . . , I, I = |X |, there exists an one-to one
correspondence ξ : X1 → X2:

x2 = ξ(x1), ∀x2 ∈ X2,
x1 = ξ−1(x2), ∀x1 ∈ X1.

(1)

The elementary entity of a CA is a cell represented by a pair (v, x), where
v ∈ A, x ∈ X , the state of the cell x being denoted as v(x) or vx. The set
Ω = {(v, x)} containing |X | cells with different names forms a cellular array.
A pair of cells in Ω1 ∪ Ω2, such that x1 = ξ−1(x2) are further referred to as
twin-cells. When a cell of any component CA is meant, it is named simply as x .
Similarly, in all expressions valid for all CA components, the bottom indices are
removed.

In X1 and X2 two types of templates T (x) are defined as follows. Let d(xi, xj)
be a distance between xi and xj , xi, xj ∈ Xk. Then

Tkk(xi) = {xj : d(xi, xj) < r, xj ∈ Xk} (2)

represents a base template with radius r, and

T ′′
kl(xi) = {xj : d(ξ(xi), xj) < rl, xi ∈ Xk, xj ∈ Xl}, k �= l, rl << |X |, (3)

is a remote context template with radius rl.
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The set of states
V (T (x)) = {v(xj) : xj ∈ T (x)} (4)

form a local configuration, with underlying template T (x). The set of states
of all cells in Ωk = {(v, xi) : ∀xi ∈ Xk} is referred to as global configuration
V (Xk) = {v(xi) : ∀xi ∈ Xk}.

Each Θk is expressed by a substitution [4] as follows.

Θk(x) : V (Tkk(x)) � V (T ′′
k (x))→ V ′(Tkk(x)), k, l = 1, 2. (5)

The template T ′′
k (x) contains two parts, i.e,

T ′′
k (x) = T ′′

kk(x) ∪ T ′′
kl(x), (6)

where T ′′
kk(x)) ⊂ Xk is a self context and T ′′

kl(x)) ⊂ Xl is a remote context.
The local configuration V (Tkk(x)) in (5) is called a base of Θk(x). Its states

are to be replaced by V ′(Tkk(x)), when Θk(x) is applied. The local configuration
V (T ′′

k (x)) is called a context. Its states are not changed by Θk(x) application,
but serve as variables in the transition functions fkj , whose values v′(xj) are
states in the next state local configuration V ′(Tkk(x)):

v′(xj) = fkj(V (Tkk(x) ∪ T ′′
k (x)), xj ∈ Tkk. (7)

An application of Θk to a cell x ∈ Xk means substituting of states v′(xj) ∈
V ′(Tkk(x)) for v(xj) ∈ V (Tkk(x)).

If a CA system is a parallel composition ℵ = Υ(ℵ1,ℵ2), the two cellular arrays
are processed in parallel by application Θ1 to Ω1, and Θ2 to Ω2. The whole
process of simulation consists of a sequence of iterations. An iteration presumes
that in both CA the corresponding operator has been applied to all cells, which
yields a global transition of the system: Ω1(t) ∪Ω2(t)→ Ω1(t + 1) ∪Ω2(t + 1).

In a CA system any mode of operation is allowed: synchronous CA may in-
teract with an asynchronous one, provided correctness conditions for both and
for the system in a whole are satisfied, assuming each CA operates according to
the following algorithms.

Synchronous CA performs a global transition from Ω(t) to Ω(t+1) as follows:

1) Ω(t) is copied to Ω′(t).
2) Θ(x) is applied to all cells from Ω′(t), next values v′(x) being computed

according to (7) and written in twin-cells of Ω(t).

Asynchronous CA performs a global transition by executing |X | times the
following steps:

1) A cell is randomly chosen from X .
2) The next state v′i(x) is computed by (7), and the substitution (5) is imme-

diately performed.
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3 Correctness of CA System Functioning

CA simulation is considered as an effective computation [5], if it possesses the
following properties safeness and fairness. The first provides any datum not
being lost during the simultaneous application of Θk(xi) and Θk(xj). A sufficient
condition for that is formally expressed as follows:

(
Tkk(xi) ∪ T ′′(xi)

) ∩ Tkk(xj) = ∅ ∀xi, xj ∈ Xk. (8)

The second property guarantees that all cells of Xk have equal rights to be chosen
for Θk application. Synchronous CA, functioning according to the algorithm
(sec.2), satisfy safeness condition, if it has a single-cell base, i.e. if |Tkk| = 1. If
it is not so, the CA should be transformed into a superposition of |Tkk| single-
cell base CA according to a method given in [4]. At any case, the next states
of Θk(xi) application to Ωk should be written to an additional array Ω′

k which
is intended for storing the remote contexts. This prevents to change cell states
in the left-hand side of (8) that have not been used by application of Θk(xj),
xi �= xj . Fairness is satisfied since all cells in X are chosen for being processed
with equal probability.

As distinct to synchronous case, in asynchronous CA transition functions (7)
are allowed to be applied both to current and to next states and, hence, multi-
cell base in local operators are frequently used. So, to guarantee safeness the
only requirement is that local operator Θk(x) is to be indivisible, i.e. nothing
is allowed to occur between changing the states of V ′(x) during its execution.
This fact makes useless the additional array when CA operates alone. Fairness
is guaranteed by using equal random distribution when choosing cells for Θ
application.

Besides the requirement of all system CA correctness, there are some addi-
tional conditions to be met for the whole system functioning be safe and fair.

1) Application of Θk to any cell of Ωl, k �= l, should be forbidden, otherwise
a state might be lost for being used by another application.

2) During the application of Θk(x) to Ωk,when states from V (Tkk(x)) are
sequentially changing, no cell of Tkk(x) shouldbe used as remote context for any
Θl. Otherwise some states of Θ′′

l might be lost.
Formally the above two statements are expressed as follows.

(
Tkk(xi) ∪ T ′′(xi)

) ∩ Tll(xj) = ∅ ∀xi, xj ∈ Xk ∪Xl, k, l = 1, 2. (9)

In a more comprehensive form, the correctness conditions of CA-system may
be formulated as follows:

1) All CA of the system should be correct, i.e. satisfy (8).
2) If states of Ωk serve as a remote context to Θl, then there should be a copy

of Ωk(t), referred to as Ω′
k(t), whose cell states are included in remote context

local configurations V (T ′′
lk), in order to satisfy (9).

If in a CA system there is such a CA, say ℵk, whose cell states are not used in
a remote context of any other CA in the system, then ℵk operates according to
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Fig. 1. Schematic image of a two types of CA systems: a) when one CA operates
independently, b) when both CA are mutually dependent

its mode as if it were alone. In Fig.1 two variants of CA interaction in the system
are schematically shown. Moreover, in the case when ℵ1 operates independently
and ℵ2 is asynchronous, Ω′

2 is redundant.

4 CA-System Simulating a Single Reaction-Diffusion
Process

A wide class of phenomena exhibiting complex behavior are dynamical systems
where several species move and interact chemically, physically or biologically.
Capability of moving is usually independent on reactive interactions, the lat-
ter being associated with dissipative (mostly, chemical) character of processes
under simulation. Hence, the behavior of each species is described by a pair of
typical CA, which are referred to as diffusion CA and reaction CA. Such a pair
in its turn forms a simple diffusion-reaction CA-system, which usually consti-
tutes a building block for construction of complex CA-systems, simulating several
interacting reaction-diffusion processes.

Let ℵ1 and ℵ2 form a reaction-diffusion block simulating diffusion and re-
action, respectively (Fig.1a). Parallel algorithm for allocating the system to a
multicore processor is as follows.

• Create initial cellular arrays Ω1(0) and Ω2(0).
• For each iteration t = 1, . . . , T :

begin parallel computation
- thread 1

copy Ω1(t) to Ω′
1(t)

apply Θ1 to Ω1(t)
- thread 2

copy Ω2(t) to Ω′
2(t)

apply Θ2 to Ω2(t) reading the remote context VT21 from Ω′
1(t).

end parallel computation
• Copy the resulting Ω2 to Ω1, t→ t + 1.

It is worth to be noted that the above algorithm is valid for both synchronous
and asynchronous diffusion CA.
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Example 1. A system of two interacting CA is used to simulate a pattern
formation process [7] induced by a chemical reaction on a metallic surface, the
latter having been heated in its central part. The CA ℵv = 〈Av, Xv, Θv〉 simulates
the propagation of heat over the surface, being the asynchronous well known
diffusion CA called a naive diffusion [6].
ℵu = 〈Au, Xu, Θu〉 simulates the process of

Fig. 2. Initial state of the cellular
array Ωv(0) from Example 1

patterns emergency on the surface. It is a
synchronous CA of majority type with weigh-
ted template. The influence of changing
temperature on pattern formation process is
reflected by the dependence of weighted tem-
plate entries on the averaged twin cells states
of ℵv.

Both CA have Boolean alphabet A = {0, 1},
their naming sets satisfying (1), |Xv| = |Xu| =
{(i, j) : i, j = 0, . . . , 300}.

CA ℵv operates independently simulating
the propagation of heat over the whole area,
the initial distribution of temperature is shown
in (Fig.2). According to naive CA-diffusion its local operator performs the ex-
change of states between a cell ((v0, (i, j)v) and one of its four neighbors
(vk, (i, j)v), k = 1, 2, 3, 4, using von Neumann template

Tv = {(i, j)v}, T ′′
vv = {(i, j + 1)v, (i− 1, j)v, (i, j − 1)v, (i + 1, j)v}, (10)

and a transition function

v′0 = vk, if 0.25k < rand < 0.25(k + 1),

v′k =
{

v0 if 0.25k < rand < 0.25(k + 1),
vk otherwise.

k = 1, . . . , 4. (11)

Local operator ℵu, operating in Ωu = {(u, (i, j)u : (i, j) ∈ Xu} has a single
cell base, the context template including cells both from Xv and Xu.

T ′′
uv = {(i + g, j + h)u, (i + g, j + h)v : g, h = −3, . . . , 3}, (12)

the transition function being as follows:

u′
0 =

{
1, if

∑r
g=−r

∑r
h=−r wghui+g,j+h > 0.1,

0, otherwise,
(13)

where

wgh =
{

1, if |g| ≤ 1 & |h| ≤ 1,
−〈vi+g,j+h〉 otherwise.

In Fig.3 three snapshots of pattern formation process in Ωu are shown.
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Fig. 3. Three snapshots of the evolution of a pattern formation CA ℵu in a CA system
where inhibitor values are controlled by the heat propagation ℵv with initial state
Ωv(0) shown in Fig.2

Fig. 4. Dependence of parallel two thread implementation efficiency on the ratio ρ =
T (diff)/T (react)

The same process has been simulated by using diffusion CA ℵ′v of synchronous
type with Margolus neighborhood [6]. The local operator of the latter is a su-
perposition of two ones, Θ′

v = Θ1(Θ2) both being contextless, each having four
cells in its base.

Θ1(i, j)v = {((v0, (i, j)v), (v1(i, j + 1)v), (v2(i + 1, j + 1)v), (v3, (i + 1, j)v)} →
{((v′0, (i, j)v), (v′1, i, j + 1)v), (v′2(i + 1, j + 1)v), (v′3, (i + 1, j)v)},

Θ2(i, j)v = {((z0, (i, j)v), (z1(i, j + 1)v), (z2(i + 1, j + 1)v), (z3, (i + 1, j)v)} →
{((z′0, (i, j)v), (z′1, i, j + 1)v), (z′2(i + 1, j + 1)v), (z′3, (i + 1, j)v)},

(14)
where

v′k = v(k+1)mod4, z′k = z(k−1)mod4. (15)

For both above CA systems, coordination of heat propagation rate and that
of pattern formation is achieved by forming each iteration of the system by
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including in it Dv iterations of diffusion , and one iteration of pattern formation.
The value of Dv may vary from Dv = 10 to Dv = 1000. This fact gives us
the opportunity to test efficiency of parallel implementation with different load
balance between threads, by changing the value of Dv.

Computational experiments have been performed on the computer Intel
core i7 for two types of reaction-diffusion CA systems: 1) with asynchronous
naive diffusion CA and 2) with Margolus CA-diffusion of synchronous type
for five different values of Dv in each case. The results of parallelization ef-
ficiency are given in Fig.4 in the form of speedup dependence on the ratio
ρ = T (diff)/T (react), where T (diff) and T (react) are diffusion and pattern
formation one iteration computation times, respectively. It is seen that for both
synchronous and asynchronous case the efficiency is perfect when ρ = 1. Also, it
is high enough (> 0, 7) with 0.7 < ρ < 1.3.

5 CA System Simulating Many Interacting Processes

When many CA are functioning in common their interactions may be configured
differently: some of them may operate independently, others may be interdepen-
dent. Correctness condition for any system is also expressed by (8) for each
component CA and by (9) with the account that T ′′(xi) may be the union of
several remote context templates. The most frequently studied is the type of
CA system consisting of several reaction-diffusion blocks, for which two parallel
implementation being possible:

1) each block is implemented as a single thread, reaction and diffusion CA
running sequentially,

2) in each block reaction and diffusion are implemented as two parallel threads,
hence, a system of n interacting blocks requires 2n threads.

Of course, any intermediate case is possible, the best variant being when the
computation load in all threads is close to be identical.

A typical example for testing multithread implementations of a complex
reaction-diffusion system is a prey-predatory problem which is a well known
one in mathematical ecology [8].

Example 2. Prey-predatory problem [8] is usually represented by a system of
two PDEs.

utt = duuxx + Fu(u, v), (16)
vtt = dvvxx + Fv(u, v),

where du, dv are diffusion coefficients for two species, functions Fu(u, v) and
Fv(u, v) are usually given in the form of polynomials of both variables. Let us
interpret the problem in such a way: some predator (fish, deers) eat prey (plank-
ton, moss). If there is enough of food, predator density increases (predator prop-
agates) with the probability depending on satiated predator density. In case of
food shortage predator density diminishes (predator die of hunger). Prey always
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attempts to propagate, when not being eaten dy the predator. Since predator is
usually more agile than prey, its diffusion is essential, as for prey diffusion – it
is hardly observable, (dv >> du).

CA system, representing prey-predatory interaction consists of two reaction-
diffusion blocks: Υu and Υv, each being a simple systems of two automata
Υu = 〈ℵu1,ℵu2〉, Υv = 〈ℵv1,ℵv2〉, in both blocks the first CA simulates diffu-
sion, the second – the reaction. Correspondingly, ℵu1 = 〈Au1, Xu1, Θu1〉, ℵv1 =
〈Av1, Xv1, Θv1〉.

All CA have Boolean alphabets. Any pair of Xlk = {(ij)lk}, (l = u, v), k =
(1, 2). meets the relation (1). In both blocks diffusion simulation is performed
by using synchronous CA with local operators Θv1 and Θu1 given in Example
1 by (14), differing only in diffusion coefficients, which are in correspondence of
prey and predator agility, expressed in the model by the number of iterations
Dv = 50 or Du = 1 to be performed during one iteration of the CA system.

Local operators of reaction CA Θv2 and Θu2 represent the behavior of predator
and prey and depend on both local densities

V ((i, j)v) =
1

|Av(i, j)v|
∑

(k,l)∈Av(i,j)v

v(k, l)v, (17)

U((i, j)u) =
1

|Av(i, j)u|
∑

(k,l)∈Av(i,j)u

u(k, l)u,

where
Av(i, j) = {(k, l) : k = i + g, l = j + h, g, j = −r, . . . , r},

r = 8 being the radius of averaging in both cellular arrays. For the predator
local operator is as follows:

Θv2 : {v(i, j)v2} � V (T ′′((i, j)v2)→ {v′(i, j)v2} (18)

where

T ′′(v(i, j)v2) = {(k, l)v1, (k, l)u1 : k = (i + g)v1, l = (j + h)v1

g, j = −r, . . . , r} (19)

and the next state value

v′((i, j)v2) =
{

0, if ΔV (i, j) < 0 & (rand) < pv→0,
1, if ΔV (i, j) > 0 & (rand) < pv→1,

(20)

where
ΔV (i, j) = V ((i, j)v)− U((i, j)u).

The probabilities pv→0 and pv→1 are determined based on the following con-
siderations:

• If ΔV (i, j) > 0 , predator has lack of food and may die. So, ΔV ((i, j) cell
states in Av((i, j)v2) should be inverted into ”zero”, yielding in pv→0 be
equal to the ratio ΔV (i, j)/U(i, j) [10].
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• If U(i, j) > V (i, j), ΔV ((i, j)v2 < 0, then predator has plenty of food at
the place and propagates increasing its density according to the propaga-
tion function of the form Fu(V ) = cV (i, j)(1 − V (i, j), where c = 0.5 is a
coefficient corresponding to the type of predator.

So, the probabilities in (20) are

pv→0 = ΔV (i, j)/U(i, j), if ΔV (i, j) > 0
pv→1 = 0.5V (i, j)(1− V (i, j)) if ΔV (i, j) < 0.

(21)

Next states in Θu2 are computed similarly to those of Θv2, the next-state
functions being

u′((i, j)u2) =
{

0, if ΔU(i, j) < 0 & (rand) < pu→0

1, if ΔU(i, j) > 0 & (rand) < pu→1
(22)

where
ΔU(i, j) = U(i, j)− V (i, j)

probability values pu→0 and pu→1 in (22) are based on the following considera-
tions:

• If ΔU(i, j) > 0, prey is freely eaten. So, its density decreases with probability
proportional to predatory density.
• If ΔU(i, j) < 0, prey propagates with probability proportional to the number

of the remainders

pu→0 = ΔU(i, j) if ΔU(i, j) > 0
pu→1 = 0.5(ΔU(i, j)(1−ΔU(i, j)) if ΔU(i, j) > 0.

(23)

Let X = {(i, j) : i = 0, . . . , 399, /j = 0, . . . , 799}. In the initial state, prey
is spread over Ωu1(0) with density, U((i, j)u1(0) = 0.4 for all (i, j)u1) ∈ Xu1.
Predator has the density V ((i, j)v1) = 0.1 for the whole Ωv1(0) except a band
{(i, j)v1 : i = 0, . . . , 399, j = 369, . . . , 439} where V ((i, j)v1) = 1 (Fig.5, t=0).
Each tth iteration of the CA system consists of four following parts:

• V-Diffusion:
1. Ωv1(t) is copied to Ω′

v1(t).
2. Dv iterations of ℵv1 are performed by application of Θv1 to transfer from

Ωv1(t) to Ωv1(t + 1).
• U-Diffusion:

1. Ωu1(t) is copied to Ω′
u1(t).

2. Du iterations of ℵu1 are performed by application of Θv1 to transfer
Ωu1(t) to Ωu1(t + 1).

• V-reaction:
An iteration of ℵv2 is performed by applying Θv2 (18) to all (i, j)v2 ∈ Xv2,
probabilities being computed by (21), the resulting Ωv2 is copied to Ωv1.
• U-reaction:

An iteration of ℵu2 is performed by applying Θu2 (22) to all (i, j)u2 ∈ Xv2,
probabilities being computed from (23), the resulting Ωu2 is copied to Ωu1.
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In Fig. 5 four snapshots of the evolution of the predator component are shown,
obtained by sequential implementation of the above four parts of the whole algo-
rithm. CA system comes to its stable state rather slowly: the snapshot (t=500)
is not yet close to it, but just that iteration number has been used for comparing
times of sequential and parallel implementation.

Fig. 5. Four snapshots of the evolution of predatory CA ℵv2 in prey-predatory CA
system : initial cellular array Ω(0) in Boolean form, Ω(50), Ω(200) and Ω(500) – in
averaged form

Table 1. Computation time of 500 iterations and speedup of 1, 2, and 4 thread
implementation of the CA -system of Example 2

number of threads 1 2 4

time speedup time speedup time speedup

CA, Dv/Du=50 134 1 77 1.74 47 2.35

CA, Dv/Du=1 150 1 77 1.94 57 2.63

Dom-decomp 134 1 72 1.85 39 3.4

Implementation of the above CA system in two threads has been made by
combining operation of ℵv1 and ℵv2 in one thread, and ℵu1 and ℵu2 — in the
other thread. Implementation of the system in four threads has been performed
by allocating each part of the above algorithm onto a thread. Due to the dif-
ference of the diffusion coefficients, the computation load in the threads differs
essentially, which does not allow to obtain the perfect speedup. Implementation
of a CA-system with equal thread load (Dv = Du = 50) results in the speedup
is close to the number of threads. The obtained results with T = 500 iterations
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are compared to those obtained by the domain decomposition method, when
each thread processes its own parts of two interacting cellular arrays, the thread
loads being identical. The results of the above experiments are summarized in
Table 1. It is seen from the table, that the speedup does not depend on the
parallelization method, only the imbalance of thread load is essential.

6 Conclusion

A concept of CA system is introduced, which is a set of CA working in common
sharing common variables. Parallelization method for implementing CA-systems
in multicore computer is presented. The method is based on associating each CA
of the system to a thread of the parallel algorithm. Computational experiments
were performed by simulating evolution of reaction-diffusion systems on a multi-
core computer of the type Intel i7. They show, that the speedup depends on the
imbalance of the load between threads. It is equal to n (the number of cores used)
when computational load in threads is identical, and quite acceptable (> 0.8n)
when the load ratio is 0.8 < ρ < 1.2. Comparison of obtained efficiency with
that of parallelization using domain decomposition resulted in minor difference
in the above interval of load imbalance.
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Abstract. This paper describes an efficient novel router on the 6-valent
triangular grid with toroidal connections, denoted “T–grid” in the sequel.
The router uses six channels per node that can host up to six agents. The
topological properties of the T–grid are given first, as well as a minimal
routing scheme, as a basis for a Cellular Automata modeling of this
new target searching problem. Each agent situated on a channel has a
computed “minimal” direction defining the new channel in the adjacent
node. When moving to the next node an agent can simultaneously hop
to another channel. In the normal protocol the rightmost subpath (from
the agent’s point of view) is taken first. In addition, an adaptive routing
protocol is defined, preferring the direction to an unoccupied channel.
The novel router is significantly faster than an optimized reference router
with only one agent per node that was designed before. In order to avoid
deadlocks, the initial setting of the channels are alternated in space.

Keywords: Routing, Triangular Torus, Cellular Automata (CA),
Multi-Agent System.

1 Introduction

In order to communicate between processors on a chip an appropriate network
has to be supplied. A lot of research has been carried out in order to find the best
networks with respect to latency, throughput, fault tolerance, and so on. Instead
of improving the known design principles we follow the approach based on agents
transporting messages from a source node to a destination node. Here we will
focus on the case where the agents have to follow a minimal route (or shortest
path). The underlying network we are investigating is the triangular torus with
cyclic connections, denoted “T –grid” in the sequel. The nodes are connected
via twelve unidirectional links, namely two in each of the six directions, that
corresponds with a full-duplex or double lane traffic. Each node is provided with
six channels, also called cells or buffers depending on the context. Each channel
may host an agent in order to transport a message.
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This paper follows a previous work dealing with a similar task running on the
T –grid: see [1] and references therein. The novelty is that six agents per node
are now used, with one agent per channel, instead of one agent per node therein.
Here each agent moves to the next node, defined by the channel’s position it
is situated on. When moving to the next node, an agent may hop to another
channel, defined by the direction of the agent. An agent can choose its new
direction only among the directions that belong to the minimal path, namely
the subpaths of the “minimal” parallelogram between source and destination, as
shown in Fig. 2.

Another difference is that in [1] the agent’s behavior is controlled by a finite
state machine (FSM) evolved by a genetic algorithm, whereas here the behavior
is handcrafted. The peculiar interest of this study is that it yields comparative
results on the performance of routing protocols between two networks with a
different number of buffers per node (6 vs 1). Thus the goal of this paper is to
find a faster router on the T –grid using six agents per node and bidirectional
traffic between nodes, at first modeling the system as Cellular Automata (CA)
and then discussing whether the routing algorithm is deadlock-free or not.

Related Work. Target searching has been researched in many variations: with
moving targets [2] or as single-agent systems [3]. Here we restrict our investiga-
tion to stationary targets, and multiple agents having only a local view. This
contribution continues our preceding work on routing with agents on the cyclic
triangular grid [1] used for comparison and on non-cyclic rectangular 2D mesh
grids [4]. In order to get a deadlock-free algorithm, it is necessary to add a small
amount of randomness to a deterministic behavior [5]. In a recent work [6], the
T –grid and the square grid (or “S–grid”), both with cyclic connections, were
compared. Evolved agents, with a maximum of one agent per cell, were used in
both cases. It turned out that the T –grid performed significantly better than
the S–grid.

The remainder of this paper is structured as follows. Section 2 deals with the
topology of the T –grid and presents a shortcut of the routing scheme within it.
The framework for the agents’ routing task is defined in Sect. 3. Section 4 shows
how the routing can by modeled as a multi-agent system in the CA network.
An analysis of the router efficiency is discussed in Sect. 5 and some deadlock
situations are pointed out before Conclusion.

2 Topology and Routing in the CA Network

2.1 Topology of the T–grid

Consider the square blocks in Fig. 1 with N = 2n×2n nodes where n will denote
the “size” of the networks. The nodes are labeled according to the XY–orthogonal
coordinate system. In the left block, a node (x, y) labeled “xy” is connected with
its four neighbors (x±1, y), (x, y±1) (with addition modulo 2n) respectively in
the N–S, W–E directions, giving a 4–valent torus usually denoted as “square”
and labeled “S” or “S–grid” elsewhere [6]. In the right block, two additional links
(x − 1, y − 1), (x + 1, y + 1) are provided in the diagonal NW–SE direction,



154 R. Hoffmann and D. Désérable

Fig. 1. Tori “S” and “T” of size n = 2, of order N = 16, labeled in the XY coordinate
system; redundant nodes in grey on the boundary. Orientations N–S, W–E, NW–SE
in the inset, according to an XY Z reference frame (not displayed).

giving a 6–valent torus usually denoted as “triangulate” and labeled “T” or “T –
grid” in the sequel. Because their associated graphs are regular their number
of links is, respectively, 2N for torus S and 3N for torus T . Both networks are
scalable in the sense that one network of size n can be built from four blocks
of size n− 1. The S–grid is just displayed here because it is often interesting to
compare the topologies and performances of S and T , two networks of the same
size; moreover, S can be somehow viewed as a subgrid of T .

As a matter of fact, the T –grid belongs to a family of hierarchical Cayley
graphs generated in the hexavalent grid. The associated dual tessellation of the
plane is the regular hexagonal tiling, or is homeomorphic to, and it is well known
that this “honeycomb” or honeycomb-like tiling is provided with the maximum of
symmetries. The graphs of this family are denoted elsewhere as “arrowhead” or
“diamond” in order to avoid confusion with other families of hexavalent networks
[7]. The reader is referred to [8] for more details about the genesis of these graphs
and some of their topological properties. It was also shown that these graphs
provide a good framework for routing [9] and other global communications like
broadcasting [10] and gossiping [11]. A very important property is that as Cayley
graphs they are vertex-transitive, that means that any vertex behaves identically.

An important parameter for the routing task in the networks is the diameter.
The diameter defines the shortest distance between the most distant pair of
nodes and provides a lower bound for routing or other global communications;
such a pair is said to be antipodal. The diameters Dn in S and T are given by

DS
n =
√

N ; DT
n =

2(
√

N − 1) + εn

3

where εn = 1 (resp. 0) depends on the odd (resp. even) parity of n and where
the upper symbol identifies the torus type; whence the ratio denoted

DS/T
n ≈ 1.5

between diameters. In this study, only the diameter DT
n will be considered, de-

noted simply Dn in the sequel [12].
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2.2 Routing Scheme in the T–Grid

The basic routing schemes are driven by the Manhattan distance in the 4–valent
square grid [13] and by the so-called “hexagonal” distance in the 6–valent tri-
angular grid [9]. They are denoted as “rectangular” and “triangular” herein.
Considering a source “S” and a target “T ” as shown in Fig. 2, we choose to find
a shortest path from S to T with at most one change of direction. It would be
convenient to attach a system of axes to both S and T .

Fig. 2. Networks of size n = 3, of order N = 64. Routing paths from a source “S” to
a target “T”: rectangular routing in the 4–valent grid on the left, triangular routing
in the 6–valent grid on the right. In the rectangular routing, axis systems XSYS and
XTYT intersect at P1, R1 and yields the rectangle SP1TR1 in general. In the triangular
routing, axis systems XSYSZS and XTYTZT intersect at Pi, Ri (i = 1, 2, 3) and yields
three parallelograms SPiTRi in general; in this case, the parallelogram SP3TR3 is
“minimal”.

In the square grid on the left part, the construction yields the rectangle
SP1TR1. In order to ensure a homogeneous routing scheme, from an usual con-
vention the agent is carried following line X first, following line Y afterwards.
Under these conditions, a route S → T and a route T → S will follow two
disjoint paths and each of them is made of two unidirectional subpaths, that
is S → P1 → T and T → R1 → S respectively. In a particular case, S and
T may share a common axis and the routes S → T and T → S need a (full-
duplex) two-lane way S ↔ T. Note that in a finite-sized torus, not only the
“geometric” rectangle SP1TR1 should be considered but rather a “generalized”
rectangle, because the unidirectional subpaths may “cross” over the boundaries
of the torus: a shrewd reader could check that it is the case on this example in
Fig. 2.

In the triangular grid on the right part, the construction is somewhat more
tricky and involves three generalized parallelograms of the form SPiTRi. Among
them, there exists a “minimal” one that defines the shortest path. It is the
purpose of this paper to detect it and to move CA mobile agents within it.



156 R. Hoffmann and D. Désérable

3 The Agents’ Routing Task

Considered is the T –grid of N nodes as described in the previous section. Each
node contains six channels denoted in the sequel by cells, or buffers, according to
the context. A node acts as a communication node or a processor in the network.

A message transfer is the transfer of one message from a source to a tar-
get, each agent shall perform such a message transfer. A set of messages to be
transported is called message set. A message set transfer is the successful trans-
fer of all messages belonging to the set. Initially k agents are situated at their
source nodes. Then they move to their target nodes on certain channels. When
an agent reaches its target, it is deleted. Thereby the number of moving agents
is reduced until no agent is left. This event defines the end of the whole mes-
sage set transfer. Note that the agents hinder each other more at the beginning
(due to congestion) and less when many of the agents have reached their targets
and have been deleted. No new messages are inserted into the system until all
messages of the current set have reached their targets. This corresponds to a
barrier-synchronization between successive sets of messages. Initially each agent
is placed on a certain channel (with direction to the target) in the source node
and each agent knows its target. The target node of an agent should not be its
source node: message transfers within a node without an agent’s movement are
not allowed. Two test cases will be used for evaluation, where k is the number
of agents, s the number of source nodes and d the number of target nodes:

1. First Test Case. (d = 1, k = s) All agents move to the same common target.
We will consider the case k = N−1, meaning that initially an agent is placed
on each site (except on the target). In this case the optimal performance of
the network would be reached if the target consumes six messages in every
timestep (t = (N − 1)/6). In addition, the target location is varying, with
a maximum of N test configurations in order to check the routing scheme
exhaustively. We recall that the T –grid is vertex-transitive, so the induced
routing algorithm must yield the same result for all N cases!

2. Second Test Case. (k = s = d) The sources are mutually exclusive (each
source is used only once in a message set) and targets are mutually exclusive
(each target is used only once). Source locations may act as targets for
other agents, too. We will consider the case k = N/2 that was also used
in preceding works [1,6] for comparison. Note that the minimum number of
timesteps t to fulfil the task is the longest distance between source and target
which is contained in the message set. For a high initial density of agents
the probability is high that the longest distance is close to the diameter of
the network. Thus the best case would be t = Dn.

The goal is to find an agent’s behavior in order to transfer a message set (av-
eraged over many different sets) as fast as possible, that is, within a minimal
number of generations t. We know from previous works that the agent’s behavior
can be optimized (e.g. by a genetic algorithm) with respect to the set of given
initial configurations, the initial density of agents, and the size of the network.
The goal here is not to fully optimize the agent’s behavior but rather to design
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Fig. 3. (a) Each hexagonal node contains six channels (buffers, cells) that can hold
agents (messages). The channels denoted N , E, SE, S, W , NW transport messages
to the adjacent node in front. For example, an agent situated on the E–channel of the
western cell “W.E” can move to E or N or SE.– (b) Agents have computed directions,
depicted as encircled arrows. Agent at W.E moves to E. Agent at E.W cannot move
because W is occupied. Agent at N.S with direction toSE moves to SE. Agent at S.N
with direction toNW moves to NW .

a good agent system with six channels that outperforms the results carried out
in [1,6].

4 CA Modeling of the Multi-agent System

4.1 Cellular Automata Modeling

The whole system is modeled as a CA where N = 2n × 2n = M ×M nodes are
arranged as in the T -grid of Fig. 1. Each node is labeled by its (x, y) coordinates
defining the node’s site. The node contains six cells, identified by the channels

Ci ∈ {C0, C1, C2, C3, C4, C5} = {E, SE, S, W, NW, N}
labeled clockwise as shown in Fig. 4c. Index i is also called position or lane
number in this context. The position of a channel defines also an implicit direction
/ orientation that defines the next adjacent node that an agent visits next on its
travel. Each agent has a direction which is updated when it moves. In the general
case, the direction is one out of two possibilities defined by both unidirectional
subpaths of the minimal route; otherwise, agent and target lie on the same axis
and there is only one unidirectional path.

An agent can move to one out of three channels of the adjacent node provided
by the hardware, as shown in Fig. 3a. For example, an agent can move from node
W at (x − 1, y), channel W.E, to node at (x, y), channel E or N or SE. The
notation “W.E” stands for the E–channel of the W–neighbor. In other words,
the current direction of the agent defines the channel in the next node where the
agent will move to. A receiving channel may solve a conflict if there are several
sending channels (Fig. 3b).

The cell’s state is given by

C = (c, (x′, y′))
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where (x′, y′) denotes the target coordinates, c ∈ D stands for the direction of
the agent and

D = {0, 1, 2, 3, 4, 5} ≡ (toE, toNW, toS, toW, toSE, toN)

whereas the empty cell is encoded by c = −1 = ω. In a graphical representation,
the directions can be symbolized by (→,↖, ↓,←,↘, ↑) according to the inset
in Fig. 1. In addition, the six direct neighboring cells are denoted by Mj(i) as
displayed in Fig. 4c, indexed relatively to channel i. The three channels opposite
to channel Ci are also denoted by

Ri = Mi+4(fromRight), Si = Mi+3(fromStraight), Li = Mi+2(fromLeft).

These channels are of special interest because the agents may only move from
Ri, Si or Li to Ci on their minimal route. Therefore Ri, Si and Li are “copy”–
neighbors of Ci that need to be checked in order to copy an agent (Fig. 4a). In or-
der to delete an agent on Si for instance, the move-to conditions of Ci, Ci−1, Ci+1

have also to be evaluated by Si and therefore an extended “delete”–neighborhood

(Ci, Ci−1, Ci+1, Li, Ri, LLi, RRi)

is necessary in the CA model (Fig. 4b). Note that the cardinality of the neigh-
borhood of a receiving cell is 3 whereas it is 7 for a sending cell, without counting
the own cell. As a matter of fact, the delete–neighborhood is dynamic: depend-
ing on the direction, only three neighbors need to be checked: e.g., the actual
neighbors are NW.SE, S.N , E if the agent wants to move straight from W.E
to E. The whole neighborhood in the CA model is the union of the copy- and
delete–neighborhood, namely 3 channels from the left and 7 channels to the right
with respect to cell E.

At first each channel Ci computes several conditions defining which of the
incoming agents will be hosted next:
• Agent wants to move from L to C, first priority: LtoC = (l = i)

• Agent wants to move from S to C, second priority: StoC = (s = i)∧ ¬LtoC
• Agent wants to move from R to C, third priority: RtoC = (r = i) ∧ ¬RtoC.

Using these conditions, five cases are distinguished:
• (case κ1) : (c �= ω) // cell not empty, agent stays at rest
• (case κ2) : (c = ω) ∧ LtoC // cell empty, agent to be copied from L
• (case κ3) : (c = ω) ∧ StoC // cell empty, agent to be copied from S
• (case κ4) : (c = ω) ∧ RtoC // cell empty, agent to be copied from R
• (case κ5) : (c = ω) ∧ ¬LtoC ∧ ¬StoC ∧ ¬RtoC // cell remains empty

Then the target coordinates (x′, y′)∗ are copied from L, S, or R if the agent
moves to C, as

(x′, y′)∗ = (x′, y′)[L] IF κ2

(x′, y′)∗ = (x′, y′)[S] IF κ3

(x′, y′)∗ = (x′, y′)[R] IF κ4
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Fig. 4. Neighborhood. – (a) Cell E has three “copy”–neighbors: right neighbor, straight
neighbor and left neighbor. The same “relative” neighborhood is valid for the other five
cells because of the rotational invariance. – (b) In order to delete an agent on the own cell
in case of movement, the own cell must evaluate the rules of all possible receiving cells.
The possible receiving cells for W.E are E, N , SE. Thus not only E, N , SE are the
“delete”–neighbors of W.E, but also the “copy”–neighbors of them, i.e. NW.SE, S.N ,
N.S, SE.NW . – (c) Labeling of the channels used for the description of the CA rule, with
respect to the receiving channel Ci = C0. Channels Mi are located in adjacent nodes.
The sending channels with respect to C0 are R0, S0, L0.

then the new direction is computed using the function

ϕ : c∗ = ϕ((x, y), (x′, y′)∗)

and finally, the agent’s direction is updated synchronously:

c← c∗ IF κi∈1,2,3,4.

For case κ5, the direction is irrelevant and needs not to be updated.
If an agent moves, it is deleted on its old site. The delete–part of the CA rule

is not given here and it is complicated because of the extended neighborhood.
In the software simulation program, the GCA–w model with local write access
to the neighbor was used [14]. This model allows to write onto a neighbor. It is
especially useful if there are no write conflicts (exclusive-write condition), which
here is the case, because an agent is copied exactly by one receiving cell, and
then the receiving cell can at the same time delete the agent on the sending cell.

It is assumed that the agents are initially placed on a channel which is part
of the minimal route, and the initial direction is one of the minimal directions.

Function ϕ computes one of the directions which is minimal with respect to
the target. If the target is straight ahead (or behind), then there is only one
unique direction and the agent has to move straight (dirR =dirL = 0◦). If the
target lies within an angle α of (−60◦ < α < 0◦, degrees counted clockwise)
relatively to the orientation of the channel in the node on which the agent is
placed, then there are two minimal alternatives: take the “left” choice (dirL =
−60◦), or take the “right” choice (dirR = 0◦). If the target lies within an angle
α of (+60◦ > α > 0◦) then the “left” choice is (dirL = 0◦) and the “right”
choice is (dirR = +60◦).
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4.2 Computing the Minimal Route

The following abbreviations are used in the routing algorithm:

sign(d) = (0, 1,−1) IF (d = 0, d > 0, d < 0)

d̄ = d−sign(d) ·M/2, where M = 2n is the length of any unidirectional cycle.

STEP 0. The deltas between the target and the actual position are computed.
(dx, dy) := (x′∗ − x, y′∗ − y).

STEP 1. The deltas are contracted to the interval [−M/2, +M/2].
dx := d̄x IF |dx| > M/2 ; dy := d̄y IF |dy| > M/2

If sign(dx) = sign(dy) then the minimal path is already determined and the
diagonal is used as one of the subpaths. Note that the path length is given by
max(|dx|, |dy|) if the signs are equal, by |dx|+ |dy| otherwise.

STEP 2. One of the following operations is performed, only if dx · dy < 0.
They comprise a test whether the path with or without using the diagonal is
shorter.

dx := d̄x IF |dx| > |dy| AND |d̄x| < |dx|+ |dy| // |d̄x| = max(|dx|, |dy|)
dy := d̄y IF |dy| ≥ |dx| AND |d̄y| < |dx|+ |dy| // |d̄y| = max(|dx|, |dy|)
STEP 3. This step forces the agents to move in the same direction if source

and target lie opposite to each other, namely at distance M/2 on the same axis.
Thereby collisions on a common node on inverse routes are avoided.

(dx, dy) := (|dx|, |dy|) IF (dx = −M/2) AND (dy = −M/2)
dx := |dx| IF (dx = −M/2) AND (dy = 0)
dy := |dy| IF (dy = −M/2) AND (dx = 0)

Then a minimal route is computed as follows:

(a) If dx · dy < 0 then first move dx′ = dx steps, then move dy′ = dy steps
(b) If dx · dy > 0 then calculate

(1) dz′ = sign(dx) ·min(|dx|, |dy|) // steps on the diagonal
(2) dx′ = dx− dz′, dy′ = dy − dz′

Move first dz′ then dx′ (IF dy′ = 0) or move first dy′ then dz′ (IF dx′ = 0).

This algorithm yields a minimal route and uses a cyclic priority for the six di-
rections, two or one of them which are used in a valid minimal route. For short,
the algorithm uses the priority scheme:

first dx′ then dy′ (IF dz′ = 0),
first dz′ then dx′ (IF dy′ = 0),
first dy′ then dz′ (IF dx′ = 0).

This priority scheme means use “first dirR and then dirL”. An equivalent
symmetric protocol would be “first dirL then dirR”.
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Finally, the function ϕ is applied. It has the task to select dynamically one
of the minimal directions, either dirR or dirL. Different functions were tested
in order to achieve the best performance or to avoid deadlocks. The following
functions are used here:

1. (a) Initially the direction ϕ = dirL is used.
(b) Initially ϕ = dirL IF x + y ≡ 0 and ϕ = dirR IF x + y ≡ 1 mod 2.

2. During the run, the direction ϕ = dirL is always taken, meaning that the
agents always prefer the “left” choice.

3. During the run, if the temporary computed direction (e.g., dirL) points to
an occupied channel, then the other channel (e.g., dirR) is selected no matter
this channel is free or not. This technique will be called adaptive routing.

The adaptive technique was manually designed and is a simple algorithm defining
the new direction of the agent. It was not the purpose of this paper to find the
best agent’s behavior which is subject for further research. It should be noted
that the CA herein can be seen as a “partitioned CA” [15]. Another way of
modeling such a system would be to use a hexavalent FHP–like Lattice Gas CA
[16]; but here the purpose is to avoid the two-stage timestep in order to save
time, with only one clock cycle instead of two.

5 Router Efficiency and Deadlocks

5.1 Efficiency of Non-adaptive Routing

Using one agent only in the router, it will travel always on a minimal route.
More agents are also using a minimal route, but sometimes they have to wait
due to traffic congestion.

First Test Case. In the first test case scenario, k = N − 1 messages move to
the same common target from all other nodes. All possible or a large number of
initial configurations differing in the target location were tested (Tab. 1). The
results are the same for all tested initial configurations. This means that the
router works totally symmetric as expected. An optimal router would consume
in every generation six agents at the target, leading to an optimum of topt = k/6.
It is difficult to reach the optimum, because the agents would need a global or
a far view in order to let the agents move simultaneously in a cohort. Here an
agent needs an empty receiver channel in front in order to move, thus empty
channels are necessary to signal to the agents that they can move.

As the router is completely filled with agents at the beginning (one agent
in each node except the target node), there exist some agents which have as
travel distance the diameter Dn. Therefore the ratio t/Dn (B/C in Tab. 1) is
significantly higher than one, slightly higher than M/2. On the other hand, the
ratio t/(k/6) = B/D is quite good and relatively constant, that is B/D ≈ 2 for
large N , which is almost optimal because each agent needs an empty channel in
front when moving without deviation on the minimal route.

Second Test Case. This test case was already used in a previous work [6]
and is used for comparison. Therein, the agents were controlled by a finite state
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Table 1. Message transfer time (in timesteps) of the T–grid, averaged over the number
of checked initial configurations. First test case scenario: k = N − 1 messages travel
from all disjoint sources to the same common target. The time is independent of the
position of the target.

machine FSM: optimized, evolved agents were used, choosing a random direction
with probability 0.3% in order to avoid deadlocks, with only one agent per node.
Ratio A/B in Tab. 2 shows that even the non-adaptive router with six channels
performs significantly better, with A/B ≈ 2.5 for N = 1024. The main reason is
that here a node can host six agents, not only one, and therefore the congestion
is lower. Thus the main goal of this work is reached, namely to find a more
efficient router in the T –grid with six channels.

Table 2. Message transfer time for N/2 messages (second test case). Sources are
disjoint, and destinations are disjoint. Routing with six channels per node performs
significantly better (ratio A/B) than FSM controlled agents (one per node).

5.2 Efficiency of Adaptive Routing

The adaptive routing protocol was designed in order to speed up the message
set transfer time and to avoid deadlocks during the run, although this could not
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be proved. When an agent computes a new direction and whenever the channel
in that direction is occupied, the agent chooses the other direction if there is a
choice at all.

First Test Case. For this scenario with a common target the performance of
adaptive routing is the same as for the non-adaptive routing. The reason is that
all routes to the target are heavily congested. This means that the adaptive
routing needs not to be better, but it is also not worse for the investigated case.

Second Test Case. For this scenario with randomly chosen sources and tar-
gets, the adaptive routing performs slightly better. For example, for N = 1024,
the message transfer time is reduced by 4.1%. There seems to be more potential
to optimize the behavior of the agents (using an FSM, or using a larger neigh-
borhood) in order to guide them in a way that six agents are almost constantly
consumed by the target.

5.3 Deadlocks

A trivial deadlock can be produced if all 6N channels contain agents (fully
packed), thus no moving is possible at all. Another deadlock appears if M agents
line up in a loop on all the channels belonging to one lane, and all of them have
the same lane direction. Then the lane is completely full and the agents are
stuck. To escape from such a deadlock would only be possible if the agents can
deviate from the shortest path, e.g. by choosing a random direction from time to
time. More interesting are the cyclic deadlocks where the agents form a loop and
are blocking each other (no receiving channel is free in the loop). Two situations
were investigated.

First situation [Right Loop]. An empty node Ω is in the center of six sur-
rounding nodes, let us call them A0, A1, A2, A3, A4, A5 clockwise. Agent at A0

wants to go to A2, A1 to A3, A2 to A4, A3 to A5, A4 to A0, A5 to A1, in short
the Ai want to go to Ai+2 all around. Note that each agent has two alternatives:
going first via Ω through the center or going first to a surrounding node (e.g.,
agent at A0 can go first to Ω and then to A2, or first to A1 and then to A2).
Whether a deadlock appears depends on the initial assignments to the channels.
If the initial assignments of all agents are “use the left channel first” via
surrounding nodes, then the agents block each other cyclically. Otherwise they
can move via the center node Ω and no deadlock occurs. Thereby it is assumed
that the channels in Ω are empty or become empty after some time and are not
part of other deadlocks.

Second situation [Left Loop]
This situation is symmetric to the right loop, except that the loop direction
is now counter-clockwise. A deadlock will appear if the initial directions of all
agents are “use the right channel first”.
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If an initial configuration includes a right loop and a left loop, then at least
one deadlock will appear if the initial assigned channel is fixed to the left or to
the right. There are several ways to dissolve such deadlocks:

1. One way is to randomize the initial channel assignment. This works usually
but there exists a very low probability that all chosen initial directions still
can produce this deadlock.

2. A spatial inhomogeneity is used, e.g., agents at “odd” nodes use initially
the left subroute channel and agents at “even” nodes use the right subroute
channel. The partition “odd–even” means x+y ≡ 1 or x+y ≡ 0 respectively,
under addition modulo 2. This kind of partition, among others, was examined
and did work for a limited set of experiments.

3. It would be possible to redistribute the channels during the run, by using
a two-stage interaction-advection transition similar to the “FHP” Lattice
Gas CA [16]: move / don’t move, then redistribute. In this case, the initially
assigned channels and the used channels during the run could be dynamically
rearranged.

6 Conclusion

The properties of a family of scalable 6–valent triangular tori were studied herein
and for this family a minimal routing protocol was defined. A novel router with
six channels per node was modeled as cellular automata. Each agent has a com-
puted direction defining the new channel in the adjacent node. The computed
direction is a “minimal” direction leading on the shortest path to the target.
The novel router is significantly faster (2.5 times for 1024 nodes) than an opti-
mized reference router with one agent per node. In addition, an adaptive routing
protocol was defined, which prefers the leftmost channel of a minimal route if
the rightmost channel is occupied. Thereby a speed-up of 4.1% for 1024 nodes
was reached. Further work can be done in order to optimize the adaptiveness,
e.g. by using a genetic algorithm. Deadlocks may appear for special situations
when the system is completely full, or full along one axis, or when agents form a
loop. In order to avoid an initial deadlock, the initial setting of the channels were
alternated in space. Thereby the constructed initial deadlock situation could be
dissolved. In order to dissolve deadlocks securely, a random or pseudo-random
component should be introduced that also may allow the agents to bypass con-
gested routes. Further investigations are also planned to simplify the routing
protocol by exploring the symmetries of the isotropic triangular grid: it is con-
jectured that this approach may drastically simplify the router, at least in a
deterministic or adaptive context [17,18].
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Abstract. A new domain specific language CACHE and its translator
into C and Processing are presented. The domain is a set of cellular au-
tomata models of physico-chemical processes. The language and the trans-
lator are intended for using by researchers studying such processes. The
translator allows to obtain both serial and parallel programs on C
language. Multicores and clusters as target parallel architectures are sup-
ported. Additionally, one can easily visualize the process interactively, cre-
ate a movie, and publish a Java-applet in the Internet using Processing.

1 Introduction

Nowadays, cellular automata (CA) are widely used in investigation of physico-
chemical processes on micro and nano levels, for example, oscillatory chemical sur-
face reactions [1,2], absorption, sublimation and diffusion of atoms in the epitaxial
growth processes [3]. Among modern CA simulation tools [4,5] there is not a sin-
gle one suitable for studying such processes. This is because most of CA models of
physico-chemical processes operate in asynchronous mode, and on different stages
of investigationboth serial and parallel implementations of the model are required.
Serial implementation is needed on first stages of a CA model development when
a researcher performs many small-size computational experiments, and parallel
implementation is required later, when the researcher performs experiments with
large cellular arrays to compare results with natural tests.

Taking into account the diversity of computer architectures, we can see that
the following versions of implementation may be required by researchers:

– serial implementation with ability to visualize the process interactively,
– parallel implementation on a multicore computer with shared memory,
– parallel implementation on a cluster,
– parallel implementation on GPUs.
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To satisfy the above requirements an attempt is made: in this paper a new do-
main specific language CACHE (Cellular Automata for CHEmical models) and
its translator into C and Processing [6] is presented. The domain is a set of
cellular automata models of physico-chemical processes. The language and the
translator are intended for studying such processes. The translator allows to
obtain both serial (C, Processing) and parallel (C+MPI, C+POSIX Threads)
implementations of a cellular automata model. Additionally, one can easily vi-
sualize the process interactively, create movie, and publish Java-applet in the
Internet using Processing.

2 A Cellular Automaton Definition

2.1 Formal Representation of CA

Cellular automaton is specified by the following tuple:

CA = 〈Zd, A, Θ, M〉 (1)

where Zd is a finite set of cell coordinates, A is an alphabet, i.e. a finite set of
cell states, Θ is a local transition rule, and M is an iteration mode.

Further we use two dimensional rectangular space Z2:

Z2 = {(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} (2)

with periodic boundaries. A pair (x, a) ∈ Z2 × A is called a cell, where a ∈ A
is a cell state, x ∈ Z2 is its coordinates. Set of cells Ω = {(xi, ai)} ⊂ Z2 × A is
called a cellular array if there does not exist a pair of cells with equal coordinates
and {x | (x, a) ∈ Ω} = Z2. Since between the cells in a cellular array and their
coordinates there exists a one-to-one correspondence, we further identify each
cell with its coordinates.

The local transition rule Θ is a probabilistic function:

Θ : A|BΘ| × A|CΘ| p−→ A|BΘ |, (3)

where the base template BΘ and the context template CΘ are lists of naming
functions φ : Z2 → Z2, BΘ = {φB

1 , φB
2 , . . . , φB

|BΘ|}, CΘ = {φC
1 , φC

2 , . . . , φC
|CΘ|}.

These templates determine base and context neighborhoods of a cell x:

BΘ(x) = {φB
1 (x), . . . , φB

|BΘ |(x)}, CΘ(x) = {φC
1 (x), . . . , φC

|CΘ|(x)}. (4)

Additionally, context and base templates should meet the following condition:

∀x ∈ Z2 : BΘ(x) ∩CΘ(x) = ∅. (5)

Further the following neighborhoods are used:

T13(x) = {x + v0,x + v1, . . . ,x + v12}, (6)
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T9(x) = {x + v0,x + v1, . . . ,x + v8}, (7)

T5(x) = {x + v0,x + v1, . . . ,x + v4}, (8)

T1(x) = {x + v0}, (9)

where V = {v0,v1, . . . ,v12} = {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0), (1, 1),
(1,−1), (−1, 1), (−1,−1), (0, 2), (2, 0), (0,−2), (−2, 0)} (Fig. 1).

V0
V1

V2
V3

V4V12
V7

V9
V5

10

V6
V11

V8
V

0 1 2-2 -1

0
1
2

-2
-1

Fig. 1. Neighborhood T13(6)

An application of the local transition rule (3) to a cell x results in replacing
states of cells from the base neighborhood BΘ(x) with next states Θ(SΘ), SΘ(x)
being a list of states of cells from BΘ(x) ∪ CΘ(x).

Simulation process of CA is split into iterations. An iteration comprises |Z2| =
Nx ·Ny local transition rule applications. The iteration mode M defines the order
of Θ application. There are many iteration modes. Here we use three of them:
synchronous, asynchronous, and block-synchronous modes. In synchronous mode
a local transition rule is applied simultaneously to all cells, this means that all cell
states depend only on states from previous iteration. In asynchronous mode a lo-
cal transition rule is sequentially applied |Z2| times to randomly chosen cells. To
define block-synchronous mode we have to define a partition {S0, S2, . . . , Sw−1}
of the set of cell coordinates Z2 with additional condition to be met by each
subset Sk:

∀x1,x2 ∈ Sk : BΘ(x1) ∩CΘ(x2) = ∅. (10)

In block-synchronous mode each iteration consists of w stages. At each stage a
local transition rule is simultaneously applied to all cells from randomly chosen
subset Sk.

2.2 Formal Representation of Local Transition Rule

Usually, local transition rules of CA models of physico-chemical processes are
expressed as a composition of elementary substitutions [7], where each elemen-
tary substitution corresponds to elementary physico-chemical process (diffusion,
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adsorption, desorption, reaction, etc.). The composition of elementary substi-
tutions is called a composed substitution. Before formal definition of composed
substitution let us define the elementary substitution.

Elementary substitution Θsub is a probabilistic function Θsub : A|BΘsub
| ×

A|CΘsub
| p−→ A|BΘsub

| with its own base and context templates, which is written
in the following form:

Θsub : {a1, a2, . . . , am} p−−−→
cond

{a′
1, a

′
2, . . . , a

′
m′}, (11)

where m = |BΘsub
|+|CΘsub

|, m′ = |BΘsub
|, a1, . . . , am are current states of cells

from base and context neighborhood, and a′
1, . . . , a

′
m′ are next states of cells from

the base neighborhood. Application of Θsub to a cell x results in changing the
states of cells BΘsub

(x) with probability p only if condition cond(a1, a2, . . . , am)
satisfied. Here probability p and states a′

i may be functions of current states,
p = p(a1, a2, . . . , am), a′

i = fi(a1, a2, . . . , am).
Let us return to the definition of a composed substitution. A composed sub-

stitution is a set of several elementary and/or other composed substitutions
combined by composition rules. The most used rules of composition are ran-
dom execution (R), sequential execution (S), and randomly ordered sequential
execution (RS). These rules are given by

ΘR = R(Θ1, p1; Θ2, p2; . . . , Θn, pn), (12)

Θ′
R = R(Θ1, Θ2, . . . Θn), (13)

ΘS = S(Θ1, Θ2, . . . Θn), (14)

ΘRS = RS(Θ1, Θ2, . . . Θn). (15)

Additionally, for each Θi, i = 1 . . . n, a cell to which Θi is applied should be
defined by a function ϕi : Z2 → Z2:

BΘR (x) = BΘ′
R

(x) = BΘS (x) = BΘRS (x) =
n⋃

i=1

BΘi(ϕi(x)), (16)

CΘR (x) = CΘ′
R

(x) = CΘS (x) = CΘRS (x) =
n⋃

i=1

CΘi(ϕi(x)) \
n⋃

i=1

BΘi(ϕi(x)).

(17)
The result of ΘR application to x coincides with result of Θi application

to ϕi(x) with probability pi∑n
k=1 pk

. If pi are all equal then they may be omit-
ted (13). The result of ΘS application to x coincides with sequential applica-
tions of Θ1, Θ2, . . . , Θn to ϕ1(x), ϕ2(x), . . . , ϕn(x), respectively. The result of
ΘRS application to x coincides with sequential applications of randomly ordered
Θτ1 , Θτ2 , . . . , Θτn to ϕτ1(x), ϕτ2(x), . . . , ϕτn(x), , respectively.
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Sometimes it is useful to define templates of a substitution Θ′ on a group of
cells, rather than on a single one:

TΘ′(x1, . . . ,xm) = {φ′
1(x1, . . . ,xm), . . . , φ′|TΘ′ |(x1, . . . ,xm)}, (18)

where φ′
i : Z2 × . . .× Z2

︸ ︷︷ ︸
m

→ Z2. Definition of elementary and composed substi-

tutions, and its applications can be easily modified according to this template
form. Further the following templates are used:

T2(x1,x2) = {x1,x2}, (19)
T4(x1,x2,x3,x4) = {x1,x2,x3,x4}, (20)

T ′
5(x1, . . . ,x5) = {x1, . . . ,x5}. (21)

3 CACHE Language

In the CACHE language the following concepts are to be defined: iteration mode,
type of cell state, several parameters, local transition rule, several counters,
initialization function, and color determination function. Description syntax of
initialization function and color determination function is not considered here.

3.1 Iteration Mode

Cellular automata iteration mode M is defined by one line:
Ex.1: iteration : asynchronous(K)
Here K may be a natural number or an arithmetic expression which means

that each iteration of the model comprises K iterations as defined in
Section 2. The following modes now are supported: asynchronous,
synchronous, blocksynchronous5,blocksynchronous9,blocksynchronous13,
blocksynchronous25. Each mode blocksynchronousW, where W is one of 5, 9,
or 13, corresponds to the template TW (6-8). For the block-synchronous modes
the sets Sk (10) are defined as follows:

Sblocksynchronous5
k=0...4 = {(i, j) : i + 3j = k (mod 5)}, (22)

Sblocksynchronous9
k=0...8 = {(i, j) : i−

⌊
i

3

⌋
+ 3(j −

⌊
j

3

⌋
) = k (mod 9)}, (23)

Sblocksynchronous13
k=0...12 = {(i, j) : i + 5j = k (mod 13)}, (24)

Sblocksynchronous25
k=0...24 = {(i, j) : i−

⌊
i

5

⌋
+ 5(j −

⌊
j

5

⌋
) = k (mod 25)}. (25)

3.2 Type of Cell State

Cell state is of primitive, set, or structure type. A primitive type is one out of:
byte, int or float. In the case of set type, a set of possible cell state values is
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defined by a list of identifiers. The structure type is a list of fields, where each
field has a name and a type. A field is also of primitive, set, or structure type.
Several examples of cell state type definition:

Ex.2: cell : int;
cell : set{ empty, stable, movable };
cell : struct{

h : int;
a : set{ CO, O, Oss, CO_Oss, Empty };

};

3.3 Parameters

Description of a parameter starts from ’param’. Parameter is a variable of prim-
itive type visible among all arithmetico-logical expressions in cellular automata
definition. Value of parameter by default is to be written in the text as follows:

Ex.3: param float probCOdes = 0.2;
param float probO2ads = 0.1;

In addition to user-defined parameters, there are two built-in integer param-
eters N and M: sizes of cellular array Ny and Nx, respectively. Default value for
N and M is 100.

The default value of a parameter can be changed by program arguments:
Ex.4: ./ca -probCOdes 0.5 -N 1024 -M 128

3.4 Elementary Substitution

In the language base and context templates of elementary substitution (11) are

BΘsub
(x1, . . . ,xm) = {x1, . . . ,xm′}, (26)

CΘsub
(x1, . . . ,xm) = {xm′+1, . . . ,xm}. (27)

Template of a composed substitution is automatically computed according to
(16) and it is not given directly in the text of cellular automata definition.

Description of an elementary substitution starts from ’sub’. Two lists includ-
ing initial and next cell states enclosed in square brackets are separated by ’->’.
Structured state is written as a list of field values enclosed in round brackets.
In the case of states of structure/primitive type each field/state is stated as a
concrete value, or as a designator, or as any-value expression. A concrete value
is defined by arithmetic expression. A designator is an identifier not defined
as parameter or as element of a set type. The any-value expression is written
as a dot. The any-value expression in the list of initial cell states means “this
value is not important”, and in the list of next cell states means “do not change
this value”. Probability of actual state changing is represented by arithmetic
expression which follows the symbol ’%’. Condition of actual state changing of
the elementary substitution is represented by an explicit and an implicit part.
The explicit part of the condition is written in round brackets of if statement.
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The implicit part is derived from designators and concrete values/states listed
in the list of initial cell states.

Consider some examples of elementary substitution definition:
Ex.5: sub stabilization: [ movable, a, b, c, d ]->[ stable ] %0.1

if( a==stable||b==stable||c==stable||d==stable )
Here stabilization is the name of the elementary substitution. Base tem-

plate of the substitution is T1 (9), and context template is T ′
5\T1 according to

(26,27). In the first square brackets, movable is a concrete value of the first cell
state, a, b, c and d are designators of other four cell states. In the second square
brackets next concrete state stable of the first cell is indicated. The last four
cell states are not changed by application of the substitution. Implicit part of
condition is represented by indicating the concrete value movable in the first
square brackets: it means that state of the first cell is to be movable.

Ex.6: sub adsO2: [ (n>0 , Empty), (n, Empty) ] -> [ (., O), (., O) ]
Base template of the substitution is T ′

2 (19), and context template is empty
according to (26,27). Here two occurrences of n means that values of the first
fields of two structured cell states is to be equal. It is the second way to specify
implicit part of condition. The third way to specify implicit part of condition is
using A B C expressions, where A is a designator of the value, C is an arithmetic
expression, and B is one of >, <, >=, or <=.

3.5 Composed Substitution

Description of a composed substitution starts from ’csub’, which is followed
by its name and a list of identifiers in round brackets. These identifiers are
designators of cells to which the substitution are applied. To compose several
substitutions one is to write the name of a composition rule (random for ran-
dom execution, seq for sequential execution, and random_order for randomly
ordered sequential execution rule) and then a list of rule names with arguments.
A comma-separated list of rule names is enclosed in curly brackets. A comma-
separated list of arguments is enclosed in round brackets. The arguments de-
termine cells the substitution is to be applied to. Probabilities for substitution
executions, which may be omitted in random composition rule, are represented
by arithmetic expression after ’%’ symbol.

Ex.7: csub rule( x ) : random{
adsO2(x, x+T5(1)) %0.25,
adsO2(x, x+T5(2)) %(0.5/2.0),
adsO2(x, x+T5(3)) %(1.0/4.0),
adsO2(x, x+T5(4)) %0.25

}

Here an expression x+T5(i) determines i’th neighboring cell from T5(x) (8).
In the language neighborhood functions TW(i), where W is on of 5, 9, 13, and
25, are also implemented. For this example the base template of the composed
substitution rule is T5, and context template is empty according to (16) and
(26,27).
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3.6 Local Transition Rule

In the language the local transition rule is a composed substitution named rule
with base and context templates on one cell (4).

3.7 Counters

Counter is a variable of integer type. Value of a counter equals to the number
of cell states with certain properties in the cellular array. Values of all defined
counters are printed at each iteration. Counters are very useful to analyse the
modeling process in dynamics.

Description of counter starts from ’counter’ followed by its name, cell state
and logical expression. The logical expression determines the explicit part of
the condition of counter incrementing. The implicit part of the condition is
represented in cell state description like it is represented in cell state description
of elementary substitution (Sec. 3.4).

Ex.8: counter howManyStableStates: [ stable ]
counter countAdsO: [(h , CO)] if( h > O )

4 Translator

The translator allows to obtain both serial (C, Processing) and parallel
(C+POSIX Threads for multicores, C+MPI for clusters) implementations of a
cellular automata model. Parallel algorithm for asynchronous cellular automata
simulation is described in [8]. Techniques for efficient parallel implementation of
synchronous and block-synchronous cellular automata on multicore and cluster
are considered in [9].

Target language (C, Processing) and computer architecture (serial, multicore,
and cluster) are specified by command-line arguments:

Ex.9: ./cache -lang C -arch cluster -o file_mpi.c file.ca
./cache -lang Processing -o ca_model/ca_model.pde file.ca

A generated file consists of three parts:

– header (global variables definition and main function),
– implementation of local transition rule,
– implementation of iteration function.

The generated code for the first two parts depends quite slightly on target
language and computer architecture. Differences are only in functions decla-
ration, and cellular array declaration and allocation. Generation of the last part,
which implements the iteration function, depends on iteration mode, target lan-
guage and target computer architecture, not depending on the first two parts.
All variants of iteration implementation (iteration mode × target language ×
computer architecture) are included in the translator. During the generation
process the translator copies appropriate implementation to the output file.
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5 Conclusion

The CACHE language and functionality of its translator are considered in some
aspects. These tools allow to describe and to study CA models in helpful way on
different parallel computer architectures. Now we have implemented and tested
several physico-chemical models. The further work is to support GPUs as a
target parallel architectures.
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Abstract. A problem of dynamic load balancing application for simulation of 
gas and fluid flows by lattice gas automata (LGA) is considered. The choice of 
a diffusion balancing method is justified. Results of testing both balanced and 
imbalanced cases are presented. Efficiency of the realizations for simulation the 
LGA and the PIC-method is compared. 

Keywords: Cellular automata, LGA, parallel program, dynamic balancing. 

1   Introduction 

Lattice Gas Automata (LGA) are an effective model of simulation of fluids and gases 
flows. They are easily computed on a cluster because cells perform identical discrete 
functions. Traditional LGA models [1] have the Boolean alphabet. For them transition 
table can be easily located in the RAM, and cell transition is a simple substitution  
of a new value instead of an old one. So, processing time of each cell does not depend 
on its state. For the multi-particle LGA models with the integer alphabet proposed in 
[2], the amount of transition rules of a cell is considerably enlarged. The transition 
table can not be located in the RAM. Therefore, each transition has to be computed 
ad-hoc. Moreover, computation time becomes dependent essentially on an amount of 
particles in a cell. So, high particle density areas are significantly more time-
consuming for computation, than the low density ones. It leads to load imbalance. So, 
cells are to be distributed proportionally to transition function computing time to 
make equal core loadings. But at the next iteration, particles move to adjacent cores, 
and there occur the imbalance again. For blast wave simulation this problem is 
particularly important [3]. In this case, the only way to solve the problem is to use a 
dynamic load balancing. 

In this paper, a dynamic load balancing algorithm is proposed. Results of computer 
experiments are described. Efficiency of parallel realization with the balancing is 
obtained and compared with the efficiency without balancing. Also, balancing results 
of the LGA implementation is compared with that of PIC-method. 
                                                           
* Supported by 1) Presidium of RAS, Basic Research Program No 14–6 (2011), 2) Siberian 

Branch of RAS, Interdisciplinary Project No 32 (2011), 3) Grant RFBR 11–01–00567a. 
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2   Describing of the LGA Models 

A 2D cellular array has a size I × J. Lines are indexed by i on the interval 0 ≤ i < I. 
Columns are indexed by j on the interval 0 ≤ j < J. Each cell has 6 neighbors 
distanced by 1, i.e. the LGA has hexagonal pattern. A cell state is represented by a 6-
th digits long vector. Each digit of the state vector is associated with one of 
neighboring cells. In traditional LGA [1] Boolean state vectors are used. Each 
component of this vector stores information about presence of a discrete model 
particle with the unit mass and the unit velocity. A velocity is directed to the 
neighboring cell corresponding to a component of the state vector. Multi-particle 
LGA [2] admit many particles with equally directed unit velocity to be located in a 
single cell. So, their state is represented by a vector with integer components. 

The cellular automaton runs in the synchronous mode. It has two-staged iteration: 

1. Collisions. Cells are processed independently. In each cell particles are 
"intermixed" in such a way that their total mass and total momentum are conserved. If 
the acceptable state does not exist, then it is an identical collision in which the 
resulting state is equal to the current one. If there is only one nonidentical state saving 
mass and momentum, the cell transition to the state is deterministic. If there exist N > 
1 such states, the cell transits to one of them with probability 1 N . 

2. Propagation. The result of this stage depends on the states of neighboring cells. 
Each particle propagates to a neighbor according to its velocity vector direction. 

After appropriate number of iterations, averaging of particles velocity and 
concentration is performed for obtaining the flow field. 

2.1   Features of the Multi-particle Models 

Not in all tasks traditional LGA [1] with the Boolean alphabet yield good effect of 
simulating. So, it is impossible to use them for simulating processes with the heavy 
gradients of pressure (for example, detonation). Also, they cannot simulate flows with 
moving obstacles. These limitations are absent in the multi-particle model [2]. Since 
its state is represented by an integer vector, a cell has a huge number of possible 
various states. It is impossible to find all the states conserving the mass and the 
momentum of particles in a cell at each collision execution. Therefore one has to 
compute a new state ad-hoc. From the above, it follows that the multi-particle LGA 
has the following properties: 

1. The collisions take up more time, than in Boolean case; 
2. Runtime of the collision functions depends on a cell state essentially; 
3. If the program is run on a cluster, there may be a load imbalance. 

2.2   Parallel Program Implementation 

In the parallel implementation of the LGA the domain decomposition method is used. 
The cellular array is divided into stripes along the axis i. It is enough for good 
performance to use one dimension cuts in this case. To any of p cores (0 ≤ rank < p) a 
stripe is assigned for processing, which consists of several lines iA(rank) ≤ i < iB(rank). 
Boundaries of the stripes are related by the following ratios: 



 Dynamic Load Balancing for Lattice Gas Simulations on a Cluster 177 

iA(rank + 1) = iB(rank), for 0 ≤ rank < p – 1, 

iA(0) = 0, iB(p) = I. 

In the absence of balancing the stripes have equal width (exactly within integer 
rounding, ⎣x⎦ denotes floor x): 

iA(rank) = ⎣rank ⋅ I / p⎦, for 0 ≤ rank < p – 1, 

iB(rank) = ⎣(rank + 1) ⋅ I / p⎦, for 1 ≤ rank < p. 

Iteration consists of the following three stages: 

1. Collisions. 
2. Exchanging of boundary cells states. 

The core with the number rank sends: 
         to the core rank – 1 the line iA(rank), for 1 ≤ rank < p, 

to the core rank + 1 the line iB(rank) – 1, for 0 ≤ rank < p – 1. 
The core with the number rank receives: 

 from the core rank – 1 the line iA(rank)  – 1, for 1 ≤ rank < p, 
   from the core rank + 1 the line iB(rank), for 0 ≤ rank < p – 1. 

The received values are used at the third stage. 
3. Propagation. For boundary cells in a stripe, the set of its neighbors includes 

those ones, whose states are just received from adjacent cores. 

3   Load Balancing Algorithm 

From the variety of balancing algorithms [4] we have selected the diffusion algorithm 
for the following reasons. 

1. The algorithm has high efficiency of parallel implementation on a cluster with 
the size of thousands cores, as distinct to the centralized algorithms, where such 
size brings significant overheads. 

2. The place of a section of the cellular array does not influence the amount of the 
sent data at each iteration. 

3. Adjacent cores, as well, exchange their boundaries at the each iteration. 
4. The load imbalance increases slowly (except in the tasks with explosive wave). 

3.1   Initial Balancing 

Before the simulator starts, one test iteration is performed for every line i (0 ≤ i < I). 
At this iteration, runtime of the collision function in the lines is computed as follows: 

( ) ( )
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t i t i j
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=

=∑ , where t(i,j) is the runtime of the collision function in a cell (i,j). The 

propagation stage requires less time than the collision one and is not taken into 

account, hence, the averaged core time is computed as follows: ( )
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for all cores (0 ≤ rank < p) stripe boundaries iA(rank) and iB(rank) may be calculated. 
The lower boundary iA is selected so that the following conditions are satisfied: 
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The choice of the upper boundary iB should be made as follows: 
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That is, the cells located between the lower and the upper boundaries, are 
processed in the same time t . Let us remind that as before iA(0) = 0, iB(p) = I. This 
method allows setting precisely enough the initial balancing in conditions when 
dependence of a cell processing time on its state is unknown. 

3.2   Dynamic Balancing 

The three stages of iteration are described in section 2.2. The first and third stages 
with balancing remain without modifications. The second stage has three small 
differences relative to the case without balancing. 

1. The boundaries are doubled in thickness. It leads to a little less than twofold 
magnification of the transfer time since the transfer is carried out by one portion. 

The core with the number rank sends: 

to the core rank – 1 the lines iA(rank) and iA(rank) + 1, for 1 ≤ rank < p, 
to the core rank + 1 the lines iB(rank) – 2 and iB(rank) – 1, for 0 ≤ rank < p – 1. 

The core with the number rank receives: 

from the core rank – 1 the lines iA(rank)  – 2 and iA(rank)  – 1, for 1 ≤ rank < p, 
from the core rank + 1 the lines iB(rank) and iB(rank) + 1, for 0 ≤ rank < p – 1. 

2. Together with the states of boundary cells, the runtime of the just completed 
collisions stage  t(k)(rank) is transmitted, where k is the iteration number. 

3. After the transfer, an adjustment of the boundaries of the stripes in the each core 
is performed. 

iA
(k+1)(rank) = iA

(k)(rank) – 1, if t(k)(rank) / t(k)(rank – 1) < b, for 1 ≤ rank < p, 
iA

(k+1)(rank) = iA
(k)(rank) + 1, if t(k)(rank – 1) / t(k)(rank) < b, for 1 ≤ rank < p, 

iB
(k+1)(rank) = iB

(k)(rank) – 1, if t(k)(rank + 1) / t(k)(rank) < b, for 0 ≤ rank < p – 1, 
iB

(k+1)(rank) = iB
(k)(rank) + 1, if t(k)(rank) / t(k)(rank + 1) < b, for 0 ≤ rank < p – 1, 

where b is a movement borders threshold (0 ≤ b ≤ 1). The argument b defines the 
value of imbalance of the time between adjacent cores, above which the boundary 
drifts are performed in the direction of the less loaded core. At b = 0, we have a static 
balance case. At b = 1, sensitivity of the response is the highest. 

It should be noted that, in our implementation, the overhead for the dynamic 
diffusion balancing is minimal for two following reasons. 

1. Data transferring is carried out only to adjacent cores. Hence, the increase of 
cores number does not leads to efficiency saturation as it takes place in the 
centralized balancing. 
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2. There are no additional transfers in comparison to the unbalanced case. Only the 
size of a single package of transmitted data increases. This does not lead to a 
substantial increase of transfer time. 

4   Results of Testing1 
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Fig. 1. Dynamics of the cores load        Fig. 2. Efficiency of dynamic balancing 
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Fig. 3. Efficiency of parallel realization    Fig. 4. Comparison with the PIC method 

4.1   An Example of Explosion Simulation. Dynamics of Distribution of the 
Cellular Array among Cores 

An explosion in a closed camera is simulated. The cellular array has the size I = 500, 
J = 200. The camera walls are allocated on the cellular array margins. Also obstacles 
are present in the middle of the array: [(250, 0), (250, 66)] and [(250, 133), 
 (250, 199)]. Density in the cellular array at i ≤ 50 is equal to 82 particles per cell. 
Density in the rest of the array (at i>50) is equal to 14 particles per cell. The number 
of cores is p = 8. 1000 iterations have been completed. Initial balancing is fulfilled 
according to the method in the section 3.1. At each of the 8 cores, the boundaries of 
the stripes iA(rank) and iB(rank) have been updated at each iteration. 

The process goes as follows. In the beginning, the dense gas moves along the 
cellular array to its middle part and hit against the obstacles. A part of the flow 
transits through the hole between the obstacles. Another part is reflected from the 

                                                           
1 Tests have been performed on MVS100K — JSCC Cluster, Moscow. 
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obstacles. After that, the reflected flow goes backward, is reflected from the bottom 
boundary of the cellular array again, and goes up to the obstacles. The part of flow 
which has transited through the hole is shaped in two vortexes above the obstacles. 
The amount of the particles changes along i quite intensively. Therefore, it is difficult 
to achieve acceptable efficiency of the balancing. 

The chart of stripes width allocated on each core is given in Fig. 1. The efficiency 
also does not remain steady; therefore, for its estimate the next test with quieter flow 
has been performed. 

4.2   An Example of a Quiet Flow. Comparison of the Efficiency 

In the second test the program has been launched on p = 1, 2, 4... 4096 and 6144 cores 
with two conditions: with balancing and without one. Sizes of the cellular array are 
equal to I = 100 ⋅ p, J = 10. The size I is taken depending on the number of the cores p 
in order to eliminate harmful influence of the hardware over the runtime. The size J is 
selected tiny to diminish the test execution time. At the initial state, the density of the 
particles is invariable along j and is arranged linearly lengthways i from the 70 
particles per a cell (at i = 0) to the 7 particles per cell (at i = I – 1). These boundary 
conditions are provided throughout the whole simulation process. Hence, the flow 
escapes along i in the positive direction. The special boundary cells [(0, 0), (0, 9)] and 
[(I – 1, 0), (I – 1, 199)] provide the demanded density of the particles. The walls 
[(0, 0), (I – 1, 0)] and [(0, 9), (I – 1, 9)] flanking the cellular array keep the flow 
inside. 

Fig. 2 shows the efficiency of the balancing (averaged over 100 iterations): 

( ) ( ){ }
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max : 0, 1
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rank

eff t rank p t rank rank p
−

=

= ⋅ = −∑ , 

where t(rank) is the total runtime of the collision functions at the cells with 
iA(rank) ≤ i < iB(rank), (0 ≤ rank < p – 1). This efficiency indicates only the imbalance 
of the cores loading, not including the overhead of communication. 

Fig. 3 shows the parallelization efficiency of the program with the overhead of 
communication (also averaged over 100 iterations): eff = t1 / tp, where t1 is the 
executive time of the program on one core, tp is the executive time of the program on 
p cores. Due to the fact that the size I of the cellular array is proportional to the 
number of cores p, the factor p in the denominator is missing. 

Analysis of Fig. 2 and Fig. 3 leads to the following conclusions: 

1. Without balancing the execution time, as expected, is greater than with 
balancing. 

2. Efficiency remains at acceptable levels even for a large number of cores. 
3. With balancing the time loss dependence on the number of cores is logarithmic. 
4. Communications between the cores bring additional overhead of execution time, 

which increases with the number of cores. 
5. On a great number of cores (p > 2000), the decrease of performance due to 

communications predominates the decrease generated by the imbalance of 
loading. This shows the applicability of the diffusion balancing algorithm on any 
number of cores. With the increase of cores number, the share of losses due to 
the imbalance is reduced and the share of losses in the communication increases. 
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4.3   Comparison of the Implementation Efficiency for the LGA and the PIC-
Method 

In [5], the diffusion algorithm of balancing for the method of particles in cells (PIC) is 
considered. There, in particular, program runtime on different number of cores with 
balancing and without it is given. The amount of particles used there, amounted to 
800 thousand. We have done the test in which it was used 800 thousand cells, and 
have compared the efficiencies. Unfortunately, in [5] there is no data on runtime on 
one core, therefore efficiency was computed in relation to runtime on two cores: 

2 22 peff t p t= ⋅ ⋅ , where t2 is the program runtime on two cores, and tp is the program 

runtime on p cores. 
Fig. 4 shows, that efficiency of the diffusion algorithm of balancing used in the 

LGA is comparable with that used in the PIC-method. 

5   Conclusion and Future Work 

Our investigations show that when simulating flow using multi-particle LGA, 
dynamic load balancing is not only necessary but also can be successfully used. With 
the acceptable efficiency, the number of cores used is limited by the speed of 
communication rather than the load imbalance. In comparison with the balancing of 
the PIC method, balancing of the LGA showed reasonable results. It is worth noting, 
that in the future LGA models, the transitions rules will be more complicated, will 
more imbalanced, and balancing will more urgent. 
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Abstract. We present an associative algorithm for finding the second
simple shortest paths from the source vertex to other vertices of a di-
rected weighted graph. Our model of computation (the STAR–machine)
simulates the run of associative (content addressable) parallel systems of
the SIMD type with vertical processing. We first propose the data struc-
ture that uses the graph representation as a list of triples (edge end–
points and the weight) and the shortest paths tree obtained by means
of the classical Dijkstra algorithm. The associative algorithm is given
as the procedure SecondPaths, whose correctness is proved and the time
complexity is evaluated.

Keywords: Directed weighted graphs, shortest paths tree, second sim-
ple shortest paths, associative parallel processor, access data by contents.

1 Introduction

Finding the shortest paths between two vertices is a well–studied graph problem.
It can be efficiently solved using the classical Dijkstra algorithm [1] implemented
by means of the Fibonacci heaps. The k shortest paths problem is a natural
generalization of the shortest paths problem when several shortest paths must
be determined. Given a graph G with n vertices and m edges, two vertices s and
t, and an integer k, one has to enumerate the k shortest paths from s to t in the
order of increasing their length.

For the problem of finding the k simple (loopless) shortest paths, the fastest
O(k(m + n log n)) time algorithm for undirected graphs was proposed by Katoh
et al. [5] and the best O(kn(m + n log n)) time algorithms for directed graphs
were proposed independently by Yen [12] and Lawler [6]. Such estimations are
obtained using the modern data structures for implementing the Dijkstra algo-
rithm. For unweighted directed graphs and for graphs with small integer weights,
Roditty and Zwick [11] propose a randomized algorithm for finding the k sim-
ple shortest paths that runs in O(km

√
n log n) time. The authors reduce the

problem of finding the k simple shortest paths to O(k) computations of the sec-
ond simple shortest path each time in a different subgraph of G. Gotthilf and
Lewenstein [4] present an O(k(mn + n2 log log n)) time algorithm for finding the
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k simple shortest paths from s to t in weighted directed graphs using the ef-
ficient solution of the all–pairs shortest paths problem. In the case of directed
graphs, Eppstein [2] proposes an efficient O(m+n log n+kn) time algorithm for
finding the k shortest paths (allowing cycles) from s to each vertex of G. This
algorithm builds an implicit representation of paths. The edges in any path can
be explicitly listed in the time proportional to the number of edges.

In this paper, we propose an efficient associative algorithm for finding the
second simple shortest paths from s to all vertices of a directed weighted graph G.
Our model of computation (the STAR–machine) simulates the run of associative
(content addressable) parallel systems of the SIMD type with bit–serial (vertical)
processing. Following Foster [3], we assume that each elementary operation of the
STAR–machine (its microstep) takes one unit of time. We first propose a data
structure and explain how to build it. Then we propose an associative algorithm
for finding the second simple shortest paths from s to all vertices of G. On
the STAR–machine, this algorithm is implemented as procedure SecondPaths,
whose correctness was proved. The procedure uses the graph representation as
a list of triples (edge end-points and the weight) and the shortest paths tree as
a bit–column that saves positions of the tree edges. The procedure SecondPaths
returns a matrix TPaths[2], whose every i-th column saves positions of edges
belonging to the second simple shortest path from s to i. We obtain that it
takes O(r(log n + deg+(G))) time, where r is the number of non–tree edges that
are really used for finding the second simple shortest paths and deg+(G) is the
maximum number of edges outgoing from graph vertices.

2 Model of Associative Parallel Machine

In this section, we propose a brief description of our model which is based on a
Staran–like associative parallel processor [3]. It is defined as an abstract STAR–
machine of the SIMD type with vertical data processing [7]. The model consists
of the following components:

– a sequential control unit (CU), where programs and scalar constants are
stored;

– an associative processing unit consisting of p single–bit processing elements
(PEs);

– a matrix memory for the associative processing unit.

The CU passes an instruction to all PEs in one unit of time. All active PEs
execute it while inactive PEs do not. Activation of a PE depends on the data.

Input binary data are loaded into the matrix memory in the form of two–
dimensional tables, where each data item occupies an individual row and it is
updated by a dedicated PE. We assume that the number of PEs is no less than
the number of rows in any input table. The rows are numbered from top to
bottom and the columns – from left to right. Both a row and a column can be
easily accessed. Some tables may be loaded into the matrix memory.

An associative processing unit is represented as h (h ≥ 4) vertical registers,
each consisting of p bits. A vertical register can be regarded as a one–column
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array. The STAR–machine runs as follows. The bit columns of the tabular data
are stored in the registers which perform necessary Boolean operations.

To simulate data processing in the matrix memory, we use data types word,
slice, and table. The types slice and word are used for the bit column access
and the bit row access, respectively, and the type table is used for defining
tabular data. Assume that any variable of the type slice consists of p components
which belong to {0, 1}. For simplicity, let us call slice any variable of the type
slice.

Let us present the main operations for slices.
Let X , Y be variables of the type slice and i be a variable of the type integer.

We use the following operations:
SET(Y ) simultaneously sets all components of Y to ′1′;
CLR(Y ) simultaneously sets all components of Y to ′0′;
Y (i) selects the value of the i-th component of Y ;
FND(Y ) returns the ordinal number i of the first (the uppermost) bit ′1′ of

Y , i ≥ 0;
STEP(Y ) returns the same result as FND(Y ) and then resets the first found

′1′ to ′0′.
To carry out the data parallelizm, we introduce in the usual way the bitwise

Boolean operations: X andY , X or Y , not Y , X xor Y . We also use the predicate
SOME(Y ) that results in true if there is at least a single bit ′1′ in the slice Y .
For simplicity, the notation Y �= ∅ denotes that the predicate SOME(Y ) results
in true.

Note that the predicate SOME(Y ) and all operations for the type slice are
also performed for the type word.

Let T be a variable of the type table. We employ the following elementary
operations:

ROW(i, T ) returns the i-th row of the matrix T ;
COL(i, T ) returns its i-th column.
Note that the STAR statements are defined in the same manner as for Pascal.

We will use them later for presenting our procedures.
Now, we recall two basic procedures [8] to be used later on. These procedures

use the given global slice X to indicate with the bit ′1′ the row positions used
in the corresponding procedure. In [8], we have shown that these procedures
take O(l) time each, where l is the number of bit columns in the corresponding
matrix.

The procedure MATCH(T, X, v, Z) simultaneously defines positions of the
given matrix T rows which coincide with the given pattern v. It returns the slice
Z, where Z(i) =′ 1′ if and only if ROW(i, T ) = v and X(i) =′ 1′.

The procedure MIN(T, X, Z) simultaneously defines positions of the given
matrix T rows, where the minimum entry is located. It returns the slice Z,
where Z(i) =′ 1′ if and only if ROW(i, T ) is the minimum matrix entry and
X(i) =′ 1′.
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3 Preliminaries

Let G = (V, E) denote a digraph with n vertices and m directed edges (arcs). We
assume that V = {1, 2, . . . , n}. Let wt(e) denote a function that assigns a weight
to every edge e. We assume that all arcs have a non-negative weight. Moreover,
we do not allow self-loops and multiple edges.

An arc e directed from u to v is denoted by e = (u, v), where u = tail(e) and
v = head(e). Let deg+(G) denote the maximum number of arcs outgoing from
the graph vertices.

The shortest path from v1 to vk is a finite sequence of vertices v1, v2, . . . , vk,
where (vi, vi+1) ∈ E (1 ≤ i < k), and the sum of weights of the corresponding
arcs is minimum. Let dist(v1, vk) denote the length of the shortest path from v1

to vk. If there is no path between these vertices, then dist(v1, vk) =∞.
The shortest paths tree T with a root v1 is a connected acyclic subgraph of

G which includes all graph vertices, and for every vertex vj there is a unique
shortest path from v1. The arcs of G that do not belong to T are called non–tree
edges. For any path p, let sidetracks(p) be a sequence of non–tree edges that
belong to p.

For every arc (u, v) in G, Eppstein [2] defines a function δ(u, v) = wt(u, v) +
dist(v1, u) − dist(v1, v). Informally, δ(u, v) shows how much distance is lost if,
instead of taking the shortest path from v1 to v, we first use the shortest path
from v1 to u and then take the arc (u, v). Clearly, for every e ∈ G, δ(e) ≥ 0, and
for every e ∈ T , δ(e) = 0. If δ(e) is considered as a weight function on the arcs
of G, then the weight of every path p will be equal to the sum of weights of the
non-tree edges that appear in this path. Therefore, the problem of finding the k
shortest paths p can be stated as problem of computing the k smallest values of∑

(u,v)∈sidetracks(p) δ(u, v).

4 Data Structure

In this section, we propose a data structure and explain how to obtain it. Observe
that every second simple shortest path will include a single non–tree edge. Such
a path will be obtained either by concatenating some shortest path with a non–
tree edge or by concatenating a certain second simple shortest path with a suffix
of some shortest path.

We will use the function δ(u, v), proposed by Eppstein [2], instead of the
function wt(u, v). On the STAR–machine, any arc (u, v) will be matched with
a triple < u, v, δ(u, v) >, and δ(u, v) will use h bits. We choose the parameter
h as the number of bits for coding

∑n
i=1 ci, where ci is the maximum weight

of arcs outgoing from the vertex vi. Let us agree to represent a digraph G as
association of the matrices Left, Right, and Cost, where every arc (u, v) occupies
an individual row, u ∈ Left, v ∈ Right, and δ(u, v) ∈ Cost.

To design an associative parallel algorithm for finding the second simple short-
est paths, we will use the following data structure:



186 A. Nepomniaschaya

– an m× h matrix Cost that saves the value of the function δ(u, v) for every
arc (u, v);

– an association of the matrices Left, Right, and Cost;
– a slice Tree, where positions of arcs belonging to the shortest paths tree are

marked with the bit ′1′;
– an n×h matrix Dist, whose every i-th row saves the distance from the root

v1 to the vertex vi;
– an m×n matrix TPaths, whose every i-th column saves with the bit ′1′ the

positions of arcs that belong to the shortest path from v1 to the vertex vi;
– an n× log n matrix Code, whose every i-th row saves the binary representa-

tion of the vertex vi.

Let P (r) denote the shortest path from v1 to the vertex r and P (j, l) denote the
shortest path from j to l in the given tree. Obviously, on the STAR–machine,
P (r)=COL(r, TPaths).

To obtain the matrix Dist and the slice Tree, we propose a new implemen-
tation of the Dijkstra algorithm [1] on the STAR–machine. It is obtained by
means of minor changes in the procedure DistPath for simultaneous finding the
distances and the shortest paths on the STAR–machine [9]. More precisely, we
include the matrices Left and Right as input parameters of the new procedure
TreeDist and the matrix Dist and the slice Tree as its output parameters. As
soon as we determine the current vertex vk for including into the shortest paths
tree and a vertex vi being next to vk, we will define the position of the arc
(vi, vk) in the association of matrices Left and Right. After that, we include
this position into the slice Tree. The procedure TreeDist takes O(hn) time.

To obtain the matrix TPaths, we perform the procedure TreePaths that uses
the following idea proposed in [10]. Assume we know positions of arcs included
into P (l). Then we construct a tree path for such a vertex vk which is the head
of the arc (vl, vk) in the shortest paths tree, and P (k) has not been defined yet.
The shortest path P (k) is obtained by including the position of the arc (vl, vk)
into P (l). The procedure TreePaths takes O(n log n) time.

To obtain the matrix Cost, we perform the procedure Recount that computes
for every arc (u, v) the function δ(u, v) considered in the previous section. The
procedure Recount takes O(r log n) time, where r is the number of non–tree
edges.

We will use the following two properties of the matrix TPaths.
Property 1. Every i-th row of the matrix TPaths saves the positions of vertices

whose shortest paths from the root include the arc, which is written in the i-th
row of the graph representation.

Property 2. If the shortest path from the root to the vertex j is the prefix of the
shortest path from the root to the vertex l, then P (j, l) = P (l) and ( not P (j)).

5 Finding the Second Simple Shortest Paths

In this section, we will first explain the main idea of the associative algorithm for
finding the second simple shortest paths from the root v1 to all vertices of G. It
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determines the position of the current non–tree edge α with the minimum weight
in the matrix Cost whose head has not been updated. Knowing the shortest path
from v1 to the tail of α and the position of the non–tree edge α, the algorithm
determines the second simple shortest path from v1 to the head of α. Further, it
determines the second simple shortest path from v1 to every vertex that belongs
to the subtree rooted at the head of α.

We first explain how to obtain all vertices from the subtree rooted at the head
of α, say j. Using Property 1 of the matrix TPaths, we can do this as follows. We
determine positions of arcs outgoing from j in the graph representation. Then
for every such an arc, we determine all vertices, whose shortest paths from v1

include it. The subtree rooted at j is obtained as a set of all such vertices.
Now let us explain how to determine the second simple shortest path from v1

to every vertex q from the subtree, for which the second shortest path has not
been obtained. Using Property 2 of the matrix TPaths, we can do this as follows.
We include positions of arcs from P (j, q) into the second simple shortest path
from v1 to j.

The associative algorithm for finding the subtree of the shortest paths rooted
at j performs the following steps.

Step 1. By means of a slice (say, Z), save positions of arcs outgoing from j in
the graph representation.

Step 2. While Z �= ∅, update the arcs outgoing from j as follows:
– select the position l of the uppermost arc marked with the bit ′1′ in the

slice Z. Then set ′0′ into the l-th bit of the slice Z;
– save the l-th row of the matrix TPaths;
– accumulate positions of these vertices.
On the STAR–machine, this algorithm is implemented as auxiliary procedure

Subtree. Knowing the matrices Left, TPaths, and Code, the slice Tree and
the vertex j, the procedure returns a variable v of the type word that saves
the vertices belonging to the subtree rooted at j. To determine positions of the
tree arcs outgoing from j, we perform the statement w:=ROW(j,Code) and the
basic procedure MATCH(Left,Tree,w,Z). The procedure Subtree takes O(log n+
deg+(G)) time because the basic procedure MATCH takes O(log n) time, the
cycle for updating the arcs outgoing from j (Step 2) is performed O(deg+(G))
times, and inside this cycle, every operation takes O(1) time.

The associative algorithm for finding the second simple shortest paths from
v1 to the vertices from the subtree rooted at j performs the following steps.

Step 1. By means of a slice (say Y ) save the second simple shortest path from
v1 to j. By means of another slice (say Y 1) save the shortest path from v1 to j.

Step 2. By means of a variable of the type word (say w2), save those vertices
from the subtree rooted at j, for which the second simple shortest paths have
not been built yet.

Step 3. While w2 �= ∅, determine the second simple shortest path to every
vertex, whose position belongs to w2, as follows:
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– select the position q of the leftmost bit ′1′ in the row w2. Then set ′0′ into
the q-th bit of w2;

– by means of a slice (say, Y 2), save positions of arcs that belong to P (j, q);
– include into the slice Y 2 the positions of arcs that belong to the slice Y .

Write the slice Y 2 into the q-th column of the matrix TPaths[2];
– in the q-th row of the matrix Dist[2], write the weight of the second simple

shortest path from v1 to j.
On the STAR–machine, this algorithm is implemented as auxiliary procedure

UpdateSubtree. Knowing the matrix TPaths and the vertex j, it returns the
matrices TPaths[2] and Dist[2]. Initially, the j-th column of TPaths[2] saves the
second simple shortest path from v1 to j, the j-th row of the matrix Dist[2] saves
the weight of this path, and the variable w2 saves vertices from the subtree, for
which the second simple shortest paths have not been determined. The procedure
UpdateSubtree takes O(deg+(G)) time because the operations take O(1) time
each, and the cycle for updating vertices from the subtree (Step 3) is performed
O(deg+(G)) times.

Now we proceed to the associative algorithm for finding the second simple
shortest paths from v1 to all vertices of G. It performs the following steps.

Step 1. Let a slice (say, Z1) save positions of non-tree arcs in the graph
representation. While Z1 �= ∅, update the non–tree edges as follows.

Step 2. Determine the position l of a non–tree edge γ that has the minimum
weight in the matrix Cost and the second simple shortest path from v1 to its
head has not been constructed. Let γ = (i, j).

Step 3. Build the second simple shortest path from v1 to j using P (i) and the
position l of the non–tree edge (i, j). Write this path into the j-th column of
the matrix TPaths[2]. Write the weight of the arc (i, j) into the j-th row of the
matrix Dist[2]. Then mark the vertex j as updated one.

Step 4. Determine the vertices from the subtree of the shortest paths rooted
at j. By means of a variable of the type word (say, w2), save those vertices from
the subtree, for which the second shortest paths have not been built.

Step 5. Build the second simple shortest path from v1 to every vertex of the
subtree, whose position belongs to w2.

On the STAR–machine, this algorithm is implemented as the main procedure
SecondPaths that uses the auxiliary procedures Subtree and UpdateSubtree.

6 Implementing the Algorithm for Finding the Second
Simple Shortest Paths

In this section, we consider the procedure SecondPaths. Knowing the graph rep-
resentation as a list of triples, the matrix TPaths and the slice Tree, it returns
the matrices TPaths[2] and Dist[2] and a slice Z.
procedure SecondPaths(Left,Right:table; Cost:table; Code:table;
TPaths:table; Tree:slice(Left); var TPaths[2]:table;
var Dist[2]:table; var Z: slice(Left));

var i,j,l,q:integer;
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w: word(Code); u: word(Cost); w1,w2:word(TPaths);
Y,Y1,Y2,Z1,Z2:slice(Left); X,X1:slice(Code);

1. Begin SET(X); SET(w1);
/* By means of w1, we save the vertices for which
the second shortest paths have not been built.*/

2. Z1:= not Tree; Z:= not Tree;
3. while SOME(Z1) do
/* The cycle for updating non-tree edges.*/
4. begin MIN(Cost,Z1,Z2); l:=FND(Z2);
/* We determine the position of the non-tree edge having
the minimum weight in the matrix Cost. */

5. Z1(l):=’0’;
6. w:=ROW(l,Left); MATCH(Code,X,w,X1);
7. i:=FND(X1);
8. w:=ROW(l,Right); MATCH(Code,X,w,X1);
9. j:=FND(X1);
/* The non-tree edge (i, j) has been written in the l-th
row of the graph representation.*/

10. if w1(j)=’1’ then
/* The case when the vertex j has not been updated.*/

11. begin Y:=COL(i,TPaths); Y(l):=’1’
/* We include the position of the edge (i, j) into P (i). */

12. COL(j,TPaths[2]):=Y;
13. u:=ROW(l,Cost);
14. ROW(j,Dist[2]):=u;
/* The weight of the second shortest path to j is written
in the j-th row of the matrix Dist[2]. */

15. w1(j):=’0’;
/* In the row w1, we mark the vertex j as updated one. */

16. Z(l):=’0’;
/* In the slice Z, we mark the arc (i, j) as updated one. */

17. Subtree(Left,TPaths,Code,Tree,j,w2);
18. w2:=w2and w1;
/* The row w2 saves the vertices for which the second
simple shortest paths will be constructed.*/

19. w1:=w1and ( not w2);
20. UpdateSubtree(TPaths,j,TPaths[2],Dist[2],w2);
21. end;
22. end;
23. End;

Theorem. Let the matrices Left, Right, Cost, TPaths, and Code and the slice
Tree be given. Then the procedure SecondPaths returns the matrices TPaths[2]
and Dist[2], and a slice Z to save the positions of non–tree edges not used in
building TPaths[2].



190 A. Nepomniaschaya

Proof (Sketch). We prove this by induction on the number of non–tree edges
t in the shortest paths tree.

Basis is proved for t = 1. After performing lines 1–9, we obtain that the non–
tree arc (i, j) from the l-th row of the matrix Cost has the minimum weight.
After performing lines 10–16, we determine the second simple shortest path from
v1 to j and write it in the j-th column of the matrix TPaths[2] (line 12). Then we
write its weight in the j-th row of the matrix Dist[2] (line 14). After performing
lines 17–20, we determine the second simple shortest paths from v1 to all vertices
of the subtree except j. Since Z1 = ∅ (line 5), we go to the exit.

Step of induction. Let the assertion be true when t ≥ 1 non-tree edges are
updated in the shortest paths tree. We will prove this for t + 1 non–tree edges.

By the inductive assumption, after updating t non–tree edges, their positions
are marked with ′0′ in the slice Z1, the slice Z saves positions of non–tree edges
not used for finding the second simple shortest paths, the matrix TPaths[2] saves
the second simple shortest paths for vertices, whose positions are marked with
′0′ in the row w1, and the matrix Dist[2] saves the weights of the corresponding
paths. Now we update the last non–tree edge whose position is marked with ′1′

in the slice Z1. By analogy with the basis, after performing lines 4–9, Z1 = ∅
and we determine that the non–tree edge (i, j) is written in the l-th row of the
graph representation. Now, we perform line 10. If w1(j) =′ 1′, we reason as in
the case of the basis. Otherwise, after line 10, we go to the exit, and the position
of this non–tree edge will be marked with ′1′ in the slice Z. In this case, the
second simple shortest path from v1 to j (say α) has been built before and it
uses a non–tree edge, whose weight is less than δ(i, j). Therefore, the path α is
really the second shortest path from v1 to j.

Let us evaluate the time complexity of this procedure. Let r be the number
of non–tree edges in the shortest paths tree that are really used for finding the
second simple shortest paths. Then the procedure SecondPaths takes O(r(log n+
deg+(G))) time because in the cycle for updating the non–tree edges, the basic
procedures MIN and MATCH take O(log n) time each, the auxiliary procedure
Subtree takes O(log n + deg+(G)) time, the auxiliary procedure UpdateSubtree
takes O(deg+(G)) time, and other elementary operations of the STAR–machine
take O(1) time each.

This completes the proof.

7 Conclusions

We have proposed the efficient associative algorithm for finding the second sim-
ple shortest paths from the source vertex v1 to all vertices of a digraph. This
algorithm uses the data structure that allows us to extract data by contents. On
the one hand, the data structure uses a special implementation of the classical
Dijkstra algorithm on the STAR–machine [10]. On the other hand, it uses the
function δ(u, v) proposed by Eppstein [2]. The associative algorithm for find-
ing the second simple shortest paths is implemented on the STAR–machine as
procedure SecondPaths, whose correctness has been proved. The procedure takes
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O(r(log n + deg+(G))) time, where r is the number of non–tree edges that are
really used for finding the second simple shortest paths.

To find the second simple shortest paths, Roditty and Zwick [11] apply their ef-
ficient algorithm for finding the replacement paths, while Gotthilf and Lewenstein
[4] apply the efficient algorithm of Pettie for finding the all-pairs shortest paths.
Our technique uses the main properties of the associative parallel processors.

We are planning to study the representation of the replacement paths problem
on the STAR–machine.
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Abstract. The user features of WinALT system are discussed. It is demonstrated 
that WinALT is a convenient tool for the construction of simulation models of 
fine-grain algorithms and structures. It is a tool that combines graphical and 
analytical means and is adaptable to needs of a particular problem domain. The 
open modular architecture of the system lets a user actively participate in the 
extension of system's functionality. Representative samples of simulation models 
are presented. The availability of the system in Internet makes it possible to 
extend the range of its application by joint efforts of users and developers. 

Keywords: fine-grain parallelism, simulating system, open software architecture, 
component based architecture, user friendly interface, samples of simulating 
models. 

1   Introduction 

There is currently a tendency to create software with open access. The extension of its 
functionality can be done not only by its developers, but also by its users.  

The objective of this work is to demonstrate the capabilities of the WinALT system 
available at the site [1] in constructing of models of algorithms and structures with 
fine-grain parallelism in order to attract potential users to the development of the 
system in the directions that they are interested in within the domain of computations 
and architectures with fine-grain parallelism. This domain includes not only cellular 
automata with its extensions, but also matrix and pipeline architectures (including 
systolic), multimicroprocessor architectures, associative processors, cellular-neural 
networks, homogeneous reconfigurable computing systems (including FPGA), etc. 

2   Custom Features of WinALT System 

The system has a number of features that are useful for its adjustments to users' needs 
and for a comfortable construction of models by authors’ opinion: 

− free distribution, 
− common user's interface, 
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− simulating language that combines the capabilities of parallel and sequential 
programming and that is able to adjust to users' requirements, 

− graphical capabilities that turn the system into a visual programming environment, 
− collection of models at the system's site, 
− extensible and modular system architecture that is based on components, 
− system implementation in C/C++ languages, 
− points of functionality extension, which are available to users. 

Free Distribution. The system's site [1] contains "system installation" section that 
includes an installation and operation manual and its distributive package. 

Common User's Interface. The user's interface of the system coincides with the 
standard user's interface in Windows applications. A simulation model is represented 
by a project that contains a number of sub-windows. Each sub-window can hold 
graphical or textual objects of a model. Creation and editing of graphical objects is 
performed by the means of toolbars, menus and dialog windows. Dialog windows 
have a layout that is well known for Windows users. Texts of model programs are 
created and modified by a system's editor that has functionality similar to that of 
Notepad. The main features of user's interface of the system remain unchanged since 
its first presentation [2]. 

2.1   Adequacy of the System's Language to the Problem Domain 

General Description of Simulating Language. Samples in the selected problem 
domain of fine-grain computations may have such deviations from a cellular automata 
as heterogeneity of cellular space, global data dependencies between cells (e.g. 
buses), block structure, centralized or distributed coordination of inter-block 
interactions, wide range of cell complexity (from a cell with a small transition table to 
a cell as complex as a microprocessor), etc. The system's simulating language pushes 
the limits of the representation of classic cellular automata by its capability to 
describe the above mentioned abnormalities. It consists of three parts. First, their 
general description will be presented. Then, the part dedicated to the description of 
parallel computations will be examined in details. And finally, the general structure of 
a model program will be presented. Let us note that the samples considered in the 
section 3 elucidate quite exhaustively the main concepts of this section. 

The first part of the language is designed to describe parallel computations in a 
form of parallel substitutions. It is fully based on an algorithmic system named 
Parallel Substitution Algorithm [3]. The selection of this algorithmic scheme is 
determined by the fact that it worked well in describing informational and physical 
processes in a wide variety of fine-grain architectures [4, 5, 6, 7]. 

The objective of the second part of the language is the description of sequential 
computations. This part is essentially based on Pascal. It provides statements for the 
description of program structure, control operators, assignment operator and 
subroutine call by name or by reference. These statements can be used in a model 
program for the description of sequential control when it is necessary. These means 
can be used in a model program for the description of sequential control, when it is 
needed, for the definition of functions that describe cell states and also for the 
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construction of such service functions within model program as menu definition, 
graph drawing or initial data input. 

The third part of the language provides import of libraries into a model program. 
These are dll libraries written in C/C++ and embedded into the simulating system. 
They help to extend the functionality of system to a direction desirable for a user. 

The Description of the Parallel Part of Simulating Language. This part has a clear 
division into graphical and analytical subparts. For clarity, a two-dimensional case 
will be considered. Graphical objects are cellular arrays and templates. The 
rectangular matrix of finite dimensions that is composed by colored cells and located 
along horizontal (x) and vertical (y) axes is called cellular array. The origin of 
coordinates is located at the top left cell of array. The cell coordinates [x,y] mean that 
there are x-1 cells between this cell and the origin along x axis and y-1 cells along y 
axis. A color is used to visualize cell's state. Its state can belong to any cell's data type 
supported by the library of data formats (considered in section 2.2 in depth). Each 
cellular has a name. A template can differ from a cellular array. There can be cells in 
void state in it. Such a cell is depicted by a diagonal cross. Some of the cells can be 
marked. A name is assigned to each such cell. This name is available for viewing and 
editing in graphical representation of a cell. Let us call the origin in template its 
"center". 

The main operators of this part of the language are a parallel substitution 
composite in-at-do operator and an ex-end composite operator named synchroblock. 
The in-at-do substitutions are divided into two classes: symbolic and functional. The 
symbolic substitution is one that doesn't use templates with marked cells. If there is at 
least one template with at least one marked cell, the substitution is called functional. 
Each of these classes is divided into two subclasses in its turn: simple and vector 
substitutions. Simple substitutions perform data transformations in only one cellular 
array, while the vector ones affect more than one cellular array. 

The Structure and Execution of a Simple Symbolic Substitution. in operator 
contains parameter name W of processed cellular array. The parameter in at operator 
is name L of the template of the left part of substitution. Similarly, the parameter of 
do operator is the name R of the template of the right part of substitution. There is 
only one limitation for such a substitution. The template R cannot have greater 
dimensions than L along axes x and y. One iteration of application of substitution to 
the cellular array W is performed in two stages. At the first stage all occurrences of L 
in W are marked up to void cells while moving its center in W along axes x and y. At 
the second stage the cell states of W, which are within all the found occurrences, are 
simultaneously changed to the cell states of R also up to void cells. 

Remark 1. The symbolic substitutions are usually used for transformations of 
cellular arrays with types bit, byte, int32 and other types with integer cells. 

The Structure and Execution of a Simple Functional Substitution. The parameter 
of in operator is the name W of processed array. The parameter of at operator is the 
name template L in the left part of substitution. The parameter of do operator is a 
function name F. At least one cell in L is marked. Cell names in L play role of local 
variables in F. One iteration of application of substitution to W is performed in two 
stages. At the first stage the variables that correspond to values of cells in L get new 
values that are the states of cells in W underneath them at each occurrence of L as its 
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center moves in W along the x and y. At the second stage cells that were marked by 
variables from the list of output variables in each occurrence of L in W simultaneously 
get new values computed in F. The complexity of F is not limited. F is implemented 
with the help of the second part of the simulating language. 

Remark 2. Template L moved with step size 1 along the axes x and y in the both 
discussed kinds of substitution. The size of step can be altered by the parameters of 
step operator that can be placed before at operator. The introduction of on operator 
after in operator limits an area of substitution applicability in W by a rectangular 
region with origin and sizes specified as parameters of on operator.  

The Structure and Execution of a Vector Symbolic Substitution. The parameters 
in operators in, at, do of this kind of substitution are lists of names rather than names. 
A mode of coordinated movement of templates of the left part in their corresponding 
cellular arrays and of coordinated search of their occurrences and alteration of cell 
states in cellular arrays for the cells that correspond to the templates of the right part 
is implemented in the language. 

The Structure and Execution of a Vector Functional Substitution. The structure 
of the left part and the mode of template movement and occurrence search are similar 
to those for the vector symbolic substitution. Unlike simple functional substitution, 
the function set as a parameter in do operator can use cell names not from one cellular 
array, but from any subset of arrays from the list in at operator. 

ex - end Synchroblock. A sequence of operators of substitutions of any kind is placed 
between ex and end operators. The synchroblock sets an iterative application of 
substitutions. One iteration consists of ubiquitous application of substitutions to 
processed cellular arrays that are specified by names in a correspondent in. The 
iterations are repeated while at least one is applicable. 

Remark 3. Besides ex - end synchroblock there are two specialized kinds of 
synchroblock as well: ch – end synchroblock executes its substitution only once, and 
cl – end synchroblock executes its substitutions a number of iterations specified in the 
parameter of cl operator. 

Remark 4. Let us note that only the most typical operators of the parallel part of the 
language are described above. Particularly, 1D, 2D, 3D arrays of various sizes and 
with versatile types of cell values can be used in simple substitutions as well as 
miscellaneous combinations of these arrays can be used in vector substitutions. The 
operator of synchronous assignment let can be used as well in synchroblocks. The 
neighborhood for a cell with coordinates [x, y] is defined by a set of functions with 
arguments [x, y] rather than by a template. This permits to define non-local 
neighborhoods. The functions of the set are defined with the help of the second part of 
the language. Operator let doesn't have a graphical image. 

Remark 5. The composition of parallel and sequential parts of the language is 
achieved by the ability to use sequential operators in synchroblocks. 

Simulating Program. The structure of a model program is rather traditional. It 
consists of a list of libraries imported to program, declarations of constants, variable 
and cellular objects, procedures, functions and the main operator block. The main 
operator block is placed in operator begin-end brackets and contains operators of the 
first and second parts of the language. A program may include a comment, which can 
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be any text placed in braces. A project can contain any number of simulating 
programs. The system's interface allows a user to activate a specified simulating 
program out of many within a project by an execution menu. It is also possible to 
define a menu in one simulating program to select and invoke operations defined in 
another one within the same project. Each simulating program can have its own set of 
cellular objects or share some of its objects with other programs in the same project. 
Objects can also be shared between projects by placing them to a folder for global 
objects. 

2.2   The Architecture of WinALT System 

Development of the system follows the path of improving its modular architecture 
and the creation of tools for design and incorporation of new modules. A block 
diagram of the system is presented at Fig. 1. 
 

 
 

Fig. 1. Block diagram of WinALT system 

The comparison of current system's architecture with its earlier version [2] reveals 
the following differences: A) a division of the system's kernel produced two 
components: the WinALT kernel and DCMS library; B) a set of libraries is formed in 
order to provide system's adaptability to requirements of versatile users' problem 
domains. 

A) DCMS is a system library built above operating systems (Win32, Linux). It 
provides functions for management of data structures and for inter-modular 
communications based on events. The objective of DCMS is to provide openness of 
system not only at the level of adding new modules, but also at the level of 
assembling of new components on the basis of these modules. For example, the site of 
WinALT system is assembled from fragments (HTML and SVG generators, 
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authorization module, etc.) using DCMS library. The sections dedicated to the 
description of WinALT system including its distributive and such issues as how to 
build, execute and debug simulation models in it as well as a collection of such 
models, references on cellular computations, the description of existing simulating 
systems are presented at the site. Currently a parallel version of the WinALT system 
based on DCMS is under development. 

The WinALT kernel uses DCMS functions for processing of data structures 
(atomic and hierarchical data built using such constructors as array and record), 
associative search by key and event generation. The WinALT kernel implements in its 
turn functions that are specific for the problem domain of fine-grain computations and 
architectures. These functions manage cellular arrays and templates, provide fast 
access to them, conduct search of applicable substitutions and simulate their parallel 
execution. The console version is capable to execute simulation models, but it lacks a 
friendly user's interface. The graphical environment compensates this limitation 
providing mature GUI tools for visual composition and debugging of models. The 
system is implemented in C/C++. The stable version of graphical environment is 
based on MFC[8]. The extraction of stand-alone console version makes it possible to 
create alternative graphical environments. For example, an addition of graphics based 
on Trolltech QT [9] and GNU GTK [10] into the system can be done. 

B) Each library is refilled by new modules. The libraries are composed of external 
modules. The typical case is when such a module is a dll written in C/C++. Its 
inclusion into library is automated by the tools of DCMS library. To include a module 
means to make its functions callable from any simulating program of WinALT 
system. As these tools of inclusion are currently insufficiently documented, they can 
be applied by users only with the help of developers. 
Lets us describe briefly the functionality of libraries. 

The library of data formats eliminates limitations of data type that can be 
represented by cells in cellular array. The library contains modules for representations 
of cellular arrays with integer cells (int8, int16, int32, uint8, uint16, uint32), bit cells 
(bit), float cells (float) and others. Some external formats are supported by the 
modules of library, such as bmp raster graphics format. The assignment of default 
type for a cellular object means that any of its cells can have any of the above 
mentioned formats. That can be used for the representation of heterogeneous cellular 
objects. In GUI a type of cellular object can be selected in a combo box within the 
dialog window of new object creation. 

The library of language functions provides the ability to use such functions in 
simulating programs as functions of object management (creation, deletion, 
modification or size alteration), GUI functions (construction of dialog windows and 
data input based upon them), mathematical functions (sin, cos, atan, cosh, log, j0), 
console I/O functions (WriteLn, ReadLn), file I/O functions (fopen, fgets, fread, feof, 
…) and miscellaneous functions such as max, min, null, typeof, StringLength, Time. 
Operator use activates the modules of this library in a simulating program. 

The library of model subroutines provides inclusion of service functions into a 
simulating program by a preprocessor command include. Modules of the library are 
written in WinALT language. The module plot.inc implements drawing of graphics, 
while the module dcmc_io.inc provides functions for user's I/O based on dialog 
windows that is typically used for such purposes as selection of initial configuration 
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in model, assignment of object name or setting of number of steps of model 
execution. 

The library of visualization modes provides the ability to visualize data in a form 
that is familiar to a user or widely accepted in his problem domain. For example, 
module num.1.dll shows numeric values of cell. Module arrow.1.dll visualizes cell 
values as arrows with a certain direction. Module cont.1.dll draws contours around 
cell areas. Module rect.1.dll draws a rectangular grid of cells, while hex.1.dll draws a 
hexagonal grid. The visualization modes are selected from menu. 

The library of simulation modes supports three modes (synchronous, asynchronous 
and block asynchronous) selectable be user. In the synchronous mode all the 
applicable substitutions are executed at each iteration of processing of cellular arrays. 
It is this mode that is chosen in the description of the first part of the simulating 
language. In the asynchronous mode only one randomly selected applicable 
substitution is executed at each step. In the block asynchronous mode a certain 
number of applicable substitutions is executed. New modes can be added to the 
library. A simulating mode can be selected by user in menu. 

The library of simulating models is transferred to a user together with the system 
distributive. It can serve as a basis of his personal model library that can be extended 
by own models or ones from WinALT site or from other sources. The library is kept in 
a dedicated directory. 

3   Samples of WinALT Models 

The selected models are quite versatile. The first model contains various 2D cellular 
objects, while the second one has 3D cellular objects. There are bit cell states in the 
first model. The states of cells in the second model are float. The text windows of the 
first model provide a visual representation of the structure of simulating program. 
Nested synchroblocks are used in simulating programs of both samples as well as the 
calls of modules of system libraries. In the first model the substitutions number 1, 2, 
3, 4 are vector functional ones, while the substitution 5 is simple symbolic one. The 
only substitution of the second model is a simple functional one. The second model 
contains a menu created by developers using the second part of WinALT language. 

3.1   A Simulation Model of Associative Device  

A Search Algorithm of Binary Table Strings that Match with a Reference 
Pattern. In order to mark strings coinciding with a reference pattern a binary register 
is introduced. Its bit length is equal to the number of rows in the table. All its digits 
are set to TRUE in the initial state. Let us enumerate the digits of the reference pattern 
as well as the table columns from left to right by 0, 1, …, x, …. At each x-th iteration 
of algorithm execution the x-th digit of the reference pattern is selected and 
simultaneously compared with all the digits of the x-th column. Let a certain digit 
unmatched with its respective bit in the reference pattern be in a y-th row of the table. 
If the y-th digit of the register contains the TRUE symbol, it is replaced by the FALSE 
symbol. The search ends when all the digits of the reference pattern are processed. 
The strings coinciding with the reference pattern appear to be marked by the TRUE 
symbol in the register. 
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A Description of Model of the Associative Device. A screenshot of the model 
project is shown at Fig. 2. The final iteration of model execution is presented there. 

 

Fig. 2. A project of model of an associative device 

All the graphical objects of model are shown in An_1.3do window. TRUE state of a 
cell is represented by white color, while FALSE state is represented by black color. 
The cellular arrays are used for storing of model data as follows: a) bit::table for 
binary strings of the table, b) bit::word for reference pattern, c) bit::check for the 
results of comparison, d) bit::shift for a marker (a white cell), e) bit::buf_col for the 
next (x-th) column of the table, f) bit::buf_trig for the next (x-th) digit of the reference 
pattern. In the initial state the marker is written to the left-most cell of bit::shift array, 
all the cells of bit::check array are white, while all the cells of bit::buf_col and 
bit::buf_trig arrays are black. All the templates have default type. Each of var_Y and 
var_Z templates consists of one empty cell. The cell of var_Y template is named as Y, 
while the cell of var_Z template is named as Z. These templates are used in functional 
substitution of the model program. The pat_sh_L and pat_sh_R templates are used in 
the substitution command that implements shift of the marker along the cells of 
bit::shift array. The templates white and black are used in functional substitution to 
set the conditions of applicability. 

The simulating program is presented in An_1.src and An_2.src windows. After its 
launch the size of bit::table array along axis x is calculated by the SizeX library 
function and is assigned to the variable k. This variable sets the number of steps in the 
synchroblock 1. Each step consists of two sequentially executed iterations. The first 
iteration is set by the synchroblock 2, and the second one is set by the synchroblock 3. 

The first iteration. The substitution 1 using transmission function copies the 
column that is marked in bit::shift from bit::table to bit::buf_col. The substitution 2 
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using the same function copies the reference pattern bit marked also by bit::shift from 
bit::word to bit::buf_trig. 

The second iteration. The substitution 3 alters white cell by a black one in 
bit::check for each pair of cells in bit::check and bit::col with the same number if the 
cell in bit::buf_col is black and the cell bit::buf_trig is white using the function 
Z_and_Y. The substitution 4 alters white cell by a black one in bit::check for each pair 
of cells in bit::check and bit::col with the same number if the cell in bit::buf_col is 
white and the cell bit::buf_trig is white using the function Z_and_not_Y. The 
substitution 5 shifts the marker to the right by one cell in bit::shift. 

Remark 6. The substitutions 4 and 5 have the same in operator, and in such a case 
it can be shared. 

The white cells in bit::check denote the two strings in bit::table that match with the 
reference pattern at Fig. 2. 

3.2   A Simulation Model of Algebraic Fractal “Julia Set” 

The Algorithm of Construction of Fractal “Julia Set”[11]. The algorithm is based 
on iterative expression: 

 

(1) 

where Zi and C are complex variables. The iterations are performed for each 
starting point Z of a rectangular or square region, a subset of complex plane. The 
iterative process goes on until Zi goes beyond a circle of radius 2 with the center at the 
point (0,0). In this case the point takes white color (background color) or after a 
sufficiently big number of iterations Zi sequence converges to some point of the circle 
(the point takes red color). 

The Description of WinALT Model of Fractal Variant Construction. A model 
screenshot is depicted at Fig. 3. The final iteration of model execution and a menu for 
selection of the next variant to construct are presented there. The cellular objects of 
the model are depicted in the left window: 

a) float::area is a 3D cellular array (with three layers) with the size 350x350x3 
cell. Its dimensions along axes x and y can be changed arbitrarily using the simulating 
system tools taking computational capabilities of the computer into consideration. 
Axis z is directed away from the viewer into the screen. A user can observe any of the 
layers or all the three of them unrolled in a plane as shown at Fig. 3. Initially all the 
cells in the layer 0 are red colored (have value 1.000000).  A complex number Zxy 
is associated with each column of the two cells of layers 1 and 2 along axis z. Its real 
part Re(Zxy) is the state of cell of the layer 1, and the imaginary part Im(Zxy) is the state 
of cell of layer 2. 

b) tpl is a template for the main functional substitution that computes whether a 
cell belongs to Julia set. Its dimensions are 1x1x3 cells. It is shown in an unrolled 
form at the Fig. 3. The template cell’s name in the layer 0 is set to be fr, while those in 
the layers 1 and 2 are rl and im respectively. The template’s type is default. The cell 
type of layer 0 is float and its value is 1.000000 (red color). The type of cells in layers 
1 and 2 is void (they have no value). 

CZZ ii +=+
2

1



 The Construction of Simulation Models of Algorithms and Structures 201 

 

Fig. 3. A project of model of algebraic fractal 

The structure of simulating program is similar to that in the previous sample, thus 
its detailed description is skipped. Let us note that two ACL libraries (standard, altio) 
and a model fragment (dcms_io) are included into this program. It contains the 
following functions and procedures: set_c(rea, ima), set_xy(), initialize(), Julia_set(). 
They are written only with the operators of the second part of the language. The final 
part of simulating program, including function Julia_set() and the main program 
block is presented in window algebraic_fractal.src at the Fig. 3. 

Let us consider the execution of the simulating program. It starts with the launch of 
procedure initialize() in the ex-end synchroblock. The procedure constructs menu 
"Select fractal" (see Fig. 3). A user has a choice of 10 variants of fractal set by 
expressions. After making a choice, a user presses OK button and the procedure 
set_xy() is called from the procedure initialize(). 

{The initialization of cellular array float::area} 
procedure set_xy() 
 x, y {declaration of local variables} 
begin 
 for y := 0 to SIZE_Y-1 do 
  for x := 0 to SIZE_X-1 do 
   float::area(x, y, 0) := 1.0; {1st operator} 
   float::area(x,y,1):=(2.*x)/SIZE_X-1.; {2nd operator} 
   float::area(x,y,2):=(2.*y)/SIZE_Y-1.; {3rd operator} 
  end {for} 
 end {for} 
end {set_xy} 
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SIZE_X and SIZE_Y define the dimensions of float::area array along X and Y 
respectively. The first operator “paints” all the cells of the layer 0 to red color. The 
second operator initializes each cell with coordinates [x, y, 2] with a float value that is 
interpreted as Re(Zxy). The third operator initializes each cell with coordinates [x, y, 1] 
with a float value that is interpreted as Im(Zxy). As a result complex values in the 
range from (-1., -1.) to (1., 1.) are presented in the layers 1 and 2 of array float::area. 
The procedure initialize() calls procedure set_c(rea, ima) that initialized variables 
Re_C and Im_C with parameters from a formula that a user selected on each menu 
item except the last one. 

Now synchroblock cl iteration-end nested in synchroblock ex-end is executed. The 
value of iteration is set by a user when defining constants. The functional substitution 
in this synchroblock is executed iteration times. Its application means that at the first 
stage of each iteration all the occurrences of tpl template are marked in array 
float::area. Each such occurrence contains a cell in layer 0 with the state coinciding 
with that of the cell in the layer 0 of tpl, i.e. the cell is red. The variables rl and im get 
values that are the states of cells with coordinates [x, y, 1], [x, y, 2] respectively for 
each application of template with red cell having coordinates [x, y, 0]. Using these 
values function Julia_set() computes new states of cells with coordinates [x, y, 1], [x, 
y, 2] and checks if a cell with coordinates [x, y, 0] belongs to the Julia set. At the 
second stage new states are written into the cells with coordinates [x, y, 1], [x, y, 2] 
with the help of variables rl and im. Also, if the cell with coordinates [x, y, 0] doesn’t 
belong to the Julia set, its state is assigned to the background color (value 255.0000) 
using variable fr. 

Using synchroblock ex-end in this simulating program means that a user can 
initiate its execution an unlimited number of times. In order to stop the execution, a 
user has to select the last string of the menu (“Quit this sample”) and then to press OK 
button. 

Comment. This model was developed by students E. Umrikhina and M. Romanetz 
of the Novosibirsk State Technical University under supervision of one of the authors 
of this paper as a part of learning of WinALT system. 

4   Collection of Models at the System's Web Site 

The system was tested in the construction of models for cellular automata, including 
2D FHP models of a physical process, diffusion models; arithmetic devices, 
multistage 2D and 3D micropipes, including ones with dynamic reconfiguration; 
cellular-neural networks for recognition of distorted images; cellular models of Petri 
network; cellular models of geometric and algebraic fractals; artificial life and others. 
A small fraction of these models is published at the system's site using the same 
scheme of documentation. The collection is constantly enriched by new models. 

5   Conclusion 

The further work in order to improve usability will be conducted in the following 
directions: 
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• Finishing the development of component - parallel version of WinALT with 
construction of tools for Web access to the resources of supercomputers. 

• The extension of visualization tools by constructing new components - graphical 
environments of the system based on GTK, QT and KDE libraries. 

• The extension of functionality of the system's site in order to provide 
communications between users, publication of materials by users, addition of 
new models to collection, the use of models and their fragments to construct new 
models, addition of new modules and possibly components to the system. 

References 

1. WinALT site, http://winalt.sscc.ru/ 
2. Beletkov, D., Ostapkevich, M., Piskunov, S., Zhileev, I.: WinALT, a software tool for 

fine-grain algorithms and structures synthesis and simulation. In: Malyshkin, V.E. (ed.) 
PaCT 1999. LNCS, vol. 1662, pp. 491–496. Springer, Heidelberg (1999) 

3. Achasova, S., Bandman, O., Markova, V., Piskunov, S.: Parallel substitution algorithm. 
Theory and Application. World Scientific, Singapore (1994) 

4. Tverdokhleb, P.E. (ed.): 3D laser technologies (2003) (in Russian) 
5. Bandman, O.L.: Cellular-automata simulation of spatial dynamics. Informatics 

systems (10), 59–113 (2006) (in Russian) 
6. Achasova, S.M.: Program constructor of cellular self-reproducing structures. Programming 

and Computer Software 35(4), 190–197 (2009) 
7. Piskunov, S.V., Umrikhina, E.V.: Computer simulation of dynamically reconfigurable 

multistage micropipes. Scientific Service in Internet: Solution of big problems (September 
22-27, 2008) (in Russian) 

8. Shepherd, G., Kruglinski, D.: Programming with Visual C++.NET, 6th edn. Microsoft 
Press, Redmond (2003) 

9. KDE site, http://www.kde.org/ 
10. GTK site, http://www.gtk.org/ 
11. Crownover, R.M.: Introduction to Fractals and Chaos in dynamic systems. Medieval & 

Renaissance Texts & Studies. Jones & Bartlett Publishers, MA (1996) 
 



Simulation of Heterogeneous Catalytic Reaction

by Asynchronous Cellular Automata on
Multicomputer�

Anastasia Sharifulina1 and Vladimir Elokhin2,3

1 ICM&MG SB RAS, Pr. Lavrentjeva, 6, Novosibirsk, Russia
2 G.K. Boreskov Institute of Catalysis, SB RAS, Pr. Lavrentyeva, 5, Novosibirsk

3 Novosibirsk State University, Pirogova 2, Novosibirsk, Russia
sharifulina@ssd.sscc.ru, elokhin@catalysis.ru

Abstract. In the paper parallel implementation of ACA simulating dy-
namics of carbon monoxide oxidation over the Pd(100) is presented.
Parallel implementation of ACA is based on its approximation by block-
synchronous CA. To estimate approximation accuracy comparative anal-
ysis of statistical characteristics and bifurcation diagrams, obtained by
ACA and BCSA simulation, is performed. Results of parallel implemen-
tation of BSCA algorithm and estimations of its efficiency are presented.
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1 Introduction

The heterogeneous catalysis plays important role in many areas of human ac-
tivity. Therefore, studying of the mechanism of catalytic reactions is important
both from fundamental and practical point of view. For computer simulations of
heterogeneous catalytic reactions asynchronous cellular automata (ACA) with
probabilistic transition rules being sometimes referred to as Monte-Carlo method
are most suitable [1].

Computer simulation of chemical reactions on micro-level requires consider-
able computational capability. Therefore, efficient parallel algorithms are urgent
need. In [2, 3] a method of efficient parallelization based on block-synchronous
CA (BSCA) approximation of ACA is proposed. Meanwhile, approximation ac-
curacy in general case is not studied. Hence, for each ACA class it is necessary
to perform its assessment.

The aim of this article is twofold: 1) to show the validity of using BSCA for
simulation of reaction-diffusion systems in the case of carbon monoxide (CO)
oxidation reaction over the Pt(100), 2) to develop the algorithm of BSCA par-
allelization and obtain its efficiency by implementation on cluster.
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Catalytic CO oxidation reaction over the Pt(100) is studied by Monte-Carlo
method in [4]. This reaction is of great intertest due to the oscillations caused
by the reversible phase transition of the Pt(100) surface (hex↔ 1× 1) induced
by CO adsorption.

Apart from the Introduction and the Conclusion the paper contains two sec-
tions. In section 2 the CA-model of the reaction and simulating results are pre-
sented. In section 3 the ACA to BSCA transformation is described, results of
computer experiments and efficiency estimations of parallel implementation of
BSCA are given.

2 Carbon Monoxide Oxidation Reaction over Platinum
Surface

2.1 CA Model of CO Oxidation Reaction over Pt

The mechanism of CO oxidation reaction over Pt(100) is described by 9 elemen-
tary stages presented in [4]. The ACA simulating the reaction is defined by three
concepts [1, 2]: ℵα = 〈A, X, Θ〉, where A is a cells state alphabet, X is the set of
names, Θ is transition rule.

The state alphabet is chosen according to the reagents participating in the
reaction: A = {∗1×1, ∗hex, CO1×1

ads , COhex
ads , O1×1

ads , Ohex
ads}, where ∗1×1 and ∗hex

denote the vacant active center of surface with square and hexagonal structure,
CO1×1

ads and COhex
ads are carbon monoxide adsorbed on 1×1 and hex surface, O1×1

ads

and Ohex
ads are oxygen adsorbed on 1× 1 and hex surface.

The set of names X = {(i, j) : i = 1, . . . , Mi, j = 1, . . . , Mj} is a set of integer
cells coordinates in the discrete space corresponding to the catalyst surface. A
cell is represented by a pair (u, (i, j)), where u ∈ A is a cell state, (i, j) ∈ X is a
cell name. On the X naming functions ϕ(i, j) : X → X , determining one of the
neighbours for cell (i, j), are introduced. A set of naming functions determines
an underlying template T (i, j), defining nearest neighbours of cell (i, j) [1]. In
the model under investigation the following templates (Fig. 1) are used.

Fig. 1. Underlying templates used in CA-model of oxidation reaction

Local operator Θ(i, j) is a complex composition of substitutions θl, l∈{2, 3, 4, 5}
and their superpositions θ(l,9) =θ9(θl), l∈{1, 6, 7, 8}:Θ(i, j)={θ(1,9), θ2, θ3, θ4, θ5,
θ(6,9), θ(7,9), θ(8,9)}. Each substitution θl ∈ Θ(i, j) corresponds to the elementary
stage: θ1 is CO adsorptopn, θ2 and θ3 are CO desorption on ∗hex and ∗1×1, θ4 and
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θ5 are phase transitions hex→ 1× 1 and 1× 1→ hex, θ6 and θ7 are O2 adsorp-
tion on ∗hex and ∗1×1, θ8 is COads diffusion, θ9 is interaction between COads and
Oads.

Application of Θ(i, j) to cell (i, j) consists of a choice of one of θl or θ(l,9), l =
{1, ..., 8} with probability pl, and of calculation of new cells states in T (i, j).
Probabilities pl are calculated according to the rate coefficients kl given in [4].
The θ9 is realized immediately after θl, l ∈ {1, 6, 7, 8}. Therefore, superposition
θ(l,9) is used.

Application of θ(l,9) =θ9(θl), l=6, 7, 8, requires to use the template T13(i, j),

which is the union of θl and θ9 templates: T13(i, j)=
4⋃

k=1

T5(ϕk(i, j)). Superposi-

tion θ(8,9) applies Mdiff times more frequently than other substitutions, param-
eter of CO diffusion intensity Mdiff =50 [4].

The asynchronous mode of CA prescribes the local operator Θ(i, j) to be
applied to a randomly chosen cell (i, j) ∈ X , changing its state immediately.
The simulation process is divided into iterations, an iteration being |X | ·Mdiff

application of substitutions θl ∈Θ(i, j) to randomly chosen cells. An iteration
transfers the cellular array Ω(t) into Ω(t + 1), where t is iteration number.
Sequence

∑
(Ω) = Ω(0), . . . , Ω(t), Ω(t + 1), . . . , Ω(tfin) is named evolution.

2.2 Results of ACA Sequential Implementation Simulating CO
Oxidation Reaction

The CO oxidation reaction has been simulated by sequential ACA implementa-
tion with cellular array size |X |=200×200 cells and periodic boundary conditions.
At the initial moment all cells states are ∗hex.

In the course of the simulation the following characteristics are obtained.

1. Coverages of oxygen adsorbed on the platinum surface n(Oads), obtained
after each iteration as a ratio of the number of cells in states O1×1

ads and Ohex
ads

to the cellular array size (Mi ·Mj).
2. Coverages of adsorbed CO n(COads), obtained by analogy n(Oads).
3. Portions of surface with square and hexagonal structure: n(1 × 1), n(hex),

calculated after each iteration.
4. Intensity of CO2 formation: v(CO2), computed as the number of interactions

between COads and Oads per iteration divided by Mi ·Mj.

As a result of ACA simulation the oscillating behavior of the reagents coverage
and n(1×1), n(hex) are observed which are in agreement with experimental data
(Fig. 2).

Oscillations in the reaction are observed only at specified values of rate coeffi-
cients. To determine the domain of oscillations existence the bifurcation diagram
in the phase space of k1 and k6 (Fig. 3) has been obtained by performing more
than 100 numerical experiments for k1∈ [0; 200] and k6∈ [0; 105].

As a result, four reaction behavior patterns are found: two equilibrium states
- below curve 1 and above curve 3, and two oscillatory regime - area between
curves 1 and 2 and area between curves 2 and 3.
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a) b)

Fig. 2. Oscillatory character of CO oxidation reaction over Pt: a) portions of surface
with 1 × 1 and hex structure; b) surface coverage of COads,Oads and intensity of CO2

formation

Fig. 3. The bifurcation diagram of CO oxidation reaction over Pt

The bifurcation diagram represents possible states of dynamic system and can
be used as characteristic of the whole of system behavior.

3 Parallel Implementation of ACA-Model Simulating the
CO Oxidation Reaction over Pt(100)

3.1 Approximation of ACA by a Block-Synchronous CA

The direct parallelization of ACA is not efficient, therefore the transformation
of ACA to BSCA is to be used [2, 3]. BSCA ℵβ = 〈A, X, Θ〉 is constructed as
follows.
1. On the naming set X a template named the block B(i, j) is defined, which

should include the underlying templates (Fig. 1):

T1(i, j)⊂T5(i, j)⊂T9(i, j)⊂T13(i, j)⊆B(i, j)⇒ B(i, j)=T13(i, j). (1)

The block B(i, j) defines on X a set of partitions Π ={X1, X2, . . . X13}:

| Xk |= | X |13
,

13⋃

k=1

Xk = X, Xk

⋂
Xl = ∅, k, l ∈ {1, . . . , 13}; (2)

⋃

(i,j)∈Xk

B(i, j) = X, B(i, j)
⋂

B(g, h) = ∅, (i, j), (g, h) ∈ Xk. (3)
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2. An iteration is divided into 13 steps. On each step the local operator Θ(i, j) is
applied synchronously to cells of randomly chosen partition Xk, k = 1, . . . , 13.
The choice order of cells of Xk is unimportant, because (1) ensures that ap-
plication Θ(i, j) to the cells from different blocks are independent.

3.2 ACA and BSCA Evolutions Comparison

To assess the accuracy of ACA approximation by BSCA simulation the following
characteristics have been obtained by computer experiments:

1. probability distribution of n(Oads), n(COads), v(CO2), n(1 × 1), n(hex) and
of oscillation periods T ;

2. mathematical expectation and dispersion of n(Oads), n(COads), v(CO2),
n(1× 1), n(hex), T and the confidence intervals of its;

3. bifurcation diagram of oxidation reaction.

Probability distribution of the random quantities n(Oads), n(COads), v(CO2),
n(1 × 1), n(hex) and T have been computed for the sample size tfin = 106

iterations. For example, in Fig.4 the probability distribution of v(CO2) and T
are shown. Difference between the probability distribution of characteristics

a) b)

Fig. 4. The probability distribution of a) intensity of CO2 formation and b) oscillation
periods

obtained by ACA and BSCA are quite admissible. Root-mean-square differences
of the probability distributions of v(CO2) and T are equal E(v(CO2)) = 5.9·10−5

and E(T ) = 7.1 · 10−5.
The mathematical expectation Mξ, dispersion Dξ and its confidence intervals

IMξ and IDξ are computed under the standard formulas with the confidence
probability of intervals γ = 0.95. Table 1 shows statistics for v(CO2) and T
obtained both by ACA and BSCA, its values practically don’t differ.

Table 1. The statistics values of v(CO2) and T obtained by ACA and BSCA

Mξ Dξ IMξ IDξ

v(CO2)ACA 0.048841 0.000317 (0.048805; 0.048876) (0.000316; 0.000318)

v(CO2)BSCA 0.048826 0.000316 (0.048791; 0.048862) (0.000315; 0.000317)

TACA 14.490580 0.461572 (14.485427;14.495732) (0.456621;0.466523)

TBSCA 14.469609 0.538590 (14.464047; 14.475171) (0.532817; 0.544363)
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Moreover, bifurcation diagrams obtained by ACA and BSCA completely coin-
cide. As follows from above, ACA and BSCA demonstrate the identical behavior
pattern of CO oxidation reaction over Pt(100) and approximate ACA by BSCA
can be use.

3.3 Results of BSCA Parallel Implementation

BSCA parallel implementation on n processors of multicomputer is as follows.
The cellular array Ω(A, X) is divided into n domains |Dom| = |X|

n , each being
allocated and processed in its own processor.

The computations have been performed on MV S−100K of JSCC RAS. Table
2 shows the efficiency Q(n) = T1

Tn·n of BSCA parallelization with cellular array
size |X | = 16000× 16000:

Table 2. Parallel implementation characteristics of BSCA

n 1 4 16 32 64 128 256

Q(n) 1 0.99 0.97 0.92 0.82 0.72 0.71

|Dom| 2.56 · 108 6.4 · 107 1.6 · 107 8 · 106 4 · 106 2 · 106 106

Table 2 shows that efficiency Q(n) exceeds 80% for 64 processors, decreasing
with further increasing of processors number. To achieve high efficiency of BSCA
parallel implementation the domain size should be larger than 2.04 · 106 cells.

4 Conclusion

Parallel implementation of ACA simulating CO oxidation reaction over Pt(100)
surface is proposed. Parallel implementation of ACA is performed by approxi-
mating it by BSCA. Approximation accuracy is investigated by the comparative
analysis of ACA and BSCA simulation results. The analysis has shown that the
differences of probability distributions, mathematical expectation and dispersion
for ACA and BSCA is less than 10−4, and bifurcation diagrams of the reaction
completely coincide. The efficiency of BSCA parallel implementation exceeding
80% for domain size larger than 2.04 · 106 cells is obtained.
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Abstract. Synchronization of large-scale networks is an important and
fundamental computing primitive in parallel and distributed systems.
The firing squad synchronization problem (FSSP) on cellular automata
(CA) has been studied extensively for more than fifty years, and a rich
variety of synchronization algorithms has been proposed for not only
one-dimensional but two-dimensional arrays. In the present paper, we
study the FSSP on 1-bit-communication cellular automata, CA1−bit. The
CA1−bit is a weakest subclass of CAs in which the amount of inter-cell
communication bits transferred among neighboring cells at one step is
restricted to 1-bit. We propose two state-efficient implementations of
optimum-time FSSP algorithms for the CA1−bit and show that the com-
munication restriction has no influence on the design of optimum-time
FSSP algorithms. The implementations proposed are the smallest ones,
known at present.

1 Introduction

Synchronization of large-scale networks is an important and fundamental com-
puting primitive in parallel and distributed systems. We study a synchronization
problem that gives a finite-state protocol for synchronizing cellular automata.
The synchronization in cellular automata has been known as the firing squad
synchronization problem (FSSP) since its development, in which it was origi-
nally proposed by J. Myhill in the book edited by Moore [1964] to synchronize
all/some parts of self-reproducing cellular automata. The problem has been stud-
ied extensively for more than fifty years [1-25].

In the present paper, we study the FSSP on 1-bit-communication cellular
automata, CA1−bit. The CA1−bit is a weakest subclass of CAs in which the
amount of inter-cell communication bits transferred among neighboring cells at
one step is restricted to 1-bit. We propose several state-efficient implementa-
tions of optimum- and non-optimum-time FSSP algorithms for the one- and
two-dimensional CA1−bit. The implementations proposed are the smallest ones,
known at present.

Specifically, we attempt to answer the following questions:
� Corresponding author.
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– Can the CA1−bit provide time-efficient solutions to problems solved by con-
ventional (i.e. constant-bit transfer communication) cellular automata with-
out any time overhead?

– What is the smallest transition rule set in the 1-bit realizations of FSSP
algorithms?

– What is an exact transition rule set for the optimum-time 2-D square array
synchronization on CA1−bit?

In Section 2 we introduce a class of the CA1−bit. Section 3 presents two 1-bit
implementations of an optimum- and non-optimum-time FSSP algorithm on the
one-dimensional CA1−bit. In Section 4 an implementation of an optimum-time
square synchronization algorithm on the CA1−bit is presented.

2 One-Bit-Communication Cellular Automata

A one-dimensional 1-bit inter-cell communication cellular automaton (abbrevi-
ated as 1-D CA1−bit ) consists of a finite array of identical finite state automata,
each located at a positive integer point. See Fig. 1. Each automaton is referred
to as a cell. The cell at point i is denoted by Ci, 1 ≤ i ≤ n, where n is any posi-
tive integer such that n ≥ 2. Each Ci, except for C1 and Cn, is connected with
its left and right neighbor cells via a left or right one-way communication link,
where those communication links are indicated by right- and left-going arrows,
respectively, shown in Fig. 1. Each one-way communication link can transmit
only one bit at each step in each direction.

C1 C2 C3 C4 Cn

Fig. 1. One-dimensional cellular automaton connected with 1-bit inter-cell communi-
cation links

A cellular automaton with 1-bit inter-cell communication, CA1−bit, consists
of a finite array of a finite state automaton A = (Q, δ), where

1. Q is a finite set of internal states.
2. δ is a function that defines the next state of any cell and its binary outputs

to its left and right neighbor cells such that δ: Q × {0, 1} × {0, 1} → Q ×
{0, 1}× {0, 1}, where δ(p, x, y) = (q, x′, y′), p, q ∈ Q, x, x′, y, y′ ∈ {0, 1}, has
the following meaning: We assume that, at step t, the cell Ci is in state p
and receives binary inputs x and y from its left and right communication
links, respectively. Then, at the next step t+1, Ci takes a state q and outputs
x′ and y′ to its left and right communication links, respectively. Note that
binary inputs to Ci at step t are also outputs of Ci−1 and Ci+1 at step t. A
quiescent state q ∈ Q has a property such that δ(q, 0, 0) = (q, 0, 0).
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The CA1−bit is a special subclass of normal (i.e., O(1)-bit communication) cellu-
lar automata. The O(1)-bit communication model is a conventional CA in which
the amount of communication bits exchanged in one step between neighboring
cells is assumed to be O(1) bits. However, such bit amounts exchanged between
inter-cells are hidden behind the definition of conventional automata-theoretic
finite state descriptions. On the other hand, the 1-bit inter-cell communication
model studied in the present paper is a new subclass of conventional CAs, in
which inter-cell communication is restricted to 1-bit communication. The num-
ber of internal states of the CA1−bit is assumed to be finite as in a usual sense.
The next state of each cell is determined based on the present state of the cell
and two binary 1-bit inputs from its left and right neighbor cells. Thus, the
CA1−bit is one of the weakest and simplest models among the variants of the
conventional CAs.

Let N be any normal cellular automaton with a set of states Q and a tran-
sition function δ : Q3 → Q. The state of each cell on N depends on the cell’s
previous state and states on its nearest neighbor cells. This means that the to-
tal information exchanged per step between neighboring cells is O(1) bits. Each
state in Q can be encoded with a binary sequence of length !log2 |Q|" and then
sending the binary sequences sequentially bit-by-bit in each direction via each
one-way communication link. Those sequences are then received bit-by-bit and
decoded into their corresponding states in Q. It is easily seen that these encoding
and decoding procedures can be described in terms of finite states. Thus, the
CA1−bit can simulate one step of N in !log2 |Q|" steps. This observation gives
the following computational relation between the normal CA and the CA1−bit.

Theorem 1. Mazoyer [1996], Umeo and Kamikawa [2001] Let N be any normal cellular
automaton operating in T (n) steps with internal state set Q. Then, there exists
a CA1−bit that can simulate N in kT (n) steps, where k is a positive constant
integer such that k = !log2 |Q|".
A question is whether the CA1−bit can solve many variants of the FSSP problems
solved by conventional cellular automata without any overhead in time complex-
ities. We answer the question by presenting several optimum-time solutions.

3 Firing Squad Synchronization Problem

Section 3 studies the FSSP on the 1-D CA1−bit, the solution of which yields
a finite-state 1-bit-communication protocol for synchronizing 1-D CA1−bit. A
rich variety of synchronization algorithms have been proposed on the O(1)-bit
communication models. An optimum-time (i.e., (2n − 2)-step) synchronization
algorithm for one-dimensional array of length n was devised first by Goto [1962].
The algorithm needed many thousands of internal states for its realization. Af-
terwards, Waksman [1966], Balzer [1967], Gerken [1987] and Mazoyer [1987]
developed an optimum-time algorithm and reduced the number of states realiz-
ing the algorithm, each with 16, 8, 7 and 6 states on the conventional O(1)-bit
communication model.
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The FSSP on the 1-D CA1−bit is defined as follows: At time t = 0, the left
end cell C1 is in the fire-when-ready state, which is an initiation signal for the
array. The FSSP is to determine a description (a state set Q and a next-state
function such that δ: Q × {0, 1} × {0, 1} → Q × {0, 1} × {0, 1}) for cells that
ensures all cells enter the fire state at exactly the same time and for the first
time. The set of internal states and the next-state function must be independent
of n. We sometimes use a word “rule” as a value of the next-state function of a
given solution.

3.1 An Optimum-Time FSSP Algorithm on 1-D CA1−bit

Here we briefly sketch the design scheme for the firing squad synchronization al-
gorithm. Figure 2 (left) is a space-time diagram for the Waksman-Balzer-Gerken-
type optimum-step firing squad synchronization algorithm. The general at time
t = 0 emits an infinite number of signals which propagate at 1/(2k − 1) speed,
where k is any positive integer such that k ≥ 1. These signals meet with a

n

 

Time

Cellular Space

t = 2n-2

Quarter Quarter

Half

1   2  3 . . .

1/1

1/3

1/7

1/15

1/1

1/3

1/7

t  = 0

Reflected

signal

Reflected

signal

Reflected

signal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 RGW Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 RGW RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 RGW RP RA Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 RGW RP RQoS RA Q Q Q Q Q Q Q Q Q Q Q Q Q

4 RGW RP RQeSRQoS RA Q Q Q Q Q Q Q Q Q Q Q Q

5 RGW RP RG1 RQ0ARQoS RA Q Q Q Q Q Q Q Q Q Q Q

6 RGW RP RG0 RQ1ARQeSRQoS RA Q Q Q Q Q Q Q Q Q Q

7 RGW RP RG1 RQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q Q Q Q Q

8 RGW RP RG0 RP1 RQ0BRQ1ARQeSRQoS RA Q Q Q Q Q Q Q Q

9 RGW RP RQ1C RP0 RQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q Q Q

10 RGW RP RQ0C RP1 RQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q Q Q Q Q

11 RGW RP RQ1C RP0 RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q Q Q

12 RGW RP RQ0CRQ1A RG0 RQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q Q Q

13 RGW RP RG1 RQ0A RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q Q Q

14 RGW RP RG0 RQ1A RG0 RP1 RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoS RA Q Q

15 RGW RP RG1 RQ0ARQ1B RP0 RQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQoS RA Q

16 RGW RP RG0 RQ1ARQ0B RP1 RQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1ARQeSRQoSLGW

17 RGW RP RG1 RQ0ARQ1B RP0 RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1BRQ0ARQ1B RA LGW

18 RGW RP RG0 RQ1ARQ0BRQ1A RG0 RQ1ARQ0BRQ1ARQ0BRQ1ARQ0BRQ1A LP LQ1ALGW

19 RGW RP RG1 RQ0ARQ1BRQ0A RG1 RQ0ARQ1BRQ0ARQ1BRQ0ARQ1B LG LQ1CLQ1B LGW

20 RGW RP RG0 RP1 RQ0BRQ1A RG0 RP1 RQ0BRQ1ARQ0BRQ1A LP LQ0CLQ1ALQ1ALGW

21 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B RP0 RQ1BRQ0ARQ1B LG LQ1CLQ1BLQ0A LP1 LGW

22 RGW RP RQ0C RP1 RQ0BRQ1ARQ0B RP1 RQ0BRQ1A LP LQ0CLQ1ALQ0BLQ1A LP0 LGW

23 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B RP0 RG1 LG LQ1CLQ1BLQ0ALQ1BLQ0A LP1 LGW

24 RGW RP RQ0C RP1 RQ0BRQ1ARQ0BRQ1ALGW RGWLQ1ALQ0BLQ1ALQ0B LP1 LP0 LGW

25 RGW RP RQ1C RP0 RQ1BRQ0ARQ1B LG LGW RGW RG LQ1BLQ0ALQ1B LP0 LQ1B LGW

26 RGW RP RQ0C RP1 RQ0BRQ1A LP LQ0C LGW RGWRQ0C RP LQ1ALQ0B LP1 LQ1ALGW

27 RGW RP RQ1C RP0 RG1 LG LQ1CLQ1C LGW RGWRQ1CRQ1C RG LG1 LP0 LQ1B LGW

28 RGW RP RQ0CRQ1ALGW RGWLQ1ALQ0C LGW RGWRQ0CRQ1ALGW RGWLQ1ALQ1ALGW

29 RGW RP RG1 LG LGW RGW RG LG1 LGW RGW RG1 LG LGW RGW RG LP1 LGW

30 RGW RP LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW

31 RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW RGW LGW LGW

32 F F F F F F F F F F F F F F F F F

Fig. 2. Space-time diagram for optimum-time synchronization algorithms with a gen-
eral at left end (left) and some snapshots of the synchronization processes for the
35-state implementation on CA1−bit (right)
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reflected signal at half point, quarter points, ..., etc., denoted by # in Fig. 2
(left). It is noted that those cells indicated by # are synchronized at each cor-
responding step. By increasing the number of synchronized cells exponentially,
eventually all of the cells are synchronized exactly at time t = 2n− 2. It is the
time when the first reflected signal arrives at the left end.

Most of the implementations for the optimum-time synchronization algo-
rithms on CA1−bit developed so far are based on the diagram shown in Fig. 2
(left). Mazoyer [1996] developed an optimum-time synchronization algorithm for
the CA1−bit based on the Balzer’s 8-state realization in Balzer [1967]. Each cell
of the constructed CA1−bit had 58 internal states in Mazoyer [1996]. Nishimura,
Sogabe and Umeo [2003] also constructed an optimum-time synchronization al-
gorithm (NSU algorithm for short) based on the Waksman’s 16-state implemen-
tation in Waksman [1966]. Each cell had 78 internal states and 208 transition
rules.

Theorem 2. Mazoyer [1996], Nishimura, Sogabe and Umeo [2003] There exists a CA1−bit

that can synchronize n cells with the general at left end of the array in 2n − 2
steps.

Umeo, Yanagihara and Kanazawa [2006] developed a non-optimum-step synchro-
nization algorithm for the CA1−bit based on Mazoyer’s 6-state O(1)-bit commu-
nication algorithm in Mazoyer [1987]. The constructed CA1−bit can synchronize
n cell in 2n − 1 steps, that is, 1 step slower than optimum-time, and each cell
has 54 states and 207 transition rules.

Theorem 3. Umeo, Yanagihara and Kanazawa [2006] There exists a 54-state CA1−bit

that can synchronize any n cells in 2n− 1 non-optimum-step.

Here we construct a smaller optimum-time implementation based on Gerken’s
7-state O(1)-bit communication synchronization algorithm presented in Gerken
[1987]. The constructed CA1−bit has 35 internal states and 114 transition rules.
The set of 35 states is {Q, RGW, RPW, RA, RQoS, RQeS, RQ1A, RQ0A, RQ1B, RQ0B,
RQ1C, RQ0C, RG1, RG0, RP1, RP0, RG, RP, LGW, LPW, LQ1A, LQ1B, LQ0A, LQ0B,
LQ1C, LQ0C, LG1, LG0, LP1, LP0,LG, LP, LP’, QW, F}, where the state Q is the
quiescent state, RGW is the general state, and F is the firing state, respectively. Table
1 presents the transition rule set for the 35-state synchronization protocol. Note
that state transition from the firing state F is not included in the Table 1, since it
is the final state. Figure 2 (right) shows some snapshots for synchronization pro-
cesses on 17 cells on the CA1−bit. The small right- and left-facing black triangles,
� and � in the figure, indicate a 1-bit signal transfer in the right or left direction
between neighbor cells. The symbol in each cell shows its internal state.

Theorem 4. There exists a 35-state CA1−bit that can synchronize n cells in
2n− 2 optimum-steps.
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Table 1. Transition table for a 35-state implementation of the optimum-time synchro-
nization algorithm

1 R = 0 R = 1
L = 0
L = 1

Q

(Q,0,0) (Q,0,0)

(RA,0,1) (LGW,1,1)

2 R = 0 R = 1
L = 0
L = 1

RGW

(RGW,0,1) (F,0,0)

(RGW,1,1) (F,0,0)

3 R = 0 R = 1
L = 0
L = 1

RPW

(RPW,0,1) (LGW,1,1)

-- --

4 R = 0 R = 1
L = 0
L = 1

RA

(RQoS,0,0) --

(RP,0,0) --

5 R = 0 R = 1
L = 0
L = 1

RQoS

(RQ0A,0,1) (LP’,1,0)

(RQeS,0,0) (LP,1,0)

6 R = 0 R = 1
L = 0
L = 1

RQeS

(RQ1B,1,0) --

(RG1,0,1) --

7 R = 0 R = 1
L = 0
L = 1

RQ1A

(RQ0A,0,0) (LG,1,0)

-- --

8 R = 0 R = 1
L = 0
L = 1

RQ0A

(RQ1A,0,0) (RQ1A,1,0)

(RQ1A,0,0) (RP1,1,1)

9 R = 0 R = 1
L = 0
L = 1

RQ1B

(RQ0B,0,0) (LP,1,0)

-- --

10 R = 0 R = 1
L = 0
L = 1

RQ0B

(RQ1B,0,0) (RQ1B,1,0)

(RQ1B,0,0) (RG1,1,1)

11 R = 0 R = 1
L = 0
L = 1

RQ1C

(LQ1B,0,0) (LQ1C,0,0)

(RQ0C,0,0) (LP,1,0)

12 R = 0 R = 1
L = 0
L = 1

RQ0C

(LQ1A,0,1) --

(RQ1C,0,0) (RG1,0,1)

13 R = 0 R = 1
L = 0
L = 1

RG1

(RG0,0,0) (LPW,1,0)

(RG0,0,0) (LPW,1,0)

14 R = 0 R = 1
L = 0
L = 1

RG0

(RG1,0,1) (RQ1B,0,0)

(RG1,0,1) (RQ1C,0,0)

15 R = 0 R = 1
L = 0
L = 1

RP1

(RP0,0,0) (LGW,1,1)

-- --

16 R = 0 R = 1
L = 0
L = 1

RP0

(RP1,0,1) (RQ1A,1,0)

-- --

17 R = 0 R = 1
L = 0
L = 1

RG

(LQ1C,0,0) (LPW,1,0)

(LQ1C,0,0) (LPW,1,0)

18 R = 0 R = 1
L = 0
L = 1

RP

(LQ0C,0,0) (LGW,1,1)

(RP,0,1) (LGW,1,1)

19 R = 0 R = 1
L = 0
L = 1

LGW

(LGW,1,0) (LGW,1,1)

(F,0,0) (F,0,0)

20 R = 0 R = 1
L = 0
L = 1

LPW

(LPW,1,0) --

(RGW,1,1) --

21 R = 0 R = 1
L = 0
L = 1

LQ1A

(LQ0A,0,0) (LQ1B,0,0)

(RG,0,1) (LP1,1,0)

22 R = 0 R = 1
L = 0
L = 1

LQ1B

(LQ0B,0,0) (LQ1A,0,0)

(RP,0,1) (RP,0,0)

23 R = 0 R = 1
L = 0
L = 1

LQ0A

(LQ1A,0,0) (LQ1A,0,0)

(LQ1A,0,1) (LP1,1,1)

24 R = 0 R = 1
L = 0
L = 1

LQ0B

(LQ1B,0,0) (LQ1B,0,0)

(LQ1B,0,1) (LG1,1,1)

25 R = 0 R  = 1
L = 0
L = 1

LQ1C

(RQ1B,0,0) (LQ0C,0,0)

(RQ1C,0,0) (RP,0,1)

26 R = 0 R  = 1
L = 0
L = 1

LQ0C

(RQ1A,1,0) (LQ1C,0,0)

-- (LG1,1,0)

27 R = 0 R  = 1
L = 0
L = 1

LG1

(LG0,0,0) (LG0,0,0)

(RPW,0,1) (RPW,0,1)

28 R = 0 R  = 1
L = 0
L = 1

LG0

(LG1,1,0) (LG1,1,0)

(LQ1B,0,0) (LQ1C,0,0)

29 R = 0 R  = 1
L = 0
L = 1

LP1

(LP0,0,0) (LP0,0,0)

(RGW,1,1) (RPW,0,0)

30 R = 0 R  = 1
L = 0
L = 1

LP0

(LP1,1,0) (LP1,1,0)

(LQ1A,0,1) (LQ1B,0,0)

31 R = 0 R  = 1
L = 0
L = 1

LG

(RQ1C,0,0) (RQ1C,0,0)

(RPW,0,1) (RPW,0,1)

32 R = 0 R  = 1
L = 0
L = 1

LP

(RQ0C,0,0) (LP,1,0)

(RGW,1,1) (RGW,1,1)

33 R = 0 R  = 1
L = 0
L = 1

LP’

-- (LQ1A,0,0)

-- (RPW,0,0)

34 R = 0 R  = 1
L = 0
L = 1

QW

(QW,0,0) --

(LGW,1,0) --

3.2 A 3n-Step Non-optimum-Time FSSP Algorithm on 1-D
CA1−bit

The 3n-step algorithm that synchronizes n cells in 3n±O(log n)+O(1) steps is an
interesting class of synchronization algorithms due to its simplicity and straight-
forwardness and it is important in its own right in the design of generic cellular
algorithms. Minsky and MacCarthy [1967] gave an idea for designing the 3n-
step synchronization algorithm and Fischer [1965] implemented the 3n-step al-
gorithm, yielding a 15-state implementation. Yunès [1994] proposed a seven-state
3n-step firing squad synchronization algorithm. Umeo et al. [2006] and Yunès
[2008] proposed six-state 3n-step symmetrical synchronization algorithms, both
known as the smallest 3n-step FSSP solutions for the O(1)-bit communication
model.

Figure 3 (left) shows a space-time diagram for the well-known 3n-step firing
squad synchronization algorithm. The synchronization process can be viewed
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 P Q Q Q Q Q Q Q Q Q Q Q Q Q Q QQ

1 PP R Q Q Q Q Q Q Q Q Q Q Q Q Q QQ

2 ZZ R R Q Q Q Q Q Q Q Q Q Q Q Q QQ

3 QQ AR R R Q Q Q Q Q Q Q Q Q Q Q QQ

4 QQ BR R R R Q Q Q Q Q Q Q Q Q Q QQ

5 QQ Z R R R R Q Q Q Q Q Q Q Q Q QQ

6 QQ Q AR R R R R Q Q Q Q Q Q Q Q QQ

7 QQ Q BR R R R R R Q Q Q Q Q Q Q QQ

8 QQ Q Z R R R R R R Q Q Q Q Q Q QQ

9 QQ Q Q AR R R R R R R Q Q Q Q Q QQ

10 QQ Q Q BR R R R R R R R Q Q Q Q QQ

11 QQ Q Q Z R R R R R R R R Q Q Q QQ

12 QQ Q Q Q AR R R R R R R R R Q Q QQ

13 QQ Q Q Q BR R R R R R R R R R Q QQ

14 QQ Q Q Q Z R R R R R R R R R R QQ

15 QQ Q Q Q Q AR R R R R R R R R R PP

16 QQ Q Q Q Q BR R R R R R R R R R ZZ

17 QQ Q Q Q Q Z R R R R R R R R Z QQ

18 QQ Q Q Q Q Q AR R R R R R R Z Q QQ

19 QQ Q Q Q Q Q BR R R R R R Z Q Q QQ

20 QQ Q Q Q Q Q Z R R R R Z Q Q Q QQ

21 QQ Q Q Q Q Q Q AR R R Z Q Q Q Q QQ

22 QQ Q Q Q Q Q Q BR R Z Q Q Q Q Q QQ

23 QQ Q Q Q Q Q Q Z Z Q Q Q Q Q Q QQ

24 QQ Q Q Q Q Q Q P P Q Q Q Q Q Q QQ

25 QQ Q Q Q Q Q L PP PP R Q Q Q Q Q QQ

26 QQ Q Q Q Q L L ZZ ZZ R R Q Q Q Q QQ

27 QQ Q Q Q L L AL QQ QQ AR R R Q Q Q QQ

28 QQ Q Q L L L BL QQ QQ BR R R R Q Q QQ

29 QQ Q L L L L Z QQ QQ Z R R R R Q QQ

30 QQ L L L L AL Q QQ QQ Q AR R R R R QQ

31 PP L L L L BL Q QQ QQ Q BR R R R R PP

32 ZZ L L L L Z Q QQ QQ Q Z R R R R ZZ

33 QQ Z L L AL Q Q QQ QQ Q Q AR R R Z QQ

34 QQ Q Z L BL Q Q QQ QQ Q Q BR R Z Q QQ

35 QQ Q Q Z Z Q Q QQ QQ Q Q Z Z Q Q QQ

36 QQ Q Q P P Q Q QQ QQ Q Q P P Q Q QQ

37 QQ Q L PP PP R Q QQ QQ Q L PP PP R Q QQ

38 QQ L L ZZ ZZ R R QQ QQ L L ZZ ZZ R R QQ

39 PP L AL QQ QQ AR R PP PP L AL QQ QQ AR R PP

40 ZZ L BL QQ QQ BR R ZZ ZZ L BL QQ QQ BR R ZZ

41 QQ Z Z QQ QQ Z Z QQ QQ Z Z QQ QQ Z Z QQ

42 QQ P P QQ QQ P P QQ QQ P P QQ QQ P P QQ

43 PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP

44 ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ

45 T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QQ

1 PP R Q Q Q Q Q Q Q Q Q Q Q Q Q Q QQ

2 ZZ R R Q Q Q Q Q Q Q Q Q Q Q Q Q QQ

3 QQ AR R R Q Q Q Q Q Q Q Q Q Q Q Q QQ

4 QQ BR R R R Q Q Q Q Q Q Q Q Q Q Q QQ

5 QQ Z R R R R Q Q Q Q Q Q Q Q Q Q QQ

6 QQ Q AR R R R R Q Q Q Q Q Q Q Q Q QQ

7 QQ Q BR R R R R R Q Q Q Q Q Q Q Q QQ

8 QQ Q Z R R R R R R Q Q Q Q Q Q Q QQ

9 QQ Q Q AR R R R R R R Q Q Q Q Q Q QQ

10 QQ Q Q BR R R R R R R R Q Q Q Q Q QQ

11 QQ Q Q Z R R R R R R R R Q Q Q Q QQ

12 QQ Q Q Q AR R R R R R R R R Q Q Q QQ

13 QQ Q Q Q BR R R R R R R R R R Q Q QQ

14 QQ Q Q Q Z R R R R R R R R R R Q QQ

15 QQ Q Q Q Q AR R R R R R R R R R R QQ

16 QQ Q Q Q Q BR R R R R R R R R R R PP

17 QQ Q Q Q Q Z R R R R R R R R R R ZZ

18 QQ Q Q Q Q Q AR R R R R R R R R Z QQ

19 QQ Q Q Q Q Q BR R R R R R R R Z Q QQ

20 QQ Q Q Q Q Q Z R R R R R R Z Q Q QQ

21 QQ Q Q Q Q Q Q AR R R R R Z Q Q Q QQ

22 QQ Q Q Q Q Q Q BR R R R Z Q Q Q Q QQ

23 QQ Q Q Q Q Q Q Z R R Z Q Q Q Q Q QQ

24 QQ Q Q Q Q Q Q Q AR Z Q Q Q Q Q Q QQ

25 QQ Q Q Q Q Q Q Q P Q Q Q Q Q Q Q QQ

26 QQ Q Q Q Q Q Q L PP R Q Q Q Q Q Q QQ

27 QQ Q Q Q Q Q L L ZZ R R Q Q Q Q Q QQ

28 QQ Q Q Q Q L L AL QQ AR R R Q Q Q Q QQ

29 QQ Q Q Q L L L BL QQ BR R R R Q Q Q QQ

30 QQ Q Q L L L L Z QQ Z R R R R Q Q QQ

31 QQ Q L L L L AL Q QQ Q AR R R R R Q QQ

32 QQ L L L L L BL Q QQ Q BR R R R R R QQ

33 PP L L L L L Z Q QQ Q Z R R R R R PP

34 ZZ L L L L AL Q Q QQ Q Q AR R R R R ZZ

35 QQ Z L L L BL Q Q QQ Q Q BR R R R Z QQ

36 QQ Q Z L L Z Q Q QQ Q Q Z R R Z Q QQ

37 QQ Q Q Z AL Q Q Q QQ Q Q Q AR Z Q Q QQ

38 QQ Q Q Q P Q Q Q QQ Q Q Q P Q Q Q QQ

39 QQ Q Q L PP R Q Q QQ Q Q L PP R Q Q QQ

40 QQ Q L L ZZ R R Q QQ Q L L ZZ R R Q QQ

41 QQ L L AL QQ AR R R QQ L L AL QQ AR R R QQ

42 PP L L BL QQ BR R R PP L L BL QQ BR R R PP

43 ZZ L L Z QQ Z R R ZZ L L Z QQ Z R R ZZ

44 QQ Z AL Q QQ Q AR Z QQ Z AL Q QQ Q AR Z QQ

45 QQ Q P Q QQ Q P Q QQ Q P Q QQ Q P Q QQ

46 QQ L PP R QQ L PP R QQ L PP R QQ L PP R QQ

47 PP L ZZ R PP L ZZ R PP L ZZ R PP L ZZ R PP

48 ZZ AL QQ AR ZZ AL QQ AR ZZ AL QQ AR ZZ AL QQ AR ZZ

49 QQ P QQ P QQ P QQ P QQ P QQ P QQ P QQ P QQ

50 PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP

51 ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ ZZ

52 T T T T T T T T T T T T T T T T T

G
t = 0

t = 3n+α

t = 
2

3n

G2 GG2

G1

t = n-1

t = 2n-2

. . . . n

GG3G3G3GG3

1  2  3 . . . .

1/1

1/1

1/3

1/3

1/1

1/3

a-signal

b-signal

r-signal
1/1

Fig. 3. A space-time diagram for the 3n-step FSSP algorithm (left) and snapshots for
synchronization processes of the 13-state implementation of the algorithm on 16 and
17 cells (middle and right)

as a typical divide-and-conquer strategy that operates in parallel in the cellular
space. An initial general G, located at left end of the array of length n, generates
simultaneously two special signals, referred to as a-signal and b-signal, which
propagate in the right direction at a speed of 1/1 (i.e., 1 cell per unit step) and
1/3, respectively. The a-signal arrives at the right end at time t = n− 1, reflects
there immediately, then continues to move at the same speed in the left direction.
The reflected signal is referred to as r-signal. The b- and r-signals meet at one or
two center cells, depending on the parity of n. In the case that n is odd, the cell
C�n/2� becomes a General at time t = 3!n/2" − 2. The new general works for
synchronizing both its left and right halves of the cellular space divided. Note
that the general is shared by the two halves. In the case that n is even, two
cells C�n/2� and C�n/2�+1 become the next general at time t = 3!n/2". Each
general works for synchronizing its left and right halves of the cellular space,
respectively.
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Thus at time

t =

{
3!n/2" − 2 n: odd
3!n/2" n: even,

(1)

the array knows its center point(s) and generates one or two new general(s) G1.
The new general(s) G1 generates the same 1/1- and 1/3-speed signals in both
left and right directions and repeat the same procedures as above. Thus, the
original synchronization problem of size n is divided into two sub-problems of
size !n/2". In this way, the original array is split into equal two, four, eight, ...,
subspaces synchronously. In the last, the original problem of size n can be split
into small sub-problems of size 2. Most of the 3n-step synchronization algorithms
developed so far are based on the similar scheme.

A one-bit implementation presented in this paper is also based on the synchro-
nization scheme above. Table 2 presents the transition rule set for the 13-state
synchronization protocol. The set of 13 states is {Q, QQ, P, PP, Z, AR, BR, AL,
BL, R, L, ZZ, T}, where the state Q is the quiescent state, P is the general state,
and T is the firing state, respectively. The table consists of 32 transition rules.

Table 2. Transition table for the 13-state 3n-step non-optimum-time synchronization
algorithm

1 R = 0 R = 1
L = 0
L = 1

Q

(Q,0,0) (L,1,0)

(R,0,1) --

2 R = 0 R = 1
L = 0
L = 1

QQ

(QQ,0,0) (PP,1,0)

(PP,0,1) (PP,0,0)

3 R = 0 R = 1
L = 0
L = 1

P

(PP,0,0) (PP,0,1)

(PP,1,0) --

4 R = 0 R = 1
L = 0
L = 1

PP

(ZZ,1,1) (ZZ,1,0)

(ZZ,0,1) --

5 R = 0 R = 1
L = 0
L = 1

Z

(Q,0,0) (P,1,1)

(P,1,1) --

6 R = 0 R = 1
L = 0
L = 1

AR

(BR,0,0) (P,1,1)

-- --

7 R = 0 R = 1
L = 0
L = 1

BR

(Z,0,1) --

-- --

8 R = 0 R = 1
L = 0
L = 1

AL

(BL,0,0) --

(P,1,1) --

9 R = 0 R = 1
L = 0
L = 1

BL

(Z,1,0) --

-- --

10 R = 0 R = 1
L = 0
L = 1

R

(R,0,0) (Z,1,0)

(AR,0,0) --

11 R = 0 R = 1
L = 0
L = 1

L

(L,0,0) (AL,0,0)

(Z,0,1) --

12 R = 0 R = 1
L = 0
L = 1

ZZ

(QQ,0,0) (T,0,0)

(T,0,0) (T,0,0)

Theorem 5. There exists a 13-state CA1−bit that can synchronize n cells with
the general at left end in 3n + O(log n) steps.

Table 3 shows a list of those 1-bit implementations of the FSSP algorithms for
CA1−bit.

Table 3. A list of 1-bit implementation of the FSSP algorithms for CA1−bit

Implementations # of # of Time Base
states rules complexity Algorithms

Mazoyer [1996] 58(61∗) −(167∗) 2n − 2 Balzer [1967]
Nishimura, Sogabe and 78 208 2n − 2 Waksmann [1966]

Umeo [2003]
Umeo, Yanagihara and 54 207 2n − 1 Mazoyer [1987]

Kanazawa [2006]
this paper 35 114 2n − 2 Gerken [1987]
this paper 13 32 3n + O(log n) —
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.
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Fig. 4. A two-dimensional square cellular automaton

4 Firing Squad Synchronization Problem on
Two-Dimensional Square Arrays

Figure 4 shows a finite two-dimensional (2-D) square array consisting of n × n
cells, each denoted by Cij , 1 ≤ i, j ≤ n. Each cell is an identical (except the
border cells) finite-state automaton. The array operates in lock-step mode in
such a way that the next state of each cell (except border cells) is determined
by both its own present state and the present states of its north, south, east and
west neighbors. Thus, we assume the von Neumann-type four nearest neighbors.
All cells (soldiers), except the north-west corner cell (general), are initially in the
quiescent state at time t = 0 with the property that the next state of a quiescent

1 2 3 4 n

1

2

3

4

n

n

n

1 2 3 4 n

1

2

3

4

n

2 3 4 n

2

3

4

n

3 4 n

3

4

n

4 n

4

m

Fig. 5. A synchronization scheme for n × n square cellular automaton. A horizontal
and vertical synchronization operations on Li are mapped onto a square array. A black
circle • in a shaded square represents a general on each Li and a wake-up signal for
the synchronization generated by the general is indicated by a horizontal and vertical
arrow, respectively.
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cell with quiescent neighbors is the quiescent state again. At time t = 0, the
north-west corner cell C11 is in the fire-when-ready state, which is the initiation
signal for synchronizing the array. The firing squad synchronization problem is to
determine a description (state set and next-state function) for cells that ensures
all cells enter the fire state at exactly the same time and for the first time.

A rich variety of synchronization algorithms for 2-D rectangular cellular au-
tomata with O(1)-bit communications has been proposed. Concerning the square
synchronization which is a special class of rectangles, several algorithms have
been proposed by Beyer [1969], Shinahr [1974], Umeo, Maeda, and Fujiwara
[2002], and Umeo and Kubo [2010]. The first optimum-time square synchroniza-
tion algorithm was proposed by Beyer [1969] and Shinahr [1974]. One can easily
see that it takes 2n − 2 steps for any signal to travel from C11 to Cnn due to
the von Neumann neighborhood. Concerning the time optimality of the two-
dimensional square synchronization algorithms, the following theorem has been
shown.

Theorem 6. Beyer [1969], Shinahr [1974] There exists no cellular automaton that
can synchronize any two-dimensional square array of size n × n in less than
2n− 2 steps, where the general is located at one corner of the array.

The optimum-time synchronization algorithm proposed by Beyer [1969] and Shi-
nahr [1974] for square arrays operates as follows: We assume that an initial gen-
eral is located on C11. By dividing the entire square array of size n × n into n
rotated L-shaped 1-D arrays, shown in Fig. 5, in such a way that the length of
the ith (from outside) L-shaped array is 2n− 2i + 1 (1 ≤ i ≤ n), one treats the
square synchronization as n independent 1-D synchronizations with the general
located at the bending cell of the L-shaped array. We denote the ith L-shaped
array by Li and its horizontal and vertical segment is denoted by Lh

i and Lv
i ,

respectively. Note that a cell at each bending point of the L-shaped array is
shared by the two segments. See Fig. 5.

Concerning the synchronization of Li, it can be easily seen that a general is
generated at the cell Cii at time t = 2i− 2 with the four nearest von-Neumann
neighborhood communication, and the general initiates the horizontal (row) and
vertical (column) synchronizations on Lh

i and Lv
i , each of length n− i + 1 via an

optimum-time synchronization algorithm which can synchronize arrays of length
� in 2�−2 steps. Thus the square array of size n×n can be synchronized at time
t = 2i− 2 + 2(n− i + 1)− 2 = 2n− 2 in optimum-steps. In Fig. 5, each general
is represented by a black circle • in a shaded square and a wake-up signal for
the synchronization generated by the general is indicated by a horizontal and
vertical arrow.

The algorithms itself is very simple and now we are going to discuss its im-
plementation in terms of a 2-D cellular automaton. The question is: how many
states are required for its realization? Let Q be a set of internal states for the
1-D optimum-time synchronization algorithm which is embedded as a base algo-
rithm. When we implement the algorithm on square arrays based on the scheme
above, we usually prepare a different state set used by the cells on Lh

i and Lv
i ,
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step:0
RGW Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:1
RGW RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:2
RGW WRP RA Q Q Q Q Q

HRP RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:3
RGW WRP RQoS RA Q Q Q Q

HRP RGW RA Q Q Q Q Q

RQoS RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:4
RGW WRP RQeSRQoS RA Q Q Q

HRP RGW WRP RA Q Q Q Q

RQeS HRP RA Q Q Q Q Q

RQoS RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:5
RGW WRPWRG1RQ0ARQoS RA Q Q

HRP RGW WRP RQoS RA Q Q Q

HRG1 HRP RGW RA Q Q Q Q

RQ0ARQoS RA Q Q Q Q Q

RQoS RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:6
RGW WRPWRG0RQ1ARQeSRQoS RA Q

HRP RGW WRP RQeSRQoS RA Q Q

HRG0 HRP RGW WRP RA Q Q Q

RQ1ARQeS HRP RA Q Q Q Q

RQeSRQoS RA Q Q Q Q Q

RQoS RA Q Q Q Q Q Q

RA Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

step:7
RGW WRPWRG1RQ0ARQ1BRQ0ARQoS LGW

HRP RGW WRPWRG1RQ0ARQoS RA Q

HRG1 HRP RGW WRP RQoS RA Q Q

RQ0AHRG1 HRP RGW RA Q Q Q

RQ1BRQ0ARQoS RA Q Q Q Q

RQ0ARQoS RA Q Q Q Q Q

RQoS RA Q Q Q Q Q Q

LGW Q Q Q Q Q Q Q

step:8
RGW WRPWRG0WRP1RQ0BRQ1A WLP LGW

HRP RGW WRPWRG0RQ1ARQeSRQoS LGW

HRG0 HRP RGW WRP RQeSRQoS RA Q

HRP1HRG0 HRP RGW WRP RA Q Q

RQ0BRQ1ARQeS HRP RA Q Q Q

RQ1ARQeSRQoS RA Q Q Q Q

HLP RQoS RA Q Q Q Q Q

LGW LGW Q Q Q Q Q Q

step:9
RGW WRP RQ1CWRP0RQ1B WLG WLP LGW

HRP RGW WRPWRG1RQ0ARQ1B RA LGW

RQ1C HRP RGW WRPWRG1RQ0ARQoS LGW

HRP0HRG1 HRP RGW WRP RQoS RA Q

RQ1BRQ0AHRG1 HRP RGW RA Q Q

HLG RQ1BRQ0ARQoS RA Q Q Q

HLP RA RQoS RA Q Q Q Q

LGW LGW LGW Q Q Q Q Q

step:10
RGW WRP RQ0CWRP1 WLP RQ1C WLP LGW

HRP RGW WRPWRG0WRP1 WLP LQ1A LGW

RQ0C HRP RGW WRPWRG0RQ1A WLP LGW

HRP1HRG0 HRP RGW WRP RQeSRQoS LGW

HLP HRP1HRG0 HRP RGW WRP RA Q

RQ1C HLP RQ1ARQeS HRP RA Q Q

HLP LQ1A HLP RQoS RA Q Q Q

LGW LGW LGW LGW Q Q Q Q

step:11
RGW WRP RQ1C LGW RGW LQ1C WLP LGW

HRP RGW WRP RQ1C LGW RGW LQ1B LGW

RQ1C HRP RGW WRPWRG1WLG WLP LGW

LGW RQ1C HRP RGW WRPWRG1 RA LGW

RGW LGW HRG1 HRP RGW WRP RQoS LGW

LQ1C RGW HLG HRG1 HRP RGW RA Q

HLP LQ1B HLP RA RQoS RA Q Q

LGW LGW LGW LGW LGW Q Q Q

step:12
RGW WRP WLP LGW RGW WRP WLP LGW

HRP RGW WRP WLP LGW RGW WRP LGW

HLP HRP RGW WRP PLW PRW WLP LGW

LGW HLP HRP RGW WRP PLW PRW LGW

RGW LGW PLW HRP RGW WRP WLP LGW

HRP RGW PRW PLW HRP RGW WRP LGW

HLP HRP HLP PRW HLP HRP RA Q

LGW LGW LGW LGW LGW LGW Q Q

step:13
RGW LGW RGW LGW RGW LGW RGW LGW

LGW RGW LGW RGW LGW RGW LGW LGW

RGW LGW RGW LGW RGW LGW RGW LGW

LGW RGW LGW RGW LGW RGW LGW LGW

RGW LGW RGW LGW RGW LGW RGW LGW

LGW RGW LGW RGW LGW RGW LGW LGW

RGW LGW RGW LGW RGW LGW RGW LGW

LGW LGW LGW LGW LGW LGW LGW Q

step:14
F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

Fig. 6. Snapshots for the synchronization processes on a 8 × 8 array
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Table 4. A list of square FSSP algorithms

Implementations # of # of Time Communication Base
states rules complexity model algorithms

Beyer [1969] — — 2n − 2 O(1)-bit —
Shinahr [1974] 17 — 2n − 2 O(1)-bit Balzer [1967]

Umeo, Maeda and 9 1718 2n − 2 O(1)-bit Mazoyer [1987]
Fujiwara [2002]

Umeo and Kubo [2010] 7 787 2n − 2 O(1)-bit Mazoyer [1987]
Gruska, Torre and — — 2n − 2 1-bit Mazoyer [1996]

Parente [2007]
this paper 49 237 2n − 2 1-bit Theorem 4

(this paper)

which is in the upper and lower triangle areas separated by the principal diag-
onal. Thus, 2 || Q || −1 states are usually required for its independent row and
column synchronization operations in order to avoid state mixing. Only a firing
state is shared by the two areas. Shinahr [1974] gave a 17-state implementation
based on Balzer’s eight-state synchronization algorithm in Balzer [1967]. Later,
it has been shown in Umeo, Maeda and Fujiwara [2002] that nine states are suf-
ficient for the optimum-time square synchronization. Recently Umeo and Kubo
[2010] improved the square synchronization algorithm by presenting a seven-
state time-optimum square synchronizer. Note that those implementations are
all for the O(1)-bit communication CAs.

We have implemented the L-shaped algorithm on 2-D CA1−bit. The number of
states and transition rules of the constructed CA1−bit is 49 and 237, respectively.
Figure 6 shows some snapshots for the synchronization processes on an 8 × 8
square array. Due to the space available we omit a complete list of the transition
rule set constructed.

Theorem 7. There exists a 49-state 2-D CA1−bit that can synchronize any n×n
square array in 2n− 2 steps.

In Table 4 we present a list of implementations of the square FSSP algorithms
for cellular automata with O(1)-bit and 1-bit communications.

5 Conclusions

In the present paper, we have proposed several state-efficient implementations of
optimum- and non-optimum-time FSSP algorithms for one- and two-dimensional
CA1−bit. The implementations constructed are the smallest ones in states, known
at present.

Acknowledgements. The authors would like to express their thanks to re-
viewers for useful comments. A part of this work is supported by Grant-in-Aid
for Scientific Research (C) 21500023.
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Abstract. Process mining aims at discovering process models from event logs.
Complex constructs, noise and infrequent behavior are issues that make process
mining a complex problem. A genetic mining algorithm, which applies genetic
operators to search in the space of all possible process models, can successfully
deal with the aforementioned challenges. In this paper, we reduce the computa-
tion time by using a distributed setting. The population is distributed between the
islands of a computer network (e.g. a grid). To further accelerate the method we
use sample-based fitness evaluations, i.e. we evaluate the individuals on a sample
of the event log instead of the entire event log, gradually increasing the sample
size if necessary. Our experiments show that both sampling and distributing the
event log significantly improve the performance. The actual speed-up is highly
dependent of the combination of the population size and sample size.

Keywords: Genetic algorithms, business intelligence, process mining, sampling.

1 Introduction

Process mining has emerged as a discipline focused on the discovery of process models
from event logs. Event logs can be seen as a collection of process executions records,
i.e. traces, each related to a process instance. The process models usually graphically
depict the flow of work using languages as Petri Nets, BPMN, EPCs or state machines.
The discovered process model should be able to reproduce most of the traces from the
event log and “not too many” traces which are not present in the log. Real life case
studies performed for, e.g., Phillips Medical Systems [9] and ASML [13] have shown
that process mining algorithms can offer insight into processes, discover bottlenecks or
errors and assist in improving processes.

Most of the Process Mining Algorithms (PMAs) [2,16] use heuristic approaches to
retrieve the dependencies between activities based on patterns in the logs. However,
these heuristic algorithms fail to capture complex process structures and they are not
robust to noise or infrequent behavior. In [3] Alves de Medeiros proposed a Genetic
Mining Algorithm (GMA) that uses genetic operators to overcome these shortcomings.
The GMA evolves populations of process models towards a process model that ful-
fills the predefined fitness criteria. Fitness criteria quantifies the ability of the process
model to replay all the behaviors observed in the log without allowing additional ones.
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An empirical evaluation [4] shows that the GMA indeed achieves its goal and discovers
better models than other PMAs.

Although GMA prevails against other algorithms in terms of model quality, heuristic-
based algorithms proved to be significantly more time efficient [4]. In [5], we proposed a
coarse grained approach [15] called the Distributed Genetic Miner Algorithm (DGMA)
that improves the GMA time consumption by dividing the population into subpopula-
tions distributed over grid nodes (called islands) and exchanging genetic material. The
experimental results show that the DGMA outperforms always the GMA.

In this paper, we enhance our method by using sample-based fitness evaluation. The
idea is that each subpopulation evolves guided by a random sample of traces from the
event log. We create the initial subpopulation using a smart and fast heuristics based
on the whole log and then we use a random sample of the log for fitness computa-
tions until the desired fitness is achieved on this sample. The use of a larger sample
increases the chance that this sample is representative for the whole log, i.e. we achieve
the desired fitness on the whole log as well. However, a larger sample size increases the
fitness computations time and thus reduces the time advantage of sampling. To balance
between the two objectives (mining quality and time efficiency) each island uses an iter-
ative sample-based algorithm (denoted SGMA) that adds a new part to the sample until
the discovered process model has the required quality for the entire log. After increas-
ing the sample, we use the already mined population of process models as initialization.
In order to increase the chance that the initial sample is representative enough for the
whole log, we use different initial samples for each of the subpopulations.

We empirically assess the convergence of several event logs with different charac-
teristics. We analyze the combined effect of the sample size and subpopulation size.
Our results demonstrate that a proper balance between the subpopulation size and the
sample size needs to be found in order to obtain the best speed-ups.

Related Work. Sampling is a common practice in business intelligence domains such
as data mining and knowledge discovery. Kivinen and Manilla [12] use small amount
of data to discover rules efficiently and with reasonable accuracy. Tan [14] discusses
the challenges in using sampling such as choosing the sample size and also proposes to
increase the sample size progressively.

Reducing the fitness computation time is one of the main topics in genetic algorithms
literature such as: approximating the fitness function by a meta-model or a surrogate
[10,11], replacing the problem with a similar one that is easier to solve [11], or, in-
heriting the fitness values [7]. The techniques used in [8] are close to the one we use,
although their motivation and goals are different: they analyze the effect of sampling
when the fitness function is noisy. Fitzpatrick and Grefenstette [8] show that genetic
algorithms create “more efficient search results from less accurate evaluations”.

The paper is organized as follows: Section 2 introduces the process mining as a tech-
niques to extract process models form event logs; Section 3 presents the distributed
solution and its implementation. We analyze the performance of our solution for dif-
ferent parameters combinations in Section 4. We give conclusions and describe future
work in Section 5.
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Table 1. A simplified event log

Process
instance id Trace

1 A B C
2 A D B G C
3 A B E F C
4 A D B G E F C
5 A B E F E F B E F C
6 A D B G E F B E F E F C

Table 2. Causal Matrix

Activity Input set Output set
A - B ∨ D
B A ∨ D ∨ F C ∨ E ∨ G
C B ∨ F ∨ G -
D A B ∧ G
E B ∨ G ∨ F F
F E B ∨ C ∨ E
G B ∧ D C ∨ E

Fig. 1. Process model representing the behavior in the event log from Table 1

2 Process Mining and Event Logs Characteristics

Process mining aims to discover process models from event logs, thus recording (parts
of) the actual behavior. An event log describes previous executions of a process as
sequences of events where each event refers to some activity. Table 1 presents a simpli-
fied event log inspired by a real-world process: a document issue process for a Dutch
governmental organization. This log contains information about six process instances
(individual runs of a process). One can notice that each process instance is uniquely
identified and has an associated trace, i.e., the executed sequence of activities. The log
shows that seven different activities appear in the log: A, B, C, D, E, F, and G. Each
process instance starts with the execution of A, ends with the execution of C and con-
tains B. Process instances with id 2, 4 and 6 also contain D and G suggesting that there
is a relation between their occurrences. E, F and G appear always after B and D occurs
prior to B. Moreover, the occurrence of F is always preceded by the occurrence of E.
Instances 5 and 6 show that loops are possible in the process.

Different traces of an event log might contain information about certain dependencies
between activities which can be deducted from other traces. In Table 1, trace 6 does not
add any information about the process structure to traces 1-5. For example, both loops
BEF and EF in trace 6 can be identified from trace 5. Note that there are multiple
models that can reproduce the same event log. The quality of a model is given by its
ability to balance between underfitting and overfitting. An underfitting model allows for
too much behavior while an overfitting model does not generalize enough.
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Figure 1 shows a process model with fitness 0.98 for the example event log from
Table 1. The process model is a graph model that expresses the dependencies between
activities. Each node in the graph represents an activity. Each activity has an input
and output set. Causal matrices [3] are used to represent the dependencies between
activities in a compact form. The causal matrix for the process model in Figure 1 is
shown in Table 2. Since A is the start activity, its input condition is empty and A is
enabled. After the execution of A the output condition {B ∨ D} is activated. Further on,
B is enabled because the input condition of B requires that at least one of the activities
A, D or F is activated before B. The input condition of D requires only A to be activated
before D. If we assume that D is executed, we observe that B is automatically disabled
because the output condition of A is not longer active. After D is executed, B is enabled
because the output condition of D, {B}, is activated. For more details on the semantics
of causal matrices we refer to [3,4].

The computational complexity of a particular PMA depends on the log characteris-
tics. The following parameters give the basic characteristics of a log: the size of a log
(the sum of the lengths of all traces); the number of traces (influencing the confidence
in the obtained process models); and the number of different activities (defining the
search space for the model). In our example, the event log size is 42, the number of
traces is 6 and the number of different activities is 7.

Many PMAs, α-algorithm [2] are linear in the size of the log. However, such algo-
rithms do not perform well on real-life data [9,13] and therefore more advanced PMAs
are needed. For example, the α-algorithm does not capture the dependency between the
activities D and G from the example event log which results in underfitting the event
log. GMA [3,4] applies genetic operators on a population of process models in order
to converge to models that represent the behavior in the event log more precisely. The
main advantages of GMA are the ability to discover non-trivial process structures and
its robustness to noise as demonstrated by [4]. Its main drawback is the time consump-
tion, due to the two factors: 1) the time required to compute the fitness for an individual,
and 2) the large number of fitness evaluations needed.

3 Distributed Sample-Based Genetic Mining Algorithm (DSGMA)

In this section, we present our distributed sample based approach for GMA. The distri-
bution uses a coarse-grained approach. In the coarse-grained approach the population
is split into subpopulations. Each subpopulation resides on an island and the coordina-
tor orchestrates the islands.. We first present the island algorithm and then the distribu-
tion architecture. Each subpopulation runs independently and individuals are exchanged
among subpopulations via migration.

3.1 Island Sample Based Genetic Process Mining Algorithm (SGMA)

In this subsection we show how sampling can accelerate GMA on one island. The
island Sample-based Genetic Mining Algorithm (SGMA) is based on [3,4]. The algo-
rithm improves the overall execution time of the existing GMA by incrementally learn-
ing from samples of traces from the event log. Algorithm 1 presents the main SGMA
steps. SGMA uses the same genetic operators and fitness computation as GMA [3,4].
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(a) Results after the first iteration. Fitness on the sample is 0.98; fit-
ness on the log is 0.77

(b) Results after the second iteration. Fitness on the sample is 0.98;
fitness on the log is 0.87

Fig. 2. Process models for the example event log (Table 1)

The main difference is in handling input data. The algorithm starts with PartitionTh-
eLog(Log, Log1, ... , Logn) that divides the Log into n random samples of “equal” size.
At each iteration m, genetic operators are applied using a sample from the event log cor-
responding to the union of the first m samples. The iteration stops when StopCondition,
i.e. reaching a given quality of the population, is fulfilled. Note that the StopCondition
of the internal while loop is evaluated on the SampleLog and not on the entire Log. The
algorithm stops when the same StopCondition is satisfied for the entire event log or is
activated by the coordinator.

The SGMA individuals are graph models, such as the one presented in Figure 1. The
individuals are encoded as a set of activities and their corresponding input and output
sets, i.e., a causal matrix. Note that it is trivial to construct the graph representation
from Figure 1 based on the compact representation from Table 2. Each process model
contains all the activities in the log; hence, the search space directly depends on the
number of activities in the log.

BuildInitialPopulation(Log) generates individuals from the search space using an
heuristic approach. This heuristic uses the information in the log to determine the prob-
ability that two activities have a dependency relation between them: the more often an
activity A is directly followed by an activity B, the higher the probability is that the
individuals are built with a dependency between A and B.

ComputeFitness(P, (Sample)Log) assesses each individual against the (Sample)Log.
Fitness values reflect how well each individual represents the behavior in the log with
respect to completeness, measuring the ability of the individual to replay the traces from
the log, and preciseness, quantifiying the degree of underfitting the log. The complete-
ness of an individual is computed by parsing the log traces. When an activity of a trace
cannot be replayed, i.e. the input condition is not satisfied, a penalty is given. In order
to continue, the algorithm assumes that the activity was executed and it tries to parse
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Input: Log, StopCondition, n // number of samples
Output: ProcessModel
PartitionTheLog(Log, Log1, ... , Logn);
P = BuildInitialPopulation(Log);
SampleLog = {}; m = 1;
repeat

SampleLog = SampleLog ∪ Logm;
Fitness = ComputeFitness(P, SampleLog);
while StopCondition(Fitness)==false do

P = ComputeNextPopulation(P,Fitness);
Fitness = ComputeFitness(P, SampleLog);

end
m = m + 1;
Fitness = ComputeFitness(P, Log);

until StopCondition(Fitness)==true ;
ProcessModel = bestIndividual(P);

Algorithm 1. Island algorithm - SGMA

the next activity from the trace. Additional penalties are given when the input/output
conditions enable an activity incorrectly, e.g. if in the input condition, activities A and
B are in an AND relation and in the trace only B is executed. The fitness quantifies all
the penalties and compares them with the number of correctly parsed activities. The fit-
ness preciseness penalizes the individuals that allow more behavior than their siblings.
The exact formula is out of the scope of this paper but can be found in [3,4].

ComputeNextPopulation(P, Fitness) first checks if the island received new individ-
uals. New individuals are integrated into the population according with the migration
policy. We present the possible migration policies in Subsection 3.2. Then, the genetic
operators (selection, mutation and crossover) are applied to generate a new population.
The selection operator ensures that the best individuals are carried forward from the
current population to the next one. The mutation modifies the input/output conditions
of a randomly selected activity by insertion, removal or exchanging the AND/OR rela-
tions of the activities. The crossover exchanges the input/output conditions of a selected
activity between two individuals.

The convergence of the SGMA algorithm is ensured by the fact that at each iteration
a larger sample is taken together with the convergence of the traditional GMA. If new
activities or dependencies appear in the newly added sample, they are discovered by
exploring the space using the genetic operators. Basically, the algorithm is learning at
each iteration by increasing its knowledge. Figure 2 shows one variant of intermediary
process models when SGMA is applied to the example event log (Table 1). We consider
the log divided in three subsets: {1, 3}, {2, 4}, and {5, 6}. Figure 2a is based on {1, 3} and
does not contain D and G connected, which does not harm the fitness value since the
activities do not appear in the first sample. At the second iteration, when using the first
and the second samples, D and G are integrated into the process model but the loops are
not present. After the last iteration we obtain the process model presented in Figure 1.
We observe that the algorithm converges by adding new dependencies to the previously
obtained model.
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The SGMA exploits the redundancy present in most of the event logs. By redun-
dancy, we understand that many traces contain information which may be derived from
other traces. For the event log in Table 1, the same process model is obtained if the log
would only contain traces 1-5. Sources of redundancy are independent choices, loops,
various interleavings, etc. For example, there is no need for having all the possible inter-
leavings in order to discover the concurrency. The redundancy of an event log becomes
visible when comparing the sample size that ensures SGMA convergence after one it-
eration to the log number of traces. Obviously, the more redundant the log is, the more
efficient SGMA is in comparison with GMA.

The efficiency of SGMA is also influenced by other factors, such as the population
size per island and the complexity of the log. A known result in genetic algorithms
(GA) [15] is that a GA is more efficient if the population contains more diversity. In the
case of SGMA, a problem can be the specialization of the overall population towards
the sample when the sample contains mostly atypical traces for the event log, or is too
biased towards some subset of traces. In this case, the SGMA will spend a significant
amount of time to discover features of the traces added in the following iterations.
Lower population sizes have more chances to specialize towards the sample and thus
making SGMA less efficient.

Experiments performed in [5] showed that for every log there exists a threshold for
the mean number of fitness computations (MTFC) that have to be performed such that
(D)GMA converges. MTFC depends on the complexity of the event log from a mining
point of view, i.e. how many complex patterns [1], e.g., loops and parallel branches, the
process model generating the log contains. The more difficult a log is, the higher MTFC
is. Since SGMA reduces the fitness computation time by using a sample of traces from
the event log, the more difficult a log is, the more efficient SGMA is.

3.2 Distribution Architecture

Our DSGMA distributes the work using the coarse-grained approach [6,15]. The archi-
tecture is composed of one coordinator and a number of islands. Figure 3 presents the
overall architecture.

The coordinator initializes the islands by setting the initial parameters and to orches-
trate the migration of individuals between the islands. In the initialization phase the
coordinator sends the log and the parameter values to each island. The islands run SG-
MAs using the same parameters (i.e. crossover rate, mutation rate and elitism rate). In
order to increase the chance that the initial sample is representative enough for the entire
log, we initialize each island with a different initial sample. The islands send informa-
tion regarding their current state, such as best and average fitness, to the coordinator
that uses this information to coordinate the migration or to stop the algorithm.

Note that the islands do not synchronize on the receiving/sending of the individu-
als. Islands may receive individuals at any moment of time and they integrate them in
the current population according to the migration policy. The migration policy is de-
fined by the following parameters: Integration Policy (IP) (how subpopulations inte-
grate the received individuals), Selection Policy (SP) (type of individuals sent when the
migration takes place), Migration Interval (MI) (number of generations between con-
secutive migrations), and Migration Size (MS) (percentage of the population sent in



Distributed Genetic Process Mining Using Sampling 231

Fig. 3. DSGMA Architecture

every migration step). Based on our previous results [5] obtained for the distributed
genetic miner and other distributed genetic algorithm results [6,15] we selected the fol-
lowing parameter settings for the migration policy: IP is “replace worst individuals with
the migrants”; SP is to send the best individuals; MI equals 10 generations, and MS
equals 10% of the subpopulation size.

The distribution parameters are the Number of Islands (NI) (subpopulation) and the
Population Size (PS) per island. In [5], we show that the best speed-up of DGMA is
obtained for PS equal to 10. However, by using only a sample to guide the genetic
operators we obtain better speed-ups for higher PSs. The reason is that if the initial
sample is not representative, the following iteration needs diversity in the population in
order to converge. If this is not the case the diversity needs to be created by mutation,
and hence the DSGMA will result in very long execution times. In the next section, we
analyze the combined effect of PS and the Initial Sample Size (ISS).

The SGMA and the DSGMA are implemented as part of the ProM framework.
The ProM framework (www.processmining.org) is an open source Java-based plugable
framework that has shown to be highly useful on many real-life case studies. The next
sub-section details this implementation.

3.3 Implementation

The GMA and the DGM are implemented as part of the ProM framework. The ProM
framework1 is an open source Java-based plugable framework that has shown to be
highly useful on many real-life case studies. We implemented the DGM as a collection
of plug-ins:

1. The IterativeGeneticMiner plugin that implements the iGMA.

1 See www.processmining.org for details and for downloading the software.
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Fig. 4. Islands progress visualization in ProM

2. The DistributedIterativeGeneticMinerIsland plugin implements the island algorithm.
The plugin communicates with the master and other islands via a TCP/IP commu-
nication. The GeneticMiner plugin is called for the evolution steps of the subpop-
ulation.

3. The DistributedIterativeGeneticMinerMaster plugin takes as input an log, a list of
IP addresses and the values of the parameters. The master triggers via a TCP/IP
communication the start of island plugins on remote ProM frameworks hosted at
the given IP addresses. Each island is started with the same parameter settings. The
parameters are split into two sets: iGMA parameters and migration parameters. The
plugin supports the definition of different migration policies and communication
strategies.

We implement the communication between different ProM frameworks using sockets2

technology. Each object (e.g. logs, individuals) is first translated to an XML based lan-
guage and then sent using TCP/IP. The migration of individuals is made peer to peer
between islands, the master just triggering the exchange. The sending/receiving of indi-
viduals is done asynchronously in different threads, i.e. in parallel with the main GMA.
The receiving of individuals is acknowledged via shared objects between the threads.

The DistributedGeneticMinerMaster plugin enables the user to monitor the progress
of each island and to interact by triggering the migration or stop the evolution. Figure
4 shows a snapshot of an island progress window. The vertical lines in the graph mark
the migration moments.

2 http://java.sun.com/docs/books/tutorial/networking/sockets/
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Table 3. Logs settings

Name Number of activities Number of traces Size
Log A 24 229 3994
Log B 25 300 9054
Log Municipality 18 1394 11467

4 Experimental Results

In this section we evaluate the effect of the population size and sample size on the
execution time of the DSGMA for three different logs: A, B and Heusden. The first
two logs are generated by students as part of their assignment for the process mining
course. The third log is a real life log for the process of handling objections against the
real-estate property valuation at the Municipality of Heusden.

Table 3 presents the number of activities, number of traces and size of the logs. Logs
A and Heusden have rather a simple structure, which makes them “easy” to mine. Log
B has a more complex structure, which makes it a difficult mine. The challenge of log
Heusden is in the large number of traces. In the fitness computation, each individual is
assessed against all the traces in the log, which implies longer fitness computation time
per individual for Heusden.

We use a testbed with the following configurations: eight Intel(R) Xeon processors
running at 2.66 GHz and using 16 Gb RAM. We use eight islands each running on of
one of the eight processors. Since islands are identical from the performance point of
view, we assess the results in terms of the Mean Execution Time (MET) needed to find
an individual with a fitness higher than 0.9. Note that the highest possible fitness value
is 1. The execution time is averaged over 20 independent mining executions. For the
visualization and analysis of results we use SPSS (http://www.spss.com).

In [5], we showed that by using DGMA, a coarse grained distribution of the GMA,
the execution time is reduced significantly. For eight islands, DGMA mines logs A and
Heusden four times faster than GMA and log B is mined almost eight time faster than
GMA. In this work, we compare DSGMA results with DGMA, so we investigate the
added value of sampling.

Our experiments focus on the influence of the the Population Size per island (PS)
and the Initial Sample Size (ISS). Figure 5 shows the results obtained for the three logs.
Note that we increase the ISS until the algorithm terminates after one iteration for all of
the 20 repetitions. It is easy to observe that DSGMA is more efficient than DGMA.

In Subsection 3.1 we identified three factors that influences the efficiency of (D)-
SGMA: 1) the diversity in the population; 2) the degree of redundancy in the event log,
and 3) the difficulty of the event log.

In Figure 5, we observe that the algorithm converges, even with very small ISS (less
than 10 traces in the initial sample) due to its iterative nature. For PS = 10 the MET
is higher, especially for small ISS, than for PS > 20 because the population looses its
diversity and specializes towards the initial sample. When the ISS is large, the required
number of iterations decreases, so does the risk of a biased specialization towards the
sample, and small PS (e.g. PS = 10 for log Heusden) gives good results. Note that the
combination of low ISS (i.e., less than 10 traces) and PS = 40 for logs A and B and
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(a) Log A (b) Log B

(c) Log Heusden

Fig. 5. Execution Time for different Population Sizes and different Initial Sample Sizes
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Table 4. Comparison of DGMA and DSGMA using the three logs. The last column shows the
speed-up of DSGMA compared to DGMA.

Name Type PS ISS MUNT MFC MET Speed-up

A
DGMA 20 229 229 1002 194

4.4
DSGMA 40 6 12.6 2184 44

B
DGMA 20 300 300 14372 8467

20.9
DSGMA 40 8 18 19732 405

Municipality
DGMA 10 1394 1394 808 731

8.5
DSGMA 20 9 36.9 3096 86

PS = 20 for log Heusden results in the best MET. We can conclude that DSGMA pro-
duces better speed-ups for small ISS and “medium” PS.

The last two factors are further emphasized in Table 4 that presents the results in
terms of MET, Mean Used Number of Traces (MUNT) and Mean Number of Fitness
Computations (MFC) for the configurations creating the best METs for DGMA and
DSGMA. We observe that the difficulty of an event log has more influence than the log
redundancy: log B has the highest speed-up due to the higher number of MFC. When
the logs complexities are comparable, such as for logs A and Heusden, the degree of
redundancy influences the speed-up difference: DSGMA for log Heusden requires only
2.8% of the traces in order to converge and thus has a higher speed-up than DSGMA
for log A that requires 5.5% of the log traces.

Note that MNT for log A is 10% of the log size and the speed-up is 4, for log B MNT
is 20% and speed-up is 20, and for log Heusden MNT is 5% and the speed-up is 9. The
reason that log B has a higher speed-up than the other two despite of a higher MNT is
that DSGMA for log B converges in more than 400 generations and DSGMAs for logs
A and Heusden converge in less than 40 generations. More generations are required for
DSGMA to converge then more fitness fitness computations are performed and thus,
higher speed-ups are achieved.

The speed-up, computed as the ratio between the minimum MET for DGM and the
minimum MET for DSGMA is: 4 for log A, 20 for log B and 9 for log Heusden. The low
value for log A derives from its fast convergence and the log redundancy, i.e. less than
10% of the traces are necessary for the initial sample. Even if log Heusden converges
almost as fast as log A, we obtain a better speed-up because less than 5% of the log is
needed to ensure the convergence. In the case of log B, MET of DSGMA is 20 times
faster than DGM due to its slow convergence (in more than 400 generations) despite
the higher necessary number of traces needed for the convergence, i.e. more than 20%
from the log size.

5 Conclusions and Future Work

Genetic process mining algorithms succeed to find better models at the price of longer
computation times. In this paper, we proposed a a sample-based distributed algorithm
for GMA that significantly improves its execution time. Moreover, we conducted
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empirical evaluations of the effect of the population size and initial sample size on the
performance of the algorithm.

The experimental results showed that DSGMA significantly speeds up the compu-
tation. The algorithm performs better for difficult process mining tasks such as log B.
Our experiments demonstrate that best speed-ups are obtained when the initial sample
is rather small (less than 10 traces) because the algorithm learns an initial approxima-
tion of the model fast. The tuning of this initial model is afterwards done by learning
from the additional traces. The only concern is whether the population available at the
start of a new iteration contains enough diversity to learn fast enough from the traces
added later. A “medium” PS (20 for log Heusden and 40 for logs A and B) reveals to
be optimum based on the experiments performed.

Since representativity of the samples highly influences the speed-up, we are currently
investigating “smart” sampling strategies that will ensure a given degree of representa-
tivity for the initial sample.
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6. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et
Systems Repartis 10(2), 141–171 (1998)

7. Chen, J.-H., Goldberg, D.E., Ho, S.-Y., Sastry, K.: Fitness inheritance in multi-objective op-
timization. In: GECCO, pp. 319–326 (2002)

8. Fitzpatrick, J.M., Grefenstette, J.J.: Genetic algorithms in noisy environments. Machine
Learning 3, 101–120 (1988)

9. Günther, C.W., Rozinat, A., van der Aalst, W., van Uden, K.: Monitoring deployed applica-
tion usage with process mining. Technical report, BPM Center Report BPM-08- 11, BPM-
center.org (2008)

10. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft
Computing 9(1), 3–12 (2005)

11. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Trans. Evolutionary Computation 9(3), 303–317 (2005)

12. Kivinen, J., Mannila, H.: The power of sampling in knowledge discovery. In: PODS 1994:
Proceedings of the thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 77–85. ACM, New York (1994)



Distributed Genetic Process Mining Using Sampling 237

13. Rozinat, A., de Jong, I.S.M., Günther, C.W., van der Aalst, W.M.P.: Process mining applied to
the test process of wafer scanners in asml. IEEE Tran. on Syst., Man, and Cybernetics 39(4),
474–479 (2009)

14. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2005)

15. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space
and Time. Springer-Verlag New York, Inc., Secaucus (2005)

16. Weijters, A.J.M.M., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)



FaDe: RESTful Service for Failure Detection in
SOA Environment�

Jerzy Brzeziński, Dariusz Dwornikowski, and Jacek Kobusiński

Institute of Computing Science,
Poznań University of Technology, Poland

{jbrzezinski,ddwornikowski,jkobusinski}@cs.put.poznan.pl

Abstract. FaDe service is a novel proposal of failure detection service
based on REST paradigm for SOA environment. It is fully distributed
service. Internal communication between FaDe nodes can be realized
using two communication protocols (gossip, Kademlia). It makes the
nodes cooperation efficient and provide good level of scalability. The
failure monitoring is based on accrual failure detector which provides
flexibility in the context of different client expectations considering the
speed and accuracy of detections.
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1 Introduction

The use of distributed systems as a computing platform constitutes a very
promising research and business area due to their availability, economic as-
pects and scalability. The intense development of Grids, P2P networks, cluster
and high-speed network topologies gave the possibility to allocate an enormous
amount of resources to distributed applications at a reasonably low cost. Their
level of parallelism can improve the performance of existing applications and
raise the processing power of distributed systems to a new higher level. Unfortu-
nately, those systems are failure prone and the probability that a failure occurs
during computations is higher than in traditional systems.

Therefore, to overcome the problem one should construct a fault tolerant
mechanism to detect unavoidable failures and makes their effects transparent to
a user. Failure detection mechanism is one of the key component needed to pro-
vide fault tolerance. Chandra and Toueg presented a concept of failure detectors
[1], as an abstract mechanism that supports asynchronous system model. A fail-
ure detector that makes no mistakes and eventually suspects all failed processes
is called perfect failure detector. However, this requirements are very difficult to
be fulfilled in practice due to asynchronous nature of real systems. So, one can
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weaken safety (completeness) or liveness (accuracy) property to construct unre-
liable failure detector, which can be used to detect failures in an asynchronous
system [10].

Service-oriented architecture software is an increasingly popular model of soft-
ware [3] that provides separation of some independent components (services),
which can cooperate with each other through well defined interfaces. Scalable
Web service FaDe, which allows a very flexible failure detection of individual
nodes, services running on them, or the unavailability of resources provided by
these services is presented below. The proposed solution takes into account var-
ious aspects, both those concerning the environment in which failure detection
will be performed, as well as those relating to client expectations relative to this
type of service.

The remaining part of the paper is structured in the following way. In Section 2
general concept of fade service is presented. Section 3 describes the architecture
of the FaDe service node. In Section 4 main aspects of failure detection module
are discussed. Brief description of communication mechanism used by the service
is presented in Section 5. Related work is described in Section 6. Finally, Section
7 brings concluding remarks and summarizes the paper.

2 FADE General Concept

An independent service that provides functionality involving failures detection
in a distributed environment can be used by different clients without having to
re-implement it in every single individual application. Such an approach would
also allows more efficient use of available resources like network bandwidth or
power computing.

The independent service must assume the existence of clients with varying
preferences for speed and accuracy of failure detection. This means that a simple
binary response (crashed/correct) will not always be adequate to meet their
demands. In this context, a concept in which the mechanism for monitoring
services will be based on incremental failure detector proposed in [2] was adopted.
It gives the possibility of transferring responsibility for the interpretation of the
result to the client, which, depending on its individual preferences to decide by
itself whether the answer returned by the service means a failure or not.

Another important assumption is the one concerning the ease of setup and
adjustment the service to the environment in which it operate. WAN environ-
ment characterized by high dynamics and variability will have an impact on
the service efficiency. Therefore, the service itself should be constructed in such
a manner that its configuration and tuning to the existing conditions will be
relatively easy and automatic.

In contrast to the services running on the local network, which by definition
are limited to a certain area, distributed services dedicated to wide area network
must take into account the possibility of their expansion over a wide geographical
area. In this context, scalability is a key element that must be considered.

As stated in the introduction, a distributed environment is prone to various
types of failures. If a failure detection service operating in such an environment is
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Fig. 1. FaDe connection topology

to be element that provide reliability for the application , it should not introduce
additional risks associated with its susceptibility to its own failure. Mechanisms
that can reduce this risk are redundancy of key components and their decentral-
ization. Responsibility dispersal of monitoring the individual components will
minimize the effect of so-called “single point of failure”.

Figure 1 presents a FaDe service connection topology. In this case, the FaDe
service consists of four nodes. They are connected and communicate with each
other in order to exchange information about connection topology and monitored
service states. The FaDe nodes monitor three services, both WS-* compliant
and RESTful [4]. It is transparent to the client, which node monitors particular
service. Moreover one can distinguish different type of clients standard and call-
back which use FaDe service in different manner. In general, clients can inquire
FaDe service about the status of the monitored services. Depending on the type
of request, appropriate action is performed.

3 FADE Node Architecture

The modular architecture of FaDe node allows easy modification of every single
component, or even the substitution to a new one that provides compatible
interface.

The main component task is the integration and interpretation of data sup-
plied by other components. One of the main action performed by this component
is interpretation of monitoring results and client request. It is also responsible
for access to resources. The monitoring component is directly responsible for
monitoring the services. It works by exchanging messages with the these ser-
vices in a manner specified in the configuration with the specified frequency.
Based on the results of this message exchange the state of the monitored ser-
vices can by determined. Internal communication component is the module that
is responsible for communication with other FaDe nodes that form a distributed
failure detector. Its purpose is to exchange information that refer to both the
state of monitored services and internal configuration of FaDe service. Client
interaction component is the one that provides the external interfaces compliant
to WS-* standards and REST paradigm. Despite the fact that the FaDe ser-
vice is dedicated to monitoring RESTful Web services, it also allows to monitor
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services built in accordance with the WS-* standards that use SOAP protocol.
Moreover, it provides SOAP compliant interface. Finally, the configuration com-
ponent manages the service setup process. It implements mechanism that can
accept various source of configuration data: command line, file, remote call, and
setup the service node accordingly.

4 Failure Monitoring

A widely used method to perform failure detection is a heartbeat technique.
This method is based on periodical probing other nodes in order to determine
their status or signaling own status to them. This popular technique is based on
the assumption about the maximum delivery time and uses timeouts to decide
which node should be suspected as the crashed one. Depending on the way the
exchange of messages is initialized one can distinguish two types of heartbeating:
the monitored object continuously advertises its state or the failure detector
asks object about its state. The latter approach allows a better control of the
monitoring and also is more appropriate in the case of a failure detection service,
which should be an active part in the monitoring process.

Failure Detector Mechanism. A typical binary model of failure detector response
has serious limitation when considering failure detection as a generic service.
Those restrictions come from the fact that there are different expectations of
detection time and accuracy. Some user applications require aggressive detection
even at accuracy cost, while others are interested in a more conservative detection
with low level of false suspicions instead of fast but inaccurate decisions. By using
binary response generated by a failure detection service, it is generally impossible
to fulfill these requirements. It is because the timeout threshold that marks the
line between the correct and crashed process should be different. This problem of
contradictory requirements can be solved by using accrual failure detector [2]. It
assumes delegation of the decision about object crash to the end user application.
The FaDe provides only non-negative real value representing current suspicion
level that should be further interpreted by the application. Since the detection
quality undertaken using this mechanism is dependent on the characteristics of
the network environment in which the monitoring process is being implemented,
FaDe service also offers a wide range of optional parameters, which allow to
adjust this process.

Interactions with Clients and Services. FaDe service offers three different meth-
ods to obtain information about the state of monitored services: standard, call-
back and ad-hoc query. Service client chooses one of them according to its own
expectations and preferences. These methods complement each other, creating
a complete and consistent interface. Standard query is a basic method for ob-
taining information from the FaDe service. It assumes that a client orders some
service monitoring. Since then, the service is continuously monitored by FaDe
and at any time, any client may request information about the state of this ser-
vice by sending standard query to any FaDe node. Continuous polling FaDe
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service about the status of monitored service is not always the best solution. Of-
ten, clients require only information about state changes. Such a scenario can be
realized through a callback queries. Client registers callback request and depicts
event it is interested in. If such an event takes place, the client is informed by
the FaDe service. In some situations, the client is only interested in one-time
information on a service state as soon as possible. For this purpose, a mechanism
of ad-hoc queries has been made available. These queries are handled by FaDe
in a different manner than the other two described earlier. Verification of the
service availability is carried out in a simplified manner, consisting in sending a
single message monitoring.

5 Internal Communication

It is sufficient to run only one FaDe node to make the service fully available
for clients. However, the full potential of the service is revealed only in the case
of multiple cooperating nodes. This means that there must be efficient and reli-
able mechanism for exchanging information between nodes. It should take into
account the characteristics of the runtime environment: local and wide area net-
works. Thus, the service provides two alternative communication modules. The
first one uses a probabilistic approach and is based on the idea of epidemic proto-
cols [5]. The second one is an adaptation of the Kademlia protocol [8] used in P2P
networks. FaDe service administrator can choose one of them depending on the
characteristics of the network, its own preferences and available resources. Both
modules use randomized communication pattern which increase fault tolerance
to broken links and network failures. The choice of the internal communication
protocol is transparent to the service client.

6 Related Work

However FaDe is the first proposal of RESTful failure detection service, there are
frameworks for failure detection in SOA environment that uses SOAP protocol.
FT-SOAP [7] and FAWS [6] are the solutions that consist of a group of replica
services that are managed by external components. FTWeb [11] has components
that are responsible for calling concurrently all the replicas of the service and an-
alyzing the responses processed before returning them to the client. Thema [9] is
an example of framework that can tolerate Byzantine faults. Finally, Lightweight
Fault Tolerance Framework for Web Services [12] achieve fault tolerance through
consensus-based replication algorithm.

7 Conclusion

In conclusion, presented FaDe service allows the detection of failures in a dis-
tributed service-oriented environment. Thanks to compliance with the REST
architectural style, the service is lightweight and use available network resources
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sparingly. Due to resource-oriented approach, its interface is simple, clear and
allows easy integration with other services. The ability to accept SOAP requests
as well as the ability to monitor not only RESTful services makes the FaDe ser-
vice a very versatile proposal. By using mechanism based on the accrual failure
detector concept service provides flexibility in the context of client expectations
related to the accuracy and time of failure detection.
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Abstract. Heterogeneous environment of service-oriented computing
turns to be very error-prone, due to the loose-coupling and a great num-
ber of independent components that are susceptible to failures. There-
fore, we propose the ReServE service, which improves the reliability of
the SOA-based systems and applications. The proposed service ensures
that after a failure occurrence, the state of a business process is transpar-
ently recovered, and it is consistently perceived by the business process
participants: clients and web services.
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1 Introduction

Nowadays, one of the major paradigms of the large scale distributed processing is
service-oriented computing (SOA). According to the SOA reference model [13],
in the service-oriented systems the applications are composed of loosely coupled,
autonomous web services. Each service provides a well-defined, standardized
interface that specifies how to use the service, and hides the details of the service
implementation from the clients. Moreover, such a defined interface enables the
cooperation among services, regardless of the diversity of the technology used,
the geographical location and the organizational domains. By composing (also
dynamically) the appropriate set of selected services, any required task is fulfilled,
and a high degree of flexibility in the design of the SOA systems is achieved.

On the other hand, systems built according to the SOA paradigm inherit all
the challenges associated with the construction of the more general distributed
systems. In particular, the SOA systems are susceptible to faults, which are
unavoidable in any large scale, distributed system (notably when it consists of
many independent interacting components). Thus, providing the necessary level
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of reliability of the SOA systems, which is maintained even in the case of failure
of any system components, is needed.

There are many solutions of fault tolerance problem in general distributed
systems [5,10]. Paradoxically, the features that determined the SOA attractive-
ness, such as a loose coupling, or high autonomy of the components – make
direct usage of the known mechanisms difficult. For example, the classical so-
lutions using the mechanisms of synchronous and asynchronous checkpointing
[5] require either to control when the checkpoints are taken, or the appropriate
choice of the checkpoint used during the process recovery. In the case of the
SOA systems such solutions cannot be applied, because of the autonomy of the
services. In addition, since every service invocation may result in irrevocable
changes, it is necessary to apply so-called output-commit protocols [5], in which
the pessimistic approach is used, and checkpoints are taken every time when the
external interaction is performed.

Consequently, due to the specific characteristics of the SOA systems, the ex-
isting solutions providing fault-tolerance must be modified, and specially tailored
for a service-oriented environments. Therefore, in this paper ReServE — the
Reliability Service Environment, increasing the reliability of the SOA systems
is presented. The proposed service, developed within the IT-SOA project [7],
ensures that in the case of failure of one or more system components (i.e., web
services or their clients), a coherent state of distributed processing is recovered.
The ReServE service focuses on seeking automated mechanisms that neither
require the user intervention in the case of failures, nor the knowledge of services’
semantics. The proposed service provides also external support for services that
do not have any mechanisms to ensure fault tolerance. While the ReServE ser-
vice can be used in any SOA environment, it is particularly well-suited for the
processing which does not have the transactional character, and for the applica-
tions that do not use the business process engines.

The rest of the paper is structured as follows: related work on fault tolerance
in SOA systems is discussed in Section 2. Section 3 presents the system model
and basic definitions. The architecture of the proposed ReServE service and its
implementation details are described in Section 4. Section 5 presents the results
of the simulation experiments. Finally, Section 6 concludes the paper.

2 Related Work

To improve reliability of the SOA-based systems, some solutions have been pro-
posed [4,9]. A good example is the transaction processing. In the SOA systems it
exists in different forms and requires different levels of isolation and atomicity [1].
In the transaction processing it is indispensable to have the possibility of rolling
back the effects of the processing, in the case of failures of some performed oper-
ations. In such situations, the compensation of operations, realized in the SOA
as the invocation of compensation services, is commonly used. A limitation of
this approach is the necessity of providing all compensation services in advance,
and the proper integration of the compensation invocations into processing, to
ensure that the intended purpose of the rollback has been actually achieved.
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Compensation mechanism can be also employed when transactions are rolled
back for reasons not related to the failures of the system components (e.g. in
the case of failures at the business logic level). Since the transactional approach
[3,11] is burdened with high costs of maintenance transactions’ properties, its
use (and compensation) is not viable in applications that only require reliability.

Mechanisms improving reliability are to some extent implemented by many
business processes engines (e.g. BPEL engines [8]). A common approach used by
such engines is the forward recovery, mostly reduced to partially automatic retry
of the failed operations. Business processes engines often provide the storage of
the local processing state, which can be used to automatically recover, in the case
of the engine failure and restart. Unfortunately, storing and recovering only the
local processing state is not sufficient for the proper resumption of distributed
processing.

The use of BPEL engines [8,14], and mechanisms they offer, cannot solve all
the problems related to the issues of ensuring system reliability. Existing solu-
tions increase the reliability of only a single component, which is a local instance
of a business process implemented by the engine, without taking into account the
potential dependencies between a nested services. As a result, such engines do
not guarantee the preservation of exactly-once semantics for non-idempotent re-
quests, unless additional protocols are employed (such as WS-ReliableMessaging
[12]). They require the service developers’ to prepare compensation procedures,
and the business processes architects’ to prepare the reactions to failures and to
provide procedures for the exception handling (which requires the knowledge of
the application logic and interactions semantics). Therefore, such solutions do
not provide a fully automated and transparent recovery.

3 System Model and Basic Definitions

The services in the SOA-based systems are created and maintained by service
providers (SP ), and are used by service consumers (SC) i.e., the clients. A client
requesting access to the service may not know in advance the identity of the SP ,
which will handle the request. The service may be composite, i.e. built of other
services (some of which can be composite services as well). Moreover, the SP
may be unwilling to reveal the identities of the services it uses. As a result, the
client may not know how many SP s are involved in the business process at any
given time.

Business process is a set of logically related tasks that are performed to achieve
business objectives. The definition of a business process specifies the behavior
of its participants (clients and services) and describes the ordering of service in-
vocations. Each business process consists of multiple interactions between SCs
and SPs. During the interaction, an obligation (i.e. a promise of an action in
the future) may be established. For example, a client booking cinema tickets is
making an obligation (promise to pay). The server sending back the response is
making obligation too (promise to reserve a place for the client). The obligation
can be undone only explicitly with compensation procedures. If every obliga-
tion made during each interaction is kept (every party is ready for an action it
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promised), the whole business process is consistent. Business process definition
specifies when during an interaction an obligation is established. In our prototype
we assume no information on business process definition, and in the consequence
we assume that every message may transmit an obligation.

In the paper, we assume the crash-recovery model of failures [6] i.e. we do
not tolerate byzantine failures and errors related to business logic. System com-
ponents can fail at arbitrary moments, but every failure is eventually detected,
for example by the failure detection service. The failed SP becomes temporally
unavailable until it is restored. The state of SP , which can be correctly recon-
structed after a failure is called a recovery point. used.In order to create recovery
points, logs and periodic checkpoints may be used according to the recovery poli-
cies choosen and pursued independently by each service provider. If SP employs
checkpointing to implement its recovery policy, then we assume that SP makes
the decision to take a checkpoint independently, and in general, it may take no
checkpoints at all. Similarly, we do not dictate the checkpoint policy to the CP .
A recovery point may be also represented by a backup replica of the service. In
particular, the initial SP state constitutes the recovery point.

4 Reliability Service Environment

4.1 ReServE Service Architecture

The ReServE service architecture is presented in Fig. 1. The main module
of the service is the Recovery Management Unit (RMU). Other two modules
are proxy servers: Client Proxy Unit (CPU) and Service Proxy Unit (SPU).
Their role is to hide the service architecture details from clients and services,
respectively. The proxies are provided as a part of ReServE architecture and
there is no need to implement a separate proxy for a new service. Any service at
any moment may call other services; such a service becomes a client itself, and
as a consequence, it has also its own CPU apart from the SPU .

Fig. 1. ReServE service architecture

The RMU records all invocations and responses sent between clients and
services. In order to ensure the proper load balancing and high availability, the
RMU will be replicated. Three main modules of the RMU are: Stable Storage,
implemented over a database, Management Unit and Garbage Collection Module.
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A Garbage Collection Module prevents the amount of data held by Stable Storage
to grow indefinitely, by removing the information not used any longer. Because
of the space limitations, in this paper we do not further explain this module’s
role.

In order to use the ReServE service, a client must use the Client Proxy
Unit . CPU intercepts all requests issued by a client, and sends them to the
RMU . The CPU may modify the client requests accordingly to the RMU
requirements. In our prototype the CPU is a separate component located on
the same machine as the client application; alternatively it may be a library, or
even its functionality may be directly implemented by client application. The
CPU must know the address of the RMU ; it may be given by user or read from
the configuration file. We assume that the CPU fails together with the client;
the simultaneous failures are forced if necessary.

The Service Proxy Unit is located at the service provider site. It’s primary
task is monitoring the service and responding to service failures. In the case of
failure (detected by the Failure Detection Service [2]), the SPU is responsible
for initiating and managing the rollback-recovery process. The SPU serves a
role of façade for the service: the service is available only via the SPU . There is
exactly one SPU per service. Again, the SPU does not have to be a separate
component; its functionality may be directly implemented by the service. The
SPU has the addresses of the RMU and service written in the configuration file
(alternatively, they may be given during the SPU startup), and enforces service
registration in the RMU . Clients may use only registered services. We assume
reliable communication link between the SPU and the service.

4.2 ReServE Service Requirements

In the SOA environment a service autonomy is one of the most important char-
acteristics. Though there are many aspects of service autonomy, in the proposed
solution we decided to concentrate on respecting the recovery policy autonomy.
The SP may choose its own fault tolerance techniques (checkpointing, replica-
tion, logging) to implement service’s high availability and reliability. The au-
tonomy includes the parameters related to the technique (such as checkpoint
frequency, number of replicas). SP may not be forced to take a checkpoint, cre-
ate additional replicas, log messages it receives and sends. The SP may refuse
to rollback the service to the previous recovery point.

In order to make the business process fault-tolerant some constraints on the
autonomy of services must be put. The ReServE service is designed in the
context of IT-SOA project and will be used by medical applications, which are
still largely in the design phase. Therefore, we have the freedom to specify “rea-
sonable” requirements for restrictions on service behavior, including both their
interface and internal structure. We hope that they are minimal enough to make
possible the integration of existing, legacy applications and services with Re-
ServE service.

Both clients and services are expected to be piece-wise deterministic, i.e.
they should generate the same results (in particular, the same URIs for a new



ReServE Service 249

resource) in the result of multiple repetition of the same requests, assuming the
same initial state. The client using ReServE service must have the unique iden-
tifier (Client-Id). This identifier may be given by a user when starting the
client application. A client in order to utilize the proposed service has to use the
CPU module of ReServE service, whose address it obtains from the configura-
tion file. All requests should contain a unique sequence number (Message-Id),
and the identifier of the performed business process (Conversation-Id). The
Message-Id is necessary in order to distinguish the request retransmission due
to failures from the intentional sending of two identical requests in a row. The
Message-Id’s may be hardwired within the application code (as in our current
prototype client applications). Initial values of both identifiers may be stored in
a configuration file or in the RMU module. The services may call other services
to fulfill client’s request. The original client’s Conversation-Id and Client-
Id should be then attached to the invocations (in order to track dependencies).
The SP should attach a unique sequence number Response-Id to the responses.
The results of fulfilling the request may not be influenced by results of unfin-
ished requests (similarly to an isolation property in transactions). The SP s may
autonomously recover up to some point, according to its local recovery policy,
e.g. with checkpointing and/or local logs. More than one recovery point may
exist; the information on the recovery points must be available to the RMU .
Each recovery point must be tagged with the identifier Response-id of the last
served request. In addition, the recovery point should contain unacknowledged
responses. If it is not possible then the service should allow RMU to request roll-
back to any recovery point (in order to recreate missing responses), and indicate
when rollback has finished. While this violates one of aspects of SP autonomy, we
consider this restriction acceptable for our target applications. Potentially SP s
may tune their local recovery policy in order to balance runtime overhead vs. the
recovery overhead. E.g. with checkpointing, the more often checkpoints are made
by SP , the faster the system recovers. If the SP s checkpoint is invalid or dam-
aged, we may use the earlier checkpoint and then roll forward using RMUs logs.
In the extreme situation, there is a theoretical possibility of supporting services
with no stable storage at all (though this is definitely not recommended).

4.3 Business Process Execution with the Use of the ReServE
Service

Failure-free processing. When the user logs in to the client application it is
asked for its Client-Id. The RMU may be then contacted to get the last saved
client’s state (which could be written during logout from the other machine). All

requests first pass through the CPU (Fig. 2, step ). The CPU augments the
request when necessary (e.g. adding the client identifier Client-Id), and for-

wards the request to the RMU . The RMU maintains two queues in a Stable
Storage. A SavedRequests queue indexed by Client-Id contains all requests
received from clients. For each registered service there is a SavedResponses
queue, containing accepted responses. The entries in the SavedRequests queue
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Fig. 2. Failure-free processing (1)

may contain reference to a relevant entry in the SavedResponses. Additionally,
the RMU keeps in its volatile memory a queue of responses, which arrived from
the service, but are not yet accepted.

After receiving the request, the RMU checks whether the Stable Storage
already contains the response for a message with a given set of identifiers, and
if so then then the response is send to the CPU and the request is ignored.
The request is also ignored if it is contained in SavedRequests queue. Finally, if
the request is not guaranteed to be read-only (e.g. the GET HTTP method)

then the RMU saves it in the Stable Storage in SavedRequests queue, and

forwards the request to the SPU . The SPU forwards the request to the
service . The service receives a request and executes it in accordance with its
business logic. After the request’s execution is completed, a response is generated
and sent to the SPU (Fig. 3, step ). The Response-Id identifier attached to
the response reflects the order in which the response was generated by the service.
The SPU forwards response to the RMU .

After receiving the response, the RMU waits until all earlier responses from
the service are received (all the response with smaller Response-Id). This forces
the FIFO ordering of responses. When this condition is met, the response is
accepted and logged in the stable storage in the SavedResponses queue (even
if this is a response for a read-only request). The reference to the response is
added to appropriate entry in SavedRequests queue. Additionally, the response
is also stored as the last response sent to the client who initiated the request,
and the value Response-Id is stored as the Last-Response received from the

service. Once this is done the response is passed to the CPU . The CPU
removes all custom HTTP headers added to the response by the ReServE

service components before passing it to the client .
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Fig. 3. Failure-free processing (2)

In order to tolerate transient communication links faults etc, the messages
may be retransmitted periodically; the duplicates are detected by the RMU ,
the SPU and the CPU using set of message identifiers. Therefore, exactly once
delivery is guaranteed in the case of failure-free execution. The user may switch
between different machines at any moment; the user may note at the logout that
the state of a client application should be sent to the RMU . During logging in
to the new machine, the user may request the old state from the RMU , identi-
fied by the Client-Id. The security of the data currently is protected by simple
password, however the the stronger protection will be needed in the future.

Client Application Failure. If the client crashes, the user may start recovery
by starting the client application again (possibly on the different machine than
previously) and giving its Client-Id. The recovery of the client differs depending
on the client’s requirements. For some clients, the last response from the service
may be enough for recovery. Such clients may contact the RMU , request the
last response stored by the RMU , and then directly proceed with the execution.
If the last response is not sufficient for client’s revival, it must cooperate with
ReServE service. At the beginning, the client should first recover using its own
local checkpoints or logs. Clients without stable storage may use the RMU as a
remote storage service. Next the client proceeds with processing, sending requests
to the CPU , which then forwards them to the RMU . If the RMU already has
the response for the request, such a response is sent to the client. Since the client
is piece-wise deterministic, it should reconstruct its state up to the point of the
last request sent before the failure.

Finally the client may sent a request for which the RMU has no response
stored. This request is ignored if it was already exists in the SavedRequests
queue (since it means the request was already received in the past and trans-
mitted to the proper SPU). Otherwise, the RMU forwards the request to the
appropriate SPU ; the client’s recovery is finished at this point.
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Service Failure. Once a service’s failure is detected by the SPU , or if the SPU
fails itself, the service’s rollback-recovery process starts. First, the SPU asks
the service for the list of available checkpoints, along with the Saved-Response
identifier. If the last available recovery point contains responses, they are first
sent to the RMU , and the SPU waits until they are acknowledged by the RMU
before proceeding with recovery. Afterwards, the SPU asks the RMU for the
value of the Last-Response

Since some client may already received a response reflecting some service state
Sm (its identifier is given by the Last-Response). If during a local recovery
service is rolled back to some earlier state Sn, we must ensure that the state
Sm is recovered in order to ensure the consistency between the client’s and the
service’s state. The state Sm was a result of executing some sequence of requests
starting with state Sn. Since we assume the service is piece-wise deterministic,
starting with the state Sn and executing the same sequence of requests during
the recovery must in effect recreate lost Sm state. For each request, we know its
the ordering thanks to the Response-Id attached to the response. The problem
is only finding proper starting point of re-execution.

If the Saved-Response is greater than the Last-Response, then it means that
before the recovery point the service has executed several request for which we
lost the ordering information. Therefore, the service must be rolled back to the
latest checkpoint for which the Saved-Response is less from or equal to the re-
ceived Last-Response. After the rollback is completed, the SPU asks the RMU
for a sequence of requests, attaching the Saved-Response of the chosen recovery
point to the request. The RMU selects from its stable storage all requests with
no response saved (i.e. with no ordering information) or for which the response
contains the identifier Response-Id greater than or equal to the Saved-Response
value received from the SPU . In order to inform the SPU on the original order
of request execution, the Response-Id is attached to the request, but only if
the RMU has a response for a request and its Response-Id is less than Last-
Response. The responses with Response-Id greater than Last-Response are
purged from the logs. After receiving requests from the RMU , the SPU may
start the recovery. First the request for which ordering is known are passed se-
quentially to the service, in the order corresponding with their Response-Id.
Each time the SPU waits for response before sending next request. Then the
SPU finishes the recovery and passes the remaining requests for execution, in
any order. Any error during recovery causes the SPU to signal a recovery failure.
It’s up to client or transaction protocols to further treat the situation.

In the case when the service has no stable storage and has not used the
ReServE service as a remote storage, it will be rolled back to the initial state,
and all client’s requests will be repeated, in order to obtain the lost service state.
Since executing some requests may involve interaction with an outside world, our
solution needs to guarantee that some service states are never forgot; they may
be rolled back, but only if re-execution results in exactly the same service’s
state. In our prototype we require any interaction with the outside world to
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be modeled as a call to an external service. The service should guarantee, that
during re-execution interactions with the outside world are not repeated.

A failure of one service should not force other services to rollback. In addition,
the forced rollback of the service should not cause the rollback of other services.
In our solution, if the service state reflects sending some responses while those
responses are lost, we force service to earlier recovery point in order to regenerate
some responses. This rollback may then force also cascading rollback of the
services invoked after the recovery point. This would however be major violation
of the SP autonomy and therefore, currently we stall the calls to external services
whenever there is possibility that our architecture would be unable to achieve
the consistent state of a business process.

5 Simulation Experiments and Performance Evaluation

The performance of the proposed ReServE service is quantitatively evaluated
in terms of the overhead introduced by the service in the case of the failure-
free processing. In order to guarantee the correct system behavior in the case of
failure occurrence, the significant performance loss is to be expected. Therefore,
the simulation experiments were performed, to estimate the order of magnitude
of the overhead introduced by the ReServE service, and to examine, whether the
performance loss connected with the use of the proposed service is acceptable,
or it is unacceptably high. Moreover, the impact of the message size on the
introduced overhead was investigated, to check how the characteristics of the
overhead change within a range of possible message sizes expected in the target
applications. Finally, the location of the RMU module on the recovery time was
assessed.

In the performed experiments, the workstations with the following character-
istics: SuSE Linux 11.1 kernel 2.6.27.45-0.1-default operating system, with Intel
Pentium 4 3.20GHz x 2 processor, and 2.9 GB RAM were used. The service and
its proxy server run on the same workstation — the service is implemented with
the RestLet 1.1. environment, while its proxy server uses proxy server MProxy
0.4 [2]. Stable Storage is developed as a PostreSQL database. As a client appli-
cation and its proxy server the JMeter 2.3.4 software was used.

The simulation experiments were performed, successively for 10 to 100 threads
per client workstation. Since ten workstations were used as clients, up to 1000
threads were running. Each thread repeated the simulation experiments 500
times. It was assumed that the time associated with the realization of the service
is constant, and is set to 100 ms (as for our target applications, in general the
service’s request processing time depends neither on the number of clients, nor
on the size of data), which was assumed to be the highest range of the expected
performance time of the web applications developed for the IT-SOA project.

The overhead introduced by the ReServE service in the case of the failure-
free processing encompasses the time associated with the communication, service
processing, saving data in the Stable Storage of RMU, and finally interaction
with a client. The overhead is measured at the client application side, and is
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Fig. 4. (a) ReServE service overhead (b) The impact of the message size on the
overhead introduced by the ReServE service

obtained by calculating the difference between processing a service with the use
of the ReServE service and without it. The obtained results are presented in
the Fig. 4(a). The overhead introduced by the ReServE service is largely con-
nected with saving data in the Stable Storage of the RMU. Such data are written
on the hard drive, using the PostgreSQL database. In order to reduce the ob-
tained overhead several steps can be taken. Fist, the used PostgreSQL databased
should be properly tuned. Also, as an alternative to writing data to the hard
drive, the in-memory logging techniques known from message-passing systems
could be applied [5]. Finally, since the single RMU module can constitute the
system bottleneck, the distribution of this module could increase the efficiency
of the ReServE service, and thus decrease the introduced overhead. For some
clients the obtained overhead could be unacceptable. However, since the Re-
ServE service within the IT-SOA project is intended primarily for the use with
interactive services, where a client enters the data to the service and such an
operation takes some time (e.g. ReServE service client is a doctor examining a
patient and placing information on his health state), then in the case of such a
client, the overhead introduced by the ReServE service seems to be relatively
small. For clients using interacting services the proposed solution seems to be
attractive, as the overhead introduced by the ReServE service is acceptable,
and simultaneously the clients obtain the guarantee of no data loss.

In the Fig. 4(b) the impact of the size of sent messages on the overhead
introduced by the ReServE service is shown. In the performed experiments
three types of messages were considered: 128B, 1 kB, and 4kB. Based on the
values presented in the Fig. 4(b), it is clear, that while the message size has small,
but noticeable influence on the overhead introduced by the proposed service, it
does not change the overhead’s characteristics. Such an overhead is composed
of three factors: the time of the message transmission, the delay associated with
saving it to the Stable Storage, and the impact of increased service demands by
the libraries of individual clients. It can be observed that the cost of servicing a
large demand is greater for a large number of customers. This result is actually
expected, as with the higher number of clients, the higher system load and the
increased consumption of resources occurs.
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Fig. 5. Impact of the RMU location on recovery time

Further experiments are related to the analysis of RMU module location im-
pact on the recovery time in the case of failure occurrence. The obtained results
are presented in the Fig. 5. The tests were performed for two configurations of
the environment: the RMU located in the local network of the client application,
and at the service side. According to the obtained results, when the RMU is
placed in the local network with the web services, the recovery time is relatively
short. This follows from the high bandwidth of the local network communication
links.

6 Conclusions and the Future Work

This paper describes the ReServE service providing support to the recovery of
web services. The proposed service respects web services local recovery auton-
omy, and do not force any particular technique to create service recovery points.
It allows to recreate lost service states in the case, when the local recovery policy
is unable to achieve this (e.g. with damaged checkpoint files, or obsolete service
replicas). For the moment being, the prototype of the proposed service is un-
der constant improvement: currently, the RMU neither requires, nor needs any
preliminary knowledge on the service structure, business process definition, or
application logic (e.g. which messages transmit obligations); many optimizations
are possible if the RMU would have an access to such an information. The future
work on ReServE service assumes further improvement of the proposed service
efficiency and the distribution of the the RMU module.
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Abstract. Continuous Petri net can be used for performance analysis or static
analysis. The analysis is based on solving the associated ordinary differential
equations. However, large equation groups will give us overhead computing. To
solve this issue, this paper presents a method to compute these differential equa-
tions in parallel. We first map the Petri net to a hypergraph, and then partition the
hypergraph with minimal inter-processor communication and good load balance;
Based on the partition result, we divide the differential equations into several
blocks; Finally we design parallel computing algorithm to compute these equa-
tions. Software hMETIS and SUNDIALS have been used to partition the hyper-
graph and to support the parallel computing, respectively. Gas Station problem
and Dining Philosopher problem have been used to demonstrate the benefit of
our method.

Keywords: Continuous Petri net, ODE, hypergraph, parallel computing.

1 Introduction

In order to alleviate or avoid state explosion problem, continuous Petri net(CPN) can be
used for performance analysis[11][19] or static analysis[8] for some parallel/distributed
systems. There are two kinds of Continuous Petri net based on the firing style: one is
that the instantaneous firing speed of a transition is proportional to the minimum of the
markings of the input places, and the other is that the instantaneous firing speed of a
transition is proportional to the product of the markings of the input places. We call the
first one Minimum-CPN and the second one Product-CPN.

For Minimum-CPN[6], since the marking values of places equal to the expected
values of places in the general stochastic Petri net[11], it is proper to be used for perfor-
mance analysis. For Product-CPN, since the firing rates magnify the states, and also the
marking at each place is continuous without points of discontinuity, it can be used to
reveal some extreme behavior such as system deadlock without hitting state explosion
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problem[8]. No matter which kind of CPN, the analysis is always based on solving the
associated ordinary differential equations.

If a system is very large, then the number of ordinary differential equations could be
very big, or the number of differential equation groups could be very big. For example,
to analyze a system with 1020 states that has been used for Symbolic Model Checking
by Burch et al.[2], we need to solve an equation group with 1020 equations. To solve
such large equation group, the normal equation solver such as Matlab may not have
enough power to perform such computing. A solution is to solve the equation group in
parallel.

In this paper, we present a new method for the parallel computing of the ordinary
differential equations. The following is the sketch of the process. We first map the Petri
net to a hypergraph, and then partition the hypergraph by hMETIS software. Based on
the partition result, we divide the differential equations into several blocks. Finally we
design parallel computing algorithm to compute these equations. PVODE package from
SUNDIALS is used to parallel compute the differential equations.

Even through our method is developed for Product-CPN, it can also be applied to
Minimum-CPN.

This paper is organized as the following. Section 2 describes the Ordinary Differ-
ential Equation (ODE) representation of concurrent programs. Section 3 shows how to
compute the ODE group in parallel. Section 4 is the case study. Gas station problem
has been used to illustrate how to apply our method. Section 5 is also a case study.
More experiments have been conducted for dining philosopher problem. Section 6 is
a discussion of the related work. The last section, Section 7, is the conclusion of the
paper.

2 ODE Representation of Concurrent Systems

In this section, we briefly describe how to use ordinary differential equations to repre-
sent a concurrent system. For the details, please see our previous work[8]. We consider
a subclass of Petri nets, namely MP net.

Definition 1. A MP net is a tuple < P, T >, where

1. P = {p1, p2, ..., pn} is a finite nonempty set of places,
2. T = {t1, t2, ..., tm} is a finite nonempty set of transitions.

Meanwhile, the following conditions are satisfied:

• the places of P are partitioned into three disjoint partitions I, B and C;
• each place from I has at least one input transition and at least one output transition;
• each place from B has one input transition and at least one output transition or has

one output transition and at least one input transition;
• each place from C has at least one pair of input transition and output transition;
• each transition has one input place from I and one output place from I; and
• each transition has either

- no input places from B/C and no output places from B/C (internal transition);
or
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- one input place from B and one output place from C(input communication
transition); or

- one output place from B and one input place from C(output communication
transition).

Here I stands for Internal Places, B stands for Buffer and C stands for Control.

Definition 2. A Continuous Petri Net is a tuple CPN =< PNM, M0, C >, where

1. < PNM, M0 > is a marked MP net, where M0 is the initial marking.
2. C : T → (0, +∞), C(tj) = cj (j = 1, 2, . . . , m) is a mapping to assign a firing

constant cj to transition tj .

Definition 3. Let I = [0, +∞) be the time interval and let mi : I → [0, +∞),
i = 1, 2, . . . , n be a set of mappings that associated with place pi. A marking of a
Continuous Petri Net CPN =< PNM, M0, D > is a mapping

m : I → [0, +∞)n, m(τ) = (m1(τ), m2(τ), . . . , mn(τ)).

The follows are the semantics of our continuous Petri net, which show how to calcu-
late the markings of places. We have the following cases. Let p denote place, t denote
transition, m denote marking, and c denote firing constant.

Case 1. No inputs for the net as Fig. 1 shows.

p1

p

t1

t2

m1

m

c1

c2

p1

p

t1

m1

m

c1

c2 t2 c3 t3

(a) (b)

Fig. 1. Net without inputs

(a) Place has no choice. For the net in Fig. 1(a), the differential equation is:

m′(τ) = c1m1(τ) − c2m(τ).

(b) Place has choice. For the net in Fig. 1(b), the differential equation is:

m′(τ) = c1m1(τ) − (c2 + d3)m(τ).

Case 2. One input for the net as Fig. 2 shows.
(a) Input Before. For the net in Fig. 2(a), the differential equation is:

m′(τ) = c1m1(τ)m2(τ)− c2m(τ).

(b) input After. For the net in Fig. 2(b), the differential equation is:

m′(τ) = c1m1(τ) − c2m(τ)m2(τ).
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Fig. 2. Net with one input
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Fig. 3. Net with two inputs

Case 3. Two inputs for the net. For the net in Fig. 3. The differential equation is:

m′(τ) = c1m1(τ)m2(τ) − c2m(τ)m3(τ).

Eventually, we will get four types of differential equations as the follows(xi represent
the variables):

• Type 1. x′
i = ci−1xi−1 − cixi.

• Type 2. x′
i = ci−1xi−1xk − cixi.

• Type 3. x′
i = ci−1xi−1 − cixixk.

• Type 4. x′
i = ci−1xi−1xk − cixixl.

Hence, the markings of places of the continuous Petri net can be solved from a set of
ordinary differential equations consisting of above four types.

3 Parallel Computing of Differential Equations

We choose hypergraph for parallel computing because hypergraph models can accu-
rately represent communication volume [5]. In parallel computing, communication is
required for a hyperedge whose vertices are in two or more processors. Çatalyürek and
Aykanat [5] proposed a hypergraph model for sparse matrix-vector multiplication, and
showed that the hyperedge cut metric corresponds exactly to the communication vol-
ume. An important advantage of the hypergraph model is that it can easily represent
nonsymmetric and rectangular matrices.
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3.1 Moving from Petri Net To Hypergraph

A hypergraphH = (V ,N ) is defined as a set of verticesV and a set of nets (hyperedges)
N among those vertices. Every net nj ∈ N is a subset of vertices, i.e., nj ⊂ V . The
vertices in a net are called its pins. Weights can be associated with the vertices of a
hypergraph. Let wi denote the weight of vertex vi ∈ V .

Let P be a MP that has n process cycles: P1, P2, . . . , Pn. m1, m2, . . . , mK are the
buffers(or Resources) for these process cycles. The corresponding hypergraph of P is
H = (V ,N ), which can be obtained based on the following translation rules:

1) Each Pi corresponds to a vertex vi ofH. If Pi has ni places, then the weight of vi

is wvi = ni;
2) Each mi corresponds to a vertex v′i ofH, the weight of v′i is wv′

i
= 1;

3) For any two process cycles Pi, Pj , if they have buffers mi1 , . . . , mik
, then {Pi,

Pj , mi1 , . . . , mik
} corresponds to an edge e ofH, denoted as e = {vi, vj , v

′
i1

, . . . , v′ik
}.

If there exist total nij directed arcs between mi1 , . . . , mik
and Pi, Pj , then the weight

of e is we = nij .
Particularly, based on these rules, we can obtain hypergraphs for those three syn-

chronization structures, as shown in Fig. 4, Fig.5, Fig.6.

p11

p12

t11
p

t21

p21

p22

A B

p1x

p2y

v1 v2

v3

x y

1

e(2)

Fig. 4. Hypergraph for asynchronous message passing

Remark 4. The following factors are considered when we define the translation rules:

– We did not consider the directions of the hypergraph when translated from directed
Petri net since the partition of hypergraph is based on the undirected graph.

– Since the places in the same process cycles are dependent to each other, we map
those places to one vertex in the hypergraph; otherwise, if we map them to different
vertices, it is possible that these vertices may fall to different parts after partition
of hypergraph, which may cause the communication times to increase.

– We map the process cycles and the related communication places to an edge since
the edge should contain as more dependent vertices as possible[13].

– The weight of vertex is based on the number of places, which indicates the size
of the task and the required processing time; The weight of the edge is based on
the number of arcs that connect buffers(resources) to the process cycles, which
represents the data dependent relation and the communication time.
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Fig. 6. Hypergraph for resource sharing

3.2 Partitioning Hypergraph

After we get hypergraph from Petri net, we need to partition this hypergraph. In general
we need to compute a K-way partition [4].

A K-way vertex partition K = {V1,V2, . . . ,VK} ofH is said to be balanced if each
part Vk satisfies the balance criterion

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . , K.

Here weight Wk =
∑

vi∈Vk
wi, Wavg = (

∑
vi∈V wi)/K , and ε represents the prede-

termined maximum imbalance ratio allowed.
In a partition K of H, a net that has at least one pin in a part is said to connect that

part. Connectivity set Λj of a net nj is defined as the set of parts connected by nj .
Connectivity λj = |Λj | of a net nj denotes the number of parts connected by nj . A net
nj is said to be cut if it contains more than one part (i.e. λj > 1), and uncut otherwise
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(i.e. λj = 1). The set of cut nets of a partitionK is denoted asNE . The cutsize is defined
as

cutsize(K) =
∑

nj∈NE

(λj − 1).

Hence, the hypergraph partitioning problem can be defined as the task of dividing a
hypergraph into two or more parts such that the cutsize is minimized, while a given
balance criterion among the part weights is maintained. The hypergraph partitioning
problem is known to be NP-hard [17].

hMETIS is a software package for partitioning large hypergraphs, especially those
arising in circuit design. The algorithms in hMETIS are based on multilevel hypergraph
partitioning described in [16].

3.3 Parallel Computing

Based on the partitioning result of the hypergraph, we can divide the ordinary differen-
tial equations into several small groups. Our parallelization is based on parallelism in
space since our equation system has a regular structure.

Software SUNDIALS [14] is used to support our parallel computing. One of its
package, called PVODE is used to solve our differential equations in parallel. PVODE
can solve stiff and nonstiff initial value problems. In our case, our equation group will
display some stiffness if we have some big di and small di in the equation group.

Besides communication part, a critical part of PVODE, that makes it an ODE par-
allel ”solver” rather than just an ODE parallel method, is its control of local error. At
every step, the local error is estimated and required to satisfy tolerance conditions, and
the step is redone with reduced step size whenever that error test fails. PVODE includes
an algorithm, STALD(STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situ-
ations. Thus the computing error will not affect our performance analysis.

4 Case Study (I): The Gas Station Program

The Gas-Station problem which models activities of an automated gas station was orig-
inally described in [12]. This example has been widely studied for property analysis,
specially deadlock analysis. Generally, the automated gas station consists of a set of
cashiers, a set of pumps and a set of customers. The scenario is as follows: customers
arrive and pay the casher for gas. The cashier activates a pump, at which the customer
then pumps gas. When the customer is finished, the pump reports the amount of gas
actually pumped to the cashier, who then gives the customer the change. The Petri net
representation and the corresponding ordinary differential equation model are shown in
Fig. 7. The net has three process cycles: P1 for customer, P2 for cashier, and P3 for
pump.

The initial values for this equation group are: m1(0) = 1, m19(0) = 1, m23(0) = 1,
and all others are 0.
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Fig. 7. Petri net model and equation model for gas station problem

4.1 From Petri Net to Hypergraph

Following our translation rules, we get: P1 → v1, P2 → v2, P3 → v3, m10 → v4,
m11 → v5, m12 → v6, m13 → v7, m14 → v8, m15 → v9, m21 → v10, m22 → v11,
m32 → v12, m33 → v13, m34 → v14, m35 → v15, e = {v1, v2, v4, v5, v13, v14},
e2 = {v2, v3, v10, v11, v12, v15}, e3 = {v1, v3, v6, v7, v8, v9}, wv1 = 9, wv2 = 10,
wv3 = 8, wv4 = wv5 = wv6 = wv7 = wv8 = wv9 = wv10 = wv11 = wv12 = wv13 =
wv14 = wv15 = 1, we1 = we2 = we3 = 8. The corresponding hypergraph is shown in
Fig. 8(a).

4.2 Partition of the Hypergraph of Gas Station

By using software hMETIS, we can partition the hypergraph of gas station problem. The
parameters have been designed as the following. Nparts = 3, indicating the graph will
be partitioned to 3 parts; UBfactor = 3, specifying the allowed imbalance between
the partitions during recursive bisection; Nruns = 10, indicating the number of the
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Fig. 8. (a) Hypergraph for gas station problem. (b) Partition of hypergraph for gas station problem.

different bisections that are performed by hMETIS; CType = 1, indicating that during
the coarsening phase, hybrid first-choice scheme (HFC) has been used as the vertex
grouping scheme; RType = 1, indicating that during the uncoarsening phase, Fiduccia-
Mattheyses (FM) refinement scheme has been used; V cycle = 3, indicating that each
one of the Nruns bisections is refined using V-cycles; Reconst = 1, meaning that the
chosen scheme reconstructs the hyperedges that are being cut; dbglvl = 24, meaning
to request hMETIS to print debugging information.

The resulting partition is as the following: v2, v12, v14, v15 are in the first part, v3,
v7, v8, v9, v10, v11 are in the second part, and v1, v4, v5, v6, v13 are in the third part.
The weights for these three parts are:

w1 = wv2 + wv12 + wv14 + wv15 = 10 + 1 + 1 + 1 = 13,

w2 = wv7 + wv8 + wv9 + wv10 + wv11 + wv3 = 1 + 1 + 1 + 1 + 1 + 8 = 13,

w3 = wv1 + wv4 + wv5 + wv13 + wv6 = 9 + 1 + 1 + 1 + 1 = 13.

Since the weights are equal, we conclude that the load is completely balanced. Also
since

cutsize =
∑

ej∈Nε

= 1 + 1 + 1 = 3,

we imply that the communication between processors is minimal. Three parts are shown
as the dashed circles in Fig. 8(b).

4.3 Regrouping Differential Equations

Based on the partition result, the differential equations can be divided into three small
equation groups: process P2 and places m32, m34, m35 are in the first equation group;
process P3 and the places m13, m15, m21, m22 are in the second equation group; pro-
cess P1 and the places m10, m11, m12, m33 are in the third equation group. The follows
are the resulting three equation groups:
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⎧
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m′
1 = m9 − m1

m′
2 = m1 − m2

m′
3 = m2 − m3m11

m′
4 = m3m11 − m4

m′
5 = m4 − m5m13

m′
6 = m5m13 − m6

m′
7 = m6 − m7m15

m′
8 = m7m15 − m8m33

m′
9 = m8m33 − m9

m′
10 = m2 − m10m20

m′
11 = m18 − m3m11

m′
12 = m4 − m12m25

m′
33 = m36 − m8m33

,

⎧
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m′
23 = m30 − m23

m′
24 = m23 − m21m24

m′
25 = m21m24 − m12m25

m′
26 = m12m25 − m14m26

m′
27 = m14m26 − m27

m′
28 = m27 − m28m35

m′
29 = m28m35 − m29

m′
30 = m29 − m30

m′
13 = m12m25 − m5m13

m′
14 = m6 − m14m26

m′
15 = m29 − m7m15

m′
21 = m16 − m21m24

m′
22 = m21m24 − m17m22

,

⎧
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m′
16 = m10m20 − m16

m′
17 = m16 − m17m22

m′
18 = m17m22 − m18

m′
19 = m39 − m19

m′
20 = m19 − m10m20 − m20m32

m′
31 = m18 + m38 − m31

m′
36 = m20m32 − m36

m′
37 = m36 − m34m37

m′
38 = m34m37 − m38

m′
39 = m31 − m39

m′
32 = m27 − m20m32

m′
34 = m8m33 − m34m37

m′
35 = m38 − m28m35

4.4 Parallel Computing

Now we employ the PVODE package from SUNDIALS to parallel compute above
equations, where the parallel program are distributed in three processors. Meanwhile,
we use Matlab to calculate the numerical solution for the original differential equation
group. The solutions are displayed in Fig. 9(a) and Fig. 9(b), respectively, where we
choose t = 120 seconds.
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Fig. 9. (a) The solutions of gas station with parallel computing. (b) The solutions of gas station
with Matlab.

From the figures, we see that results of two methods are consistent. PVODE solver
can not only automatically adjust the step size through the control of local error like
the function ODE45 of Matlab, but also reach the maximum step size by periodically
adjusting the order. Since here the size of gas station problem is small, the cost of
parallel computing is smaller than the cost of communication. Comparing to the time
used by serial computing, the time used by parallel computing did not improve much.
The advantage of parallel computing will be reflected when the computing size is big
enough. The parallel computing algorithm overcomes the drawback of serial computing
algorithm regarding computing time, solution accurateness and real time quick response
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requirements, etc. Since our parallel program is based on the message passing interface
(MPI), its portability, scalability are better than those of data sharing parallel program.

4.5 Static Analysis

After computing, we get the following results:

– m1(t), m2(t), m3(t), m4(t), m5(t), m6(t), m10(t), m11(t), m12(t), m13(t),
m14(t), m16(t), m17(t), m18(t), m19(t), m20(t), m21(t), m22(t), m23(t), m24(t),
m25(t), m26(t), m27(t), m31(t), m32(t), m36(t), m39(t)→ 0,

– m7(t), m28(t), m33(t), m37(t)→ 1,
– m8(t) = m9(t) = m15(t) = m29(t) = m30(t) = m34(t) = m35(t) = m38(t) =

0.

We see that all the state measures are fallen to two classes: the state measures either
converge to 0 or the state measures converge to 1. From [8], we know that there is
deadlock in the program.

5 Case Study (II): The Dining Philosopher Problem

Dijkstra’s [7] dining philosopher problem is a very well-known example of a concurrent
program. Although not a very realistic problem, it does contain a nontrivial deadlock
and is probably the most commonly analyzed example. A group of N philosophers is
sitting around a table. The philosophers alternate between thinking and eating. Initially
n forks are placed on the table between each pair of philosophers. In order to eat, a
philosopher must first pick up both forks next to him. The forks are put down when the
philosopher finishes eating and starts thinking. This problem is interesting because of
the possibility of a circular deadlock. Deadlock may occur if all philosophers pick up
their forks in the same order, say, the right fork followed by the left fork. In this case,
there is one deadlock state corresponding to the situation in which all philosophers have
picked up their right fork and are waiting for their left fork.

In our experiment, we have computed the solutions for several groups of equations
when the number of philosophers N = 5, 10, 20, 30 40, 50, 100, 200, 400. Based on
our partition process, we have divided each group into 2, 4, 6, and 8 small groups, and
then execute them in the computer with 2, 4, 6, and 8 processors. Our experiments are
conducted on the computer: 4 CPUs, dual core, AMD OpteronTM Processor 870, CPU
2.0GHZ, memory 16GB.

Table 1 displays the time data for 50 philosophers, 100 philosophers, 200 philoso-
phers, and 400 philosophers that run in 1 processor(serial), 2 processors, 4 processors,
6 processors, and 8 processors, respectively.

To better see the time increasing trend, we plot the graphs as the following. Fig. 10(a)
displays the required time to run in 2 processors when each equation group is divided
into 2 groups; Fig. 10(b) displays the required time to run in 4 processors when each
equation group is divided into 4 groups.

From the figures, we can analyze the computing time as the the following. 1) The
parallel computing time and the serial computing time both will increase as the problem
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Table 1. Computing time with different number of processors for different number of philoso-
phers

serial time(s) 2-processor(s) 4-processor(s) 6-processor(s) 8-processor(s)

50-philosopher 0.3640 0.7032 0.4940 0.4141 0.3859
100-philosopher 0.5421 0.8829 0.6502 0.5515 0.5156
200-philosopher 0.9503 1.1996 0.9380 0.8165 0.7667
400-philosopher 2.0732 1.6942 1.4229 1.2956 1.2389

size increases, but the increasing speed for serial is faster than the increasing speed for
parallel. If the problem size is small, it is possible that parallel computing time may be
bigger than the serial computing time, and thus the computing result may not reflect
the advantage of parallel algorithm. For example, in Fig.10(b), when the number of
philosophers is less than 200, the parallel computing time is bigger than serial comput-
ing time. However, when the number is bigger than 200, the parallel computing time is
less than the serial computing time. The point, like 200, at which the parallel computing
time starts being less than serial computing time is called Changing Point. 2) As the
number of processors increases, the Changing Point is getting smaller, which means
that the advantage of parallel algorithm can be reflected in the smaller size problems.
3) If the problem size is fixed, then as the number of processors increases, the parallel
computing time is getting smaller.
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Fig. 10. (a) Each equation group is divided into 2 groups and are calculated on 2 CPUs. (b) Each
equation group is divided into 4 groups and are calculated on 4 CPUs.

Speedup is the second metric to measure the parallel algorithm, which can be calcu-
lated by formula: Sp(n) = Ts(n)/Tp(n), where n is the problem size, Ts(n) is the
computing time for the fastest serial algorithm in the worst situation, Tp(n) is the com-
puting time for the parallel algorithm in the worst situation. Speedup reflects the degree
to which the computing time has been improved when parallel algorithm is used. Table
2 displays the speedup data from our experiment. After analyzing the data, we see that
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1) if the problem size is fixed, then as the number of processors increases, the speedup
is getting bigger, but the increasing speed will be getting slower; 2) if the number of
processors is fixed, then as the problem size increases, the speedup is getting bigger.
This indicates that the larger size problem and the more processors being used, the
more advantages our parallel algorithm will demonstrate.

Table 2. Speedup for different number of processors for different number of philosophers

2-processor 4-processor 6-processor 8-processor

50-philosopher 0.5176 0.7369 0.8790 0.9432
100-philosopher 0.6140 0.8338 0.9829 1.0513
200-philosopher 0.7922 1.0131 1.1639 1.2394
400-philosopher 1.2237 1.4570 1.6002 1.6734

The third matric to measure parallel computing is the parallel efficiency, which can
be calculated by formula: Ep(n) = Sp(n)/P (n), where P (n) is the number of pro-
cessors required to solve the problem, Sp(n) is the speedup. Parallel efficiency reflects
the degree to which the processors have been used in the parallel computing. Table 3
displays the obtained efficiency data. After analyzing the data, we see that 1) if the
number of processors is fixed, then as the problem size increases, the parallel efficiency
will increase. This means that the parallel algorithm is scalable. 2) if the problem size
is fixed, then as the number of processors increases, the parallel efficiency is getting
smaller. The reason is that as the number of processors increases, the usage rate of each
processor and the load to each processor are decreasing, while communication cost is
increasing.

Table 3. Parallel efficiency for different number of processors and philosophers

2-processor 4-processor 6-processor 8-processor

50-philosopher 25.88% 18.42% 14.65% 11.79%
100-philosopher 30.70% 20.85% 16.38% 13.14%
200-philosopher 39.61% 25.33% 19.40% 15.49%
400-philosopher 61.19% 36.43% 26.67% 20.92%

6 Related Work

The first application of hypergraph partitioning in the domain of performance analysis
is by Dingle et al. [9]. Their method utilized hypergraph partitioning presented in [5] to
minimize inter-processor communication while maintaining a good load balance. They
demonstrated the approach by calculating passage time densities in a 1.6 million state
Markov chain derived from a Generalized Stochastic Petri net model and a 10.8 million
state Markov chain derived from a closed tree-like queueing network. However, the
computing is still limited by the compute power and RAM provided by a network of
workstations.
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Alimonti and Feuerstein [1] presented a work to translate Petri net to Hypergraph.
This translation keeps more information of Petri net. It has been used to prove that
the liveness and boundedness of Conflict-free net can be solved in a polynomial time.
However, since the translation does not heavily decrease the size of the Petri net, the
resulting hypergraph is not proper for parallel computing.

The parallel solution of initial value problems for ordinary differential equations has
received much interest from many researchers in the past decades. Efforts have been
taken to find efficient parallel solution methods, e.g., extrapolation methods [10], wave-
form relaxation techniques [3], and iterated Runge-Kutta methods [15]. Most of these
approaches develop new numerical algorithms with a larger potential for parallelism,
but with different numerical properties. Rao and Mouney [18] have considered the prob-
lem of data communication in parallel block predictor-corrector (P-BPC) methods for
solving ODE’s using only time as well as time and space discretizations for systems of
equations. In our case, for stiff problems, PVODE employs Newton-Krylov linear iter-
ation. This technique exhibits good convergence behavior and has become increasedly
competitive with classical iterative methods in terms of memory utilization. Finally, the
method is well suited to implementation on parallel computers.

7 Conclusion

This paper presented a method to parallel compute a class of ODEs that describe con-
current systems. In our numerical experiment, we have used two examples to check the
feasibility of our method for the performance analysis of concurrent systems. In the
future, we will apply our method to different sizes of concurrent systems to experience
the the advantages of parallel computing that decrease the memory and the computing
labor, and determine when to use serial computing, parallel computing or their combi-
nation. Further more, we may consider the combination of parallel computing for time
and space if the size of the problem is large enough.
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Abstract. The FPGA-based reconfigurable computer systems have high real 
performance and provide practically linear growth of performance when hardware 
system resource is growing. The paper deals with design features, technical 
characteristics and values of real performance of computational modules of 
reconfigurable computer systems, designed on the base of Virtex-6 FPGAs. In 
addition, a software suit, intended for development of parallel applications for the 
RCS, is considered.  
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1   Introduction 

Until recently supercomputer technology had been developed according to large-
block integration principles. Performance was provided owing to technological 
achievements in the area of microprocessor design and communication system 
development, but advantages of architecture and circuit design were not used. As a 
result, cluster systems, designed on the base of widely-available computer nodes and 
communication networks, became widespread during the last years. Cluster systems 
have relatively low price and simple programming methods. When solving loosely-
coupled problems, clusters provide high real performance. However, real performance 
considerably reduces, if the problem is tightly-coupled. In addition, cluster system 
performance reduces when number of processors in cluster supercomputer grows. 
This is the result of dissimilarity between information structure of the problem and 
cluster “hard” architecture. Real performance of supercomputer decreases and burden 
sharply increases, if the solving problem is tightly-coupled and requires a great 
number of data exchange operations. The concept of multiprocessor computer 
systems with reconfigurable architecture had proved successful in solving specified 
problems of cluster supercomputers [1, 2, 3]. 

The essence of this concept is adaptation of reconfigurable computer system (RCS) 
architecture to the structure of information graph of the solving problem. Using 
principles of the concept, we can considerably reduce computational burden and 
increase system real performance. 
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The concept of the RCS design has been developed during decades. In 80s-90s of 
the 20th century several prototypes of computer systems with reconfigurable 
architecture were created. Nevertheless, lack of suitable element base restrained wide 
use of the RCSs during a long time. The RCS element base is to fulfill the following 
requirements: ability of hardware (structural) implementation of large computational 
fragments; programming (reconfiguration) of various computational structures which 
fit to the active problem; ability of usage of computer-aided design (CAD) systems, 
software development environments and software tools for computational structure 
reconfiguration; acceptable price, etc. 

Field Programmable Gates Array (FPGA) with grand-scale integration fulfills all 
these requirements [4-6]. Capabilities of internal structure reconfiguration are the 
distinctive feature of the FPGAs. Owing to this, the FPGAs are the best choice for the 
concept of reconfigurable computer system design.  

At present the FPGAs are ever more widely used as components of supercomputers 
for their real performance increasing. Let us give two typical examples. In 2007 
Silicon Graphics launched a supercomputer which contained 35 modules RC100 with 
two FPGAs in each module. According to information, represented by Silicon 
Graphics, the supercomputer solves bioinformatics problems in 900 times faster, than 
a cluster which contains 68 nodes, designed on the base of Opteron processors. A new 
product of Silicon Graphics is module SGI RC200-blade which contains the FPGAs 
Altera Stratix III and Intel QuickAssist [7] technology of direct interface between 
FSB and Xeon processors. 

In 2009 Cray launched a supercomputer Cray XT5h [8], which combines scalar 
and vector processors and the FPGA processors. Scalar processors are perfectly suited 
for calculations with few data access operations; the FPGAs and vector processors are 
usually used for solving problems which require high memory loading and large 
volumes of processed data. Modern complicated computational problems may be 
solved much more effectively by using a supercomputer which contains all these 
types of processors. The peak performance of the supercomputer Cray XT5h is 
2331.00 Tflops (the 1st position in the TOP500 list). 

However, almost in all supercomputers the FPGAs are used as co-processors to 
standard computational nodes, implemented on general-purpose microprocessors. 
Owing to the concept of the RCS design, it is possible to use the FPGAs as an 
element base for creation of large computational fields, which may be reconfigured 
into a set of small-grained special-purpose computing structures, adapted to the 
structure of the problem. Various computing structures, similar to the information 
structure of the solving problem, may be created and fine-tuned within large 
computational field. The approach ensures maximization of system real performance 
during execution of the problem.  

The main principles of the RCS design, based on the FPGA fields, are the 
following: 

1. The FPGAs are combined into a computational field. 
2. A multipipeline computational structure, similar to the informational graph of 

the solving problem, is designed within the FPGA field using CAD and structural 
programming software tools. 
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3. If the informational graph of the solving problem can not be mapped on the 
FPGA field because of hardware constraints, it must be partitioned into disjoint 
subgraphs. Each subgraph must be mapped on the FPGA field, i.e. structurally 
realized. Sequential procedure of subgraph structural realization within the FPGA 
field is organized after mapping (Fig.1). 

 

Fig. 1. Structural-procedural organization of calculations in the FPGA field 

4. It is evident that the larger is the FPGA field, the smaller number of subgraphs is 
obtained after partition of the informational graph. As a result, some burden in the 
FPGA field reconfiguration may be reduced and the RCS real performance at solving 
the problem may be increased. 

The RCS, designed for solving complicated problems, has to contain hundreds and 
thousands of the FPGAs of large-scale integration, combined in the computational 
field. It is clear, that placing of such number of the FPGAs on a single circuit board is 
impossible. This problem can be solved by using a principle of modular design of the 
RCS computational field on the base of unified basic modules. Basic module is a 
board which contains a fragment of the FPGA computational field and auxiliary 
elements such as intermodule data exchange interfaces, distributed memory blocks, 
secondary power units, synchronization subsystem, control nodes, network interfaces, 
etc. Basic module is a small-sized RCS, which is able, along with a personal 
computer, to solve user problems. Several basic modules may be united in a single 
RCS with the needed performance. Generalized structure of the RCS basic module is 
given in Fig. 2. 

The main computational abilities of the basic module are concentrated in its 
computational field, which contains a set of large-scale integration FPGAs. 
Distributed memory blocks are implemented on the base of standard chips SRAM or 
SDRAM of the needed capacity and transfer rate. Control of the basic module 
resources is performed by basic module controller (BMC). Such procedures as initial 
data loading and result data unloading, loading fragments of parallel applied programs 
into distributed memory controllers are also realized by the BMC. 
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Fig. 2. Structure of the RCS basic module 

The FPGA connections within the computational field are to provide high data 
transfer rate between parts of computational structures placed in other microchips of 
the computational structure multichip implementation. Therefore connections 
between the FPGAs have a minimum length and are implemented using the LVDS or 
RocketIO technologies. 

Advantages of high speed interfaces are the following: low power consumption of 
output cascades, low level of electromagnetic radiation, non-susceptibility to 
common-mode electromagnetic radiation interference and hardware support of high 
rate data transfer in modern FPGAs. Each line of the high speed interface is a pair of 
differential strip conductors connected to special pins of microchips. The data transfer 
rate for each two-wire transmission line depends on the implementation and is up to 5 
Gbit/sec. A detailed analysis of the general principles of RCS organization and 
functioning is given in [1, 2, 3]. 

2   Examples of the RCS Implementation 

Some types of the RCS basic modules (BM), designed in Kalyaev Scientific Research 
Institute of Multiprocessor Computer Systems of Southern Federal University and 
Scientific Research Centre of Supercomputers and Neurocomputers (SRI MCS SFU, 
Taganrog, Russia), are given in Fig.3. 

A family of the RCSs of various performance – from 50 Gflops (16 Virtex-5 
FGPAs) to 6 Gflops (1280 Virtex-5 FPGAs) – was designed on the base of BM 16V5-
75 [3, 9]. 
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Fig. 3. The RCS basic modules 

RCS-5, the representative of the RCS family, contains five 19’ ST-1R racks. RCS-
1R contains one 19’ ST-1R rack. Each rack contains four blocks RCS-0.2-CB 
designed according to “Euromechanics” 6U standard. Each block may contain up to 
four basic modules 16V5-75 with peak performance up to 200 Gflops each for single 
precision data. Connections within the computational field 16V5-75 are implemented 
according to the LVDS standard and provide total data transfer rate over 3 Tbit/sec at 
frequency of 1200 MHz. 

In 2010 specialists of SRI MCS SFU designed modular scalable RCS with 
performance of 20 Tflops. The RCS is placed in 19’ rack and contains 1536 FPGAs 
Virtex-5. The RCS is designed on the base of the BM 16V5-1250R with performance 
of 250 Gflops. High speed LVDS channels connect all basic modules into a unified 
computational resource. 

Four basic modules 16V5-1250R are placed in a block Orion-5, designed 
according to “Euromechanics” 1U standard. All FPGA chips of the computational 
field of the basic module 16V5-1250R have LVDS channels for computational field 
expansion in contrast to the basic module 16V5-75, which has only four of sixteen 
chips with expansion ability. This distinction provides high data exchange rate 
between basic modules of the block Orion-5. 

Real performance of RCS-0.2-CB and Orion-5 at solving problems of various 
classes, such as digital signals processing, linear algebra and mathematical physics, 
are given in the table 1. 

Table 1. Performance of RCS-0.2-CB and Orion -5 

Tasks DSP, Gflops Linear algebra, Gflops Mathematical physics, Gflops 
RCS-0.2-CB 647.7 423.2 535.2 
Orion-5 809.6 528.7 669.0 
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Values of the table 1 show that the computational blocks Orion-5 and RCS-0.2-CB 
have almost equal computational field resources, but Orion-5 has higher performance. 
This is explained by high capacity of the channels, which connect computational 
fields of basic modules, and by larger number of distributed memory channels 
connected to the computational field: 80 channels in RCS-0.2-CB and 128 channels in 
Orion-5. 

Values of performance per unit volume of these two blocks are rather different. For 
Orion-5 this value is higher because it has more rational design. Volume of Orion-5 is 
18% from total volume of RCS-0.2-CB or 32% from its computational part. Table 2 
contains values of specific performance of RCS-0.2-CB and Orion-5 at solving 
problems using single precision floating-point data. High specific performance of 
Orion-5 is very important for design of multirack high performance RCSs. 

Table 2. Specific performance of the blocks  

Performance General problems, Gflops/dm3 
RCS-0.2-CB 16.7 

Orion-5 64.9 

 
Orion-5 and the rack ST-1R have no external high rate LVDS-channels for 

resource expansion of the computational fields. Performance of the systems which 
consist of the blocks Orion-5 and the racks ST-1R may be increased by using network 
technologies with the help of Ethernet channels, as it is made in RCS-5 [2, 3, 9]. 

At the beginning of 2011 scientists of SRI MCS SFU have produced the RCSs of 
new generation, which are created according to the principles of open scalable 
architecture and consist of computational modules, designed on the base of Virtex-6 
FPGAs. The circuit boards are basic components of two perspective computational 
modules Saiph and Rigel, named after the stars of constellation of the Orion. Table 3 
contains specifications of the circuit boards of Saiph (6U standard) and Rigel (1U 
standard), intended for placing into a standard 19” computational rack, which is a 
base component of super high-performance FPGA-based complexes.  

Table 3. Specifications of the circuit boards of the computational modules  

Circuit board 
of 

computational 
module 

Number 
of the 

FPGAs 

FPGA 
type 

Number of 
equivalent 

gates in one 
FPGA, 
million 

Interface and rate 
of data exchange 

between the 
modules, Gbit/sec 

Power 
consumption, 

Watt 

Orion-5 16 Virtex 5 11 LVDS, 1.2 250 
Saiph 8 Virtex 6 24 Gigabit Ethernet, 1 300 
Rigel 8 Virtex 6 24 Gigabit Ethernet, 1 300 

 
Owing to the Virtex-6 FPGAs, used as an element base of Saiph and Rigel, 

performance of the computational modules may be increased in 1.5-2 times in 
comparison with Orion-5, which was designed on the base of the Virtex-5 FPGAs. At 
the same time price of the computational modules remains unchangeable. Hence, the 
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designed computational modules of the new generation may be considered as the 
most perspective for design of the RCSs of various architectures and configurations. 
Engineering characteristics, such as specific performance, power effectiveness, etc., 
are considerable advantages of the modules.  

Table 4 contains specifications and values of peak performance of considered 
computational modules and racks, which use the modules as computational 
components. Performance of modules and racks was estimated during processing of 
data with single and double precision, represented in IEEE-754 format.  

Table 4. Performance of the computational modules and racks 

Name of 
computational 

module 

Performance of 
computational module 

(Pi32/Pi64), Gflops 

Number of 
computational 

modules in a 19” 
rack 

Performance of 
rack (Pi32/Pi64), 

Tflops 

Orion-5 1000/340 24 24/8.1 
Saiph 1600/500 6 9/3 
Rigel 1600/500 24-36 34.5 – 51.8 

 
Table 5 contains values of computational modules performance, obtained during 

solving problems of mathematical physics with single precision floating-point data. 

Table 5. Performance of the computational modules 

Name of computational module Mathematical physics, floating 
point arithmetic, Tflops 

Orion-5 1/0.34 
Saiph 1.6/0.5 
Rigel 1.6/0.5 

 
Table 6 contains values of total data transfer rate between the FPGAs and 

distributed memory units, and between the FPGAs of different computational 
modules.  

Table 6. Data transfer rate 

Name of 
computational 

module 

With 
distributed 

memory units 
(Gbit/sec) 

Between the 
FPGAs of 

computational field 
(Tbit/sec) 

With other 
computational modules 

(Tbit/sec) 

Orion-5 12.8 1.2 1.2 
Saiph 12.8 1.0 1.0 
Rigel 12.8 1.0 1.0 

 
In comparison with the RCS Orion-5, computational modules of new generation 

Saiph and Rigel, designed on the base of Virtex-6 FPGAs, may be used as basic 
components of new computer systems. At the same time the computational modules 
may be used as standalone systems or as accelerators of the IBM PC. 
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3   Reconfigurable Computer Systems Programming 

Process of software development for the RCS differs a lot from that for multiprocessor 
computer systems with cluster architecture. Software development for the RCS may be 
divided into two parts: structural programming and procedural programming. The 
results of structural programming are computational structures within the field of the 
FPGA logical cells, which are required for calculations. The sense of procedural 
programming is very similar to traditional programming and consists in creation of 
computational process in the RCS. Structural programming of the FPGA computational 
field is the most difficult for the RCS programmer, because traditional programming 
consists only in creation of computational process based on fixed hardware. For 
programming of computational structures, designed on the base of the FPGAs, the 
programmer needs quite different skills – skills of a circuit engineer. 

A special software complex for applied program development helps to make the 
RCS programming more simple. Using this complex, software programmer can 
develop applications without any special knowledge in area of the FPGA circuit 
design [1, 3, 10]. The software complex allows: 

- to program structural and procedural components using high level programming 
language COLAMO; 

- to develop and to modify computational structures for applications without high 
qualified circuit engineer; 

- to provide applications portability for the RCSs with various architectures; 
- scaling of applications at resource extension; 
- remote usage and monitoring of the RCS computational resources. 
According to functions the software complex may be divided into two parts: 
- tools for application development; 
- tools for the RCS computational resource control and administration. 

The tools for application development contain: integrated development environment 
Argus IDE with support of Argus and COLAMO programming languages; translator of 
the RCS high level programming language COLAMO; translator of Argus assembler 
language; development environment of circuit solutions Fire!Constructor for synthesis 
of scalable parallel-pipeline structures, which is based on IP-cores library (library of 
computational structures and interfaces). 

A general structure of the RCS application development is given in Fig. 4. 
Both structural and procedural components of the application are developed with 

the help of high level programming language COLAMO, which also allows to create 
and to modify computational structures of the application without involving high 
qualified circuit engineer. Applications are portable to the RCSs of various 
architectures owing to libraries of descriptions of basic modules, blocks, the RCSs 
(the RCS passport). 

The language contains no explicit forms of parallelism description. The solving 
problem is parallelized by means of access to variables and by indexing of array 
elements. Conflicts of concurrent reading and writing from/into memory cells within the 
current cadre may be eliminated by means of widely-used rule the only substitution, 
according to which a variable stored in memory may be assigned a value only once 
within the cadre. 
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Owing to implicit description of parallelism, defined by access type, granularity of 
program parallelism may be easily controlled on level of data structures description. 
In addition, application programmer may easily create concise descriptions of various 
types of parallelism. 

 

Fig. 4. General structure of the RCS application development 

There are two base methods of data access: parallel access defined by type 
“Vector” and sequential access defined by type “Stream”. Figure 5 shows programs 
with different declarations of types of parallelism and graphs of the synthesized 
computing structures. 

Access type “Stream” points out sequential processing of elements of one-
dimensional array. Owing to access type “Vector” one-dimensional array elements 
may be processed concurrently. 

Each dimension of multidimensional arrays may have sequential or parallel access, 
defined by key word Stream or Vector, respectively. 



 High-Performance Reconfigurable Computer Systems 281 

The result of COLAMO translator is four components of parallel application: 
control, procedural, stream and structural. 

Control component is translated into Pascal language and is executed in master 
controllers, which, depending on the RCS hardware platform, are contained in basic 
modules or/and computational blocks. Control component provides loading of 
configuration of computational FPGAs, initial data loading and results unloading 
from distributed memory of computational fields. It also provides data exchange 
between computational blocks or basics modules. 

 
VAR A,B,C: Integer [10 : Vector] 
Mem; 
VAR I : Number; 

CADR SummaVector; 

     For I := 0 to 9 do 

         C[I] :=A[I]+B[I];  

ENDCADR; 

VAR A,B,C : Integer [10 : Stream] Mem; 
VAR I : Number; 

CADR SummaStream; 

     For I := 0 to 9 do 

         C[I] :=A[I]+B[I];  

ENDCADR; 

 

a) 

 

. .

A[0]

B[0]

A[1] A[0]

B[1] B[0]

C[0] C[1] C[9]

. . .

.

. . . 

 

 

 

b) 

Fig. 5. Parallel and sequential addition of arrays 

Procedural and stream components are translated into Argus assembler language. 
Like control component, both of these components are elements of parallel 
application. Procedural and stream components are executed by distributed memory 
controllers, which specify the sequence of cadr execution and create parallel data 
flows in cadr computational structures. 

One of the most interesting features of COLAMO translator is a function of 
extraction of structural component from COLAMO-application. The translator 
generates structural component in object form, which describes an informational 
graph of calculations in a cadr. Using this object form, the development environment 
of scalable circuit solutions Fire!Constructor synthesizes a computational structure for 
all FPGAs of the computational field. 

The environment Fire!Constructor is completely new software product, which has 
no analogues in the world. Initial data for Fire!Constructor are the following: 

– structural component of COLAMO-application in object form, generated by the 
COLAMO-translator; 

– library of computational structures and interfaces (the IP-cores), used for 
informational graph mapping on the RCS hardware. The IP-cores of computational 
structures and interfaces are designed by circuit engineers during the RCS design and 
creation. Then the VHDL-descriptions of the IP-cores are included into the library 
which is used by Fire!Constructor; 
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– library of descriptions of basic modules, blocks and the RCS (the RCS passport). 
Using the RSC passport library, Fire!Constructor generates platform-independent 
multichip structures within the FPGA computational fields of basic modules, blocks 
and the RCS racks, including heterogeneous RCSs, which consist of various basic 
modules and blocks. 

Fire!Constructor automatically synchronizes data flows within a multichip 
implementation of parallel-pipeline cadr computational structure [11-14] according to 
features of the RCS computational fields: number and types of connections between 
the FPGAs of basic modules and connections between computational fields of basic 
modules, blocks and racks. Fire!Constructor generates the following result 
information for each FPGA of the RCS computational field: 

– the VHDL-description (*.vhd file) of fragment of cadr computational structure 
within the FPGA; 

– information of correspondence (*.ucf) between logical names of external signals 
of computational structure fragment and pins of the FPGA. 

Using result information, obtained from Fire!Constructor, Xilinx ISE generates 
load configuration files (*.bit) for all FPGAs of the computational field. 

For the RCS programming all configuration files must be loaded into the FPGAs of 
the computational field and all components of the parallel application must be loaded 
into master controllers and distributed memory controllers. 

The software complex allows application programmer to develop effective 
applications for the RCS for solving problems from various problem areas and 
provides easy programming and automatic transfer of structural solution from one 
RCS architecture into another. Usage of software complex reduces cost (in 2-3 times) 
and time (in 3-5 times) of application development in comparison with traditional 
method, when the RCS computational structure is designed by a circuit engineer. 

4   Conclusions 

Reconfigurable computer systems, designed on the base of the FPGAs, are a new 
direction of high-performance technique development. In contrast to cluster 
supercomputers the RCSs allow to create, within basic architecture, virtual special-
purpose calculators with structure similar to the structure of the solving problem. This 
provides high effectiveness of calculations and almost linear performance growth at 
computational resource expansion. 

General-purpose architecture of the RCSs, based on the FPGA computational 
fields, which can be reprogrammed according to the structure of the solving problem, 
gives wide possibilities of usage of the RCSs in the problem areas, which require: 

- highly effective computer facilities, like special-purpose computer systems; 
- ability of solving problems from various problem areas. 

The RCSs with general-purpose basic architecture and ability of architecture 
reconfiguring entirely satisfy these requirements. 
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Abstract. In this paper, we present CacheVisor – a toolset for visualizing the 
behavior of shared caches in multicore and multithreaded processors. 
CacheVisor uses the memory access traces generated by the execution-driven 
processor simulation to graphically depict the cache sharing dynamics among 
applications that concurrently use the cache. We present the implementation of 
CacheVisor and describe how it can be used in computer architecture research 
and education. The public release of CacheVisor is planned in the near future. 

1   Introduction 

Microprocessor design industry has recently undergone a fundamental transition from 
single-core to multicore architectures [1,2,3,4]. While current implementations of 
multicore chips include a modest number of cores, various sources such as Intel and 
Berkeley predict hundred [2] or even thousand [1] of cores per chip in the future. In 
fact, doubling of the number of cores per chip every 18 months is dubbed by some 
researchers as the new Moore’s Law [1]. In addition, each core often support 
Simultaneous Multithreading (SMT), allowing multiple programs to execute 
concurrently. The multicore revolution has shifted the focus of the research 
community from the individual core designs (the cores are rapidly becoming 
commodities) to the design of shared cache hierarchies and the memory subsystem 
[1,2,3,4]. 

The optimal utilization of the shared cache hierarchies in SMT and multicore 
processors is critical to the performance of these emerging systems. Most of the 
existing research on this topic is based on empirical analysis of cycle-accurate 
simulation results, generated mainly in the form of various “average-case” statistics 
[8,9]. Typically, a benchmarking program of interest (or its representative sample of 
several hundred million instructions) is simulated, and average performance estimates 
are computed. For caches, these can be in form of cache hit rates, MPKI (Misses per 
Kilo Instruction), cache utilization and so on. These statistics are then used to guide 
the design decisions and implement possible performance optimizations. 
Unfortunately, average values provide little insight into the dynamic behavior of the 
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cache memory system, and therefore they are of limited use for many important 
studies, such as investigating dynamic adaptation of caches, or dynamic sharing of 
cache resources among competing applications (which is the main focus of this 
paper). As a result, many of the proposed cache optimizations are “ad-hoc” in nature 
in that they are based on the limited observations of the cache statistics. Better cache 
sharing algorithms could be developed if the designers had an opportunity to observe 
the cache sharing patterns in real time, as the program executes. 

To address this issue and help the processor designers better understand the 
behavior of shared caches in multicore and multithreaded systems, we propose to 
augment the existing state-of-the-art cycle-accurate processor simulators with the 
visualization backend to enable visual introspection of the memory system activities 
in real time. In this paper, we demonstrate the application of this approach to the 
simulation of the cache hierarchy in multithreaded and multicore processors.  
Specifically, we show how the new visualization environment (called CacheVisor in 
the rest of the paper) can track the dynamic cache sharing between multiple 
applications co-executing on a multicore or multithreaded processor. We developed 
CacheVisor on top of M-Sim simulator [5]. M-Sim (publicly available at http:// 
www.cs.binghamton.edu/~msim) is an extension of a widely-used Simplescalar 
simulator that supports SMT and multicore simulations. 

2   CacheVisor Implementation 

In general, two approaches can be used for interfacing the output of the cycle-accurate 
processor and cache simulator with the visualization back-end. 

Offline Approach. In this approach, the relevant simulation results and statistics are 
first generated and saved into a trace file. Then, the trace file is read by the visualizer. 
Here, the visualizer is essentially decoupled from the main simulation engine and can 
be supplied as an independent module. All that is needed is a clear interface to the 
trace file. The limitation of this approach is that the amount of information to be 
visualized is limited by the size of the trace file. 

Online Approach. In this case, the results of the simulation are generated every cycle 
(or every few cycles) and are immediately supplied to the visualizer that runs in 
parallel with the simulator. The visualizer then immediately depicts any changes of 
the resource usage and in other relevant statistics. This approach couples the 
visualizer and the simulator more tightly and they are supplied in a unified package. 

Both approaches have their advantages and limitations. While the online approach 
avoids complications associated with storing and retrieving simulation traces, the 
offline approach requires minimal synchronization between the components and is 
therefore easier to implement. In addition, decoupling of the visualizer code from the 
main simulator code also makes the visualizer more portable to other architectures 
and simulators. The main problem with offline approach is a large size of the trace 
file, as well as the performance of the visualizer, since it needs to handle considerable 
amounts of trace information. 

The current version of CacheVisor was designed using the offline approach. In this 
design, the entire visualization system is separated into two parts: cache statistics 
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collection module and standalone visualizer. The cache statistics collection module is 
a piece of code embedded in M-Sim simulator, which provides basic facilities for 
collecting information for every cache event happening during the simulation and 
storing the information about this event into a trace file. While the implementation of 
the cache statistics collection module depends significantly on a particular simulator, 
CacheVisor itself is not tied up to a specific simulator; it uses a fairly simple and 
portable format for storing the data associated with cache access events.  

The general architecture of CacheVisor implemented using offline approach is 
shown in Figure 1. As the cache accesses occur during the simulation, the cache 
statistics collection module tracks these accesses. After the cache event occurs, the 
statistics collection module checks the type of the event (hit or miss), the id of the 
application that is making the request, the current state of the accessed cache line, and 
makes the decision of whether or not to write the information about this particular 
access into a trace file. After the completion of the simulation, the visualizer simply 
works with the created trace file without using the simulator. Some significant 
filtering of the events can be done in this step. For example, to visualize the cache 
capacity sharing between two applications, it is sufficient to only capture the accesses 
where a cache miss by one thread evicts the cache line currently owned by another 
thread. This is the only scenario that redistributes the cache space between the two 
threads. In all other cases, such as when a thread hits in the cache or it evicts another 
cache line that it already owns, the number of cache lines allocated to each thread 
does not change. Therefore, those events are insignificant for the visualization.  

 

Fig. 1. Interaction of CacheVisor and M-Sim using the trace file 

The trace file read by CacheVisor is generated in text format, making the trace file 
more flexible, easy to access and edit. The Trace file has the XML-like header, which 
contains all necessary information of simulator’s model configuration. XML-based 
header allows us to make configuration information more detailed if necessary, by 
adding additional parameters, without losing compatibility with the older format or 
corrupting proper file structure. The main trace section, which is located right after 
the header, describes each relevant cache event encountered during simulation. 
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Each cache access event is presented as a new line. Parameters of the cache events 
are encoded by one or two characters, the number of these parameters could easily be 
extended, depending on the required level of details. The structure of the trace section 
is presented in the figure below. 

 

Fig. 2. An example of a trace section in a trace file from a real benchmark execution 

Each line of the trace section consists of a set of records with the following 
structure: <name>:<value>. The <name> field is comprised of one or two 
characters,  showing the type of the parameter being considered.  The <value> field 
in each record can be expressed using either textual or numerical representation. The 
collection of possible values constitute the trace section dictionary. The trace section 
dictionary is as follows: 

n — name of the cache being accessed. Here, we can distinguish between the IL1 
(level 1 instruction cache), DL1 (level 1 data cache), and UL2 (unified 
instruction/data L2 cache) 
e — type of event (cache miss or cache hit). 
c — cycle count at the time of event. 
s — cache set number being accessed. 
t — tag of the address . 
id — ID of the thread, which generated the respective cache access. 

For example, the first line shown in Figure 2 is interpreted in the following manner. 
During simulation cycle 2284678, an application running on core 0 with thread 
context id of 1 performed a cache access to set number 15 of the D-L1 cache. The 
access resulted in a cache miss and the tag part of the address was 5242991. 
Essentially, CacheVisor reads the records of this nature from the trace file and 
performs cache visualization based on this information. 

The use of offline approach provides more opportunities for the data analysis of 
each simulation cycle. Specifically, since all necessary information is stored in a file, 
visualizer’s state can be scrolled both forward and backward, as shown in Figure 3(a), 
which depicts the graphical user interface (GUI) of CacheVisor. This provides 
additional opportunities for observing the state of the shared cache at any time. Figure 
3(b) shows an example of a shared cache snapshot, as depicted by CacheVisor. Here, 
different colors are used to distinguish the cache blocks owned by different threads 
that share the cache. 
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(a) (b) 

Fig. 3. CacheVisor Framework: (a) GUI and (b) an example, showing cache utilization by two 
threads on Level 1 data cache 

3   Using CacheVisor in Research and Education 

CacheVisor tool exemplifies the application of visualization in computer architecture 
research. In particular, researchers can utilize CacheVisor (or similar tools) for better 
understanding the dynamics of shared caches and design better cache sharing 
algorithms based on this insight. Naturally, CacheVisor can and should be used in 
undergraduate and graduate-level computer architecture courses to illustrate the 
course material covering cache memory systems. In fact, our future plans include 
creating a web interface to enable remote invocation of CacheVisor directly from the 
web browser. Of course, more detailed information about the memory addresses, 
cycle counts, and other statistics can be presented in the CacheVisor’s window if it is 
used for educational purposes. 

Similar framework can also be applied to the rest of the microprocessor datapath. 
For example, one can visualize the utilization of various processor queues (reorder 
buffer, issue queue, load-store queue) to better understand and alleviate resource 
bottlenecks during the program execution. In addition, it is also possible to visualize 
power modeling, both within the processor and within the memory subsystem. Our 
immediate future work involves augmentation of CacheVisor with power modeling 
and visualization capabilities. 
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4   Concluding Remarks 

In this paper we presented CacheVisor - a toolset that supports detailed visualization 
of modern processor caches. CacheVisor is driven by the results of the cycle-accurate  
cache simulator, but the visualization engine is well decoupled from the  simulator to 
promote flexibility and portability of the design.  CacheVisor can be used to augment 
the existing simulators in various studies, such as for better understanding of the 
cache sharing dynamics for shared caches in multithreaded and multicore processors. 
We also outlined other possible usages of CacheVisor for research as well as 
education. The public release of CacheVisor is planned in the near future. 
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Abstract. The LuNA library of parallel numerical fragmented subrou-
tines is now under development. It is aimed at automated treatment
of a range of important and stubborn properties of numerical subrou-
tines. The method of algorithm and program fragmentation is used. The
library is being developed with the LuNA fragmented programming sys-
tem. It provides all the necessary properties of subroutines and their high
portability.

1 Introduction

Libraries of standard subroutines play an important role in the sequential imple-
mentation of numerical models. The development of similar libraries of parallel
numerical subroutines is faces with serious difficulties. The problems arisen are
caused by the necessity to automatically provide the dynamic properties of ap-
plication parallel subroutines, such as dynamic tunability to all the available
resources of a computer system in the course of execution: internode data trans-
fers in parallel with the program execution to reduce overhead, dynamic load
balancing, etc. Organization of library subroutines and execution of their calls
from sequential and/or parallel application programs should be made in such a
way that to avoid the necessity to program the dynamic properties.

There is also another range of important library subroutines properties that
should be provided, too. Firstly, a subroutine should contain a non-changeable
algorithm description. The algorithm representation should not be changed if the
library in question is used on another multicomputer. Secondly, all the subroutine
transformations, that need to be done to port the library to a new multicom-
puter, should be concentrated in a system component(s), but not in the text of
a subroutine for a better portability of the library. Thirdly, the accumulated
fund of algorithms and programs should be possible to use in the process of the
library creation, especially, the program codes. These properties of the library
subroutines will provide the cumulative effect of the subroutine use.

Most of today’s parallel libraries do not separate an algorithm description
from its implementation in a certain architecture [1,2,3,4,5]. The library sub-
routines are efficiently operating in a certain multicomputer environment, and a
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serious effort is required for porting them to a new one. In a number of projects,
Directed Acyclic Graph (DAG) [5,6,7,8] is used for an algorithm representa-
tion. In the PLASMA library [5], the DAG representation is used only to repre-
sent algorithms with required properties, and is hardcoded into the subroutines.
Some efforts to separate an algorithm and its implementation were made in the
DPLASMA library [6], which is now still under the development. In the SMP
Superscalar programming environment [7], the DAG is dynamically generated in
the course of execution and later used to make some runtime scheduling. How-
ever, this approach does not provide potentialities for the static program analysis
before runtime. Another example is Uintah framework [8], where the DAG rep-
resentation of a certain algorithm is used for allowing the runtime system to
implement some dynamic properties.

Some promising frameworks [9,10] automatically provide a range of dynamic
properties of parallel programs. Their drawback is the same: an algorithm is
hidden inside the program code that closes potentialities for the static program
analysis.

In our effort to develop the LuNA library of parallel numerical subroutines,
that satisfies all the above requirements, we are basing on the idea of algorithms
and programs fragmentation [11,12], which in turn is based on the method of
parallel program synthesis [13]. The idea in question was embodied into the
LuNA fragmented programming system [14]. The algorithms and programs frag-
mentation was exploited in many publications [11,12,14,15]. A range of numeri-
cal algorithms were fragmented including such a complex numerical method as
Particle-In-Cell (PIC) [15].

2 Introduction to Fragmented Programming

The fragmented program (FP) development includes the following stages:

1. algorithm specification,
2. algorithm fragmentation,
3. FP creation: resources allocation and control development for executing an

algorithm on a certain hardware.

The fragmented approach to parallel program creation is demonstrated on a
matrices multiplication subroutine example.

Algorithm specification. The following sequential algorithm of the square
matrices multiplication is used:

C = AB, A = (ai,j)i,j=1,N , B = (bi,j)i,j=1,N , C = (ci,j)i,j=1,N ,

ci,j =
N∑

k=1

ai,kbk,j , i, j, k = 1, N.
(1)

Algorithm fragmentation. The first step of the fragmented algorithm de-
velopment is data fragmentation. Most of numerical algorithms have a regular
structure of data and computations, which can be naturally divided into parts.
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Division of algorithm data into parts is called data fragmentation. For exam-
ple, if the initial algorithm data structure is an N-dimensional array, then it
can be fragmented into N-dimensional sub-arrays. So, a fragmented algorithm
will process the N-dimensional array of subarrays, whose entries are called data
fragments.

In the fragmented matrices multiplication algorithm, the square matrices A,
B and C of N × N size are divided into submatrices of M × M size, which
are data fragments (Figure 1). For simplicity K = N/M is considered to be an
integer. The type of a data fragment of the example is denoted as matrix:

matrix ≡ array [1..M, 1..M] of real.

Fig. 1. 2D array fragmentation example

So, the set of data fragments is as follows:

DF =
{
Ai,j |i, j = 1, K

} ∪ {Bi,j |i, j = 1, K
}∪

∪{Ci,j |i, j = 1, K
} ∪ {Dk

i,j |i, j, k = 1, K
}

,

where Ai,j , Bi,j , Ci,j , Dk
i,j : matrix.

Here Ai,j , Bi,j , Ci,j and Dk
i,j are the names of data fragments. Ai,j , in partic-

ular, denotes a submatrix in the i-th row and the j-th column of K×K array of
data fragments. In Figure 1, matrix A fragmentation for K = 4 is presented. The
output data fragments Ci,j are computed by the following fragmented algorithm:

1) Dk
i,j = Ai,kBk,j ,

2) Ci,j =
N∑

k=1

Dk
i,j .

(2)

The product Dk
i,j = Ai,kBk,j is a partial sum of Ci,j . The data fragments have the

same structure as the initial data structure. Thus, the matrices multiplication
can be implemented by a ready-made sequential procedure, for example, the
BLAS subroutine SGEMM. Algorithm (2) is defined by a set of functional terms,
depicted in Fig. 2. The operations of the functional terms are called fragments
of computation (FoC).

The FP creation. In order to execute the above algorithm on a multicom-
puter, resources should be assigned to all the data fragments and the FoCs, the
order of the FoCs execution should be defined and some optimizations can be
done. The FP is a fragmented algorithm supplemented with additional informa-
tion needed for its execution.
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Fig. 2. Functional terms defining the fragmented matrices multiplication algorithm

The LuNA fragmented programming system was implemented as a compiler
and a runtime system. At the first stage of FP processing, the compiler converts
the FP code to the internal form, performing some global optimizations. The
compiler makes the static resources assignment for those data fragments and
FoCs, for which it may be done, and imposes some restrictions on the order of
FoCs execution and further dynamic resources allocation. At the second stage
of FP processing, the runtime system executes the operations of the functional
terms, defining the fragmented algorithm (2). The runtime system dynamically
allocates multicomputer resources for the rest of data fragments and FoCs and
executes all the FoCs in a certain permissible order that does not contradict the
information dependencies between FoCs, imposed by the functional terms of the
algorithm definition, and the compiler imposed restrictions.

3 The LuNA Subroutines

The FP written in LuNA language does not actually define explicitly a set of
functional terms. A fragmented algorithm in LuNA language is defined as:

– DF – a set of data fragments,
– CF – a set of FoCs,
– ρ – partial order relation on a set of FoCs.

The sets of data fragments and FoCs and the partial order relation on a set
of FoCs make possible to dynamically construct the functional terms in the
course of execution. The order relation ρ includes data dependencies along with
other dependencies, added by a compiler at the stage of global optimization
and explicitly defined by the programmer. In the course of program execution,
each FoC is only once executed, whereas data fragments are multiple assignment
variables and denote memory locations. This is done intentionally in order to
help the runtime system to construct a high-quality resources allocation.

The LuNA FP is a fragmented algorithm with partially assigned resources.
The resources for some of data fragments and FoCs are to be dynamically allo-
cated. Such a program representation does not contain unnecessary dependencies
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between FoCs and allows many different ways of program execution. In what fol-
lows, several examples of fragmented library subroutines are presented.

3.1 Matrices Multiplication

Here the matrices multiplication fragmented algorithm (2) written in LuNA
language is presented.

df a[i,k] := block(4*M*M) | i=0..K-1, k=0..K-1;
df b[k,j] := block(4*M*M) | k=0..K-1, j=0..K-1;
df c[i,j] := block(4*M*M) | i=0..K-1, j=0..K-1;
df d[i,j,k] := block(4*M*M) | i=0..K-1, j=0..K-1, k=0..K-1;

The keyword df specifies the data fragments description:

DF =
{
ai,k|i = 0, K − 1, k = 0, K − 1

}∪
∪{bk,j |k = 0, K − 1, j = 0, K − 1

} ∪ {ci,j |i = 0, K − 1, j = 0, K − 1
}∪

∪{di,j,k|i = 0, K − 1, j = 0, K − 1, k = 0, K − 1
}

.

The data fragments ai,k and bk,j are input, the data fragments ci,j are output
of the FoC mul. For every data fragment the keyword block defines its size in
bytes, M and K being parameters of the algorithm.

cf initc[i,j] := proc_zero<M,M> (out: c[i,j])
| i=0..K-1, j=0..K-1;

cf mul[i,j,k] := proc_mmul<M,M,M> (in: a[i,k],b[k,j];
out: d[i,j,k]) | i=0..K-1, j=0..K-1, k=0..K-1;

cf sum[i,j,k] := proc_add<M,M> (in: d[i,j,k],c[i,j]; out: c[i,j])
| i=0..K-1, j=0..K-1, k=0..K-1;

The keyword cf specifies a set of FoCs:

CF =
{
initci,j|i = 0, K − 1, j = 0, K − 1

}∪
∪{muli,j,k|i = 0, K − 1, j = 0, K − 1, k = 0, K − 1

}∪
∪{sumi,j,k|i = 0, K − 1, j = 0, K − 1, k = 0, K − 1

}
.

For every FoC the corresponding procedure, implementing it, is declared as well
as parameters in the angle brackets. Input and output data fragments are de-
noted by the keywords in and out. For example, every FoC initc[i,j] for any
i = 0, K − 1 and j = 0, K − 1 is implemented by proc_zero procedure and pro-
duces one output data fragment c[i,j]. The procedures proc_zero, proc_mmul
and proc_add are ordinary sequential procedures written in C/C++. The pro-
cedure proc_zero fills the M ×M matrix with zero values, proc_mmul performs
M ×M matrices multiplication, and proc_add performs M ×M matrices sum-
mation.

initc[i,j] < sum[i,j,k] | i=0..K-1, j=0..K-1, k=0..K-1;
mul[i,j,k] < sum[i,j,k] | i=0..K-1, j=0..K-1, k=0..K-1;
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The partial order relation on a set of FoCs is defined as a set of pairs denoted
by a terminal symbol “less than”. Above, the FP denotes the following order
relation:

ρ =
{

(initci,j, sumi,j,k)|i = 0, K − 1, j = 0, K − 1, k = 0, K − 1
}∪

∪{(muli,j,k, sumi,j,k)|i = 0, K − 1, j = 0, K − 1, k = 0, K − 1
}

.

In every pair, the second FoC must start its execution not earlier than the first
one has finished its execution. The whole FP execution is finished when all the
started FoCs have been finished and no other FoC may start.

The above-presented LuNA FP is portable. It does not depend on the com-
puter architecture and can already be executed by the runtime system. The
partial order relation ρ defines a set of different ways of FP execution, some of
them being suitable and some being not. For example, the runtime system may
first execute all muli,j,k and then all sumi,j,k, so it would be necessary to hold
in memory all K×K×K data fragments di,j,k. But if for every pair i, j all FoCs
muli,j,k and sumi,j,k are inserted into the separate sets Si,j , then computing all
the FoCs from a certain Si,j , then all FoCs from another Si1,j1, and so on, it
would be necessary to hold only K data fragments di,j,k at any time for each
pair i, j.

In [14], the means of FP optimization in the LuNA system were presented.
They consist in a set of the programmer’s recommendations for resources allo-
cation and the order of FoCs execution:

– Definition of the priorities of choosing FoCs for execution.
– Definition of the groups of FoCs with Group Member First (GMF) strategy.

If any FoC of such a group started its execution, then all the FoCs within
this group should be started before the other FoCs. In the above example
of execution of the matrix multiplication program, the sets Si,j are groups
with GMF strategy.

– Definition of estimates of the computational complexity of FoCs.
– Definition of the binary neighborhood relation on a set of FoCs as a set of

pairs of FoCs. If two FoCs are defined as neighbors, then the runtime system
will try to locate them on the same or the neighboring cluster node.

Using the above recommendations, the programmer can provide the runtime
system with additional information about a desirable way of FP execution. The
recommendations contain no assumptions about the exact number of fragments
or resources and maintain FP portability. In addition, the programmer can use
the direct instructions in order to assign FoCs to particular processors and/or
to include additional elements into ρ in order to reduce the number of different
ways of the FP execution.

An appropriate way of execution for the FP of matrices multiplication can be
defined, for example, by strengthening the order relation and assigning FoCs to
the processors explicitly:
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initc[i,j].location = i * PE_COUNT / K | i=0..K-1, j=0..K-1;
mul[i,j,k].location = i * PE_COUNT / K
| i=0..K-1, j=0..K-1, k=0..K-1;

sum[i,j,k].location = i * PE_COUNT / K
| i=0..K-1, j=0..K-1, k=0..K-1;

mul[i,(i+j)%K,k] < mul[i,(i+j+1)%K,k]
| i=0..K-1, j=0..K-2, k=0..K-1;

Here the parallel matrices multiplication program on a line of computer nodes
is defined. The matrix A is distributed among computer nodes by rows, and
the distribution is fixed. The matrix B is distributed by columns, and these
data fragments are cyclically shifted from one node to another in the course of
computation (Fig. 3).

Fig. 3. Data fragments distribution for FP of matrices multiplication

3.2 LU-Factorization

Factorization of a square matrix A into the product of a lower triangular matrix
L and an upper triangular matrix U can be performed using the formulas:

li,j = ai,j −
j−1∑

k=1

li,kuk,j , ui,j =
1
li,i

[

ai,j −
i−1∑

k=1

li,kuk,j

]

,

where ai,j , li,j and ui,j are entries of the corresponding matrices A, L and U . The
LU-factorization fragmented algorithm written in LuNA language is as follows:

df A[i,j] := block(4*M*M) | i=0..K-1, j=0..K-1;

cf fd[i] := fd<M> (in: A[i,i]; out: A[i,i]) | i=0..K-1;
cf fl[j,i] := fl<M,M> (in: A[i,i],A[j,i]; out: A[j,i])
| i=0..K-1, j=i+1..K-1;

cf fu[i,k] := fu<M,M> (in: A[i,i],A[i,k]; out: A[i,k])
| i=0..K-1, k=i+1..K-1;

cf fg[i,j,k] := fg<M,M,M> (in: A[j,i],A[i,k],A[j,k];
out: A[j,k]) | i=0..K-1, j=i+1..K-1, k=i+1..K-1;
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fd[i] < fl[j,i] | i=0..K-1, j=i+1..K-1;
fd[i] < fu[i,k] | i=0..K-1, k=i+1..K-1;
fl[j,i] < fg[i,j,k] | i=0..K-1, j=i+1..K-1, k=i+1..K-1;
fu[i,k] < fg[i,j,k] | i=0..K-1, j=i+1..K-1, k=i+1..K-1;
fg[i,i+1,i+1] < fd[i+1] | i=0..K-2;
fg[i-1,j,i] < fl[j,i] | i=1..K-2, j=i+1..K-1;
fg[i-1,i,k] < fu[i,k] | i=1..K-2, k=i+1..K-1;
fg[i-1,j,k] < fg[i,j,k] | i=1..K-2, j=i+1..K-1, k=i+1..K-1;

The algorithm fragmentation is made in such a way in order to be able to
change the fragment size M up to 1 entry. The data fragments ai,j are input and
output for the FP, whereas a result obtained is written down into the initial ma-
trix location. The order of FoCs execution is depicted in Figure 4. All FoCs can be
divided into subsets by the index i. The first subset contains all FoCs with i = 1
(marked with 1, 2, . . . in Figure 4a), the second one contains all FoCs with i = 2
(marked with 2, 3, . . . in Figure 4a), and so on. Dependencies between FoCs inside
each subset are illustrated in Figure 4b. In addition, each FoC with the indices
i, j, k (i > 1) depends on the corresponding FoC with the indices i− 1, j, k.

(a) (b) (c)

Fig. 4. The order of FoCs execution for LU-factorization fragmented algorithm

An example of inefficient order of the FoCs execution is a sequential execution
of the above-mentioned subsets for i = 1, 2, 3, . . .. The FoCs from each subset
depend on one corresponding FoC FDi, so there would be a bottleneck for each
value i. The better way is to organize computations in a wave-like manner. The
wave of execution starts from i = j = k = 1 and is uniformly spread in all the
directions (Figure 4c). The following LuNA-code sets a proper way of execution
using the priorities:

fd[i].priority = 2*K | i=0..K-1;
fl[j,i].priority = 2*K-j-i | i=0..K-1, j=i+1..K-1;
fu[i,k].priority = 2*K-i-k | i=0..K-1, k=i+1..K-1;
fg[i,j,k].priority = 2*K-j-k | i=0..K-1, j=i+1..K-1, k=i+1..K-1;
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3.3 Computations on Regular Meshes

A wide class of numerical simulation problems are solved using iterative algo-
rithms on multidimensional regular meshes. Such a computation is organized as a
sequence of iterations, with all mesh nodes being processed. The order, in which
the mesh nodes are processed, varies from one application problem to another.
For example, for a certain problem on a rectangular mesh, there may be depen-
dencies between the mesh nodes along some axes and no dependencies along the
others. As a rule, the computation assigned to a given mesh node depends on
values in the neighboring mesh nodes from several preceding iterations.

An obvious way of an N-dimensional mesh fragmentation is its division into
N-dimensional submeshes of an equal size with intersections. The submeshes
are processed in the same order as entries of the initial mesh. In addition, an
exchange of the fragment borders should take place between the neighboring
mesh fragments after each iteration. The exchange is normally organized by the
intersection data fragments.

The algorithm below performs T steps of iterative computations on a 2D
regular N ×N mesh, which is defined as an array of data fragments X . For sim-
plicity of presentation, the mesh decomposition is made along one axis dividing
the initial mesh into K N ×M layers, where M = N/K (Fig. 5). Such a layer
is taken as a data fragment; X1 and X2 are data fragments to hold the border
values. Such an algorithm may be used, for example, for a 2D Poisson equation
solution by the Jacobi method.

const M = N / K;
const B = M+2;

df X [i,it] := block(8*N*B) | i=0..K-1, it=0..T;
df X1[i,it] := block(8*N) | i=1..K-1, it=0..T-1;
df X2[i,it] := block(8*N) | i=0..K-2, it=0..T-1;

cf step[i,it] := step<B,N,it>(in: X[i,it],F[i];
out: X[i,it+1],DX[i,it]) | i=0..K-1, it=0..T-1;

cf getb[i,it] := getbud<B,N,i,it>(in: X[i,it];
out: X1[i,it],X2[i,it]) | i=1..K-2, it=1..T-1;

cf getb[i,it] := getbu <B,N>(in: X[i,it]; out: X2[i,it])
| i=0, it=1..T-1;

cf getb[i,it] := getbd <B,N>(in: X[i,it]; out: X1[i,it])
| i=K-1, it=1..T-1;

cf setb[i,it] := setbud<B,N >(in: X[i,it],X2[i-1,it],X1[i+1,it];
out: X[i,it]) | i=1..K-2, it=1..T-1;

cf setb[i,it] := setbu<B,N>(in: X[i,it],X1[i+1,it];
out: X[i,it]) | i=0, it=1..T-1;

cf setb[i,it] := setbd<B,N>(in: X[i,it],X2[i-1,it];
out: X[i,it]) | i=K-1, it=1..T-1;



The LuNA Library of Parallel Numerical Fragmented Subroutines 299

step[i,it-1] < getb[i,it] | i=0..K-1, it=1..T-1;
step[i,it-1] < setb[i,it] | i=0..K-1, it=1..T-1;
getb[i-1,it] < setb[i,it] | i=1..K-1, it=1..T-1;
getb[i+1,it] < setb[i,it] | i=0..K-2, it=1..T-1;
setb[i,it] < step[i,it] | i=0..K-1, it=1..T-1;

Fig. 5. An example of mesh decomposition for K = 4

To help the runtime system to efficiently execute the algorithm, the program-
mer can provide such information as a neighborhood relation on a set of FoCs:

neighbors step[i,it], step[i+1,it] | i=0..K-2, it=0..T-1;

With such information, the runtime system will try to locate the neighboring
FoCs to the same or the neighboring computer nodes, distributing resources and
computations more efficiently.

4 Concluding Remarks

The fragmented approach to library numerical subroutines creation has been
presented. Examples of FPs that do not depend on the architecture of a multi-
computer are shown. A fragmented subroutine contains only the unchangeable
algorithm description. This allows the programmer not to pay attention to the
low-level implementation details and to program on a high level.

The algorithm fragmentation methodology. The methodology of the al-
gorithm fragmentation is still under development. However, the above examples
of the algorithm fragmentation allow us to state the following FP properties that
the programmer should strive to achieve:

– The initial data structure should be divided into data fragments that have
the same structure - a matrix should be divided into submatrices, a mesh
- into submeshes, a tree - into subtrees, etc. It will make possible to use a
ready-made sequential code or optimized library subroutines to implement
FoCs.
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– All the data fragments should have approximately the same size, and all
the FoCs should have approximately the same computational complexity for
both automatic and efficient resources allocation and dynamic load
balancing.

– The size of data fragments and computational complexity of FoCs should
be a parameter of a fragmented algorithm and should not depend on the
task size. In such a way, only the number of fragments will be changed when
the task size is changed and the same algorithms of control and resources
allocation can be used.

– The data fragments should form the same structure as initial data structure,
and the order of FoCs execution should be the same as the order of operations
in the initial algorithm. This property will allow changing the fragment size
(up to 1 entry).

The numerical algorithm fragmentation is not an easy task and often requires
an essential transformation of the initial algorithm [16].

The unified FP representation as sets of data fragments, FoCs and the or-
der ρ allows one to efficiently implement a runtime system, which automatically
provides all the dynamical program properties. The FP representation has no
unnecessary dependencies among FoCs and allows many ways of their execu-
tion, from which the LuNA system tries to choose the best one. In contrast to
the other parallel programming environments, the LuNA compiler analyzes the
whole program and makes all decisions that can be statically taken. The runtime
system, in its turn, makes the decisions dynamically, providing the dynamical
properties of a FP.

Future work. In the future, we are planning to accumulate and to ana-
lyze the experience gained in the numerical algorithms fragmentation and FP
development in order to create a unified methodology of numerical algorithms
fragmentation. Currently, the LuNA library contains most of BLAS fragmented
subroutines. The fragmentation of several LAPACK subroutines and operations
with sparse matrices is now under development. Our future plans are to include
into the library a set of essential components and frames for implementation
of widely used numerical methods, such as PIC-method, and to apply them for
implementation of a number of large-scale numerical problems.

References

1. Intel MKL library, http://software.intel.com/en-us/articles/intel-mkl/
2. NAG Parallel library, http://www.nag.com/numeric/numerical_libraries.asp
3. PETSc library, http://www.mcs.anl.gov/petsc/petsc-as/
4. NIST Sparse BLAS library, http://math.nist.gov/spblas/
5. PLASMA Library, http://icl.cs.utk.edu/plasma/
6. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T.,

Kurzak, J., Langou, J., Lemariner, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Distibuted Dense Numerical Linear Algebra Algorithms on Mas-
sively Parallel Architectures: DPLASMA. University of Tennessee Computer Sci-
ence Technical Report, UT-CS-10-660, September 15 (2010)

http://software.intel.com/en-us/articles/intel-mkl/
http://www.nag.com/numeric/numerical_libraries.asp
http://www.mcs.anl.gov/petsc/petsc-as/
http://math.nist.gov/spblas/
http://icl.cs.utk.edu/plasma/


The LuNA Library of Parallel Numerical Fragmented Subroutines 301

7. SMP Superscalar, http://www.bsc.es/smpsuperscalar
8. Berzins, M., Luitjens, J., Meng, Q., Harman, T., Wight, C.A., Peterson, J.R.: Uin-

tah - A Scalable Framework for Hazard Analysis. In: Proceedings of the Teragrid
2010 Conference, vol. (3) (2010)

9. Charm++, http://charm.cs.uiuc.edu/
10. ProActive, http://proactive.inria.fr/
11. Malyshkin, V.E., Sorokin, S.B., Chajuk, K.G.: Fragmentation of numerical algo-

rithms for the parallel subroutines library. In: Malyshkin, V. (ed.) PaCT 2009.
LNCS, vol. 5698, pp. 331–343. Springer, Heidelberg (2009)

12. Kireev, S., Malyshkin, V.: Fragmentation of Numerical Algorithms for Parallel
Subroutines Library. The Journal of Supercomputing 58(1) (2011)

13. Valkovskii V., Malyshkin V.: Parallel Program Synthesis on the Basis of Com-
putational Models. Novosibirsk, Nauka (1988) (in Russian. Sintez Parallel’nykh
Program i System na Vychislitel’nykh Modelyakh)

14. Malyshkin, V.E., Perepelkin, V.A.: Optimization of parallel execution of numerical
programs in luNA fragmented programming system. In: Hsu, C.-H., Malyshkin, V.
(eds.) MTPP 2010. LNCS, vol. 6083, pp. 1–10. Springer, Heidelberg (2010)

15. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of
Numerical Models on MIMD-Multicomputers. The Int. Journal on Future Gener-
ation Computer Systems 17(6), 755–765 (2001)

16. Terekhov, A.V.: Parallel Dichotomy Algorithm for solving tridiagonal system of
linear equations with multiple right-hand sides. Parallel Computing 36(8), 423–
438 (2010)

http://www.bsc.es/smpsuperscalar
http://charm.cs.uiuc.edu/
http://proactive.inria.fr/


PARMONC - A Software Library for Massively

Parallel Stochastic Simulation�

Mikhail Marchenko

The Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Prospekt Lavrentieva 6, 630090, Novosibirsk, Russia,

Novosibirsk State University,
Ul. Pirogova 2, 630090, Novosibirsk, Russia
Tel.: (383)330-77-21, Fax: (383) 330-87-83

mam@osmf.sscc.ru

Abstract. In this paper, the software library PARMONC that was de-
veloped for the massively parallel simulation by Monte Carlo method
on supercomputers is presented. The “core” of the library is a well
tested, fast and reliable long-period parallel random numbers genera-
tor. Routines from the PARMONC can be called in the user-supplied
programs written in C, C++ or in FORTRAN without explicit usage of
MPI instructions. Routines from the PARMONC automatically calculate
sample means of interest and the corresponding computation errors. A
computational load is automatically distributed among processors in an
optimal way. The routines enable resuming the simulation that was pre-
viously performed and automatically take into account its results. The
PARMONC is implemented on high-performance clusters of the Siberian
Supercomputer Center.

Keywords: Monte Carlo method, distributed stochastic simulation,
random number generator, parallel computation, supercomputers.

1 Introduction

It becomes a common point of view that probabilistic imitation models and
Monte Carlo method (stochastic simulation) will be widely used for computer-
aided simulation in the nearest future. There are a few reasons for such a predic-
tion. First of all, the use of probabilistic models is an adequate way to simulate
physical, chemical or biologic phenomena from “first principles”. On the other
hand, Monte Carlo methods, which realize probabilistic models, can be effec-
tively parallelized in the form of distributed computing. Therefore, a progress
in development and implementation of powerful supercomputers gives way to a
wide use of Monte Carlo method as a principal instrument for the computer-
aided simulation in many scientific areas (see, e.g., [1], [2]).

The main objective of this paper is to introduce PARMONC - a library of
easy-to-use programs that was implemented on high-performance clusters of the
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Siberian Supercomputer Center (http://www2.sscc.ru) and can also be used
in other supercomputer centers [3], [4].

The development of the PARMONC (an acronym for PARallel MONte Carlo)
is based on the library MONC that was implemented for a network of personal
computers [5]. The MONC was intensively used in the Department of Stochastic
Simulation in Physics of the Institute of Computational Mathematics and
Mathematical Geophysics of the SB RAS in Novosibirsk for a wide area of appli-
cations. Also, the MONC was actively applied in the Laboratory of Probability-
Theoretical Methods of the Omsk Branch of the Sobolev Institute of Mathematics
of the SB RAS to solve various problems in the population biology.

The main objectives of the library development are as follows:

– creation of a software tool suitable for the massively parallel stochastic sim-
ulation for a wide range of applications,

– creation of an easy-to-use software framework to parallelize stochastic sim-
ulation to be applied without knowledge of MPI language.

There are a number of publications and internet resources dedicated to the par-
allel random numbers generation (see, e.g., [6], [7], [8]). In comparison to other
parallel random number generators (RNGs), the one used for the PARMONC is
fairly fast, reliable and has an extremely long period. Also, this parallel RNG is
governed by a few parameters defined by the user. Using this generator, it ap-
pears possible to scale the stochastic simulation to sufficiently large (practically
infinite) number of processors (see Sections 2.4 and 3.5).

A number of publications are devoted to the development of software packages
for parallel computations with Monte Carlo method (see, e.g., [9], [10], [11]).
Different hardware and software platforms are reported in these publications.
In our opinion, the following features distinguish the PARMONC from other
software tools and make it an easy-to-use instrument for specialists in the field
of stochastic simulation:

– The only thing the user has to do in order to parallelize stochastic simulation
is to write in C, C++ or in FORTRAN a sequential subroutine to simulate
a single realization of a random object of interest and to pass its name to
the PARMONC routines (see Sections 2.3, 3.2 and 4).

– In his/her sequential code, he/she uses a PARMONC function, which imple-
ments a parallel RNG, in a usual and convenient way (see Sections 2.3, 2.4
and 3.3).

– In the course of simulation, the PARMONC periodically calculates and saves
in files the subtotal results of simulation and the corresponding computation
errors (see Sections 2.2, 3.2 and 4).

– The PARMONC provides an easy-to-use technique to resume stochastic sim-
ulation after its termination with automatic averaging of the results of the
previous simulation (see Sections 3.2 and 4).

http://www2.sscc.ru
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2 Background

2.1 Estimators of Interest in Stochastic Simulation

Initially, Monte Carlo method (or stochastic simulation) was developed to solve
problems of radiation transfer. In the last half of the 20-th century, the area
of its applications became much wider. Theory of stochastic representations for
solutions to equations of mathematical physics was developed. Using the the-
ory, the corresponding numerical stochastic estimators were drawn up. Efficient
algorithms of Monte Carlo method were developed in statistical physics (the
Metropolis method, the Ising model, e.g.), in the physical and chemical kinetics
(modeling multi-particle problems, solving the Boltzmann and Smoluchowski’s
equations, modeling the chemical reactions and phase transitions, etc.), the queu-
ing theory, financial mathematics, turbulence theory, mathematical biology, etc.

The stochastic simulation is thought to be numerical realization of stochastic
representation of a certain object in order to estimate its desired integral features
with the use of a law of large numbers [12], [13]. We assume that a functional of
interest ϕ ∈ R is represented as expectation of some random variable ζ:

ϕ ≈ Eζ,

provided that its variance Varζ is finite. In this case, one can evaluate the value
of Eζ using a sample mean:

Eζ ≈ ζ̄ = L−1
L∑

i=1

ζi (1)

where ζi are independent realizations of a random variable ζ. The value of ζ̄ is
called a stochastic estimator for ϕ.

One also needs to evaluate the second moment Eζ2 of the random variable

Eζ2 ≈ ξ̄ = L−1
L∑

i=1

ζ2
i

in order to estimate variance of a random variable ζ and its standard deviation

Varζ ≈ σ̄2 = ξ̄ − ζ̄2, (Varζ)0.5 ≈ σ̄.

In Monte Carlo methods [12], [13], a complex random variable is represented
as a function

ζ = ζ(α1, α2, . . . , αk), (2)

where α1, α2, . . . , αk are independent random variables called base random
numbers which have uniform distribution on the interval (0, 1). A sequence
of the random numbers {αk} is generated with the help of some deterministic
numerical algorithm called a random number generator (RNG). Usually,
iterative formulas are used [12], [13]:

αk+1 = f(αk), k = 0, 1, 2, . . .

where α0 is a fixed quantity.
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Thus, calculating the realizations ζi, i = 1, 2, . . . , L we in turn take base ran-
dom numbers from the RNG. So, to calculate the sample mean we need a finite
set of independent random numbers R = {α1, α2, . . . , αS}. We call a stochastic
experiment the process of calculating the sample mean ζ̄ using a particular set
of base random numbers R. Usually, R is a subsequence of the general sequence
{αk} of base random numbers. Using a different set R′ = {α′

1, α
′
2, . . . , α

′
S′} (or

a different subsequence) of the base random numbers that are independent of
the base random numbers from R, we finally obtain an independent value of the
sample mean. In other words, we carry out the stochastic experiment which is
independent of the first one.

A confidence interval of the confidence level λ for the expectation Eζ is defined
by the formula

λ = P(|ζ̄ − Eζ| ≤ γ(λ)(Varζ)0.5L−0.5) ≈ P(|ζ̄ − Eζ| ≤ γ(λ)σ̄L−0.5). (3)

According to Tables of a standard normal distribution, γ(λ) = 3 for λ = 0.997.
A value of an absolute (stochastic) error ε̄ of the stochastic estimator ζ̄ is
given by the formula

ε̄ = 3(Varζ)0.5L−0.5 ≈ 3σ̄L−0.5

and the value of a relative (stochastic) error is given by the formula

ρ̄ = ε̄/ζ̄ · 100%.

Let us extend the conception of realization of a random object. Assume that at
the same time the simulation gives different independent values. It is convenient
to represent them as a matrix [ζij ], 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. We will also call it
a realization (a realization of a random object). After averaging, the following
matrices are automatically calculated in the PARMONC:

– [ζ̄ij ] – a matrix of the sample means,
– [ε̄ij ] – a corresponding matrix of the absolute errors,
– [ρ̄ij ] – a corresponding matrix of the relative errors,
– [σ̄2

ij ] – a corresponding matrix of the sample variances.

Also, the following values are automatically calculated: ε̄max = maxi,j ε̄ij is
the upper bound for the entries of the matrix of the absolute errors; ρ̄max =
maxi,j ρ̄ij is the upper bound for the entries of the matrix of the relative errors;
σ̄2

max = maxi,j σ̄2
ij is the upper bound for the entries of the matrix of the sample

variances.
In many applications, the above-mentioned matrices and values give an ex-

haustive information about the stochastic simulation.

2.2 Parallelization of Stochastic Simulation

A problem arises when a computational cost of the estimator (or computa-
tional expenses for obtaining a desired level of the absolute/relative error) is too
large. On the average, the computational cost is proportional to the value

C(ζ) = τζVarζ,
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where τζ is a mean computer time to simulate a single realization of ζ. Also, it is
clear from formula (3) that the sample volume L needed for obtaining a desired
level of accuracy is proportional to the variance Varζ.

To decrease the computational cost, the simulation of statistically independent
realizations may be distributed among M processors (numbered from 0 to M−1).
At some moment all the processors send subtotal sample means to a dedicated
processor (e.g., to 0-th), and the parallel modification of the estimator is given
by the formula

ζ̄M = (
M−1∑

m=0

lm)−1
M−1∑

m=0

lmζ̄(m), (4)

where lm is a sample volume corresponding to the m-th processor, ζ̄(m) is a
corresponding sample mean.

For the massively parallel stochastic simulation, the necessary quantity of
base random numbers is very large, and the choice of a parallel RNG must
be made with care. For example, a period of a well known RNG with special
parameters r = 40 and A = 517 is equal to 238 ≈ 2.75 ·1011 (see formulas (6) and
(7)) [12], [13]. Such a period is not sufficient for the up-to-date computations:
the simulation of a single realization may demand a quantity of base random
numbers comparable with the whole period of this generator [5].

Therefore, requirements for a parallel RNG are very rigorous. An important
requirement is that sequences of base random numbers {αk} generated on differ-
ent processors must be independent of each other. Also, base random numbers
produced on different processors must have good statistical properties. A nec-
essary information about this subject may be found in [5]. In case of a “good”
generator, with increasing the number of processors M and the total sample

volume
M−1∑

m=0

lm, the value of parallel modification (4) goes to Eζ. Naturally, the

simulation of realizations must be effectively performed on processors without
any problems as those related to memory limitations, etc.

According to this parallelization technique, the stochastic simulation of real-
izations on different processors is performed in asynchronous mode. It is clear
that it is possible to neglect the time expenses for quite rare data exchanges
between the 0-th processor and the other ones. In this case, the variance Varζ
remains the same but the value of τζ is decreased. As a result, the value of τζ

(and, respectively, the value of C(ζ)) is decreased by M times thus giving the
optimal parallelization [5].

It is possible to exchange data at the end of simulation when all the processors
have simulated the dedicated number of realizations. However, it is not advis-
able for several reasons. First of all, it is desirable to control the absolute and
relative stochastic errors during the simulation. On the other hand, it is useful
to create periodic “save-points” of the simulation. For this reason, we modify
the parallelization technique in the following way.

Let the m-th processor (m = 0, 1, . . . , M − 1) periodically sends entries of the
matrices [ζ̄(m)

ij ] and [ξ̄(m)
ij ] and the corresponding sample volume lm (calculated
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by the moment of sending data) to the 0-th processor. In turn, the 0-th pro-
cessor periodically receives all the sums {ζ̄(m)

ij }, {ξ̄(m)
ij } and the sample volumes

{lm}, m = 0, 1, . . . , M−1, that were sent to it. Then the 0-th processor averages
the sample moments:

ζ̄ij = l−1
M−1∑

m=0

lmζ̄
(m)
ij , ξ̄ij = l−1

M−1∑

m=0

lmξ̄
(m)
ij , (5)

where l =
M−1∑

m=0

lm, calculates the sample variances σ̄2
ij , the absolute ε̄ij and

the relative ρ̄ij errors of the estimators ζ̄ij . Then the 0-th processor saves the
matrices [ζ̄ij ], [ε̄ij ], [ρ̄ij ] and [σ̄2

ij ] in files. Note that the sample volumes lm, m =
0, 1, . . . , M − 1 may be different at the moment of passing data. A reason for
this fact may consist in different performances of processors or in the diversity
of time expenses for the computation of different realizations.

If the frequency of the data exchange with the 0-th processor is not very
high, we can neglect the time expenses for the periodical data exchange and
averaging. Therefore, the modified parallelization technique enables us to reduce
the computational cost of the stochastic simulation nearly by M times. There is
also no need to use any load balancing techniques because all the processors work
independently and make data exchange in asynchronous mode. This conclusion
is proved by an example presented in Subsection 4.

2.3 Implementation of Stochastic Simulation

For simplicity let us consider a problem of evaluation of the expectation Eζ of a
scalar random variable ζ using the sample mean (1). A typical sequential code
(written in C) consists of the following operations:

int i, L;
double s, t=0.0;
for(i=0;i<L;i++){

realization(s);
t=t+s;

}
t=t/(double)L;

Here the argument L is the number of independent realizations; realization
is the name of a sequential routine, which computes a single realization of the
random variable ζ and returns its value to the argument s. Finally, the variable
t gives the value of the sample mean. In the routine realization the user calls
a function which implements a RNG. The usual use of this function (named
rng(), e.g.) is as follows:

a = rng();
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Here a is the base random number which has the uniform distribution on the
interval (0, 1). These numbers are used to simulate necessary complex distribu-
tions by formula (2). Given statistically independent outputs from the function
rng(), all the return values s from the subroutine realization are statistically
independent.

Thereby, a routine, which computes a single realization of a random object,
takes the return values from a function that implements a RNG and returns a
single realization of a random object. This routine and the specifications for the
random object realization are provided by the user. The routine that implements
a RNG is considered to be an external routine. In Fig.1 we explain the relation-
ship between main program and data elements in the stochastic simulation.

Fig. 1. A diagram showing the relationship between the main program and data ele-
ments in stochastic simulation

To implement the above-mentioned parallelization technique, the most con-
venient way is to use a user-defined routine that computes a single realization
of a random object as the major piece of the code to be launched on different
processors (see Fig. 1). Like in a sequential code, each copy of the routine takes
return values from a function that implements the parallel RNG and returns a
single realization of a random object. The outputs from all the copies of the user-
defined routine (realizations) are taken into account in the course of averaging
with the use of formulas (5). This approach is very convenient for specialists in
the stochastic simulation because it takes them minimal efforts to adapt their
sequential programs for using the PARMONC.

2.4 A Parallel RNG

The following base linear congruential generator [12], [13] is used to produce a
general sequence of base random numbers {αk}:

u0 = 1, uk+1 ≡ ukA (mod 2r), αk = uk2−r, k = 0, 1, 2, . . . . (6)

A period of the congruential generator is

LP = 2r−2. (7)
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We use the following parameters for the generator [14]:

r = 128, A ≡ 5100109 (mod 2128).

Therefore, the period of this generator is 2126 ≈ 1038. But it is recommended to
use the first half of the period only, particularly, the first 2125 random numbers
[12], [13].

In order to obtain independent streams of the base random numbers the gen-
eral sequence {αk} is divided into subsequences of length n that start with the
initial numbers α̃m = αnm, m = 0, 1, . . .. To be exact, the ”leaps” of length n
are made. Initial numbers of the subsequences {α̃m} are calculated by the
formula

ũ0 = 1, ũm+1 = ũmA(n) (mod 2r), α̃m = ũm 2−r, m = 0, 1, 2, . . . (8)

The multiplier A(n) in this auxiliary generator of the “leaps” of length n is
calculated as follows:

A(n) ≡ An(mod 2r).

This parallel generator enables the convergence of the parallel modification (4)
to Eζ. It is implemented as a well tested, fast and reliable routine in the De-
partment of Stochastic Simulation in Physics of the Institute of Computational
Mathematics and Mathematical Geophysics in Novosibirsk [15], [16]. It was ver-
ified on parallel processors using rigorous statistical testing and solving various
problems with known solutions. Therefore, using the parallel generator, we may
be sure in the correct stochastic simulation on parallel processors.

The PARMONC parallelization technique is to define a hierarchy of embed-
ded subsequences of the general sequence {αk}. The PARMONC assigns sub-
sequences of base random numbers to: a) different stochastic experiments, b)
different processors and c) different realizations. The technique is as follows:

– within the general sequence {αk}, the “leaps” of length ne are made using
(8) in order to define the initial numbers of subsequences that will be used
to perform stochastic experiments (when doing it, ”experiments” subse-
quences are produced),

– within each “experiment” subsequence, the “leaps” of length np < ne are
made using (8) to define the initial numbers of embedded subsequences that
will be used on different processors (when doing it, ”processors” subse-
quences are produced),

– within each “processor” subsequence, the “leaps” of length nr < np are made
using (8) to define the initial numbers of embedded subsequences that will
be used to simulate independent realizations (when doing it ”realizations”
subsequences are produced).

So, the hierarchy of the embedded subsequences is as follows:

general sequence ⊃ ”experiments” subsequences
”experiments” subsequence ⊃ ”processors” subsequences
”processors” subsequence ⊃ ”realizations” subsequences
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The initialization of a parallel RNG is as follows: the ”experiment” subse-
quence number is defined by the user with the corresponding argument of the
subroutine parmoncf/parmoncc; the ”processor” subsequence number is au-
tomatically defined by the PARMONC with a parallel branch number provided
by MPI; the “realizations” subsequence number is automatically defined by the
PARMONC before starting the simulation of a realization.

The default lengths of ”leaps” are as follows:

– ne = 2115 ≈ 1034 - for ”experiments” subsequences,
– np = 298 ≈ 1029 - for ”processors” subsequences,
– nr = 243 ≈ 1013 - for ”realizations” subsequences.

One can therefore perform approximately 2125 · 2−115 = 210 ≈ 103 stochastic
experiments; within a single experiment one can use 2115 · 2−98 = 217 ≈ 105

processors at most and on a processor one can simulate 298 · 2−43 = 255 ≈ 1016

independent realizations at most.
In the PARMONC the corresponding generator multipliers A(ne), A(np) and

A(nr) are defined to use by default. Nevertheless, one can redefine the default
values of A(ne), A(np) and A(nr) with the use of the command genparam (see
Subsection 3.5).

3 Overview of the Library PARMONC

A description of the PARMONC can be found on the web site of the Siberian
Supercomputer Center [3]; the full description is provided in [4].

3.1 Contents of the Library

Contents of the PARMONC is as follows:

– rnd128 - a function to produce a single base random number,
– parmoncf - the main subroutine to perform parallel stochastic simulation

(for programs written in FORTRAN),
– parmoncc - the main subroutine to perform parallel stochastic simulation

(for programs written in C),
– manaver - a program to average subtotal sample moments calculated on

processors (in a manual mode),
– genparam - a program to calculate multipliers of the parallel RNG (in a

manual mode).

Here rnd128, parmoncf and parmoncc are library routines to use in FOR-
TRAN or C/C++ user-supplied programs, genparam and manaver are exe-
cutable files to run from a command line. Object files for the library routines
are archived to a static library libparmonc.a.

The PARMONC software realization does not use any unique features of a
specific FORTRAN compiler or a specific MPI implementation. Therefore, it
can be compiled and built with any FORTRAN compiler and MPI library and
ported to different high-performance clusters or powerful personal computers
with multi-core processors.
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3.2 Subroutines ’parmoncf’ and ’parmoncc’

The subroutine parmoncf/parmoncc initializes the parallel RNG, distributes
the simulation of independent realizations among processors, makes all opera-
tions to pass, to collect and to average data and to save the simulation results in
files. The simulation results are stored in several files in a special subdirectory
of the user’s working directory (see Subsection 3.6).

These subroutines take a name of a user-defined routine which computes a sin-
gle realization of a random object as argument. The main user-supplied program
where a call to parmoncf/parmoncc is located is considered as a MPI program
despite the fact that it does not contain any MPI instructions (see an example in
Section 4). This means that it must be compiled, linked and launched according
to specific rules determined by a particular MPI realization on the computer.

The argument res is a resumption flag. It defines whether the present simu-
lation resumes the previous one or not:

– res = 0 in case of a new simulation. In this case the parmonc creates brand
new files with results.

– res = 1 in case of resuming the previous simulation. In this case the par-
monc automatically takes into account results of the previous simulation
(from the corresponding files) and averages it by formulas (5).

The argument seqnum is the ”experiments” subsequence number (it is equal to
0,1,2, . . . ). In case of resuming the previous simulation, this argument must be
different from the same argument of the previous use of parmoncf/parmoncc.

Also, there are parameters perpass, peraver defining the periods of data
passing and averaging, respectively, as the number of minutes.

3.3 Function ’rnd128’

The double precision function rnd128 is written using 64-bit integer arithmetic.
The function has no arguments. After the initialization of the parallel RNG,
rnd128 starts returning base random numbers from a selected subsequence.
Thus, on different processors, parallel streams of base random numbers are gen-
erated independently.

3.4 Command ’manaver’

The program manaver is used to average and to save in files the subtotal sample
moments calculated on processors. It is launched after the termination of a job
on a cluster. The application of manaver is useful in the case when by the
moment of terminating the job, the sample moments stored in the files with
results correspond to a smaller sample volume than to the one that was actually
obtained on all the processors.
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3.5 Command ’genparam’

If one wants to define different values of the parallel RNG multipliers A(ne), A(np)
and A(nr) in comparison with the default ones, he runs the program genparam
from a command line in his working directory in the following way:

$ genparam ne np nr

where ne, np and nr are exponents of 2. As a result, a file parmonc genparam.
dat is created in the user’s working directory. Hereupon, the PARMONC rou-
tines use the multipliers’ values from this file instead of the default ones.

3.6 Description of Files with Results of Simulation

When the user launches a job on a cluster, a subdirectory /parmonc data
is automatically created by the PARMONC in his/her working directory. In
the directory /parmonc data/results one can find the results of computation
stored in the files func.dat, func ci.dat and func log.dat:

– func.dat stores a matrix of the sample means,
– func ci.dat encapsulates a matrix of the sample means together with ma-

trices of absolute and relative errors and variances,
– func log.dat stores information about the stochastic simulation: the total

sample volume, the mean computer time per a realization, the upper bounds
for absolute and relative errors, etc.

Also, in this directory, one can find a file parmonc exp.dat containing infor-
mation about each stochastic experiment that was started by the user.

4 Performance Test

The following example may be found in the full documentation to the PAR-
MONC [4]. Also, it is available for the users of the the Siberian Supercomputer
Center in the directory of the library [3].

We consider a 2-dimensional system of stochastic differential equations (SDEs)
over a time interval [0, 100]:

dȳ(t) = Cdt + Ddw̄(t),

where

ȳ(0) =
(

0
0

)
, ȳ(t) =

(
y1(t)
y2(t)

)
, C =

(
1.0
1.0

)
, D =

(
10−2 0

0 10−2

)
,

and w̄(t) =
(

w1(t)
w2(t)

)
is a 2-dimensional Wiener process. Our objective is to eval-

uate expectations of its components Ey1(t), Ey2(t) at fixed points
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ti = i · 10−1, i = 1, . . . , 1000. We simulate trajectories of the SDE system using
a generalized Euler method with a mesh size h = 10−6:

ȳ(n+1) = ȳ(n) + hC +
√

hDξ̄(n), n = 0, 1, 2, . . . , 108, (9)

where

ȳ(0) =
(

0
0

)
, ȳ(n) =

(
y
(n)
1

y
(n)
2

)

, ξ̄(n) =

(
ξ
(n)
1

ξ
(n)
2

)

,

all quantity{ξ(n)
i } being independent in total and having a standard normal

distribution. The simulation yields a matrix [ζij ]:

ζij = y
(n)
j , n = i105, 1 ≤ i ≤ 1000, 1 ≤ j ≤ 2.

Thus, each entry of the matrix after averaging gives:

ζ̄ij ≈ Eyj(ti), ti = i · 10−1, i = 1, . . . , 1000, j = 1, 2.

Below, as an example, the main user’s program in C containing a call to
parmoncc is provided.

int main()
{

int nrow = 1000, ncol = 2, res = 1, seqnum = 2, perpass = 10,
peraver = 20;

long long int maxsv = pow(10,9);
parmoncc ( difftraj, &nrow, &ncol, &maxsv, &res, &seqnum,

&perpass, &peraver );
return 0;

}

Here difftraj is the name of the user-supplied subroutine implementing the sim-
ulation of a realization of an approximate diffusion trajectory according to (9)
and returning a realization of matrix [ζij ]; nrow and ncol define dimensions of
the matrix; maxsv is a maximal sample volume to simulate on processors; res
is a resumption flag; seqnum defines the “experiments” subsequence number;
perpass and peraver define the period of sending and receiving data, respec-
tively (in minutes).

In this example res = 1. This means the case of resuming the previous simu-
lation: the PARMONC automatically takes into account results of the previous
simulation (from the corresponding files) and averages it by formulas (5). Also,
seqnum = 2. This means that we use the ”experiments” subsequence with
number 2. Processors send subtotal data to the 0-th processor every 10 min-
utes. In turn, the 0-th processor receives data every 20 minutes. The argument
maxsv is chosen to be sufficiently large in order to have an “endless” stochastic
simulation that is limited only by the time framework of a job on a cluster (it is
defined by the user when starting the job).
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a) b)

c) d)

Fig. 2. Results of a PARMONC performance test: comparison of the computer time
τcomp = τcomp(L) for different numbers of processors: a) M = 1 and 8, b) M = 8, 16 and
32, c) M = 32, 64 and 128, d) M = 128, 256 and 512. In each graph X-axis corresponds
to the total sample volume L, Y-axis corresponds to τcomp measured in seconds.

In the subroutine difftraj, the parallel RNG is called in the following simple
way:

a = rnd128();

This way of calling the RNG seems the most natural for specialists in the stochas-
tic simulation.

The above-mentioned diffusion problem was computed on 1, 8, 16, 32, 64, 128,
256 and 512 processors to compare the speedup of parallelization. All the pro-
cessors sent data to the 0-th processor after having simulated each realization.
In turn, the 0-th processor received data after having simulated each realiza-
tion. Such conditions are assumed to be strictest in terms of the parallel algo-
rithm performance. A mean computer time τζ to simulate a single realization is
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approximately 7.7 sec., the bulk of data which is periodically sent by every pro-
cessor to the 0-th processor is approximately 120 Kbytes.

For different numbers of processors M we compare the computer time it takes
to simulate L realizations in total τcomp = τcomp(L) . A value of τcomp is evalu-
ated after the 0-th processor has received, averaged and saved data in files.

It is seen from the graphs in Fig. 2 that for all the values of L the speedup of
parallelization is in direct proportion to the number of processors despite “strict”
conditions related to data exchange.

5 Conclusion

In conclusion, we define some directions for the future. First of all, it is desirable
to adapt the PARMONC to modern powerful GPU computer clusters and, also,
to hybrid computer clusters. Then, it seems promising to use the PARMONC as
a basic software level for the future computer-aided simulation based on adequate
probabilistic models to imitate real world phenomena from the “first principles”.
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Abstract. Multi-core processors are ubiquitous. Extracting the desired
performance from them requires efficient techniques for partitioning a
single piece of work into multiple fine-grained units of work in order to
process them simultaneously. Understanding the performance behavior
of a parallel system requires a close familiarity with the underlying ar-
chitecture and the hardware counters.

We present a performance analysis study of a multi-core system by
a state-of-the-art parallel performance analyzer tool, the Intel VTune
Performance Analyzer. We chose as a test-case a classic nested-loop ap-
plication that exhibits unexpected performance gains using two different
programming models on the same multi-core system. Our expectations
were to be able to reason about the performance results by exploring
the application behavior using the parallel analyzer tool. We found that
it is very difficult to explain high-level performance measurements of
multi-core systems by low-level hardware diagnosis.

Keywords: Multi-core, Performance Analysis, OpenMP, TBB.

1 Introduction

Multi-core processors can now be found in the heart of supercomputers, desktop
computers and laptops [1]. Consequently, applications will increasingly need to
be parallelized to fully exploit the multi-core processor throughput gains that
are becoming available. Unfortunately, parallel code is more complex to write
than that of serial code [2]. Parallel programming is no doubt much more tedious
and error-prone than serial programming.

Chip makers and system builders have begun efforts to educate developers
and provide them with better tools for multi-core programming. Currently, the
responsibility for bridging the gap between hardware and software in order to
write better parallel programs may ultimately lie with developers. Many pro-
grammers are not up to speed on the latest developments in hardware design.
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They should study chip architectures to understand how their code can per-
form better. This is not a desirable situation. Parallel programming should be
as simple and productive as sequential programming.

Task-based parallel programming aims to simplify the writing of parallel code.
It is a state-of-the-art programming technique that has been adopted by the
major software vendors as the primary approach for multi-core programming.
Notable commercial products are Intel Threading Building Blocks [3,11]; Intel
Cilk++ [4]; OpenMP [5,12] (since version 3.0); Microsoft Task Parallel Library
[6] and Java Fork/Join Framework (JSR166) [7] alongside research projects such
as TaskMan [8], Wool [9] and Nanos Mercurium [10].

The task-based programming approach offers an alternative to the traditional
thread-based programming. Expressing parallelism with task-based program-
ming is done by partitioning the application into fine-grained and independent
executable entities called tasks rather than by managing explicit threads for
processing coarse-grained units of work. The run-time system of a task-based
environment handles all the synchronization and the scheduling assignments im-
plicitly and thus frees the programmer to focus on the algorithmic design of the
application. Writing code with tasks usually yields more simple, portable and
efficient code as compared to thread-based code. It was found that creating and
terminating a task is 18 times faster in comparison to creating and terminating
a thread on Linux systems and up to 100 times faster on Windows systems [3].

The core engine of a task-based model is a task scheduler which uses a task
stealing mechanism to balance a parallel workload across available processing
cores in order to increase core utilization and overall system performance and
scalability. After an initialization phase, the task scheduler decomposes the work-
load into tasks and stores them in distributed queues, usually one queue per
core/thread. Then, the scheduler assigns a thread from a thread pool to one of
the queues where tasks are waiting for processing. When a thread’s own queue
is empty, the thread steals work from another thread’s queue. The donor thread
is chosen randomly and the stolen task is the last one in the queue.

This paper presents a low-level performance study of a task-based application
and its equivalent thread-based implementation on a multi-core processor. For
this purpose, we chose a typical application that was parallelized by Intel TBB
(a task-based model) and by OpenMP (a thread-based model). The test-case
application, the Substring-Finder, was chosen because the performance results
show that the TBB implementation outperforms the OpenMP implementation.
These results are surprising because TBB is designed to be compiler indepen-
dent, processor independent, and operating system independent. Therefore, it is
expected that OpenMP will exhibit better performance than TBB. The opposite
results brought us to explore the reasoning behind these unexpected performance
results.

First, we measured the performance of both implementations. Then, a
detailed low-level analysis was performed in order to study the behavior of
the two implementations in the underlying processor architecture. The proces-
sor’s memory sub-system behavior was studied by careful analysis of its raw
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performance data which was collected from the processor’s hardware counters
by the Intel VTune Performance Analyzer tool [13]. To the best of our knowledge,
this paper presents the first attempt to explore the reasoning about the perfor-
mance differences of two different parallel programming paradigms by hardware
events.

The rest of this paper is organized as follows. Section 2 is a brief introduction
of OpenMP and TBB. Section 3 presents an in-depth performance analysis of a
case-study application implemented by TBB and OpenMP. Section 4 is a brief
discussion. Section 5 presents related works, and Section 6 concludes the paper.

2 Overview of TBB and OpenMP

OpenMP [5,12] and TBB [3,11] are two parallel programming paradigms suitable
for multi-core processors. OpenMP and TBB have a lot in common but were
designed for different parallel execution models. Both are shared-memory data-
parallel programming models and are based on multi-threading programming
to maximize utilization of multi-core processors. Furthermore, the TBB core
execution model is based on Task programming approach while OpenMP is
based on the Thread programming approach, supporting task-based parallelism
since its version 3.0 (2008).

OpenMP does not free the programmer from most of the tedious issues of
parallel programming. The programmer has much to understand, including: the
relationship between the logical threads and the underlying physical processors
and cores; how threads communicate and synchronize; how to measure perfor-
mance in a parallel environment; and the sources of load unbalancing. The pro-
grammer must check for dependencies, deadlocks, conflicts, race conditions, and
other issues related to parallel programming. In contrast, the Intel Threading
Building Blocks hides some of the issues mentioned above from the program-
mer and automates the data decomposition and tasks scheduling in an efficient
manner. This section is a brief overview of the TBB and OpenMP parallel pro-
gramming models.

2.1 Threading Building Blocks (TBB)

The Intel Threading Building Blocks (TBB) is a C++ template library that
supports data parallel programming for developing parallel applications running
on top of multi-core processors. TBB designers are committed to make TBB
compiler independent, processor independent, and operating system indepen-
dent. The library consists of building blocks (data structures and algorithms)
that free a programmer from some of the complications arising from the use
of native threading mechanisms such as threads creation, synchronization, and
termination.

TBB allows the programmer to design an application in terms of task ob-
jects. Parallelism is expressed explicitly by using TBB constructs while nested
parallelism is allowed. However, the programmer is responsible for building inde-
pendent and thread-safe tasks. TBB’s task scheduler maps user-defined logical
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tasks onto physical threads in a one-to-one manner, that is, one software thread
per hardware thread.

The task scheduler uses an efficient and dynamic load balancing mechanism
based on task-stealing for improving performance throughput. For this purpose,
each thread maintains a queue of tasks. A thread performs depth-first execution
while using its local queue as a stack and thus achieves low footprint space and
good data locality. If a thread runs out of work it is allowed to steal a task,
usually a big chunk, from the rear side of a busy thread queue.

TBB library consists of algorithms (parallel for, parallel reduce, parallel scan,
parallel while, pipeline, and parallel sort). The design of the algorithms is based
on C++ generic programming and recursively divisible ranges implemented on
top of an efficient work-stealing scheduler. The library was designed for simplicity
while parallelism is mapped to the underlying machine resources without the
intervention of the programmer.

In addition, TBB library provides concurrent containers (concurrent queue,
concurrent vector, and concurrent hash map). The containers are thread-safe
and provide fine-grained locking for efficiency. The library also contains con-
current memory allocation, various mutual exclusion mechanisms, and atomic
operations.

2.2 OpenMP Programming Model

OpenMP is a tool for writing multi-threaded applications in a shared memory
environment. It consists of a set of compiler directives and library routines. The
compiler generates a multi-threaded code based on the specified directives.

OpenMP helps developers create multithreaded applications more easily while
retaining the look and feel of serial programming. OpenMP simplifies the com-
plex task of code parallelization, allowing even beginners to move gradually from
serial programming styles to parallel programming. OpenMP extends serial code
by using compiler directives. A programmer familiar with a language (such as
C/C++) needs to learn only a small set of directives. Adding them does not
change the logical behavior of the serial code; it tells the compiler only which
piece of code to parallelize and how to do it; the compiler handles the entire
multithreaded task.

An OpenMP program begins with a single thread of execution called the mas-
ter thread. The master thread spawns teams of threads in response to OpenMP
directives, which perform work in parallel. Parallelism is thus added incremen-
tally: the serial program evolves into a parallel one. OpenMP directives are
inserted at key locations in the source code. These directives take the form
of comments in FORTRAN and pragmas in C and C++. The compiler inter-
prets the directives and creates the necessary code to parallelize the indicated
tasks/regions. The parallel region is the basic construct that creates a team of
threads and initiates parallel execution.

OpenMP provides several constructs for sharing work among threads in a
team. These are: Parallel for/DO, Parallel Sections, Workshare, and Single di-
rective. These constructs are placed inside an existing parallel region. The result
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is to distribute execution of associated statements among the existing threads. In
addition, OpenMP provides a number of constructs for thread synchronization
and coordination, among them critical, atomic, barrier, and master. These are
sufficient for many needs, but OpenMP also provides a set of runtime thread-
locking functions that can be used for fine control.

3 A Low-Level Analysis

In this section we describe the case study application and the elapsed time
running results obtained from running it on top of a multi-core processor. Next,
we explore the low-level hardware measurements to better understand the high-
level performance results.

3.1 Case Study: Substring Finder

We chose the Substring-Finder application to be our case study which is one
of the examples included in the TBB software suite, and it represents many
classic nested-loop applications where a one-dimensional array is processed in-
tensively. Such parallel algorithms are categorized as data-parallel applications.
The Substring-Finder application scans a string, and for each location along the
string it looks for the largest matching substring elsewhere in the string. For
each match, the application stores the location and the length of the substring.
Listing 1 - Substring-Finder - Serial Version.

void SerialSubStringFinder ( const string &str, size_t *max_array,
size_t *pos_array) {

for ( size_t i = 0; i < str.size(); ++i ) {
size_t max_size = 0, max_pos = 0;
for (size_t j = 0; j < str.size(); ++j)
if (j != i) {
size_t limit = str.size()-( i > j ? i : j );
for (size_t k = 0; k < limit; ++k) {
if (str[i + k] != str[j + k]) break;
if (k > max_size) {
max_size = k;
max_pos = j;

}
}

}
max_array[i] = max_size;
pos_array[i] = max_pos;

}
}

Listing 1 shows the serial version of the application. Listing 2 is the TBB
parallel version. The listings show only the core portions of the applications.
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The TBB version uses the parallel for template for invocation of the operator
of the class SubstringFinder where the work on the string is partitioned with
a blocked range with a grain-size of 100. Reinders reports that the task sched-
uler splits the string into 254 tasks on a dual-core processor[3]. Listing 3 is the
OpenMP parallel version of the application. The OpenMP and the serial ver-
sions are nearly identical. Only one OpenMP compiler directive was needed to
annotate the serial code in this case. The result is a very simple and compact
way to parallelize an existing code as compared to the TBB version where the
code has to be re-written.
Listing 2 - Substring-Finder - TBB Version.

class SubStringFinder {
const string str;
size_t *max_array;
size_t *pos_array;
public:
void operator() ( const blocked_range<size_t>& r ) const {
for ( size_t i = r.begin(); i != r.end(); ++i ) {
size_t max_size = 0, max_pos = 0;
for (size_t j = 0; j < str.size(); ++j)
if (j != i) {
size_t limit = str.size()-( i > j ? i : j );
for (size_t k = 0; k < limit; ++k) {
if (str[i + k] != str[j + k]) break;
if (k > max_size) {
max_size = k;
max_pos = j;
}

}
}

max_array[i] = max_size;
pos_array[i] = max_pos;

}
}
SubStringFinder(string &s, size_t *m, size_t *p) :
str(s), max_array(m), pos_array(p) { }

};

int main(int argc, char *argv[]) {
.
parallel_for(blocked_range<size_t>(0, to_scan.size(), 100),

SubStringFinder( to_scan, max, pos ) );
...}
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Listing 3 - Substring-Finder - OpenMP Version.

void OmpSubStringFinder ( const string &str, size_t *max_array,
size_t *pos_array) {

#pragma omp parallel for num_threads(2)
for ( int i = 0; i < str.size(); ++i ) {
int max_size = 0, max_pos = 0;
for (int j = 0; j < str.size(); ++j)
if (j != i) {
int limit = str.size()-( i > j ? i : j );
for (int k = 0; k < limit; ++k) {
if (str[i + k] != str[j + k]) break;
if (k > max_size) {
max_size = k;
max_pos = j;

}
}
}

max_array[i] = max_size;
pos_array[i] = max_pos;
}
}

3.2 Experimental Results

We tested the performance of the three versions of the Substring-Finder appli-
cation on a dual-core machine. The machine was equipped with an Intel Core
2 Duo processor (T8100) with a clock speed of 2.1GHz; 2x32KB L1 data cache
memory and 2x32KB L1 instructions cache memory; 1x3MB L2 unified shared
cache memory and 1GB DDR2 main memory. For software we used OpenMP
3.0 and TBB 3.0 under Intel C++ compiler XE version 12.0 on top of an XP
operating system. We used Intel VTune Performance Analyzer version 9.1 for
Windows and the new Intel VTune Amplifier XE for Windows to collect data for
the low-level analysis. The compilers optimization option was set to -O2 . The
elapsed times were measured for two Fibonacci strings, a short string (17,771
bytes), and a long string (317,811 bytes).

The results reported here are averages of ten runs each for statistical stability.
Table 1 shows the running results of the serial, OpenMP and TBB Substring-
Finder versions for short and long string sizes. The following findings can be
observed from these measurements:

– TBB achieves better speedup as compared to OpenMP for both string sizes
while exhibiting an improvement of up to 27%.

– TBB achieves super-linear speedup ( > 2) which is an indication for an
efficient use of the cache-memory hierarchy.
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Table 1. Measurement times (in seconds) and computed speedups of Substring-Finder

String Serial TBB TBB OMP OMP TBB OMP
Size (1 thread) (2 thread) (1 thread) (2 thread) Speedup Speedup

17,711 23.90 20.78 11.53 26.03 14.50 2.07 1.64
317,811 10,277 8,874 4,977 11,246 6321 2.06 1.62

– TBB performance with one thread achieves better performance as compared
to the serial version (up to 13% improvement). On the other hand, OpenMP
performance with one thread achieves the worst performance as compared
to the serial version (up to 10% reduction). These observations show that
OpenMP adds substantial parallelism overhead while TBB’s task-scheduler
partitions the workload into small tasks and schedule them more efficiently
among the processing cores.

In our attempt to discover the reasons behind the low performance of OpenMP
compared to TBB we performed the following actions:

Thread Affinity. During the performance exploration, it was observed that
TBB binds threads to physical processing cores while OpenMP does not enforce
thread affinity. This observation is visualized very nicely by the Time-based sam-
pling capability viewer of Intel Vtune Performance Analyzer version 9.1 (Unfor-
tunately, with the new Intel VTune Amplifier XE for Windows it can be observed
indirectly since thread performance data can’t be associated to specific core).
Therefore, we enforced thread-affinity on the OpenMP implementation by us-
ing the operating system SetTreadAffinityMask() function. Intel VTune showed
clearly that the threads were bound to the appropriate cores. Unfortunately, we
did not observe any improvement in performance.

Loop Scheduling. We tried to improve the performance of the OpenMP imple-
mentation by enforcing different scheduling policies. The Static, Dynamic and
the Guided OpenMP loop scheduling were tested with different chunk sizes.
Unfortunately, we cannot report on significant improvement in performance.

Compiler Optimization Options. We tested the OpenMP implementation
with different compiler optimization options: Maximize Speed (/O2), Maximize
Speed plus High Level Optimization (/O3) and Full Optimization (/Ox). Unfor-
tunately, the performance measurements did not show any improvement.

Str.size(). We suspected that the calls to str.size() that appear in the for-loops
increase the overhead and thus decrease the performance. However, we tested
two other alternatives and found that the compiler’s optimizer creates more
efficient code when using the str.size() rather than define a constant instead the
function call or using a variable that is assigned once outside the parallel region.

3.3 Hardware Events

In order to understand why TBB outperforms OpenMP in the case of the
Substring-Finder, we further explored the low-level performance characteristics
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of the two implementations. For this purpose we used the new Intel VTune Am-
plifier Performance Analyzer. VTune samples the processor counters and collects
hardware events. These events are recorded, analyzed, and displayed to the user
for further exploration. We chose to follow the recommendation given by Ulrich
Drepper [14,15], to inspect the memory subsystem effects by using a few event
ratios rather than absolute values because it makes the interpretation easier.
The following are brief descriptions of the event ratios we used in our low-level
measurements:

– CPI – This ratio represents the number of clocks per instructions retired.
Lower CPI indicates the better efficiency with which instructions are exe-
cuted within the processor.

– L1D REPL % – This ratio represents the number of L1 data cache misses.
A high rate indicates that pre-fetching is not effective.

– L1I MISSES % – This ratio represents the number of L1 instruction misses.
A high rate indicates either unpredictable execution flow or that the code
size is too large.

– DTLB MISSES.ANY % – This ratio represents the number of Data Table
Lookaside Buffer (DTLB) misses. A high rate indicates that the code accesses
too many data pages within a short time.

– ITLB MISS RETIRED % – This ratio represents the number of retired in-
structions that missed the ITLB. A high rate indicates that the executed
code is spread over too many pages.

– L2 LINES IN % – This ratio represents the number of L2 cache misses. A
high rate indicates that the L2 cache cannot hold the data.

– L2 IFETCH % – This ratio represents the number of L2 instruction misses.
Any rate above zero may have a noticeable impact on application perfor-
mance.

– PAGE WALKS.CYCLES % – This ratio represents the number of cycles
spent waiting for page-walks. A high rate indicates that many cycles are
spent on TLB misses.

– STORE BLOCK.ORDER % – This ratio represents the number of cycles for
which stores are waiting for a preceding stored cache line to be observed by
other cores. A high rate indicates that too many store operations miss the
L2 cache and therefore block committing data of later stores to the memory.

– CYCLES L1I MEM STALLED % – This ratio represents the number of cy-
cles for which an instruction fetches stalls. A high rate indicates poor code
locality.

– RESOURCE STALLS.RS FULL % – This ratio represents the number of
cycles in which the number of instructions in the pipeline waiting for execu-
tion reaches the limit the processor can handle. A high rate indicates poor
efficiency of the parallelism provided by the multiple execution units.

Table 2 shows the event ratios results of OpenMP and TBB Substring-Finder
implementations for short and long string sizes. The following findings can be
observed from these measurements.
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In the case of the short string, where the entire string is held in the L1
cache, TBB exhibits better utilization of the cache-memory subsystem. TBB
presents improvement in 3 of 11 ratios as compared to OpenMP. The most
noticeable improvements are less L1 data and instruction misses (53% and 33%
improvements respectively), less TLB data and instruction misses (58% and 53%
improvements respectively) and 15% improvement of the CPI. These findings
explain the elapsed times measurements of TBB as compared to OpenMP and
the way TBB achieves better speedup. TBB succeeds in adapting its data chunks
more efficiently into the cache-memory subsystem as compared to OpenMP,
needing fewer clocks per instruction for executing its code. On the other hand,
OpenMP code tends to stall for longer period of time, which indicates that it
spreads over many pages.

In the case of the long string, the results are changed upside down. OpenMP
presents improvement compared to TBB in 3 of 11 ratios. The most noticeable
improvements are less L2 and TLB data misses (20% and 13% improvements re-
spectively) and less time delays due to page-walks, store stalls and L1 instruction
stalls (18%, 25% and 19% improvements respectively).

Now, the unavoidable question must be raised. How does TBB achieve better
speedup in the case of the long string when the event ratios results indicate that
the opposite should have happened?

First, it can be observed that there is a dramatic increase in all ratios of the
long string case as compared to the short string case. This happens due to the
use of inclusive caches and because the long string is spread over the L1 and L2
caches. Second, TBB’s task-scheduler creates more tasks for a longer workload,
and the result is more L1, L2 and TLB data misses that lead to more instruction
stalls. However, these misses and stalls cannot explain why TBB still achieves
super-linear speedup. The CPI rations for the short and the long cases show
that TBB needs approximately 17% less clocks per instruction as compared to
OpenMP. TBB produces more efficient code that compensates for the addition
of misses and stalls in its many tasks. However, the CPI only reflects the results
but cannot explain them.

4 Discussion

Intel VTune Performance Analyzer is considered the de-facto performance an-
alyzer tool for parallel applications that are created using Intel and Microsoft
Windows developing environments. VTune’s interface is very user-friendly, col-
orful and includes readable graphic performance views. It is possible to compare
very easily the hardware measurements of two running results of two versions of
the same application on the same platform. However, it is impossible to make
low-level comparison of two different parallel programming paradigms imple-
mentations of the same application on the same platform.

Intel VTune is actually a tread-base tool and it is not a task-based tool. It is
very convenient to use it for analyzing the performance of individual thread but
there is no way to view tasks or to display a time-based view of a specific task.
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Table 2. Event ratios results for Substring Finder application

Event

String Size 17,771 317,811
TBB OMP TBB OMP

CPI 0.54 0.64 0.53 0.63
L1D REPL % 10.96 23.81 90.91 87.85
L1I MISSES % 3.14 4.71 4.62 4.80
DTLB MISSES.ANY % 25.53 61.35 50.94 44.1
ITLB MISS RETIRED % 3.95 8.51 5.30 6.56
L2 LINES IN % 8.84 7.23 10.33 8.29
L2 IFETCH % 4.17 7.69 6.57 6.85
PAGE WALKS.CYCLES % 11.34 11.76 19.14 12.59
STORE BLOCK.ORDER % 23.53 23.44 16.34 12.30
CYCLES L1I MEM STALLED % 17.12 22.41 19.83 9.18
RESOURCE STALLS.RS FULL % 98.75 97.64 98.78 97.64

For using VTune in an appropriate manner, the programmer has to know
where and what to look for in order to find performance inhibitors. Moreover,
the programmer has to understand performance issues such as load-balancing,
false-sharing and different types of parallelization overheads.

5 Related Works

There are many research papers that used Intel VTune Performance Analyzer
as a tool for exploring different aspects of performance behavior. This section
presents a research that studied the basic parallelism management of TBB
[16]; a study that compares the scalability of Windows Threads versus TBB
[17]; a work that studied two different optimization strategies aim to improve
the performance of the work-stealing task scheduler of TBB [18]; studies of
OpenMP and TBB applications from different disciplines and from various an-
gles (But none of them used hardware events to reason about the performance
measurements)[19,20]; a research project of a new library that supports task-
based parallel model [8]; a work that presents one of the weaknesses of current
performance analyzing tools to explore the sources of performance bottlenecks
and suggest a way to resolve the problem [21] and performance comparison stud-
ies of compilers by using Intels VTune Performance Analyzer [22,23].

Contreras and Martonosi studied the basic parallelism management costs of
the TBB runtime Library [16]. On the hardware side, their tested platform was
a quad-core machine for measuring performance on 1-4 real cores and simula-
tions for study the overheads on 4-32 virtual cores. On the software side, they
used four micro-applications of the PARSEC benchmark suite (Fluidanimate,
Swaptions, Blackscholes, and Streamcluster) that were ported to TBB and four
kernel-benchmarks (Bitcounter, Matmult, LU and Treeadd). In measuring the
basic operations of the TBB runtime library, they focused on five common op-
erations: Spawn, Get task, Steal, Acquire queue and Wait for all.
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Analysis of the benchmarking results discovers the following findings: syn-
chronization overheads within TBB have a significant impact on parallelism
performance; the runtime library contributes up to 47% of the total per-core
execution time on a 32-core system (due to synchronization overhead within the
TBB scheduler) and hinders performance scalability; the random task stealing
mechanism becomes less effective as application heterogeneity and core counts
increase; and a queue occupancy-based stealing policy can improve performance
of task stealing by up to 17%.

Wang and Xu [17] studied the scalability of the multiple-pattern matching
algorithm known as Aho-Corasick-Boyer-Moore Algorithm on Intel Core 2 Duo
processor 6300, 1.86 GHz with 1GB main memory with Windows XP for differ-
ent input sizes. This work compares the performance of the Windows Threading
API against Intel Threading Building Blocks. The authors found that the aver-
age scalability achieved by TBB is 1.655 compare to 1.549 of Win32. The authors
explain that TBB achieves better performance because TBB specifies tasks in-
stead of threads. A task can be assigned to a thread dynamically; Intel TBB
selects the best thread for a task by using the task scheduler. If one thread runs
faster, it is assigned to perform more tasks. However, with the Win32 Threading
Library, a thread is assigned to a fixed task, and it can not be reassigned to
other tasks even though it is idle.

Robison et al [18] studied two different optimization strategies aim to im-
prove the performance of the work-stealing task scheduler of TBB. The first
optimization automatically tunes the grain size based on inspection of the steal-
ing behavior. The second optimization improves cache affinity by biased stealing.
For testing the impact of the grain size on the performance the authors used Pi,
a simple numeric integration benchmark that computes π. The results show that
OpenMP static achieves the best speedup compared to all OpenMP and TBB
scheduling strategies while TBB affinity partitione achieves the best speedup
compared to other TBB strategies. The cache affinity benchmark used two pro-
grams: Sesmic, a program that simulates 2D wave propagation and Cholesky, a
program that decomposes a dense symmetric square array A into lower trian-
gular matrix L such that A = LxLT . Only OpenMP static scheduling and TBB
affinity partitioner showed good results for more than two threads. OpenMP’s
static scheduling achieved the best result.

Kegel et al. [19] used different OpenMP and TBB implementations of a
block-iterative algorithm for 3D image reconstruction (ListMode Ordered Subset
Expectation Maximization) for comparison between OpenMP and TBB with re-
spect to programming effort, programming style, and performance gain. The
authors studied five implementations (two OpenMP and three TBB) that differ
in the locking mechanisms used for synchronization. One of the OpenMP im-
plementations used the atomic mutual exclusion mechanism while the second
one used the critical mechanism. The three TBB implementations used mutex,
queuing mutex, and spin mutex mechanisms respectively.

The authors found that OpenMP offers a simpler way to parallelize existing se-
quential code as compared to TBB, which demands the redesign and rewriting of
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the sequential code and thus is more appropriate for building parallel
programs from scratch. Moreover, although the two programming paradigms sup-
port high-abstraction APIs, OpenMP outperforms TBB while achieving better
scalability due to more efficient locking mechanisms.

Podobas et al. [20] studied the performance results of five applications (FFT,
NQueens, Multisort SparseLU, and Strassen) with six implementations of task-
parallel programming models (four implementations of OpenMP, Cilk++ and
Wool). The OpenMP implementations used four different compilers (GCC, Intel,
Sun, and Mercurium). On the low-level, they studied the costs of task-creation
and task-stealing.

The authors found that Wool and Cilk++ achieve low overheads in task-
spawning and task-stealing as compared to OpenMP. Among the four imple-
mentation of OpenMP, the Intel compiler exhibited the lowest overheads. They
also measured relative high overheads with respect to the parallel constructs of
the tested applications. Even so, for coarse-grained tasks all the applications
achieved high speedups. The authors say that most of their findings are still not
clear and need further investigation.

Hower and Jackson [8] offer a C++ library called TaskMan that realizes the
task-based programming paradigm. The library makes use of futures to introduce
a call/return API that is usually found in imperative languages. The primary
designing goals of TaskMan were simplicity and programmability. A performance
study shows that TaskMan does not achieve the performance level of TBB and
Cilk++ but has potential to close the gap while delivering a lightweight and
intuitive API.

Tallent and Mellor-Crummey introduce one of the weaknesses of current pro-
filing tools to explore the sources of performance bottlenecks and suggest a way
to resolve the problem [21]. The problem the authors arise is related to contempo-
rary task-based programming that relies on work-stealing techniques. They offer
a low-overhead profiling scheme that quantifies parallel idleness (when threads
wait for work) and overhead (when threads work on non-user code) and then
marks the places in the users application that need more or less parallelism.

To achieve low-overhead scheme, the authors’ solution is based on creating
call path profiling by sampling rather than by instrumentation. However, sam-
pling cannot produces reliable results due to unpredictable call path structure
caused by the work-stealing mechanism. Therefore, the authors defined an idle-
ness metric that takes in account the number of active working threads that
do not supply enough tasks to keep all workers busy. Moreover, for measuring
parallel overhead accurately there is a need to distinguish overhead instructions
from useful-work instructions. For that purpose, the authors propose that the
compiler will tag instructions that are associated with parallelization overhead.
Then, a postmortem analysis tool will use these tags to identify instructions
associated with overhead.

Tanjore and Milenkovic present a performance comparison study of Intel C++
compiler versus Microsoft VC++ compiler by examining the execution charac-
teristics of the SPEC CPU 2000 benchmarks [22]. The performance metrics were
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collected using Intels VTune Performance Analyzer. Although the elapsed time
measurements show that the Intel C++ compiler performed better than VC++
for all the tested applications, detailed analyzing of execution characteristics
such as instructions retired, loads retired, stores retired, branches retired, I-cache
misses and mis-predicted branches do not reflect the running wall-clock times
and thus cannot explain why Intel C++ compiler achieves better performance.

Prakash and Peng [23] studied the performance characterization of SPEC
CPU2006 suite on Intel Core 2 Duo processor compiled by two compilers: In-
tel C++ and Microsoft VC++ compilers. The aim of this work is to compare
between SPEC CPU2006 benchmarks and SPEC CPU2000 benchmarks and to
make detailed performance comparison of the two compilers. The performance
study was conducted by using Intel VTune Performance Analyzer. The authors
found that CPU2006 benchmarks have larger input dataset and longer execution
time than those of CPU2000. Moreover, it was observed that only 2 of 15 bench-
marks (hmmer and h264ref) show better performance while compiled with Intel
C++. The authors present very detailed measurements of the hardware coun-
ters and the hardware events. However, these interesting measurements do not
explain the performance differences.

6 Conclusions

Task-based programming is becoming the state-of-the-art method of choice for
extracting the desired performance from multi-core chips. It expresses a program
in terms of light-weight logical tasks rather than heavy-weight threads.

In this paper we presented a case study where the performance of a task-
programming model (TBB) was compared and analyzed against a thread-based
programming model (OpenMP). The high-level results show that TBB outper-
forms OpenMP while the low-level analysis explains that TBB succeeds that due
to producing efficient code.

Understanding the performance characteristics of an application by using pro-
filing and analyzing tools such as Intel VTune is not an easy task. It requires ex-
tensive knowledge about the processors themselves to interpret data that usually
contains absolute values collected from the hardware counters of the processors.
The user should know the meaning of the various events and how they related
to each other.
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Abstract. High performance of data-parallel applications on heterogeneous 
platforms can be achieved by partitioning the data in proportion to the speeds of 
processors. It has been proven that the speed functions built from a history of 
time measurements better reflect different aspects of heterogeneity of 
processors. However, existing data partitioning algorithms based on functional 
performance models impose some restrictions on the shape of speed functions, 
which are not always satisfied if we try to approximate the real-life 
measurements accurately enough. This paper presents a new data partitioning 
algorithm that applies multidimensional solvers to numerical solution of the 
system of non-linear equations formalizing the problem of optimal data 
partitioning. This algorithm relaxes the restrictions on the shape of speed 
functions and uses the Akima splines for more accurate and realistic 
approximation of the real-life speed functions. The better accuracy of the 
approximation in its turn results in a more optimal distribution of the 
computational load between the heterogeneous processors. 

Keywords: dedicated heterogeneous HPC platforms; data partitioning; 
functional performance models of processors; Akima spline interpolation; 
multidimensional root-finding. 

1   Introduction 

In this paper, we study partitioning of computational load in data-intensive parallel 
scientific routines, such as linear algebra, mesh-based solvers, image processing. In 
these routines, typically, computational workload is directly proportional to the size of 
data. High performance of these routines on dedicated heterogeneous HPC platforms 
can be achieved when all processors complete their work within the same time. This 
is achieved by partitioning the computational workload and, hence, data unevenly 
across all processors, with respect to the processor speed and memory hierarchy. 

Conventional algorithms for distribution of computations between heterogeneous 
processors are based on a performance model which represents the speed of a 
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processor by a constant positive number, and computations are distributed between the 
processors in proportion to this speed of the processor. The constant characterizing the 
performance of the processor is typically its relative speed demonstrated during the 
execution of a serial benchmark code solving locally the core computational task of 
some given size.  

The fundamental assumption of the conventional algorithms based on the constant 
performance models (CPMs) is that the absolute speed of the processors does not 
depend on the size of the computational task. This assumption proved to be accurate 
enough if: 

• The processors, between which we distribute computations, are all general-purpose 
ones of the traditional architecture,  

• The same code is used for local computations on all processors, and 
• The partitioning of the problem results in a set of computational tasks that are 

small enough to fit into the main memory of the assigned processors and large 
enough not to fit into the cache memory. 

These conditions are typically satisfied when medium-sized scientific problems are 
solved on a heterogeneous network of workstations. Actually, heterogeneous 
networks of workstations were the target platform for the conventional heterogeneous 
parallel algorithms.  However, the assumption that the absolute speed of the processor 
is independent of the size of the computational task becomes much less accurate in 
the following situations: 

• The partitioning of the problem results in some tasks either not fitting into the main 
memory of the assigned processor and hence causing paging or fully fitting into 
faster levels of its memory hierarchy (Fig. 1). 

• Some processing units involved in computations are not traditional general-
purpose processors (say, accelerators such as GPUs or specialized cores). In this 
case, the relative speed of a traditional processor and a non-traditional one may 
differ for two different sizes of the same computational task even if both sizes fully 
fit into the main memory. 

• Different processors use different codes to solve the same computational problem 
locally. 

The above situations become more and more common in modern and especially 
perspective high-performance heterogeneous platforms. As a result, applicability of 
the traditional CPM-based distribution algorithms becomes more restricted. Indeed, if 
we consider two really heterogeneous processing units iP  and jP , then the more 

different they are, the smaller will be the range ijR  of sizes of the computational task 

where their relative speed can be accurately approximated by a constant. In the case 
of several different heterogeneous processing units, the range of sizes where CPM-
based algorithms can be applied will be given by the intersection of these pair-wise 

ranges, 
, 1

p

ij
i j

R
=
I . Therefore, if a high-performance computing platform includes a 
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Fig. 1. Processor speed observed for matrix multiplication routine in different ranges of 
problem size 

relatively large number of significantly heterogeneous processing units, the area of 
applicability of CPM-based algorithms may become quite small or even empty. For 
such platforms, new algorithms are needed that would be able to optimally distribute 
computations between processing units for the full range of problem sizes.  

The functional performance model (FPM) of heterogeneous processors proposed 
and analyzed in [1] has proven to be more realistic than the constant performance 
models because it integrates many important features of heterogeneous processors 
such as the architectural and platform heterogeneity, the heterogeneity of memory 
structure, the effects of paging and so on. The algorithms employing it therefore 
distribute the computations across the heterogeneous processing units more accurately 
than the algorithms employing the constant performance models. Under this model, 
the speed of each processor is represented by a continuous function of the size of the 
problem. This model is application centric because, generally speaking, different 
applications will characterize the speed of the processor by different functions. 

The cost of experimentally building the full functional performance model of a 
processor, i.e., the model for the full range of problem sizes, is very high. This is due 
to several reasons. To start with, the accuracy of the model depends on the number of 
experimental points used to build it. The larger the number, the more accurate the 
model is. However, there is a cost associated with obtaining an experimental data 
point, which requires execution of a computational kernel for a specified problem 
size. This cost is especially high for problem sizes in the region of paging.  

The high model-construction cost limits the applicability of parallel algorithms 
based on full FPMs to situations where the construction of the full FPMs of 
heterogeneous processors and their use in the application can be separated. For 
example, if we develop an application for dedicated stable heterogeneous platforms, 
with the intention of executing the application on the same platform multiple times, 
we can build the full FPMs for each processor of the platform once and then use these 
models multiple times during the repeated execution of the application. In this case, 
the time of construction of the FPMs can become very small compared to the 
accumulated performance gains during the multiple executions of the optimized 
application. However, this approach does not apply to applications for which each run 
is considered unique. This is the case for applications that are intended to be executed 
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in dynamic environments or any other environments where the available processors 
and their performance characteristics can change. 

In contrast to the CPM-based data partitioning algorithms, the FPM-based ones 
take into account the history of load measurements stored in the speed functions. The 
FPM-based algorithms define the optimal data distribution through the speed 
functions. Traditionally, the speed functions are built as piecewise linear functions 
fitting historic records of the processors’ workload. The piecewise linear 
approximation of the speed functions is used by the geometrical data partitioning 
algorithm proposed in [1]. It imposes some restrictions on the shape of speed 
functions but guarantees the existence and uniqueness of the optimal data partitioning. 

In this paper, we present a new data partitioning algorithm. This new algorithm 
formulates the original data partitioning problem as a problem of finding a solution to 
a multi-dimensional system of nonlinear equations. It employs a numerical multi-
dimensional non-linear solver to find the optimal partitioning. It is not that restrictive 
to the shape of speed functions as the geometrical algorithm and therefore can use 
more accurate approximations of the real-life speed functions. However, the proposed 
algorithm does not guarantee a unique solution. In this paper, we propose to 
interpolate the speed functions by the Akima splines. Passing through all 
experimental points, the Akime splines form a smooth function of a shape that closely 
reflects the real performance of the processor. 

To demonstrate the advantages of the new FPM-based data partitioning algorithm, 
we present the experimental results of dynamic load balancing of data-intensive 
iterative routines on highly heterogeneous computational clusters. In our experiments, 
the speed functions of the processors are dynamically constructed during the iterations 
of the routine. Use of the functional performance models allows a computational 
scientist to utilise the maximum available resources on a given cluster. We 
demonstrate that our algorithm succeed in balancing the load even in situations when 
the traditional algorithms fail. We show that the Akima splines provide very accurate 
approximation of the speed functions. 

This paper is structured as follows. In Section 2, we describe traditional piecewise 
linear approximation of speed functions and the geometrical data partitioning 
algorithm. In Section 3, we present the new FPM-based data partitioning algorithm 
based on multidimensional solvers. The algorithm uses the Akima spline interpolation 
of the speed functions. In Section 4, we demonstrate that this algorithm  
can successfully balance data-intensive iterative routines for the whole range of 
problem sizes. 

2   Traditional Piecewise Linear Approximation of Speed Functions 
and Geometrical Data Partitioning Algorithm 

Functions much more accurately represent the speed of processors than constants [2]. 
Being application-centric and hardware-specific, functional performance models 
reflect different aspects of heterogeneity. In this section, we describe a traditional 
approach to approximate the speed of the processors and the geometrical data 
partitioning algorithm based on this approach. 
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Let speeds of p  processors be represented by positive continuous functions of 

problem size 1( ),..., ( )ps x s x : ( )
( )i

i

x
s x

t x
= , where ( )it x is the execution time for 

processing of x  elements on the processor i . Speed functions are defined at [0, ]n , 

where n  is a problem size to partition. The optimal data partition is achieved when all 
processors execute their work at the same time: 1 1( ) ... ( )p pt x t x≈ ≈ . This can be 

expressed as: 

1

1 1

...
( ) ( )

p

p p

xx

s x s x
= = , where 1 2 ... px x x n+ + + = . (1) 

The integer-value solution of these equations, 1,..., pd d , can be represented 

geometrically by intersection of the speed functions with a line passing through the 
origin of the coordinate system (Fig. 2). 

 

Fig. 2. Optimal distribution of computational units showing the geometric proportionality of the 
number of chunks to the speed of the processor 

2.1   Data Partitioning Algorithm Based on Geometrical Solution 

The geometrical data partitioning algorithm is based on the geometrical solution of 
the problem (1), assuming that any straight line passing through the origin of the 
coordinate system intersects the speed functions only once. The algorithm can be 
summarized as follows. Any line passing through the origin and intersecting all speed 
functions represents an optimum distribution for a particular problem size. Therefore 
the space of solutions of the problem (1) consists of all such lines. The two outer 
bounds of the solution space are selected as the starting point of algorithm. The upper 
line represents the optimal data distribution 1 ,...,u u

pd d  for some problem size un n< , 
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1 ...u u
u pn d d= + + , while the lower line gives the solution 1 ,...,l l

pd d  for ln n> , 

1 ...l l
l pn d d= + + . The region between two lines is iteratively bisected. At the iteration 

k , the problem size corresponding to the new line intersecting the speed functions at 

the points 1 ,...,k k
pd d  is calculated as 1 ...k k

k pn d d= + + . Depending on whether kn  is 

less than or greater than n , this line becomes a new upper or lower bound. Making 

kn  close to n , this algorithm finds the optimal partition of the given problem 

1,..., pd d : 1 ... pd d n+ + = . The assumptions about the shape of the speed functions 

provide the existence and uniqueness of the solution. Fig. 3 illustrates the work of the 
bisection algorithm. 

 

Fig. 3. Geometrical data partitioning algorithm. Line 1 (the upper line) and line 2 (the lower 
line) represent the two initial outer bounds of the solution space. Line 3 represents the first 
bisection. Line 4 represents the second one. The dashed line represents the optimal solution. 

To apply this algorithm to the speed functions, some restrictions are placed on their 
shape. Experiments performed with many scientific kernels on various heterogeneous 
networks of workstations have demonstrated that, in general, processor speed could 
be approximated, within some acceptable degree of accuracy, by a function satisfying 
the following assumptions [1]: 

• On the interval x[0, ]X , the function is monotonically increasing and concave. 

• On the interval [ , ]X ∞ , the function is monotonically decreasing. 

• Any straight line coming through the origin of the coordinate system intersects the 
graph of the function in no more than one point. 
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2.2   Piecewise Linear Approximation of Speed Functions 

Traditionally, the speed function is built as a piecewise linear function fitting within a 
band of historic records of workload fluctuations of the processor. To satisfy the 
above assumptions, the shape of the piecewise linear approximation ( )is x  should be 

verified after adding the new data point ( , )j j
i id s , and the value of j

is  should be 

updated when required. Namely, to keep the speed function increasing and convex on 

the interval [0, ]X , it is necessary that 
1 2 1 1

1 2 1 1
0

− − − +

− − − +

− − −
> > >

− − −

j j j j j j
i i i i i i
j j j j j j

i i i i i i

s s s s s s

d d d d d d
. This 

expression represents decreasing tangent of the pieces, which is required for the 
convex shape of the piecewise linear approximation. On the interval [ , ]X ∞ , it is 

necessary that 1 1j j j
i i is s s− +≥ ≥  for monotonously decreasing speed function. 

The procedure of building piecewise linear approximation is very time consuming, 
especially for full functional performance models, which are characterized by numerous 
points. Generating the speed functions is especially expensive in the presence of paging. 
This forbids building full functional performance models at run time. To reduce the cost 
of building the speed functions, the partial functional performance models were 
proposed [3]. They are based on a few points and estimate the real functions in detail 
only in the relevant regions: ( ) ( )i is x s x≈ , 1 i p≤ ≤ , [ , ]x a b∀ ∈ . Both the partial 

models and the regions are determined at runtime, while the data partitioning algorithm 
is iteratively applied to the partially built speed functions. The result of the data 
partitioning, the estimate of the optimal data distribution 1 ,...,k k

pd d , determines the next 

experimental points 1 1( , ( )),..., ( , ( ))k k k k
i p p pd s d d s d  to be added to the partial models 

1( ),..., ( )ps x s x . The more points are added, the closer the partial functions approximate 

the real speed functions in the relevant regions. Fig. 4 illustrates the construction of the 
partial speed functions, using the piecewise linear approximation and the geometrical 
data partitioning algorithm. 

 

 
(a) (b)

Fig. 4. Construction of the partial speed functions, using the piecewise linear approximation 
and the geometrical data partitioning algorithm 



 Using Multidimensional Solvers for Optimal Data Partitioning 339 

After adding the experimental points to the partial speed functions, their shape is 
adjusted to satisfy the above assumptions. The low cost of partial building the models 
makes it ideal for employment in self-adaptive parallel applications, particularly in 
dynamic load balancing. 

3   New Data Partitioning Algorithm Based on Multidimensional 
Root-Finding 

The geometrical data partitioning algorithm requires each speed function to be 
monotonically increasing and concave up to some point and then monotonically 
decreasing and in addition to be intersected only once by any line passing from the 
origin. In general, speed functions have this shape, but it is not always the case. For 
example, a non-optimised algorithm such as Netlib BLAS can have a sawtooth 
function due to cache misses (Fig. 5). A less accurate function must be fitted to the 
data to satisfy the shape restrictions (Fig. 5(a)). 

Here we present a new data partitioning algorithm which allows us to remove these 
restrictions and therefore represent the speed of the processor with more accurate 
continuous functions. This allows us to perform more accurate partitioning. For 
example, by using the more accurate fit in Fig. 5(b), we can achieve a speedup of 1.26 
for some problem sizes. For different routines this speedup could potentially be much 
bigger. 
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Fig. 5. Speed function for non-optimised Netlib BLAS. (a) Fitting shape restricted piecewise 
approximation. (b) Fitting Akima spline interpolation. Both speed functions have been offset 
slightly for clarity. 

3.1   Data Partitioning Algorithm Based on Nonlinear Multidimensional Root 
Finding 

If the processor speeds are approximated by continuous differentiable functions of 
arbitrary shape, the problem of optimal data partitioning (1) can be formulated as 
multidimensional root finding for the system of nonlinear equations F(x) = 0 , where 
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1

1

1 1

( )

, 2
( ) ( )

p

i
i

i

i i

n x

x x
i p

s x s x

=

⎧
−⎪⎪= ⎨

⎪ − ≤ ≤
⎪⎩

∑
F x . (2) 

1( ,..., )px x=x  is a vector of real numbers corresponding a data partition 

1( ,..., )pd d=d . The first equation specifies the distribution of n  computational units 

between p  processors. The rest specify the balance of computational load. The 

problem (2) can be solved by a number of iterative algorithms based on the Newton–
Raphson method: 

k +1 k k kx = x - J(x )F(x ) . (3) 

The equal data distribution 

0 ( / ,..., / )n p n p=x  (4) 

can be reasonably taken as the initial guess for the location of the root. ( )J x  is a 

Jacobian matrix, which can be calculated as follows: 

1 1 1 1 1 2 2 2 2 2
2 2
1 1 2 2

1 1 1 1 1
2 2
1 1

1 1 ... 1

( ) ( ) ( ) ( )
0 0

( ) ( )
( )

... 0 ... 0

( ) ( )( ) ( )
0 0

( ) ( )
p p p p p

p p

s x x s x s x x s x

s x s x

s x x s xs x x s x

s x s x

− − −⎛ ⎞
⎜ ⎟′ ′− −⎜ ⎟−
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟′−′−⎜ ⎟−⎜ ⎟
⎝ ⎠

J x . (5) 

We use the HYBRJ algorithm, a modified version of Powell's Hybrid method, 
implemented in the MINPACK library [4]. It retains the fast convergence of the 
Newton method and reduces the residual when the Newton method is unreliable. Our 
experiments demonstrated that for the given vector-function (2) and initial guess (4), 
the HYBRJ algorithm is able to find the root * * *

1( ,..., )px x=x , which will be the 

optimal data partition after rounding and distribution of remainders: *( )round=d x . 

3.2   New Approximation of Partial Speed Functions Based on the Akima Splines 

Let us consider a set of k  data points ( , )i ix s , 0 ix n< < , 1 i k≤ ≤ . Here and after in 

this section, the data points ( , )i ix s  correspond to a single processor, for which the 

speed function ( )s x  is approximated. To approximate the speed function in the 

interval [0, ]n , we also introduce two extra points: 1(0, )s  and ( , )kn s . The linear 

interpolation does not satisfy the condition of differentiability at the breakpoints 
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( , )i ix s . The spline interpolations of higher orders have derivatives but may yield 

significant oscillations in the interpolated function. However, there is a special non-
linear spline, the Akima spline [5], that is stable to outliers (Fig. 6). It requires no less 
than 5 points. In the inner area 3 2[ , ]kx x − , the interpolation error has the order 2( )O h . 

This interpolation method does not require solving large systems of equations and 
therefore it is computationally efficient. 
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Fig. 6. Akima spline interpolation of a dynamically built functional performance model 

When the model consists of less than 5 data points, the Akima splines interpolation 
can be bzuilt for an extended model that duplicates the values of the left- and 
rightmost points, 1, ks s , as follows: 

1. 1k = : 1 /x n p= , 1 ( / )s s n p= , the extended model specifies the constant speed as 

( ) ( ) ( )1 1
1 1 1 1 1 10, , , , , , , , ,

2 2

x n x
s s x s s n s

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

2. 2k = : the extended model is ( ) ( ) ( ) ( )2
1 1 1 2 2 2 20, , , , , , , , ,

2

n x
s x s x s s n s

−⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

3. 3k = : the extended model is ( ) ( ) ( ) ( ) ( )1 1 1 2 3 3 320, , , , , , , , ,s x s x s x s n s . 

Proposition 1. The speed functions is are defined within the range 0 x n< ≤  and are 

bounded, continuous, positive, non-zero and have bounded, continuous first 
derivatives. 

Proof. The data points ( , )i ix s  are calculated with ( )
( )i

i

x
s x

t x
=  . As it is a practical 

requirement that each iteration finishes in a finite time and the Akima splines closely 
fit the data points with continuous smooth functions we can conclude that is  is 

continuous, bounded, positive, non-zero within the range 0 x n< ≤ . A feature of 
Akima splines is that they have continuous first derivatives [5].  
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3.3   Convergence and Complexity Analysis 

Proposition 2. Within the range 0 x n< ≤ , the system of nonlinear equations 
F(x) = 0  contains no stationary points and the functions if (x)  have bounded, 

continuous first derivates, where if (x)  is the i'th equation of F(x) . 

Proof. ′F (x)  is non-zero for all 0 x n< ≤ , hence F(x)  contains no stationary points. 

0f (x)  has a constant first derivative. For if (x) , 1 i n≤ < , if is and is ′ are continuous, 

bounded and if is  is non zero then if ′(x)  is bounded, continuous. This requirement is 

satisfied by proposition 1. 

Proposition 3. The new data partitioning algorithm presented in this section 
converges in a finite number of iterations. 

Proof. It is proven in [4] that if the range of x is finite, and F(x)  contains no 

stationary points and if if ′(x)  is bounded continuous then the HYBRJ solver will 

converge to ε<F(x) , where ε  is a small positive number, in a finite number of 

iterations. These requirements are satisfied by proposition 2. 

Proposition 4. The complexity of one iteration of the solver is 2( )O p . 

Proof. It is show in [6] that the HYBRJ solver has complexity 2( )O p . All other steps 

of the algorithm are of order ( )O p . 

The number of solver iterations depends on the shape of the functions. In practice we 
found that often 2 iterations are sufficient when the speed functions are very smooth 
and up to 30 iterations when partitioning in regions of rapidly changing speed 
functions. 

4   Dynamic Load Balancing of Parallel Computational Iterative 
Routines 

In this section, we demonstrate how the new data partitioning algorithm can be used 
for dynamic load balancing of parallel computational iterative routines on highly 
heterogeneous platforms.  

Iterative routines have the following structure: 1 ( )k kx f x+ = , 0,1,...k =  with 0x  

given, where each kx  is an n -dimensional vector, and f  is some function from nR  

into itself [7]. The iterative routine can be parallelized on a cluster of p processors by 
letting kx  and f  be partitioned into p  block-components. In an iteration, each 

processor calculates its assigned elements of 1kx + . Therefore, each iteration is 
dependent on the previous one. The performance of computational iterative routines 
can be represented by the speed of a single iteration as all iterations perform the same 
amount of computation. 
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The objective of load balancing algorithms for iterative routines is to distribute 
computations across a cluster of heterogeneous processors in such a way that all 
processors will finish their computation within the same time and thereby minimising 
the overall computation time: i jt t≈ , 1 ,i j p≤ ≤ . The computation is spread across a 

cluster of p  processors 1,..., pP P  such that p n<< . Processor iP  contains id  

elements of kx  and f , such that 
1

p

i
i

n d
=

=∑ . 

The traditional approach taken for load balancing of data-intensive iterative 
routines belongs to static/dynamic centralised predicting-the-future algorithms. In 
these traditional algorithms, computation load is evaluated either in the first few 
iterations [8] or at each iteration [9] and globally redistributed among the processors. 
Current load measurements are used for prediction of future performance. When 
applied to large scientific problems and highly heterogeneous parallel platforms, this 
strategy may never balance the load, because it uses simplistic models of processors’ 
performance. 

Instead of single speed values, we propose more accurate models, namely, partially 
built functional performance models. At each iteration, we redistribute data with help 
of the new data partitioning algorithm based on multidimensional root-finding. Our 
dynamic load balancing can be summarized as follows. At the iteration k  of the 
routine: 

1. The data is distributed in accordance with the partition obtained at the previous 
iteration 1( ,..., )k k k

pd d=d . For 0k = , the data is distributed evenly: 
0 ( / ,..., / )n p n p=d . 

2. The computation is executed and its performance is evaluated at all processors 

1 ,...,k k
ps s . 

3. The new observation points ( ) ( )1 1, ,..., ,k k k k
p pd s d s  are added to the partial 

performance models of processors and approximations of the speed functions 

1( ),..., ( )ps x s x  are recalculated. 

4. Data partitioning algorithm is applied to the current approximations of the speed 
functions and returns the refined partition 1k+d  for the next iteration. 

Since ( ) ( )i is x s x→ as k → ∞ , 1 i p≤ ≤ , this procedure adaptively converges to the 

optimal data distribution *k →d d . 
This dynamic load balancing algorithm was applied to the Jacobi method, which is 

representative of the class of iterative routines we study. The program was tested 
successfully on a cluster of 16 processors. For clarity the results presented here are 
from two configurations of 4 processors, Table 1. The essential difference is that 
cluster 1 has one processor with 256MB RAM and cluster 2 has two processors with 
256MB RAM.  
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Table 1. Specifications of test nodes. Cluster 1 consists of nodes: P1, P3, P4, P5. Cluster 2 
consists of nodes: P1, P2, P3, P4. 

 P1 P2 P3 P4 P5 
Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon 
RAM (MB) 256 256 512 1024 1024 
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Fig. 7. Dynamic load balancing using multidimensional root-finding partitioning algorithm and 
the Akima spline interpolation for n=12000 

The memory requirement of the partitioned routine is a in d×  block of a matrix, 

three n dimensional vectors and some additional arrays of size p. For 4 processors 
with an even distribution, problem sizes of n=8000 and n=11000 will have a memory 
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requirement which lies either side of the available memory on the 256MB RAM 
machines, and hence will be good values for benchmarking. 

Fig. 7 illustrates the work of this algorithm for the Jacobi method for 4 processors 
with 12000n = . The algorithm converges to the optimal data distribution with each 
iteration. By the 7th iteration optimum partitioning has been achieved. 

Fig. 8 shows the speedup of the CPM and FPM algorithms over a homogeneous 
distribution. The FPM algorithm used in the experiments is the one based on 
nonlinear multidimensional root finding. For small problem sizes the speedup is not 
realised because of the cost involved with data redistribution, however as the size 
increases both load balancing algorithms improve up to the point were the traditional 
algorithm based on a constant performance model fails, from which point it performs 
worse then the homogeneous distribution. The speed up achieved by FPM based load 
balancing increases as the difference between the relative speeds of the processors 
increases. 
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Fig. 8. Speed up of dynamic load balancing algorithms over a homogeneous distribution of 
/n p  using a cluster of 16 heterogeneous machines 

5   Conclusion 

Functional performance models of processors are successfully applied to balancing 
the computational load of data-intensive parallel applications on dedicated highly 
heterogeneous HPC platforms. Based on a history of time measurements, they better 
reflect different aspects of heterogeneity of processors. Traditionally, the speed of a 
processor is approximated by a piecewise linear function. The larger the number of 
the experimental points, the more accurate the speed function is. However, there is a 
cost associated with obtaining an experimental data point, which requires execution of 
a computational kernel for a specified problem size. In addition, the straightforward 
geometrical solution of the data partitioning problem imposes some restrictions on the 
shape of speed functions. This requires some adjustments of the experimental points 
and may result to the non-optimal data partitioning because the speed functions 
become less accurate. In this paper, we proposed a new accurate approximation of 
speed functions and a new algorithm that employs the numerical solution of the data 
partitioning problem. We relax the restrictions on the shape of speed functions and 



346 V. Rychkov, D. Clarke, and A. Lastovetsky 

numerically solve the system of non-linear equations that formalizes the problem of 
optimal data partitioning. We have shown that the dynamic load balancing algorithms 
based on functional models can be used successfully with any problem size and on a 
wide class of heterogeneous platforms. 
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Abstract. In this paper we propose an efficient parallel job scheduling
algorithm for a grid environment. The model implies two stage schedul-
ing. At the first stage, algorithm allocates jobs to the suitable machines,
where at the second stage jobs are independently scheduled on each ma-
chine. Allocation of jobs on the first stage of the algorithm is performed
with use of a relatively new evolutionary algorithm called Generalized
Extremal Optimization (GEO). GEO is inspired by a simple coevolu-
tionary model known as Bak-Sneppen model. Scheduling on the second
stage is performed by some proposed heuristic. We compare GEO-based
scheduling algorithm applied on the first stage with Genetic Algorithm
(GA)-based scheduling algorithm. Experimental results show that the
GEO, despite of its simplicity, outperforms the GA algorithm in all range
of scheduling instances.

Keywords: Grid computing, evolutionary algorithm, generalized
extremal optimization, parallel job.

1 Introduction

Distributed computing has recently become very popular technique to provide
high performance computing for computationally intensive applications.
This term is often described as ”the Grids” or ”Grid Computing”. In grid
computing there are multi-institutional virtual organizations with shared and
coordinated resources. As resource we can define direct access to computers,
software, data, and other resources, as is required by a range of collaborative
problem-solving [4].

Many studies propose the distributed management system [1] against the cen-
tralized scheduling [2]. There are also combination of distributed and centralized
management [11]. It can be characterized by a hierarchical multilayer resource
management [8]. The first (higher) layer is often assigned to a global grid sched-
uler. In this layer jobs are scheduled among the machines in the grid. At the
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second layer (lower) a local management system exists, in which previously as-
signed jobs are scheduled in the local machine.

The scheduling in a grid system is responsible for resource discovery, resources
selection, job assignment and aggregation of group of resources over a decentral-
ized heterogeneous system [7]. The idea of grid computing has forced devel-
opment of new algorithms of management of a large number of heterogeneous
resources. The execution of the user’s application must satisfy both job execution
constraints and system policies. Scheduling algorithms applied to the traditional
multiprocessor systems are often inadequate to grid systems. On the other hand,
many algorithms have been adapted to the grid computing [5], [6], [12]. How-
ever, there are many open problems in this field, including the consideration of
multilayered system in the scheduling process.

This work is related to offline scheduling problem in grid computing and its
resolution using meta-heuristic approaches. These algorithms are often used to
solve a class of NP-hard problems. The scheduling problem belongs to this class.
In this paper we will show the usefulness of meta-heuristic approaches for the de-
sign of efficient grid schedulers. We propose a relatively new meta-heuristic called
GEO to solve the scheduling problem together with locally applied scheduling
heuristic [9].

The paper is organized as follows. In the next section we define the grid model
and the scheduling problem. Section 3 presents the concept of GEO algorithm
and its application for the scheduling problem. In Section 4 we present GA-based
scheduling algorithm. Section 5 describes local scheduling algorithm. Next, in
Section 6 we analyze experimental results comparing the use of GEO and GA-
based scheduling algorithms. Last section contains conclusions.

2 Grid Model and Scheduling

2.1 Model

The grid model is defined as follows [10]. A grid system consists of a set of m
parallel machines M1, M2, ..., Mm. Each machine Mi has mi identical processors,
called also the size of machine Mi. Fig. 1(a) shows an example of the grid system.
In the grid system there is a set of n jobs J1, J2, ..., Jn. A job Jj is described by a
triple (rj , sizej, tj). The release time rj can be defined as the earliest time when

...

M1 Jj

M2 Mm

m processorsi
sizej

tj

processor Pj

a) b)

Fig. 1. Example of the grid system (a) and the job model (b)
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the job can be processed. In this model we assume rj >= 0. A sizej is referred
to the processor requirements. It specifies a number of processors required to run
the job Jj within assigned machine. We can define this as degree of parallelism
or a number of threads. All threads of the job must be run at the same time and
the same machine. The tj is defined as the execution time of the job Jj . Fig.
1(b) shows an example of the job.

Then, the wj = tj ∗ sizej denotes the work of job Jj . A machine execute a
job of the sizej when sizej processors are allocated to it during time tj . We
assume that job Jj needs to be allocated only within assigned machine Mi. In
other words, the job cannot be divided into small parts and executed on two
or more machines simultaneously. Jobs must not be reallocated from different
machines. The machine has to be capable to allocate the job to its processors,
so sizej <= mi must meet.

Let us denote S as a schedule. The completion time of jobs on machine Mi

in the schedule Si is denoted by Ci(Si). We consider minimization of the time
Ci(Si) on each machine Mi over the system in such a way that the makespan is
defined as

Cmax = maxi(Ci(Si)). (1)

The purpose of the scheduling is to distribute jobs among the machines and
schedule them to minimize a makespan Cmax.

2.2 Two-Stage Scheduling

The proposed scheduling is the two-stage algorithm. An important role of the
scheduling process is an appropriate allocation of jobs on machines. We consider
system with a different number of processors in machines. It forces to use algo-
rithms which globally distribute jobs among machines of the system. Each job
should be allocated in such a way the time of schedule S is minimized.

According to the model we consider the first and the second stages of the
scheduling. At the first stage the scheduling algorithm allocates globally jobs
to a suitable machines. At each step of the algorithm jobs are reallocated to
machines with a lower utilization. The algorithm compares time of schedule
with a previous one. Then choose and reallocate the job to another machine,
where the time can be minimized. For this stage we choose a meta-heuristic
algorithms described in sections 3 and 4.

At the second stage we apply a local scheduling algorithm. It schedules jobs
in a particular machine. At this stage we use a heuristic algorithm described in
section 5.

3 Global Scheduling with Generalized Extremal
Optimization Algorithm

3.1 The Bak-Sneppen Model and Its Representation in Job
Allocation

At the first stage a meta-heuristic algorithm is applied. We propose a relatively
new evolutionary algorithm called GEO. The idea of this algorithm is based on
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the Bak-Sneppen model [9]. Evolution in this model is driven by a process in
which the weakest species in the population, together with its nearest neighbors,
is always forced to mutate. The dynamics of this extremal process shows char-
acteristics of Self-Organized Criticality (SOC), such as punctuated equilibrium,
that are also observed in natural ecosystems. Punctuated equilibrium is a theory
known in evolutionary biology. It states that in evolution there are periods of
stability punctuated by a change in an environment that forces relatively rapid
adaptation by generating avalanches, large catastrophic events that effect the
entire system. The probability distribution of these avalanches is described by a
power law in the form:

pi = k−τ
i , (2)

where pi is a probability of mutation of the i-th bit (species), k is a position of
the i-th bit (species) in the ranking, τ is a positive parameter. If τ → 0, the
algorithm performs a random search, while τ →∞, then the algorithm provides
deterministic searching. Bak and Sneppen developed a simplified model of an
ecosystem in which N species are placed side by side on a line. Fig. 2(a) shows
the population of species in the Bak-Sneppen model [9] and the Fig. 2(b) presents
the idea of GEO algorithm of the grid scheduling.

In the GEO approach, a population of species is a string of bits that encodes
the design variables of the optimization problem, and each bit corresponds to one
species. In Fig. 2(a) two variable function F (x1, x2) is optimized. Each variable is
coded using seven bits, and the whole string - a potential solution of the problem
consists of 14 bits (upper part of Fig. 2(a)). Each bit of the string is considered
as the species (lower part of Fig. 2(a)) of the Bak-Sneppen model. The number
of bits per variable depends on the type of the problem. The population of the
GEO algorithm to solve the scheduling problem presented in this paper contains
one string of n numbers. The length of the string is equal to the total number
of jobs in the grid system. Fig. 2(b) (upper part) shows an example of the GEO
string which presents proposed allocation of jobs to machines in the grid. The
job numbers are placed in a permutation form. This form defines the order of
jobs executing by a local scheduling algorithm. To assign jobs to machines we

i-th bit

tau - positive user parameter

k
i

P=ki i

Probability of mutation of i-th bit

optimized function

(a)

13

2

7

4

5

3

10

5

14 6 11 8 1 4 12 2 9 3

additional vector with number
of jobs allocated on machines

M1 M2 M4
...

2 jobs on
machine M1

4 jobs on
machine M2

3 jobs on
machine M3

5 jobs on
machine M4

job
number

Permutation vector
(b)

Fig. 2. Population of species in the Bak-Sneppen model and its correspondence in the
GEO algorithm (a). Representation of grid model in Bak-Sneppen model (b).
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set the additional vector (top vector on the Fig. 2(b)) showing the number of
jobs allocated to corresponding machines. One can see that, for example, two
jobs were allocated to machine M1 and these are jobs 13 and 7. Fig. 2(b) (lower
part) shows a relation between coding used in the GEO to solve the scheduling
problem and Bak-Sneppen model.

3.2 The GEO-Based Scheduling Algorithm

The GEO was originally presented by Sousa and Ramos [9]. In the algorithm each
bit (species) is forced to mutate with a probability proportional to the fitness. It
is a value associated with a given combination of bits of the GEO string, related
to a problem. Change of a single bit of the string results in changing its fitness
and indicates the level of adaptability of each bit in the string corresponding to
a current solution of a problem. The fitness can gain or loss if a bit is mutated
(flipped). After performing a single changing of the string bits and calculating
corresponding values of fitness function we can create the sorted ranking of bits
by its fitness. Since this moment the probability of mutation pi of each i-th bit
placed in the ranking can be calculated by Eq. 2. In Fig 3 we present three types
of mutation which can be potentially used by GEO.

In our problem we use integer numbers indicated jobs, instead of bits. There-
fore, we propose another type of mutation operator adapted to our problem. We
use some operators inspired from technique called Gene Expression Program-
ming (GEP) proposed by Ferreira [3].

The first type of mutation is simply swap mutation. In this mutation two
jobs are selected. The first job is replaced by the second one and vice versa.
The second type of mutation is a inversion. First, a job k is selected. Then jobs
k + 1 and k − 1 are subjected of swap mutation. The last type of mutation is
a transposition. In this type of mutation jobs migrate to another machine. In a
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simple version of this operator the chosen job is moved to machine having the
total shortest time of allocated jobs. This type of mutation we used in this work.

The GEO-based scheduling algorithm can be presented as the Algorithm 1.

Algorithm #1. GEO-based scheduling algorithm

1. Initialize randomly a permutation string of length L that encodes n jobs in
the problem.

2. For the current configuration C of jobs, calculate the value V corresponding
to the objective function (1) and set Cbest = C and Vbest = V .

3. For each job i do
(a) mutate (transpose) each job and calculate the objective function value

Vi of the string configuration Ci,
(b) set the job fitness Fi as (Vi−R), where R is a constant. It serves only as

a reference number and can assume any value. The job fitness indicates
the relative gain (or loss) that is a result of mutating the job.

(c) return the string to its previous state.
4. Rank the N jobs according to their fitness values, from k = 1 for the least

adapted job (the highest ranking) to k = N for the best adapted (the lowest
ranking). In a minimization problem higher values of Fi will have higher
ranking. If two or more jobs have the same fitness, rank them in random
order, but follow the general ranking rule.

5. Choose with an equal probability a job i to mutate according to the probabil-
ity distribution pi = k−τ , where τ is an adjustable parameter. This process
called a generation is continued until some job is mutated.

6. Set C = Ci and V = Vi.
7. If Fi < Fbest then set Fbest = Fi and Cbest = Ci.
8. Repeat steps 3 to 7 until a given stopping criteria is reached.
9. Return Cbest and Fbest.

4 Global Scheduling with GA

GA is a search technique used to find an approximate solution in optimization
and search problems. It is a particular class of evolutionary algorithms (EA)
that uses mechanisms inspired by evolutionary biology. The algorithm operates
on a population of chromosomes coding potential solutions. Chromosomes usu-
ally are strings of bits. The fitness function is computed for each individual
(chromosome). In the scheduling problem the fitness function is calculated as
a makespan Cmax. The Algorithm #2 presents the GA-based scheduling algo-
rithm.

Algorithm #2. GA-based scheduling algorithm

1. Choose the initial population of individuals (solutions of the problem)
2. Evaluate the fitness of each individual in the population (calculate the

makespan Cmax)
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3. Repeat
(a) Use the Roulette Wheel operator to select individuals for reproduction
(b) Apply genetic operators: crossover and mutation to generate new solu-

tions
(c) Evaluate fitness of new individuals
(d) Replace the population with new individuals
Until stop condition is satisfied

In our problem strings are permutations of jobs similar to GEO string. As con-
trasted with GEO, which operates on one string, this algorithm operates on a
set of strings.

5 Local Scheduling Algorithm

The algorithm of local scheduling allocates jobs within a particular machine. The
main idea of this algorithm is to arrange jobs in such a way to minimize the area
of empty space of the schedule corresponding to non-busy period processors time.
Jobs assigned to a given machine are ordered by the global scheduler (permutated
substring). In a local scheduler we use a simple list algorithm. At the beginning
jobs J are sorted according to their work w. If some jobs have the same size of
the work then they are ordered by a sequence given by a global scheduler. Fig. 4
shows an example of local scheduling. It is assumed that a subset (7,1,4,2,6,3,5)
of seven jobs was assigned to a machine (see Fig. 4a, upper). We assume that
each job consists of a number of threads: job J7 consists of 1 thread, J1 consists
of 2 threads, J4 consists of 1 thread, J2 consists of 3 threads, J6 consists of 4
threads, J3 consists of 2 threads and J5 consists of 3 threads. We calculate for
each job its work. Let us assume that work for this subset is as follows: w7 = 1,
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Fig. 4. A schema of local scheduling. The representation of the solution and its con-
structing (a) and allocation in the machine (b).
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w1 = 12, w4 = 2, w2 = 12, w6 = 24, w3 = 12, w5 = 15. These jobs are next
sorted according to their work w (see Fig. 4a, down). This sorted substring is used
directly to assign them to processors of the machine. The job with the largest
work is assigned first to processors. Next, the job J5 is assigned to processors,
and the remaining jobs are assigned in the following order: J1, J2, J3, J4, J7. In
such a way we obtain the schedule Sk

i with the makespan Ci(Sk
i ).

6 Experimental Results

In this section we compare the performance of GEO and GA-based scheduling
algorithms for our scheduling problem defined in this paper. We used in exper-
iments two set of job instances randomly generated. The sets of instances were
generated with the following parameters: the number of jobs Nj , the average
execution time of a job Tavg, and the average required number of processors
Savg. It was assumed that the release time r was equal to 0 for both sets.

Calculation of the makespan is the main source of the time complexity of con-
sidered algorithms, and the number of evaluations (iterations of the algorithm)
of the makespan in both algorithms may be different. We assumed an equal
number of evaluations of the makespan for both algorithms.

Initially we show a typical run of GEO and GA algorithm (see Fig. 5). We run
these algorithms for 500 jobs set. During the first iterations the GA algorithm
quickly improves the solution. After that the algorithm slowly improves solution.
The GEO in opposite to the GA, starts with a relatively worse solution. However,
it consistently improves solution and quickly finds solution outperforming ones
presented by the GA. In the first experiment we use the set of jobs consisting of
the number of jobs (Nj) ranging from 100 to 1000 jobs. The average execution
time Tavg was set to 3, average required number of processors Savg was set to 2.
For this instance 4 and 8 processor machines were used.

In the GEO we used the following parameters in the experiment: τ = 4.0, a
number of iterations of the algorithm NitGEO = 500. For GA we set a population
size PGA = 200, mutation probability pm = 0.1, crossover probability pc = 0.75.
The number of iterations was set in range NitGA ∈ {250..2500} (for equal number
of the evaluation of the makespan in both algorithms). We repeated each instance
of the experiment 20 times.

Tab. 1 shows the results of the experiment. We start from small instances of
the problem. In the table we present the minimal time (makespan) obtained by
algorithms, and in the brackets the standard deviation calculated for 20 runs
of the algorithm. One can see that for 100 jobs the results are similar for both
algorithms, but GEO slightly outperforms GA. The standard deviation for the
GA is higher than for the GEO. This is visible especially for a small machine
sizes. For instances with use of 1000 jobs the standard deviation is smaller for
GA than for GEO, however, the makespan is significantly smaller for GEO. This
algorithm search the solution more permanently and precisely.

In the second experiment we used the same number of jobs with the average
time Tavg set to 5, average required number of processors Savg set to 4. Machines
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Fig. 5. Typical run of GEO and GA algorithm for 500 jobs set (Tavg=5, Savg = 4) in
4 (with 8 and 16 processors) machines environment

Table 1. Comparison of the makespan obtained by algorithms: GEO and GA for
machines with use of 4 and 8 processors. The model of jobs assumes the average time
Tavg equal to 3 and average threads Savg equal to 2. In rounded brackets is given the
standard deviation.

4 machines 8 machines 16 machines 32 machines
4 machines 4 8 8 machines 4 8 16 machines 4 8 32 machines 4 8

Number
of jobs

GEO GA GEO GA GEO GA GEO GA

100 jobs 35 (0.3) 36 (5.7) 20 (0.4) 22 (2.1) 11 (0.6) 13 (1.3) 8 (0.5) 9 (0.8)
500 jobs 147 (0.4) 181 (9.2) 81 (0.4) 96 (5.0) 39 (0.6) 49 (2.7) 22 (1.4) 30 (2.0)
1000 jobs 317 (12.2)408 (17.0)174 (8.9)220 (7.4)82 (10.0)112 (4.4)46 (5.0) 53 (4.1)

contained from 8 to 16 processors. The parameter of the GEO and GA algorithms
remain the same like in the previous experiment.

The results are presented in the Tab. 2. One can see that the results are
similar: the GEO algorithm significantly outperforms the GA algorithm. In the
instance with use of 1000 jobs this parameter reaches 24.6 for GEO. This instance
especially with use of 4 machines is the most complicated of all. Jobs needs to
be allocated in a small number of machines, so set their order and assign to
appropriate machine is significant. As we can notice, GEO can find apprecia-
bly better outcomes than GA. Explanation of these results are consequence of
behavior GEO and GA algorithms. GEO is finding the solution by calculating
the makespan for each job from population and accepting population for which
mutation of job gives the best result. In GA we calculate fitness function for a
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Table 2. Comparison of the makespan obtained by algorithms: GEO and GA for
machines with use of 8 and 16 processors. The model of jobs assumes the average time
Tavg equal to 5 and average threads Savg equal to 4. In rounded brackets is given the
standard deviation.

4 machines 8 machines 16 machines 32 machines
4 machines 8 16 8 machines 8 16 16 machines 8 16 32 machines 8 16

Number
of jobs

GEO GA GEO GA GEO GA GEO GA

100 jobs 49 (0.6) 53 (5.1) 27 (0.5) 27 (3.9) 16 (0.4) 18 (1.3) 11 (0.6) 14 (1.0)
500 jobs 231 (0.6) 273 (18.3) 118 (0.8) 147 (5.8) 62 (2.5) 81 (5.8) 36 (6.2) 49 (2.5)
1000 jobs 467 (24.6)597 (16.6)238 (16.9)305 (11.5)132 (10.6)165 (6.7)72 (11.4) 94 (2.8)

population of individuals. In GA mutation only maintain genetic diversity from
one generation of a population to the next. Mutation in GEO is more meaning-
ful. GEO is finding a solution more consequently by precisely valuation of jobs
and choosing the most suitable solution in the current step of the algorithm.

7 Conclusions

In this paper we have proposed a two-stage scheduling algorithm, where we
used the relatively new meta-heuristic called GEO to solve the scheduling prob-
lem. We compared our results obtained with use of GA. We have shown that
GEO-based scheduling algorithm outperforms GA-based scheduling algorithm
in term of the makespan. Our future research plans will be oriented on study
local scheduling heuristics proposed in the paper.
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Abstract. A problem of mapping graphs of parallel programs onto graphs of 
distributed computer systems by recurrent neural network is formulated. 
Parameter values providing absence of incorrect solutions are experimentally 
determined. Optimal solutions are found for mapping a “line”-graph onto a two-
dimensional torus due to introduction into Lyapunov function of penalty 
coefficients for the program graph edges not-mapped onto the system graph 
edges. For increasing probability of finding optimal mapping, a method for 
splitting the mapping is proposed. The method essence is a reducing solution 
matrix to a block-diagonal form. The Wang recurrent neural network is used to 
exclude incorrect solutions of the problem of mapping the line-graph onto 
three-dimensional torus. This network converges quicker than the Hopfield one. 

Keywords: Mapping, graphs of parallel programs, distributed computer 
systems, neuron, Hopfield network, Wang recurrent network. 

1   Introduction 

A distributed computer system (CS) [1] is a set of elementary computers (ECs) 
connected by a network that is program-controlled from these computers. Each EC 
includes a computer module (CM) and a system unit (message router). The message 
router operates under CM control and has input and output ports connected to the 
output and input ports of the neighboring ECs, correspondingly. The CS structure is 

described by the graph ( ),s s sG V E , where sV  is the set of ECs and s s sE V V= ×  is 

the set of connections between the ECs. 

For distributed CSs, the graph of a parallel program ( ),p p pG V E  is usually 

determined as a set pV  of the program branches (virtual elementary computers) 

interacting with each other by the point−to−point principle through transferring 
messages via logical (virtual) channels (which may be unidirectional or bidirectional) 

of the set p p pE V V= × . Interactions between the processing modules are ordered in 

time and regular in space for most parallel applications (line, ring, mesh, etc.) (Fig. 1). 
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For this reason, the maximum efficiency of information interactions in advanced 

high-performance CSs is obtained by using regular graphs ( ),s s sG V E  of 

connections between individual computers (hypercube, 2D-torus, or 3D-torus) [2, 3]. 
The hypercube structure is described by a graph known as a m-dimensional Boolean 

cube with a number of nodes 2mn = . Toroidal structures are m-dimensional 

Euclidean meshes with closed boundaries. The group of automorphisms mE  of such 

a structure is a direct product of cyclic subgroups 
1

:
k k

m

N m N
k

C E C
=

= ⊗ , where kN  is 

the order of the subgroup and ⊗  is the symbol of the direct product. For m = 2, we 
obtain a two-dimensional torus (2D-torus) (Fig. 2); for m = 3, we obtain a 3D-torus. 

 

Fig. 1. Typical graphs of parallel programs (line, ring and mesh) 

 
Fig. 2. Example of a 2D-torus 
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In this paper, we consider a problem for mapping graph ( ),p p pG V E  of a parallel 

program onto graph ( ),s s sG V E  of a distributed CS, where p sn V V= =  is a 

number of program branches (of  ECs). The mapping objective is to map nodes of the 

program graph pG  onto nodes of the system graph sG one-to-one to carry out 

mapping  pG  edges onto edges  of  sG  (to establish an isomorphism between the 

program graph pG  and a spanning subgraph of the system graph sG ). 

Massive parallelism of data processing in neural networks allows us to consider 
neural networks as a perspective, high-performance, and reliable tool for solution of 
complicated optimization problems. The recurrent neural networks [4-10] are a most 
interesting tool for solution of discrete optimization problems. A model of a globally 
converged recurrent Hopfield neural network is in good accordance with Dijkstra’s 
self-stabilization paradigm [11]. This signifies that the mappings of parallel program 
graphs onto graphs of distributed computer systems, carried out by Hopfield 
networks, are self-stabilizing. An importance of usage of the self-stabilizing mappings 
is caused by a possibility of  breaking the CS graph regularity by failures of ECs and 
intercomputer connections. 

2   Hopfield Network for the Mapping Problem 

Let us consider a matrix v  of neurons with size n n× , each row of the matrix 
corresponds to some branch of a parallel program and every column of the matrix 
corresponds to some EC. Each row and every column of the matrix v  must contain 
only one nonzero entry equal to one, other entries must be equal to zero. The energy 
of the corresponding neural Hopfield network is described by the Lyapunov function 

2 2

( )

,

1
1 1 ,

2

1
.

2
p

c d

c xj yi
x j i y

d xi yj ij
x i y Nb x j i

L C L D L

L v v

L v v d
∈ ≠

= ⋅ + ⋅

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

∑ ∑ ∑ ∑

∑∑ ∑ ∑

   (1) 

Here xiv  is a state of the neuron in the row x  and column i  of the matrix v , C  

and D  are parameters of the Lyapunov function. cL  is minimal when each row and 

every column of v  contains only one unity entry (all other entries are zero). Such 

matrix v  is a correct solution of the mapping problem. The minimum of dL  provides 

minimum of the sum of distances between adjacent pG  nodes mapped onto nodes of 

the system graph sG . Here ijd  is a distance between nodes i  and j  of the system 
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graph corresponding to adjacent nodes of the program graph (a “dilation” of the edge 

of the program graph on the system graph), ( )pNb x  is a neighborhood of the node 

x on the program graph.  
The Hopfield network minimizing the function (1) is described by the equation [5] 

xi

xi

u L

t v

∂ ∂= −
∂ ∂

    (2) 

where xiu  is an activation of the neuron with indices ,x i  ( , 1,..., ),x i n=   

( )
1

1 expxi
xi

v
uβ

=
+ −

 

is the neuron state (output signal), β  is the activation parameter. From (1) and (2) 

we have 

( )

2 .
p

xi
xj yi yj ij

j y y Nb x j i

u
C v v D v d

t ∈ ≠

⎛ ⎞∂ = − + − −⎜ ⎟∂ ⎝ ⎠
∑ ∑ ∑ ∑   (3) 

A difference approximation of Equation (3) yields 

1

( )

2
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u t C v v D v d+

∈ ≠

⎡ ⎤⎛ ⎞
= −Δ ⋅ + − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑ ,  (4) 

where tΔ  is a temporal step. Initial values 0
xiu  ( , 1,..., )x i n=  are stated 

randomly.  
A choice of parameters , , ,t C Dβ Δ  [6-10] determines a quality of the solution 

v  of  Equation (4). In [8] a dependence between parameters C  and D  is 
determined. For the problem (1)-(4)  

100 .C D≈ ⋅      (5) 

From (4) and (5) it follows that the parameters tΔ  and D  are equally influenced 

on the solution of the equation (4). Therefore we state 1tΔ =  and get 

1

( )

2 .
p

t t
xi xi xj yi yj ij

j y y Nb x j i

u u C v v D v d+

∈ ≠

⎛ ⎞
= − ⋅ + − − ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑   (6) 

Let 0.1β =  (this value was stated in [10]). We will try to choose the value D  to 

provide the absence of incorrect solutions.  
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3   Mapping by the Hopfield Network 

Let us evaluate the mapping quality by a number of coincidences of the program 
edges with edges of the system graph. We call this number a mapping rank.  
The mapping rank is an approximate evaluation of the mapping quality because  
the mappings with different dilations of the edges of the program graph may have the 
same mapping rank. Nevertheless, the maximum rank value, which equals to the 

number pE of edges of the program graph, corresponds to optimal mapping, i.e. to a 

global minimum of  dL  in (1). Our objective is to determine the mapping algorithm 

parameters providing maximum probability of the optimal mapping. As an example 
for investigation of the mapping algorithm we consider the mapping of a line-type 
program graph onto a 2D-torus. Maximal value of the mapping rank for a line with n  

nodes is obviously equal to 1n − . 
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Fig. 3. Histograms of mappings for the neural network (6) 
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For experimental investigation of the mapping quality, the histograms of the 
mapping rank frequencies are used for a number of experiments equals to 100. The 
experiments for mapping the line onto the 2D-torus with the number of nodes 

2 , 3,4,n l l= =  where l  is the cyclic subgroup order, are carried out.  

For 8D ≥  the correct solutions are obtained for 9n =  and 16n = , but as 

follows from Fig. 3а  and Fig. 3b for 8D = , the number of solutions with optimal 
mapping, corresponding to the maximal mapping rank, is small.  

To increase the frequency of optimal solutions of Equation (6) we replace the 

distance values ijd  by the values  

1

1
ij ij

ij
ij ij

d d
c

p d d

=⎧
= ⎨ ⋅ >⎩

    (7) 

where p  is a penalty coefficient for the distance ijd exceeding the value 1, i.e. for 

non-coincidence of the edge of the program graph with the edge of the system graph. 
So, we obtain the equation 
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Fig. 4. Histograms of mappings for the neural network (8) 
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1
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For the above mappings with p n=  we obtain the histograms shown on Fig. 4a 

and Fig. 4b. These histograms indicate the improvement of the mapping quality but 
for 16n =  the suboptimal solutions with the rank 13 have maximal frequency.  

4   Splitting Method 

To decrease a number of local extremums of Function (1), we partition the set 

{ }1,2,...,n  of subscripts x  and i  of the variables xiv  to K  sets 

{ }( 1) , ( 1) 1,..., ,kI k q k q k q= − − + ⋅ /q n K= , 1, 2,...,k K= , and map the 

subscripts kx I∈  only to the subscripts ki I∈ , i.e. we reduce the solution matrix v  

to a block-diagonal form. Then taking into account Expression (7), the Lyapunov 
function (1) is transformed into 
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and the Hopfield network is described by the equation 

( )

1
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1
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1 exp

k k p

t t
xi xi xj yi yj ij
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+
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⎛ ⎞
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+ −

∑ ∑ ∑ ∑
  (9) 

In this case 0xiv =  for , , 1,2,..., .k kx I i I k n∈ ∉ =
 

In this approach which we call a splitting, for mapping line with the number of 
nodes 16n =  onto 2D-torus, we have for 2K =  the histogram presented on Fig. 
5a. From Fig. 4b and Fig. 5a we see that the splitting method essentially increases the 
frequency of optimal mappings. The increase of the parameter D  up to the value 

32D =  results in additional increase of the frequency of optimal mappings  
(Fig. 5b). 
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Fig. 5. Histograms of mappings for the neural network (9) 

5   Mapping by the Wang Network 

In a recurrent Wang neural network [6] dL  in Expression (1) is multiplied by the 

value ( )exp t
τ−  where τ  is a parameter. For the Wang network Equation (9) is 

reduced to 

( )
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⎛ ⎞
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 (10) 

We note that in experiments we frequently have incorrect solutions if for a given 

maximal number of iterations maxt  (for example, max 10000t = ) the condition of 

convergence 1

,

t t
xi xi

x i

u u ε−− <∑ , 0.01ε =  is not satisfied. The introduction of 
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factor  ( )exp t
τ−  accelerates the convergence of the recurrent neural network and 

the number of incorrect solutions is reduced. 

So, for the three-dimensional torus with 33 27n = =  nodes and 
, 3, 4096, 0.1p n K D β= = = =  in 100 experiments we have the following 

results: 

1) On the Hopfield network we have 23 incorrect solutions, 43 solutions with  
Rank 25 and 34 optimal solutions (with Rank 26). 

2) On the Wang network with the same parameters and 500τ =  we have all 
(100) correct solutions, where 27 solutions have Rank 25 and 73 solutions are optimal 
(with Rank 26). 

6   Conclusion 

A problem of mapping graphs of parallel programs onto graphs of distributed 
computer systems by recurrent neural networks is formulated. The parameter values 
providing the absence of incorrect solutions are experimentally determined.  

A penalty parameter is introduced into the Lyapunov function of the Hopfield 
network for the program graph edges not-mapped onto the edges of the system graph. 
As a result, we obtain optimal solutions for mapping a line-type graph of parallel 
program onto two-dimensional torus with the same number of nodes {9, 16}n∈ . To 

increase the probability (the frequency) of optimal mappings, we propose to use:  

1) a splitting method reducing the solution matrix to a block-diagonal form;  
2) the Wang recurrent network which converges more rapidly than the Hopfield 

network. 

As a result we have high frequency of optimal solutions (for 100 experiments): 

1) more than 80% for the two-dimensional tori ( 23 9n = =  and 24 16n = = ); 

2) more than 70% for three-dimensional torus 3( 3 27)n = = . 

Further investigations must be directed to increasing the probability of getting optimal 
solutions of the mapping problem when the number of the parallel program nodes is 
increased.  
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Abstract. In this paper, we present slot selection algorithms for job batch 
scheduling in distributed computing with non-dedicated resources. Jobs are 
parallel applications and these applications are independent. Existing 
approaches towards resource co-allocation and job scheduling in economic 
models of distributed computing are based on search of time-slots in resource 
occupancy schedules. A launch of a parallel job requires a co-allocation of a 
specified number of slots. The sought time-slots must match requirements of 
necessary span, computational resource properties, and cost. Usually such 
scheduling methods consider only one suited variant of time-slot set. This paper 
discloses a scheduling scheme that features multi-variant search. Two 
algorithms of linear complexity for search of alternative variants are proposed. 
Having several optional resource configurations for each job makes an 
opportunity to perform an optimization of execution of the whole batch of jobs 
and to increase overall efficiency of scheduling.  

Keywords: Scheduling, co-allocation, slot, resource request, job, batch, task.. 

1   Introduction 

Economic models for resource management and scheduling are very effective in 
distributed computing with non-dedicated resources, including Grid [1, 2], utility 
computing [3], cloud computing [4], and multiagent systems [5]. There is a good 
overview of some approaches to forming of different deadline and budget constrained 
strategies of economic scheduling in [6]. In [7] heuristic algorithms for slot selection 
based on user defined utility functions are introduced.  

While implementing economic policy, resource brokers usually optimize the 
performance of a specific application [1, 6, 7] in accordance with the application-level 
scheduling concept [8]. When establishing virtual organizations (VO), the 
optimization is performed for the job-flow scheduling [9, 10]. Corresponding 
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functions are implemented by a hierarchical structure that consists of the 
metascheduler and subordinate resource managers or local batch-job management 
systems [8-10]. In a model, proposed in [2] there is an interaction between users 
launching their jobs, owners of computational resources, and VO administrators. The 
interests of the said users and owners are often contradictory. Each independent user 
is interested in the earliest launch of his job with the lowest costs (for example, the 
resource usage fee) and the owners, on the contrary, try to make the highest income 
from their resources. VO administrators are interested in maximizing the whole VO 
performance in the way that satisfies both users and owners [8]. 

In this work, economic mechanisms are applied for job batch scheduling in VO. It 
is supposed that resources are non-dedicated, that is along with global flows of 
external users’ jobs, owner’s local job flows exist inside the resource domains 
(clusters, computational nodes equipped with multicore processors, etc.). The 
metascheduler [8-10] implements the VO economic policy based on local system 
schedules. The local schedules are sets of slots coming from local resource managers 
or schedulers in the node domains. A single slot is a time span that can be assigned to 
a task, which is a part of a parallel job. We assume that job batch scheduling runs 
iteratively on periodically updated local schedules [2]. The launch of any job requires 
co-allocation of a specified number of slots. The challenge is that slots associated 
with different resources may have arbitrary start and finish points that do not 
coincide. In its turn, tasks of the parallel job must start synchronously. If the 
necessary number N  of slots with attributes matching the resource request is not 
accumulated then the job will not be launched. This job is joined another batch, and 
its scheduling is postponed till the next iteration. 

We propose two algorithms for slot selection that feature linear complexity ( )mO , 

here m  is the number of available time-slots. Existing slot search algorithms, such as 
backfilling [11, 12], do not support environments with heterogeneous and non-
dedicated resources, and, moreover, their execution time grows substantially with 
increase of the number of slots. Backfilling is able to find an exact number of 
concurrent slots for tasks with identical resource requirements and homogeneous 
resources. We take a step further, so proposed algorithms deal with heterogeneous 
resources and jobs with different tasks.  

The paper is organized as follows. Section 2 introduces a scheduling scheme. In 
section 3 two algorithms for search of alternative slot sets are considered. The 
example of slot search is presented in section 4. Simulation results for comparison of 
proposed algorithms are described in Section 5. Experimental results are discussed in 
section 6. Section 7 summarizes the paper and describes further research topics. 

2   Scheduling Scheme 

Let { }nj,...,jJ 1=  denote a batch consisting of n  jobs. A job niji ,...,1, = , schedule 

is formed as a set is  of time slots. A job batch schedule is a set of slot sets (a slot 

combination) ( )nsss ,...,1=
 

for jobs composing this batch. The job resource 

requirements are arranged into a resource request containing a wall clock time it  and 

characteristics of computational nodes (clock speed, RAM volume, disk space, 
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operating system etc.). The slot set is  fits the job ij , if it meets the requirements of 

number and type of resources, cost and the job wall time it . We suppose that for each 

job ij  in the current scheduling iteration there is at least one suitable set is . 

Otherwise, the scheduling of the job is postponed to the next iteration. Every slot set 

is  for the execution of the i -th job in the batch { }njjJ ,...,1=  is defined with a pair 

of parameters, the cost ( )ii sc  and the time ( ) iii tst ≤  for the resource usage, ( )ii sc  

denotes a total cost of slots in the set is  and ( )ii st  denotes a time elapsed from the 

start till the end of the i -th job. Notice that different jobs 
1i

j , Jji ∈
2  

have different 

resource requirements, and ( ) ( )scsc ii 21
≠ , ( ) ( )stst ii 21

≠  , { }n,...,i,i 121 ∈ , even if jobs 

1i
j , 

2i
j

 
are allocated to the same slot set s . Here ( )sci1 , ( )sci2 are functions of a 

cost C
 
of slot usage per time unit. 

Two problems have to be solved for job batch scheduling. First, selecting 
alternative slot sets for jobs of the batch that meet the requirements (resource, time, 
and cost). Second, choosing the slot combination ( )nsss ,...,1=  that would be the 

efficient or optimal one in terms of the whole job batch execution.  
To realize the scheduling scheme described above, first of all, we need to propose 

the algorithm of finding a set of alternative slot sets.  
Slots are arranged by start time in non-decreasing order in a list (Fig. 1 (a)). In Fig. 

1 (a), kd  denotes a time offset of the slot ks  in relation to the slot 1−ks . 

In the case of homogeneous nodes, the set is  of slots for the job ij  is represented 

with a rectangle window ( )ii stN × . It does not mean that processes of any parallel 

job would finish their work simultaneously. Here a time length of the window is the 
time ( )ii st

 
dedicated for the resource usage. In the case of nodes with varying 

performance, that will be a window with a rough right edge, and the resource usage 
time is defined by the execution time kt of the task that is using the slowest node (see 

Fig. 1 (a)).  

 
   Slots 

1 
2 
3 
4 

5    kd  

6 

Time

         Window with a rough right edge

kt End     Start

 
(a) (b) 

Fig. 1. Slot selection for heterogeneous resources: an ordered list of available slots (a); slot 
subtraction (b) 
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The scheduling scheme works iteratively, during the iteration it consecutively 
searches for a single alternative for each job of the batch. In case of successful slot 
selection for the i -th job, the list of vacant slots for the ( )1+i -th job is modified. All 

time spans that are involved in the i -th job alternative are excluded from the list of 
vacant slots (Fig. 1 (b)). The selection of slots for the ( )1+i -th job is performed on 

the list modified with the method described above. Suppose, for example, that there is 
a slot K′ among the slots belonging to the same window. Then its start time equals to 
the start time of the window: K′.startTime = window.startTime and its end time equals 
to K′.end=K′.start + 'k

t , where 'k
t  is the evaluation of a task runtime on the 

appropriate resource, on which the slot K′ is allocated. Slot K′ should be subtracted 
from the original list of available slots. First, we need to find slot K – the slot, part of 
which is K′ and then cut K′ interval from K. So, in general, we need to remove slot K′ 
from the ordered slot list and insert two new slots 1K  and 2K . Their start, end times 

are defined as follows: 1K .startTime = K.startTime, 1K .endTime = K′.startTime, 

2K .startTime = K′.endTime, 2K .endTime = K.endTime. Slots 1K  and 2K  have to 

be added to the slot list given that the list is sorted by non-decreasing start time order 
(see Fig. 1 (a)). Slot 1K will have the same position in the list as slot K, since they 

have the same start time. If slots 1K  and 2K  have a zero time span, it is not 

necessary to add them to the list. After the last of the jobs is processed, the algorithm 
starts next search from the beginning of the batch and attempts to find other 
alternatives on the modified slot list. Alternatives found do not intersect in processor 
time, so every job could be assigned to some set of found slots without the revision of 
other jobs assignments. The search for alternatives ends when on the current list of 
slots the algorithm cannot find any suitable set of slots for any of the batch jobs. 
Implementation of the single alternative search algorithm becomes a serious question 
because characteristics of a resulting set of slots solely depend on it. Doing a search in 
every scheduling iteration imposes a requirement of an algorithm having complexity 
as low as possible. An optimization technique for choosing optimal or efficient slot 
combinations was proposed in [2]. It is implemented by dynamic programming 
methods using multiple criteria in accordance with the VO economic policy.  

We consider two types of criteria in the context of our model. These are the 
execution cost and time measures for the job batch J  using the suitable slot 
combination ( )ns,...,ss 1= . The first criteria group includes the total cost of the job 

batch execution ( ) ( )∑=
=

n

i
ii scsC

1
. The VO administration policy and, partially, users’ 

interests are represented with the execution time criterion for all jobs of the batch 

( ) ( )∑=
=

n

i
ii stsT

1
. In order to forbid the monopolization of some resource usage by 

users, a limit *B  is put on the maximum value for a total usage cost of resources in 
the current scheduling iteration. We define *B  as a budget of the VO. The total slots 
occupancy time *T  represents owners’ urge towards the balance of global (external) 
and local (internal) job shares. If we consider the single-criterion optimization of the 
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job batch execution, then every criterion ( )sC  or ( )sT

 

must be minimized with given 

constraints *T or *B for the interests of the particular party - the user, the owner and 
the VO administrator [2].  

Let ( )ii sg  be the particular function, which determines the efficiency of the slot 

set is  usage for the i -th job. In other words, ( ) ( )iiii scsg =  or ( ) ( )iiii stsg = . Let 

( )ii Zf  be the extreme value of the particular criterion using the slot combination 

( )nii s,...,s,s 1+  for jobs nii jjj ,...,, 1+ , having iZ  as a total occupancy time or an 

usage cost. Let us define an admissible time value or a slot occupancy cost as ( )ii sz . 

Then ( ) *ZZsz iii ≤≤ , where *Z  is the given limit. For example, if ( ) ( )iiii stsz = , 

then ( ) *TTst iii ≤≤ , where iT  is a total slots occupancy time nii ,...,1 , +  and *T  is 

the constraint for values iT , that is chosen with the consideration of balance between 

the global job flow (user-defined) and the local job flow (owner-defined). If, for 
example, ( ) ( )iiii scsz = , then ( )ii sc *BCi ≤≤ , where iC  is a total cost of the 

resource usage for the jobs nii ,...,1 , + , and *B  is the budget of the VO. In the 

scheme of backward run [2] *1 ZZ = , ( )ii sz *ZZi ≤≤ ,  ( )111 −−− −= iiii szZZ , 
having ni ≤<1 . Notice that ( ) ( )sgsg ii 21

≠ , ( ) ( )szsz ii 21
≠  , { }n,...,i,i 121 ∈ , even if 

jobs 
1i

j , 
2i

j
 
are allocated to the same slot set s .  

The functional equation for obtaining a conditional (given ( )ii sz ) extremum of 

( )( )iii szf  for the backward run procedure can be written as follows: 

( ) ( )( ){ }iiiiii
s

ii szZfsg)Z(f
i

−+= +1extr , ni ,...,1= , ( ) 011 ≡++ nn Zf ,  (1) 

where ( )ii sg  and ( )( )iiii szZf −+1  are cost or time functions. 

For example, a limit put on the total time of slot occupancy by tasks may be 
expressed as: 

( )[ ]∑ ∑=
=

n

i s
iii

i

l/st*T
1
  ,         (2) 

where il  is the number of admissible slot sets for the i -th job; [ ]⋅  means the nearest to 

( ) iii l/st  not greater integer. 

The VO budget *B  may be obtained by formula (1) as the maximal income for 
resource owners with the given constraint *T  defined by (2): 

 

*B ( ) ( )( ){ }iiiiii
s

stTfsc
i

−+= +1max ,    (3) 

where ( )( )iiii stTf −+1  is a cost function. 

In the general case of the model [2], it is necessary to use a vector of criteria, for 
example, < ( )sС , ( )sD , ( )sT , ( )sI >, where ( ) ( )sC*BsD −= , ( ) ( )sTTsI −= *  and 

*T , *B  are defined by (2), (3). 
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3   Slot Search Algorithms 

Let us consider one of the resource requests associated with any job in the batch J . 
The resource request specifies N concurrent time-slots reserved for time span t  with 
resource performance rate at least P  and maximal resource price per time unit not 
higher, than С . 

Class Slot is defined to describe a single slot: 
public class Slot{ 
  public Resource cpu;    //resource on which the slot 

is allocated 
    public int cash;       // usage cost per time unit 
    public int start;      // start time 
    public int end;        // end time 
    public int length;     // time span 

 … 
} 

Class Window is defined to describe a single window: 
public class Window { 
 int id;                // window id 
 public int cash;       // total cost 
 public int start;      // start time 
 public int end;        // end time 
 public int length;     // time span 
    int slotsNumber;       // number of required slots 
 ArrayList<Slot> slots; // window slots         
  … 

} 

Here a slot set search algorithm for a single job and resource charge per time unit is 
described. It is an Algorithm based on Local Price of slots (ALP) with a restriction to 
the cost of individual slots. Input data include available slots list, and slots being 
sorted by start time in ascending order (see Fig. 1(a)). The search algorithm 
guarantees examination of every slot of the list. If the necessary number N  of slots is 
not accumulated, then the job scheduling is postponed until the next iteration.  

1°. Sort the slots by start time in ascending order - see Fig. 1 (a). 
2°. From the resulting slot list the next suited slot ks  is extracted and examined.  

The slot ks  suits, if following conditions are met:  

a)  resource performance rate ( ) PsP k ≥ ;  

b) slot length (time span) is enough (depending on the actual performance of the 
slot's resource) ( ) ( ) PstPsL kk /≥  (see the condition a));  

c) resource charge per time unit ( ) CsC k ≤ . 

If conditions a), b), and c) are met, the slot ks  is successfully added to the window 

list. 
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3°. The expiration of the slot length means that remaining slot length ( )ksL′ , 

calculated like shown in step 2°b, is not enough assuming the k -th slot start is equal 
to the last added slot start: ( ) ( )( )( ) ( ) PsPsTTtsL kklastk /−−<′ , where ( )ksT  is the 

slot's start time, lastT  is the last added slot's start time. Notice, in Fig. 1 (a), 

( )klastk sTTd −= .  

Slots whose time length has expired are removed from the list.  
4°. Go to step 2°, until the window has N  slots. 
5°. End of the algorithm. 

We can move only forward through the slot list. If we run out of slots before having 
accumulated N  slots, this means a failure to find the window for a job and its 
scheduling is postponed by the metascheduler until the next batch scheduling 
iteration. Otherwise, the window becomes the alternative slot set for the job. ALP is 
executed for every job in the batch { }njjJ ,...,1= . Having succeeded in the search for 

window for the ij -th job, the slot list is modified with subtraction of formed window 

slots (see Fig. 1 (b)). Therefore slots of the already formed slot set are not considered 
in processing the next job in the batch. 

In the economic model [2] a user's resource request contains the maximal resource 
price requirement, that is a price which a user agrees to pay for resource usage. But 
this approach narrows the search space and restrains the algorithm from construction 
of a window with more expensive slots. The difference of the next proposed 
algorithm is that we replace maximal price C  requirement by a maximal budget of a 
job. It is an Algorithm based on Maximal job Price (AMP). The maximal budget is 
counted as CtNS = , where t  is a time span to reserve and N  is the necessary 
number of slots. Then, as opposed to ALP, the search target is a window, formed by 
slots, whose total cost will not exceed the maximal budget S . In all other respects, 
AMP utilizes the same input data as ALP.  

Let us denote additional variables as follows: SN  – current number of slots in the 

window; NM  – total cost of first N  slots.  

Here we describe AMP approach for a single job. 

1°. Find the earliest start window, formed by N  slots, using ALP excluding the 
condition 2°c (see ALP description above). 

2°. Sort window slots by their cost in ascending order.  
Calculate total cost of first N  slots NM . If SM N ≤ , go to 4°, so the resulting 

window is formed by first N  slots of the current window, others are returned to the 
source slot list. Otherwise, go to 3°. 

3°. Add the next suited slot to the list following to conditions 2°a and 2°b of ALP. 
Assign the new window start time and check expiration like in the step 3° of ALP.  

If we have NNS < , then repeat the current step. If NNS ≥ , then go to step 2°.  

If we ran out of slots in the list, and  NNS < , then we have algorithm failure and 

no window is found for the job. 
4°. End of the algorithm. 
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We can state three main features that distinguish the proposed algorithms. First, both 
algorithms consider resource performance rates. This allows forming time-slot 
windows with uneven right edge (we suppose that all concurrent slots for the job must 
start simultaneously). Second, both algorithms consider maximum price constraint 
which is imposed by a user. Third, both algorithms have linear complexity ( )mO , 

where m  is the number of available time-slots: we move only forward through the 
list, and never return or reconsider previous assignments.  

The backfill algorithm [11, 12] has quadratic complexity ( )2mO , assuming that 

every node has at least one local job scheduled. Although backfilling supports parallel 
jobs and is able to find a rectangular window of  concurrent slots, this can be done 
provided that all available computational nodes have equal performance (processor 
clock speed), and tasks of any job have identical resource requirements.  

4   AMP Search Example 

In this example for the simplicity and ease of demonstration we consider the problem 
with a uniform set of resources, so the windows will have a rectangular shape without 
the rough right edge. Let us consider the following initial state of the distributed 
computing environment. In this case there are six computational nodes cpu1 - cpu6 
(resource lines) (Fig. 2 (a)). Each has its own unit cost (cost of its usage per time 
unit).  In addition there are seven local tasks p1 - p7 already scheduled for the 
execution in the system under consideration. Available system slots are drawn as 
rectangles 0...9 - see Fig. 2 (a). Slots are sorted by non-decreasing time of start and 
the order number of each slot is indicated on its body. For the clarity, we consider the 
situation where the scheduling iteration processes the batch of only three jobs with the 
following resource requirements. 

Job 1 requirements:  
• the number of required computational nodes: 2;  
• runtime: 80;  
• maximum total “window” cost per time: 10.  

Job 2 requirements:  
• the number of required computational nodes: 3;  
• runtime: 30;  
• maximum total “window” cost per time: 30.  

Job 3 requirements:  
• the number of required computational nodes: 2;  
• runtime: 50;  
• maximum total “window” cost per time: 6.  

According to AMP alternatives search, first of all, we should form a list of available 
slots and find the earliest alternative (the first suitable window) for the first job of the 
batch. We assume that Job 1 has the highest priority, while Job 3 possesses the 
lowest priority. The alternative found for Job 1 (see Fig. 2 (b)) has two rectangles on 
cpu1 and cpu4 resource lines on a time span [150, 230] and named W1. The total 
cost per time unit of this window is 10. This is the earliest possible window satisfying 
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(a) (b) 

Fig. 2. AMP search example: initial state of environment (a); alternatives found after the first 
iteration (b) 

 

Fig. 3. The final chart of all alternatives found during AMP search 

the job’s resource request. Note that other possible windows with earlier start time are 
not fit the total cost constraint. Then we need to subtract this window from the list of 
available slots and find the earliest suitable set of slots for the second batch job on the 
modified list. 

Further, a similar operation for the third job is performed (see Fig. 2 (b)). 
Alternative windows found for each job of the batch are named W1, W2, and W3 
respectively. The earliest suitable window for the second job (taking into account 
alternative W1 for the first job) consists of three slots on the cpu1, cpu2 and cpu4 
resource lines with a total cost of 14 per time unit. The earliest possible alternative for 
the third job is W3 window on a time span of [450, 500]. Further, taking into account 
the previously found alternatives, the algorithm performs the searching of next 
alternative sets of slots according to the job priority. The algorithm makes an attempt 
to find alternative windows for each batch job.  

Figure 3 illustrates the final chart of all alternatives found during search. 
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Note that in ALP approach the restriction to the cost of individual slots would be 
equal to 10 for Job 2 (as it has a restriction of total cost equals to 30 for a window 
allocated on three nodes). So, the computational resource cpu6 with a 12 usage cost 
value is not considered during the alternative search with ALP algorithm. However it 
is clear that in the presented AMP approach eight alternatives have been found. They 
use the slots allocated on the cpu6 resource line, and thus fit in the limit of the 
window total cost.  

5   Simulation Studies 

The experiment consists in comparison of job batch scheduling results using different 
sets of suitable slots founded with described above AMP and ALP approaches. The 
alternatives search is performed on the same set of available vacant system slots.  
The generation of an ordered list of vacant slots and a job batch is performed during 
the single simulated scheduling iteration. To perform a series of experiments we 
found it more convenient to generate the ordered list of available slots (see Fig. 1 (a)) 
with preassigned set of features instead of generating the whole distributed system 
model and obtain available slots from it.   

SlotGenerator and JobGenerator classes are used to form the ordered slot list 
and the job batch during the experiment series. Here is the description of the input 
parameters and values used during the simulation. All job batch and slot list options 
are random variables that have a uniform distribution inside the identified intervals. 

SlotGenerator 
• number of available system slots in the ordered list varies in [120, 150]; 

• length of the individual slot is in [50, 300] - here we propose that the length of 
initial slot are varies greatly, and it will be more during the search procedure; 

• computational nodes performance range is [1, 3], so that the environment is 
relatively homogeneous; 

• the probability that the nearby slots in the list have the same start time is 0.4; 
this property represents that in real systems resources are often reserved and 
occupied in domains (clusters), so that after the release, the appropriate slots 
have the same start time; 

• the time between neighboring slots in the list is in [0, 10], so that at each 
moment of time we have at least five different slots ready for utilization; 

• the price of the slot is randomly selected from [0.75p, 1.25p], where p = (1.7) 
to the (Node Performance); here we propose that the price is a function of 
performance with some element of randomness.  

JobGenerator 
• number of jobs in the batch is in [3, 7]; the batch is not very big because we 

have to distribute all the jobs in order to carry out the experiment; 

• number of computational nodes to find is in [1, 6]; 
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• length (representing the complexity) of the job is in [50, 150]; this value is 
corresponds to the initial values of the generated slots; 

• the minimum required nodes’ performance is in [1, 2]; some jobs will require 
slots, allocated on resources with high ( 2≥P ) performance - it is a factor of 
job heterogeneity. 

Let us consider the task of  slot allocation during the job batch execution time 
minimization: ( )sT

is
min

 

with the constraint *B . 

The number of 25000 simulated scheduling iterations was carried out. Only those 
experiments were taken into account when all of the batch jobs had at least one 
suitable alternative of execution. AMP algorithm exceeds ALP by 35% with respect 
to ( )sT . An average job execution time for alternatives found with ALP was 59.85, 

and for alternatives found with AMP - 39.01 (Fig. 4 (a)).  

 

 
(a) (b) 

Fig. 4. Job batch execution time minimization: average job execution time (a); average job 
execution cost (b) 

 

Fig. 5. Average job execution time comparison for ALP and AMP for the first 300 experiments 
in the job batch execution time minimization 
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It should be noted, that an average job execution cost for ALP method was 313.56, 
while using AMP algorithm the average job execution cost was 369.69, that is 15% 
more – see Fig. 4 (b).  

Figure 5 illustrates scheduling results comparison for the first 300 experiments (the 
horizontal axis). It shows an observable gain of AMP method in every single 
experiment. The total number of alternatives found with ALP was 258079 or an 
average of 7.39 for a job. At the same time the modified approach (AMP) found 
1160029 alternatives or an average of 34.28 for a single job. According to the results 
of the experiment we can conclude that the use of AMP minimizes the batch 
execution time though the cost of the execution increases. Relatively large number of 
alternatives found increases the variety of choosing the efficient slot combination [2] 
using the AMP algorithm.  

Now let us consider the task of slot allocation during the job batch execution cost 
minimization: ( )sC

is
min  with the constraint *T . The results of 8571 single 

experiments in which all jobs were successfully assigned to suitable slot combinations 
using both slot search procedures were collected.  

 

 

(a) (b) 

Fig. 6. Job batch execution cost minimization: average job execution cost (a); average job 
execution time (b) 

The average job execution cost for ALP algorithm was 313.09, and for alternatives 
found with AMP - 343.3. It shows the advantage of only 9% for ALP approach over 
AMP (Fig. 6 (a)). The average job execution time for alternatives found with ALP 
was 61.04. Using AMP algorithm the average job execution time was 51.62, that is 
15% less than using ALP (Fig. 6 (b)).  

The average number of slots processed in a single experiment was 135.11. This 
number coincides with the average number of slots for all 25000 experiments, which 
indicates the absence of decisive influence of the available slots number to the 
number of successfully scheduled jobs.  

The average number of jobs in a single scheduling iteration was 4.18. This value is 
smaller than average over all 25000 experiments. With a large number of jobs in the 
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batch ALP often was not able to find alternative sets of slots for certain jobs and an 
experiment was not taken into account.  

The average number of alternatives found with ALP is 253855 or an average of 
7.28 per job. AMP algorithm was able to found the number of 115116 alternatives or 
an average of 34.23 per job. Recall that in previous set of experiments these numbers 
were 7.39 and 34.28 alternatives respectively. 

6   Experimental Results Analysis 

Considering the results of the experiments it can be argued that the use of AMP 
approach on the stage of alternatives search gives clear advantage compared to the 
usage of ALP. Advantages are mostly in the large number of alternatives found and 
consequently in the flexibility of choosing an efficient schedule of batch execution, as 
well as that AMP provides the job batch execution time less than ALP.  

AMP allows searching for alternatives among the relatively more expensive 
computational nodes with higher performance rate. Alternative sets of slots found 
with ALP are more homogeneous and do not differ much from each other by the 
values of the total execution time and cost. Therefore job batch distributions obtained 
by optimizations based on various criteria [2] do not differ much from each other 
either. 

The following factors should explain the results. First, let us consider the 
peculiarities of calculating a slot usage total cost PCtNCt /= , where C  is a cost of 

slot usage per time unit, P  is a relative performance rate of the computational node 
on which the slot is allocated, and t  is a time span, required by the job in assumption 
that the job will be executed on the etalon nodes with 1=P . In the proposed model, 
generally, the higher the cost C  of slot the higher the performance P  of the node on 
which this slot is allocated. Hence, the job execution time Pt /  correspondingly less. 
So, the high slot cost per time unit is compensated by high performance of the 
resource, so it gets less time to perform the job and less time units to pay for. Thus, in 
some cases the total execution cost may remain the same even with the more 
“expensive” slots. The value PC /  is a measure of a slot price/quality ratio. By 
setting in the resource request the maximum cost C  of an individual slot and the 
minimum performance rate P  of a node the user specifies the minimum acceptable 
value of price/quality. The difference between ALP and AMP approaches lies in the 
fact that ALP searches for alternatives with suitable price/quality coefficient among 
the slots with usage cost no more than C . AMP performs the search among all the 
available slots (naturally, both algorithms still have the restriction on the minimum 
acceptable node performance). This explains why alternatives found with AMP have 
on the average less execution time. Second, it should be noted that during the search 
ALP considers available slots regardless of the entire window. The ALP window 
consists of slots each of which has the cost value no more than C . At the same time 
AMP is more flexible. If at some step a slot with cost on δ  cheaper than C  was 

added to the desired window, then AMP algorithm will consider to add slots with cost 
on the δ more expensive than C  on the next steps. Naturally, in this case it will take 
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into account the total cost restriction. That explains, why the average job execution 
cost is more when using the AMP algorithm, it seeks to use the entire budget to find 
the earliest suitable alternative.  

Another remark concerns the algorithms’ work on the same set of slots. It can be 
argued that any window which could be found with ALP can also be found by AMP. 
However, there could be windows found with AMP algorithm which can’t be found 
with a conventional ALP. It is enough to find a window that would contain at least 
one slot with the cost more than C .  

This observation once again explains the advantage of AMP approach by a number 
of alternatives found. The deficiency of AMP scheme is that batch execution cost on 
the average always higher than the execution cost of the same batch scheduled using 
ALP algorithm. It is a consequence of a specificity of determining the value of a 
budget limit and the stage of job batch scheduling [2]. However, it is possible to 
reduce the job batch execution cost reducing the user budget limit for every 
alternative found during the search, which in this experiment was limited to CtNS = . 
This formula can be modified to CtNS ρ= , where ρ  is a positive number less than 

one, e.g. 0.8. Variation of ρ  allows to obtain flexible distribution schedules on 

different scheduling periods, depending on the time of day, resource load level, etc.  

7   Conclusion and Future Work 

In this paper, we address the problem of independent batch jobs scheduling in 
heterogeneous environment with non-dedicated resources.  

The scheduling of the job batch consists of two steps. First of all, the independent 
sets of suitable slots (alternatives of execution) have to be found for every job of the 
batch. The second step is selecting the efficient combination of alternative slot sets, 
that is the set of slot sets for the batch. The feature of the approach is searching for a 
number of job alternative executions and consideration of economic policy in VO and 
financial user requirements on the stage of a single alternative search. For this 
purpose ALP and AMP approaches for slot search and co-allocation were proposed 
and considered. According to the experimental results it can be argued that AMP 
allows to find on the average more rapid alternatives and to perform jobs in a less 
time. But the of job batch execution using AMP is relatively higher. AMP exceeds 
ALP significantly during the batch execution time minimization. At the same time 
during the execution cost minimization the gain of ALP method is negligible. It is 
worth noting, that on the same set of vacant slots AMP in comparison with ALP finds 
several time more execution alternatives.  

In our future work we will address the problem of slot selection for the whole job 
batch at once and not for each job consecutively. Therewith it is supposed to optimize 
the schedule “on the fly” and not to allocate a dedicated phase during each scheduling 
iteration for this optimization. We will research pricing mechanisms that will take into 
account supply-and-demand trends for computational resources in virtual 
organizations.  

The necessity of guaranteed job execution at the required quality of service causes 
taking into account the distributed environment dynamics, namely, changes in the 
number of jobs for servicing, volumes of computations, possible failures of 
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computational nodes, etc. [13]. As a consequence, in the general case, a set of 
versions of scheduling, or a strategy, is required instead of a single version [13, 14]. 
In our further work we will refine resource co-allocation algorithms in order to 
integrate them with scalable co-scheduling strategies.  
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Abstract. In this paper, some basic considerations are made about cost-
effective checkpointing in a cloud-like environment. We deduce a cost
model of a task considering expected costs of computational and storage
resources and time-to-solution costs. With the simple analytic expres-
sion, we calculate efficient checkpoint intervals relying on cost parame-
ters, taken from real-world computational clouds. Results demonstrate
reasonability of the model proposed and we discuss its potential impli-
cations in a high-performance computing environment.
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1 Introduction

The increasing scalability of modern computational clusters and the need to solve
larger and more complex problems make reliability crucial for HPC development.
It is significant to note that reliability support implies considerable overhead
costs. These costs include additional evaluation time, additional CPU, RAM,
sometimes I/O operations.

Simultaneously, high-performance compute clouds have emerged as a new pay-
as-you-go model with access to various resources (latest offerings of Amazon [1]).

In this work we have tried to investigate how to set optimum checkpoint
interval simply with respect to overhead time, CPU, RAM and I/O costs, con-
sidering the simplest example of a single process running on a computer system
of limited reliability. If we see that a simple model gives reasonable figures, we
could consider applying it to more complex cases, including more sophisticated
fault-resilience schema based on dataflow.

2 Model Formulation

The major computing system resources are:

– CPU-time
– RAM memory

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 384–389, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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– Storage system (disk memory)
– Time (waiting for a result)

Each resource has a cost associated with it. The goal is to minimize overall
solution costs.

In the current consideration, a studied computational process comprises sev-
eral stages with approximately even resource workload. For example, the first
stage is most likely related to I/O workload, the computational stage is at-
tributed to CPU and RAM workload. In this model we will consider the uniform
process stage with an even workload and under the hypothesis that checkpoint-
ing resource costs and time overheads are similar in every moment of this stage.

3 Related Work

There is a relatively large body of work that has goal to optimize overall time
of program execution. Young [2] proposed useful approximation of the optimum
checkpoint interval for restart dumps. Daly [3] proposed a higher order estima-
tion of the optimum checkpoint interval taking into account the amount of time
required to restart and varying fraction of a segment required to rework and
improve segment size to failure. Another work, “Stochastic Models for Restart,
Rejuvenation and Checkpointing” [4] includes stochastic models for checkpoint-
ing with respect to maximum system availability, minimum task completion time
or minimal total recovery and checkpointing time costs. The purpose of these
research works typically is to reduce the job completion time by optimizing the
time between checkpoints.

Another related work, “Cost-Based Oracle Fundamentals” [5] estimates query
cost with respect to statistics of data distribution and hardware performance.
The Oracle query cost depends on time reading single block, multi-block and
estimated CPU-time. Oracle uses cost concept for providing backward compat-
ibility and optimizing query costs.

In our work, we have tried to make the first-order simple approximation of
the optimum checkpoint interval, similar to the first Young approximation, with
respect to all resources (including not only time, but CPU, RAM, disk operations
”unit weight”). The purpose of the offered checkpointing is to minimize the
computation resource cost by minimizing checkpointing and recovery overheads.

4 First Order Approximation

Generally, the considered function will look like

Total cost = solution cost + recomputation cost + checkpointing cost (1)

where solution cost is the amount of resources spent on performing actual
computation that represents progress towards a solution. Re-computation cost
is the amount of resources spent on rollback recovery from the nearest check-
point. Checkpoint costs are the amount of indispensable resources to create total
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computational process dump. Total cost is the expectation value of overall com-
puting time.

For determining the optimal checkpoint interval we will use the following
application-related values:

τ — optimizable checkpoint interval between dumps;
Ts — solution time (Solution time is defined as time spent on actual compu-

tational cycles towards a final solution). Ts = N · τ , where N is the number of
intervals;

δ — time for saving checkpoint data;
μ — solution resources, except time. Similarly to solution time, solution re-

sources are defined as the amount of resources required for actual computational
cycles toward a final solution;

γ — amount of resources, except time, required for saving checkpoint data;
M — mean time to interrupt for the system.
Furthermore, we will define the following functions:
φ(τ) — approximation of the fraction of a segment requiring rework (in case

of a failure);
n(τ) — approximation of the expected number of failures at the interval.
Thus, using these notations, we can define the number of checkpoints as

Ts

τ
− 1 (2)

because there is no checkpoint on the last segment.
Total rework time will be the product of expected failure number, expected

failure segment and time to recount selected interval and checkpoint.

[τ + δ] · φ(τ + δ) · n(τ) (3)

Finally, total solution time can be, by analogy with Young solution, expressed
through the formula:

Ts + (
Ts

τ
− 1)δ + [τ + δ] · φ(τ + δ) · n(τ) (4)

Furthermore, we’ll try to express all other resources costs, except time. Useful
solution resources are defined as μ and resource costs for checkpoint saving is
defined as γ.

Total amount of resources (except time):

μ + (
Ts

τ
− 1)γ + [

μτ

Ts
+ γ] · φ(τ + δ) · n(τ) (5)

Assuming time is a standalone resource with weight coefficient k. Then, total
amount of resources with selected dump interval will be (see Eq. 4 and Eq. 5)

R(τ) = k(Ts + (
Ts

τ
− 1)δ + [τ + δ] · φ(τ + δ) · n(τ)) + (6)

+μ + (
Ts

τ
− 1)γ + [

μτ

Ts
+ γ] · φ(τ + δ) · n(τ) (7)
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According to Young [2] and Daly [3] propositions, we will use halfway through
the compute interval as the fraction of rework in our first-order model:

φ(τ) =
1
2

(8)

Assuming that interrupt distribution is similar to the Poisson distribution, we
will approximate expected number of failures on interval τ by analogy with
Young:

n(τ) = Ts(e
τ+δ
M − 1) % Ts

τ
· (τ + δ

M
), for

τ + δ

M
& 1 (9)

Let’s substitute φ(τ) 8 and n(τ) into the main estimating formula 6:

R(τ) = k(Ts + (
Ts

τ
− 1)δ + [τ + δ] · 1

2
· Ts

τ
· (τ + δ

M
)) + (10)

+μ + (
Ts

τ
− 1)γ + [

μτ

Ts
+ γ] · 1

2
· Ts

τ
· (τ + δ

M
) (11)

In order to search a single optimum value τ , we will consider the first derivative
of evaluation function 10 and assuming that the δ squared term is negligible
(according to 9) , we receive a unique positive solution:

τ =
√

(
2kTsMδ + 2MTsγ + Tsδγ

μ + kTs
) (12)

Using k = 0 we can evaluate an optimal time interval for resource cost min-
imization nonregistering time. Contrariwise, nulling weight coefficient of other
resources μ, γ allows us to recover Young’s original solution and evaluate time-
efficient dump interval.

5 Calculation of Optimal Interval by Examples

Now let’s substitute some figures into the formula, which seems reasonable. The
cost per point of each computational resource can be approximated according to
Amazon resource prices - Amazon EC2 [1]. As an example, let’s examine prices
for an extra-large problem, which are applicable for CPU-intensive instances.
CPU cost for Extra large instance is $0.68 per hour, memory $0.50 and I/O
requests $0.10 per one million. The resource cost will be determined as weighted
sum of CPU, RAM and I/O load, where weight coefficients will be related to
the Amazon EC2 service prices. In a similar manner, we can define μ and γ.
Therefore with Amazon-weighted resources optimal time interval 12 will look
like:

√
(
2kTsMδ + 2MTs(0.68b1 + 0.50b2 + 0.10b3) + Tsδ(0.68b1 + 0.50b2 + 0.10b3)

(0.68a1 + 0.50a2 + 0.10a3) + kTs
)

(13)
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Cost of time can be considered something artificial; however, we propose to
take the National Minimum Wage in the USA as a baseline. Even if a higher
paid specialist is wating for the computation to be finished, we believe to have a
correct order of magnitude. According to [6], Federal USA minimum wage level is
$7.25 (per hour). For example, let’s take an average value about 30,000 hours or
3.4 years. Let’s substitute M=30000, k=7,25 and a1 = 350, a2 = 300, a3 = 150
and b1 = 3, b2 = 2, b3 = 4 (consider checkpointing as dumping with saving
to disk, with less RAM consumption and increased time and disk operations
number), then we get an optimal time interval at the Eq. 13 τ = 190.9 hours.
For comparison, let’s substitute M = 30000, T = 504 and δ = 1

5 in the original
Young approximation [2], and we’ll get τ = 109.5 hours.

This example demonstrates that time-optimal and resource-optimal time in-
terval can differ significantly.

6 Model Limitations

It’s important to underline that evaluated formula 12 defines the optimal inter-
val only in the first approximation with a large set of limitations. First of all,
our formula doesn’t take into consideration such important facts as variability
of checkpoint costs, ambiguity of computation cost and dependency between
process stage and checkpoint costs.

7 Conclusions and Future Work

This work introduces a new approach to the optimal checkpointing interval re-
search. We have proposed an initial approximation of the optimum checkpoint
interval with respect to all computational resource, including CPU, RAM, disk
operations and execution time. This work also requests for comment the idea of
resource weight specification according to Cloud services resource prices. Fur-
thermore, we found the first approximation to an optimal solution of resource
efficient challenge:

τ =
√

(
2kTsMδ + 2MTsγ + Tsδγ

μ + kTs
) (14)

Proposed solution is a the natural extension of the Young time-optimal solu-
tion and allows to receive the approximate time interval for cost-optimal and
time-optimal checkpointing strategy. As a first direction of the future work, we
are planning to consider a higher-order approximation of the resource optimal
checkpoint interval. Furthermore, we want to explore the impact of the resource-
optimal checkpoint interval on real complex problems.

Recently, fault-oblivious [7] implementations of programming models are un-
der the subject of research. The proposed cost model, while being simple, could
be the guide for decision-making to enable optimal fault-resiliency mechanism in
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such frameworks. In aforementioned works, fault-tolerance is enabled by coarse-
grain dataflow approach, which allows re-computation of tasks, assigned to pro-
cessors which failed during computation. We are planning to save those parallel
tasks and intermediate results whose mathematical expectation is founded in
environment of evaluated resource-optimal time-interval for each node and each
computational branch separately. We will consider parallel task by analogy with
database transaction within the limits of the “all-or-nothing” proposition and
“pure” function concept. We expect that this approach will allows us to decrease
overheads, avoid synchronization problems and implement problems with com-
plicated execution graph. Evidently, each task has an individual CPU/memory
footprint and we are planning to use reductive testing executions and special
tools for observation hardware events and loading.
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Abstract. Providing reliable estimates of possible anthropogenic cli-
mate change is the subject of considerable scientific effort in the climate
modeling community. Climate model simulations are computationally
very intensive and the necessary computing capabilities can be provided
by supercomputers only. Although modern high performance computer
platforms can deliver a peak performance in the Petaflop/s range, most
of the existing Earth System Models (ESMs) are unable to exploit this
power. The main bottlenecks are the single core code performance, the
communication overhead, non-parallel code sections, in particular serial
I/O, and the static and dynamic load imbalance between model parti-
tions. The pure scalability of ESMs on massively parallel systems has
become a major problem in recent years. In this study we present re-
sults from the performance and scalability analysis of the high-resolution
ocean model MPIOM and the atmosphere model ECHAM6 on the large-
scale multicore cluster ”Blizzard” located at the German Climate Com-
puting Center (DKRZ). The issues outlined here are common to many
currently existing ESMs running on massively parallel computer plat-
forms with distributed memory.

Keywords: parallel computing, performance analysis, earth system
models

1 Introduction

The current TOP5001 list of supercomputer systems is clearly dominated by
large scale multicore clusters. In fact, only such systems can provide the com-
puting capabilities necessary to run scientific grand challenge applications from
high energy and nuclear physics, chemistry, material, life, and environmental
sciences. In the last decades the relevance of the computationally and data in-
tensive climate simulations has steadily increased, due to their significant impact
1 http://www.top500.org/list/2010/11/100
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on the decisions that will affect political, economical, and social aspects of human
societies. For this purpose a number of coupled Earth-System-Models (ESMs)
consisting of components that describe physical and biogeochemical processes in
the different parts of the Earth System (atmosphere, ocean, land, cryosphere,
biosphere etc.) have been developed worldwide.

Unfortunately, performance analyses show that many of the current ESMs are
not able to exploit massively parallel systems efficiently. The gap between ma-
chine peak performance and climate application sustained performance as well as
limited scalability of climate models become more and more evident. The major
bottlenecks identified so far are the static and dynamic load imbalance, the se-
rial I/O, communication overhead, and use of inefficient mathematical/coupling
algorithms.

In the work presented here, we focus on the performance analysis of the ocean
(MPIOM) and atmosphere (ECHAM6) model components of the Earth System
Model MPI-ESM. Short model and experiment descriptions are given in the next
section. Thereafter, key performance characteristic of the models on the IBM
p575 ”Power6” cluster at the German Climate Computing Center (DKRZ) are
discussed. Code optimizations of the ocean model MPIOM and corresponding
performance achievements are described in the subsequent section. The paper
closes with summary and outlook.

2 Model Description

In our work we consider the ocean (MPIOM) and atmosphere (ECHAM6) mod-
els, which are components of the global Earth System Model MPI-ESM devel-
oped at the Max-Planck-Institute for Meteorology in Hamburg, Germany.

ECHAM6 is the 6th generation Atmospheric General Circulation Model
(AGCM), that is originally derived from the European Centre for Medium-Range
Weather Forecasts (ECMWF) model. The model dynamics are based on ap-
proximated hydrostatic primitive equations. The model prognostic variables are
vorticity, divergence, temperature, logarithm of surface pressure, water vapor,
cloud liquid water, and cloud ice. The horizontal discretization is realized using
spectral decomposition in spherical harmonic basis functions with transforma-
tion to a Gaussian grid for calculation of non-linear equation terms and some
physical parametrizations. Hybrid sigma-pressure coordinates are used for the
vertical representation. For the time-integration semi-implicit leapfrog scheme
with Asselin time filter is employed. More detailed description of the model’s
dynamical core and all physical parametrizations (convection, clouds, boundary
layer, short-wave and long-wave radiation, gravity wave drag etc.) can be found
in [1].

MPIOM is an Ocean General Circulation Model (OGCM) based on the hy-
drostatic and Boussinesq approximated ocean primitive equations with repre-
sentation of thermodynamic processes. The prognostic variables and tracers are
3D-velocity field (u, v, w), temperature, salinity, and surface elevation. MPIOM
uses spherical curvilinear bipolar or tripolar coordinate system. The poles are
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located on land masses to avoid grid singularity at the North Pole. For the hori-
zontal discretization an Arakawa C-grid is used. A semi-implicit iterative solver
is implemented for the barotropic part of the model. For vertical representa-
tion z-coordinates with partial bottom cells are used. MPIOM also contains an
embedded dynamic/thermodynamic sea-ice model with ice thickness, ice con-
centration, ice velocities (u,v), and snow depth as prognostic variables. For the
detailed description of MPIOM as well as of the coupled MPI-ESM model see
[2] and [3].

The development of MPIOM and ECHAM models started in the late 1980’s.
The initial versions were serial programs written in FORTRAN77. The MPI-
parallel versions were developed around 1999–2000. The parallelization was ac-
companied by a change from FORTRAN77 to FORTRAN95. Both models are
parallelized using uniform block domain decomposition. MPIOM is a pure MPI
application. ECHAM6 is hybrid parallelized with MPI and OpenMP, however
the performance gain due to OpenMP threading will be not discussed in this
work.

The high demands of MPIOM and ECHAM6 models on computing resources
can be demonstrated on the basis of the experiments for the Assessment Reports
of the Intergovernmental Panel on Climate Change (IPCC AR). In case of the
last published IPCC AR4 [4] the total number of the simulated years amounted
to 5000. About 4 × 105 CPU hours on a NEC SX6 parallel vector processing
machine were necessary to perform the experiments. For the phase five of the
Coupled Model Intercomparison Project (CMIP5), which will provide the data
basis for the next IPCC AR5 (scheduled to be published in 2013), about thirty
different experiments covering such topics as paleo- and historical climate sim-
ulations, near-term decadal and centennial future climate change projections,
and experiments with idealized forcing will be performed. The total number of
simulated years will amount to 7500. The expected computing time is about
12× 106 CPU hours on the DKRZ IBM cluster. However, the spatial resolution
for CMIP5/IPCC AR5 experiments is still insufficient to resolve many regional
phenomena such as hurricanes, intense mid-latitude cyclones, ocean coastal dy-
namics, and topographically constrained ocean circulation features. For this rea-
son, some selected climate change simulations of the IPCC AR5 type with the
MPI-ESM at a significantly higher horizontal and vertical resolution will be
performed in the framework of the project STORM2.

For the performance analysis presented in this work we ran a number of
experiments using high-resolution STORM model setups. The configurations are
summarized in the Table 1. The simulated time period is one month (January).

3 Performance Analysis

The performance measurements were carried out on the IBM p575 ”Power6”
cluster ”Blizzard” located at the DKRZ. The system consists of 264 compute
2 https://verc.enes.org/community/projects/national-projects/

german-projects/storm

https://verc.enes.org/community/projects/national-projects/german-projects/storm
https://verc.enes.org/community/projects/national-projects/german-projects/storm
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Table 1. MPIOM and ECHAM6 configurations used in the performance analysis. The
resolution acronyms TP04 or TP6M stands for Tri-Polar grid following by the mean
grid point distance in geographical coordinates (MPIOM); T255 specifies the level of
the triangular truncation in the wave number space of spherical harmonics (ECHAM6);
L specifies the number of vertical levels.

Model resolution
acronym

Number of
grid points

Number of
vertical levels

Horizontal
grid spacing

Vertical grid
spacing

Time
step

MPIOM TP04L80 802x404 80 0.4◦ 10–280m 3600s
MPIOM TP6ML80 3602x2394 80 0.1◦ 10–280m 600s
ECHAM6 T255L199 768x384 199 0.5◦ 14–2581m 90s

nodes and is the world’s largest IBM Power6 installation in a single infiniband
cluster. Each node has 16 dual core 4.7GHz processors. The total number of
cores is 8448. In simultaneous multi-threading (SMT) mode two separate threads
can be executed concurrently on each physical core. The threads are treated as
independent logical processors by the operating system and can be used to allo-
cate MPI processes only or hybrid combinations of MPI processes and OpenMP
threads. The cluster has total peak performance of 158 Teraflop/s and is cur-
rently placed on rank 58 in the TOP500 list (November 2010). ”Blizzard” pro-
vides the production environment for most of the climate model simulations
performed in Germany. Only due to the installation of this cluster, the high-
resolution climate simulations described in this work became possible.

The parallelization algorithm of MPIOM and ECHAM6 (in grid point space)
is based on domain decomposition. Thereby, the original computational domain
is decomposed into rectilinear subdomains which are spread among the available
processors. In Fig. 1 a 2x2 decomposition is shown. The parallel programming
model used is SPMD (Single Program Multiple Data). In either model no de-
composition is performed within vertical column.

According to the numerical scheme in MPIOM, each MPI process is carry-
ing out several local computations on the subdomain it has been assigned to.
These calculations can take place asynchronously and have references to vari-
ables stored in local memory. Within each time step a considerable amount of
communication is needed, in order to exchange the necessary data at the bound-
aries of each subdomain. At this point a synchronisation takes place, since every
process has to communicate the needed data with all of its neighbours, two in the
east-west direction and two in the north-south direction (see Fig. 1). After this
step has been accomplished, and all the variables have been updated, the pro-
gram can continue with computations on the local subdomains. The execution
can be described with the BSP (Bulk Synchronous Parallel) model.

In ECHAM6 forward and backward transpositions between legendre space,
fourier space and grid point space are needed. The transpositions are accom-
panied by the redistribution of all required data, which is partially realized by
means of expensive collective MPI ”gather/scatter” and ”alltoall” communi-
cation within defined process groups. Between two successive transpositions,
interprocessor communication is hardly necessary.
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Fig. 1. 2x2 decomposed computational domain. Halos are gray shaded. For the sake
of convenience physical boundaries are omitted here.

The I/O in MPIOM and ECHAM6 is realized in a serial manner. Formats
commonly used for climate and weather data are NetCDF3/4 [7], HDF5 [8],
and GRIB1/2 [6]. Only the first two standards are supported by libraries, which
optionally make use of MPI-IO. A library which combines GRIB with MPI-IO
does not exist yet. Furthermore, the data layout used by models is not identical
to that of a file. As a consequence a major bottleneck appears due to a dynamic
mapping of the application data model onto the data model of the underlying
file.

In Fig. 2, the speedup curves for the ocean model MPIOM and the atmo-
sphere model ECHAM6 are shown. Constrained by the memory requirements,
the minimum number of cores on which the high resolution models can run is
512. So, unlike the conventional speedup metric definition, the presented speedup
calculations refer not to the serial execution time but to the execution time on
the minimal number of cores the application can be run on. The measurements
cover the processes range from 512 to 4096 and imply an ideal speedup of factor
8. The ocean model MPIOM is memory bound and does not benefit from SMT
mode. ECHAM6 experiments were performed in SMT mode with two MPI tasks
per physical core.

In case of MPIOM, doubling the number of MPI tasks from 512 to 1024 speeds
up the model by a factor of 1.86. This corresponds to an efficiency of 93%. A
quadrupling of the number of MPI tasks to 2048 results in a speedup of 2.95
and an efficiency of 74%. The speedup curve stagnates for processes number
larger than 2048. Finally, a clear drop of MPIOM speedup is evident for process
numbers higher than 3072. In case of ECHAM6, a twofold number of processes
(1024) results in a speedup of 1.81, whereas a fourfold number of processes (2048)
leads to a speedup of 2.8 out of 4. An increasing degradation of the speedup curve
above 1536 cores is clearly visible. For eightfold number of processes (4096) the
speedup amounts to 3.7 compared to ideal speedup of 8. This corresponds to an
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Fig. 2. Speedup curves for ocean MPIOM and atmosphere ECHAM6 models. Both axes
are logarithmically scaled. The abscissa shows the decomposition of the computational
domain in longitudinal (x) and latitudinal (y) direction, the product of both numbers
corresponds to the total number of MPI processes.

efficiency of 46%. Across the performed measurements, the wallclock time needed
to simulate one month changes from 29000 to 10000 seconds for MPIOM and
from 41000 to 11000 seconds for ECHAM6. The observed scalability behaviour
is mainly caused by the lack of the scalability of global communication as well
as by increased work load imbalance through serial code sections. Furthermore,
quite small partitions have the effect, that local work load variations within one
partition do not compensate each other.

The missing scalability of both models has severe implications for throughput
(number of simulated years per computational day) of high-resolution climate
simulations. Throughput rates in the range of 20-30 simulation years per day
are required to spin up and tune climate models as well as to perform ensemble
simulations within reasonable time frames. At about 11000 seconds wallclock
time per simulated month (for MPIOM and ECHAM6), a high-resolution climate
simulation would advance by about 7-8 simulation months per day, which is far
below acceptable progress. A 200-year long climate simulation running non-stop
on the ”Blizzard” cluster would take about 1 year.

For an in-depth MPI profiling of both models the VampirTrace tool [9] has
been used. It records all calls to the MPI library and writes the collected data
to a trace file. Using data from the trace file, different metrics can be derived.
The relative distribution of the user and MPI time for different number of MPI
processes is shown in Fig. 3. The fraction of the MPI time on the total program
execution time rises dramatically with the increasing number of MPI processes.
For the smallest possible configuration with 512 MPI processes it amounts to
about one third. For large process numbers the application execution time is
clearly dominated by the MPI communication (up to 82% or 65% for MPIOM
and ECHAM6 respectively). Considerable fractions of the MPI WAIT[ALL] time
(amounting to 20-30%) hint at strong work load imbalance between different
partitions.
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Fig. 3. Percentage of user (without MPI library calls) time (white) and MPI time (gray)
on total execution time for different number of processes for ocean model MPIOM (top)
and atmosphere model ECHAM6 (bottom). The MPI time is further subdivided into
several MPI operations which are of relevance for the particular model. Mean values
over all processes are depicted.

The problem of work load imbalance is illustrated in Fig. 4. For MPIOM a
clear difference between land (”less work”) and ocean (”more work”) dominated
partitions is recognizable. Also, the influence of the ocean topography is visible.
For the ECHAM6 model the pattern is a bit more complicated because of the
superposition of static and dynamic work load imbalances. The static part is
caused by the fact that treatment of the land surface and soil is more time-
consuming in comparison to the treatment of the ocean and sea ice surface. The
most important contribution to the dynamic load imbalance comes from very
expensive radiation calculations. To account for the seasonal and spatial patterns
of the incoming solar radiation (e.g. Polar Night in the Norther Hemisphere (NH)
vs. Polar Day in the Southern Hemisphere (SH)), each process in ECHAM6
executes calculations for one tile from the NH and a corresponding tile from the
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Fig. 4. Distribution of MPI time fraction (%) with respect to the total execution
time for ocean model MPIOM with decomposition 96x32 (top) and atmosphere model
ECHAM6 with decomposition 24x32 (bottom). For ECHAM6 the distribution is axially
symmetric about the equator. Partitions with lower work load reveal longer MPI times
due to waiting for processes with higher work load.

SH. Obviously, this approach can bring only partial compensation of the ”solar
altitude” effect.

In both models the master process (partition[1,1] in Fig. 4.) is clearly recog-
nizable. On this process global fields are gathered for calculation of some global
diagnostics and for serial output of the model data. With the increasing number
of processes the differentiation between the heavily work loaded master pro-
cess and other processes is becoming more and more evident (not shown). This
counteracts the scaling of the models.
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Another worrying issue is the flop rate achieved. For MPIOM, the mean per-
centage of peak performance is about 3%, which is far too low, especially for
future exascale supercomputers, consisting of several tens or hundreds of thou-
sands of cores. One of the main reasons for this is that the ocean model MPIOM
is memory bound and much CPU time is spent to move data between memory
and registers.

4 MPIOM Code Optimizations

Due to the high complexity of the climate models, fully productive codes, which
are optimally adapted to the massively parallel systems, will hardly be available
for the next couple of years. To bridge the transition from the legacy code climate
models to radically revised or newly developed climate models, it is important to
find practicable solutions aimed at improvement of the performance of existing
codes. Here we describe some results from the optimizations of the ocean model
MPIOM, that mainly consist of the adaptations of the computationally intensive
model routines to the IBM p575 architecture.

4.1 Improving Computation

A very crucial issue is single core performance. Applying the principle of lo-
cality [5] on climate models has proven to be a difficult task. Techniques like
cache blocking or loop transformations are quite successful when used for linear
algebra kernels, like those found in the LINPACK benchmark suite, but their
implementation in climate models is not straightforward.

The complexity of the numerical schemes used in climate models is much
higher than in basic linear algebra operations, which means that major algo-
rithmic changes are necessary in order to write a code which performs well on
cache based architectures. The outcome of the above mentioned changes, does
not always deliver bit identical results thus influencing the results of the sim-
ulations. In other words, the frequency of reevaluating of model’s physics puts
major constraints in the pace at which the code can be optimized.

The Power6 microprocessor [11] has two floating point units, which are able
to execute multiplication and addition in a single instruction (Fused Multiply
Add or FMA) with a total peak performance of 18.8 Gflop/s. Furthermore, in
order to achieve better memory bandwidth, IBM developed a prefetch engine.
The prefetch engine consists of two parts, a stream filter and a stream prefetcher.
The stream filter monitors the cache misses trying to guess data access patterns.
The stream prefetcher prefetches data from memory based upon information
given by the prefetch filter.

In MPIOM the computationally intensive subroutines make use of many 3D
arrays and nested loops. The iteration space of the loops corresponds to the
dimensions of the subdomains. Due to the fact that the arrays within a nested
loop are too large to fit completely into cache, a lot of accesses to main memory
occur. Memory bandwidth is the limiting factor for getting the most out the
Power6 processor.
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Fig. 5. Wallclock times of initial and optimized MPIOM model versions

Applying optimization techniques like loop tiling [5] or blocking algorithms [12]
with the anticipation of improving cache locality, has proven to be the wrong
way, since we saw no performance gain. Especially, when applying loop tiling in
the zonal direction, a degradation in performance was noticed. Apparently, the
prefetching mechanism is influenced negatively by these loop-transformations.

The Power6 core supports 16 parallel prefetch streams. We applied loop fusion
in order to keep the number of streams at 16 and to achieve better reuse and
predictability of the data access patterns. For the same reason, loops with more
than 16 3D arrays were split. To eliminate conditionals (i.e. ”if”-branches”)
inside of loops, arrays with indices satisfying the conditions were used. These
indexing arrays were precomputed during model initialization phase. This allows
loop unrolling by the compiler. Furthermore, expensive division operations were
replaced by multiplication with the precomputed inverse.

All these modifications increased the FMA utilization from 37% to 39% . The
maximum floating point operation ratio achieved is 3.47% of the peak perfor-
mance on 768 processors, which is still very low. Nevertheless, the total wallclock
time of MPIOM has been reduced by approx. 10%. Overall results are depicted
in Fig. 5. Keeping in mind long simulation times, even a performance gain of a
few percent proves to be worthwhile. As one would expect, these changes do not
improve the scalability of the MPIOM model.

4.2 Reducing Communication

As mentioned in the previous section, communication overhead is a major bot-
tleneck regarding efficiency of the code. Our analysis shows that improving the
floating point operations ratio is not satisfying. Especially for a large number
of processors, the dominating factor is the time spent in MPI communication,
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Fig. 6. Subdomains with two halo layers

which covers over 70% of total wall clock time. Consequently, the computation to
communication ratio needs to be improved as well. A technique, which is used in
grid based algorithms is expansion of the halo layer and has been applied to an
ocean model according to [10]. The basic idea behind this technique is that the
number of halo layers is increased, so that the number of columns communicated
is increased.

Fig. 6 shows the case for two halo layers. The result is that on the one hand,
the amount of communicated data is increased, but on the other hand the actual
number of communication steps is decreased as detailed below.

As a first step, we applied this technique to the barotropic subsystem in
MPIOM, which is numerically solved by red-black Successive-Over-Relaxation
(SOR) method.

The SOR is an iterative splitting method for solving linear systems of equa-
tions. According to the red-black SOR algorithm, the grid points are separated
into red and black points. In each iteration, first the new values of the red points
are calculated. These are then communicated to the other processes. Afterwards,
the calculations on the black points are performed, and the new values on the
black points are communicated (see Fig. 7, left). The drawback is that commu-
nication takes place 2 times in each iteration.

Expanding the halo layer results in the following algorithm. Firstly, the red
points are calculated, then the black points. The computations on the local
subdomains are carried out until the outermost halo layer, thus including more
columns (the extra halo layers in the interior of the subdomains). The time when
the communication step occurs depends on the number of halo layers used, and
must be half the number of halo layers. The algorithm is depicted in Fig. 7
(right).

The table 2 shows the results of the new SOR algorithm for a smaller MPIOM
TP04L80 setup (cf. Table 1). The model integration was done on 64 processors.
The simulated time period was 10 days. It is shown that increasing the number of
halo layers decreases the time taken by the SOR solver. It can be seen that when
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Fig. 7. Flowchart of original red-black SOR (left) and red-black SOR with expanded
halos (right)

Table 2. Results of SOR solver for MPIOM TP04L80 model

halo layers communication step wallclock time (seconds)

1 1 27.6
2 1 15.6
4 2 13.9
8 4 8.8
10 5 9.2

using 2 halo layers, the performance gain is 43.47%. The maximum improvement
of 68.1% has been achieved with 8 halo layers.

These results are very encouraging and the method of expanding halos is
currently being applied to other parts of the code.

5 Summary and Outlook

In this paper we present the results of an investigation regarding the efficiency
of climate models on current high performance computing platforms and the
consequences for upcoming systems. Our performance analysis has shown that
fundamental algorithmic changes are necessary in order to get the most out of the
computational power available on supercomputers. Application of conservative
optimizations (i.e. without algorithmic or structural changes) allow for perfor-
mance gains in the order of 10%. Aggressive optimizations are often restricted
by reevaluation of model physics.
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The next optimization level includes statical and/or dynamical load balancing
through use of alternative partitioning algorithms (e.g. general block decompo-
sition, graph partitioning, space-filling curve partitioning etc.) or elimination of
land points from partitions in the ocean model, optimization of communication,
and implementation of parallel IO, that would lead to a significant performance
and scalability improvements. For this reason, several projects (e.g. ScaleES3,
IS-ENES4) and new model development initiatives (ICON5, HOMME6, etc.)
have been launched in the last years.
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Abstract. A computational code for the numerical integration of the 
incompressible Navier-Stokes equations for the execution of accurate 
calculations with the approach of the Direct Numerical Simulation (DNS), is 
implemented on a specially-assembled hybrid CPU/GPU computing system. 
The computational code is based on a mixed spectral-finite difference 
numerical technique, and is implemented onto the plane-channel computing 
domain, for the study of wall-bounded turbulence. The computing system 
includes one Intel Core i7 (quad-core) processor, and two Nvidia C-1060 Tesla 
devices. High-resolution numerical simulations of the turbulent flow in the 
plane-channel domain are executed at wall-shear-velocity Reynolds number 
200, and the performances of the code are reported in terms of parallel-machine 
metrics. Sample results of the simulations are also reported, in which some 
details are emphasized of the scientific information that have been obtained, 
mainly due to the high resolution at which the calculations have been executed, 
in virtue of the availability of such a powerful computing system.  

Keywords: Navier-Stokes equations; Direct Numerical Simulation of 
turbulence; CPU/GPU hybrid computing systems.  

1   Introduction 

In fluid dynamics and turbulence research a wide class of methods of investigation 
involves numerical simulations. Numerical simulation of turbulence implies the 
execution of the numerical integration of the three-dimensional unsteady Navier-
Stokes equations on an appropriate computing domain, for an adequate number of 
time steps. Different numerical techniques, ranging from finite differences, finite 
elements, spectral methods and appropriate combinations of the basic techniques into 
mixed techniques, can be used, besides different approaches to the modeling of 
turbulence (where modeling is needed, see among others, [1]).  

One of the issues involved in these activities (at sufficiently high values of the 
Reynolds number) is the remarkable difference that exist between a generic solution 
of the Navier-Stokes equations and a solution of the same equations with the aim of 
obtaining a precise correlation of the results with turbulence physics. In the latter case 
the accuracy of the calculations has to be deeply monitored, and the approach to be 
followed is that of the Direct Numerical Simulation of turbulence (DNS).  
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In the DNS approach the attitude of directly calculating all turbulent scales is 
followed, where the system of the governing equations is considered without 
modifications of any kind. The critical aspect in DNS is the accuracy of the 
calculations, that in theory should be as high as to resolve the Kolmogorov 
microscales in space and time (or at most limited multiples of them). As a 
consequence, in DNS the major difficulty in performing calculations at Reynolds 
numbers approaching those of practical interest, lies in the remarkable amount of 
computational resources required, and for a long time the outcome of this situation 
has been that only simple flow cases have been investigated numerically with DNS.  

The advent of the supercomputing technologies has completely changed this 
scenario, opening new perspectives in the field of the high-performance 
computational fluid dynamics and turbulence simulation. 

2   CPU/GPU Hybrid Architectures 

In the last two/three decades, the computer technology has been dominated by 
microprocessors based on a single CPU (such as those of the Intel Pentium family or 
the AMD Opteron family), where the remarkable improvements continuously reached 
in the field of integrated-circuit technology were reflected in a yearly microprocessor-
performance growth of about 35%. Mainly due to the cost advantages incorporated in 
mass-produced microprocessors, this performance growth-rate has allowed software 
systems of applicative nature to provide great functionalities to users, largely 
increasing the field of computer business (desktop and servers). However since about 
2003, limits in the available instruction-level parallelism, memory latencies and also 
energy-consumption requirements, have slowed down and almost stopped the 
aforementioned growth process.  

Thus, there has been a change in the electronic industry from high-performance 
single-microprocessor design, toward higher-performance multiple processor-per-chip 
design (the latter referred to as processor cores), so focusing the attention to the 
exploitation of thread-level parallelism and data-level parallelism. An immediate 
consequence of this change on the software-development community has been the 
need of adopting a different-than-before programming approach, consisting in 
particular in switching from implicitly-parallel programming, toward explicitly-
parallel programming.  

In the field of microprocessor architecture, one assists in the development of two 
main types, namely the multicore and the manycore processors (Figures 1 and 2).  
A multicore processor (Figure 1) is designed to exploit massive quantities of on-chip 
resources in an efficient and scalable manner, combining each processor core (ALU, 
Arithmetic Logic Unit) with a switch, to create a modular element called a tile. An 
example is the Intel Core i7 microprocessor, that includes four out-of-order processor 
cores, each supporting hyperthreading technology, and designed to maximize the 
speed of execution of sequential programs. Such a result has been made possible by 
the presence of a sophisticated control logic for sequential instructions, in which a 
large cache memory allows the reduction of instruction latencies and data- access 
latencies of large and complex applications. 
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Fig. 1. Typical scheme of multicore CPU 

A manycore processor (Figure 2) is characterized by many processors, each 
supporting many hardware threads, focusing more on the execution throughput of all 
threads, with a (small) cache memory bandwidth control on multiple threads that 
access the same memory data, not all needing to go to the DRAM. An example is the 
NVIDIA GTX-280 Graphic Processing Unit (GPU) with 240 cores, each of which is a 
massively multithreaded, in-order, single-instruction-issue processor, that shares its 
control and instruction cache with seven other cores ([2]).  

While CPUs present intrinsic limitations in scaling serial performances (because of 
processor frequencies and power consumption), a significant interest has been put in 
massively-parallel programming of GPUs, being the latter specialized for intensive 
computing. The GPU is a highly explicit parallel environment, because it takes 
advantage of a large number of cores to improve calculation speed and management 
of huge datasets. 

The key element that allows to synthesize the points of strength of both CPUs and 
GPUs is the NVIDIA’s Computed Unified Device Architecture (CUDA) paradigm 
([3]). CUDA has been introduced in 2007 to simplify the development of software 
applications and to promote the heterogeneous parallel-computing capabilities of 
hybrid CPU/GPU computing systems, towards massively-parallel programming based 
on coprocessing. The CUDA scalable programming model represents an extension of 
the C and C++ languages, and allows developers to use these languages as high-level 
programming tools. CUDA is based on three different levels of abstraction, namely, 
thread-groups hierarchy, shared memories, and barrier synchronization. These three 
elements provide the scalable parallel-programming structure.  

The CUDA paradigm is based on three main features (see also at Figure 3):  

● a (software) kernel, i.e. a serial program (or function) written for one (hardware) 
 thread and designed to be executed by many threads;  
● a thread block, defined as a set of threads that execute the same program and 
 cooperate to compute a result;  
● a grid, i.e. a set of thread blocks that independently execute in parallel the same 
 kernel.  
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Fig. 2. Typical scheme of GPU 

All the threads of a block may be synchronized directly by using a synchronization 
barrier. The latter guarantees that no thread in the block can proceed until all threads 
in the same block have reached the barrier. This is a remarkably-important task for 
communication between all threads in a block, and facilitate scalability. Another 
characteristic is that thread blocks may be executed independently. This guarantees 
that the thread blocks are scheduled in any order across any number of cores, in 
parallel or in series. Each thread has a private local memory for private variables. 
Each thread block has a shared memory, that is visible to all the threads of the same 
block, and that is used to initialize data in shared variables, compute results, and copy 
them into the global memory. All the threads can access the same global memory, that 
is used to read the input data and write the final results.  

A typical CUDA program starts with a CPU (host) execution. When a kernel is 
launched, the execution is moved to a GPU (device) and a large set of threads are 
generated to exploit the data parallelism. This is the reason why the most heavy 
portion of the algorithm is addressed to the GPU. The NVIDIA C compiler (NVCC) 
separates the host activities from the device activities during the compilation process. 
The host code is written exclusively in ANSI C code, while the device code - 
organized in kernels - is written by using the extended ANSI C language, namely the 
CUDA C. The CUDA programming model also provides API functions for data 
transfer from the host memory to the allocated-device memory, and viceversa (each 
device has its own DRAM). The memory access is crucial for efficient CUDA 
programming (in terms of improvement of the memory bandwidth and overhead 
reduction). Thus, the global load/store instructions must coalesce individual parallel- 
threads requests from the same set of parallel threads (warps), into a single-memory 
block request, when the memory addresses fall in the same block and meet the 
alignment criteria. 
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Fig. 3. Scheme of CUDA programming model 

3   Numerical Technique 

The system of the Navier-Stokes equations for incompressible fluids with constant 
properties is considered (in nondimensional conservative form, Einstein summation 
convention applies to repeated indices, i=1,2,3): 
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where iu  are the velocity components, p  is the pressure, and τRe  is the friction-

velocity Reynolds number. The computational code for the solution of (1) and (2) that 
has been used for the present work is based on a mixed spectral-finite difference 
numerical technique, and is implemented onto the plane-channel computing domain 
for the study of wall-bounded turbulence (one can refer to [4] and [5] for further details 
on the numerical algorithm, and to [6] and [7] for past parallel implementations). The 
domain is considered homogeneous and periodic along x and z (the streamwise and 
spanwise directions, respectively), and the system of the governing equations is 
Fourier-transformed along those directions. The nonlinear terms of the momentum 
equation are calculated pseudo-spectrally, by anti-transforming the velocities back to 
physical space and performing the products. The 3/2 rule has been applied to avoid 
aliasing errors in transforming the results back to Fourier space. In order to capture the 
high velocity-gradients occurring near the walls, a grid-stretching law of hyperbolic-
tangent type has been introduced within the spatial discretization along y (the vertical 
direction). The spatial derivatives along y have been evaluated by using a second-order 
centered finite difference scheme. For time advancement, a third-order explicit Runge-
Kutta method has been implemented. For each Fourier mode (superscript ^), one has: 
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where l=1,2,3 denotes each Runge-Kutta sub-step, D and A are the diffusive and 
advective terms, respectively, and llll ,,, ξγβα  assume constant values. The time 

advancement procedure is coupled with the fractional-step method. In (1), the 
pressure is interpreted as a projection operator, so that the velocity field and the 
pressure field are decoupled. At each sub-step l and for each Fourier mode i, an 
intermediate velocity field is introduced (superscript *): 
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and the pressure is used to project the intermediate-velocity field into the divergence-
free space by solving the Poisson problem: 
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With the pressure obtained from the solution of (5), it is possible to evaluate the final 
values of the velocity field, to obtain the next update of velocity and pressure: 
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No-slip boundary conditions at the walls and periodic conditions in the streamwise 
and spanwise directions have been applied to the velocity, while a Neumann-type 
boundary condition has been used for the pressure. 

4   GPU Implementation of Navier-Stokes Solver 

The analysis of the numerical method described in the previous Section leads to a 
novel parallel implementation of the Navier-Stokes solver on the GPU, based on the 
following main steps ( zyx N,N,N  are the grid points along, respectively, x,y and z): 

● computation of the intermediate velocity field ( )l*
iû , once the velocity field ( )1−l*

iû  in 

 spectral space is given. For each Runge-Kutta sub-step, 2D FFTs are applied along 
 the x- and z-axes, for the evaluation the nonlinear terms of equation  (2); 

● computation of the pressure field ( )lp̂ , once the intermediate velocity field ( )l*
iû  is 

 given. This phase requires the implementation of the finite-difference algorithm 
 along the y-direction, for the solution of the Poisson pressure problem; 

● updating of the velocity field ( )l
iû by implementing the third-order Runge-Kutta 

 algorithm.  
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The program, written in CUDA 3.2, starts with the CPU execution. The host reads 
an input file, containing data about an initial velocity field. The host is also devoted to 
the memory management of the complex velocity field iû  in Fourier space, and all 

the related data structures, by calling a set of kernels. They provide functions to 
allocate, deallocate and copy device memory. In particular, the data structures are 
allocated using cudaMalloc( ) and stored in the memory as shown in Figure 4, while 
data transfer of u,v,w from the host (h_u, h_v, h_w) to the device (d_u, d_h, d_w) 
memory, are managed by cudaMemcpy( ) (see at Listing 1). 
 

 
cudaMalloc(); 
cudaMemcpy(d_u, h_u,cudaMemcpyHostToDevice, size); 
cudaMemcpy(d_v, h_v,cudaMemcpyHostToDevice, size); 
cudaMemcpy(d_w, h_w,cudaMemcpyHostToDevice, size); 
 

List. 1. Scheme of data-structures allocation and host-to-device transfer 

The GPU is devoted to execute the core of the algorithm. For a given velocity field 
stored on the memory device, batched 2D complex-to-real (C2R) and real-to-complex 
(R2C) Fourier transforms have been implemented, using the CUFFT library provided 
by NVIDIA [8]. In particular, an in-place batched 2D/R2C/FFT has been used in 
order to transform the velocity field from spectral to physical space, using a batch of 

yN  planes ( zx −  planes). Then, each product between the mutual components of the 

velocity field is computed by a kernel, named product_kernel. For each product 
,ŵw,ŵv,v̂v,ŵu,v̂u,ûu  an in-place batched 2D/C2R/FFT is executed, in order to 

transforming those quantities back to spectral space (see at Listing 2). 
For each Runge-Kutta sub-step, it is now possible to calculate both the diffusive 

(D) and the advective (A) terms of equation (3), by using two appropriately-designed  
 

 
  
cufftExecC2R(batchBackPlan,(cufftComplex *)d_u, 
(float *)d_u); 
cufftExecC2R(batchBackPlan,(cufftComplex *)d_v,  
(float *) d_v); 
cufftExecC2R(batchBackPlan,(cufftComplex *)d_w,  
(float *) d_w); 
product_kernel <<< blocksPerGrid,threadsPerBlock >>> 
(d_u, d_v, d_w,d_uu, d_uv, d_uw,d_vv, d_vw, d_ww); 
cufftExecR2C(batchFwdPlan,(float *)d_uu,(cufftComplex *) 
d_uu); 
...... 
cufftExecR2C(batchFwdPlan,(float *)d_ww,(cufftComplex *) 
d_ww); 
 

List. 2. Scheme of FFT operations for the solution of non-linear terms 
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kernels, the diffusive_kernel and the advective_kernel, to minimize memory access 
using memory coalescing and increasing the computation-to-memory ratio. The 
intermediate velocity field is calculated using another kernel, named velstar_kernel. 
Once all the components of the velocity field and all the components of the diffusive 
and advective terms are given, the three components of the intermediate velocity field 
(d_ustar, d_vstar, d_wstar) of equation (4) are computed (see at Listing 3). 

 
 
advective_kernel <<< blocksPerGrid,threadsPerBlock >>> 
(d_uu, d_uv, d_uw,d_vv, d_wv, d_ww,d_nu, d_nv, d_nw); 
diffusive_kernel <<< blocksPerGrid,threadsPerBlock >>> 
(d_u,d_v,d_w,d_lu,d_lv,d_lw);  
velstar_kernel <<< blocksPerGrid,threadsPerBlock >>>  
(d_u,d_v,d_w,d_nu,...,d_lu,...,d_ustar, d_vstar,d_wstar);  
 

List. 3. Scheme for the calculation of the intermediate velocity field 

As mentioned before, ( )l*
iû does not satisfy the incompressibility constraint, so that 

it becomes necessary to implement the fractional-step method. This is done by 
implementing a set of kernels that compute the rhs of equation (5), once the 
intermediate velocity field is given, and solve the Poisson problem. In order to solve 
the Poisson problem, a total of ( zx NN × ) linear (tridiagonal) systems are solved on 

the GPU, using the Thomas algorithm. The sequential counterpart of the Thomas 
algorithm is redesigned, to keep the values in the GPU registers, implementing a 
memory-coalesced data-access mechanism. Thus, each thread solves a tridiagonal 
system by using a modified Thomas algorithm for CUDA. As concerns the principal 
diagonal (that is stored on the device), memory coalescing of load/store instructions is 
guaranteed for the threads that belong to the same warp, in virtue of the thread-index 
mapping. A good degree of memory optimization is also achieved by storing the 
lower- and upper diagonals in the constant memory (see at Listing 4). 
 

 
tn_kernel <<< blocksPerGrid,threadsPerBlock >>>  
(rk,h_dt,d_tn,d_ustar, d_vstar, d_wstar); 
solve_poisson_kernel <<< blocksPerGrid, threadsPerBlock >>> 
(d_dpri,d_tn,d_p,d_work); 
 

List. 4. Scheme for the solution of the Poisson problem 

After the pressure component is computed, a kernel for updating of the velocity 
field (update_velocity_kernel) is executed, according to equation (6). Then, a 
device-to-host data transfer of the computed values is performed, for both the 
execution of a new iteration and to save the data into the database (Listing 5). 
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update_velocity_kernel <<< blocksPerGrid,threadsPerBlock >>> 
(d_ustar,d_vstar,d_wstar,d_p,rk,h_dt,d_u, d_v, d_w); 
cudaMemcpy(h_u,d_u,cudaMemcpyDeviceToHost,size); 
cudaMemcpy(h_v,d_v,cudaMemcpyDeviceToHost,size); 
cudaMemcpy(h_w,d_w,cudaMemcpyDeviceToHost,size); 
 

List. 5. Scheme for the updating of the velocity field and for the device-to-host data transfer 

 

Fig. 4. Data-structure memorization scheme 

5   Computing System 

The numerical simulations have been executed on a specially-assembled hybrid 
CPU/GPU computing system (see at Figure 5 for a picture of the system), that 
includes a motherboard ASUS P6T7-WS SuperComputer, an Intel Core i7 processor 
at 2.66 GHz of processor-core clock, 12 GB of DDR3 RAM, and two NVIDIA Tesla 
C1060 boards, based on NVIDIA CUDA technology. Each Tesla board can handle 
933 GFLOP/s of single-precision floating-point processing, is equipped with 4 GB of 
GDDR3 memory at 102 GB/s bandwidth, and contains 30 multiprocessors, each with 
8 scalar single-precision floating-point processor cores, 1 double-precision floating-
point unit and 16 kB shared memory for threads cooperation (Figure 6). The total 
number of cores is 240, at 1.3 GHz of processor-core clock. The system is also 
equipped with a NVIDIA GeForce GTX 285 with 1 GB of GDDR3 memory at 159 
GB/s bandwidth, while the total number of cores is 240, at 648 MHz of processor-
core clock. The GeForce is mainly used for visualization.  

As concerns storage, the system is equipped with 5 Western Digital VelociRaptor 
300 GB SATA hard drives (at 10000 rpm) and 1 Seagate Barracuda 1 TB SATA hard 
drive (at 7200 rpm). 
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Fig. 5. A picture of the computing system used for the calculations: (1) 1 Intel i7 (quad-core) 
Core (behind fan); (2) 12 GB DDR3 RAM; (3) 1 Asus P6T7 WS SuperComputer motherboard; 
(4) 5 DVD drives; (5) 1 1250 W power supply; (6) 2 NVIDIA C-1060 Tesla devices; (7) 1 
NVIDIA GeForce GTX 285 video card; (8) 5 Western Digital 300 GB (10000 rpm) 
VelociRaptor hard drives + 1 Seagate  1 TB (7200 rpm) Barracuda hard drive 

 

Fig. 6. Scheme of Tesla-board architecture 

6   Code Performances 

The numerical simulations have been executed on a computational grid that includes 
256 grid points along the streamwise direction (x), 181 grid points along the vertical 
direction (y), and 256 points along the spanwise direction (z), while the 
nondimensional time step was 410−+ =tΔ . The nondimensional values of the grid 
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spacing were 829.x =+Δ , 250.y =+Δ  (at the wall), 873.y =+Δ  (at channel center), 
and 914.z =+Δ . These values have to be compared with those of the nondimensional 
Kolmogorov length microscale 891.=+η  and with the nondimensional Kolmogorov 
time microscale 593.=+

ητ  ( ντuxx ii =+ ; ντ
2tut =+ ). The initial transient of the 

flow in the channel has been first simulated, the turbulent statistically-steady state has 
been reached, and then simulated for 50000 nondimensional time steps +tΔ . One-
hundred nondimensional flow-field instants have been recorded, one every 500 +tΔ .  
 In order to evaluate the performance of the Navier-Stokes solver, the CPU/GPU 
implementation has been compared with a sequential version (1 CPU) and a OpenMP 
version (2 and 4 CPUs). The parallel performance has been evaluated by measuring 
the overall code execution time, focusing on the advective-, diffusive- and Poisson 
problem- execution time at each Runge-Kutta step. The measured times do not 
include the I/O operations. The parallel performance of the computational code has 
been evaluated by using the speedup S , defined as:  

  
prT

T
S 1=  (7) 

where T1 is the execution time of the sequential algorithm and Tpr is the execution 
time of the parallel algorithm on pr processors. As concerns the code CPU/GPU 
implementation, the speedup is defined as the ratio between the total execution time 
on a CPU (TCPU) and that on a GPU (TGPU): 

 
GPU

CPU

T

T
S =  (8) 

The results that have been obtained are reported in Figure 7, while the (absolute) 
execution times are shown in Table 1 (the Total Time at the 5th column of Table 1, 
also includes also the data transfer from the device to the host). From both Figure 7 
and Table 1 one can easily notice how the CUDA solver significantly outperforms the 
different CPU implementations. 

 

Fig. 7. Speedup of the calculations (full time step) 
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Table 1. Execution times for one time step of the calculation process (s) 

____________________________________________________________________________ 
 

 Processing Convective Diffusive Poisson Total 
 Unit Term (s) Term (s) Problem (s) Time (s) 
____________________________________________________________________________ 

 1 CPU 4.923 0.342 0.801 7.647 
 2 CPU 2.592 0.174 0.402 4.070 
 4 CPU 1.542 0.096 0.204 2.430 
 1 CPU + 1 GPU 0.02628 0.02073 0.03600 0.30741 
____________________________________________________________________________ 

 

7   Concluding Remarks 

In this work, the issue of the performances of a computational code for the numerical 
integration of the Navier-Stokes equations on a hybrid CPU/GPU computing system 
has been addressed. It has been possible to execute the accurate numerical simulations 
of the turbulent flow of a incompressible fluid in a plane channel at friction-velocity 
Reynolds number τRe = 200, by using 1 GPU. Near-future work will involve a multi-

node/multi-GPU implementation of the code, to reach higher values of τRe . 

The Direct Numerical Simulation of turbulence represents the only possible 
approach for the rigorous investigation of turbulence physics with numerical means. 
In fact, the most effective use of the different techniques available for the 
identification of the turbulent-flow structures in any kind of turbulent flow, typically 
relies on the analysis of huge three-dimensional, time-dependent turbulent-flow 
databases, nowadays necessarily of High-Performance DNS origin. In this context, 
the use of most advanced high-performance computing achitectures and procedures in 
the numerical simulation of turbulence appear as a not-avoidable option. 
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Abstract. In this paper we develop and implement a parallel algo-
rithm for a real-world application: finding optimal designs for multi-
product batch plants. We describe two parallelization strategies – for
systems with shared-memory and distributed-memory – based on the
branch-and-bound paradigm and implement them using OpenMP (Open
Multi-Processing) and MPI (Message Passing Interface), correspond-
ingly. Experimental results demonstrate that our approach provides com-
petitive speedup on modern clusters of multi-core processors.

Keywords: multi-product batch plant, parallel optimization, branch-
and-bound, master-worker, global optimization, MPI, OpenMP.

1 Motivation and Related Work

Selecting the equipment of a Chemical-Engineering System (CES) is one of the
main problems when designing chemical multi-product batch plants, e.g., for
synthesizing chemical dyes and intermediate products, photographic materials,
pharmaceuticals etc. A solution of this problem comprises finding the optimal
number of devices at processing stages, as well as working volumes or areas of
working surfaces of each of these devices. Working volumes and the areas of
working surfaces are chosen from a discrete set of standard values. One needs to
find an optimal combination of equipment variants using a criterion of optimality,
for example, the minimal total capital equipment costs.

The problem of optimal design of multi-product batch plants is a mixed
integer nonlinear programming (MINLP) problem [5, 15]. Existing techniques
– Monte Carlo method, genetic algorithms, heuristic methods etc. – allow for
obtaining suboptimal solutions. Performing an exhaustive search (pure brute-
force solution) for finding a global optimum is usually impractical because of
the large dimension of the problem. For example, in our earlier work [9], a CES
consisting of 16 stages is presented where each process stage can be equipped
with devices of 5 to 12 standard sizes. Thus, the number of choices in this case
is 516–1216 (which is approximately 1011–1017).

In this paper, we explore the possibility of accelerating the calculations for
finding optimal CES designs using a parallelized branch-and-bound algorithm.

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 417–430, 2011.
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Branch-and-bound is a one of the most popular techniques used for solving op-
timization problems in various fields (e.g., combinatorial optimization, artificial
intelligence, etc.). It is also used to solving MINLPs [8]. Branch-and-bound uses a
queue of subproblems obtained by decomposing the original problem: it system-
atically enumerates all solutions and discards a large number of them by using
upper and lower bounds of their objective function [3]. In branch-and-bound, the
search space is usually considered as a tree, which allows for a structured explo-
ration of the search space. Calculations for the various branches can be carried
out simultaneously, which is used to create a parallel version of this method.

Parallel branch-and-bound algorithms have been discussed extensively in the
literature. Parallel formulations of depth-first branch-and-bound search are pre-
sented in [7]. Mart́ı et al. propose a branch-and-bound algorithm and develop
several upper bounds on the objective function values of partial solutions for
the Maximum Diversity Problem (MDP) [11]. Mansa et al. analyze the perfor-
mance of parallel branch-and-bound algorithms with best-first search strategy
by examining various anomalies on the expected speed-up [10]. In [6], Gen-
dron et al. present several strategies to exploit parallelism using examples taken
from the literature and show that the choice of strategy is greatly influenced
by the parallel machine used, as well as by the characteristics of the problem.
Rasmussen et al. solve discrete truss topology optimization problems using a
parallel implementation of branch-and-bound [16]. In [18], Reinefeld et al. com-
pare work-load balancing strategies of two depth-first searches and propose a
scheme that uses fine-grained fixed-sized work packets. Sanders et al. [19] intro-
duce randomized dynamic load balancing algorithms for tree-structured compu-
tations, a generalization of backtrack search. Aida [1] et al. discuss the impact
of the hierarchical master-worker paradigm on the performance of solving an op-
timization problem by a parallel branch-and-bound algorithm on a distributed
computing system. Bouziane et al. [2] propose a generic approach to embed
the master-worker paradigm into software component models and describes how
this generic approach can be implemented within an existing software compo-
nent model. Cauley et al. [4] present a detailed placement strategy designed
to exploit distributed computing environments, where the additional computing
resources are employed in parallel to improve the optimization time. A Mixed
Integer Programming (MIP) model and branch-and-cut optimization strategy
are employed to solve the standard cell placement problem. In [21], Zhou at
al. present a parallel algorithm for enumerating chemical compounds, which is
a fundamental procedure in Chemo- and Bio-informatics.

The problem of optimal design of multi-product batch plants is also covered
in the literature. Moreno at al. developed a novel linear generalized disjunctive
programming (LGDP) model for the design of multi-product batch plants opti-
mizing both process variables and the structure of the plant through the use of
process performance models [13]. Rebennack at al. [17] present a mixed-integer
nonlinear programming (MINLP) formulation, where non-convexities are due to
the tank investment cost, storage cost, campaign setup cost and variable pro-
duction rates. The objective of the optimization model is to minimize the sum of
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the production cost per ton per product produced. In [20], Wang at al. present
a framework for the design and optimization of multi-product batch processes
under uncertainty with environmental considerations.

In this paper, we develop a parallel branch-and-bound algorithm for the glob-
ally optimal design of real-world multi-product batch plants, and implement it
on modern clusters of multi-core processors.

2 Problem Formulation

A chemical-engineering system (CES) is a set of equipment (reactors, tanks,
filters, dryers etc.) which implement the processing stages for manufacturing
certain products. Assuming that each processing stage is equipped with a single
device, the problem can be formulated as follows:

A CES consists of a sequence of I processing stages. Each processing stage
of the system can be equipped with a device from a finite set Xi, with Ji being
the number of device variants in Xi. All device variants of a CES are described
as Xi = {xi,j}, i = 1, I, j = 1, Ji, where xi,j is the main size j (working volume,
working surface, etc.) of the device suitable for processing stage i.

Each variant Ωe, e = 1, E of a CES, where E =
∏I

i=1(Ji) is the number
of all possible system variants, is an ordered set of devices work sizes, selected
from the respective sets. For example, for a system with 3 processing stages
(I = 3), the first stage may be equipped with devices selected from a set of 2
working sizes, i. e. J1 = 2, X1 = {x1,1, x1,2}, the second stage from 3 working
sizes J2 = 3, X2 = {x2,1, x2,2, x2,3}, and the third stage from 2 working sizes
J3 = 2, X3 = {x3,1, x3,2}. Hence, the number of all possible system variants is
given by E = J1 · J2 · J3 = 2 · 3 · 2 = 12.

As the order of processing stages is predefined, some system variants, e. g.,
{x1,1, x2,1, x3,2}, {x1,2, x2,1, x3,1} are valid, but others, e. g., {x3,1, x2,1, x1,2},
{x2,2, x3,1, x1,1} are not. Each variant Ωe of a system should be in operable
condition (compatibility constraint), i. e. it should satisfy the conditions of a
joint action for all its processing stages: S(Ωe) = 0.

An operable variant of a CES should run at a given production rate in a given
period of time (processing time constraint), such that it satisfies the restrictions
for the duration of its operating period T (Ωe) ≤ Tmax, where Tmax is a given
maximum period of time.

Thus, designing a multi-product batch plant can be stated as the following
optimization problem: to find a variant Ω∗ ∈ Ωe, e = 1, E of a CES, where the
optimality criterion – equipment costs Cost(Ωe) – reaches a minimum and both
compatibility constraint and processing time constraint are satisfied:

Ω∗ = argmin Cost(Ωe), Ω∗ ∈ (Ωe), e = 1, E (1)

Ωe = {(x1,j1 , x2,j2 , . . . , xI,jI )|ji = 1, Ji, i = 1, I}, e = 1, E (2)

xi,j ∈ Xi, i = 1, I, j = 1, Ji (3)
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S(Ωe) = 0, e = 1, E (4)

T (Ωe) ≤ Tmax, e = 1, E (5)

In this paper, we use the comprehensive mathematical model of CES opera-
tion, including expressions for checking constraints, calculating the optimization
criterion, etc., which was initially presented in [9].

3 Sequential Implementation and Its Optimization

In this section, we describe the sequential implementation of a branch-and-bound
algorithm for finding an optimal CES.

All possible variants of a CES with I stages can be represented by a tree of
height I (see Figure 1). Each level of the tree corresponds to one processing stage
of the CES. Each edge corresponds to a selected device variant taken from set Xi,
where Xi is the set of possible device variants at stage i of the CES. For example,
the edges from level 0 of the tree correspond to elements of X1. Each node ni,k

at the tree layer Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k = 1, Ki, Ki =
∏i

l=1(Jl)
corresponds to a variant of a beginning part of the CES, composed of devices
for stages 1 to i of the CES. Each path from the tree’s root to one of its leaves
thus represents a complete variant of the CES.

To enumerate all possible variants of a CES in the aforementioned tree, a
depth-first traversal is performed: starting at level 0 of the tree, all device variants
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Fig. 1. Tree traversal in depth-first search
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1 FindSolution() { EnumerateVariants(0); }
2
3 /* recursive tree traversal */
4 EnumerateVariants(level) {
5 if (level < I) {
6 for (j = 1; j <= J[level]; j++) {
7 /* append device variant to beginning part */
8 W[level] = X[level , j];
9 /* check compatibility constraint and upper bound */

10 if (S(W) == 0 && PartCost (W, level) < minCost ) {
11 /* search recursively */
12 EnumerateVariants (level + 1); } } }
13 else { /* leaf node */
14 /* check processing time constraint */
15 if (T(W) <= Tmax) {
16 /* check optimality criterion */
17 if (Cost(W) < minCost ) {
18 /* make current solution new optimal solution */
19 Wopt = W;
20 minCost = Cost(Wopt); } } }
21 }

Listing 1. Sequential implementation of branch-and-bound.

of the CES at a given level are enumerated and appended to the valid beginning
parts of the CES. Valid beginning parts are obtained at previous levels, starting
with an empty beginning part at level 0. This process continues recursively for all
valid beginning parts that result from appending device variants of the current
level to the valid beginning parts from previous levels. When a leaf node is
reached, the recursive process stops and the current solution is compared to the
current optimal solution, possibly replacing it.

Since a complete tree traversal (selecting a device on each edge traversal)
and checking constraints (see Equations 4 and 5) would result in considerable
computational costs, we use the branch-and-bound technique, with pseudo-code
shown in Listing 1. If not stated otherwise, the names of variables correspond
to the names in the problem formulation (see Section 2). The tree traversal
starts by calling procedure EnumerateVariants at level 0 (line 1). This method
continues recursively until the optimal CES Wopt has been found. Here, Wopt is
a vector of length I, specifying the device variant at each stage of the optimal
solution. When traversing the tree, the compatibility constraint (see Equation
4, function S()) is checked for the corresponding part of the CES. In addition,
we compare the cost for the current beginning part of the CES, consisting of the
first level stages (function PartCost()) with a global upper bound (variable
minCost). The initialization of the upper bound is done as sum of all maximum
device costs for each productions stage. If the current beginning part of the
CES fulfills the compatibility constraint and its costs do not exceed the global
upper bound (line 10), we recursively continue tree traversal to the next level
(EnumerateVariants(level + 1), line 12). Otherwise we discard deeper levels
of the tree and backtrack to the previous level. If a leaf node of the tree is
reached (line 13 ff.), the processing time constraint (see Equation 5, function
T()) is checked for the corresponding CES (line 15). If this constraint is fulfilled,
a new solution has been found and its costs (Equation 1, function Cost()) are
compared to the cost of the last known optimal solution (line 17). If a better
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Table 1. Averaged execution times of the various algorithm parts

Algorithm part Execution
time (μs)

Recursive call of EnumerateVariants() 0.1
S(W) 4.0
PartCost(W,level) 0.3
T(W) 417.0
Cost(W) 0.7

12 ...
13 else { /* leaf node */
14 /* check optimality criterion */
15 if (Cost(W) < minCost ) {
16 /* check processing time constraint */
17 if (T(W) <= Tmax) {
18 /* make current solution new optimal solution */
19 Wopt = W;
20 minCost = Cost(Wopt); } } }
21 ...

Listing 2. Optimizing the sequential algorithm by swapping checks of processing time
constraint (slow) and optimality criterion (fast).

solution is obtained, it replaces the previous optimal solution and its costs are
taken as new upper bound (line 19–20).

We developed a C++-based implementation of the presented sequential algo-
rithm to perform runtime experiments. As a test case we used the calculation
of a CES consisting of 16 processing stages (I = 16) with 5 device variants at
every stage. Our experiments were conducted on a system comprising 2 Intel
Westmere processors (X5650, 6 cores, running at 2.6 GHz) and 4 GB RAM. We
use the Intel C++ Compiler version 11.1. We evaluated the execution times of
the algorithm’s parts to identify the most expensive of them. From the averaged
experimental results (Table 1) for our sequential implementation, we observe
that the most expensive operation is calling of T(W) for checking the processing
time constraints of the CES.

The runtimes presented in the table are quite small for a single computation.
But in the searching process with multiple repetitions (billions times) they can
add up to tens and hundreds of hours. For our example (16 processing stages with
5 devices variants each), the overall runtime is 27h 11m. In order to reduce the
algorithm’s runtime, the number of calls of function T(W) has to be minimized.

We have implemented the following optimization of the sequential program.
From Table 1 we deduce that checking the optimality criterion (Cost(W)) is a
comparatively cheap operation. If we execute this operation as early as possi-
ble, we can discard suboptimal solutions without checking the processing time
constraint which is a rather expensive operation. Therefore, we modify the al-
gorithm by swapping the checks for the optimality criterion and the processing
time constraint (see Listing 2, lines 15, 17)
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To evaluate the performance impact of our optimization, we repeat our mea-
surements for the modified implementation using the aforementioned experi-
mental setup. Our simple optimization reduced the runtime approximately by a
factor of 2 (13h 52m vs. 27h 11m).

4 Parallel Implementation

The tree-like organization of the branch-and-bound search space provides a po-
tential for the parallelization of our algorithm, as all branches of the tree can
be processed simultaneously. In this paper, we use two approaches to parallelize
the algorithm: a shared-memory approach and a distributed-memory approach.

4.1 Shared-Memory Approach

In the shared-memory approach, all nodes Ni = {ni,1, ni,2, . . . , ni,k}, i = 1, I, k =
1, Ki, Ki =

∏i
l=1 Jl at each layer i of the tree are regarded as independent tasks

that can be executed in parallel. The total number of tasks, Ntasks =
∑G

i=1 Ki,
can be a very large number. Therefore, a granularity parameter G is introduced
to limit the degree of parallelism to a certain level of the tree: subtrees below
the granularity level are not split into tasks but rather processed sequentially.

A pseudo-code for this approach is given in Listing 3. The main difference as
compared to the sequential version is that recursive function calls are performed
by newly created concurrent tasks (line 12). Besides, a copy of the current be-
ginning part of the CES, W, has to be provided to each task.

The merit of this approach is its simple implementation: no communication
is needed between tasks as they rely on shared memory for data exchange.

4.2 Distributed-Memory Approach

We use the master-worker paradigm for an alternative, distributed-memory par-
allelization of our algorithm: a single master process dispatches a subset of com-
putations to multiple worker processes and gathers computed results from them.

Master Process. The master (see Listing 4) performs a depth-first traversal
of the tree using a recursive procedure MasterEnumerateVariants to some level
G (granularity), 1 ≤ G ≤ I. Using this procedure, the master creates beginning
parts W [i], i = 1, G of the CES (lines 24–29). At the last level of recursion, the
master waits for worker messages (line 32), which can be of two types: solution
(SOLUTION) or job request (REQUEST WORK). If the master receives a so-
lution message (line 33), the costs of the received solution are compared to the
costs of the current optimal solution (optimality criterion, line 35). If a better
solution has been found by the worker, it is stored and replaces the current op-
timal solution (lines 36–38). When a job request is received (line 39), the master
responds by sending job message (DO WORK) containing the current beginning
part of the CES and the current optimal solution to the worker (line 40). After-
wards, a new beginning part of the CES is generated to be passed to a worker
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1 FindSolution() { EnumerateVariants(0); }
2
3 EnumerateVariants(level) {
4 if (level < I) {
5 for (j=1; j <= J[level ]; j++) {
6 /* append device variant to beginning part */
7 W[level] = X[level , j];
8 /* check compatibility constraint and upper bound */
9 if (S(W) == 0 && PartCost (W, level) < minCost ) {

10 if (level < G) { /* check granularity */
11 /* create concurrent task */
12 CREATE TASK: EnumerateVariants(level + 1); }
13 else {
14 /* search recursively */
15 EnumerateVariants(level + 1); } } } }
16 else { /* leaf node */
17 ... }
18 }

Listing 3. The shared-memory approach for parallel branch-and-bound.

(lines 25–29). If no new beginning part of the CES can be generated, the master
returns from the recursive procedure MasterEnumerateVariants (line 6). The
master continues receiving solutions from workers and compares them to the
optimal solution. However, if a worker sends a job request, the master sends a
quit message (QUIT) to the worker, to terminate the worker process. After quit
messages have been sent to all workers, the master process ends.

Worker Process. The worker (see Listing 5) starts by sending a job re-
quest to the master (line 3) and waits for the response. The response can be
of one of two types: job message (DO WORK) or quit (QUIT). If a job mes-
sage comprising a beginning part of the CES and the current upper bound of
the optimality criterion is received, the worker calls the recursive procedure
WorkerEnumerateVariants (line 5–8). Within this procedure, the worker tra-
verses the remaining sub-tree W [i], i = G + 1, I of the received CES’ beginning
part to find solutions in the same way the sequential algorithm does (lines 5–20
of Listing 1). If the worker finds a solution which costs do not exceed the upper
bound of the optimality criterion (lines 24–27), it makes this solution the new
optimal solution (lines 28–31). When the recursive procedure ends, the worker
sends its new optimal solution, if any, to the master (line 9–11) and requests a
new job. If a quit message is received, the worker process terminates (line 8–9).

The distributed-memory approach is more difficult to implement than the
shared-memory approach: master-worker communication has to be specified
explicitly in order to exchange data in a distributed-memory system. Besides, a
single master constitutes a possible performance bottleneck of this
implementation.

5 Experimental Results

To study the speedup of our two parallelization approaches, we created two corre-
sponding implementations and conducted runtime experiments on a
heterogeneous cluster consisting of:
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1 Master () {
2 /* number of workers (one of processes is master) */
3 num_workers = NUM_PROCESSORS - 1;
4
5 /* start tree traversal */
6 MasterEnumerateVariants(0);
7
8 /* wait for remaining solutions and stop workers */
9 while (num_workers > 0) {

10 msg = ReceiveWorkerMessage();
11 if (msg.type == SOLUTION ) {
12 /* check optimality criterion */
13 if (Cost(msg.W) < minCost ) {
14 /* make solution new optimal solution */
15 Wopt = msg.W;
16 minCost = Cost(msg.W); } }
17 elseif (msg.type == REQUEST_WORK) {
18 /* stop worker */
19 SendWorkerMessage(msg.workerID , QUIT);
20 num_workers --; } }
21 }
22
23 MasterEnumerateVariants( level) {
24 if (level < G) { /* check granularity */
25 for (j=1; j <= J[level ]; j++) {
26 W[level] = X[level , j];
27 if (S(W) == 0 && PartCost (W,level) < minCost ) {
28 /* search recursively */
29 MasterEnumerateVariants(level + 1); } } }
30 else {
31 while (true) {
32 msg = ReceiveWorkerMessage();
33 if (msg.type == SOLUTION ) {
34 /* check optimality criterion */
35 if (Cost(msg.W) < minCost ) {
36 /* make solution new optimal solution */
37 Wopt = msg.W;
38 minCost = Cost(msg.W); } }
39 elseif (msg.type == REQUEST_WORK) {
40 SendWorkerMessage(msg.workerID , W, minCost );
41 break; } } }
42 }

Listing 4. Distributed-memory approach: Pseudo-code of master.
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– 36 nodes with 2 quad-core processors (Intel X5550 Nehalem, running at 2.6
GHz) with 3 GB RAM each,

– 198 nodes with 2 hexa-core processors (Intel Westmere X5650, running at
2.6 GHz) with 2 or 4 GB RAM each, and

– 4 nodes with 4 eight-core processors (Intel Xeon E7550, running at 2 GHz)
with 128 GB RAM each.

The nodes are interconnected via Infiniband. Programs were compiled using the
Intel C++ Compiler 11.1.

We study the design of a CES consisting of 16 processing stages with 5 vari-
ants of devices at every stage as test case. The implementations are written in
C++ using OpenMP version 3.0 (Open Multi-Processing) [14] for the task-based
approach (see Section 4.1), and the Message Passing Interface (MPI) [12] for the
master-worker approach (see Section 4.2).

The implementation using OpenMP is derived from the sequential imple-
mentation by inserting directives: a parallel construct with a nested single
construct is put around the call of the EnumerateVariants (line 1 of Listing 3),
such that one of these threads starts the recursive tree traversal, while the other
threads stay idle. Within the recursive procedure new tasks are created using
the task construct of OpenMP. While the first thread continues creating tasks,
the other threads process these tasks.

We run our OpenMP-based implementation on a single node consisting of
4 CPUs with altogether 32 cores, setting granularity values from 1 to 10. We
observed that for granularity greater than 10, too many tasks were created, such
that the implementation ran out of memory. The results are shown in Figure 2a.
Figure 2b shows the speedup of our OpenMP-based implementation using up to
32 cores. Granularity has been set to 10.

In our master-worker implementation, we use MPI’s point-to-point commu-
nication functions send and recv for exchanging messages between master and
worker. We performed the same measurements on up to 64 Westmere nodes.
Here, we also observed best performance for granularity values from 4 to 14 (see
Figure 3a). The minimum number of processors for running the program is two
(master and one worker). While there is no speedup when using 2 processors, it
increases nearly linearly when using up to 768 processors. With greater numbers
of processors, the growth of speedup slows down. The performance of the master
process may become a bottleneck of application performance when it controls
too many worker processes, because the master frequently communicates with
all workers.

Both implementations provide high scalability. On the same hardware, the
performance of both approaches differs slightly. However, in spite of its more
difficult implementation, the MPI implementation is preferable, because it runs
both on shared-memory machines and on computers with distributed memory.
Currently, shared-memory machines with more processors (hundreds and thou-
sands) are rare, unlike computing clusters. Also with a large number of tasks we
may not have enough memory as in our case when G > 10.
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1 Worker () {
2 while (true) {
3 SendMasterMessage(workerID , REQUEST_WORK);
4 msg = ReceiveMasterMessage();
5 if (msg.type == DO_WORK ) {
6 minCost = msg.minCost ;
7 foundNewSolution = false;
8 WorkerEnumerateVariants(G + 1);
9 if (foundNewSolution) {

10 /* send new optimal solution to master */
11 SendMasterMessage(workerID , SOLUTION , Wopt); } }
12 elseif (msg.type == QUIT) {
13 break; } }
14 }
15
16 WorkerEnumerateVariants( level) {
17 if (level < I) {
18 for (j=1; j <= J[level ]; j++) {
19 /* append device variant to beginning part */
20 W[level] = X[level , j];
21 /* check compatibility constraint and upper bound */
22 if (S(W) == 0 && PartCost (W, level) < minCost ) {
23 /* search recursively */
24 WorkerEnumerateVariants(level + 1); } } }
25 else { /* leaf node */
26 /* check optimality criterion */
27 if (Cost(W) < minCost )) {
28 /* check processing time constraint */
29 if (T(W) <= Tmax) {
30 /* make solution new (local) optimal solution */
31 Wopt = W;
32 minCost = Cost(Wopt);
33 foundNewSolution = true; } } }
34 }

Listing 5. Distributed-memory approach: Pseudo-code of worker.
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Fig. 3. Experimental results for the MPI-based implementation

Selecting a suitable granularity value is crucial for optimal performance. Usu-
ally, granularity should be set to a value, such that the number of initial parts for
a system is significantly greater than the number of processors, i. e.

∏G
i=0 Ji '

Np. However, the distribution of initial parts to processors may become un-
balanced if initial parts for a systems are discarded early by the branch-and-
bound paradigm. Hence, we empirically determined a factor to optimize load
balance. For the above example (16 processing stages with 5 device variants
at each), this factor is 2–3, such that a sensible granularity value G is within
2 · log5 Np ≤ G ≤ 3 · log5 Np.

6 Conclusion

We proposed two approaches to implement a parallel branch-and-bound
algorithm for solving the optimization problem for multi-product batch plants.
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Implementations of our approaches based on OpenMP and MPI have been pre-
sented. Runtime experiments for our implementations using a real-world exam-
ple of a multi-product batch plant show that our solution provides considerable
speedup. This is well correlated with experimental results obtained in, e. g., [6],
where also near-linear speedups were observed. Both implementations provide
good parallel scalability.

We also analyzed the impact of the degree of parallelism controlled by a
granularity parameter. From our results we conclude that while the MPI-based
implementation suffers a communication bottleneck for large numbers of pro-
cessors (the reasons for that and methods of overcoming are described in detail
in [1]), it still provides better performance and flexibility as compared to the
OpenMP-based implementation.

In future work we will investigate the use of a hierarchical master-worker
implementation, in order to reduce the communication bottleneck which we ob-
served in our current implementation. This paper presents a parallel version only
of the branch-and-bound algorithm. In addition, quite interesting would be the
parallelization of comprehensive mathematical model of CES operation. This
problem requires also deeper and more detailed research in further works.
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Abstract. In this paper, a multi-path routing algorithm dedicated to
Network on Chip (NoC) together with its implementation are presented.
The proposed algorithm is based on the Ford-Fulkerson method and is
aimed at data-dominated streaming multimedia applications realized in
Multi Processor Systems on Chip. The efficiency of the proposed tech-
nique is compared with the state-of-the-art NoC routing approach and
in some cases we obtain a significant improvement. Our implementation
utilizing virtual channels, despite imposing some overhead, allow us to
obtain a promising results in some popular multimedia codecs.

Keywords: Network on Chip, multi-path routing, Ford-Fulkerson method.

1 Introduction

Contemporary multimedia algorithms and many others, are typically compu-
tational-intensive and data-dominated but they can be split into stages to be
implemented in separate computational units. Thanks to this property they can
benefit from parallel and distributed processing working in a pipeline-like way
and transmitting each other streams of relatively large, but usually fixed, amount
of data. In these applications, it is usually required to keep an assumed quality
level of service and meet real-time constraints [11]. Multi Processor Systems on
Chips (MPSoCs) are often considered as suitable hardware implementations of
these applications [7]. As each processing unit of a MPSoC can realize a single
stage of streaming application processing, it is still problematic to connect these
units together.

They are often linked using the packet-based Network-on-Chip (NoC) para-
digm for designs of chips realizing distributed computation [2]. The recent pop-
ularity of this approach can be attributed to a lower number of conflicts in a
chip with a large number of cores. It is reported that NoC architectures offer
high bandwidth and good concurrent communication capability, but they require
additional mechanisms to overcome problems typical for packet switching com-
munication, such as packet deadlock or starvation, but the techniques known
for traditional computer networks have to be altered before applying to on-chip
networks [10]. A typical NoC implementation utilizes packet switching approach
that is called wormhole routing [9]. In this technique, each packet is split into
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smaller units of equal length, flits (flow control digits). Usually, the first flits con-
tain some routing information, such as the destination address. Having obtained
the routing information, a wormhole router selects the next-hop router and estab-
lishes the path to that neighbouring router. This path can be used exclusively for
transferring the current package flit by flit as long as the whole package has not
been transferred. The next-hop router typically does not store the whole pack-
age in its buffers, but tries to establish a connection with another router being se-
lected for the transfer. The most popular routing algorithm used in NoCs, named
XY, can be also viewed as inappropriate for switching large streams of informa-
tion. According to this algorithm, a flit is firstly routed according to the X axis
as long as the X coordinate is not equal to the X coordinate of the destination
core, and then the flit is routed vertically. However, as it was shown in [5], in a
mesh-based NoC realizing a typical streaming multimedia algorithm, few links
are used significantly while the remaining ones are utilized in a small degree and
relatively large part of links are not utilized at all. Taking into consideration the
above mentioned facts, it follows that in order to design a NoC-based MPSoC for
multimedia streaming applications it is necessary to propose a routing algorithm
that is more suitable to this task that the traditional XY algorithm and to pro-
pose a mapping scheme of IP cores into mesh nodes that decreases the contention
level. In this paper, we focus on the first of these issues.

2 Tapeworm Routing

In order to avoid the majority of problems found in a usage of the XY algo-
rithm for streaming multimedia applications, we introduced a multi-path rout-
ing scheme that we named Tapeworm routing. We propose this name due to the
similarity with the anatomy of a tapeworm - both its body and a package body
are split into segments; segments are comprised of a number of flits.

The Tapeworm algorithm uses the well-known Ford-Fulkerson [6] method to
compute maximal throughput of the network between a set of cores and for each
core permutation. The Ford-Fulkerson method for an arbitrary flow network
G = (V, E), where V is a set of vertices and E is a set of edges with source s
and sink t. Each edge has capacity c(u, v) and flow f(u, v), defines the notion
of the residual network and augmenting path (u, v). The residual network for
flow network G is network Gf = (V, Ef ), where Ef is defined as follows: Ef =
{(u, v) ∈ V × V : cf (u, v) > 0}, where cf (u, v) denotes the residual capacity for
path (u, v), which is defined with cf (u, v) = c(u, v) − f(u, v). The augmenting
path for a network is any path from s to t in a residual network for G. The
residual capacity for any augmenting path for network is determined with the
following formula: cf (p) = min{cf (u, v) : (u, v) ∈ p}.

With the notions defined as above, we can present the Ford-Fulkerson
method in a pseudo-code given in Fig. 1. In case of the Tapeworm algorithm,
the input data is a list of data transfers. A transfer Ti is consisted of three el-
ements (Si, Di, Ai), where Si and Di denote the source and the target router,
respectively, and Ai is a number of bits transmitted between these routers. The
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1. while any augmenting path exists p ∈ Gf

2. for each (u, v) ∈ p do

3. f(u, v) := f(u, v) + cf (p)
4. f(v, u) := f(v, u) − cf (p)

Fig. 1. Ford-Fulkerson algorithm

Fig. 2. Work flow of the transfer balancing process

pseudo-code of the whole Tapeworm algorithm is outlined in Fig. 2. Its details
has been presented in [5].

Each router owns a routing table that stores all the paths to the target router
sorted according to their lengths; paths of the same length are sorted with the
XY rule. Following this rule, the first path is obtained based on the XY routing
algorithm. In the second path, the flit is routed horizontally as long as the
X coordinate is lower (or higher, according to the direction in X between the
source and the target nodes) by 1 from the target router. Then the flit is routed
vertically by one router, and then according to the XY algorithm. In the next
path, a flit is routed horizontally as long as the X coordinate is lower (or higher)
by 2 of the target router, etc. This approach guarantees receiving the flits in the
same order as they were sent [4].

The Tapeworm and the XY algorithms include some common properties, as,
for example, dealing with deadlocks by limiting the possibility of flit turning
[1] and by utilizing the wormhole type of switching. The difference between
these algorithms is clearly visible in the number of paths used to transmit data
between two routers. A router is consisted of 4 functional blocks. Four buffers
receive data from their neighbouring routers and one buffer receives data from
the directly connected core. In the scheme, there is no output buffers as the
Tapeworm algorithm operates according to the Wormhole switching technique,
that permits to buffer flits of a single package in a few routers at once, such that
the routed flits can be immediately transferred into input buffers of the next
router. Data from buffers is then transferred to switch, which implements the
Tapeworm algorithm. Moreover, switch controls the flit flow in router, reserving
inputs for the corresponding outputs and works also as an arbiter.

In our approach we benefit from the virtual channel mechanism. The virtual
channel is a pair of buffers in one physical channel which is shared with other
such pairs. An access to a physical channel is controlled by a dedicated arbiter.
Its introduction is aimed at getting rid of the deadlocks. This mechanism can
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Fig. 3. Block diagram of the Tapeworm router

be also used for decreasing the delay in a network and for increasing its ca-
pacity [3]. Using virtual channels in the presented router is indispensable for
implementing the Tapeworm algorithm. Tapeworm utilizes the Ford-Fulkerson
method [6] to determine paths that can have common edges for various mes-
sages and thus can send flits originated from various messages using the same
channels in the same time. In the described router architecture, it is possible to
realize up to 3 virtual channels for each physical channel, which was enough for
the analysed algorithm. However, this approach is scalable and the maximum
number of virtual channels can be easily increased. The switch block is the most
complex router block considering its implementation that consists of executing
Tapeworm, which computes paths for transferring messages between the source
and the destination router. Based on these paths, it creates the routing table for
sending messages.

3 Experimental Results

The router architecture has been developed and implemented in CoCentric Sys-
tem Studio - a design and simulation environment allowing us to use the SystemC
language. It is a C++ library aiming at designing of digital circuits that was
developed in order to facilitate production of increasingly more complex systems
consisting of a number of components, including the software ones. SystemC is
capable of providing management of such systems designed at various levels of
abstractions, what was impossible in case of the traditional hardware descrip-
tion languages. An architecture of the Tapeworm router is presented in Fig. 3,
where VB denotes VirtualBuffer, VCD - VirtualCoreDemux, VD - VirtualData,
S - Switch, VA - VirtualAck, DO - DataOut, DC -DataControl. In order to com-
pare both the Tapeworm and XY routing algorithms, we performed one default
mapping of functionalities into cores.

In Fig. 4a and 4b one can observe that the maximal time needed for sending
and receiving data through the network generating traffic for the H.264 codec
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Fig. 4. Receiving (a) and sending (b) times for H.264 codec

and utilizing the Tapeworm routing scheme is lower than in the XY routing
algorithm case by over 19%. In case of the Tapeworm algorithm, the standard
deviation of sending and receiving flits is lower by 12% and 13%, respectively.

4 Conclusion

In this paper, we showed an architecture of a router implementing the Tapeworm
routing algorithm realized in the SystemC language. Then some survey on the
efficiency of a Network on Chip using the implemented router for three different
applications have been shown. The obtained results have been compared with the
network realizing the same applications using the XY algorithm. The Tapeworm
algorithm was meant to result in faster networks with more balanced transfers [4]
[5], and, in case of the H.264 video encoder, the Tapeworm approach is faster by
more than 19%. The Tapeworm algorithm requires further research, for example
with different implementations of the virtual channels. Additionally, it can be
interesting to perform the tests with various message size, bit-width of the links
or input buffers in routers, that have not been presented in the paper.

The research work presented in this paper was sponsored by Polish Ministry
of Science and Higher Education (years 2011-2014).
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Abstract. In the paper we describe a web service of access to computing 
resources of a desktop grid built in the High-performance Data Center of 
Karelian Research Centre of the RAS. The grid is based on lightweight, highly 
scalable BOINC platform. We present the architecture of the system, the current 
results of implementation and plans for the future. We also present the overview 
of a scientific research that was carried out with use of the system. 
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1   Introduction 

Recently, supercomputers have been supporting a lot of scientific applications 
demanding significant computing power. The most common examples include 
mathematical modeling, numerical computation, physical and biological simulation 
etc. But not only are supercomputers powerful in solving diverse scientific problems, 
they are also extremely expensive in use, maintenance and scaling. For applications 
that process huge amounts of data and at the same time feature a high degree of data 
parallelism, grid technology has become a priority. Grid computing has been applied 
by the National Science Foundation's [1] National Technology Grid, NASA's [2] 
Information Power Grid, European DataGrid [3], Russian Data Intensive Grid [4] etc. 

By definition, a computational grid is “a hardware and software infrastructure that 
provides dependable, consistent, pervasive, and inexpensive access to high-end 
computational capabilities” concerned with “coordinated resource sharing and 
problem solving in dynamic, multi-institutional virtual organizations” [7,8]. Grids 
allow to integrate computing power of a set of distributed computers connected by the 
network. 

Grid systems can be divided into two groups: the first one includes grids that 
combine specially dedicated computers (usually supercomputers), the second one 
includes those utilizing resources of desktops while they are idle. A grid system 
combining personal computers connected to the Internet and voluntarily provided by 
their owners is called a system of volunteer computing [10]. A desktop grid [11] is a 
system that integrates resources of computers in a local network of an organization. 

In February 2009, a computing cluster with peak performance of 850 GFlops was 
launched at the Institution of the Russian Academy of Sciences, Karelian Research 
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Centre [12]. In order to provide access to computing resources for users and organize 
regular work of the cluster, the Center for collective use, “High-performance Data 
Center”, was established on basis of Institute of Applied Mathematical Research 
(IAMR). Computing resources of the cluster are being used for solving 
computationally intensive tasks within scientific and applied research as well as for 
training of parallel programming specialists.  

However, recently computing resources of the cluster have ceased to suffice for 
convenient work of users as the workload increased to 83%. As a rule, applications 
have to wait in queue until the necessary number of computational nodes is available. 
At the same time, it has been found that a whole number of users solve computational 
tasks that are well data-parallelized. Consequently, there was made a decision to 
create a grid within the framework of the Center for collective use. 

Our objective is to implement a service of distributed execution of applications 
which require significant computational resources, are data parallel and can relatively 
easily be separated into a number of tasks. We intend to do this on basis of the 
desktop grid built on the BOINC software. The nodes of the grid are the cluster nodes, 
servers and desktop PCs of IAMR that will devote to the project their idle time.  

2   Software Platform 

There are a number of software systems, or middlewares, for grid computing. The 
most popular ones are Globus Toolkit [13], Unicore [14], GLite [15], Condor [16], 
ARC [17]. However, for the implementation of the web service we have chosen the 
BOINC platform [9], which was designed specially for volunteer computing and 
desktop grids. BOINC (Berkeley Open Infrastructure for Network Computing) is a 
free, distributed under the GNU LGPL license software platform for distributed 
computing, developed at the University of California, Berkeley. BOINC platform has 
been a framework for many independent volunteer computing projects [18-20]. In 
comparison with other popular middlewares that also support volunteer computing, 
such as Condor, BOINC is much more lightweight, less complicated in deployment 
and expansion, and available for a larger variety of platforms. 

 There have been several other systems for distributed computing with use of idle 
computers in a network, e.g. QADPZ [6], Bayanihan [23] and Entropia [24]. 
However, the BOINC software is the most actively developed at the moment and 
supports the widest range of applications [25]. Being cheap in deployment and 
maintenance, BOINC server software has high performance and good opportunities in 
scalability. The client part is available for many computing platforms and is easy to 
deploy. BOINC is an open source software, has a lot of features and provides 
documented interfaces to many of its key components.  

One of the basic concepts of BOINC software is a project. A project is an 
autonomous entity that does distributed computing. Projects are independent; each 
one has its own applications, database, web site and servers, and is not affected by the 
status of other projects. Each project is identified by the URL of its web site.  

A BOINC project can include multiple applications, each of which consists of 
several programs for different computing platforms and a set of workunits and results. 
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A workunit is an independent computational task. A result, each associated with a 
workunit, describes an instance of a computational task, either unstarted, in progress, 
or completed. In some cases there may be several instances, or “replicas”, of a given 
workunit. This is used to ensure that clients don't send back to server intentionally or 
unintentionally wrong results. The BOINC server creates one or more instances of a 
computational task according to project preferences, distributes them to client hosts, 
collects the output files, handles the results and after all deletes the I/O files. 

Typically, creation and support of a BOINC project involve the work of an 
administrator whose main duties are to manually create applications, fill in the 
preferences for computational tasks etc. Hence, to enable wider access to the computing 
resources of the desktop grid we have decided to implement a web service that is 
described further in this paper.  

There are a few things that the term “web service” may refer to. We use a broad 
definition of the web service given by IBM [22]: 

“A self-contained, modular application that can be described, published, located, 
and invoked over the Web. Platform-neutral and based on open standards, Web 
Services can be combined with each other in different ways to create business 
processes that enable you to interact with customers, employees, and suppliers.” 

Each BOINC application includes the main executable (probably with other files 
necessary to run it) and descriptions of I/O files that are specific for this application 
and common for all its workunits. The administrator of the BOINC server must 
provide application-specific programs for validation and assimilation of the 
computational results. Given the main executable, descriptions of I/O files, validation 
and assimilation programs, a new application can be created and run automatically.  

The Leiden Classical project [5] (which is originally aimed at supporting test 
simulations of molecules and atoms in a classical mechanics environment) has 
implemented a web-based interface allowing users to submit BOINC jobs, including 
uploading their own input files. However, the system allows to create workunits for 
registered BOINC applications only. Moreover, it lacks the feature of uploading many 
input files at a time and some other important functions such as custom number and 
format of I/O files. In our work the aim was to develop a web-based interface that 
would assist in creating users' applications that require different I/O parameters. 

Any existing executable can be run under the BOINC software with use of a 
wrapper program supplied by BOINC [21], thereby without need of modification of 
the source code. The wrapper runs the executables, or “real” applications, as 
subprocesses and handles all communication with the core client. There may be more 
than one executable under the wrapper, e.g. a long task may be separated into multiple 
tasks for the purpose of enabling checkpointing. Both wrapper program and 
executable files must be built for the computing platforms that grid working nodes 
have. BOINC allows applications to have various versions for a wide range of 
computing platforms.  

The client part in the desktop grid includes files that are necessary to run the client 
program, bind it to an account and allow remote control and monitoring of client. 
Grid server is directly connected to the web server. 
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3   The System Architecture 

The web service of access to computing resources of the desktop grid is based on the 
following components:  

• website that serves as an access point to the service and provides a user 
interface; 

• grid server (based on BOINC platform) that controls creation and distribution of 
computational tasks and handles the results; 

• grid working nodes that perform computational tasks. 

The system architecture is shown in Fig. 1. The workflow in the system is described 
as follows: 

• the user uploads files and specifies parameters required to create computational 
tasks via the website; 

• the uploaded data is processed by a server-side program that creates a new 
BOINC application and computational tasks; 

• instances of the new application together with one or more computational tasks 
are sent to working nodes that have enough resources to execute them; 

• the user monitors execution progress via the website; 
• the server collects the results from the working nodes, processes them and sends 

to the user. 

4   Implementation 

In Fig. 2 there is a screenshot of the web-based interface of the service. The form 
provides the fields to upload the executable, additional files (if any) and a zip archive 
of input files; the fields for physical names of I/O files that will the executable 
require; the fields for estimates of resources to complete the tasks and the field for 
email address which are the results to be sent to. The field for upload of the main 
executable and the field for email address are compulsory, others are optional. 

A user enters the website, uploads the main executable and probably additional 
files, specifies the names for I/O files that the executable will require, and uploads a 
couple of input files, each one for a separate computational task. All uploaded data is 
processed by a server-side program that creates a new application and makes 
templates for input and output files. In our case every application contains the 
wrapper program in addition to user's executable. Computational tasks, or workunits 
in terms of BOINC, are generated with use of input files together with their templates 
and templates of output files that are to be received.  

The grid working nodes periodically send to the server requests for more work. 
The BOINC scheduling program responds to work requests by distributing unsent 
results between the working nodes that have asked for work and meet certain criteria, 
e.g. have enough disk space and memory to handle the tasks.  
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Fig. 1. The system architecture Fig. 2. Web interface of the service 

The overall execution progress is displayed on the web site. At the moment the 
user may view the whole number of workunits and their status, i.e. in progress or 
completed. Once the completed result of a workunit is reported by a grid working 
node, a validation program checks the output files and marks the result either as valid 
or invalid. Valid results are then handled by an assimilation program that stores them 
in a zip archive and sends it to user via email as soon as all results have been handled.  

Currently the number of users of the service is not restricted. There may be as 
many workunits as required and the time of their execution will depend only of the 
number of available nodes. However, BOINC allows to assign priorities to 
applications of different users. 

5   Conclusion, Results and Further Work 

In this paper we describe a web service of access to computing resources of a desktop 
grid based on the BOINC software and present the current results of its 
implementation. The service is intended mainly for applications that are data parallel 
and can relatively easily be separated into a number of tasks. The final version of the 
service will be available for users of the Center for collective use as well as users of 
other institutions within the agreements. 

The web service has been used in solving the computational problem of finding the 
optimal parameters for the mathematical model of hydride decomposition within the 
scientific research devoted to studying the White Sea. This is a non-classical 
boundary-value problem with a free boundary and nonlinear Neumann boundary 
conditions. The finite-difference numerical method was implemented in Fortran-
90/95. The problem is to find the set of kinetic parameters that provide the best (in the 
least squares sense) approximation of the desorption curve obtained experimentally. A 
difficulty is that the solution can be not unique. 



442 E. Ivashko and N. Nikitina 

Currently we have obtained the following results: 

• the software platform has been selected; 
• the system architecture has been designed; 
• the BOINC based desktop grid has been deployed; 
• sixteen working nodes have been added to the grid, among them ten cluster 

compute nodes, a cluster frontend, four servers and a desktop computer;  
• the website has been created; 
• a series of users' projects have been implemented.  

Three main directions for the further work are: 

• improvement of the web interface: 
▪ provide access to BOINC features such as automatic generation of workunits, 

validation of results, monitoring the whole progress of an application etc.; 
▪ implement personalization including management of personal accounts, 

viewing the statistics of use, access to the cluster, organization of the projects 
that may include several applications.   

• grid development: 
▪ add more computers to serve as grid working nodes; 
▪ adjust parameters of server-side programs and application workunits so as to 

minimize waiting time; 
▪ implement a feature of uploading source code for further cross-compilation on 

the server side. 
• scientific research: 
▪ develop a mathematical model of the job queueing process in the system and 

select the optimal queue discipline (e.g., the one that would guarantee the 
minimal average waiting time, or the minimal queue length, etc.);  
▪ investigate the statistical distribution of completion times of the workunits and 

develop a procedure of their adaptive assignment to those clients who will 
have enough resources with high probability; 
▪ investigate the dependence between size of the workunit and time for it to be 

completed in the grid system and develop a method to automatically separate 
the large problem into smaller workunits most effectively. 
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Abstract. The ill-posed inverse problem of propagation of long waves
in a domain of arbitrary form with the sufficiently smooth boundary on a
sphere is consider. Numerical solution is based on finite elements method.
Parallel software using MPI is performed. We compared efficiency of two
popular implementations of the MPI standard and studied the behavior
of our software when using various ways of memory allocation.

Keywords: Data assimilation problem, finite elements method and high
performance computation.

1 Introduction

In this paper some problems of the effective use of cluster systems are considered,
as an example paralleling implementation of the finite elements method for the
numerical solution of an initial boundary value problem for the shallow water
equations.

Shallow water models adequately describe a large class of natural phenomena
such as large-scale free surface waves arising in seas and oceans, tsunamis, flood
currents, surface and channel run-offs, gravitation oscillation of the ocean surface
[1,2]. In the papers [2,3] the numerical modeling of free surface waves in large
water areas on the basis of the shallow water equations (SWE) is considered
taking into account the Earth’s sphericity and the Coriolis acceleration. In [2] for
the differential formulation of the problem useful a priori estimates which provide
stability as well as existence and uniqueness of a solution of the problem are
obtained. In [3] for this problem the finite elements method (FEM) is constructed
and corresponding a priori estimates are obtained. Besides, numerical results on
special model grids and on non-structured grids for water areas of the Sea of
Okhotsk and the World Ocean are presented. In [4] efficiency of two parallel
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implementations of the numerical solution of a boundary value problem for SWE
with the use of the MPI library for the C language is studied.

When developing parallel software for this problem, we faced some difficulties
caused by lack of information of efficiency of a certain method for the solution
of particular problem. In this context, we have performed a study whose results
are related not only to the problem itself but to a greater extent to tools for its
solution. In particular, we compared efficiency of two popular implementations
of the MPI standard and studied the behavior of our software when using various
ways of memory allocation.

2 The Differential Formulation of a Problem

We formulate the problem on propagation of long waves in a water area as
follows. Let ΩRE be a given domain on a sphere of radius RE with the bound-
ary Γ=Γ1 ∪ Γ2 where Γ1 is the part of boundary passing along the coast and
Γ2 = Γ \ Γ1 is the part of boundary passing through the water area. Denote
the characteristic function of these parts of the boundary by m1 and m2, respec-
tively. Without loss of generality we can assume that the points ϕ = 0 and ϕ = π
(poles) are not involved in ΩRE . Assume also that Ω = {(λ, ϕ) ∈ [0, 2π]× (0, π) :
(RE , λ, ϕ) ∈ ΩRE}, where λ denotes longitude, ϕ – latitude. For the unknown
functions u = u(t, λ, ϕ), v = v(t, λ, ϕ) and ξ = ξ(t, λ, ϕ) in ΩRE × (0, T ) we write
the impulse balance equation and the continuity equation [2]:

∂u

∂t
= lv + mg

∂ξ

∂λ
−Rfu + f1,

∂v

∂t
= −lu + ng

∂ξ

∂ϕ
−Rfv + f2, (1)

∂ξ

∂t
= m

(
∂

∂λ
(Hu) +

∂

∂ϕ

( n

m
Hv
))

+ f3,

where u and v are components of the velocity vector U in λ and ϕ direc-
tion, respectively; ξ is deviation of a free surface from the nonperturbed level;
H(λ, ϕ) > 0 is the depth of a water area at a point (λ, ϕ); the function
Rf = r∗|U|/H takes into account base friction force, r∗ is the friction coeffi-
cient; l = −2ω cos ϕ is the Coriolis parameter; m = 1/(RE sin ϕ); n = 1/RE; g
is gravitational acceleration; f1 = f1(t, λ, ϕ), f2 = f2(t, λ, ϕ) and f3 = f3(t, λ, ϕ)
are given functions of external forces.

We consider boundary conditions in the following form:

HUn + βm2

√
gHξ = m2

√
gHd on Γ × (0, T ), (2)

where Un = U ·n, n = (n1,
n

m
n2) is the vector of an outer normal to the bound-

ary; β ∈ [0, 1] is a given parameter, d = d(t, λ, ϕ) is a function defined on the
boundary Γ2.

We also impose initial conditions

u(0, λ, ϕ) = u0(λ, ϕ), v(0, λ, ϕ) = v0(λ, ϕ), ξ(0, λ, ϕ) = ξ0(λ, ϕ).
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For time discretization we subdivide the segment [0, T ] into K subintervals
by points: 0 = t0 < t1 < · · · < tK = T with the step τ = T/K. We approximate
time derivatives with backward differences and consider the system (1)–(2) on
each instance (tk, tk+1). Using linearization in friction term from previous time
level we obtain the semi-discrete elliptic type system.

In the general case the function d is unknown, therefore, to close the problem
(1)–(2), we consider a closure equation defined on some part Γ0 of the boundary
with the characteristic function m0:

m0ξ = ξobs, (3)

where ξobs ∈ L2(Γ0) is a given function (for example, from observation data).
Thus, at each time step the differential problem can be formulated as the problem
on observation data assimilation in the following way [2].

Assume that ξobs is defined on Γ0, the function d is unknown on Γ2 and
vanishes on Γ1. Find u, v, ξ, d satisfying the system (1), the boundary condition
(2) and the closure condition (3) on each time instance (tk, tk+1).

To solve this ill-posed inverse problem an approach, based on optimal control
methods and adjoint equations theory, is used. We consider two family of optimal
control problem with regularization to determine of minimum of calculating error
between ξh numerical free surface level and ξobs observation one with respect to
some special norm. The iterative numerical method to recovery of the boundary
function (and, hence, to obtaining a general solution of our problem) is suggested.
This method consists in iterative improvement of the boundary function by
numerical solution of direct and adjoint problems by turns.

Numerical solution of direct and adjoint problems is based on finite elements
method.

Consider a consistent triangulation T = {ωi}
∣
∣Nel

i=1
of the domain Ω [5]. The

Bubnov-Galerkin method is used for discretization of our problem with respect
to space. Linear functions on triangular finite elements are used as trial and
test functions. As a result, we obtain large dimension system of linear algebraic
equations. A priori stable estimations are derived for discrete analogue [3]. The
second order of approximation in internal nodes was shown.

3 Parallel Implementation. An Estimate of Potential
Acceleration of a Parallel Algorithm

When solving the system of linear algebraic equation, the Jacobi iterative process
is used. It can be effectively parallelized, besides, diagonal dominance for its
convergence is easily provided by the choice of time step τ .

Notice some features of implementation of the algorithm related to the finite
element method. The global stiffness matrix depends on time and it must be
recalculated at each time step. However, when implementing the Jacobi method
on finite elements, there is no need to store a global stiffness matrix explicitly.
In the program only elements of local stiffness matrices are calculated, more-
over, only their diagonal elements depend on time and are recalculated at each
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time step. Residual is assembled over triangles with the use of elements of local
stiffness matrices.

Basing on explicitly parallelizing with respect to data, we can subdivide an
original computational domain into several partially overlapping subdomains.
In each subdomain calculation are performed independently of each other in
the framework of a Jacobi iteration step. After each Jacobi iteration step, data
adjustment in overlapping is required. We use the decomposition without shadow
lines. An original domain is subdivided into subdomains which intersect each
other only in boundaries of a cut. For each boundary point of a subdomain,
residual is partially calculated only over the triangles lying in this subdomain.
When exchanging data after each Jacobi iteration step, additional summation
for the values of residual at boundary points of a subdomain is required.

The parallel program is implemented in the C language with the use of func-
tions of the MPI library.

In the context of the data distribution scheme, all processes perform the same
calculations but over different subdomains. The exchange structure is homoge-
neous except the first and the last processes. After each Jacobi iteration step, a
process exchanges data with all its neighbours, the number of neigbours is de-
fined by decomposition and does not depend on the number of processes involved
in calculations.

Potential acceleration of algorithm is estimated as the ratio of the time T1

of calculation with one processor to time Tp of calculation with p processors:
Sp = T1/Tp. We make theoretical estimates of potential acceleration, taking into
account the time required for exchanges as well as the cost of calculations in
overlapping subdomains wherever possible.

We denote the time of performing one arithmetic operation by top and the
time of performing transfer of one value by tcomm. It is clear that more likely
the latter quantity is a virtual property of transfer rate, however, it is suitable
for theoretical estimates.

Assume that Nnd is the total number of nodes of a computational domain, s
is the number of operations performed at one node at each Jacobi iteration step,
k is the number of time steps, ν is the average number of Jacobi iteration steps
at each time step. Then the time of performing the algorithm with one processor
can be estimated as follows: T1 ∼ kνsNndtop.

Assume that, when decomposing a domain, we can distribute uniformly all
calculations among processors. In this case for the time of performing the algo-
rithm with p processors we can write the following:

Tp ∼ T1/p + Tover + Tcomm. (4)

Here Tover is the time for additional calculations related to decomposition of a
domain, Tcomm is the time for exchanges.

From the data distribution scheme it follows that at each Jacobi iteration step
the following operations must be performed: 1) a global reduction operation
for calculation of the halt criterion for the iterative process T 1

comm ∼ (top +
tcomm) log2 p; 2) exchange of values of a part of a residual vector at each point
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of a cut T 2
comm = μkνmNbndtcomm where m is the number of values which

must be transferred to a neighbouring process for one point of a cut, μ is the
number of neighbouring processes involved in exchange; 3) additional summation
of parts of residual for three components of the vector (u, v, ξ) calculated with
a neighbouring processor Tover ∼ kνgNbndtop, , hence, g = 3.

As the result, the estimate for potential acceleration of the parallel algorithm
in the case of nonblocking two-point exchanges has the form:

Sp =
1

1
p

+
g

s
R +

log2 p

sNnd
(1 + κ) +

μm

s
Rκ

. (5)

From the estimate (5) it follows that for relatively fine grids potential accele-
ration is close to linear one for sufficiently large range of the number of processes.
The magnitude of acceleration is defined by two parameters. The first param-
eter R = Nbnd/Nnd characterizes decomposition of a computational domain.
Reasonable acceleration is provided by a small value of R, hence, when con-
structing decomposition of a complicated computational domain, along with the
requirement of equal computational load per a process, it is, necessary to pro-
vide minimal length of a boundary of a subdomain for each process. The second
parameter κ = tcomm/top characterizes communication environment. This para-
meter describes a computational network rather arbitrary, but it shows that for
reasonable acceleration one should choose architecture of a cluster with small
values of κ. We notice once more that the magnitude of Tover is less by several
orders than other terms in the denominator in (4) and it does not depend on the
number of processes. Taking into account memory saving and ease of implemen-
tation on a nonstructured grid, this provides the advantage of decomposition
without overlapping.

4 Comparison of Two MPI Implementations and of
Memory Management Strategies

Memory management strategy was analyzed with the cluster system of ICM SB
RUS (in-house assembly, 96 cores, performance for the LINPACK test is 300
GFlops). Of course, results of this comparison, which is performed for a specific
problem with a specific supercomputer, may not be generalized immediately to
the case of arbitrary architecture of a cluster and software. However, they are
rather interesting.

In this paper, performance of two popular MPI implementations (well-known
MPICH2 v.1.2.1p1 and OpenMPI v.1.4.1 being a ”heritor” of the LAM package)
is compared.

Two modifications (with static and dynamic – calloc - free – memory alloca-
tion for main arrays and buffers) of the problem were tested. We immediately
notice that the version with static allocation does not show considerable advan-
tage of any package. The difference in running time and in time of data exchanges
for all tested configurations turns out to be too small to be taken into account.
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Fig. 1. Graphs of dependence of execution time on the number of nodes being used for
different memory management strategies

Conversely, the version with dynamic memory allocation shows dependence on
a package being used and on its settings. In the strict sense, the studies show
that the differences in the behavior of the problem are related to distinctions
in dynamic memory management rather then to features of implementation of
MPI functions in both packages.

In particular, in the OpenMPI package the ptmalloc memory manager is used
for dynamic memory allocation. It is applied for fragmentation control as well as
for improving performance of an application due to acceleration of operation of
the malloc/free procedure. A setting managing an allocation/disposal memory
strategy is called mpi leave pinned and on default this setting is on. In MPICH2
package there is no such a setting, however, there is a possibility to manage the
strategy which is used by the glibc system library when processing a memory
allocation request by the call of the mallopt() function with corresponding
arguments.

In Fig. 1, graphs of dependence of execution time of a program on the number
of nodes for different strategies of memory management are shown. The best
results in running time and agreement with the theoretical estimates (5), which
are expressed in smoothness of a curve, are shown by the version of the program
managing static memory.

The second result in running time and agreement with theory is shown by the
”dynamic allocation + mallopt” strategy (the MPICH2 package) where memory
is dynamically allocated but the command not to use the mmap mechanism
(memory pages mapping) for memory allocation is given to the system library.
In condition where an application uses OS Linux resources in the exclusive usage
mode (allocates large memory space one time when starting and deallocates it
only at the end of work), memory fragmentation is not a typical problem and
it is likely that the rate of management of memory allocated from a heap turns
out to be higher. The authors do not insist upon this hypothesis but still have
no another one.

Mpi leave pinned being off in the OpenMPI package gives the third curve
in Fig. 1.
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Fig. 2. Graph of dependence of exchange time with synchronization on the number of
computational processes (one process per core) for SMP-node two-cores two-processors
per host cluster architecture
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Fig. 3. Dependence of acceleration on the number of nodes

Thus, the study shows that dynamic memory allocation without correction of
strategy provides the worst results in rate as well as in smoothness of the time
expense curve. We notice that the results for both packages coincide with high
degree of accuracy. In Fig. 2, graphs of communication time for the problem are
shown. Exchange time differs only slightly for all strategies, therefore only one
graph is demonstrated. At the point p = 4 it has an expected jump due to putting
into operation a network of data transfer for exchanges between processors 3 and
4 which are found to be different hosts. Further we observe a less evident but
also explicable jump at the point p = 8 where the host carrying processes 4− 7
begins to exchange with two external neighbors (the third and eight ones) over
the same network. Then the number of external neighbors no longer increases,
and we see slight smooth increase of exchange time on the graph. The last fact
is related to the need to perform exchanges of the total value of discrete uniform
norm, and cost of this procedure depends on the number of processes although
this dependence is weak.
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Fig. 3 illustrates dependence of acceleration of computations on the number
of processes for an 801 × 801 grid obtained with the cluster of ICM SB RAS
after adjustment of strategy in the case of dynamic memory allocation. For
comparison, a graph of potential acceleration according to the estimate (5) is
presented. Calculations performed with a cluster demonstrate a classical pattern
of acceleration which confirms that it increases with efficiency about one (effici-
ency of calculations for 32 nodes ≈ 0.70).
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Abstract. The security of lattice based cryptography can be considered
to be based on the hardness of the shortest vector problem (SVP) in
lattices. Sieving algorithms can be used to solve this problem, at least in
small dimensions. The most promising among the sieving algorithms is
GaussSieve.

In this paper we present a parallel version of the GaussSieve algorithm
that solves the shortest vector problem in lattices. For small number of
up to 5 parallel threads, the parallel version scales nearly linearly. For
bigger numbers of threads, the efficiency decreases. We implement the
parallel GaussSieve on multicore CPUs, whereas the presented ideas can
also be implemented on different parallel platforms.

Keywords: Shortest Vector Problem (SVP), GaussSieve, Paralleliza-
tion, Multicore CPU.

1 Introduction

A lattice is a discrete additive subgroup of Rn. Elements of a lattice are called
vectors. A lattice can be represented by its basis, a set of linearly independent
vectors bi ∈ Rn. The shortest vector problem (SVP) is stated the following:
given a basis of a lattice, output a shortest non-zero element of the lattice.
In cryptography, hard problems in lattices like the shortest vector problem are
used as basis of digital signatures, encryption schemes, hash functions, and many
more cryptographic primitives. Therefore, examining the shortest vector problem
implies the ability to assess the hardness of lattice based cryptosystems.

Basically there are three approaches to solve SVP. First, there are enumera-
tion algorithms [FP83, SE94, GNR10]. They perform exhaustive search among
all coefficient vectors in a specified search region, using branch-and-bound strat-
egy in a search tree. Second, there are algorithms applying the computation
of Voronoi cells [MV10a]. Third, there are probabilistic sieve algorithms, that
output a shortest vector with high probability [AKS01, NV08]. The GaussSieve
algorithm that is dealt with in this paper belongs to this third category. It was
presented in [MV10b] and can be seen as the fastest sieving algorithm as of
today. Therefore, we have chosen GaussSieve as the basis of our parallel sieve
algorithm.
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Parallel versions of enumeration are known for graphics cards [HSB+10] and
FPGAs [DHPS10]. To our knowledge, there is no previous work concerning the
parallelization of sieve algorithms for SVP. Our multicore implementation is the
first attempt of parallelizing GaussSieve. It shows the strengths and the limits
of parallelization for this kind of algorithms.

2 The GaussSieve Algorithm

The GaussSieve algorithm was presented in [MV10b]. It stores a list L of lattice
vectors, that are Gauss-reduced against each other. The list grows by adding
randomly sampled and reduced vectors to the list L. After a sufficient number
of vectors has been added, one of the list vectors is a shortest lattice vector with
high probability. A stack S is used to keep the list L small. As soon as a vector
from the list can be reduced, it is pushed to the stack S. Stack vectors are chosen
in the next round instead of sampling new vectors.

If started with a goal norm as input parameter, GaussSieve terminates as
soon as it has found a vector of size below the desired bound. If a new vector
is linearly dependent from list vectors, it will be reduced to the zero vector.
This is called a collision. After a pre-defined number of collisions the algorithm
terminates and outputs the shortest vector found so far.

Algorithm 1 shows a pseudo-code description of GaussSieve. The functions
GaussReduce and Reduce are presented as Algorithms 2 and 3. For further
information we refer to the original paper [MV10b].

Algorithm 1. GaussSieve
Input: Lattice basis B, BKZ blocksize β, targetNorm, maxCollision
Output: vbest: shortest vector found

1 List L ← BKZβ(B)
2 K ← 0
3 vbest ← lmin where 〈lmin, lmin〉 = minli∈L 〈li, li〉
4 currentBestNorm ← 〈vbest, vbest〉
5 while currentBestNorm > targetNorm ∧ K < maxCollision do
6 if S.empty() then
7 vnew ← sampleRandomLatticeVector(B)
8 else
9 vnew ← S.pop()

10 end
11 GaussReduce(vnew, L, S)
12 squarenorm ← 〈vnew, vnew〉
13 if squarenorm = 0 then
14 K ← K + 1 //this is a collision
15 else
16 if squarenorm < currentBestNorm then
17 currentBestNorm ← squareNorm
18 vbest ← vnew

19 end
20 L.insert(vnew)

21 end

22 end
23 return vbest
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Algorithm 2. GaussReduce
Input: p, L, S

1 reduceFurther ← true
2 while reduceFurther do
3 reduceFurther ← false
4 for v ∈ L where 〈v, v〉 ≤ 〈p, p〉 do
5 if Reduce(p, v) then
6 reduceFurther ← true
7 end

8 end

9 end
10 for v ∈ L where 〈v, v〉 > 〈p, p〉 do
11 if Reduce(v, p) then
12 S.push(v)
13 L.erase(v)

14 end

15 end

Algorithm 3. Reduce
Input: p, v

1 if abs(2 · 〈p, v〉) > 〈v, v〉 then

2 mul ← round ( 〈p,v〉
〈v,v〉 )

3 p -= mul · v
4 return true

5 end
6 return false

It is common to use the BKZ algorithm (controlled by a blocksize-parameter
β) [SE94] to pre-reduce the basis. Our pseudo-code contains some improvements
over the original algorithm. The list L is sorted according to the square-norms of
the vectors. This speeds up computation in the GaussReduce part, since it is then
simpler to iterate over a certain sub-group of vectors of specific norm. Instead of
subtracting each vector multiple times, the multiplier in the Reduce-function is
used. Both improvements were not explained in the GaussSieve paper, but were
already contained in the original implementation of GaussSieve [Vou10], which
is publicly available.

3 Parallel GaussSieve

The idea of the parallel version of GaussSieve is to extend the single GaussSieve
algorithm into a network parallel variant. Several independent GaussSieve in-
stances are connected together in a ring fashion, so that a vector that passes the
list of one instance is handed over to the next instance. A queue is added to the
system that acts like a buffer, and the vectors are handed over to the buffer of
the next instance. Figure 1 illustrates this approach.

If a vector passed all instances, it is added to the list of the current instance.
All vectors are marked by the number of the instance that initiated the vector,
so that each instance can recognize a vector that already passed all instances.
Such a vector is nearly pair-wise reduced to all lists, small changes can occur
since lists that are already passed could change while the vector is still in the
system.

Each instance uses vectors from the queue with priority, so that vectors that
are still in the system get processed quickly. If the queue is empty, the stack is
used, and like in the original algorithm, if the stack is empty, new vectors are
sampled. Also like in the single GaussSieve, lists grow and shrink. However, this
parallel variant regulates the list sizes automatically, so that they are approx-
imately the same size among all instances: Vectors are added to the list, if an
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Fig. 1. This figure illustrates the idea of a network parallel variant of GaussSieve. Each
instance of GaussSieve processes the vectors of its queue Q and hands processed vectors
over to the next instance. The stacks S are filled with list vectors that were reduced
and need to pass all lists L once more.

instance’s queue is empty and it can spawn new vectors into the system from the
stack or by sampling. If a list is too small and vectors get processed quicker than
in other instances, more new vectors will be spawned and sooner or later the
list grows. If the list is too big compared to the other instances, no new vectors
will be spawned because the queue is never empty and the list size is reduced
by vectors that are removed from the list and put on the stack, until the queue
gets empty again.

To prevent hotspot situations and to let the system respond quicker to imbal-
ances in list sizes, the queues are restricted to a maximum size. If the maximum
size is exceeded and the vector does not belong to this particular instance, it can
jump over the full instance and skip it. This way a jam of vectors in a particular
instance is prevented that would stop the whole system from working. In a net-
work parallel setup, an instance that does not respond anymore could be also
skipped this way, so that a failure in a particular instance is not critical to the
overall system. But this means also that not all vectors are pair-wise reduced
and that the algorithm behaves differently from the single GaussSieve. This can
be accommodated by processing more vectors in total (also increasing run time).
The more instances participate in this network parallel version, the more overall
additional run time must be spend, decreasing the efficiency compared to the
single non-parallel GaussSieve.

4 Experimental Results

The random lattices from the SVP challenge [GS10] have been used to make
accurate measurements about timings and efficiency of our parallel GaussSieve
variant. They are constructed in the sense of Goldstein and Mayer [GM03].
These lattices show a nice random behaviour and are kind of standard lattices
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Fig. 3. Efficiency for the parallel version compared to a single GaussSieve, for a 70-
dimensional lattice and a BKZ pre-reduction of β = 20. The efficiency decreases lin-
early, this is due to not complete pair-wise reduced lists. However results are still very
promising in a 1-10 thread parallel setting.

for testing SVP algorithms. We present timings for the 70-dimensional lattice,
which shows a typical behaviour. Figure 2 shows run times for 1-20 parallel
threads measured on a machine equipped with four 2,6 GHz Istanbul Opteron
Workstation CPUs. By adding more parallel computing power, overall time can
be decreased, however efficiency decreases linearly as the amount of available
threads/cores increases, see Figure 3. The reason for this behaviour is that more
vectors need to be processed as the parallel computing power increases, which
can be seen in Figure 4.
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Fig. 4. Since not all vectors are pair-wise reduced, more vectors are needed in the lists
to find the shortest vector. The graph shows the total number of all stored vectors at
the time the shortest vector was found.

5 Conclusion and Further Work

From its nature, ListSieve (also presented in [MV10b]) is much more suitable for
parallelization than GaussSieve. In ListSieve, the list of vectors is never touched,
therefore different threads can easily share one list. It is to be seen if the ad-
vantage of parallelization can compensate the disadvantages that ListSieve has
compared to GaussSieve. It is possible that ParallelListSieve outperforms Par-
allelGaussSieve using big numbers of threads.

To our knowledge, the improvement of [PS09] has not been applied for any
sieving implementation. This might also improve the efficiency of the algorithm.
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Abstract. We consider a modification of dynamic programming algo-
rithm (DPA), which is called as graphical algorithm (GA). For the knap-
sack problem (KP ) it is shown that the time complexity of GA is less
than the time complexity of DPA. Moreover, the running time of GA
is often essentially reduced. GA can also solve big scale instances and
instances, where the parameters are not only positive integer. The pa-
per outlines different methods of parallelizing GA taking into account its
main features and advantages to various parallel architectures, in par-
ticular by using OpenCL and MPI framework. Experiments show that
"hard" instances of KP for GA have correlation pj � kwj for all j, where
pj and wj are utility and capacity of item j = 1, 2, . . . , n.

Keywords: Graphical Algorithm, Knapsack Problem, OpenCL, MPI,
Parallel Algorithm.

1 Introduction

Dynamic programming is a general optimization technique developed by Bellman
[1]. It can be considered as a recursive optimization procedure which interprets
the optimization problem as a multi-step solution process. Bellman’s optimality
principle can be briefly formulated as follows: Starting from any current step,
an optimal policy for the subsequent steps is independent of the policy adopted
in the previous steps. In the case of a combinatorial problem, at some step
j, j = 2, . . . , n, sets of a particular size j are considered. To determine the
optimal criterion value for a particular subset of size j, one has to know the
optimal values for all necessary subsets of size j − 1. If the problem includes n
elements, the number of subsets to be considered is equal to O(2n). Therefore,
dynamic programming usually results in an exponential complexity. However, if
the problem considered is NP -hard in the ordinary sense, it is possible to derive
pseudo-polynomial algorithms [2,3,4].

In this paper, we give the basic idea of a graphical modification of dynamic
programming algorithm (DPA), which is called Graphical Algorithm (GA). This
approach often reduces the number of it states to be considered in each step of
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a DPA. Moreover, in contrast to classical DPA, it can also treat problems with
non-integer data without necessary transformations of the corresponding prob-
lem. In addition, for some problems, GA essentially reduces the time complexity.

For the knapsack problem DPA with the same idea like in GA are known (e.g.
see [7]). In such DPA not all states t ∈ [0, C] are considered, but only states,
where a value of objective function is changed. Thus, the time complexity of
such DPA is bounded by O(nFopt), where Fopt is the optimal value of objec-
tive function. However, these algorithms can be useful only for problems, where
Fopt < C, otherwise we can use the classical DPA. We generalize the idea of
such algorithms for the objective function, for which Fopt ' C.

This paper is organized as follows. In Section 2, we give the basic idea of the
GA. In the next section we describe graphical algorithm for the binary knapsack
problem. Section 4 describes parallel implementation of GA using OpenCL and
MPI framework. Last section represents the results of experiments to search for
and analyse of "hard" examples.

2 Basic Idea of the Graphical Algorithm

Usually in DPA, we have to compute the value fj(t) of a particular function for
each possible state t at each stage j of a decision process, where t ∈ [0, C] and
t, C ∈ Z+. If this is done for any stage j = 1, 2, . . . , n, where n is a size of the
problem, the time complexity of such a DPA is typically O(nC). However, often
it is not necessary to store the result for any integer state since in the interval
[tl, tl+1), we have a functional equation fj(t) = ϕ(t) (e.g. fj(t) = kj · t + bj , i.e.,
fj(t) a continuous linear function when allowing also real values t).

Assume that we have the following functional equations in a DPA, which
correspond to Bellman’s recursive equations:

fj(t) = min
j=1,2,...,n

{
Φ1(t) = αj(t) + fj−1(t− wj)
Φ2(t) = βj(t) + fj−1(t− bj) (1)

with the initial conditions

f0(t) = 0, for t ≥ 0,
f0(t) = +∞, for t < 0.

(2)

In (1), function Φ1(t) characterizes a setting xj = 1 while Φ2(t) characterizes
a setting xj = 0 representing a yes/no decision, e.g. for an item, a job [2],[6]. In
step j, j = 1, 2, . . . , n, we compute and store the data given in Table 1.

Here X(y), y = 0, 1, . . . , C, is a vector which describes an optimal partial
solution and which consists of j elements (values) x1, x2, . . . , xj ∈ {0, 1}.

Table 1. Computations in DPA

t 0 1 2 . . . y . . . C

fj(t) value0 value1 value2 . . . valuey . . . valueC

optimal partial solution X(t) X(0) X(1) X(2) . . . X(y) . . . X(C)
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Table 2. Computations in GA

t [t0, t1) [t1, t2) . . . [tl, tl+1) . . . [tmj−1, tmj ]

fj(t) ϕ1(t) ϕ2(t) . . . ϕl+1(t) . . . ϕmj (t)

optimal partial solution X(t) X(t0) X(t1) . . . X(tl) . . . X(tmj−1)

However, this data can also be stored in a condensed tabular form as given in
Table 2.

Here, we have 0 = t0 < t1 < t2 < . . . < tmj = C.
To compute function fj+1(t), we compare two temporary functions Φ1(t) and

Φ2(t).
The function Φ1(t) is a combination of the terms αj+1(t) and fj(t − wj+1).

Function fj(t − wj+1) has the same structure as in Table 2, but all intervals
[tl, tl+1) have been replaced by [tl−wj+1, tl+1−wj+1), i.e., we shift the graph of
function fj(t) to the right by the value wj+1. If we can present function αj+1(t)
in the same form as in Table 2 with μ1 columns, we store function Φ1(t) in the
form of Table 2 with mj + μ1 columns. In an analogous way, we store function
Φ2(t) in the form of Table 2 with mj + μ2 columns.

Then we construct function

fj+1(t) = min{Φ1(t), Φ2(t)}.
For example, let the columns of Table Φ1(t) contain the intervals

[t10, t
1
1), [t11, t

1
2), . . . , [t1(mj+μ1)−1, t

1
(mj+μ1)]

and the columns of Table Φ2(t) contain the intervals

[t20, t
2
1), [t21, t

2
2), . . . , [t2(mj+μ2)−1, t

2
(mj+μ2)].

To construct function fj+1(t), we compare the two functions Φ1(t) and Φ2(t) on
each interval, which is formed by means of the points

{ t10, t
1
1, t

1
2, . . . , t

1
(mj+μ1)−1, t

1
(mj+μ1)

,

t20, t
2
1, t

2
2, . . . , t

2
(mj+μ2)−1, t

2
(mj+μ2)

},

and we determine the intersection points t31, t
3
2, . . . , t

3
μ3

. Thus, in the table of
function fj+1(t), we have at most 2mj + μ1 + μ2 + μ3 ≤ C intervals.

In fact, in each step j = 1, 2, . . . , n, we do not consider all points t ∈ [0, C], t,
C ∈ Z+, but only points from the interval in which the optimal partial solution
changes or where the resulting functional equation of the objective function
changes. For some objective functions, the number of such points M is small
and the new algorithm based on this graphical approach has a time complexity
of O(n min{C, M}) instead of O(nC) for the original DPA.

Moreover, such an approach has some other advantages.

1. The GA can solve instances, where pj , wj , j = 1, 2, . . . , n, or/and C are
not integer.
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2. The running time of the GA for two instances with the parameters {pj , wj , C}
and {pj · 10α ± 1, wj · 10α ± 1, C · 10α ± 1} is the same while the running
time of the DPA will be 10α times larger in the second case. Thus, using
the GA, one can usually solve considerably larger instances.

3. Properties of an optimal solution are taken into account. For KP, an item
with the smallest value pj

wj
may not influence the running time.

4. As we will show below, for several problems, GA has even a polynomial
time complexity or we can at least essentially reduce the complexity of the
standard DPA.

Thus, the use of GA can reduce both the time complexity and the running time
for KP . The application of GA to the partition problem is described in detail
in [5], where also computational results are presented.

3 Graphical Algorithm for the Knapsack Problem

In this section, we describe the application of this approach to the one-
dimensional knapsack problem [5].

One-dimensional knapsack problem (KP ): One wishes to fill a knapsack of
capacity C with items having the largest possible total utility. If any item can be
put at most once into the knapsack, we get the binary or 0− 1 knapsack prob-
lem. This problem can be written as the following integer linear programming
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(x) =
n∑

j=1

pjxj → max
n∑

j=1

wjxj ≤ C,

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(3)

Here, pj gives the utility and wj the required capacity of item j, j = 1, 2, . . . , n.
The variable xj characterizes whether item j is put into the knapsack or not.

The DPA based on Bellman’s optimality principle is one of the standard
algorithms for the KP . It is assumed that all parameters are positive integer:
C, pj , wj ∈ Z+, j = 1, 2, . . . , n.

For KP , Bellman’s recursive equations are as follows:

fj(t) = max
j=1,2,...,n

{
Φ1(t) = pj + fj−1(t− wj)
Φ2(t) = fj−1(t), (4)

where
f0(t) = 0, t ≥ 0,
f0(t) = +∞, t < 0.

Φ1(t) represents the setting xj = 1 (i.e., item j is put into the knapsack) while
Φ2(t) represents the setting xj = 0 (i.e., item j is not put into the knapsack).
In each step j, j = 1, 2, . . . , n, the function values fj(t) are calculated for each
integer point (i.e., "state") 0 ≤ t ≤ C. For each point t, a corresponding best
(partial) solution X(t) = (x1(t), x2(t), . . . , xj(t)) is stored.
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4 Parallel Implementation

This section describes the parallel implementation of GA using OpenCL frame-
work and MPI.

4.1 Column Parallelization

The classical Bellman’s recurrence (4) can be implemented by creating an array
with C + 1 rows and n columns to store all the values in each step of the
program that sequentially adds items into the problem by filling up the table
column by column, where C – is capacity of the knapsack. To compute the
values for any column the values from the previous column are only needed. Such
economical consumption of memory allows us easily implement this algorithm
using a variety of parallel programming models including shared memory and
distributed memory APIs.

The specificity of GA allows us to renounce the use of the columns of the same
length C in each step of the host program, and gradually increase the number
of parallel processors while we add items to the problem. For the GA "length"
of the column in each step depends on the distance between the boundary break
points. Furthermore, taking into account this feature we could essentially reduce
the running time of the program by initial sorting the items in non-decreasing
order of values wj .

Fig. 1, 2 show plots of the number of break-points for GA and DPA in the

two cases: when C is chosen at a rate of 10% and 90% of the Cmax =
n∑

i=1

wi.

4.2 Interval Parallelization

This parallelization is not easy to implement but it allows us to take main
advantage of the GA.

When we look closer to the GA we note that to create a table of intervals in
step j, j = 2, . . . , n, of the sequential program all we need are values from the

Fig. 1. The dependence of the number
of break points on the number of items.
C = 10%Cmax.

Fig. 2. The dependence of the number
of break points on the number of items.
C = 90%Cmax.
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Fig. 3. The dependence of the number of break-points on the value of C for sorted
and unsorted initial data

previous table in step j− 1. Therefore in each step we can partition the table of
intervals from the previous step into columns, and make each parallel processor
responsible for only one column i.e. one interval between two break points. Then
each processor has to update information about break points and corresponding
intervals for the table in the current step.

This is quite a tricky procedure because we could obtain one, two or none
current intervals depending on situation for each previous interval. Furthermore,
every parallel processor should have access to the table of intervals to calculate
the new values. The last obstacle is easily bypassed on shared memory models
but the first one requires additional memory and computational resources to
store and extract the temporal information given by every parallel processor
for the current table of intervals in each step of the sequential program. The
practical realization of this procedure depends on the chosen data structure.

When parallelizing intervals we also should note that in each step of the
sequential program the number of intervals may be doubled, so the partition
of the table of intervals in a coarse-grained manner without regular reassigning
columns to the new parallel processors could lead to the explosive load on one
or several parallel processors and full stop of the program.

While solving large instances it is helpful to control the load of the grid by
initial sorting the items in non-increasing order of values pj

wj
. Fig. 3 shows the

plots for examples with dimension n = 10000.

5 Experiments

The main objective of experiments was to search and analyse "hard" examples
for which graphical algorithm would show the maximal time complexity. The
basic unit of GA is the break point. More break points we have are for more
complex problem we encounter. Thus, the main objective of our programming
activities was to create the procedure for finding instances with so many break
points as possible.

It is obvious that the theoretical maximum number of break points is 2n+1−1.
To obtain this result in real example on positive integers the value of C should
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Fig. 4. Initial instance, n=10, B=37 Fig. 5. Hard instance, n=10, B=2047

be more than maximum number of break points or we should simply exclude
C and associated restrictions from the problem. Additionally, to study the GA
deeply we should totally switch into integers by allowing negative values for wj

and pj .
As mentioned before the maximum number of break points that we can get

is 2n+1 − 1. This is the most complicated example that is practically impossible
to get randomly as it turned out during experiment which instead of it was
giving us less than n2 break points for the most of the times. After a series of
experiments we came up to some heuristic procedure that could increase the
number of break points through the gradual change of the parameters of the
initial randomly generated instances.

Our method, despite its apparent simplicity, has shown to be highly effective
in the rapid searching for hard instances for which the number of break points
is approaching to the maximum value 2n+1 − 1. Fig. 4 and Fig. 5 show first
and last stages of this process correspondingly. The experiment was carried out
for n = 10, wj and pj are integers drawn from the normal distribution within
interval [-1024, 1024], and B is number of break points.

It is easy to look that all points in Fig. 5 lie very close to the line passing
through the center of coordinates (0, 0). This property became apparent in all
our experiments, which gives us the right to predicate that all hard instances of
KP for GA should satisfy the following correlation pj % kwj , j = 1, . . . , n.

In summary the most complex instance of KP for GA can be written as
follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

k · wjxj → max
n∑

j=1

wjxj ≤ C,

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(5)
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6 Concluding Remarks

The graphical approach can be applied to problems where a pseudo-polynomial
algorithm exists and Boolean variables are used in the sense that yes/no deci-
sions have to made (e.g. in the problem under consideration, for KP , an item
can be put into the knapsack or not), for example for partition and scheduling
problems. However, for the knapsack problem, the graphical algorithm mostly
reduces substantially the number of points to be considered but the time com-
plexity of the algorithm remains pseudo-polynomial.
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Abstract. The paper describes the experimental framework for distributed 
image processing with the use of multicomputer providing fast development of 
high-performance remote sensing data processing technologies. Basic principles 
of system building, some architectural solutions, and sample implementation of 
concrete processing technologies are given. 

Keywords: remote sensing, image processing, parallel computations, 
distributed processing, computational technologies. 

1   Introduction 

Remote sensing data processing tasks are characterized by the huge amount of data to 
process (108 multispectral pixels is a typical case) and high labor-intensiveness of 
processing algorithms (can easily exceed 108 operations per pixel). The need for 
remote sensing data real-time analysis and interpretation (for example in flood or 
forest fire monitoring) causes the necessity of using high-performance computational 
tools. The most common type of such tools is multicomputers, MIMD systems with 
distributed memory. Involvement of multicomputers to the remote sensing data 
processing presently leads to the problem of supercomputer “hostility” to user. 
Typically, multicomputer works under UNIX-like operating system and acts as a 
computational server interacting with its clients via secured SSH channel; but 
widespread SSH access software (like PuTTy or SSH Secure Shell) provides user 
only with text console service. Thus, using multicomputers turns out to be available 
for those users only who are experienced in UNIX systems and very inconvenient to 
average users of MS Windows family systems (in some countries, for example in 
Russia, MS Windows is installed on overwhelming majority of all PCs). And even 
after this, data processing on multicomputer is carried out in several steps: uploading 
data to multicomputer with SFTP client (SFTP – Secure FTP – secured protocol for 
data transfer over SSH), launching processing command on multicomputer with SSH 
terminal, and downloading results from multicomputer with same SFTP client. 

Thus, for mass involvement of high-performance computers to the solution of 
time-consuming image processing problems, it is necessary not only to create 
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software implementing wide range of image processing methods and algorithms on 
multiprocessor systems (survey of researches of this kind can be found in [1]), but 
also to create technologies simplifying complicated for average user access to remote 
multiprocessor UNIX computer. 

In the paper we consider an attempt to solve this problem, the experimental 
SSCCIP (Siberian Scientific Computing Center – Image Processing) system created 
in the Institute of Computational Mathematics and Mathematical Geophysics SB 
RAS. 

2   Requirements 

We formulated the following requirements for SSCCIP software: 

• The system shall be operator workstation software under MS Windows providing 
the service of high-performance remote sensing data processing on remote 
multicomputer. 

• The system shall provide the visualization of input and output data. 
• The system shall provide the possibility to form processing task interactively. 
• The system shall provide transparent for operator execution of processing task on 

remote multicomputer. 
• The system shall be customizable to concrete computational environment 

(multicomputer, computational library, task queue management, etc.). 
• The system shall provide maximal easiness of extensibility with new algorithms. 

The latter requirement is especially important because the ease of extension and 
customization of such systems for the needs of concrete users are the necessary 
conditions of their further development. 

3   Composition 

SSCCIP computing system consists of three main parts: 

• Client component operating on client computer under operator’s control. 
• Server component operating on remote multicomputer and carrying out 

calculations proper. 
• Communication component securely connecting the client and the server ones. 

3.1   Client-Server Interaction 

The vast majority of multicomputer servers accept only secured SSH client 
connections. What provides such a connection in SSCCIP system is: 

• On the server side, system SSH daemon supporting applied SSH-based protocols 
SFTP (for file transfer) and rexec (for remote execution of commands/programs on 
the server). 
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• On the client side, CryptLib library by Peter Gutmann from Auckland University, 
New Zeeland [2]. On the CryptLib basis, we implemented SFTP and rexec applied 
protocols. 

On the higher level, the client component interacts with the server by the following 
scheme: 

1. Client component uploads source files and the special file containing task 
description including specification of the names of source and result files, 
processing algorithms, and their parameters (hereafter “task file”) to the server. 

2. Client component launches (enqueues parallel task) server component on the 
remote multicomputer and waits for calculations completion (polls task queue with 
some time interval). 

3. Server component parses task file, performs the specified operation on the 
specified data, and stores results in the specified files. 

4. After finishing calculations, client component downloads processing results from 
the server to client computer and visualizes them. 

3.2   Client Component 

Client component is a MS Windows application SSCCIP_Client implemented in C++. 
Its source code is organized as a framework providing the ease of introducing new 
processing operations: code performing the actions which are common for all 
processing operations (uploading source data and task files to server, launching and 
tracking task, downloading results from server) forms executeParallelTask() 
generic subprogram; to code a concrete processing operation, one need to implement 
only the actions which are specific for the operation: interactive configuration (source 
and result files selection, processing algorithm parameterization) and visualization of 
the results. For this aim framework declares IParallelTask interface with two 
abstract methods, Configure() and Visualize(), which must be implemented 
by any concrete processing class. Configure() method must return the content of 
task file, the list of files to upload to the server before calculations, and the list of files 
to download from the server after calculations. With Visualize() method, which 
is called by framework after downloading results from the server, a concrete 
processing operation performs result visualization. To execute a concrete processing 
operation, one must parameterize executeParallelTask() generic operation 
with this concrete operation class. 

Also, the framework contains the tools for loading and visualizing images in 
various graphic formats. 

3.3   Server Component 

Server component is a UNIX application SSCCIP_Server implemented in C++ with 
the use of author’s SSCC_PIPL library for high-performance image processing on 
multicomputer [3] briefly described below. SSCCIP_Server is MPI-based application, 
executing on each multiprocessor node by mpirun task launcher. SSCCIP_Server 
 



470 E.V. Rusin 

source code is also organized as framework. Particularly, generic subprograms was 
created for some important types of processing procedures like pixel-to-pixel and 
neighborhood-to-pixel, implementing the actions which are common for all the 
procedures (parsing task file, loading source image with the support of various 
graphic formats, automatic determining parallelization parameters, parallelizing itself, 
storing result image in graphic file). To implement a concrete processing operation, 
one must create C++ algorithm class whose interface is compatible with SSCC_PIPL 
library. 

3.4   SSCC_PIPL Library 

SSCC_PIPL (Siberian Scientific Computing Center – Parallel Image Processing 
Library) library, computational core of SSCCIP system, is discussed in details in [3]. 
SSCC_PIPL is a C++ MPI-based library providing programmer with the environment 
for building efficient parallel image processing programs. Its features are: 

1. SPMD (Single Program Multiple Data) computational model. 
2. Reading/writing images in various graphic formats. 
3. Hiding MPI parallel environment from the programmer. 
4. Several representations for distributed image: storing image on one processor, 

replicating image on all processors, cutting image into horizontal strips, cutting 
image into horizontal strips with overlap. 

5. Generic subprograms for pixel-to-pixel and neighborhood-to-pixel operations 
execution for all distributed image representations. The subprograms are 
parameterized with classes of concrete processing algorithms describing algorithms 
in terms of the neighborhood of the pixel being processed without touching parallel 
environment. 

6. Low overhead of computational model abstraction (programs written with 
SSCC_PIPL library is just 10 percent slower than the ones written in pure MPI). 

7. Great acceleration of whole process of parallel image processing program 
development (saving time for time-consuming designing, coding, and debugging 
MPI-based programs). 

4   Example of Concrete Technology Implementation 

Practical testing of SSCCIP framework was carried out via implementation of 
technology for circle structures detection in space images [4]. 

• The circle structures detection algorithm is a neighborhood-to-pixel operation; 
therefore the implementation of server part of the technology came to design of 
C++ class compatible with SSCC_PIPL library which describes the algorithm in 
terms of neighborhood of the pixel to be processed and subsequent 
parameterization of generic neighborhood-to-pixel SSCC_PIPL subroutine with 
this class. 
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• For the client part of the technology, it was necessary to implement procedures of 
algorithm configuration and result visualization. 

─ Interactive configuration procedure allows operator to select paths to both 
source image and to processing result, radius of circle structures to search, 
statistical parameters of search procedure etc.; it was implemented via 
displaying dialog box. 

 

─ The result of algorithm execution on multicomputer is an image with black 
background pixels and grey/white pixels marking the centers of the concave 
upward/downward circle structures. So the result visualization procedure was 
implemented by drawing black/white circles of given radius in original image, 
marking location of the concave upward/downward circle structures and 
subsequent visualizing this combined image. 

All remaining operations (uploading source image and task file to multicomputer, 
enqueueing computational task and tracking its status, parsing task file, loading 
source image and storing result image, parallelizing calculations, and downloading 
result to the client computer) was implemented by SSCCIP framework code. As one 
can see, creating new high-performance technology did not require from programmer 
to deal with parallelism or network communications. 

As was stated in [3], implementation of circle structure detection algorithm with 
SSCC_PIPL library results in just 10 percent performance overhead in comparison 
with pure MPI implementation which allows saying about efficiency of the whole 
technology developed in SSCCIP framework. 

5   Conclusion 

The main result of the work on SSCCIP software development is the creation of the 
framework for high-performance space data processing on remote multicomputer. 
The framework allows solving a various range of remote sensing data processing and 
analysis problems and a developer of concrete high-performance technology within 
the framework must implement only the details specific for the algorithm to be 
implemented. 

The SSCCIP project is in its active development now which includes both common 
functionality extension and new concrete technologies addition. Currently the system 
allows simultaneous execution of several computational tasks on different multi 
computers and contains three remote sensing data processing technologies: beside the 
circle structures detection (mentioned above), these are the extraction of SAR-based 
texture features from aerospace images [5] and the mapping of space images to the 
digital map. Below is the screenshot of sample SSCCIP session: here, two parallel 
tasks (circle structures extraction and mapping space image to digital map) are 
completed and their results are visualized; operator is configuring the third task (SAR 
features extraction). 
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Fig. 1. Screenshot of typical SSCCIP session 
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Abstract. In logical cryptanalysis a problem of search of a secret key
of a cryptographic system is formulated as a SAT problem, i.e. a prob-
lem of search of a satisfying assignment for some CNF. In this paper we
consider some natural strategies for parallelization of these SAT prob-
lems. We apply coarse-grained approach which makes it possible to use
distributed computing environments with slow interconnect. The main
practical result of this paper is successful logical cryptanalysis of key-
stream generator A5/1 in BNB-Grid system.

Keywords: Logical cryptanalysis, SAT, stream ciphers, A5/1, coarse-
grained parallelization, Grid

1 Introduction

The idea of using SAT-solvers for the problems of cryptanalysis was first pro-
posed in [1]. Term “logical cryptanalysis” itself was introduced in [2]. Examples
of successful application of SAT approach to cryptanalysis of some weak stream
ciphers are shown in [3], [4], [5]. However, to the best of our knowledge there
are no results of successful use of parallel algorithms in logical cryptanalysis of
widely used stream ciphers.

In this paper we consider the problem of parallel logical cryptanalysis of the
stream generator A5/1 which is used to encrypt GSM-traffic. According to basic
principles of logical cryptanalysis we reduce the problem of cryptanalysis of the
generator A5/1 to a SAT-problem. Then we use special technique of paralleliza-
tion to solve the obtained SAT-problem. This technique exploits peculiarities
of the original SAT problem to decompose it into a large set of independent
sub-problems. This approach was implemented in the BNB-Grid framework
[6] specially developed for solving large scale problems in heterogeneous dis-
tributed systems. Using this approach we were able to successfully perform the
cryptanalysis of the generator A5/1 in reasonable time.

V. Malyshkin (Ed.): PaCT 2011, LNCS 6873, pp. 473–483, 2011.
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We also experimentally proved that the same keystream of an arbitrary length
can be generated from different secret keys and identified all such keys for the
particular 144-bit fragment of keystream.

2 Reducing Cryptanalysis of the Generator A5/1 to SAT

In this section we give general formulation of cryptanalysis problem for key-
stream generators and describe the procedure of reduction of this problem to
SAT. Let fn,

fn : {0, 1}n → {0, 1}∗,
be a discrete function defined by the algorithm of the generator, that produces a
keystream from a secret key x ∈ {0, 1}n. We consider the problem of cryptanaly-
sis of keystream generator on the basis of a known keystream. The problem is to
find the secret key using some fragment of a keystream and a known algorithm
of its generation. It is easy to see that this problem is equivalent to the problem
of inversion of the function fn, i.e. the problem of finding such x ∈ {0, 1}n that
fn(x) = y if y ∈ range fn and an algorithm of computation of fn are known.

The first step of logical cryptanalysis consists in building a conjunctive normal
form (CNF) encoding an algorithm of keystream generator. To obtain this CNF
we use Tseitin transformations which were proposed by G.S. Tseitin in 1968 in
[7]. In these transformations original function is usually represented by a Boolean
circuit over an arbitrary complete basis, for example {&,¬}.

Let fn be a discrete function defined by an algorithm of generator. We will
consider fn as a function of Boolean variables from the set X = {x1, . . . , xn}.
Let S (fn) be Boolean circuit which represents fn over {&,¬}. Each variable
from X corresponds to one of n inputs of S (fn). For each logic gate G some
new auxiliary variable v (G) is introduced. Every AND-gate G is encoded by
CNF-representation of Boolean function v (G) ↔ u&w. Every NOT-gate G is
encoded by CNF-representation of Boolean function v (G)↔ ¬u. Here u and w
are variables corresponding to inputs of G. CNF encoding S (fn) is

&
G∈S(fn)

C (G) ,

where C (G) is CNF encoding gate G. Then
(

&
G∈S(fn)

C (G)
)
· yσ1

1 · . . . · yσm
m

is CNF encoding the inversion problem of the function fn in point
y = (σ1, . . . , σm). Here

yσ =
{

ȳ, if σ = 0
y, if σ = 1

and y1, . . . , ym are variables corresponding to outputs of S (fn).
Quite often a structure of an algorithm calculating a cryptographic function

allows us to write a system of Boolean equations which encodes this algorithm
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Fig. 1. Scheme of the generator A5/1

directly without constructing Boolean circuit. Using Tseitin transformations we
can make a transition from the obtained system to one equation in the form
“CNF=1”.

Next, we consider the keystream generator A5/1 used to encrypt traffic in
GSM networks. The algorithm of this generator became publicly available in
1999 after reverse engineering performed by M. Briceno. A lot of attacks on this
cipher are described, however it is still actively used. The most recent attacks
used technique of rainbow tables [8], however this approach can not guarantee
the success in 100% of cases. Further we propose a new approach to cryptanalysis
of the generator A5/1 that uses parallel algorithms for solving SAT problems.

The following description of the generator A5/1 (see Fig. 1) was taken from the
paper [9]. According to [9] the generator A5/1 contains three linear feedback shift
registers (LFSR, see, e.g., [10]), given by the following connection polynomials:
LFSR 1: X19 + X18 + X17 + X14 + 1; LFSR 2: X22 + X21 + 1; LFSR 3: X23 +
X22 + X21 + X8 + 1.

The secret key of the generator A5/1 is the initial contents of LFSRs 1–3 (64
bits). In each unit of time τ ∈ {1, 2, . . . } (τ = 0 is reserved for the initial state)
two or three registers are shifted. The register with number r, r ∈ {1, 2, 3}, is
shifted if χτ

r (bτ
1 , bτ

2 , bτ
3) = 1, and is not shifted if χτ

r (bτ
1 , bτ

2 , bτ
3) = 0. By bτ

1 , bτ
2 , bτ

3

we denote here the values of the clocking bits at the current unit of time. The
clocking bits are 9-th, 30-th and 52-nd. Corresponding cells in Fig. 1 are black.
The function χτ

r (·) is defined as follows

χτ
r (bτ

1 , bτ
2 , bτ

3) =
{

1, bτ
r = majority (bτ

1 , bτ
2 , bτ

3)
0, bτ

r �= majority (bτ
1 , bτ

2 , bτ
3)

where majority (A, B, C) = A ·B ∨A · C ∨B · C.
In each unit of time the values in the leftmost cells of the registers are added

mod 2, the resulting bit is the bit of the keystream.
Thus, we can see that the generator A5/1 updates the content of each of the

registers’ cells as a result of conditional shifts: if the shift does not occur, then a
new configuration of a register does not differ from the old one, otherwise values
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of all cells of the register are updated. Hence with each cell at each unit of time
we can associate a Boolean equation linking a new state of the cell with the
previous one. Let variables x1, . . . , x64 encode the secret key of the generator
A5/1 (xi corresponds to cell with number i ∈ {1, . . . , 64}). By x1

1, . . . , x
1
64 we

denote variables encoding cells’ state in the moment of time τ = 1. System of
equations which links these two sets of variables is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x1

1 ↔ x1 · χ1
1 ∨ (⊕i∈Ixi) · χ1

1

)
= 1

(
x1

2 ↔ x2 · χ1
1 ∨ x1 · χ1

1

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1

20 ↔ x20 · χ1
2 ∨ (⊕j∈Jxj) · χ1

2

)
= 1

(
x1

21 ↔ x21 · χ1
2 ∨ x20 · χ1

2

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1

42 ↔ x42 · χ1
3 ∨ (⊕k∈Kxk) · χ1

3

)
= 1

(
x1

43 ↔ x43 · χ1
3 ∨ x42 · χ1

3

)
= 1

. . . . . . . . . . . . . . . . . . . . . . . .(
x1

64 ↔ x64 · χ1
3 ∨ x63 · χ1

3

)
= 1

(
g1 ↔ x1

19 ⊕ x1
41 ⊕ x1

64

)
= 1

(1)

where I = {14, 17, 18, 19}, J = {40, 41}, K = {49, 62, 63, 64} and g1 is the first
bit of keystream.

Let g1, . . . , gL be the first L bits of the keystream of the generator A5/1. To
the each bit gi, i ∈ {1, . . . , L} we associate a system of the form (1). To find
the secret key it is sufficient to find a common solution of these systems. The
problem of finding of this common solution can be reduced by the means of
Tseitin transformations to the problem of finding a satisfying assignment of a
satisfiable CNF.

3 Coarse-Grained Parallelization of the Problem of
Logical Cryptanalysis of the Generator A5/1

In this section we describe a technology for solving SAT problems in distributed
computing systems (hereinafter DCS). Such systems consist of sets of computing
nodes connected by a communication network. Each node of a DCS has one
or several processors. Typical examples of DCS are computing clusters which
have become widespread in recent years. The elementary computational units of
modern DCS are cores of processors.

We consider an arbitrary CNF C over the set of Boolean variables X =
{x1, . . . , xn} and select in the set X some subset

X ′ = {xi1 , . . . , xid
} , {i1, . . . , id} ⊆ {1, . . . , n} ,

where d ∈ {1, . . . , n}. We call X ′ = {xi1 , . . . , xid
} a decomposition set and d

is the power of the decomposition set. To the decomposition set X ′, |X ′| = d,
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Fig. 2. Scheme of a decomposition set consisting of 31 variables

we associate the set Y (X ′) = {Y1, . . . , YK} consisting from K = 2d different
binary vectors of the length d, each of which is a vector of values of the variables
xi1 , . . . , xid

. By Cj = C|Yj , j = 1, . . . , K, we denote the CNF obtained after
substitutions of the values from the vectors Yj to C. A decomposition family
generated from the CNF C by the set X ′, is the set ΔC (X ′), formed by the
following CNFs:

ΔC (X ′) = {C1 = C|Y1 , . . . , CK = C|YK} .

It is not difficult to see that any truth assignment α ∈ {0, 1}n satisfying C
(C|α = 1) coincides with some vector Y α ∈ Y (X ′) in the components from X ′

and coincides with some satisfying assignment of the CNF C|Y α ∈ ΔC (X ′) in
the remaining components. In this case the CNF C is unsatisfiable if and only
if all the CNF in ΔC (X ′) are unsatisfiable. Therefore, the SAT problem for the
original CNF C is reduced to K SAT problems for CNFs from the set ΔC (X ′).
For processing the set ΔC (X ′) as a parallel task list a DCS can be used.

We use peculiarities of original problem to construct a decomposition set
with “good” properties. In logical cryptanalysis problems decomposition set is
usually chosen among the subsets of the set of input variables of cryptographic
function considered. For the logical cryptanalysis of A5/1 we propose to include
into the decomposition set X ′ the variables encoding the initial states of the
cells of registers, starting with the first cells until the cells containing clocking
bits inclusive (corresponding cells in the Fig. 2 are dark shaded). Thus, the
decomposition set X ′ consists of 31 variables:

X ′ = {x1, . . . , x9, x20, . . . , x30, x42, . . . , x52} (2)

This choice is motivated by the following considerations. Assigning values to
all variables from X ′ we determine the exact values of clocking bits for a large
number of subsequent states of all three registers. These clocking bits are the
most informative because they determine the value of the majority function.
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Let C be the CNF encoding the problem of cryptanalysis of the generator
A5/1 (see Section 2). By ΔA5/1 (X ′) we denote the decomposition family gener-
ated from the CNF C by the set X ′ defined by (2). Thus |ΔA5/1 (X ′) | = 231.

Further we describe a procedure of processing of ΔA5/1 (X ′) as a parallel task
list in DCS. Let us put the CNFs of the family ΔA5/1 (X ′) in some order. We
call an arbitrary CNF from ΔA5/1 (X ′) locked if at the current moment of time
the SAT problem for it has either been solved or is being solved on some core of
the DCS. The other CNFs are called free. We select first M CNFs C1, . . . , CM

from the family ΔA5/1 (X ′). For each of the selected CNFs we solve the SAT
problem on a separate core of the DCS. Once some core is released we launch
the procedure of solving of the SAT problem for the next free CNF of the family
ΔA5/1 (X ′) on this core. This process continues until a satisfying assignment for
some CNF from ΔA5/1 (X ′) is found, or until the unsatisfiability of all CNFs
from ΔA5/1 (X ′) is proven.

4 Modification of a SAT Solver for Solving the Problem
of Logical Cryptanalysis of the Generator A5/1

For solving of SAT problems from the decomposition family ΔA5/1 (X ′) we used
a modified version of well-known SAT solver MiniSat-C v1.14.1 [11]. The first
stage of the modification consists in changing the decision variable selection pro-
cedure (see [12]) implemented in Minisat. Namely, a procedure of assignment of
initial activity (different from zero) for those variables in the CNF which cor-
respond to the input variables of the function was added. For the problems of
cryptanalysis of generators this method allows to select, on the initial stage of the
solving process, the variables corresponding to the secret key as priority variables
for decision variable selection procedure. Also some basic constants of the solver
were changed. Like most of its analogs Minisat periodically changes the activity
of all the variables and clauses in order to increase the priority of selection for
variables from the clauses derived in the later steps of the search. Moreover, in
2% of cases the Minisat assigns a value to a variable selected randomly, rather
than to the variable with the maximum activity. These heuristics show, on aver-
age, good results on a broad set of test examples used in the competitions of SAT
solvers. However, for the CNFs encoding problems of cryptanalysis they are, usu-
ally, not efficient. In all our experiments we use modified SAT solver Minisat-C
v1.14.1 in which periodical lowering of the activity and random selection of vari-
ables are prohibited. In total, these simple changes led to a substantial increase
in efficiency of the SAT solver on cryptographic tests. Unmodified SAT solvers
Minisat-C v1.14.1 and Minisat 2.0 did not cope with CNFs from the decompo-
sition family constructed during the logical cryptanalysis of the generator A5/1,
even in 10 minutes of work (the computations were interrupted). The modified
Minisat-C v1.14.1 solved these problems in less than 0.2 seconds on average.

In the preceding section a general procedure for parallel processing of a list
of tasks was described. During this procedure the control process monitors the
load of computing cores and sends new tasks to the released cores. In practice,
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a direct implementation of this scheme leads to an excessive growth of transfer
costs, but provides uniform load of the cores.

The efficiency of a SAT solver in a DCS can be improved by using job batches.
Each job batch is a subset of the decomposition family ΔA5/1 (X ′). Sending
batches instead of single CNFs allows to reduce the cost of the transfer. We
decompose ΔA5/1 (X ′) into set of disjoint job batches. The obtained set is con-
sidered as a task list where each job batch is a list item. For processing this task
list we use the technique described in the previous section.

The fact that a decomposition set is a set of Boolean variables makes the
problem of transferring the batches to the cores very simple. Indeed, let X ′

be decomposition set defined by (2). And let M be the number of computing
cores in the DCS. The core with the number p ∈ {1, . . . , M} we denote by
ep. For the sake of simplicity, assume that M = 2k, k ∈ N1, and k < 31.
If we suppose that all the tasks in the decomposition family ΔA5/1 (X ′) have
approximately equal complexity, then when solving the problem in the DCS
each core is going to process approximately the same number of tasks. This
means that the decomposition family ΔA5/1 (X ′) can be partitioned into 2k

subfamilies of equal power and each subfamily can be further processed entirely
on the corresponding core. For this purpose select in X ′ some subset X ′

k of
power k (X ′

k can be formed, for example, by the first k variables from X ′). The
description of the job batch for a particular ep, p ∈

{
1, . . . , 2k

}
, is a binary

vector αp of the length k, formed by the values of variables from X ′
k. Next,

for each ep, p = 1, . . . , 2k, we consider the set Λp, consisting of 231−k different
vectors of the length 31 of the form (αp|β), where β takes all 231−k possible
values from the set {0, 1}31−k.

Each core ep, p ∈
{

1, . . . , 2k
}

, receives its job batch from the control process
as a vector αp which is used for constructing the set Λp. A subfamily of the
family ΔA5/1 (X ′) processed by ep is obtained as a result of substituting vectors
from Λp to CNF C which encodes the problem of cryptanalysis of the generator
A5/1.

5 Implementation of Parallel Logical Cryptanalysis of the
Generator A5/1 in BNB-Grid System

Using the decomposition set X ′ defined by (2) we calculated an approximate
time of parallel logical cryptanalysis of the generator A5/1 on the “Chebyshev”
cluster [13].

In our experiments for several variants of a keystream length we constructed
random samples of the volume of 1000 CNFs. For each sample we solved all SAT
problems from this sample and calculated average time of their solving. For this
purpose we used one core of Intel E8400 processor. In the Table 1 we show the
approximate time of solving the problem of logical cryptanalysis of the generator
A5/1 on one core of this processor for different variants of keystream lengths.
On the basis of these results we decided to use for cryptanalysis of the generator
A5/1 first 144 bits of keystream.
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Table 1. Approximate time of logical cryptanalysis for the generator A5/1 on a single
core of the processor Intel E8400 (in hundreds millions of seconds)

Keystream length 128 144 160 176 192

Approximate time 3.76 3.55 3.71 3.73 3.81

Table 2. Characteristics of processors

Processor model Intel E8400 Intel E5472

Number of cores 2 4

Core frequency 3.0 GHz 3.0 GHz

Bus frequency 1333 MHz 1600 MHz

Cache L2 6 Mb 12 Mb

From the Table 2 we can see that the cores of Intel E8400 and Intel E5472
processors are comparable in power (there is only a slight difference in the bus
frequency). Cluster “Chebyshev” [13] is based on Intel E5472 processors, there-
fore, using the results of our experiments on Intel E8400 processor we can cal-
culate an approximate time required for solving the problem of parallel logical
cryptanalysis of the generator A5/1 on cluster “Chebyshev”.

According to Table 1 parallel logical cryptanalysis of the generator A5/1 would
take about one day of “Chebyshev” work even if the cluster is fully dedicated to
this task. However, exclusive use of publically available supercomputers is usually
not possible. Thus it was clear that for a successful solving of cryptanalysis of
the generator A5/1 we would need to combine computational powers of several
supercomputers.

We decided to use the BNB-Grid [6] which is a generic framework for imple-
menting some combinatorial algorithms on distributed systems. The BNB-Grid
tool can harness the consolidated power of computing elements collected from
service Grids, desktop Grids and standalone resources. Adding different types of
computational resources is available (e.g., Unicore service Grid, BOINC desktop
Grid system). This package has already proved its efficiency in solving several
large scale optimization problems [6,14].

Hierarchical structure of BNB-Grid is shown on the Fig. 3. On the top level of
the BNB-Grid the object Computing Space Manager (CS-Manager) is located. It
decomposes the original problem into subproblems and distributes them among
the computing nodes. For each computing node there is a corresponding object
of the type Computing Element Manager (CE-Manager). CE-Manager provides
communication between CS-Manager and the corresponding computing node
and also starts and stops applications on this node. After receiving a task from
the CS-Manager, CE-Manager transfers it to the corresponding node and starts
MPI application BNB-solver which processes the received task on all available
cores.
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Fig. 3. Organization of computations in BNB-Grid

A module for processing SAT problems on a computing cluster was added to
the BNB-Solver. The input data of the control object CS-Manager is a descrip-
tion of the original SAT problem in XML format. CS-Manager decomposes SAT
problem for the original CNF C and obtains decomposition family. For trans-
ferring tasks between the CS-Manager and CE-Managers the technique of job
batches described in Section 4 is used. Each job batch is a compact description of
a subset of the decomposition family. Sending of batches instead of single CNFs
allows to reduce the cost of the transfer.

The computations were carried out on a distributed system consisting of four
computing clusters (see [15]): MVS-100k (Joint Supercomputer Center of RAS),
SKIF-MSU “Chebyshev” (Moscow State University), cluster of RRC Kurchatov
Institute, BlueGene P (Moscow State University).

In our experiments three test problems of cryptanalysis of the generator A5/1
were solved. During the computational experiment the number of simultaneously
working computing cores varied from 0 to 5568, averaging approximately 2–3
thousand cores. For each test the computations stopped after finding the first
satisfying assignment. The first test problem was solved (the secret key of the
generator was found) in 56 hours, the second and the third—in 25 and 122 hours
respectively.

The problem of cryptanalysis of the generator A5/1 is also interesting because
the same keystream of arbitrary length can be generated from different secret
keys. This fact was noted by J. Golic in [16]. We denote these situations as
“collisions” using the evident analogy with the corresponding notion from the
theory of hash functions. The approach presented in the paper allows us to
solve the problem of finding all the collisions of the generator A5/1 for a given
fragment of a keystream. Using BNB-Grid all collisions for one test problem (we
analyzed the first 144 bits of keystream) were found. It turned out that there
are only three such collisions (see Table 3). Processing this test problem by the
distributed system described above took 16 days.
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Table 3. Original key and collisions of the generator A5/1 (in hexadecimal format)

LFSR 1 LFSR 2 LFSR 3

x1, . . . , x19 x20, . . . , x41 x42, . . . , x64

original key 2C1A7 3D35B9 EEAF2

collision 2C1A7 3E9ADC EEAF2

collision 2C1A7 3D35B9 77579

6 Conclusion and Future Work

In this paper the results of successful parallel logical cryptanalysis of the genera-
tor A5/1 are presented. For solving this problem a Grid-system was specially con-
structed. Although the solving of the considered cryptanalysis problem turned
out to be quite time-consuming (from 1 to 16 days), all the tests were correctly
solved. Thus, the possibility of cryptanalysis of A5/1 in publicly available dis-
tributed computing systems (e.g., BOINC, [17]) was experimentally confirmed.
It should be noted that our approach does not require any special hardware
(like, for example, in [8]). On the webpage [18] CNFs encoding the problem of
cryptanalysis of the generator A5/1 are available.

We believe that logical cryptanalysis problems form quite a perspective class
of tests for new technologies of solving combinatorial problems in distributed
computing environments. In the nearest future we plan to apply the proposed
approach to solving problems of cryptanalysis of some stream ciphers and hash
functions.
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Abstract. Multi-Scale Simulator for the Geoenvironment (MSSG), which is a 
coupled non-hydrostatic atmosphere-ocean-land model, has been developed in 
the Earth simulator Center. Outline of MSSG is introduced and its 
characteristics are presented. In MSSG, Yin-Yang grid system is adopted in 
order to relax Courant–Friedrichs–Lewy condition on the sphere. Furthermore, 
the Large-Eddy Simulation model for the turbulent atmospheric boundary layer 
and cloud micro physics model have been adapted for ultra high resolution 
simulations of weather/climate system. MSSG was optimized computationally 
on the Earth Simulator and its dynamical core processes had attained 51.5 
Tflops on the Earth Simulator. Results from preliminary validations including 
forecasting experiments are presented. 

Keywords: Coupled atmosphere-ocean model, Earth Simulator, High 
performance computing, Multi-scale simulations. 

1   Introduction 

Intense research effort is focused on understanding the climate/weather system using 
coupled atmosphere-ocean models. It is widely accepted that the most powerful tools 
available for assessing future weather/climate are fully coupled general circulation 
models. Not only interactions between atmosphere or ocean components, but also 
various components have been coupled with various interactive ways and influence 
on earth system. Getting further information on perspectives of future weather/climate 
and the earth system, whole of the earth system should be simulated using coupled 
models as much as we can.  

The Earth Simulator Center have been developed coupled non-hydrostatic 
atmosphere-ocean-land general circulation model, which is called Multi-Scale 
Simulator for the Geoenvironment (MSSG), to be run on the Earth Simulator with 
ultra high resolution and really high performance computing architectures. When 
development of the coupled model has been completed and various simulations are 
capable on the Earth Simulator, the ambition task of simulating and understanding the 
earth system should bring us further detail information on the Earth System. Those 
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high qualified information for forecasting or objecting, more significant impacts 
might be brought by the results of simulations. Simulations with target scale shown in 
Fig.1 will be planed in near future. 

In this paper, MSSG is described in section 2. In section 3, implementation 
architectures of MSSG on the Earth Simulator are introduced. Performance analysis is 
performed and results are presented in section 4. Preliminary validation results from 
simulation with MSSG are shown in section 5. 

 
Fig. 1. (a): Yin-Yang gird system for the global. Each colored panel is corresponding to Yin 
and Yang grid, respectively. (b): Japan region is nested with two way interaction to the global. 
(c): As our near future target simulations, urban scale weather/climate simulations will be 
allowed with two-way interactions to the global/regional scale simulations. Urban topography 
was lent by Geographical Survey Institute. 

2   Model Description 

2.1   The Atmospheric Component: MSSG-A 

The atmosphere componentof MSSG, MSSG-A is compromised of the non-
hydrostatic, fully compressive flux form of dynamic[1] and Smagorinsky-Lilly type 
parameterizations [2][3] for subgrid scale mixing, surface fluxes [4][5],  cloud 
microphysics with mixed phases[6], cumulus convective processes [7][8] and simple 
radiation scheme. The set of the prognostic equations is presented as follows: 

In equations (1)-(7), prognostic valuables are momentum ),,( ρωρρυρ v=v , ρ ′ which is 

calculated as ρρρ −=′  and P’ defined by PPP −=′ .  ρ  is the density; P is the 

pressure; P  is a constant reference pressure. γκμ and,,,f are the Coriolis force, the 
viscosity coefficient, the diffusion coefficient, and the ratio of specific heat, 
respectively. F is the heat source term and the viscosity term, respectively. G is the 
metric term for vertical coordinate; λ is latitude; φ is longitude. 
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Over land, the ground temperature and ground moisture are computed by using a 
bucket model as a simplified land model. As upper boundary condition, Rayleigh 
friction layer is set. For the lateral boundary condition of regional version, sponge 
type boundary condition [9] is used.  

Regional version of the MSSG-A is utilized with one way nesting scheme by 
choosing the target region on the sphere, although two-way nesting is available as an 
option. Any large regions can be selected from the global, because both Coriolis and 
metric terms are introduced in the regional formulation. As another option, multiple 
regions are allows to be selected at the same time and computed with parallel. 

2.2   The Ocean Component: MSSG-O 

In the ocean component. MSSG-O, the in-compressive and hydrostatic equations with 
the Boussinesq approximation are used based on describing in [10][11]. The set of 
equations in the ocean component becomes as follows, 
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where the Boussinesq approximation is adopted in (9) and all variables are defined as 
above for the atmospheric component. In equation (14), UNESCO scheme [12] is 
used.  

Smagorinsky type scheme [2][3] is used as the subgrid-scale mixing in identical 
experiments with the ocean component. The level-2 turbulence closure of Mellor 
Yamada [13] has been also introduced to the ocean component as one of optional 
schemes. 

In the ocean component, sponge layers are used for lateral boundary in the open 
ocean. The lateral boundary condition between ocean and land is defined as 

0// =∂∂=∂∂ tStT  and 0=v . Bottom boundary condition is defined by Neumann 
condition without vertical velocity. The upper boundary conditions are given as 
momentum fluxes by wind, heat and fresh water fluxes from observational data of 
atmosphere. 

2.3   Grid Configuration 

Yin-Yang grid system [14] is used both for the MSSG-A and MSSG-O. Yin-Yang 
gird system as shown Fig.1(a) is characterized by overlapped three dimensional two 
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panels to cover the sphere. Basically, one component grid is defined as a part of low-
latitude region covered between 45N and 45S and 270 in longitude of the usual 
latitude-longitude grid system and the other component of the grid system is defined 
in the same way but in different spherical coordinates. The region covered by a panel 
is able to change by rotating axes of the panels.  

By using Yin-Yang grid system, we can find a solution on an issue of how to avoid 
singular points such as the south and north poles on a latitude/longitude grid system. 
In addition, the advantage to enlarge the time step is compared to conventionally 
utilized latitude/longitude grid system. 

2.4   Differencing Schemes 

In both the MSSG-A and MSSG-O, the Arakawa C grid is used. The MSSG-A 
utilizes the terrain following vertical coordinate with Lorenz type variables 
distribution [15]. The MSSG-O uses the z-coordinate system for the vertical direction. 
In discritization of time, the 2nd, 3rd and 4th Runge-Kutta schemes and leap-flog 
schemes with Robert-Asselin time filter are available. The 3rd Runge-Kutta schemes is 
adopted for MSSG-A. In this study, leap-flog schemes with Robert-Asselin time filter 
is used for MSSG-O. 

For momentum and tracer advection computations, several discritization schemes 
are available [16][17]. In this study, the 5th order upwind scheme is used for MSSG-A 
and central difference is utilized in MSSG-O.The vertical speed of sound in the 
atmosphere is dominant comparing horizontal speed, because vertical discritization is 
tend to be finer than horizontal discritization. From those reasons, Horizontally 
explicit vertical implicit (HEVI) schemeis adopted in the atmosphere component. The 
speed of sound in the ocean is three times faster than it in the atmosphere, implicit 
method is introduced and Poisson equation (16) is solved in the method. Poisson 
equation is described as follows. Here is solved under Neumann boundary condition 
of  

vG•=• nPgradn .  

No side-effects of over lapped grid system such as Yin-Yang grid were considered 
due to validations results of various benchmark experiments[16][18][19][20][21]. 
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2.5   Algebraic Multigrid Method in a Poisson Solver 

Algebraic Multi-Grid (AMG) method [22] is used in order to solve the Poisson 
equation mentioned in section 2.4. AMG is well known as an optimal solution 
method. We used the AMG library which has been developed by Fuji Research 
Institute Corporation. The AMG library is characterized in terms of following points, 

• AGM in the library has been developed based on aggregation-type AMG [22]. 
• In the library, AMG is used as a pre-conditioner in Krylov subspace algorithms. 
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• Incomplete LU decomposition (ILU) is adopted as a smoother in the library, which 
shows good computational performance even for ill-structured matrixes 

• Local ILU is used for parallelization, in addition, fast convergence speed has been 
kept. 

• Aggregation without smoothing is adopted with recalling procedure, because 
remarkably fast convergence has been performed by using the aggregation. 

3   Implementation of MSSG on the Earth Simulator 

3.1   Coding Style 

MSSG is composed of non-hydrostatic atmosphere, hydrostatic/non-hydrostatic ocean 
and simplified land components with 200, 000 lines of the code. It is written in 
Fortran 90 and automatic allocation schemes are used in order to save memory size. 
MODULE features are used to keep maintainability and readability of the code. 
Extensions to the Message Passing Interface (MPI-2) has been used, which is tuned 
up for the scalability of the Earth Simulator.   

3.2   Distribution Architecture and Communications 

The architecture and data structures are based on domain decomposition methods. In 
Yin-Yang grid system, communication cost imbalance might occur by adopting one 
dimensional decomposition. The case of decomposition with 16 processes is 
considered in Fig.2. Each gray color is corresponding to each process. The number of 
arrows linking between different colored areas is corresponding to a mount of 
communication between processes. For example, in Fig.2 (a) for one dimensional 
domain decomposition, black colored process called A should communicate to 
different colored 8 processes. In Fig.2 (b) for two dimensional decomposition, a black 
colored process called A communicates two processes. In Fig.2 (a), communication 
data size is small, in addition, the number of communications is increased. When the 
same number for decomposition is defined in both (a) and (b), it is clear that less 
amount of communication realizes in Fig.2 (b). Two dimensional decomposition was 
adopted for both MSSG-A and MSSG-O due to the reasons mentioned above. 

 

     

Fig. 2. Schematic features of domain decomposition on Yin-Yang grid system. Left: one 
dimensional domain decomposition, and Right: two dimensional domain decomposition. 
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3.3   Inter-/Intra-node Parallel Architectures and Vector Processing 

Since effective parallelization and vectorization contribute to achieve high 
performance, the three-level parallelism which are inter-node parallel processing for 
distributed memory architecture, and intra-node parallel processing for shared 
memory architecture, and vector processing for a single processor should be utilized 
in order to pursuit high computational performance. MPI-based parallelism for inter-
node is used to communicate among decomposed domains. 

Micro-tasking of intra-node operations for shared memory architecture contributes 
to significant high performance, when long vector length is selected for the 
parallelism at a DO loop level. In order to equally share the computational load by 8 
threads of micro-tasking, it is simple way that each micro-task is mapped onto a 
processor and vertical layers and latitudinal grid points are parallelized with micro-
tasking architectures. Therefore, it is necessary to high computational performance 
that the number of vertical layers and latitudinal grid points are required to be a 
multiplier of 8 to archive higher performance computation. In the cases in this paper, 
32 and 40 vertical layers have been selected for the MSSG-A and the MSSG-O, 
respectively.  

When domain decomposition is used for inter-node parallelization, vector length 
and length of DO loops should be taken into account to be fully utilized. In this paper, 
two approaches in DO loops are considered in order to keep the length of DO loops. 
The first step to keep the length of DO loops is that both latitude and longitude 
direction are selected as an axis of DO loops. When the first approach is chosen, 
double looping structure is adopted. The second approach is that single DO looping 
structure is used by combining both looping axes of longitude and latitude direction. 
Fig.3 shows preliminary comparison results from computations of dynamical core 
with double looping and single looping structures. When single looping structure is 
adopted, array structures should be taken in account order to access grid point in 
overlapped regions of Yin-Yang grid system. In Fig.3, 1loop_list, 1loop_nolist and 
1loop_metric present implementation architectures with list structure, without list 
structure and list structure excepting metric terms, respectively. 2loops shows results 
of cost performance with double DO looping structures. Single DO looping structure 
without list structures to access grid points shows best performance as shown in Fig.3. 
However, increasing length of DO loop, the discrepancy between double and single 
DO looping structure is getting small. Ultra high resolutions over 400 of loop length, 
which is corresponding to higher resolution than 25km for global, are required.  
Therefore, we adopted double DO looping structure, because fully high performance 
is expected as the same level performance of single DO looping structure and 
simplified coding styles are able to use in double DO looping structure. 

In terms of above considering, two dimensional decomposition, computational 
performance of advection terms in dynamical core is presented in Fig.4. As vector 
length is selected near a multiplier of 256, computational performance shows well. 

3.4   Memory and Ccost Reductions for Land Area in MSSG-O 

By using two dimensional domain decomposition, computations over land are not 
needed in the MSSG-O. Generally, in one dimensional domain decomposition, 
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Fig. 3. Cost performance for double and single DO loop structures with different horizontal 
resolutions. Left and right figures show Mflops and elapsed time increasing resolutions. 
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Fig. 4. Cost performance of dominant computations for advection terms in the dynamical core, 
increasing vector length 

masking operation is used for computations in land area. Since cost of computation 
for land area accounts for about 22 %, those computation should be considered in 
order to reduce both memory and computational cost. In this paper, nodes allocated 
for computation in only land area are eliminated in advance of simulations. 22% of 
memory and of cost performance have been reduced by excluding redundant 
computations.  

3.5   Overlapped Computations in MSSG-O 

In the MSSG-O, procedures of AMG, advection computations of temperature and 
salinity, and computation of density are dominant in simulations of the ocean 
component. Since procedures of AMG are able to be performed independently of 
advection and density computations. Micro-tasking of intra-node operations for 
shared memory architecture is used for parallelization of AMG procedures and 
advection computations. Fig.5 shows an outline of parallelization with micro-tasking 
architecture. After using eight micro-tasking for computations of velocities u and v, 
one micro-task is used for Poisson solver with AMGCG and seven micro-tasks are 
 



492 K. Takahashi et al. 

 

Fig. 5. Schematic figure of flow chart for parallelization with maicrotasking architectures in the 
ocean component 

 

Fig. 6. Schematic figure of serial coupling scheme between the atmosphere and ocean 
components. Arrows show the direction of data flow. 

used for computations of temperature, salinity and density. After parallel computation 
with micro-tasking architectures, velocities are computed and communication has 
performed by using full micro-taskings. 

3.6   Coupling Scheme with High Computational Performance 

The interface between atmosphere and ocean should be taken into account to maintain 
a self consistent representation in a model. The heat fluxes, moisture and momentum 
fluxes computed and averaged in MSSG-A transfer to MSSG-O as the upper 
boundary condition of it. Sea surface temperature (SST) integrated in MSSG-O 
transfers to the MSSG-A as bottom boundary condition. To remove time 
inconsistency through coupling, two approaches are considered. The one of them is 
that individual component can run independently during the same duration and 
communicate surface variables at the same time after integrating. In this framework, it 
is required to find the most suitable number of nodes used for the component to be 
completed integration at the same time. As the other approach, if each component is 
fully optimized and can be implemented with high parallelization on whole nodes of 
the Earth Simulator, sequential coupling shows much higher computational 
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efficiency. In this coupling scheme, the inconsistent through coupling would be 
avoided. After integration with the atmosphere component, averaged fluxes during the 
integration have to be stored in memory until finishing of the following integration 
with the ocean component. Since MSSG-A and MSSG-O are assumed to be fully 
optimized and parallelized in this study, the serial coupling scheme is adopted as 
shown in Fig. 6. 

4   Computational Performance on the Earth Simulator 

4.1   Cost Balance and Communication Cost of MSSG-A 

Cost of each component of MSSG and communication between atmosphere and 
ocean components are shown in Table1. Horizontal resolution of the atmospheric 
component is same as it of the oceanic component, because total amount of fluxes 
throughout communications between the atmosphere and ocean components should 
be conserved during whole integration. The shared memory architecture within each 
node is used for communication of fluxes between atmosphere and ocean 
components. Therefore, Table 1 shows that low cost of communication due to the 
shared memory has been achieved. Furthermore, Table 1 suggests that optimization of 
an atmospheric component plays an important role in order to realize high 
performance computation in MSSG. 

Table 2 shows cost balance of each processes in MSSG-A for global simulations. 
Cost of dynamical core processes is dominant in MSSG-A. As the results of 
optimization according to the optimization described in 3.3, computational 
performance statistics of dynamical core on the Earth Simulator, 51.5Tflops had 
attained and was estimated by about 39.2% of the theoretical peak of the Earth 
Simulator. Cost of communications in physical processes is relatively high. It 
suggests there might be cost imbalance among nodes. The cost imbalance reveled in 
cloud microphysics processes, therefore, we examined introducing a balancer scheme, 
which can change decomposition region to be divided to each node, to relax cost 
imbalance among processes. However, cost imbalance has not been improved. It is 
still an open problem to improve cost performance in physical processes. 

4.2   Efficiency of Overlapped Computation in MSSG-O 

In MSSG-O, overlapped computation is introduced as mentioned in section 3.5. The 
efficiency is shown in Table 3. After introducing it, total elapsed time decreases with 
 

Table 1. Cost balance of the Earth Simulator in MSSG 

Component Elapsed time 
(sec) Ratio to total elapsed time 

Atmosphere component; MSSG-A 460.641 97.09% 

Ocean component; MSSG-O 13.548 2.86% 

Data exchanging for coupling 0.256 0.05% 

Total elapsed time of MSSG 474.445 - 
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Table 2. Cost balance of the Earth Simulator in MSSG 

Processes / Schemes Elapsed time (sec) Ratio to total elapsed time 

Whole processes of MSSG-A 1773.36 - 

Dynamical core processes 1435.39 80.94% 

Physics processes 337.97 19.06% 

Processes / Schemes Ratio to total elapsed 
time of physics processes 

Ratio to total elapsed time 
of physics processes 

Cloud micro physics 67.20% 12.81% 

Surface fluxes schemes 1.80% 0.34% 

Subfield variables 8.35% 1.59% 

Radiation schemes 3.02% 0.58% 

Land processes 1.71% 0.33% 

Others 1.08% 0.21% 

Communications 16.85% 3.21% 

Table 3. Cost efficiency with overlapped computation on the Earth Simulator. T is temperature; 
S is salinity; and ρ shows density in the ocean. 

Schemes 
Overlapped computation Computation without overlap 

Total elapsed 
time (sec) 

Ratio to total 
elapsed time 

Total elapsed time 
(sec) 

Ratio to 
total elapsed time 

Whole ocean 
component 576.281 - 688.251 -

Two dimensional 
Poison solver  

246.641 42.80% 350.957
247.323

50.99%
35.94%

Computation of T, S 
and ρ 103.634 15.06%

about 20%. The parallelization is implemented by using microtasking architecture 
within each node, communication cost of data transfer among each task can be 
neglect by using shared memory in a node. 

5   Simulation Results 

5.1   Results from MSSG-A 

Global simulation has been performed to validate physical performance under the 
condition of 1.9 km horizontal resolution and 32 vertical layers. 72 hours integration 
was executed with the atmospheric component. Initialized data was interpolated at 
00UTC08Aug2003 from Grid Point Value (GPV) data provided by Japan 
Meteorological Business Support Center. Sea surface data was also made by GPV 
data at 00UTC08Aug2003 and fixed during the simulation. Precipitation distribution 
for global has been presented in Fig.7. Fig.7 shows averaged precipitation one hour 
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before 00UTC10Aug2003. The unit is mm per hour. Precipitation distribution has 
been brought by working of cloud microphysics and is comparable to observation 
data. In this simulation, diurnal cycle of precipitation in Indonesian region and fine 
structure of fronts are captured. 

Regional coupled simulations for physical validation has been performed with one 
way nesting from 11 km global to Japanese region with 2.7km horizontal resolution. 
Horizontal resolution was set the same condition in oceanic component of MSSG. 
Initialized data was interpolated by using GPV data at 00UTC08Aug2003 provided 
by Japan Meteorological Business Support Center Boundary condition was made by 
interpolation the above simulation with 5.5km horizontal resolution. Sea surface 
temperature was also fixed to data at 00UTC08Aug2003 during the simulation. 72-
hours integration has been performed. Fig.8 shows the result after 72 hours 
integration. White gradation distribution in the typhoon shows cloud water 
distribution corresponding to cloud distribution. Fine rain band structure has been 
captured shown in Fig. 8. In the ocean, distribution of sea surface temperature (SST) 
is presented as well in Fig.8. SST responses to a strong wind due to typhoon and 
disturbance of SST are simulated. Not only SST but also vertical velocity in the ocean 
has been dramatically changed in Kuroshio region (data not shown). 

5.2   Results from MSSG-O 

In standalone oceanic components of MSSG, as validation simulation, 15-years 
integration with 11km horizontal resolution and 40 vertical layers has been executed 
for the North Pacific basin and region between the equator and 30ºS in CASE4 
Surface heat fluxes and boundary data are computed from climatological data 
provided by World Ocean Atlas (WOA). Momentum fluxes are obtained by 
interpolating from climatological data by NCAR. Fig. 7 shows temperature 
distribution at 15 m depth from the surface, which is corresponding to the second 
layer from the surface.  

 

Fig. 7. Global precipitation distribution with the atmospheric component (mm/h) 
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Fig. 8. Regional validation results with the atmospheric component. Colored distribution shows 
the precipitation (mm/hour). 

 

Fig. 9. Snap shot results from regional simulations with the MSSG-O after 15 years integration. 
SST (℃) at 15m depth from surface are distributed. 

5.3   Urban Scale Simulations 

We especially focus on developing models of urban scale phenomena which will be 
one of the key parts of seamless simulation. The impacts of Large Eddy Simulation 
scheme for boundary layer in MSSG was explored by simulation. Marunouchi area in 
the center of Tokyo was selected for the simulation. Experiments were performed 
with both 5m horizontal and vertical resolution in MSSG-A. The initial state was 
settled at 15:00 on 5th August in 2005. Initial thermal condition was set taking account 
 



 High Performance Computing of MSSG with Ultra High Resolution 497 

 

Fig. 10. Temperature distribution of urban scale simulations for Marunouchi are in Tokyo 

of shade  in a day. In simulations with 5m horizontal resolution, buildings can be 
resolved with anthropogenic heating source. Fig. 10 shows a snap shot of horizontal 
temperature distribution during nonstationary computation from the initial time 15:00. 
Dynamics of thermal plume have been well represented. 

6   Conclusions and Perspectives 

The developments of MSSG was successfully almost completed with the high 
computational performance, although further optimization remains in 
communications. Simulation results with each time/space scale encourage us to start 
seamless simulations with MSSG. As challenging issues, more various forecasting 
experiments is going to be performed and more longer integration will be executed in 
order to estimate the accuracy of forecasting. 
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